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Preface

Scientific Computing in Electrical Engineering (SCEE) is an international con-
ference series, which started as a national German meeting held in Darmstadt
(1997) and Berlin (1998), both under the auspices of the Deutscher Mathematiker
Verein. The first truly international SCEE conference was organized in 2000 in
Warnemünde, Germany, by the University of Rostock. In 2002, the 4th SCEE con-
ference took place in Eindhoven, The Netherlands, jointly organized by the Eind-
hoven University of Technology and Philips Research Laboratories Eindhoven. The
5th SCEE conference was held in 2004 in Capo D’Orlando, Italy, jointly organized
by Universita di Catania and Consorzio Catania Ricerche. The venue of the 6th
SCEE conference was Sinaia, Romania, in 2006, organized by the Politehnica Uni-
versity of Bucharest.

The 7th International Conference on Scientific Computing in Electrical Engi-
neering (SCEE 2008) was held in Espoo, Finland, from September 28 to October
3, 2008. It was organized by the Helsinki University of Technology; Faculty of
Electronics, Communications and Automation; Department of Radio Science and
Engineering; Circuit Theory Group. (Details on the SCEE 2008 conference are at
http://radio.tkk.fi/en/conferences/scee2008/).

The SCEE 2008 conference was sponsored by

• Nokia (http://research.nokia.com/),
• STMicroelectronics (http://www.st.com/),
• ABB (http://www.abb.com/),
• CST (http://www.cst.com/),
• AWR (http://web.awrcorp.com/),
• MunEDA (http://www.muneda.com/),
• MAGWEL (http://www.magwel.com/),
• Academy of Finland (http://www.aka.fi/),
• Helsinki University of Technology (http://www.tkk.fi/),
• City of Espoo (http://english.espoo.fi/),
• CoMSON Research Training Network (http://www.comson.org/),
• The Finnish Society of Electronics Engineers (http://www.eis.fi/).
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viii Preface

The aim of the SCEE 2008 conference was to bring together scientists from
academia and industry, primarily mathematicians and electrical engineers, with the
goal of intensive discussions on modeling and numerical simulation of electronic
circuits and of electromagnetic fields. The conference topics were the following:

1. Computational Electromagnetics

- CAD/EDA tools and techniques
- Modeling and parameter extraction
- Discretization and solution methods (BEM, FEM, FDTD, FIT, FDS, PEEC,

TLM, MoM, etc.)
- Applications (antennas, microwaves, interconnects, on-chip passives, electri-

cal machines, etc.)

2. Circuit Simulation

- CAD/EDA tools and techniques
- Modeling (passive, device, compact, behavioral, symbolic, etc.)
- Simulation (DC, AC, transient, HB, envelope, noise, etc.)
- Model-Order Reduction (MOR)
- Applications (RF communication systems, power electronics, etc.)

3. Coupled Problems

- Multi-physics modeling and simulation (electrical/thermal/mechanical, sub-
strate coupling, etc.)

- Co-simulation (EM–circuit, circuit–system, analog–digital, etc.)
- Applications (interconnects, electromagnetic compatibility, bio-engineering,

MEMS, etc.)

4. Mathematical and Computational Methods

- Differential equations (PDEs and DAEs)
- Solution methods for large linear systems
- Multi-scale schemes
- Parallel/grid computing
- Optimization, space mapping, inverse problems, etc.

The SCEE 2008 Program Committee consisted of

• Prof. Gabriela Ciuprina (Politehnica University of Bucharest, Romania),
• Dr. Georg Denk (Qimonda, Germany),
• Prof. Michael Günther (University of Wuppertal, Germany),
• Dr. Jan ter Maten (NXP Semiconductors & TU Eindhoven, The Netherlands),
• Dr. Bastiaan Michielsen (ONERA, France),
• Prof. Ursula van Rienen (University of Rostock, Germany),
• Prof. Vittorio Romano (University of Catania, Italy),
• Dr. Janne Roos (Helsinki University of Technology, Finland),
• Prof. Wil Schilders (TU Eindhoven & NXP Semiconductors, The Netherlands),
• Prof. Thomas Weiland (TU Darmstadt & CST, Germany).



Preface ix

The Program Committee selected and invited, for each of the four main topics,
(at least) one speaker from academia and one from industry. Thus, SCEE 2008 was
honoured by the presence of the following 10 invited speakers:

• Dr. Sergey Yuferev (Nokia, Finland):
“Challenges and Approaches in EMC/EMI Modeling of Wireless Devices”

• Dr. Emira Dautbegovic (Qimonda, Germany):
“Wavelets in Circuit Simulation”

• Prof. Qi-Jun Zhang (Carleton University, Canada):
“ANN/DNN-Based Behavioral Modeling of RF/Microwave Components and
Circuits”

• Prof. Ansgar Jüngel (TU Wien, Austria):
“Thermal Effects in Coupled Circuit–Device Simulations”

• Dr. Wim Schoenmaker (MAGWEL, Belgium):
“Evaluation of the Electromagnetic Coupling Between Microelectronic Device
Structures Using Computational Electrodynamics”

• Prof. Daniel Ioan (Politehnica University of Bucharest, Romania):
“Parametric Reduced-Order Models for Passive Integrated Components Coupled
with their EM Environment”

• Dr. Galina Benderskaya (CST, Germany):
“Numerical Time Integration in Computational Electromagnetics”

• Dr. David Levadoux (ONERA, France):
“New Trends in the Preconditioning of Integral Equations of Electromagnetism”

• Prof. Jan Hesthaven (Brown University, USA):
“High-Order Discontinuous Galerkin Methods for Computational Electromag-
netics and Uncertainty Quantification”

• Prof. Peter Benner (TU Chemnitz, Germany):
“Advances in Balancing-Related Model Reduction for Circuit Simulation”

There were 95 participants from as many as 18 countries with altogether 84 ab-
stracts accepted to be presented at the conference: 10 invited talks, 32 contributed
talks, and 42 posters.

The 65 papers appearing in this SCEE 2008 post-conference book were selected
from the 84 abstracts presented at the conference through a second review round.
Each paper was carefully reviewed by two experts in this second round as well. The
overall review process was coordinated by the editors of this book and supervised
by the Program Committee.

The selected 65 papers are organized under the four main topics of the SCEE
2008 conference and an additional one on model-order reduction. Adding the fifth
category seemed appropriate due to the abundance of papers on this topic. Thus,
this book is divided into five parts: Computational Electromagnetics (14 papers),
Circuit Simulation (15), Coupled Problems (10), Mathematical and Computational
Methods (12), and Model-Order Reduction (14).

Thanks to the suggestion of the Editorial Board of the Springer series “Mathe-
matics in Industry”, the readability of this book has been improved by writing a short



x Preface

introduction on the scientific rationale of the entire book and writing an umbrella-
like introduction for each of the five parts. An attempt has also been made to arrange
the papers within each part to create a relatively smooth transition from one paper
to the next.

This SCEE 2008 post-conference book is dedicated to the memory of Professor
Angelo Marcello Anile, who was an active member of the SCEE community. His
close friends and colleagues Dr. G. Alı̀, Prof. M. Günther, and Prof. V. Romano
remember him in the in memoriam that follows this preface.

On behalf of the SCEE 2008 Local Organizing Committee, we would like to
thank all the authors for submitting high-quality papers, the reviewers for their hard
and exacting work within a tight schedule, the members of the Program Committee
for their efforts and time, and those of the Scientific Advisory Committee for their
support. Also, we are grateful to the financial and material support received from
our sponsors.

Espoo, Janne Roos
December 2009 Luis R.J. Costa



Angelo Marcello Anile In Memoriam

3.1.1948–16.11.2007

We wish to express our deep regret that SCEE has to go on without its Program
Committee member over many years, Professor Angelo Marcello Anile from Cata-
nia, Sicily, Italy. Marcello passed away on Friday, 16th November, 2007. With the
passing away of Marcello, we lost a colleague respected throughout the field of ap-
plied mathematics both in academia and industry, an inspiring scientist, and a dear
friend. Without his enthusiasm, his devotion to interdisciplinary research on a Euro-
pean scale, his mediative attitude and extensive knowledge, international activities
such as the biannual SCEE conferences would never have been the success they are.
We will always treasure the fond memories of Marcello the scientist, colleague, and
dear friend.
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xii Angelo Marcello Anile In Memoriam

Marcello — the scientist

Angelo Marcello Anile graduated from the Scuola Normale of Pisa, Italy, in 1971
and got his Ph.D. at the Oxford University under the supervision of Prof. Dennis
Sciama, one of the best known astrophysicists in those years. Marcello had a brilliant
academic career, becoming full professor of mathematical physics in 1980 and one
of the most internationally representative researchers of the field. He started his re-
search activities studying problems arising from general relativity and, in particular,
relativistic fluids with applications to astrophysics and cosmology. A comprehensive
review of his work on relativistic waves is given in the monograph “Relativistic flu-
ids and magnetofluids”, published by the Cambridge University Press (1989). Later,
his interests turned towards applied mathematics and he started collaborations with
companies, in particular STMicroelectronics (the former SGS-Thomson), becom-
ing a leader in the field of industrial mathematics. His interest was in trying to solve
problems arising from real industrial cases. He focused his attention on mathemati-
cal models for charge transport in semiconductors and nanoscale devices. In the last
years before his death, Marcello also worked on fuzzy logic, neural networks, and
optimization.

He was one of the founders of the SCEE series of conferences and a member of
either the SCEE Program Committee or the Scientific Advisory Committee over the
years. He organized the SCEE 2004 conference and the Summer School in 2005,
both at Capo D’Orlando, Sicily. He was also a member of the ECMI council and
one of the organizers of ECMI 2000, the 11th ECMI conference, at Palermo, Italy.
He was one of the inspiring fathers of the EU-FP6 Research Training Network on
Coupled Multiscale Simulation and Optimization in Nanoelectronics (CoMSON),
linking his home university Catania with four other European universities and three
leading European semiconductor companies. Before his untimely death, he founded
in Catania a center for applied mathematics jointly with the Fraunhofer Institute of
Kaiserslautern and the University of Florence. At the University of Catania Marcello
created a research group with several collaborators from and partnerships with other
Italian and foreign universities. Many of his Ph.D. students now have permanent
university positions. Marcello’s idea of research embraced interdisciplinary activity
where mathematics plays a fundamental role allowing modeling and simulation of
challenging technological problems.

Marcello — a colleague and a friend

Marcello was not only a man of science, but had a polyhedric passion for culture. He
was attracted by all kinds of arts: painting, music, literature. He studied piano and
knew very well the English literature, with a special predilection for James Joyce
and his ‘stream of consciousness’. During his travels around the world at confer-
ences and meetings for scientific projects he investigated the social and economic
features of the visited places and tried to acquaint himself with the local customs.
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The book “The travelling mathematician”, a brief biography and collection of im-
ages and words published by the Angelo Marcello Anile Association, is proof of his
deep interest in culture.

All the authors of this note are deeply indebted to Marcello for his influence at
the most critical moment of their career as researchers, that is during their years of
youth and formation.

One of the authors (G.A.) still recalls vividly the memory of the first lecture
on rational mechanics given by Marcello during his second year at university. That
lecture made it clear to the young student that he was in front of a master. And, later
on, he would decide to follow that master rather than devote himself to those topics
which were his initial motivation for starting a university course in mathematics.

Another of the authors (V.R.) remembers with a special emotion his participation
in his first conferences during his doctoral studies under Marcello’s supervision,
particularly the international conference held in La Scuola Internazionale Superi-
ore di Studi Avanzati (SISSA), in Trieste, Italy, dedicated to the 65th birthday of
Prof. Dennis Sciama. The foremost experts in the field of general relativity were
present on that occasion. He still remembers the stimulating atmosphere, the surreal
presence of Steven Hawking, and the depth of the talk delivered by Roger Penrose
and by the other speakers. This episode well represents the sense of wonder that
accompanied most young researchers close to Marcello. He was, for them, a sort of
window to the world as well as a naturally authoritative person.

At the same time, he was friendly with everybody; he displayed a deep famil-
iarity, irrespective of roles or titles. One of the authors (G.A.) remembers the day
after his admission to the Ph.D. course in applied mathematics when encountering
Marcello on the stairway of the department of mathematics. He greeted him, “Buon-
giorno Professore,” and his reply was, “You are a Ph.D. student now, you can call
me Marcello.”

This benevolence and friendliness was directed not only to his closest collabora-
tors, but it was a general trait that characterized Marcello. One of the authors (M.G.)
remembers well that it was Marcello who introduced him as a young Ph.D. student
into the European scale of research and industrial mathematics. He also loves re-
membering Marcello’s hospitality and pride when he showed him the beauty of
Sicily and its long and rich history.

With the loss of Marcello we have lost not only a master, but also a colleague
and a friend.

May 2009 Giuseppe Alı̀1

Michael Günther2

Vittorio Romano3

1 Università della Calabria, Italy.
2 Bergische Universität Wuppertal, Germany.
3 Università di Catania, Italy.
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Università di Catania, Viale Andrea Doria 6,
95125 Catania, Italy
drago@dmi.unict.it

Fredrik Edelvik
FCC–Fraunhofer-Chalmers Research Centre
for Industrial Mathematics, Göteborg, Sweden
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Introduction

Janne Roos

This post-conference book contains 65 accepted full papers of the 7th International
Conference on Scientific Computing in Electrical Engineering (SCEE 2008).

Scientific computing is a field of study concerned with the following kind of
steps: 1) formulate a mathematical model of the object/phenomenon being studied,
2) develop a numerical algorithm for analyzing/solving the mathematical model, 3)
implement the algorithm in the form of a computer program, 4) simulate the model
by running the computer program, and 5) analyze the results. In real life, as also in
the papers of this book, the main focus at a time may be on one or more steps. Also,
these steps are seldom carried out from scratch; for example, one may use (parts
of) an existing computer program rather than implementing a new one. Finally, note
that scientific computing, which has considerably contributed to our current (mate-
rial) well-being, is used in various scientific disciplines like, e.g., biology, economy,
social sciences, and engineering.

Electrical engineering, which in this book also includes electronic engineering,
is a field of engineering that deals with the study and application of electricity, elec-
tromagnetism, and electronics. Nowadays, electrical engineering covers a range of
subtopics including, e.g., antennas, electrical machines, control systems, circuit de-
sign/modeling/simulation, signal processing, and telecommunications.

Scientific computing in electrical engineering could include, based on the above
discussion, a very large spectrum of different topics. Only a part of this wide spec-
trum was covered at the SCEE 2008 conference, reflecting the current interests of
the “SCEE community”. So, this book contains the following five parts: I. Compu-
tational Electromagnetics, II. Circuit Simulation, III. Coupled Problems, IV. Mathe-
matical and Computational Methods, and V. Model-Order Reduction. Each of these
five parts consists of an introduction followed by the actual papers.

Janne Roos
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Part I
Computational Electromagnetics



Introduction to Part I

Gabriela Ciuprina

Simulations are indispensable to industry nowadays. They allow one to perform vir-
tual experiments which are faster and cheaper than the physical ones. Simulation
environments are created or improved on the basis of numerical methods applied
to solve specific problems. Electrical and electronics engineering need at least the
computation of the electromagnetic (EM) field. For instance, in electronics, the in-
crease of the operating frequency makes that effects specific to the EM field, and
neglected until now, be relevant. Consequently, on the one hand, the development
of a new approach based on the EM field computation is needed, since the old tech-
niques, based mainly on circuits, do not correspond to the necessities any more. On
the other hand, solely the numerical approach of obtaining the field cannot be ef-
fective, due to the enormous computational resources needed. Thus, in spite of the
commercial advertisements, software tools’ functionality is low at high frequencies
reaching 60 GHz. Even if the general software EM field packages solve many of the
designers’ problems, they need appropriate solutions that are not offered yet by the
present available software commercial tools.

Hence, research related to computational electromagnetics still has to be done
and the 14 papers in this part address some of the current problems related to elec-
tromagnetic compatibility (EMC), the use of various discretization methods such
as boundary-element method (BEM), the finite-element method (FEM) with its
discontinuous Galerkin variant, the finite-difference time-domain (FDTD) method,
the finite integration technique (FIT), the surface-integrated field equation (SIFE),
and the computation of eigenvalues. Special cases are envisaged, such as the
consideration of dispersive materials or high-contrast materials, magnetic-force
microscopy, treatment of multistage problems, computation of phase-space coor-
dinates of plasma particles, and even the modelling of the relativistic movement of
particles. Both time-domain and frequency-domain cases can be found in this col-
lection of papers. For validation, some papers use comparisons with well-known
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6 G. Ciuprina

software tools (like CST and APLAC), or use simple test problems with known an-
alytical solutions, or, even better, they compare the numerical results with the results
obtained from physical experiments. A brief description of these papers follows.

The invited paper by Yuferev focuses on the numerical modelling of high fre-
quency EMC problems. The author speaks from his position in a well-known com-
pany that manufactures complex mobile phones that incorporate other products such
as cameras, sensors, computers, etc. For such devices, EMC regulations have to
be strictly observed. The paper addresses two tasks. The first task is to overcome
the computational difficulties caused by multi-scale features. The solution proposed
consists of an iterative procedure, each iteration involving two steps, the first of
which ignores the device and computes the near-field radiation of the printed circuit
board (PCB) and the second which analyzes the field inside the device without the
PCB, the latter being replaced by a certain field distribution at the interface. The pro-
cedure is demonstrated by using the boundary integral equation method. The second
task addressed in the paper refers to obtaining absolute values of the magnetic field
emissions radiated from PCBs. This is carried out by calibrating the parameters of
the EM source in the numerical models for EM computations by using measured
data. Two practical applications of both techniques are presented. One of them is
the investigation of a typical radiation from a shield located on the PCB. Another
example refers to the computation of the magnetic field around a voltage-controlled
oscillator, well-known in EMC design as a source of radiation emission requiring to
be reduced.

When measurement data, such as scattering parameters, are available, low com-
plexity macromodels of EM devices, such as chips, packages, or boards, can be ob-
tained by vector fitting (VF) or by a new method proposed by Lefteriu and Antoulas.
The authors use a Loewner matrix pencil constructed in the context of tangential in-
terpolation. It uses no heuristics, but only available data, makes no assumption of
the underlying system, and allows to identify a system if enough measurements are
provided. The approach is especially suited for devices with a large number of ports
and it proved to be successful for problems for which the VF method is not. Two
tests are shown. The first one is a theoretical system for which the proposed method
was able to identify the original system whereas VF was not. The second starts
from real measurements performed using a vector network analyzer for which the
proposed method was more efficient than VF, considering the order of the system
obtained and the required computational time.

Stefanescu et al. also discuss the modelling required by integrated circuits. In this
case, interconnects modelled as transmission lines are considered, the contribution
of the paper being the inclusion of the parameterization which is useful when vari-
ability with respect to the geometric parameters has to be modeled. The parametric
models are based on the computation of first-order sensitivities of line parameters.
Three multiparametric models are proposed, called additive, rational, and multipa-
rameteric. For the one-parameter case, the proposed method avoids the evaluation
of higher-order sensitivities. The multiparametric model is based on the assumption
that the quantity of interest can be expressed with separated variables. It can be a
better choice than the use of traditional models based on first-order Taylor series
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truncation. The case study used is a microstrip transmission line for which measure-
ments are also available.

A procedure to obtain models for 3-D passive integrated components that take
into consideration the variability is proposed in the paper by Ciuprina et al. The
paper uses the electromagnetic circuit element (EMCE) formulation proposed pre-
viously by the authors. The contribution of the paper is that it describes how param-
eterization can be taken into consideration for the EMCE formulation. A specific
section is dedicated to the generation of the parametric semi-state space system
when FIT is used. Two ways of interconnecting the models obtained, one based on
the system matrices and the other on transfer matrices, are described. The approach
is validated for a two-coupled-inductors configuration for which measurements are
available. The advantage of this approach is that it bears an inherent parallelism,
the sub-models can be treated independently both from the point of view of the
variability and EM-field formulation.

The paper by Vasenev et al. describes a graphical-based tool for the extraction of
magnetic reluctances between on-chip current loops. They are useful to build mag-
netic circuits that can be connected to the magnetic terminals of devices that can be
modelled with the EMCE formulation to model inductive coupling between com-
ponents or between components and the environment. The approach is a compre-
hensive multi-scale modelling solution using domain decomposition, hierarchical
substrate structuring, and compact parametric models to model passive integrated
structures and functional blocks and the electric and magnetic parasitic interactions
between them.

Costa et al. look at a way to implement stable nonlinear lumped elements (LE),
like a diode, for use in an FDTD-based EM simulation. The embedded linear or
nonlinear LE FDTD models may span multiple cells of the 3-D FDTD grid. This is
useful to correctly model sources and loads within complex electronic subsystems.
The technique does not increase the complexity of the desired nonlinear model and
has a high operational stability, as demonstrated for a diode working far beyond
normal operational voltages. The simulation results are validated with the circuit
simulator APLAC.

The paper by Bandlow and Schuhmann presents a formulation based on FIT to
handle EM eigenvalue problems from structures containing frequency-dispersive
materials. This is useful when the operating frequency corresponds to the infrared
spectrum case for which noble metals do not act like perfect conductors. The
problem obtained by using the Drude dispersion model is solved with the Jacobi–
Davidson method. As an example, a unit-cell structure from the literature is used,
the geometric modelling being carried out with the commercial tool CST Microwave
Studio.

The paper by Blaszczyk proposes a new BEM-like approach applied for the
calculation of the electric field in arrangements with extreme differences in ma-
terial properties. The method is called “region oriented” because the space is di-
vided into three types of regions, each region including a homogeneous, linear, and
isotropic material, the field being calculated by means of layers of charge located
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on the region boundaries. The method is tested for a simplified geometry of a surge-
arrester, its convergence being faster than the traditional BEM.

Sheng et al. describe in their paper how SIFE is implemented to solve 3-D
time-domain EM problems on substrates in which high-contrast materials occur.
To satisfy the partial-continuity conditions on the material interfaces, a discretiza-
tion scheme is built that meets the continuity requirements across interfaces exactly,
using a tetrahedron mesh combined with a consistent linear interpolation of electric
and magnetic field strengths. The advantages of the method are its high flexibility
and accuracy for a given discretization level. This is obtained at the cost of high
computational complexity. The numerical validation is done for a problem with an
analytical solution.

The paper by Pomplun and Schmidt uses the reduced basis (RB) method applied
to EM field computation with FEM for the simulation of light scattering from ge-
ometrically parameterized phase shift masks. The RB method allows the splitting
of the solution process into two parts, an expensive offline part in which the model
is solved rigorously several times for different values of the geometrical parameters
and a fast online part in which a reduced problem, obtained after projection onto the
RB, is solved.

The discontinuous Galerkin FEM has recently become popular as a method for
the numerical solution of partial differential equations. It is used by Bahls et al. to
solve Poisson’s equation on unstructured grids. For this, the Nudg++ library is used
to solve a problem with analytical solution.

In the approach proposed by Preisner and Mathis, a theoretical model of mag-
netic force microscopy was developed to verify and improve the results of labora-
tory measurements. A scanning process is simulated and different force-calculation
methods, based on the Maxwell stress tensor, the virtual work principle, and the lo-
cal interaction forces, are implemented. The results obtained by the various methods
are compared with each other in order to obtain the total magnetic force acting on a
cantilever as well as local magnetic force densities.

The paper by Quandt et al. proposes a numerical method to compute phase-space
coordinates of charged particles driven by the Lorentz force. The new relativistic
particle-push method developed is based on a truncated Taylor series expansion up
to the desired order of convergence. Both non-relativistic and relativistic test cases
are in good agreement with available analytical solutions.

Finally, a statistical characterization of random EM interactions affected by res-
onances is presented by Sy et al. It is based on the analysis of the variance and
the kurtosis to evaluate the intensity of the resonances. The analyses of these two
quantities are complementary. The variance is useful in a dimensioning process as
it measures the physical variation of the quantity (a voltage), whereas the kurtosis is
valuable in a protection stage to foretell extreme values of the response parameter,
which could damage the device under study. As an example, a randomly varying
thin wire modelled by a Pocklington integral equation is used.



Challenges and Approaches in EMC Modeling
of Wireless Consumer Devices

Sergey Yuferev∗

∗Invited speaker at the SCEE 2008 conference

Abstract This paper focuses on the following key tasks in numerical modeling of
high frequency EMC (electromagnetic compatibility) problems: overcoming com-
putational difficulties caused by multi-scale features and obtaining absolute (as op-
posed to normalized) values of the magnetic field emissions radiated from a printed
circuit board. The first task is solved by using an iterative procedure combining
codes for 2.5D and 3D EM field computations. The second task is considered using
the technique to approximate (“tune”) parameters of the EM source in numerical
models for 3D EM computations using measured data. Examples of applications of
both techniques are included.

1 Introduction

With decreasing design cycles in modern electronic industry, simulations play a
more and more important role as an alternative to the traditional way of making
prototypes and measurements. High frequency wireless consumer devices such as
mobile phones are becoming increasingly complex since they are actually combina-
tions of other products such as cameras, sensors, radio, computers, etc. At the same
time, they are getting smaller. So complying with EMC regulations is now a chal-
lenging task. At least some of the potential EMC problems can be predicted well
before physical prototypes are built by the application of numerical analysis at an
early design stage. Significant efforts have been recently made by the IEEE EMC
Society to develop standards and recommended practices of the use of computa-
tional packages for the simulation of real EMC problems [1].
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In spite of such obvious benefits, CAD simulation packages have not become
yet everyday tools of EMC designers, unlike antenna, thermal or signal integrity
designers of wireless devices. Even now, EMC problems of wireless devices are
frequently considered as a “black magic area” where rigorous numerical analysis is
impossible due to the high complexity of the problems. In the present paper some
key challenges in the numerical analysis of EMC problems of wireless devices are
discussed.

2 Tasks for Numerical Analysis of HF EMC Problems

EMC regulations are imposed as maximum acceptable values (limits) of the electro-
magnetic field at certain distances from the product. Limiting values of the EM field
parameters are also specified inside the handset around modules containing strong
EM radiators (emission interoperability limits) and modules sensitive to excessive
levels of the EM field (immunity interoperability limits). By calculating the electro-
magnetic field distribution inside and nearby outside the module/device, it is very
attractive to check compliance with interoperability limits and other EMC regula-
tions well before prototypes are built. Obviously these limits are expressed in terms
of absolute numbers and do not depend on conditions of either measurements or nu-
merical modeling. Thus EMC simulation technology should also provide a numer-
ical solution in the form of absolute numbers to be compared with EMC standards
and interoperability limits.

A typical emission problem is optimization of the shield of the module contain-
ing RF IC (EMI source). The highest magnetic field around the module should not
exceed the interoperability limit defined as equal to xdBm at ymm from the module.
Rigorous consideration requires field–circuit co-simulations using SPICE-like mod-
els of components. With rapid progress in the development of commercial codes,
such simulation workflows may become routine procedures in the near future, but
today they are still considered as advanced “state of the art”. One of the reasons
is that models of active components are frequently unavailable, which makes the
circuit part of the workflow meaningless. In these cases source parameters are de-
fined using reference data known a priori (for example, 2 mW and 50Omega) and
simulations are performed using code for three-dimensional electromagnetic field
computations only. This approach cannot take into account real electromagnetic be-
havior of the source (IC) and, therefore, cannot provide accurate computation of the
magnitude of the field. Of course, if the excitation in the numerical model is assigned
correctly (for example, to the PCB net carrying the highest current), numerical re-
sults will indicate accurately enough the areas of highest and lowest concentration
of the electromagnetic field. However it does not answer the following question fre-
quently posed by EMC designers: “how high are simulated high fields and how low
are low fields?”. In other words, inaccurate setup of the parameters of the EM source
in numerical model does not allow comparing computed fields with interoperability
limits.



Challenges and Approaches in EMC Modeling of Wireless Consumer Devices 11

Group  α  (Device components): Ii  i = 1, 2 ... M

Group  β (PCB nets): Ii  i = M+1, M+2 ... N

Dα

Dβ

Dr

Fig. 1: Two-dimensional problem containing “multi-scale” feature

Another challenge is related with the fact that the characteristic size of the mod-
ule or device is between one and ten centimetres, whereas the characteristic size of
the PCB details is much less than one millimetre. The difference between the char-
acteristic dimensions is two orders of magnitude that leads to a very serious com-
putational problem, namely to provide the necessary resolution in the simulation of
the PCB details, the average size of the cell in the computational mesh used by the
software for three-dimensional electromagnetic simulations should be hundreds or
even tens of microns. Thus discretization of the computational space including the
device by cells of this size leads to a mesh that no one modern computer will be able
to simulate such a device “as is” in reasonable time. This problem having the name
of “multi-scale” feature is well known in computational electromagnetics [2].

3 Simulation Approaches

Computational challenges related with “multi-scale” features may be overcome us-
ing so-called multi-stage modeling: the problem is divided into sub-problems, each
of them is analyzed by special software, and the results are combined [3]. In the
case of wireless devices like mobile phones, the basic idea of this approach is to
separate the numerical solution of Maxwell’s equations in the domain occupied by
the printed circuit board from rest of the device. The realization of this idea can be
done by iterations; each of them consists of the following two steps:

a The electromagnetic behavior of the printed circuit board is analyzed separately
from the device (the device is ignored) and the near field radiation of the board is
calculated. Then the electromagnetic field distribution around the board is trans-
ferred to the next iteration to be used as input data (equivalent source or boundary
condition).

b The three-dimensional problem of the electromagnetic field distribution is solved
everywhere inside the device except the domain occupied by the printed circuit
board: the PCB domain is eliminated from the numerical procedure and replaced
by the field distribution at the interface (obtained at the previous iteration).
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Let us demonstrate the realization of this procedure for the boundary integral
equation method (BIEM) in a simplified 2-D approximation of long parallel con-
ductors. Consider a system of N conductors classified into two groups denoted as α
(device) and β (PCB), and numbered from 1 to M and from M +1 to N, respectively
(Fig. 1). The material for all conductors is assumed to be copper. Let the character-
istic scales of the conductors of the two groups be Dα and Dβ , respectively, and the
characteristic distance dr between them be the following:

Dα ≈ 10−2 ÷10−3 m; Dβ ≈ 10−4 ÷10−5 m; Dr ≈ 10−3 m (1)

Let an external source produce time harmonic currents Ii, i = M +1,M+2, . . .N,
flowing in the conductors of the group β . The operating frequency f of the source
is assumed to be 3 GHz that corresponds to the wavelength λ equal to 10 cm in
free space and the skin depth δ approximately equal to 1μm in copper. Comparison
of λ and δ with the scales in (1) enables us to apply further considerations from
the quasi-static approximation (displacement current is neglected) and to apply the
surface impedance boundary conditions (SIBCs) to eliminate the conducting region
from the numerical procedure.

In the 2-D case the magnetic vector potential has only one component and can be
considered as scalar. Since its distribution in the dielectric space separating conduc-
tors is governed by the Laplace equation, the use of BIEM employing SIBCs yields
the following integral equation formulation [4, 5]:

As −
N

∑
i=1

∮
Li

GKdl = cF [K]+
N

∑
i=1

∮
Li

F [K]
∂G
∂n

dl (2)

∮
Li

Kdl =
{

Ii,α , 1,2, . . . ,M
Ii,β , M + 1, . . . ,N

; G(r,r
′
) = −(2π)−1 ln(|r− r

′ |) (3)

where As is the source component of the magnetic vector potential, K is the surface
current density and F [K] is the known surface impedance operator [6]. Without loss
of generality in further derivations we will assume F [K] = 0 (perfect electrical con-
ductor limit). We emphasize that the integration in (2)-(3) should be performed over
contours of cross sections of all conductors that cause the “multi-scale” problem
since Dβ � Dα . It can be avoided by transformation of (2)-(3) using iterative an
procedure in such a way that the left hand side of the equations contain the integrals
along conductors of only one group (β or α). The first two steps of the procedure
are the following:

Step 1a

Only group β (PCB) is considered and group α (rest of device) is ignored as is
shown in Fig. 2.

As
1a −

N

∑
i=M+1

∮
Li

GββK1adl = 0; Gββ = −(2π)−1 ln |rβ − r
′
β | (4)
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Location of unknowns K 1a

Group b M+1, M+2 ... N

Fig. 2: Iterative procedure: step 1a

∮
Li

K1adl = ii,β , i = M + 1,M + 2, . . . ,N (5)

Step 1b (Fig. 3)

The distribution of unknowns K1b over the conductors of group α is sought treating
the distribution of K1a over group β as known (obtained in the previous step).

As
1b −

M

∑
i=1

∮
Li

GααK1bdl =
N

∑
i=M+1

∮
Li

GαβK1adl (6)

∮
Li

K1bdl = ii,α , i = 1, . . . ,MGαβ = −(2π)−1 ln |rα − r
′
β | (7)

This approach is frequently referred as the 2.5D-3D technique: simulation tools

Location of unkowns K1bGroup α 1, 2 ... M

Group β M+1, M+2  ... N

K1a

Fig. 3: Iterative procedure: step 1b

based on the so-called 2.5D approximation are used for PCB analysis (stage a),
whereas full wave 3D EM simulators are applied at stage b. The main advantage
of the described procedure is that computer grids for the PCB and device are used
separately at different stages so that the multi-scale problem is resolved. However, a
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practical realization of the approach requires a high level of compatibility between
the codes applied at steps a and b (files produced by one code should be used as the
input data to the other).

It can be shown that the iterations can be interrupted after the first two steps
(described above) if the following condition is met:

∣∣∣∣
Dβ

Dr lnDr

∣∣∣∣� 1 (8)

When detailed specifications and models needed for circuit-field co-simulations
are not available, one of the most popular approaches to setup the excitation in com-
mercial tools for 3D EM field computation is the definition of the characteristics
of the current flowing through a conductor using the so-called discrete or lumped
port (whose physical representation is similar to the Hertzian dipole). Usually the
power (P) and resistance (R) of the port should be defined (default values are 1 W
and 50Ω , respectively), but how can we know the actual values in a given case?
The answer becomes clear if we have already measured the near field distribution
over IC: parameters of the source in the numerical model are tuned (calibrated) in
order to reach agreement between measured and computed fields. This task is an
example of inverse problems that are widely known in nondestructive testing, geo-
physics, medical imaging (such as computed axial tomography), remote sensing,
etc. Therefore, near field measurements can be applied at two stages of EMC analy-
sis: for improvement of the numerical model and the final verification of compliance
with interoperability limits. In the first stage the electromagnetic field is measured
over the IC (if possible), whereas in the second stage measurements should be done
over whole module. In both cases we want to obtain the absolute values of the field
magnitudes that are related to the output data of measurements via a correction or
calibration factor [7].

In many practical cases the problem is linear and advanced commercial codes
allow P and R to vary at the post-processing stage so the procedure consists of the
following steps [8]:

1. Model the real IC by a set of ports assigned to the nets carrying the highest
current. This requires a priori knowledge about the general EM behavior of the
module/device.

2. Run simulations with default values of the port parameters.
3. Compare the computed and measured distributions of the EM field at a specified

height over the PCB and “tune” the parameters of the port to reach agreement
between the measured data and the numerical results.

It is natural to ask, “will the port with parameters tuned for one distance from the
IC to the observation point describe correctly the EM field at other distances?” The
answer is: as long as this distance remains much larger than the characteristic size
of the IC. In other words, until the Hertzian dipole approximation can be applied.
Therefore, it is enough to tune the port parameters just once for a certain frequency
and then apply them for the EM field computations over a wide range of distances.
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In practice, however, there are restrictions related to the validity of the near field
measurements.

4 Examples

Probably, the most typical EMC problem is undesirable radiation (“leakage”) from
the shield. Factors at the root of this phenomenon are not only mechanical defects
of the shield construction, but also the structure of the layout under the shield. Some
modern packages for 3-D EM field computations enable to import selected traces
from software for the PCB design and include them into the computational model.
However, the PCB ground also should be taken into consideration to provide a return
path for the current flowing in the nets. Since the ground usually includes thousands
traces, it is practically impossible to import it to the software for 3-D EM analysis.
Thus this problem has been selected to demonstrate the application of the 2.5D-3D
approach using commercial CAD packages.

Figure 4 shows the mechanical model of the shield located on the PCB. All aper-
tures in the shield are so small that the field cannot really “leak” through them in
the range of 0.5-5 GHz. So the only possible source of radiation may be the cur-
rent flowing in the layout that is shown in Fig. 5. In the first step of the 2.5D-3D
approach, the current distribution is calculated and the results are shown in Fig. 6
for two frequencies: 1 and 3 GHz. This distribution has been exported to the soft-
ware used in the next step and used as a source in the 3-D EM field computations
including the shield. Numerical results—the electric field distributions at 1 and 3
GHz—are shown in Fig. 7. It is easy to see that at 1 GHz shielding effectiveness
may be poor.

Fig. 4: CAD model of the shield and PCB

In practice IC components are supplied by third-party vendors, and frequently it
is much easier to get results of near field measurements than the detailed specifi-
cations and models needed for circuit-field co-simulations. In such cases measured
data can be used for the numerical modeling of EM behavior of the module/device
and verification of compliance with interoperability limits. As an example, consider
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Fig. 5: Part of the layout under the shield

MAGN(Current)<1.000E09>
MAGN(Current)<3.000E09>

Fig. 6: Distribution of the current flowing in the PCB nets under the shield at 1 GHz (left) and
3 GHz (right)

Fig. 7: Distribution of the electric field around the shield at 1 GHz (left) and 3 GHz (right)

the computation of the magnetic field around a voltage-controlled oscillator (VCO),
well-known in EMC design as a source of radiation emission that needs to be re-
duced by shielding.

Our first aim was the measurement of the magnetic field over the module at the
fundamental frequency 3.975 GHz and detection of the highest values of emission
(maximum amplitudes of the magnetic field components). Measurements have been
performed in the XY-plane (parallel to the PCB) for the opened VCO shield using a
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commercial EMC scanner and magnetic probes. Figure 8 presents the distributions
of components of the magnetic field measured at 3.2 mm from the PCB (1 mm from
top of the shield; height of the shield is 2.2 mm). The measured output voltage has
been converted to the magnetic field following methodology described in [7–10].

Fig. 8: X-, Y- and Z- components of the magnetic field measured over the VCO block

The next step in the methodology is the development of a simplified numerical
model for 3-D EM field computations. From the VCO specification it is known that
the highest current flows in the “RF output” net. The simplest model of the VCO
block consists of this net with an assigned port, the PCB represented as a solid
metal brick, and the walls of the shield (Fig. 9). All parts are assumed to be copper.
Calculations are first performed with default values of the port parameters P and R
that are then tuned using measured data.

Numerical results before and after tuning are shown together with measured data
in Table 1. It is easy to see that setting up the port power and resistance equal to
0.012 W and 50Ω , respectively, provides good agreement between measured and
computed components of the magnetic field at 3.2 mm from the PCB. These param-
eters can then be used in 3-D EM simulations of all problems where this VCO is the
excitation source.

Walls of the
VCO shield VCO RF output

PCB

Port

Fig. 9: Simplest model of the VCO block without cover of the shield
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Table 1: Magnetic field over the VCO (3.2 mm from PCB, 3.975 GHz): measured, computed with
default parameters of the port, and computed with tuned parameters of the port

(HVCO
x )max (HVCO

y )max (HVCO
z )max

A/m A/m A/m

Computed with default parameters 0.68 0.47 0.75
(1 W, 50Ω )
Computed with “tuned” parameters 0.074 0.052 0.082
(0.012 W, 50Ω )
Measured 0.071 0.063 0.082

Although the port in our numerical model is assigned to one particular net (RF
output), the parameters of the port are tuned using the highest values of emission
of the whole VCO block. Therefore, the VCO output power, related to the current
flowing in the RF output net, should not be mixed with the tuned power of the port in
the numerical model. As is seen in Fig. 8, the maximum of the EM field distribution
does not occur not over the RF output net, so the VCO output power, equal to 2 mW
according to specification, is significantly less than 0.012 W.

Figure 10 shows measured and computed distributions of the maximum ampli-
tudes of the components of the magnetic field with increase in the distance from
the VCO. The radiation in the VCO occurs not only from RF output net, as is as-
sumed in our simplest numerical model. This is the most probable reason of some
disagreements between the measured and computed curves in Fig. 10.

0.11

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

4 5 6 7 8 9 10

Distance from PCB

H x
max

Measured
Simulated, P = 0.012 W
Simulated, P = 0.012 W

Fig. 10: Maximum amplitude of the x-component of the magnetic field as a function of the distance
from PCB
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5 Conclusion

In the present paper two sets of methodologies are considered:

1. A methodology to combine codes for 2.5D and 3D EM field computations around
a device or module containing printed circuit. The distribution of the current
flowing in the PCB nets is calculated by one code, exported and used as input data
in the other, solving a 3-D problem in the surrounding domain (for example, the
interior of a device containing the board). The main advantage of the proposed
approach is that the cells for modeling the PCB and surrounding domain are not
combined in the same mesh. This enables the simulation of real industrial EMC
problems of wireless devices that cannot be analyzed using 3D simulators only
due to very high computational expenses.

2. A methodology to calibrate (tune) EM sources in numerical models using mea-
sured data by solving the inverse problem. This approach enables the simulation
of the absolute (as opposed to normalized) values of the EM field emission with-
out detailed knowledge of the source properties. For this purpose, EMC scan-
ner output data (voltages measured in dBm) are converted into absolute values
of magnetic fields independent of the measurement conditions and expressed in
A/m. This is done using a reference PCB that is simple enough to enable ac-
curate numerical modeling. The measurement results and the modeling of the
reference PCB are used to obtain the calibration factor that is then applied to the
IC measured data.
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A New Adaptive Approach to Modeling
Measured Multi-Port Scattering Parameters

Sanda Lefteriu and Athanasios C. Antoulas

Abstract This paper addresses the problem of building a low complexity macro-
model of an electromagnetic device based on measurements of its scattering param-
eters. For devices with a large number of ports, currently available techniques are
very expensive. The approach we propose is based on a system-theoretic tool, the
Loewner matrix pencil constructed in the context of tangential interpolation. Sev-
eral implementations are possible. They are fast, accurate and robust; they construct
models of low order and are especially designed for devices with a large number
of terminals. Moreover, they allow to identify the underlying system, rather than
merely fitting the measurements. We compare our algorithms to industry standard
vector fitting method on two examples. This paper is a summary of [1].

1 Introduction and Motivation

To model electromagnetic effects of complex structures such as chips, packages or
boards, one of the following techniques is used. Discretizing Maxwell’s equations
leads to a high-order representation for which model reduction techniques need to
be applied to reduce the dimension to a manageable size [2]. Alternatively, the fre-
quency response (impedance, admittance or scattering parameters) of the device is
measured over the desired frequency band. Using the data, a macromodel of low
complexity which is consistent with the measurements is constructed. The problem
of building a system which approximates given measurements is known as rational
interpolation and has been studied thoroughly (see [3] for a survey).

Several techniques have been developed in the electronics community. Most al-
gorithms are based on least-squares approximations, for example [4], but, due to
ill-conditioning, their application is restricted to narrow frequency bands and small
orders of the model. The algorithm in [5] uses Nevanlinna-Pick interpolation for
bounded-real interpolation of S-parameters in which mirror images of the original
points are used as additional constraints. Frequency domain subspace identification
[6] fails often or requires large computational time, based on experiments in [7].
Nevertheless, vector fitting [8] is the current industry standard.
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Algorithms developed in this paper employ a common framework: tangential in-
terpolation and the Loewner matrix pencil [9]. They are fast, accurate and robust;
they construct low-order models and are especially designed for devices with many
ports. Moreover, they identify the underlying system, rather than merely fit the mea-
surements. Using a black-box approach allows us to model systems with no knowl-
edge of their internal logic [10]. Moreover, we construct the models exclusively
from the available measured data by arranging them in an appropriate way.

This paper is organized as follows. Sect. 2 states the problem as a rational in-
terpolation problem, while Sect. 3 shows how to apply the concept of tangential
interpolation to S-parameter modeling. Afterwards we describe two different imple-
mentation approaches in Sects. 4 and 5. Sect. 6 presents numerical examples which
validate the proposed procedures. Finally, Sect. 7 concludes this paper.

2 Problem Statement

S-parameter modeling is formulated as a rational interpolation problem as follows.
A linear time invariant system models the data set containing k measurements of the
scattering coefficients of a device with p ports⎛

⎜⎝ fi,S(i) :=

⎡
⎢⎣

S11,i . . . S1p,i
...

...
...

Sp1,i . . . Spp,i

⎤
⎥⎦
⎞
⎟⎠ , i = 1, · · · ,k

if the associated transfer function of the system evaluated at j ·2π fi is close to S(i):

H(j ·2π fi) ≈ S(i), i = 1, . . . ,k. (1)

Definition 1. We define the error matrix at a specific frequency as:

H(j ·2π fi)−S(i) = Err( fi), i = 1, . . . ,k. (2)

Clearly, if the norms of all k error matrices are small, the model is accurate.
Let us start from the simple case of model construction from scalar data: (si,φi),

i = 1, . . . ,P, si �= s j, i �= j, where si,φi ∈ C and si is not necessarily on the imaginary
axis, as it was the case in (1). The rational interpolation problem is equivalent to find-
ing H(s) = n(s)

d(s) , with n,d coprime polynomials, such that H(si) = φi, i = 1, . . . ,P.
There always exists a solution (e.g. Lagrange interpolating polynomial). The main
tool in our approach is the Loewner matrix, denoted as L, which is constructed by
partitioning the data in disjoint sets: (λi,wi), i = 1, . . . ,k and (μ j,v j), j = 1, . . . ,h,
where h,k ≈ [

P
2

]
such that k + h = P, using the following formula:

L =

⎡
⎢⎢⎣

v1−w1
μ1−λ1

· · · v1−wk
μ1−λk

...
. . .

...
vh−w1
μh−λ1

· · · vh−wk
μh−λk

⎤
⎥⎥⎦ ∈ C

h×k (3)

Several reasons indicate that this is a good tool to use. The rank of the Loewner
matrices built using all the possible partitions encodes the degree of the minimal
interpolant of the data. Moreover, the Loewner matrix has system theoretic inter-
pretation in terms of the generalized controllability and observability matrices. In
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particular, when data is obtained by sampling the transfer function H(s) with mini-
mal state space representation [E,A,B,C,D] (i.e., H(s)= C(sE−A)−1 B+D), then

L = −

⎡
⎢⎣

C(λ1E−A)−1

...
C(λhE−A)−1

⎤
⎥⎦

︸ ︷︷ ︸
O

E
[
(μ1E−A)−1 B . . . (μkE−A)−1 B

]
︸ ︷︷ ︸

R

(4)

Last, for data consisting of a single point with multiplicity, (s0;φ0,φ1, . . . ,φP−1), i.e.
the value of a function at s0 and that of a number of its derivatives are provided,
the Loewner matrix has Hankel structure. Thus the Loewner matrix generalizes the
Hankel matrix when interpolation at finite points is considered.

3 Tangential Interpolation

We will now define the tangential interpolation problem as a rational interpolation
problem in the general framework. We are given right interpolation data of the form

{(λi,ri,wi) | λi ∈ C,ri ∈ C
m×1,wi ∈ C

p×1, i = 1, · · · ,k}, or

Λ = diag [λ1, · · · , λk] , R = [r1, · · · , rk] , W = [w1, · · · , wk]
and left interpolation data as

{(μ j, � j,v j) | μ j ∈ C, � j ∈ C
1×p,v j ∈ C

1×m, j = 1, · · · ,h,}, or

M = diag [μ1, · · · , μh] , L∗ =
[
�∗1, · · · , �∗h

]
, V∗ =

[
v∗

1, · · · , v∗
h

]
and the goal is to find H(s) such that H(λi)ri = wi and � jH(μ j) = v j. In particular,
a minimal realization [E,A,B,C,D], with E,A ∈ R

n×n,B ∈ R
n×m,C ∈ R

p×n,D ∈
R

p×m is desired. A solution to this problem was proposed in [9] in terms of the
Loewner matrix and the newly introduced shifted Loewner matrix, constructed as

L j,i =
v j · ri − � j ·wi

μ j −λi
, σL j,i =

μ jv j · ri − � j ·wiλi

μ j −λi
, i = 1, . . . ,k, j = 1, . . . ,h. (5)

The following lemma gives a formula for a minimal realization in terms of the
Loewner and shifted Loewner matrices together with the data matrices [9].

Lemma 1. If k = h, the matrix pencil (σL,L) is regular and μ j,λi /∈ λ (σL,L),
then

E = −L, A = −σL, B = V, C = W and D = 0 (6)

is a minimal realization of an interpolant (i.e., the transfer function H(s) = W(σL−
sL)−1V satisfies the left and right constraints: � jH(μ j) = v j and H(λi)ri = wi).

For modeling measured S-parameters, the right tangential data can be chosen as(
λi = jωi,ri,wi = S(i)ri

)
, i = 1, · · · ,k, (7)

with ωi = 2π fi ∈ R, ri = em ∈ R
p×1 (m-th unit vector), where m = p for i = p · c1

and m = 1, · · · , p−1 for i = p · c1 + m, for some c1 ∈ Z, and(
μi = −jωi, �i,vi = �iS

(i)
)

, i = 1, · · · ,k (8)

as left tangential data, with �i = rT
i ∈ R

1×p. Using the tangential data, the Loewner
and shifted Loewner matrices are built as in Eq. (5).
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Remark. The fact that the p2 entries of the S-parameters can be collapsed into a
vector of dimension p makes our method suitable for devices with many ports.

4 SVD Approach

The first idea is to use all measurements to build the Loewner matrix pencil. How-
ever, when too many samples are available, the pencil is singular, so the realization
in Lemma 1 is not minimal. The singular part can be projected out via an SVD:

xL−σL = YΣX, x ∈ {jωi,−jωi} , i = 1, · · · ,k (9)
where rank(xL − σL) =: n (the dimension of the regular part; it is precisely
the order of the underlying system, for noise-free measurements), Y ∈ C

k×n and
X ∈ C

n×k. Using the singular vectors as projectors, the realization is given as
E = −Y∗LX, A = −Y∗σLX, B = Y∗V, C = WX, D = 0. Nevertheless, real-world
measurements are noisy, so the zero singular values of the pencil are corrupted by
noise (they are larger than the noise by a factor proportional to the square root of
the number of samples [11]). Thus, one can identify the order of the system based
on the drop in the singular values of the Loewner pencil.

Clearly, this approach is expensive for data sets with a large number of samples
k, as the complexity of the SVD of xL−σL is O(k3). This is overcome by the next
approach which identifies immediately when the pencil becomes singular.

5 Adaptive Approach

We choose a certain number of samples from the available ones adaptively to con-
struct the desired model. We start with a low order system of order p from p mea-
surements selected from the k available (the p indices are linearly distributed be-
tween 1 and k) using unit vectors as sampling directions, building the Λ , M, R, L,
W, V, L and σL matrices as in Sect. 3 and setting E as −L, A as −σL, B as V, C
as W and D as 0. For each sample, we compute the p singular values of the error
matrices defined in (2). We update our model by adding p new measurements where
the largest errors occur, with sampling directions taken as the singular vectors as-
sociated to the largest singular values of those particular error matrices. In the next
step, a system of order 2 · p is constructed, the singular values of the error matri-
ces are computed again and new se ts of p measurements are selected according to
the same criterion. Lastly, we improve the accuracy by adding more measurements
and projecting to the desired order n using the singular vectors obtained from the
SVD of jω1L−σL. If n is a multiple of p, we add p more measurements, otherwise
we add mod(n, p). Note that the accuracy of the current model is directly available
as the largest singular value of all error matrices, so we stop the procedure as soon as
the pencil becomes singular (for noise-free measurements) or the accuracy is below
the threshold given by the noise level scaled by the square root of the sample size
(for noisy measurements). Adding blocks of p samples makes our method better
suited for a large number of ports due to the fact that the complexity scales with
O(kp3), as opposed to column-wise vector fitting (VF), which scales with O(kp4).
Remark on stability and passivity. Given an appropriate accuracy of fit or desired
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order of the macromodel, the resulting system will be stable and passive, provided
that measurements come from a stable and passive device. Due to measurements
errors, the data may not passive (i.e. the maximum of the largest singular value
is larger than one), so the resulting macromodel may not be passive. To make the
model passive, one can divide the B or C state-space matrix by that maximum. An-
other a posteriori passivation enforcement is described in [12].

6 Results

This section analyzes a theoretical example and an example obtained from mea-
surements. We compare our methods to state-of-the-art vector fitting, in terms of
accuracy of the macromodels and required CPU time. The accuracy was assessed
using two error measures: the normalized H∞-norm of the error system,

H∞ error =
maxi=1...k σ1

(
H(jωi)−S(i)

)

maxi=1...k σ1
(
S(i)

) ,

which evaluates the maximum deviation in the singular values and the normalized
H2-norm of the error system,

H2 error =
∑k

i=1

∥∥∥H(jωi)−S(i)
∥∥∥2

F

∑k
i=1

∥∥S(i)
∥∥2

F

where ‖·‖2
F stands for the Frobenius-norm, which evaluates the error in the magni-

tude of all entries, proving to be a good estimate of the overall performance. For
devices with many ports, computing the error in each entry of the S-parameters is
unfeasible, as for p = 50 ports, the errors in all 502 = 2500 entries would have to be
assessed. Thus, these error measures give a good indication of the model’s quality.

As a visual tool, it is common to plot each entry of the measured data against the
corresponding entry in the transfer function of the model. For large number of ports,
this is impractical, so in this paper, we compare the singular values of the measured
S-parameters to the singular values of the transfer function of the model evaluated
at each frequency (sigma plot). If the singular values of the model are close to those
of the data, the fit will be of good quality for all entries.

All experiments employed column-wise vector fitting with the same options:
• the starting poles are real and stable, linearly distributed in the frequency band
• the starting poles of each column are obtained by fitting the column sum with

N1 = 5 iterations which are used to fit the column itself with N2 = 5 iterations
• no asymptotic terms were required, unless otherwise specified
• the fast implementation of relaxed VF [8, 13, 14] was used.

The tests were performed on a Pentium Dual-Core at 2.2GHz with 3GB RAM.

6.1 Noise-Free System with 2 Ports, 14 Poles and Non-zero
D Matrix

We consider a theoretical system of order 14 with p = 2 ports and a non-zero D-
term. We compare the algorithms when trying to recover the original system from
608 noise-free measurements between 10−1 rad/sec and 101 rad/sec.
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(c) n = 14 model with VF
Fig. 1: Original system, singular value drop of the Loewner matrix pencil and model built with VF

Figure 1a shows the sigma plot of the original system.Figure 1b shows the nor-
malized singular values of the Loewner and shifted Loewner matrices (only the first
30 of all singular values are shown as the rest are zero). We notice that the Loewner
matrix has rank 14 while the shifted Loewner matrix has rank 16, so by generating
models of order 16 which have a singular E matrix and an invertible A matrix, we
obtain the 14 poles of the original system and 2 infinite eigenvalues. Vector fitting
was given N = 7 starting poles and was required to produce a D matrix.

Table 1: Results for k = 608 noise-free measurements of an order 14 system with p = 2 ports

Algorithm CPU time (s) H∞ error H2 error
Vector Fitting 0.78 1.0956e+000 4.7563e-002
SVD Approach 5.85 4.8050e-011 6.1323e-023

Adaptive Approach 0.39 1.7736e-010 7.7177e-022

Table 1 presents the CPU time and the errors for the resulting models. We con-
clude that the proposed algorithms were able to identify the original system, while
VF did not (Fig. 1c). If VF is given N = 14 starting poles, the resulting errors are
similar to ours. However, the realization will have order n = 28 and each pole will
have multiplicity 2. This requires an additional compacting step [15].

6.2 Example Obtained from Measurements

Measurements were performed using a vector network analyzer (VNA). The data
set was provided by CST and contains k = 100 frequency samples between 10MHz
and 1GHz from a device with p = 50 ports. To avoid numerical instabilities, all fre-
quencies were scaled by 10−6. Figure 2a shows the same behaviour as in Fig. 1b.
The singular values of the Loewner matrix and of the shifted Loewner matrix drop
several orders of magnitude between the 9th and 10th, and the 59th and 60th, re-
spectively. We conclude that there is a non-zero D matrix and the underlying system
is of order 9. Thus, we generate models of order n = 59 with D = 0. VF was given
N = 5 starting poles for each column and was required to produce a D matrix, so
the order of the resulting VF model was n = 5 ·50 = 250.

Table 2 presents a summary of the results. The model obtained with the SVD
approach (order n = 59 and D = 0) is shown in Fig. 2b, while that obtained with
VF (order n = 250 and D �= 0) is presented in Fig. 2c (the x-axis has a dB scale and
the frequencies are scaled by 10−6). Note that to obtain comparable errors to our
models, VF needs to built a model of order n = 250.

Table 3 shows that all our models were stable and very close to being passive.
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Fig. 2: Singular value drop of the Loewner matrix pencil, sigma plots for different models

Table 2: Results for a data set with k = 100 samples obtained from a device with p = 50 ports

Algorithm CPU time (s) H∞ error H2 error
SVD Approach 0.07 6.0440e-003 1.9506e-007

Adaptive Approach 1.09 7.0829e-003 6.9701e-007
Vector Fitting (n = 250) 8.29 4.6797e-003 3.7886e-007

Table 3: Stability and passivity results for models of a device with p = 50 ports

Algorithm Stable H∞-norm
SVD Yes 1.0002

Adaptive Yes 1.0003
VF (n = 250) Yes 1.9869

Figure 3 compares the measured S1,1 and S10,20 entries to the model obtained
with the SVD approach (n = 59 with D = 0) and with VF (n = 250 with D �= 0).
Thus, the sigma plots in Fig. 2b and 2c indeed predict that the models are good for
all entries of the S-parameters.
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Fig. 3: Modeling entries of the measured S-parameters obtained from a device with p = 50 ports

7 Conclusion and Future Work
This paper proposes accurate and efficient algorithms for modeling measured multi-
port scattering parameters. They are based on the system theoretic concept of the
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Loewner matrix pencil constructed in the framework of tangential interpolation.
The approach we are presenting is especially suited for devices with a large num-
ber of ports. It uses no heuristics, but only the available data, makes no assump-
tions of the underlying system and last, but not least, allows to identify the system
if enough measurements are provided. We compared the performance of the new
algorithms to the state-of-the-art vector fitting method and concluded that our ap-
proaches are faster and yield better models with dimensions smaller than the ones
produced by VF. More numerical examples can be found in [16], but the quality of
the results shown by the examples we included is similar. The extension to the case
where derivatives are also provided as measurements is currently under investiga-
tion. Moreover, we are interested in generalizing this approach to time-domain data.
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Parametric Models of Transmission Lines Based
on First Order Sensitivities

Alexandra Stefanescu, Daniel Ioan, and Gabriela Ciuprina

Abstract Further downscaling of the integrated circuits pushes the limits of litho-
graphic technologies and certain variability effects previously considered negligible
now should be taken into account. This paper proposes an efficient approach that ad-
dresses the problem of interconnect process variations. New models for line param-
eters parameterized with respect to the geometric transversal dimensions, subject
to small or large variations are proposed. The parametric models are solely based
on the computation of first order sensitivities. In the multiparametric case the use of
multiplicative models can be a better choice than the use of traditional models based
on first order Taylor Series truncation.

1 Introduction

Continuous improvements in today’s fabrication processes determine smaller chip
sizes and smaller device geometries. The impact of interconnect performances has
become important as millions of closely spaced interconnections in one or more
levels connect various components on the integrated circuit [1]. Process induced
variations induce changes in the properties of metallic interconnect between de-
vices, pushing the limits of lithographic technologies. Parasitic capacitances, resis-
tances and inductances of the interconnections have become major factors in the
evolution of very high speed IC technology. This paper focuses on the variability of
the numerical extracted models for long interconnects modeled as transmission lines
with respect to geometric parameters. The authors investigate promising alternatives
beside the classic models of first-order truncations of Taylor expansions. The self -
imposed restriction is to use in the extracted model exclusively the values of first-
order sensitivities and not those of superior orders. The advantage of this approach
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is obvious. This represents one of the goals of the research carried out within the
European project FP6/IST/Chameleon [2].

This paper is structured as follows: first the basic approach used is discussed,
second, the approach is validated in the case of a microstrip line having one or
multiple variable parameters. Next, results on technology variability are shown and
conclusions are drawn at the end.

2 Parametric Models Based on First Order Sensitivities

First order sensitivities are essential for the analysis of the parameter variability
[3, 4]. Parametric models are often obtained by truncating the Taylor series expan-
sion for the quantity of interest. This requires the computation of the derivatives
of the device characteristics with respect to the design parameters [5]. Let us as-
sume that y(p1, p2, · · · , pn) = y(p) is the device characteristic which depends on
the design parameters p = [p1, p2, · · · , pn]. The quantity y may be, for instance the
real or the imaginary part of the device admittance at a given frequency. In our
case this quantity is any of the p.u.l. parameters. The parameter variability is thus
completely described by the real function, y, defined over the design space S, a
subset of Rn. The nominal design parameters correspond to the particular choice
p0 = [p01 p02 · · · p0n].

2.1 Additive Model (A)

If y is smooth enough then its truncated Taylor Series expansion is the best poly-
nomial approximation in the vicinity of the expansion point p0. For one parameter
(n = 1), the additive model is the first order truncation of the Taylor series:

ŷ(p) = y(p0)+
∂y
∂ p

(p0)(p− p0). (1)

If we denote by y(p0) = y0 the nominal value of the output function, by ∂y
∂ p(y0)

p0
y0

=
Sy

p the relative first order sensitivity and by (p− p0)/p0 = δ p the relative variation
of the parameter p, then the variability model based on (1) defines an affine [6] or
additive model (A):

ŷ(p) = y0(1 + Sy
pδ p). (2)

According to the Taylor Series theory the neglected terms can be expressed function
of the second order derivative in an intermediate point, ξ :

y(p) = y(p0)+
∂y
∂ p

(p0)(p− p0)+
∂ 2y
∂ 2 p

(ξ )(p− p0). (3)

It follows that the relative variation of the output quantity δy = (y(p)− y0)/y0 can
be expressed as

δy = Sy
pδ p + ε, (4)



Parametric Models of Transmission Lines Based on First Order Sensitivities 31

where the approximation error ε depends on the second order derivative of the out-
put quantity:

ε =
p2

0

2y0

∂ 2y
∂ 2 p

(ξ )(δy)2. (5)

Thus, to ensure a relative validity range of the first order approximation of the output
quantity less a given threshold t1, the absolute variation of the parameter must be
less than

Vd =
√

2y0t1
D2

, (6)

where D2 is an upper limit of the second order derivative of the output quantity y
with respect to parameter p.

The validity range of the first approximation can be increased in some cases if
the Taylor Series expansion is used for the “reversed” quantity 1/y(p). In this case,
to obtain the same validity range of the first order approximation for the reversed
output quantity, the variation of the parameter has to be less than

Vr =

√
2t1

y0D′
2
, (7)

where D′
2 is an upper limit of the second order derivative of the reversed output

quantity.
For the multiparametric case, one gets:

y(p) = y(p0)+∇y(p0) · (p−p0) = y0 +
n

∑
k=1

∂y
∂ pk

(p0)(pk − p0k). (8)

Similar with one parameter case, the relative sensitivities w.r.t. each parameter are
denoted by ∂y

∂ pk
(p0)

p0k
y0

= Sy
pk and the relative variations of the parameters by δ pk =

(pk − p0k)/p0k, the additive model (A) for n parameters being given by:

ŷ(p) = y0(1 +
n

∑
k=1

Sy
pk
δ pk). (9)

Thus, each new independent parameter taken into account adds a new term to the
sum [7]. The additive model is simply a normalized standard version of a linearly
truncated Taylor expansion. Instead of using this truncated expansion may be nu-
merically favorable to expand some transformation F(y) of y instead. Two particular
choices for F have practical importance: identity and inversion as it will be indicated
below. The originality of the algorithm for parametric model extraction proposed by
authors is the automation of the choice of transformation F , based on the numerical
estimation for the validity ranges (6), (7).

2.2 Rational Model (R)

The rational model is the additive model for the reverse quantity 1/y. It is obtained
from the first order truncation of the Taylor Series expansion for the function 1/y.
For n = 1, if we denote by r(p) = 1

y(p) , it follows that:
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r̂(p) = r(p0)+
∂ r
∂ p

(p0)(p− p0). (10)

We define the relative first order sensitivity of the reverse circuit function: ∂ r
∂ p(p0)

p0
r(p0) = Sr

p = S1/y
p . Consequently, we obtain the rational model for n = 1:

y(p) =
y0

1 + S1/y
p δ p

. (11)

It can be easily shown that the reverse relative sensitivity is S
1
y
p = −Sy

p. For the
multiple parameter case, the rational model is:

ŷ(p) =
y0

1 +∑n
k=1 S1/y

pk δ pk

. (12)

2.3 Multi-parametric Model (M)

Let us assume that in the multiparametric case the quantity of interest can be written
as a product of functions with separated variables:

y(p) = y1(p1)y2(p2) · · ·yn(pn). (13)

Each component function, yk depends only on a single parameter, pk and for each
one we can use either an additive or a rational model:

ŷ(p) =
y0(1 +∑m

k=1 Sy
pkδ pk)

1 +∑n
k=m+1 S1/y

pk δ pk

. (14)

The tensor product representation (13) seems to be a very particular case, however it
fits perfectly the variation of RLC parameters w.r.t. geometric parameters extracted
from uniform electric or magnetic field. The factorization and the choice of m are
dictated by physics of the problem itself, however the modeling algorithm we pro-
pose is a numerical approach based on the expressions (6) and (7) for the validity
ranges. For instance, in the case of two variable parameters, p1, p2 four versions of
model M are possible:

- MAA- additive models for both parameters

ŷ(p) = y0(1 + Sy
p1

)(1 + Sy
p2

); (15)

- MRR - rational models for both parameters

ŷ(p) = y0
1

(1 + S1/y
p1 )(1 + S1/y

p2 )
; (16)

- MAR - additive model for the first parameter and rational model for the second
one

ŷ(p) = y0
(1 + Sy

p1)

(1 + S1/y
p2 )

; (17)
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- MRA - rational model for the first parameter and additive model for the second
one

ŷ(p) = y0
(1 + Sy

p2)

(1 + S1/y
p1 )

. (18)

Together with the two “classical” A and R models, there are six possible parametric
models for the two parameter case.

3 Case Study

In order to validate our approach and to evaluate different parametric models, sev-
eral experiments have been performed on a test structure that consists of a mi-
crostrip (MS) transmission line having one Aluminum conductor embedded in a
SIO2 layer. The line has a rectangular cross section, parameterized by several pa-
rameters (Fig. 1). The return path is the grounded surface placed at y = 0. The nom-
inal values used are: xmax = 20μm, h2 = 10μm, h3 = 5μm, h0 = 1μm, p1 = 1μm,
p2 = 0.67μm, p3 = 3μm, σSi = 10000 MS/m, σAl = 3.3MS/m, εr−SiO2 = 3.9. In
order to comply with designer’s requirements, the model should include the field
propagation along the line, taking into consideration the distributed parameters and
the high frequency effects.

y

Air

SiO2

0 Ground

z

xmax

x

a

h3

h2

h0

p3

p1

p2

Fig. 1: Stripline parameterized structure
Fig. 2: Frequency characteristic Re(S11): numer-
ical model vs measurements

3.1 Validation of the Nominal Model

Before considering the parametric model, the results obtained for the nominal values
of p.u.l. parameters were validated by deriving from them the scattering parameters
(S) and compare the results with the measurements provided within the European
project FP5/Codestar (www.imec.be/codestar). For the nominal case, by using dFIT
+ dELOB [7], at low frequencies, the following values are obtained:
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Fig. 3: Left: Reconstruction of the p.u.l. C from Taylor Series first order expansion; Right: Relative
error w.r.t. the relative variation of parameter p3

R = 18.11kΩ/m,L = 322nH/m,C = 213pF/m (19)

Actually p.u.l. resistance and inductance are frequency dependent, and they can
be computed with the method described in [7]. The frequency response of the entire
line having the length d was computed using Transmission Line equations [6]. The
comparison between the simulations and the measurements is shown in Fig. 2 and
validates the nominal model described before. The sensitivities of p.u.l. parameters
are computed using the CHAMY software [2], by direct differentiation method ap-
plied to the state space equations [5]. They can also be computed by Adjoint Field
Technique (AFT) [8, 9].

3.2 Parametric Models

In this section, the accuracy of the A, R and M models for the line capacitance is
investigated.

One Parameter Case
The first sets of tests considered only one parameter that varies, namely the width
of the line, p3. The nominal value chosen was p3 = 3μm and samples in the inter-
val [1,5]μm were considered. The reference result was obtained by doing “exact”
simulations for the samples. These were compared with the approximate values ob-
tained from models A and R (Fig. 3). As expected intuitively, the dependence w.r.t.
p3 is almost linear and the A model is better than the R model. Considering the
relative variation of the parameters less than 15% (which is the typical limit for the
technological variations nowadays) the relative variation of the output parameter is
obtained (Fig. 3, right). The errors of both affine and rational first order models for
p.u.l. parameters are given in Table 1. Model A based on the first order Taylor se-
ries approximation has a maximal error for technologic variations 1.78% for p.u.l.
resistance when p3 is variable, while model R has an approximation error of only
0.6% for the same range of the technological variations for p.u.l. capacitance when
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p3 is variable. Using (6) and (7) can be easily identified which is the best model in
any case.

Table 1: Maximal errors [%] of p.u.l. parameters for technology variation of ± 15%

Parameter Quantity Affine (A1) Rational (R1)

p1 L 0.11 0.15
C 0.65 0.25

p3 R 1.78 0.22
L 0.34 0.04
C 0.035 0.6

Multiple Parametric Case
Let us consider now two parameters that vary simultaneously: p1 and p3. For ref-
erence, a set of samples in [0.8,1.2]μm × [2,4]μm were considered. The p.u.l. ca-
pacitance was approximated using the additive, rational and multiplicative models
described above. In this case, model M is computed using an additive model for p3

and a rational one for p1, which is the best choice. Fig. 4a compares the relative
variation of the errors w.r.t. a relative variation of parameter p1 for a variation of
p3 of 5%. Model M provides lower errors (maximum error is 2%) than models A
(3.7%) and R (2.2%). Fig. 4b illustrates that in the range from 20% to 40% model
M is the best one if we look at the variation w.r.t. p3 for a variation of p1 of 10%.
Thus, by using the appropriate multiplicative models in the modeling of the techno-
logical variability, the necessity of higher order approximations may be eliminated.

4 Conclusions

This paper analyzes variability models for TL structures considering the dependency
of p.u.l. parameters w.r.t. geometric parameters, at a given frequency. A detailed
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study of the line sensitivity was made by using numeric techniques. For one param-
eter case, the proposed methods avoid the evaluation of higher order sensitivities,
maintaining the accuracy by introducing rational models. The multi-parametric case
has been analyzed, in addition, a multiplicative parametric model (M) has been pro-
posed. This is based on the assumption that the quantity of interest can be expressed
with separated variables, for which A and/or R models are used. Model M is some-
times better than A and R models obtained from Taylor Series expansion. Its specific
terms (products of first order sensitivities) can thus approximate higher order, cross-
terms of Taylor Series. In order to automatically select the best first order model for
a multiparametric problem, the validity ranges of direct and reversed quantities have
to be evaluated. Once we establish the best model (A or R) for each parameter, the
M model will be easily computed by multiplication of individual submodels. Our
numerical experiments with the proposed algorithm in all particular structures we
investigated prove that the technological variability (e.g. ±20% variation of geomet-
ric parameters, which is typical for the technology node of 65 nm) can be modeled
with acceptable accuracy (relative errors under 5%) using only first order parametric
models for line parameters.
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Domain Partitioning Based Parametric Models
for Passive On-Chip Components

Gabriela Ciuprina, Daniel Ioan, Diana Mihalache, and Ehrenfried Seebacher

Abstract This paper shows how to obtain models for passive integrated compo-
nents that take into consideration the variability inherent to their design. To achieve
this, the computational domain is split into sub-domains in which the electromag-
netic circuit element (EMCE) formulation is used. The variability is described by
using first order Taylor Series representation for the semi-state space matrices. The
novelty of the paper is that it describes how the EMCE based parametric models can
be obtained. The parametric sub-models can be interconnected afterwards to obtain
a global parametric model that can be simulated or reduced. The advantage of this
approach is that it bears an inherent parallelism. The sub-models can be treated inde-
pendently both from the point of view of the variability, and from the point of view
of electromagnetic field formulation. Both aspects are illustrated with a simple test
case as well as a real benchmark designed and characterized at austriamicrosystems.

1 Introduction

The design of the next-generation of integrated circuits is challenged by an increased
number of difficulties since electromagnetic (EM) field effects at high frequencies
are too relevant to be neglected. In this respect, one of the issues of the European
research project CHAMELEON-RF was to develop methodologies and tools able to
simulate RF blocks up to 60 GHz by taking the electromagnetic coupling and design
variability into account (www.chameleon-rf.org).
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In this framework, the concept of magnetic terminals (“hooks” or “connectors”)
was used for the first time, to describe the interaction of on-chip components with
their environment [1]. These magnetic hooks are special boundary conditions that
allow the extension of the electric circuit element (ECE) [2] to the electromagnetic
circuit element (EMCE) [1]. Such an EMCE allows the connection to an external
magnetic circuit, and thus inductive coupling effects between the device and its
environment can be considered.

This paper shows how domain partitioning (DP) can be further exploited by tak-
ing into account the variability. The EMCE based model sensitivities are computed
by using first order Taylor Series (TS) expansion with respect to the parameters. The
parametric sub-models can be interconnected afterwards to obtain a global paramet-
ric model that can be simulated or reduced. A standard for parametric representation
of systems has been defined and the interested reader can find details in [3].

2 Parametric Full Wave Discretized Models for the EMCE

The EM field effects at high frequencies are quantified by Maxwell equations in
Full-Wave (FW) regime. The most appropriate formulation for passive devices with
distributed parameters, compatible both with external electric and magnetic circuits
is the Electro-Magnetic Circuit Element. This represents a first level of approxi-
mation, i.e an EM field problem correctly formulated, with appropriate boundary
and initial conditions. The next level of approximation is obtained by applying a
numerical method to obtain a discretized model of the EMCE formulation. In this
respect we used Finite Integration Technique (FIT), as it is described in [4]. Thus, a
parametric time-domain model can be obtained:

C(p)
dx
dt

+ G(p)x = Bu, y = Lx, (1)

where x = [uT
m,uT

e ,yT ]T is the state space vector, consisting of electric voltages
ue defined on the electric grid used by FIT, magnetic voltages um defined on the
magnetic grid and output quantities y. Equations can be written such that only two
semi-state space matrices (C and G) are affected by the parameters p. The input
quantities u and the output quantities y are solely related to the terminals. Each
terminal introduces exactly one input and one output quantity. For instance, if an
electric terminal is voltage excited, its voltage is a component of the input vector
and the current flowing through it (entering in the domain) is an output quantity.
Similarly, if a magnetic terminal is excited in magnetic voltage, this one will be an
input quantity and the magnetic flux entering in the domain through this terminal
will be an output quantity. Thus, the number of inputs is always equal to the number
of outputs. Also, the output quantities are considered as degrees of freedom, so as to
be computed simultaneously with the other unknowns. Therefore, the matrix L = BT

is merely a selection matrix, as is explained in [4].
For instance, the structure of the matrices in the case of voltage excitation (both

for electric and magnetic terminals) is the following:
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C=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gm(p) 0 0
0 −Ci(p) 0 0
0 0 0
0 CSl(p) 0
0 CTE(p) 0
0 0 0
0 0 0
0 CTM(p) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 B1 B2 0
BT

1 −Gi(p) 0 0
0 0 BSl 0
0 GSl(p) 0
0 GTE(p) −SE

Gm−TM(p) 0 −SM
0 PE 0

PM GTM(p) SM(Rm−TM(p)+Rm−gnd(p))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

There are eight sets of rows, corresponding to the eight sets of equations. The first
group of equations is obtained by writing Faraday’s law for inner elementary electric
loops. Gm is a diagonal matrix holding the magnetic conductances that pass through
the electric loops.

[
B1 B2

]
has only 0, 1, −1 entries, describing the incidence of

inner branches and branches on the boundary to electric faces. The second group
corresponds to Ampere’s law for elementary magnetic loops. Ci and Gi are diagonal
matrices, holding the capacitances and electric conductances of the inner branches.
The third group represents Faraday’s law for electric loops on the boundary. BSl has
only 0, 1, −1 entries, describing the incidence of electric branches included in the
boundary to the electric boundary faces. The fourth row is obtained from the cur-
rent conservation law for all nodes on the boundary excepting nodes on the electric
terminals. GSl and CSl hold electric conductances and capacitances directly con-
nected to boundary. The fifth set of equations represents current conservation for
electric terminals. GTE and CTE hold electric conductances and capacitances that
are directly connected to electric terminals. SE is the connection matrix between
electric branches and terminals path. The sixth set means flux conservation for mag-
netic terminals. Entries of Gm−TM are magnetic conductances that are connected to
magnetic terminals. SM is the connection matrix between magnetic branches and
terminals path. The seventh row is obtained from expressing the voltages of electric
terminals as sums of voltages along open paths from terminals to ground, PE being a
topological matrix that holds the paths that connect electric terminals to ground. The
last group of equations represent magnetic voltages of magnetic terminals. These are
function of the capacitances and conductances that pass through the surface defined
by the magnetic reluctances, magnetic paths on the magnetic grid and the actual
path on the boundary. The reluctances (Rm−TM) correspond to magnetic voltages
that have to be taken into consideration since the magnetic grid is strictly inside
the boundary. GTM and CTM hold magnetic conductances and capacitances that are
directly connected to magnetic terminals. PM is a topological matrix that holds the
paths that connect magnetic terminals to ground.

Thus, the top left square block of C is diagonal and the top left square bloc of
G is symmetric. The size of this symmetric bloc corresponds to the useful magnetic
branches and to the useful inner electric branches. Its size is dominant over the size
of the matrix, therefore, solving or reduction strategies that take into consideration
this particular structure are useful.

The simplest way to analyse the parameter variability is to compute first order
sensitivities. These are derivatives of the device characteristics with respect to the
design parameters p = (p1 . . . pn). Considering as design parameters the geometrical
variables and material constants, then only the Hodge matrices G∗, C∗ and Rm may
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be influenced by these design parameters. Thus, the possible variations of parame-
ters do not affect all entries in the semi-state space matrices. The affected blocks are
marked with (p) in (2).

The model parameterization and the extraction of the state space matrices sensi-
tivities can be easily included in the FIT discretization scheme for the EMCE, since
the assembling of sensitivities is similar to the assembling of matrices, the only dif-
ference is that only the affected cells add contribution to the sensitivity matrices
∂C/∂ pk, ∂G/∂ pk. That is why, the first order sensitivities are assembled simulta-
neously with the matrices, by direct differentiation.

3 Interconnecting the Models

The models described as parameterized linear time invariant system (1) can be cou-
pled with models of other devices by means of terminals (Fig. 1). We will illustrate
this for two models that are interconnected. We will assume that all terminals are
voltage excited and the two systems are described by

C1
dx1

dt
+ G1x1 = B1u1, y1 = L1x1, (3)

C2
dx2

dt
+ G2x2 = B2u2, y2 = L2x2. (4)

According to the number of electric/magnetic terminals that are interconnected,
the input vector of each system is partitioned as follows u1 =

[
uT

01 uT
c1

]T
,u2 =[

uT
02 uT

c2

]T
, where u01 and u02 are the voltages of terminals of the first and, respec-

tively, the second sub-model that will not be coupled, whereas the inputs uc1 and
uc2 will be coupled. Therefore, the vectors uc1 and uc2 must have the same size,
whereas the number of external input of the interconnected system will be given by
the sum of sizes of the vectors u01 and u02. Since the output quantities are placed
in the state space vector on the last positions, it is useful to partition as well the
state space vectors in x1 =

[
xT

01 yT
01 yT

c1

]
,x2 =

[
xT

02 yT
02 yT

c2

]
, where y01 and y02

are the vector of currents flowing through the terminals that will not be coupled,
corresponding to the first, and respectively to the second sub-system, and yc1 and
yc2 are the currents flowing through the terminals that will be interconnected.

The partitioning of input vector and state space vector conduces to the partition-
ing of state space matrices in C1 =

[
C11 C12 C13

]
,G1 =

[
G11 G12 G13

]
,B1 =[

B11 B12
]
,C2 =

[
C21 C22 C23

]
,G2 =

[
G21 G22 G23

]
,B2 =

[
B21 B22

]
.

u01

uc1 uc2

yc1 = yc2−

EMCE1 EMCE2

=

u02

Fig. 1: Interconnection of the partitioned sub-domains
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By imposing the coupling conditions for coupled terminals voltages (uc) and cur-
rents (yc)

uc1 = uc1
not= uc, yc1 = −yc2

not= yc, (5)

and assuming that in the global model the state space are ordered as follows x =[
xT

01 xT
02 uT

c yT
c yT

01 yT
02

]T
, it can easily be proved that the semi-state space model

of the interconnected system is given by

C =
[

C11 0 0 C13 C12 0
0 C21 0 −C23 0 C22

]
, (6)

G =
[

G11 0 −B12 G13 G12 0
0 −G21 B22 −G23 0 G22

]
, (7)

B =
[

B11 0
0 B21

]
. (8)

The same procedure applies for the sensitivities of the global model. Thus, the sensi-
tivities of the global model are easily obtained by sticking blocks of the sensitivities
of the sub-models:

∂C
∂ pk

=

[ ∂C11
∂ pk

0 0 ∂C13
∂ pk

∂C12
∂ pk

0

0 ∂C21
∂ pk

0 − ∂C23
∂ pk

0 ∂C22
∂ pk

]
, (9)

∂G
∂ pk

=

[ ∂G11
∂ pk

0 0 ∂G13
∂ pk

∂G12
∂ pk

0

0 − ∂G21
∂ pk

0 − ∂G23
∂ pk

0 ∂G22
∂ pk

]
. (10)

From the parameterization point of view, the partitioning in sub-domains has the
advantage that it may isolate the sub-domain in which the effect of a variation is
sensed (for example, in the computations above, all sensitivities of the second sys-
tems can be zero) and ease the task of simulation or reduction. Moreover, different
formulations (e.g. full-wave, magneto-static, etc.) can be used in each part (Fig. 2).

In order to inspect the validity range of the first order Taylor Series expansion for
the system representation, the output quantity computed as

yTS = L(jωCTS + GTS)
−1 Bu, (11)

where first order TS expansions are used for C and G:

Simplified model

ECE (FW,p)

1

2

EMCE (FW)

EMCE (FW,p)

1

2

1

2
EMCE (FW,p)

less number of hooks
all possible node−hooks

Fig. 2: Domain partitioning of complex models: parameters affect only some submodels whereas
simplified formulations can be used for other submodels
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CTS = Cnom +
n

∑
k=1

∂C
∂ pk

(
pk − pnomk

)
, GTS = Gnom +

n

∑
k=1

∂G
∂ pk

(
pk − pnomk

)
(12)

with pk the varying design parameter and pnomk , the nominal value of the parameter,
is compared to the simulation results obtained with nominal model extracted for
every parameter value. Results are given in the next section.

4 Numerical Results

The benchmark presented to exemplify the procedure consists of two coupled induc-
tors above a Silicon substrate, as shown in Fig. 3. Its domain was decomposed in
three parts, the top part (air) and the bottom part (Si), modeled by a quasistatic field,
while the middle part, which contains the coils is modeled with full wave field. Re-
sults shown in Fig. 4 are a validation for the EMCE concept used in correlation with
the partitioning of the domain. In order to validate the modeling of sensitivities and
to investigate the validity of the TS expansion, a much simpler test was considered,
consisting of two U-shape conductors, placed above a silicon substrate. Each con-
ductor has one terminal voltage excited and one terminal connected to ground. The
first parameter that is investigated is the distance between two conductors d (Fig. 5).
Since d does not affect the shape of the coils, the domain partitioning used is in three
parts: left, middle and right. By combining together only the left and the right parts
the configuration corresponding to the minimum value dmin is obtained. Therefore,
the parameter that varies is d∗ = d − dmin, and it is associated solely to the middle
domain. Figures 6 and 7 show the impact of this parameter on the admittance Y12

at 3 GHz. The reconstruction using the TS for system matrices is accurate enough
(less than 5 %) even if the relative variation of the parameter is ±100%. However,
this behaviour is not the same at 40 GHz (Fig. 8), when an accurate representation
is obtained only for a relative variation of ±20%.

Fig. 3: Real benchmark: two coupled in-
ductors (CHRF 202)
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d
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g g

Bottom

Top

Fig. 5 Simple test: two U shaped conduc-

tors

Table 1 Size of models (no.of DoFs; no.of termi-

nals) obtained by using DP and matrices coupling

Model Domain Size

CHRF 202 Top (MS) 17138; 14
Middle (FW) 81453; 26
Bottom (MS) 15427; 14
Complete 104102; 2

U-coupled a) Top (FW) 5466; 129
Bottom (FW) 5351; 127
Complete 10817; 2

U-coupled b) Top (FW) 5394; 57
Bottom (MS) 950; 55
Complete 6344; 2
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Fig. 6: Parameter d impact on Y12 at 3 GHz
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Fig. 7: Relative impact of distance d

A second test used a technological parameter, namely the thickness g of the cor-
responding metal layer. Figure 9 show that, in this case, the reconstruction using TS
for system matrices is very accurate (less than 1 %) even at 40 GHz.

Different decomposition schemes were tested, dividing the domain in a bottom
part, which encloses the substrate, and a top part, enclosing the metal layers and
upper air. Different regimes were used for different domains, reducing the overall
model complexity with equivalent accuracy, as presented in Table 1.

5 Conclusions

The approach we propose for the extraction of parametric models of passive on-chip
components is based on domain partitioning and use of the EMCE formulation.
Its main advantages are the reduction of computational complexity for the model
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extraction process and the possibility of using different, independent grids or for-
mulations in several sub-domains, locally refined and adapted to the local modeled
structure. In this manner the main drawback of numerical methods based on the
rectangular, uniform grids is eliminated. The global modeling effort is thus reduced,
replaced by the independent model extraction for each sub-domain.

The computation of sensitivities of the state-space matrices for the EMCE formu-
lation is straightforward when using FIT as discretization method. For our tests, the
approximation based on Taylor Series for the system matrices was accurate enough
(less than 1 %) if the variations were technological (less than 20 %), or if the varia-
tions were due to the design but the operation frequency is low. If accurate enough,
such parametric models can be further submitted to parameterized model order re-
duction procedures.
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A Novel Graphical Based Tool for Extraction of
Magnetic Reluctances Between On-Chip
Current Loops

Alexander Vasenev, Sebastián Gim, Alexandra Stefanescu, Sebastian Kula, and
Diana Mihalache

Abstract Continued device scaling into the nanometer region has given rise to new
effects that previously had negligible impact but now present greater challenges and
unprecedented complexity to designing successful mixed-signal silicon. This pa-
per presents a novel graphical tool for semi automatic extraction of magnetic reluc-
tances between on-chip current loops. The novel graphical tool seamlessly integrates
within the workflow of the CHAMELEON-RF software prototype developed.

1 Introduction

One of the major challenges in the nano electronic design industry (EDA) is the
management of design complexity. As integrated circuits are being scaled into the
nanometer scale, more and more functionality can be integrated on-die [1]. How-
ever, the greater integration leads to a number of design challenges, amongst them,
the mutual coupling between interconnects, sub-circuits and functional blocks. All
these need to be effectively managed by the EDA software in an efficient but intu-
itive manner to ensure a successful design. A coherent framework and comprehen-
sive workflow model is needed.

There are several reasons to find an optimal procedure to support communica-
tion between the various data formats within a framework’s workflow model and
automating the tasks. The two most pressing reasons are reduction of human ef-
fort and elimination of user errors. Furthermore for the effective use of simulation
software it is necessary to find a proper way for correct representation and transfor-
mation of initial data from schematic parameters and layout to simulation.
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In this paper, we present a novel graphical tool and a proposed workflow model
for the extraction of magnetic reluctances between on-chip current loops that in-
tegrates seamlessly with the Chamy electromagnetic simulator [2]. Based on the
principles identified previously, code for a novel graphical tool called Mag-Tris
(Magnetic Tetris) was developed in LayoutEditor and Matlab. This novel graphi-
cal tool that is specially designed for Chamy software is based on Matlab and can
effectively work with Matlab’s standard files .mat and ASCII files as an import for-
mat. A few rules should be observed to solve this task. First, the solution should
comply with requirements of Chamy. For example, it must support any Manhattan
geometry structure and other principles, defined by the software. Secondly, it must
be based on Graphical User Interface (GUI). A designer as the user can easily make
modification, see and examine changes. Finally, implementation should be done by
using non-commercial general public license software.

The remaining sections of this paper are organized as follows. Section 2 describes
the key features of Mag-Tris and presents the proposed workflow model and seam-
less integration with Chamy software. This approach is then applied to extracting
the magnetic reluctances between fundamental current loops in a 24 GHz LNA. The
results from this extraction process are then presented in Section 3. The paper is
finally concluded in Section 4.

2 Workflow for Multi-scale Compact Modeling

Contemporary mixed signal design workflows involve ad-hoc iterations of incre-
mental design improvements based upon tweaking a baseline circuit using a gamut
of discrete software tools, some analytic methods and plenty of heuristics. It is an
iterative cycle of SPICE circuit simulation, silicon fabrication, measurement and pa-
rameter tweaking to meet design performance targets. Many fabrication spins and
prior experience is often needed to isolate coupled effects before tweaking SPICE
parameters in order to compensate for these undesirable parasitic effects. The Mag-
Tris graphical tool which integrates seamlessly together with Chamy presents the
designer with an intuitive integrated development environment (IDE) workflow for
EDA of electromagnetically coupled circuits.

In this new workflow, the designer creates a particular RF block and simulates
the theoretical performance using existing SPICE simulators. However, instead of
fabricating the layout and subsequently measuring the performance many months
later, the designer first uses Chamy to simulate and extract interconnect parasitic
effects directly from the layout [3, 4]. The parameters of the interconnect parasitic
when included into the SPICE netlist will more accurately model RF block perfor-
mance than a topological electrical netlist alone. In the second step, coupling within
the circuit is modeled by creating a dual magnetic circuit to the original electric
circuit. Voltage sources representing induced voltages and current sources of the
magnetic field are placed into the original electric and also the dual magnetic netlist
or schematic (Fig. 1a). The sources are actually linear controlled sources that model
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mutual interaction between fundamental current loops of the RF block because in
integrated circuits magnetic interaction between conductive loops essentially occurs
between the holes.

R R

Rm Rm

i i

e = – 1je =
dj
dt

electric circuit electric circuit

magnetic circuit magnetic circuit

derivative circuit

j jΘ = 1 Θ =1i

1j

j = C du
dt dt

= 1dj

C=1 u = j

A B

Fig. 1: Elimination of time derivative flux controlled source by means of a third derivative circuit.
a Original circuit (left), b equivalent circuit (right). i electric current, j magnetic flux

The dual magnetic circuit can be thought of as having magnetic flux as the ‘cur-
rent’ which flows within it. Magnetic reluctances or “resistances” impede the flow
of this “current”. The magnetic flux originates because of a magnetic motive force
or magnetic voltage source due to actual current flow in the electrical circuit within
the fundamental loops. A time derivative of flux controlled voltage source however
is not a native element in SPICE. To get around this limitation, an equivalent Spice
sub-circuit was defined. It contains a third derivative circuit as shown in Fig. 1b.
This technique is known as the magneto-electric equivalent circuit (MEEC).

Next Mag-Tris, a novel graphical interface developed and implemented using
Layout Editor and Matlab and integrates seamlessly with Chamy is used to calcu-
late the magnetic reluctances between fundamental current loops. The dataflow of
Mag-Tris is shown in Fig. 2. The designer needs to visually identify and mark the
fundamental current loops in an open source layout file viwer Layout Editor (Fig. 4).
Mag-Tris macros extract the relevant polygons to files before passing the formatted
data to Chamy in order to calculate the required magnetic reluctances. Mag-Tris
also post processes Chamy output to return the desired magnetic reluctances.

The completed MEEC circuit can now be simulated using existing SPICE sim-
ulators. Together with the layout interconnect parasitic extracted earlier, the MEEC
circuit allows more realistic simulation compared with conventional electric SPICE
simulation alone.
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Graphical definition of fundamental
current loop using Mag-Tris macro

based on IC layout

Using Mag-Tris macro to set
polygon properties

LayoutEditorTM

Matlab®

+

Matlab®

Chamy

Setting polygon definitions

Extracting by macro polygons to files

Generating polygon-based grid

Generating “.cir” output file

Calculating self+mutual reluctances

Fig. 2: Dataflow of Mag-Tris

3 Calculation of Magnetic Reluctances

The fluxes and magnetic voltages of the magnetic terminals are related by means of
the linear relation:

ϕ = Pvm (1)

where P is is the nodal magnetic permeance matrix of magnetic terminals. Matrix P
is symmetric, diagonal dominant and positive defined with positive diagonal entries
and negative off-diagonal terms. By expressing voltage between two terminals as
potential differences, the branch reluctances in the complete polygonal topology are
obtained.

φk j = ∑n
j,k=1 p jkvk = ∑n

j,k=1 Gm jk(v j − vk)
Gmk j = −pk j > 0, Gmk0 = ∑n

i=1 pki > 0
Rmk j = 1/Gmk j, Rmk0 = 1/Gmk0

(2)

The test case consists of a 24GHz Car Radar LNA (Fig. 3:LNA schematic). This
benchmark is a 50Ω single ended input and output impedance 24 GHz LNA for
car radar applications designed and fabricated using the NXP QUBiC4X process.
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This benchmark also demonstrates that the QUBiC4X 0.25 μm SiGe:C BiCMOS
process is adequate for emerging microwave applications between 10-30 GHz. The
LNA core circuit essentially consists of a common emitter first stage that is cas-
cade loaded which is then followed by the emitter follower output. The 50Ω input
impedance matching is achieved by means of a low Q matching network (Cm Lm) at
the input stage. This is then followed by an inductively degenerated matched com-
mon emitter first stage to achieve good power gain over broadband frequencies. Cur-
rent sources (I1 I3) in the final test structure are implemented through a transistor
current mirror network. In addition to this LNA core circuit, several other practical
details such as a MIM decoupling capacitor network, voltage divider network, a 60
μm long GSG transmission line at the input feed and bondpads are implemented
in the final layout (Fig. 4). According to the modeling procedure described in the

out

4

3

C3Q3

Q2

Q4

Q1

Le

LmV
in

l1l2C2

VCC/2

l3C1

Cm

1

2

VCC=
3.3V

Fig. 3: LNA core schematic with tree (blue) co-tree (red) with induced sources and magnetic
circuit (green) overlayed

previous section, using just topological data from the LNA core schematic, a sim-
ple tree co-tree graph is created to identify a system of independent fundamental
loops. (Fig. 3: Tree co-tree graph). The tree is colored blue and the co-tree is col-
ored red. The topological nodes are blue squares. The red circles indicate voltage
sources representing the induced voltage and are placed in the co-tree branches.
There are four fundamental loops (1-4), carrying independent currents, which are
sources of the parasitic magnetic field. This implies that there are 4 self reluctances
and 6 mutual reluctances as part of a fully connected magnetic network. In each
fundamental loop there is a source for magnetic field attached (Fig. 3: green circle).
The self reluctances of each source have been omitted for simplicity. After that, in
order to model the parasitic induced voltages, a dual magnetic circuit was coupled to
the original electrical circuit by means of controlled sources. The demo Chameleon
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Fig. 4: Identified fundamental current loops in a 24 GHz LNA

software prototype [2] and Mag-Tris was then used to demarcate the fundamental
loops on the LNA gds layout file and extract the self and mutual reluctances using
Finite Integral Technique (FIT) [5,6] between the hooks of Manhattan shapes (union
of rectangles) (Fig. 4). The values are summarized in the Table 1.

Table 1: Extracted self and mutual reluctances

Fundamental Reluctance [1/H]
loop

11 2.40630e+010
22 3.14921e+011
33 4.30807e+010
44 2.29307e+011
12 2.53936e+011
13 3.83304e+010
14 2.00067e+011
23 3.97307e+011
24 1.97317e+012
34 2.76450e+011

With the reluctances obtained, the entire MEEC of the LNA circuit can then be
simulated in SPICE. As can be seen from Fig. 5, the MEEC simulation is a closer
match to measurement than conventional electrical only uncoupled simulation.
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Fig. 5: LNA measurement of S21 (thin green) with electrical uncoupled simulation (red) and
MEEC coupled simulation (cyan) overlayed

4 Conclusion

Based on the results obtained from using the Chameleon RF prototype software
on the above benchmarks, our approach based on the original concepts of MEEC
to model coupled problems in VLSI design using electromagnetic circuit elements
(EMCE) and electromagnetic hooks is feasible and promising. The approach is a
comprehensive multi-scale modeling solution using domain decomposition, hierar-
chical substrate structuring and compact parametric models to model passive in-
tegrated structures and functional blocks and the electric and magnetic parasitic
interactions between them.

The concept of a simply connected EMCE facilitates the multi-scale modeling
of coupled electromagnetic effects within a cohesive framework. These electromag-
netic couplings between functional blocks are described by means of electromag-
netic hooks which are special boundary conditions associated to the electromagnetic
field problem [3]. The electromagnetic hooks enable the concise decomposition
(partitioning) and description of the conductive, capacitive and/or inductive cou-
pling between a component and the environment. These parasitic couplings between
components are coupled in reality through the air and/or the silicon substrate [7, 8].
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A Robust Technique for Modelling Nonlinear
Lumped Elements Spanning Multiple Cells
in FDTD

Luis R.J. Costa, Keijo Nikoskinen, and Martti Valtonen

Abstract A robust technique for modelling linear and nonlinear lumped elements
spanning multiple cells in an FDTD-based electromagnetic field simulator is pre-
sented. The nonlinear models require iteration as part of the model. The technique
is applied to produce a highly stable LE-FDTD diode model that works well far be-
yond normal operational voltage ranges. Simulation results are in good agreement
with those obtained with the circuit simulator APLAC and those in the literature [1].

1 Introduction

Simulating complex electronic systems typically requires the use of electromag-
netic field simulators to simulate parts of the whole. Often lumped elements are
required to be embedded within the field simulation to correctly model sources and
loads within the simulated subsystem. Embedding lumped elements in a 3D finite-
difference time-domain (FDTD) field simulation was first accomplished in Ref. [1]
for the passive elements, the resistive voltage source, and the diode, each spanning
one cell, and the transistor spanning two cells. The lumped element–FDTD (LE-
FDTD) method, as this technique is called, requires an iteration routine to solve the
transcendental equations resulting in the diode and transistor models due their expo-
nential current–voltage relation. The one-celled resistive voltage source LE-FDTD
model was extended in Ref. [2] to span multiple cells by solving a system of linear
equations to simultaneously update the electric field in the region occupied by the
source. Modelling the linear passive elements with this approach is straightforward.
The authors presented a model for the resistive voltage source that does away with
the need for a linear equation solver [3], and the approach is readily applied to the
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linear passive elements as well. The method, suitably extended, turns out to be an
effective technique for modelling nonlinear lumped elements, like the diode, span-
ning multiple cells without having to solve a system of equations, thus making the
implementation simpler. The strongly nonlinear diode requires iteration to obtain a
stable model, which turns out to be stable over a very wide voltage range.

2 Modelling Technique

In the LE-FDTD method, in order to model an embedded lumped element, the cur-
rent density term in Ampère’s circuital law is split into the conduction current den-
sity Jc = σE of the lossy medium and the current density Jl due to the lumped
element. The standard FDTD algorithm is then applied to evaluate the E field at
time n + 1 and the H field at n + 1/2 [4]:

∮
C
Hn+ 1

2 ·dl=
∫

S

(
ε
∂En+ 1

2

∂ t
+σEn+ 1

2 + J
n+ 1

2
l

)
·ds, (1)

where En+ 1
2 is computed semi-implicitly as the average (En+1 + En)/2.

Assuming, without loss of generality, a z-directed lumped element current in the
following, (1) is discretised in the standard manner and some short-hand notation is
introduced at the same time to derive the update equation for Ez, the z component
of E. The equations for the x and y directed currents are similarly derived.

So, denoting the discretised left-hand side of (1), which is the current at position
i, j,k due to the circulating magnetic field, as

Iz|ni, j,k = (Hy|n+ 1
2

i+ 1
2 , j,k+ 1

2
−Hy|n+ 1

2

i− 1
2 , j,k+ 1

2
)Δy − (Hx|n+ 1

2

i, j+ 1
2 ,k+ 1

2
−Hx|n+ 1

2

i, j− 1
2 ,k+ 1

2
)Δx, (2)

the update equation for the Ez field at a cell containing the lumped element is

Ez|n+1
i, j,k+ 1

2
=

(
1− σΔt

2ε

1 + σΔt
2ε

)
Ez|ni, j,k+ 1

2
+

(
Δt
ε

1 + σΔt
2ε

)
×
⎧⎨
⎩

Iz|ni, j,k

ΔxΔy
− Il(V

n+ 1
2

l )
ΔxΔy

⎫⎬
⎭ . (3)

The position indices of ε and σ , which are the same as that of Ez, are omitted for
notational compactness and must be added by the reader. The current Il through the
lumped element is a function of the voltage Vl across itself. Compared to the stan-
dard update equations elsewhere, the update equation (3) of the cells with the em-
bedded lumped element contains the additional current density term Il(Vl)/(ΔxΔy)
accounting for the lumped element current flowing through these cells across which
the lumped element is connected.

The next step is to find a generic expression for Il(V
n+ 1

2
l ) to be plugged into

(3). Applying the semi-implicit approximation, the voltage of the lumped element
connected across multiple cells, as shown in Fig. 1a, is
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Fig. 1: a Lumped element connected across three cells, and b the circuit equivalent of (8)
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Above, (5) results from (4) by substituting Ez|n+1 from (3). Denote

Rg =
b

∑
m=a

Δz

2ΔxΔy

Δt

ε
(

1 + σΔt
2ε

) , (6)

which can be interpreted as the grid resistance seen by the lumped element. Note
here that the exact role of the summation index m is not evident in (6) because the
position indices associated with ε and σ have been omitted for notational compact-
ness. Next, divide both sides of (5) by Rg, and denote

IEM = −
b

∑
m=a

⎧⎨
⎩

2

1 + σΔt
2ε

Ez|ni, j,m +
Δt
ε

Iz|ni, j,m
ΔxΔy

1 + σΔt
2ε

⎫⎬
⎭

Δz

2

/
Rg, (7)

which can be interpreted as the current due to the FDTD grid flowing through the
cells containing the embedded lumped element, to arrive at

V
n+ 1

2
l

Rg
= IEM + Il(V

n+ 1
2

l ). (8)

This equation is Kirchhoff’s current law for the circuit in Fig. 1b which also provides
the generic expression sought.

Thus, the interface necessary for LE-FDTD modelling is formed by (3) and
(8). For a time-invariant medium, the gridresistance Rg, being a constant, can be
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precomputed before starting the time stepping. The following two sections discuss
the model implementation details for the linear and nonlinear elements.

2.1 Modelling Linear Elements

For a linear element, the current source Il in Fig. 1b is in fact an impedance that
must have a suitable time-domain current–voltage description for it to be realisable
as an LE-FDTD model. The element’s current–voltage dependence may contain an
additional constant term representing a source within. The implementation of the
linear element entails solving from the circuit in Fig. 1b either Il directly or Vl, in
which case the voltage is put into (8) to get Il. The current Il is finally substituted
into (3) to get the desired LE-FDTD model, i.e. the update equation. This technique
was used in [3] to implement an LE-FDTD resistive voltage source.

2.2 Modelling Nonlinear Elements

For a nonlinear element, however, Newton-Raphson iteration, for example, must be
used to solve Vl from the circuit in Fig. 1b, since otherwise the simulation can be
rendered unstable; the stability is very sensitive to the model parameters used. Thus,
the general LE-FDTD nonlinear iteration model required is derived as follows:

1. Iterate V
n+ 1

2
l using

V
n+ 1

2 ,l+1
l = V

n+ 1
2 ,l

l − V
n+ 1

2 ,l
l /Rg + Il(V

n+ 1
2 ,l

l )− IEM

1/Rg + I
′
l (V

n+ 1
2 ,l

l )
, (9)

where I
′
l is the derivative with respect to Vl and l is the iteration index. A good

initial guess to start the iteration at each new time point is the previous value

V
n− 1

2
l , i.e. V

n+ 1
2 ,0

l = V
n− 1

2
l . (The iteration converges rapidly for the diode model

discussed in Sect. 3.)

2. Compute current Il(V
n+ 1

2
l ) from the known function, or equivalently from (8).

The former is typically heavier to compute making the latter the preferred choice.

3. Use the computed Il(V
n+ 1

2
l ) to update Ez in the cells spanned by the nonlinear

element using (3), having the corresponding position indices i, j,m, where m
spans the k index from a to b.

The advantage of this technique is that Il needs to be computed only once at each
time point and then used in the update equation of the stack of cells containing the
modelled lumped element; no system of nonlinear equations needs to be solved.



Modelling Nonlinear Lumped Elements Spanning Multiple Cells in FDTD 57

Also, the presence of the resistance Rg in (9) improves the stability of the iteration
model.

An alternative approach to model the nonlinear element is to express the element
current as a function of Ez|i, j,m (m ranging from a to b) using (4), plug this Il(Ez) into
(3) for all the relevant cells (ranging from i, j,a to i, j,b), and then simultaneously
solve all the Ezs at time n + 1 using multivariable Newton-Raphson iteration. The
disadvantage of this approach is that more computational effort is required to obtain
the updated EZ values and the implementation is more complicated.

3 Model Example: Diode

The above technique for implementing a nonlinear lumped element is exemplified
using a diode model. The implemented LE-FDTD diode is simulated and the simu-
lation results are compared with those obtained using the circuit models of a circuit
simulator.

A simple diode current–voltage relation is given by

Id = Is

(
e

q
kT Vd −1

)
, (10)

where Is is the saturation current, q is the electron charge, k is Boltzmann’s constant,
and T is the temperature in Kelvin. The diode voltage Vd (= Vl) iteration equation is
derived from (9):
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kT Ise

q
kT V

n+ 1
2 ,l

d

, V
n+ 1

2 ,0
d =V

n− 1
2

d . (11)

The iterated V
n+ 1

2
d is then plugged into (10) to determine the diode current Id (=

−Il). Alternatively, Id is found using (8), which is the preferred option. Then Id is
substituted into (3) to update Ez in the cells spanned by the diode from i, j,a to i, j,b.

To test this model, the microstrip circuit in Fig. 2a was simulated with a self-
written C-language FDTD field solver. The microstrip of width 6Δx, length 30Δy,
and substrate height 3Δz has a 50Ω characteristic impedance. The FDTD space of
size 64×50×12 cells, with Δx = 0.4064mm, Δy = 0.4233mm and Δz = 0.265mm,
was truncated with a first-order Mur boundary condition. The LE-FDTD resistive
voltage source was implemented as described in Ref. [3] with source resistance
Rs = 50Ω and frequency of the sinusoid excitation 2 GHz. The diode parameters
used were Is = 10−14 A and T = 300K. The simulation was run for 2286 time steps
using different values for the sinusoidal excitation amplitude.

Figures 2b and 2c show the diode voltage for the source amplitudes 10 V and
2.5 kV, respectively. The LE-FDTD diode model displays stable behaviour even for
the 2.5 kV excitation. To verify these results, the simulation results are compared
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Fig. 2: a Microstrip test circuit used to verify the diode model. b Diode voltage when the source
amplitude is 10 V and c 2.5 kV. The simulation results are compared with those got with APLAC

with those obtained using the circuit models in the circuit simulator APLAC [5] for
the test circuit and are seen to be in good agreement. At 200 MHz, the 10 V source
amplitude yields the simulation result obtained in Ref. [1], whose one-cell diode
model is reported to be stable using an excitation amplitude of 15 V. Extending the
model in Ref. [1] to span multiple cells would require the solution of a nonlinear sys-
tem of equations, making the implementation complicated. The Newton-Raphson
iteration of the diode voltage of the proposed LE-FDTD diode converged rapidly,
typically in two to four iterations.

At 2.6 kV the LE-FDTD simulation became unstable, but the instability origi-
nated in the Newton-Raphson iteration, which was implemented without any time-
step control. A more sophisticated time-step control will extend the working range
of this diode model further. In RF applications, the useful operating voltage range
for the diode is typically up to about 15 V. The high voltages were used in these
simulations only to test the stability of the diode model.

At frequencies above about 3 GHz the circuit models for microstrip structures, as
also for other planar transmission line structures, become increasingly inaccurate,
thus making field simulations imperative. This justifies the development of robust
LE-FDTD models to be used in such planar transmission line and waveguide struc-
ture field simulations.
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4 Conclusion

A technique for modelling lumped elements spanning multiple cells in an FDTD
field simulator is presented. The technique does not increase the complexity of de-
sired nonlinear element models and yet displays great operational stability. The tech-
nique is used to build a novel diode model that is stable far beyond useful operational
voltages. The diode model produces simulation results that are in agreement with
those produced by the circuit models in the circuit simulator APLAC and those in
the literature.
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Computation of Eigenmodes in Periodic
Structures with Dispersive Materials

Bastian Bandlow and Rolf Schuhmann

Abstract In the infrared spectrum noble metals do not act like perfect conductors,
but have to be described by dispersive material models. Eigenvalue problems in-
cluding such frequency-dependent material properties occur for instance, when the
dispersion relations of periodic structures such as photonic crystals and metama-
terials are analyzed by electromagnetic field simulations of the corresponding unit
cells. We show that the commonly used Drude dispersion model leads to a poly-
nomial eigenvalue problem which can be solved by a modified Jacobi-Davidson
method.

1 Introduction

Periodic electromagnetic structures with lattice constants Δ (i.e. length of spatial pe-
riodicity) comparable to the wavelength of an incident wave are favorably described
by their dispersion relation. The electromagnetic eigenmodes of such periodic struc-
tures may be cast into an electromagnetic band structure, which gives information
about the propagating modes. Note that we use electromagnetic band structure syn-
onym to the expression dispersion relation. A sample dispersion relation is shown
in Fig. 1 (left). On the abscissa the phase shift ϕz over one spatial period can be
interpreted as a scaled macroscopic wave number ϕz = kzΔ . On the ordinate there
is the angular frequency of several modes, which can be of forward or backward
type (depending on the slope of the curve, which can be interpreted as group veloc-
ity). Moreover, the phenomenon of Bragg reflection leads to stop bands between the
propagating modes.

A convenient way to obtain the dispersion relation by electromagnetic field sim-
ulation is a series of several eigenmode computations of one spatial unit cell for
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different (fixed) phase shifts ϕz. These phase shifts are introduced into the model
by imposing periodic boundaries in propagation direction, see Fig. 1b, relating the
fields on both interfaces to each other by the factor eiϕz .

After discretizing the structure with the finite integration technique (FIT, [1]), the
resulting algebraic eigenvalue problem has the form

Acc,ϕ
�e = ω2Mε

�e . (1)

Here, Acc,ϕ is the curl-curl system matrix derived from the discrete form of
Maxwell’s equations. It includes the double curl operation, the permeability dis-
tribution of the structure, and also the periodic boundary conditions for one specific
phase shift ϕz. The diagonal matrix Mε is the generalized permittivity operator. The
searched eigenvalue is the squared angular frequency ω2, and the field distribution
is obtained by the eigenvector �e. Based on a three-dimensional grid model, the FIT
discretization leads to large sparse matrices with the dimension Ne ×Ne, with Ne the
number of grid edges.

An example for a metamaterial unit cell is shown in Fig. 1 (right). It consists
of two rectangular structures of silver and a dielectric spacing in between [2]. This
structure is supposed to operate at optical wavelengths around 1.4 microns. At these
wavelengths, noble metals like gold and silver show a dispersion of their dielectric
constant. Since now the entries in the permittivity matrix Mε depend on the searched
eigenfrequency ω , we obtain a non-linear eigenvalue formulation.

A first approach is to evaluate the material properties at a specific frequency
ω0 and to perform a fixed point iteration over several frequencies ωi, which may
converge to the desired eigenfrequency (and eigenmode) of interest. For many ma-
terials, however, the dependency ε(ω) can be approximated by explicitly known ra-
tional functions, e.g. in case of the commonly used Drude [3] and Lorentz-models,
and the problem can be reformulated leading to a polynomial eigenvalue problem
(PEP). This gives rise to better solution approaches than a fixed point iteration.

The rest of the paper is organized as follows: In section 2, we show how to
formulate the eigenvalue problem including dispersive materials. In section 3 we
discuss some strategies to solve this problem, and in section 4 we give a numerical
example. Further ideas and suggestions are given in section 5.

2 Formulation

To simplify the presentation, we start with a homogeneous medium and the con-
tinuous rather than the discrete notation. From Maxwell’s equations in frequency
domain we derive the eigenmode formulation for the electrical field strength E

curl
1
μ

curl E = ω2εE. (2)
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Fig. 1: Left: Example of a typical dispersion relation with forward and backward modes and a
photonic band gap. Center: Unit Cell from an one-dimensional lattice and the relation of the fields
at the interface planes. Right: Sample unit cell structure taken from [2] consisting of two layers of
Drude-dispersive silver and a dielectric spacing in between

The dependency on frequency of the permittivity ε(ω) shall be given by a general
2nd order model

ε(ω) = ε0

(
ε∞ +

β0 + iωβ1

α0 + iωα1 −ω2

)
, (3)

with the real-valued parameters ε∞, α0, α1, β0 and β1 implying an eiωt time depen-
dency. Inserting equation (3) into equation (2) leads to a complex, non-hermitian,
polynomial eigenvalue problem (PEP) in ω , which can be notated by

(ω4A4 +ω3A3 +ω2A2 +ωA1 + A0)E = 0. (4)

The coefficients Ai are given by

A4 = −ε0ε∞, A3 = iε0(α1ε∞ +β1), A2 = ε0(ε∞α0 +β0)+ Acc

A1 = −iα1Acc, A0 = −α0Acc, Acc = curl
1
μ

curl.

Using the Finite Integration Technique (FIT), this representation of the PEP can be
transformed into a discrete formulation in a straight forward manner

Ψ (ω)�e = (ω4A4 +ω3A3 +ω2A2 +ωA1 + A0)
�e = 0, (5)

where Ai are the coefficient matrices corresponding to the expressions above. Of
course, this FIT model also supports arbitrary inhomogeneous material distribu-
tions, and it turns out that the usual facet-weighted averaging procedure at interfaces
does not need any special treatment.

The periodic boundary condition assures that the tangential components of the
electrical grid voltage of two opposed boundary interfaces are related by a prede-
fined factor eiϕ . The dependency of the corresponding components is inserted into
the curl-curl-operator. The overall number of degrees of freedom is then reduced by
the components at the dependent boundary plane.
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3 Solving the Polynomial Eigenvalue Problem

There are various methods to solve the PEP from the previous section, and we will
discuss three variants.

3.1 Fixed-Point Iteration

The PEP can be formulated as a fixed-point iteration ωi+1 = Φ(ωi), where the op-
erator Φ contains a standard linear eigenvalue problem. The dispersive material
properties in Mε(ω) are evaluated at a certain frequency ωi and then we solve the
(linearized) eigenvalue problem from equation (5). This leads to the iterative scheme

Acc,ϕ
�e = ω2

i+1Mε(ωi)�e . (6)

This scheme works well (even if not very fast) in many cases. However, to prove
its convergence for general cases — e.g. using Banach’s fixed-point theorem — is
quite challenging due to the complex nature of the eigenvalue problem involved.

3.2 Linearization

A more direct way to solve the PEP uses the so-called companion matrix of the
PEP. The PEP (5) of order 4 can be transformed into a generalized linear eigenvalue
problem of the form Ax = λBx of higher dimension, where

A =

⎡
⎢⎢⎣

0 I 0 0
0 0 I 0
0 0 0 I

−A0 −A1 −A2 −A3

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

I
I

I
A4

⎤
⎥⎥⎦ , x =

⎡
⎢⎢⎣

�e
λ�e

λ 2�e
λ 3�e

⎤
⎥⎥⎦ . (7)

For the square coefficient matrices of (5) of dimension n, this approach leads to 3×n
additional eigenvalues, which are not necessarily all solutions of the original PEP
and therefore have to be dropped. Since this approach leads to large and typically
ill-conditioned matrices, it is only feasible for low-dimensional problems.

3.3 Jacobi–Davidson Algorithm for PEPs

The PEP in the form (5) can be solved using a Jacobi-Davidson method (JD) [4, 5].
This method is intended to find one or more interior eigenvalues of the spectrum near
a given estimation τ . In the JD method, the PEP is projected on a low-dimensional
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orthogonal subspace V, leading to a low-dimensional PEP with coefficient matrices
Mi = V∗AiV. This PEP is solved, e.g. by the companion matrix approach from
section 3.2. The low-dimensional eigenvector s is expanded again to generate the
current approximation of the searched eigenvector u = Vs. From this approximation
a residual is calculated, and the iteration is stopped if it is small enough. If this is not
the case, a so-called correction equation is formulated and solved, which produces
an additional vector to be added to the subspace. This procedure is repeated until
convergence. The computationally most expensive task inside the Jacobi-Davidson
iteration is the solution of the correction equation, which reads

(
I− pu∗

u∗p

)
Ψ(θ )(I−uu∗)t = −r (8)

Here, Ψ is the polynomial from equation (5) evaluated at the last, best estimation θ
(namely the Ritz value), t the correction vector, r the residual, u = Vs the best actual
approximation of the searched eigenvector, and p =Ψ ′(θ ). In the beginning of the
JD process the user-defined estimation τ may be more accurate than an extracted
Ritz value. Therefore we set p = Ψ ′(τ) until the residual is below a predefined
tolerance, in order to get a better correction vector t. (This was proposed in [6].)

For the solution of this equation we use a preconditioned bicgstab(l) method [7],
where the preconditioner is an LU decomposition of the polynomial evaluated at the
estimation τ . Therefore this LU decomposition has to be established only once per
JD run. In [8] it has been proposed to replace equation (8) by

t = −Ψ(θ )−1r + εOΨ(θ )−1p where εO =
u∗Ψ (θ )−1r
u∗Ψ(θ )−1p

. (9)

[8] also suggests to replace Ψ(θ )−1 by an appropriate preconditioner, but here we
use the original matrix.

3.3.1 Scaling and Balancing

Since we look for eigenfrequencies ω which are in the magnitude of 1014 we may
easily run into numerical troubles. In order to improve the situation we use two
scaling and balancing steps.

In order to transform the eigenvalues to values near one, we apply the transfor-
mation proposed in [9] for the low-dimensional coefficient matrices M′

i =α i
optMi =

α i
optV

∗AiV. The scaling factor is calculated by αopt = (‖M0‖2 /‖Mi‖2)
1
i . Of course

it is also possible to calculate the 2-norms of the unprojected coefficient matrices Ai

of (5) and to perform the scaling with these larger matrices. Since the calculation of
a 2-norm is a rather expensive task, it is computationally more efficient to do that on
the lower dimensional projected matrices, especially if we only need a very small
number of JD iterations.
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Additionally we follow an idea from [9], proposing a balancing transformation
of the coefficient matrices. The norms of the coefficient matrices are balanced by
M̃i = D1M′

iD2, keeping the eigenvalues unchanged. The balancing matrices D1 and
D2 are diagonal and contain only powers of two. Since a multiplication or division
by two is realized through a bit-shift, no further numerical errors occur and the
overall condition of the eigenvalues near the user-defined estimation τ is improved.
The back-transformed low-dimensional eigenvector is obtained by s = D2s̃.

3.3.2 Validation

A simple way to validate the results from the JD method is to go back to the original
eigenvalue problem in equation (5) and to execute one single step of the fixed-point
iteration described in section 3.1. In all numerical tests we have obtained accuracies
in the range of numerical noise (if the JD process has fully converged).

4 Numerical Example

As an example we take the unit cell structure from [2] shown in Fig. 1. It consists of
two layers of silver, which are 45 nm thick and a dielectric spacing of εr = 1.9044
and 30 nm thickness in between. The square edge length is 600 nm and the lattice
constant is 200 nm. The rectangular aperture is 316 nm by 100 nm and the perme-
ability is chosen to be μ = μ0. The coefficients of the dispersive model (3) for silver
are ε∞ = 5, α0 = 0, α1 = 3.22e13, β0 = 1.96e32 and β1 = 0 [3]. Therefore, the gen-
eral second order dispersive model from equation (3) results in the Drude-dispersive
model. Hence, the resulting PEP is of order three. The transversal boundary condi-
tions are also periodic with the transversal phase shifts ϕx,y = 0, leading to a field
distribution at the input and output planes, which is similar to a plane wave. For the
computation of the dispersion diagram, the periodic boundary phase shift in prop-
agation direction is sampled 13 times. For each step the complex non-hermitian
polynomial eigenvalue problem has to be solved. For the geometric modeling we
use the commercial tool CST MICROWAVE STUDIO [10]. The discretization with a
maximum mesh step of 19.75 nm leads to a 33x32x15 mesh with 41664 complex
degrees of freedom (dof). The PEP is solved by the algorithm from section 3.3, and
the dimension of the subspace V is kept between 6 and 13. Convergence is reached
when the norm of the residual is less than 1e-9.

4.1 Results

The computed dispersion diagram (featuring only the real part of the eigenvalue ω)
is shown in Fig. 2. It clearly shows an backward mode with ∂ω

∂k < 0, as it is expected
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for this kind of metamaterial unit cell [11]. As a measure of the losses inside the
structure we also compute the Q-factor, which relates the energy stored in the struc-
ture to the energy dissipated per oscillation. It is calculated by Q = 0.5ℜ{ω}/ℑ{ω}
and has a value around 100 (Fig. 2). The algorithm from section 3.3 has been imple-
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Fig. 2: Left: Dispersion relation ℜ{ωi}, Right: Q-factors Qi = 0.5ℜ{ωi}/ℑ{ωi}

mented in MATLAB and the average computation time is around 7 min per each of
the 13 samples. Note that the major part of these 7 min is spent on the LU decom-
position, which needs a large amount of memory in our implementation. In spite
of this disadvantage the LU decomposition of the estimated target value yields a
good preconditioner, and the bicgstab solver for equation (9) converges within a
few iterations.

For the first sample, the initial subspace of the JD run was chosen randomly. For
the consecutive JD runs the eigenvector of the last JD run was used and it turned
out that this choice has a dramatic influence on the convergence behavior. In Fig. 3
the number of JD iterations of all 13 runs are shown. The computation of the first
sample (ϕz = 0) took 17 JD iterations, the phase shift ϕz = 15◦ only 5 JD iterations,
and each of the following samples took less than 5 JD iterations to converge.
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Fig. 3: The number of JD iterations of the 13 consecutive eigenvalue simulations suggests that the
convergence behavior is improved by reusing the previous eigenvector as initial subspace for the
following JD run
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5 Outlook

An extension of the JD algorithm in [4] has recently been published in [6]. The
harmonic and refined Rayleigh-Ritz approach was generalized for PEPs. Especially
for start spaces of poor quality an improved convergence is expected.

The application to lossy waveguide ports, which contain a dispersive filling, is
straight forward in the FIT formulation. Especially for so-called photonic crystal
fibers including noble metals [12] a mode calculation is possible with our approach.

6 Conclusion

In this paper we have presented a formulation to handle electromagnetic eigenvalue
problems from structures containing frequency dispersive materials. Our formula-
tion is based on the finite integration technique (FIT) and leads to a polynomial
eigenvalue problem (PEP). This PEP is solved using a Jacobi-Davidson method
from [4, 5]. A numerical example of a fishnet-type metamaterial unit cell has been
presented, where a Drude model for the permittivity of silver has to be used. The
simulation converges within reasonable CPU-time and produces dispersion curves
with negative group velocity as expected.
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Region-Oriented BEM Formulation for
Numerical Computations of Electric Fields

Andreas Blaszczyk

Abstract The paper presents a concept of the region-oriented 3D formulation for
the boundary element method (BEM) applied to computation of electric fields. Dif-
ferences between the region-oriented and the traditional BEM are explained. Nu-
merical tests performed for simple arrangements with high permittivity components
show that the new approach leads to better accuracy than the traditional BEM.

1 Introduction

The calculation of electric fields based on the boundary element method became
during last 10 years very popular in design of high voltage devices [1, 2]. The fun-
damental advantage of the BEM approach is related to the fact that only surface
mesh on boundaries of solid parts is needed. The modeling of so called “air box” as
well as the generation of solid mesh is not required, which significantly simplifies
the discretization of complex models.

The traditional BEM approach [3,4] provides a good accuracy for dielectric prob-
lems with typical values of the relative permittivity (in the range between 1 and 10).
For values of material properties far beyond the typical range significant numerical
errors or inconsistent results may occur. An improvement of this behavior is of great
interest from the view point of industrial applications.

In this paper the region-oriented formulation concept has been introduced to im-
prove the numerical performance of the BEM approach.

This type of formulation has been used for the charge simulation method in the
1990s [5]. It has been successfully applied to calculate models with large permit-
tivity values. This paper presents results of a numerical experiment in which the
integration technique of the traditional BEM has been applied to the region-oriented
formulation.
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2 Concept and Formulation

The basic concept is shown in Fig. 1. The model space has been divided into 3 re-
gions. Each of the regions includes a homogeneous, linear and isotropic material.
The field and potential in each region is calculated based on a single layer of charge
located on the region boundaries. Consequently, on boundaries between two regions
two single layers of charges are defined while along triple junctions (like point T in
Fig. 1a) three different single charge layers meet together. Typically, the model def-
inition includes one unbounded, open region as well as a few of non-computational
regions that are excluded from field computations, see region 0 in Fig. 1. On the
boundary of non-computational regions (electrodes) a potential value is prescribed.

Fig. 1 Basic concept of the
region-oriented formulation:
a geometrical configuration
b, c and d charge assigned to
regions 1, 2 and 3 respectively.
Comment: For each of regions
1, 2 and 3 a separate, unique
layer of charge is defined.
An observer inside a region
(denoted by crosses) can only
see the charge layer of his
region. All other layers are
not used for field computation
in his region

a)
T

Region 1
(open)

Region 2
Region 3

Region 0
(excluded)

x

x
x

b) c) d)

The formulation is based on boundary elements created on region boundaries. We
formulate equations for collocation points located in corner nodes of the elements
(in this implementation we consider triangles). For each corner node we assign one
unknown value of surface charge density per region connected to this node. Addi-
tionally, an unknown value of reference potential is assigned to each region (except
of the open region). The following types of equations are formulated:

• prescribed potential Φi at point i on electrode boundary in region K:

∑
j∈K

pi jσ jK +ΦrK = Φi (1)

• potential continuity on interfaces between regions – this equation is formulated
for each region L that meets with region K at point i:

∑
j∈K

pi jσ jK +ΦrK = ∑
j∈L

pi jσ jL +ΦrL (2)

• electric displacement (flux) continuity at the boundary point i – one equation for
all regions that meet at point i (it applies the Gauss law to point i)

∑
K∈i

SiKεrK ∑
j∈K

niK ·∇pijσ jK = 0 (3)
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• charge compensation (Gauss law) for closed regions – one equation per region
(This equation is not formulated for open regions. In case of open regions the
reference potential used in (1) and (2) is equal to zero.):

∑
i∈K

SiK ∑
j∈K

niK ·∇pijσ jK = 0 (4)

where εrK is relative electric permittivity of region K while SiK and niK are surface
area and normal vector at collocation point i assigned to region K. When calculating
normals and surface area for junction points only the elements facing the region of
interest are included. The normal vectors are pointing always to the region for which
they are calculated (independent of the element orientation) At discontinuity points
like sharp edges or triple junctions the normal vector contributions from all elements
at corner node i are averaged.

The characteristic feature of the region-oriented BEM is the fact that the equa-
tions are formulated at corner nodes of elements (in contrast to the region-oriented
charge simulation where the equations are formulated for the center of surface ele-
ments). This has a significant impact on handling the triple junctions. For example,
for the point T shown in Fig. 1 two potential continuity equations (2) and one flux
continuity equation (3) are formulated. The latter one includes flux components of
all 3 regions that meet at point T. The formulation presented here does not include
any special handling of triple junctions on electrodes. For example, for each of triple
points on electrode in Fig. 1) only 2 equations of type (1) are formulated.

The unknowns in (1)–(4) are surface charge densities σ jK at the charge locations
j and reference potentials ΦrK (both assigned to region K). A solution of the equa-
tion system is got iteratively using GMRES without preconditioning. The potential
pi j and field coefficients ∇pij are calculated between the collocation point i and the
charge location j. The next section explains how these coefficients are calculated.

3 Traditional Versus Region-Oriented Approach

The traditional BEM introduces an equivalent single layer of surface charge dis-
tributed in vacuum. The formulation is based on the Fredholm integral equations
with Green’s function kernels [3]. The potential in collocation points is calculated
according to the Fredholm integral equation of the first order:

Φi =
1

4πε0
∑

j

∫
S j

1
ri j

σ j dS =∑
j

pi jσ j (5)

where ε0 is the permittivity of vacuum, ri j is the distance between collocation point
i and integration point j, σ j and S j are surface charge density and surface area at the
charge location j. The potential coefficients pi j in equation (1) and (2) are computed
exactly in the same way as above. The only difference is related to the summation,
which is performed in equations (1) and (2) for the region of interest while in the
equation (5) all charges are considered.
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For a collocation point i on a dielectric interface between the regions with relative
permittivity εrK and εrL the continuity of electric displacement is formulated as

εrKEniK = εrLEniL (6)

In the traditional BEM the normal components of the electric field EniK and EniL on
both sides of the single charge layer are calculated as a superposition of 2 compo-
nents. The first, E−

ni , includes the contribution of all charges except of a very small
flat area around point i while the second (the singular jump term) corresponds to the
contribution of the local surface charge density σi on both sides of this area:

EniK = E−
ni +

σi

2ε0
(7)

EniL = E−
ni −

σi

2ε0
(8)

After applying (7) and (8) to (6) the Fredholm integral equation of the second order
can be obtained:

σi = 2ε0
εrK − εrL

εrK + εrL
E−

ni = 2ε0λKLE−
ni (9)

E−
ni =

1
4πε0

∑
j

∫
S j

niK · rij

r3
i j

σ j dS =∑
j

niK ·∇p−
ij σ j (10)

According to (9) and (10) the matrix line for collocation point i is determined by
the array of coefficients niK ·∇p−

ij where from the diagonal element ( j = i) a correc-
tion factor representing material properties 1/(2ε0λKL) is subtracted. The approach
based on separation of the singular component enables a better numerical treatment
of the strongly singular kernel in (10). In this way the numerical integration, in
particular handling of singularities, is already incorporated in the traditional BEM
formulation (in contrast to the region-oriented).

In the region-oriented approach we reuse the integration technique of the tradi-
tional BEM. We apply the same field coefficients ∇p−

ij defined in (10). In order to
obtain the ∇pij used in (3) and (4) we have to add a correction factor to the coeffi-
cients representing the singular integration point according to (7):

niK ·∇pii = niK ·∇p−
ii +

1
2ε0

(11)

An observer inside of a region calculates field in his region based on a single charge
layer that he can see from his location shown in Fig. 1bcd. In contrast to the tradi-
tional BEM he disregards everything on the other side of the charge layer. Conse-
quently, the equation (8) is not used in the region oriented approach.

For the numerical tests presented in this paper the existing industrial code [1] has
been applied for the calculation of pi j and ∇p−

ij . The same numbers representing pi j

and ∇p−
ij have been obtained for the traditional and the region-oriented BEM formu-

lations. The only difference is related to the way how these numbers are arranged in
the final equation system. A detailed explanation of the integration technique is be-
yond the scope of this paper. However, it is important to mention that the integration
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a)

D R =100 mm

R =100 mm

D = R/4

rough
Ne= 16

medium
Ne = 64

fine
Ne= 256

Φ = 100 kV

Φ = 100 kV

εr = 10000

εr = 10000

b) c) d)

Fig. 2: Numerical test arrangement consisting of 2 spheres for: a rough b medium and c fine
discretization level. d Sphere-cone arrangement (only medium discretization level is shown)

is based on the parabolic shape function for triangles as well as the linear approxi-
mation of surface charge density between the corner nodes. For the singular and near
singular integration the Gaussian integration is used while the far field computation
is based on multi-pole expansion.

4 Numerical Tests

For the numerical test an arrangement shown in Fig. 2 has been selected. It consists
of one spherical electrode at fixed potential of 100 kV with the radius of R = 100
mm and another dielectric body with a very high permittivity value of εr =10000
placed in a certain distance from the electrode. We consider 3 following geometrical
variants of the dielectric body:

• a sphere with the same radius as the electrode located at a distance D = R/4.
• a similar sphere as above but located at a distance D = R, see Fig. 2abc.
• a symmetrical conical body with the same radius of base and height as the radius

of the electrode located at a distance D = R/4, see Fig. 2d.

For each of the geometrical variants 3 different discretization cases have been
defined: rough, medium and fine with 16, 64 and 256 elements respectively, see
Fig. 2abc. The goal of computations is to obtain the potential of the dielectric body,
which due to high permittivity value behaves like floating electrode. The results of
computations based on traditional and region-oriented BEM formulations as well
as the 2D results (used as reference) are shown in Tables 1 and 2. The 2D results
have been obtained by a region-oriented charge simulation solver [5] for axially
symmetric case (as well as the results shown in section 5).
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The comparison shows that the traditional BEM formulation has significant prob-
lems to achieve correct results. Even with the increased discretization density the
solution diverges from the the accurate one 1. Furthermore, it is difficult to obtain a
constant value of potential on the high permittivity body, in particular for the conical
shape that includes discontinuity points (sharp corners and edges).

For the region-oriented formulation the result converges much better to the cor-
rect value. Only in case of rough discretization and small distance between bodies
the potential error approaches the value of 15 %. The accuracy of all other region-
oriented BEM results is satisfactory.

Discussion of reference potential: According to the kernel of (5) the potential at a
large distance from charge approaches zero: Implicitly we get always zero potential
at infinity. On the other hand the high permittivity provides a kind of short-circuit to
infinity 2. Consequently, the reference potential calculated for a detached dielectric
body with a high permittivity value is equal to the real potential of such a body.
It results from capacitive coupling to electrodes. In general case (for an arbitrary
value of permittivity) the value of the reference potential depends on discretization.
The reference potential provides an additional mechanism to compensate numerical
discretization errors based on explicitly formulated Gauss law (4).

Table 1: Potential calculated for the high permittivity sphere from Fig. 2abc (in kV)

D = R = 100mm D = R/4 = 25mm
Rough Medium Fine Rough Medium Fine

Traditional BEM 15.8a 34.3a 58.7a 195.4a 43.0a 85.6a

Region-Oriented BEM 33.7 33.7 33.8 55.2 48.4 48.3

2D result 33.9 48.7
a Average value – with a difference between top and bottom of the sphere up to ±10%

Table 2: Potential calculated for the high permittivity conical body from Fig. 2d (in kV)

Rough Medium Fine

Traditional BEM 28.0 / 58.6a 37.5 / 68.8a 41.1 / 66.3a

Region-Oriented BEM 52.3 46.3 45.5

2D result 45.7
a Potential of the bottom corner / potential of the top corner

1 The reason of the inconsistent behavior has not been investigated in scope of this work. A possible
reason may be related to numerical integration errors for irregular mesh generated by the CAD
system Pro/Engineer. The convergence behavior becomes consistent when the permittivity of the
dielectric sphere is in the range between 1 to 10.
2 If we skipped the formulation of equation (4) and did not use the reference potential in (2) for
the dielectric sphere in Fig. 2 the potential calculated for this sphere would be close to zero.
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5 Example

Figure 3a shows an example of a surge arrester. It consists of 3 sections of zinc oxide
cylinders supported by porcelain tubes. The goal of designers is calculation of the
potential distribution along the arrester axis for the purely capacitive case. In order
to keep the properties of zinc oxide in linear range a uniform potential gradient is
required for normal operation.

In order to focus on essential numerical aspects the arrangement has been sim-
plified to one long zinc oxide cylinder without floating armatures and porcelain
supports, see Fig. 3b. The main numerical problem is related to the fact that the tan-
gential field strength along the cylindrical surface of the zinc oxide is much larger
than the normal component. On the other hand the equations for traditional BEM
formulation are based on the normal component only.

Fig. 3: a Example of surge arrester used by IEC 60099-4 as benchmark model. b Simplified model
used for comparison between the traditional and the region-oriented BEM

The results in Fig. 4 show that the region-oriented BEM based on the potential
continuity equations (2) as well as the explicit formulation of Gauss law for the
high permittivity region (4) converges much better to the correct solution than the
traditional BEM formulation.

6 Conclusion

The region-oriented BEM formulation is suitable for the calculation of electric fields
in arrangements with extreme differences in material properties. The numerical tests
and example of a simple power device show a better accuracy of this approach than
the traditional BEM formulation.

The results presented in this paper should be regarded as a feasibility study. Effort
is still needed to make the region-oriented BEM efficient for industrial applications.
The following steps are proposed:
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Fig. 4: Potential distribution along the axis of the surge arrester for different discretization density.
The hollow markers denote traditional BEM solutions while the filled markers correspond to the
region-oriented ones. The correct (2D) solution is represented by the thick line without markers

• Adjust integration technique. The currently used integration algorithms are tuned
for traditional BEM. The region-oriented formulation is more flexible with regard
to singularities: e.g. the charge need not to be located on the surface of elements.

• Improve stability of triple junctions.
• Preconditioning of GMRES solver: in contrast to the traditional BEM the region-

oriented formulation shows poor GMRES convergence behavior.
• Parallelization based on distributed memory (MPI).
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Surface Integrated Field Equations Method to
Solve 3D Electromagnetic Problems

Zhifeng Sheng, Patrick Dewilde, and Rob Remis

Abstract This paper describes how the Surface Integrated Field Equations method
(SIFE) is implemented to solve 3D Electromagnetic (EM) problems on substrates in
which high contrast materials occur. It gives an account of the promising results that
are obtained with it when compared to traditional approaches. Advantages of the
method are the highly improved flexibility and accuracy for a given discretization
level, at the cost of higher computational complexity.

1 Introduction

In our previous work, we have used the Surface Integrated Equations(SIFE) method
for solving 2D electromagnetic problems[1], in which domains are present that ex-
hibit highly contrasting material properties (electric and/or magnetic) with each
other. In this paper, we develop the method further to solve 3D electromagnetic
problems. Limitation of space prohibits us from giving a detailed description of the
SIFE method and its spatial and temporal discretization schemes. For more details,
we refer the readers to our previous papers [1, 2], and a full paper documenting the
underlying theory will be published soon.

In strongly heterogeneous media such as modern chips, the constitutive parame-
ters can jump by large amounts upon crossing the material interfaces. On a global
scale, the EM field components are not differentiable and Maxwell’s equations in
differential form cannot be used, one has to resort to the original integral form
of the EM field relations as the basis for the computational method.
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Let D be the domain of interest with boundary ∂D , S be any (sufficiently smooth
and small) surface (S ∈ D) with boundary ∂S. For any S, Maxwell’s equations in
integrated form are:

−
∮
∂S

H ·dl+ ∂t

∫
S

D ·dA = −
∫

S
Jtot ·dA, (1)

∮
∂S

E ·dl+ ∂t

∫
S

B ·dA = 0, (2)

where E is the electric field strength, H the magnetic field strength, D the electric
flux density, and B the magnetic flux density. Moreover, Jtot = J + Jext, where
J is the induced (field dependent) electric-current density, and Jext is the exter-
nal electric-current densities. In addition to Maxwell’s equations, the compatibility
equations have to be satisfied as well. In integrated form, these equations are

∮
S′
(∂tD+ Jtot) ·dA = 0 and ∂t

∮
S′

B ·dA = 0,

where this time S′ is a smooth and closed surface. We also have to describe the type
of matter that we are dealing with. The constitutive relations provide us with such a
description and for the materials that we consider these relations are:

J = σE, D = εE, and B = μH, (3)

where σ is the conductivity, ε the permittivity, and μ the permeability. These three
material parameters are all position dependent and are piecewise continuous in gen-
eral. We are mostly concerned with media for which the medium parameters are
piecewise constant, however, and at source-free interfaces where the parameters ex-
hibit a jump, the tangential components of the electric and magnetic field strength
have to be continuous, while the normal components of the electric and magnetic
field strength are discontinuous because of the contrast.

2 Discretization Scheme

To satisfy the partial continuity conditions on material interfaces, we construct a
so called “consistent linear discretization scheme” [3–5] that meets the continuity
requirements across interfaces exactly, using a tetrahedron mesh combined with a
consistent linear interpolation of electric and magnetic field strengths.

In this section we briefly present our discretization scheme. In all the experi-
ments that we shall present, we use a nonuniform tetrahedron mesh generated by
netgen [6] or msh [7]. For good results it is necessary that the tetrahedrons are “well
formed”, i.e. that they are not too skewed or too flat in one or more directions so
that a vector decomposition along the edges yields a numerically accurate repre-
sentation. We assume that the material parameters in each tetrahedron are constant
(actually taking average values). This is consistent with the fact that a piecewise
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(a) Tetrahedron (b) Hybrid element

Fig. 1: a Tetrahedron Tn and some geometrical quantities defined on it. (i, j,k, l) is an even per-
mutation of (0,1,2,3). b The coefficients of the linear, hybrid expansion functions on Tn

constant approximation for material parameters is sufficient to ensure continuity of
the solutions. A more refined approximation such as continuous linear splines is
certainly possible.

2.1 Geometrical Quantities

Before introducing the linear expansion functions, we define a few geometrical
quantities as shown in Fig. 1a.

• The coordinate vector is x = x1i1 + x2i2 + x3i3.
• A node with global node index n is denoted as Nn, and xn is its coordinate vector.
• A tetrahedron with global tetrahedron index n is denoted as Tn.
• The four nodes delimiting Tn are locally denoted as N (n, i), i = {0,1,2,3}.
• For every node with local label N (n, i), a unique global node index m can be

found, and: N (n, i) = Nm, x(n, i) denotes its coordinate vector.
• xb

n = 1
4 ∑i={0,1,2,3} x(n, i) is the coordinate vector of the barycentre of Tn.

• Let ε be an arbitrary small, positive real number, x(n, i)=x(n, i)+ε
[
xb

n −x(n, i)
]
.

• E (n, i, j); j �= i denotes the edge pointing from N (n, i) to N (n, j).
• Let e(n, i, j) be the vectorial length of E (n, i, j): e(n, i, j) = x(n, j)−x(n, i).
• Let F (n,k) be the facet of Tn, which is not delimited by N (n,k).
• Let A(n,k) be the vectorial area of F (n,k),e.g A(n,0)= 1

2 [e(n,1,2)× e(n,2,3)] .
• Let V (n) be the volume of Tn:V (n) = 1

3 [x(n,1)−x(n,0)] ·A(n,0).
• Let φi(Tn,x) be the local linear scalar interpolation function,

φi(Tn,x) = 1/4− (x−xb
n) ·

A(n, i)
3V (n)

,∀x ∈ Tn,
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2.2 Spatial Discretization Scheme

Let Q(x) be a vectorial function of space representing electric field strength or mag-
netic field strength at a time instance t; that is: Q(x) represents E(x, t) or H(x, t). Its
tangential component is continuous across the interface while its normal component
is discontinuous. We can represent the value of Q(x) on the nodes delimiting a tetra-
hedron Tn with the well defined components. The value of Q(x) inside Tn can be
interpolated with linear, hybrid expansion functions which are built upon continuity
nodes for nodes inside domains with uniform material parameters and discontinuity
nodes on the interfaces.

2.2.1 Continuity Node

Let N (n, i) be a node where all components of Q(x) on this node are continuous,
NC

Q be the set of nodes in the mesh where Q(x) is totally continuous. The value of
Q(x) on node N (n, i) can be represented as:

QN (n,i) = ∑
j=1,2,3

QN (n,i)
j i j,∀N (n, i) ∈ N

C
Q (4)

where QN (n,i) denotes the value of Q(x) on the node N (n, i).

2.2.2 Discontinuity Node

Let N (n, i) be a node on the interface of material discontinuity, ND
Q be the set of

nodes in the mesh where Q(x) is discontinuous in its normal component. The normal
component of Q(x) is not well defined for the nodes on the interfaces. However, if
we offset the node into the tetrahedron Tn, then the value of Q(x) on that node can
be represented as:

QN (n,i) = ∑
j={0,1,2,3}, j �=i

−QE (n,i, j) |e(n, i, j)|
3V(n)

A(n, j),∀N (n, i) ∈ N
D
Q. (5)

QE (n,i, j) is the projection of Q(x) on the node N (n, i) to the direction e(n, i, j).

2.2.3 Linear, Hybrid Expansion

Let [Q](Tn,x) be the local linear approximation of Q(x) in the tetrahedron Tn:

[Q](Tn,x) = ∑
i∈{0,1,2,3}

φi(Tn,x)QN (n,i),∀x ∈ Tn (6)
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in which QN (n,i) is defined by Eq.4 or Eq.5, QN (n,i)
j and QE (n,i, j) are the linear,

hybrid expansion coefficients as shown in Fig. 1b. A list of properties of the linear,
hybrid interpolation functions follows:

• The linear, hybrid expansion functions are consistently linear functions [1], they
permit a completely linear expansion of the partially continuous vectorial func-
tion Q(x) inside each tetrahedron. the approximation errors of the linear, hybrid
expansion functions are of order O(h2).

• Assuming the discontinuity nodes are assigned in the right place, the linear, hy-
brid expansions functions ensure continuity in tangential components across ma-
terial interfaces, and ensure total continuity in homogeneous sub-domains .

• With the linear, hybrid expansion functions, it is easy to apply the boundary
conditions that prescribe tangential components.

We refer to the elements with linear, hybrid expansion functions as “hybrid ele-
ments”, and refer to the elements with only continuity nodes as “nodal elements”.

2.2.4 Field Strength Discretization

With all these properties above, the linear, hybrid expansion functions are a very
good choice for interpolating electric field strength and magnetic field strength. Note
that an interface can be with electric and/or magnetic contrast. The set of disconti-
nuity nodes for magnetic field strength ND

H does not have to be the same as that for
the electric field strength ND

E . With the graphic user interface we implemented, it is
very easy to assign the discontinuity nodes.

2.3 Temporal Discretization Scheme

To implement a time stepping scheme for the spatially discretized Maxwell’s equa-
tions, let t0 be the initial time and Δ t > 0 be the time step size, we introduce the time
instance tn = nΔ t + t0 and integrate Maxwell’s equations from t = tn−1 to t = tn. All
integrals that can not be computed analytically are approximated using the trape-
zoidal rule, which is known to be unconditionally stable in time. The approximation
of the trapezoidal rule is of order O(Δ t2), which is verified in Section 4.

3 The Surface Integrated Field Equations Method

In this section, we briefly present the Surface Integrated Field Equations method
for solving electromagnetic problems in the time domain. We apply the Ampere’s
equation (Eq.1) and constitutive relations (Eq. 3) on every facet of every element
product a time interval, i.e. F (n, i)× [tm−1,tm] ;Δ t = tm − tm−1, and use the linear
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spatial and temporal approximation presented in Sec. 2.2 and Sec. 2.3 to discretize
the electromagnetic field strengths, we obtain discretized Ampère equations:

Δ t
4

[
e(n, l,k) ·HN (n, j)(tm)+ e(n, j, l) ·HN (n,k)(tm)+ e(n,k, j) ·HN (n,l)(tm)

]

− ∑
h= j,k,l

[
Δ t
6

σ(x(n,h))+
1
3
ε(x(n,h))

]
A(n, i) ·EN (n,h)(tm) = −

Δ t
4

[
e(n, l,k) ·HN (n, j)(tm−1)+ e(n, j, l) ·HN (n,k)(tm−1)+ e(n,k, j) ·HN (n,l)(tm−1)

]

+ ∑
h= j,k,l

[
Δ t
6

σ(x(n,h))− 1
3
ε(x(n,h))

]
A(n, i) ·EN (n,h)(tm−1)

+ ∑
h= j,k,l

1
3

∫ tm

t=tm−1

[
A(n, i) ·Jext(x(n,h), t)

]
dt

for any Tn, and {i, j,k, l} an even permutation of {0,1,2,3}. With similar procedure
applied on the surface-time integrated Faraday’s equation, we obtain the discretized
Faraday’s equation. Note that discontinuous field quantities are not well defined
for the nodes on the interfaces. Therefore, we take values pertaining to a vanishing
offset towards the barycentre of Tn, where all field quantities are well defined.

With appropriate boundary conditions, we shall have an over-determined sys-
tem of linear discrete surface-time integrated field equations. Such a system may
have no solution at all. The best thing we can do is to find an approximate solution
which minimizes a quadratic functional. With the weighted least-squares method[8],
we can easily construct normal equations, which we then solve iteratively. After
solving the system for the coefficients, we get the approximated electromagnetic
field strength in the domain of computation (we use a CG iterative solver with pre-
conditioner).

4 Numerical Experiment

We verify the accuracy of the temporal discretization scheme and spatial discretiza-
tion scheme using a 3D Electromagnetic time domain problem with high contrast
in permeability for which an analytic solution is known. The theoretical solution
is a ‘steady state’ solution at a single frequency, containing a source term that
continuously injects current. We use the steady solution at t = 0 as initial state,
and start integrating from there in the time domain. The computational domain
D = {0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1,0 ≤ x3 ≤ 1} is bounded by PEC boundaries. Let

h(x, t) =
sin(ωt)
μ(x)ω

and g(x,t) = σ(x)cos(ωt)− ε(x)ω sin(ωt)

The source density distributions be:
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Table 1: Configuration of the four sub-domains

Di Definition of sub-domains εr σ μr

D0 0 ≤ x1 < 0.5,0 ≤ x2 < 0.5,0 ≤ x3 ≤ 1 1 0 1000
D1 0.5 ≤ x1 < 1,0 ≤ x2 < 0.5,0 ≤ x3 ≤ 1 1 0 1
D2 0 ≤ x1 < 0.5,0.5 ≤ x2 < 1,0 ≤ x3 ≤ 1 1 0 1
D3 0.5 ≤ x1 < 1,0.5 ≤ x2 < 1,0 ≤ x3 ≤ 1 1 0 10

Jext(x,t) = [−2π2h(x,t)−g(x,t)]sin(πx1)sin(πx2)i3, .

The exact field strengths are:

E(x, t) = sin(πx1)sin(πx2)cos(ωt)i3,
H(x, t) = −πh(x,t)sin(πx1)cos(πx2)i1 +πh(x, t)cos(πx1)sin(πx2)i2.

The angular frequency ω is chosen to be 2π109rad/s corresponding to a source
frequency of 1GHZ. The configuration will be computed for 10 wave periods
(0 ≤ t ≤ 10−8s). The whole domain is divided into four homogeneous sub-domains
defined in Tab. 1. We compute this configuration with the SIFE method based on
hybrid elements and the weighted (w = 2×10−3) Galerkin method based on nodal
elements (see [9]). The computational domain is discretized with an interface con-
forming tetrahedron mesh (5853 nodes and 30208 tetrahedrons). Series of exper-
iments have been done with different time step sizes. Note that, the contrast only
exists for the magnetic field strength. Therefore, discontinuity nodes are used only
when interpolating magnetic field strength on the material interfaces; since the elec-
tric field strength is totally continuous. Discontinuity nodes are not used for inter-
polating the electric field strength. As shown in Fig.2, the SIFE method based on
hybrid elements has second order accuracy in time even in the presence of high
contrast. The accuracy plots show that the SIFE method produces the correct result
while the standard packages do not.

5 Conclusions

The SIFE method holds considerable promise to solve three dimensional time do-
main electromagnetic problems, in which high contrasts between different types of
materials exist and irregular structures are present. Its accuracy and stability has now
been demonstrated and verified with numerical experiments. With these basic prop-
erties being established, we are now working on improvements of the computational
properties of the method in terms of numerical complexity and versatility.
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Reduced Basis Method for Electromagnetic
Field Computations

Jan Pomplun and Frank Schmidt

Abstract We explain the reduced basis (RB) method applied to electromagnetic
field computations with the finite element method. Rigorous numerical simulations
for practical applications often become very time consuming. The RB method al-
lows to split up the solution process of an e.g. geometrically parameterized problem
into an expensive offline and a fast online part. For an actual simulation only the fast
online part is evoked.

We apply the RB method to the rigorous simulation of light scattering from a
parameterized phase shift mask.

1 Introduction

The finite element method (FEM) has been successfully applied to a large num-
ber of nano-optical problem classes [1, 2]. The computation time of a single FEM
simulation however can become very long especially for 3D problems. Design, op-
timization and inverse problems usually involve a large number of such simulations
having an underlying layout with a few varying geometrical parameters. The RB
method can be applied to this setup, see [3] and subsequent citations. In the offline
step the underlying model is solved rigorously several times for different values of
the geometrical parameters. These solutions build the reduced basis. The full param-
eterized problem is projected onto the RB which results in a significant reduction of
the problem size. In the online step the reduced problem is solved.
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2 Reduced Basis Method

The governing equations describing the propagation of light are Maxwell’s equa-
tions. In many practical applications like computational lithography the time-
harmonic form is the appropriate description:

∇× μp
−1∇×E−ω2εp E = 0, (1)

where μp and εp are the permeability and permittivity. For the discretization with
finite elements we need the corresponding weak formulation. Therefore we multiply
(1) with a test function v integrate over the domain of interest Ω and do a partial
integration of the curl curl integral. The weak form of Maxwell’s equations then
reads:
Find E ∈ X = H(curl,Ω) such that ∀v ∈ X :

a(v,E; p) =
∫

Ω

(∇× v)μp
−1 (∇×E)−ω2

∫

Ω

vεp E = Bound.Terms = f (v) (2)

Since we consider geometrically parameterized problems the material distribution
described by the permittivity εp and permeability μp is parameter dependent which
is denoted by the subscript p. Figure 1 shows the phase mask example and the inten-
sity of the electric field computed with finite elements. The geometrical parameters
p = {d1,d2,d3} are the width of the absorber openings and their distance.

(a) (b)

Fig. 1: a Parameterized phase shift mask for reduced basis computations. b Intensity of electric
field obtained from FEM computation

Discretizing (2) with the finite element method leads to a linear system of equa-
tions [4] with parameter dependent coefficients and solution:

Apup = f. (3)

In practice the number of unknowns (dimension of up) can be up to several millions.
Now suppose that up stays on a low dimensional sub manifold of the complete
solution space if we vary the parameters p. Then it is reasonable to solve (3) only
on this subspace, i.e. the full system can be projected onto a reduced basis U of the
low dimensional sub manifold. Usually the reduced basis is built by a number of so
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called snapshot solutions, which are rigorous solutions of (3) for different parameter
values pi. The reduced basis is computed in the offline step. The projected system
reads:

[
UHApU

]
λp = UHf (4)

which is a system of dimension N (∝ 100) much smaller than the original problem.
After solving (4) in the online step the RB solution can be obtained by: ûp =Uλp.

3 Affine Parameter Dependence

The expensive steps performing a reduced basis computation following (4) for an
actual parameter set p̂ is the assembling of Ap̂ and the projection step onto the RB
U . These steps can also be performed offline if the matrix Ap has an affine parameter
dependence defined by:

Ap =
M

∑
i=1

Θi(p)A(i) =⇒ [
UHApU

]
=

M

∑
i=1

Θi(p)
[
UHA(i)U

]
. (5)

The matrices
[
UHA(i)U

]
can be assembled and projected offline. The reduced basis

computation then no longer depends on the number of unknowns of the finite ele-
ment computation but only on the dimension of the reduced basis and the number
of terms M in the affine expansion of the Matrix Ap. For finite elements on a rect-
angular grid such an affine parameter dependence can be found easily [5]. But even
for more general settings an affine dependence can be constructed.

For fixed reference values pre f of the parameters we have a reference configura-
tion and a reference formulation (2) of our problem. We denote by Q(x,y,z; p) the
mapping of our reference onto a new configuration and by J(x,y,z; p) its Jacobian.
We have Q(x,y,z; pre f ) = Id. On the transformed domain (2) reads:

a(v,E; p) =
∫

Ω

(∇× v)
[

1
|J|J

T μpre f
−1J

]
(∇×E)

−ω2
∫

Ω

v
[
|J| J−1εpre f J−T

]
E = B.T. (6)

Now we assume that we can divide the domain Ω into disjunct open sets and that
the Jacobian J(x,y,z; p) is piecewise constant on these sets, i.e.:

Ω =
L⋃

i=1

Ωi , Ωi

⋂
Ω j = /0, for i �= j ,

J(x,y,z; p) =
L

∑
i=1

Ji(p)χΩi , (7)
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where χΩi is the characteristic function of Ωi. Now we define the tensors:

S(p) =
1
|J|J

T μ−1J =
L

∑
i=1

1
|Ji(p)|Ji(p)T μ−1Ji(p)χΩi

=
L

∑
i=1

Si(p)χΩi ,

M(p) = |J| J−1εpre f J−T =
L

∑
i=1

|Ji(p)| Ji(p)−1εpre f Ji(p)−T χΩi

=
L

∑
i=1

Mi(p)χΩi (8)

and insert them into (6). E.g. for the stiffness integral we find:

L

∑
i=1

Si
11(p)

∫

Ωi

(∇× v)

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠(∇×E)+ Si

12(p)
∫

Ωi

(∇× v)

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠(∇×E)+

· · ·+ Si
33(p)

∫

Ωi

(∇× v)

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠(∇×E) , (9)

the mass term is decomposed accordingly. This leads to an affine decomposition of
the bilinear form (6):

a(v,E; p) =
M

∑
i=1

Θi(p)ai(v,E). (10)

Discretizing this expression we get an affine matrix expansion according to (5). In
total the matrix expansion has 12L terms for 3D Maxwell’s equations (2 times 6
entries from the symmetric tensors Si(p), Mi(p)). For a 2D domain with arbitrary
polarization of the incident light this reduces to 8L for TM or TE polarization in 2D
to 4L.

From the point of implementation the piecewise constant Jacobian is constructed
by transforming a coarse triangulation of the reference domain. The mapping of a
triangle onto another triangle is linear and its Jacobian constant. The mapping of a
coarse triangulation onto another coarse triangulation has therefore a piecewise con-
stant Jacobian. Figure 2 shows two grids of the phase mask which can be mapped
onto each other by such transformation. They are topologically equivalent. In this
example we have L = 37 which gives us M = 297 terms in the matrix expansion
(37 · 8 + 1 for the domain which is independent of all parameters). Note that L is
smaller than the number of triangles shown in Fig. 2 because several triangles can
have the same parameter dependent Jacobian. For three dimensional computational
domains a transformation with piecewise constant Jacobian can be constructed map-
ping tetrahedrons onto tetrahedrons.
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Fig. 2: Topologically equivalent grids which can be mapped by piecewise linear transformation
onto each other

4 Construction of the Reduced Basis

An important question is how to construct the reduced basis U . A simple and effec-
tive strategy is to compute so called snapshots which build the reduced basis. These
are solutions upi of the original problem for different values of the parameters pi:

U = [up1 , up2 , . . . , upN ] . (11)

A basis made of such snapshots is called a Lagrange reduced basis. It is also possible
to include derivatives of the snapshots with respect to geometrical parameters which
gives so called Taylor reduced bases [3]. The question arises for which values of the
parameters the snapshots should be computed to get a good approximation quality
of the reduced basis. A simple strategy is a random choice of the parameters [5].
However this might become inefficient if the randomly chosen snapshots do not add
new information to the basis. Especially for 3D computations which can take several
hours we want to compute a minimum number of snapshots in the offline phase.

For the usage of optimized sampling strategies we define a so called training
sample [3] by choosing a large number ntrain ∝ 1000 of candidate snapshot param-
eters from our parameter space: Ptrain = {p1, . . . , pntrain}. Now we want to construct
a reduced basis of dimension N (typically much smaller than ntrain) which gives our
reduced basis a good approximation quality over the the whole parameter space. An
optimal basis could be obtained computing all snapshots in the training sample and
then performing a singular value decomposition (SVD) of the basis, i.e. the com-
putation of a proper orthogonal decomposition (POD) basis. However this would
involve ntrain solution runs of the forward problem which is often not feasible.

A suboptimal method is the choice of the snapshot parameters with a greedy
algorithm [3]. The first snapshot parameter of the training sample Ptrain is chosen
randomly. Then at step N the greedy algorithm appends to the current sample the
parameter in Ptrain which is least well approximated by the current reduced basis.
Since every parameter in the large set Ptrain is tested this has to be done fast using an
a posteriori error estimator Δ(p). The parameter set p j which is estimated to have
the largest error is then included into the current reduced basis. This assures that a
maximum of new information is added to the current basis. An algorithm presented
in [3] involves the computation of the Riesz representation of the residual of the
reduced basis solution and the determination of the coercivity/inf-sup constant of
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the underlying elliptic problem. Here we directly use the energy norm of the Riesz
representation of the residual as an error criterion which we shortly explain. If we
have a reduced basis solution û for the solution u of (2), the residual is defined as a
linear functional on X :

r(v; p) = f (v)−a(v, û; p) , r(·; p) ∈ X ′ (12)

According to the Riesz representation theorem r ∈ X ′ can be represented as an ele-
ment of ê ∈ X :

(v, ê(p)))X = r(v; p) = f (v)−a(v, û(p); p) (13)

which gives us a variational formulation for the computation of ê. The energy norm
gives us the error criterion:

Δ(p) =
√

(ê(p), ê(p))X = ||r(·; p)||X ′ . (14)

Eq. (13) shows what has to be computed at each parameter set of the training sam-
ple. For û a reduced basis computation with the current reduced basis has to be
performed which is independent on the original size of the finite element problem.
Also using the affine decomposition of the linear form a(·, ·; p) according to (10) the
discretized variational problem (13) can be solved before determining Δ(p) [3].

Fig. 3(b) shows numerically that for the greedy reduced basis construction Δ(p)
offers a good approximation to the energy norm of the error of the reduced basis
solution, i.e. e = u− û.

(a) (b)
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Fig. 3: a Comparison of error in energy norm and estimated error Δ(p) (14) for chosen snapshots
in greedy construction of reduced basis. b Convergence of reduced basis solution for increasing
dimension of reduced basis using no, first and second derivatives. The error was averaged over an
ensemble of 125 solutions
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5 Results

The reduced basis algorithms were implemented into the finite element package
JCMsuite developed by the Zuse Institute Berlin and JCMwave for numerical solu-
tion of Maxwell’s equations [1, 2, 6]. Here we focus on a 2D scattering problem for
a phase shift mask with a incident plane wave. The reference values for the geomet-
rical parameters were d1 = d2 = d3 = 380nm. We varied the three parameters by
±40nm which corresponds to a 20% variation. The training sample Ptrain over this
parameter domain consisted of a 9x9x9 Cartesian grid. A reduced basis of dimension
N = 60 was computed with the greedy algorithm.

Once the basis is computed the actual online computations can be performed.
To check the convergence we computed reduced basis solutions over an ensemble
(different then the training sample) and compared them with the exact finite element
solution. As error measures we used the energy norm of the error of the complete
field and the error of the lowest diffraction modes which are important output quan-
tities in computational lithography. Figures 3 and 4(a) and (b) show the convergence
of the reduced basis solution for an ensemble and a single parameter. We see that
important quantities of interest like diffraction modes can be computed with a rel-
ative error smaller than 0.1% already with a reduced basis of dimension 60. The
computational time for this example is of the order ∝ 10ms. If in application the
offline computational time also becomes important and has to be minimized one
can include derivatives of the snapshots in the reduced basis. E.g. if (3) is solved by
LU-decomposition of Ap the solution for the derivative with respect to a parameter
pi is obtained by:

∂piup = −A−1
p (∂piAp)up. (15)

I.e. we only have to perform the forward backward substitution with a new right
hand side which is the derivative of the system matrix applied to the primary so-
lution. Higher derivatives are obtained equivalently. Figure 3(b) shows the conver-
gence of the reduced basis solution for an ensemble of 125 parameter values. The
reduced basis dimension is 60. In the first case the reduced basis consists of 60 snap-
shots. In the second case 15 snapshots with their three first parameter derivatives are
used and in the last case 6 snapshots with their three first and six second derivatives
are used. This greatly reduces offline computational time but also leads to slightly
slower convergence of the reduced basis solution.

6 Conclusions and Outlook

We applied the reduced basis method to an electromagnetic scattering problem
namely transmission of light through a geometrically parameterized phase shift
mask. We have described how to obtain an affine decomposition of the Maxwell
system and studied convergence.
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Fig. 4: a Convergence of reduced basis solution in energy norm. b Convergence of lowest diffrac-
tion modes of reduced basis solution

After a costly offline assembling phase of the reduced basis the projected
Maxwell system can be solved very fast (∝ 10ms) in the online step for different
geometrical parameters. The reduced basis solution convergences towards the exact
solution for a small dimension (∝ 100) of the reduced system over a large parameter
domain.

This offers the possibility to apply the reduced basis method to design, optimiza-
tion and inverse problems in computational electromagnetics.

Future work will focus on the application of the reduced basis method to 3D
examples relevant in practice which also include parameter dependent exterior do-
mains. Furthermore rigorous error estimators for the output of interest have to be
developed to ensure the reliability of the reduced basis solutions.
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Using Nudg++ to Solve Poisson’s Equation on
Unstructured Grids

Christian Rüdiger Bahls, Gisela Pöplau, and Ursula van Rienen

Abstract In this paper we explore the viability of using nodal discontinuous Galerkin
methods as implemented in the software library Nudg++ [1] to compute the space
charge field of an electron or positron bunch. We will use a benchmark problem to
evaluate this method by comparing results from this scheme with solutions obtained
analytically.

1 Introduction

Being known from the early 70’s [2] Discontinuous Galerkin finite element meth-
ods (DG-FEM) have only recently become popular as a method for the numerical
solution of partial differential equations arising in computational fluid dynamics or
computational electromagnetism.

The objective of this paper is to apply DG-FEM to the calculation of space charge
fields of particle bunches. The efficient approximation of these fields is one of the
primary focuses of beam dynamics simulations as needed for the design of future
accelerator facilities like the XFEL [3] or the ILC [4].

One possible approach to these computations is Particle-in-Cell (PIC), especially
the Particle-Mesh-method, which calculates the potential in the rest-frame of the
bunch by means of the solution of Poisson’s equation.

Though being aware that DG-FEM are not the most efficient scheme to solve
elliptic Partial Differential Equations – Finite Difference schemes, FIT and FEM
come to mind – they have advantages in terms of parallelizability and locality of
approximation. Also there are promising advances in PIC methods [5].

We will use the class of nodal DG methods provided by the library Nudg++ [1].
Nudg++ is a C++ implementation of the Matlab-scripts found in [6] and is being
developed in collaboration by Nigel Nunn, Tim Warburton, Nico Gödel and others.
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2 A Bit of Theory

2.1 Poisson’s Equation

To estimate the electric potential of a particle bunch we aim to approximate the
solution u(x) of Poisson’s equation in the domain Ω ⊆ R3:

−Δ u(x) = f (x), ∀x ∈ Ω . (1)

For the moment we will use Dirichlet boundary conditions on ∂ΩD = ∂Ω :

u(x) = gD(x), ∀x ∈ ∂ΩD. (2)

In the context of space charge calculations u(x) denotes the potential and f (x) the
source term f (x) = ρ(x)/ε0 with the charge density ρ(x) and the vacuum permittiv-
ity ε0.

2.2 Approximation by Local Polynomials

We approximate Ω by K non-overlapping simplices. On each of these elements Dk

the local solution uk(x) will be expressed as a polynomial ũk(x) ∈ PN up to order N.
On a 3-dimensional simplex this polynomial will have Np degrees of freedom:

Np =
(N + 1) · (N + 2) · (N + 3)

6
. (3)

In the so called nodal representation on the simplex Dk (using interpolating La-
grange polynomials lk

i (x) as a basis) these degrees of freedom will be identified
with the values of the local solution uk(x) at the collocation points xk

i [7]:

ũk(x) =
Np

∑
i=1

uk(xk
i )l

k
i (x), ∀x ∈ Dk. (4)

The global solution u(x) on the discretized domain Ω̃ (the union of all elements
Dk) will then be approximated by the piecewise N-th order polynomial function
ũ(x) ∈ V :

u(x) ≈ ũ(x) =
K⊕

k=1

ũk(x). (5)

The function space V is the direct sum of the space of polynomials of order N:

ũ(x) ∈ V =
K⊕

k=1

PN(Dk). (6)



Using Nudg++ to Solve Poisson’s Equation on Unstructured Grids 95

2.3 Weak Formulation of DG-FEM

To get a suitable weak formulation of (1) we rewrite it as a system of first-order
equations:

−∇ ·q(x) = f(x), q(x) = ∇u(x), ∀x ∈ Ω . (7)

We do now seek approximate solutions ũ(x) ∈ V and q̃(x) ∈ U = V 3, such that:

−
∫
Ω̃
∇ · q̃φ =

∫
Ω̃

f φ ,
∫
Ω̃

q̃ ·π =
∫
Ω̃
∇ũ ·π, ∀(φ ,π) ∈ V ×U : (8)

Using integration by parts we recover the following weak DG-formulation:

∫
Ω̃

q̃ ·∇φ −
K

∑
k=1

∮
∂Dk

n ·q∗φ =
∫
Ω̃

f φ , (9a)

∫
Ω̃

q̃ ·π =
K

∑
k=1

∮
∂Dk

n ·π u∗ −
∫
Ω̃

ũ∇·π . (9b)

The functions u∗(x) and q∗(x) are called numerical fluxes [8]. They are needed
because for a consistent scheme we have to determine a value at the discontinuities
at element interfaces.

2.4 Invertibility and Numerical Fluxes

The numerical fluxes u∗ and q∗ have to be chosen. At first look a reasonable choice
could be the average {{.}}, which is known as the central flux:

u∗ = {{u}} =
u− + u+

2
, q∗ = {{q}} =

q− + q+

2
. (10)

Though when we have a look at the spectrum of the resulting operator we find that
it has a non-trivial kernel (as depicted in Fig. 1).

Fig. 1: Kernel of a 1D DG-Laplacian (order N = 4, K = 8 Elements)
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Table 1: Choice of numerical fluxes for elliptic BVP’s [6]

u∗(x) q∗(x)

Stabilized Central flux {{ũ}} {{q̃}}− τ [[ ũ ]]
Local Discontinuous (LDG) flux {{ũ}}+β · [[ ũ ]] {{q̃}}−β [[ q̃ ]]− τ [[ ũ ]]
Interior Penalty (IPDG) flux {{ũ}} {{∇ũ}}− τ [[ ũ ]]

To get an invertible operator we have to penalize the jumps [[ . ]] at the interfaces:

[[ u ]] = n− u− + n+ u+, [[ q ]] = n− · q− + n+ · q+. (11)

This leads to the major choices for the fluxes u∗(x) and q∗(x) as listed in Table 1.
In the rest of this paper we will be using the Interior Penalty flux.

2.5 Consistency and Coercivity

Using the Interior Penalty (IPDG) flux and the strong DG-formulation:

−
∫
Ω̃
∇ · q̃φ +

K

∑
k=1

∮
∂Dk

n · (q∗ − q̃)φ =
∫
Ω̃

f φ , ∀φ ∈ V, (12a)

∫
Ω̃

q̃ ·π =
K

∑
k=1

∮
∂Dk

n ·π (u∗ − ũ) +
∫
Ω̃
∇ũπ , ∀π ∈ U, (12b)

we can recover a primal scheme (without resorting to an auxiliary variable q). Using
Galerkin’s method we can get a system of linear equations similar to the usual FEM
formulation:

S ũ = M f̃. (13)

The stiffness matrix S is symmetric (Fig. 8). If the penalty parameter τ is chosen
large enough then the resulting operator will be coercive [6]. It can also be shown
that this scheme is consistent with the classical solution [6].

The inhomogeneous Dirichlet boundary condition (2) is enforced by setting the
numerical flux u∗(x) to gD(x) on ∂Ω̃D. It will than become part of the right hand
side. Together with the coercivity of S we get a unique solution and the scheme
converges to the solution of Poisson’s equation.

2.6 Numerical Solution

The resulting system of equations can efficiently be solved by Cholesky decompo-
sition (when small enough) or a preconditioned Conjugate Gradient algorithm (the
matrix S is symmetric positive definite). As preconditioner Nudg++ provides an
incomplete Cholesky decomposition with threshold. For comparison we also imple-
mented an incomplete Cholesky decomposition with zero fill-in.
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3 Using Nudg++

3.1 The Benchmark Problem

A common benchmark problem for the calculation of the potential and the electric
field of a charged particle bunch is a uniformly charged sphere or ellipsoid. We will
use it because the solution is known analytically.

For simplification we chose a uniformly charged sphere of radius R = 1 m with
charge Q = 4πC inside a spherical domain of radius 2 m. We will be using the ana-
lytical solution at the boundary as the inhomogeneous Dirichlet boundary condition.
We then compare the result with the exact solution given by [9]:

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

Q
4πε0R

·
(

3
2
− ‖r(x)‖2

2R2

)
for ‖r(x)‖ ≤ R,

Q
4πε0‖r(x)‖ otherwise.

(14)

In a first experiment we used the automatic mesh generator NETGEN [10] (bun-
dled with Nudg++) to triangulate the sphere. The result (as can be seen in Fig. 2)
was not very satisfying so we defined a series of three concentric spheres to force
the mesh generator to generate a finer grid around the discontinuity in the charge-
distribution (Fig. 3).

Fig. 2: Generated grid (K = 668) sliced in the x–y-plane, potential and E-field; order N = 3

Fig. 3: Optimized grid (K = 536) sliced in the x–y-plane, potential and E-field; order N = 3
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3.2 Adaptive Grid Refinement

The class ROHOP3D implements in three dimensions the grid-refinement described
for two dimensions in [11]. For this it uses the oscillation of the locally approxi-
mated function on the element and its edges. The successive refinement reduces the
error in the potential (Fig. 4 left-to-right). Though the maximum error in the E-field
stagnates (Fig. 5). The Tables 2 and 3 in the appendix contain more details.

Fig. 4: Successive Grid refinement resulting in error reduction for the electric potential; order
N = 3

Fig. 5: Error reduction for the E-field is not optimal, order N = 3

Increasing the polynomial order does not increase the convergence rate of the re-
finement (Fig. 6). We assume this to be Gibbs phenomenon (Fig. 7). This was less
pronounced for polynomial interpolation of even order (Fig. 6).

Fig. 6: Smaller initial error for polynomial order N = 4, but maximum error in E-field stagnates
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Fig. 7: Gibbs phenomenon: using higher order Poly-
nomials does not improve the quality of the approxi-
mation, the maximum error does not decrease

Fig. 8: Sparsity pattern of a 2D IPDG-
operator (N = 6, K = 42, Np = 28)

To check the consistency of Nudg++’s IPDG implementation we used the diver-
gence of the analytical solution for the E-field (using the DG-differential operators)
as a right-hand side and compared the numerical solution resulting from this system
with the analytical solution. The error in the E-field is of the same magnitude as it
is for the original system.

We also tried filtering the coefficients of the higher order polynomials, it did not
improve the convergence rate. Another possibility is a smoother charge distribution:

ρ(x) =
1− tanh(σ(‖r(x)‖2 −R2))

2
. (15)

Using an appropriate parameter σ this gives optimal convergence in the energy
norm. Though we loose the ability to compare with an analytical solution.

4 Conclusion

Even for very coarse grids the IPDG-method gives a very good approximation of
the potential of the charged sphere. For a better approximation of the discontinu-
ous charge distribution the grid should have a curved interface at the discontinuity.
Perhaps a Local Discontinuous Galerkin flux should be tried.

Another possible improvement for the IPDG method in Nudg++ would be the
implementation of an open boundary condition, possibly Robin’s boundary condi-
tion. This way the computational domain could be shrunken considerably.

Acknowledgements This work is supported by the DFG under contract number RI 814/18-1.
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Appendix

Table 2: Tabulated data (N = 3, Np = 20, starting with an automatically generated grid)

l K K ·Np ‖.‖Ω̃ osc2 ‖.‖∞ ‖∇.‖∞ Time (s)

1 668 13360 7.83e-02 5.795 0.044 0.427 2.27
2 804 16080 4.24e-02 2.326 0.038 0.289 2.91
3 1017 20340 2.59e-02 1.549 0.039 0.308 3.96
4 1323 26460 1.78e-02 1.014 0.033 0.316 5.54
5 1548 30960 1.20e-02 0.621 0.036 0.333 6.63
6 1943 38860 0.85e-02 0.394 0.031 0.293 8.71
7 2288 45760 0.62e-02 0.239 0.014 0.238 10.89

Table 3: Tabulated data (N = 3, Np = 20, starting with the hand-optimized grid)

l K K ·Np ‖.‖Ω̃ osc2 ‖.‖∞ ‖∇.‖∞ Time (s)

0 536 10720 3.23e-03 0.084 0.0056 0.073 1.71
1 765 15300 2.38e-03 0.072 0.0047 0.082 2.94
2 1071 21420 1.76e-03 0.057 0.0055 0.091 4.42
3 1542 30840 1.28e-03 0.043 0.0049 0.094 7.03
4 1940 38800 0.97e-03 0.032 0.0049 0.093 9.46
5 2614 52280 0.72e-03 0.019 0.0039 0.085 13.43
6 3177 63540 0.58e-03 0.013 0.0030 0.079 17.13
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Magnetic Force Calculations Applied to
Magnetic Force Microscopy

Thomas Preisner and Wolfgang Mathis

Abstract In IC failure analysis the detection of currents is often used to indicate the
presence of a defective device. One method used for this analysis is the Magnetic
Force Microscopy (MFM). Employing this technique measurement errors often oc-
cur as for instance due to heterogeneous magnetic tip coatings, fabrication/abrasion
errors of the MFM tips and vibrations during a MFM scanning process. Hence, in
this work a theoretical model of the MFM was developed to verify and improve the
results of laboratory MFM measurements. Therefore a scanning process is simu-
lated and different force calculation methods are implemented and compared with
each other in order to obtain the total magnetic force acting on the cantilever as well
as the local magnetic force densities.

1 Introduction

Due to technical advances in the development of integrated circuits a reduction of
the dimensions of electronic devices and structures is feasible. Consequently, the
IC failure analysis, which makes use of occurring currents as a possible evidence
for defective devices, becomes more complex. The magnetic field caused by these
currents can be detected by using sensitive techniques such as the Magnetic Force
Microscopy (MFM). By using this method a magnetic coated tip is mounted under-
neath a micrometer scaled cantilever, which scans over a magnetic field inducing
sample surface. The magnetic interactions between the tip and the sample surface
causes an attracting or repulsing force acting on the cantilever. This deflection is
detected by a laser beam, which is focused onto the cantilever topside and reflected
towards a segmented photo diode. With this technique it is possible to draw conclu-
sions about the sample magnetizations or currents, depending on the degree of the
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deflection. Further information about the scanning process and a detailed physical
explanation are reported in [1, 2]. With respect to the IC failure analysis, in [3] it
is demonstrated that the MFM technique is applicable for the detection of currents
down to 1μA. In order to improve these measurements and to overcome several
possible error sources, as for example different kinds of tip geometries and physical
properties of the magnetic coating or hysteresis influences of soft magnetic sample
materials, a MFM model was developed by using the finite element method (FEM).
In this paper the first results of these studies concerning the approach of model-
ing a MFM scanning process are presented. Therefore, different force calculation
methods like the Virtual Work Principle and the Maxwell Stress Tensor have been
implemented and compared with each other. In fact, both methods are often used to
obtain the total force of an object under investigation, but in the case of a permanent
magnet the force distributions strongly differ from each other [4, 5]. For this reason
the Virtual Work Principle was furthermore implemented in our model in such a
manner as it is shown in [4, 5], to obtain the appropriate physical local forces.

2 Numerical Formulation

In order to develop an applicable theoretical model of the MFM it is necessary to
describe the causes for the magnetic fields. Therefore two different sources must be
considered, the current density J and the material magnetization M. For this kind of
problem the fundamental expression is the well known curl-curl equation

∇× 1
μ

(∇×A) = ∇× μ0

μ
M+ J, (1)

whereas A is the magnetic vector potential, μ is the material permeability and μ0 is
the permeability of free space. For the purpose to ensure the uniqueness of the mag-
netic vector potential and to make the solution of the coupled system numerically
stable [6], the Coulomb gauge is added in such a manner to (1).

−∇
1
μ
∇ ·A = 0 (2)

Applying the method of weighted residuals and using Gauss law and a vector
identity, the weak formulation can be obtained

∫

Ω

[(
1
μ
∇×A

)T

(∇×ω)+
1
μ

(∇ ·A)(∇ ·ω)

]
dΩ −

∫

Γ

ω ×
(

1
μ
∇×A

)
dΓ

−
∫

Γ

(
1
μ

∇ ·A
)

ω dΓ =
∫

Ω

[
μ0

μ
MT (∇×ω)+ωT J

]
dΩ −

∫

Γ

ω × μ0

μ
MdΓ , (3)
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where ω is the vector weighting function. By using the Galerkin method and solving
the coupled system of equations, the occurring magnetic induction can be found by
B = ∇×A.

In order to describe the MFM scanning process with a theoretical model not
only a high-precision field calculation is necessary, but also the forces acting on the
cantilever must be obtained. Several works are dealing with the relation between
occurring errors of the field calculation and the error propagation obtaining the oc-
curring forces [7, 8]. Thus, force calculations should be handled with care. Up until
now they are still a topic of interest in research. Many different methods have been
developed, but a calculation technique with a sufficiently high accuracy valid for
every possible experimental configuration is still missing. Just like different results
of authors show [9, 10], the solution is rather dependent on the problem under in-
vestigation. Thereby, the most commonly used methods are the equivalent source
methods, the Maxwell Stress Tensor (MST) and the Virtual Work Principle (VWP).
In the presented paper, the latter ones are used to calculate the forces acting on the
cantilever and are compared with each other.

2.1 Maxwell Stress Tensor

The classical approach for the MST is to replace the ferromagnetic material in the
region of interest by a distribution of currents, such that the external field is not
altered [11]. Derivable from Lorentz volume force density, the MST can be obtained
as

T =
1
μ0

⎡
⎣B2

x − 1
2 |B|2 BxBy BxBz

ByBx B2
y − 1

2 |B|2 ByBz

BzBx BzBy B2
z − 1

2 |B|2

⎤
⎦ . (4)

Using (4), the occurring magnetic force can be computed by an integration of the
divergence of the Maxwell Stress Tensor T over a domain Ω

F =
∫

Ω

∇ ·TdΩ =
∫

Γ

TdΓ , (5)

which can be transformed to an integral over the enclosing surface by applying
Gauss law. However, previous works have shown that the force computed with the
MST heavily depends on the integration surface enclosing the body under investiga-
tion as it is shown for example in [12]. In order to calculate the total magnetic force
a summation of the computed local stresses at all points of the bounding surface is
needed. However, especially for a subsequent structural analysis it should be noted
that as the MST is based on an equivalent mathematical model, the computed local
stresses have no physical meaning [4, 5].
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2.2 Virtual Work Principle

The VWP, introduced by J.L. Coulomb [13], is based on the energy law and the
principle of a virtual displacement of the considered body. Then, the total magnetic
force can be calculated by the derivation of the magnetic energy or co-energy, while
keeping the flux or current constant [10]. In a permanent magnet the energy formu-
lation is

W =
∫

Ω

∫ B

Br

HT dBdΩ =
1

2μ0

∫

Ω

(B−Br)T (B−Br) dΩ , (6)

where Br is the remanent induction. A derivation of the energy W in one direction
i leads to the corresponding force Fi in this direction. In a finite element approach
the domain Ω is divided into a set of subdomains. A local displacement of a node k
leads to a variation of the energy in all elements surrounding this node. This yields to
a nodal force which can be obtained by solving (7) at the elements e corresponding
to a node k in a direction i

Fik = −∑
ek

[ ∫

Ωek

(B−Br)
T

μ0
J −1 δJ

δ si
B |J | dΩek

+
∫

Ωek

(B−Br)T (B−Br)
2μ0

δ |J |
δ si

dΩek

]
, (7)

where si is the virtual displacement in the direction i and J is the Jacobian matrix,
which gives a relationship between the local and global coordinate systems. Then,
the total force is given by a summation of the local forces at all nodes (in the fol-
lowing named as VW1). But due to the simplified energy expression (6) the whole
energy of the permanent magnet, particularly the stored energy during the nonlinear
magnetization process, is incorrectly described. Hence, similar to the local stresses
obtained by the MST, the calculated local forces of VW1 are also physically not
appropriate [4, 5].

2.3 Local Interaction Forces

It was already suggested before that for structural analyses or even magnetostriction
phenomena a proper solution of the local forces is needed. In a theoretical consid-
eration the total force solution can be decomposed into two different parts [4]. The
first ones are called the intrinsic forces. These are the obtained forces of a single
permanent magnet in air without other ambient influences. Thereby, the considered
energy of this permanent magnet is the stored energy of the magnetization process.
The second ones are the interaction forces, which arise from an external magnetic
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field. Unlike the intrinsic energy, the occurring interaction energy is well expressed
with (6), while a linear rigid model can be assumed for the permanent magnet. With
respect to the structural analysis and the design of electrical and mechanical cou-
pled devices, the interaction forces are the relevant ones anyway. For the interaction
force evaluation the intrinsic forces of the permanent magnet have to be withdrawn
from the forces obtained by (6) and (7), respectively. Therefore (8) has to be solved

Finteraction,ik = Fik −Fintrinsic,ik = −∑
ek

[ ∫
Ωek

(B−Br)
T

μ0
J −1 δJ

δ si
B |J | dΩek

−
∫

Ωek

(Bair −Br)
T

μ0
J −1 δJ

δ si
Bair |J | dΩek

−
∫

Ωek

BT (2Br −B)
2μ0

δ |J |
δ si

dΩek +
∫

Ωek

BT
air (2Br −Bair)

2μ0

δ |J |
δ si

dΩek

]
, (8)

where Bair is the magnetic induction of the single magnet in air. This equation allows
the local force computation with respect to a permanent magnet (in the following
named as VW2).

3 MFM Model

Describing the scanning process of a MFM theoretically, one has to solve a classical
multiscale problem. In an ideal case, the tip has to be atomically sharp. In real terms,
manufactured tips have a radius of the tip apex down to a few nanometers while the
height is thousand times larger. Hence, for modeling the tip apex a very fine mesh
is used while a rough one is taken for the outer regions. As an example for the three
dimensional model used in this work, a current carrying u-shaped microconductor
is considered which is scanned by a cantilever holding the magnetic coated tip un-
derneath (Fig. 1). In this approach a conically shaped tip with an angle of α = 28◦

I

scan path 1

scan path 2

2.5 µm

5 µm

4 µm

8 µmα
Z

X

Y

Fig. 1: Configuration of the 3D MFM model
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was assumed. This tip consists of a cobalt-chromium compound, which is orthog-
onally magnetized with respect to the sample surface. Analogous to [14], the value
of the magnetization in y-direction was set to My = −749 kA

m . The thickness of this
magnetic coating is equal to 50nm. The microconductor features a width of 5μm, a
thickness of 2.5μm and carries a current of 1mA. Furthermore, the two dashed lines
shown in Fig. 1 denote two different scan paths of the MFM cantilever.

4 Numerical Results

In the case of scan path 1 the x-component of the lateral force is illustrated in Fig. 2a.
The lateral force Fx is shown in a span of approximately 60μm, calculated with each
of the three described force calculation methods. The MST and VW1 approaches are
almost identical. The third method (VW2) differs slightly from these results, espe-
cially around the force peaks. A possible reason for this behavior is, that the VW2
approach is numerically negatively effected by the further terms being considered
in (8), because of the discretization error of B. Due to the mechanical properties of
the cantilever, the lateral force Fx does not play an important role during laboratory
measurements. The force of interest is the attracting or repulsing force Fy and the
force Fz, which is responsible for the torsion of the cantilever. In Fig. 2b the normal
force with respect to the sample surface along scan path 1 is shown and in Fig. 2c
the lateral force Fz along scan path 2. Both forces are located in a pN-range. Due
to the direction of the current density, there is a negatively directed magnetic induc-
tion between the parallel segments of the microconductor and a decreasing value
of By outside of these segments. These fields lead to a dominating negative force
between the wires (Fig. 2b). Along scan path 2 a dominating lateral force is clearly
noticeable between the conductor segments. Considering the total force calculation,
all different kinds of implemented methods are in good agreement with each other.
Furthermore, the curve progression concurs with the reported measurement results
in [3].

As it was mentioned in the introduction, measurement errors could occur due to
fabrication errors, heterogeneous tip coatings and small vibrations during a scanning
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Fig. 2: Total force: a Fx along scan path 1, b Fy along scan path 1, c Fz along scan path 2
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process. But especially for the consideration of soft magnetic sample materials, the
tip magnetization can negatively influence the magnetic properties of these sample
materials and even change the direction of the magnetic domains. Thus, it is neces-
sary to simulate the overall scanning process of the configuration under investiga-
tion in order to diminish these occurring errors. For this purpose a simulated MFM
image of the whole scanning process is shown in Fig. 3a. The position of the mi-
croconductor is denoted by the gray lines. In order to improve the 3D MFM model,
the mechanical deflection must be taken into account. For this reason the local force
densities on the magnetic coating, which are calculated with (8), have to be consid-
ered for a detailed subsequent structural analysis (Fig. 3b). Thereby, the cantilever
is located between the segments of the u-shaped microconductor. At this position
the magnetic interactions between the tip and the sample lead to an attracting force
acting on the cantilever. This behavior is depicted by the local force density vectors
and an absolute value illustration (Fig. 3b). As expected, the dominating local force
density can be found near the tip apex.
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Fig. 3: a Simulated MFM image, b Local force densities on the magnetic coated tip

5 Conclusions

In the presented paper a three dimensional model based on a finite element approach
of a magnetic force microscope was presented. In this model a scanning process of
a MFM over a u-shaped microconductor was investigated theoretically. Therefore,
based on a precise magnetic field calculation, it was shown at different scan paths
of the assumed configuration that every implemented force calculation method is
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applicable to obtain the total force. The resulting total forces are in good agreement
to each other. Furthermore, to compare the theoretical considerations with labora-
tory MFM measurements, an overall scanprocess was numerically investigated. As
the Maxwell Stress Tensor and Virtual Work Principle are able to calculate the total
force on a body under investigation, these methods are unsuitable to obtain the local
force densities on a permanent magnet with physical meaning in the manner de-
scribed in this paper. Therefore, a third method based on the Virtual Work Principle
was implemented as it was reported in [4]. The resulting local interaction force den-
sities on the magnetic coating seems to be appropriate with respect to the physical
behavior.

Acknowledgements The authors would like to thank M. Greiff for his contribution in the imple-
mentation of the force calculation methods and for many valuable discussions.
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Relativistic High Order Particle Treatment for
Electromagnetic Particle-In-Cell Simulations

Martin Quandt, Claus-Dieter Munz, and Rudolf Schneider

Abstract A recently developed high order field solver for the complete Maxwell
equations provides all information needed by a new relativistic particle push method
based on a truncated Taylor series expansion up to the desired order of convergence.
The property and capability of this approach is demonstrated for different numerical
experiments.

1 Introduction

The electrical behavior of technical systems like microwave devices is substantially
influenced by a flow of charged particles forming a non-neutral plasma inside. A
detailed understanding of the phenomena caused by this plasma requires the so-
lution of the Maxwell-Vlasov equations for realistic configurations. An attractive
numerical technique to do this is the Particle-in-Cell (PIC) method. In essence, the
basic idea of the PIC approach can be summarized as follows: At each time step
the electromagnetic fields are obtained by the numerical solution of the full set of
the nonstationary Maxwell equations, where different kind of methods like finite
volume [1] or discontinuous Galerkin schemes of free selectable order of conver-
gence are applied. Note that the Maxwell part of this solver comprises additionally
a purely hyperbolic divergence correction mechanism [2] to ensure the constrain of
charge conservation during the simulation. Subsequently, these fields are interpo-
lated to the actual locations of the charged plasma particles which are then pushed
by the Lorentz force and redistributed in phase space according to the usual laws of
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dynamics. Afterwards, the particles have to be located with respect to the computa-
tional grid in order to assign the contribution of each charge to the changed charge
and current density to the nodes of the mesh. These densities are the sources for
the Maxwell equations of the subsequent iteration cycle which finally guarantee a
self-consistent computation of the interaction of the electromagnetic fields with the
charged plasma particles. The recent development of high order Maxwell solvers
for electromagnetic wave propagation offers the possibility to construct high order
PIC algorithms for the numerical solution of the Maxwell-Vlasov equations. In this
context the central challenge is the high order computation of the phase space co-
ordinates of the plasma particles. In the present paper we introduce a new particle
treatment based on a Taylor series expansion (TSE) of the phase space variables
in time up to the selected order of accuracy of the field solver. The important re-
quirement to establish this high order phase space coordinates calculation is that all
necessary spatial as well as temporal derivatives of the electromagnetic fields for
each particle are known from the Maxwell solver. This knowledge of the high order
derivatives is extensively used to obtain the TSE of the phase space coordinates of
the charge as it is explained below.

In the next section the formulation of the governing equations is given and the
numerical approximation is discussed. In section 3 we demonstrate the capability
and reliability of the high order particle (HIOP) procedure by means of different
numerical simulation experiment. Finally, a conclusion and a short outlook is given
in section 4.

2 Governing Equations and Numerical Approximation

2.1 Equation of Motion for Charged Particles

The general solution of the Vlasov equation is given by its characteristics

d
dt

(mU) = FL(v,x,t) ,
dx
dt

= v (1)

with the Lorentz force
FL = q [E(x,t)+ v×B(x, t)] (2)

acting on charge q with mass m, where E and B denote the external applied or/and
self electric field and magnetic induction, respectively. The velocity of the charged
particle v is related to the space component of the 4-velocity U according to [3]

v = γ̂ U(t) , γ̂(U) =
(

1 +
U ·U

c2

)−1/2

(3)

with the inverse relativistic factor γ̂ , where c is the speed of light. As a conse-
quence of the latter relation, the phase space coordinates (v, x) may be regarded
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as a function of U(t). For the sake of convenience we rewrite the first equation in
(1) with (2) and (3) to obtain Newton’s equation of motion for charged particles,

U̇ =
dU
dt

= E (x,t)+ γ̂ U×B(x, t) , (4)

where q/m is absorbed in the electromagnetic fields, i.e. E = q
m E and B = q

m B.
Clearly, this expression for the acceleration of the charge also depends on the
relativistic velocity (the space component of the 4-velocity), position and time:
U̇ = U̇(U,x, t). Observe further from the latter relation that U · U̇ = U ·E holds. The
total temporal derivative occurring in (1) and (4) is defined in the present context by

d
dt

(.) = D(.) := {Dc + DU}(.) , (5)

where the convective derivative Dc = ∂
∂ t + v ·∇x acts on space and time dependent

quantities while DU = U̇ ·∇U = ∑ j U̇ j
∂

∂Uj
acts only on velocity dependent expres-

sions.

2.2 Numerical Approximation of Particle Phase-Space Coordinates

To obtain a numerical approximation of the phase space coordinates (v, x) with the
same order of accuracy (say K ) as the field solution from the Maxwell solver, we
first perform a truncated Taylor expansion in time up to order K of the particle
velocity according to

v(t) =
K

∑
κ=0

(t − t0)κ

κ!

[
D (κ) (γ̂ U)

]
t0

, (6)

where (3) is used and D (κ) (.) = dκ/dtκ(.) has to be computed at the initial time
t = t0. Then, the integration of the latter expansion over the interval [t0, t] yields
in an obvious way the position of the charged particle. Note that the expansion

coefficient
[
D (0) (γ̂ U)

]
t0

in (6) is nothing else than v0 = v(t0). What remains now

to do is to compute simply the κ th derivative of γ̂ U by applying the operator (5) at
t = t0. This is, in principle, a straightforward task but it implies cumbersome and
lengthy calculations because the operator D(.) itself depends on velocity, space and
time. However, some auxiliary relation can be found, for instance, we can ascertain
from (3) and (4) that

D (γ̂n) = − n
c2 γ̂n+2 U ·E , (7)

and, clearly, higher order derivatives of γ̂n can be recursively determined from
D (m) (.)= D (m−1) (D (.)). Moreover, starting from D (κ) (γ̂)=− 1

c2 D (κ−1) (γ̂3 U ·E )
the derivatives of γ̂ greater than one may be successively obtained from
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D (κ) (γ̂) = − 1
c2

κ−1

∑
ν=0

(κ −1)!
(ν)!(κ −ν −1)!

D (κ−1−ν) (γ̂3)D (ν) (U ·E ) , (8)

where now the higher order derivatives of the relativistic velocity as well as the
electric field are required. Furthermore, for the computation of the field derivatives
the commutator relation

[Dc, DU ] (.) = Dc
(
U̇k
) ∂
∂Uk

(.)−U̇k

[
∂

∂Uk
(γ̂Uj)

]
∂

∂x j
(.) , (9)

alleviate the task, where the usual summation convention is adopted. The consistent
application of the latter relations (7) to (9) is advantageous and the use of a computer
algebra system like Maple is helpful.

3 Numerical Results

In this section we present results from three different simulation experiments which
demonstrate the property and capability of the proposed HIOP approach based on
Taylor series expansion of the phase space coordinates in time. Besides direct com-
parison between numerical and analytical results, we are also interested in the ef-
ficiency and accuracy of the proposed HIOP treatment. For this we compute at the
end of the simulation time te for a given number of discretization points δ the dis-

crete L2-error or Euclidian norm according to eN(q,δ ) = ||qnum −qana||(δ )
2 , where

qnum and qana are the numerical and analytical value of a certain quantity at t = te.
Furthermore, from this norm it is possible to estimate the effective or experimen-

tal order of convergence by EOC = − log
(

eN(q,δ1)
eN(q,δ0)

)
/ log

(
δ1
δ0

)
, where δ0 and δ1

denote the reference and refined time interval discretization, respectively.

3.1 Non-relativistic Test Problem

In the first numerical example we consider the non-relativistic motion of a charged
particle (q = m = 1) in a spatial constant electric field where the magnetic induction
is set equal to zero. Each component of the applied oscillating electric field has the
form Ei(t) = E0 sin(ωi t +φ0), i=1,2,3, where the amplitude E0 and the phase shift
φ0 in all coordinate directions are fixed equal to one and (2π)−1, respectively, and
the frequencies are chosen to be ω1 = 2π , ω2 = 2/3π and ω3 = 3/2π . Clearly, by
construction this problem decouples and the equation of motion (4) can be imme-
diately integrated. The analytic solution of the phase space coordinates are given
by
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vi(t) = −E0

ωi
cos(ωi t +φi)+ c1,i , xi(t) = − E0

ω2
i

sin(ωi t +φi)+ c1,i t + c2,i

where the integration constants c1,i and c2,i are determined from the initial values
vi(t0) and xi(t0) at time t = t0, respectively. The Lissajou trajectory depicted in Fig.
1 is obtained by plotting the particle coordinates y = x2(t) over z = x3(t) at the end
of the simulation period te = 10T with a periodic time T = 2π . It is obvious from
this figure that the numerical result obtained from a formal 6th order TSE scheme
(filled circles) is in very good agreement with the analytical solution (full line). To
get information about the effective – also called design – order of the Boris leap-frog
scheme (red line with symbol x) as well as of the HIOP treatment for K = 2, . . . , 5
(black lines with symbols), we plot in Fig. 2 the discrete Euclidian norm for q = v
versus the number of discretization points δ . The slopes of the curves in this double-
log scale presentation nicely reveal that the design order of the leap-frog and the
TSE schemes agree very well with the formal order, for instance, we obtain 6.02 for
the formal 6th order accurate TSE scheme.
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Fig. 1: Non-relativistic analytic particle motion
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scheme

X

X

X

X

X

X

X

Points [-]

v
e

u
c

l.
 N

o
rm

 [
-]

101 102 10310-14

10-12

10-10

10-8

10-6

10-4

10-2

100

TSE EOC 2

TSE EOC 3

TSE EOC 4

TSE EOC 5

TSE EOC 6

X Boris LF - Scheme

Fig. 2: Euclidian error norm for q = v versus
the number of discretization points for the leap-
frog and five different TSE schemes

3.2 Relativistic Particle Motion in B-Fields

In the following example we consider the relativistic motion of a positron in the xy
plane for a constant magnetic induction (B = qBz

m e3, Bz = 0.1 Vs/m2). The com-
ponents of the initial velocity vector are set to v01 = 0.6c and v02 = v03 = 0 which
corresponds to a Lorentz factor of γ0 = 1.25. Furthermore the final simulation time
is fix to Ts = 10 (2π/ω) where ω = qBz

mγ0
. Due to the fact that the energy is conserved

(γ(t) = γ0) in this case, the integration of Newton’s equation (4) can be straightfor-
ward performed [3]. A first simulation result (filled circles) computed with a formal
3rd order TSE scheme is seen in Fig. 3. There, a snapshot of the particle position
recorded after 10 periods is plotted together with the analytical solution (full line).
This 3rd order result is a somewhat surprising compared to that of the 2nd Boris
leap-frog solution (not shown here) which is very close to the analytical one. The
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reason for the better approximation property of the Boris scheme may be traced
back to the fact that this approach explicitly take into account the special form of
the Lorentz force (2). However, increasing the order of the Taylor expansion up to
K = 5, the numerical solution after 10 periods is in nearly perfect agreement with
the analytical result, as seen in Fig.4. The effective order of convergence study for
the present relativistic case is given in Table 1 and 2. There, a formal 3rd (Table 1)
and 5th (Table 2) order accurate TSE scheme is investigated for q = x (left) and
q = v (right column). A closer inspection of these tables reveals an excellent agree-
ment between the formal and design order of the Taylor expansion methods.
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Fig. 3: Deviation of numeric solution (dots)
with a formal 3rd order TSE scheme for the
particle position compared to the analytic so-
lution (line) after 10 periods with a total points
resolution of 160
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Fig. 4: Numerical determined particle position
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Table 1: Maximum deviation of x and v to an-
alytic solution on example 2 calculated with
TSE method with a formal order 3 for differ-
ent point resolutions

Points eN(v) EOC eN(x) EOC

40 2.104e+1 5.121e-1
80 2.099e+0 3.33 5.318e-2 3.27

160 2.324e-1 3.18 5.998e-3 3.15
320 2.728e-2 3.09 7.107e-4 3.08
640 3.303e-3 3.05 8.644e-5 3.04

Table 2: EOC with Euclidian norm for x and
v obtained from a formal 5th order TSE calcu-
lation for example 2 for different point resolu-
tions

Points eN(v) EOC eN(x) EOC

40 1.256e+0 2.784e-2
80 1.537e-1 3.03 3.295e-3 3.08

160 5.517e-3 4.80 1.178e-4 4.81
320 1.753e-4 4.98 3.744e-6 4.98
640 5.464e-6 5.00 1.167e-7 5.00

3.3 Particle Motion in Space-Time Dependent Electric Field

In the previous two examples the electromagnetic field was constant or depends
only on time. For the simulation experiment discussed in the following, we consider
a one dimensional, non-relativistic test problem where the electric field represents a
wave propagating along the x-axis with given frequency ω and wavenumber k (see
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also [4]). The evolution of phase space coordinates (v, x) of the particle is obtained
from

v̇ =
dv
dt

= E0 sin(ω t − k x) , ẋ =
dx
dt

= v , (10)

where E0 = (qE0)/m is a constant. In the reference wave frame, given by the trans-
formation

ξ = k x−ω t , η =
k
ω

v−1 (11)

there exists an analytic solution which permits a characterization of the long term
stability of the integration process. According to the fact that dξ = dt (k v−ω)
holds, the integration of the velocity equation yields immediately the result

η2(t) = η2
0 + 2Y 2 [cosξ (t)− cosξ0] , (12)

where the abbreviation Y 2 = (kE0)/ω2 is introduced and η0 = η(t0) and ξ0 = ξ (t0)
denote the initial data of the new variables (η , ξ ) at time t = t0. The solutions of
the latter equation can be split into two different areas. The first area consists of
all pairs of initial data of (η0, ξ0) which always satisfy η2(t) ≥ 0. In the reference
wave frame these pairs are located on or outside of the separatrix which is charac-
terized by η0 = ±√2Y 2 [1 + cosξ0] and leads to an open trajectory. In the interior
of this separatrix there exists some range of ξ (t) for which η2(t) < 0 and, conse-
quently, the particle is trapped on a closed trajectory. Ideally, a particle will trace the
trapped orbit indefinitely, however, loss of accuracy and stability of the integration
procedure will lead to departures of the exact trajectory. As proposed in [4], it is
convenient to study the accuracy and stability of the integrator near the condition
η2

0 − 2Y 2 cosξ0 = 0, which is also plotted in the Figures 5 and 6 for orientation.
Note, if a particle enter into this regime indicates that the integration scheme is
not area preserving. The long term stability of an integration scheme corresponds
to the deviation to a closed circle. With the so-called stochasticity parameter [4]
K = (ωΔ t)2 Y 2 a stability limit is defined up to which the integration scheme leads
to a stable closed orbit solution. For the numerical simulation results depicted in
Fig. 5 and 6 K = 0.2, the particle is initialized at η0 = 1.5 and ξ0 = 0 and the sim-
ulation is performed for 10000 iteration cycles. The numerical result obtained with
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the 3rd order TSE scheme is depicted in Fig. 5. We observe that the trajectory de-
viates clearly from a closed orbit and is damped over the time to the center of the
separatrix. Increasing the Taylor expansion up to order K = 5 the scheme catch the
problem, resulting in a stable closed orbit solution as it is seen in Fig. 6. The shown
particle orbit is identical with this one computed with the area preserving classical
leap-frog scheme presented in [4].

4 Conclusion and Outlook

The phase space coordinates of charged particles driven by the Lorentz force are nu-
merically computed up to sixth order by a new high order particle (HIOP) method
based on truncated Taylor series expansion (TSE) in time. Numerical results ob-
tained from three simulation experiments clearly demonstrate the great potential of
the proposed TSE approach. For both non-relativistic and relativistic test cases the
numerical TSE results for K ≥ 5, are in very good agreement with the available
analytic solutions. The capability of the TSE schemes is also proved in the compli-
cated test case of non-linear electromagnetic field. Furthermore, we observe from
experimental order of convergence studies that the design order of all schemes are
very close to the formal order of the proposed approach. The test stage of the stand-
alone HIOP solver draw to a close and the module should be applied as an attractive
alternative to the Boris leap-frog solver in the existing Maxwell-Vlasov module in
near future. Clearly, this accounts for a multitude of numerical standard tests to
enhance the status to a verified method for scientific application of the new TSE
approach and to establish an attractive high order alternative to the second order
classical leap-frog method.
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A Statistical Characterization of Resonant
Electromagnetic Interactions with Thin Wires:
Variance and Kurtosis Analysis

O.O. Sy, M.C. van Beurden, B.L. Michielsen, J.A.H.M. Vaessen, and A.G. Tijhuis

Abstract A statistical characterization of random electromagnetic interactions af-
fected by resonances is presented. It hinges on the analysis of the variance and the
kurtosis to assess the intensity of the resonances. The method is illustrated by the
study of a randomly varying thin wire modeled by a Pocklington integral equation.

1 Introduction

Interactions between electronic devices and electromagnetic sources in their envi-
ronment are of prime importance in EMC models for design or maintenance studies.
A convenient way to model such interactions is based on the multi-port models of
both the electronic components and the interconnect networks making up the com-
plete system. In principle, both types of multi-port models need extensions, in the
form of Thévenin or Norton sources, accounting for the presence of exterior sources
of electromagnetic fields. In practice, the sources added to the interconnect sub-
system are the dominant ones because of the greater geometrical size of the printed
wirings compared to the size of the electronic devices. This is even more so when
exterior cables come into play.

The range of validity of these models depends on their ability to accurately rep-
resent an ensemble of configurations. For non-resonant systems, the study of a few
configurations provides a good picture of the overall interaction. However, for res-
onant phenomena, the number of configurations needed can increase drastically.
Instead, a stochastic approach yields a more suitable quantitative and qualitative
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model. Stochastic methods are frequently used in fields as diverse as rough-surface
scattering problems [1] and Mode-stirred-Chamber theory [2]. In EMC, random
models have been applied to undulating thin-wire setups modeled by transmission-
line theory [3], [4], or by integral equations [5]. In all these cases the aim is to
quantify the uncertainty of the response parameters, or “observables”, by their aver-
age and variance. Although these statistics provide bounds for the observable, they
do not inform on the presence of extreme values beyond these bounds.

Estimating the probability that an observable will have values beyond a certain
distance from the average is important in “risk assessment”. Reliable estimates need
a good approximation of the entire probability distribution, which is generally im-
possible to obtain. Gaussian distributions can be fitted by looking only at the first
two moments and therefore provide easy estimates. The next few moments are qual-
itative indicators of the suitability of such fits [6]. This paper shows that the kurtosis
should be investigated to identify significant deviations from the Gaussian distribu-
tion near “risky” resonance conditions.

The outline of this paper is as follows. Section 2 describes the general setup
which involves the integral-equation model of a thin wire over a ground-plane. A
random parametrization of the problem in Section 3 allows for the definition of the
statistical moments of interest, viz. the average, the variance and the kurtosis. All
these moments are computed by a sparse-grid quadrature rule, which efficiently han-
dles integrals over multi-dimensional domains. The importance of these moments
in characterizing electromagnetic interactions is illustrated in Section 4 through the
example of a roughly undulating transmission line illuminated by a plane wave.

2 Deterministic Configuration

The purpose of this paper is to show that in electromagnetic interaction configu-
rations with stochastic geometries, the value distribution of observables shows a
peculiar behavior near resonance conditions which necessitates the computation of
higher order moments, like the kurtosis, before a reliable interpretation of the results
can be established. For that purpose, we choose a simple one-port system, consisting
of a perfectly conducting wire Sα over a ground plane, in an incident plane wave Ei,
as shown in Figure 1. The vector α gathers all the variables controlling the geometry
of the wire. The electromagnetic coupling itself is observed through the equivalent
Thévenin voltage source Ve(α) induced at the port of Sα and defined as

Ve(α) = − 1
I0

∫
Sα

jα ·Ei, (1)

where jα is the current distribution flowing on the device in absence of Ei, when a
current source I0 is applied at the port of the wire [7]. This current jα follows by
solving a frequency-domain electric-field integral equation (EFIE) representing the
wire in a transmitting state [5]. The resonances appear at frequencies where a wave,
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Fig. 1: Undulating thin-wire over a PEC plane

propagating along the waveguide formed by the wire and the ground plane, becomes
resonant due to the boundary conditions at the wire extremals.

In spite of its simplicity, this configuration, derived from an EMC benchmark [8],
is representative for a large class of interaction problems, for example the common-
mode interference appearing at the connection of a power cable to a printed circuit
board or certain types of wire antenna problems.

3 Random Parameterization

When an ensemble A of configurations is considered, computing Ve(α) for each
element α of A can be very costly numerically. Instead, the variations of α in A are
viewed as random according to a known distribution pα . The voltage Ve(α) then
becomes a random variable, with statistical moments, such as its mean E[Ve] and its
standard deviation σ [Ve], defined as

E[Ve] =
∫

A
Ve(α ′)pα(α ′)dα ′, (2)

σ [Ve] =
√

E [|Ve|2]−|E [Ve] |2 ≥ 0. (3)

The standard deviation σ [Ve] is a positive parameter measuring, in volts, the spread
of Ve around E [Ve], as can be seen from Chebychev’s inequality [9].

Extreme values of Ve, at least 4σ [Ve] away from E [Ve], are accounted for by the
kurtosis κ [|Ve|], which is a dimensionless positive moment defined as

κ [|Ve|] = E

[( |Ve|−E [|Ve|]
σ [|Ve|]

)4
]

≥ 0. (4)

Gaussian random variables, which have approximately 95% of their values within
a distance of 2σ to their average, have a kurtosisof 3. Hence, the higher the value
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of κ [|Ve|] above 3, the more occurrences of Ve with very large magnitude are to be
expected.

Equation (2) shows that all the statistical moments are defined by integrals in-
volving a known integrand which depends on Ve, and over the same support A. These
integrals can therefore be computed numerically by quadrature rules. Moreover, a
significant gain in computation time is achieved by re-using the same samples of Ve

to compute the different integrals in Equations (2)-(4).
The most straightforward generalization to integration over higher dimensional

spaces, consists in using the Cartesian tensor product of a univariate quadrature rule.
However, this leads to a “curse of dimensionality” [10], i.e. exponentially grow-
ing numbers of grid points and hence prohibitive numbers of evaluations. More-
over, such Cartesian product rules are not isotropic, i.e. in certain directions of a
d-dimensional space, the accuracy is of much higher degree than in other directions.

Algorithms, such as Sparse grid (SG) methods, have been found which allow for
the elimination of grid points while preserving exact integrals of polynomials up to a
given degree in any direction. As such SG methods can be regarded as multidimen-
sional generalizations of Gaussian-type integration rules defined in one dimension.
For integrals over moderately dimensioned spaces (d ≤ 10), the convergence rate of
the SG rule is faster than a Monte-carlo approach. In addition, SG rules take advan-
tage of the smoothness of the integrand, unlike Monte-Carlo rules [11]. In this paper,
a SG rule is employed which starts from a 1D Clenshaw-Curtis quadrature rule and
applies Smolyak’s algorithm to build the multidimensional quadrature rule [12].

4 Results

With reference to Figure 1, a roughly undulating thin wire is studied with a geometry
defined as

xα(y) = α1 sin(5πy), zα(y) = 5 +α2 sin(9πy) in cm. (5)

The vector of amplitudes α = (α1,α2) has independent and uniformly distributed
components in the domains A1 = A2 = [−3;3] cm. The average geometry therefore
corresponds to the straight wire S0. The incident field is a θ -polarized plane wave
with an amplitude of 1 V.m−1, and propagating in the direction θi = 45◦, φi = 0◦.

A single computation of the induced voltage amounts to 0.1 second. All the sta-
tistical moments are computed for 50 frequencies between 100 MHz and 500 MHz,
with a relative error below 1%. The number of function evaluations ranges from
Nmin = 321 (≡ 32 seconds) at regular frequencies, to Nmax = 7169 (≡ 12 minutes)
at resonance frequencies, with an average of Nav = 3782 values per frequency (≡ 6
minutes). This appreciable performance is primarily dictated by the integral defining
κ [|Ve|], as it converges slower than σ [Ve], which itself converges slower than E [Ve].
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4.1 Average E [Ve] and Standard Deviation σ [Ve]

First, the voltage Ve(0) corresponding to the average configuration is compared to
the average of the voltage E [Ve]. In a perturbation-like approach, Ve(0) would be
considered as the average of Ve, and local expansions would be performed around
Ve(0) to represent the global variations of Ve [5]. Figure 2 points out the clear
differences between |Ve(0)| and |E [Ve] |, mainly concerning the position of their
extrema. These discrepancies back the need to take the true variations of Sα into
account when computing the statistics of Ve. The effect of the variations of Sα on
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Fig. 2: |Ve(0)| (circled line), |E [Ve] | (dashed line) and σ [Ve] (solid line) vs frequency

Ve is also indicated by the standard deviation which is depicted in Figure 2. At
regular frequencies, σ [Ve] is of the order of 30 mV, but increases by several orders
of magnitude around the resonance frequencies. This plot reveals three resonance
regions with increasing widths viz. R1 ≈ [175;215] MHz, R2 ≈ [295;350] MHz and
R3 ≈ [415;480] MHz. The intensity of the resonances decreases with the frequency:
The peaks of σ [Ve] go from 16.120 V in R1, and 2.227 V in R2 to 0.666 V in R3.

High values of σ [Ve] indicate a high physical variability of Ve around its average
E[Ve]. However, the increased uncertainty of Ve can be caused either by a smooth
distribution of Ve around E[Ve], or, by the presence of a few very large samples of
Ve coexisting with a cluster of samples around E[Ve]. The distinction between these
two cases is possible thanks to the analysis of κ [|Ve|].

4.2 Kurtosis κ[|Ve|]

The kurtosis κ [|Ve|] is displayed in Figure 3 together with the standard deviation
σ [Ve]. Since κ [|Ve|] is seldom equal to 3, the assumption of a Gaussian distribution
of Ve is generally inaccurate.
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Fig. 3: σ [Ve] (dashed line) and κ [|Ve|] (solid line) vs frequency

The behavior of κ [|Ve|] roughly follows that of σ [Ve]. Nevertheless, κ [|Ve|] pro-
vides a finer characterization of Ve than σ [Ve] as it reveals the different types of
sample distributions within a single resonance region. In R2 for instance, between
295 MHz and 320 MHz, σ [Ve] rises from 40 mV to 2.277 V indicating an increase
in the physical uncertainty of Ve. However, the variations of κ [|Ve|] reveal that the ef-
fect of the extreme samples is mainly dominant at 306 MHz where κ [|Ve|] = 5415.
Between 330 MHz and 350 MHz, in spite of a high value of σ [Ve] ≈ 1V, κ [|Ve|]
drops below 15, thereby highlighting a smoother distribution of Ve around E[Ve]. A
similar analysis can be conducted in R1 and R3.

4.3 Comparison with Deterministic Samples

To confirm the observations based on the analysis of Figure 3, 104 deterministic
samples have been computed at the frequencies specified in Tables 1 and 2. These
samples are normalized as follows

Vn =
Ve −E[Ve]

σ [Ve]
, with E[Vn] = 0 and σ [Vn] = 1. (6)

The statistical properties of the normalized samples can thus be compared on a com-
mon ground. In Figures 4a and 4b, concentric circles are shown, which correspond
to the normalized samples with distances of 4σ [Ve] and 8σ [Ve] from E[Ve].

First, two frequencies f1=300 MHz and f2=342 MHz are considered in the reso-
nance domain R2. As can be seen in Table 1, σ [Ve] has comparable values at the two
frequencies, with σ [Ve] f1 > σ [Ve] f2 . Nonetheless κ [|Ve|] is two orders of magnitude
larger at f1 than at f2.
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Table 1: Statistical moments at given frequencies in R2

E [Ve] σ [Ve] κ [|Ve|]
f1 = 300 MHz 0.025 -j 0.107 V 1.131 V 402
f2 = 342 MHz -0.239 +j 0.160 V 0.822 V 7

The normalized samples depicted in Figure 4a confirm that the samples Ve are
statistically more dispersed at f1 than at f2: at f1 Ve takes extreme values up to
20σ [Ve] away from E [Ve], whereas at f2, all the samples are within 5σ [Ve] of E [Ve].
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Fig. 4: Normalized samples Vn for f1 and f2 (a) and for f3 and f4 (b)

Next, the resonance domain R3 is analyzed at the two frequencies f3 = 409 MHz
and f4 = 475 MHz as detailed in Table 2. The standard deviation σ [Ve] f3

is more

Table 2: Statistical moments at given frequencies in R3

E [Ve] σ [Ve] κ [|Ve|]
f3 = 409 MHz - 0.004 -j 0.065 V 0.093 V 89
f4 = 475 MHz - 0.232 +j 0.096 V 0.632 V 3

than 7 times smaller than σ [Ve] f4
, thus the physical dispersion of Ve is more intense

at f4. Conversely κ [|Ve|] f3
is approximately 30 times larger than κ [|Ve|] f4

which
implies a much wider statistical spread at f3. These predictions are confirmed in
Figure 4b: all the samples corresponding to f4 are clustered within 4σ [Ve] of E [Ve],
unlike the samples at f3, which can lie more than 20 σ [Ve] away from the average.
The non-negligible statistical uncertainty of Ve at f3, indicated by κ [|Ve|], could not
have been foreseen by the sole study of σ [Ve].
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5 Conclusion

The results obtained for the varying thin-wire setup have revealed situations where,
for high as well as low values of the standard deviation, a highly unsymmetrical dis-
tribution of the values around the average appears. Such cases are correctly signalled
by high values of the kurtosis. Estimation of the probability of system failure con-
ditions in such situations must therefore account for significant deviations from the
Gaussian distribution. These statistical indicators can be determined numerically by
quadrature rules such as a sparse-grid rule which outperforms a Monte-Carlo rule,
for integrations over domains having moderate dimensions (below 10). A hierar-
chy has been observed in the computation of the statistical moments, as the average
converges faster than the variance which, in turn, converges faster than the kurtosis.
The analyses of the standard deviation and of the kurtosis are complementary: the
variance is useful in a dimensioning process as it measures the physical variations of
the voltage, whereas the kurtosis is valuable in a protection stage to foretell extreme
values of the response parameter, which could damage the receiving device.
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Part II
Circuit Simulation



Introduction to Part II

Janne Roos

This introduction gives some background to circuit simulation in general and pro-
vides a short overview of the 15 papers that follow.

Before proceeding further, it is pointed out that Section 1 of the first paper, the
invited paper by Dautbegovic, gives a nice two-page introduction to circuit simula-
tion. Thus, the reader may first want to read that section before returning to the text
at hand, which completes the introduction to circuit simulation.

Most industrial analog circuit simulators support some or all of the following
simulation modes, or analysis methods: DC operating point, transient, AC, distor-
tion, noise, oscillator, single/multi-tone harmonic balance (HB), envelope-following
transient analysis, etc. Although these analysis methods have been constantly de-
veloped during the last years, or even decades, there remain, still, many problems
to be solved and extensions to be developed. In fact, it seems that this may be a
never-ending story: ever more powerful analysis methods and computers — the lat-
ter being mainly built from integrated circuits (ICs) — will be needed to simulate
the operation of ever more complex ICs.

A common way to deal with complexity is to model, simulate, and design the ICs
in a top-down (and bottom-up) manner using several levels of abstraction like sys-
tem, circuit, and device levels. In real-life industrial IC design flows, the seamless
integration between different abstraction levels is challenging, both from the scien-
tific (e.g., criteria for stable co-simulation) and the technical (e.g., interoperability
between different tools and file formats) point of view. Limiting the discussion to
the interface between the circuit and system levels, one way to proceed is to create
measurement- or simulation-based behavioral models for entire circuit blocks, like
power amplifiers, and to use these behavioral models for system-level simulations.

In Part II of this book, the first 10 papers mainly deal with the aforementioned
circuit-level analysis methods, ranging from DC analysis to envelope-following
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transient analysis. The remaining five papers deal with behavioral modeling of cir-
cuit blocks for efficient system-level simulation.

The invited paper by Dautbegovic discusses the potential exploitation of wavelets
in circuit simulation. The key wavelet property is the capability of a simultaneous
time and frequency representation of a signal. This is interesting, since one problem
in circuit simulation is efficient time/frequency-domain representation of signals as
well as the related signal sampling and transformation methods. Possible application
areas could be, e.g., transient, HB, and envelope-following transient analysis, as well
as mixed analog–digital simulation.

The contribution by Feldmann et al. proposes Schur-complement techniques for
local handling of inner equations in compact models of semiconductor devices. The
goal is to reduce the size of the model stamp in the resulting modified nodal analysis
(MNA) equations. The approach was implemented in SPICE3 for DC, transient, AC,
and noise analysis, and it was tested with ring-oscillator circuits.

The next three papers are all related to transient analysis.
The paper by Iwata et al. presents a hybrid analysis for nonlinear circuits leading

to differential-algebraic equations (DAEs) with index at most one. This is desirable,
since the common approach for using MNA to formulate the circuit equations may
lead to DAEs with a higher index, thus causing problems for the numerical integra-
tion of DAEs.

Next, Christoffersen presents a new approach for transient analysis of nonlinear
circuits. The circuit equations are formulated as functions of incident and reflected
waves at the device ports. One interesting feature of the new approach is that all the
required Newton iterations can be performed locally for each nonlinear device.

Transient noise analysis considers the noise effects that are due to certain ran-
dom phenomena. Römish et al. discuss simultaneous step-size and path control for
efficient transient noise analysis. Numerical experiments with a small industrial test
circuit illustrate the practical relevance of the theoretical findings.

The paper by Rahkonen deals with distortion analysis, illustrating the use of a
term-wise AC Volterra analysis tool that can plot the relevant distortion tones as
vector sums of all important contributions. As an example, the tool is used to study
the nonlinear distortion behavior in a fully differential amplifier when driven either
with single-ended or balanced input signals.

The next three papers deal with large-signal steady-state analysis of nonlinear
circuits and certain closely related topics.

The paper by Gourary et al. focuses on oscillator phase-noise analysis. General
phase and frequency transfer functions are derived for frequencies that are close to
the harmonics of the oscillator fundamental frequency. In the derivation, the equa-
tions of the linear(ized) time-varying approach in the context of the single-tone HB
analysis are applied.

When a nonlinear circuit is excited by a periodic waveform and when some
circuit parameters, like capacitor values, are described by random variables, the
resulting DAEs have infinitely many periodic solutions. Pulch applies generalized
polynomial chaos (gPC) to approximately resolve the stochastic model. In particu-
lar, failure probabilities are determined using the approximation from gPC.
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In the contribution by Brachtendorf et al., the conventional trigonometric polyno-
mials of single-tone or multi-tone HB are replaced by cubic or exponential splines
in order to improve the approximation of sharp changes in the (quasi)periodical
waveforms. It is shown that the amount of coding effort necessary on the top of an
existing HB implementation is negligible.

The last paper on circuit-level analysis methods, the one by Xu and Condon, is
related to envelope-following transient analysis. The so-called Devil’s staircase of
an injection-locked frequency divider (ILFD) is simulated using the multiple-phase-
condition envelope-following method proposed. The locking range of the ILFD is
determined from the Devil’s staircase.

The last five papers of Part II discuss behavioral modeling of components and
circuit blocks for the speeding up or enablement of higher-level simulation, opti-
mization, statistical analysis, sensitivity analysis, etc.

The invited paper by Zhang and Zhang provides a tutorial overview on artifi-
cial neural networks (ANNs) and dynamic neural networks (DNNs) for behavioral
modeling of RF/microwave components and circuits. The paper discusses ANN-
based modeling, ANN-structure selection, ANN training, and the use of the trained
ANN models in circuit simulation and design. Two illustrative application examples
are given: automated model generation for embedded-passive modeling and use of
DNNs for behavioral modeling of nonlinear circuits and systems.

The contribution by De Tommasi et al. presents a method for behavioral mod-
eling of low-noise amplifiers based on transistor-level simulations. The surrogate
modeling (SUMO) Matlab toolbox along with its adaptive sampling and modeling
loops is utilized. Particular attention is paid to appropriate model-accuracy evalua-
tion and modeling settings.

Li and Huang use a design-of-experiment setup, a 3-D field solver, and a second-
order response-surface model (RSM) for behavioral modeling of the capacitances of
a thin-film transistor liquid-crystal display (TFT-LCD). The RSM developed enables
efficient sensitivity analysis and design optimization of the TFT-LCD capacitances
with respect to the design parameters.

The work by Neitola and Rahkonen presents a data-based behavioral modeling
scheme for the switched-capacitor (SC) integrator settling error. The method relies
on the SC integrator transient simulation followed by the tabulation of the settling
error. After this, the resulting settling-error table can be used in a delta-sigma A/D
converter behavioral model as a lookup table.

The last paper by Rahkonen proposes speed-up techniques for time-domain sys-
tem simulations using Matlab or Simulink behavioral models of sample-driven
systems. First, the spectral effects of small time-skew errors are estimated. Then,
state-space models of linear circuits are used to predict the circuit response, without
the need for intermediate time steps.



Wavelets in Circuit Simulation

Emira Dautbegovic∗

∗Invited speaker at the SCEE 2008 conference

Abstract Wavelet theory is a relatively recent area of scientific research, with a
very successful application in a broad range of problems such as image, audio and
signal processing, numerical analysis, electromagnetic scattering, data compression
and denoising, stohastics, mathematics and physics, (bio)medicine, astronomy and
many more. The key wavelet property contributing to its success in such a variety
of disciplines is the capability of a simultaneous time and frequency representation
of a signal embedded within a multi-resolution analysis (MRA) framework. The
potential exploitation of this property for next-generation, wavelet-based techniques
for analog circuit simulation is discussed in this paper.

1 Circuit Simulation

Analog circuit simulation is a standard industry approach to verify an integrated
circuit (IC) design at the transistor level before committing it to the expensive man-
ufacturing process. An Electronic Design Automation (EDA) suite takes the cir-
cuit description originating from a designer’s draft or fabrication data files, and
automatically generates a network description in form of a text file called netlist,
which describes circuit elements (resistors, capacitors, transistors, voltage and cur-
rent sources, etc.) and their connections. Then a circuit simulator (SPICE and its
derivatives), an integral part of an EDA suite, parses this input and translates it to
a data format reflecting the underlying mathematical model of the system. This is
done by applying the basic physical laws (energy and charge conservation) onto net-
work topology and taking the characteristic equations for the network elements into
account. The most used “translation” approach is the charge/flux oriented modified
nodal analysis (MNA) [1], which yields a mathematical model in the form of an
initial-value problem of differential-algebraic equations (DAEs):
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A
dq(x)

dt
+ f(x) = b(t). (1)

The matrix A is called an incidence matrix and, in general, is singular. x is the vec-
tor of node potentials and specific branch currents. q is the vector of charges and
fluxes. f comprises static contributions, while b contains the contributions of inde-
pendent sources. A numerical solution to (1) is found using the Newton’s method in
combination with implicit time integration schemes and sparse matrix techniques.

Instead of describing the system with a minimal set of unknowns, the mathemat-
ical modeling of an electric network via the charge/flux oriented MNA approach
aims to preserve the topological structure of the network [1], thus enabling a phys-
ical interpretation of simulation results by a user. Next, this approach preserves in-
formation on charge/flux conservation, a crucial property of many analog circuits
like charge pumps, switched capacitor filters, etc. Furthermore, the charge/flux for-
mulation enables more realistic modeling of nonlinear capacitors and inductivities.
In addition, (1) is suitable for the usage of special integrator schemes such as multi-
step methods (BDF-Gear, Trapezodial rule) and it does not require second partial
derivatives of charges resp. fluxes, which are usually not available in standard cir-
cuit simulation packages and may not even exist due to the lack of smoothness in
modern transistor models. On the other hand, in general (1) is a stiff system, i. e.
it involves characteristic time constants that differ by several orders of magnitude,
which is a serious hindrance to obtaining accurate results in a reasonable amount of
CPU time. In addition, this representation suffers from poor smoothness properties
of modern transistor models [2], which are struggling to describe complex physical
processes with the smallest possible set of mathematical equations. Furthermore, if
more general models for network elements are utilized or refined models are used
to include second order and parasitic effects, an ill-conditioned problem may arise
and very special care must be taken to avoid divergence while finding a numerical
solution to (1).

Today modern industrial analog circuit simulators are facing two serious chal-
lenges: qualitative and quantitative [1,3,4]. The qualitative challenge is highlighted
when simulating circuits containing mixed analog-digital parts. At present there is
no standardized framework within which is possible to simulate efficiently a mixed
analog-digital circuit. Analog circuits to be simulated are often multitone oscillatory
circuits, with widely separated carrier and modulation tones. A high-frequency car-
rier forces a small timestep while a low-frequency modulation forces a long simula-
tion interval, resulting in unacceptable long simulation times even for moderately-
sized RF circuits. Under the assumptions that the circuit behavior is periodic or at
most quasi-periodic and that its frequency spectrum contains only a small number
of frequencies, the multitone oscillatory circuits may be efficiently simulated using
a specialized RF simulator based on either the frequency-domain Harmonic Balance
or the time-domain Shooting algorithm [5]. However, a digital subpart in the circuit
introduces a substantial amount of high-frequency components and the efficiency of
these specialized solvers diminishes, if they can be applied at all. Hence the current
approach to an IC design is to simulate the analog RF front-end in a specialized
RF simulator, while the rest of the circuit is designed employing standard circuit
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simulation techniques. Due to this separation during the design process, subparts
of mixed analog-digital circuits are usually not realized on the same die in order to
keep spurious couplings between them as small as possible, since they cannot be
easily characterized in a common simulation environment. However, with the trend
towards ever-decreasing chip size, integration of analog and digital circuit parts on
the same die is eminent and new simulation tools that can support these mixed de-
signs are urgently needed.

The quantitative challenge lies in the simulation of extremely large circuits fea-
turing several millions transistors, e. g. memory chips. The sheer size of the un-
derlying MNA representation of such large circuits yields simulations that can last
weeks, even longer than a month. Or they simply cannot be performed due to ex-
treme memory and computational requirements. To cope with this situation, design-
ers are forced to aggressively simplify these very large circuits and simulate only
the most critical parts, an approach which is error prone. Or they use so called fast-
SPICE simulators, which utilize speed-up techniques such as table look-up models,
circuit partitioning, event-driven algorithms, hierarchical and parallel computations,
etc. In this manner a fast-SPICE simulator is able to achieve a speed up of factor
1000 in comparison to a standard circuit simulator but at the price of reduced ac-
curacy (usually as high as 3–5%), a mismatch that sometimes leads to sub-optimal
designs and failure of produced ICs, thus necessitating expensive re-design cycles.

2 Introduction to Wavelets

Wavelet theory emerged during the 20th century from the study of Calderon-
Zygmund operators in mathematics, the study of the theory of subband coding in
engineering and the study of renormalisation group theory in physics. The common
foundation for the wavelet theory was laid down at the end of the 80’s and begin-
ning of the 90’s by work of Daubechies [6, 7], Morlet and Grossman [8], Donoho
[9], Coifman [10], Meyer [11], Mallat [12] and others. Today wavelet-based algo-
rithms are already in productive use in a broad range of applications [11–18], such
as image and signal compression (JPEG2000 standard, FBI fingerprints database),
speech recognition), numerical analysis (solving operator equations, boundary value
problems), stohastics, smoothing/denoising data, physics (molecular dynamics, geo-
physics, turbulence), medicine (heart-rate and ECG analysis, DNA analysis) to
name just a few. Recent approaches [19–23] to the problem of multirate envelope
simulation indicate that wavelets could also be used to address the qualitative chal-
lenge by a development of novel wavelet-based circuit simulation techniques capa-
ble of an efficient simulation of a mixed analog-digital circuit.

A wavelet is a waveform of finite duration, with zero average value. Its shape is
usually irregular and asymmetric, unlike sines and cosines in Fourier series repre-
sentation. Nevertheless, just like sines and cosines in the classical Fourier expansion,
wavelets may be used as basis functions for a wavelet expansion to represent elec-
trical signals. The wavelet basis is formed via translations and dilations of a single
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wavelet function ψ(x), called mother wavelet, according to

ψs,τ(x) = s−1/2 ψ
(

x− τ
s

)
, (2)

where (s,τ) ∈ R+ × R. All wavelets from a specific basis are shifted (parameter τ)
and dilated/compressed (by factor s) versions of this mother wavelet. The translation
parameter τ is responsible for the localization in time of a corresponding wavelet.
The scaling or resolution parameter s, usually called the scale, is generally under-
stood as the frequency inverse. Therefore, the high scale (resolution) corresponds
to low frequencies or a global view of the signal and low scale (resolution) corre-
sponds to high frequencies or a detailed view of the signal. The factor s−1/2 is used
for energy normalization across different scales. From (2) it is clear that a wavelet
basis intrinsically supports a simultaneous time-frequency representation of a sig-
nal, where the translation parameter τ is responsible for the time localization and the
scaling parameter s for localization in the frequency domain. One particular wavelet
property should be noted at this point: with wavelets it is not possible to exactly
know a single frequency that exists at a single time instance, rather it is possible
only to know what frequency bands exist at what time intervals [24].

There are numerous types of wavelets, each with different sets of features.
Wavelets are usually grouped in wavelet families, according to several properties
such as the support of wavelet and scaling functions, the number of vanishing mo-
ments, the symmetry, the regularity, existence of a scaling function φ , the orthogo-
nality and biorthogonality, existence of explicit expression and others [13]. Some of
the most famous wavelets families include: Haar, Daubechies, spline, biorthogonal,
Morlet, Mexican hat, symlet, coiflet, Meyer, Bessel, Cauchy, Gaussian, etc.

Transforms involving wavelets can roughly be divided into three classes: con-
tinuous (CWT), discretised (DWT) and multi-resolution based (MRA). Contrary to
the name, DWT is a continuous-time transform, as is CWT. The discreteness here
refers to the fact that discrete wavelets are not continuously scalable and translatable
functions but can only be scaled and translated in discrete steps determined by some
integers ( j,k). For example, a discrete wavelet suggested by Daubechies [7] is

ψ j,k(x) = 2− j/2ψ(2− jx− k). (3)

DWT in combination with MRA is a very efficient transform with its linear compu-
tational complexity O(N), it is even more efficient than the Fast Fourier Transform
(FFT) with its O(N logN) complexity. Against the background of the circuit simu-
lation, MRA is of particular interest and it will be further explored in more details.

2.1 Multi-resolution Analysis

Formally defined, a multi-resolution analysis (MRA) in L2(R) is a set of closed sub-
spaces Vs with s ∈ Z such that the following five properties are satisfied [25]
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1. . . .V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ L2(R), that is Vs ⊂ Vs+1 for all s ∈ Z
2.

⋃+∞
s=−∞Vs is dense in L2(R); and in addition

⋂+∞
s=−∞Vs = {0}

3. f (t) ∈ Vs iff f (2t) ∈ Vs+1

4. if f (t) ∈ V0, then f (t − k) ∈ V0 for all k ∈ Z
5. ∃ scaling function φ(t) ∈ V0, so that set {φ(t − k) | k ∈ Z} is a Riesz basis of V0

The first (structural) property states that subspaces Vs in MRA are nested and the
information at the resolution level s is entirely included in the information at higher
resolution level s + 1. The second (resolution) property states that the Vs, s ∈ Z,
cover L2(R), i. e. the approximation approaches any signal in the entire initial space
L2(R) as more details are added, i. e. resolution goes to infinity. On the other hand,
as more and more details are removed, i. e. resolution gets coarser, only constant
functions are left. In a limit, only the zero function remains, since the functions
are squarely integrable. The third (dilation) property states that all Vs are scaled
(dilated) versions of the central space V0. The fourth (translation) property states
that translation of f (t) for some k does not change its resolution, i. e. V0 is integral
translation-invariant. From the properties 3 and 4 it directly follows that if a function
f is in V0, then its scaled and translated version f (2 jt − k) is in Vj, i. e. if f (t) ∈ V0,
then f (2 jt − k) ∈ Vj for all k ∈ Z. Finally, the fifth property states that similarly to
the function e jωt in Fourier analysis, there exists one function φ(t) which generates
the basis functions for all Vs. More precisely, if we define φs,k = 2s/2φ(2st −k), then
{φs,k(t)}k∈Z forms a Riesz basis of Vs.

To obtain the required resolution in a representation of an arbitrary signal, a se-
quence of scaling function expansions with wavelets of successively higher resolu-
tions are used within the MRA. Interestingly, only one scaling function φ(t), called
father wavelet, and one wavelet function ψ(t), called mother wavelet, are needed to
construct complete basis sets for systems of function spaces.

2.2 The Wavelet Expansion

Let us now consider a wavelet expansion embedded in the MRA framework. We
start by considering an electrical signal as a combination of a smooth background
and fluctuations superimposed on it, as is done for electrical field representation
[26]. At a given resolution level s the signal is approximated in Vs by ignoring all
the fluctuations above this level in Vk with k > s. Let fs(t) ∈ Vs denote the approx-
imation of a signal f (t) at given level s. In order to get better approximation, the
level is increased to s + 1 and a new approximation is obtained by adding the de-
tails, denoted as ds(t) to the approximation on previous level, i. e.

fs+1(t) = fs(t)+ ds(t). (4)

Equation (4) means that at the resolution level s + 1 a signal f (t) is approxi-
mated with fs(t) in the scale subspace Vs and ds(t) in the detail subspace Ws. The
scale subspace Vs consists of functions that contain the signal information down
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to scale 2−s. The members of the detail subspace Ws = Vs+1 �Vs are differences
ds(t) = fs+1(t)− fs(t) and it comprises the additional information regarding details
on scales between 2−s and 2−(s+1). For best approximation in terms of Vs the dif-
ference ds(t) = fs+1(t)− fs(t) should be orthogonal to fs(t). This is convenient to
assume but not necessary. Assuming orthogonality means that Ws ⊥ Vs and

Vs+1 = Ws ⊕Vs = Ws ⊕Ws−1 ⊕Vs−1 = . . . =
i=S

∑
i=0

Ws−i ⊕Vs−S. (5)

Furthermore, any two detail spaces at different resolutions are orthogonal, and the
detail space Ws is orthogonal to an approximation space Vs′ , only when s > s′, i. e.
when the detail space is at a higher resolution level.

If the improvement of approximation (4) was continued to infinity, the original
signal f (t) would be recovered as:

f (t) = fs(t)+
∞

∑
j=s

d j(t). (6)

Hence an arbitrary electrical signal expanded as a summation of scaling and wavelet
basis functions may be denoted in a hierarchical manner as:

f (t) =
s

∑
i=−∞

ciφi(t)+
+∞

∑
j=s

+∞

∑
k=−∞

d j,kψ j,k(t). (7)

The first term in (7) is the projection of f (t) into the scaling subspace Vs. It corre-
sponds to a coarse approximation of f (t) at a previously selected resolution level s.
The second term consists of projections of f (t) into the wavelet subspaces Wk.

In practical computations only finite sums can be used and hence the sums in
(7) must be truncated. In general, we are interested in the behavior of the circuit
over a certain finite time interval of length L. This implies that the upper limit of a
sum in the first term (index i) and the inner sum of the second term (index k) would
naturally depend on the interval considered, i. e. the parameter L. The outer sum of
the second term (index j) defines the number of levels of detail that are to be taken
into account, and hence the resolution level of the approximation will be defined by
the upper boundary of this sum. For example, a finite approximation of an electrical
signal over the time interval [0,L] on a Jth resolution level could be denoted as:

f (t) ≈
2sL−1

∑
i=0

ciφi(t)+
(J−1)

∑
j=s

(2 jL−1)

∑
k=0

d j,kψ j,k(t) (8)

At each resolution level j there are 2 jL basis functions, thus there are in total (2J−s)L
wavelet coefficients to be computed. In addition, there are 2sL coefficients corre-
sponding to scaling functions at a resolution level s. Hence the total number of
coefficients in a finite wavelet expansion (8) over the interval [0,L] on a Jth resolu-
tion level sums up to 2JL. For efficient computations the resolution level s should be
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chosen so that the coarse level is satisfied for most values of t and more details, i. e.
wavelets, are added only at the points where they are needed to capture the abrupt
signal fluctuations.

3 Wavelets in Circuit Simulation

Recent investigations into the use of wavelets in simulation of electronic circuits
[19–23] have shown that these intrinsic properties make wavelets a natural can-
didate for a successful successor of time-domain (e. g. transient analysis, shoot-
ing analysis) and/or frequency domain (e. g. Harmonic Balance analysis) paradigms
used in circuit simulation today. For example, Zhou and Cai propose the use of the
wavelet collocation method in the time-domain [19] and the frequency domain [27]
circuit simulation of mostly-linear circuits. For the computation of periodic steady
state Soveiko and Nakhla [20,28] advocate a wavelet technique in combination with
the Harmonic Balance approach, while Li et al. [29] use wavelet balance method.
Christoffersen and Steer [21] used wavelets for transient circuit simulation within a
state-variable based approach. Dautbegovic and Condon [22] use multitime partial
differential equations (MPDE) in combination with wavelets for efficient simulation
of multirate nonlinear RF circuits. Although valuable as a proof-of-concept, unfor-
tunately these algorithms are still not mature enough to be used in industrial design
flows.

We propose a wavelet expansion (8) embedded in the MRA framework as an ap-
proach to take when developing wavelet-based circuit simulation techniques. Con-
sider the electrical signal depicted in Fig. 1, which is a typical time-domain output
signal of a ring oscillator featuring a large amount of digital content. It can be con-
sidered as a “sum” of a digital signal and some irregular analog fluctuations. To
describe such a signal efficiently, some sort of an adaptive approximation is needed.
In such approximation an expansion of an electrical signal in those intervals where
the signal varies smoothly and slowly should be simple and with as little degrees of
freedom as possible, but whose resolution could be easily increased in places where
the signal changes quickly and abruptly. For example, the smooth part could be rep-
resented by the low-resolution expansion of the signal, capturing the average signal
behavior. A quickly changing part or details can only be captured by high-resolution
components.

The wavelet expansion (8) is exactly the kind of the adaptive approximation that
we are looking for. Embedded in the MRA framework, scaling functions can be used
for an expansion of an electrical signal at a lower resolution level in those intervals
where the signal varies smoothly and slowly, but in places where signal changes
are quick and abrupt more details (i. e. wavelets) should be added. Therefore, the
approximation effort is considerably reduced since only the “troublesome” regions
are treated on a high-resolution level (i. e. with a larger number of coefficients),
while smooth regions described on lower levels are captured by a smaller set of
(possibly only) scaling coefficients. Compared to time-domain transient analysis,
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Fig. 1: An output voltage of a 1 GHz ring oscillator

taking fewer coefficients for the wavelet expansion in smooth regions is analogous
to taking fewer time-steps during the transient analysis in intervals in which no large
changes in signals are detected.

3.1 Advantages of the Wavelet-Based Approach in Circuit
Simulation

Let us now explore particularly advantageous properties of the wavelet expansion
against the target application of circuit simulation.

Time-Frequency Representation. The truncated wavelet expansion (8) may be
written in general form as f (t) = ∑I∈I aI( f ) ΨI , where ΨI comprises all scaling
and wavelet basis functions and aI are the corresponding expansion coefficients on
a finite index set I ↔ ( j,k). In fact, these basis functions are generated by scaling
(determined by the value of j) and translating (determined by the value of k) a
single function ψ , i. e. ψ j,k = 2 j/2 ψ(2 jt − k). Such an expansion associates with a
function f , the array of coefficients a = {aI( f )}I∈I as is the case for the classical
expansions. However, the coefficients aI convey very detailed information on f due
to the structure of I [30]. Each I comprises two-fold information on time (spatial)
location encoded by k and information on scale, determined by j. Furthermore a
scale is closely related to a frequency band and can be thought of as its inverse.
Therefore, each coefficient in a wavelet expansion (8) carries simultaneously both
the time-domain and the frequency-domain information.

Adaptive Resolution. In contrast to approximating the function f of a given opera-
tor equation on some mesh (of fixed highest resolution), wavelet based schemes aim
to determine its representation with respect to a basis [30]. This means that during
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the solution process, wavelet based algorithms will track only those coefficients in
the unknown array a that are the most significant for approximating f with as few
as possible degrees of freedom. This property contributes immensely towards the
efficiency of such algorithms.

In addition, an adaptive resolution equips a wavelet expansion with a natural way
for an easy trade-off between required accuracy and reasonable simulation time. If
the amplitude of a fast-changing fluctuation is below the noise-floor or the design
process is in its early stages, when a designer is interested only in an average be-
havior of a designed IC, fluctuations above certain pre-defined cut-off level can be
neglected. While a-priori definition of this cut-off level can be tricky with standard
approaches, with wavelets it is a trivial task of setting the required resolution level
s.

Furthermore, if the approximation is not satisfactory, we can continue with pro-
gressively increasing the resolution level, thus adding finer resolution details to the
signal. Theoretically, by continuing this process to infinity resolution level, the sig-
nal will be exactly recovered just like for example in case of Taylor series expansion
in the time domain or Fourier expansion in the frequency domain.

Mixed Analog-Digital Simulation. As briefly discussed in Section 1, at present
there is no simulation framework (neither in the time nor in the frequency domain)
in which a mixed analog-digital circuit can be efficiently simulated. The reason for
this is a considerable approximation effort needed to capture a signal corresponding
to one circuit part type when simulated in a simulator suitable for the other circuit
type. For example, when a digital signal is to be simulated in a frequency-domain
analog simulator, well suited for the analog RF front-end simulations, an extremely
large number of Fourier coefficients is needed to accurately describe falling/rising
edges of a digital signal. This is due to the poor time-domain localization property
of the frequency-domain Fourier representation. In contrast, only a small number
of coefficients corresponding to appropriately chosen scaling functions should be
needed to approximate the signal well everywhere except in short intervals of sharp
transitions. For those and only for those short intervals, additional coefficients cor-
responding to wavelet functions at higher resolution levels are needed to obtain
equivalent or better accuracy to the Fourier representation, but at significantly re-
duced computation cost.

Validity Range. A Taylor expansion places strong demands on the regularity of f
such as analyticity, while wavelet expansion is typically valid for a much larger class
of functions such as squarely integrable ones. This means that it is only required
that the series on the right-hand side of (7) converges in the corresponding norm.
Consequently the space of functions describing an electrical signal only needs to be
a space of squarely integrable functions. Hence, a wavelet expansion has a potential
to reduce negative influence of poor smoothness of transistor models on numerical
convergence. However, this can only be confirmed after extensive testing on the
existing industry models is performed within a working prototype of a wavelet-
method.
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3.2 Challenges of Wavelet-Based Algorithms

The foreseen advantages of the use of wavelet-based techniques in circuit simulation
highlighted in Section 3.1 give us a solid justification for investing efforts for devel-
oping wavelet-based algorithms. However before an industry-wide exploitation of
these techniques is possible, the following issues need to be addressed.

Size of the Wavelet Expansion. For a numerically effective wavelet method it is
crucial to setup near-optimal wavelet expansions, so that only a small number of
wavelet coefficients is needed for a signal representation. Unlike with the Fourier
basis, in which the shape of a basis function is predefined and cannot be changed,
wavelet basis functions can have many shapes, varying from smooth to highly ir-
regular. A wavelet algorithm can be setup without having a priori knowledge on the
type of the wavelet basis set to be used for signal representation. In fact, if a user
has some previous insights about the expected results, drawn upon experience or
on some prior simulation results, then a suitable wavelet set may be chosen prior to
simulation start, as one of simulation parameters. For example, a smooth wavelet set
could be chosen for ICs involving smoother functions and more irregular ones for
digital-like signals. Matching a wavelet basis set to a signal shape to reduce the num-
ber of needed expansion coefficients is analogous to choosing the appropriate base
frequency in the Fourier expansion to describe periodic signals with a minimum set
of coefficients corresponding to the expected maximum harmonic in a signal’s spec-
trum prior to the HB computations. In addition, an adaptive selection of expansion
time points as well as both hard- and soft-thresholding techniques [31–34] can help
to further decrease the size of a system to be solved.

Numerical Considerations. Even with a near-optimal selection of the wavelet ba-
sis the total number of wavelet coefficients is still very large; it equals the number of
circuit variables times the number of coefficients in the chosen wavelet expansion
for each node. For an efficient wavelet method a critical issue is how to store and
invert a huge but relatively sparse Jacobian matrix arising from a Newton method
applied to solve this nonlinear system. The investigations are ongoing into a setup of
wavelet Jacobian in a block-diagonal form, which does not require storing the com-
plete Jacobian at any point and is also easy to invert. Furthermore, one needs to be
aware that significant matrix conditioning problems can arise due to a poor smooth-
ness of MOSFET models (modeling problem) as well as solving higher-index DAEs
(topological problem) and take appropriate care to minimize their negative influence
on a solution process.

Applicability and Functional Considerations. The Harmonic Balance algorithm
is an efficient tool for analyzing periodic or at most quasi-periodic circuits, unfor-
tunately its use on any other type of circuits is a priori excluded. No such limitation
is envisaged with wavelet based techniques and they are universal in the sense that
they may be applied to any type of circuits. However, it is obvious that for pure si-
nusoidal signals there cannot exist a wavelet basis that is better than a Fourier basis
in which a single expansion coefficient is needed to completely describe the signal.
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But since the periodicity is not excluded from wavelet expansions, a wavelet basis
can be found, such that it minimizes this expansion inefficiency and takes a small
penalty when simulating pure sinusoidal circuits for the sake of generality.

Next, assuming that the previously mentioned challenges are successfully re-
solved and a wavelet solution is obtained, the question of the interpretation of these
qualitatively new results arises. Wavelets are a powerful analysis tool but what can
we conclude from a just performed wavelet analysis to enable a more robust design?
An important point to enable faster adoption of wavelet based techniques in wider
design community, governed by time- and frequency-domain specifications, is the
derivation of a hopefully simple connection of wavelet-domain results to time- and
frequency-domain design specifications.

4 Conclusion

With an ever-shrinking size and ever-increasing demand on functional complexity
of a modern IC chip, a fast and scalable circuit simulation is a key design and veri-
fication approach in semiconductor industry. But increasing difficulties that current
industrial circuit simulators are facing today, in particular in a simulation of mixed
analog-digital circuit as well as circuits featuring millions of active devices, have
highlighted the need for a novel approach to circuit simulation.

Intrinsic properties make wavelets a natural candidate for a successful succes-
sor of time- and frequency-domain paradigms used in circuit simulation today. This
paper has discussed the advantages of wavelet expansions, which can be well uti-
lized in circuit simulation, but also pointed out the challenges that must be resolved
before an industry-wide acceptance and utilization of wavelet-based methods oc-
curs. However, the expected benefits of a wavelet-based simulation engine, both in
quantitative terms (efficient simulation of mixed-signal circuits) as well as quali-
tative terms (analyzing electrical signals with resolutions adapted to a problem at
hands), is well worth allocating effort in a bid to develop the next-generation circuit
simulators capable of answering industrial challenges of tomorrow.
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On Local Handling of Inner Equations
in Compact Models

Uwe Feldmann, Masataka Miyake, Takahiro Kajiwara,
and Mitiko Miura-Mattausch

Abstract The burden of solving inner equations in compact models of semiconduc-
tor devices (such as transistors) is often shifted to the host circuit simulator. Schur
complement techniques for local handling of these equations may help to reduce
the size of the model stamp, which – depending on the host simulator – may have a
positive impact on CPU time and memory needs. Some practical aspects of apply-
ing these concepts in compact modeling are discussed. A formulation is presented
which accounts for the specific way of model evaluation in circuit simulation. It can
be realized in a standard code for flat model evaluation by adding a software shell
around the model core function itself.

First tests with an advanced high voltage MOS model demonstrate the feasibility
of this approach in terms of accuracy, iterations and runtimes.

1 Introduction

Conventional modeling of semiconductor devices for circuit simulation aims at es-
tablishing explicit formulas for all relevant device features, which finally end up
with the branch currents and node charges for describing device characteristics as a
function of applied bias voltages. Unfortunately, this modeling paradigm is difficult
to maintain for describing effects like nonquasistatic behavior or selfheating in high
frequency or high voltage applications. State-of-the-art models therefore exhibit an
increasing number of implicit model internal equations, either by introducing intrin-
sic circuit nodes, or by using auxiliary (nonlinear and/or differential) equations for
more accurate description of device behavior. These equations are often exported to
the host simulator. This is easy to implement, in general, but also may give rise to
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a huge model stamp. So it may suffer from the overlinear complexity of the sparse
solver in memory and CPU time due to increasing filling in the sparse pattern, un-
less sophisticated ordering strategies or hierarchical solver concepts are employed.
Furthermore, robustness and efficiency (parallel processing!) are to a large extent
simulator dependent.

Our objective is to implement compact models with local solver concepts, such
that the device internal equations are as far as possible hidden from the host
simulator. The benefits are obvious: Small model stamps, reduced simulator de-
pendence, and possibly higher efficiency due to higher degree of locality and
parallelism. Of course, there are also risks: Higher expense per model evaluation,
convergence problems, and much higher efforts for model development. The first
risk should be compensated by better efficiency of the sparse solver, which has to
solve smaller systems. To avoid the second risk, we pursue only hierarchical ver-
sions of a single level Newton method, with a special focus to make sure that con-
vergence is the same as if the equations were exported to the host simulator. And
finally, the third risk can be reduced by the concept to perform the local handling
in some kind of intermediate software layer between the model itself and the host
simulator. The second and the third item distinguish this approach from previous
attempts to apply local solver concepts for model evaluation [1].

The techniques presented here are not new at all, cf. [2,3]. Even fully hierarchical
circuit simulators like PSTAR from NXP Semiconductors (former part of Philips)
have been built on these principles [4, 5], and are successfully applied in industrial
practice. However, to our knowledge theses methods have not yet been used more
globally in compact model development: All of the widespread bipolar [6–8] and
MOS models [9–11] and even the standard MOS model PSP [12] offer only flat
versions for download, or they employ local iteration loops in a multi level Newton
setting for solving internal equations [11]. This contribution is focused on standard
Newton methods. First, Schur complement techniques are shortly reviewed. Then
some special aspects of their usage in SPICE like simulators will be discussed. A
simple MOSFET model serves as an example. Finally, first results for an actual
implementation of the high voltage MOS model HiSIM HV [13] are presented.

2 Review of Schur Complement Techniques

We formulate the problem for the DC and (after time discretization) Transient Anal-
ysis: Solve the nonlinear coupled system

fi(xi,xm) = 0

fm(xi,xm) = 0
(1)

where index i denotes the model internal equations and variables, and m denotes the
outer equations from Modified Nodal Analysis and network variables1. Application

1 For the ease of notation we consider only one single device and its contribution to the circuit.
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of a single level Newton method yields the linear system for the Newton corrections
�xi, �xm: (

∂ fi
∂xi

∂ fi
∂xm

∂ fm
∂xi

∂ fm
∂xm

)( �xi

�xm

)
= −

(
fi

fm

)
(2)

Assuming regularity of ∂ fi
∂xi

, we can take the upper equation of (2) to express �xi by
�xm:

�xi = −
(

∂ fi

∂xi

)−1(
fi +

∂ fi

∂xm
�xm

)
(3)

Substitution of (3) in the lower equation of (2) yields:
[
∂ fm

∂xm
− ∂ fm

∂xi

(
∂ fi

∂xi

)−1 ∂ fi

∂xm

]
�xm = −

[
fm − ∂ fm

∂xi

(
∂ fi

∂xi

)−1

fi

]
(4)

Compared to the flat case, (4) contains complementary entries both in the matrix and
in the right-hand side, which account for the contributions of the inner equations to
the outer system, and are referred to as Schur complements. Once a solution �xm

for the outer system (4) has been calculated, the Newton correction for the inner
system can be computed from (3).

Note that the method is in spite of the hierarchical formulation (3), (4) a standard
Newton method. So convergence will not be affected, as long as the inner or outer
variables are not subjected to different damping strategies or initial guess calcula-
tion.

3 Aspects of Implementation in Compact Modeling

Before applying Schur’s techniques in compact modeling, we have to take some
specialities of many SPICE like simulators into account:

• The linear system is established directly for xnew = x+�x rather than for �x.
• Model evaluation is usually based on branch quantities u rather than on the mix

of node voltages and branch currents which are considered in standard Modified
Nodal Analysis: f = f(u(x))

• Often a branch oriented limiting u limiter→ ũ = uold + λ · (u − uold) is employed,
where uold is the previous Newton iterate, λ is a damping parameter, 0 < λ ≤ 1,

and f(u) is approximated by f(u) ≈ f(ũ)+ ∂ f
∂u

∣∣∣
u=ũ

(u− ũ).
• Some kinds of analyses (Noise, Sensitivity) make use of the adjoint approach.

For the last item, the Schur concept has to be applied for the transposed system [14].
We skip the details here, and focus on the first three items. To this end we introduce
a set of branch quantities

ui = Biixi + Bimxm um = Bmixi + Bmmxm (5)
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with constant incidence matrices Bii, Bim, Bmi, Bmm, such that2

fi = fi(ui) fm = fm(um).

Due to the special structure of (5), we get after some algebraic manipulations from
(3), (4):

∂ fi

∂xi
xnew

i = −
(

fi(ũi)− ∂ fi

∂ui
ũi

)

︸ ︷︷ ︸
feq
i

− ∂ fi

∂xm
xnew

m (6)

⎛
⎜⎜⎜⎝

∂ fm

∂xm
− ∂ fm

∂xi

(
∂ fi

∂xi

)−1 ∂ fi

∂xm︸ ︷︷ ︸
−P

⎞
⎟⎟⎟⎠xnew

m =

−
(

fm(ũm)− ∂ fm

∂um
ũm

)

︸ ︷︷ ︸
feq
m

+
∂ fm

∂xi

(
∂ fi

∂xi

)−1

feq
i

(7)

To give an interpretation for P, we note that the first equation of (1) defines a relation
xi = xi(xm), whose derivative can be computed from implicit differentiation:

∂xi

∂xm
= −

(
∂ fi

∂xi

)−1 ∂ fi

∂xm

So, as long as (1) is not exactly solved, P can be considered as approximate for ∂xi
∂xm

,
and the matrix on the left side of (7) is an approximation for the admittance matrix
of the model. The second term on the right-hand side of (7) propagates the defect of
the inner model equations onto the outer terminals.

For the implementation we resolve (6) for xnew
i , and introduce another interme-

diate quantity xeq
i

def= −
(

∂ fi
∂xi

)−1
feq
i to get finally

xnew
i = xeq

i + Pxnew
m (8)(

∂ fm

∂xm
+

∂ fm

∂xi
P
)

xnew
m = −feq

m − ∂ fm

∂xi
xeq

i (9)

Equation (9) defines the quantities from which the host simulator can compute a
new Newton iterate xnew

m . If xeq
i and P are stored over the Newton iterations then the

internal variables xnew
i can be updated using (8), just before evaluating the model for

the subsequent Newton step. Algorithm 1 describes the sequence of computational
steps for “stamping” the model contributions into matrix and right-hand side. The
Schur related parts are highlighted, while all other parts are more or less standard in
any SPICE like simulator.

2 Note that (5) includes the case of current controlled device characteristics.
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Algorithm 1 Loading the model contributions into the outer system

Gather xm and xeq
i , P from host simulator

Calculate xi from xi = xeq
i +Pxm

Apply branch limiting to get ũ
Call model evaluation routine to get currents and charges, inclusive derivatives with respect to u
Calculate numerical approximates for time derivatives of charges
Assemble feq

m = fm − ∂ fm
∂u ũ and feq

i = fi − ∂ fi
∂u ũ

Assemble ∂ fm
∂xm

and ∂ fm
∂xi

, ∂ fi
∂xm

, ∂ fi
∂xi

and calculate
(

∂ fi
∂xi

)−1

Calculate and store xeq
i = −

(
∂ fi
∂xi

)−1
feq
i and P = −

(
∂ fi
∂xi

)−1 ∂ fi
∂xm

Setup and add right-hand side (−feq
m − ∂ fm

∂xi
xeq

i ) and matrix stamp ( ∂ fm
∂xm

+ ∂ fm
∂xi

P) to the outer system

It is worthwhile to note that all additional steps for realizing the Schur concept
can be put into a compact software shell around the model evaluation; hence no
major interaction with the host simulator is necessary beyond the standard, except
from the task to store additional data across Newton iterations.

4 Example: A Simple MOS Model

If we want to handle the inner drain and source node voltages of the simple MOS-
FET model in Fig. 1 locally then

b

RS RDq
si

q
b

q
di

  si   di

CfdCfs

g

s d

g
q

Ids

Fig. 1: MOSFET model with two internal nodes and outer fringing capacitances

xi =
(

vdi

vsi

)
fi =

(
1/RD(vdi − vd)+ Ids + q̇di

1/RS(vsi − vs)− Ids + q̇si

)

xm =

⎛
⎜⎜⎝

vd

vg

vs

vb

⎞
⎟⎟⎠ fm =

⎛
⎜⎜⎝

1/RD(vd − vdi)+ q̇fd

q̇g − q̇fd − q̇fs

1/RS(vs − vsi)+ q̇fs

q̇b

⎞
⎟⎟⎠

where

Ids = Ids(vdi − vsi,vg − vsi,vb − vsi)
qk = qk(vdi − vsi,vg − vsi,vb − vsi) k = {di,g,si,b}
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qfd = Cfd · (vd − vg)
qfs = Cfs · (vs − vg)

Alternatively, a formulation can be used which is even applicable for vanishing RD

and/or RS:

fi =
(

vdi − vd + RD · (Ids + q̇di)
vsi − vs + RS · (−Ids + q̇si)

)
fm =

⎛
⎜⎜⎝

Ids + q̇di + q̇fd

q̇g − q̇fd − q̇fs

−Ids + q̇si + q̇fs

q̇b

⎞
⎟⎟⎠

This example shows that the inner equations are not restricted to Kirchhoff’s current
law. This gives valuable freedom for model development and is a clear advantage of
hierarchical concepts in modeling.

5 Current State and First Results

For the high voltage MOS model HiSIM HV [13] from Hiroshima University a
test implementation using the Schur concept was done in parallel with a flat imple-
mentation. If all model features (selfheating, nonquasistatic behavior NQS, parasitic
gate and bulk resistance network) are activated then the model has up to 10 internal
equations; Table 1 shows the matrix stamp for the terminal node voltages (d,g,s,b)
and the internal variables (di,gi,si,bi,db,sb,t); the stamp for the NQS equations is
omitted. For the Schur implementation not all of the inner equations are included
yet; however, this is planned for the future. In the maximal case a reduction of the
matrix stamp from 86 entries down to 16 entries can be expected.

The implementation was done in SPICE3 for DC/Transient, AC and Noise Anal-
ysis and tested with several HV MOS ring oscillators of different size. Unfortu-
nately, large HV MOS circuits were not yet available for testing. Each circuit was
simulated without inner series resistances RD, RS, as well as with RD �= 0, RS = 0
and with RD �= 0, RS �= 0. In the third case the flat stamp into the matrix consists
of 32 entries, while the Schur version yields a stamp of 16 entries. Some results of
a comparison with a flat implementation using the same model evaluation function
are given in Table 2.

The second column contains the number of MOSFETs, and the third column
shows the number of circuit equations seen by SPICE. Of course, this number is
not affected by activation of series resistances if the internal equations are handled
locally. The waveforms match perfectly in any case, however the total number of
Newton iterations shown in the fourth column are slightly different. This is mostly
due to nonidentical branch limiting procedures and tolerance settings in our imple-
mentations. Even if the codes are completely synchronized, there might be small
differences due to differing pivot handling of the sparse solver. In accordance with
our expectations, there is however no significant impact of the Schur method on the
global convergence, nor on the number of timesteps.



On Local Handling of Inner Equations in Compact Models 149

Table 1: Reducing the matrix stamp for the HiSIM HV model by using the Schur concept

d di g gi s si b bi db sb t
d x x x x x x x
di x x x x x x x
g x x
gi x x x x x x x x
s x x x x x x x
si x x x x x x x
b x x
bi x x x x x x x x
db x x x x
sb x x x x
t x x x x x x x

Schur concept
=⇒

d g s b
d x x x x
g x x x x
s x x x x
b x x x x

63 matrix entries + 23 matrix entries for NQS
Schur concept

=⇒ 16 matrix entries

Table 2: SPICE results for some HV MOS ring oscillators; left/right: flat/Schur version

Circuit MOS SPICE Newton LOAD/iter SOLVE/iter
FETs equations iterations [msec] [μsec]

ringo51 RD,RS = 0 114 63/63 23954/23886 1.1/1.0 4/5
RD �= 0 177/63 25243/24570 1.2/1.2 17/3
RD,RS �= 0 291/63 21799/21130 1.2/1.1 33/4

ringo101 RD,RS = 0 214 113/113 25736/25762 2.1/2.0 9/9
RD �= 0 327/113 27127/26475 2.3/2.2 30/9
RD,RS �= 0 541/113 23588/22902 2.3/2.2 55/7

ringo101 2 RD,RS = 0 414 213/213 27999/29245 4.3/3.8 19/16
RD �= 0 627/213 28620/29034 4.7/4.1 62/19
RD,RS �= 0 1041/213 26123/25929 4.8/4.1 122/15

The CPU time data in columns five and six of Table 2 are given per Newton iter-
ation. LOAD comprises all steps of Algorithm 1 – inclusive solving the inner equa-
tions in case of the Schur version – while SOLVE accounts for the sparse solver time
of SPICE. The CPU times are a bit noisy due to inaccurate timing measurement in
SPICE, and lack of tuning the codes. In particular the LOAD time for ringo101 2
with RD,RS = 0 gives rise to suspect that the flat code is less tuned than the Schur
code. One can however conclude that there is no significant slowdown of the Schur
code, as long as the number of internal equations per device is small. Finally the
overlinear increase of the SOLVE time in SPICE with the number of equations can
be seen from the last column in Table 2. Although the SOLVE time is negligible
here, it gets more important for large circuits, and may finally dominate total CPU
time. This applies to both the flat and the Schur version, but its impact is more severe
for the flat handling due to the much larger number of SPICE equations.

6 Summary

To be applicable for compact modeling, Schur complement methods for local solv-
ing of device internal equations must be adapted to the standardized techniques
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of model evaluation in circuit simulators. A formulation is given, which fits well
into existing flat model evaluation procedures, and can be realized in a software
shell around the model evaluation function itself. A test implementation of the
HiSIM HV MOS model was developed in SPICE, which can be compared with
a flat standard implementation exporting all device internal equations to SPICE.
First tests confirm that the Schur complement techniques can significantly reduce
the size of the model stamps at no penalty with respect to convergence and accu-
racy, and at very moderate penalty with respect to the LOAD time, as long as the
number of internal equations per device is small. It depends on the host simulator if
this translates into a real benefit for the practical use of a model: Architecture of its
model interface, the ordering and pivot selection mechanisms of its sparse solver, its
degree of parallelization, etc. may have an impact. To enable more comprehensive
tests, a Schur based version of the HiSIM HV model will be put for download on
the HiSIM website [11], in parallel to the officially released flat version.
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Hybrid Analysis of Nonlinear Time-Varying
Circuits Providing DAEs with Index at Most One

Satoru Iwata, Mizuyo Takamatsu, and Caren Tischendorf

Abstract Commercial packages for transient circuit simulation are often based on
the modified nodal analysis (MNA) which allows an automatic setup of model equa-
tions and requires a nearly minimal number of variables. However, it may lead to
differential-algebraic equations (DAEs) with higher index. Here, we present a hy-
brid analysis for nonlinear time-varying circuits leading to DAEs with index at most
one. This hybrid analysis is based merely on the network topology, which possi-
bly leads to an automatic setup of the hybrid equations from netlists. Moreover, we
prove that the minimum index of the DAE arising from the hybrid analysis never ex-
ceeds the index from MNA. As a positive side effect, the number of equations from
the hybrid analysis is always no greater than that one from MNA. This suggests that
the hybrid analysis is superior to MNA in numerical accuracy and computational
effort.

1 Introduction

When modelling electric circuits for transient simulation, one has to regard Kirch-
hoff’s laws for the network and the constitutive equations for the different types of
network elements. They are originally based on the branch voltages and the branch
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currents existing in the network. They form the basis for all modelling approaches
as for instance the popular modified nodal analysis (MNA).

Concerning the huge number of variables involved (all branch voltages and
branch currents), one is interested in a reduced system reflecting the complete circuit
behaviour that can be generated automatically. Whereas MNA focuses on a descrip-
tion depending mainly on nodal potentials, the hybrid analysis approach [1] here
employs certain branch voltages and branch currents obtained from a construction
of a particular normal tree.

A normal tree is a tree containing all independent voltage sources, no indepen-
dent current sources, a maximal number of capacitive branches, and a minimal
number of inductive branches. Normal trees have already been used in [2] for state
approaches for linear RLC networks. The results have been extended in [3] for lin-
ear circuits containing ideal transformers, nullors, independent/dependent sources,
resistors, inductors, capacitors, and, under a topological restriction, gyrators.

The hybrid analysis is a common generalization of the loop analysis and the
cutset analysis. Kron [4] proposed the hybrid analysis in 1939, and Amari [5] and
Branin [6] developed it further in 1960s. In contrast to MNA, the hybrid analysis
retains flexibility in the selection of a normal tree, which can be exploited to find a
model description that reduces the numerical difficulties.

The differential-algebraic equations (DAEs) arising from the hybrid analysis are
called the hybrid equations. Recently, the analysis of the index of the hybrid equa-
tions has been developed. For linear time-invariant RLC circuits, it is shown in [7]
that the index of the hybrid equations never exceeds one, while MNA often results
in a DAE with index two. Moreover, [7] gives a structural characterization of cir-
cuits with index zero. For linear time-invariant electric circuits which may contain
dependent voltage/current sources, an algorithm for finding an optimal hybrid anal-
ysis which minimizes the index of the hybrid equations was proposed in [8].

For nonlinear time-varying circuits, this paper shows that the index of the hybrid
equations is at most one, and gives a structural characterization for the index being
zero, which is an extension of the results in [7]. By this structural characterization,
we prove that the minimum index of the hybrid equations does not exceed the index
of the DAE arising from MNA (cf. [9–11]). Here, we follow the hybrid analysis
approach in [8] but use projection techniques (cf. [10]) in order to prove the index
results for general nonlinear time-varying circuit systems.

The organization of this paper is as follows. In Section 2, we describe nonlinear
time-varying circuits. We present the procedure of the hybrid analysis in Section 3.
We analyze the hybrid equation system in Section 4, and characterize its index in
Section 5. All the technical proofs omitted in this paper can be found in [12].

2 Nonlinear Time-Varying Circuits

Here, we consider nonlinear time-varying circuits composed of resistors, conduc-
tors, inductors, capacitors, and voltage/current sources.
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We denote the vector of branch currents by i, and the vector of branch voltages by
u. The vector of currents through independent voltage sources, independent current
sources, capacitors, inductors, resistors, conductors, controlled current sources, and
controlled voltage sources are denoted by iV , iJ , iC, iL, iR, iG, iSJ , and iSV . Similarly,
the vector of voltages are denoted by uV , uJ , uC, uL, uR, uG, uSJ , and uSV . The
physical characteristics of elements determine constitutive equations. Independent
voltage and current sources simply read as

uV = vs(t) and iJ = js(t). (1)

Capacitors and inductors can be modelled by

iC =
d
dt

q(uC,t) and uL =
d
dt

φ (iL, t). (2)

Moreover, we assume that conductors and resistors are described by iG = g(uG, t)
and uR = r(iR, t). Finally, let the controlled sources be given in the form of iSJ =
γ(iSV ,uSJ , t) and uSV = ρ(iSV ,uSJ ,t).

A square matrix U is called positive definite if x�Ux > 0 for all x �= 0. In this
paper, we assume the following conditions.

Assumption 1 The capacitance matrix C, the conductance matrix G, the resistance
matrix R, the inductance matrix L, and the controlled source matrix S given by

C =
∂q
∂uC

, G =
∂g
∂uG

, R =
∂r
∂ iR

, L =
∂φ
∂ iL

, and S =

⎛
⎜⎜⎝

∂ρ
∂ iSV

∂ρ
∂uSJ

∂γ
∂ iSV

∂γ
∂uSJ

⎞
⎟⎟⎠

are all positive definite.1

Introducing uY :=
(

uG

uSJ

)
, uZ :=

(
uR

uSV

)
, iY :=

(
iG
iSJ

)
, iZ :=

(
iR
iSV

)
, f(iZ,uY , t) :=(

g(uG, t)
γ(iSV ,uSJ , t)

)
, and h(iZ ,uY ,t) :=

(
r(iR,t)

ρ(iSV ,uSJ ,t)

)
, we find

iY = f(iZ,uY ,t), uZ = h(iZ,uY , t) (3)

and the matrix

(
∂h
∂ iZ

∂h
∂uY

∂ f
∂ iZ

∂ f
∂uY

)
to be positive definite because of Assumption 1.

Let Γ = (W,E) be the connected network graph with vertex set W and edge set
E . An edge in Γ corresponds to a branch that contains one element in the circuit.
For a consistent model description, Γ contains no cycles consisting of independent

1 Assuming the controlled source matrix S to be positive definite is very restrictive and usually not
fulfilled when controlled sources are considered alone. However, controlled sources are often used
to describe certain transistor behaviour. Considering the whole static behavior of a transistor (e.g.
including bulk resistances) as a controlled source may lead to a positive definite matrix S.
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voltage sources only and no cutsets consisting of independent current sources only.
We split E into Ey and Ez, i.e., Ey ∪Ez = E and Ey ∩Ez = /0. A partition (Ey,Ez) is
called an admissible partition, if Ey includes all the independent voltage sources, all
the capacitors, all the conductors as well as all the controlled current sources, and
Ez includes all the independent current sources, all the inductors, all the resistors as
well as all the controlled voltage sources.

We call a spanning tree T of Γ a reference tree if T contains all the edges of the
independent voltage sources, no edges of the independent current sources, and as
many edges in Ey as possible. Note that a reference tree T may contain some edges
in Ez. A reference tree is called normal if it contains as many edges corresponding to
capacitors and as few edges corresponding to inductors as possible. The co-tree of
T is denoted by T = E \ T . The hybrid equations are determined by an admissible
partition (Ey,Ez) and a reference tree T , which is not necessarily normal. For the
sake of simplicity, we adopt a normal reference tree throughout this paper.

With respect to a normal reference tree T , we further split i and u into

i=(iV , iτC, iτY , iτZ, iτL, i
λ
C , iλY , iλZ , iλL , iJ)� and u=(uV ,uτ

C,uτ
Y ,uτ

Z,uτ
L,u

λ
C ,uλ

Y ,uλ
Z ,uλ

L ,uJ)�,

where the superscripts τ and λ designate the tree T and the co-tree T . With respect
to a normal reference tree T , the vector valued function f is also split into fτ and fλ .
This means iτY = fτ (iZ,uY ,t) and iλY = fλ (iZ ,uY ,t). Similarly, we split h, q, and φ .

By the definition of a normal reference tree, the fundamental cutset matrix K is
given by

K =

⎛
⎜⎜⎜⎜⎝

iV iτC iτY iτZ iτL iλC iλY iλZ iλL iJ
I 0 0 0 0 AVC AVY AVZ AVL AVJ

0 I 0 0 0 ACC ACY ACZ ACL ACJ

0 0 I 0 0 0 AYY AY Z AY L AYJ

0 0 0 I 0 0 0 AZZ AZL AZJ

0 0 0 0 I 0 0 0 ALL ALJ

⎞
⎟⎟⎟⎟⎠.

Then Kirchhoff’s current law (KCL) may be written as Ki = 0. Kirchhoff’s voltage
law (KVL) provides K⊥u = 0 with K⊥ being the fundamental loop matrix

K⊥ =

⎛
⎜⎜⎜⎜⎝

uV uτ
C uτ

Y uτ
Z uτ

L uλ
C uλ

Y uλ
Z uλ

L uJ

−A�
VC −A�

CC 0 0 0 I 0 0 0 0
−A�

VY −A�
CY −A�

YY 0 0 0 I 0 0 0
−A�

VZ −A�
CZ −A�

YZ −A�
ZZ 0 0 0 I 0 0

−A�
VL −A�

CL −A�
YL −A�

ZL −A�
LL 0 0 0 I 0

−A�
VJ −A�

CJ −A�
YJ −A�

ZJ −A�
LJ 0 0 0 0 I

⎞
⎟⎟⎟⎟⎠.

3 Hybrid Analysis

In this section, we describe the procedure of the hybrid analysis. The idea is to use
all constitutive equations such that the equations Ki = 0 and K⊥u = 0 provide a
system depending on uτ

C, uτ
Y , iλZ , and iλL only. The details are described in [12]. The
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second and third line of Ki = 0 as well as the third and fourth line of K⊥u = 0
provide us the hybrid equations (or hybrid equation system)

−A�
CZuτ

C −A�
YZuτ

Y −A�
ZZhτ + hλ = A�

VZvs(t),

−A�
CLuτ

C −A�
YLuτ

Y −A�
ZLhτ −A�

LL
d
dt

φτ +
d
dt

φλ = A�
VLvs(t),

ACY fλ + ACZiλZ + ACLiλL +
d
dt

qτ + ACC
d
dt

qλ = −ACJjs(t),

fτ + AYY fλ + AYZiλZ + AYLiλL = −AYJjs(t),

where

q = q(uτ
C,A�

VCvs(t)+ A�
CCuτ

C,t), φ = φ (−ALLiλL −ALJjs(t), iλL , t),

f = f(−AZZiλZ −AZLiλL −AZJjs(t), iλZ ,uτ
Y ,A�

VY vs(t)+ A�
CY uτ

C + A�
YY uτ

Y , t),

h = h(−AZZiλZ −AZLiλL −AZJjs(t), iλZ ,uτ
Y ,A�

VY vs(t)+ A�
CY uτ

C + A�
YY uτ

Y , t).

The procedure of the hybrid analysis is as follows.

1. The values of uV and iJ are obvious from (1).
2. Compute the values of iλZ , iλL and uτ

C, uτ
Y by solving the hybrid equations.

3. Compute the values of iτZ , iτL from the fourth and fifth line of Ki = 0 (KCL) and
uλ

C , uλ
Y from the first and second line of K⊥u = 0 (KVL) by substituting the

values obtained in Steps 1–2.
4. Compute the values of uτ

Z , uλ
Z , uτ

L, uλ
L , and iτC, iλC , iτY , iλY by substituting the values

obtained in Steps 1–3 into (2) and (3).
5. Compute the values of iV and uJ by substituting the values obtained in Steps 1–4

into the first line of KCL and the fifth line of KVL.

All operations in Steps 3–5 are substitutions and differentiations of the obtained
solutions. Consequently, the numerical difficulty is determined by the index of the
hybrid equation system. Higher index variables as known from MNA do not appear
in the hybrid equation system. In this paper, we prove that the hybrid equation sys-
tem has index at most one. The proof relies on the tractability index concept for
DAEs with the use of a projector based analysis.

4 Hybrid Equations with Properly Stated Leading Term

Consider a DAE in the form of

A
d
dt

d(x(t),t)+ b(x(t),t) = 0. (4)

Let A be an m× n matrix. We define D(x,t) :=
∂d(x, t)

∂x
, B(x, t) :=

∂b(x, t)
∂x

, and

M(x, t) := AD(x, t). A matrix P satisfying P2 = P is called a projector.
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Definition 1 ([13, Definition 2.1]). The equation (4) is a DAE with properly stated
leading term if the size of D(x,t) is n × m, kerA ⊕ imD(x, t) = Rn holds for all
x and t from the definition domain, and there is an n × n projector function P(t)
continuously differentiable with respect to t such that kerP(t) = kerA, imP(t) =
imD(x, t), and d(x,t) = P(t)d(x,t).

A DAE with properly stated leading term (4) arises in circuit simulation via anal-
ysis methods such as MNA [14]. A DAE with properly stated leading term was first
introduced in [15]. The analysis of such DAEs has been developed in [14, 16–19].

Obviously, the DAE (4) represents a regular ODE if and only if the matrix M(x, t)
is nonsingular for all x and t of the definition domain. In this case we say that the
DAE (4) has index 0. In the case of a singular matrix M(x, t) for all x and t, the DAE
(4) contains algebraic equations. Furthermore, one may have to differentiate certain
part of the system to get a solution. A simple criteria for the absence of this problem
is given by the tractability index 1 condition (see [13], Theorem 4.3).

Definition 2 ([13, Definition 3.3]). The DAE (4) is regular with index 1 on
their definition domain if M(x,t) is singular and kerD(x, t)∩{z ∈ Rm| B(x, t)z ∈
imM(x, t)} = {0} for all (x,t) of the definition domain.

Remark 1 ([20, Remark 4.6]). A DAE (4) is regular with index 1 if and only if the
matrix M(x, t)+ B(x,t)Q(x,t) is nonsingular for all x and t with a projector Q(x, t)
satisfying imQ(x, t) = kerM(x,t).

We rewrite the hybrid equation system as a DAE with properly stated leading
term. A reflexive generalized inverse of a matrix A is a matrix A− which satisfies
AA−A = A and A−AA− = A−. Let us define

A =

⎛
⎜⎜⎝

0 0 0 0
−A�

LL I 0 0
0 0 I ACC

0 0 0 0

⎞
⎟⎟⎠ , d(x,t) = A−A

⎛
⎜⎜⎝

φτ(−ALLiλL −ALJjs(t), iλL , t)
φλ (−ALLiλL −ALJjs(t), iλL , t)
qτ(uτ

C,A�
VCvs(t)+ A�

CCuτ
C, t)

qλ (uτ
C,A�

VCvs(t)+ A�
CCuτ

C, t)

⎞
⎟⎟⎠ ,

x(t) =

⎛
⎜⎜⎝

iλZ
iλL
uτ

C
uτ

Y

⎞
⎟⎟⎠ , b(x,t) =

⎛
⎜⎜⎝

−A�
VZvs(t)−A�

CZuτ
C −A�

YZuτ
Y −A�

ZZhτ + hλ

−A�
VLvs(t)−A�

CLuτ
C −A�

YLuτ
Y −A�

ZLhτ

ACY fλ + ACZiλZ + ACLiλL + ACJjs(t)
fτ + AYY fλ + AYZiλZ + AYLiλL + AYJjs(t)

⎞
⎟⎟⎠ .

This gives the hybrid equation system in the form of (4). Under Assumption 1, the
hybrid equation system (4) is shown to be a DAE with properly stated leading term.

5 Index of Hybrid Equations

In this section, we show that the index of the hybrid equations is at most one, and
give a structural criteria for hybrid equations with index zero. We now introduce the
Resistor-Acyclic condition for admissible partition (Ey,Ez).
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[Resistor-Acyclic condition]

• Each conductor and controlled current source in Ey belongs to a cycle consist-
ing of independent voltage sources, capacitors, and itself.

• Each resistor and controlled voltage source in Ez belongs to a cutset consisting
of inductors, independent current sources, and itself.

Consider the graph Γ̃ obtained from Γ = (W,E) by contracting all edges of inde-
pendent voltage sources and capacitors and deleting all edges of inductors and inde-
pendent current sources. The Resistor-Acyclic condition means that Γ̃ is acyclic [7].

Theorem 1. Under Assumption 1, the index of the hybrid equations is at most one
for any admissible partition (Ey,Ez) and normal reference tree T . Moreover, the
index is zero if and only if an admissible partition (Ey,Ez) satisfies the Resistor-
Acyclic condition.

Here we present only a sketch of the proof. Details are given in [12]. Computation
of the matrix M(x,t)+ B(x,t)Q(x,t) leads to (omitting the arguments)

M + BQ =

⎛
⎜⎜⎝

BZ 0 0 −A�
YZ + BH

∗ ML 0 ∗
∗ 0 MC ∗

AY Z + BF 0 0 BY

⎞
⎟⎟⎠ for Q =

⎛
⎜⎜⎝

I
0

0
I

⎞
⎟⎟⎠ .

Here, ML and MC are nonsingular and

(
BZ −A�

YZ + BH

AY Z + BF BY

)
=
(

0 −A�
YZ

AYZ 0

)
+

(
BZ BH

BF BY

)
is a sum of a positive semidefinite and a positive definite matrix. These

properties imply M + BQ to be nonsingular. Since AD(x, t) = A

(
L 0
0 C

)
A� holds,

also the second statement of Theorem 1 is clear.
By Theorem 1, we can prove that the minimum index of the hybrid equations

never exceeds the index of the DAE arising from MNA for nonlinear time-varying
circuits without controlled voltage/current sources.

Remark 2. A simple algorithm for finding the optimal admissible partition is given
in [7]. See [7, Examples 4.13–4.14] for circuit examples, which trace the procedure
of the hybrid analysis and make comparisons between the hybrid analysis and MNA.

Remark 3. For nonlinear time-varying circuits composed of resistors (all modelled
as conductances), inductors, capacitors, and voltage/current sources, the dimension
of the hybrid equation system is no greater than that one for the MNA system. This
is because dim(uτ

C,uτ
Y ) < n for n being the number of nodes of the circuit, dim iλL

is not greater than the number of inductors in the system, and dim iλZ is not greater
than the number of (controlled) voltage sources of the system.
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Transient Analysis of Nonlinear Circuits Based
on Waves

Carlos Christoffersen

Abstract A new approach for transient analysis of nonlinear circuits is presented.
The circuit equations are formulated as functions of incident and reflected waves at
the device ports. Only one large matrix decomposition is necessary if time step is
constant. The proposed method is parallelizable, allows straightforward inclusion of
complex nonlinear device models and has better convergence properties compared
to existing methods. Simulation results are provided to demonstrate the approach.

1 Introduction

Transient simulation of circuits using wave quantities has been previously proposed
mainly in the framework of Wave Digital Filter (WDF) theory [1]. References [2–8]
are some examples. WDF are discrete structures that mimic an analog reference
circuit. The reference circuit is not required to be a filter and thus WDF theory
can be applied to model any circuit. A good introduction of WDF concepts for the
purpose of circuit simulation can be found in Reference [6]. The basic idea is to
formulate equations in terms of wave quantities at the ports of each device. The
network topology is represented by means of adaptors, which is the name for the
scattering matrix representing port junctions. WDF preserve losslessness and pas-
sivity of the reference circuit, and are less sensitive to parameter quantization than
discretizations based on voltage and current [7]. References [2, 3, 5, 7–10] show
how nonlinear devices (both algebraic and dynamic) can be represented in terms of
waves. In general it is not possible to avoid delay-free loops (DFLs) in circuits with
more than one nonlinear port and thus some iterative method is required to solve
the equations. References [9, 10] propose methods to eliminate DFLs created by
multiple nonlinearities. These works basically propose to simultaneously compute
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(or pre-compute) all possible reflections given all possible incident waves from all
nonlinear ports. That kind of approach is useful only when the number of nonlin-
ear ports is small. Reference [8] proposes a method to eliminate DFLs for circuits
containing nonlinear inductors. This method relies on an estimation of the induc-
tor current at each time step and can not be applied for algebraic nonlinearities. In
Reference [6] WDF are used to simulate power electronic circuits with nonlinear
devices treated as switches. A relaxation approach was proposed by Meerkötter et
al. [3] to eliminate DFLs. This approach always converges for circuits that contain
passive nonlinear devices that are also locally passive. Local passivity implies that
the spectral radius of the device small-signal scattering parameter matrix is less than
one (note transistors are not locally passive). Reference [4] further investigates this
approach and shows that it is possible to cut DFLs and split the computation in
independent blocks suitable for parallel processing without losing convergence.

The wave-based transient analysis approach presented in this work solves DFLs
through an iterative procedure that has better convergence properties than previous
works. Another advantage of the proposed approach is that allows easy inclusion of
complex multiport nonlinear devices formulated in the Kirchhoff domain. Only one
large (sparse) matrix decomposition is required for a given time step size. This paper
is organized as follows: the formulation of the method and some of its properties are
presented in Section 2, followed by simulation examples in Section 3. Conclusions
and directions for further research are given in Section 4.

2 Proposed Method

In the following we will assume that all sources have some internal resistance and all
remaining devices are passive as shown in Fig. 1. Let n be the total number of ports
and m the number of nonlinear ports. For each port, we associate a characteristic
impedance equal to Zj. Since a time domain method is being considered, Zj is pure
real. The voltage and current at Port j can be expressed in terms of power waves as
follows:

v j =
√

Zj(a j + b j) (1)

i j =
a j −b j√

Zj
, (2)

where a j and b j are the incident and reflected power waves at Port j as seen from
the devices as shown in Fig. 1. The circuit topology defines the relationship between
the vector of incident and reflected waves, a and b, respectively. Let Q and B be the
full cut-set and loop-set matrices for a given tree in the circuit. The vectors of all
port currents (i) and port voltages (v) satisfy

Qi = 0 (3)

Bv = 0 . (4)
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Fig. 1 Circuit partition. Lin-
ear and nonlinear devices
are assumed to be passive
and sources are assumed
matched to the impedances
of their respective ports. The
interconnection (topology) is
represented by a scattering
parameter matrix

Z2

Z1b1

b2 a2
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Zmbm am
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Nonlinear
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Devices
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Zpbp ap

a(m+1)
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...

b(p+1) Z(p+1)

Devices

Passive

Combining (1) and (2) with (3) and (4) the following system of n equations is ob-
tained: [

QD−1

BD

]
a =

[
QD−1

−BD

]
b , (5)

where D is a diagonal matrix that has the square root of the reference impedances
(
√

Zj) in its diagonal. Matrices Q and B are sparse and thus a can efficiently be
obtained for large circuits if b is known. This equation defines the scattering matrix
that represents the circuit topology,

⎡
⎣ aN

aL

aS

⎤
⎦=

⎡
⎣S11 S12 S13

S21 S22 S23

S31 S32 S33

⎤
⎦
⎡
⎣bN

bL

bS

⎤
⎦ , (6)

where aN , aL and aS are the vectors of waves incident to nonlinear devices, linear
devices and sources, respectively and bN , bL and bS are similarly defined for the
reflected waves. The trapezoidal rule is used for time discretization as is usual in the
WDF literature [6]. Reference resistances at sources and linear devices are chosen
such that there are no DFL from the device back to the network [6]. Thus bL is
constant for one time step as all loops contain at least one delay.

2.1 Nonlinear Models

Nonlinear devices, both static and dynamic, will cause DFLs. Reflections are cal-
culated in this work using Newton’s method. For example, suppose the current in a
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nonlinear device is given by a nonlinear function, i(v j). An error function, e(a j), is
defined

e(a j) =
√

Zj i(
√

Zj(a j + b j))−a j + b j = 0 . (7)

This can easily be generalized for multi-port nonlinear devices, both static and dy-
namic. Newton iterations are performed independently for each nonlinear device
and require a small Jacobian matrix factorization. One advantage of this approach
is that it allows straightforward treatment of complex nonlinear models.

2.2 Iterative Method

Vector bS is known since it is forced by the matched sources. The nonlinear equation
to be solved is thus

bN = F(S11bN + a0) , (8)

with a0 = S12bL +S13bS being constant for a given time instant and F is a nonlinear
vector function that represents the contribution of nonlinear passive devices. The
following iterative fixed-point scheme is proposed:

bk+1
N = (I−Kk)bk

N + KkF(S11bk
N + a0) , (9)

where the k superscript denotes the iteration number, I is an identity matrix and Kk

is an m×m matrix that may be constant or updated at each iteration as described in
the following subsection.

2.2.1 Convergence Analysis

Assume for now that Kk = I. In that case (9) is equivalent to just propagating re-
flections along the DFLs in the circuit (i.e., plain relaxation). It can be shown that
iterations converge to the desired solution if the spectral radius of JF S11 is less than
one, where JF is the Jacobian matrix of F. This condition is satisfied if all nonlinear
devices are locally passive (e.g., diodes) and in this case convergence is global. Un-
fortunately convergence is not guaranteed if devices such as transistors are present
in the circuit. Consider now a scalar (γ) between 0 and 1 and let

Kk = γI . (10)

Equation (9) becomes essentially equivalent to the formulation proposed in Refer-
ence [4]. A good selection of γ may improve convergence properties compared to
plain relaxation but this modification is not enough to guarantee convergence in the
presence of locally active devices.

Local convergence can be obtained by setting
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Kk =
(

I−Jk
FS11

)−1
. (11)

Equation (9) becomes then equivalent to Newton’s method. Note that JF is a block-
diagonal matrix with each block being the small-signal scattering matrix for each
nonlinear device. Although it is possible to re-order (5) and (9) in order to perform
one sparse matrix decomposition per iteration, this is more expensive than the back-
ward substitution of the relaxation approach.

One possibility to avoid the factorization of a large matrix at each iteration is to
make Kk artificially sparse. If elements of S11 in (11) are set to zero to obtain the
same block-diagonal pattern as in JF , the resulting Kk matrix is also block-diagonal.
This requires explicit knowledge of S11 which in turn requires m backward substi-
tutions of the decomposed matrix originating from (5), but this only need to be per-
formed once. The resulting iterative scheme is known as Newton-Jacobi algorithm
[11]. Local convergence is no longer guaranteed but it will be shown in Section 3
that this modification is an improvement over the relaxation approach.

2.2.2 Reflected Power Considerations

An interesting property of the pure relaxation approach (Kk = I) is that due to the
nature of power waves iterations are guaranteed not to diverge to infinity, even if
the initial guess is far from the solution. This is demonstrated as follows: The to-
tal reflected power at each iteration is given by |bk+1

N |2, where the bars denote the
Euclidean Norm, and is bounded by

|bk+1
N |2 < Pmax + L|S11bk

N + a0|2 , (12)

here L is a scalar less than one (since nonlinear devices are passive) and Pmax is the
maximum power that can be sent from the nonlinear devices to the network during
one time step and depends on the total energy stored in nonlinear capacitors and
inductors. If the upper bound is propagated from the first iteration the following
result is obtained:

lim
k→∞

|bk+1
N |2 <

1
1−L

(
Pmax + L|a0|2

)
. (13)

An upper bound can also be found if Kk is chosen as in (10). This property can be
extended to the Newton-Jacobi approach if Kk is chosen as follows:

Kk = αγI+(1−α)Kk
NJ , (14)

where Kk
NJ is the block diagonal matrix used for the Newton-Jacobi approach and

α is the lowest scalar between 0 and 1 such that bk+1
N satisfies (12). For circuits with

locally passive nonlinear devices this choice tends to provide both global conver-
gence when initial guess is far from the solution and faster convergence rate near
the solution as α becomes 0.
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In summary, iterations are performed according to (9) using Kk as defined in
(14). Thus the proposed method is an hybrid between relaxation and Newton-Jacobi.
Steffensen [12] updates,

bk+1
j = bk−2

j +
(bk−1

j −bk−2
j )2

bk
j −2bk−1

j + bk−2
j

, (15)

are occasionally used along with regular iterations to accelerate convergence. All
calculations in (9) and (15) can be performed locally for each nonlinear device and
thus could be computed in parallel. The only communication between processors at
each iteration is to evaluate the product S11bk

N which requires the reflections from
all nonlinear devices.

3 Numerical Example

The circuit shown in Fig. 2 contains both static and dynamic nonlinearities included
in the diode model. Since diodes are locally passive, convergence is guaranteed in
this case. The circuit parameters are: C = 4 μF, RS = 50 Ω , RL = 5 kΩ . The source
is sinusoidal with a peak of 3 V (later increased to 200 V) and a frequency of 500 Hz.
The diode parameters are IS = 1 fA, N = 1, Cj = 100 nF, Mj = 0.5, Vj = 1 V and
FC = 0.5. Tolerance was set to 10−8. A transient simulation with a duration of 8 ms
and a time step equal to 50 μs was performed. Figure 2 also shows a comparison of
simulation results obtained with the proposed algorithm and Spice.
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Fig. 2: Nonlinear circuit and comparison of simulation results at load resistor with 3 V input

Table 1 summarizes the results for different input voltages, reference impedances
at the diode ports. The number of time steps is the same for all simulations. The last
column indicates how many iterations with α �= 0 (i.e., limited reflected power)
were performed. The first three rows show the results when the full Jacobian matrix
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Table 1: Summary of simulation results

Input (V) Ref. impedance (Ω ) Steffensen U. Total iterations Reflected power limit

3 50 Disabled a763 56
3 500 Disabled a806 15

200 500 Disabled a1950 1141
3 50 87 b4897 0
3 500 271 b3591 0

200 500 Disabled b42075 0
200 500 250 b13836 0

3 50 Disabled 5225 1
3 50 62 4412 1
3 500 Disabled 2518 4
3 500 27 2483 4

200 500 Disabled 10234 1234
200 500 138 6852 953

a Regular Newton method + Power limit
b Pure relaxation

is used instead of a block-diagonal matrix. The choice of reference impedance does
not significantly affect the convergence rate for that case, but this is not so when pure
relaxation or the modified Newton-Jacobi method is used as seen in the remaining
rows of the table. The most nonlinear cases (200 V input) show that both Steffensen
updates and reflected power limitation are frequently used. Selective Steffensen
updates improve convergence in all cases. It should be noted that sometimes the
reflected power limitation reduces somewhat the convergence rate. However even
when that happens the proposed approach converges faster than plain relaxation.

4 Conclusions and Discussion

The proposed method has the good numerical properties associated with the WDF
approach and allows the inclusion of complex nonlinear device models. Equation
(9) introduces a cause-effect relation in the power delivered to nonlinear devices
that is not apparent in more classical approaches. That formulation along with se-
lective Steffensen’s updates, the treatment of nonlinear device models and the ap-
proach to prevent numerical divergence with Newton-Jacobi iterations are novel in
this work. An admittedly simple nonlinear circuit was simulated to illustrate the
performance of the proposed method. It was shown that the combination of the
techniques proposed here improves the convergence rate compared with plain re-
laxation. As expected, Newton-Jacobi iterations do not converge as fast as regular
Newton iterations. Newton-Jacobi could be faster however for large circuits as the
cost of iterations does not grow as much with the circuit size. The performance of
the proposed method with large scale circuits has yet to be evaluated.
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Circuits with locally active devices (e.g., transistors) can be handled by this
method but then convergence is no longer guaranteed. Work in progress indicates
that with some modifications it is possible to guarantee (at least local) convergence
in that case. The analysis presented here is for fixed time step, but variable time step
could be handled without additional matrix decompositions by considering vari-
able reflections from linear devices, i.e. bL changes with each iteration. There is an
associated computational cost with this modification, but the main features of the
method remain intact. Another important issue is the optimum selection of refer-
ence impedances at nonlinear device ports. This selection may have to be adaptive
since the optimum values are dependent on the circuit state. Further research will
also include the application of the ideas presented here for other types of circuit
analysis such as Harmonic Balance, or Envelope Following Transient.
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Simultaneous Step-Size and Path Control for
Efficient Transient Noise Analysis

Werner Römisch, Thorsten Sickenberger, and Renate Winkler

Abstract Noise in electronic components is a random phenomenon that can ad-
versely affect the desired operation of a circuit. Transient noise analysis is designed
to consider noise effects in circuit simulation. Taking noise into account by means of
Gaussian white noise currents, mathematical modelling leads to stochastic differen-
tial algebraic equations (SDAEs) with a large number of small noise sources. Their
simulation requires an efficient numerical time integration by mean-square conver-
gent numerical methods. As efficient approaches for their integration we discuss
adaptive linear multi-step methods, together with a new step-size and path selection
control strategy. Numerical experiments on industrial real-life applications illustrate
the theoretical findings.

1 Transient Noise Analysis in Circuit Simulation

In current chip design the decreasing feature sizes, high clock frequencies and low
supply voltages cause several parasitic effect. As a consequence the signal-to-noise
ratio decreases, i.e., the difference between the desired signal and noise is getting
smaller. To address the signal-to-noise ratio the modelling and the simulation can
be improved by taking the inner electrical noise into account. An important re-
quirement for a transient noise simulation is the appropriate modelling of the noise
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sources in the time domain. We consider two different sources of inner electrical
noise, namely, thermal noise of resistors and shot noise of semiconductors. Thermal
noise ith of resistors is caused by the thermal motion of electrons and is described
by Nyquist’s theorem. Shot noise ishot of pn-junctions, caused by the discrete nature
of currents due to the elementary charge, is modelled by Schottky’s formula and
inherits noise intensities that depend on the deterministic currents (see e.g. [1, 2]).

A noisy element is modelled as an additional stochastic current source in paral-
lel to the original electronic element. The noise intensity is given by the physical
characteristics and the noise models are added to the network equations. Combin-
ing Kirchhoff’s current law with the element characteristics and using the charge-
oriented formulation formally yields a stochastic differential-algebraic equation
(SDAE) of the type (see e.g. [3, 4])

A
d
dt

q(x(t))+ f (x(t),t)+
m

∑
r=1

gr(x(t), t)ξr(t) = 0 , (1)

where A is a constant singular incidence matrix determined by the topology of the
dynamic circuit parts, the vector q(x) consists of the charges and the fluxes, and x
is the vector of unknowns consisting of the nodal potentials and the branch currents
through voltage-defining elements. The term f (x,t) describes the impact of the static
elements, gr(x, t) denotes the vector of noise intensities (amplitudes) for the r-th
noise source, and ξ := (ξ1, . . . ,ξm)T is an m-dimensional vector of independent
Gaussian white noise sources (see e.g. [1]).

Although this system (1) appears to be similar to a noise-free system, it requires a
completely different mathematical background. A serious mathematical description
begins by introducing the Brownian motion or the Wiener process that is caused
by integrating the white noise “W (t) =

∫ t
0 ξ (s)ds =

∫ t
0 dW (s)” (see e.g. [5]). Prob-

lem (1) is then understood as a stochastic integral equation

Aq(X(s))
∣∣∣t
t0
+
∫ t

t0
f (X(s),s)ds+

m

∑
r=1

∫ t

t0
gr(X(s),s)dWr(s) = 0, t ∈ [t0,T ] , (2)

where the second integral is an Itô-integral, and W denotes an m-dimensional
Wiener process (or Brownian motion) given on the probability space (Ω ,F ,P)
with a filtration (Ft)t≥t0 . The solution is a stochastic process depending on the
time t and on the random sample ω where the argument ω is usually dropped. The
value at fixed time t is a random variable X(t, ·)= X(t) - for a fixed realization of
the driving Wiener process, the function X(·,ω) is called a path of the solution. Due
to the influence of the Gaussian white noise, typical paths of the solution are rough
and nowhere differentiable.

In current chip design one has to deal with a large number of equations as well as
of noise sources. Fortunately, the noise intensities are small compared to the other
quantities which can be used for the construction of efficient numerical schemes.

The focus here is on efficient numerical methods to simulate sample solution
paths [14], i.e., strong approximations of the solution of the arising large systems
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of SDAEs, since only such paths can reveal the phase noise. The calculation of
hundreds or even a thousand solution paths are necessary for getting sufficient nu-
merical confidence about the phase. Moreover, from the solution paths any other
statistical data and measurements can be computed in a postprocessing step.

In this paper we present variable step-size two-step methods, in particular sto-
chastic analogues of the trapezoidal rule and the two-step backward differentiation
formula, see Section 2. The applied step-size control strategy is described in Sec-
tion 3. Here we extensively use the smallness of the noise. In Section 4 new ideas
for the control both of time and chance discretization are discussed. Test results that
illustrate the performance of the presented methods are given in Section 5.

2 Adaptive Numerical Methods

The key idea to design methods for SDAEs is to force the iterates to fulfill the con-
straints of the SDAE at the current time-point. We consider stochastic analogues of
methods that have proven very useful in the deterministic circuit simulation. Paying
attention to the DAE structure, the discretization of the deterministic part (drift) is
implicit, whereas the discretization of the stochastic part (diffusion) is explicit.

We consider stochastic analogues of the variable coefficient two-step backward
differentiation formula (BDF2) and the trapezoidal rule, where only the increments
of the driving Wiener process are used to discretize the diffusion part. Analogously
to the Euler-Maruyama scheme we call such methods multi-step Maruyama meth-
ods. The variable step-size BDF2 Maruyama method for the SDAE (2) has the form
(see [6] and, for constant step-sizes, e.g. [7])

A
α0,�q(X�)+α1,�q(X�−1)+α2,�q(X�−2)

h�
+β0,� f (X�, t�)

+α0,�

m

∑
r=1

gr(X�−1,t�−1)
ΔW �

r

h�
−α2,�

m

∑
r=1

gr(X�−2, t�−2)
ΔW �−1

r

h�
= 0, (3)

� = 2, . . . ,N. Here, X� denotes the approximation to X(t�), h� = t� − t�−1, and
ΔW �

r = Wr(t�)−Wr(t�−1) ∼ N(0,h�) on the grid 0 = t0 < t1 < · · · < tN = T . The
coefficients α0,�,α1,�,α2,�,β0,� depend on the step-size ratio κ�=h�/h�−1 and satisfy
the conditions for consistency of order one and two in the deterministic case. Let
the coefficients of the scheme be normalized in such a way that α0,� = 1 for all �.

A correct formulation of the stochastic trapezoidal rule for SDAEs requires more
structural information (see [8]). It should implicitly realize the stochastic trapezoidal
rule for the so called inherent regular SDE of (2) that governs the dynamical com-
ponents. Both the BDF2 Maruyama method and the stochastic trapezoidal rule of
Maruyama type have only an asymptotic order of strong convergence of 1/2, i.e.,

‖X(t�)−X�‖L2(Ω) := max
�=1,...,N

(E|X(t�)−X�|2)1/2 ≤ c ·h1/2, (4)
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where h := max�=1,...,N h� is the maximal step-size of the grid. This holds true for all
numerical schemes that include only information on the increments of the Wiener
process. However, the noise densities given in Section 1 contain small parameters
and the error behaviour is much better. In fact, the errors are dominated by the
deterministic terms as long as the step-size is large enough [6, 7].

In more detail, the error of the given methods behaves like O(h2+ εh + ε2h1/2),
when ε is used to measure the smallness of the noise, i.e., gr(x, t)= ε ĝr(x, t), r =
1,...,m where ε�1. Thus we can expect order 2 behaviour if h�ε . Higher numer-
ical effort for higher deterministic order pays off only if the noise is very small.

3 Local Error Estimates

The smallness of the noise allows us to construct special estimates of the local error
terms, which can be used to control the step-size. We aim at an efficient estimate of
the mean-square of dominating local errors by means of a sufficiently large number
of simultaneously computed solution paths. This leads to an adaptive step-size se-
quence that is identical for all paths. For the drift-implicit Euler-Maruyama scheme
this step-size control has been presented in [9], see also [1, 4].

In [8, 10] the authors extended this strategy to stochastic linear multi-step meth-
ods with deterministic order 2 and provided a reliable error estimate. Let L̃� approx-
imate the dominating local error in Aq(X�) by

L̃� = c�h�
2κ�

κ� + 1

[
f (X�,t�)− (κ� + 1) f (X�−1,t�−1)+κ� f (X�−2, t�−2)

]
, (5)

where c� is the error constant of the related deterministic scheme and κ� is the step-
size ratio. The estimate (5) is based on already computed values of the drift term.
Recall that L̃� is a vector valued random variable as is the solution X�. In dependence
on the small parameter ε and the step-size h� the L2-norm of the local error behaves

like O(h3
� + εh3/2

� + ε2h�). The term of order O(h3
�) dominates the local error be-

haviour as long as h3
� is much larger than εh3/2

� , i.e., ε2/3 � h�. Under this condition
also the expression ‖L̃�‖L2 approximates the local error at time t�.

Depending on the available information we will monitor different quantities to
satisfy accuracy requirements,

I. control ‖(A + h�β0,�J�)−1L̃�‖L2 to match a given tolerance for X�,
II. control ‖L̃�‖L2 to match a given tolerance for Aq(X�), or

III. control ‖A−L̃�‖L2 to match a given tolerance for Pq(X�).

Here J is the Jacobian of the drift function f w.r.t. the first variable, and A− denotes
the pseudo inverse of A with A−A = P, where P is a projector onto the dynamic
components of q(X�) [11]. Since (A/h� +β0,�J�) = 1/h� · (A + h�β0,�J�) is the Jaco-
bian of the discrete scheme (3) this matrix (or a good approximation to it) and its
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factorization are usually available. In case of M sampled paths, the L2-norm in (I)–
(III) is approximated by using the M values Ji

� and L̃i
� (i = 1, . . . ,M) that use values

Xi
�, Xi

�−1, and Xi
�−2 from the ith path. For example, in case (I) we use

∥∥∥(A + h�β0,�J�)−1L̃�

∥∥∥
L2

≈
(

1
M

M

∑
i=1

∣∣∣(A + h�β0,�J
i
�)

−1L̃i
�

∣∣∣2
)1/2

=: η̂� . (6)

Especially in circuit simulation the different ways of scaling the defect will en-
able us to control different quantities of the solution. In (I) the local error estimate is
used unscaled to match a given tolerance based on a vector representing the charges
and the fluxes of the electronic network. Considering the second case (II), the scaled
error estimate can be used to match a given tolerance for the solution X� = (e, jL, jV )
which represent the nodal potentials and some branch currents.

4 A Solution Path Tree Algorithm

In the analysis so far, we have considered a constant number M of sample paths.
These number influences the approximation of the solution as well as of the mean-
square norm in (6). There we make an additional error, the so-called sampling error
ϑ�, and the error expansions reads ‖L̃�‖L2 = η̂� +ϑ�, where η̂� is the approximation
of the dominating local error term based on the sample paths. The idea is to control
also the number of sample paths using an estimate of ϑ�. This yields an approximate
solution which consists of a tree of paths that is extended, reduced or kept fixed
adaptively.

Our aim in tuning the number of paths is to balance the local error and the sam-
pling error. Let STOL� be the tolerance for the sampling error ϑ� at time t�. One
possibility is to calculated this tolerance as an approximation of the higher deter-
ministic error term of order O(h4

�). We then derive the best number M� of paths

Fig. 1: A solution path tree: Variable time-points t�, solution states xi
� and path weights π i

�
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by

M� =
⌊

1

STOL2
�

μ̂2
� · σ̂2

�

μ̂2
� + σ̂2

�

⌋
, (7)

(see [4]), where μ̂� and σ̂2
� are estimates of the mean and the standard deviation of

the error estimate at time-point t�, respectively. Here �x� denotes the smallest integer
greater or equal to x.

The best number of paths M� depends on the time-point t� and is realized by
approximate solutions generated on a tree of paths that is extended, reduced or kept
fixed adaptively. In [4, 12] the authors describe the construction of a solution path
tree in detail. The method uses probabilitiesπ i

� (� = 1, . . . ,N; i = 1, . . . ,M�) to weight
the solution paths. Figure 1 gives an impression, how a solution path tree looks
like. Here the dashed lines indicates the optimal redistribution of the weights after a
reduction step (see [4] for a detailed description of the path tree generation).

At each time-step the optimal expansion or reduction problem is formulated by
means of combinatorial optimization models. The path selection is modelled as
a mass transportation problem in terms of the L2-Wasserstein metric (see [13] in
context of scenario reduction in stochastic programming). The algorithm has been
implemented in practice. The results presented in the next section show its perfor-
mance.

5 Numerical Results

Here we present numerical experiments for the stochastic BDF2 applied to a test cir-
cuit examples. To be able to handle real-life problems, a slightly modified version of
the schemes has been implemented in Qimonda’s in-house analog circuit simulator
TITAN. We consider a model of an inverter circuit with a MOSFET transistor, under
the influence of thermal noise. The related circuit diagram is given in Figure 2. The
MOSFET is modelled as a current source from source to drain that is controlled by
the nodal potentials at gate, source and drain. The thermal noise of the resistor and
of the MOSFET is modelled by additional white noise current sources that are shunt

Uop

Uin

R

C

12

3

Fig. 2: Thermal noise current sources in a MOSFET inverter circuit marked by grey diamonds
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Fig. 3: Simulation results for the noisy inverter circuit:
Left: 1 path, 127 (+29 rejected) steps; Right: 100 paths, 134 (+11 rejected) steps

in parallel to the original, noise-free elements. To highlight the effect of the noise,
we scaled the diffusion coefficient by a factor of 1000.

In Figure 3 we present simulation results, where we plotted the input voltage
Uin and values of the output voltage e1 versus time. Moreover, the applied step-
sizes, suitably scaled, are shown by means of single crosses. We compare the results
for the computation of a single path (left) with those for the computation of 100
simultaneously computed solution paths (right). The additional solid lines show two
arbitrarily chosen solution paths, the dashed line gives the mean of 100 paths and the
outer thin lines the 3σ -confidence interval (computed as a statistical estimate for the
standard deviation) for the output voltage e1. We observe that using the information
of an ensemble of simultaneously computed solution paths smoothes the step-size
sequence and considerably reduces the number of rejected steps, when compared to
the simulation of a single path. The computational cost that is mainly determined by
the number of computed (accepted + rejected) steps is reduced.

Additionally we have applied the solution path tree algorithm to this example.
The upper graph in Figure 4 shows the computed solution path tree together with
the applied step-sizes which are used simultaneously for all path segments. The
lower graph shows the simulation error (solid line), its tolerance (dashed line) and
the used number of paths (marked by×), vs. time. Here the tolerance is determined
by an approximation of the deterministic local error of order O(h4) (see [10]) and
the maximal number of paths was set to 250. The results indicate that there exists a
region from nearly t =1·10−8 up to t =1.5·10−8 where we have to use much more
than 100 paths. This is exactly the area in which the MOSFET is active and the
input signal is inverted. Outside this region the algorithm proposes approximately
70 simultaneously computed solution paths.

Especially in circuit simulation the solution path tree algorithm provides an ad-
vantage. It helps the designer to identify critical noisy elements of the circuit. In this
example the active MOSFET featuring nonlinear noise causes a high fluctuation
in the local error estimate whereas the additive noise of the linear resistor behaves
harmless.
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e1
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0
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Fig. 4: Simulation results for the noisy inverter circuit: Solution path tree and step-sizes (top),
sampling error, its error bound and the number of paths (bottom)
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Nonlinear Distortion in Differential Circuits
with Single-Ended and Balanced Drive

Timo Rahkonen

Abstract This paper illustrates the use of term-wise Volterra analysis tool that can
plot both IM3 tone and relevant 2nd order tones as vector sums of all important con-
tributions. As an example the nonlinear distortion behaviour in a fully differential
amplifier is studied, when driven either with single-ended or balanced input signal.
It is shown that with single-ended drive a small tail-impedance of the differential
pair generates 2nd-order distortion into the output of the first stage, and this mixes
further to 3rd-order distortion in the 2nd-degree nonlinearity of the second stage.

1 Introduction

Nowadays most of the high-performance analog components have a fully balanced
structure, i.e. they have differential input and output signals. This is beneficial for the
performance, but complicates the design. The circuit now needs impedance match-
ing and stability analysis of both the differential and common mode operation, and
also mode conversions from common mode to differential and vice versa may be
important. Also the nonlinear distortion behaves differently when driven with dif-
ferential or single-ended signals. This is relevant from the measurement point of
view, too. Many measuring instruments characterize balanced circuits by successive
single-ended measurements, and it is important to understand the limitations of such
measurements.

This paper aims to show the reasons for different distortion behaviour under dif-
ferent driving conditions. It also illustrates how a combination of vector sum plots
of 3rd and 2nd order distortion tones can be used to obtain quite a detailed idea of
what is really causing IM3 distortion, and how much of it is mixed from 2nd-order
tones.
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2 Analysis Techniques

2.1 Linear Analysis

Circuit theory includes a lot of tricks for studying balanced circuits. For RF cir-
cuits, the formalism was presented by Bockelman and Eisenstadt [1]. They assumed
that the balanced 2-port is characterized by single-ended measurements as a linear
4-port, and developed the linear matrix transformations needed to calculate differ-
ential and common mode behaviour. This technique is called mixed-mode presenta-
tion, and it converts a normal 4-port s-parameter matrix to four 2-port matrices, one
describing the truly differential operation, one common mode behaviour, and two
remaining ones the mode conversions between these two.

Bockelman presented his formulation to scattering parameters, but the idea can
naturally be extended to any linear I-V parameters (see [2]), and all normal de-
sign methods can be used — for example, one can pick up the common-mode
only presentation, and calculate the stability circles for the common mode matching
impedances. However, this analysis technique assumes superposition to be valid and
obviously does not operate with non-linear circuits.

2.2 Term-Wise Volterra Analysis

Volterra analysis has been used as a quick nonlinear analysis method, and it can also
be used to study the different distortion mechanisms ([3], [4], [5]). In this paper, the
program described in [6] is used. It is a standard AC Volterra analysis software, that
stores all the different contributions of distortion in phasor form. Hence, distortion
from each nonlinear device and mixing mechanism can be plotted separately, and
their phase relations are immediately visualised. It is also capable of separating mix-
ing results from different harmonic bands, and this makes it possible to track how
much of the third-order distortion is actually generated by down or up-conversion
from DC or 2nd harmonic bands.

Volterra analysis is based on polynomial device models, where frequency mix-
ing is easy to calculate. The time-domain polynomial can be converted to frequency
domain by replacing all signals by spectra and multiplications by convolution. The
analysis starts by solving the linear voltages V1 using normal AC analysis. Then,
order by order, the already solved lower-order voltages are used to calculate the
higher-order distortion currents I2, I3, .. of the nonlinear circuit elements, and these
are used as excitations to calculate the corresponding nonlinear voltages V2,V3, ...
Analysis is done in frequency domain, and in narrowband applications the signal
spectra can be further expanded to different harmonic bands called baseband, fun-
damental, and second etc. harmonic bands (BB, FU, H2, H3, ...).
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V = V1 +V2 +V3 + ...

V = V1 +V2BB +V2H2 +V3FU +V3H3 + ... (1)

Let us substitute this driving voltage V to the frequency-domain version of a
polynomial I-V function i = Σ(Ki · vi), where ∗ means spectral convolution.

I = K1 ·V + K2 · (V ∗V)+ K3 · (V ∗V ∗V)+ ... (2)

By separating output currents of different orders I1, I2, I3 (and the resulting volt-
ages) we can study these as linear combinations of mixing results from different
harmonic bands.

I1 = K1 ·V1

I2 = K1 ·V2 + K2 · (V1 ∗V1)
I3 = K1 ·V3 + K3 · (V1 ∗V1 ∗V1)+ 2K2 · (V1 ∗V2BB +V1 ∗V2H2) (3)

Here, the linear terms K1 ·Vj are calculated by using the nonlinear terms as an
excitation and solving the node voltages Vj. V2BB and V2H2 are the second-order DC-
band and 2nd harmonic band spectra, respectively. More specifically, signal at 2 f2

will mix with − f1 to frequency 2 f2 − f1, 2 f1 to 2 f1 − f2 and f2 − f1 and f1 − f2 to
upper and lower IM3, respectively. Altogether, the last row in (3) is the key of this
study: The third-order distortion is shown to be caused by cubic nonlinearity K3 ·v3

and by square-law mixing from baseband and second harmonic band.
As an example, let us analyse the lower IM3 tone (2 f1 − f2) at one collector of a

BJT differential pair (see Fig. 2) driven by a two-tone test at frequencies f1 and f2.
In Fig. 1, voltage phasors at the chosen frequencies (2 f1 − f2 and f2 − f1) are plotted
as vector sums. The naming of the vectors shows the name of the nonlinearity where
the distortion current is generated (gma, gmb etc.), degree of the mixing nonlinearity
(Kxy is the coefficient of a vx

i vy
o nonlinearity in a 2-dimensional polynomial), and the

band where the signal is mixed from (BB or H2). For example, gmbk20V2BB is an
IM3 term, that is generated by upconverting the f2 − f1 tone in the driving voltage
of gmb via its square-law nonlinearity k20.

Fig.1a shows how the IM3 tone is built up as a sum of cubic nonlinearity (gmak30
and gmbk30) and mixing from envelope difference frequency (gmak20V2BB and
gmbk20V2BB) and 2nd harmonic (gmak20V2H2 and gmbk20V2H2), as predicted
on the last row of (3). The square-law terms arise in the following way: The 2nd-
degree nonlinearities of the BJTs generate frequency components at the DC and
2nd harmonic bands. Due to the high-impedance emitter feedback these signals sum
up to the common emitter voltage and hence to the BE controlling voltages of the
transistors, where they get further mixed to the IM3. This broadband feedback from
2nd-order products converts the expansive exp() shaped nonlinearity of a single BJT
to a compressive tanh() shaped nonlinearity of a differential pair. Note, however,
that the tanh() response is achieved only by having a high and broadband emitter
impedance. Based on Fig.1a we could actually guess, that an inductive tail bias that
has low impedance at DC (shorting the strong BB terms) and large impedance at the
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Fig. 1: Voltage phasor sums of a IM3 tone 2 f1– f2 at collector of transistor B, b envelope tone
f2– f1 at the common emitter node

fundamental and 2nd harmonic bands would result in quite nice cancellation of the
total IM3.

Studying the plot further, we note that the IM3 currents generated in both devices
split 1:1 between devices A and B and sum up coherently in their collectors. The
slight difference between gmak30 and gmbk30 is due to the current lost in the tail
impedance ro (here 10 MΩ ). Next we are most probably interested on what is caus-
ing the 2nd-order voltages, and for that purpose similar vector plots can be drawn
for the BB and H2 tones f2- f1 and 2 f1, too. To illustrate this, Fig. 1b shows the
construction of the voltage at the common emitter point at the envelope frequency
f2- f1. It is seen that the 2nd-order currents of both transistors are in the same phase,
and sum up coherently to generate to the 2nd-order voltage seen as the dominant
terms in plot a. Terms gm2ak20 and gm2bk20 do not appear in a single open-loop
differential pair: they are results of opamp feedback, as discussed later.

2.3 Computational Complexity

In general, Volterra analysis is based on linear AC analysis and is very quick to
calculate. Compared to AC noise analysis, the number of frequency points is usu-
ally smaller but one needs to calculate the response to the controlling ports of all
nonlinear sources. For multi-tone analysis, the program [6] calculates the spectral
regrowth by numerical convolution, which – utilizing the symmetry of real spectra
– is luckily quite easy to calculate. Further, the need to find separate solution of
cubic and quadratic terms shown in (3) calls for three successive solutions with the
same transfer functions but with different signal amplitudes. As a result, most of the
computational time is spent in solving the higher-order node voltages.
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3 The Balanced Opamp Circuit

As a more complicated example, a fully balanced BJT operational amplifier shown
in Fig.2 is analysed to study the differences of single-ended and balanced driving.
The mechanism to be illustrated is intuitively the following. It is well known that a
common-mode signal easily generates even-order distortion. This can be seen e.g.
in (4), that models a bipolar differential pair, where I0 is the tail bias current and
ro is the output impedance of the current source. In balanced mode v1 = −v2 and
the bias current remains constant, resulting in a series expansion with odd powers
only. However, with single-ended drive (v2 = 0) the common mode variation also
modulates the bias current, causing additional even-order distortion, that is normally
not present in the tanh() response.

i(t) = (I0 +
v1 + v2

2ro
) · tanh(

v1 − v2

2Vt
) (4)

The schematic in Fig.2 shows a resistively loaded differential pair gma, gmb,
RCA, RCB, frequency compensation Cc, and a second stage gm2a,gm2b,Roa,Rob.
Many balanced amplifiers have a common-mode control in the 2nd stage, but it
was omitted here for simplicity. External feedback is provided by resistors R1a,
R1b, R2a, R2b. In a single-ended mode one of the input signals is zeroed, and the
amplitude of the remaining is doubled to maintain the same output amplitude. In
the Volterra analysis, the gm elements are treated nonlinear: gma,gmb are modeled
by a 3rd-degree Taylor expansion of the exp(v/Vt) response, and the 2nd stage
device have a mild 2nd-degree nonlinearity but no cubic non-linearity. Also a small
exponential nonlinearity was added across the BE junctions of transistors gma and
gmb to model the effect of base currents.

The importance of the tail impedance is illustrated next in Fig. 3, where the am-
plifier is driven by a single-ended signal, and the tail impedance is varied. Both plots
show the vector structure of the envelope signal f2 − f1 at the collector of transistor
gmB. In Fig. 3a, the tail impedance is high (10 MΩ ), and it is seen that (despite
of a single-ended drive) the 2nd-order currents gmak20 and gmbk20 from transis-
tors A and B cancel each other. Hence, there is no net even-order distortion even
in a single-ended output. Again, phasors gm2ak20 and gm2bk20 are coming from
the 2nd stage by coupling from the amplifier outputs to the inputs via the external
feedback network.

In plot b the tail impedance ro is reduced to 1 kΩ . Now the low tail impedance
short-circuits the common emitter node and breaks up the coupling from device A to
device B. Hence, at the collector of transistor B the 2nd-order distortion of transistor
B only (gmbk20) is seen. This ruins the cancellation seen in plot a, resulting in
notable amount of envelope and 2nd harmonic voltage at the output of the first stage.

The 2nd-order distortion appearing at the output of the first stage can further
mix to IM3 in the quadratic nonlinearity of the 2nd stage. This is illustrated in Fig.
4 that studies the total IM3L in the differential output of the opamp, when the tail
impedance is low. In plot 4a the circuit is driven differentially, and the IM2 distortion
at the output of the first stage is very low. This is seen as very small IM3 terms
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Fig. 2: Analysis model of a balanced amplifier

Fig. 3: 2nd-order envelope voltage at collector, when the differential pair is driven differentially
and ro is a 10 MΩ and b 1kΩ

caused by the quadratic nonlinearity of the 2nd-stage transistors gm2a and gm2b.
When we switch to a single-ended drive in plot b, the BB-signal at the output of the
first stage increases (at the simulated frequency, compensation capacitor attenuates
the second harmonic) and mixes to IM3 in the 2nd-degree nonlinearity of the second
stage. This appears as a strong gm2aK20VBB term. This results in ca. 2 dB higher
IM3 with the same output level, as summarised in Table 1.
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Fig. 4: Output IM3, when ro is low (1 kΩ ) and the circuit is driven a differentially, b single-endedly

Table 1: Comparison of different analysis setups (units dBV)

Setup In(fund) Out diff(fund) Out diff(IM3L) CollectorB(IM2BB)

ro=10 MΩ , s-e -17.1 -17.9 -34.2 -108.7
ro=10 MΩ , diff -23.1 -17.9 -34.2 -122.5
ro=1 kΩ , s-e -17.1 -17.9 -32.6 -64.1
ro=1 kΩ , diff -23.1 -17.6 -34.0 -73.2

4 Summary

This paper illustrated the use of an AC Volterra simulator, that handles each distor-
tion contribution separately. It also treats different harmonic bands separately, hence
making it possible to separate the amount of IM3 mixing from DC and 2nd har-
monic bands. This can be used to find the reasons for frequency dependence (e.g.
filtered 2nd harmonic response), or to experiment different linearisation schemes,
and is very handy in studying various cancellation effects (or “sweet spots”) often
seen in the distortion behaviour of analog circuits. Similar precision in recognising
the mixing from different frequency bands (but dealing with complete amplifiers
and no individual sources within them) is aimed with the use of new X-parameters,
described in [7].

To get a complete figure of 3rd-order distortion, it is very helpful to draw the
following plots:

1. a vector plot showing the IM3 voltage in the node under study. IM3 will be drawn
as a sum of all cubic terms and up and downconverted quadratic terms.

2. vector plots of the difference frequency f2 − f1 2nd-order voltages in the con-
trolling nodes of the nonlinearities that had strong K20V2BB terms in plot 1,
and
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3. similar plots for the relevant products mixing from 2nd harmonic voltages.

The above three types of plots together give a very detailed description of the dis-
tortion. Still, some thought may be needed, as the distortion products are already cal-
culated through complete transfer functions, and especially closed feedback loops
may cause surprising coupling effects. In the studied circuit, for example, the feed-
back of the opamp couples all the terms appearing in the output back to the input. In
Fig. 1 it would have been technically correct to plot the IM3 at the collector of gmb
and then the BB and H2 voltages in the controlling BE junction (and not in the com-
mon emitter node alone) of gmb. However, the output-input feedback causes such a
cancellation of terms that would have been difficult to explain as a first example.

This paper also explained the differences in IM3 distortion in a fully balanced
opamp when driven by single-ended and differential signals. It was illustrated, that
the difference comes from the fact, that with a single-ended drive, the amount of 2nd
order distortion at the output of the first amplifying stage is higher, and it will mix
to IM3 in the quadratic nonlinearity of the 2nd stage. This effect can be minimised
by improving the CMRR of the first stage by increasing the tail bias impedance of
the differential pair. Interstage mixing can also be reduced by increasing the CMRR
or by reducing the 2nd-degree nonlinearity of the second stage.

Note also that many low-voltage RF circuits often employ pseudo-differential
circuits, where there is no tail bias at all. Such an amplifier essentially consists of
two parallel and decoupled signal paths. As there is no coupling between the paral-
lel amplifiers, their compression behaviour is independent of each other. However,
single-ended drive leaves the other path completely idle, hence halving the output
compression level.
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Evaluation of Oscillator Phase and Frequency
Transfer Functions

M.M. Gourary, S.G. Rusakov, S.L. Ulyanov, M.M. Zharov, and B.J. Mulvaney

Abstract A general expression for the phase transfer functions of an oscillator for
frequencies close to the harmonics of the oscillator fundamental is derived. Numer-
ical testing and comparison with some known results are performed.

1 Introduction

The problem of the phase noise analysis of oscillators has been intensively inves-
tigated in the last decade. The rigorous theory of the phase noise in oscillators
based on the nonlinear perturbation analysis has been developed in [1–5]. White
and f −α noise sources are taken into consideration that provides modeling of the
thermal, shot and flicker physical noise. However, the design of modern RF circuits
often requires the analysis of phase perturbations resulting from substrate/supply
noise, which can be approximated by an arbitrary power spectral density (PSD).
Furthermore, determining phase perturbations due to a deterministic excitation with
a known spectrum can also be considered as a case of the phase noise analysis.
These problems can be easily solved if the oscillator is represented by a linear dy-
namic system with the oscillator phase as the output variable. Then the phase trans-
fer function (TF) in the frequency domain can be defined as a ratio of the phase
modulation magnitude to the magnitude of the input sinusoidal excitation.

The linear model for the phase noise analysis based on the intuitive definition of
the impulse sensitivity function is proposed in [6]. As shown in [7], this model can
be obtained from the nonlinear phase macromodel [3] by ignoring the phase variable
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on the right-hand side of the nonlinear differential equation of the macromodel. It is
demonstrated in [7] that both models predict the same phase noise characteristics.

The phase TF in the Laplace domain obtained by the linear model is derived
in [8] in the form of the harmonic transfer matrix (HTM). Each matrix entry (i,k)
defines a scalar TF from the sideband frequency of the k-th harmonic (kω0 +Δω)
of the excitation to the sideband frequency of the i-th harmonic (iω0 +Δω) of the
phase waveform. Here ω0 is the oscillation frequency, Δω is the offset frequency.
Thus the HTM for the oscillator phase variable is similar to the HTM (representing
frequency translation in the periodic AC mode) for the voltage output of a nonlinear
circuit. The extension of the HTM definition to the phase output variable seems to be
methodologically doubtful because this implies that the phase variation on the pe-
riod is much less than the period itself. Hence the modulation frequency iω0 +Δω ,
corresponding to the i-th row of the phase HTM, cannot be reasonably interpreted
for nonzero i. Thus it is desirable to obtain the phase TF through rigorous analy-
sis of the full system of equations of the oscillator circuit without a macromodel
approximation.

In this paper we derive a general expression for the phase TF of an arbitrary os-
cillator by the application of the linear periodically time varying (LPTV) approach
in the context of the harmonic balance (HB) technique, similar to periodic AC anal-
ysis. First, the analysis of the asymptotic behavior of the solution of the oscillator is
performed for excitations with small amplitude and at a frequency close to that of
the oscillation frequency. Then the solution transformed to the time domain is com-
pared with the perturbation waveform of the phase modulated signal. This allows us
to show that a small sinusoidal excitation produces the sinusoidal phase modulation
up to the first order terms of offset frequency. Based on the evaluated magnitude
of the phase modulation we derive our expression for the phase TF, including an
expression for the instantaneous frequency TF. Numerical experiments performed
with SPICE simulation confirm the correctness of the obtained expressions.

2 Background

The LPTV analysis is performed after the periodic steady-state (PSS) solution of an
oscillator is obtained. The steady-state solution in the frequency domain involves
the oscillator fundamental ω0 and the Fourier coefficients X of the PSS waveforms
x(t) [9]. The vector X consists of complex components Xkl , where k and l are the kth
harmonic and the lth nodal indices, respectively. The LPTV model of the oscillator
is similar to the HB system for a forced circuit [10] and we get a perturbation ΔX
to the PSS solution that satisfies

J(Δω)ΔX = B . (1)

Here components Bkl of the right-hand side (rhs) vector B represent the harmonic
signal with frequency kω0 + Δω applied to the lth circuit node. The vector ΔX
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defines the small signal solution, and J(Δω) is a conversion matrix for the given
frequency offset Δω ,

J(Δω) = G+ j(Ω +ΔωE)C . (2)

Here G, C are block Toeplitz matrices of the harmonics of nodal conductances and
capacitances, respectively. Furthermore Ω is a block-diagonal matrix of harmonic
frequencies Ω = diag(. . . ,−kω0EN , . . . ,0EN , . . . ,kω0EN , . . . ) in which EN is the
N × N identity matrix, where N is the number of the circuit variables. Finally, E
is the identity matrix of the full size. The matrix (2) at zero offset coincides with the
HB Jacobian matrix of the free running oscillator at the PSS solution J0 = G+ jΩC.
Thus (2) can be written as follows:

J(Δω) = J0 + jΔωC . (3)

The Jacobian matrix J0 is singular. Hence there exists a right eigenvector U and
a left eigenvector V associated with the 0 eigenvalue such that

J0U = 0, V T J0 = 0 . (4)

The eigenvector U is the HB approximation of the time derivatives of the PSS so-
lution u = dx/dt (i.e. the orbital derivative). The eigenvector V is the HB approx-
imation of the solution v(t) of the adjoint system of equations (linearized at the
PSS-solution). In [3, 11], v(t) is called the “perturbation projection vector” (PPV).
Usually V is normalized such that

V TCU = 1 . (5)

We assume that the kernel of J0 is 1-dimensional. Thus (5) unambiguously defines
the unique left eigenvector.

3 Asymptotic LPTV Analysis at Small Offset

To obtain the TF it is needed to consider only one nonzero component in the rhs
vector. For the component corresponding to harmonic k and node l

B = e(kl) , (6)

where the unit vector e(kl) selects component k,l. To analyze the solution at a small
frequency offset we transform (1, 6) into an equivalent linear system with a nonsin-
gular matrix by the method proposed in [12]. First, we form a new equation by left
multiplying (1) by the vector V . Taking into account (3), (4), and (6), we obtain

V TCΔX =
Vkl

jΔω
. (7)
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Next, we replace the equation in (1) corresponding to the nonzero component of
the excitation (6) by the obtained equation (7). To simplify notation, we assume that
the equation to be replaced is the last one in (1). Thus we obtain the transformed
equivalent linear system

Ĵ(Δω)ΔX =
Vkl

jΔω
e(kl) , (8)

where Ĵ(Δω) =
[

J(Δω)
V TC

]
.

Here the non-square matrix J(Δω) results from J(Δω) by omitting the last row.
One can prove that Ĵ(Δω) is non-singular at ω = 0 if Vkl �= 0. Hence at a small
frequency offset one can neglect the matrix dependence on the offset

Ĵ(Δω) = Ĵ0 + O(Δω)≈Ĵ0 =
[

J0

V TC

]
, (9)

where Ĵ0 = Ĵ(0), J̄0 = J̄(0).
Consequently, the solution of (8) can be approximated by a “1/ω” effect [6]

ΔX(Δω) =
Vkl

jΔω
Ĵ0

−1
e(kl) . (10)

From the definition of U in (4) and Ĵ0 in (9), we can conclude that the product Ĵ0U
contains only one nonzero component corresponding to the replaced row

Ĵ0U = V TCUe(kl) . (11)

By the normalization (5) we obtain Ĵ0
−1

e(kl) = U , and (10) is transformed to

ΔX(Δω) =
Vkl

jΔω
U . (12)

Each component ΔXmn(Δω) of the vector (12) defines the magnitude of the har-
monic mω0 +Δω at the nth node. So the time domain waveform at node n is defined
as the sum of all harmonics

Δxn(t) =∑
m

ΔXmn exp(j(mω0 +Δω)t) = exp(jΔωt)∑
m

ΔXmn exp(jmω0t) . (13)

Substitution (12) into (13) yields

Δxn(t) =
Vkl

jΔω
exp(jΔωt)∑

m
Umn exp(jmω0t) . (14)

It has been pointed out that the Umn are the Fourier components of the time
derivatives of the PSS solution. Hence the sum term in (14) represents the Fourier
series of dxn/dt. Thus
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Δxn(t) =
Vkl

jΔω
dxn

dt
exp(jΔωt) . (15)

This expression gives the perturbation waveform at the nth node resulting from the
unit sinusoidal excitation bl = exp(j(kω0 +Δω)t).

4 Phase Transfer Functions

The TF is determined by applying a sinusoidal excitation with a small magnitude A.
The corresponding perturbation waveform is defined by (15) with multiplier A

ΔxA
n (t) = A

Vkl

jΔω
dxn

dt
exp(jΔωt) . (16)

To obtain the phase TF we also can consider the perturbation waveform due to
the phase modulation of the PSS solution x(t +φ(t)/ω0), where φ(t) in radians is a
sine waveform of magnitude Φ

φ(t) = Φ exp(jΔωt) . (17)

Assuming that the magnitude Φ is sufficiently small we can apply the first order
Taylor expansion xn(t +φ(t)/ω0)≈xn(t)+ ẋnφ(t)/ω0, where ẋn = dxn/dt. Then

ΔxΦ
n (t) = xn(t +

Φ
ω0

exp(jΔωt))− xn(t) =
Φ
ω0

dxn

dt
exp(jΔωt) . (18)

Comparing the perturbation waveform induced by the excitation (16) with the
waveform corresponding to the phase modulated PSS solution (18), one can see that
the waveforms coincide at Φ = Aω0Vkl/jΔω . This implies that a small sinusoidal
excitation produces the sinusoidal phase modulation (17) with the magnitude Φ
linearly dependent on the input magnitude A. Hence we can define the phase TF as
Hφ

kl = Φ/A that is evaluated by the expression

Hφ
kl(Δω) =

ω0

jΔω
Vkl . (19)

The derivation of (19) is based on the non-singularity of the matrix Ĵ0 (9). It can
be shown that Ĵ0 is singular if and only if Vkl = 0. In this case we obtain the zero
phase TF that seems to be the correct result. Note that the expression for voltage
perturbations (16) is incorrect at Vkl = 0 because the amplitude variations cannot be
neglected.

Components (19) form a vector TF for the given node of the excitation. Us-
ing this vector TF we can evaluate the phase spectrum for the given spectrum of
the excitation (deterministic or stochastic). Note that, unlike the matrix form of the
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TF (HTM) [8], the vector TF involves only baseband frequency components of the
phase spectrum.

5 Frequency Transfer Functions

It is well known that the phase modulated waveform can be considered as a fre-
quency modulated waveform with the instantaneous angular frequency ωinst(t) de-
fined by the time derivative of ω0t + φ(t). Thus the deviation of the instantaneous
angular frequency from the fundamental for the phase modulation (17) is defined by

Δωinst(t) = ωinst(t)−ω0 =
dφ(t)

dt
= jΔωΦ exp(jΔωt) . (20)

It is seen that the frequency deviation (20) is a sine wave with magnitude δΩ =
jΔωΦ . Defining the frequency TF in the form Hω

kl = δΩ/A, we obtain its value
from (19, 20) as the transfer factor independent of the offset

Hω
kl (Δω) = jΔωHφ

kl(Δω) = ω0Vkl . (21)

The behavior of the instantaneous frequency (20) can also be described in the
following way. Under the excitation of magnitude A the maximum deviation of the
instantaneous frequency ωinst from the fundamental ω0 can be presented as

max
t

|ωinst(t)−ω0| = |δΩ | = |Hω
kl |A = ω0|Vkl|A . (22)

The analysis of the injection locking mode of an oscillator gives the expression
for the locking range [13] Δωlock = ω0|Vkl|A that coincides with the rhs of (22).
Therefore

max
t

|ωinst(t)−ω0| = Δωlock . (23)

The evaluation of the TF Hφ
kl , Hω

kl can be easily implemented in a circuit simulator.
The harmonics of the PPV can be obtained by the algorithm [14].

6 Numerical Experiments

Numerical experiments were performed with the SPICE transient simulation. The
following oscillator circuits were used in numerical experiments: a Colpitts oscil-
lator and a 3-stage CMOS ring oscillator. The oscillator circuits were analyzed
under small sinusoidal excitations with frequencies near the oscillator fundamen-
tal. The instantaneous frequency was evaluated by postprocessing the output wave-
forms: f (tn) = 1/(x(tn+1)−x(tn)). Here tn are time moments at which the waveform
crosses its mean value with dx/dt > 0. For example, the instantaneous frequency
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waveforms for a Colpitts oscillator are presented in Fig. 1. Here the amplitude of
the excitation was chosen to provide 1% locking range. Hence the offset 0.98% cor-
responds to the locking mode of the oscillator. Note that after the transient died out
the waveform is a constant approximating the locking range. The offset 3% pro-
duces a sine waveform with a maximum deviation equal to the locking range. With
a 10% offset value the maximum deviation is less than the locking range.

The results of the SPICE simulation along with theoretical evaluations by (23) are
shown in Fig. 2- 3. One can see the dependency of the maximum relative deviation
of the instantaneous frequency ( max |ωinst (t)−ω0|

ω0
) as a function of the relative offset

frequency (Δω
ω0

).
At a small frequency offset the oscillator is locked, and the oscillation frequency

is equal to the excitation frequency (sloping line in the figures). When the excita-
tion frequency is outside the locking range the deviation, in accordance with (23),
keeps a constant value. At larger frequency offsets expression (23) obtained from
an asymptotic solution of the LPTV model is not valid. This explains the fact that
simulated curves do not correspond with (23) at larger frequency offsets.

Fig. 1 Example of the instan-
taneous frequency waveforms
for the Colpitts oscillator ob-
tained by postprocessing the
simulated voltage waveforms.
The oscillation frequency is
3.376 MHz
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Fig. 3 Dependency of the
maximum frequency devia-
tion on the input frequency
offset for a CMOS ring os-
cillator. The oscillation fre-
quency is 1.556 GHz. The
input amplitude is defined to
provide a 5% locking range
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Polynomial Chaos for the Computation of
Failure Probabilities in Periodic Problems

Roland Pulch

Abstract Numerical simulation of electric circuits uses systems of differential alge-
braic equations (DAEs) in general. We examine forced oscillators, where the DAE
models involve periodic solutions. Uncertainties in physical parameters can be de-
scribed by random variables. We apply the strategy of the generalised polynomial
chaos (gPC) to resolve the stochastic model. In particular, failure probabilities are
determined using the approximation from gPC. We present results of numerical sim-
ulations for a system of DAEs modelling a Schmitt trigger.

1 Introduction

Mathematical modelling of electric circuits yields time-dependent systems of or-
dinary differential equations (ODEs) or differential algebraic equations (DAEs),
see [1]. The solutions consist of unknown node voltages and branch currents. Typi-
cally, the systems include many physical parameters like capacitances, inductances,
resistances, etc. Assuming some uncertainties, we replace several parameters by
random variables. Accordingly, the solution of the DAEs becomes a random pro-
cess. The generalised polynomial chaos (gPC) provides techniques for solving the
stochastic model approximately, see [2, 3].

We consider forced oscillators, where a periodic boundary value problem of the
DAEs results for each realisation of the parameters. A Galerkin approach yields
a larger coupled system of DAEs for the finite representation in the polynomial
chaos. Thus a periodic boundary value problem of the larger system has to be solved,
which can be done by well-known techniques like shooting methods, finite differ-
ence schemes or harmonic balance, cf. [4]. Previous work on periodic problems of
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ODEs or DAEs using the strategy of gPC is given in [5–7]. Moreover, a numerical
solution of the coupled system from gPC can be used to determine failure probabil-
ities of the problem, see [2, 8].

In this article, we consider the circuit of a Schmitt trigger, which converts an
analogue input signal into a digital output signal. The mathematical model that is
used represents the circuit as a system of DAEs. Assuming a random capacitance,
we solve numerically the periodic problem of the corresponding gPC system from
the Galerkin method, i.e., one random parameter appears. An according strategy and
simulations with several random parameters are presented for ODEs in [5, 6]. We
compute failure probabilities with respect to the behaviour of the output signal based
on the gPC approximation using a common approach. Thereby, failure means that
some result exceeds a reference value, which can be determined in a post-processing
of a time integration. The numerical results illustrate the performance of the gPC
expansions.

2 Problem Definition

We consider a system of DAEs in the form

A(p)ẋ(t,p) = f(t,x(t,p),p). (1)

The matrix A ∈ Rn×n and the right-hand side f : [t0,t1]×Rn ×Rq → Rn depend
on parameters p = (p1, . . . , pq)�. Hence the solution x : [t0,t1]×Rq →Rn becomes
also parameter-dependent. Let p ∈ Q for some relevant set Q ⊆ Rq of parameters.
Typically, a parameter p j is included either in the matrix A or in the right-hand
side f.

We assume that independent input signals in the right-hand side force a periodic
solution for each parameter. Thus it holds x(t,p) = x(t +T,p) for all t ∈R and each
p ∈ Q. where the period T > 0 is known from the input signals. We set [t0,t1] = [0,T ]
in the following.

Let the chosen parameters exhibit some uncertainty. Consequently, we arrange
random variables p : Ω → Q with respect to a probability space (Ω ,A ,P). We as-
sume that each random variable p j exhibits a classical distribution like uniform,
beta, Gaussian, etc. Consequently, the solution of the DAEs (1) becomes a random
process X : [0,T ]×Ω → Rn. We are interested in the properties of the random
process like expected values and variances or more sophisticated quantities. In par-
ticular, we will investigate failure probabilities in Section 4.

For a function f : Rq → R depending on the parameters, we denote the corre-
sponding expected value (if exists) by

〈 f (p)〉 =
∫
Ω

f (p(ω)) dP(ω) =
∫
�q

f (p)ρ(p) dp
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using the probability density function ρ : Rq → R. We apply this operation com-
ponent-wise also to vector-valued or matrix-valued functions. The expected value
implies the inner product 〈 f (p)g(p)〉 for functions f ,g : Rq →R with f ,g ∈ L2.

3 Generalised Polynomial Chaos

Now we examine the stochastic process solving the DAEs (1) with random parame-
ters. Assuming finite second moments, the stochastic process exhibits the represen-
tation

X(t,p(ω)) =
∞

∑
i=0

vi(t)Φi(p(ω)), (2)

see [2]. The functions (Φi)i∈� with Φi : Rq → R represent a complete basis of
multivariate polynomials. We apply an orthonormal basis, i.e., it holds 〈ΦiΦ j〉 = δi j

with the Kronecker-delta. The coefficient functions vi : [0,T ] → Rn are unknown
a priori. The periodicity of the stochastic process X implies periodic coefficient
functions with rate T , see [7].

We truncate the series (2) to achieve the finite representation

Xm(t,p(ω)) =
m

∑
i=0

vi(t)Φi(p(ω)). (3)

Approximations for expected values and variances are obtained component-wise by

〈Xm
j (t,p)〉 = v0, j(t), Var(Xm

j (t,p)) =
m

∑
i=1

vi, j(t)2 for j = 1, . . . ,n (4)

with Xm = (Xm
1 , . . . ,Xm

n )� and vi = (vi,1, . . . ,vi,n)�. The coefficient functions can
be computed approximately by stochastic collocation, see [3, 9]. Alternatively, we
construct a system of DAEs for the coefficient functions. Inserting the finite approx-
imation (3) in the DAEs (1) yields the residual

r(t,p) ≡ A(p)

(
m

∑
i=0

v̇i(t)Φi(p)

)
− f

(
t,

m

∑
i=0

vi(t)Φi(p),p

)
.

Due to the Galerkin method, we demand that the residual is orthogonal to the space
of the applied basis polynomials with respect to the inner product of L2 in the prob-
ability space. It follows a larger coupled system of DAEs

m

∑
i=0

〈Φl(p)Φi(p)A(p)〉v̇i(t) =

〈
Φl(p) f

(
t,

m

∑
i=0

vi(t)Φi(p),p

)〉
(5)

for l = 0,1, . . . ,m with the coefficient functions vi(t) of (3) as unknowns. Although
the solutions of (5) are not identical to the coefficients in (2), we apply the same
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symbol for convenience. A periodic boundary value problem of the system (5) has
to be solved, which can be done by according numerical methods, see [4].

In models of electric circuits, the matrix A typically includes parameters like
capacitances C and inductances L, for example. We assume the structure of para-
meter-dependence of the matrix A motivated in [10], namely

A(p) = A0 +
q

∑
j=1

η j(p j)A j

with constant matrices A0,A1, . . . ,Aq ∈ Rn×n and scalar functions η j : R → R. We
can write the complete system using Kronecker products as

[
Im+1 ⊗A0 +

(
q

∑
j=1

S j ⊗A j

)]
v̇(t) = F(t,v) (6)

with v = (v�
0 ,v�

1 , . . . ,v�
m)�, the identity matrix Im+1 ∈ R(m+1)×(m+1) and an abbre-

viation F for the right-hand side. The matrices S j are defined via

S j = (σ j
li) ∈ R(m+1)×(m+1), σ j

li := 〈η j(p j)Φi(p)Φl(p)〉.

In case of a single parameter and η1(p1) ≡ p1, the constant matrix in the left-hand
side of (6) becomes block-tridiagonal, since the matrix S1 is tridiagonal due to the
orthogonality of the basis polynomials.

4 Determination of Failure Probabilities

If the solution of the DAEs (1) exhibits specific critical values, the corresponding
electric circuit may produce a failure. We describe the state of the solution via a
function g : [t0,t1]×Rn →R, where g ≤ 0 represents the undesired cases. For exam-
ple, we define as failure that a component x j for a particular j ∈ {1, . . . ,n} becomes
smaller or larger than some threshold value θ ∈ R, i.e.,

g(t,x(t,p)) ≡ x j(t,p)−θ or g(t,x(t,p)) ≡ −x j(t,p)+θ . (7)

In the general case, the failure probability at each time point reads

PF(t) :=
∫
�q

χ(g(t,X(t,p)))ρ(p) dp with χ(g) :=
{

0 for g > 0,
1 for g ≤ 0.

(8)

In a Monte-Carlo or quasi Monte-Carlo simulation, the integrals (8) are approxi-
mated using realisations pk ∈ Q for k = 1, . . . ,K. For each realisation, a periodic
boundary value problem of the DAEs (1) has to be solved. Alternatively, we ap-
ply the solution of the system (5) from the gPC. The computation of this solution
can be more costly than the (quasi) Monte-Carlo simulation with same accuracy.
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Nevertheless, the gPC solution includes more information and may be available
from a previous simulation for another purpose. We insert the approximation (3) in
the integral (8) and thus obtain

PF(t) .=
∫
�q

χ(g(t,Xm(t,p)))ρ(p) dp. (9)

The formulation (9) can be evaluated by (quasi) Monte-Carlo sampling again. Given
a numerical solution for the coefficients v0, . . . ,vm, just polynomials have to evalu-
ated in an approximation of (9), i.e., no further DAE systems have to be resolved,
since we apply Xm(t,p) instead of x(t,p). Sophisticated techniques have been con-
structed for this purpose in case of parameters p with Gaussian distributions and/or
small failure probabilities, see [2, 8].

We consider w.l.o.g. the first case in (7). Since we examine periodic boundary
value problems, the total probability of failure P̂F ∈ [0,1] corresponds to the time-
independent function

g(x(·,p)) =
(

min
t∈[0,T ]

x j(t,p)
)

−θ . (10)

Typically, this probability is computed by a discretisation 0 ≤ t1 < · · · < tR < T and
identification of the minimum value in the grid points.

5 Illustrative Example: Schmitt Trigger

We apply the circuit of a Schmitt trigger illustrated in Figure 1. The Schmitt trigger
converts an analogue input signal uin into a digital output signal uout. A mathemat-
ical modelling yields a system of DAEs (1) for five unknown node voltages with
differential index 1, see [1]. More precisely, the system exhibits the form

A(C)u̇ = f(t,u), u : [t0,t1] → R5.

Figure 1 also shows the singular matrix A, which depends on the linear capaci-
tance C only. We use a sinusoidal input signal with period T = 2 ms. Thus all node
voltages become periodic functions.

Let the capacitance be a random variable with uniform distribution in a certain
interval. We consider two cases in the simulation, namely

case (a) : C ∈ [10−9 F,10−7 F], case (b) : C ∈ [1 ·10−10 F,2 ·10−10 F].

The first case involves large uncertainties for demonstration and corresponds to the
results displayed in Figure 2 and 3. The second case is more realistic and serves for
the computation of failure probabilities only.

We solved all periodic boundary value problems via a finite difference method,
see [4], using the unsymmetric difference formula of second order (BDF2) at
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Fig. 1: Schmitt trigger circuit (left) and capacitance matrix of the mathematical model (right)

equidistant distributed time points. Thereby, the same accuracy was demanded in
each Newton iteration and we arranged 200 grid points.

We employ the strategy of gPC based on the representation (2), where the or-
thonormal basis functions are the Legendre polynomials in case of the uniform dis-
tribution. We discuss the periodic problems of the coupled systems of DAEs (5) for
different orders m.

Figure 2 demonstrates the expected value and the standard deviation of the output
voltage in case (a) with m = 3 calculated via (4). Moreover, three samples of the
output voltage for specific values of the capacitance are given. Figure 3 shows the
other coefficient functions of (3). Although the solutions are computed in [0,T ] only,
the figures show the domain [0,2T ] for a better impression of the signals.
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Fig. 2: Expected value (left, solid line) together with three samples for C = 10− j F with j = 7,8,9
(left, dashed lines) and standard deviation (right) of output uout computed by gPC with m = 3

In the case (a), we recognise that variations in the capacitance do not influence
the upper value of the digital output signal. In particular, the standard deviation
evidences the critical time intervals. Using C = 10−10 F of case (b), the behaviour at
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Fig. 3: Coefficient functions v1,v2,v3 for output voltage uout obtained by gPC with m = 3

the lower value becomes the same as at the upper value, which represents the desired
behaviour. An overshoot appears for larger parameters C > 10−10 F. However, this
effect decreases again for even larger capacitances C > 10−7 F.

To illustrate the convergence of the periodic coefficient functions in (2), we com-
pute the corresponding maximal values within [0,T ] for a simulation using m = 8.
Table 1 presents these maxima with respect to the output signal in case (a) as well as
case (b). The other components exhibit a similar behaviour. We recognise the con-
vergence of the gPC representation (2) in both situations. However, case (a) implies
a much slower convergence due to the large range of the random parameter.

Next, failure probabilities are determined in this example. We demand that the
periodic output voltage must not decrease below some threshold value, which cor-
responds to the definition (10). We arrange the threshold values θ = −0.415 for
case (a) and θ = −0.34 for case (b). The corresponding total failure probability P̂F

is determined by the values in the grid points.
For large numbers of random parameters, (quasi) Monte-Carlo methods have to

be used in solving (8). Since one random parameter is considered here (only C), we
apply equidistant realisations Ck for k = 1, . . . ,K, which represents the special case
of a quasi Monte-Carlo technique. On the one hand, a reference solution of (8) is
computed by solving K = 104 systems (1). On the other hand, we sample approxi-
mations (9) with K = 103 using solutions of (5) with different numbers m. Remark
that the probability in (8) and (9) does not depend on time here, since (10) is ob-
served. The results are shown in Table 2. We note that the approximation becomes
more accurate for increasing orders m. In case (b), the usage of m = 2 already yields
a sufficient result. However, a linear approximation (m = 1) is too rough, which
indicates that the application of the gPC as a nonlinear approach is necessary.

Table 1: Maximum values of coefficients vi for output uout in gPC simulation using m = 8

i 1 2 3 4 5 6 7 8

Case (a) 2 ·10−2 1 ·10−2 5 ·10−3 3 ·10−3 2 ·10−3 1 ·10−3 6 ·10−4 3 ·10−4

Case (b) 9 ·10−4 1 ·10−5 2 ·10−7 5 ·10−9 1 ·10−10 2 ·10−12 5 ·10−14 1 ·10−14
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Table 2: Computed total failure probabilities from gPC system with m = 1, . . . ,8 and reference
solution from solving the original systems

m 1 2 3 4 5 6 7 8 ref.

Case (a) 0.940 0.759 0.775 0.802 0.821 0.830 0.830 0.820 0.8177
Case (b) 0.082 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.0786

6 Conclusions

We have applied the technique of the generalised polynomial chaos to periodic
boundary value problems of DAEs with time-dependent input signals. The result-
ing larger coupled systems of DAEs are solved successfully for the electric circuit
of a Schmitt trigger. Moreover, the computed numerical solution provides a cheap
method to determine failure probabilities a posteriori. In the used examples, it fol-
lows that the accuracy of the achieved failure probabilities is adequate if the order
of the polynomial chaos is chosen sufficiently high. The construction of techniques
based on generalised polynomial chaos is feasible also for autonomous oscillators
with a priori unknown periods, which will be part of further research.
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Quasiperiodic Steady-State Analysis of
Electronic Circuits by a Spline Basis

Hans Georg Brachtendorf, Angelika Bunse-Gerstner, Barbara Lang,
Siegmar Lampe, and Ashish Awasthi

Abstract Multitone Harmonic Balance (HB) is widely used for the simulation of
the quasiperiodic steady-state of RF circuits. HB is based on a Fourier expansion of
the waveforms. Unfortunately, trigonometric polynomials often exhibit poor con-
vergence properties when the signals are not quasi-sinusoidal, which leads to a
prohibitive run-time even for small circuits. Moreover, the approximation of sharp
transients leads to the well-known Gibbs phenomenon, which cannot be removed
by an increase of the number of Fourier coefficients, because convergence is only
guaranteed in the L2 norm. In this paper we present alternative approaches based
on cubic or exponential splines for a periodic or quasiperiodic steady state analysis.
Furthermore, it is shown below that the amount of coding effort is negligible if an
implementation of HB exists.

1 Introduction: System Equations Steady States

Depending on the topology of the circuit and the device constitutive equations
the Modified Nodal Analysis (MNA) leads to a system of generally nonlinear
differential-algebraic equations (DAEs) of first order of dimension N:

f (v(t),t) = i(v(t))+
d
dt

q(v(t))+ b(t) = 0 (1)

wherein t ∈ R is time and 0 ∈ RN the zero vector. Moreover v : R → RN is the vector
of the unknown node voltages and branch currents. q : RN → RN is the vector of
charges and magnetic fluxes, i : RN → RN is the vector of sums of currents entering
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each node and branch voltages. Furthermore b(t) : R → RN is the vector of input
sources.

Let P(T ) be the space of all T -periodic x ∈ P(T ) := {x | x(t) = x(t + T )} and
QP(T1,T2, . . . ,Td) the space of all d-quasiperiodic and continuous functions. The
Fourier expansions of periodic waveforms is

x(t) ∈ P(T ) ⇔ x(t) =
∞

∑
k=−∞

X(k) · ejkω0 t (2)

and for quasiperiodic signals

x(t) =
∞

∑
k1=−∞

· · ·
∞

∑
kd=−∞

X(k1, . . . ,kd) · ej(k1 ω1 + ···+kd ωd )t (3)

If the fundamental frequencies are incommensurable, it is guaranteed that they
cannot be integer multiples of a common fundamental frequency. In practical appli-
cations, the number of fundamental frequencies is d = 2 to d = 3.

The input signals or stimuli b(t) are quasiperiodic with typically two or three
fundamental frequencies as well. For simplicity only the case d = 2 is considered
here. The extension to an arbitrary number of fundamentals is straightforward.

In [1–3] it has been shown that a reformulation of the underlying ordinary DAE
(1) into an appropriate partial DAE system eases the numerical treatment of the
multitone problem. This method has been widely accepted by different research
groups [4–8, 10, 11].

In [1] the following theorem was proven:

Theorem:
Consider the system of ordinary differential-algebraic equations (1) with quasi-
periodic stimulus

b(t) =
∞

∑
k1=−∞

∞

∑
k2=−∞

B(k1,k2) · ejk1ω1t ejk2ω2t (4)

and the partial DAE system

f (v̂(t1, t2); t1, t2) = i(v̂(t1,t2))+
∂
∂ t1

q(v̂(t1,t2))+
∂
∂ t2

q(v̂(t1, t2))+ b(t1, t2) = 0

(5)

where the quasiperiodic stimulus b(t1,t2) is given by

b(t1,t2) =
∞

∑
k1=−∞

∞

∑
k2=−∞

B(k1,k2) · ejk1ω1t1 ejk2ω2t2 (6)

with Fourier coefficients B(k1,k2). Then

v(t) =
∞

∑
k1=−∞

∞

∑
k2=−∞

V (k1,k2) · e(jk1ω1+jk2ω2)t (7)
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is a steady-state solution of the ordinary differential-algebraic equation (1), if
and only if

v̂(t1,t2) =
∞

∑
k1=−∞

∞

∑
k2=−∞

V̂ (k1,k2) · ejk1ω1t1 ejk2ω2t2 (8)

is a steady-state solution of the partial differential-algebraic equation as well.
The two solutions are related by v(t) = v̂(t,t) for all t ∈ R and the relation
V (k1,k2) = V̂ (k1,k2) holds.

The theorem states, that a solution of the underlying ordinary DAE can be ob-
tained along a characteristic of the partial DAE.

2 Short Summary of the Harmonic Balance Method

2.1 HB for Periodic Steady States

HB approximates the solution in a subspace, which is given by a finite number of
Fourier coefficients

S =

{
x
∣∣x(t) =

K

∑
k=−K

X(k) exp

(
j

2π k
T

t

)}
(9)

The device constitutive equations are given in most practical cases solely in the
time domain, i(v(t)) and q(v(t)). HB circumvents the implementation problems in
the way that the devices are evaluated on an equidistant grid or mesh at collocation
points ti in the time domain. Employing the Discrete Fourier Transform (DFT) or
its fast implementation the FFT transforms evaluated waveforms into the frequency
domain.

Let F be the matrix of the DFT, P := IN ⊗ F a matrix which transforms all
N waveforms into the frequency domain and P−1 = IN ⊗FH its inverse (⊗ is the
Kronecker- or tensor product). The boundary value problem is discretized at 2K +1
gridpoints ti and equidistant grid spacing Δ t = T

2K+1 . The transformation to and from
the spectrum is given in matrix formulation by X = Px, I = Pi, Q = Pq, B = Pb.
The time derivatives of a waveform are represented in the frequency domain by

Ω̄(ω) := ω ·diag(−K, . . . ,K), ω =
2π
T

(10)

and Ω := IN ⊗ Ω̄ . HB solves the algebraic system of equations

F(V ) = P i(P−1V )+ jΩ(ω) ·Pq(P−1V )+ Pb

= I(V )+ jΩ(ω) ·Q(V)+ B = 0 (11)
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for the unknown vector of Fourier coefficients V . Equation (11) is an algebraic sys-
tem of equations F : C(2K+1)N → C(2K+1)N for the unknownsV which can be solved
by Newton-like methods [1, 9]. The evaluation of the Jacobian is given i.e. in [1].
HB can be generalized to quasiperiodic steady states. For more details see i.e. [3].

3 Spline Interpolation

In the cases of sharp transients the convergence of the Fourier series is poor and
only guaranteed in the L2 norm.

Alternatively, in this section cubic and exponential splines are considered as an
alternative to Fourier basis functions. Unlike Fourier series, the spline basis func-
tions are only locally defined, therefore the approximation of sharp transients is
significantly improved. We restrict here to an equidistant discretization. In that case
the coding of the spline basis is simple when a HB simulator exists. Circuit design-
ers are mainly interested in the spectrum of the waveforms. We show here further,
that the spectrum can be directly evaluated from the coefficients of the spline ap-
proximation.

3.1 Cubic Spline Interpolation

Definition 1 ([12]). Let t0 < t1 < · · · < tn be an ordered sequence of collocation
points. The B-splines ŷik(t) of order k for k = 1, . . . ,n and i = 1, . . . ,n−k are defined
recursively by

ŷi1(t) :=

{
1 if ti ≤ t < ti+1

0 elsewhere
, ŷik(t) :=

t − ti
ti+k−1 − ti

ŷi,k−1(t)+
ti+k − t

ti+k − ti+1
ŷi+1,k−1(t)

The cubic spline solves the variational problem [12, 13]

E[y] =
n−1

∑
i=0

∫ ti+Δ t

ti

(
ÿ(t)

)2
dt (12)

We denote as ti+1 − ti =: Δ t the grid spacing. The collocation points coincide there-
fore with HB based on a Fourier expansion. This eases the implementation as shown
below.

The periodic waveform x(t) = x(t + T ) is approximated by a linear combination
of weighted and shifted basis functions ŷ(t), the shifts being integer multiples of the
grid spacing tl = l ·Δ t, l = 0,1, . . .

y(t) =
2K

∑
l=0

Ŷ (l) · ŷ(t − tl) (13)
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The unknown coefficients Ŷ (l) are uniquely calculated by requiring that the error
vanishes at the collocation points and the periodicity constraint of the signal wave-
form. One obtains the system of equations with x(l) := x(tl)

⎡
⎢⎢⎢⎢⎢⎢⎣

2
3

1
6

1
6

1
6

2
3

1
6

. . .
. . .

. . .
1
6

2
3

1
6

1
6

1
6

2
3

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Ŷ (0)
...

Ŷ (2K)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

x(0)
...

x(2K)

⎤
⎥⎥⎦ (14)

The coefficients matrix is circulant, representing the periodicity constraint, the
eigenvectors are therefore the column vectors of the DFT

zk =
[
exp

(−jk · 2π
2K+1 K

)
, . . . ,exp

(
jk · 2π

2K+1 K
)]T

with corresponding eigenvalues

λk = 2
3 + 1

3 cos
(
k · 2π

2K+1

)
, −K ≤ k ≤ K. For solving the underlying DAE, time

derivatives of the approximation at the grid points are required. Introducing the op-
erator ∇ of the time-derivatives at the collocation points and the coefficient matrix
of the DFT F ,

j Ω̄ = F ∇ F−1

holds. The matrix Ω̄ is again a diagonal matrix

Ω̄ = diag (ω(−K), . . . ,ω(k), . . . ,ω(K)) (15)

The diagonal elements ω(k) are obtained from the eigenvalues by

ω(k) =
(

2K + 1
2π

)
ω0

3 sin
(
k · 2π

2K+1

)
2 + cos

(
k · 2π

2K+1

) (16)

The additional coding load for (15, 16) is marginal, if a HB simulator exists because
the sparsity structure of the Ω̄ matrix of the HB and spline methods are identical.

The coefficients Ŷ (l) of the spline basis are of minor interest for circuit designers.
Instead, the Fourier spectrum is of superior interest. From the spline approximation
(5) one can calculate the Fourier spectrum exactly. Based on the DFT of the collo-
cation points Xk one gets the spectrum of the spline approximation by

Yk

Xk
=

12
z4

(1− cosz)2

2 + cosz
, z =

2π k
2K + 1

, k �= 0 (17)

Figure 1(a) illustrates the simulated limit-cycle for a Colpitt oscillator. 128
equidistant gridpoints are taken and Fig. 1(b) shows the difference signal between
the HB and the spline solution.
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Fig. 1: a Calculated limit cycle by a cubic spline approximation, b Comparison between the
numerical solutions by cubic spline and trigonometric basis function
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Fig. 2: Exponential spline basis functions for the parameter set λ = 10−0,5, 100,5 and λ =
101,5

3.2 Exponential Splines

The exponential splines [12,13] can be fit to the specific interpolation problem by a
free parameter λ . They solve the variational problem

E[y] =
n−1

∑
i=0

∫ ti+Δ t

ti

[(
ÿ(t)

)2 +
λ 2

Δ t2

(
ẏ(t)

)2
]

dt (18)

The Fig. 2 depicts the exponential spline for different parameter values of λ .
The next steps are formally identical to the treatment of the cubic splines and

are only summarized for brevity. One gets a diagonal matrix representing the col-
lection of derivatives to time in the frequency domain by j Ω̄ = F ∇ F−1 =
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j diag {ω(−K), . . . ,ω(k), . . . ,ω(K)} wherein the diagonal elements are expressed
by

ω(k) = 2

(
2K + 1

2π

)
ω0

1
λ 2

[coshλ −1] sin
( 2π k

2K+1

)
c + 2

λ 3 [sinhλ −λ ] cos
( 2π k

2K+1

) (19)

3.3 Cubic Spline for Multitone Steady State Analysis

For keeping the derivation as simple as possible only the 2-tone case is considered
here. The generalization to d-quasiperiodic steady states is simple, making use of
the partial DAE formulation (5).

A two-dimensional spline basis function can be written as the product of one-
dimensional basis functions, i.e.

ŷ(t1,t2) = ŷ(t1) · ŷ(t2) (20)

Similarly to (13) one gets a system of equations for the coefficients Ŷl1l2 of the spline
interpolation

y(t1,t2) = ∑
l1,l2⊂Z

Ŷl1l2 · ŷ(t1 − tl1 , t2 − tl2) (21)

with pre-supposed periodic conditions in t1 and t2 and grid-points tl1 and tl2 .
The Fig. 3 (left) illustrates how the coefficients of the matrix are obtained. Due to

the periodicity in t1 and t2, the coefficient matrix is a hierarchical or nested circulant
matrix, i.e. any block of the circulant matrix is itself a circulant matrix.

Fig. 3: Molecule for evaluating the coefficients of the spline interpolation (left) and its par-
tial derivatives

Further, the partial DAE requires the sum of partial derivatives, which must
be calculated for the spline interpolation at the collocation points. From a similar
derivation (Fig. 3), one obtains the entries for the Ω̄ matrix

ω(k1,k2) =
μ(k1,k2)
λ (k1,k2)

=
3

Δ t1

sin
(

2π k1
2K1+1

)

2 + cos
(

2π k1
2K1+1

) +
3

Δ t2

sin
(

2π k2
2K2+1

)

2 + cos
(

2π k2
2K2+1

) (22)
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Please note that for multitone HB one gets ω(k1,k2) = k1 ω1 + k2ω2.
Again, the spectrum of the spline approximation can be evaluated from the trape-

zoidal method. The derivation is similar to the periodic case.

4 Conclusions

Cubic and exponential spline bases are an interesting alternative for simulating peri-
odic and quasiperiodic steady states when sharp transients occur in the waveforms.
The implementation effort is negligible when a code for the Harmonic Balance tech-
nique is available. The Fourier spectrum can easily be calculated from the spline
approximation which is very important for electronic engineers.
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Accurate Simulation of the Devil’s Staircase of
an Injection-Locked Frequency Divider

Tao Xu and Marissa Condon

Abstract The Devil’s Staircase of an Injection-Locked Frequency Divider (ILFD)
is simulated in a novel and efficient manner in this contribution. In particular, the
Multiple-Phase-Condition Envelope Following (MPCENV) method is employed.
The locking range of the ILFD is then determined from the Devil’s Staircase. The
proposed method is applied to an LC oscillator based ILFD and the results are vali-
dated by comparison with experimental results.

1 Introduction

In general, Injection-Locked Frequency Dividers (ILFD) are used in the negative
feedback of a frequency synthesizer as a prescaler to divide the frequency by a
fixed number. In comparison with the traditional static [1] frequency dividers, the
ILFDs consume less power but at the expense of a narrow locking range. Hence, the
accurate determination of the locking range is important in the design of ILFDs.

The Devil’s Staircase [2] was introduced as an experimental technique to mea-
sure the locking range of an ILFD. Since it requires expensive equipment and takes
a long time, some analysis and simulation techniques were introduced to predict the
locking range, for example, using expressions derived by Harmonic Balance anal-
ysis [3]. A simulation method was also shown using the Warped Multi-Time Scale
Partial Differential Equation (WaMPDE) [4] technique. It was improved in [5] to
increase the simulation speed. Here, a more accurate and efficient simulation tech-
nique is proposed, which utilises the Multiple-Phase-Condition Envelope Following
(MPCENV) method to reproduce the Devil’s Staircase.
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In Section 2, the background of the Devil’s Staircase is introduced. In Section 3,
the previous work with the WaMPDE to determine the locking range is described.
The proposed MPCENV method for simulating the Devil’s Staircase is introduced in
Section 4. Both of the two simulation methods are applied to an LC oscillator based
ILFD. The numerical results are validated by the experimental results in Section 5.

2 Background of the Devil’s Staircase

The Devil’s Staircase [2] is a method to visualize the locking range of an ILFD.
Normally, the ILFD is considered as an oscillator with an injected external signal.
In order to plot a Devil’s Staircase, the frequencies of the oscillator and the injected
signal must be varied relative to each other. In practice, it is easier and more accurate
to adjust the injected frequency, ωinj, automatically. The output frequency of the
ILFD, ωo, is then the only unknown variable. The Devil’ Staircase [2] is obtained
by plotting ωinj/ωo against ωinj, as shown in Fig. 1.

The locking range can be measured from the Devil’s Staircase diagram [2]. From
the staircase diagram in Fig. 1, it is clear that there are lockings (flat regions) at
division ratios of 2 and 4, as predicted experimentally in [6].
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Devil's Staircase with V
in

 = 1V

Fig. 1: Experimentally measured Devil’s staircase diagram showing lockings at ωinj/ωo = 2 and
ωinj/ωo = 4

3 Previous Work with the WaMPDE

Consider a fairly general nonlinear circuit which is described by:

ẋ(t) = f (x(t))+ b(t) (1)
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where b(t) is the excitation vector, x(t) are the state variables and f is a nonlinear
function.

The state variable is defined as

x(t) = x̂(τ1,τ2, . . . ,τp,t)
= x̂(φ1(t),φ2(t), . . . ,φp(t), t), (2)

where

φi(t) =
t∫

0

ωi(τi)dτi. (3)

ωi =
dτi

dt
(4)

The (p + 1)-dimensional WaMPDE [7] corresponding to (1) is:

p

∑
i=1

(
ωi(t)

∂ x̂
∂τi

)
+

∂ x̂
∂ t

= f (x̂)+ b̂(τ1, ...,τp, t) (5)

where τ1, ...,τp correspond to the warped time scales and t is the real time-scale. x̂
and b̂ are multivariate functions of the p + 1 time variables. Obviously, (1) can be
solved from (2) and (3) after the solution of (5) is found.

In the case of the ILFD, (5) is rewritten in three dimensions as:

ωo(t)
∂ x̂
∂τ1

+ωinj
∂ x̂
∂τ2

+
∂ x̂
∂ t

= f (x̂)+ b(t) (6)

where τ1 and τ2 are the free-running oscillation time scale and the injected signal
time scale, respectively, while t denotes the real time. Note that both τ1 and τ2 are
warped time scales to enable the slow variation of the local and injected frequency.
ωo is output frequency of the oscillator and ωinj is the injected frequency.

From the experimental results on an ILFD performed in [2] and as shown in
Fig. 1, it is noted that the relationship between ωinj/ωo and ωinj is approximately
linear between the locking intervals (the ILFD locks at multiples of its natural fre-
quency - the nth locking range is described by ωinj/ωo = n). During the locking
intervals, the slope is obviously zero. Consequently, two simulations are performed
with two carefully selected input frequencies. The two selected ωinj are known not
to lock the ILFD and to be below the lower limit of the particular nth locking range.
In other words, (6) is solved twice to obtain the values of ωo corresponding to the
two values of the manually picked ωinj. From this, an estimate of the start of the nth
locking range can be obtained. For instance, the start of the divide-by-two locking
range is when ωinj/ωo = 2. Thus the slope the slope of the line connecting the two
points determined from simulations is determined by

mbelow =
2−

(
ωinj
ωo

)

ωstart −ωinj
(7)
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where ωstart is the lower limit of the locking interval and ωo is the determined output
frequency corresponding to one of the two selected input frequencies, ωinj. Hence,
the lower limit of the locking range is

ωstart = ωinj +
2−

(
ωinj
ωo

)

mbelow
(8)

The upper limit of the locking range can be obtained with a similar procedure. In
this case, the two input frequencies are selected to determine the slope between the
divide by 2 and the divide by 4 locking ranges.

2ωn < ωinj1 < ωinj2 < 4ωn (9)

where ωn is the natural frequency of the oscillator.

4 The Proposed Method with MPCENV

Here, a novel transient envelope following method, MPCENV, is proposed to deter-
mine the output frequencies corresponding to different input frequencies:

The circuit solution is assumed to be composed of fast oscillations whose ampli-
tude and frequency vary much more slowly than the oscillations themselves. Let the
period of the fast oscillation be T . In the case of oscillators, this will vary slowly.
Let Tenv be the envelope time-step over which the response of the system can be
extrapolated.

Consider Fig. 2. Let x0 and x1 be the state at t0 = tS +Tenv and t1 = tS +Tenv +T ,
respectively, where tS is the ending time of the last envelope step. Using the implicit
Euler method for stability purposes, the envelope following process is described by:

x1=x(tS+Tenv+T)
x0=x(tS+Tenv)

tS t0 t1

xS

Fig. 2: Backward-Euler-based envelope-following method
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x1 − x0

T
=

x0 − xS

Tenv
(10)

where xS = x(tS) is known from a previous step, and x1 is determined using the
trapezoidal integration method from t0 to t1. This means that x1 depends on x0 and
T . Note that apart from the circuit variables, there are two extra unknowns, T and
Tenv, since the period of the oscillator is always changing, and Tenv has to vary in
order to remain equal to an integer number of periods T . To solve for the extra
unknowns, two further equations are required [8]:

⎧⎪⎨
⎪⎩

dx0l

dt
= 0

dx1l

dt
= 0

(11)

where l denotes the lth state variable. The two derivative-based phase conditions
(11) ensure that x0l and x1l are the peaks or troughs of a fast cycle. In practice,
value-based constraints are better for numerical handling of certain circuits such as
the ILFD:

{
x0l = c
x1l = d

(12)

where c and d are constants.
Equations (10) and (12) are reorganized as a matrix and solved using the

Newton–Raphson method [9]:

F =

⎡
⎣ f1(x0,T,Tenv)

f2(x0,T,Tenv)
f3(x0,T,Tenv)

⎤
⎦=

⎡
⎣ (x1 − x0)Tenv − (x0 − xs)T

x0l − c
x1l −d

⎤
⎦= 0. (13)

If the circuit has n state variables, this system consists of n+2 equations with n+2
unknowns.

The Jacobian matrix corresponding to (13) is given by:

J =

⎡
⎢⎢⎢⎢⎢⎣

d f1

dx0
,

d f1

dT
,

d f1

dTenv
d f2

dx0
,

d f2

dT
,

d f2

dTenv
d f3

dx0
,

d f3

dT
,

d f3

dTenv

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

∂x1

∂x0
Tenv − (Tenv + T )In,

∂x1

∂T
Tenv − (x0 − xs), x1 − x0

In |l , 0, 0
∂x1

∂x0
|l ,

∂x1

∂T
|l , 0

⎤
⎥⎥⎥⎦

(14)

where In is an identity matrix of size n×n, In|l , (∂x1/∂x0)|l and (∂x1/∂T )|l are the
lth row of In, ∂x1/∂x0 and ∂x1/∂T , respectively.

In this implementation, both ∂x1/∂x0 and ∂x1/∂T are derived using the trape-
zoidal integration method, as introduced in [10]. Set xr to be the state at tr, where
t0 ≤ tr−1 < tr ≤ t1. Then
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dxr

dx0
=
(

1− h
2
∂ f (x)
∂x

|xr

)−1(
1 +

h
2
∂ f (x)
∂x

∣∣xr−1

)
dxr−1

dx0
, (15)

where f (x) is the expression to represent the derivative of the circuit variables: ẋ =
f (x). The term dx1/dx0 can be found by repeatedly evaluating (15) from t0 to t1 with
dx0/dx0 = I, where I is an n×1 matrix with all ones.

In a similar manner, dx1/dT can be found by solving

dxn

dT
=
(

1− h
2
∂ f (x)
∂x

|xn

)−1

×
[(

1 +
h
2
∂ f (x)
∂x

∣∣xn−1

)
dxn−1

dT
+

xn − xn−1

T

]
(16)

starting from dx0/dT = 0.
Then the system in (13) can be solved using the Newton-Raphson method [9]:

Znew = Z − J−1F (17)

where Znew and Z represent the current and previous states of all the variables, i.e.,
Z = [ x0 T Tenv ]T . In the case of the ILFD, x0 represents the capacitance voltage and
the inductance current, i.e., x0 = [VC IL ]T .

As described in [2], the Devil’s Staircase is a plot of ωinj/ω0 against ωinj. For
simulation purposes, the injected frequency, ωinj is increased from the minimum
ωinj with a fixed frequency step-size. ω0 is then determined from the MPCENV
solution as:

ω0 =
2π
T

. (18)

5 Case Study and Numerical Results

The LC oscillator-based ILFD is selected as an example. The schematic is shown in
Fig. 3.

The governing equations are

{
C dVC

dt = IL − (A + daVinj)VC + A+daVinj

V 2
DD

V 3
C

L dVC
dt = −IL −VC

(19)

where A and da are the coefficients obtained from the negative resistance character-
istic [6].

The Devil’s Staircases obtained by simulation and experiment are shown in
Fig. 4. The widths of the locking ranges agree when ωinj/ωo is an even number [6]
i.e., 2 and 4, as shown in Fig. 1 and 4. The staircase from MPCENV is almost the
same as that from experiment, while the one from WaMPDE has an appreciably
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bigger difference. However, it should be accepted that this is a very basic method. It
could be used to obtain an initial estimate.

Table 1 shows the locking ranges captured from the staircases. The difference
between the MPCENV method and experimental results is less than 6%. Therefore,
it is sufficiently accurate to predict the locking range when designing ILFDs of this
type.

R

M1 M2

C

L

M3 M4

M6

CINJVINJ

M5

IBIAS RS

VDD

Fig. 3: Circuit schematic
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Fig. 4: The staircase obtained from simulation and experiment
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Table 1: Locking range captured from staircases, where M and E represent MPCENV and Experi-
ment

ωinj/ωo=2 ωinj/ωo=4
Vinj M (Mrad/s) E (Mrad/s) M (Mrad/s) E (Mrad/s)
1 V 0.63 0.62 1.1 1.04

1.5 V 0.88 0.92 1.48 1.51

6 Conclusions

A technique based on the Multiple-Phase-Condition Envelope Following (MP-
CENV) algorithm has been proposed for the determination of the locking range
of ILFDs. The simulation technique is advantageous for design and analytical work
as it is far less costly than experimental determination. Results for an LC-oscillator
based ILFD confirm its efficacy.
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ANN/DNN-Based Behavioral Modeling of
RF/Microwave Components and Circuits
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Abstract This paper provides a tutorial overview of artificial neural network/
dynamic neural network (ANN/DNN) for radio frequency (RF) and microwave
modeling and design. We will describe neural network structures suitable for rep-
resenting high-speed/high-frequency behaviors in components and circuits, ANN
training exploiting RF/microwave device and circuit data, formulation of ANN/DNN
for microwave component and circuit behavioral modeling, and use of ANN/DNN
models for high-level RF/microwave simulation and design optimization.

1 Introduction

Artificial neural networks (ANNs) have gained recognition as an emerging vehicle
in enhancing the effectiveness of computer-aided modeling and design of RF and
microwave circuits and systems [1, 2]. ANNs can be trained to learn electromag-
netic (EM)/circuit behaviors from component/circuit data. Trained ANNs can be
used as fast and accurate models in high-level circuit and system simulation and op-
timization. They are able to improve speed, accuracy, and flexibility of microwave
modeling and computer-aided design (CAD). This is made possible because of their
established network structures, universal approximation property, and the ability to
integrate with circuit knowledge [1]. The learning capabilities of ANN can also be
used for enhancing the existing CAD models of passive and active components, and
thereby extending our ability of describing component behaviors to be even closer
towards reality.

ANN techniques and their applications have been applied in a variety of circuit
modeling and design [3–6] such as modeling microstrip lines, vias, spiral inductors,
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transistors, VLSI interconnects, coplanar waveguide discontinuities, printed anten-
nas, and embedded passives for circuit synthesis, optimization, and yield analyses.
Further advances in embedding microwave information into neural networks lead
to new knowledge-based methods [7–11] for robust electrical modeling. There are
increased initiatives for integration of neural network capabilities into circuit design
and test processes. For example, recent reports include embedding neural networks
in circuit optimization, statistical design, global modeling, computational electro-
magnetics, measurement standards, and nonlinear circuit and system level design. In
addition, automated model generation algorithms [12] have been developed allow-
ing systematic and computerized model creation by ANN, to complement existing
human based approaches in RF and microwave modeling. This paper will describe
the fundamentals of using neural networks for RF and microwave modeling and
design, and highlight its recent applications.

2 ANN Approach for RF/Microwave Modeling

2.1 Introduction to ANN Based Modeling

Let x represent an Nx-vector containing physical/electrical parameters of a mi-
crowave device. Let y represent an Ny-vector containing the responses of the de-
vice under consideration. The physics/EM relationship between x and y needs to be
represented by a model. The theoretical model for this relationship may be unavail-
able, or computationally too intensive for online microwave design and repetitive
optimization. The objective now is to develop a fast and accurate model that will
represent the x-y relationship efficiently.

In order to develop a neural model, we teach/train a neural network to learn the
microwave problem. The external representation of a neural network model can be
described as

y = y(x,w) (1)

where the x and y are neural network inputs and outputs, and w are neural network
internal parameters called weight parameters.

The internal representation of a neural network typically consists of neurons and
the connections between neurons. Every connection has a corresponding weight
parameter associated with it. Each neuron receives stimulus from other neurons
connected to it, processes the information, and produces an output. Neurons that
receive stimuli from outside the network are called input neurons while neurons
whose outputs are externally used, are called output neurons. Neurons that receive
stimuli from other neurons and whose outputs are stimuli for other neurons in the
network are known as hidden neurons. Different neural network structures can be
constructed by using different types of neurons and by connecting them differently.
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There are several types of neural networks that can achieve the required modeling
relationship. The most popular form of neural network is the multilayer perceptrons
(MLP) structure [1]. As an example for a 3-layer perception shown in Fig. 1, the
input layer neurons are neural network inputs xi, i = 1,2, . . . ,Nx, and the output
layer neurons are neural network outputs, y j, j = 1,2, . . . ,Ny. Suppose the outputs
of the hidden neurons are zk, k = 1,2 . . . ,Nh, where Nh is the number of hidden
neurons. The computation of the neural network from input x to output y is

zk = σ(
Nx

∑
i=1

w1
ki · xi + w1

k0), i = 1,2, ...,Nx (2)

y j =
Nh

∑
k=1

w2
jk · zk + w2

j0, j = 1,2, ...,Ny (3)

where σ(γ) = 1
1+e−γ . The term w1

ki (or w2
jk) represents the weight parameter con-

necting the neurons between the input (or hidden) layer and the hidden (or output)
layer, with w1

k0 (or w2
j0) being the bias.

Fig. 1 Illustration of a feed-
forward 3-layer perceptron
structure. Typically, the neu-
ral network consists of one
input layer, one hidden layer,
and one output layer

Output layer

Hidden layer

Input layer

y1

x1 x2 x3

y2 yNy

xNx

In general, the ANN-based modeling involves three major steps: (1) selection of
an appropriate ANN structure, (2) ANN model training, and (3) use of the trained
ANN model in simulation, optimization, and circuit design.

2.2 ANN Structure Selection

Various types of neural network structures, such as multilayer perceptrons [1], radial
basis function (RBF) networks [1], wavelet neural networks [1], recurrent neural
networks (RNN) [13, 14], and dynamic neural networks (DNN) [15, 16], have been
used for different modeling scenarios of RF and microwave applications.

The selection of an appropriate neural network structure normally starts by iden-
tifying the nature of the input-output relationship of a given application. The mod-
eling of microwave components in the frequency domain is usually formulated with
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static parameters for neural network inputs and outputs. Such problems can be
solved using MLP, RBF, and wavelet networks [1]. The most popular choice is the
MLP. RBF and wavelet networks can be used when the microwave problem exhibits
highly nonlinear and localized phenomena (e.g., sharp variations). Recent research
in the area of microwave-oriented ANN structures leads to the time-domain ANN
formulations, such as RNN [13,14] and DNN [15,16], for modeling the dynamic be-
havior of RF and microwave circuits/systems. Knowledge-based networks [7–11],
which combine existing engineering knowledge (e.g., empirical/equivalent-circuit
models) with neural networks, are also developed to achieve accurate model with
less training data.

2.3 ANN Model Training

The most important step in neural model development is the neural network training
[1]. ANN models cannot accurately represent the component/circuit behavior until
they are trained by data, which is in the form of input-output sample pairs generated
by either simulation or measurement.

Define d as a vector containing simulated or measured data of the output re-
sponses y. Then x and d become the input-output sample pairs called training data.
Many samples of x are usually needed in the x-space to make the ANN a valid model
in that range of x. The training error of the ANN model is defined as

E(w) =
1
2 ∑

k∈Tr

‖y(xk,w)−dk‖2 (4)

where dk is the kth sample of the output in the training data, y(xk,w) is the neural
network output for the kth sample of the input, i.e., xk, and Tr is the index set of
all training data. The purpose of neural network training is to adjust w such that
the error function E(w) is minimized. Training is an iterative process and is usually
performed by optimization algorithms [1].

2.4 Use of the Trained ANN Models in Circuit Design

Once the ANN models have been trained and verified, they can then be incorporated
into a microwave circuit simulator for circuit design and optimization [1–3]. ANN
models can interconnect each other or connect to other components or models in the
simulator to form a high-level circuit. During design, the circuit simulator passes
input variables, e.g., gate length of a device or simulation frequency, to the ANN
model, which then computes and returns the corresponding outputs, e.g., drain cur-
rent or S-parameters, back to the simulator. ANN models achieve much-improved
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simulation efficiency while maintaining the same accuracy as the detailed and slow
EM/physics model.

3 ANN/DNN Applications in RF/Microwave Modeling

In this section, ANN based modeling techniques are demonstrated through applica-
tion examples. We will highlight two important ANN structures, i.e., the knowledge-
based structure combining ANN and equivalent circuit, and the DNN. We illustrate
different modeling scenarios such as linear/nonlinear component and circuit model-
ing, and time-domain and frequency-domain modeling.

3.1 Automated Model Generation for Embedded Passive Modeling

This subsection demonstrates an example of knowledge-based neural network mod-
eling where an existing equivalent circuit is combined with neural networks [6].
The neural network helps converting the equivalent circuit model into a parametric
model with physical/geometrical variables, and improving the modeling accuracy by
training the model to match electromagnetic data. Fig. 2(a) illustrates the geometry
of an embedded capacitor. The knowledge-based model combining a user-defined
equivalent circuit with an MLP neural network is shown in Fig. 2(b). The neural
model has two inputs (length l and dielectric permittivity εrcap) and two outputs
(inductance L and capacitance C), which are used in the user-defined equivalent
circuit to produce the 2-port S-parameters to match the training data obtained from
EM simulations [6]. The training data are the real and imaginary parts of the 2-port
S-parameters (i.e. S11 and S21) at multiple frequencies and different geometries.

An advanced ANN training method, called automated model generation (AMG)
[12], is used. It automates the model development from data generation to ANN
training to achieve the required model accuracy with minimum amount of training
data. An adaptive sampling algorithm is used during the training process to decide
how many training data is needed, and how the data should be distributed/sampled in
the training space. The neural network size (such as the number of hidden neurons)
is determined during the training process according to a set of under-learning and
over-learning criteria. A simulator driver in AMG is set up to drive Sonnet-Lite [17]
to generate training and validation EM data. Once the data is generated, the lumped
components L and C of the equivalent circuit are extracted from the EM data [6].

In this particular example, AMG training starts with an initial ANN with 5 hidden
neurons. The number of hidden neurons increases to 12 to meet the user-defined
accuracy of 1% ANN test error. The ANN learns the L-C dependence on the input
geometry through the automated training. The final combined model (combining the
user-defined equivalent circuit and the trained ANN) results in an overall accuracy
of 0.86% when compared to the EM data. The comparisons between the real part
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Fig. 2: Illustration of linear component modeling using ANN. a Geometry of an embedded capac-
itor and b the neural model combined with equivalent circuit

of S11 of the EM simulation and the results from the combined model for two sets
of geometry inputs are shown in Fig. 3, confirming that the S-parameters can be
accurately regenerated by the combined model.
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Fig. 3: Comparison of Real(S11) of the original EM data (-x-) and the combined equivalent circuit
and ANN model (-o-) for two sets of (l, εrcap) values
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3.2 DNNs for Behavioral Modeling of Nonlinear Circuits/Systems

Behavioral modeling of nonlinear circuits and systems is significant with the in-
creasing need for efficient CAD techniques in high-level and large-scale nonlinear
microwave design. DNN is an advance in this area [15]. DNN is formulated in con-
tinuous time domain to represent the dynamic input-output signal relationship. The
output signal at a time instance is a function of the input signal at that time, its time
derivatives, as well as the time derivatives of the output signal itself.

Here we illustrate DNN and its use in nonlinear simulation through a direct
broadcast satellite (DBS) receiver subsystem example [15]. The DBS consists of
a mixer, a gain stage amplifier, and an output stage amplifier. The original DBS rep-
resentation is a detailed transistor-level nonlinear circuit in Agilent ADS [18], as
shown in Fig. 4(a). To develop fast behavioral models, we train 3 DNNs to model
the mixer, the gain stage amplifier, and the output stage amplifier, respectively, as
shown in Fig. 4(b).

DNN
model

of Mixer
LO

LO

+5V +5V

+2V

RF

RF

DNN model
of Gain Stage

Amplifier

DNN model
of Output Stage

Amplifier

Mixer

(a)

(b)

Gain Stage
Amplifier

Output Stage
Amplifier

Fig. 4: DBS receiver subsystem implemented by a connecting original detailed equivalent circuits
in ADS, and b connecting the trained DNN models

The structure of each DNN model in Fig. 4(b) can be illustrated by Fig. 5. The
dynamic output voltage vout(t) is computed from a neural network function in terms
of the dynamic input vin(t) and the higher order derivatives of both output and input
signals as

Vout(t) = fANN(v(1)
out(t), . . . ,v

(n)
out(t),vin(t),v

(1)
in (t), . . . ,v(n)

in (t)) (5)

where fANN represents a multilayer perceptron neural network [1], v(i)
in (t) and v( j)

out(t)
represent the derivative inputs as divin/dti (i = 1,2, . . . ,n) and d jvout/dt j ( j =
1,2, . . . ,n), respectively, and n denotes the dynamic order.
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The DNNs are trained using large-signal data from original ADS-simulation data
of the mixer and amplifiers [15]. The trained DNN models of the amplifiers and
mixer can be conveniently incorporated into ADS to perform harmonic balance sim-
ulation of the DBS subsystem. Such implementation can be achieved by either using
the circuit representation of the DNN or programming the HB representation of the
DNN models [15]. The overall DBS subsystem solution using DNNs matches that
of the original system as shown in Fig. 6, even though these obviously distorted
signals were never used in training of any of the DNNs. The time for simulating
the DBS system is reduced from 20.03 seconds using the original detailed-circuit
simulation down to 4.87 seconds using the DNN based simulation.

Vout
(1) (t)

∂ ∂ ∂ ∂

Vin
(1) (t) Vin

(n) (t)Vout

Vin(t)

Vout(t)

(n)

MLP Neural
Network

(t)

Fig. 5: Illustration of the input-output relationship of the DNN model structure

4 Conclusion

Neural network based RF/microwave modeling has been introduced. We highlighted
major parts of neural modeling approaches including ANN structures, training, and
application to RF/microwave modeling for linear/nonlinear components and cir-
cuits. Through application examples, we illustrated concepts of knowledge based
neural networks, automated model generation, and DNN based dynamic modeling.
The techniques have been applied to behavioral modeling of electromagnetic struc-
tures and nonlinear microwave circuits. The ANN/DNN approach helps to provide
fast and accurate models for RF/microwave design, enhancing design quality and
efficiency.
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Surrogate Modeling of Low Noise Amplifiers
Based on Transistor Level Simulations

Luciano De Tommasi, Dirk Gorissen, Jeroen Croon, and Tom Dhaene

Abstract Although the behavior of several RF circuit blocks can be accurately eval-
uated via transistor-level simulations, the design space exploration is limited by the
high computational cost of such simulations. Therefore, cheap-to-evaluate surrogate
models of the circuit simulator are introduced. This paper presents some results of
a feasibility study concerning the development of surrogate models of low noise
amplifiers.

1 Introduction

A surrogate model is a cheap-to-evaluate replacement model of expensive, highly
accurate, computer simulations (e.g. circuit simulations). The surrogate modeling
approach can be used to increase the efficiency of design space exploration, what-if
analyses, optimization and sensitivity analyses.

We aim to investigate the feasibility of surrogate modeling approach for RF cir-
cuit blocks. Accurate surrogate models of single RF and microwave components
have been already developed (e.g. using ANNs [1]). In this work, we do not model
a single device like a MOSFET, but a complete RF circuit block: a Low Noise Am-
plifier (LNA) [2] (Fig. 1). Other RF circuit blocks (e.g. mixers, VCOs, etc.) could
be analyzed as well.

The behavior of an LNA is described by means of the admittance and noise func-
tions, which are evaluated via accurate transistor-level simulations. In particular,
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the characterization of weakly nonlinear LNA behavior demands several periodic
steady state analyses, which are particularly time-consuming.

iout

W

Ls

Lm
VIN

Fig. 1: A narrowband low noise amplifier

Hence, a complete LNA simulation typically requires one to two minutes, which
is too long to effectively explore how performance figures scale with key circuit-
design parameters, such as the dimensions of transistors, passive components, sig-
nal properties and bias conditions. Therefore, circuit simulations can be usefully
replaced with an accurate surrogate model which is much cheaper to evaluate.

Several model types included in the SUMO Toolbox modeling software [3] were
compared in [4] and [5], the goal being the selection of the best approximation of
LNA describing functions. Such comparison exploited a first order analytical model
of the LNA, which is faster to evaluate than circuit simulations, and at the same time
satisfactorily reproduces the shape of the simulator outputs.

In [4] and [5] the error given by a surrogate model was computed comparing
reference function (the analytical LNA model) and surrogate model over a dense
grid of samples. However, when the reference functions are the outputs of expen-
sive transistor level simulations, the error can only be estimated by comparing few
samples. In this paper, such accuracy issues are discussed and results are compared
with [4] and [5].

2 Software Environment

The surrogate modeling approach developed in this paper, is based on the SUrrogate
MOdeling (SUMO) Matlab Toolbox, a plug-in based, adaptive tool that automati-
cally tries to generate a surrogate model with the required accuracy within the time
limits set by the user [6].

The SUMO Toolbox modeling flow is shown in Fig. 2. It is based on adaptive
modeling and adaptive sampling loops.
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The surrogate modeling process starts with the evaluation of an initial design (e.g.
a Latin hypercube) which uniformly fills the design space (the number of samples
is specified by the user). Based on this initial set of samples, one or more surro-
gate models are constructed. Adaptive modeling implies that a suitable optimization
algorithm (e.g. genetic algorithm) is used to tune relevant model hyperparameters,
in order to minimize the error between model and data. Model error is evaluated
according to one or more measures and functions, see section (3). The models are
then ranked according to their score, and the best model is selected.

In order to improve the accuracy, an adaptive sampling procedure drives the se-
lection and simulation of new samples. Optimal selection of additional data samples,
known as reflective exploration, is based on the best performing models and the be-
havior of the reference function. In this work we applied the gradient-based sample
selector because it has shown good performances with the LNA modeling problem
[10].

After each sampling iteration, an adaptive modeling iteration including the new
samples is started, and the whole process repeats itself until one of the following
three user-defined conditions is satisfied: (1) the user required accuracy has been
met, (2) the maximum allowed number of samples has been reached, or (3) the
maximum allowed modeling time has been exceeded.

adaptive
sampling

design space

add
extra

sample

tune
model

complexity

adaptive
modeling

simulate sample

build model

assess model

reflective exploration
evalute model quality

surrogate model
optimal design

Fig. 2: Modeling flow followed by the SUMO toolbox software

The SUMO toolbox has been interfaced with Cadence SPECTRE simulator,
which runs transistor level simulations, so providing samples of the LNA describing
functions. As mentioned in section 1, the LNA is characterized through admittances
and noise currents. Admittances are 52 complex functions. These include four ad-
mittances describing the linear behavior plus high order admittances describing the
weakly-nonlinear transfer [8].

Noise functions include two real functions (input and output noise currents) and
one complex function (correlation between input and output noise currents).
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3 Model Accuracy Evaluation

Model accuracy evaluation involves the definition of an error measure and an er-
ror function. An error measure is a criterion to estimate the error, defining which
samples contribute to the error and how they contribute (e.g. holdout, crossvalida-
tion, etc). An error function is a mathematical expression of the error as function
of the samples (e.g. root relative square error, mean relative square error, maximum
relative error, average relative error, etc).

We use the Root-Relative-Square-Error (RRSE) to drive the model selection:

RRSE({yi},{ỹi}) =

√
∑(yi − ỹi)2

∑(yi − y)2 (1)

being {yi} the samples of the reference function, {ỹi} the samples of the surro-
gate model, y the mean of the reference function, N the number of samples and
i = 1, . . . ,N. In fact, our investigations showed that RRSE tends to produce the
smoothest models with a reduced number of samples. However, it is worth to note
that accuracy specifications may also be given in terms of other relative error func-
tions, e.g., average relative error (2) or maximum relative error (3), rather than in
terms of RRSE. In such case, these error functions can be evaluated to eventually
check the accuracy of models.

ARE({yi},{ỹi}) =
1
N ∑

∣∣∣∣yi − ỹi

yi

∣∣∣∣ (2)

MRE({yi},{ỹi}) = max

∣∣∣∣yi − ỹi

yi

∣∣∣∣ (3)

As for the error measures, we consider two different approaches used in statis-
tical classification for accuracy estimation and model selection: holdout and cross-
validation [9]. Holdout involves the partitioning of the sample set in two subsets,
respectively named training set and validation set. The training set is used to train
the model (e.g. find the coefficients of a rational function or the weights of a neural
network), whereas the error is computed only using the validation set samples. The
bigger is the validation set, the higher the bias of error estimation. On the other hand,
fewer validation samples lead to a wider confidence interval of the error estimation.

The advantage of K-fold crossvalidation (CV) over holdout is that all the samples
are used for both training and validation. This means that the model is trained by
exploiting all the available samples and its error is then estimated as follows. The
sample set is divided into K subsets (folds) of equal or similar size, and K models
are trained, each time leaving out one of the folds from training. The error of each
model is computed by using only the omitted fold. Finally, the K errors are averaged
to produce the error estimation of the model trained with all the samples.
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4 Modeling Settings

4.1 Accuracy

A target accuracy of RRSE < 0.01 is required. 5-folds crossvalidation estimation
of RRSE is used as error measure driving the model selection process. In order to
compare different error measures, RRSE is also estimated by means of the holdout
method, with a validation set (VS) including the 20% of the total number of evalu-
ated samples. The density of VS samples throughout the design space has to be as
uniform as possible. This is achieved by means of a SUMO Toolbox optimization
algorithm. In such way, a new VS is evaluated after each new sampling iteration.
The VS estimation is not used to select the best model.

4.2 Model Type and Adaptive Modeling

Results in [4] [5] have shown that rational functions [7] and ANNs are the most suit-
able model types, respectively, for the admittance and noise functions of an LNA.
Hence, we choose the same model types with the transistor level simulator.

Rational approximation implemented in SUMO toolbox exploits a function in
the form1:

y(x1,x2) =

n

∑
i=0

n−i

∑
j=0

αi j(w1x1)i(w2x2) j

n

∑
i=0

n−i

∑
j=0

βi j fi j(w1x1)i(w2x2) j

(4)

where fi j are boolean flags with values in {0,1}, and {w1,w2} are input weights.
The coefficients {αi j} and {βi j} are computed by solving a linear least squares

problem [7], whereas a genetic algorithm (GA) is used to optimize {w1,w2}, { fi j}
and n. Constraints applied to the rational approximation are: 1 < w1,w2 < 40 and
n ≤ 100. GA settings are: population size = 30, crossover fraction = 0.7, maximum
number of generations = 10, elite count = 1, stall generation limits = 4 [11].

4.3 Sampling

Modeling starts with a 20-samples Latin Hyper Cube. Afterwards, gradient-based
adaptive sampling is applied.

We remark that adaptive sampling has to be used because the LNA functions are
almost flat in large regions of the input domain space (most of them have only one

1 It is shown a function of two variables: x1 and x2.
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or two resonance peaks). Therefore, an uniform sample distribution would waste a
lot of samples in large uninteresting regions.

5 Results

Surrogate models of admittance parameters and noise currents have been generated
with respect to the transistor width W and the inductance Ls. Due to space limitation,
only modeling of admittances can be discussed in this paper.

Target accuracy is reached with 155 samples. Modeling the analytical admit-
tances y11 and y21 just required 24 samples [5]. However, analytical admittances are
exactly rational functions of Wn and Lsn, and this simplifies the rational modeling.

A surrogate modeling flow may include final accuracy assessment by computing
the RRSE onto an independent set of samples (test set) [1]. A small set of samples
is usually used (to keep low the cost of additional sample simulations). In this study,
we aim to assess the modeling flow rather than the models, therefore we choose a
big test set (TS): a uniform grid of 400 samples. It provides a more accurate RRSE
estimation than CV.

Each admittance function has been labeled with an index between 1 and 52. The
corresponding RRSEs (as given by CV, VS and TS) are displayed in Fig. 3. It can be
seen that CV estimation of RRSE is lower than RRSE computed onto TS. The VS
estimation gives a better agreement with the TS. The model exhibiting the highest
TS-RRSE is the admittance with index 41 (Fig. 4 left side) and gives an RRSE ∼= 0.1.
For such model, the relative error:

RE(Lsn,Wn) =
∣∣∣∣y(Lsn,Wn)− ỹ(Lsn,Wn)

y(Lsn,Wn)

∣∣∣∣ (5)

was also computed over the TS. The maximum relative error (3) is about 30%, with
the maximum deviation (5) assumed near the main resonance peak.

Average relative error (ARE) (2) and maximum relative error (MRE) (3) have
been computed for all the 52 admittance models. It is seen that models may
give large MRE (and ARE) but small RRSE. For example, the model of admit-
tance y1100m0 gives: RRSE=0.00132 and, respectively for real and imaginary part,
AREr=13.3 and AREi=0.028. Figure 5 shows the absolute (AE= |y− ỹ|) and rel-
ative (5) errors. Relative error is very large in a region where the function is very
close to zero.

6 Conclusions

Surrogate models of low noise amplifiers can be obtained with a satisfactory accu-
racy considering two input parameters. However, the use of 5-folds crossvalidation
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Fig. 3: Root-Relative-Square-Error of each admittance function estimated by 5-folds crossvalida-
tion, holdout (validation set 20% of the samples) and a test set (20×20 uniform grid of samples)
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leads to an underestimation of the error. Therefore, more samples will be in practice
needed to achieve the required level of accuracy.

Admittance functions assume values close to zero throughout large regions of
inputs domain. In such regions, it may become very difficult to control the relative
error. Hence, although ARE and MRE are more intuitive functions than RRSE, they
are not suitable for accuracy specifications.

Further work will be aimed to increase the accuracy of surrogate models with
more input parameters.
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Computational Statistics Approach to
Capacitance Sensitivity Analysis and Gate Delay
Time Minimization of TFT-LCDs

Yiming Li and Hsuan-Ming Huang

Abstract In this paper, we practically implement a systematical method for thin-
film transistor liquid-crystal display (TFT-LCD) design optimization and sensitivity
analysis. Based upon a three-dimensional (3D) field solver and a Design of Experi-
ments, we construct a second-order response surface model (RSM) to examine the
capacitances’ effect on the performance of an interested TFT-LCD pixel. The con-
structed RSMs are reduced using a step-wise regression. We verify the accuracy
using the normal residual plots and their residual of squares. According to the mod-
els, we then analyze the sensitivity of the capacitances by considering the design
parameters as changing factors (i.e., the size variation and the position shift) under
an assumption of Gaussian distribution. Consequently, we further apply the mod-
els to optimize the designed circuit. The designing parameters of these models are
selected and optimized to fit the designing target of the examined circuit by the ge-
netic algorithm in our unified optimization framework. This computational statistics
method predicts the capacitances’ effects on the gate delay time and compares with
full 3D simulation approaches, it shows the engineering practicability in display
panel industry.

1 Introduction

Thin film transistors (TFTs) have found wide usage in active matrix liquid crystal
displays [13]. The basic principle of operation of the liquid-crystal display (LCD)
panel is to control the transparency of each pixel portion by bus lines to charge the
pixel electrode. To obtain high display performance, the capacitance of each pixel
plays very important role in display circuit design. However, the capacitance of a
pixel is very hard to be analyzed in a computationally efficient way because of the
three-dimensional (3D) complex geometry structure. In this paper, we complete a
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systematical method to analyze and optimize the capacitance of an interested TFT
device, shown in Fig. 1, using a 3D technology computer aided design (TCAD)
filed simulation [6], a computational statistic method and a genetic algorithm (GA).
Figure 1(a) shows the equivalent circuit of TFT-LCD panel, which has 1280 × 1024
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Fig. 1: a Equivalent circuit of TFT-LCD panel b 3D schematic plot of the TFT-LCD pixel c and
perspective plot of the TFT-LCD pixel

Table 1: The upper and lower limits of the TFT-LCD designing parameters

Variable Parameters Variation range (μm)

Size variation
A Gate line [0,10] in y
B Shield metal (left) [0,3] in x
C Shield metal (right) [0,3] in x
D Data line [0,3] in x
E ITO electrode [0,5] in x
F ITO electrode [0,5] in y

Position shift
G Shield metal (left) [0,5] in x
H Shield metal (right) [-5,0] in x
I ITO electrode [-2,2] in y

resolution. The 3D schematic plot of the pixel in this panel, which has twelve layers,
is shown in Fig.1(b) and the perspective plot is shown in Fig. 1(c). A computational
statistics methodology is developed and implemented which consists of a Design
of Experiment (DOE) setup and a second-order response surface model (RSM). By
considering the designing parameters as changing factors (i.e., the size variation and
the position shift), listed in Tab. 1, according to the DOE, we construct a RSM for
the capacitances of TFT-LCD. Designing parameters such as the gate line, the shield
metal, the data line and the ITO electrode are corresponding to the parts (4), (2), (6)
and (1) as shown in Fig. 1(c), respectively. The RSM can explain the behavior of
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capacitances on the investigated TFT-LCD pixel. We simplify the RSMs using a
step-wise regression, and verify their accuracy by the residual of squares. Under a
Gaussian distribution, the model allows us to analyze the sensitivity of capacitances
in a TFT-LCD pixel with respect to the aforementioned factors efficiently. These
models also enable us to optimize the designing targets of the tested TFT-LCD pixel.

The paper is organized as follows. In Sec. 2, we briefly describe the computa-
tional statistics approach for the structural analysis and design optimization of TFT-
LCDs. In Sec. 3, the simulation results are discussed. Finally, we draw conclusions
and suggest future work.

2 Computational Methodology

Variables screening 

Central composite design

Model construction

Sensitivity analysis 
and  

Design optimization

Model accuracy verification

3D field TCAD 
simulation tool

Yes

No

Fig. 2: A flowchart of the computational method

The computational statistics methodology that can be used to account for the
characteristic sensitivity and circuit design optimization is depicted in Fig. 2. Vari-
ables selection is a procedure to find the significant factors from a list of many
potential candidates. Alternatively, we use a screening design or empirical check
to identify significant main effects, rather than interaction effects, the latter being
assumed an order of magnitude less important. A Plackett-Burman [5, 12] design
was used to determine major contrasts and interactions. Based on the results of the
screening experiment, parameters in need of further study were identified. With a
Central Composite Design (CCD) DOE technique, a 3D field TCAD simulation [6]
is performed to calculate the passive components of the studied TFT-LCD structure.
From this we constructed the RSM [2,5,7,11]; mathematically, the response surface
models can be represented as second-order polynomials:

Y = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix
2
i +

k

∑
i=1

k

∑
i�= j

βi jxix j + ε, (1)
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where k is the number of input factors, xi is the ith input factor, βi is the ith regres-
sion coefficient, and ε represents model error. Several techniques, such as normality
assumption and plot of residuals versus predicted value, to verify the adequacy of
the RSM are then used [1–4,11]. For the investigated structure, a 2nd order model is
established between capacitances (i.e., responses) and design parameters (i.e., fac-
tors). We notice that we didn’t include scaling before the modelling. The details of
the variables selection, the central composite design and the response surface model
construction can be found in the reference [8].

Next, the sensitivity of the capacitances as approximately modeled by the RSM
can be explored through a random procedure of statistics accordingly. Based upon
our unified optimization framework (UOF) [9], we further develop a genetic algo-
rithm (GA) [10] technique for the circuit design optimization. The flow of the GA
evolutionary architecture is as follows. First, gene encoding is the way to encode
the parameters into genes on the chromosome. Next step is to evaluate the fitness
of each individual according to the stopping criteria. Then we select better chro-
mosomes and breed a new generation through crossover and mutation. Finally, the
fitness of the new generation is evaluated and the process is repeated for a specified
number of generations or until achieving to desired targets. In the circuit design of
TFT-LCD pixel, the capacitances in the SPICE netlist are encoded as optimization
variables, and the fitness functions are constructed using an interested circuit perfor-
mance. Here, the gate delay time of the studied whole display panel, shown in Fig.
1(a), is minimized. The designing parameters of RSMs for the capacitances that we
have constructed are used to optimize the gate delay time of all TFT-LCD pixels in
this study.

3 Results and Discussion

Among various designing parameters, variables screening has resulted in nine im-
portant factors as listed in Tab. 1. The table also shows the upper and lower limits
of these designing parameters. We construct the 2nd order RSM using 149 runs with
the CCD for the ten capacitances in a TFT-LCD pixel. We have constructed ten re-
sponse surface models for different capacitances. Without loss of generality, here,
we merely list two models for the most important capacitances C12 and C15, which
are the capacitance between the part (1) and the part (2) and the capacitance between
the part (1) and the part (5), as shown in Fig. 1(c), respectively.

logC12 = +2.57101 + 0.021036 ·B+0.025445 ·C+ 0.051072 ·E

−0.10289 ·F −0.021547 ·G+0.022297 ·H−0.025643 · I

+0.019341 ·E ·F + 3.46849 ·10−3 ·E ·G−5.22133 ·10−3 ·E ·H

+0.012046 ·E · I −4.20268 ·10−3 ·F ·G+ 3.78314 ·10−3 ·F ·H

+9.85079 ·10−3 ·F · I, (2)
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and

1/
√

C15 = +0.058861 + 1.16740 ·10−4 ·B + 1.23106 ·10−4 ·C
−6.42761 ·10−4 ·E + 9.38689 ·10−4 ·F + 5.39816 ·10−5 ·G

−5.16325 ·10−5 ·H −2.69947 ·10−5 · I, (3)

where A to I are designing parameters as listed in Tab. 1. The residual of squares
for the formulated C12 and C15 are 0.9141 and 0.9887, the others are listed in Tab.
2. Figure 3 shows the residual normal probability plot and the residuals versus the

Table 2: R-square of the constructed capacitance models

Response R-Square Response R-Square

C12 0.9141 C14 0.9999
C15 0.9887 C13 0.9993
C56 0.9939 C26 0.9849
C35 0.9976 C46 0.9999
C16 0.9823 C24 0.9807

predicted plot for the capacitance logC12, and Fig. 4 shows the model adequacy
checking for 1/

√
C15. This examination highly reflects the modelling functional-

ity for the RSM of these capacitances. The scatter plots of values calculated from
the response surface models versus the simulated values obtained from the 3D field
TCAD simulator for the models of these two capacitances, as shown in Fig. 5. The
results show that there is a high linearity between the actual and predicted values.
This confirms the accuracy of the constructed models. Figure 6(a) shows relation-
ship between C12 and ITO size variation along the y direction (i.e., the parameter F),
given in Tab. 1, where the other parameters are set to the nominal values, and under
Gaussian distribution (with more than 10000 trails and 3σ , practically determined
by the process variation, is about 0.25μm). The standard deviation of the C12 and
C15 due to the variation of the parameter F of the tested pixel TFT-LCD is shown in
Fig. 6(b). The sensitivity analysis between the C15 and the parameter F is depicted
in Fig. 7. It is found that 1.7385 fF increase of σC12 and 0.2157 fF of σC15 when
the ITO size varies from 4μm to 1μm. The increase of σC12 and σC15 are mainly
due to relatively large variations of the circuit performance when the ITO size vari-
ance decreases in the y direction. Besides, to the other designing parameters in this
TFT-LCD pixel sensitivity analysis can be performed by exploiting the RSMs. The
gate delay is one of the most significantly limiting factors for the large-screen-size
and high-resolution TFT-LCD design. We successfully reduce the gate delay time
from 2877.1 ns to 8.2289 ns by the GA on the platform of UOF. The optimized de-
signing parameters of the whole display panel are listed in Tab. 3. We notice that
this estimation should be subject to further investigation by individually construct-
ing RSMs with respect to each TFT-LCD pixel. Therefore, the individual behavior
can be further examined for this TFT-LCD pixel.
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Fig. 6: a The relationship between the C12 and the parameter F . b The standard deviation of the
C12 versus the parameter F

Fig. 7: a The relationship between the C15 and the parameter F . b The standard deviation of the
C15 versus the parameter F

Table 3: A set of optimized designing parameters of the tested TFT-LCD pixel for the gate delay
time minimization

A B C D E F G H I Gate delay time

Original 0 0 0 0 0 0 0 0 0 2887.1 ns
Optimized 4.919 0.0525 0.7985 2.2996 4.527 4.535 3.2022 -3.932 -0.6898 8.229 ns

4 Conclusions

In this work, we have successfully implemented a computational statistics technique
for the capacitance sensitivity analysis of a TFT-LCD pixel and design optimization
of the whole TFT-LCD circuit. Based on the 3D field solver and the central compos-
ite design method, the second-order response surface models have been constructed
for the structural capacitances. Consequently, the constructed models were applied
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to study the sensitivity of capacitance with respect to the structural designing pa-
rameters and optimal design of the gate delay time of the tested TFT-LCD circuit in
a computationally effective way, compared with a full 3D TCAD simulation. This
approach can be incorporated into CAD tools for TFT-LCD design and can benefit
the design automation of display panels.
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Lookup-Table Based Settling Error Modeling in
SIMULINK

Marko Neitola and Timo Rahkonen

Abstract This work presents a data-based behavioral modeling scheme for switched-
capacitor integrator settling error. In a typical SIMULINK behavioral model, settling
behavior is implemented as a conditional, equation-based block. Here, the amplifier
model is first characterized by a full range of amplifier’s initial input and output volt-
ages. The resulting settling errors are tabulated and finally, the settling error table is
used directly as a lookup-table in behavioral simulations. One- or two-dimensional
lookup-tables are standard library blocks in SIMULINK. This means that the ac-
tual settling error model is independent of the modeled amplifier topology, which is
clearly a welcome feature in behavioral modeling.

1 Introduction

Continuous-time transient analyses for large mixed-signal circuits like switched-
capacitor (SC) delta-sigma (DS) A/D-converters are known to be very slow. There-
fore, a discrete-time behavioral model is usually necessary. The target simulator
here is SIMULINK, a popular simulation platform integrated with MATLAB. This
paper provides a new perspective on the modeling of the amplifier nonlinear settling
behavior that avoids solving differential equations. The settling error model is a
part of a larger SC DS-converter behavioral model. Being discrete-time, continuous-
amplitude systems, SC-circuits suit very well into the SIMULINK modeling envi-
ronment.

An accurate settling error model requires modeling of both slew-rate (SR) lim-
ited region and bandwidth-limited region. Since SC-amplifiers spend a lot of time
in the slew-rate limited operation, any analytical settling analysis may become
very complicated. The amplifier itself has properties like output-voltage dependent
voltage gain, whose contribution to the settling error can be significant in case of
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low-voltage amplifiers. Moreover, analytical modeling of two- or multidimensional
phenomena is usually obscure due to a large amount of non-dominant terms.

The method presented in this paper relies on the SC-integrator transient simula-
tions followed by settling error tabulation. This part is called the characterization.
After this, the resulting settling error table will be used in the DS-converter behav-
ioral model as a lookup-table (LUT). The ease of use in the proposed method can
be justified by the fact that a lookup-table is a standard library block in SIMULINK.
The content of LUT is a re-definable variable in the MATLAB workspace. The set-
tling error table can be originated from any type of simulator at any user-defined
abstraction level. Obviously the most accurate results are obtained from a transistor
level characterization. Here, we use a realistic two-pole amplifier model defined in
MATLAB. The reason for this is that in our case study, we need a quick charac-
terization platform for an exceptionally large circuit parameter sweep. The circuit
parameters are swept to perform ca. thousand characterizations in order to visualize
performance boundaries as a function of both slew-rate and phase margin. A tran-
sistor level characterization would be more feasible at the stage where all the circuit
components are dimensioned.

There are several publications, e.g. [1–3], dedicated on modeling of SC DS-
converters with nonlinearities in SIMULINK-environment. The proposed modeling
method can be easily added to a behavioral model that also includes other significant
non-idealities.

Section 2 discusses the characterization of the integrator settling error. The
lookup-table range and size allocation are discussed in Section 3. Finally, Section 4
introduces a behavioral SIMULINK-model of a second order SC delta-sigma A/D
converter along with the simulation and benchmarking results.

2 The Characterization

2.1 The Charge Distribution and Initial Voltages

The characterization is based on a group of amplifier settling simulations. Exciting
the integrator with a group of input and output signals results to a group of initial
voltage pairs, which are the prerequisite of settling simulations (Sect. 2.2). As an
example model, we use a popular, parasitic insensitive SC-integrator, see Fig. 1.
Capacitances are the sampling capacitor CS, the feedback capacitor CI and the par-
asitic capacitance Cp. In the periodic transition between two integrator phases, the
total charge is passively redistributed. This results in initial voltages vi0 and vo0 at
the input and output nodes of the amplifier, respectively.

In our example, the SC-integrator is clocked so that the sampling capacitor CS

is charged during one clock cycle (phase φ1). In the next cycle (phase φ2), due to
closed feedback loop, the integrator forces vi0 towards zero and the sampled charge
is moved to load capacitor CL. The load capacitor CL is typically the sampling
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capacitor of the next integrator in case of DS-converters. The SC-integrator in Fig. 1
is set to full-delaying and non-inverting mode.

Fig. 1: Parasitic insensitive SC integrator phases: sampling phase φ1 and charge transfer phase φ2

The initial voltage at the input and the output of the amplifier is determined by
studying the passive charge transfer in the capacitive network around the amplifier.
In a generalized network of Fig. 2a, all capacitors are initially charged to voltages
V10 to V40. When the capacitors are connected to voltages V1 to V3 in Fig. 2b, the
total charge is passively re-distributed, resulting in initial voltages vi0 and vo0 at the
input and output of the operational amplifier. The initial conditions can be solved
from the charge-sharing equation:
[

CS +CI +Cp −CI

−CI CI +CL

]
·
[

vi0

vo0

]
=
[

CSV10 +CIV20 +CpV40 +CSV1 +CpV3

−CIV20 +CLV30 +CLV2

]
.(1)

At the right-hand side of (1), V10 to V40 are the voltages across capacitors charged
at the previous switching phase. It is quite straightforward to apply charge-sharing
equations for either switching phases of the circuit in Fig. 1.

Fig. 2: The principle of calculating initial voltages: a Initial charges and b capacitors connected to
source voltages
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2.2 The Amplifier Model and the Settling Simulations

The settling simulations in the characterization stage can be performed by using
a simulation platform of user’s choice: Spice, Verilog-A, VHDL-AMS, MATLAB,
etc. Here, a state-space model of the circuit in Fig. 3 was created using MATLAB.
The model is a 2-pole folded-cascode amplifier complemented with nonlinearities
that illustrate the usage of our method.

Fig. 3: The small-signal amplifier model

The effects of slewing are analyzed as in [4] where the slew-rate induced distor-
tion of SC integrators is studied by assuming a piece-wise linear transconductance
gm1, the current igm1 saturates to the value of bias current i1MAX . The slewing is
modeled by tanh-nonlinearity in the input transconductance:

igm1(t) = i1MAX · tanh
vi0(t)
Vmax

, (2)

where Vmax is the maximum input voltage level. The nonlinearity of the output stage
conductance (go2 in Fig. 3) is realized by assuming a quadratic dependency on initial
output voltage vo0. The output stage current igm2 is

igm2(t) = −gm2 · vx(t), (3)

which constitutes the output voltage dependent gain. The voltage vx is the node-
voltage at the previous stage of small-signal circuit in Fig. 3.

In our MATLAB-based model, the ideal integrator output voltages are the same
(user-defined) output voltages used to calculate the initial voltages. All input-output
voltage combinations result in different initial voltages and settling errors. The ac-
tual settling error (which will be tabulated) can be defined for an amplifier step
response stepping from 0V to Vin [1]:

εsettl = (Vin −SR · tsl) · e−texp/τ , (4)

where tsl and texp are the durations of nonlinear and linear settling, respectively. The
linear part is defined by the amplifier bandwidth, or time constant τ.

Our model is used in a parameter sweep. Sweeping the value of I1MAX in (2)
affects the slew-rate (SR) defined for Fig. 3 in (5). Sweeping the capacitance C1

moves the non-dominant pole in the transfer function shown in (6) i.e. it affects the
gain bandwidth as well as the phase margin (PM) of the integrator.
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SR =
i1MAX

Co + CF ·CS
CF +CS

, (5)

H(jω) =
gm1

g01 + jωC1
· gm2

g02 + jωC2
. (6)

The switching between two capacitance networks requires two separate character-
izations. The settling simulations are made for both capacitance networks (phases
φ1 and φ2), and the simulation time-step is determined by the circuit’s smallest
time-constant.

The nonlinear settling simulation of a state-space function model can be pre-
sented using a general Laplace-domain nodal analysis in an iterative loop:

s ·C ·V + G ·V = I

⇔ s ·V = C
−1 · I −C

−1 ·G ·V
⇔ ΔV = Δ t ·C−1 · I −Δ t ·C−1 ·G ·V
V new = ΔV +V

, (7)

where Δ t is the time step and matrices C, and G contain capacitances and conduc-
tances, respectively. At the beginning of a settling simulation, V contains the initial
node voltages (Fig. 3). Nonlinear branch currents in I are solved by (2) and (3). The
increment for the current voltage ΔV is calculated an added to the original voltage
vector, resulting the new voltage vector V new. V new is calculated according to pre-
vious voltages and currents (forward Euler integration). At the next iteration, the
new value is assigned as V , and the next voltage vector is solved. The iteration is
continued until the end of settling period.

In Fig. 4a, we have a set of amplifier output voltage settling curves for a group of
initial input and output voltages. The output voltages at the end of settling period are
then compared to ideal values and the settling errors are stored. For the settling error,
being a function of one or two initial voltages is solely dictated by the capacitance
network around the amplifier. Here, as seen in figure Fig. 4b, when the switching
phase is φ1, the settling error is a function of both vi0 and vo0. At φ2, only vo0 affects
on the settling.

Fig. 4: a The settling curves and b graphical presentation of the settling error tables
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3 Lookup-Table Allocation

An important issue in the chosen modeling method is that only the characterized
settling errors are tabulated, not the complete response. This alleviates the table
allocation: much coarser presentation is adequate.

The lookup tables are used as SIMULINK’s one- and two-dimensional lookup
table blocks: “Lookup Table” and “Lookup Table (2-D)”. Both blocks perform lin-
ear interpolation and extrapolation [5]. Constructing the error table requires some
approximation for the upper and lower limits for the initial voltages. It is impera-
tive that the tables are allocated so that they never extrapolate during simulation.
This can be ensured by a group of simulations with default parameters and a proper
safety margin. The range of initial voltages depends on the input signal type and the
amplitude. In addition, the system topology contributes on the range, as there are
feedback signals summed to the input of the integrating amplifier.

The LUT-model accuracy is naturally limited by the accuracy of the characteri-
zation model. Furthermore, the lookup-table needs sufficient amount settling error
measurements in one characterization, but overdetermining the LUT slows down
both characterization and simulation. One way to test and assure a proper amount
of table data is to perform a polynomial LMSE-fit to the settling error table. Calcu-
lating the coefficient of determination [6] between true table and the fit reveals the
required degree of a polynomial model. The degree is naturally proportional to the
required table density.

Speaking of polynomial fitting, one might also consider polynomial modeling
instead of using a LUT. Indeed, this is perfectly plausible and tested by the au-
thors. A polynomial settling error model with alterable coefficients was created in
SIMULINK using embedded m-file blocks. The simulations indicated that the re-
sults were highly identical, but LUT-based settling error model was ca. 4 times faster
to simulate. Furthermore, a LUT-model is considerably easier to use as its contents
is a matrix (or a vector) in MATLAB workspace.

4 The Behavioral Model

The objective for the behavioral model was to observe a delta-sigma A/D-converter’s
performance as a function of slew-rate and closed-loop phase margin. The model
of a second order DS A/D-converter is presented in Fig. 5a. The order is defined
by the number of consecutive integrators. The oversampling ratio is 32, sampling
frequency is 10MHz and the integrator open-loop bandwidth is 65MHz. The DS-
topology is a feed-forward type [7]. The modeled integrator has four inputs: the
signal input Vin, the local resonator feedback Vfb, the D/A-feedback Vref and the
integrator output Vint. The initial voltages are calculated in the behavioral model in
every sampling interval by the numerical solution of (1). The capacitors were scaled
according to the converter coefficients a, c and g in Fig. 5a. Only the first integra-
tor (the left one in Fig. 5a) has the settling error lookup-table. This is because the
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distortion of the following integrator is divided by the gain of preceding integrator,
i.e. the distortion is cancelled. The performance of the first integrator is crucial and
it needs to be at least as linear as the overall DS converter’s theoretical linearity.

The settling error ε2(n) is one-dimensional and is summed to the output of the
integrator. The error ε1(n) is a two-dimensional error summed to the integrator in-
put. The latter was found dominant settling error model throughout the parameter
sweep of current i1MAX and C1 ((2) and Fig. 3). A single example of such simu-
lation with SNDR (signal to noise and distortion ratio) and SFDR (spurious-free
dynamic range) results is shown in Fig. 5b. This is a “bad case scenario”, where the
phase margin and the slew rate are both very low (50o and 0.09V/ns). The param-

Fig. 5: a SIMULINK-model of a second order one-bit DS A/D converter and b an example of
magnitude response with both settling error contributions

eter sweep contained 1024 characterizations and simulations. For each simulation,
both SNDR and SFDR performance were calculated. The object was to find the per-
formance boundaries as a function of slew-rate (SR) and phase margin (PM). The
maximum values for SNDR and SFDR were obtained from simulating the system
with an ideal integrator. In Fig. 6a we have graph showing the boundary (and value),
where the SFDR has deteriorated 6 dB from the maximum value. In Fig. 6b we have
a boundary-graph of 3dB SNDR deterioration.

The black and gray graphs in Fig. 6 are the boundaries for one- and three-bit DS-
converters, respectively. The three-bit converter had the same converter topology
but had seven quantizer levels and different coefficients. With small slew-rates, the
three-bit converter’s SNDR and SFDR performance deteriorates less easily. This
is explained by the fact that the three-bit feedback signal has significantly smaller
step-size, making the amplifier less susceptible to slew-rate. In case of a low phase
margin and a large slew-rate, the SNDR boundary of one-bit system is at lower
phase margin values. This is simply due to lower SNDR performance.

The modeling methods presented in this work were applied using a laptop com-
puter with 1,6GHz Pentium M processor and 1GB of RAM. MATLAB version was
R2006b. The benchmarking times are based on the average of 1024 characteriza-
tions and simulations. One characterization for the lookup-table method also took
ca 1,5 seconds. The SIMULINK model simulation times were very short, roughly
one second in average for each 216-point simulation.
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Fig. 6: Performance boundaries: a 6 dB SFDR and b 3 dB SNDR performance deterioration

5 Summary

Behavioral modeling of circuit nonlinearities is essential in case of large mixed-
signal systems. A delta-sigma converter is a good example of such system, because
it is inherently nonlinear and it needs long time-domain simulations to ensure sta-
bility. To this date, various SIMULINK-modeling methods for the most dominant
non-idealities are reported. This work concentrated only on the settling error part
and provided a very convenient model, which is based on a settling error lookup-
table. The tabulation is made before the actual simulation in a characterization stage,
which consists of a group of settling simulations.

The settling error lookup-table can be either one- or two-dimensional depending
to the capacitor network. The settling error data can be originated from any simula-
tor and with any abstraction level, or possibly even from device measurements. Once
the amplifier model is constructed, a designer may re-characterize the amplifier and
re-simulate without changing the behavioral model, because the simulation model is
amplifier topology-independent. Moreover, this approach avoids constructing very
complex analytical equations of strong nonlinearities like the slew-limitation.
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Speed-Up Techniques for Time-Domain System
Simulations

Timo Rahkonen

Abstract Many combined analog-digital (mixed-signal) systems involve quite a lot
of Digital Signal Processing (DSP) functions. These circuits are simulated either
by using sample-based behavioral models (often with fixed time-step), or by com-
bining digital event-driven simulation with traditional transient analysis. The above
approaches are expensive in some applications, and this paper presents ways of
speeding up behavioural simulations of mixed-signal systems. As a system design
example, linear state-space models are applied to study the effect of small timing
errors in a time-interleaved digital-to-analog converter system.

1 Introduction

There are plenty of mixed-signal systems, that contain a lot of DSP, and some ana-
log circuitry. Often the designer is interested in the spectral properties of modulated
or pseudo-random data, and very long data sequences are needed to catch some sta-
tistical properties like spectral regrowth or average power efficiency. For example,
designers would like to study quickly the effects of the following non-idealities:

• Settling errors of the switched-capacitor (SC) integrators in ΣΔ analog-to-digital
converters.

• Small timing errors and slew rate errors (glitches) in the output of transmitter
digital-to-analog converters [1].

• Losses and spectral response of modulated, linearly assisted switch-mode power
supplies [3].

Such systems are usually simulated either by using sample-based (and often
fixed time-step) Matlab or Simulink models, or by using hardware description
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languages like Verilog-A or VHDL-AMS. The latter employ normal non-linear tran-
sient analysis to solve the analog part. Traditional circuit simulators have been re-
cently enhanced e.g. by employing hierarchical solvers and isomorphic mapping,
where distinct blocks are solved separately, or similar types of circuits (like mem-
ory cells) are recognised and share the same solution (see e.g. [6]). These tech-
niques speed up the analysis of very large digital circuits, but the basic problems
of time-domain simulation of especially strongly resonant circuits remain: numeri-
cal integration algorithms warp the time constants, hence distorting the response of
oscillatory circuits, and the spectral purity of the output signal is impaired due to
excessive timestep and interpolation error problems [5].

This paper is focused on building easy and quick methods for modelling analogue
effects without the need of solving differential equations numerically. This gives a
non-warped response in highly oscillatory circuits, and fits nicely in behavioural
Matlab and Simulink models.

2 Analysis Techniques

This paper presents two approaches, that offer quick modelling of analog behaviour
in otherwise sample-driven systems, suited especially for Matlab and Simulink be-
havioural models. First, the spectral effects of small time-skew errors are estimated
using the techniques presented in [1]. Second, state-space models of linear circuits
are used to predict the response of the circuit, without the need of intermediate time
steps. This is very handy in resonant circuits like the low-loss switch-mode power
supplies [3] or switching amplifiers, but for consistency it is applied here to the
analysis of time skew errors in a time-interleaved analog system.

2.1 Lumped Timing Error Modeling

Small timing skew or glitches in a segmented D/A structure (illustrated in Fig. 1)
cause very broadband spurious responses [7]. The time skew (in plot a and c) is
often just some tens of picoseconds, and catching their spectral effect with FFT
calls for very short time step. The effect of finite slew rate (SR, plots b and d) is
even more expensive to model, as one needs several time points on the ramp to
model its spectral response.

In [1] the following approach was used: standard Fourier integral was used in-
stead of FFT to calculate the spectrum of the skew and slew-rate errors alone. The
errors are small and occur only at sparsely distributed locations in time, and the
short duration of these errors makes it possible to use piecewise constant or piece-
wise linear approximations when calculating their impact to the Fourier integral.
This makes the simulation very efficient: we just need to determine the occurrence
of the error, calculate the integral over the PWL error and add this increment in the
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Fig. 1: Skew and slew rate errors in the output of a D/A converter

Fourier integrals. In the study it was also found out that below half the sampling rate
fs/2 the correct spectral response is actually achieved by using simple lumped error
models, where the area of the errors are simply averaged over the sample duration
T and summed up to the ideal sample value. Below are the averaged models of a
timing skew (eskew) with amplitude x0 and duration of Δ t, and slew-rate error (eSR)
with amplitude x0 and duration of Δ t (i.e., SR = x0

Δ t )

eskew = x0 ·Δ t/T, eSR =
x0 ·Δ t
2 ·T

. (1)

The upper approach is sufficient for finding tolerable amounts of timing errors
in D/A converters. When calculating the Fourier integral, the ideal and distorted
response are separated. This idea is somewhat tempting, as it may improve the dy-
namic range of frequency domain analysis (a somewhat similar approach has been
used for transient noise analysis in [4]). However, this is complicated to implement
in a general simulator, as the signal needs to be split into two parallel ones.

2.2 Time-Domain State-Space Modeling

Time domain solutions of state-space models have been used for quick design space
exploration of e.g. class E power amplifiers [2] and linearly assisted switch-mode
power supplies for envelope tracking RF power amplifiers [3]. The latter is a good
example of a small continuous-time system, that is driven by a broadband modu-
lated digital signal. Long sequences of modulated data combined with steeply driven
switches and some critical timing issues result in excessive simulation times in nor-
mal transient analysis, but the state-modeling was a fast enough (roughly by a factor
1:10) to allow exhaustive sweeping of some critical design parameters, like the re-
quired bandwidth of the assisting amplifier.
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Standard state space model of a linear system consists of state variables X , inputs
U , and state matrices A,B,C, and D :

sX = A ·X + B ·U
Y = C ·X + D ·U. (2)

Here A is usually of form C−1 ·G where C contains the capacitive and inductive
part, and G the conductive part of the circuit. The state vector has the following
general time-domain solution

x(t) = φ(t) · x(0)+
∫ t

0
φ(t − τ)Bu(τ)dτ, (3)

where x(0) is the initial state vector and

φ(t) = exp(At) = I + At +
A2t2

2!
+ · · · . (4)

Assuming that the input signals U are stepwise constant (output of a D/A con-
verter, for example), (3) can be simplified into the form

x(t) = φ(t) · x(0)+ A−1 · (φ(t)− I) ·B ·U. (5)

This is readily solvable at any time point with normal matrix operations, without
iteration or intermediate time points. The analysis can also be cascaded so that the
final solution at the end of one sample is used as an initial solution x(0) to the next
step. This approach is especially suited for strongly resonant circuits, that would
require a small timestep in normal transient analysis. These include linear filters
and linear but time-varying switching power-supply circuits.

One obvious disadvantage of the above approach is that it is limited to piece-wise
constant input signals. This is sufficient for circuits controlled by D/A output, but
one can also add a linear ramp into the state model at the cost of one additional
state variable. Unfortunately, adding a lossless integrator makes the state transition
matrix A singular and prevents its inversion. Hence, small losses in the integrator are
defined by δ in the below example that describes a 2nd order low-pass filter with
quality factor Q and corner frequency ω0

A =

⎡
⎣ 0 1 0

−ω2
0 −ω0/Q 1

0 0 −δ

⎤
⎦ , B =

⎡
⎣ 0 0

1 0
0 1

⎤
⎦ , C =

[
ω2

0 0 0
]
, D = 0. (6)

Here the driving input U is two-dimensional, containing both the piecewise-
constant value Vin and its rate of change dVin/dt:

U =
[

Vin dVin/dt
]T

. (7)
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3 State-Model of a D/A Converter Skew and Slew Rate Errors

The state modelling of section 2.2 is used here to solve the response of small skew
and slew rate errors (shown in Fig. 1) in a D/A converter (DAC) followed by a 2nd
order Butterworth low-pass filter. The sample rate of the DAC is fs, and the low-pass
corner frequency of the filter is fs/3. Fig. 2a shows the sample-and-hold response
(S/H) of a D/A converter, and the filtered response. The response of a single skew
error of amplitude of 100 units and width of 0.01, 0.03 and 0.1 sample periods is
shown in Fig. 2b. Similarly, the response of an SR error of the same width is shown
in Fig. 2c (here the magnitude of the pulse is scaled down by multiplier 0.1 to make
its triangular shape visible). In b the pulse energy is proportional to the pulse width
Δ t, while in c it is proportional to Δ t2, which is also seen in the amplitude of the
ringing response.

In both Fig. 2b and c the narrow error pulse is seen to spread over several samples
in the low-pass filter, making the calculation of Fourier integral more complicated
than with short, unfiltered error pulses. However, the output responses are exact,
and only two time points per sample is sufficient to calculate the response at the end
of the sample: one at the beginning of the error, second at the end of it, and then
one at the end of the sample, which is already the beginning of the next error. The
responses in Fig. 2 were calculated by placing 20 time points per sample, but the
response at time point t=1, for example, is exactly the same even if we calculate
only two points per sample.

4 Test Case: Time-Interleaved D/A Converters

It is well known, that the normal sample-and-hold causes a sin f
f (sinc) shaped fre-

quency response. Figure 3 illustrates a system [8], where the hold time Th of a
digital-to-analog converter is extended to longer than one sample time Ts. This shifts
the notch of the sinc response downwards, resulting in linear-phase filtering of the
image frequencies. The presented setup is basically a time-interleaved system, and
it is highly sensitive to timing and gain errors between the parallel paths. Hence, it
is a good candidate to test the state modeling approach.

The D/A system is modelled as follows. The data is divided into even and odd
samples, converted to voltage, multiplied by a 0/1 gating pulses (go(t),ge(t)) that set
the duration of the S/H pulses, summed together and fed to the state model of a 2nd-
order low-pass filter. To catch the time-interleaved nature, the output is treated as
pairs of even and odd samples, that may have different gain and offset. Timing errors
are included so that the beginning time of the odd samples can be moved arbitrarily
around time (2 ·k +1)Ts, and the duration of even and odd samples (Teven,Todd) can
be set independently. Also skew and slew-rate errors can be created by additional
points shown shortly after the beginning and end of the masking pulses. Fig. 4 shows
the shape of the gating functions, and the circles present the breakpoints where the
filter response needs to be evaluated.



254 T. Rahkonen

Fig. 2: Pulse responses in the output of a D/A converter a S/H and filtered response, b original and
filtered rectangular skew error, c 1:10 attenuated triangular slew rate error and filtered response

Fig. 3: a Structure of a time-interleaved D/A converter pair, b frequency response and c output
waveforms as functions of varying hold time Th

Figure 5a) shows an example of the intended operation and b) the effect of time-
skew errors. In plot a), the hold time is 1.5 clock periods, no timing errors are
present, and the spectrum is as expected. The four lower tones are the desired ones,
and the 4 upper tones are sampling images, that need to be filtered away. Due to the
1.5Ts long hold-time, the sin f

f notch is placed to frequency bin 670 (bin 1024 corre-
sponds to the sampling frequency) to attenuate the lowest image tone by more than
10 dB. To show the shape of the sinc response, some broadband noise is summed to
the 4-tone test signal.
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1Ts 2Ts

tr1

Fig. 4: Time masks for multiplying the D/A outputs. Circles show time instants, where the response
needs to be calculated

Figure 5b), the output of the second D/A (DAC2) is delayed by 0.001 samples,
and the spectral images caused by residual sampling at half the sampling frequency
( fs/2) are clearly seen ca. 60 dB below the desired signals. Using normal fixed-
spaced FFT, one would need 1000 points over the sample period Ts to catch this
effect, but here only 8 points are calculated per one sample. First, the values at every
breakpoint are calculated, and then four points are evenly placed over the sample,
and FFT is calculated. In a similar manner, one can include segmentation timing
errors and slew rate errors into the model. If these are not needed (the idea is that
they are masked by the gating signals go(t),ge(t)), we can actually remove two of
the break points, and repeat the above analysis by calculating only six points per
sample.

5 Summary

This paper reviewed techniques for speeding up behavioural time-domain simula-
tions and finding suitable design specifications of mixed-signal systems, especially
in Matlab type modelling, where there is no real analog simulator kernel available.
Fourier integrals were used instead of FFT to study the spectral effects of narrow
error pulses. Closed-form linear state-space modeling was extended to operate with
piecewise-linear input signals (opposed to piecewise-constant signals before), and it
was applied to calculate the shape and magnitude of very small skew and slew-rate
errors.

As a larger example, a time-interleaved D/A system was modelled and simulated,
and the linear state model was shown to detect the effects of even very small timing
errors with very modest oversampling, as the response needs to be calculated only
at the breakpoints of the piecewise-linear signal and at a few fixed-spaced points
needed for the FFT.

Linear state-space models are quite easy to apply to linear time-varying systems,
too, as one only needs to know the time place where to switch the model. Modelling
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Fig. 5: Magnitude vs. frequency spectrum of the setup in Fig. 4 with 4-tone test. a Ideal response,
b with time skew of 0.001 samples between the two DACs

nonlinear systems by piece-wise linear state models, however, already results in
some iterative processing, as one needs to find the time where to switch the model.
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Part III
Coupled Problems



Introduction to Part III

Wil Schilders

This part addresses the challenging topic of solving coupled problems. The increas-
ing necessity to solve complex problems in the science and engineering community,
accounting for all the coupling occurring at the different scales of the problem, re-
quires the development of new ideas and methods which can effectively provide
accurate numerical solutions in affordable computation times. The state of the art
is discussed here as well as mathematical, numerical, and computational methods
for solving coupling problems of multidisciplinary character, with an emphasis on
coupling with electromagnetic (EM) and/or circuit simulation. Special attention is
paid to showing the potential of new computational methods for solving practical
multidisciplinary problems of industrial interest.

The first three papers in this section are all aimed at thermal interactions in cou-
pled device and circuit simulations. This is an important topic for the electronics
industry and is also studied extensively in the European Research and Training Net-
work CoMSON (see http://www.comson.org).

The invited paper by Brunk and Jüngel presents an overview on coupled simu-
lations involving thermal effects in semiconductor devices and electronic circuits.
A mathematical analysis of the coupling conditions of the two coupled models is
carried out. Numerical results clearly show the significance of thermal effects in
small semiconductor devices, leading to the conclusion that the inclusion of thermal
models is indispensable in state-of-the-art simulations.

The paper by Ali et al. builds upon the analysis demonstrated in the paper by
Brunk and Jüngel, and addresses the mathematical well-posedness of the steady-
state and transient problems in coupled semiconductor–circuit systems. The paper
shows the importance of mathematical analysis for coupled problems demonstrating
that analysis is not at all straightforward, but requires extreme care.

One should also be careful, when using a reduced-order model for one part of
the coupled problem and coupling this model to the full model. This is essentially
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the topic of the paper by Culpo et al., which concentrates on thermal issues, too.
The paper also discusses how to cope with the multiscale nature of heat diffusion in
VLSI circuits via a special meshing technique.

The contribution by Romano and Scordia departs from the purely thermal
problem, and instead concentrates on energy-transport models based on the
maximum-entropy principle. The coupled problem being investigated here is that
of phonon–electron interaction in silicon. Such interactions lead to heating of the
lattice. The paper concentrates on the numerical discretization scheme for the inter-
action equations, and some preliminary numerical results are shown.

The next two papers are again aimed at investigating, from a mathematical point
of view, the coupling of different systems of equations, with an emphasis on elec-
tronic systems consisting of circuit and device equations. Baumans et al. discuss
the problem of finding suitable and stable initial conditions and use the differential-
algebraic structure as a vehicle for their analysis. The paper by Ali et al., in turn,
addresses the problem of coupling circuit equations with a hydrodynamic device
model, leading to a hyperbolic system of partial differential equations. The theoret-
ical findings are confirmed by a numerical simulation of a unipolar device.

Continuing with the paper of Li and Hwang, we remain with coupled circuit
and device equations, but now concentrate on the simulation of fluctuations caused
by dopants. This is again an important topic in the electronics industry, known as
variability, and has received a lot of attention recently. It entails the realistic point
of view that the manufacturing process may lead to serious deviations from the
original design. Hence, robust designs take into account potential deviations and
fluctuations. The paper discusses the effects of such fluctuations on the coupled
device–circuit model.

The industrial context is well represented in the invited paper by Schoenmaker
at al., where the important problem of EM coupling between blocks in an integrated
circuit is studied. This problem is also receiving much attention in the electron-
ics industry, and known under names as chip peripheral co-design, parasitic elec-
tromagnetic coupling, or co-habitation. Undesirable EM coupling between various
components is also an extremely difficult problem, as a full simulation is not fea-
sible. Hence, techniques like domain decomposition must be used combined with
intelligent reduced-order modeling strategies. The paper describes these techniques
and also presents simulation results for a number of realistic industrial examples.

The next contribution by Plata et al. addresses similar issues, and presents in
more detail a domain-decomposition method to address the co-habitation issue. New
and rather revolutionary is the extraction of a reduced-order circuit that consists
of both electrical and magnetic components, also referred to as EM hooks. The
resulting algorithms based on this concept show very promising results.

Part III on coupled problems ends with a paper by Schöps et al. investigating the
index of the differential-algebraic system consisting of coupling circuits with mag-
netoquasistatic conductor models. The contribution also discusses a convergence
analysis and some numerical results are provided.
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Abstract Thermal effects in a coupled circuit-device system are modeled and nu-
merically simulated. The circuit equations arise from modified nodal analysis. The
transport in the semiconductor devices is modeled by the energy-transport equations
for the electrons and the drift-diffusion equations for the holes, coupled to the Pois-
son equation for the electric potential. The lattice temperature is described by a heat
equation with a heat source including energy relaxation heat, recombination heat,
hole Joule heating, and radiation. The circuit-device model is coupled to a thermal
network. The resulting system of nonlinear partial differential-algebraic equations is
discretized in time using backward difference formulas and in space using (mixed)
finite elements. Heating effects from numerical simulations in a pn-junction diode
and a clipper circuit are presented.

1 Introduction

In modern ultra-integrated computer chips, secondary effects like self-heating
strongly influence the switching behavior of the transistors and the performance
of the circuit. In order to control the thermal effects, accurate circuit simulations are
needed, which go beyond compact modeling and simplified temperature models. In
this paper, we review a coupled circuit-device model taking into account the tem-
perature of the electrons and the semiconductor lattice and the temperature of the
circuit elements and present new numerical simulations illustrating the self-heating.
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First coupled circuit-device models were often based on a combination of device
and circuit simulators [1]. More recently, electric network models were coupled to
semiconductor transport equations, using drift-diffusion [2, 3] or energy-transport
models [4]. Nonisothermal device modeling started in the 1970s, employing drift-
diffusion-type equations and heat flow models for the lattice temperature [5]. A ther-
modynamic approach to extend the drift-diffusion equations to the nonisothermal
case was presented in [6], later generalized in [7] using first principles of entropy
maximization and partial local equilibrium. In [8], the energy-transport equations
were coupled to a heat equation for the lattice temperature.

All these references are concerned with the modeling of certain subsystems.
Here, based on our work [9], we present a complete coupled model, including (i)
the device model consisting of the energy-transport equations for the electrons, the
drift-diffusion equations for the holes, and a heat equation for the lattice tempera-
ture, (ii) the electric-network equations, and (iii) a thermal network model describ-
ing the heat evolution in the circuit elements, electric lines, and devices. The models
are described in Section 2. The three subsystems are coupled by thermo-electric,
electric circuit-device, and thermal network-device interfaces explained in Section
3. Finally, in Section 4, the heating behavior in a pn-junction diode and a clipper
circuit is illustrated.

2 Model Equations

Device modeling. The electron transport in the semiconductor device is modeled by
the energy-transport equations, whereas the hole transport is described by the drift-
diffusion equations. The equations for the electron density n, the electron thermal
energy 3

2 kBnTn (with kB being the Boltzmann constant and Tn the electron tempera-
ture), the hole density p, and the self-consistent electric potential V read as [10]

∂t n−q−1divJn = −R(n, p), ∂t p + q−1divJp = −R(n, p), (1)

∂t( 3
2 kBnTn)−divJw + Jn ·∇V = W (n,Tn)− 3

2 kBTnR(n, p), (2)

εsΔV = q(n− p−C(x)), (3)

where q is the elementary charge, εs the semiconductor permittivity, and C(x) the
doping profile. The function R(n, p) models Shockley-Read-Hall recombination-
generation processes and W (n,Tn) the relaxation to the lattice temperature TL,

R(n, p) =
np−n2

i

τp(n + ni)+ τn(p + ni)
, W (n,Tn) =

3
2

nkB(TL −Tn)
τ0

, (4)

where ni is the intrinsic density, τn and τp the electron and hole lifetimes, respec-
tively, and τ0 the energy relaxation time.

The constitutive relations for the electron current density Jn, the hole current
density Jp, and the electron energy density Jw are given by
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Jn = q
(
∇
(
μn

kBTL

q
n
)
− μnTL

n
Tn

∇V
)
, Jp = −q

(
∇
(
μp

kBTL

q
p
)

+ μp p∇V
)
, (5)

Jw = ∇
(3

2
μnTn

k2
BTL

q
n
)
− 3

2
μnkBTLn∇V, (6)

where the mobilities for the electrons and holes, μn and μp, respectively, are as-
sumed to depend on the lattice temperature TL according to

μ j(TL) = μ j,0

(T0

TL

)α j
, j = n, p, (7)

where T0 = 300K. The values μ j,0 and α j ( j = n, p) are typically determined from
measurements; see, e.g., [11, Table 4.1-1]. The current leaving the semiconductor
device, which occupies the domain Ω ⊂ Rd (d ≥ 1), at terminal Γk is defined by

jk =
∫
Γk

Jtot ·ν ds with Jtot = Jn + Jp + Jd, (8)

where ν is the exterior normal unit vector to Γk and Jd = −εs∂t∇V the displacement
current density. We choose one terminal as reference terminal. Due to charge con-
servation, the corresponding current can be computed by the negative sum of the
other terminal currents collected in the vector jS.

The model equation for the lattice temperature is derived from thermodynamic
principles. Assuming that the thermal effects are due to the majority carriers (elec-
trons), the free energy for the system of energy-transport and Poisson equations is
the sum of the electric energy, the thermodynamic energy of the lattice subsystem,
and the thermodynamic energy of the electron subsystem [7, 12],

f =
εs

2
|∇V |2 +ρLcLTL(1− logTL)+ n

[
kBTn

(
log

n
Nc

−1
)

+ Ec

]
,

where ρL denotes the material density, cL the heat capacity, Ec the conduction-band
energy, and Nc the effective density of states depending on Tn (see [13] for details).
Then the internal total energy is given by

u = f −Tn
∂ f
∂Tn

−TL
∂ f
∂TL

=
εs

2
|∇V |2 +ρLcLTL + n(Ec −TLE ′

c)+
3
2

kBnTn,

where the prime denotes the derivative with respect to TL. The associated total en-
ergy flux density Ju is the sum of the energy flux in the electric field, the Fourier
heat flux, and the electron energy flux:

Ju = VJtot −κL∇TL − (Ec −TLE ′
c)q

−1Jn − Jw,

where κL is the heat conductivity of the lattice. Inserting the expressions for u and
Ju into the energy balance equation ∂t u + divJu = −γ and employing the Poisson
equation for ∂tV , a straightforward computation leads to the heat equation for the
lattice temperature (see [9] for details):
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0 = ∂t u + divJu + γ = ∂tTL(ρLcL −nE ′
c)−div(κL∇TL)−H, (9)

where γ = SL(TL − Tenv) is the energy loss by radiation with the transmission con-
stant SL and the environmental temperature Tenv, and H is the heat source term,

H = −W +R
(
Ec −TLE ′

c + 3
2 kBTn

)
+q−1Jn ·∇(Ec −TLE ′

c)−Jp ·∇V −SL(TL −Tenv),

where the relaxation term W is defined in (4). For related but different choices of the
heat source term, we refer to the discussion in [6]. For nondegenerate homostructure
devices, we can neglect the space dependency of the energy band. Furthermore, we
neglect the dependency of the energy band on the lattice temperature since this
dependency is rather small [11]. Thus, the heat source term becomes

H = −W + R
(
Ec + 3

2 kBTn
)− Jp ·∇V −SL(TL −Tenv),

The first term in H represents the energy relaxation heat, the second term is the
recombination heat, the third term expresses Joule heating from the holes, and the
last term signifies the We notice that only the Joule heating from holes appears, as
the Joule heating from electrons appears as source term in (2) and affects the lattice
temperature indirectly via the relaxation term W .

The model equations (1)-(9) are complemented by initial and boundary condi-
tions. The boundary ∂Ω of the semiconductor domain is assumed to consist of the
union of Ohmic contacts ΓC = ∪kΓk and the union of insulating boundary segments
ΓI such that ΓC ∪ΓI = ∂Ω and ΓC ∩ΓI = /0. We prescribe initial conditions for the
electron density n, the electron temperature Tn, and the lattice temperature TL in Ω .

On the insulating boundary parts, the normal components of the current densities,
the electric field and the temperature flux are assumed to vanish,

Jn ·ν = Jp ·ν = Jw ·ν = ∇V ·ν = ∇TL ·ν = 0 on ΓI, t > 0. (10)

The electric potential at the contacts is the sum of the applied voltage Vapp and the
built-in potential Vbi,

V = Vapp +Vbi on ΓC, t > 0, where Vbi = arsinh(C(x)/2ni). (11)

According to the numerical results of [14], we may suppose that the normal compo-
nent of the electron temperature vanishes on ΓC. In order to model the temperature
exchange between the semiconductor device and the surrounding network with the
temperature Tenv, we employ a Robin boundary condition for the lattice temperature:

∇Tn ·ν = 0, −κL∇TL ·ν = R−1
th (TL −Tenv) on ΓC, t > 0, (12)

where Rth is the thermal resistivity of the contact. For the particle densities, we use,
as motivated in [4], the Robin conditions

n +(θnμn)−1Jn ·ν = na, p− (θpμp)−1Jp ·ν = pa on ΓC, t > 0, (13)
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where (na, pa) is the solution of the charge-neutrality equation na − pa −C(x) =
0 and the thermal equilibrium condition na pa = n2

i , and θn, θp are some positive
parameters (θn = θp = 2500 in the simulations; see [4]).

Circuit modeling. To simplify the presentation, the electric circuit is assumed to
contain only one semiconductor device and (ideal) resistors, capacitors, inductors
and voltage and current sources. The circuit is modeled by employing modified
nodal analysis [3], whose basic tools are the Kirchhoff laws and the current-voltage
curves of the basic elements. We replace the circuit by a directed graph with
branches and nodes. Branch currents, branch voltages, and node potentials (without
the mass node) are introduced as (time-dependent) variables. Then, the circuit can
be characterized by the incidence matrix A = (aik) describing the node-to-branch
relations,

aik =

⎧⎨
⎩

1 if the branch k leaves the node i,
−1 if the branch k enters the node i,

0 else.

The network is numbered in such a way that the incidence matrix consists of the
block matrices AR, AC, AL, Ai, and Av, where the index indicates the resistive, ca-
pacitive, inductive, current source, and voltage source branches, respectively. The
semiconductor device is included into the network model employing the semicon-
ductor incidence matrix AS = (aS

ik) defined by

as
ik =

⎧⎨
⎩

1 if the current jk enters the circuit node i,
−1 if the reference terminal is connected to the node i,

0 else.

The current-voltage characteristics for the basic elements are given by

iR = gR(vR), iC =
dqC

dt
(vC), vL =

dφL

dt
(iL),

where gR denotes the conductivity of the resistor, qC the charge of the capacitor, and
φL the flux of the inductor. Moreover, iα and vα with α = R, C, L, are the branch
current vectors and branch voltage vectors.

Denoting by is = is(t), vs = vs(t) the input functions for the current and voltage
sources, respectively, the Kirchhoff laws lead to the following system of differential-
algebraic equations in the charge-oriented modified nodal approach [3]:

AC
dqC

dt
(A�

C e)+ ARgR(A�
R e)+ ALiL + Aviv + AS jS = −Aiis, (14)

dφL

dt
(iL)−A�

L e = 0, A�
v e = vs, (15)

for the unknowns e(t), iL(t), and iv(t), where e(t) denotes the vector containing the
node potential. The circuit is coupled to the device through the semiconductor cur-
rent jS (defined in (8)) in (14) and through the boundary conditions for the electric
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potential. At terminal Γk, it holds V (t) = ei(t)+Vbi if the terminal Γk is connected
to the circuit node i.

Equations (14)-(15) represent a system of differential-algebraic equations. Under
certain assumptions on the topology of the network, the (tractability) index of the
system is at most two [3,15]. Moreover, if the circuit does neither contain so-called
LI-cutsets nor CV-loops with at least one voltage source, the index is at most one.

Thermal network modeling. Following [16], the thermal network consists of
lumped thermal elements, i.e. zero-dimensionally modeled elements with temper-
ature value T̂ �(t); distributed thermal lines, i.e. spatially one-dimensional elements
with temperature T d(x,t); and distributed semiconductor devices with the lattice
temperature TL(x, t) as described above. Adjacent lumped elements are considered
as a zero-dimensional unit with temperature T̂ . We assign the temperature at the
interface of connected distributed elements to an artificial zero-dimensional ele-
ment (thermal node) with temperature T̂ and without thermal mass. This forms a
network with lumped-distributed interfaces only, in which the nodes represent the
zero-dimensional units and the branches represent the distributed elements.

The thermal network is characterized by the thermal incidence matrix Ath
d = (ath

i j)
and the thermal semiconductor incidence matrix Ath

S = (ath
S,i j) defined by

ath
i j =

⎧⎨
⎩

1 if the contact at x = 0 of branch j is connected to node i,
1 if the contact at x = Lth of branch j −md is connected to node i,
0 else,

ath
S,i j =

{
1 if the terminal j is connected to thermal node i,
0 else,

where md is the number of thermal lines and [0,Lth] the interval of the distributed
element. The embedding of the (possibly multi-dimensional) device model into the
zero- and one-dimensional thermal network model is described in Section 3.

The temperature in the thermal nodes evolves according to the heat equation

M̂
dT̂
dt

= F̂d + F̂S − Ŝ(T̂−TenvI)+ P̂, t > 0. (16)

Here, M̂ is a diagonal matrix containing the thermal masses of the thermal nodes,
each of which is given as the sum of the thermal masses of the lumped elements
contributing to the corresponding node. The thermal mass is the product of the heat
capacity, the material density, and the physical volume of the corresponding ele-
ment. Furthermore, T̂ is the vector of all temperature values in the thermal nodes,
and I is the identity matrix. The electro-thermal source vector for the thermal nodes
P̂ and the heat flux vectors from the distributed lines F̂d and the device F̂S are defined
below in (20), (18), and (19), respectively. The temperature values in the lumped el-
ements T̂� can be computed from T̂ by the formula T̂ = MT̂�, where the matrix
M = (mi j) relates the lumped elements to the thermal nodes, with mi j = 1 if the
lumped element j belongs to the thermal node i and mi j = 0 else.

The vector Td = (T d
j ) of all temperatures of the thermal lines satisfies
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Mj∂tT
d
j = ∂x(κ j∂xT d

j )−S j(T d
j −Tenv)+ Pj, x ∈ (0,Lj), t > 0, (17)

where Mj denotes the thermal mass of the j-th element of length Lj, κ j is the thermal
conductivity, S j the transmission function, and P = (Pj) the electro-thermal source
vector defined in (20). The above equation is complemented by initial conditions
and Dirichlet boundary conditions, collected in the vectors Td

0 and Td
1.

3 Coupling Conditions

The heat equations (16) and (17) are coupled through the boundary conditions,
(Td

0 ,Td
1)

� = (Ath
d )�T̂, and the following equation for the thermal flux:

F̂d = Ath
d

(
Λ0∂xTd(0,t)

−Λ1∂xTd(Lth, t)

)
, (18)

where Lth denotes the length of a thermal line and Λ0, Λ1 contain the products of
thermal conductivities and the cross sections of the thermal lines at the contacts.

Next, we describe the coupling between the thermal network and the device. The
influence of the network on the device is modeled by the last boundary condition
in (12) on Γk, with Tenv replaced by the temperature of the connected elements,
Ta = (Ath

S )�T̂. The semiconductor heat flux at terminal k is given by the integral

FS
k =

∫
Γk

JS
th ·ν dσ , such that F̂S(t) = Ath

S (Fj(t)) j, t > 0. (19)

The thermal flux density JS
th is derived by making the quasi-stationary assumption

divJu = 0. Then, inserting the stationary balance equation for the electric energy, a
computation shows that (see [9] for details)

divJS
th +∇V · (Jn + Jp) = 0, where JS

th = −κL∇TL −q−1EcJn − Jw.

This equation indicates that the flux JS
th is responsible for the heat production caused

by the dissipated power and is therefore considered as a heat flux.
For the coupling between the electric and thermal network, we assume that only

semiconductor devices and resistors are thermally relevant. (In the clipper simula-
tions below, the thermal effects in the resistor are neglected.) Electric-to-thermal
coupling occurs through the power dissipated by a resistor. We assume as in [16,
Sec. 5.3] that the resistance is given by R = 1 +α1TR +α2T 2

R , where α1 and α2 are
some nonnegative parameters and TR is the temperature of the resistor. The vector
TR of all resistor temperature values can be determined from the temperature vectors
of the thermal nodes T̂ and of the distributed lines Td by

TR = K̂�T̂+ K�T̃d ,
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where the lumped values T̃d are computed from the distributed values Td by taking
the mean value, and the matrices K = (k� j) and K̂ = (k̂� j) are defined by

k� j =
{

1 if the resistor j corresponds to the thermal branch �,
0 else,

k̂� j =
{

1 if the resistor j corresponds to the thermal node �,
0 else.

The electric-to-thermal coupling is realized by the source terms P = (Pj) and P̂ in
the heat equations (16) and (17):

P̂ = K̂PR, P = L−1
R KPR, where PR = diag(iR)A�

R e, (20)

iR contains the currents through all resistors, AR denotes the resistor incidence ma-
trix, e is the vector containing the node potentials, and LR is the resistor length. For a
discussion about the proper choice of the local power distribution, we refer to [16].

4 Numerical Examples

The complete model is a system of nonlinear partial differential-algebraic equations.
It consists of the partial differential equations (1)-(3), (9) for the device with cur-
rent relations given in (5)-(6), the differential algebraic electric network equations
(14)-(15), and the thermal network equations (16)-(18). The coupling conditions
are given in (19)-(20). The unknowns of the system are the electron, energy and
hole densities, n,w, p, the potential in the device V , the node potentials e, the cur-
rents through inductors, voltage sources, and semiconductor device, iL, iV , jS, the
displacement current Jd , the lattice temperature TL, and the temperature values in
the lumped and distributed elements of the thermal network, T̂,Td .

It was shown in [2], that under certain conditions, the index of the system of
semidiscretized drift-diffusion equations and electric network equations is not larger
than two. To our knowledge, no index results for the coupled electro-thermal model
equations are available.

In the following, we restrict ourselves to one-dimensional device models. The
equations are discretized in time by backward difference formulas (BDF-1 or BDF-
2) to pay tribute to the differential-algebraic character of the system. The heat equa-
tions and the Poisson equation are discretized in space by linear finite elements. The
transport equations are discretized by an exponentially fitted mixed finite-element
method using Marini-Pietra elements [17]. It is shown in [17] that, for the stationary
model, this method guarantees current conservation and positivity of the discrete
particle densities. These properties also hold for the BDF-1 time-discrete system
and, under a step size restriction, for the BDF-2 time-discrete system. In the fol-
lowing simulations, the positivity of the discrete particle densities has always been
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obtained. The nonlinear discrete system is iterated by a combination of a fixed-point
strategy and a variant of the Gummel method; see [9] for details.

Bipolar junction diode. We first illustrate the lattice heating in a 100 nm silicon
pn diode consisting of a 50 nm p-doped part with doping −C0 = −5 · 1023 m−3

and a 50 nm n-doped part with doping C0. Initially, the device is assumed to be in
thermal equilibrium. The same physical parameters as in [9] are employed. We apply
a forward bias of 1.5 V to the diode. The transient response of the electron and lattice
temperature is illustrated in Figure 1. The electron temperature increases quickly in
the entire device with a temperature maximum of about 3300 K in the n-region and
then decreases slightly until the steady state is reached with a temperature minimum
around the junction. The increase of the lattice temperature is significantly slower
with a maximum of 325 K at steady state. Due to the high thermal conductivity, the
lattice temperature is almost constant in the device.

The influence of the lattice heating on the electrical performance of the device
is shown in Figure 2. In the left figure, we compare the results computed from the
drift-diffusion (DD) model (using low-field mobilities) with those from the energy-
transport (ET) equations with and without lattice heating. The current from the non-
isothermal ET model is smaller than that from the ET model with constant lattice

Fig. 1: Transient electron temperature (left) and lattice temperature (right) in a pn diode at 1.5 V
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Fig. 2: Left: Current-voltage characteristics of a pn diode computed from different models. Right:
Averaged lattice temperature in a pn diode (stationary computations)
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temperature. The right figure shows the averaged lattice temperature as a function
of the applied voltage. For high applied bias, the lattice temperature reaches up to
420 K. As for voltages below 1 V, the current from the DD and ET models almost
coincide, the device heats up only for an applied bias larger than about 1 V.

Clipper circuit. A clipper is employed as an entrance protective circuit to avoid
voltage peaks. It consists of two pn diodes (parameters as in the previous example),
one resistor with resistivity R = 5kΩ , and three voltage sources (see Figure 3). We
concentrate on the effect of lattice heating and neglect the thermal effects in the re-
sistor. Here, Vin(t) = 5sin(2π1010 Hz t) V represents the input signal. The remaining
voltages are kept constant with Vmin(t) = −U and Vmax(t) = U , where U = 2V. A
perfect clipper, with a much higher resistance, would clip the input signal between
±(U +Vth), where Vth is the threshold voltage of the diode. In the present case, it
holds approximately Vth = 0.9 V such that the signal is between ±2.9 V. However,
we have chosen the resistance such that the output signal should stay below 4 V.

In Figure 4 we depict the input and output signals of the circuit. We observe that
during the first oscillations the maximal output signal is below 4 V, with a slight
increase of the maximal value (left figure). It increases during the first oscillations
from 3.93 V to 3.96 V. This increase becomes more significant for larger time (right
figure). In fact, after 30 oscillations the maximal output signal is 4.09 V, which cor-
responds to an increase of about 5 %. A simulation of the same circuit with constant
lattice heating keeps the maximum output signal almost constant below 4 V. This

−
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Vmin Vmax

Vout

+

−

+

Fig. 3: Clipper circuit with two pn diodes, one resistor and three voltages sources
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shows that the increasing maximal output voltage is caused by lattice heating, as the
heated diode provides less current leading to a larger resistance.

The circuit is constructed in such a way that, at the maximal input signal of 5 V,
we have a voltage drop of about 1 V at the resistor, 2 V at the forward-biased diode
and 2 V at the additional voltage source. In the branch containing the backward-
biased diode, the voltage drop is 1 V at the resistor, 6 V at the diode, and −2 V at
the voltage source. This behavior is illustrated in Figure 5. According to Figure 2
(right), we expect a stationary lattice temperature of about 360 K in the diodes. This
is confirmed by the results presented in Figure 6 showing the lattice temperature of
one of the diodes in the circuit. We observe that the device heats up while being
forward biased. As the backward bias period is to short to cool down the device, the
lattice heating accumulates during the first oscillations up to about 360 K.

Conclusions. In this paper we have presented a coupled system for the thermal-
electric modeling and simulation of semiconductor devices in electric circuits. The
numerical results clarify the significance of the thermal effects in small semicon-
ductor devices. In strongly biased devices, lattice heating occurs and influences the
electrical performance considerably. This shows that for accurate simulations of
(ultra) small semiconductor devices and integrated circuits, the inclusion of thermal
models is indispensable.
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Fig. 5: Voltage drop at the second diode and the resistor during the 29th and 30th oscillation
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Analysis of a PDE Thermal Element Model for
Electrothermal Circuit Simulation

Giuseppe Alı̀, Andreas Bartel, Massimiliano Culpo, and Carlo de Falco

Abstract In this work we address the well-posedness of the steady-state and tran-
sient problems stemming from the coupling of a network of lumped electric ele-
ments and a PDE model of heat diffusion in the chip substrate. In particular we
consider the thermal element model presented in [1] and we prove that it can be
controlled by any combination of voltage sources (imposing the average current in
a region of the chip) and current sources (imposing the Joule power per unit area
produced in a region) connected to its temperature nodes.

This result justifies the implementation of the element as a linear n-port conduc-
tance as carried out in [2].

1 Introduction

Due to downscaling, power densities become more important [3] and therefore ther-
mal models to resolve the geometric layout, which fit seamless into the circuit design
are necessary. A method for automatically deriving a thermal network model from
the layout of an IC and substrate material properties was introduced in [1,4] and the
numerical validation is reported in [2].

The novelty of this method compared to other existing approaches [5, 6] is that
it does not work by fitting the parameters of a given network topology, but rather it
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consists of a parabolic PDE which can be connected to a network of lumped (electri-
cal) device models to perform coupled system-level electrothermal simulation with
a standard spice-like circuit simulator. The coupling is performed by controlling
the average temperature of some substrate regions via a set of (controlled) voltage
sources and the total power dissipated in some other regions via a set of (controlled)
current sources. A similar coupling, but based on 1-dimensional heat transport, was
considered in [7].

To sketch the main idea, we can write symbolically the MNA equations for an IC
as:

F (ė,e,θ ,t) = 0 (1)

where e is a vector accounting for the electrical variables and θ is a vector com-
prising the local (lumped) temperatures of the, say, n thermally active components.
We denote by wk(e,θ ) the thermal power produced by the k-th thermal component,
and by Ωk the region of the substrate where it is located (k = 1, . . . ,n). Then ther-
mal powers will act as localized source terms for a heat equation which describes a
global (distributed) substrate temperature T :

∂T
∂ t

+L T =
n

∑
k=1

wk(e,θ )
|Ωk| 1Ωk , (2)

where L is a linear diffusion-reaction operator and 1Ωk is the indicator function
over Ωk. Finally, we identify the temperature θk with the average of T over Ωk, i.e.:

θk =
1

|Ωk|
∫
Ωk

T dΩ (3)

In this work we consider the equations obtained when the thermal element is
controlled by a set of independent sources with finite internal resistance or conduc-
tance, neglecting the coupling with the electric part. The analysis of this simplified
problem provides a sound theoretical basis to the approach to implementation of
the thermal element followed in [1] and is an initial step towards the analysis of the
coupled electro-thermal system which will be the subject of a forthcoming paper.

2 Statement of the Problem

Let the domain Ω ⊂ Rd , with d = 1,2,3, model the IC substrate and Ωk be the
thermally active region of the k-th circuit element. We assume that Ω be Lipschitz
and that the family {Ωk,k = 1, . . . ,n} satisfies the requirements:

1.
◦
Ω k �= /0,

2. Ω̄k ⊂ Ω ∀k = 1, . . . ,n
3. Ω̄k ∩ Ω̄ j = /0 ∀ j,k ∈ {1, . . . ,n}, k �= j.
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We denote by u(x,t) the temperature at an instant t at each point x in Ω , we let
qk(t)/ |Ωk| be the average temperature in the region Ωk at time t and pk(t) the
instantaneous Joule power per unit length, area or volume (in case d = 1,2 or 3,
respectively) dissipated by element k. For simplicity, we consider constant thermal
diffusivity, which in scaled variable can be assumed equal to 1. Then the heat diffu-
sion in the substrate is governed by the linear heat equation

∂u
∂ t

−Δu + cu =
n

∑
k=1

pk1Ωk(x), in Ω × (0,T) (4)

denoting by 1Ωk the indicator function of the set Ωk. The term cu accounts for heat
exchange with the environment (in a 2-dimensional model). Equation (4) is supple-
mented with initial-boundary conditions

u(x,0) = u0(x), in Ω , (5)

u +α
∂u
∂n

= g(t), on ∂Ω × (0,T), (6)

where the function g represents the ambient temperature. Furthermore, the k-th av-
erage device temperature qk is connected to u by the relation

∫
Ωk

u(x,t)dΩ = qk(t). (7)

Finally, to close the system, we need to state constitutive relations for the set of
average temperatures qk(t) and for the set of instantaneous powers pk(t) in terms of
the electrical variables in the circuit. As anticipated in the introduction, in the present
work we make the simplifying assumption that the thermal network be controlled
via independent sources. Under this assumption the constitutive relations can be cast
into the form

ak pk(t) + bkqk(t) = sk(t), k = 1, . . . ,n (8)

where the sk(t) are given functions and ak and bk denote constant coefficients. No-
tice that ak = 0 for a given k indicates that the k-th region is attached to a voltage
source fixing the value of its average temperature, while bk = 0 indicates that the
Joule power dissipated in the k-th region has been assigned by attaching it to a cur-
rent source. Summarizing, the problem we intend to investigate reads:

Problem 1. Given initial datum u0(x) and ambient temperature g(t), find u(x, t),
p(t) and q(t) such that equations (4)–(8) are satisfied, where c, α , ak, bk are known
quantities and c, α ≥ 0.

As our interest in this problem is mainly driven by the need to prove the suit-
ability of the model (4)-(8) for implementation in a standard SPICE-like circuit
simulator, it is convenient to restate Prob. 1 in a discrete-time form applying a semi-
discretization approach based on Rothe’s method. To this end, let us introduce a set
of N time steps t0 = 0 < t1 < .. . < tN = T , then, supposing for sake of simplicity
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that a BDF method of order m is used for time discretization we can formulate the
time-discrete problem as a sequence of problems of the form:

Problem 2. Let τ be an integer s.t. m < τ ≤ N. Given the m functions ui(x), i = τ−
1 . . .τ−m and the 2×m n-vectors pi, qi, i = τ−1 . . .τ−m satisfying the conditions

∫
Ωk

ui(x)dΩ = qik (7’)

and
ak pik + bkqik = sik , k = 1, . . . ,n (8’)

find uτ(x), pτ and qτ satisfying

−Δuτ + c̃ uτ = fτ +
n

∑
k=1

pk1Ωk(x) in Ω (4’)

and

uτ +α
∂uτ
∂n

= g(tτ) on ∂Ω , (6’)

where fτ := −
m

∑
i=1

βiuτ−i, c̃ := c +β0 and the coefficients β0, . . . ,βm depend on the

BDF method chosen.

3 Linear Elliptic Kernel Problem

The above problem is related to the following kernel problem:

Problem 3. ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δu + cu = f +∑n
k=1 pk 1Ωk , in Ω ,

u +α
∂u
∂n

= g, on ∂Ω ,∫
Ωk

udΩ = qk, k = 1, . . . ,n.

(9)

where c ∈ L
∞(Ω), f ∈ L

2(Ω), α ≥ 0 and:

g ∈
{

L
2(∂Ω), α > 0,

H
1/2(∂Ω), α = 0.

(10)

We prove in the following existence and uniqueness of the solution for (9). To do this
we cast the differential operator in a weak form and consider α > 0 first. Defining:
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a(u,v) :=
∫
Ω
∇u∇vdΩ +

∫
Ω

cuvdΩ , (11)

A (u,v;g) := a(u,v)+
∫
∂Ω

u−g
α

v dγ, (12)

(u,v) :=
∫
Ω

uvdΩ , (13)

Bk(u) :=
∫
Ωk

udΩ . (14)

we can state the following

Theorem 1. Given qk > 0 (k = 1, . . . ,n) and g, there exist unique u ∈ H
1(Ω) and

pk ∈ R (k = 1, . . . ,n) such that:

A (u,v;g) = ( f +
n

∑
k=1

pk 1Ωk ,v), ∀v ∈ H
1(Ω), (15a)

Bk(u) = qk, k = 1, . . . ,n. (15b)

Proof. Since the differential operator (15a) is linear, we can represent the general
solution, for any choice of pk, as [8, 9]

u = u∗ +
n

∑
k=1

pkuk, (16)

with u∗(x) solution of the problem

A (u∗,v;g) = f , ∀v ∈ H
1(Ω), (17)

and uk(x), k = 1, . . . ,n, solution of the problem

A (uk,v;0) = (1Ωk ,v), ∀v ∈ H
1(Ω). (18)

Substituting (16) into (15b) we get:

Bk(u) = Bk(u∗ +
n

∑
j=1

p ju j) = Bk(u∗)+
n

∑
j=1

p j Bk(u j) = qk, (19)

with (k = 1, . . . ,n). Then we can write the conditions for pk in (15b) as a linear
algebraic system:

n

∑
j=1

Bk(u j)p j = qk −Bk(u∗), k = 1, . . . ,n. (20)

This system is uniquely solvable if and only if the matrix B = [Bk(u j)] is non
singular, that is to say det(B) �= 0. Noting that:
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Bk(u j) = (1Ωk ,u j) = A (uk,u j;0), (21)

we can derive an equivalent condition on the matrix A = [A (uk,u j;0)]:

det(A) �= 0. (22)

By using the (extended) Cauchy-Schwartz inequality (see, for instance, [10], Chap.
5), the matrix A is positive semi-definite. In particular det(A) ≥ 0, and the equality
holds true if and only if there exist real numbers λk, k = 1, . . . ,n, not all equal to
zero, such that

n

∑
k=1

λkuk = 0. (23)

In conclusion to prove existence and uniqueness it is sufficient to prove that
∑n

k=1 λkuk = 0 implies λk = 0 for all k = 1, . . . ,n. This fact follows from the equality:

0 ≡
n

∑
k=1

λk A (uk,v;0) =
n

∑
k=1

λk(1Ωk ,v) ∀v ∈ H
1(Ω). (24)

Then, for any k = 1, . . . ,n, we can choose v such that supp(v) ⊂ Ωk and get λk = 0.

Remark 1. The matrix A = [A (uk,u j;0)] = [Bk(u j)] appearing in the proof of The-
orem 1 is thus positive definite.

Remark 2 (Non-homogeneous Dirichlet boundary condition). If α = 0 the weak for-
mulation has to be modified, as the boundary conditions change from Robin to non-
homogeneous Dirichlet type. This case is standardly treated extending g in the whole
Ω domain, and denoting with g̃ this extension [8]. A solution of the problem:

a(ũ,v) = ( f +
n

∑
k=1

pk 1Ωk ,v)−a(g̃,v), ∀v ∈ H
1
0(Ω), (25a)

Bk(ũ) = qk −Bk(g̃), k = 1, . . . ,n. (25b)

is then searched. Modifications to Theorem 1 and subsequent proof are straightfor-
ward, and left to the reader.

4 Linear Elliptic Extended Problem

Using the results of the previous section we can now proceed to study the following
problem which is equivalent to Prob. 2.

Problem 4. Given g(x) with the same regularity as in the previous section, find u(x),
pk and qk (k = 1, . . . ,n) such that:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−Δu + cu = f +∑n
k=1 pk 1Ωk , in Ω ,

u +α
∂u
∂n

= g, on ∂Ω ,∫
Ωk

udΩ = qk, k = 1, . . . ,n,

ak pk + bkqk = sk, k = 1, . . . ,n,

(26)

where c > 0, α > 0, ak ≥ 0, bk > 0, sk are data of the problem.

As it was the case for Problem (9) we can state the following:

Theorem 2. Given g(x) ∈ L
2(∂Ω), ak ≥ 0, bk > 0, there exist unique u ∈ H

1(Ω)
and qk, pk ∈ R (k = 1, . . . ,n) such that:

A (u,v;g) = ( f +
n

∑
k=1

pk 1Ωk ,v), ∀v ∈ H
1(Ω), (27a)

Bk(u) = qk, k = 1, . . . ,n, (27b)

ak pk + bkqk = sk, k = 1, . . . ,n. (27c)

Proof. We can use the same decomposition as in the previous problem. The only
difference from the previous problem is that in this case (27c) gives a system for pk

and qk, with matrix (
B −Id

diag(a) diag(b)

)
, (28)

where a = (a1, . . . ,an), b = (b1, . . . ,bn). This is a block matrix, where the two lower
blocks commute. Then, by using classical results [11], we have

det

(
B −Id

diag(a) diag(b)

)
= det

(
B diag(b)+ diag(a)

)

= det
(
B+ diag(a)diag(b)−1

)
det

(
diag(b)

)
> 0,

since the matrix B+ diag(a)diag(b)−1 is positive definite.
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Automatic Thermal Network Extraction and
Multiscale Electro-Thermal Simulation

Massimiliano Culpo, Carlo de Falco, Georg Denk, and Steffen Voigtmann

Abstract We present a new strategy to perform chip-level electro-thermal simu-
lation. In our approach electrical behaviour of each circuit element is modeled by
standard compact models with an added temperature node [1, 2]. Mutual heating
is accounted for by a 2-D or 3-D diffusion reaction PDE, which is coupled to the
electrical network by enforcing instantaneous energy conservation. To cope with the
multiscale nature of heat diffusion in VLSI circuit a suitable spatial discretization
scheme is adopted which allows for efficient meshing of large domains with details
at a much smaller scale. Preliminary numerical results on a realistic test case are
included as a validation of the model and of the numerical method.

1 Introduction

In this communication, we present a tool to automatically extract a thermal network
model for a chip-level electro-thermal simulation. Starting from layout geometry
and chip material data, it produces an n-port thermal device model, possibly non-
linear, that can be coupled to the electrical circuit network via an extra temperature
node in the electrical device compact models. Compared to other similar tools [3,4],
the one we propose does not rely on fitting the parameters of a given network of
lumped thermal resistors and capacitors; rather a full 2D or 3D discretization of the
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heat equation on the whole chip is cast into a form which is analogous to that of
a multi-port circuit element and simulation is performed within a spice-like circuit
simulator directly. Although the ideas on which our method rely can be straightfor-
wardly extended to the case of a non-linear heat equation, we focus here, to simplify
the presentation, on the case where the material properties are independent of tem-
perature so that the resulting circuit element is linear. Similarly, though our focus
here is on transient analysis, the model is suitable for use in DC, AC and HB analy-
ses as well.

2 Electro-Thermal Network Model

Below we briefly outline how the thermal and electrical subsystem are coupled,
while we postpone the details about the model for the thermal element to Sec. 2.1.

The global system of equations describing our electro-thermal circuit is con-
structed following the well known MNA approach [5, 6]. Denoting by the super-
script ·(1) the contributions stemming from the electrical part of the coupled net-
work, and by ·(2) the ones stemming from the thermal part, the system of equations
modeling the coupled electro-thermal system read

A(1)
e Q̇(1)(e,θ )+ F(1)

e (e,θ ) = 0 (1a)

A(1)
θ Q̇(1)(e,θ )+ F(1)

θ (e,θ )+ A(2)
θ Q̇(2)(θ ,r)+ F(2)

θ (θ ,r) = 0 (1b)

A(2)
r Q̇(2)(θ ,r)+ F(2)

r (θ ,r) = 0 , (1c)

Here e(t) and r(t) represent the state variables of the electrical and thermal subsys-
tems, respectively, θ (t) is the vector of lumped temperatures which are the interface

variables shared by the two components of the system and A(1)
e , A(1)

θ , A(2)
θ , A(2)

r are
incidence matrices. If we let L be the number of temperature dependent circuit ele-
ments, then θ will be of the form

θ = [θ1(t), . . . ,θL(t),θL+1(t)]T , (2)

where the first L components are device temperatures, while θL+1(t) is the ambient
temperature. To better separate the two components of the system, it is convenient
to rewrite (1) in the following form
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(a) Coupling of an electrical circuit (solid frame)
with a thermal 3-port element (dotted frame) via
the temperature pins θ1 and θ2. Note the addi-
tional pin θ3 used to set the ambient temperature

(b) Macro-model for a temperature depen-
dent n-MOSFET. The controlled source
represents the Joule power while the de-
vice temperature is equal to the voltage at
the pin on the right

Fig. 1: Assembly of a coupled electro-thermal system

A(1)
e Q̇(1)(e,θ )+ F(1)

e (e,θ ) = 0 (3a)

A(1)
θ Q̇(1)(e,θ )+ F(1)

θ (e,θ ) = J1 (3b)

A(2)
θ Q̇(2)(θ ,r)+ F(2)

θ (θ ,r) = J2 (3c)

A(2)
r Q̇(2)(θ ,r)+ F(2)

r (θ ,r) = 0 (3d)

J1 + J2 = 0 . (3e)

In this form the contributions of the electrical (3a, 3b) and thermal (3c, 3d) subsys-
tem to the conservation law (1b) have been separated by introducing the quantities
J1 and J2 which represent the Joule power produced by the lumped devices and
the power dissipated in the substrate, respectively. The equation (3e) is equivalent
to (1b), and is a statement of instantaneous energy conservation. The coupling could
in principle be non-local in time as e.g. in [7]. Enforcing condition (3e) is analogous
to the procedure used by standard circuit simulators to assemble system equations
by enforcing Kirchhoff Current Law at each circuit node. Therefore, by casting the
equations stemming from the discretization of the heat equation in the chip sub-
strate into the form (3c)-(3d) we allow the thermal subsystem to be interpreted as
a standard n-port device. As a consequence, to implement coupled electro-thermal
simulation within a spice like simulator we need to:

1. add a temperature node to each temperature-dependent circuit element
2. implement an element evaluator for the thermal n-port device

Item 2. is addressed in Sec. 2.1 while Fig. 1b depicts an approach to achieve 1.
via a macromodel without implementing new evaluators for the circuit elements;
the power J1 is represented by the current of a controlled source with one pin con-
nected to ground, the temperature of the device will be represented by the voltage
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at the other pin. Fig. 1a shows the coupling of an electric circuit to a thermal 3-port
element; the temperature pins θ1 and θ2 allow for flux of thermal energy between
the two subsystems while the pin θ3 allows to set the temperature of the external
environment by means of a voltage source.

2.1 Thermal Element Model

In this section we briefly describe the model for our distributed thermal element
which has been discussed in more detail in [8]. In addition we introduce a simple
technique which allows to avoid the large increase in the size of the state vector
for the coupled system by locally eliminating the internal variables of the thermal
element. We model the chip substrate by a bounded open domain Ω ⊂ Rd (d =
2,3) and the active region of the q-th circuit element is represented by a subdomain
Ωq, q = 1 . . .L. We assume that the family

{
Ωq

}
satisfy Ω̄q ⊂Ω ,

∣∣Ωq
∣∣ �= 0 and Ω̄i ∩

Ω̄ j = /0∀i �= j. If we denote with pq, q = 1 . . .L the Joule power per unit area/volume
on Ωq and by T (x,t) the temperature at a point x ∈ Ω at the time t, then the heat
equation describing the evolution of T in Ω reads

⎧⎪⎨
⎪⎩

Q̇(T )+ divS(T ) =
L

∑
q=1

pqχΩq in Ω

RS(T ) ·ν|∂Ω = T |∂Ω −θL+1,

(4)

where Q(T ) denotes the internal energy, S(T ) the heat flux vector, χΩq(x) is the
indicator function for the set Ωq, R is the thermal resistance to the external envi-
ronment and ν is the outward unit normal to ∂Ω . In a linear material Q(T ) = cvT
and S(T ) = κ∇T where the heat capacity cv and thermal conductivity κ are con-
stants independent of T . The lumped temperatures θq, q = 1 . . .L are defined via∫
Ωq

T dω∫
Ωq

dω
and the vector of internal variables is r = [p1(t), . . . , pL(t),T (x, t)]T . The

spatial discretization of (4) by the method of Patches of Finite Elements (PFE) [9] is
addressed in [8] here we wish to point out that the choice of this particular method
is suggested by two main features:

1. it allows to efficiently mesh large domains with geometrical features of much
smaller scale

2. it allows for even more convenient meshing when a large number of sub-domains
of identical geometry is present

In Sec. 3 we present an example where both such features produce a noticeable
advantage. Using PFE for spatial discretization and a p-step BDF formula of the
form

Q̇(2)(tk) =
p

∑
i=0

αiQ
(2)(tk−i) = α0Q(2)(tk)+β (tk) , (5)
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we can express the discrete counterpart of (3c) and (3d) as
[

A(2)
θ

p

∑
i=0

αiQ
(2)(tk−i)

]
+ F(2)

θ (tk) = J2(tk) , (6a)

[
A(2)

r

p

∑
i=0

αiQ
(2)(tk−i)

]
+ F(2)

r (tk) = 0 . (6b)

As we have assumed linearity of the substrate material we have
[

A(2)
θ Q(2)(tk)

A(2)
r Q(2)(tk)

]
=
[
Cθθ Cθr
Crθ Crr

][
θ (tk)
r(tk)

]
,

[
F(2)
θ (tk)

F(2)
r (tk)

]
=
[

Gθθ Gθr
Grθ Grr

][
θ(tk)
r(tk)

]
, (7)

which allows us to write
[
α0Cθθ + Gθθ α0Cθr + Gθr
α0Crθ + Grθ α0Crr + Grr

][
θ (tk)
r(tk)

]
+
[
βθ (tk)
βr(tk)

]
=

[
Bθθ Bθr
Brθ Brr

][
θ (tk)
r(tk)

]
+
[
βθ (tk)
βr(tk)

]
=
[

J2(tk)
0

]
.

(8)

By the arguments used in [10] Brr can be shown to be invertible, so that r =
B−1

rr (Brθ θ +βr) from which we get

G(2)θ = J2 + J̃2, (9)

where the conductance matrix G(2) = (Bθθ −BθrB−1
rr Brθ ) is of size (L+1)×(L+1)

and the dynamical current J̃2 = −(βθ −B−1
rr Brθβr) is of size (L+ 1)×1 regardless

of the number of mesh nodes.

3 Numerical Results

As a preliminary validation of the proposed method we present results obtained
by its application to a simplified version of the power device discussed in [11]. In
Fig. 2a we show a sketch of the complete device layout, composed of a large num-
ber of identical cells arranged in a regular grid. Notice that the gate metal fingers
do not cover the entire layout from the upper to the lower part, but they leave some
empty space in which the gate signal is propagated through Poly-Silicon. This lack
of a direct metal connection produces hot-spot phenomena during high frequency
switching. In [11] a distributed electrical network was introduced which allowed
to observe local maxima in the current density distribution, in [12] the model is
extended to account for the self-heating of the cells, still the dependence of the elec-
trical characteristics of each cell on the dissipated power remains purely local. The
non locality introduced in our model by the distributed thermal element provides a
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(a) Sketch of the device layout
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(b) Thermal network mesh

Fig. 2: Simplified power MOS-FET structure

Fig. 3 Turn-off transient for
the device of Fig. 2a: total
dissipated power vs. mean
temperature on chip
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further extension as it allows to account for mutual-heating effects previously ne-
glected. In Fig. 2b we show a picture of the mesh underlying the distributed thermal
network: a coarse grid covers the 4mm × 4mm die, while a fine one (approximately
80 μm × 80 μm) is replicated at each active region position. The parameters cv and
κ in this particular example where chosen by fitting the turn-off time of our simpli-
fied model to the results presented in [11]; the resulting values were cv = 10−4 J ×
m−2 × K−1 and κ = 2×10−2J× sec−1 ×K−1. In Fig. 3 the total dissipated power
and the mean temperature of the device are plotted against time during a turn-off
transient. As expected to a lowering of the power corresponds a cooling of the de-
vice; however these two effects exhibit different relaxation times. Finally in Fig. 4
we present the power densities and lumped temperatures of the cells for three dif-
ferent time-points defined in Fig. 3. We can see clearly a delay in the propagation of
the signal from the gate-pad in the lower part of the die to the single cells, and the
presence of an hot-spot in the central upper part of the die for t = t2. Moreover the
presence of a non negligible temperature gradient over the device area is detected at
times t = t1 and t = t2. Furthermore the different spatial distribution of heat density



Automatic Thermal Network Extraction and Multiscale Electro-Thermal Simulation 287

and temperature are an indication that non-local effects may not be negligible in
estimating the device performance.

4 Conclusions

In Fig. 5 we summarize the expected work-flow using the tool we presented for a
coupled electro-thermal simulation. In designing the IC the thermally active regions
are defined by adding an extra mask layer to the layout. A 2D or 3D mesh is formed
automatically and from that a passive thermal element will be assembled. This ele-
ment is then attached to the devices temperature nodes; ambient temperature is set
via additional temperature sources. The full system can be simulated by a standard
circuit simulator, producing as extra output the average temperature in each device
as well as the full multidimensional temperature field in the IC.
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Fig. 5: Electro-thermal simulation: expected work-flow in an industrial environment
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Simulations of an Electron-Phonon
Hydrodynamical Model Based on the Maximum
Entropy Principle

V. Romano and C. Scordia

Abstract Recently an energy-transport models has been formulated based on the
maximum entropy principle for the coupled phonon-electron system in silicon in
order to cope with the effects of heating of the crystal lattice. Here the numerical
simulations of some benchmark devices are presented in order to assess the validity
of the model.

1 The Model

Thermal effects in the crystal lattice influence the electrical behaviour, in particular
in nanoscale devices. At macroscopic level, several heuristic models of lattice heat-
ing have been proposed. They are represented by the lattice energy balance equation
and differ for the proposed form of thermal conductivity and energy production, e.g.
[1–5]. A critical review can be also found in [6].

Recently, a consistent hydrodynamical model for charge carriers has been de-
veloped starting from the moment system associated with the transport equations,
obtaining the closure relations with the maximum entropy principle (hereafter MEP)
[7–10]. The same approach has been adopted in [11] for the electron-phonon sys-
tem, obtaining also an energy-transport and a drift-diffusion model under appro-
priate scalings. The electrons are described with the 8-moment system as in [7–9].
The phonons are considered as two populations: acoustic and non polar optical. The
non-polar optical phonons are described with a Bose-Einstein distribution while
the acoustic ones are described by the MEP distribution function in the 9-moment
approximation already introduced in [12]. For the acoustic phonons the linear
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dispersion relation has been adopted while the non-polar optical phonons energy
has been taken as constant. Moreover the non polar optical phonons are assumed to
be described by the Bose-Einstein distribution.

The direct solution of the Boltzmann equations describing the electron-phonon
system is a daunting computational task and requires long CPU times, not yet suit-
able for CAD purposes. Macroscopic models are therefore warranted. Starting from
the transport equations, in [11] the 8-moment model for electron and the 9-moment
model for phonons have been considered.

Since the number of unknowns exceeds the number of equations, closure rela-
tions must be introduced. To this aim MEP has been adopted. It gives a systematic
way for obtaining constitutive relations on the basis of information theory. Explicit
constitutive relations have been obtained with coefficients depending on the electron
energy W and crystal temperature TL and related to the scattering parameters (see
[11] for more details).

Under the diffusion scaling, from the moment system closed with MEP, the fol-
lowing electron energy transport and lattice heating model has been deduced

∂n
∂ t

+ div(nV) = 0 (1)

∂ (nW )
∂ t

+ div(nS)+ nqV ·∇φ = nCW (2)

ρcV
∂TL

∂ t
−div [k(TL)∇TL] = H (3)

E = −∇φ , εΔφ = −q(ND −NA −n). (4)

with n the electron density, W the electron energy, φ the electrostatic potential and
E = −∇φ the electric field. ND and NA are the donors and acceptors density respec-
tively (assumed as known function of the position). q is the elementary charge, ρ the
silicon density, cV the specific heat, CW the energy production term, which is in a
relaxation form CW = −W−W0

τW
with W = 3/2kBTL and τW (W ) the energy relaxation

time.
The thermal conductivity k(TL) and heat source H are given by [11]

k(TL) =
ρcV τR(TL)c2

3
, H = −nCW − c2div

(
τRnc(p)

11 V+ τRnc(p)
12 S

)
. (5)

c(p)
11 and c(p)

12 arise from the phonon momentum production term and depend on W
and TL while τR is the phonon relaxation time in resistive processes. The electron
velocity V and energy flux S are given by

V = D11(W,TL)∇ logn + D12(W,TL)∇W + D13(W,TL)∇φ ,

S = D21(W,TL)∇ logn + D22(W,TL)∇W + D23(W,TL)∇φ

(see [11] for the explicit expressions of the coefficients Di j). Equations 5 generalize
the models proposed in [1–5] with an explicit form of the coefficients.
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The argument of the divergence operator in H can be rewritten as

−Pn J−PS nS, (6)

with J =−qnV the current density, Pn = c2 τR c(p)
11

q and PS = −c2 τR c(p)
12 thermoelectric

power coefficients (note that c(p)
12 is negative).

If we consider Pn and PS as constant, in the stationary case one can use the
electron energy balance equation (2) to eliminate div (nS) obtaining the simplified
model for the phonon energy production

H = −(1 + PS)nCW + PS J ·E (7)

This indeed alters the results of the transient but leads to the same stationary solu-
tions.

Since the electron production terms are slowly changing with respect to KBTL,
we will use the further simplification that they are evaluated with TL = 300 K.

A phenomenological radiation term SL(TL −Ten) for the exchange of energy with
the environment is added to H, Ten being the environment temperature and SL the
transmission coefficient.

The following boundary conditions for the 1D n+ − n − n+ silicon diode are
assumed (the device is represented by the interval [0,L]):

n(0,t) = nD(0), n(L,t) = nD(L) t ≥ 0
∂W
∂x

(0,t) =
∂W
∂x

(L, t) = 0 t ≥ 0

φ(0,t) = 0, φ(L,t) = Vb t ≥ 0

−k(TL)
∂TL

∂x
= R−1

th (TL −Ten) x = 0,L t ≥ 0

where Rth is the thermal resistivity of the contact. With a good approximation the

latter relation can be replaced with the homogeneous Neumann condition
∂TL

∂x
= 0

due to the high value of Rth.

2 Numerical Scheme

We discretize the balance equations by adopting the following coupling strategy:

• first we integrate the balance equations for electrons, with the crystal lattice
frozen at the previous time step, obtaining the electron density and energy at
the next time step.

• then we integrate the lattice energy balance equation in a semi-implicit way with
n and W given by the step 1.
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2.1 Step 1

In this step the numerical approach is similar to that in [13]. First we rewrite the
current density J = n V and the energy-flux density H = n S as

J = J(1) −J(2), H = H(1) −H(2),

where

J(1) =
c22

D

[
∇(nU)−qnλWU∇φ

]
, J(2) =

c12

D

[
∇(nF)−qnλWF∇φ

]
,

H(1) =
c11

D

[
∇(nF)−qnλWF∇φ

]
, H(2) =

c12

D

[
∇(nU)−qnλWU∇φ

]
,

with D = c11c22 − c12c21. The ci j(W )’s arise from the electron momentum and
energy-flux production, λW (W ) is the Lagrangian multiplier relative to the electron
energy and U and F depend on W . Their expressions are given also in [11].

The basic idea is to introduce suitable average mobilities that are constant in each
cell so that J(i) and H(i), i = 1, 2, can be expressed by means of local Slotboom vari-
ables and a Scharfetter-Gummel finite difference scheme can be used. The details
can be found in [13].

Let us introduce the grid point 0 = x0 < x1 < ...xi < ...xN−1 < xN = L, with N a
positive integer. For simplicity we assume a uniform grid so xi = ih with h = L/N,
and uniform time steps. Moreover we set Ii+1/2 = [xi,xi+1] and xi±1/2 = xi ±h/2. In
the sequel the notation ul

i will indicate the value of the variable u(x, t) for x = xi and
t = lΔ t, l being a positive integer.

By replacing the partial derivatives with finite differences, the balance equations
(1)-(2) can be discretized as

nl+1
i −nl

i

Δ t
+

Ji+1/2 − Ji−1/2

h
+ O(h2,Δ t) = 0, (8)

(nW )l+1
i − (nW )l

i

Δ t
+

Hi+1/2 −Hi−1/2

h
−q

Ji+1/2 + Ji−1/2

2
φi+1 −φi−1

2h
+

+
3
2

ni
Wi −W0

(τW )i
+ O(h2,Δ t) = 0, (9)

1
h2 (φi+1 −2φi +φi−1)+

q
ε
(Ci −ni)+ O(h2) = 0 (10)

where Ci = ND(xi)− NA(xi). The variables with no temporal index, in particular
the lattice temperature, must be considered evaluated at the time step t = lΔ t. We
approximate the electric potential φ by piece-wise linear function in each Ii+1/2

φ(x) $ φi +
(x− xi)

h
(φi+1 −φi), x ∈ Ii+1/2
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and ci j(W ) by functions that are constant on each interval Ii+1/2. This enable us to
introduce the local mobilities

g11 = −c22

D
, g12 = −c12

D
, g21 = −c11

D
, g21 = −c12

D
(11)

and write the significant components of J(i) and H(i) as

J(i) $ −∂g1i

∂x
+ qλW

g1i
∂φ
∂x

, H(i) $ −∂g2i

∂x
+ qλW

g2i
∂φ
∂x

(12)

where λ
W

is the cell mean value of λW , we approximate as

λ
W $ 1

2

[
λW (Wi)+λW (Wi+1)

]
. (13)

After introducing UT = 1/qλW , which plays the role of a thermal potential, and
indicating by UT its constant approximation in each cell Ii+1/2, it is possible to
define the local Slotboom variables skr = exp

(−φ/UT
)

gkr that satisfy

∂ s1r

∂x
$ −exp

(−φ/UT
)

J(r),
∂ s2r

∂x
$ −exp

(−φ/UT
)

H(r). (14)

In each cell Ii+1/2 we can express J(r) as a Taylor expansion

J(r)(x) = J(r)
i+1/2 +(x− xi+1/2)

(
∂J(r)

∂x

)

xi+1/2

+ O(h2). (15)

By integrating the relations (14) over Ii+1/2, we find up to O(h2)

(s1r)i+1 − (s1r)i = −
∫ xi+1

xi

exp
(−φ/UT

)
J(r)

i+1/2 dx.

By taking into account that φ(x) is linear in I(r)
i+1/2, the last integral can be explicitly

evaluated, obtaining, after some elementary algebra

J(r)
i+1/2 = −zcothz

(g1r)i+1 − (g1r)i

h
+ z

(g1r)i+1 +(g1r)i

h
, r = 1,2 (16)

with z = φi+1−φi
2UT

. If z = 0, that is if φi+1 = φi, the previous expression remains valid
provided that zcoth z is replaced with the limit as z %→ 0 which is equal to one.

Similarly for the energy density current one finds

H(r)
i+1/2 = −zcothz

(g2r)i+1 − (g2r)i

h
+ z

(g2r)i+1 +(g2r)i

h
, r = 1,2. (17)

The complete numerical scheme of this first step is summarized below
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nl+1
i = nl

i −Δ t
Ji+1/2 − Ji−1/2

h
= 0, (18)

(nW )l+1
i = (nW )l

i −Δ t

[
Hi+1/2 −Hi−1/2

h
−q

Ji+1/2 + Ji−1/2

2
Vi+1 −Vi−1

2h
+

+
3
2

ni
Wi −W0

(τW )i

]
, (19)

1
h2 (φi+1 −2φi +φi−1)+

q
ε
(Ci −ni) = 0 (20)

Ji+1/2 = J(1)
i+1/2 − J(2)

i+1/2, Hi+1/2 = H(1)
i+1/2 −H(2)

i+1/2 (21)

J(r)
i+1/2 = −zcothz

(g1r)i+1 − (g1r)i

h
+ z

(g1r)i+1 +(g1r)i

h
, r = 1,2 (22)

H(r)
i+1/2 = −zcothz

(g2r)i+1 − (g2r)i

h
+ z

(g2r)i+1 +(g2r)i

h
, r = 1,2 (23)

supplemented with a CFL condition Δ t/(Δx)2 < c, where c is a suitable positive
constant.

2.2 Step 2

Regarding the discretization of the lattice energy equation, an explicit scheme is
used. Setting u = KBTL, one has for the internal nodes

un+1
i = un

i +
Δ tL
Δx2

[
K̃i + K̃i+1

2
(un

i+1 −un
i )−

K̃i + K̃i−1

2
(un

i −un
i−1)

]

+
aΔ tL
(τW )i

(1 + PS)nn+1
i

(
W n+1

i − 3
2

un
i

)
+ bΔ tL Jn+1

i En+1
i +

Δ tLSL

ρcV
(un

i − kBTen). (24)

where a =
kB

ρcV
, b = aPS, K̃ =

k
ρcV

. The time step Δ tL in (24) is related to the time

step Δ t in the discretization of (1),(2) by Δ tL ≈ 10−2Δ t, which implies about 100
iterations of (24) for each time step in the numerical integration of (1)-(2).

3 Numerical Simulations

Concerning the physical parameters, we have modeled the thermal conductivity with
the fitting formula k(TL) = 1.5486(TL/300K)−4/3 V A/cm K, assumed cV = 703
m2/sec2 K (see [6]) and set Ten = 300 K.

Two nanodevices under the bias voltage of 1 Volt are considered: an n+ −n−n+

silicon diode with a channel of 50 nanometers and another with a channel of 25
nanometers. In submicron diodes with longer channels the effects related to the
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crystal heating are not relevant. The overall stationary state is reached in about 100
picoseconds, even if the electron parts is practically in the steady state after about
5 ps. The lattice temperature depends strongly on the thermal power coefficient and
the radiation coefficient SL. If PS is set equal to zero, that is only the relaxation term
is considered in the source term of (3), a negligible crystal heating is obtained and
this implies that the major role is played by the Joule effects, casting doubts on the
models including only the relaxation part in H.

In Fig. 1 the lattice temperature is plotted along the device for SL = 4.0 ×
1012,2.0 × 1013,4.0 × 1013 W/m3 K, considering the device with the channel 50
nanometers long. For the lowest values of SL there is a dramatic heating, which
appears as unphysical. For the higher values of SL the maximum raise of the tem-
perature is more realistically less than 10 K.

Similar results are found for the diode having a 25 nanometers channel, but with
a more pronounced rise in temperature, implying an increase of the thermal effects
as shrinking the dimension of the device. This is qualitatively in agreement with the
results obtained by using other models, e.g. in [14].

The electron variables, density and energy, are only slightly influenced by the
thermal effects. In particular the current changes less than two percent, see Fig. 2.
Note that higher the crystal temperature and smaller is the current. However, even a
small deviation in the temperature of each single device implies a relevant cumula-
tive effects in integrated circuits with a very high number of components.
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Fig. 1: Lattice temperature versus the position in the device with the channel of 50 nanometers
(left) and 25 nanometers (right), for different values of the transmission coefficient: SL = 4.0×1012

(dashed line), 2.0×1013 (dotted line), 4.0×1013 (continuous line) W/m3 K
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Fig. 2: Current versus the position in the device with the channel of 50 nanometers (left) and 25
nanometers (right), for different values of the transmission coefficient: SL = 4.0 × 1012 (dashed
line), 2.0×1013 (dotted line), 4.0×1013 (continuous line) W/m3 K
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Consistent Initialization for Coupled
Circuit-Device Simulation

Sascha Baumanns, Monica Selva Soto, and Caren Tischendorf

Abstract For a coupled circuit device simulation in the time domain, consistent
initial values have to be calculated. We study the structure and properties of the
differential-algebraic equations (DAEs) that arise after space discretization of the
partial differential equation part coming from the device modelling. Exploiting the
special DAE structure, we show that a consistent initial value can be computed
within two steps. Firstly, one determines an operation point. Secondly, a linear sys-
tem is solved for correcting the operation point such that the hidden constraints are
also satisfied. Finally, an algorithm for the calculation of such values is proposed.

1 Introduction

Nowadays semiconductor devices in an electrical circuit are modeled via equivalent
circuits containing only basic elements that can be described by algebraic and or-
dinary differential equations. With the rapid development of chip technology these
equivalent circuits have become more and more complex. This has motivated the
idea of using distributed device models, represented by a system of Partial Differ-
ential Equations (PDE), to describe the behavior of the semiconductor devices in
the circuit [1, 2]. The resulting mathematical model couples the differential alge-
braic equations (DAEs) describing the circuit and the partial differential equations
(PDEs) modeling the semiconductor devices.

In order to numerically simulate electrical circuits described by such a model, we
discretize the partial differential equations in space first. This results in a DAE for
the coupled simulation problem. The numerical simulation of this DAE involves the
problems of finding consistent initial values for the integration. DAEs are known
for the fact that solutions have to fulfill certain constraints. Correspondingly, initial
values have to be found that satisfy these constraints.

The main objective of this article is the determination of appropriate initial values
for the DAE arising after space discretization. We study which conditions initial
values should satisfy in order to be consistent and present an algorithm for their
calculation. This algorithm is based on the ideas presented in [3, 4]. Due to the
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special properties of this DAE, discussed later on in this paper, a consistent initial
value for it can be calculated in two steps: in the first one an operating point is
computed and in the second one this point is corrected by solving a linear system of
equations.

This paper is organized as follows. First we describe briefly the coupled DAE-
PDE model of the coupled circuit device system as well as the DAE system that
is obtained after spatial discretization. Section 3 is devoted to the properties of this
DAE. In section 4, the conditions for consistent initial values are studied and an
algorithm for the calculation of such values is proposed. This algorithm has been
implemented in MATLAB.

2 Coupled System for the Circuit and Device Simulation

For simplicity and shorter description, we restrict to the case of coupling only one
semiconductor device to an electrical circuit. Assume this semiconductor device
to have nS metal semiconductor contacts and let nN be the number of nodes in
the graph associated to the circuit. Each contact of the semiconductor device is
joined to a node of the electrical circuit. The contacts of the semiconductor joined
to the same node of the electrical circuit define a terminal. Let nT be the number
of terminals of the semiconductor device. We define the following incidence matrix
AS ∈ R(nN−1)×(nT −1) by

AS(i, j) =

⎧⎨
⎩

1, if terminal j is joined to the node i
−1, if the reference terminal is attached to node i

0, else

The system proposed in [2] couples the modified nodal analysis (MNA) equations
for electrical circuits to the drift diffusion (DD) equations for semiconductor de-
vices. The MNA equations have the form

AC
dqC(AT

Ce, t)
dt

+ ARgR(AT
Re,t)+ AL jL + AV jV + AS jS + AIiS(t) = 0, (1a)

dφ( jL, t)
dt

−AT
L e = 0, (1b)

AT
V e− vS(t) = 0 (1c)

with t ∈ [t0, tF ]. The matrices AC,AR,AL,AV ,AS and AI describe the element related
reduced incidence matrices. The functions vS(t), iS(t), qC(u, t), g(u, t) and φ( j, t)
describe the constitutive relations for the circuit elements. As unknowns we have the
node potentials e(t) : R → RnN−1, except of the mass node, as well as the currents
jL(t) : R → R

nL through inductors, the currents jV (t) : R → R
nV through voltage

sources and the currents jS : R → RnT −1through semiconductor devices. Note that
the term AS jS within the Kirchhoff’s current law equation (1a) involves a coupling to
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the DD model since the current jS at the semiconductor’s contacts depends on the
DD variables.

Suppose Ω to be a bounded domain in R
d , d ∈ {1,2,3} and let x ∈ Ω represent

the space variable. The DD equations are given by the following set of PDEs for
the electrostatic potential ψ(x,t) and the electrons and holes densities, n(x, t) and
p(x, t) respectively.

∇ · (−ε∇ψ)−q(C−n + p) = 0, (1d)

−∂n
∂ t

+
1
q

divJn −R(n, p) = 0, Jn −qμn(UT∇n−n∇ψ) = 0, (1e)

∂ p
∂ t

+
1
q

divJp + R(n, p) = 0, Jp + qμp(UT∇p + p∇ψ) = 0. (1f)

For simplicity, we consider the mobilities μn and μp as well as the material quanti-
ties ε and UT as constants. The elementary charge q is always constant.

The boundary of the semiconductor device is here divided into two disjoint parts
Γ = ΓD ∪ΓN . The first one includes the metal semiconductor contacts (Ohmic con-
tacts) where the external potentials are applied and can divided into nT disjoints
contacts. The contact nT is chosen as reference contact. The corresponding bound-
ary conditions have the form

n = nD(x), p = pD(x), ψ = ψbi(x)+ψext(x,AT
S e) (1g)

for all x ∈ ΓD and t ∈ [t0,tF ]. On ΓN homogeneous Neumann boundary conditions
are imposed, i.e.

∇ψ ·ν = 0, Jn ·ν = 0, Jp ·ν = 0 (1h)

for all x ∈ΓN and t ∈ [t0,tF ] with ν being the unit vector pointing in the outer normal
direction of Ω . In (1g), ψext(x,AT

S e) denotes the externally applied voltage1 and
ψbi(x), nD(x) as well as pD(x) are given functions that do not depend on time.

The currents jS1 , jS2 , . . . , jSnT −1 at the semiconductor terminals can be calculated
as

jSi = −
∫
Ω

(Jn + Jp) ·∇wi dx− d
dt

qSi , qSi = −
∫
Ω
ε∇ψ ·∇wi dx, (1i)

where the functions wi, i = 1,2, . . . ,nT −1 are chosen such that

∇ · (−ε∇wi) = 0, in Ω , (2a)

wi|Γj⊂ΓD = δi j, j = 1,2, . . . ,nT and ∇wi ·ν = 0, on ΓN . (2b)

This way, we may express ψext(x,AT
S e) as

ψext(x,AT
S e) = (w1 w2 · · · wnT −1) ·AT

S e.

1 Since we consider the semiconductor device as part of an electrical circuit, ψext is not an inde-
pendent function to be assigned, but it is to be determined by the electrical network
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The discretization of (1d)-(1f) in space results in a DAE system [5] for

y(t) = (e, jL, jV , jS,qS,Ψ ,N,P)T : R → R
m

with m = nN −1+nL +nV +2(nT −1)+3M. Here M denotes the number of interior
and Neumann nodes in the spatial mesh used to discretize the PDEs in the system.
For each t ∈ [t0, tF ], the vector Ψ (t) contains the approximations to the values of
ψ at the mesh points or mesh elements. The same holds for N(t) and P(t). The
resulting DAE has the form

A
d
dt

d(y,t)+ b(y,t) = 0 (3a)

with

A =

⎛
⎜⎜⎜⎝

AC 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 I 0 0
0 0 0 0 0
0 0 0 Mh 0
0 0 0 0 Mh

⎞
⎟⎟⎟⎠ , d =

⎛
⎜⎜⎜⎜⎝

A+
C ACqC(AT

Ce(t), t)
φ( jL(t), t)

qS(t)
N(t)
P(t)

⎞
⎟⎟⎟⎟⎠ (3b)

and

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ARgR(AT
Re,t)+ AL jL + AV jV + AS jS + AIiS(t)

−AT
Le

AT
V e− vS(t)

qS + f (AT
S e,Ψ)

jS + g(AT
S e,Ψ ,N,P)

ThΨ + h(AT
S e,N,P)

r1(AT
S e,Ψ ,N)

r2(AT
S e,Ψ ,P)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3c)

The matrix A+
C above denotes the Moore-Penrose inverse of AC. All functions of the

system above are assumed to be continuously differentiable with respect to all their
components. Suppose further the matrices Th and Mh to be symmetric and positive
definite.2 The partial derivatives

C(u, t) =
∂qC(u,t)

∂u
, L( j,t) =

∂φ( j,t)
∂ j

, G(u, t) =
∂gR(u, t)

∂u

are also assumed to be positive definite, that means, we consider all capacitors,
inductors and resistors to be passive.3 Finally, suppose that

Jh =
∂ f (u,Ψ )

∂u
− ∂h(u,N,P)

∂u
T−1

h
∂ f (u,Ψ )

∂Ψ
2 This is always true for Galerkin approximations with basis functions ϕi(x) that provide indepen-
dent functions d

dxϕi(x).
3 We need passivity of resistors only if they are not connected by a capacitive path.
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is a symmetric and positive definite matrix4.
In what follows we assume that the circuit contains neither loops of voltage

sources only nor cut sets of current sources only. It is a natural assumption since
a violation would lead to a short circuit in reality.

3 Properties of the DAE Obtained After Spatial Discretization

Let D(y, t) = ∂d(y,t)
∂y . Note that it is such that imD(y, t) is constant. The DAE (3) also

has a properly stated leading term, that means,

imD(y,t)⊕kerA = R
k (4)

with k = nC + nL + nT − 1 + 2M is satisfied and there exists a projector R ∈ Rk×k

that realizes the decomposition (4), i.e. R2 = R, imD(y, t) = imR and kerA = kerR.
One possible choice is R = A+A, where A+ denotes the Moore-Penrose inverse of
A.

Since the network equations usually do not fulfill high smoothness conditions, we
use the tractability index concept[6] for the index determination. Additionally, this
concept leads us easily to network topological conditions characterizing the index
of the discretized coupled DAE system. The DAE-index depends on the regularity
of certain matrices Gi, i = 0,1,2, . . . that are recursively constructed.

1. Since the matrix G0(y,t) = AD(y,t) is singular for all (y, t) ∈ Rm ×R, the DAE
has always an index greater than zero [5, 7].

2. The DAE index is one if and only if the matrix G1(y, t) = G0(y, t) + ∂b(y,t)
∂y Q0

is nonsingular with Q0 being a projector onto kerG0. It is shown that this is
the case if the circuit contains neither loops of capacitors, voltage sources and
semiconductor devices with at least one semiconductor device or one voltage
source (CVS-loops) nor cut sets of inductors and currents sources (LI-cut sets)
[5, 7]. Since imD(y,t) is constant, the DAE is also numerically qualified in this
case.

3. In all other cases the matrix G2 = G1 + ∂b(y,t)
∂y P0Q1 with Q1(y, t) being a projector

onto kerG1(y, t) is nonsingular, i.e. the DAE index equals to two [5, 7].

4 Let wi,h denote the approximations to the functions wi(x) defined in (2) with a Galerkin method.
If they are written as linear combination of the same functions as the approximations to ψ and
d
dx wi,h(x) are linearly independent (this is e.g. the case if the spatial mesh is sufficiently fine), then
it holds that Jh is symmetric and positive definite, since

Jh(i, j) =
∫
Ω
∇wi,h ·∇w j,h dx, i, j = 1,2, . . .,nT −1.
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4 Consistent Initial Values for the DAE Associated to the
Coupled System

One of the difficult parts in solving DAEs numerically is to determine a consistent
set of initial conditions in order to start the integration. In order to calculate consis-
tent initial values for the DAE system (3), we exploit its special structure.

If (3) has index one, its flow is restricted to

M0(t) =
{

y ∈ R
m|∃z ∈ R

k : Az+ b(y, t) = 0
}

.

and M0(t) is completely filled by this flow [6].

Theorem 1. If the DAE (3) satisfies the conditions in section 2 and the circuit con-
tains neither CVS-loops nor LI-cut sets, then the system

Az0 + b(y0,t0) = 0,

(I −R)z0 + d(y0,t0)−Ry0 = 0

is locally uniquely solvable for z0, y0 and provides a consistent initial value y0 for
(3). The vector y0 can be arbitrarily chosen. [6, 7]

Speaking in terms of electrical variables, if the circuit contains neither CVS-
loops nor LI-cut sets, initial values for the inductive currents, the capacitive branch
voltages AT

Ce, the charges at the semiconductor contacts qS and the concentrations
of electrons and holes on the mesh nodes can be arbitrarily chosen.

The flow of index-two DAEs is additionally restricted by so-called hidden con-
straints and the set of consistent values at t0 is a proper subset of M0(t0). In this
case, we can compute a consistent initial value for (3) as follows [3, 7]

• Describe the hidden constraints.
• Compute a value y0 that satisfies the explicit equation of the DAE system with

y0 ∈ M0(t0).
• Correct this value in order to fulfill the hidden constraints, i.e. calculate a value

y∗ ∈ M1(t0) ⊂ M0(t0).

To describe the hidden constraints we follow the idea in [3, 4, 7] and reduce the
index of the DAE system. For this reason, we introduce the DAE

(A W1)
d
dt

(
d(y,t)

W1b(y,t)

)
+(I −W1)b(y, t) = 0 (5)

where W1 is a projector along imG1(y,t). It holds W1W0 = W1 for any projector W0

along imG0(y, t) = imA. The DAE (5) has been obtained by replacing W1b(y, t) in
the original DAE (3) by its differentiated form. The DAE (5) has also a properly
stated leading term and index one. It is clear that every solution of (3) is also a
solution of (5). Conversely, every solution y of (5) that satisfies W1b(y(t), t) = 0 at
least at one point t ∈ [t0,tF ], is also a solution of original DAE (3).
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This approach suggests that the solution y(t) of the index-two DAE should satisfy
y(t) ∈ M1(t), ∀t ∈ [t0,tF ] with

M1(t) =
{

y ∈ M0(t) | ∃z ∈ R
m : W1

(
∂b(y, t)

∂y
z+

∂b(y, t)
∂ t

)
= 0

}
.

The next step is to compute a value y0 ∈ M0(t0). This can be done by solving the
system b(y0, t0) = 0. For general DAEs, one can not expect that this system is always
solvable. However, if the circuit-device system is well posed then the system has a
unique equilibrium solution for physical reasons.

For DAE systems of the form (3) it has been shown [7] that the index-two com-
ponents5 of the solution can be described by Ty with

T =

⎛
⎜⎜⎝

QCRVS 0 0 0
0 0nL 0 0
0 0 QC−V S 0
0 0 0 0nT −1+3M

⎞
⎟⎟⎠ ,

if QCRVS denotes a projector onto ker(AC AR AV AS)
T, QC−VS a projector onto

kerQT
C (AV AS) and QC is a projector onto kerAT

C. In (3) these components occur
only linearly, i.e. with U = I −T it can be written as

A
d
dt

d(y,t)+ b̃(Uy,t)+BTy = 0.

Theorem 2. If the DAE (3) satisfies the conditions in section 2 and the circuit con-
tains either CVS-loops or LI-cut sets, then the following linear system provides a
consistent initialization (z∗,y∗):

⎛
⎜⎜⎝

A BT
0 U

W1B0D−
0 0

(I −R) 0

⎞
⎟⎟⎠
(

z∗
y∗

)
=

⎛
⎜⎜⎝

0
0

W1B0D−
0 d0 −W1b0

0

⎞
⎟⎟⎠

with z∗ := z∗, y∗ := y∗ + y0, y0 being any value belonging to M0(t0) and

B0 := ∂b(Uy0,t0)
∂Uy , D0 := ∂d(Uy0,t0)

∂Uy , b0 := ∂b(Uy0,t0)
∂ t , d0 := ∂d(Uy0,t0)

∂ t .

The matrix D−
0 denotes a generalized inverse of D0 satisfying D0D−

0 = R.

Proof. It is shown [7] that this linear system is uniquely solvable. In order to prove
that (z∗,y∗) is a consistent initialization for (3), we have to check that the hidden
constraints are fulfilled. With z = D−

0 z∗ −D−
0 d0 it holds that

5 By index-two components we mean those components that depend on derivatives of the input
functions.
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W1

(
∂b(y0,t0)

∂y
z+

∂b(y0,t0)
∂ t

)
= 0

The explicit equations are fulfilled with Uy∗ = 0, Az∗ +BTy∗ = 0 and b(y0, t) = 0.

5 Conclusions

It has been shown that the differential-algebraic equations arising from a monolithic
coupled circuit device simulation have the special structure that the higher index
components, i.e. here the index-two components, appear only linearly in the sys-
tems. This result extends the knowledge from circuit simulation [3] to the coupled
circuit device simulation.

Uniquely solvable equation systems have been presented that allow a compu-
tation of consistent initial values. Starting from an initial solution that satisfies the
index-1 constraint, e.g. from an operating point, only a linear system has to be solved
in order to get a consistent initialization.

As known already for circuits [3], the special structure implies that two Euler
integration steps yield always a consistent value. However, this value is a consistent
one at the timepoint t0 + 2h supposed the system is integrated by a stepsize h. The
systems presented here provide a consistent initialization at the initial time point t0.

Following our approach, a non-linear system of equations must be solved in order
to obtain an initial solution that satisfies the index-1 constraints, e.g. an operating
point. By solving then a linear system of equations, a consistent initialization at
the time point t0 is obtained. However, in order to construct the linear system of
equations constant projectors must be computed.
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Hyperbolic PDAEs for Semiconductor Devices
Coupled with Circuits

Giuseppe Alı̀, Giovanni Mascali, and Roland Pulch

Abstract We address the problem of coupling a system of network equations cor-
responding to an electric circuit with a detailed model for a device connected to
the circuit. The device is modeled by an hydrodynamic model based on the maxi-
mum entropy principle, which results in a hyperbolic system of partial differential
equations. We perform a numerical simulation with an oscillator coupled with an
n+-n-n+ channel.

1 Introduction

Traditionally, in microelectronics, an integrated circuit is described as a network of
lumped components, neglecting any secondary effect between the components and
with the substrate. If some secondary effect becomes important under given operat-
ing conditions, it may be included by simply modifying the network. This scheme
is severely undermined by the increasing miniaturization of integrated circuits, and
by the transition of microelectronics to nanoelectronics.

For this reason, the development of new models for the nonlinear components of
an integrated circuit, and for their coupling to an electric network is a mandatory task
for semiconductor industry. A lot of theoretical and applied work has been done in
this direction. In particular, the coupling between electric networks and semiconduc-
tor devices, modeled by means of partial differential equations, has been addressed
in a series of paper. This coupling leads to systems of partial-differential-algebraic
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equations (or PDAEs, for short). So far, the elliptic case [1] and the parabolic-elliptic
case [2] have been addressed.

In this paper we present a first study on hyperbolic PDAEs occurring in network-
device coupling. A similar coupling had been studied in [4], between two circuits
connected by a lossy transmission line, described by a (linear) telegrapher equation.
Here we consider a nonlinear hyperbolic model for semiconductor devices, based
on the maximum entropy principle.

In the following section, we set up the coupled system of the network equations
corresponding to an electric circuit and the partial differential equations modelling
a device connected to the circuit.

2 Modelling of Electric Networks with Devices

2.1 MNA Equations for Electric Networks

Modified nodal analysis (MNA) represents a common technique for achieving a
mathematical model of integrated circuits [3]. In this approach, an integrated cir-
cuit is modeled by an RLC network, that is by a directed graph with nv nodes and
na branches, whose branches contain resistances, capacitors and inductors, labelled
with the letters R, C, L, respectively. The network will also contain branches with
current sources (I) and branches with voltage sources (V ). Here, we assume that the
network contains branches with 2-contact semiconductor devices, labelled by D. To
each node, is attached a potential, u ∈ Rnv , and to each branch a current, i ∈ Rna .

By using constitutive relations for the R, C, L components, and Kirchhoff cur-
rent law, this network approach yields a system of differential algebraic equa-
tions (DAEs) of the form

0 = AC
d
dt

qC(A�
C u(t),t)+ ARφR(A�

R u(t), t)+ ALiL(t)

+ AV iV (t)+ AII(t)+ ADiD(t),

0 =
d
dt

φL(iL(t),t)−A�
L u(t),

0 = A�
V u(t)−V(t).

(1)

Table 1 illustrates the meaning of the involved variables. Here, nonlinear constitutive
relations for the device currents iD will be provided by the distributed device model
described later. The unknown functions are the state variables y := (u, iL, iV )�. The
currents iD represent coupling variables, since they leave devices and enter the elec-
tric network (or vice versa).

Considering system (1), consistent initial values

y(t0) = (u(t0), iL(t0), iV (t0))� = (u0, iL,0, iV,0)� (2)
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have to be specified at some initial time t0.

Table 1: Variables in circuit equations

u node voltages
iL currents through inductances
iV currents through voltage sources
iD currents through devices

qC charge term (capacitances)
φR functions for resistances
φL flux term (inductances)

I current sources
V voltage sources
AX incidence matrices

2.2 MEP-Based Hydrodynamical Models for Devices

We describe the semiconductor devices contained in the D-branches by means of a
hydrodynamical model for semiconductors, based on the maximum entropy princi-
ple (MEP) [5]. For simplicity, we consider unipolar, one-dimensional devices. Each
of the nD devices will be modeled by an interval [0, �i], i = 1, . . . ,nD, in which a
family of charge carriers lives. In a compact way (neglecting the index i labeling the
device), the system of equations which we will consider can be written in the form:

∂U
∂ t

+
∂F(U)

∂x
= G(U,E). (3)

Equation (3) can be formally obtained from the semiclassical Boltzmann Transport
Equation (BTE) for semiconductors. The vector U(x, t) collects a group of macro-
scopic variables corresponding to the moments of the carrier distribution function.
Several choices are possible for the moments, depending on the choice of the weight
functions. In the following section we will make a definite choice. The vectors F,
G, respectively, correspond to the moment fluxes, and to the moments, with respect
to the same weight functions, of the carrier collision term and driving term due to
the electric field E , which appear in the BTE. According to this generic definition,
the fluxes and production terms are not defined as functions of the moments U. A
systematic way of obtaining closure relations is provided by the maximum entropy
principle. According to the MEP, the variables corresponding to quantities not di-
rectly related to the chosen moments U, can be evaluated by using the maximum
entropy distribution function, that is, the distribution function which: 1) preserves
the chosen moments; 2) maximizes the physical entropy of the system. Application
of MEP leads to a definite form of the functions F(U), G(U,E), once the moments
and the desired order of accuracy have been fixed.

Equation (3) is coupled with a Poisson equation for the electric potential φ ,

∂
∂x

(εE) = ρbi +ρ(U), (4)
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where E = −∂φ/∂x is the electric field, ε is the dielectric constant, ρbi the built-in
charge density, ρ(U) = qn, with q charge of a carrier, and n carrier number density
— i.e., the moment with respect to the weight function 1.

System (3)-(4) has to be supplemented with appropriate initial-boundary data.

2.3 Coupling Conditions

The coupling between the electric network and the device is done by corresponding
node voltages and branch currents. For simplicity we consider only one device.

The electric network affects the device by means of the applied potential uD,
which is related to some components of u. The exact relation can be expressed by
means of the incidence matrix AD:

uD(0,t) = A�
Du, uD(�,t) = 0. (5)

Note that we have fixed the external potential of one of the contacts (at x = �) as
zero potential for the device, which means that the potential at the other contact is
measured with respect to that at the first contact. This choice does not affect the
expression of the current because, as we will see, the latter depends only on the
electric field, which is the space derivative of the potential and does not sense a
time-dependent additive function.

The device affects the electric network by means of the current. We denote by j
the carrier number density flux. Then, the charge density conservation law, which is
compatible with (3), holds:

∂n
∂ t

+
∂ j
∂x

= 0. (6)

Combining this equation with Poisson equation, we get

∂J
∂x

:=
∂
∂x

(
Aε

∂E
∂ t

+ Aq j

)
= 0, (7)

where we have introduced the cross-sectional area A. Thus, we can identify the total
current transmitted to the electric network as J, which is the sum of the displacement
current and the carrier current. Thanks to (7), J is conserved through the device and
can be identified as the current through the branch with the device,

iD(t) = J(0,t) ≡ J(x, t). (8)

This scalar current is replaced by a vector comprising the currents through all
branches with devices. The coupling term ADiD, appearing in (1), can be written
in a more convenient way by using the following decomposition for the potential:

φ = φ̂bi +ψA�
Du+ φ̂(n),
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with
{

− ∂
∂x

(
ε ∂

∂x φ̂bi

)
= ρbi,

φ̂bi(0) = φbi(0), φ̂bi(�) = φbi(�),

{
− ∂

∂x

(
ε ∂

∂xψ
)

= 0,

ψ(0) = 1, ψ(�) = 0,

{
− ∂

∂x

(
ε ∂

∂x φ̂
)

= ρ ,

φ̂ (0) = φ̂ (�) = 0,

where φbi is the built-in potential. Noting that φ̂bi is time independent, solving the
last two Poisson equation and substituting the results into the expression of iD(t),
one finds

ADiD = ADCDA�
D

du
dt

+ ADCD

∫ �

0
ε−1q j dx, (9)

with CD = −Aε ∂ψ
∂x = A

(∫ �
0 ε−1 dx

)−1
. Thus, the contribution of the device to the

network can be split into an additional capacitance term, in parallel to the device,
plus a term proportional to weighted integral average of the carrier current. If the
dielectric constant does not depend on x, the expression for the device capacitance
simplifies as CD = Aε/�, and the weighted average reduces to the average.

3 Test Case

To test the presented model, we consider a one-dimensional device of type n+-n-
n+, coupled with a simple electric network, as shown in Figure 1. The device that

Vdd

+
−

R
C

D

L

Vg= on

V

Fig. 1: Schematics of the coupled system

we have in mind is a MOSFET, whose gate channel is well modelled by a one-
dimensional MEP-based hydrodynamical model. The electric network is a simple
oscillator, containing: a resistance, with resistivity R = 25ohm, a capacitor, with
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capacitance C = 0.82×10−12 F, an inductor, with inductance L = 3.5×10−12 henry,
a voltage source (battery), with bias V = 1V.

The equations of the oscillator can be rearranged and split in a differential part
and an algebraic part:

⎧⎪⎨
⎪⎩

C
dvD

dt
− iL + iD − 1

R
vD = 0,

L
diL
dt

+ vD = V,

{
vL = V − vD,

iV = −iL.
(10)

where vD is the voltage drop through the device. For the circuit variables, we assign
the initial conditions

vD(0) = V iL(0) = 0.

The oscillator is connected to a 1-dimensional device of n+-n-n+ type, with
length � = 0.4μm, cross-sectional area A = 1.0×10−5 cm2, and doping profile

N+(x) =

⎧⎨
⎩

1018 for x < 0.1μm ,
1016 for 0.1μm < x < 0.3μm ,
1018 for x > 0.3μm ,

(donors/cm3).

We model the device by means of a MEP-based hydrodynamical model, for the
variables (n,u,W,S), where U = (n,nu,nW,nS) correspond to the moments relative
to the weight functions (1,vc,Ec,Ecvc), with Ec, vc dispersion relation and group
velocity of the carriers. More precisely, the equations we solve numerically, can be
formally derived by using the weight functions (1, h̄k,Ec,Ecvc), with k wavenum-
ber vector, and adopting Kane’s approximation for the dispersion relation, which
implies h̄k = m∗(1 + 2αEc)vc. In this way, we obtain system (3), with

U =

⎛
⎜⎜⎝

n
nu
nW
nS

⎞
⎟⎟⎠ , F(U) =

⎛
⎜⎜⎝

nu
n( 1

m∗ G1 −2αG2)
nS

nG2

⎞
⎟⎟⎠ , (11)

G(U,E) =

⎛
⎜⎜⎝

0
d11(W )nu + d12(W )nS + q

(
2αG3 − 1

m∗
)

nE
CW (W )−qnuE

d21(W )nu + d22(W )nS−qnG3E

⎞
⎟⎟⎠ .

The meaning of the main variables is explained in Table 2. The involved fluxes
and production terms can be expressed as functions of the unknowns by exploiting
the maximum entropy principle [5]. The functions di j depend on the energy and
appear in the expressions of the production terms for the average velocity and the
average energy flux. The evaluations of di j and of the energy production term CW

are performed by tabulated values [5].
The hyperbolic system (3), (11) is coupled with the Poisson equation for the

electric potential (4), which we write in the form:
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− ε
∂ 2φ
∂x2 = qe(N+(x)−n), E = −∂φ

∂x
. (12)

Hence the complete system of PDEs consists of hyperbolic equations coupled with
an elliptic equation.

We consider the following equilibrium initial value data:

n(x,0) = N+(x), W (x,0) = W eq, u(x,0) = S(x,0) = 0, (13)

and boundary conditions [5]:

n(0, t) = N+(0), n(�,t) = N+(�), W (0, t) = W (�,t) = W eq,

φ(0, t) = φbi(0)− vD(t), φ(�,t) = φbi(�),
∂u
∂x

(0, t) =
∂u
∂x

(�,t) = 0,
∂S
∂x

(0,t) =
∂S
∂x

(�,t) = 0.

Finally, the current through the device can be computed as

iD =
εA
�

dvD

dt
− qeA

�

∫ �

0
nudx,

establishing the final coupling with (10).

Table 2: Variables related to PDE system

n number density
u average velocity
W average energy
S energy flux
φ electric potential
E electric field

Gi fluxes
W eq equilibrium energy
ε dielectric constant
qe unit charge (in absolute value)
N+ donor concentration

h̄ reduced Planck constant
α non-parabolicity factor
m∗ effective electron mass
� length of the device
A device cross-sectional area

No analytical solution to the Riemann problem for the device model under in-
vestigation is available at the present time, therefore an approach based on the full
numerical evaluation of the Roe matrix is not practical. We have to resort to an ex-
tension [6] of the traditional central differencing schemes to one-dimensional bal-
ance laws with (possibly stiff) source terms, which has been developed on the basis
of the Nessyhau and Tadmor scheme [7] for homogeneous hyperbolic systems.

The complete method is based on a second-order splitting technique which sep-
arately solves the system with the source put equal to zero (convection step) and the
system with the flux put equal to zero (relaxation step). At each time step the bias
applied to the device is determined by solving the circuit equations, with iD fixed at
the previous time step, by using a 4-th order Runge-Kutta method. The results for
the device voltage and current are represented in Fig. 2.
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Fig. 2: On the left: potential (V) vs time (ps). On the right: current (A) vs time (ps)
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Large-Scale Atomistic Circuit-Device Coupled
Simulation of Discrete-Dopant-Induced
Characteristic Fluctuation in Nano-CMOS
Digital Circuits

Yiming Li and Chih-Hong Hwang

Abstract The increasing characteristics variability in nano-CMOS devices becomes
a major challenge to scaling and integration. In this work, a large-scale statistically
sound “atomistic” circuit-device coupled simulation methodology is presented to
explore the discrete-dopant-induced characteristic fluctuations in nano-CMOS digi-
tal circuits. According to the simulation scenario, the discrete-dopant-induced char-
acteristic fluctuations are examined for a 16-nm-gate MOSFET and inverter circuit.
The fluctuations of the intrinsic current-voltage and capacitance-voltage charac-
teristics, and timing behaviors for the explored device and circuit are estimated.
The timing fluctuation may result in a significant signal delay in the digital circuit.
Consequently, links should be established between circuit design and fundamental
device technology to allow circuits and systems to accommodate the individual be-
havior of every transistor on a silicon chip. The proposed simulation approach could
be extended to outlook the fluctuations in various digital and analog circuits.

1 Introduction

Yield analysis and optimization, which take the manufacturing tolerances, model
uncertainties, variations in the process parameters, etc, into account, have been
known as indispensable components of the circuit design methodology[1]. Vari-
ous randomness effects resulting from the random nature of manufacturing process,
such as ion implantation, diffusion, and thermal annealing, have induced significant
fluctuations of electrical characteristics in nano-MOSFETs. The number of dopants
is of the order of tens in the depletion region of a MOSFET, whose influence on
device characteristic is large enough to be distinct[2]. Diverse approaches have re-
cently been reported to study fluctuation-related issues in semiconductor devices
and circuits [2–7]. However, the attention is less drawn on the existence of tim-
ing characteristic fluctuations of an active device due to random dopant placement.
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Moreover, due to the randomness of the dopant position in the device, the fluctu-
ation of the device’s gate capacitance is hard to be modeled in the current com-
pact models [7]. Therefore, in this study, we propose a large-scale statistically
sound circuit-device coupled simulation approach to analyze the random dopant
effect in nano-CMOS circuit, concurrently capturing the discrete-dopant-number-
and discrete-dopant-position-induced fluctuations. Based on the statistically gener-
ated large-scale doping profiles, the device simulation is performed by solving a set
of three-dimensional (3D) drift-diffusion equations with quantum corrections by the
density gradient method [8, 9] on a parallel computing system [10, 11]. In the esti-
mation of the circuit-level characteristics fluctuations, to capture the nonlinearity of
gate capacitance fluctuation, the aforementioned device equations are coupled with
the circuit nodal equations of the studied circuit and solve simultaneously. The pro-
posed simulation approach can outlook the fluctuations in circuit characteristics and
benefit the development of next generation nanoelectronic circuits and systems.

The paper is organized as follows. In Sec. 2, we introduce the large-scale statisti-
cally sound “atomistic” simulation approach and simulation techniques for studying
the random dopant effect in nanoscale device and circuit. In Sec. 3, we investigate
the discrete-dopant-induced device and circuit characteristic fluctuations in the 16-
nm-gate CMOS circuit. Finally, we draw conclusions and suggest future work.

2 Simulation Technique

Figure 1 shows the simulation flow for the proposed approach. To consider the
effect of random fluctuation of the number and location of discrete dopants in
the channel region, 758 dopants are randomly generated in a (80 nm)3 cube, in
which the equivalent doping concentration is 1.48×1018 cm−3 (the nominal chan-
nel doping concentration), as shown in Fig. 1(a). The cube of (80 nm)3 is then
partitioned into sub-cubes of (16 nm)3. The number of dopants in the sub-cubes
may vary from zero to 14, and the average number is six, as shown in Figs. 1(b),
1(c), and 1(f). Then the coordinates of discrete dopants in these sub-cubes are
equivalently mapped into the corresponding coordinates in device channel region
for the 3D device simulation, as shown in Fig. 1(d). The device simulation is
performed by solving a set of 3D drift-diffusion equations with density gradi-
ent quantum correction [8, 9]. The step function is used to include the discrete
dopant effect into the source of the Poisson equation. The step function H(x,y,z) =
1, for x ≥ 0, y ≥ 0, and z ≥ 0; H(x,y,z) = 0, otherwise. The effect of the discrete
dopant is considered by including the following term into the source doping con-
centration of the Poisson equation

NA =
k

∑
i=0

Ndopant
A (H(x− xl,y− yl,z− zl)−H(x− xu,y− yu,z− zu)) , (1)

k is numbers of dopant in the device channel. Ndopant
A is the associated doping con-

centration for a dopant within a box. The volume of the box is defined by two coor-
dinates, the lower point (xl , yl , zl) and the upper point (xu, yu, and zu). To calculate
the numerical solution of the 3D device transport equations, we first decouple
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Fig. 1: a Discrete dopants randomly distributed in the (80 nm)3 cube with the average concentration
1.48×1018 cm−3. The dopants in sub-cubes of (16 nm)3 may vary from zero to 14 (the average
number is six), [(b), (c), and (f)]. d The sub-cubes are then mapped into 3D device channel region
for device characterization. e A CMOS inverter for the analysis of circuit characteristic fluctuations,
where the upper device is the P-MOSFET and the lower one is the N-MOSFET. g The simulation
flow for device and circuit-device coupled simulations

the coupled partial differential equations by the Gummels decoupling method. The
device transport equations are approximated by the finite volume method over a non-
uniform mesh. Then the nonlinear algebraic equations are solved with the mono-
tone iteration method [12] on our parallel computing system [10, 11]. An inverter
circuit is then adopted as an example for estimating the circuit characteristics fluc-
tuations, as shown in Fig. 1(e). The circuit nodal equations are then formulated
(node1: V1 = VG, node2: V2 = VDD, node3: Id,P−MOSFET = Id,N−MOSFET , node4:
V4 = 0, for example). Currently, there is no well-established compact model avail-
able for describing the discrete-dopant-induced nonlinear device characteristic fluc-
tuations, instead of using a compact modeling approach, the circuit nodal equations
are coupled with device transport equations and solved simultaneously to examine
the circuit characteristic fluctuations [13, 14]. The simulation flow for the proposed
device and circuit-device coupled simulations is shown in Fig. 1(g). The large-scale
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simulation technique is statistically sound for random dopant fluctuation character-
ization.

3 Results and Discussion
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Fig. 2: Potential profiles for a classical and b quantum potential with different mesh size

Figure 2(a) and 2(b) illustrate the mesh size dependence of the classical and
quantum mechanical potentials for a single discrete dopant within the silicon chan-
nel. In the “atomistic” simulation, the key point to study random impurities induced
fluctuation relies on how to introduce the microscopic non-uniformity of localized
impurity distributions inside the device. In conventional drift-diffusion approach for
a large device size, the number of impurities included in each mesh exceeds one
and the equivalent doping concentration does not change abruptly at every mesh
node. Also, the dopant density at each mesh node changes gradually and the non-
uniformity of impurity arrangement is averaged.

However, for the nanoscale transistor, the corresponding number of impurities
is significantly reduced. Most meshes contain no dopant or, at most, one dopant.
The dopant density at each mesh node changes its order of magnitude and be-
haves like a δ -function. The resolution of individual impurities for the conventional
drift-diffusion simulation using a fine mesh creates problems of singularities in the
Coulomb potential, as shown in Fig. 2(a). The sharp Coulomb potential wells may
un-physically trap majority carriers, reduce the mobile electron concentration, mod-
ify the depletion region, and alter the threshold voltage (Vth). Therefore, the density
gradient quantum correction [8, 9] is used to handle the discrete dopant effect by
properly introducing the related quantum mechanical effects, as plotted in Fig. 2(b).
The quantum mechanical potential shows less sensitivity to the mesh size and is
quite similar for mesh spacing below 0.5 nm. We notice that the potential barrier of
the Coulomb well is about 45 mV, which roughly corresponds to the ground state of
a hydrogenic model of an impurity in silicon.

Figure 3(a) shows the ID-VG characteristics of the discrete-dopant-fluctuated 16-
nm-gate planar MOSFETs, where the solid line shows the result of the nominal
case (1.48×1018 cm−3 continuously doping concentration), and the dashed lines are
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Fig. 3: Fluctuations of a ID-VG b and C-V curves for the studied 16-nm-gate planar MOSFETs

Fig. 4: Cutting-plane plots of the off-state potential profiles (VG = 0 V; VD = 1 V) for the simulated
device with the same dopant number (six dopants) in channel region but with different Vth

discrete-dopant-fluctuated devices. The fluctuations of the on- and off-state currents
(Ion and Io f f ) and Vth characteristics are observed. The detailed physical mechanism
was described somewhere else [3–5]. Figure 3(b) shows the capacitance-voltage (C-
V) characteristics of the discrete-dopant-fluctuated 16-nm-gate planar MOSFETs.
The lateral shift and the changed shape for the C-V curves are observed. The lateral
shift of gate capacitance results from the variation of Vth and may be described by
the correspond parameters in a compact model. However, the changed shape of the
C-V curves result from the position of discrete dopants in the channel, and it is
hard to be described by any compact modeling approach [8, 9]. Figure 4 compares
the off-state potential profiles for two devices with the same dopant number (six
dopants) in the channel region but with different Vth. The potential barriers in Fig. 4
are induced by the corresponding dopants within the device channel. The different
distribution of discrete dopants may induce different potential profiles and thus alter
the device’s transport characteristics. The Vth difference between Figs. 4(a) and 4(b)
is about 139 mV, which is 99% of the nominal Vth, 140 mV. Therefore, instead of
using a compact modeling approach, we have to use device simulation, and a circuit
and device coupled simulation approach to capture the nonlinear variations induced
by the discrete-dopant-position effect.

Figure 5(a) shows the voltage transfer curves for the discrete-dopant-fluctuated
16-nm-gate CMOS inverters. Two points on the voltage transfer curve determine
the noise margins of the inverter. These are the maximum permitted logic “0” at
the input, VIL, and the minimum permitted logic “1” at the input, VIH . The two
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Fig. 5: a Voltage transfer curves for the studied 16-nm-gate planar MOSFET circuit. b Noise
margins, NML and NMH , as a function of the dopant number in the N-MOSFET and P-MOSFET

points on the voltage transfer curve are defined as those values of Vin where the
incremental gain is unity; the slope -1 V/V. The nominal value and fluctuations of
the VIL and VIH are shown in the insets of Fig. 5(a). The VIL fluctuation is larger than
the VIH due to the larger Vth fluctuation of the N-MOSFET than the P-MOSFET.
In the inverter circuit, the maximum slope of the voltage transfer curve implies the
maximum voltage gain of the inverter. Therefore, the voltage gain fluctuation of the
inverter is estimated, which is about 7% of the nominal value, as shown in the inset
of Fig. 5(a). Noise margins for the logic “0” and “1”, NMH and NML, as a function
of the dopant number are plotted in Fig. 5(b), where the NMH and NML are defined.
The NML is increased with the increasing dopant number in the N-MOSFET due to
the increased Vth of device. For the NMH , as numbers of dopant in the P-MOSFET
increases, the increased Vth of device may decrease the VIH of voltage transfer curve
and thus increase the NMH . We notice that even for cases with the same number
of dopants within device channel, their noise margins are still quite different due
to the different distribution of random dopants. The noise margins of the inverter
circuit may be increased as dopant number increases; however, the fluctuations of
the noise margins are also increased due to the more sources of fluctuation in the
device channel region.

Figure 6 shows the timing characteristics of the CMOS inverter. The input and
output signals are shown in Fig. 6(a). Figures. 6(b) and 6(c) are the zoom-in plots
for the fall and rise transition characteristics of the output signal, where the rise time
(tr), the fall time (t f ), low-to-high delay time(tLH) and high-to-low delay time (tHL)
are defined in the insets. The timing fluctuations are consequently summarized in
Fig. 6(d). For the studied inverter circuits, the tr fluctuation is larger than the t f fluc-
tuation because of the smaller driving capability of the P-MOSFET than that of the
N-MOSFET. The device with the larger driving capability may require less time to
charge and discharge the load capacitance and thus exhibits less timing fluctuations.
The tr and t f fluctuations may not play an important role in timing characteristics;
however, their maximum difference are about 23% and 12%, which bring a signifi-
cant impact on timing. The delay time is dependent on the starting point of the signal
transition, for example the time of 90% of the logic “1” for tHL and the time of 10%
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Fig. 6: a Input and output signals for the discrete-dopant-fluctuated 16-nm-gate inverter circuits. b,
c Zoom-in plots for the fall and rise transitions, where the insets define the rise, fall, high-to-low,
and low-to-high delay times. d Summarized timing characteristic fluctuations

of the logic “1” for tLH . Since the time of 90% and 10% of the logic “1” are related
to the Vth of the N-MOSFET and P-MOSFET, respectively, the tHL fluctuation is
larger than the tLH fluctuation due to the larger Vth fluctuation of the N-MOSFET.
For the fall transition characteristics, the signal falls as the N-MOSFET is turned
on. Therefore, as the Vth of the N-MOSFET is increased, the starting point of the
fall transition is delayed. The tHL is increased as the dopant number of N-MOSFET
increases. Moreover, the tHL fluctuation is increased as numbers of dopant increases
due to the more sources of fluctuation inside device channel. Similarly, we can infer
that the tHL and tHL fluctuation are increased as the dopant number of P-MOSFET
increases.

4 Conclusions

Statistical variability introduced by discreteness of charge and granularity of mat-
ter could not be completely eliminated by advanced process control and already
critically affects timing issues in digital logic circuits. In this paper, a large-scale
3D “atomistic” circuit-device coupled simulation approach has been implemented
to investigate the discrete-dopant-induced characteristic fluctuations in nano-CMOS
digital circuits. The quantum mechanical potential is less sensitive to the mesh size
and quite similar for mesh spacing below 0.5 nm. The quantum mechanical po-
tential barrier is about 45 mV, which roughly corresponds to the ground state of a
hydrogenic model of an impurity in silicon. According to the proposed simulation
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scenario, the nonlinearity of device characteristic fluctuations including discrete-
dopant-number and discrete-dopant-position effects have been estimated in terms
of surface potential, I-V, and C-V curves. For the discrete-dopant fluctuated 16-nm-
gate inverter circuit, The maximum difference of t f , tr, tHL and tLH are about 23%,
12%, 101.8% and 73.5%, respectively. The significant timing variation may result
in significant timing violation and delay in state-of-art nano-CMOS circuits and sys-
tems. The study may benefit the development of next generation nanoscale circuits
and systems, where the design paradigms have to change to acclimatize the even
increasing variability. Besides the inverter circuits, the simulation approach could
be further applied for various digital and analog circuits characteristic fluctuations.
Also, the fluctuation suppression techniques could be verified and developed.

Acknowledgements This work was supported by Taiwan National Science Council under Con-
tract NSC-97-2221-E-009-154-MY2 and Contract NSC-96-2221-E-009- 210, and by the Taiwan
Semiconductor Manufacturing Company, Hsinchu, Taiwan under a 2007-2008 grant..

References

1. Li, Q., Zhang, J., Li, W., Yuan J. S., Chen, Y., and Oates, A.S.: RF Circuit Performance Degra-
dation Due to Soft Breakdown and Hot-Carrier Effect in Deep-Submicrometer CMOS Tech-
nology. IEEE Trans. Microwave Theory Tech., 49, 1546–1551 (2001)

2. Wong, H.-S., Taur, Y., and Frank D.J.: Discrete Random Dopant Distribution Effects in
Nanometer-Scale MOSFETs. Microelectronics Reliability, 38, 1447–1456 ( 1999)

3. Li, Y., and Hwang, C.-H.: Discrete-dopant-induced characteristic fluctuations in 16 nm
multiple-gate silicon-on-insulator devices. J. Appl. Phy., 8, 084509 (2007)

4. Li, Y., Yu, S.-M., Hwang, J.-R., and Yang, F.-L.: Discrete Dopant Fluctuated 20nm/15nm-Gate
Planar CMOS. IEEE Trans. Electron Device, 55, 1449–1455 (2008)

5. Li, Y., and Yu, S.-M.: Coupled-Simulation-and-Optimization Approach to Nanodevice Fabri-
cation With Minimization of Electrical Characteristics Fluctuation. IEEE Trans. Semi. Manu-
facturing, 20, 432–438 (2007)

6. Mahmoodi, H., Mukhopadhyay, S., and Roy K.: Estimation of Delay Variations Due to
Random-Dopant Fluctuations in Nanoscale CMOS Circuits. IEEE Journal of Solid-State Cir-
cuits, 40, 1787–1796 (2005)

7. Brown, A. and Asenov, A.: Capacitance Fluctuations in Bulk MOSFETs Due to Random
Discrete Dopants. J. Comp. Elect., 7, 115–118 (2008)

8. Shimada, T. and Odanaka, S.: A Numerical Method for a Transient Quantum Drift-Diffusion
Model Arising in Semiconductor Devices. J. Comp. Elect., 7, 485–493 (2008)

9. Tang, T.-W., Wang, X.,and Li, Y.: Discretization Scheme for the Density-Gradient Equation
and Effect of Boundary Conditions. J. Comp. Elect., 1, 389–393 (2002)

10. Li, Y., Lu, H.-M., Tang, T.-W., and Sze, S. M.: A Novel Parallel Adaptive Monte Carlo Method
for Nonlinear Poisson Equation in Semiconductor Devices. Math. Comp. Simulation, 62, 413–
420 (2003)

11. Li, Y., Sze, S.-M., and Chao, T.-S.: A Practical Implementation of Parallel Dynamic Load
Balancing for Adaptive Computing in VLSI Device Simulation. Engineering with Computers,
18, 124–137 (2002)

12. Li, Y. : A Parallel Monotone Iterative Method for the Numerical Solution of Multidimensional
Semiconductor Poisson Equation. Computer Physics Communications, 153, 359–372 ( 2003)

13. Grasser, T. and Selberherr, S.: Mixed-mode device simulation. Microelectronics Journal, 31,
873–881 (2000)

14. Li, Y., Huang, J.-Y., and Lee, B.-S.: Effect of Single Grain Boundary Position on Surrounding-
Gate Polysilicon Thin Film Transistors. Semiconductor Science and Technology, 23, 015019
(2008)



Evaluation of Electromagnetic Coupling
Between Microelectronic Device Structures
Using Computational Electrodynamics
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Abstract Electromagnetic coupling between devices in an microelectronic layout
can become a serious design concern. In this paper, the problem of electromag-
netic coupling is addressed from field computational point of view. Approximation
schemes are justified by evaluating dimensionless parameters in the set up of the
field equations and scale considerations of devices. The discretization scheme is
reviewed and a simulation method is presented to compute the S-matrix directly
by imposing boundary conditions that map directly to the experimental set up. An
example demonstrates the validity of the scheme.

1 Introduction

With the use of increasing frequency ranges, electromagnetic coupling becomes a
more pronounced design concern because induced electric fields are proportional to
the rate of change of the magnetic induction. However, not only the pace of time
variations are determining for including electromagnetic coupling but also the prob-
lem scale and the intensity of the currents that are responsible for the induced fields
must be considered. An overall picture of the scaling arguments is presented in
Section 2 which helps to identify the needed steps and inclusion of non-negligible
effects. Once we note from scale considerations that electromagnetic coupling terms
represent a non-negligible contribution to the full system of equations, we move to
the the solution of these equations. In section 3, we review and update the approach
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that was proposed some years ago by the first author and co-workers [1–3]. We will
refer to this approach as ‘computational electrodynamics’.

At several occasions we were inquired if this method is equivalent to the method
based on Nedelec’s edge elements [4,5]. The main difference is that we do not refer
to test functions at all. Our method is more related to finite-integration techniques
(FIT) [6, 7].

Scale considerations are not the only an issue for deciding if some terms in the
full system of Maxwell equations and constitutive laws can be neglected. When dis-
cussing the coupling of devices, it is also important to realize that different devices
can have intrinsic or geometrical scales that differ orders of magnitude. In such
scenarios the coupled problem is most easily split in computational domains. Com-
putational electrodynamics gives, rather straightforwardly, a series of prescriptions
for matching the interface conditions of the various domains.

Electromagnetic coupling of microelectronic devices is an RF issue and is most
conveniently measured using s-parameters. In section 5, we present our method to
compute these matrix elements. In fact, s-parameter extraction is straightforwardly
achieved as a post-processing of the results of a computational electrodynamics
problem with the appropriate setting of the boundary conditions.

In Section 6 we will present an example of a coupled problem, that we have
addressed recently.

2 Scaling Rules for the Maxwell Equations

The use of scaling arguments is definitely not new to the field of computing in elec-
tromagnetic modeling. Well-known approximations are the so-called EQS (electro-
quasi-static) and MQS (magneto- quasi-static) approximations. Approximations can
be put in a different perspective by considering the scaling step that is necessary
when converting the full set of equations to dimensionless equations before the ac-
tual computing can start. For our present argument it suffices to consider insulators
and metals only. Diffusive currents in semiconductors can easily be added to the
equations. Therefore, we start from the Maxwell equations in which Jc is the con-
ductive current :

Jc = σE , D = ε0εrE , H =
1

μ0μr
B , (1)

E = −∇V − ∂A
∂ t

, B = ∇×A . (2)

We consider the Maxwell equations in the potential formulation. The Poisson equa-
tion is used to solve the scalar field in insulators and semiconducting regions and the
current-continuity equation is used in metals to find the scalar potential. The electric
system is :

∇. [ε (∇V + iωA)]+ρ = 0 , ∇. [(σ + iωε)(∇V + iωA)] = 0 . (3)
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The Maxwell-Ampere equation is :

∇×
(

1
μ
∇×A

)
− (σ + iωε)(−∇V − iωA) = 0 . (4)

This system must be completed with a gauge condition

∇ ·A+ iωξεμV = 0 , (5)

where ξ is a parameter that allows us to slide over different gauge conditions. Now
let L be the ‘natural’ length scale of the problem that is considered. For example
L = 1μm. Furthermore, let T be the natural time scale, for example T = 10−9 sec.
It is possible to reformulate the equations ( 3) and ( 4) in dimensionless variables V
and A and the set of equations is controlled by two dimensionless variables, K and ν

∇. [εr (∇V + iωA)]+ρ = 0 , ∇. [(σ + iωεr)(∇V + iωA)] = 0 , (6)

and

∇×
(

1
μr

∇×A
)

− Kω2 (εr − i ν)A− i ωK (εr − iν)∇V = 0 . (7)

The constants K = ε0μ0L2/T 2 and ν = σT/ε0. Note that for σ = 104 S/m we ob-
tain Kν = 10−5. This value corresponds to the conductance of an inversion layer
in the on-state of a transistor. This number enters into the Maxwell-Ampere equa-
tion and suggests that in this scenario the magnetic sector is negligible. For a single
transistor finger this is a valid conclusion, but one should be aware that in actual
designs many fingers may operate in a parallel mode therefore the value of K could
increase since L must be adapted to this situation. Taking into account the presence
of the back-end processing, one encounters metallic conductance of 107 S/m, such
that magnetic effects are important.

3 Discretization

In our earlier work, we presented a discretization method that decided for each vari-
able where on the grid it belongs. It was concluded that the geometrical and phys-
ical meaning of variables plays a key role. For instance, a scalar variable, e.g. the
Poisson potential, V , is a number assigned to each space location and for a compu-
tational purpose, its discretized value should be assigned to the nodes of the grid.
On the other hand the vector potential A is a variable of the same character as ∇V
and should therefore be assigned to the links of the computational grid. Geometrical
considerations have been an important guide for correctly discretizing Maxwell’s
equations, as was also elaborated by Bossavit [8, 9].

The conversion of continuous variables to discrete variables on the computation
grid also has consequences for the particular discretization route that is followed
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when implementing discrete versions of the Maxwell equations. Gauss’ law is dis-
cretized by considering elementary volumes around the nodes of the grid and one
next perform an integration of Gauss’ law over these volume cells. The flux assigned
to each segment of the enclosing surface is assumed to be constant which allows for
expressing this (constant) flux in terms of the node variables and link variables. This
scheme has been the key to the success of the simulation of the semiconductor de-
vices. The Scharfetter-Gummel formulation of the discretized currents can be set up
following the above approach [10]. Since links variables are fundamentally differ-
ent from node variables, we expect that the discretization of the Maxwell-Ampere
equation has to be done taking this geometrical aspect into account. Whereas it was
quite ‘natural’ to regard node variables as a representative of some volume element,
in the same way we consider a link variable representing some area element. Thus
to each link is associated an area element and in order to discretize the Maxwell-
Ampere equation on a grid we now apply Stokes’ law to arrive at the discretized
equations.

After having obtained a scheme to discretize the Maxwell equations, we proceed
with expanding them into a small signal analysis. This means that each variable is
written as a time-independent part and an harmonic part

X = X0 + X1eiωt . (8)

If we apply boundary conditions of a similar form and collect terms independent of
ω and terms proportional to eiωt and omit terms proportional to X2

1 then we obtain a
system of equations for the phasors X1. Of particular interest is the treatment of the
spurious modes in the fields. These modes can be eliminated by selecting a ‘gauge
tree’ in the mesh, adding a ghost field to the equation system or apply a projection
method while iterating towards the solution. We can also apply a gauge condition
and construct discrete operators that resemble the continuous operators as close as
possible including having a semi-definite spectrum. Using a two-fold application of

Stokes’ law, the term ∇×
(

1
μr

∇×A
)

appears in the discretized formulation as a col-

lection of closed-loop circulations. By subtracting a discretized version of ∇(∇ ·A)
we arrive at an operator that resembles −∇2A. However, since A is a vector field,
the latter can only have meaning in terms of the foregoing expressions. The dis-
cretization of the first term in (4) can be illustrated as shown in Fig. 1. The primary
link PQ has a dual area assigned to it. This area is denoted with the links a, b, c
and d. The curl-curl operator is realized as a sum of circulations around all primary
surfaces that contain this link. The most-left picture of Fig. 1 illustrates this aspect.
The subtraction of the grad-div operator is done in two steps : The grad means that
both at P and at Q a divergence is evaluated. The center- and right drawing show
these divergences. Next, these terms are added with opposite sign.
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Fig. 1: Discretized version of the regularized curl-curl operator acting on a vector field

4 The EV Solver

Besides scaling and geometrical considerations, another important ingredient for a
successful discretization is to avoid unnecessary matrix fill when selecting dynam-
ical variables. In this section, we present a method to reduce the cross coupling
between the V and A system. Let us consider the Ampere-Maxwell equation. For
notational convenience we will introduce the notation: φ = σ + iωεr. Then we can
write (7) as

∇×
(

1
μr

∇×A
)

+ K φ (∇V + iωA)−K Jdiff = 0 , (9)

where Jdiff is the diffusive part of the current. Furthermore, we will need the gauge
condition

∇ ·A+ i ωξK εrV = 0 , (10)

where ξ is the slider between 0 (Coulomb gauge) and 1 (Lorentz gauge).
The crucial observation now is that for any scalar field, the equation ∇×∇V = 0 is
valid. This leads to

1
iω

∇×
(

1
μr

∇× [iω A+∇V ]
)

+ K φ (∇V + iωA)−K Jdiff = 0 . (11)

We recognize iωA+∇V = −E and therefore we find that

∇×
(

1
μr

∇× E
)

+ K i ω φ E+ K i ω Jdiff = 0 . (12)
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Of course, this equation could have been straightforwardly obtained from the
Maxwell equations by noting that B = −1/(iω)∇×E. However, here we consider
E as a variable transformation of A. Just as for the A system, we must regularize the
operator ∇×∇×E. This is achieved by subtracting the gauge condition. Using

A =
i
ω

( E+∇V ) , (13)

we obtain

∇ ·
{

i
ω

[ E+∇V ]
}

+ i ω Kξ εr V = 0 . (14)

This is equivalent to the following expression :

∇ ·E+ ∇2 V +ω2 Kξ εr V = 0 . (15)

The regularization is now achieved by subtraction of the gradient of equation ( 15)
from equation (12).

∇×
(

1
μr

∇× E
)

−∇( ∇ ·E ) + K i ω φ E

− ∇
(
∇2 V

)− ω2 Kξ ∇(εr V ) + K i ω Jdiff = 0 . (16)

As is seen from this equation the coupling to the variables V has a strength of order
one and is not growing with σ . Furthermore it should be noticed that the Poisson
equation is not part of the set of equations that must be solved. It is an implicit
consequence of the Ampere-Maxwell system. Therefore, the equation to be used
for determining V , is the gauge condition :

∇2V +∇ ·E+ K ξ ω2 εr V = 0 . (17)

With equations (16) for the solution of E and (17) for the solution of V , we can
compute the full EV system. The cross couplings will not explode for large σ in
the bulk of the material. Thus we expect that this set-up of equations would have
lead to linear systems that will solve faster at high high-frequencies in comparison
with the system of equations based on the AV formulation. However, it should be
noted that a third-order derivative term is present. As a consequence the matrix fill
increases substantially. We were able to solve (16) and (17) self-consistently for
a series of applications at the cost of using direct solvers. Finally we note that a
full-wave solution needs again four fields, i.e. Ex,Ey,Ez and V , to be solved.

4.1 Boundary Conditions

Although no strong coupling exists in the bulk of the material, the boundary condi-
tions introduce again this coupling in some circumstances.
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The boundary conditions for the vector equation (16) can be deduced from the
boundary conditions for the vector potential A. Since for each link in the surface
of the simulation domain we have put the boundary condition A · t̂ = 0, and t̂ is a
tangential unit vector, we obtain

E · t̂ = −t̂ ·∇V . (18)

The boundary conditions for the scalar equation (17) can be deduced from the con-
dition that for surface regions outside the contacts, the outward pointing electric
field component is taken equal to zero, i.e. E · n̂ = 0 where n̂ is a normal unit vec-
tor. However, this will not be sufficient to determine the boundary condition for V ,
since an additional unknown, ∂V/∂n needs to be given outside the contact regions.
Fortunately, there is still room for further restriction. The boundary condition for A
was only provided for the tangential components of A. We will now include also
a boundary condition for the normal component of A that consists of stating that
the normal component of A will have be continuous when crossing the simulation
surface

n̂ ·Ainside = n̂ ·Aoutside . (19)

This can also be written as ∂A⊥/∂ n = 0, or in other words: a Neumann boundary
condition is used for the perpendicular component of A. However, the surface nodes
of the simulation domain can also be determined by applying the Poisson equation
and/or current continuity equation for these nodes.

∇ · (φ E ) = 0 . (20)

For internal nodes, this equation is a consequence of the Maxwell-Ampere system.
However, at the surface it must explicitly be enforced by the boundary condition.
Thus for the boundary nodes, we apply the Poisson and current-continuity equa-
tions, using the inwards pointing link variables Ei j. This enables one to get boundary
conditions for the V variables on the simulation boundary.

5 Scattering Parameters

In order to determine the S matrix, a rather straightforward procedure is followed.
For that purpose a collection of ports is needed and each port consists of two con-
tacts. A contact is defined as a collection of nodes that are electrically identified.
A rather evident appearance of a contact is a surface segment on the boundary of
the simulation domain. A slightly less trivial contact consists of two or more of
these surfaces on the boundary of the simulation domain. The nodes that are found
on these surfaces are all at equal potential. Therefore, although there may be many
nodes assigned to a single contact, all these nodes together generate only one po-
tential variable to the system of unknowns. Of course, when evaluating the current
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entering or leaving the contact, each node in the contact contributes to the total con-
tact current. Assigning prescribed values for the contact potential can be seen as ap-
plying Dirichlet’s boundary conditions to these contacts. This is a familiar technique
in technology CAD. Outside the contact regions, Neumann boundary conditions are
applied. Unfortunately, since we are now dealing with the full system of Maxwell
equations, providing boundary conditions for the scalar potential will not suffice.
We also need to provide boundary conditions for the vector potential. Last but not
least, since the set of variable V and A are not independent, setting a boundary con-
dition for one variable has an impact on the other. Moreover, the choice of the gauge
condition also participates in the appearance of the variables and their relations. A
convenient set of boundary conditions is given by the following set of rules :

• Contact surface V = V |ic. To each contact area a prescribed potential value is
assigned.

• Outside the contact area on the simulation domain Dn = 0. There is no electric
field component in the direction perpendicular to the surface of the simulation
domain.

• For the complete surface of the simulation domain, we set Bn = 0. There is no
magnetic induction perpendicular to the surface of the simulation domain.

We must next translate these boundary condition to restrictions on A. We start with
the last one. Since there is no normal component B, we may assume that the vec-
tor potential is perpendicular to the surface of the simulation domain. That means
that the links at the surface of the simulation domain do not generate a degree of
freedom. It should be noted that more general options exist. Nevertheless, the above
set of boundary conditions provide the minimal extension of the TCAD boundary
conditions if vector potentials are present.

In order to evaluate the scattering matrix, say of an N-port system, we iterate over
all ports and put a voltage difference over one port and put an impedance load over
all other ports. Thus the potential variables of the contacts belonging to all but one
port, become degrees of freedom that need to be evaluated. The following variables
are required to understand the scattering matrices, where Z0 is a real impedance that
is usual taken to be 50 Ohms

ai =
Vi + Z0Ii

2
√

Z0
(21)

bi =
Vi −Z0Ii

2
√

Z0
. (22)

The variables ai represent the voltage waves incident on the ports labeled with index
i. The variables bi represent the reflected voltages at ports i. The scattering parame-
ters si j describe the relationship between the incident and reflected waves

bi =
N

∑
j=1

si ja j . (23)
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The scattering matrix element si j can be found by putting a voltage signal at port i
and place an impedance of Z0 over all other ports. Then a j is zero by construction,
since for those ports we have that Vj = −Z0I j. Note that I j is defined positive if the
current is ingoing. In this configuration si j = bi/a j. In a simulation setup, we may
put the input signal directly over the contacts that correspond to the input port. This
would imply that the input load is equal to zero. The s-parameter evaluation set up
is illustrated in Fig. 2.

Fig. 2: Set up of the s-parameter evaluation: 1 port is excited and all others are floating

6 Applications

Using the solver based on computational electrodynamics, we are able to compute
the s-parameters by setting up a field simulation of the full structure. This allows us
to study in detail the physical coupling mechanisms. As an illustration, we consider
two inductors which are positioned on a substrate layer separated by a distance of 14
micron. This structure was processed and characterized and the s-parameters were
obtained. It is quite convenient when studying a compact model parameters to obtain
a quick picture of the behavior of the structure. For this device a convenient variable
is the ‘gain’, which corresponds to the ratio of the injected power and the delivered
power over an output impedance [11]

G =
Pin

Pout
. (24)
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The structure is shown in Fig. 3.

Fig. 3: View on the coupled spiral inductor using the Virtuosa design environment

When computing the s-parameters, we put the signal source on one spiral (port 1)
and place 50 Ohm impedance over the contacts of the second spiral (port 2).The
s11-parameter is shown in Fig. 4 and the s12-parameter is shown in Fig. 5. Finally,
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the gain plot is shown in Fig. 6. This results shown here have been obtained without
any calibration of the material parameters. The silicon is treated ‘as-is’. This means
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that the substrate and the eddy current suppressing n-wells are dealt with as doped
silicon.

7 Conclusions

In this paper we presented a version of computational electrodynamics which is
based on the scalar and vector potential formulation. Whereas the finite-integration
technique directly deals with the field intensity quantities E and B, our formulation
deals with the more fundamental gauge fields. It should be emphasized that the field
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quantities are derived variables and once that the potentials have been computed,
whereas all other variables are obtained by ‘post-processing’. Our approach is a
discrete implementation of the geometrical interpretation of electrodynamics [12].
According to this interpretation, the field intensities correspond to the curvature
and the potentials are connections in the geometrical sense. The practical capabil-
ities of our method are comparable to other field solvers that focus directly on the
fields E and B, with one exception: if the potentials are needed in the evaluation
of the constitutive relations then our method has a clear advantage. This happens if
semiconductor modeling is needed and one can not mimic the semiconductor with
moderately conductive material. Another area of application is the unified solving of
quantum problems and magnetic induction problems where the potential approach
is definitely the most natural choice. We have shown with a realistic application
that the method is capable of producing fairly good results. The deviations at higher
frequency are an indication that adaptive meshing methods are mandatory.
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Evaluation of Domain Decomposition Approach
for Compact Simulation of On-Chip Coupled
Problems

Jagoda Plata, Michal Dobrzynski, and Sebastián Gim

Abstract Continued device scaling into the nanometer region has given rise to new
effects that previously had a negligible impact but now present greater challenges
to successful design of mixed-signal silicon. This paper evaluates Domain Decom-
position (DD) strategies for compact simulation of on-chip coupled problems from
a computational perspective, using the recently completed CHAMELEON-RF soft-
ware prototype on several standard benchmark structures.

1 Introduction

Incessant miniaturization of the transistor according to Moore’s Law has lead to
generational improvements in microprocessor technology [1]. However, continued
scaling of devices into the nanometer region has given rise to new effects that pre-
viously had a negligible impact, but now present challenges to a continued scal-
ing. This has resulted in an increased complexity in engineering resources essential
for a successful design. The International Technology Roadmap for Semiconduc-
tors (ITRS) suggests extreme scaling of CMOS technology until the 10 nm region
and operating frequencies of up to 60 GHz in future generation devices [2]. At
such short dimensions, fabrication process variations, substrate noise and electro-
magnetic (EM) coupling between circuit components make mixed-signal RF silicon
designs extremely challenging.

Because of this, the CHAMELEON-RF project was conceived as part of an ini-
tiative to address these issues [3]. The project is a research platform for the de-
velopment of prototype tools and methodologies for comprehensive high accuracy
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modeling of on-chip electromagnetic effects using the Domain Decomposition (DD)
approach and the concept of electromagnetic interconnectors or ‘hooks’ [4].

The CHAMELEON-RF nano-EDA research platform incorporates a novel dual
[5] Finite Integral Technique [6] (dFIT) EM field simulator with systematic All
Level Reduced Order Modeling (ALROM) [7] to keep manageable the complexity
of Integrated Circuit (IC) [8]. The method allows tractable multi-scale parameter-
ized model extraction of coupled structures with the possibility of sensitivity anal-
ysis [9]. This approach has advantages over alternative approaches in full 3D field
simulators - such as FEM, BEM etc. - which, although enable greater accuracy, are
intractable for most practical real world designs.

In this paper, we evaluate the DD strategy for compact simulation of on-chip
coupled problems from a computational perspective. By decomposing the modeling
domain into distinct domains connected by hooks, computational saving can be ob-
tained. Non essential domains, such as the substrate or air layers, can be simulated
just in the simplified field regime, instead of a Full Wave analysis. This approach re-
sults in state space matrices with a reduced number of Degrees Of Freedom (DOFs).

2 Domain Decomposition approach

An efficient approach to manage the complexity of the IC structures is a decompo-
sition of the computational domain into sub-domains. In this case, each sub-domain
generates a simpler field problem that can be simulated independently.

In the proposed approach the defined sub-domains are interconnected by the
means of hooks and have to comply with the boundary conditions. The definition of
the IC component terminals (intentional interconnections) and connectors - hooks -
is based on the correct formulated EM field problem, associated with the concept of
ElectroMagnetic Circuit Element (EMCE) [10] and related to the boundary of the
domain (Fig. 1). By definition, an EMCE is a simply connected domain D bounded
by a fixed surface Σ comprising n′ disjoint parts S′

1, S′
2, . . ., S′

n′ called electric ter-
minals and n′′ disjoint parts S′′

1 , S′′
2 , . . ., S′′

n′′ called magnetic terminals on which
equations (1-4) apply [4].

n · curlE(P,t) = 0,∀P ∈∑−S
′
k (1)

n · curlH(P,t) = 0,∀P ∈∑−S
′′
k (2)

n×E(P,t) = 0,∀P ∈
⋃

S
′
k (3)

n×H(P,t) = 0,∀P ∈
⋃

S
′′
k (4)

Here, we denote with n the normal unitary vector of the Σ surface in the point P.
The condition (1) prevents inductive couplings with environment through the el-

ement boundary, with an exception of magnetic terminals. Second, the condition (2)
implies absence of both conductive and capacitive couplings through the element
boundary, except at the electric terminals. The variation of electric potential over
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Fig. 1 Concept of EMCE Σ = ∂D
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every electric terminal is excluded with the condition (3). Therefore it allows a con-
nection of the electric terminal to a node of an external electric circuit. The last (4)
condition excludes the variation of magnetic potential over every magnetic terminal.
Hence its connection to an external magnetic circuit node is allowed.

With the boundary conditions (1-4) the interaction between EMCE and the en-
vironment is described by four scalar variables: terminal current and voltage for
electric terminals, and flux and magnetic voltage for the magnetic terminals.

The coupling of the IC with its surrounding is realized in three basic ways: elec-
tric interconnect terminals (intentional), electric connectors (virtual) and magnetic
connectors (virtual), however from the theoretical point of view there is no differ-
ence between terminals and connectors. Assuming, that the electric environment is
represented by an electric circuit, while the magnetic environment by a magnetic
circuit, these two circuits can be coupled together by the appropriate formulation of
(1-4) by means of virtual magnetic and electric connectors. The electric terminals
allow the electric interaction while the magnetic terminals allow the inductive in-
teraction, thus the component can be coupled with its electromagnetic environment.

air (environment)

circuit terminals
I/O signals

circuit terminals
I/O signals

hooks

hooks

device

substrate (environment)

Fig. 2: Typical domain decomposition of the IC RF block

The numerical approach we propose is based on the DD of the RF block into
its environmental components - namely the silicon substrate lower sub-domain and
the upper sub-domain representing the air (Fig. 2). Consequently, the computational
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effort of such divided domains is based on state space matrices with a reduced size
when applying the discretization mesh. Furthermore, computational saving result
from an appropriate field regime description and simulation in each of the domains;
although the analysis of metal components placed in silicon dioxide layers has to be
determined with appropriate Full Wave (FW) equations, the upper air and lower sub-
strate sub-domains can be simulated just in the Magneto Static (MS) and/or Electro
Quasi Static (EQS) regime.

The models have been extracted solving the Maxwell equations with FIT [11]
combined with ALROM and simulated on the prototype software, developed in the
Numerical Methods Laboratory (LMN), implementing all the mentioned methods.

Several benchmark structures have been simulated - passive microstructures de-
signed and fabricated on a 0.35μm BiCMOS process, measured at the industrial
partner site austriamicrosystems AG. In this paper an exemplary benchmark test
structure is used to evaluate and present the main ideas of our modeling approach.

3 Simulation Results

The benchmark test structure presented in this paper is a CHRF203 metal stack
placed over thick n-well layer that acts as shielding. It is a widely used structure in
the semiconductor industry for RF filtering purposes.
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Fig. 3: Computational domain split into air, silicon dioxide and substrate sub-domains; with dis-
cretization meshes applied: electric (black) and magnetic grid (grey)

In our approach, the computational domain of the device was decomposed into
three parts containing the following layers: 725 μm of silicon, 10 μm of silicon
dioxide and 725 μm of air (Fig. 3). Each of the sub-domains was analyzed inde-
pendently and a compact, reduced model was extracted. On the interface of the
sub-domains both electric and magnetic hooks were placed in order to enable the
reconnection of the split model.
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The simulation of the reconnected sub-domains was first validated against the full
simulation of the entire device. For this purpose we applied a discretization mesh for
each sub-domain of 9x10 in the XZ direction. The electric and magnetic hooks used
were only one-dimensional (points), enabling the node-by-node interconnection of
the model. Hence a total number of 160 hooks was set in each node of XZ surface
interconnecting the split sub-domains. On the electric grid 89 electric hooks and one
reference grounding node were placed. Likewise, we positioned on magnetic grid
surface one reference magnetic ground node and 71 magnetic hooks in all the other
nodes. Next, the simulation of the sub-domain test cases was carried out in the FW
(device sub-domain), MS and EQS regime (environment sub-domains). The results
and comparison between the DD test cases are presented in Table 1 and Fig. 4. In
the comparison we use scattering parameters (S-parameters), which describe how
the energy couples between each pair of device ports.
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Note that simplifying the description of the field problem in the component,
the m-number of DOF decreases. As a result, the solution of a liner system of
m-equations and therefore the frequency response of the analyzed device is found
faster.

The computational effort to carry out the simulation in the MS regime for sub-
strate and air sub-domains was the most beneficial; however the results obtained
carry a too large error compared with the FW simulation. Nevertheless simulations
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Table 1: Simulation comparison for various sub-domains and field description approach

nDescription DOF Timea(s) Errorb(%)

1Simulation in the FW regime for all three sub-domains 7942 2 - Blackc

case
2MS regime simulation for the two environment sub-

domains; the device sub-domain was analysed in FW
6198 1.5 14.27 Dark greyc

case
3MS+EQS simulation of the upper and lower sub-

domains; the device sub-domain was analyzed in FW
7002 1.6 0.74 Light

greyc case

a Time to compute one frequency
b Error obtained between the n-case approach and the ‘black’ case (1)
c Curves denoted in Fig. 4

of the sub-domains in MS+EQS regime reveal both reasonable accuracy and com-
putational saving (error below 1% in Table 1).
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Finally, the sub-domains were discretized with refined, exponentially partitioned
orthogonal grids in order to compare simulation results with the measurement data
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provided by the industrial partner (Fig. 5). The successful comparison validated
the extracted model. Figure 5 illustrates the average agreement with measurement
(grey) using the MS+EQS (air and silicon sub-domains) and FW (middle silicon
dioxide) configuration for simulation (black). These are the initial results of the pro-
totype software running on desktop computers. The denser discretization grid would
provide better accuracy results. A high performance Beowulf cluster is currently be-
ing installed at the authors’ institution and will enable simulations of larger DOFs
in the near future.

4 Conclusions

The use of DD and electromagnetic hooks has been shown to be an accurate and
computationally efficient method to model compact IC structures by dividing it into
independent sub-domains. The decomposition of the modeled device into environ-
mental and structural component domains is a beneficial approach especially for
large challenging structures. The reduction in the complexity for the model extrac-
tion process was clearly illustrated with a reduced number of DOF equations in a
sparse linear system for the partitioned domain compared with a full simulation.
Computational effort to solve these systems was also lower compared with the full
simulation. Furthermore, the division into sub-domains enables time saving also
due to the parallelization of the modeling process and enables reuse of previously
simulated domains.

Another advantage of the approach is the possibility of using only MS and/or
MS+EQS regime analysis in the simple sub-domains consisting exclusively of air
and silicon (without interconnect structures). This allows minimizing the computa-
tional effort which is currently the most time and memory consuming for the FW
simulation. Simulating the air and silicon substrate sections in either MS or EQS
regime results in a 1/6 computational saving compared with the FW simulation.
Of the various scenarios considered for decomposition, the MS+EQS (air) / FW
(structure) / MS+EQS (substrate) provided the best computational efficiency with
the lowest error with respect to a full FW simulation.

The Chamy prototype software based on the presented theory and developed in
LMN was validated for realistic, challenging engineering problems in microproces-
sor design. Chamy is an accurate tool to manage the problems of complexity in the
integrated component structures working at high frequencies.
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DAE-Index and Convergence Analysis of
Lumped Electric Circuits Refined by 3-D
Magnetoquasistatic Conductor Models

Sebastian Schöps, Andreas Bartel, Herbert De Gersem, and Michael Günther

Abstract In this paper the field/circuit coupling is reconsidered for (non-linear)
lumped electric circuits refined by 3-D magnetoquasistatic conductor models, where
the circuit is described by modified nodal analysis and the field is discretized in
terms of the finite integration technique. This leads to the coupling of systems of
differential-algebraic equations, for which two numerical approaches are proposed,
the weak coupling (co-simulation) and strong coupling (monolithic). The DAE-
index of the subproblems and of the full problem are analyzed, then convergence
properties of the co-simulation are studied. Finally computational results of a simple
half rectifier circuit are exemplarily given to prove the applicability of the concepts.

1 Introduction

Basic elements in circuit analysis are described by (non-)linear relations, disregard-
ing distributed field effects. Sometimes complex companion models are employed
to meet reality. These give, however, only a partial insight into field effects. In con-
trast, refined models directly rely upon Maxwell’s equations and are coupled here
with electric network equations. We analyze this coupling with two distributed con-
ductor types, which exhibit proximity and skin effects related to eddy currents.

The coupled problem is a system of differential-algebraic equations (DAEs) orig-
inating from Kirchhoff’s laws and the discrete Maxwell equations. It can be directly
addressed by solving one monolithic system using a field- or circuit-oriented ap-
proach. In the field approach, commonly the circuit is described using loop/branch
techniques and is solved within the field simulator. This approach is quite success-
ful and well understood [1], but it is neither efficient for coupling with very large
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circuits nor usable within modern circuit simulators that are based on modified nodal
analysis (MNA). The circuit-oriented approach relies on MNA and although inten-
sive research has been carried out [2], companion models are still widespread.

Obviously, the strongly coupled approaches do not have the advantages of
problem-specific simulators. In this context co-simulation can becomes beneficial
[3]. It allows to use different simulators for each subproblem, and thus provides a
natural support for diversifying integration methods and time-stepping (multirate)
with respect to the subproblems. Here, the coupling is given mathematically by a
waveform relaxation scheme.

The paper is organized as follows: In Sections 2 and 3 the circuit and field settings
are recalled; in Section 4 we analyze the index of the field-system; in Section 5
we introduce the weak and strong coupling and provide an index and convergence
analysis; in Sections 6 and 7 we give an illustrative example and conclusions.

2 Lumped Electric Circuit

Electric circuits are described by basic element relations and Kirchhoff’s laws. Us-
ing standard MNA, this yields a DAE system since the variables are redundant. In
the charge-flux oriented formulation [4], the system reads

AC
d
dt q + ARr(AT

Re,t)+ ALiL + AViV + AIi(t)+ Aλ iλ (AT
λ e, t) = 0,

d
dt Φ −AT

Le = 0, AT
Ve− v(t) = 0,

q−qC(AT
Ce,t) = 0, Φ −ΦL(iL, t) = 0,

(1)

with incidence matrices A, node potentials e, independent and controlled current and
voltage sources i, iλ and v, currents through voltage and flux controlled elements iV
and iL, charges q and fluxes Φ , functions of charges, fluxes and resistances qC, ΦL

and r (with positive definite derivatives), respectively.
Several index concepts were introduced to classify DAEs. Since these notations

are equivalent for linear systems, we state here only the (differential) index, [5]: For
the given system F

(
t, d

dt x,x
)
= 0, the index ν ∈ N0 is the smallest number, such that

the enlarged set of equations

F
(
t, d

dt x,x
)

= 0, d
dt F

(
t, d

dt x,x
)

= 0, . . . , dν

dtν F
(
t, d

dt x,x
)

= 0

allows to deduce a system of ordinary differential equations (ODEs) by algebraic
manipulations. In this way, ν denotes the inherent number of derivatives and mea-
sures the expected numerical difficulties.

In this respect, the numerical properties of (1) are well known, the DAE-index
has been discussed by decomposing the unknown (e, iV, iL,q,Φ) into algebraic and
differential parts using a projector QC onto the kernel of AT

C , i.e.,

QC kerAT
C = kerAT

C and AT
CQC = 0

and its complement PC = I −QC. We assume in the above terms:
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C1 No loops of capacitors and voltage sources, i.e., kerQT
CAV = {0}.

C2 No cutsets of inductors and current sources1, i.e., ker(AC,AR,AV )T = {0}.
C3 Voltage controlled current sources parallel to capacitors, i.e., QT

CAλ iλ = 0.

This splits the unknown into a differential part y := (PCe, jL)T and an algebraic part
z := (QCe, jV ,q,Φ)T , such that

d
dt y = f1(y,z, iλ ), 0 = g1(y,z), (2)

is an index-1 description of (1) since the derivative ∂
∂ z g1 can be shown to be non-

singular assuming C1-C3. It is possible to prove [6]:

Theorem 1. Let us consider a lumped electric circuit in form (1) that respects C3,
then the flux/charged oriented MNA leads to an index-1 DAE iff C1-C2 hold, it leads
otherwise to an index-2 DAE.

3 Electromagnetic Field

The electromagnetic field is described by Maxwell’s equations. We assume a spatial
discretization based on staggered grids (e.g. the finite integration technique) [7, 8].
In magnetoquasistatics with linear materials one can deduce the curl-curl equation

Mσ
d
dt

�a(t)+ Kν
�a(t) =

��
j src(t) , (3)

where �a denotes the discrete magnetic vector potential (MVP), Mσ the diagonal
positive semi-definite conductivity matrix,

��
j src the source current density and Kν :=

C̃MνC is the curl-curl matrix composed of the curl-operators for the primary and
dual grid C and C̃, respectively and the diagonal positive definite reluctivity matrix
Mν . Due to the non-trivial nullspace of Mσ this is a DAE, which is generally not
uniquely solvable because of the additional nullspace of the curl-operators. Thus a
gauge is needed to select one solution within the equivalent class

��
b = C�a, [10].

4 Field Models as Refined Network Elements

Conductor models for connecting field and circuit parts are well-known. Most com-
mon are solid and stranded conductors (Fig. 1). We use the given symbol for a (mul-
tiport) device that consists of (multiple) conductors of both types which are tightly
coupled by the field. The field is described by the curl-curl equation and excited
by

��
j src due to the connected circuit [9]. Typically voltage drops of solid conductors

(vsol) and the currents through stranded conductors (istr) are considered to be given
and thus the excitation reads

1 neither independent nor voltage controlled current sources, i.e., solid/stranded conductors
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vsol

isol

(a) Solid

vstr

istr

(b) Stranded (c) Symbol

Fig. 1: Conductor models (a), (b) and device symbol (c) that embeds both into the circuit

��
j src = MσQsolvsol + Qstristr . (4)

Here Q = [Qsol,Qstr] denotes the coupling matrix. Each column corresponds to a
conductor model and imposes currents/voltages onto edges of the grid. The un-
known currents isol and voltages vstr are obtained by the additional equations

isol = Gsolvsol −QT
solMσ

d
dt

�a , vstr = Rstristr + QT
str

d
dt

�a , (5)

with the diagonal conductance matrices Gsol for solid and the diagonal resistance
matrix Rstr = G−1

str for stranded conductors. Let us assume the following:

F1 The matrix pencil is regular, i.e., [Mσ ,Kν ] := det(λMσ + Kν) �= 0 for a λ .
F2 The models are non-overlapping, i.e., QT

(i) Q( j) = 0, for all i �= j.

F3 The excitation is consistent, i.e., ker(CQsol) = {0}, ker(CM+
σ ,anisoQstr) = {0}.

where M+
σ ,aniso is the pseudoinverse of the anisotropic conductivity matrix for

stranded conductors. F1 is equivalent to a gauging of (3) and F2 prohibits the smear-
ing of spatially separate models into each other, this allows to obtain (6) from (3-5),

Mσ ,fillin
d
dt

�a + Kν
�a = MσQsolvsol + QstrGstrvstr :=

��
j
∗
src , (6a)

QT
solKν

�a = isol , (6b)

GstrQ
T
strM

+
σ ,anisoKν

�a = istr , (6c)

where Mσ ,fillin := Mσ +QstrGstrQT
str is the (dense) conductivity matrix for both types.

Lemma 1. Let the field problem consist of solid and stranded conductors which
fulfill F1-F2, then the curl-curl equation (6a) is index-1 for given voltages and the
algebraic part of the MVP is zero.

Proof. By F1, the symmetric positive semi-definiteness of Mσ ,fillin implies that (6a)
is index-1 and the Kronecker Normal Form [5] for this system reads

d
dt

�a1(t)+U1KνV1
�a1(t) = U1

��
j
∗
src , (7a)

�a2(t) = U2
��
j
∗
src , (7b)

and this splits the MVP �a = V1
�a1 +V2

�a2 into differential and algebraic parts by
using the regular matrices UT =

(
UT

1 ,UT
2

)
and V = (V1 , V2). From
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U2Mσ ,fillin = U2
(
Mσ + QstrGstrQ

T
str

)
= 0

follows that both U2Mσ and U2QstrGstr vanish because the images of Mσ and Qstr

are distinct, since F2 is assumed. Hence we finally conclude that the algebraic part
of the MVP is zero: �a2 = U2

��
j
∗
src = 0. �

Let us now study the full system (6) in the abstract form

d
dt

�a = f2a(�a,vλ ), 0 = f2b(�a,vλ ), 0 = g2(�a, iλ ), (8)

where the voltages vλ = (vsol,vstr)T and the currents iλ = (isol, istr)T are combined
in vectors. The algebraic evaluation f2b is trivial in our case because of Lemma 1
and the algebraic function g2 consists of (6b), (6c), which can be written in the form

0 = gsol(�a, isol), 0 = gstr(�a, istr).

System (8) establishes a relation between currents (isol, istr) and voltages (vsol, vstr)
and we can choose which quantity is treated as unknown for each conductor type
in the field system, since then the other quantity is defined by the coupled electric
circuit. Therefore we will distinguish between the possible sets in the following.

Theorem 2. Let the field problem consist of solid and stranded conductors which
fulfill F1-F3. Iff all the voltages (vsol, vstr) are given, then system (6) is index-1 and
in all other cases it is index-2.

Proof. In the case of given voltages the currents iλ are obtained by evaluations of
the algebraic equation g2. Thus one differentiation with respect to time yields an
ODE, hence we have index-1. In all other cases the arguments are analogue to the
case of given isol and vstr. Now the function f2a in (8) depends on the unknown vsol

and one time derivative yields the additional hidden constraint:

0 =
d
dt

gsol(�a, isol) =
∂
∂�a

gsol · f2(�a,vsol)+
d
dt

isol =: hsol(�a,vsol,
d
dt

isol),

and since the conductivity matrices Mσ and Mσ ,aniso reflect F2 (Mσ ,anisoQsol = 0),
another differentiation of this constraint gives

∂
∂vsol

hsol = QT
solKνM+

σ ,fillinMσQsol = QT
solKνQsol = QT

solC
T MνCQsol ,

which is non-singular due to F3; thus it is index-2. �

If voltages are considered unknown, then (6) is an index-2 Hessenberg system (with
index-1 evaluations), [11]. Since the index-2 variables enter only linearly and with-
out time-dependence, the differential variables are not affected by the derivatives of
perturbations and thus the numerical difficulties still correspond to index-1 [12].
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5 Coupling

We assign vλ to the differences of applied node potentials e for elements with topol-
ogy Aλ and assign the iλ to the currents through the conductors

vλ = AT
λ e , iλ = (isol, istr)T . (9)

Now, the monolithic system is composed of (1), (6) and (9).

Theorem 3. Let us consider an electric circuit in the form (1) with C1-C2, which is
monolithically coupled via (9) to a field model (6) of solid and stranded conductors
fulfilling F1-F3, then the full system is index-1.

Proof. The algebraic components of the MVP are insignificant for solid and stranded
conductors according to Lemma 1. Hence after embedding the field into the circuit
system the separated unknowns of the full system read

y := (PCe, jL,�a1)T , z := (QCe, jV ,q,φ , iλ )T . (10)

The critical partial derivative of the algebraic equation ∂
∂ z g consisting of g1 and g2

is non-singular, since the first is regular due to C1-C2 and the second is just an
evaluation of a differential variable (�a1). Thus we have index-1. �

Assumption C3 is not required in the monolithic coupling because the algebraic
part of the MVP was shown to vanish for any excitement of solid and stranded
conductors.

Alternatively, the subproblems could be treated separately by a waveform re-
laxation scheme (of Jacobi or Gau-Seidel type). When applying these schemes to
DAEs one has to pay attention to algebraic constraints to avoid numerical instabili-
ties, [13]. We suggest the Gau-Seidel scheme (11) that computes the functions a(1),
y(1) and z(1) on a time frame T = [t0,t0 + H] for given initial values at time t0 and
previous iterates y(0) and z(0).

d
dt

�a(1) = f2(�a(1),v(0)), v(0) := AT
λ (y(0) + z(0)), d

dt y(1) = f1(y(1),z(1), i(1)
λ ),

0 = g2(�a(1), i(1)
λ ), 0 = g1(y(1),z(1), i(1)

λ ).
(11)

The convergence is guaranteed since there is no dependence in algebraic constraints

(g1, g2) on previous algebraic iterates (i(0)
λ , z(0)), [14]. Hence we obtain:

Lemma 2. Let us consider an electric circuit (1) fulfilling C1-C2 and a field
model (6) respecting F1-F3 and employing the interface (9). Then the waveform-
relaxation (11) will converge.

The additional assumption C3 can eliminate the iλ -dependence of the algebraic
equation g1 and allows us to exchanges the computational order of the subprob-
lems (we may compute the circuit first) without losing the convergence guarantee.
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1 2 3

R
loadv(t) C

0

(a) Half rectifier: veff = 250V, f = 50Hz,
Rload = 100Ω and Shockley diode Is =1μA

-200

-100

0

100

200

0 0.01 0.02 0.03 0.04

e
e3

1

(b) Voltage in nodes 1 and 3, ob-
tained by mono, H = 5μs

Fig. 2: Refined half rectifier circuit and its input and computed output voltages

6 Numerical Experiments

The simulations were obtained with code that is implemented within the COMSON
DP using field models constructed by EM Studio from CST (www.comson.org
and www.cst.com). The code is capable of both, the monolithic (mono) and the
co-simulation of non-linear circuits refined by conductor models. The co-simulation
uses scheme (11) with no (cosim1) and two iterations (cosim3) of each time
frame T . The integration was kept simple by applying backward Euler.

The example of Fig. 2 is a refined half rectifier with a transformer consisting
of two stranded conductors and a solid core. cosim1 performs slightly faster than
mono using the step size H and it yields better results if the accuracy requirement
is quite low. For decreasing step sizes cosim1 does not linearly improve its ac-
curacy as mono and cosim3 do (Fig. 3), but cosim3 suffers from an increased
computational effort due to the additional iterations.

Adaptive time-integrators in the co-simulation apply the same step size to both
subproblems, as long as they do not have multirate potential itself. This is in line
with the fact that the field reflects the dynamics of the coupled circuit nodes.

7 Conclusions

The field problem is essentially an index-1 DAE, the monolithic coupled system is
still index-1 and the convergence of the proposed co-simulation is guaranteed, as
illustrated by the computation of a refined rectifier circuit. The co-simulation may
use problem-specific software packages and exploits multirate potentials if available
in the circuit, but its efficiency can be improved, for example by applying a time
frame and iteration control, and the use of more complex equivalent circuits (e.g.
additional inductivities) might require fewer field updates [15, 16].

Acknowledgements This work was partially supported by the European Commission within the
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Informatik” of the Bergische Universitt Wuppertal.
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Fig. 3: Errors in the voltages compared to the results of mono, H = 5 ·10−6 from Fig. 2b
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Part IV
Mathematical and Computational Methods



Introduction to Part IV

Vittorio Romano

This part is concerned with mathematical and computational methods in elec-
trical engineering, including also multiobjective optimization and space-mapping
methods. Theoretical results, novel approaches, and simulations cover some impor-
tant issues mainly arising in the field of computational electromagnetics, includ-
ing finite-element/volume discretization and the differential/integral formulation of
Maxwell’s equations, large interconnect structures, uncertainty quantification, and
electron devices. Both the mathematical aspects and the applicative importance are
outlined in this part, and as such may appeal to both engineers and theoretically-
oriented readers.

The invited paper by Benderskaya et al. first gives a compact review of the
electromagnetic (EM) fundamental relations, their classification in the static and
quasi-static regimes, and the most general form of the computational model. Then,
the authors restrict the investigation to the quasi-static case. The numerical meth-
ods arising from a spatial discretization with the finite-element method (FEM) or
finite-integration technique (FIT) are critically discussed. For the resulting ordinary
differential-equation system, one-step time-integration methods are considered and
collected into three general classes: θ -type, Runge–Kutta, and Rosenbrock. Com-
parisons between explicit and implicit methods are also made. Applications to con-
ducting hollow spheres in a uniform transiently varying magnetic field complete the
analysis.

The contribution by Lau et al. offers a novel staggered finite-volume time-domain
method for Cartesian grids in order to solve Maxwell’s equations in the integral
form. The volume of control are brick-shaped and coordinates parallel, with the
constraint that the field components are constant within each control volume and
the stencil is as small as possible. After a heuristic overview, a matrix formulation
is given and the Verlet leap-frog scheme is used for the time discretization. Assum-
ing a homogeneous grid and a homogeneous material, the stability conditions are
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investigated with a dispersion analysis based on plane-wave solutions. A numeri-
cal validation has been performed by simulating a rectangular resonator, homoge-
neously filled with a dielectric.

The paper by Herberthson addresses the problem of calculating the radar cross
section of a perfect electric conducting surface, solving the field integral equations.
In the case of surfaces homeomorphic to a sphere, the author applies the Hodge
decomposition theorem on one-form in a compact set, reformulating the problem
with the introduction of two scalar potentials. This procedure has the advantage of
reducing the numerical effort with respect to the standard approaches known in the
literature, because it leads to a smaller system of equations. As a counterpart the
moment matrices are more costly to compute, but the problem can be overcome
because the approach allows easy parallelization. Numerical examples in the case
of a sphere are presented in order to give a preliminary assessment of the approach.

The article of the invited speaker Levadoux is concerned with a new family of
source integral equations for the time-harmonic Maxwell scattering problems. Re-
gardless of the composition of the obstacle — metallic, full dielectric, or coated
with an impedance layer — a general methodology leading to the construction of
some special equations, whose main feature are that they are well-conditioned, is
presented. These equations do not contain spurious modes and can be viewed as
compact perturbations of positive operators to which fast iterative schemes can be
applied without any preconditioner. The proposed equations depend on the choice
of an operator which is an approximation of the admittance of the diffracting body.
The topic can be a challenge for future development.

The contribution by Harutyunyan et al. considers the problem of fast simula-
tions of interconnect structures which consists in solving Maxwell’s equations in
the potential formulation. One of the main related difficulties is that the discretized
equations result in large ill-conditioned matrices, thus making the use of efficient
preconditioners necessary. The authors use the dual threshold incomplete factor-
ization for improving the convergence rate of the BICGSTAB iterative solution
algorithm. The efficiency of the approach is confirmed with simulations of an in-
terconnect structure of micrometer size and an on-chip inductor with dimension of
about one thousand microns.

The invited paper by Hesthaven et al. discusses the basic discontinuous Galerkin
methods for computational electromagnetics. The benefits of such a method with
respect to the widely used classical finite-difference time-domain method are high-
lighted: geometric flexibility, high-order accuracy, explicit time advancement, and
very high parallel performance for large-scale applications. To validate the above
considerations, a TM plane-wave scattering of a metallic cylinder and scattering
from a metallic plate have been simulated. As an additional topic, the authors ex-
plore efficient probabilistic ways of dealing with uncertainty in EM problems, with
application to the scattering of a plane wave from a perfect electric conducting
sphere, having a random radius, and a rocket when the direction of the incident
field is a random variable, uniformly distributed over a suitable interval.

The next contribution by van Belzen and Weiland presents the computation of
empirical projection spaces by decomposing tensors that can be associated with the
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measured data. The notion of singular vales of a tensor is recalled along with some
approximation properties and used for model-order reduction in the simulation of
heat diffusion on a rectangular plate and two-dimensional incompressible fluid flow.
The proposed method seems to reduce considerably the computing time with respect
to the standard FEM approach.

The paper by Pechstein and Scheichl investigates the robustness of the finite-
element tearing and interconnecting (FETI) methods which are efficient parallel
domain-decomposition solvers for large-scale finite-element equations. Typically,
in the problems using this approach, the degrees of freedom are very large, which
means that direct solvers of the resulting systems are out of question and efficient
preconditioners are necessary. The authors investigate the case of highly heteroge-
neous coefficients, giving theoretical condition-number bounds. The analytical esti-
mates are confirmed by numerical tests, computing magnetic fields in cases where
both large jumps and large variation in the reluctivity coefficient may arise.

The contribution by La Rosa et al. presents exact closure relations for the 8-
moment and 9-moment models for charge transport in semiconductors obtained by
using the maximum-entropy principle. These models improve the standard drift-
diffusion and energy-transport ones that become inaccurate in the high-field regime,
in particular when shrinking the typical dimension of the devices at nanoscale.
The validity of proposed models is assessed by numerical simulations in the case
of an n+-n-n+ silicon diode, comparing the results with those obtained solving
the electron-transport equation by Monte Carlo and directly by a finite-difference
scheme.

In the article by Jakobsson et al., multiobjective optimization is applied to an-
tenna design. The used optimization algorithm is a novel response-surface method
based on approximations with radial-basis functions, combined with CAD and
mesh-generation software along with EM solvers. A key property of the algorithm
is that the result is both a set of approximately Pareto-optimal solutions and an ap-
proximation of all objective functions as expansions in radial-basis functions. As
an example, the optimization objective to transmit as much EM energy as possible
through an antenna in a given frequency band minimizing, at the same time, the
footprint of the antenna is studied.

In the next contribution, Lahaye and Drago solve an optimal doping-profile-
control problem for semiconductors using the manifold-mapping technique. As
coarse and fine approximations they employ the standard drift-diffusion and energy-
transport models, respectively. One of the novelties is that the manifold-mapping
technique is applied for the first time to a problem where the number of design vari-
ables depends of the finite-element-mesh points. One advantage is the possibility to
optimize the energy-transport model without implementing an adjoint code and pre-
serving computational efficiency at the same time. As an application, the problem
of achieving current amplification in a ballistic diode by changing the doping profile
is given.

In the last paper of Part IV, Simsek and Sengör propose a space-mapping-based
surrogate method for solving inverse problems. Although the mapping between
the coarse and the fine model is defined similarly to the linear inverse-mapping
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algorithm, parametric extraction is no longer necessary and the inverse coarse
model, generated as a multilayer perceptron, is used instead of the coarse model.
The efficiency of the method is addressed by considering the inverse problem to re-
construct a conducting cylinder and comparing the results with those obtained using
conventional artificial neural networks, aggressive space-mapping methods, and the
linear inverse-mapping algorithm.
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Abstract Under certain conditions, electromagnetic time-domain modeling can
be performed using the regimes of quasistatic approximations. The corresponding
mathematical models represent then systems of first order ordinary differential equa-
tions or index 1 differential-algebraic equations. To resolve the time dependencies
of the transient processes described by these equations, numerous time integration
schemes can be employed. In this work, we give an overview of the mostly used
time integration algorithms and discuss the main features, peculiarities and typical
numerical difficulties associated with them. The materials presented in the paper are
illustrated with corresponding numerical examples.

1 Introduction

Electromagnetic low frequency time-domain modeling can be performed using the
regimes of quasistatic approximations or employing the full set of Maxwell’s equa-
tions. Naturally, the usage of a quasistatic approximation introduces a modeling
error. However, under certain conditions (see Sect. 2), this modeling error is very
small or even negligible compared to the numerical discretization error. An advan-
tage of quasistatic approximations is the possibility to reduce the corresponding
computational costs considerably while obtaining at the same time the simulation
results of comparable accuracy.
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The paper is organized as follows: in Sect. 2 we revisit Maxwell’s equations as
well as static and quasistatic approximations and state briefly the conditions under
which these approximations can be employed. Quasistatic continuous electromag-
netic field formulations represent (non)linear parabolic partial differential equations
(PDEs) with time- and space-dependent operators. To resolve these dependencies, a
number of different discretization techniques can be utilized. A first possibility is to
discretize simultaneously in space and time using for example a Galerkin method.
The classical method of lines (MOL) requires first a discretization in space, thus
transforming a time-dependent PDE into first order ordinary differential equations
(ODEs) or index 1 differential-algebraic equations (DAEs) which are further solved
by an appropriate numerical time integration scheme. Finally, one can use Rothe’s
method where at first the time dependencies are resolved [1]. In this work, we follow
the MOL approach where the indispensable spatial discretization is performed with
e.g. the Finite Integration Technique (FIT) or the Finite Element Method (FEM)
(see Sect. 3). The numerical integration of the obtained semi-discrete quasistatic
electromagnetic formulations is a subject of the discussion in Sect. 4. Here, posi-
tive as well as negative aspects of different time integration methods are considered.
Finally, illustrative examples are shown in Sect. 5.

2 Numerical Modeling

To construct an appropriate mathematical model for a quasistatic electromagnetic
phenomenon, we start with a revision of Maxwell’s equations and present a general
classification of electromagnetic problems.

2.1 Fundamental Relations

The macroscopic behavior of electromagnetic fields is governed by Maxwell’s equa-
tions. They represent a system of coupled partial differential equations and describe
the relation between five vector fields and one scalar field:

∇×E = −∂B
∂ t

(1a)

∇×H =
∂D
∂ t

+ J (1b)

∇ ·D = ρ (1c)

∇ ·B = 0 . (1d)

Equation (1a) known as Faraday’s law establishes a correspondence between the
electric field strength E and the magnetic flux density B. Equation (1b) is referred
to as Ampere’s law and sets up a link between the magnetic field strength H, the
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electric flux density D and the electric current density J. To complete the description
of the electromagnetic fields, (1c) referred to as Gauss law and (1d) defining the
inexistence of isolated magnetic charges are stated.

Maxwell’s equations are completed by material relations which can be approxi-
mated using the following relations

D = ε0E+ P ≈ ε(E)E (2a)

B = μ0(H+ M) ≈ μ(H)H (2b)

J = Jcond + Js . (2c)

The vector fields P and M denote the polarization and the magnetization of the
medium, respectively. Here, the parameters ε0 and μ0 represent the permittivity and
the permeability of free space, whereas ε and μ specify the corresponding quanti-
ties of the medium. For linear homogeneous isotropic materials, the simplifications
ε(E) = εconst and μ(H) = μconst hold. Equation (2c) expresses the superposition of
different kind of currents: the conduction current density Jcond is defined according
to the generalized Ohm’s law as Jcond = σE with σ being the conductivity of the
medium and Js denotes the imposed source current density.

The full electromagnetic spectrum ranging from statics to high frequency can
such be modeled on a macroscopic scale with the help of Maxwell’s equations (1)
and approximated material relations (2). Furthermore, in case of a bounded compu-
tational domain, proper boundary conditions and initial data have to be specified in
order to define a well-posed problem.

2.2 Classification of Electromagnetic Problems

The appearing time dependencies in Maxwell’s equations can be handled in dif-
ferent ways which allows to establish a suitable classification of electromagnetic
simulation regimes:

• Static simulations are performed if the time dependences in (1) can be com-
pletely omitted. The corresponding numerical formulations are then decoupled
into electrostatic, magnetostatic and stationary current ones.

• Quasistatic regimes are justified if the rate of the dynamic changes in a model are
so slow that the time delays stemming from the electromagnetic wave propaga-
tion can be neglected and if either the electric or the magnetic energy is dominant.

• The full set of Maxwell’s equations has to be taken into account if neither ∂B/∂ t
nor ∂D/∂ t can be neglected. This is the most general form of the computational
model.

Within each simulation regime all time-dependent formulations can be stated in
frequency or time domain. Here, we restrict ourselves to the quasistatic time-domain
formulations.
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The electroquasistatic (EQS) approximation is employed whenever the influence
of the magnetic induction in the full set of Maxwell’s equations can be omitted
which simplifies (1a) to

∇×E = 0 . (3)

Equations (1) with Faradays law replaced by (3) and the appropriately applied
boundary conditions allow to determine the electric field uniquely and express in
this form the fundamental laws governing the EQS approximation regime.

The magnetoquasistatic (MQS) approximation is useful when the influence of
the displacement current in (1) is negligible with respect to the conductive currents.
This assumption results in the following simplified formulation:

∇×H = J . (4)

Equations (1) with Ampere’s law replaced by (4) and the appropriately applied
boundary conditions are sufficient to determine the magnetic field uniquely and rep-
resent the fundamental laws governing the MQS approximation regime.

It is well known (see [2] and [3] for heuristic arguments or [4] for a rigorous
mathematical proof for the MQS approximation) that a necessary condition for the
validity of any quasistatic approximation is με�2/τ2 � 1, where the symbol � rep-
resents a spatial model length and τ is equal to a characteristic time constant of
an excitation signal. This means that τem � τ , where τem is the time of an electro-
magnetic wave propagating at the velocity c = 1/

√με over the distance �. (This
corresponds to the condition λ � � for a wave length λ in frequency domain).

To determine the suitable regime uniquely, the influence of the conductivity σ
has to be taken into account additionally. This can be uniformly achieved if the
electroquasistatic charge relaxation time τe = ε/σ and the magnetoquasistatic cur-
rent diffusion time τm = μσ�2 are normalized to the characteristic wave propagation
time τem and the spatial length is normalized to the characteristic length �∗, where
�∗ = 1/ση and η =

√
μ/ε . Then a graphical interpretation of the conditions that

are necessary and sufficient for an appropriate classification of any electromagnetic
problem can be established (Fig. 1) [2], [3].

3 Continuous and Discrete Quasistatic Formulations

A proper introduction of auxiliary scalar and vector fields allows to simplify the
process of obtaining analytical or numerical solutions of Maxwell’s equations.

Since for the EQS simulation regime (3) holds in the whole calculational domain,
we can set

E = −∇ϕ (5)

where ϕ is a scalar electric potential. Applying a divergence operator to (1b) and
substituting (2a), (2c) and (5) into it, leads to the following PDE representing the
continuous EQS formulation:
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x = log
(

τ
τem

)

y = log
(

�
�∗
)

= log(�ση)

τ = τem = �
cτ = τm = μσ�2 τ = τe = ε

σ

MQS

EQS

Statics
Full set of
Maxwell’s
equations

Fig. 1: Graphical representation of the typical electromagnetic problem classification. Important
characteristics are given by the model length � with respect to the characteristic length �∗ and the
excitation time constant τ with respect to the characteristic wave propagation time τem

∇ ·
(

∂
∂ t

(ε∇ϕ)+σ∇ϕ
)

= 0 . (6)

The main advantage of (6) is that it is expressed in terms of a scalar field ϕ instead
of the original vector field description.

For the MQS simulation regime various formulations are possible. Due to the
solenoidal nature of field B we can set B = ∇× A, where A is a magnetic vector
potential. Substituting this relation into (1a) results in

E = −∂A
∂ t

−∇ϕ (7)

where ϕ is an additional electric scalar potential. Here, we consider so-called tem-
poral gauge setting ϕ = 0 which simplifies (7) to E = −∂A/∂ t. Plugging this into
(1b) and using (2b) and (2c) yield

σ
∂A
∂ t

+∇× (
1
μ
∇×A) = Js (8)

for the MQS simulation regime.
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Further on, (6) and (8) are discretized following the MOL approach where the
indispensable spatial discretization can be performed with e.g., the Finite Integration
Technique (FIT) [5] or the Finite Element Method (FEM) [6].

After a spatial discretization, the semi-discrete electro- and magnetoquasistatic
formulations can be written in the following general form

M
d
dt

x(t)+ K(t,x(t)) x(t) = r(t) . (9)

For the EQS simulation regime, matrix M in (9) represents the discrete ana-
logue of the continuous operator ∇ · (ε∇), matrix K stands for the continuous term
∇ · (σ∇) and the vector of unknowns x contains the introduced degrees of freedom.

For the MQS simulation regime, M identifies the discrete conductivity matrix, K
represents the discrete counterpart of the continuous operator ∇× ( 1

μ∇×) while the
vector r(t) denotes the components of discrete current sources.

Independent of the chosen formulation, (9) can be in general integrated in time
only by means of numerical techniques.

4 Numerical Time Integration

In case of a nontrivial invertible matrix M, (9) describes a system of first order
implicit differential equations [7]. Such systems can be integrated in time using so
called one-step or multi-step numerical integration techniques. To update a solution
at a new time point, a one-step time integration method uses the information about
the solution only from the previous time instant [8]. In contrast to this, a solution
update in a multi-step time integration method is based on several values of the
solutions calculated at the previous time instants. In this work, we restrict ourselves
to the one-step time integration schemes.

Conceptually, most of the one-step time integration methods can be classi-
fied using three main groups: θ -type methods, Runge-Kutta (RK) methods and
Rosenbrock-type methods which represent a special extension of RK-type methods.

4.1 θ -Type Time Integration Schemes

The θ -time discretization scheme applied to (9) reads:

[M+Δ tθK(xn+1)]xn+1 = Mxn −Δ t
[
(1−θ )

(
K(xn)xn −r(tn)

)
−θr(tn+1)

]
. (10)

Different choices of the parameter θ lead to the following classical methods of
numerical integration: θ = 0, specifies the forward Euler method, θ = 1 yields the
backward Euler method, θ = 1/2 corresponds to the Crank-Nicolson method, and
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θ = 2/3 defines the Galerkin method. θ -time discretization schemes are not origi-
nally equipped with a built-in error-controlled mechanism. Computations with the
variable time step lengths can however, be performed by means of additionally con-
structed step size controllers. From (10) it is evident that in the presence of the
nontrivial invertible matrix M every θ -method requires the solution of a (non)linear
system of equations.

4.2 Runge-Kutta Time Integration Methods

Despite the huge variety of the RK time integration methods, each of them can be
compactly defined with the help of the so-called Butcher table [8]:

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

b̂1 b̂2 . . . b̂s

. (11)

In this table, the components of vector c are called the abscissae. Vector b represents
a weight vector and A is a matrix specifying the method. The introduction of the
second weight vector b̂ is necessary to construct an embedded RK method.1 The
integer value of s defines the number of stages in the RK method.

The RK methods may be sorted according to the structure of the matrix A = [ai j]
in the Butcher table (11). The classical explicit methods are the methods where A
is a lower triangular matrix with vanishing coefficients on the main diagonal. If
this condition is not satisfied, the methods are called implicit RK methods (IRK).
Diagonally implicit RK (DIRK) methods (if ai j = 0 for j > i) represent a special
case of IRK methods. Additionally, if all diagonal coefficients of the DIRK method
are the same, the method is referred to as the singly diagonally implicit RK (SDIRK)
method.

The application of the s-stage RK method defined by (11) to (9) with a possibly
singular matrix M and possibly nonlinear matrix K leads to the following numerical
scheme:

Mki = Δ t
(

r(tn + ciΔ t)−K(xn +
s

∑
j=1

ai jk j)(xn +
s

∑
j=1

ai jk j)
)

, (12a)

xn+1 = xn +
s

∑
i=1

biki, i = 1, . . . ,s . (12b)

1 Embedded RK methods are discussed below in a separate subsection.
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The values ki , i = 1, . . . ,s are called stage derivatives. From (12) it follows that for
each time step of IRK method, a (non)linear system of dimension ms, where m is the
number of degrees of freedom in (9) has to be solved. In contrast to IRK methods,
explicit RK methods are computationally much cheaper since for each stage in (12)
they do not require a solution of the (non)linear system of equations.

4.2.1 Diagonally Implicit RK Methods

In the case of DIRK methods, all stage derivatives can be found successively requir-
ing for each stage the solution of the (non)linear system with only m unknowns [9]:

( M
Δ taii

+ K(Yi)
)

Yi = r(tn + ciΔ t)+
M

Δ taii

(
xn +

i−1

∑
j=1

ai jk j
)
, (13a)

ki =
1
aii

(
Yi −xn −

i−1

∑
j=1

ai jk j
)
, (13b)

xn+1 = xn +
s

∑
i=1

biki . (13c)

In case of linear quasistatic formulation (9), the SDIRK method does not need
any reassembling of the system matrix in (13a) for the computation of stage values
within one integration step. This allows considerable redaction of computational
time.

4.2.2 Rosenbrock-Type Methods

In spite of the fact that DIRK methods allow the process of numerical solution of
the nonlinear systems arising during the process of the numerical integration of
(9) to be accelerated significantly, they still do not make it possible to avoid the
solution of the nonlinear equations completely. Rosenbrock methods belong to the
group of numerical schemes that circumvent the solution of the nonlinear systems
of equations. This step is replaced here by a solution of a sequence of linear systems
[7], [10].

An s-stage Rosenbrock method can be derived from (13) by application of one

Newton iteration to each stage of DIRK method using the start values k(0)
i = 0. The

upper index specifies the number of the nonlinear iteration and the additional set of
coefficients L = {li j}, i = 1, . . . ,s, j = 1, . . . , i:

Mki = Δ t
(

r(tn+ciΔ t)−K(xn+
i−1

∑
j=1

ai jk j)(xn+
i−1

∑
j=1

ai jk j)−J
i

∑
j=1

li jk j

)
, (14a)

xn+1 = xn +
s

∑
i=1

bi ki, i = 1, . . . ,s. (14b)
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where J = ∂
(
r(tn)−K(xn,tn)xn

)
/∂xn represents the Jacobian matrix for (9).

According to (14), for each stage a linear system of equations with matrix (M+
Δ t J lii) for a vector of unknowns ki has to be solved. Additional computational costs
arise due to the necessity to calculate the matrix-vector multiplication J∑ li jk j. This
can be avoided, however, according to the technique presented in [7].

4.2.3 Adaptive Stepsize Control

RK methods can be naturally equipped with a technique allowing an adaptive time
stepping control. In addition to a main solution x(p) of a given order p obtained with
a weight vector b, a so-called embedded solution x( p̂) of a lower order p̂ can be cal-
culated. The main and the embedded methods share the same coefficient matrix A.
Consequently, the computation of the embedded solution does not require addition-
ally the solution of a (non)linear system, but just a new superposition of the already
calculated stage derivatives using merely different weight factors.

The difference between the main and the embedded solution defines the error
vector y = x(p) −x( p̂) = ∑s

i=1(bi − b̂i)ki. The norm of this vector ‖y‖err is then em-
ployed to estimate the local error for a given time step. In the literature, one can find
different norms allowing the estimation of the error ‖y‖err [3, 8, 11, 12].

The first task of the step-size controller is to make a decision whether the last
integration step has to be repeated with a smaller time step length or the simulation
can be further advanced in time. The solution is rejected if ‖y‖err > μ εtol holds
true and a new attempt is made with a smaller step size; otherwise the time step is
accepted. In this scheme, μ is an accelerating factor usually taken as 1.2 [12].

Secondly, the step-size controller calculates the length of a next time step using
the formula

Δ tn+1 = ρ
(

εtol

‖y‖err

)1/( p̂+1)

Δ tn (15)

where ρ denotes a safety factor that is usually set to 0.9 [10]. According to (15),
the newly calculated time step length is decreased if the step before is rejected,
otherwise it is increased.

4.3 Implicit Versus Explicit Methods

We have listed so far a variety of the currently available time integration schemes.
To decide which of them is the most appropriate for quasistatic electromagnetic sim-
ulations, let us review a number of issues associated with the differential equations
and one-step time integration methods.

Differential equations can be classified as stiff and non-stiff ones. In the literature
one can find a lot of attempts to come out with a satisfactory definition of the term



364 G. Benderskaya et al.

“stiffness” [7, 13, 14]. Here, we adopt the following pragmatic definition for stiff-
ness: a given dynamic problem describing some physical process is called stiff when
it is more efficient to use an implicit time integration method than an explicit one for
the time interval of interest. The reason for this is a boundness of a stability domain
of any explicit time integration method [7]. On the contrary, stability domains of the
implicit methods are unbounded and, consequently, the stability requirement does
not put any limitation on the choice of the length of the time step. In other words,
in general stiffness means that when using an explicit method a small time step is
necessary due to stability reasons and not due to approximation reasons.

One reason for stiffness is that the components of the dynamic system may have
incomparable characteristic time constants [14]. Since in the EQS formulation (6)
the permittivity ε never vanishes, the matrix M corresponding to ∇ · (ε∇) is always
regular. Consequently, the discrete EQS formulation represents a (non)linear ODE
system which is in practice not stiff, since permittivity values for different materials
do not diverse too much. Under condition that obtaining an inverse to matrix M
is computationally cheap, such systems can be integrated using any explicit time
integration method.

Stiffness also appears in combination with the solution of DAEs. The DAE sys-
tem incorporates two type of equations - differential and algebraic equations and
are considered to be extremely stiff [7]. In MQS formulation (8), the conductivity
σ obviously equals zero exactly for those parts of the model which are filled with
non-conductive materials. In this case, the matrix M is singular and consequently
the discrete MQS formulation represents a (non)linear DAE system of index 1 [3],
[15]. In this case, only implicit time integrators have to be employed.

Finally, for parabolic partial differential equations the stability limit Δt ≤ O(Δx2)
on the size of the time step in the explicit time integration methods, implies that an
enormous amount of time steps is necessary to follow the evolution of the time
process if one reduces the spatial resolution Δx to improve the overall accuracy of
the numerical solution [16].

5 Numerical Simulations

Our first application example is the TEAM 11 workshop problem that demonstrates
the calculation of a conducting hollow sphere in a uniform transiently varying mag-
netic field (Fig. 2(a)). The external field is instantaneously switched on to a uni-
formly distributed magnetic flux density B0 = 1 T ez disturbed locally by the tran-
sient compensation due to induced eddy currents. The detailed description of the
specified geometry together with the definition of the transiently varying field exci-
tation as well as the analytical solution data for selected physical quantities can be
found in [17].

For various spatial mesh resolutions, this problem is integrated in time employ-
ing the SDIRK method equipped with adaptive time stepping control. Here, the
accuracy of the linear solver is set to 10−4 while the relative error tolerance for the
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adaptive time stepping control is chosen to be 10−5. These settings translates into
19 accepted steps versus 3 rejected ones for the finest spatial mesh resolution. For
the coarsest spatial resolution, all 6 performed time steps are accepted. Figure 3 il-
lustrates the simulation results for the monitored magnetic flux density component
Bz at the center of a conducting sphere for different simulations runs.

(a)

ri

ra
0

x
y

z

σ

(b)

rotor stator

rotor-rod stator-coil

0

x

y

z

Fig. 2: a Geometrical model of a hollow conducting sphere (σ = 5× 108 S/m) exposed to a spa-
tially homogeneous but transiently varying magnetic field. The inner radius is given by ri = 5 cm
whereas the outer radius is set to ra = 5.5 cm. b Sliced model of an asynchronous motor including
the three-phase excitation coils of the stator together with the cylindrical cage inductor elements
of the rotor

Fig. 3: Simulated time dependency of the magnetic flux density component Bz in the center of the
hollow sphere for various spatial resolutions. For comparison reasons, only the time interval where
analytical data [17] are available is considered. In addition to the calculated solution at the interval
bounds, also intermediate values obtained via the dense output interpolation are shown
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Analogous simulations with the SDIRK method are also performed for a sliced
model of an asynchronous motor (Fig. 2(b)). For a computational model consisting
of approximately 100000 unknowns, the same solver settings result in 405 accepted
and 122 rejected time steps. However, for the asynchronous machine model no ana-
lytical solution is available so that the reliability of the method can only be checked
via classical convergence studies.
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lation Technology AG) for providing a detailed computational model of the applied asynchronous
induction machine.
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A Novel Staggered Finite Volume Time Domain
Method

Thomas Lau, Erion Gjonaj, and Thomas Weiland

Abstract In this work a novel, staggered finite volume time domain method for
Cartesian grids is presented, analyzed and validated. An important characteristic of
the method is the use of a rather unorthodox staggering of the degrees of freedom.

1 Introduction

In the majority of finite volume time-domain (FVTD) methods the electric degrees
of freedom (DOF) and the magnetic DOF are co-located on the same spatial posi-
tion [1]. Unfortunately, compared to the classical Yee scheme [2], this co-location
reduces the accuracy of the FVTD method. Hence, one approach to increase the ac-
curacy of the FVTD method, motivated by the Yee scheme, is to stagger the DOFs.
However, the staggering can be performed in three different ways: first, staggering
the electric and magnetic fields, only. Second, staggering the vectorial component
of the DOFs, only. Third, combining both approaches and staggering the electric
and magnetic DOFs and each of their vectorial components. The last approach cor-
responds to the staggering applied in the Yee scheme.

In this work the authors restrict their investigation to the second strategy, and
only consider a specific staggering (fig. 1) of the vectorial components of the DOFs
while keeping each vectorial components of the electric and magnetic field in the
same place, respectively. The FVTD obtained through this staggering is denoted as
SFVTD in the rest of the work.
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x

y

z

Ex Hx Ey Hy Ez Hz

Fig. 1: Staggering of the field DOFs. The DOFs are defined, according to the vectorial component
they represent, on three different dual volumes (shaded) with respect to the primary grid cell (gray)

2 Integral Formulation of Maxwell’s Equations

Starting point for constructing the SFVTD method is the volume integral formula-
tion of Maxwell’s equations in terms of the electric field, E, and the magnetic field,
H, neglecting currents and charges, on a finite domain Ω . For an arbitrary volume V
with normal vector n in Ω the following two integral relationships must be fulfilled:

d
dt

∫

V

εEdV =
∫

∂V

n×HdA =
∫

∂V

dA×H, (1)

d
dt

∫

V

μHdV =−
∫

∂V

n×EdA = −
∫

∂V

dA×E. (2)

This formulation of Maxwell’s equations is mathematically equivalent to the differ-
ential formulation (see [3], pp. 54). The different materials in Ω are characterized by
their permeability, μ , and permittivity, ε , respectively. It is assumed that the mate-
rials are linear, nondispersive and isotropic and therefore ε and μ are characterized
by scalar functions on Ω .

3 Spatial Discretization

The basic idea of the SFVTD method is to construct an approximate solution of (1)
and (2) in terms of volume averages of the electromagnetic fields over a finite set
of so called control volumes. This is achieved by enforcing a discrete version of (1)
and (2) on the control volumes. In the following, the discretization of (1), applying
this idea, is sketched.

The first step in discretizing (1) consists of restricting the arbitrary volumes V
in (1) to a set of brick shaped and coordinate parallel control volumes Vx,Vy and Vz,
which are different for each vectorial component1 (see fig. 1). In the following, the

1 At this point it should be noted that for the SFVTD only the relative position of the staggered
volumes to each other is relevant. Therefore the choice of the volumes Vx,Vy and Vz is not unique.
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construction of the SFVTD scheme is based on the demands that the field compo-
nents are constant inside their control volumes, respectively, and that the stencil of
the resulting scheme should be as small as possible.

For example, the x-component of (1) reads

d
dt

∫

Vx

εEx dV =
∫

∂Vx

dAyHz −
∫

∂Vx

dAzHy. (3)

The physical interpretation of (3) is that the time evolution of the volume integral

Fig. 2: The time evolution of the integral of Ex over its control volumes (dashed cell) solely de-
pends on the fluxes through the y- and z-faces, respectively. Figure (a) shows the flux through the
y-face (shaded) which is uniquely defined by the values of Hz on its control volumes (solid cells).
Figure (b) shows the flux through the z-face (shaded) of the same cell which is uniquely defined
by the values of Hy on its control volumes (solid cells)

of εEx over the control volume Vx is solely determined by the fluxes generated by
Hz and Hy through the y- and z-face of Vx. Analog expressions are derived for the
y- and z-components of (1). However, for brevity’s sake the following discretization
steps are illustrated for the x-component, only.

An inspection of (3) shows that neither the volume integral on the left hand side
nor the flux integrals on the right hand side can be expressed exactly by volume
averages of the electric or magnetic field. Therefore, approximations are inevitably
for the discretization of (3).

First, the volume integral is approximated by the volume average of Ex, taking
an inhomogeneous permittivity ε inside Vx into account, by

∫

Vx

εEx dV ≈
∫

Vx

ε dV
1

Vx

∫

Vx

Ex dV. (4)

Second, the flux integrals on the right hand side of (3) are approximated by volume
averages of Hy and Hz. In order to link volume averages with fluxes, which are sur-
face integrals, a constant field inside each control volume is assumed. For the further
approximation of the fluxes, the positions of the different control volumes Vx, Vy and
Vz, with respect to each other, have to be specified. A formal definition of the control
volumes is postponed to section 4, a schematic drawing of the staggering is shown
in fig. 2. The staggering is chosen in such a way, that each flux face is immersed in
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exactly two control volumes. On the left hand side, the shaded y-surfaces are part
of the control volumes V 1

z , V 2
z and V 3

z , V 4
z of Hz. On the right hand side, the shaded

z-surfaces are part of the control volumes V 1
y ,V 2

y and V 3
y ,V 4

y of Hy. Thus, the left
surface integrals in (3) is approximated by

∫

∂Vx

dAyHz ≈ Ay

2V 1
z

∫

V 1
z

Hz dV +
Ay

2V 2
z

∫

V 2
z

Hz dV − Ay

2V 3
z

∫

V 3
z

Hz dV − Ay

2V 4
z

∫

V 4
z

Hz dV

and an analogue expression is obtained for the right surface integral. This concludes
the discretization of (3).

The preceding discretization steps fix the location of the control volumes for
E, H and renders the fields to be piecewise constant. Thus, the discrete version of
Faraday’s and Ampere’s law is uniquely obtained by steps analogue to the presented
discretization steps. Perfect electric conducting (PEC) boundary conditions are con-
sidered by setting the flux generated by E of a PEC face for a control volume to
zero.

4 Matrix Formulation of the SFVTD Method

In the following, the discretization approach sketched in the previous section is es-
tablished formally. All quantities appearing with an index α are meant to be defined
for α ∈ {x,y,z}.

First, a primary cartesian grid, G, and the grid translation operators Tx, Ty and
Tz are defined. Then, the x-, y- and z-edges in G are associated with the diagonal
matrices Lx, Ly and Lz. In order to account for the different control volumes, also
matrices for the dual edge length L̃x, L̃y and L̃z are defined

L̃α = 0.5
(
1 + T−1

α
)

Lα .

Hereafter, diagonal matrices Ax, Ay and Az for the areas of the x-, y- and z-faces in
G are defined. Finally, the matrices for the control volumes Vx, Vy,Vz and Ṽ, are
defined by

Vx = Lx ⊗Ly ⊗ L̃z, Vy = L̃x ⊗Ly ⊗Lz,Vz = Lx ⊗ L̃y ⊗Lz.

In the following, the components of the previously defined matrices will be used in
two different contexts. First, as measure for length, areas and volumes and second,
indicating the different integration domains.

The discrete electric field, eα , and magnetic field, hα are defined by control vol-
ume averages according to

[Vα ]i, j,k [eα ]i, j,k =
∫

[Vα ]i, j,k

Eα dV, [Vα ]i, j,k [hα ]i, j,k =
∫

[Vα ]i, j,k

Hα dV.
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and are grouped into vectors of the form e =
(
ex,ey,ez

)T
and h =

(
hx,hy,hz

)T
.

Hereafter, diagonal material matrices Mε and Mμ are defined by

[Mε,α ]i jk = diag(
∫

[Vα ]i jk

ε dV),
[
Mμ,α

]
i jk = diag(

∫

[Vα ]i jk

μ dV ),

and are arranged into matrices of the form Mε = diag(Mε,x,Mε,y,Mε,z) and Mμ =
diag

(
Mμ,x,Mμ,y,Mμ,z

)
.

The component wise fluxes for the discretization of the transient equations (1)
and (2) are expressed with the help of the matrices

Px = 0.5Ax(1−T−1
x )(1+ Ty), Py = 0.5Ay(1−T−1

y )(1+ Tz),

Pz = 0.5Az(1−T−1
z )(1 + Tx).

The fluxes are arranged into the discrete curl matrix C

C =

⎛
⎝ 0 Pz PT

y
PT

z 0 Px

Py PT
x 0

⎞
⎠ , C = CT .

Finally, the SFVTD discretized version of Ampere’s and Faraday’s law is estab-
lished

d
dt

Mεe = Ch,
d
dt

Mμh = −Ce (5)

5 Time Discretization

The discrete Faraday’s and Ampere’s law form a system of ordinary differential
equations (ODEs). For their numerical integration the time is discretized with time
step Δ t by t(n) = t(0) + nΔ t. Denoting with e(n) and h(n) the discrete values of the
electric- and magnetic field strength sampled at the time instance, t(n), (5) is dis-
cretized by a Verlet-Leap-Frog (VLF) time integrator [4]

h(∗) = h(n) − Δ t
2

M−1
μ Ce(n), e(n+1) = e(n) +Δ tM−1

ε Cn(∗),

h(n+1) = h(∗) − Δ t
2

M−1
μ Ce(n+1).
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6 Dispersion Analysis

Assuming a homogeneous grid (xi = iΔ ,y j = jΔ ,zk = kΔ) with grid spacing Δ and
a homogeneous material with the local velocity of light, c, a plane wave ansatz

[(e,h)](n)
i jk = (e0,h0)exp(j(ω̃n−βxi−βy j −βzk)),

ω̃ = Δ tω ,βx = kxΔ ,βy = kyΔ ,βz = kzΔ ,

is made [5]. The numerical dispersion relation for the propagating modes is

sin2(
ω̃
2

) = σ2(KYee − δK), (6)

KYee =∑
γ

sin2(
βγ

2
), δK =

1
2 ∑

γ �=δ
sin2(

βγ

2
)sin2(

βδ
2

),

with the Courant number σ = cΔ t/Δ . For waves propagating along the α-coordinate
axis, the dispersion relation (6) reduces to

sin2(
ω̃
2

) = σ2 sin2(
βα

2
), (7)

and therefore the SFVTD method has no numerical dispersion along the coordinate
axes for σ = 1. Especially, it can be shown from the condition

∣∣sin2( ω̃
2 )
∣∣≤ 1 and (6)

that the stability limit, σmax, of the SFVTD method is equal to one.
For an analysis of the wave propagation properties [5], the numerical phase ve-

locity, vp, is calculated from (6). For the following discussion, it is convenient to
analyze the relative error in the numerical phase velocity, Erp, with respect to their
physically exact value c. Additionally, in order to have an error measure independent
of the direction Erp is averaged over all propagation directions.

Erp =
∣∣∣∣vp − c

c

∣∣∣∣ , Erav
p =

1
4π

∫
dΩ Erp. (8)

Defining the points per wavelength (PPW) by PPW = 2π/β , the error in the
phase velocity of the SFVTD scheme is compared to that of Yee’s scheme at the
stability limit of both schemes, respectively.

Figure 3 (a) shows the anisotropic behavior of Erp for 3 PPW. Yee’s scheme
approaches the maximal error along the x-, y- and z-axes. In contrast to this, the
SFVTD scheme approaches its maximal error along the space diagonals. Especially,
the magnitude of the maximal error Erp is significant smaller in the SFVTD scheme
in comparison to Yee’s scheme.

The behavior for other PPW is similar to the behavior presented in fig. 3 (a).
Therefore, the phase velocity error averaged over all angles, Erav

p for the SFVTD
scheme, shown in 3 (b), is for all PPW smaller than that of Yee’s scheme. For Erav

p



A Novel Staggered Finite Volume Time Domain Method 373

Fig. 3: Analysis of the relative error in the phase velocity. In (a) the directional dependency of the
relative error in the phase velocity for 3 PPW for Yee’s and the SFVTD method is shown. Figure
(b) shows the dependence of the direction averaged relative error in the phase velocity for Yee’s
(solid curve) and the SFVTD scheme (dashed curve)

less than 1% Yee’s scheme needs roughly 10 PPW in contrast to 6 PPW for the
SFVTD method.

7 Numerical Validation

For the numerical validation of the SFVTD method a rectangular resonator with
an edge length of 1m, homogeneously filled with a dielectric is investigated. The
simulations are performed with a homogeneous grid and an inhomogeneous grid.
The inhomogeneous grid is only inhomogeneous in z-direction. In this direction
the mesh step is abruptly changed from Δ to 3Δ in the middle of the resonator.
The Courant number is set to the stability limit of the SFVTD method for each
simulation.

a) b)

Fig. 4: Maximal L2 error in the fields over one period for different eigenmodes of the homogeneous
rectangular resonator for a homogeneous grid (a) and an inhomogeneous grid (b)
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Figure 4 shows the maximal relative error in the eigenmodes (m,n, p) over one
period for the homogeneously filled resonator with a homogeneous and an inhomo-
geneous mesh. For both grids the SFVTD converges to the exact result with an order
of 2.

8 Conclusions

A novel, staggered FVTD method has been presented. In comparison to Yee’s
scheme, the SFVTD method has better wave propagation properties and an approx-
imately 1.7 larger stability limit on a homogeneous mesh for the same number of
DOFs. At the stability limit the SFVTD method has no numerical dispersion along
the axes. However, the computational costs of the scheme are higher than those of
Yee’s scheme. A simple validation problem has been presented, which shows second
order convergence of the method.
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EM Scattering Calculations Using Potentials

Magnus Herberthson

Abstract EM scattering from PEC surfaces are mostly calculated through the in-
duced surface current J. In this paper, we consider PEC surfaces homeomorphic to
the sphere, apply Hodge decomposition theorem to a slightly rewritten surface cur-
rent, and show how this enables us to replace the unknown current with two scalar
functions which serve as potentials for the current. Implications of this decomposi-
tion are pointed out, and numerical results are demonstrated.

1 Introduction

There are numerous ways to address the problem of calculating the radar cross sec-
tion of PEC surfaces [1,2]. One method is to solve the electric field integral equation,
(EFIE), where a standard reference is [3]. In frequency domain, taking the incom-
ing field Ei to be a plane wave, we have Ei(r) = E0e−ik·r. By choosing an adapted
orthonormal basis, where E0 = E0x̂,k = kẑ, the EFIE becomes [1, 3, 4],

∀r ∈ S : E0e−ikzx̂ =̂ ikcμ0(I +
1
k2 ∇∇·)

∫
S

g(r,r′)J(r′)dS′ (1)

where J is the surface current on S, g is the Greens function g(r,r′) = eik|r−r′ |
4π |r−r′| , and

where =̂ means tangential equality (on S).
Since the electric field is a covariant vector field (i.e. a one-form) rather than a

contravariant vector field the equality in (1) is, for each r ∈ S, evaluated in T ∗
p S,

the cotangent space at p. It is therefore natural to use the theory of forms, and in
particular the Hodge decomposition theorem when addressing (1). For simplicity,
we will assume that the surface S is closed and homeomorphic to a sphere.
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2 Reformulation of EFIE

One first notes that when viewed as a one-form on S the LHS of (1), i.e., E0e−ikzdx
is not exact. However, by multiplying both sides of (1) with eikz, the LHS is just the
tangential part of x̂, i.e., the one-form dx, which is exact, i.e., a gradient of a scalar
function. For this reason, we introduce the following functions

h(r,r′) = g(r,r′)eik(z−z′), K(r′) = eikz′J(r′) (2)

After multiplication with eikz and some manipulation, (1) becomes

e0∇x−∇
[∫

S
hẑ·KdS′ +

i
k

∫
S

K·∇hdS′
]

=̂ (3)

ik
∫

S
hKdS′ − ẑ

[
ik
∫

S
hẑ·KdS′ −

∫
S

K·∇ hdS′]

This formulation is still in vector calculus notation, and theoretical advantage is that
the LHS of (3) is now an exact one-form. Note, however, that the fictive current K
is a ‘down sampled’ version of J, i.e., the oscillatory part e−ikz is factored out. In
practice, this may therefore allow for a much sparser sampling of the ‘current’ K,
and therefore reduced numerics. Also, note that complicated objects may require
dense sampling over areas of resonance. Before we apply the Hodge decomposition
to K, we make the following remark on the notation.

2.1 Notation

As usual, ∇ and ∇′ refer to the nabla operator with respect to r and r′, respectively.
On S we denote the corresponding exterior derivative operators with d and d′; in
particular they coincide with the covariant derivatives on S when acting on scalar
functions. These will be denoted ∇S and ∇′

S. We will use a symmetric scalar product.
There are numerous conventions for p-forms. We will only need the following

facts/conventions (see for instance [5]) on S, which is two-dimensional. The ex-
terior derivative d takes scalar functions (0-forms) into one-forms, one-forms into
two-forms and annihilates two-forms. The Hodge star ∗ takes functions into vol-
ume (area) forms and vice versa. It also takes one-forms into one-forms through
‘a rotation π/2’. In terms of vector calculus, ∗v = n̂ × v, where v is tangent to S
and n̂ is normal to S. The coderivative δ is δ = −∗ d∗ and the Laplace-Beltrami
operator ΔS on S is −(dδ + δd). The Hodge decomposition theorem asserts that,
when S is compact, any one-form α can be written uniquely as α = dΦ +β + δψ
where Φ is a scalar, β is a harmonic one-form and ψ is a two-form. However,
β ∈ Harm1(S) is zero since there are no nontrivial harmonic one-forms on S (as-
suming that S is homeomorphic to a sphere). Thus, with Ψ = ∗ψ , so that Ψ is a
scalar function, we have that α = dΦ +δ ∗Ψ ∼= ∇SΦ + n̂×∇SΨ on S, which means
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that α is expressed through the two potentials Φ and Ψ . We will also use the facts
that

∫
S < ω ,d f > dS =

∫
S < δω , f > dS and

∫
S < dω ,ψ > dS =

∫
S < ω ,δψ > dS

where f is a function, ω is a one-form and ψ is a two-form. In particular, we will
use

∀ f ,ψ :
∫

S
< d f ,δψ > dS =

∫
S
< d2 f ,ψ > dS = 0, (4)

since d2 f = 0 is always true for any scalar function f .

2.2 Reformulation Through Scalar Potentials

To proceed we now use the Hodge decomposition [5] applied to K. Thus,

K = dΦ + δ ∗Ψ ∼= ∇SΦ + n̂×∇SΨ (5)

on S, which means that K is expressed through the two scalar potentials Φ and Ψ .
Here, n̂ is a unit normal to S and ∇S stands for the intrinsic gradient operator on S.
Equation (3) can now be written as

∇
[

e0x−
∫

S
(<d′z′,K > +

i
k
Δ ′

SΦ)hdS′
]

=̂ (6)

i
∫

S
(kK − ẑ

[
k <d′z′,K > +iΔ ′

SΦ
]
)hdS′

where K is decomposed as in (5) and ΔS is the intrinsic Laplace operator on S.
Depending on approach, equation (6) can be addressed in several ways. In the

next section, we will consider a few of these.

3 Calculational Benefits

The factorization K(r′) = eikz′J(r′) may lead to sparser sampling. Since the external
applied field is −E0x̂e−ikz we can expect that the induced current J largely contains
the oscillatory part e−ikz. Therefore, in non-resonant areas, the ‘current’ K resembles
an envelope, which can be sampled much sparser than J. For high frequencies, this
can reduce the numerical problem substantially.

Another way of using (6) is to use the fact that the left hand side is an exact one-
form on S. Namely, by a discretization of K = dΦ + δ ∗Ψ which gives Φ and Ψ n
degrees of freedom each, we must in principle produce and solve a 2n×2n system
of equations (

X X
X X

)(
[Φ]n×1
[Ψ ]n×1

)
=
(

v1

v2

)
(7)
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where [Φ]n×1, [Ψ ]n×1 are n×1 vectors representing the fieldsΨ and Φ , where v1,v2

also are n×1 vectors and where X stands for various matrices of order n×n. Instead
of solving (7) directly, one can address (6) in the following way. For instance, one
can take the exterior derivative of (6), in which case the LHS vanishes, and one is
thus left with a homogeneous system of the form

(
X X

)( [Φ]n×1
[Ψ ]n×1

)
=
(

0
)

(8)

This gives, through one n×n inversion Φ as a function ofΨ or vise versa. This can
then be plugged into the coderivative of the original equation, which gives a final
n×n equation of the form (

X
)(

[Φ]
)

=
(

v1
)

(9)

In principle, one 2n×2n inversion is replaced with two n×n inversions. One should
note that the price to pay is more matrix multiplications, which, however, are easy
to parallelize. A more practical way of splitting (7) is to use identities of the type
(4) and test (6) against suitable test function directly. Namely, if the test functions
are co-gradients, i.e., vector fields of the form n̂ ×∇u, testing against n suitable
functions will produce a homogeneous equation of the format (8). The final equation
of the form (9) is then achieved when testing against test vector fields which are
gradients.

4 Numerical Results

Although this approach has been reported earlier, the full implementation using the
scalar potentials Φ and Ψ has not been demonstrated so far. Considering the space
available, we will only exemplify the above approach in the most familiar case,
i.e., the sphere, although there is no particular restriction on the geometry except the
assumption that the surface is homeomorphic to a sphere. We consider a sphere with
radius a=1 m, which is illuminated with a plane wave along the z axis and with the
electric field parallel to the x axis. In this example, the wavelength is 2/3 m, which
gives a wave number of 3π /m and a frequency of 450 MHz.

The resulting potentials and currents are illustrated in Fig. 1-4. In Fig. 5, a cor-
responding calculation with the commercial program FEKO, [6], is displayed. In
Fig. 1, the calculated scalar potential Φ and the corresponding ‘current’ ∇Φ is
shown. Φ is displayed as an intensity map over the surface, where |Φ| is given
by the brightness, and where the phase information in Φ is encoded in the colour.
The gradient vector field ∇Φ is shown with real (red) and imaginary (blue) parts. In
Fig. 2,Ψ and the co-gradient n̂×∇Ψ are displayed in an analogous manner. In Fig.
3, the real part of the total current K = ∇Φ + n̂ ×∇Ψ is shown. From the fictive
current K, on gets the physical current J via J(r) = e−ikzK(r), the real part of which
is shown in Fig. 4.
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Fig. 1: Potential Φ and its current ∇SΦ ∼ dΦ . |Φ | is given by the brightness of the surface, while
the colour encodes the phase information in Φ . The current vectors are displayed in red (real part)
and blue (imaginary part). This current is irrotational

Because of the oscillatory nature of the factor e−ikz, the current J is much more
rapidly varying than K, a fact that is easily noticeable by comparing Fig. 3 and

Fig. 2: PotentialΨ and its current n̂×∇SΦ . |Ψ | is given by the brightness of the surface, while the
colour encodes the phase information inΨ . The current vectors are displayed in red (real part) and
blue (imaginary part). This current is divergence free
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Incoming fieldE

λ

Fig. 3: Full current K = ∇SΦ + n̂×∇SΨ . Only the real part is shown

Incoming fieldE

λ

Fig. 4: Physical current J = e−ikzK(r). Only the real part is shown

Fig. 4. It is this fact that allows for a much sparser sampling of K than a direct
sampling of J requires, and therefore a smaller equation system to solve.
As a reference, we have also included the corresponding calculation done in the
commercial program FEKO. The calculated current is shown in Fig. 5, and this cur-
rent should be compared to the corresponding current in Fig. 4. As our calculations
are still somewhat preliminary, it suffices at this stage to say that the RCS calcu-
lated from the current in Fig. 4 is 3.22 m2 as compared to the RCS given by FEKO:
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Fig. 5: Potential Φ and its current

3.47m2. The most noticeable difference between Fig. 5 and Fig. 4. is obviously the
fineness of the meshes. Although these mesh sizes are rather ad hoc, we have in the
FEKO calculation used the suggested setting, which gave 9549 unknowns. For the
potential method, we used the somewhat arbitrary choice of 1992 unknowns, the
requirement being that the comparatively slowly varying fictive current K in Fig. 3
should still be well sampled.

It is possible to introduce spherical coordinates r,θ ,φ with respect to the or-
thonormal basis introduced in section 1. One can then decompose J = Jθ θ̂ + Jφ φ̂
so that both Jθ = Jθ (θ ,φ) and Jφ = Jφ (θ ,φ) are functions on the sphere. In Fig. 6
we have plotted Jθ (θ ,0), 0 ≤ θ ≤ π as calculated by both FEKO and the potential
method. Most notable is the good agreement for small θ (the illuminated part of the
sphere) as compared to large values of θ (the ‘shadowed’ part of the sphere). As
stated earlier, conclusions at this stage should be drawn with care.

We believe that the arguments presented here should clearly demonstrate the po-
tential benefits of the approach presented in the paper. Several further remarks and
comments could be made. For instance, the splitting of the system of equations as
described in section 3 has not been commented further. Also, in the present prelim-
inary code, no emphasis has been put on the task of calculating the moment matrix.
It is to be expected that the moment matrix in the potential method may be more
costly to compute than in the traditional MoM. However, to what extent remains to
be seen, and obviously, the computation of the moment matrix is easy parallelizable.

Another issue is the choice of basis functions in the discretization of Φ and Ψ .
This is non-trivial, and in the present implementation, we have chosen global basis
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Fig. 6: Current components Jθ compared at the longitude φ = 0, 0 ≤ θ ≤ π . The reason for the
rather poor agreement for large θ is, at the time of writing, under investigation

functions which can briefly be described as follows. For each node point ni, a piece-
wise linear ‘tent’ function τi is considered, which is 1 at ni and zero at all other node
points. Next a function ti = τi + γi is formed, where γi is constant and chosen so that∫

S tidS = 0. Due to this condition, one can calculate Δ−1ti in the weak sense, and the
resulting function serves as one of the basis functions for the potentials.

5 Discussion

We have described a new way of addressing EM scattering from closed PEC sur-
faces. By combining a ‘down-sampling’ of the problem and the Hodge decompo-
sition theorem, this approach has the advantage of producing smaller systems of
equations. The drawback may be that the moment matrix can be more costly to
compute, but this should not be a serious defect since this computation is easy to
parallelize. Preliminary calculations presented here illustrates these points, and the
next natural step is a more detailed analysis.
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Abstract A new family of source integral equations is presented, dedicated to the
solution of time-harmonic Maxwell scattering problems. Regardless of the compo-
sition of the obstacle – metallic, full dielectric or coated with an impedance layer
– we show that a general methodology is able to guide the construction of some
special equations whose the foremost feature is to be well-conditioned. Indeed, all
of them are free of spurious modes and appear as some compact perturbations of
positive operators (when it is not the identity), leading therefore to fast iterative so-
lutions without the help of any preconditioner. These intrinsically well-conditioned
equations open the way for interesting new developments in the field of boundary
equation methods for Maxwell applications.

1 Motivation

The pertinence of integral equation methods for solving scattering Maxwell prob-
lems in harmonic regime requires no further proof. Using them in combination with
a rapid multipole algorithm and an iterative solver makes them efficient and precise
methods that can solve problems involving hundreds of thousands of unknowns. But
the efficiency of iterative methods depends on the conditioning of the linear sys-
tems, so it is absolutely crucial to have either high-performance preconditioners or
intrinsically well-conditioned integral formulations. It is in this field, a strategic one
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because necessary for solving very large calculation configurations, that ONERA
(the french aerospace lab) and CERFACS (European Centre for Advanced Scien-
tific Computing) have undertaken a collaborative work. In this context, the authors’
goal is to give a continuation to a powerful integral equation whose first tentative
step was presented in [1] for the soft body problem of acoustic before to be extended
in [2] to the perfect electrical conductor (PEC) problem of electromagnetism. The
convincing results obtained in this last case were naturally calling for an adaptation
of the method to more complex materials. In this direction, [3] brought a promising
formulation dedicated to scattering problems with a Leontovich condition. Since
then, the aim appears clearly to have in the future a well-conditioned integral equa-
tion, as efficient as the one built for the PEC case, but able to treat a realistic object
made of dielectrics, metal and thin layer coatings, with a special regard to radar
cross section applications.

The method we present here tries to fill this program and belongs to the class of
source integral equation (SIE) methods, also known as indirect methods in the math-
ematical literature. Contrary to the more popular field (or direct) integral equations
commonly used in industrial codes, whose unknowns have a clear physical meaning
because being the Cauchy data of the electromagnetic field, the SIE methods lead to
solutions (the sources) playing the role of pure mathematical currents on the bound-
ary, which have to be radiated by a potential before producing the wanted induced
electric currents. However, the desire to deal with unknowns with a physical inter-
pretation imposes a constraint which severely restricts the possibilities to construct
stable formulations. The equations derived from general potentials are much richer
and provide tools for the composition of formulations with better properties than
their “physical” counterparts.

At the heart of our method is the desire to find a way to incorporate in the integral
formalism information on the solution that can be extracted beforehand, using for
this the means offered by the pseudo-differential calculus of operators. Actually, in
the case of the PEC problem the equation we are able to build depends on the choice
of an operator Ỹ+ whose purpose is to approximate the admittance of the diffracting
body as best as possible. In the limit case where this approximation is exact, the
integral operator to be inverted becomes the identity. We thus try to construct ap-
proximations of the admittance sufficiently accurate to produce after discretization
a linear system that is by essence well conditioned.

Such an equation appears as a generalization of the combined source integral
equation of Mautz-Harrigton [4] in which the coupling coefficient between two
potentials is replaced by the Ỹ+ operator. But the framework of this generalized
combined source integral equation (GCSIE) is not specific to the PEC problem.
Indeed, adopting a single and general setting to handle both boundary and trans-
mission problems together, we present in section 2 a methodology to build a class
of integral equations generalizing the former GCSIE to new scattering problems.
Subsequent sections deal with the application of this general framework to PEC,
impedance and transmission problems.
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Related to our approach is some other connected works we refer to in [5]. Com-
pletely embedded in the GCSIE formalism is for instance the so-called generalized
Brakhage-Werner equation studied in [6, 7] or the regularized equation of [8].

We warn the reader that due to space limitations he will not find neither any math-
ematical details – results being asserted without proof – nor a detailed presentation
of the numerical schemes. We have preferred to give an overview of the subject,
enlightening the generality of the methodology and focusing on some numerical
results we hope convincing.

2 The General Framework of the GCSIE Formalism

All boundary or transmission problems we plan to solve, read formally as

Find w ∈ W such that γw = u0 (1)

the source term u0 being a given distribution of currents on the boundary Γ of a
compact set D (the obstacle), W a functional space of admissible wave solutions
usually propagating in R3 \D or R3 \Γ , and γ a boundary trace operator.

Moreover, W can be parameterized with the help of a potential C

w = C (γcw) , (2)

where γcw stands for the Cauchy data of w ∈W . Said differently, (2) means than any
field w ∈W can be rebuilt from the knowledge of its Cauchy data γcw. The potential
C linking any current on Γ to a wave in W is called Calderón potential.

Since the initial problem (1) we want to solve is supposed to be well-posed, there
exists an operator R (used hereafter as a regularizing one) defined by

R : γw %→ γcw . (3)

We have to keep in mind that R is a boundary operator which by definition verifies
the crucial relation

γC R = Id (4)

where Id is the identity operator on Γ .
Now, we are able to build, at least formally, a new class of boundary integral

equations. Let R̃ be an approximation of R. We decide to search the solution w of
the initial problem (1) under the form

w = C R̃u (5)

where u is a current distribution on Γ acting like a source excitation of the potential
C R̃. Therefore, in order to find a source u radiating the field solution of our initial
problem (1), we have to solve the resulting source (or indirect) integral equation
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γC R̃u = u0 . (6)

Because of the crucial relation (4), if R̃ = R the new equation (6) becomes triv-
ial. Therefore, we suspect that when R̃ is a good approximation of R, the resulting
equation is a “small” perturbation of identity which produces after discretization a
well-conditioned linear system.

Although we won’t treat the problem of the discretization of the GCSIE, it is
worth to keep in mind that the vocation of these equations is to be solved iteratively.
Hence, the problem to deal with a product of operators (γC and R̃) possibly non
local, is not so sharp it could appear at first sight. Actually, in the context of an
iterative method the R̃ operator can be viewed as playing the role of a preconditioner.

3 Assumptions and Notations

Generic currents on Γ (i.e. tangential vector-valued functions) are noted u or v and
are supposed to belong to classical Sobolev spaces Hs

T (Γ ). The space of finite energy
currents (s = 0) is noted L2

T (Γ ).
A vector-valued function E is said to be an electric field if ∇×∇×E− k2E = 0.

When such a field satisfies the well-known Sommerfeld radiation condition we say
that it is radiating. The wave number k is supposed to be constant on the exterior
(resp. interior) domain Ω+ (resp. Ω−) of the obstacle.

Related to a given electric field E is the magnetic field H = 1
ik∇×E.

Given the unit outward normal n to Γ , the notation n× means, following the
context, either the π/2 rotation boundary operator on Γ , or the composition of the
tangential trace operator followed by a rotation on the boundary. The tangential trace
on Γ of a given field E is noted Etan.

The space W + (resp. W−) is made of all radiating electric fields defined on Ω+

(resp. Ω−) and having tangential traces on Γ . The famous reconstruction formula
(Stratton-Chu) valid for all E ∈ W+ is

E = T n×H−K n×E , (7)

where T = 1
ik∇×∇×G , K = ∇×G with G being the vector potential defined by

G u(x) = −1
4π

∫
Γ

eik‖x−y‖
‖x−y‖ u(y)dy (‖ ‖ is the euclidean norm of R3).

Tangential traces took from the exterior domain and applied to the potentials
G , K and T define three pseudo-differential boundary operators n× G = n×G ,
n×K = n×K + Id/2 and n×T = n×T of order −1, −1 and 1 respectively.
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4 Boundary Value Problems

Given an incident electric field Einc, a possible modelling of the scattered field E
spread by an object coated with an impedance layer is

Find E ∈ W+ such that Etan +αn×H = −Einc
tan +αn×Hinc , (8)

where α is a complex-valued function defined on Γ . Returning to the formal de-
scription of the problem (1) and wanting to derive the scattering problem (8), we set
W = W+ and the trace operator as

γE = n×E−αHtan . (9)

The source excitation u0 becomes −γEinc, and because of the Stratton-Chu for-
mula (7) we choose as Cauchy data trace operator γc = (n×, 1

ik n ×∇×) and as
Calderón potential C (u,v) = T v − K u which verify the abstract Green for-
mula (2).

We want now to give an expression of R more tractable than the definition (3)
which requires to solve the initial problem (1). Given a current u on Γ , we consider
the solution E of the problem (1) with u0 = u

u = n×E−αHtan . (10)

Applying the definition of R given in (3) with our Cauchy data trace operator leads
to Ru = γcu = (n×E,n×H). So, writing R in coordinates (RE ,RH) one has

REu = n×E RHu = n×H . (11)

Expanding n×E and n×H in (10) with (11) gives RE = Id−αn×RH . Therefore
R = (Id−αn×RH ,RH) and we suggest to approach R as R̃ = (Id−αn× R̃H , R̃H)
where R̃H is an approximation of RH to build. The GCSIE equation is

γT R̃Hu− γK (u−αn× R̃Hu) = −n×Einc +αHinc
tan . (12)

Noticing Y+ the exterior admittance of Γ linking n×E to n×H for all E ∈ W+

and using conjointly n × E = −Y+(n × H) and right relation of (11), one obtains
from (10) that RH = (αn × Id −Y+)−1. Therefore, it seems natural to search an
approximation of RH under the form R̃H = (αn × Id − Ỹ+)−1 where Ỹ+ is an ap-
proximation of Y+. In the special case of α = 0 (PEC problem), using the fact that
Y 2

+ = −Id, RH = Y+, we will prefer to take R̃H = Ỹ+. Hence, we have

R̃H =

{
(αn× Id− Ỹ+)−1 if α �= 0

Ỹ+ if α = 0
(13)

and the next step is now to find good approximations of Y+ leading to a well-posed
equation (12)–(13).



388 D.P. Levadoux et al.

4.1 A Direct Approximation of Y+

A quite natural way to build approximations of the admittance is to pull back onto
the boundary Γ of the scatterer, the well known admittance of the tangent plane.
Viewing the admittance of the plane as the trace of a potential, say −2n×T , it is
attractive to import crudely this formula onto the boundary and to consider the first
approximation

Ỹ+ = −2n×T . (14)

This first attempt leads to a GCSIE (12)–(13) being a compact perturbation of iden-
tity on Hs

T but unfortunately, with spurious modes too. In order to remove it, one
has to localize (14) with a quadratic partition of unity (Up,χp)1 on the boundary,
leading to the following pseudo-local approximation

Ỹ+ = −2∑
p
χp n×T χp . (15)

In the case of the PEC problem, the resulting equation is a one-to-one mapping
but not a compact perturbation of identity! Actually, one can show that under as-
sumption on the width of patches (which have to be not too small compared to the
wavelength), the equation (read on L2

T (Γ )) is a compact perturbation of a positive
and coercive operator [2, 9].

The question to know if, when α is not equal to 0 (impedant problem), the GCSIE
is always well-posed with (15) is not answered for the moment. Anyway, in this case
this technique raises a crucial problem of computation. Even if the support of the
Schwartz kernel of Ỹ+ is well narrowed around the diagonal, it is not rigorously
a local operator. Hence, one could mind if the numerical cost of the iterative (or
direct) inversion of such an operator would not be prohibitive in practice. The next
construction of Ỹ+ overcomes this problem.

4.2 An Indirect Approximation of Y+ via the Helmholtz Potentials

Another technique to approximate Y+ consists to use the Helmholtz decomposition.
There exist two boundary operators Ploop, Pstar going from HT(Γ ) to H(Γ ) such that
for all u ∈ HT(Γ )

u = −n×∇Ploopu+∇Pstaru .

If A is an operator acting on vector fields of Γ , we can identify A with a 2×2 matrix
of operators acting on scalar fields following

1 (Up)p is a set of patches recovering Γ , and (χp)p a family of truncation functions with support
in Up and such that ∑p χ2

p = 1.
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A =
(−n×∇ ∇

)(A11 A12

A21 A22

)(
Ploop

Pstar

)
.

We recall that T can be read as T = 1
ik (∇G ÷+k2G). On a plane, n and ∇ are

commuting with G, and hence the representation of T with the Helmholtz potentials
is

n×T =
1
ik

(
0 −G(Δ + k2Id)

k2G 0

)
.

Still in the plane, the Fourier transform of the kernel of G is Ĝ(ξ ) = 1
2i (k

2 −
‖ξ‖2)−1/2. Therefore G = 1

2i (Δ + k2Id)−1/2 and because Y+ = −2n × T on the
plane, Y+ is equal to

Ỹ+ =
1
k

(
0 −(Δ + k2Id)1/2

k2(Δ + k2Id)−1/2 0

)
. (16)

So as before with the former formula (14), we have a representation of Y+ on the
plane throw a formula involving operators which make sense also on a general sur-
face. Indeed, if Δ in (16) is viewed as the Laplace-Beltrami operator, this formula is
able to define a Ỹ+ operator on Γ candidate to the GCSIE (12)–(13).

But as in the former construction, the resulting GCSIE suffers from spurious
modes. Equivalent in spirit to the localization process used with the cut-off function,
we have to localize Ỹ+ in replacing k with k + iε where ε is a small damping param-
eter. Hence, the resulting GCSIE (12)–(13)–(16) appears as a well-posed equation
being furthermore a compact perturbation of identity on L2

T (Γ ) [3].

4.3 Discretization and Numerical Results

As ever said, the question of the discretization is out of the scope of this paper and
we will be voluntary a little bit sketchy. The important is to show with numerical
experiments that the GCSIE is truly a well-conditioned equation more powerful than
the other ones which can be bought off the shelf.

For the PEC problem we have compared our equation to the classic EFIE and
CFIE equations, and for the impedance problem to the ICFIE (Impedance CFIE)
[10] and the BGLIE (Bachelot-Gay-Lange Integral Equation) [11]. At last, the
choice of Raviart-Thomas finite elements of lower order was quite an evidence con-
sidering their popularity in all industrial codes.

About the iterative solver, the well-known GMRES has been practiced with a
stopping criterion on the residue fixed to 10−4, and an optional SPAI (Sparse Pa-
tern Approximation Inverse) preconditioner. When necessary, we used a so-called
flexible GMRES (FGMRES) based on a deflation-like method.

Coming back to the the GCSIE (12) formally read as (AR−BR′)u = u0 (A = γT ,
B = γK , etc), we remark that the fundamental problem we have to face is to deal
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with the product AR involving two non local operators. We can not use a Galerkin
method. Not impossible in principle, the numerical computation of the matrix coef-
ficients or even the matrix-vector product would be out of reach in practice. In other
words, if we note Qh the L2 projection onto the finite element space Xh, it is unreal-
istic to expect handle the discrete equation QhuhAR−QhBR′uh = Qhu0 in order to
have a discrete solution uh of (12).

In the context of an iterative method, the challenge of the discretization of a
GCSIE equation consists to find suitable projectors Ph, P′

h onto Xh such that given
n ∈ N, the nth iterate solution of

QhAPhRuh −QhBP′
hR′uh = Qhu0 (17)

tends to the nth iterate solution of the continuous equation when the mesh-size pa-
rameter h tends to 0. It is a very crucial step we can not develop here, but is explained
in details in [12].

Nevertheless, discrete GCSIE (17) could seem to be still expensive, since we
have to perform two independent products involving the non local operators A and B.
However, a judicious discretization of these operators by the fast multipole method
(FMM) enables to gather the transfer and reconstruction phases for A and B. There-
fore, the additional cost beside the initial one represented by the sparse-like products
with R and R′ is just a single FMM product.

For the PEC problem, the techniques used to build stable R operators (R′ = Id)
has been thoroughly studied in [13] and an outline of the most efficient implemen-
tation version is presented in [2] or [12]. One of its foremost features is that it leads
to linear systems showing a condition number independent of both the mesh re-
finement and the frequency. Results are a significant speed up of the solution time.
We point out, for instance, that the Channel cavity (Fig. 1, right), which models an
aircraft air intake was processed at 7 GHz (300000 unknowns) in half the computa-
tional time usually needed with a classical equation (Fig. 2). Same results stand for
cavities in general as for instance the hollow sphere of Fig. 1 (left).

Fig. 1: Translucent view of the spherical cavity and the Channel air intake used for the tests

Concerning the indirect construction of Ỹ+, the main problem to overcome is
the synthesis of the square roots appearing in (16). The technique used is explained
in [3] and is based on a Padé expansion of the square root took with a rotated branch
cut eiπ/3

R− as prescribed in [14]. In practice, it leads to the construction of some
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Fig. 2: Solution times as a function of the angle of presentation of PEC target. Left: spherical cavity
at 2.8 GHz with 264,186 unknowns. Right: Channel at 7 GHz with 309,711 unknowns

additional sparse matrices efficiently factorized by the solver MUMPS (MUlti-
frontal Massively Parallel sparse direct Solver) [15]. The construction and the eval-
uation of Ỹ+ is completely bearable since it represents at most 20% of the total CPU
time. Comparisons with the others integral equations show that the GCSIE gives
a similar accurate solution (Fig. 3) with a spectacular speed up of the CPU time
(Tab. 1 and Fig. 3).

Table 1: Iteration counts and total CPU times for the Channel cavity PEC, full or partially coated
at 5GHz with 153,033 unknowns
Equation Solver Coating Iterations CPU time

GCSIE GMRES All surface 22 43 min
BGLIE GMRES + prec All surface No convergence 14 h 12 min
BGLIE FGMRES All surface 18 21 h 32 min
ICFIE GMRES + prec All surface 35 3 h

GCSIE GMRES Inner surface 22 43 min
BGLIE FGMRES Inner surface 44 37 h
ICFIE GMRES + prec Inner surface 37 3 h

GCSIE GMRES None (PEC) 66 1 h 54 min
EFIE FGMRES None (PEC) 50 28 h 32 min
CFIE GMRES + prec None (PEC) 262 8 h 23 min

5 Transmission Problems

Let us introduce some additional notations. To a given electric field E we associate
the magnetic-like field H′ = ∇×E. Let n+ = n and n− = −n. Understanding n+×
as a trace (took from Ω+) operator, we set γ+

E = n+× and γ+
H′ = n+ ×∇×. Corre-

sponding definitions for interior traces operators γ−
E = n−× and γ−

H′ = n− ×∇× are
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Fig. 3: Left: bistatic radar cross section of the partially coated channel cavity. Right: solution times
as a function of the angle of presentation of the target

obvious. Because the wave number k+ in Ω+ is different of k− in Ω−, we note T+,
K+ (resp. T−, K−) the T , K defined in section 3 with k = k+ (resp. k = k−).

In this section W is the space of all electric fields E defined on R3\Γ such that the
restriction of E to Ω+ (resp. Ω−) is in W+ (resp. W−). For the sake of simplicity,
the obstacle is supposed to be a dielectric whose the permeability is the same as the
vacuum (i.e. non magnetic material). When an incident electric field Einc collides
with such an object it is usual to characterize the resulting transmitted/scattered field
E as solution of the problem

Find E ∈ W such that

{
n+ ×E+ n− ×E = −n+ ×Einc

n+ ×∇×E+ n−×∇×E = −n+ ×∇×Einc (18)

Abstract problem (1) becomes the concrete transmission problem (18) when γ =
(γ+

EH′ + γ−
EH′) with γ+

EH′ = (γ+
E ,γ+

H′), γ−
EH′ = (γ−

E ,γ−
H′) and u0 = −γ+

EH′Einc.
Cauchy data trace operator is chosen as γc = (γ+

EH′ ,γ−
EH′) related to which

is the Calderón potential C (u+,v+,u−,v−) = C +(u+,v+) + C −(u−,v−), with
C±(u,v) = 1

ik± T±v−K±u.
The translation of (3) is (γ+

EH′ +γ−
EH′)R = Id, so if R+ = γ+

EH′R and R− = γ−
EH′R

R+ + R− = Id . (19)

If R̃+ is an approximation of R+, it is natural to take Id− R̃+ as an approximation
of R̃−. Noticing C+ = γ+

EH′C and C− = γ−
EH′C , the GCSIE equation (6) becomes

(
C+R̃+ +C−(Id− R̃+)

)
(u,v) = −(γ+

EH′ + γ−
EH′)Einc . (20)

Now we explain how we build R̃+. Related to the Cauchy data γ+
EH′ and γ−

EH′
are the admittance operators Y ′± : n± ×E %→ n± ×H′. Reading R+ as a 2×2 matrix
of operators R+

i j , the admittance operators Y ′± allows to couple coefficients of R±
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between each others as

R±
21 =Y ′

±R±
11 R±

22 =Y ′
±R±

12 . (21)

From (19) and (21), one has R+
11 + R−

11 = Id and Y ′
+R+

11 +Y ′−R−
11 = 0, giving R+

11
equal to

A = −(Y ′
+ −Y ′

−)Y ′
− . (22)

Always from (19) and (21) one can express the coefficients of R+ in function of A

R+ =
(

A −AZ′−
Y ′

+A −Y ′
+AZ′−

)
. (23)

Given Ã, Ỹ ′
+ and Z̃′−, approximations of resp. A, Y ′

+ and Z′−, one suggest to take as
approximation of R+

R̃+ =
(

R̃+
E

Ỹ ′
+R̃+

E

)
where R̃+

E = Ã
(
Id −Z̃′−

)
. (24)

As approximation of A we can take Ã =( Id+ β 2−1
2 Πstar)/(β 2+1) (with β = k+/k−)

because a pseudo-differential analysis shows that A− Ã is a −1 order operator. The
problem to approximate Y ′

+ and Z′− is the same as to approximate the admittance
operators Y+, Y− because Y ′

+ = ik+Y+ and Z′− = (ik−Y−)−1 =− 1
ik−Y−. Therefore,Y ′

+
and Z′− can be approached as the same manner as Y+ in section 4.2. In this case, the
resulting GCSIE (20) is a well-posed equation at any frequency. More precisely, the
underlying operator is a one-to-one mapping and a compact perturbation of identity

in H−1/2
div ∩L2

T .
To finish, let us give some promising results. On a spherical geometry, we have

computed analytically the eigenvalues of the underlying operator of the GCSIE (20)–
(24) equipped with the above Ã operator and the Padé approximations of admittance
operators. Fig. 4 (left) reveals a spectrum well clustered around 1 although the Padé
approximation is only of order 2. Fig. 4 (right) shows the GMRES convergence
historical of the GCSIE compared to some others classical integral formulations
(TENE-THNH, TENE-TH, TENE-NH) [16] used to treat the transmission prob-
lems. We point out a significant speed-up of the convergence rate. In the light of
these first results, the new formulation seems very attractive.

References

1. Levadoux, D.P., Michielsen, B.L.: Analysis of a boundary integral equation for high frequency
Helmholtz problems. 4th International Conference on Mathematical and Numerical Aspects
of Wave Propagation pp. 765–767 (Golden, Colorado, 1–5 june 1998)



394 D.P. Levadoux et al.

−0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

TENE-NH

TENE-THNH

TENE-TH

GCSIE

Fig. 4: Transmission problem: analytical results on a sphere for k+ = 50 and k− = 70.71. Left:
spectrum of the GCSIE. Right: GMRES convergence historical of several formulations

2. Alouges, F., Borel, S., Levadoux, D.: A stable well-conditioned integral equation for electro-
magnetism scattering. J. Comp. Appl. Math 204, 440–451 (2007)

3. Pernet, S.: A well-conditioned integral equation for iterative solution of scattering problems
with a variable Leontovich boundary condition. Math. Model. Num. Anal. (submitted)

4. Mautz, J., Harrington, R.: A combined-source solution for radiation and scattering from a
perfectly conducting body. IEEE Trans. Antennas Propag. AP-27(4), 445–454 (1979)

5. Levadoux, D.: Recent advances in the pre-conditioning of integral equations of electromag-
netism. Oberwolfach Reports 5, 56–59 (2007)

6. Antoine, X., Darbas, M.: Alternative integral equations for the iterative solution of acoustic
scattering problems. Quart. J. Mech. Appl. Math. 58(1), 107–128 (2005)

7. Darbas, M.: Generalized combined field integral equations for the iterative solution of the
three-dimensional maxwell equations. Applied Mathematics Letters 19(8), 834–839 (2006)

8. Bruno, O., Elling, T., Paffenroth, R., Turc, C.: Electromagnetic integral equations requiring
small numbers of krylov-subspace iterations. Online preprint (2008)

9. Borel, S., Levadoux, D., Alouges, F.: A new well-conditioned integral formulation for
Maxwell equations in three-dimensions. IEEE Trans. Antennas Propag. 53(9), 2995–3004
(2005)

10. Collino, F., Millot, F., Pernet, S.: Boundary-integral methods for iterative solution of scattering
problems with variable impedance surface condition. PIER 80, 1–28 (2008)
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Simulation of Large Interconnect Structures
Using ILU-Type Preconditioner

D. Harutyunyan, W. Schoenmaker, and W.H.A. Schilders

Abstract For a fast simulation of interconnect structures we consider precondi-
tioned iterative solution methods for large complex valued linear systems. In many
applications the discretized equations result in ill-conditioned matrices, and effi-
cient preconditioners are indispensable to solve the linear systems accurately. We
apply the dual threshold incomplete LU (ILUT) factorization as preconditioners for
the BICGSTAB iterative solver. On complicated problems with a different range
of frequencies we show that the BICGSTAB method with the ILUT preconditioner
provides a very efficient solution for the linear systems.

1 Introduction

With the increasing complexity of on-chip interconnect structures more robust and
fast simulation methods are necessary to understand the behavior of electromagnetic
fields in such complex structures. For a better understanding of the performance of
these structures field simulation approaches provide more insight about the behavior
of the electromagnetic fields.

The governing equations of the electromagnetic fields are given by the Maxwell
equations. For many applications the potential formulation of the Maxwell equa-
tions is used which has several advantages. In particular, for interconnect structures
the potential formulation allows separate modeling of fields in dielectric, semicon-
ductor and metallic regions, which reduces the computational time essentially [1,2].
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The differential operators are discretized using the usual finite-volume methods for
the electric potential and the charge density. However, for the magnetic vector po-
tential the finite-volume method is replaced by a ‘finite-surface method’ [3], whose
origin is found in Stokes’ theorem in contrary to the finite-volume methods that are
rooted in Gauss’ theorem [1]. This discretization method preserves important phys-
ical characteristics of the electromagnetic fields at the discrete level, and we obtain
physically relevant solutions. After the discretization of the differential equations we
obtain a linear system of equations of the form Ax = b, where the coefficient matrix
A is a large scale, sparse and complex valued. For large scale problems direct lin-
ear solvers are not always possible to implement, and Krylov subspace methods are
common tools to solve linear systems approximately. The performance of Krylov
subspace methods highly depends on the condition number of the matrix, and for
complicated real life problems the resulting matrix A is usually ill-conditioned. For
such problems Krylov subspace methods either require too many iteration steps for
the convergence or, in the worst case, they do not converge at all. To overcome these
difficulties a good matrix preconditioner can significantly improve the convergence
rate of the Krylov subspace methods.

In this paper we apply the BICGSTAB iterative solution algorithm [4] with the
ILUT preconditioner [5, 6]. In two problems we show that the ILUT preconditioner
improves the convergence rate of BICGSTAB algorithm significantly, and provides
a very accurate solution for the linear system.

2 Potential Formulation of the Maxwell Equations

From the Maxwell equations it follows that there is a vector potential A and a scalar
potential V such that

B = ∇× A, (1) E = −∂t A−∇V, (2)
where E is the electric field and B is the magnetic flux density. The current

density is J = σ E + Jdiff, where Jdiff is the diffusive part of the carrier flows.
This way of writing the current allows us to deal with metals in which the diffusive
currents are negligible, as well as with semiconductors. In the latter case the first
term represents the drift terms of the electron and hole currents. Then the potential
formulation of the Maxwell equations in the frequency domain can be written as [1]

∇× μ−1∇× A− (σ + jωε)(−jω A−∇V) = Jdiff, (3a)

∇ · (ε(∇V + jω A)) = −ρ , in insulators and semiconductors, (3b)

∇ · ((σ + jωε)(∇V + jω A)) = 0, in metals, (3c)

where the dielectric permittivity ε (=ε0εr), the conductivity σ , and the magnetic
permeability μ (=μ0μr) are assumed to be space dependent positive definite tensors.

For the unique solution of (3) we use the following gauge condition which is
linear in the scalar and vector potentials, namely
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1
μ0

∇(∇ · A)+ jωεξ∇V = 0, (4)

where 0 ≤ ξ ≤ 1. The above equation resembles the Coulomb gauge for ξ = 0
and the Lorentz gauge for ξ = 1 and constant ε . In our applications the simulation
domain consist of an interconnect structure extended by a region of air. Therefore
two types of boundary conditions are defined, one on the air surface and the other on
the interconnect (device) boundary. For the scalar potential V it is straightforward
to define voltage (Dirichlet) type boundary conditions on the metal terminals and
Neumann type boundary conditions on the surface of the simulation domain. The
boundary conditions for the vector potential A are more subtle and it is out of the
scope of this paper to go into the details, instead we refer to [1, 2].

For the discretization of (3) and (4) we use unstructured tetrahedral grid which
is constructed by using commercial software Magwel. The vector potential A is
computed by finite-surface method. From the differential geometrical point of view
A is a 1-form and on the computational grid the corresponding degrees of freedoms

are associated with the element edges. The finite volume method is applied for the
computation of the scalar potential V , which is a 0-form and the degrees of freedom
are associated with the element nodes. In this way we obtain physically relevant
solutions. More details about the discretization scheme can be found in [1, 3]. In
our applications the resulting linear systems are large and ill-conditioned, which
requires a very robust and an efficient preconditioner for the iterative solvers.

3 Short Review on ILU Preconditioners

There are two class of general purpose preconditioners for large linear systems: ILU
preconditioners and sparse approximate inverse preconditioners. Among ILU pre-
conditioners a common approach is to use ILU(0) factorization which uses a fixed
sparsity pattern. Although it is rather easy to construct the ILU(0) preconditioner,
for large scale ill-conditioned problems it is well known that this factorization may
not be robust and can lead to a very bad approximations and very poor convergence
of the iterative methods. In particular, for our problems the ILU(0) preconditioner
is not at all applicable because the resulting factorization is singular and can not be
used as a preconditioner. An improvement is to use ILU(τ) factorization,which al-
lows more fill-in depending on the drop tolerance τ . The drawback of this method is
that the memory requirement is unknown in advance. For ill-conditioned problems
a small drop tolerance τ is required to construct a good ILU(τ) preconditioner, but
for large problems the factorization is not possible because of memory limitations.
The construction of a sparse approximate inverse for ill-conditioned problems is far
more complicated and time consuming.

To overcome the memory limitation problems of an ILU(τ) preconditioner when
applied to complicated problems we use a dual threshold ILUT(p,τ) preconditioner.
Similar to the ILU(τ) preconditioner, the same dropping rule is applied based on the
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drop tolerance τ , then only p largest elements in the row of the L and U matrices
are kept. In the course of factorization τ controls the computational cost while p
controls the computer memory, for details see [5].

The computational time required for the ILUT factorization can be reduced by
proper reordering of the matrix elements. There are several reordering algorithms
based on different methods. In our experiments we make a comparison between two
common reordering methods. The first method is the symmetric reverse Cuthill-
McKee reordering (SYMRCM) [7] and the second method is the approximate min-
imum degree (AMD) reordering [8].

4 Numerical Experiments

In all experiments the iterative procedure is stopped if the 2-norm of the relative
residual (relative to the 2-norm of b) is reduced by a factor 10−12. We have chosen
a small reduction factor in order to observe the validity range of the preconditioner.

We run all the numerical experiments under Linux machine with Intel Pentium
IV with 3 GHz processor and 4 GB of RAM. Matrix reordering is done with Matlab
built-in functions amd and symrcm. For the ILUT factorization ZITSOL [9] free
software package written in C is applied with the BICGSTAB iterative solver, which
has proved to be an efficient solver for the potential formulation of the Maxwell
equations, see for example [10].

Several notations are used to show the properties of the preconditioner. The com-
putational time in seconds required to construct the ILUT preconditioner is denoted
by Pr-time and the corresponding required time for the BICGSTAB iterations is de-
noted by It-time. The density ratio of the preconditioned versus the original system
is denoted by Ratio=nnz(L+U)/nnz(A).

Fig. 1: Left: Interconnect structure of Test case 1. Right: On-chip inductor of Test case 2
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4.1 Test Case 1

In this section we present numerical experiments on an interconnect structure, see
Fig. 1 (left), with dimension in micrometers 4.4×5.5×4.24. This test case is pro-
vided by NXP semiconductors, where the operating frequency is 500 MHz.

First we consider a coarse mesh which results in a matrix of dimension 141513.
The resulting matrix of the linear system is ill-conditioned and it is required to
choose a small value for the drop tolerance τ to achieve convergence. Then a proper
choice of p is found depending on the complexity of the matrix and memory limi-
tations. Detailed performance information about both methods is given in Table 1.
Note that with the chosen values of the drop tolerances it was impossible to con-
struct the ILU(τ) preconditioner because of memory limitations. With the AMD
reordering the iterative method requires significantly less number of iterations as
compared to the SYMRCM reordering. It is clear that the AMD reordering requires
less time to construct the preconditioner, and the iteration time with the AMD re-
ordering is much smaller as compared to the iteration time with the SYMRCM
reordering. Furthermore, we note that with the AMD reordering the required fill-in
of the preconditioner is less than that with the SYMRCM reordering. Because of
the space limitation we do not show a similar table for the other experiments, but all
of the above observations hold true for all our experiments. Distribution of the 25
smallest magnitude eigenvalues of the original matrix and the preconditioned ma-
trix computed by the Jacobi-Davidson method is given in Fig. 2 (left). It is clear that
the smallest magnitude eigenvalues of the preconditioned matrix are shifted away
from the origin, which explains the good convergence behavior of the BICGSTAB
method with the ILUT preconditioner.

We perform a similar experiment on a fine mesh which results in a matrix of
dimension 428710. This case is more difficult and requires larger value of p and
smaller drop tolerance τ to obtain an accurate solution. The convergence diagram
of the relative residual with the AMD reordering is given in Fig. 2 (right). Let us
mention that we failed to obtain convergence with the SYMRCM reordering.

Table 1: Test case 1. Performance of the preconditioner with the two different reordering methods

SYMRCM AMD
p τ Pr-time It-time Its Ratio Pr-time It-time It Ratio

100 10−7 1029.53 325.65 430 9.39 618.13 111.80 189 6.24
100 10−8 1383.33 579.21 680 9.40 814.00 150.54 231 6.28
150 10−7 1867.49 300.55 303 13.94 1046.66 76.25 104 8.62
150 10−8 2231.82 273.94 273 13.99 1154.57 74.46 99 8.71
200 10−6 1807.44 600.37 472 18.21 986.45 122.82 147 10.57
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Fig. 2: Test case 1. Left: Distribution of the 25 smallest magnitude eigenvalues on the coarse mesh
of the original matrix and the preconditioned matrix with the ILUT(p,τ) preconditioner with the
AMD reordering. Right: Convergence diagram of the relative residual on the fine mesh with the
ILUT(p,τ) preconditioner with the AMD reordering

4.2 Test Case 2

In the following numerical experiments we consider an on-chip inductor. The di-
mension of the structure in micrometers is 1000× 1000× 407. The inductor with
4.5 windings is provided by austriamicrosystems and contains a pattern of n-well
implants below the inductor in the active device layer. This pattern is mimicked
here by the large cross in Fig. 1 (right). The goal of this pattern is to reduce eddy
currents in the substrate. The inductor is processed in the M4 (the 4th metal layer)
and the underpath is found in M3.

In our applications for the solution of the linear systems the AMD reordering has
proved to be more efficient than the SYMRCM reordering, therefore in the following
experiments we use only AMD reordering. Convergence diagrams of the relative
residual of the BICGSTAB iterative method with the ILUT preconditioner for the
frequencies of 1 GHz and 10 GHz are shown in Fig. 3. As it is expected, for higher
frequencies more fill-in, smaller drop tolerance and more iterations are required to
achieve the same order of accuracy.

In practice the choice of the parameters p and τ is more based on the problem
and experience, see also [5, 6]. In our applications we have made the following
observations:

• For a fixed value of p and τ0, for which a convergence is reached, further de-
creasing the drop tolerance τ < τ0 the number of iterations does not decrease
significantly but instead it requires much more time for the construction of the
preconditioner.

• For a fixed value of τ (or p) by increasing the fill-in parameter far enough (or
by decreasing the drop tolerance ) the required time for BICGSTAB iterations is
almost constant and the most time is spent of the construction of the precondi-
tioner.
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Based on our experience we suggest in practical applications for difficult problems
to start with p ≈ 50 and τ ≈ 10−5 and then follow how the error of the iterative
method behaves. If convergence is not reached then based on the first observation
we suggest at first to increase the fill-in parameter. If no convergence is reached then
decrease also the drop tolerance.
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Fig. 3: Test case 2. Convergence diagram of the relative residual with the ILUT(p,τ) precondi-
tioner. Left: Frequency is 1GHz, right: Frequency is 10 GHz

The goal of the electromagnetic field solving in this experiment is to compute the
quality factor Q, the inductance L and the resistance R. These variables are extracted
from the admittance matrix Y , which is computed by post-processing step after the
vector and scalar potentials are computed. A very standard procedure for computing
the Y parameters is to apply a voltage at one port and ground all the other ports. Then
compute output current at all the ports and calculate corresponding elements of Y
matrix. Repeat this procedure for all the ports and obtain the admittance matrix.
Current through a surface S is computed by IS =

∫
S J ·dS. The simulation results for

the Y-parameters as well as the measurement results are shown in Fig. 4.

5 Conclusions

We discussed simulation of interconnect structures where the resulting linear sys-
tems after space discretization are large and ill-conditioned. We have shown that the
ILUT preconditioner is well applicable for these large and difficult problems and
provides a very efficient solution. The use of AMD reordering is necessary for such
complicated problems. The performance of the preconditioner was demonstrated in
two different structures.
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Abstract We discuss the basics of discontinuous Galerkin methods (DG) for CEM
as an alternative of emerging importance to the widely used FDTD. The benefits
of DG methods include geometric flexibility, high-order accuracy, explicit time-
advancement, and very high parallel performance for large scale applications. The
performance of the scheme shall be illustrated by several examples. As an exam-
ple of particular interest, we further explore efficient probabilistic ways of dealing
with uncertainty and uncertainty quantification in electromagnetics applications.
Whereas the discussion often draws on scattering applications, the techniques are
applicable to general problems in CEM.

1 Introduction

The simplicity, robustness, and reasonable accuracy of the classical finite-difference
time-domain (FDTD) method [14] for solving the time-domain Maxwell’s equations
has propelled this method to become the method of choice among engineers and
scientist solving Maxwell’s equations in the time-domain. The last decade has seen
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an explosion in applications and developments, many driven by the very influential
texts by Taflove [11, 12].

By now it is also clear, however, that the FDTD methods have severe limitations,
e.g., its inherent 2nd order accuracy severely limits its ability to correctly represent
wave motion over long distances unless the grid is prohibitively fine. Furthermore,
the simplicity of the method, on one hand its very strength, also becomes its most
severe restriction by prohibiting the accurate representation of problems in complex
geometries.

For the accurate and efficient modeling of large scale EM applications the short-
comings of low order methods render them impractical due to the need for fine
grids to avoid prohibitive error accumulation. However, this understanding of the
very source of the limitations also suggest that a high-order time-domain solution
technique may offer the efficiency and accuracy required for future large scale CEM
modeling capabilities. High-order methods are characterized by being able to accu-
rately represent wave propagation over very long distances, using only a few points
per wavelength and with an error accumulation rate that is significantly reduced as
compared to 2nd order accurate schemes [9]. For three-dimensional applications,
this translates into dramatic reductions in the required computational resources, i.e.,
memory and execution time, and promises to offer the ability to model problems of
a realistic complexity and size.

In the following we discuss some of the basic elements of discontinuous Galerkin
methods with an emphasis on time-domain electromagnetics. As we will see, these
recent developments have paved the way for overcoming many of the restrictions as-
sociated with classical high-order methods. In contrast to high-order schemes based
on classical finite element techniques, the approach taken here leads to fully explicit
schemes.

2 The Discontinuous Galerkin Method

The time-dependent Maxwell’s equations in the scattered field formulation are

ε
∂Es

∂ t
= ∇×Hs +σEs + SE , (1)

μ
∂Hs

∂ t
= −∇×Es + SH , (2)

where, Es and Hs denote the scattered electric and magnetic fields, ε(x) and μ(x)
are the local permittivity and permeability, σ(x) is the conductivity of the media
and SE and SH are source terms. Here we have not explicitly written the divergence
constraints assuming that the initial conditions satisfy these constraints. Taking the
divergence of equations (1)-(2) verifies that if the initial conditions satisfy the diver-
gence constraints then the solution to Maxwell’s equations (1)-(2) will also satisfy
the divergence constraints.
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Let the incident field (Ei,Hi) be a solution to Maxwell’s equations in a media
with permittivity, permeability, and conductivity—ε i(x), μ i(x), σ i(x), respectively.
Along a perfect electric conductor (PEC), the boundary conditions on the total elec-
tric field Et = Ei + Es and the total magnetic field Ht = Hi + Hs are

n̂×Et = 0, Ht · n̂ = 0, (3)

where n̂ is the outward pointing normal vector at the surface.
We now briefly describe the computational methods used for solving Maxwell’s

equations (1)-(2) in the physical space. A discontinuous Galerkin method is used
as this offers a number of advantages over widely used alternatives (see [8] for a
thorough discussion) and we shall simply sketch its main components. First, we
rewrite Maxwell’s equations (1)–(2) in conservation form

Q
∂q
∂ t

+∇ ·F(q) = S, (4)

where

q =
(

E
H

)
, Fi(q) =

(−ei ×H
ei ×E

)
, (5)

signify the state vector q and the components of the tensor F and ei denotes the
Cartesian unit vectors. On the right-hand side of (4), S = [SE ,SH ] is the source term,
which depends on the incident field, and the material matrix Q is a diagonal matrix
with values (ε,ε,ε,μ ,μ ,μ) on its diagonal. We assume that the computational do-
main, Ω , is tessellated by triangles in two spatial dimensions and tetrahedrons in
three spatial dimensions, similar to what is done in a finite element/finite volume
method.

Given an element D of the tessellation, we represent the local solution qN re-
stricted to D is given as

qN(x,t) =
N

∑
i=1

q̃i(t)Li(x), (6)

where q̃i reflects nodal values, defined on the element. The function Li(x) signifies
an nth order Lagrange polynomial (N = (n+1)(n+2)/2 for triangles and N = (n+
1)(n + 2)(n + 3)/6 for tetrahedrons), associated with grid points on the reference
element as illustrated in Figure 1 (see [8] for details).

Fig. 1: Examples of nodal sets on the equilateral triangle for orders 4, 6, and 8
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The discrete solution, qN , of Maxwell’s equations is required to satisfy
∫

D

(
Q

∂qN

∂ t
+∇ ·F(qN)−SN

)
Li(x)dx =

∮
∂D

n̂ · [F(qN)−F∗]Li(x)dx. (7)

In (7), F∗ denotes a numerical flux, the expression of which is given as

− [n̂×H− (n̂×H)∗] = − 1
2{{Z}} n̂× [

Z+(H− −H+)−αn̂× (E− −E+)
]
,

and

[n̂×E− (n̂×E)∗] =
1

2{{Y}} n̂× [
Y+(E− −E+)+αn̂× (H− −H+)

]
,

for the equations for the electric and magnetic fields, respectively. Here n̂ is an
outward pointing unit vector defined at the boundary ∂D of the element D. Using
standard notation, {{A}} signify the average across the interface.

In both cases, we have the possibility of the piecewise constant material coeffi-
cients, represented by

Z± =
1

Y± =

√
μ±

ε± ,

as the local impedance and conductance, respectively. The parameter α is a free
parameter with 0 ≤ α ≤ 1. For α = 0 the scheme is energy conserving but has
a potential for nonphysical solutions in rare cases [8]. For α > 0, the scheme is
slightly dissipative.

Note that this is an entirely local formulation where the fluxes are responsible
for coupling of the elements and interchange of information to ensure that the union
of the local solutions provides the global solution. Relaxing the continuity of the
elements decouples the elements, resulting in a block-diagonal global mass matrix
which can be trivially inverted in preprocessing. After discretization of the operators
and evaluation of the integrals appearing in (7), the problem can be rewritten in
matrix-vector form (see [8])

QM
dqN

dt
+ S ·FN −MSN = Fn̂ · [FN −F∗]. (8)

The matrices M, S, and F represent the local mass-, stiffness-, and face-integration
matrices, respectively, the exact entries of which only depend on the metric of the
element. The local nature of the scheme allows for the use of an explicit solver for
the time discretization of (8) and this is done using an explicit fourth-order Runge–
Kutta method. Purely local time advancements are also possible.

The analysis of the scheme given above is complete and one can prove both
stability and high-order accuracy is the solution is smooth enough [8]. In particular,
for the dissipative upwind flux α = 1, one can generally expect optimal accuracy of
like ‖q−qN‖ ≤ Chn+1 for h being a measure of the cell size.

To illustrate the performance of the scheme, we consider plane wave TM scatter-
ing of a ka = 20π metallic cylinder. As simple as the case is, it allows for a thorough
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Fig. 2: On the left is shown plane wave TM scattering of a ka = 20π metallic cylinder. The snapshot
is for Ez. On the right we show the error in Ez for plane wave TM scattering by a ka = 20π metallic
cylinder as a function of time for increasing resolution

validation through the exact solution. We use 950 elements and an high-order local
boundary condition [4]. A snapshot of Ez is shown in Fig. 2.

To measure the accuracy of the solution we compute the error in Ez as a function
of time for increasing resolution. The results are shown in Fig. 2. For 5th order poly-
nomials (n = 5) there are 8-10 points per wavelength. The results confirm exponen-
tial convergence as expected. This is also a indication of the excellent performance
of the high order local boundary conditions which introduces errors well below the
approximation error.

As a considerably more challenging problem, let us consider scattering by a per-
fectly conducting business card sized metallic plate as illustrated in Fig. 3. The hor-
izontally polarized plane wave impinges at the metallic plate at an almost grazing
angle, causing the excitation of strong waves along the edges of the metallic plate
as well as along the length of the plate. These waves contribute significantly to the
scattering process and need to be resolved to accurately predict the far field scatter-
ing. In Fig. 3 we also show the comparison between the experimentally measured
monostatic RCS [13] and a number of particular computed data points. We observe
good agreement over the full azimuthal range with results well within the exper-
imental error. We note in particular the good agreement in the backscatter region
where the scattering is dominated by traveling waves.

Many further examples and validation tests can be found in [5–7].

3 Modeling Uncertainty in CEM

While computational methods have become increasingly refined and accurate, their
reliance on exact data, e.g., complete descriptions of geometries, materials, sources
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Fig. 3: In (a) we show the geometry for the plane wave scattering by a metallic business card
while (b) shows the comparison between monostatic RCS experimental results [13] (full line) for
horizontal polarization of the illuminating field and particular computed data points (dots)

etc, are emerging as a bottleneck in the modeling of problems of realistic complex-
ity. For instance, if one attempts to model an experiment, a classic computational
approach requires knowledge to a degree of detail which is unrealistic and often im-
possible to obtain, e.g., one can not hope to control all elements of an experiment,
measure all details of an initial condition or geometry, know the microstructure of
all materials etc.

The usual approach to deal with this lack of knowledge or uncertainty is to simply
assume some mean parameters and compute the corresponding solution. If the solu-
tion is robust to parameter variation, this is indeed a reasonable approach. However,
for general problems where the sensitivity of parts of the solution can be significant,
a solution based on mean parameters is not likely to match very well with experi-
ments and, thus, is not a good predictive tool. We would like to be able to model the
impact of the uncertainty, assumed to have certain properties derived from experi-
ments or otherwise, on the computed results, essentially resulting in an ensemble of
possible solution values with an associated probabilities which would immediately
enable the computation of statistical moments, e.g., means and variances.

As an advanced application of the computational framework presented above,
let us here pursue this goal and present a systematic, accurate, and efficient way of
addressing this type of problem, built on top of high-order accurate discontinuous
Galerkin methods for solving the time-domain Maxwells equations.

The key result on which we shall rely is due to Wiener (1938) (see also Cameron
and Martin [1] ) and shows that the Chaos expansion can be used to approximate
any functional in L2(Ω ,P) where P is a Gaussian measure on Ω . For such random
processes X(θ ), the Chaos expansion reads

X(θ ) = a0H0 +
d

∑
i1=1

ai1H1(ξi1(θ ))+
d

∑
i1=1

i1

∑
i2=1

ai1i2H2(ξi1(θ ),ξi2(θ ))+ ..., (9)
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where ξ = (ξ1(θ ), ...,ξd(θ )) represents d independent Gaussian variables with zero
mean and unit variance, each depending on the random event θ , and Hn are the
multivariate Hermite polynomials. Clearly the number of terms in the expansion (9)
grows as

P =
(n + d)!

n!d!
, (10)

where n is the length of the Hermite expansion and d is the dimension of the
Gaussian random space. To model the impact of uncertainty on the propagation of
electromagnetic waves, we include the randomness in the usual spatial-temporal
dimensions, i.e., the electric field and the magnetic field become E(x, t,θ ) and
H(x, t,θ ), reflecting that the fields are functions of d independent random variables,
(ξi1(θ ), ...,ξid (θ )).

In the following we shall discuss in some detail how this can be utilized to con-
struct an efficient computational method. For simplicity of the discussion, we as-
sume in the sequel that one Gaussian variable suffices to represent the process (i.e.
d = 1). However, the formulation is general and applies to problems which require
many random variables to describe the stochastic processes.

Using the Chaos expansion we can express q(x, t,θ ) = (E(x, t,θ ),H(x, t,θ ))T

as

q(x,t,θ ) =
P

∑
i=1

qi(x,t)Ψi(θ ). (11)

We can write the computational scheme, taking into account the randomness in a
general setting, as

{
Q(θ )M

dqN

dt
+ S ·FN −MS(θ )N = F n̂ · [FN −F∗]

qN(x,t = 0,θ ) = f(x,θ )
, (12)

where the initial conditions are given by the function f = f(x,θ ) and the unknown
vector qN is given by (11). As a first step, we discretize (12) in the random space
using a Galerkin approach. Multiplying (12) by a test functionΨk(θ ), replacing qN

by its Chaos expansion and using orthogonality under the Gaussian measure, we
obtain

∀k ∈ [1,P] :
P

∑
i=1

〈QΨi,Ψk〉M
dqi

N

dt
+ k!S ·Fk

N −MSk
N = F

P

∑
i=1

n̂ · [Fi
N −Fi∗]. (13)

The initial conditions in (12) also need to be projected on to the Chaos basis to give
an initial condition for each mode of qi

N in the Chaos expansion, i.e.

∀i ∈ [1,P] : qi
N(x,t = 0) =

1
i!
〈f(x,θ ),Ψi〉 . (14)

Considering Eq.(13) we observe that we have recast the general stochastic problem
into a system of P coupled deterministic problems which we can now discretize in
space/time as discussed in Sec. 2.
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Fig. 4: On the left we show one sample of a surface mesh for the sphere with a random radius and
the right illustrates the RCS with uncertainty in the radius of the sphere

Once the vectors {qi
N}1≤i≤P of the system (13) have been computed, we have

available at every point in space an approximation to the probability density of the
solution of the system. If we assume that we seek the moments of the solutions or a
linear combination of them we can take advantage of the basis to obtain

〈q(x,t,θ ),1〉 =
P

∑
i=1

qi(x,t)δ1i = q1(x, t) , (15)

i.e., the average is simply the first mode in the Chaos expansion. In a similar way,
we can obtain the variance and higher moments. Often, however, we are interested
in the statistics of some derived, possibly non-linear, functional, F(q) of q(x, t,θ ),
e.g., computation of the impact on the radar cross section (RCS) of the uncertainty
in the scattering problem. To achieve this we consider

F(q(θ )) =
P

∑
j=1

F(q(θ j))Lj(θ ) .

i.e.,, we simply need to evaluate the general functionals at the values of θ j and since
we have already obtained full probabilistic information in the expansions we can
use these results directly to obtain the required information and, thus, the proba-
bilistic information on F(q). All information of interest, e.g., moments, can now
be extracted from this in the same way as for the simple variables. Naturally, one
can evaluate the integrals using a classic Monte Carlo approach. This can be done
at little cost since it only requires evaluation of the expansions and not solution of
Maxwell’s equations.

For the first experiment we consider the scattering of a plane wave, with normal-
ized frequency ω = 1, from a PEC sphere. We assume the sphere has a uniformly
distributed random radius in the interval [0.9λ ,1.1λ ], where λ is the wavelength of
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Fig. 5: On the left we show the surface mesh for the three-dimensional rocket and on the right the
RCS for the three-dimension rocket problem. Results are shown with the mean RCS as well as ±
one standard deviation

the incident field. For the spatial discretization we use fourth order elements and a
sample mesh is presented in Figure 4(restricted to the surface of the sphere) and we
show the average of the RCS and the possible variations around its average value.

For the second example we consider the scattering of a plane wave, with fre-
quency ω = 1, from a PEC rocket. The direction of the incident field is assumed
to be unknown but uniformly distributed in the interval [10,20] degrees. For this
calculation the physical space is discretized with degree five polynomials in each
element. Figure 5 shows the mesh (restricted to the surface of the rocket) and the
average of the RCS and the possible variations around its average value.

4 Final Remarks

The discontinuous Galerkin method is at this stage a robust, efficient, accurate and
thoroughly validated alternative to the more classic FDTD method. It overcomes
many of the problems with both FDTD methods and alternatives such as finite-
volume and finite element methods. Furthermore, large scale software [10] is avail-
able for download and use and there are several examples of successful third party
use. In this paper we have focused on PEC objects but there is nothing special about
these. The method is entirely general and can accommodate general materials, in-
cluding anisotropic and nonlinear materials as needed. Furthermore, the efficiency
of the method has been demonstrated on large problems already.

We have also discussed the combination of these techniques with more recent
developments to enable the modeling of PEC objects with random shapes and un-
certainties in the incident field. The approach described can, however, equally well
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be used to account for others types of uncertainties as well as in connection with
other computational techniques. For example, instead of being purely reflective, the
object can be a material with a random shape. In this case, it is necessary to mesh
the entire domain and define a permittivity ε that takes some value inside the ob-
ject and another value outside. For material objects, the shape of the objects can be
moved randomly in the same way as a PEC object. In [2, 3], the uncertainty in the
shape of a material object was studied. However, the approach used was limiting the
uncertainty to be modeled to a single random variable. Other types of uncertainties
were also studied (randomness of the source term to mimic a slight variation in the
frequency of the source, randomness of the permittivity).

The combination of these two methods offers a unique ability to model large scale
time-dependent EM problems at high accuracy and with the ability to accurately
and efficiently account of sources of uncertainty, leading to sensitivity estimates of
measures of interest, e.g., the radar cross section.

Acknowledgements The authors appreciate the partial support of AFOSR under grant FA9550-
04-1-0072 and FA9550-07-1-0425.
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Efficient Simulation of Large-scale Dynamical
Systems Using Tensor Decompositions

F. van Belzen and S. Weiland

Abstract Tensors are the natural mathematical objects to describe physical
quantities that evolve over multiple independent variables. This paper considers the
computation of empirical projection spaces by decomposing a tensor that can be
associated with measured data. We show how these projection spaces can be used
to derive reduced order models. The procedure is applied to a two-dimensional heat
diffusion problem and a problem in fluid flow dynamics.

1 Introduction

Common model reduction techniques such as balanced truncation, Krylov methods,
and Proper Orthogonal Decompositions (POD) [7,8] are projection based methods.
In this paper, we examine the POD method to reduce the complexity of distributed
systems in which signals evolve both in space and time. The POD method is par-
ticularly popular in computational fluid dynamics applications where it achieves
substantial reductions of complexity while maintaining a high level of predictive
power in reduced order models. The method leads to simplified models by applying
a Galerkin projection on both the signals and the equation residuals of a distributed
dynamical model. A key feature of the method is that projection spaces are deter-
mined from optimal low rank approximations of data. The corresponding algebraic
tool is the singular value decomposition (SVD) of matrices that have the total mesh
size of the spatial geometry as its dimension. For models with spatial geometries
that are two, three or larger dimensional, such computations become particularly
cumbersome when combined with fine gridded mesh-sizes. Indeed, applications in
fluid dynamics with three dimensional spatial geometries easily lead to over 106

grid cells and thus require an SVD of data objects of dimension 106 at least.

F. van Belzen, S. Weiland
Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600
MB Eindhoven, The Netherlands, e-mail: f.v.belzen@tue.nl, s.weiland@tue.nl

J. Roos and Luis R.J. Costa (eds.), Scientific Computing in Electrical Engineering SCEE
2008, Mathematics in Industry 14, DOI 10.1007/978-3-642-12294-1 51,
c© Springer-Verlag Berlin Heidelberg 2010

413

f.v.belzen@tue.nl


414 F. van Belzen and S. Weiland

To circumvent this problem, we propose a method to compute data-dependent
projection spaces that leaves the Cartesian structure in multidimensional arrays of
measured data intact. For this, we propose an extension of the concept of SVD
to tensors and apply this to reduce the complexity of distributed systems with a
Cartesian spatial geometry.

2 Model Reduction by Galerkin Projections

Consider an arbitrary linear distributed system described by the Partial Differential
Equation (PDE)

R

(
∂

∂x1
, . . . ,

∂
∂xN

)
w = 0. (1)

Here, R ∈ R·×1[ξ1, . . . ,ξN ] is a real matrix valued polynomial in N indeterminates
and (1) is viewed as a PDE in the signal w : X ⊂ R

N → R that evolves over N
independent variables. A Galerkin projection of this model is generally defined as
follows. First, the space X of independent variables is assumed to be a Cartesian
product X = X′ × X′′ (typically the product of a spatial and a temporal domain).
Second, a Hilbert space H of real-valued functions on X′ is introduced with inner
product 〈·, ·〉. Any complete orthonormal basis {ϕn}n=1,2... of H then allows solu-
tions w of (1) to be represented by a spectral expansion w(x′,x′′) = ∑n an(x′′)ϕn(x′)
in which the modal coefficient an is uniquely determined by an = 〈w,ϕn〉. For
r > 0, the reduced order model is then defined by the collection of solutions
wr(x′,x′′) = ∑r

n=1 an(x′′)ϕn(x′) that satisfy

〈
R

(
∂

∂x1
, . . . ,

∂
∂xN

)
wr,ϕ

〉
= 0 ∀ϕ ∈ Hr (2)

where Hr is the finite dimensional projection space Hr = span{ϕ1, . . . ,ϕr}. If the
spectral expansion of wr is substituted in (2) and X′′ ⊆ R, then (2) becomes a system
of r ordinary differential equations in the modal coefficients an, n = 1, . . . ,r. Clearly,
the quality of the reduced order model entirely depends on the choice of basis func-
tions {ϕn}. In the POD method, the orthonormal basis functions ϕn of H depend on
data that have been either measured or inferred from the model (1). Specifically, for
given data w with w(·,x′′) ∈ H , the basis functions ϕn are the ordered normalized
eigenfunctions of the data correlation operator Φ : H → H that is defined as

〈ψ1,Φψ2〉 :=
∫

X′′
〈ψ1,w(·,x′′)〉 · 〈w(·,x′′),ψ2〉d x′′ ψ1,ψ2 ∈ H .

That is, the basis functions ϕn satisfy Φϕn = λnϕn with λ1 ≥ λ2 ≥ ·· · ≥ 0. The
data correlation operator Φ is a well defined linear, bounded, self-adjoint and non-
negative operator on H . In applications, the domains X′ and X′′ are typically
sampled by finite element methods so that H becomes finite dimensional and Φ
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becomes a symmetric non-negative definite matrix. The calculation of POD basis
functions then becomes an algebraic eigenvalue or singular value decomposition
problem.

3 Tensor Decompositions

In this paper we assume that the domain X of (1) has the Cartesian structure
X = X1 × . . .×XN . We propose a construction of the projection space Hr that is
inferred from a measured or simulated solution w of (1) but that reflects the Carte-
sian structure of the domain of independent variables in a more explicit way. More
specifically, suppose that, for n = 1, . . . ,N, the domain Xn is gridded into a finite set
of Ln elements and let Xn := RLn . Suppose that w is a Finite Element (FE) solution
of (1) that is defined on the L = ΠN

n=1Ln grid elements. Then w defines a multidi-
mensional array [[w]] ∈ RL1×...×LN in which the (�1, . . . , �N)th entry is the sample
w�1...�N on the Cartesian grid.

At a more abstract level [[w]] defines a tensor. An order-N tensor T is a multilin-
ear functional T : X1 ×·· ·×XN → R operating on N vector spaces X1, . . . ,XN . The
elements of T , t�1···�N , are defined with respect to bases for X1, . . . ,XN according to

t�1···�N = T (e�1
1 , · · · ,e�N

N ), where {e�n
n , �n = 1, . . . ,Ln} is a basis for Xn, n = 1, . . . ,N.

For example, T (x1,x2) := 〈x2,Ax1〉 defines an order-2 tensor whose element t�1,�2 is
the (�1, �2)th entry of the matrix A.

A FE solution w, or its associated multidimensional array [[w]], therefore defines
the tensor

W =
L1

∑
�1=1

. . .
LN

∑
�N=1

w�1···�N e�1
1 ⊗·· ·⊗ e�N

N (3)

where e1 ⊗·· ·⊗eN is shorthand for the rank-1 tensor E : X1 × . . .×XN → R, defined
by E(x1, . . . ,xN) := ΠN

n=1e�
n xn and where w�1···�N is the data element on the sample

point with index (�1, · · ·�N).
The tensor (3) associated with the FE solution defines suitable projection spaces

by decomposing the tensor W in rank-1 tensors as follows. For each of the vec-
tor spaces Xn, n = 1, . . . ,N we propose the construction of an orthonormal basis
{ϕ�n

n , �n = 1, . . . ,Ln} such that a coordinate change of W with respect to these bases
achieves that the truncated tensor

Wr :=
r1

∑
�1=1

. . .
rN

∑
�N=1

ŵ�1,...,�Nϕ
�1
1 ⊗ . . .⊗ϕ�N

N (4)

with r = (r1, . . . ,rN) and rn ≤ Ln, n = 1, . . . ,N, will minimize the error ‖W −Wr‖,
in a suitable tensor norm, [2, 3, 5].

For order-2 tensors (matrices) this problem is solved by the singular value decom-
position. For higher-order tensors, it is not straightforward how to construct proper
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sets of orthonormal bases with this property. Different methods exist, including the
Higher-Order Singular Value Decomposition [1] and the Tensor SVD [3].

As for the latter, the singular values of an order-N tensor T , denoted σk(T ) are

defined as follows. For n = 1, . . . ,N let S
(1)

n := {x ∈ Xn | ‖x‖n = 1} be the unit
sphere of elements in Xn. Define

σ1(T ) = sup {|T (x1, . . . ,xN)| | xn ∈ S
(1)

n , 1 ≤ n ≤ N} (5)

Since T is continuous and the Cartesian product S (1) = S
(1)
1 × ·· ·×S

(1)
N of unit

spheres is compact, an extremal solution of (5) exists and is attained by an N-tuple

(ϕ(1)
1 , . . . ,ϕ(1)

N ) ∈ S (1).

Subsequent singular values of T are defined in an inductive manner by setting S
(k)

n

the set of unit norm elements x ∈ Xn for which 〈x,ϕ( j)
n 〉 = 0 for j = 1, . . . ,(k − 1).

The kth singular value is then defined as

σk(T ) = sup {|T (x1, . . . ,xN)| | xn ∈ S
(k)

n , 1 ≤ n ≤ N}. (6)

and its solution defines the singular vectors at level k by the N-tuple

(ϕ(k)
1 , . . . ,ϕ(k)

N ) ∈ S (k).

Due to the iterative construction the singular values are positive and ordered, i.e.
σ1 ≥ σ2 ≥ ·· · ≥ 0. This construction leads to an orthonormal basis

{ϕ�n
n , �n = 1, . . . ,Ln}, n = 1, . . . ,N

for each of the N vector spaces Xn. The representation of T with respect to this basis
is called the (tensor) singular value decomposition of T and the numbers σk(T )
are referred to as the corresponding singular values. An important result on the
approximation properties of this decomposition is the following theorem.

Theorem 1. The tensor T1 := σ1ϕ
(1)
1 ⊗·· ·⊗ϕ(1)

N is the optimal rank-1 approxima-
tion of T in the sense that ‖T −T1‖ is minimal among all rank 1 approximations of
T . Here ‖T‖2 := ∑t2

�1,...,�N
is the Frobenius norm.

We refer to [4], [6] for more details on this decomposition.

4 Numerical Examples

The theory discussed in the previous sections will be applied to two examples. We
will first show the reduced order modeling of a scalar field, namely heat diffusion on
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a rectangular plate. Secondly, we will show how tensor techniques can be employed
to compute suitable projection spaces for a two-dimensional flow field.

Consider the following model of a heat transfer process on a rectangular plate of
size Lx ×Ly:

0 = −ρcp
∂w
∂ t

+κx
∂ 2w
∂x2 +κy

∂ 2w
∂y2 . (7)

Here, w(x,y, t) denotes temperature on position (x,y) and time t ∈ T := [0,Tf ] and
the rectangular spatial geometry defines the Cartesian product X × Y := [0,Lx]×
[0,Ly]. Let H = L2(X×Y) be the Hilbert space of square integrable functions on
X× Y and let Hr = Xr1 ×Yr2 with Xr1 ⊆ X = L2(X) and Yr2 ⊆ Y = L2(Y)
be finite dimensional subspaces spanned by r1 and r2 orthonormal bases functions
{ϕ�1} and {ψ�2}, respectively.

Solutions of the reduced model are then given by
wr(x,y, t) =∑r1

i=1 ∑
r2
j=1 ai j(t)ϕi(x)ψ j(y) with ai j(t) = [A(t)]i j a solution of the matrix

differential equation
0 = −ρcpȦ+κxFA +κyAP. (8)

Here, F and P are defined as:

F=

⎡
⎢⎢⎣

〈ϕ1,ϕ̈1〉 ... 〈ϕ1,ϕ̈r1 〉
...

...
〈ϕr1 ,ϕ̈1〉 ... 〈ϕr1 ,ϕ̈r1 〉

⎤
⎥⎥⎦; P=

⎡
⎢⎢⎣

〈ψ1,ψ̈1〉 ... 〈ψ1,ψ̈r2 〉
...

...
〈ψr2 ,ψ̈1〉 ... 〈ψr2 ,ψ̈r2 〉

⎤
⎥⎥⎦

Alternatively, ai j(t) is the solution of the ordinary differential equation

ρcpȧi j(t) = κx

r1

∑
�1=1

a�1 j(t)
〈
ϕ̈�1(x),ϕi(x)

〉
+κy

r2

∑
�2=1

ai�2(t)
〈
ψ̈�2(y),ψ j(y)

〉
(9)

for 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2.

Table 1: PDE parameter values

Parameter ρCp κx κy Lx Ly Tf Δx Δy Δt

Value 5 0.5 0.5 3 4 3.6 0.05 0.05 0.05
Unit J

m3·K
W

m·K
W

m·K m m s m m s

A FE solution of (7) has been computed with physical and discretization parame-
ters as given in Table 1. Time slices, including the initial condition, of the simulation
data can be seen in Fig. 1. The boundary conditions are chosen such that the plate is
insulated from its environment. The orthonormal bases {ϕ�1} and {ψ�2} have been
computed using the Higher-Order Singular Value Decomposition (HOSVD) [1] and
the Tensor SVD. Basis functions are displayed in Fig. 2. The reduced order model
(8) has been simulated for different reduction orders, r = (r1,r2). The errors with
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Fig. 1: First and final time slices of the FE solution of (7)

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70
−2

−1.5

−1

−0.5

0

0.5

1

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

Fig. 2: First two basis functions for X (top, left) and Y (bottom, left), computed using Tensor
SVD. On the right the multiplication of the basis functions is displayed, i.e. ϕ1(x)⊗ψ1(y) (top
left), ϕ1(x)⊗ψ2(y) (top right), ϕ2(x)⊗ψ1(y) (bottom left) and ϕ2(x)⊗ψ2(y) (bottom right)

respect to the original simulation are given in Table 2. Simulation time of the orig-
inal model is 17.22s, the reduced models have a simulation time of approximately
0.35s.

Table 2: Approximation Error Results, for HOSVD (left) and TSVD (right)

r ‖W −Wr‖F
‖W−Wr‖F

‖W‖F
‖W −Wr‖F

‖W−Wr‖F
‖W‖F

(2,2) 21.49 0.3434 22.88 0.366
(3,3) 14.87 0.24 21.75 0.348
(5,5) 7.634 0.122 14.95 0.239
(7,7) 4.401 0.0704 10.85 0.174

(10,10) 2.6319 0.0421 8.57 0.137
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Fig. 3: Vector plot of the FE solution of the flow on two time instances

As a second example we consider the computation of projection spaces for a two-
dimensional incompressible fluid flow. The flow is described by the Navier-Stokes
equations in 2D

ρ
(

∂v
∂ t

+(v ·∇)v
)

= ηΔv−∇P

∇ · v = 0

and defined on a rectangular spatial domain X× Y := [0,Lx]× [0,Ly]. All bound-
ary conditions are no-slip, except for the left boundary at x = 0, where the system
is excited through a time-varying boundary conditions. Furthermore, let X ,Y be
defined as X = L2(X) and Y = L2(Y).

A FE solution has been computed on a spatial grid of size (L1,L2) = (42,42)
and a temporal grid of size L3 = 193. A vector plot of this solution on the two time
instances t = 80 and t = 100 is displayed in Fig. 3. With this FE solution a tensor
W : RL1 ×RL2 ×RL3 ×R2 → R can be associated. Computation of the SVD using
the Tensor SVD algorithm gives the dominant spatial modes {ϕ�1}, {ψ�2} , i.e. the
projections spaces Xr1 = span{ϕ1, . . . ,ϕr1} ⊆ X and Yr2 = span{ψ1, . . . ,ψr2} ⊆
Y . In Fig. 4 the two most dominant patterns for X (left,top) and Y (left, bottom)
are shown. The tensor products ϕ�1(x)⊗ψ�2(y) of these functions give the dominant
patterns on the whole spatial domain, see Fig. 4 (right).
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Fig. 4: First basis functions for X (left, top) and Y (left, bottom), computed using tensorial SVD
[6]. On the right the multiplication of the basis functions is displayed, i.e. ϕ1(x)⊗ψ1(y) (top left),
ϕ1(x)⊗ψ2(y) (top right), ϕ2(x)⊗ψ1(y) (bottom left) and ϕ2(x)⊗ψ2(y) (bottom right)

5 Conclusion

In this paper we considered model reduction for multidimensional systems using
the POD method. For the computation of empirical projection spaces we proposed
a method using tensor decompositions. The techniques proposed were applied to
a two-dimensional heat diffusion problem and a problem in fluid flow dynamics.
In the future, we plan to test the method on more complex examples and aim to
compare different tensorial decompositions to assess accuracy, computational effort
and reliability.
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Robust FETI Solvers for Multiscale Elliptic
PDEs

Clemens Pechstein and Robert Scheichl

Abstract Finite element tearing and interconnecting (FETI) methods are efficient
parallel domain decomposition solvers for large-scale finite element equations. In
this work we investigate the robustness of FETI methods in case of highly hetero-
geneous (multiscale) coefficients. Our main application are magnetic field compu-
tations where both large jumps and large variation in the reluctivity coefficient may
arise. We give theoretical condition number bounds which are confirmed in numer-
ical tests.

1 Introduction

Finite element tearing and interconnecting (FETI) methods due to Farhat and Roux
[1, 2] are parallel solvers for large-scale finite element (FE) systems arising from
partial differential equations (PDEs). Typically, the conditioning of such FE system
matrices heavily suffers from the total number of degrees of freedom (DOFs). When
the number of DOFs grows large, direct solvers are out of question and efficient
preconditioners for iterative solvers are required. Additionally, the parallelization of
numerical algorithms gets increasingly important to date. FETI methods are known
to be parallel scalable and quasi-optimal with respect to the number of DOFs. For
a comprehensive presentation of FETI and related methods we refer to the mono-
graph by Toselli and Widlund [2]. As an additional advantage, one can easily couple
finite and boundary element discretizations within the same framework, resulting in
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so-called coupled FETI/BETI methods, see [3–5]. Even exterior domains can be
incorporated to model radiation conditions, see [6, 7].

Let us briefly describe the FETI method. As a model problem we consider the
finite element discretization of the Poisson-type problem

−∇ · (α∇u) = f (1)

in the bounded domain Ω ⊂ Rd , d = 2 or 3, subject to suitable interface and bound-
ary conditions. In Section 4 we will consider a similar equation for 2D magne-
tostatics. The domain Ω is partitioned into N non-overlapping subdomains Ωi,
i = 1, . . . ,N, cf. Fig. 1, right. Introducing separate unknowns ui on the subdomains
including the DOFs on their boundaries, we obtain the saddle point problem

⎛
⎜⎜⎜⎝

K1 0 B�
1

. . .
...

0 KN B�
N

B1 · · · BN 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u1
...

uN

λ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1
...

fN

0

⎞
⎟⎟⎟⎠ , (2)

where Ki are the subdomain stiffness matrices, and fi are the corresponding load
vectors. The operators Bi are signed Boolean matrices such that each row of the
system

N

∑
i=1

Bi ui = 0

has the form ui(xh)− u j(xh) = 0 for a finite element node xh on the interface be-
tween the subdomains Ωi and Ω j, thus enforcing the continuity of the solution u.
The Lagrange multiplier λ plays the role of a continuous flux on the subdomain
interfaces. Introducing a special projection P, the dual problem to (2) can be written
in the form

PF λ = d , (3)

rotor

coils

yoke

air

air gap

Fig. 1: Left: Model of an electric motor. Right: Possible subdomain partitioning (explosive view)
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with F = ∑N
i=1 Bi K†

i B�
i , where the operators K†

i correspond to the solution of (pos-
sibly) regularized Neumann problems on the subdomains. The FETI method is now
a special projected preconditioned conjugate gradient (PCG) method to solve prob-
lem (3). The chosen preconditioner involves the solution of local Dirichlet problems,
and the projection P involves the solution of a coarse problem which corresponds
to a sparse linear system of dimension O(N). Usually, one chooses the partition in
a way that the local subdomain problems can efficiently be handled by sparse di-
rect solvers, such as LU-factorization with suitable pivoting. The factorizations of
the local system matrices can be computed in a preprocessing phase and kept in
memory during the whole FETI method. Note that these local, decoupled problems
can be parallelized in a straightforward manner, e. g., treating each subdomain on a
different processor. Once problem (3) is solved, the actual solution u can easily be
determined from the Lagrange multiplier λ . The spectral condition number κ of the
preconditioned system can finally be estimated by

κ ≤ C∗(α)
N

max
i=1

(
1 + log(Hi/hi)

)2
, (4)

where the constant C∗(α) is independent of the subdomain diameters Hi, the mesh
parameters hi, and the number N of subdomains. If α is (globally) constant, then
C∗(α) ∼ 1. As it is well known, the number of PCG iterations needed to achieve
a given accuracy, is essentially determined by

√
κ . In a parallel scheme the total

computational complexity of the FETI-PCG method is given by

O
(
(D(N)+D(Nloc)) log(ε−1)

√
κ
)
, (5)

where Nloc ∼ maxN
i=1(Hi/hi)d is the maximal number of DOFs per subdomain, D(·)

is the cost of the direct solver, and ε > 0 is the desired relative error reduction in the
energy norm.

However, in many applications the original system matrix is ill-conditioned due
to heterogeneous coefficient distributions. As we will discuss in Section 4, in mag-
netic field computations one may have

• large jumps in the reluctivity coefficient due to different materials, and
• smooth but large variation in the same coefficient due to nonlinear effects.

We are interested in the question whether/how the condition number κ of the pre-
conditioned FETI system is affected by this. If the heterogeneities are resolved by
the subdomain partition (i. e., α constant on each Ωi), then, using a special diago-
nal scaling, Klawonn and Widlund [8] proved that C∗(α) ∼ 1. However, in general,
using classical proof techniques, we only get

C∗(α) ≤ C
N

max
i=1

max
x,y∈Ωi

α(x)
α(y)

, (6)

with C independent of α , i. e., the bound is proportional to the maximum local vari-
ation of α on the subdomains, which can be rather large. As noticed by several
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authors [5,9] this asymptotic bound is in general far too pessimistic, and robustness
is observed for many special kinds of coefficient distributions.

The aim of the present contribution is to give more theoretical insight on the
coefficient-dependency. We summarize our recent work [10] considering variation
in subdomain interiors in Section 2, and we give an outlook to new theoretical re-
sults for the case of variation near the subdomain interfaces in Section 3. Finally,
Section 4 deals with the application to magnetostatic problems.

2 Variation in Subdomain Interiors

In this section we give a sharper estimate than (6) for the case of variation in the
subdomain interiors. On each subdomain Ωi with diameter Hi and discretization
parameter hi, we choose a width ηi ∈ [hi, Hi/2] and define the boundary layer Ωi,ηi

by the agglomeration of those finite elements which have distance at most ηi from
the boundary, cf. Fig. 2, left. Under suitable assumptions on the geometric setting
and the subdomain partition, we can prove the bound

C∗(α) ≤ C
N

max
j=1

(Hj

η j

)2 N
max
i=1

max
x,y∈Ωi,ηi

α(x)
α(y)

. (7)

This bound involves only the variation of α in the boundary layer Ωi,ηi and is in-
dependent of the variation of α in the subdomain interior Ωi \Ωi,ηi . For η j ∼ Hj

we reproduce the known estimate (6), in particular our bound is still robust with
respect to large jumps across the subdomain interfaces. However, if α exhibits large
(even arbitrary) variation in the interior Ωi \Ωi,ηi of the subdomains, but varies little
in the boundary layers, our new bound (7) is in general far better/sharper than (6).
Moreover, if in addition the coefficient is larger in the interior Ωi \Ωi,ηi than in the
boundary layer on each subdomain, then the quadratic factor (Hj/η j)2 reduces to a
linear factor Hj/η j. The detailed proof can be found in our recent paper [10].

In the following we give a two-dimensional numerical example. We partition the
unit square into 25 congruent, square-shaped subdomains. The coefficient is chosen

Ωi
ηi

Ω ηi, i

interior

 10

 100

 1000

 10  100  1000

co
nd

iti
on

 n
um

be
r

H/eta

case 1
case 2
linear

Fig. 2: Left: Subdomain boundary layer. Right: Estimated condition numbers κ for varying width
parameter η , fixed discretization parameter h (logarithmic scales)
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to be α = 105 (Case 1) and α = 10−5 (Case 2) in the subdomain interiors, and
α = 1 on the rest. The distance between the “material” jump and the subdomain
interfaces is denoted by η . We have used a globally uniform discretization with
H/h = 512. Fig. 2, right, shows the condition numbers κ of the preconditioned
FETI systems (estimated by Lanczos’ method) for different values of η . We see that
our asymptotic bound is sharp for Case 1, but still slightly pessimistic for Case 2.

3 Interface Variation

In this section we would like to give an outlook on our work for interface varia-
tion which will be exposed in more detail in an upcoming paper. A key tool to the
analysis of FETI methods is Poincaré’s inequality,

∫
Ωi

|w(x)|2 dx ≤ CP H2
i

∫
Ωi

|∇w(x)|2 dx ,

which holds for all w ∈ H1(Ωi) with vanishing mean value, i. e.,
∫
Ωi

w(x)dx = 0. The
constant CP > 0 depends only on the shape of Ωi. A similar inequality holds if the
average of w over a part of the boundary ∂Ωi vanishes. Concerning heterogeneous
coefficients, we would be interested in an inequality of the same form but where the
integrals are weighted with the coefficient α(x) and where the constant CP does not
depend on α , or at least only very mildly on the heterogeneity in α . Such inequalities
are not known in general, but we can show one for a special case.

Assume that each subdomain Ωi consists of two connected subregions Ω (1)
i , Ω (2)

i
where α is mildly varying, i. e.,

α(k)
i ≤ α(x) ≤ α(k)

i for all x ∈ Ω (k)
i , k = 1, 2 ,

with moderate ratios α(k)
i /α(k)

i ; we can think of two quasi-homogeneous materials
within each subdomain. Using two separate Poincaré inequalities one can show that

∫
Ωi

α(x) |w(x)|2 dx ≤
{

max
k=1,2

C(k)
P

α(k)
i

α(k)
i

}
H2

i

∫
Ωi

α(x) |∇w(x)|2 dx , (8)

for all functions w ∈ H1(Ωi) which have vanishing mean value over the interface

Λi := ∂Ω (1)
i ∩ ∂Ω (2)

i , i. e.,
∫
Λi

w(x)dsx = 0 . The constants C(1)
P and C(2)

P depend

only on the shapes of the subregions Ω (1)
i and Ω (2)

i respectively, and on the relative
shape of Λi. For a variant of FETI called all-floating FETI method [11–13], our
Poincaré type inequality (8) finally allows a proof of the bound

C∗(α) ≤ C
N

max
i=1

max
k=1,2

α(k)
i

α(k)
i

, (9)
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Fig. 3: Upper: Sketch of coefficient “islands” cutting through edges and crosspoints of the subdo-
main partitioning. Lower left: Condition numbers for “edge islands” for different levels of refine-
ment, H/h = 2ref. Lower right: Condition numbers for “crosspoint islands”

where the constant C is independent of Hi, hi, N, and α , but it depends on the ge-

ometry of the subregions Ω (k)
i . Combining this idea with the theory from Section 2,

one can even allow three qualitatively different subregions per subdomain:

• two connected subregions of mild variation in α that cover the boundary layer
Ωi,ηi of the subdomain , and

• a remaining part contained in the subdomain interior, where arbitrary variation
of α can be allowed.

Under suitable assumptions on the shapes of these subregions it is again possible to
give explicit bounds for C∗(α) involving (9) and the ratios Hi/ηi similar to (7). For
numerical examples we have tested so-called coefficient “islands” which cut through
an edge, i. e., the interface of two subdomains, or which contain a crosspoint of four
subdomains, cf. Fig. 3, upper. A suitable choice for η , the width of the boundary
layer, is also indicated in that figure. Note, however, that we have only tested one
island at a time. In each example we have set the coefficient α = 105 in the island,
and α = 1 elsewhere. The estimated condition numbers for different values of η and
different levels of mesh refinement are depicted in Fig. 3, lower.

4 Application to Magnetostatic Problems

In the case of nonlinear magnetostatics in two dimensions (transverse magnetic
mode), we have to solve
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−∇ · [νi(|∇u|)∇u] = f in Ωi , (10)

subject to suitable interface and boundary conditions, where u is the z-component
of the magnetostatic vector potential, and νi is the reluctivity. For linear materials,
νi is constant. For other materials, such as ferromagnetic ones, the reluctivity νi

depends nonlinearly on the magnetic flux density |B| = |∇u|, and it is defined by the
material law H = νi(|B|)B in Ωi, where H denotes the magnetizing force (note that
we restrict ourselves to isotropic materials and neglect hysteresis). In our numerical
computations we use realistic approximations of such material curves obtained from
the interproximation method proposed in [14]. If we apply Newton’s method to (10),
the linearized system in each Newton step is of similar form as problem (1), only that
we obtain a matrix-valued coefficient which depends on the current Newton iterate
u(k), see, e. g., [5]. For many material curves, the variation of the coefficient depends
mainly on the variation of |B|. However, the flux density |B| may vary strongly along
subdomain boundaries and large values of |B| appear mostly at singularities of the
potential u, e. g., near material corners.

Contrary to the usual suggestion to choose subdomain partitions that resolve ma-
terial interfaces in order to obtain robustness (for numerical examples see [5, 6]),
our new bounds (7), (9) suggest that it might be more advantageous to put each
peak of |B| and thus each material corner into the center of a subdomain. Fig. 4
shows two such examples. In both cases, the coefficient variation is approximately
7×103 but our FETI solver performs extremely well (Case 1: condition number 8.5,
Case 2: condition number 13.7, compared to 8.3 for a globally constant coefficient).
Our theory for interior variation (Section 2) can perfectly explain the low condition
number in Case 1 since the boundary variation is small. Inspecting Case 2, we find
that there are indeed two regions contained in the boundary layer with qualitatively
different coefficients, see the jump in Fig. 4, lower right. Thus, Section 3 partially
explains why the condition number is still quite robust with respect to the highly
heterogeneous coefficient.
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14. Pechstein, C., Jüttler, B.: Monotonicity-preserving interproximation of B-H-curves. Journal
of Computational and Applied Mathematics 196(1), 45–57 (2006)



Nonlinear Models for Silicon Semiconductors

Salvatore La Rosa, Giovanni Mascali, and Vittorio Romano

Abstract In this paper we present exact closures of the 8-moment and the 9-moment
models for the charge transport in silicon semiconductors based on the maximum
entropy principle. The validity of these models is assessed by numerical simulations
of an n-+n-n+ device. The results are compared with those obtained from the nu-
merical solution of the Boltzmann Transport Equation both by Monte Carlo method
and directly by a finite difference scheme.

1 Introduction

Simulation of modern electronic devices requires increasingly accurate models of
charge transport in semiconductors in order to describe high-field phenomena such
as hot electron propagation, impact ionization and heat generation. Moreover, in
many applications in optoelectronics, it is necessary to describe the transient interac-
tion of electromagnetic radiation with carriers in complex semiconductor materials:
in these cases the characteristic times are of the order of the electron momentum or
the energy flux relaxation times. These are some of the main reasons of the necessity
of developing models which incorporate a number of moments of the distribution
function higher than those in the drift-diffusion and the energy transport models.

These extended models, generally called hydrodynamical models, are usually de-
rived from the infinite hierarchy of the moment equations of the Boltzmann Trans-
port Equation (BTE) by suitable truncation procedures. One of the most successful
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among these procedures is that based on the Maximum Entropy Principle (MEP)
[1], see [2] for a complete review both for Si and GaAs semiconductors.

The models differ for the number of moments which are used and they usually
comprise the balance equations of the electron density, the energy density, the av-
erage velocity, the energy flux and possibly also higher scalar and vector moments
which do not have an immediate physical interpretation. In this paper we present
the usual 8-moment model [3] together with a 9-moment model in which a further
scalar moment is added: that corresponding to the squared microscopic electron en-
ergy. The two models are assessed by applying them to the benchmark problem of
an n-+n-n+ silicon device.

2 Hydrodynamical Models with 8 and 9-Moments

In [3] we presented an 8-moment model for charge transport in semiconductors and
we assessed its validity. In principle, one can try to improve this model by adding
further scalar and vector moments as well as higher order tensor moments. Adding
the scalar moment nW2, one obtains a new model which is given by the following
system of balance equations

∂n
∂ t

+
∂ (nV i)
∂xi = 0, (1)

∂ (nV i)
∂ t

+
∂ (nUi j)

∂x j + neE j Hi j = nCV i , (2)

∂ (nW )
∂ t

+
∂ (nSi)
∂xi + neViE

i = nCW , (3)

∂ (nSi)
∂ t

+
∂ (nFi j)

∂x j + neE jG
i j = nCSi . (4)

∂ (nW2)
∂ t

+
∂ (nSi

2)
∂xi + 2neEi S

i = nCW2 , (5)

where e is the absolute value of the electron charge and E the electric field. The
macroscopic quantities, which are involved in the balance equations, are related to
the electron distribution function f (x,k,t) by the definitions

n =
∫

R3
f dk, electron density,

W =
1
n

∫
R3

E (k) f dk, average electron energy,

W2 =
1
n

∫
R3

E 2(k) f dk, average electron

energy square,
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V i =
1
n

∫
R3

f vidk, average velocity,

Si =
1
n

∫
R3

f viE (k)dk, energy flux,

Si
2 =

1
n

∫
R3

f viE 2(k)dk, flux of the electron

energy square,

Ui j =
1
n

∫
R3

f viv jdk, velocity flux,

Hi j =
1
n

∫
R3

1
h̄

f
∂
∂k j

(vi)dk, (no physical interpretation),

Fi j =
1
n

∫
R3

f viv jE (k)dk, flux of the energy

flux,

Gi j =
1
n

∫
R3

1
h̄

f
∂
∂k j

(E vi)dk, (no physical interpretation),

CV i =
1
n

∫
R3

C [ f ]vidk, velocity production,

CW =
1
n

∫
R3

C [ f ]E (k)dk, energy production,

CSi =
1
n

∫
R3

C [ f ]viE (k)dk, energy flux

production,

CW2 =
1
n

∫
R3

C [ f ]E 2(k)dk, electron energy

square production,

here E and k respectively are the electron energy in the conduction band and the
wave vector, and C [ f ] is the collision operator which appears at the left hand of the
BTE. These equations are coupled to the Poisson equation for the electric potential
φ

Ei = − ∂φ
∂xi

, (6)

∇ · (ε∇φ) = −e(N+ −N− −n), (7)

where ε is the electric permittivity and N+ and N− are the donor and acceptor density
respectively (which depend only on the position).

The system (1)–(5) is not closed since the fluxes S2,U,H,F,G and the produc-
tion terms CV,CW ,CS,CW2 have to be expressed as functions of the fundamental
variables n,V,W,S and W2. The closure can be achieved by means of MEP, using
the distribution function which maximizes missing information (entropy) in order to
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evaluate the unknown moments. This distribution function is called the maximum
entropy distribution function fME [1, 2]. The MEP approach leads to a constrained
optimization problem which is handled by resorting to the Lagrangian multipliers
method, see [2] and references therein. In the present case, the constraints consist
of the known moments n,V,W,S and W2 and they are used to express the Lagrange
multipliers in terms of these moments. Actually, this is a highly non-linear prob-
lem, which, in the past, has been solved by assuming the distribution function to be
slightly anisotropic and expanding it with respect to a suitable anisotropy param-
eter [2]. Recently [3] this problem has been solved numerically without resorting
to asymptotic procedures. In this way the model is expressed in terms of the La-
grangian multipliers and the constitutive relations are given by integral expressions
that do not allow an efficient numerical tabulation, but require the use of suitable
quadrature formulas with respect to the microscopic energy. The interested reader is
referred to [3] for the closure relations relative to the 8-moment model, the relations
referring to the further quantities appearing in (5) being completely analogous. At
the end apart from the Poisson equation, the resulting system is hyperbolic in the
physically relevant region of the field variables.

It is important to notice that in the numerical integration of the models problems
can arise due to the fact that there may exist moments that are not moments of the
maximum entropy distribution [4]. In fact the set of the moments generated by fME

is a convex cone M [5]. In the 8-moment case M is generated by the Lagrangian
multipliers such that

g(λW ,λ S) = λW −
√

1
2αm∗ ||λS|| > 0, (8)

while in the 9-moment case the cone is generated by the Lagrangian multipliers
which satisfy

λW2 > 0. (9)

Here α is the non-parabolicity factor, m∗ the electron effective mass, λW ,λ S and
λW2 are the Lagrange multipliers which correspond to W , S and W2, respectively.
The conditions are obtained by requiring the integrability of fME .

3 Simulation of an n-+n-n+ Device

We have tested the 8 and 9-moment models by numerically solving them in the 1-D
problem of an n-+n-n+ device, which is commonly used as a benchmark problem
[6]. In this case the systems have the following form

∂F (0)(Λ)
∂ t

+
∂F (1)(Λ)

∂x
= G(Λ ,E), (10)
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where Λ is the vector of the unknown Lagrange multipliers, F (0) is the vector of the
moments, F (1) is the vector of the fluxes and G is the vector of the sources which
takes into account both the effect of the scatterings that electrons suffer inside the
device and the driving effect of the electric field. (10) is solved by using a splitting
strategy, which consists of two successive steps [3]: the first step solves the system
without sources (convection step), while the second step solves the system with the
fluxes put equal to zero (relaxation step).

The convection step makes use of the Nessyahu–Tadmor scheme [7], which does
not require the explicit knowledge of the characteristic structure of the system and is
conservative and consistent. The latter two properties are necessary requirements for
having correct shock capturing methods. The relaxation system is a system of ordi-
nary differential equations, which can be solved by using an explicit Euler scheme.

The devices which have been considered are those reported in Table 1.

Table 1: Lc length of the channel, doping concentration (respectively in the n+ and n regions) and
Vb applied voltage

Channel length n+ n Vb

Lc (μm) (1017 cm−3) (1017 cm−3) Volt

0.2 10 0.1 1
0.1 10 0.1 1

The results of the two non-linear models presented here (indicated by 8 and 9-
moment NLMEP models respectively) have been compared with those obtained by
the direct solution of the BTE (DSBE), with Monte Carlo results (MC) and also with
those derived by means of the model in which the closure is based on the asymptotic
expansion (indicated as SLMEP model) [8]. The aim is threefold:

• to check the validity of the 8 and 9 moment models,
• to assess the relevance of the nonlinearity,
• to see if the integrability condition is always satisfied.

As regards the validity, we can say that the results of the 8-moment model are satis-
factory. In fact, as can be seen from Figures 1 and 2, which refer to devices with
channel length equal to 0.2μm and 0.1μm respectively, the 8-moment NLMEP
model gives the solutions closest to those obtained both with the MC method and the
direct integration of the BTE. This means that the anisotropy effects are not small
when the channel is short and there are high electric fields inside the device. The
solutions do not show any spurious oscillations which indicates that the assumed
boundary conditions are compatible with the solutions of the problem: we have
used Dirichlet conditions on the density and Neumann conditions on the Lagrange
multipliers corresponding to the remaining moments, which are the fundamental
variables of the model. Furthermore we also notice that the peak in the velocity near
the second junction almost disappears in accordance with MC and DSBE results.

As regards the integrability, the problem is subtle. In fact in the transient there are
wide oscillations which can bring the numerical solution out of the cone M . As can
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be seen from Figure 3 left, for a device with a channel length of 0.2μm this can be
tackled by improving the precision of the numerical integration with respect to the
microscopic energy in the closure relations. The numerical integration is effected
by using the Gauss–Legendre formula and passing from 140 nodes to 310 nodes
in the microscopic energy interval [0eV,1.6eV] the integrability is recovered. The
situation is different when the channel length is 0.1μm, in this case in fact there is
a region near the first junction, see Figure 3 right, where the integrability does not
improve even by increasing the number of nodes. The case of the 9-moment model is
worse; in fact, as can be seen from Figure 4 right below we do not have integrability,
independently on how precise the integration is. This is probably due to the fact
that additional Lagrangian multipliers, associated to new moments corresponding
to weight functions represented by powers of energy with an exponent greater than
one, are zero at equilibrium states which are, therefore, located at the boundary of
the realizability region. This implies that small perturbations can have both positive
and negative sign causing a loss of integrability and limiting the validity of the non-
linear models. As a consequence the solution of the 9-moment model, Figures 41−3,
is clearly unreliable.

4 Conclusion

In conclusion, the results, which we have obtained, make us affirm that a great at-
tention has to be payed to whether the integrability condition is satisfied when using
a completely non-linear model. The problem could be effectively solved by using a
better approximation for the energy bands, in which the Brillouin zone, instead of
being extended to all R

3 as for the Kane dispersion relation, is a limited region as in
the physical case.
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Fig. 1: Lc = 0.2 μm, stationary solution: 8 moment-NLMEP model (continuous line), SLMEP
model (dotted line), MC simulation (crossed line), direct Boltzmann integration (starry line) and
Baccarani Blotekjaer Wordeman (BBW) model (dashed-dotted line)
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Multiobjective Optimization Applied to Design
of PIFA Antennas

Stefan Jakobsson, Björn Andersson, and Fredrik Edelvik

Abstract In this paper multiobjective optimization is applied to antenna design. The
optimization algorithm is a novel response surface method based on approximation
with radial basis functions. It is combined with CAD and mesh generation soft-
ware, and electromagnetic solvers. To demonstrate the procedure we optimize the
geometric design and feed position of a PIFA antenna located on a ground plane.

1 Introduction

In many engineering applications there are often, at least partly, conflicting require-
ments. In antenna design the requirements can be based on size, S-parameters, func-
tions of the directivity of the antenna, bandwidth, input impedance and/or other
characteristics of the antenna. The usual way of treating such problems is to employ
a weight-based trial-and-error strategy, where the objectives are weighted to form a
single objective function. This approach has several disadvantages - the weights are
often highly sensitive and no trade-off discussion is possible.

A more attractive alternative is to avoid weights and instead optimize the ob-
jective functions simultaneously subject to certain constraints. In multi-objective
optimization the ultimate goal is to find all Pareto optimal solutions: a solution is
Pareto optimal if there is no other solution which is better in all objectives. The
decision making process, when the antenna engineer decides which of the Pareto
optimal designs that best meets the requirements, takes place when all possibilities
and limitations are known.

In a current project we are developing new efficient optimization algorithms with
the purpose of studying communication performance possibilities and limitations
for multiple antennas within a limited area, such as a handheld terminal. The antenna

Stefan Jakobsson, Björn Andersson, Fredrik Edelvik
FCC–Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Göteborg, Sweden,
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elements are so-called printed inverted “F” antenna designs (PIFA) that have low
profile, good radiation characteristics and wide bandwidths. This makes them an
attractive choice for antenna designs for various wireless systems. The project is a
collaboration between the Fraunhofer-Chalmers Centre and the Antenna Research
Centre at Ericsson AB.

We have developed a multiobjective optimization algorithm based on radial basis
functions to find an approximation of the Pareto front (the set of Pareto solutions).
In this paper the algorithm is demonstrated for optimization of the design of a PIFA
antenna on a ground plane. The objective functions are the maximum return loss
(|S11| in dB) in a frequency band, the height and the enclosed area of the antenna
element. The design parameters describe the geometry and feed position of the PIFA
on the ground plane. The electromagnetic simulations are performed with the MoM
solver from the software package efield R© [1], which utilizes CADfix [2] for mesh
generation.

2 A Multiobjective Optimization Algorithm

The optimization algorithm used, called qualSolve, is a response surface method
based on interpolation/approximation with radial basis functions and is described
in [3]. In each iteration of the optimization an interpolation/approximation (also
called surrogate model) of every objective function is made based on all previous
evaluations of the goal functions. By using for example evolutionary algorithms, an
approximation of the Pareto front for the surrogate models is made. In the second
step, a new evaluation point is chosen based on the approximate Pareto front. It
is therefore crucial that the surrogate models are of as high quality as possible.
Since the evaluations of the objective functions involve time-consuming simulations
a reliable surrogate model can greatly improve efficiency compared to for example
to genetic algorithms, as the number of evaluations of the objective functions are
reduced.

2.1 Surrogate Models for Antenna Optimization

It turns out that the output from antenna simulations (for example the S-parameters)
have some characteristic properties that must be taken into account in order to
achieve good approximations. Near resonance a small change in the design parame-
ters often results in a large change in the output. We have tried different techniques
for building surrogate models for the antenna data, including interpolation with Ra-
dial Basis Functions and approximation with rational functions. This led us to a new
interpolation technique which we call rational radial basis function interpolation.
Our experience is that direct application of standard interpolation with radial basis
functions produce surrogate models which approximate the true objective functions
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poorly in the interesting regions in the parameter space, and rational approximation
with polynomials has problems as the spatial dimension increases. The new inter-
polation method with Rational Radial Basis Functions is a combination of these
two concepts which is both easy to handle and, as will be shown, produces accurate
surrogate models.

2.1.1 Rational Interpolation/Approximation

Suppose we want to interpolate a function f with a quotient of two functions p and
q at the data points {xk}N

k=1,xk ∈ R
d and f (xk) = fk ∈ C. Then we must have

f (xk) =
p(xk)
q(xk)

, k = 1, . . . ,N. (1)

This does not determine the values of p and q at the data points. A good option is
to choose them as simple as possible. For rational interpolation we choose p and q
as polynomials of some order

p(x) = p0 + p1x + · · ·+ pmxm, q(x) = 1 + q1x + · · ·+ qnxn.

The task is then to determine the coefficients of these polynomials so that the inter-
polation condition (2.1.1) holds for all k = 1, . . . ,(m + n + 1) (compare with Padé
approximations for which the derivatives up to order (m + n) agree with a given
function’s derivatives). If we have more data than coefficients, the coefficients can
be chosen to minimize the least square error:

min
p ∈ Pm,
q ∈ Pn

N

∑
k=1

∣∣∣∣ fk − p(xk)
q(xk)

∣∣∣∣
2

, (2)

where Pm denotes the space of polynomials of order m. Rational approximation
with polynomials works well for one dimensional data but cannot be generalized
easily to higher dimensions. This is due to the fact that the number of coefficient to
be determined increases very rapidly as the order of the polynomials and the spatial
dimension increases. Our efforts so far have shown that rational approximation can
be made to work well in two dimensions for the antenna data from our simulations
but becomes too complicated in higher dimensions.

2.1.2 Radial Basis Functions

Interpolation with radial basis functions is a much used technique for approximation
of scattered data in any dimension with a well developed theory, see for example by
Buhmann or Wendland [4, 5]. A radial basis function (RBF) expansion is given by
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s(x) =
n

∑
i=1

λiφ(‖x−xi‖)+ p(x),

where φ is the basis function and p a polynomial of degree one. Common basis
functions are r3 (spline), r2 log(r) (thin plate spline) and exp(−r2) (Gaussian). The
interpolation condition is s(xk) = fk. An additional condition guarantees that s = f ,
if f is a first degree polynomial. Connected to each basis function is the Native
space NΦ and the corresponding Native space norm ‖·‖NΦ which can be interpreted
as a measure of the “bumpiness” of the function, see [5, Chapter 10]. The RBF
interpolant is the unique function which interpolates all data and has the least native
space norm. Compare with cubic splines which minimize the integral

∫ |g′′(t)|2 dt
among all functions which interpolate the data.

In the next section we show one attempt of combining the flexibility of RBF
expansions with the properties of rational interpolation.

2.2 Rational RBF Interpolation

Rational interpolation of scattered data in many dimensions have previously been
investigated in [6]. We decided to use two RBF expansions, here called p and q, as
a basis for the rational interpolation. Hence we have

f (x) =
p(x)
q(x)

, x ∈ R
d .

The interpolation condition is

p(xk) = fkq(xk), k = 1, . . . ,N

To define the values of p and q at the data points xk we need an extra condition. It is
natural to choose p and q as smooth as possible which means that the native space
norm should be as small as possible relative to their values at the data points. The
following minimization problem is a realization of this idea: Find the minimizer to
the following problem:

min
p,q ∈ NΦ ,

‖p‖2 +‖q‖2 = 1,
p(xk) = f (xk)q(xk).

(‖p‖2
NΦ

+‖q‖2
NΦ

)
, (3)

where ‖ · ‖NΦ denotes the native space norm.
Figures 1 and 2 show results for the proposed algorithm in one and two dimen-

sions. One reason for the good results is that S11 behaves as a rational function of
order one in these cases and such functions are interpolated exactly.
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Fig. 1: A comparison of RBF interpolation and rational RBF interpolation for S11 as a function of
the design parameter lp (cf. Table 1) properly scaled

Fig. 2: A comparison of RBF interpolation and rational RBF interpolation for S11 as a function of
the two design parameters lp and wp (cf. Table 1) properly scaled. The data points used to build the
interpolations are marked in the upper right subfigure
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More details of this novel interpolation algorithm will be presented in a forth-
coming paper.

3 Antenna Case

The optimization objective is to transmit as much electromagnetic energy as pos-
sible in a band of frequencies and at the same time minimize the footprint of the
antenna. The antenna is defined by the parameters given in Table 1, where the first
four parameters are the design variables in the optimization. A schematic view of
the antenna can be seen in Figure 3.

These parameters describe the dimensions the antenna element as well as the
feeding position. Note that upper limit of the feed position xp depends on the length
of R, as we require the feed wire to be attached to the antenna. The feed itself is
realized by means of a delta gap excitation with a characteristic impedance of 50 Ω .
As objective functions we choose the maximum return loss in the frequency band
f ∈ [2.5, 2.7] GHz, the area of R and the height of the antenna, all of which are to
be minimized.

Table 1: Dimensions of the antenna. The first four are the design parameters in the optimization

Parameter Description Value [mm]

lp Length of R 4.0 ≤ lp ≤ 45.0
wp Width of R 3.0 ≤ wp ≤ 15.0
hp Height of the antenna 2.0 ≤ hp ≤ 10.0
xp Feed position 2.0 ≤ xp ≤ lp −2.0
lg Length of the ground plane 100.0
wg Width of the ground plane 45.0
tg Thickness of the ground plane 2.0

Fig. 3: Antenna to be optimized. The design parameters are the dimension of R, the height and the
feed position
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4 Results

The result of the optimization is plotted in Fig. 4a, where the area of the antenna
element is plotted against S11. The influence of the third objective, the height of the
antenna, is visualized by four curves corresponding to different levels of constraints
on the height. The design parameters corresponding to the black curve with ◦ mark-
ers are shown in Fig. 4b. A total of 1193 function evaluations were performed in
order to extract the approximate Pareto front.
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Fig. 4: To the left figure is the Pareto front and of the response surfaces. The four different lines
corresponds to different constraints on the height. The right figure shows the design parameters
along the front corresponding to the black line with circle markers in the left figure

We see that the three objectives are clearly opposing each other, except in a small
area in the mid-range of S11 where the four curves are close together and the area
of the antenna element is relatively constant. We also see that the width of R is
at its smallest allowed value at most of the front, which suggests that it might be
beneficial to allow for smaller widths.

The convergence of the Pareto front can be seen in Fig. 5, where the front has
been plotted for the full data set, the first 75%, and the first 50%. As there are only
minor differences between the three curves it can be concluded that the algorithm
has converged.

5 Conclusions

We have presented a multi-objective optimization algorithm based interpolation
with rational radial basis functions. A key property of the algorithm is that the result
is both a set of approximately Pareto-optimal solutions and also approximations of
all objective function as expansions in radial basis function which can be used for
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Fig. 5: Convergence of the Pareto front with no constraint on the height, corresponding to the black
line with circle markers in Fig. 4a. Full data set with 1193 function evaluations (blue crosses), 75%
(green inverted triangles), and 50% (red triangles)

further post-processing. This enables the algorithm to use less evaluations of the ob-
jective functions compared to e.g. genetic algorithms. Since the evaluations of the
objective functions involve time-consuming simulations this fact can greatly im-
prove efficiency. Another key aspect is that all numerical simulations contain errors
(noise) and to replace interpolations with approximations is a feature of the algo-
rithm to make it more robust. Finally, by avoiding a weight-based trial-and-error
strategy, where the objectives are weighted to form a single objective function, the
decision of the optimal solution is postponed until all possibilities and limitations
are known.

The response surfaces shown for S11 indicates how difficult this objective is to
optimize, regardless of method. The minima are so sharp that a pure gradient based
algorithm will have trouble finding its way down to the minima. We have also seen
how difficult the true objective function is to interpolate correctly with standard
methods. Future work includes studying a gradient based algorithm in combination
with interpolation with the rational radial basis functions presented here.
Acknowledgements Financial support for this work has been provided by the Swedish Foun-
dation for Strategic Research (SSF) through the Gothenburg Mathematical Modeling Centre
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Exploiting Model Hierarchy in Semiconductor
Design Using Manifold Mapping

D.J.P. Lahaye and C.R. Drago

Abstract In this paper we solve an optimal doping profile control problem for
semiconductors using the manifold mapping technique. As coarse and fine approx-
imation we employ the drift diffusion and energy transport model, respectively. In
this work the manifold mapping technique is applied for the first time to a problem
in which the number of design variables varies with the finite element mesh points
employed. The advantage of our approach is that it allows to optimize the energy
transport model without having to implement an adjoint code while at the same pre-
serving computational efficiency. Numerical results giving evidence of this claim
for different values of the applied voltage will be shown.

1 Introduction

The interest in optimal control for semiconductor design has attracted considerable
recent attention in both the engineering and applied mathematics community. A ma-
jor objective in the optimal design is to improve the current flow over some contacts,
for fixed applied voltages, by a slight change of the device doping profile. In most
applications the design problem is addressed empirically and based on the knowl-
edge and experience of electrical engineer. Although this problem can be clearly
tackled by an optimization approach, only recently efforts have been made to solve
the design problem via optimization techniques.

At first standard black box optimization methods requiring many solves of the
forward model resulting in a high computational cost were applied [9]. Later the
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adjoint variable method was shown to drastically reduce the computational effort in
the optimal control of the so-called drift diffusion model [8]. This approach was ex-
tended to the so-called energy transport model [5]. Comparisons between the drift-
diffusion and the energy transport optimal designs were presented in [6].

Moreover in [6] the idea to exploit this classical model hierarchy to speed up the
convergence of the optimization algorithms using an input space mapping algorithm
was proposed [1, 2]. Herein the drift diffusion and energy transport models are the
coarse and fine model, respectively. The advantage of this approach is that it allows
to efficiently optimize the energy transport model without having to implementing
its adjoint. The drawback is that the input space mapping solution does not necessar-
ily coincide with the fine model optimum. In the manifold-mapping technique [4],
the surrogate model is constructed in such a way that the solutions of the surrogate
and fine model optimization problem do coincide.

In this work we capitalize in the above achievements by solving the design for the
energy transport model using manifold-mapping while exploiting the drift-diffusion
model as auxiliary model. In this work the manifold mapping technique is applied
for the first time to a problem in which the number of design variables varies with
the finite element mesh points employed. Another innovative aspect of this work
is the fact that we employed the Comsol Multiphysics finite element simulation
environment [3] to implement the drift diffusion and energy transfer models, as well
as the adjoint of the former. The flexibility that this framework provides allows to
extend this work to bi-polar, two-dimensional or physically more complex models
in a straightforward manner.

2 Semiconductor Models

The drift diffusion model is the simplest and most popular semiconductor model and
is widely used in commercial simulation packages. It is based on the assumption of
isothermal motion and allows for an efficient numerical study of charge transport
in many case of practical relevance. In today’s semiconductor technology however,
the miniaturization of devices is ever progressing. The simulation of semiconductor
devices on sub-micron scale therefore requires advanced transport models. Because
of the presence of very high and rapidly varying electric fields, phenomena occur
which cannot be described by means of drift-diffusion model. The energy-transport
model on the other hand takes thermal effects related to the electron flow through the
semiconductor crystal into account. It therefore allows for a more accurate physical
description.
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2.1 Drift-Diffusion and the Energy Transport Model

The stationary drift diffusion (DD) model in the unipolar case consists of a continu-
ity equation for electron density n coupled with a Poisson equation for the electro-
static potential V [10]. Denoting the electron current density Jn as

Jn = −(∇n−n∇V) (1)

the equations in dimensionless form on the interval Ω = [0,L] read

divJn = 0 (2a)

λ 2�V = n−C (2b)

where C and λ 2 = εs UT
qCm L2 are the doping profile and the Debye length, respectively.

Numerical values of the latter are given in Table 1.
Stratton’s energy transport (ET) model consists of continuity equation for elec-

tron density n and the temperature T coupled to the same Poisson’s equation for V
as used before [10]. Denoting the electron and the energy flux density as Jn and JE ,
one has that

Jn = −
(
∇n− n

T
∇V

)
(3a)

JE = −3
2

(∇(nT )−n∇V) (3b)

and the equations in dimensionless form read

divJn = 0 (4a)

divJE = Jn ·∇V +W (n,T ) (4b)

λ 2ΔV = n−C (4c)

where W (n,T ) = − 3
2

n(T−1)
τw

is the energy production term and τw = τ0μ0UT /L2 the
scaled energy relaxation time (cf. Table 1).

Systems (2) and (4) have to be supplied with appropriate boundary conditions.
We assume that on both endpoints of the one-dimensional domain Ω the following
Dirichlet boundary conditions are imposed

n = nD, T = TD, V = VD for x = 0 and x = 1 , (5)

where the difference in VD between the left and rightmost endpoint is the applied
voltage ΔV . Having solved either the DD or ET model, the current can be obtained
by integrating Jn at the contact x = 1

I = Jn(x = 1) . (6)
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Table 1: Physical and dimensionless parameters

Parameter Physical meaning Numerical value

q Elementary charge 1.6 ·10−19As
εs Permittivity constant 10−12AsV−1cm−1

μ0 (Low field) mobility constant 1.4 ·103cm2V−1s−1

UT Thermal voltage at T0 = 300K 0.026V
τ0 Energy relaxation time 0.4 ·10−12s
L Length of the device 0.6μm

λ 2 Debye length 9.0278×10−5

τw Scaled energy relaxation time 4×10−3

3 Design Problem

The goal of optimal control problem we intend to solve is to increase the current
computed at the contact at a particular voltage level by limited changes in the dop-
ing profile. More precisely, we assume a reference doping profile C for which a
particular applied voltage ΔV gives rise to a reference current I. We aim at chang-
ing C in such a way to increase the reference current I to obtain the target current
I∗. In other words, we intend to minimize the cost functional [5, 6, 8]

F(y,C) =
1
2

(I − I∗)2 +
γ
2

∫
Ω

|∇(C − C̄)|2dx , (7)

where γ > 0 allows to balance the relative weight of both terms in the right-hand
side. The function C enters as a source term in the DD and ET models and plays the
role of design variable. The DD and ET models are interpreted as a constraint on
the minimization problem that allow to determine the current density Jn through the
state variables y = (n,V ) and y = (n,T,V), respectively.

4 Manifold-Mapping Technique

Let us consider an optimization problem with design variables x in the design space
x ∈ X ⊂ Rn and specifications y ∈ Rm. The accurate behavior of electromagnetic
devices is often studied using models that have large computational costs, e.g., finite
element models. In space-mapping terminology these models are called fine models.
The fine model response is denoted by f(x) ∈ Rm. The problem we set out to solve
in this work can be stated as

find x∗
f ∈ X such that x∗

f = argmin
z∈X

‖f(z)−y‖ , (8)

where argmin denotes the argument of the minimum. Space-mapping needs a sec-
ond, possibly less accurate but computationally cheaper model, called coarse model.
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The coarse models are assumed to be defined over the same design space X . Their
response is denoted by c(x) ∈ Rm. The auxiliary optimization problem can be for-
mulated as

find x∗
c ∈ X such that x∗

c = argmin
z∈X

‖c(z)−y‖ . (9)

The manifold-mapping technique [4] exploits coarse model information and defines
a surrogate optimization problem whose solution does coincide with x∗

f . The key in-
gredient is the manifold-mapping function between the coarse and fine model image
spaces c(X) ⊂ Rm and f(X) ⊂ Rm. This function S : c(X) %→ f(X) maps the point
c(x∗

f ) to f(x∗
f ) and the tangent space of c(X) at x∗

f to the tangent space of f(X) at
x∗

f . It allows the surrogate model S(c(x)) and the manifold-mapping solution to be
defined as follows

find x∗
mm ∈ X such that x∗

mm = argmin
z∈X

‖S(c(z))−y‖ . (10)

The manifold-mapping function S(x) is approximated by a sequence {Sk(x)}k≥1
yielding a sequence of iterands {xk,mm}k≥1 converging to x∗

mm. The individual
iterands are defined by coarse model optimization

find x∗
k,mm ∈ X such that xk,mm = argmin

z∈X
‖Sk(c(z))−y‖ . (11)

At each iteration k, the construction of Sk requires the singular value decomposition
of the matrices �Ck and �Fk of size m×min(k,n) whose columns span the coarse
and fine model tangent space in the current iterand, respectively. Denoting these
singular value decompositions by

�Ck = Uk,c Σk,c V T
k,c and �Fk = Uk, f Σk, f V T

k, f , (12)

we introduce the updated objective yk as

yk = c(xk)−
[
�Ck �F†

k +(I −Uk,cUT
k,c)

]
(f(xk)−y) , (13)

where superscript † denotes the pseudo-inverse. With this notation, the problem (11)
can shown be to be asymptotically equivalent to

find x∗
k,mm ∈ X such that xk,mm = argmin

z∈X
‖c(z)−yk‖ (14)

Details on the construction of the matrices �Ck and �Fk, on properties of the map-
ping function S(x), as well as on the conditions under which the iteration (11) does
converge, can be found in [7]. The computation of �Fk does not require the fine
model sensitivity. By construction x∗

mm = x∗
f holds. The innovative aspect of this

work concerns the number of design variables. In previous publications the MM
technique was applied to sizing optimization problems with a limited number of
design variables. In this work in contrast, the design variable x is a grid function
whose dimensions varies with the number of finite element mesh points employed.
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5 Numerical Results

In this section we test the performance of the manifold mapping optimization for
a one-dimensional n+ − n − n+ ballistic diode, which is a simple model for the
channel of a MOS transistor. The semiconductor domain is given by the interval
Ω = [0,L]. In the n+-regions a maximal doping concentration of Cm = 5 ·1017 cm−3

is prescribed. In the n–channel the minimal doping density is 2 · 1015 cm−3. The
length of the n+-regions and of the channel is 0.1μm and 0.4μm, respectively.
For the coarse model optimization we have used the same gradient algorithm as
in [6], with constant step size (α0.26V = 10−3;α0.52V = 10−3;α1V = 10−4;α1.5V =
10−4), where the gradient is obtained by means of the adjoint equations. The DD
and ET models as well as the adjoint of the former were implemented in the Comsol
Multiphysics finite element simulation environment [3]. We used a mesh consisting
of 256 elements.

We aimed at achieving an amplification of the current of 50% for different value
of the applied voltage of 0.26,0.52,1,1.5V . The convergence history of the mani-
fold mapping algorithm for the four test cases can be found in Fig. 2. The overall
performance of the algorithm is very promising because as little as 6 fine model
evaluations are sufficient to reach the optimum. The optimal doping profiles are
presented in Fig. 1 and the agreement between the current targets and the optimal
ones is shown in Fig. 3. Note that for increasing biasing voltages the drift diffusion
and energy transport model yield quite different responses.

The convergence statistics can be found in Table 2. Compared with the space
mapping optimization approach presented in [6] we reduced furthermore the number
of evaluations of the coarse drift diffusion model. In any case we emphasize that the
computation of the coarse model gradient is much cheaper than evaluating the fine
model gradient.

Table 2: Gradient steps in the coarse model optimization

Volt Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

0.26 1 4 3 1 1 1
0.52 3 3 4 1 1 1
1 10 9 8 1 1 1
1.5 5 5 4 1 1 1

6 Conclusions and Outlook

In this work we have demonstrates that exploiting model hierarchy in semiconductor
design using manifold mapping results in an efficient computational procedure. It
allows to solve the optimal control problem for the energy transport model using as
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Fig. 1: Optimal doping profile for biasing voltages of 0.26, 0.52, 1, 1.5 V
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Fig. 2: Convergence history of the MM algorithm for biasing voltages of 0.26, 0.52, 1, 1.5 V
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little as 6 finite element simulation. In doing so, we applied the manifold mapping
technique to an optimization problem with many design variables for the first time.
Future work will focus on extension to two-dimensional and bi-polar devices.
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Solving Inverse Problems by Space Mapping
with Inverse Difference Method

Murat Şimsek and N. Serap Şengör

Abstract The surrogate methods have been used to ease the computational burden
in various disciplines. In this work, a surrogate method based on space mapping
is proposed to solve inverse problems. Even though the efficiency of space map-
ping and its variants has been demonstrated in numerous work, using it for inverse
problems is addressed for the first time in this work. The efficiency of the proposed
method is demonstrated solving the shape reconstruction of a conducting cylinder.

1 Introduction

The distinctive feature of surrogate methods are their capability of combining the
computational efficiency of a coarse model with the accuracy of the fine model and
in Space Mapping (SM) technique this is provided through a mapping from the fine
model input space to the coarse model input space [1]. In Space Mapping with Dif-
ference (SM-D) method this mapping has been adjusted by enlarging the dimension
of the domain of the mapping with the coarse model output. With this adjustment,
the need to evaluate the fine model was reduced and the simulation results obtained
for different applications revealed that the extrapolation capability of the models
obtained with SM-D were improved [2,3]. In this work, the approach used in SM-D
method is considered for inverse problems and a new method named Space Map-
ping with Inverse Difference (SM-ID) is proposed. As the proposed method deals
with the problems that are instinctively inverse, the method has! ! two important fea-
tures different than other SM techniques. Even though the mapping between coarse
model and fine model parameter spaces are constructed similar to Linear Inverse
Mapping (LISM) algorithm given in [4], the parameter extraction (PE) step needed
in LISM and other SM techniques is no longer necessary in SM-ID to build an ap-
propriate space mapping function P(.). The other difference is using inverse coarse

Murat Şimsek, N. Serap Şengör
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454 M. Şimsek and N.S. Şengör

model instead of coarse model. The inverse coarse model is generated as a multi-
layer perceptron in this work.

In the next section, SM-D method will be reviewed and in the third section the
proposed method will be introduced. The simulation results obtained in solving the
shape reconstruction problem of a conducting cylinder [5] by SM-ID will be given
in the fourth section.

2 Space Mapping with Difference

In most of SM techniques as Aggressive Space Mapping (ASM) and SM a mapping,
P(.), from the fine model input space to the coarse model input space is constructed
as following:

xc = P(x f ) (1)

such that
Rc(P(x f )) ≈ R f (x f ) (2)

where, x f , xc, R f (.) and Rc(.) are fine and coarse model design parameters and fine
and coarse model responses, respectively [1]. As it can be followed from the block
diagram given in Fig. 1, in SM-D method [2] a mapping from x f to xc is formed as
following:

xc = Pd(Yf ,x f )+ x f (3)

Here, Pd(., .) maps the fine model response Yf = R f (x f ) and the fine model design
parameter x f to the difference between fine and coarse model design parameters
xd . Since the fine model response Yf = R f (x f ) is already obtained, using it does
not give rise to an extra computational burden. The steps of SM-D method to find

Fine Model

PE process

Xf

Xc yc

yf

Forming Pd

Pd

Coarse Model

+
e

–

3 +

4 1

2

Stopping Criterion

X f X c

(2)

X d
(1) (1) (1)

(1)

(1)

–1

Pd

Pd

=

=

( )

X f
yf( ),

Xc
Xc

(1)

Xc
(1)Xd

(1)

yc
(1)

yf
(1)

min - Rc=

Xf Xf

(1)
=

=

Xc
(1)

yf ( )

- Rc Xc
(1)

yf ( ) < ε

?

Fig. 1: Block diagram of the SM-D method
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the optimum design parameters of fine model x f giving rise to optimum fine model
response Yf using coarse model responses Rc(.) are the following:

• pre-step 1: choose Y ∗
c = Yf

• pre-step 2: find x∗
c from x∗

c = minxc ‖Yf −Rc(xc)‖
• pre-step 3: set x(1)

f = x∗
c

• pre-step 4: find Y (1)
f = R(x(1)

f ) set i = 1

• step 1: if ‖Y (i)
f −Y∗

c ‖ ≤ ε then x f = x(i)
f else go to step 2

• step 2 (Parameter Extraction): find x(i)
c using x(i)

c = minxc ‖Y (i)
f −Rc(xc)‖

• step 3: form P(i)
d = QD† where Q

.= [xc − x f ], D
.= [1 x f Yf ]T and set i = i+ 1

• step 4: set x(i+1)
f = P(i)

d

†
(x∗

c) and go to step 1

The first four pre-steps summarizes initialization of Yf and the last four steps gives
the algorithm of SM-D method.The Q and D matrices used here are given below for
i = m and the †’s denote the pseudo inverse:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x(1)
c1 − x(1)

f 1 x(2)
c1 − x(2)

f 1 ... x(m)
c1 − x(m)

f 1

x(1)
c2 − x(1)

f 2 x(2)
c2 − x(2)

f 2 ... x(m)
c2 − x(m)

f 2
. . ... .
. . ... .
. . ... .

x(1)
cn − x(1)

f n x(2)
cn − x(2)

f n ... x(m)
cn − x(m)

f n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

nXm

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ... 1

x(1)
f 1 x(2)

f 1 ... x(m)
f 1

x(1)
f 2 x(2)

f 2 ... x(m)
f 2

. . ... .

. . ... .

. . ... .

x(1)
f n x(2)

f n ... x(m)
f n

Y (1)
f Y (2)

f ... Y (m)
f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+2)Xm
(4)

These matrices expand till satisfactory result is obtained. Following the statement in
step 3, given above, Pd(., .) mapping can be obtained as following where Pd = QD†

for each iteration:

Pd(Yf ,x f )
.= Pd

⎡
⎣ 1

x f

Yf

⎤
⎦ (5)

3 Space Mapping with Inverse Difference

In design problems, the main concern is to determine the design parameters xdesign

which minimize an objective function defined over responses R(xdesign) of design
parameters xdesign. In inverse problems, main concern is to determine the some pa-
rameters x of the problem given responses R(x). As both problems are synthesis
problems the solution is not unique and furthermore for the inverse problems it can
be ill-possed. When feedforward neural network structure is used the ill-possed na-
ture of the problem is dealt with regularization method in Tikhonov sense [6]. In
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order to deal with inverse problems, a new method Space Mapping with Inverse
Difference (SM-ID), based on the idea of extending the inputs of mapping P(.) as
in SM-D method is proposed and its block diagram is given in Fig. 2.

Fine ModelXf

Xc
yc

yf
Forming iPd

iPd

Coarse Model

Inverse

ANN

3

+

4

1

2
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X f X c
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X d
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(1)

( 1)

iPd
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( X c
))+

X c yc( ),

,

Xc
(1)

Xd

(1)

yc
(1)

yf
(1)

yf
(1)

Xf Xf

(1)
=

=

- Rc Xc

(1)
yf ( ) < ε

?

Fig. 2: Block diagram of the SM-ID method for i = 1

As it can be followed from Fig. 2, SM-D method is modified in two ways; first
inverse coarse model is used instead of coarse model. In most applications, there
will not be possibility of obtaining an inverse coarse model, in such cases using a
well-known feedforward neural network structure as multilayer perceptron would
be suitable. The second modification is in constructing the SM function P(.). As
the relation in SM-ID will be the inverse of the relation set up in SM-D, this func-
tion is denoted by iPd(.) to imply that it builds a mapping between inverse coarse
model output Yc, inverse coarse model design parameters xc and fine model design
parameters x f . The SM function iPd(.) maps Yc , xc to xd as following:

x f =i Pd(Yc,xc)+ xc (6)

SM function iPd(.) will resemble that of LISM algorithm [4] but since inverse coarse
model is used there is no need for parameter extraction step [1, 4]

The algorithm of SM-ID method is given in the following:

• step 1: if ‖Y (i)
f −Rc(x∗

c)‖ ≤ ε then x f = x(i)
f else go to step 2

• step 2: set Yc = Y (i)
f and find x(i)

c from inverse coarse model

• step 3: form iP(i)
d = QD† where Q

.= [x f − xc], D
.= [1 xc Yc]T and set i = i+ 1

• step 4: set x(i+1)
f = iP(i)

d (x∗
c ,Y

∗
c )+ x∗

c

To obtain the new fine model parameter the following relation is used:

x(m+1)
f = iPd

⎡
⎣ 1

x∗
c

Y ∗
c

⎤
⎦+ x∗

c (7)
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In this work, the SM function iPd(., .) is a linear mapping as given in Equation 8 .

iPd(., .) =

⎡
⎢⎢⎢⎢⎣

c1 b11 ... b1(n+1)
. . ... .
. . ... .
. . ... .

cn bn1 ... bn(n+1)

⎤
⎥⎥⎥⎥⎦

nX(n+2)

(8)

The Q and D matrices used at each iteration to form iPd(., .) are given below for
i = m.

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x(1)
f 1 − x(1)

c1 x(2)
f 1 − x(2)

c1 ... x(m)
f 1 − x(m)

c1

x(1)
f 2 − x(1)

c2 x(2)
f 2 − x(2)

c2 ... x(m)
f 2 − x(m)

c2
. . ... .
. . ... .
. . ... .

x(1)
f n − x(1)

cn x(2)
f n − x(2)

cn ... x(m)
f n − x(m)

cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

nXm

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ... 1

x(1)
c1 x(2)

c1 ... x(m)
c1

x(1)
c2 x(2)

c2 ... x(m)
c2

. . ... .

. . ... .

. . ... .

x(1)
cn x(2)

cn ... x(m)
cn

Y (1)
c Y (2)

c ... Y (m)
c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+2)Xm
(9)

Since iPd(., .) is linear and there is no need for parameter extraction the computa-
tional burden is decreased compared to other SM methods.

4 Simulation Results for Reconstruction of a Conducting
Cylinder

The inverse problem considered is the reconstruction of a conducting cylinder prob-
lem. To indicate the efficiency of SM-ID method the results obtained are compared
first with the results obtained from conventional Artificial Neural Networks (ANN)
structures. Also the results obtained from SM-ID are compared with other SM based
methods as ASM and LISM.

The conventional ANN structure used is multilayer perceptron and it is trained
with different number (50, 100, 200) of data. The ANN trained with 50 and 100 data
is also used as inverse coarse model while implementing SM-ID method. In Figs. 3–
8 the test set results are exposed. The ANN’s trained have 20 inputs, nine outputs,
where the inputs are the real amd imaginary components of scattered electric field
obtained at 10 different positions and the outputs are the Fourier series coefficients
of the geometrical shape of the conducting cylinder. It can be followed from the
Table 1 and Figs. 3–8 that SM-ID results outperforms the ANN results. Also,as the
number of data used increases, the iterations needed to construct iPd decreases.

The results obtained for the reconstruction of conducting cylinder using SM-ID
method are further compared with ASM and LISM methods and these are given in
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Table 1: Comparison of SM-ID results with ANN

ANN-50 SM-ID-50 ANN-100 SM-ID-100 ANN-200
iteration:5 iteration:4

Max error 0.22067 0.03762 0.11889 0.00389 0.10386

Mean error 0.06715 0.00868 0.05266 0.00081 0.04285

Fig. 3: On the left ANN result and on the right SM-ID result is given for 50 data

Fig. 4: On the left ANN result and on the right SM-ID result is given for 100 data. Since the lines
on the right overlaps, the difference can be followed from Table 1

Fig. 5: Only the ANN result is given for 200 data as SM-ID fits almost perfectly for 100 data
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Table 2. In ASM and LISM, ANN trained with 100 data for inverse problem is used

Table 2: Comparison of SM-ID results with LISM, ASM and ANN

LISM ASM SM-ID-100 ANN-100
iteration:2 iteration:13 iteration:7

Max error 0.11085 0.04053 0.00883 0.11194

Mean error 0.03459 0.01337 0.00237 0.03489

as the coarse model thus no need for parameter extraction arisen. It can be followed
from Fig. 6 that the LISM diverged after two iterations so only the result obtained
with two iterations are given in Table 2.

Fig. 6: Comparison of convergences of different methods. Two straight lines are shown to ease the
comparison

5 Conclusion

In this work a novel SM based method is proposed to solve inverse problems and
already existing methods based on SM technique as LISM and ASM are used for
inverse problems. Due to the nature of the inverse problems in all three SM based
methods instead of parameter extraction step inverse coarse model which is imple-
mented by multilayer perceptron is used. It is shown that the proposed method gives
better or results for reconstruction of conducting cylinder.

Acknowledgements The authors thank Necmi Serkan Tezel for introducing the inverse scattering
problem.
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Fig. 7: Convergence of SM-ID method. The straight line denotes the stopping criterion

Fig. 8: Comparison of ASM with SM-ID. As the results for both methods fits the actual data, the
difference between methods can be followed from Table 2
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Part V
Model-Order Reduction



Introduction to Part V

E. Jan W. ter Maten

Over the years, model-order reduction (MOR) always was greatly inspired by prob-
lems from the electronics industry. Especially problems from interconnect and from
parasitics extraction offered a nice class of large, linear problems. MOR aims to
compress large systems but requires that its input-output behavior is preserved
(within tolerances). There are several techniques available. For good general ref-
erences on MOR the reader is referred to [1–3].

As a result of several international and national co-operative research projects1

in which MOR is a dedicated topic, MOR received more pronounced attention also
at the SCEE conferences: SCEE 2006 had five presentations on MOR, including the
invited talks by A.C. Antoulas [4] and L.M. Silveira [5]. The opening invited talk
by P. Benner at SCEE 2008 was followed by as many as 13 presentations on MOR.
This rising trend is also reflected in the programs of several other conferences like
SIAM-CSE 2007, ICIAM 2007, and ECMI 2008, as well as at workshops at TU
Eindhoven (2006, 2007, [6, 7]) and the University of Hamburg (2008, [8]), and at
the CoMSON Autumn School on Future Developments in Model Order Reduction,
in Terschelling, the Netherlands (2009, [9]).

MOR already had great potential to generate small, efficient models that approx-
imate output results well while preserving several important properties like passiv-
ity, stability, and reciprocity. All techniques ranging from balanced truncation (BT)
to Krylov-subspace methods, to methods based on singular-value decompositions

E. Jan W. ter Maten
NXP Semiconductors, Corp. I&T/DTF/A&M/Physical Design Methods, Mathematics, High Tech
Campus 46, 5656 AE Eindhoven, The Netherlands, e-mail: jan.ter.maten@nxp.com

1 Mentioned are:
• the EU-FP6-MCA-RTN project “Coupled Multiscale Simulation and Optimization in Nanoelec-
tronics” (CoMSON), 2005–2009, http://www.comson.org/
• the EU-FP6-MCA-ToK project “Operational MOdel Order REduction for Nanoscale IC Elec-
tronics” (O-MOORE-NICE!), 2007–2010,
http://www.tu-chemnitz.de/mathematik/industrie technikprojekte/omoorenice/
• the German BMBF project “Systemreduktion für IC Design in der Nanoelektronik” (SyreNe),
2007–2010, http://www.syrene.org/
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(SVDs) or to modal expansions, work more or less satisfactorily for linear state-
space methods in the single-input–single-output (SISO) case. The papers in this
book address aspects of linear algebra to efficiently solve intermediate problems,
but also steps for needed generalizations to make the methods of real interest for
industrial problems: generalizations to systems of differential-algebraic equations
(DAEs), treatment of the multiple-input–multiple-output (MIMO) case, inclusion
of parameterizations, partitioning techniques with associated structure-preserving
MOR methods, and, finally, treatment of nonlinearity.

The first 11 papers of Part V deal with MOR techniques for linear problems.
The known BT methods for linear state-space ordinary differential equations

(ODEs) provide error bounds and guarantee stability. A special variant of BT called
positive-real BT preserves passivity. Progress in linear algebra now allows the meth-
ods to deal with problem sizes of up to 106. The invited paper by Benner extends
the theory for BT, developed for linear ODEs, to linear descriptor systems (state-
space formulations of DAEs). A block triangulation is obtained by the disk-function
method followed by a block diagonalization by solving a generalized Sylvester
equation. Clever linear algebra generates in a stable manner the necessary bases.
This is one of Benner’s focusing points: by concentrating on the generation of the
necessary bases, the many operators required need not to be determined explicitly.
Also, several properties are obtained in an implicit way. Attention is given to pas-
sivity preservation, sparsification, and synthesis of the reduced-order model.

Stykel and Reis consider a passivity-preserving MOR method for circuit equa-
tions after applying a Möbius transformation. They derive the so-called bounded
real BT. It requires balancing two Gramians that satisfy the projected Lur’e equa-
tions. Under some assumptions such equations can be rewritten as the projected
Riccati equations. This results in the passivity-preserving BT method for electrical
circuits (PABTEC).

Ionutiu et al. guarantee passivity preservation by the spectral-zero method, in-
troduced by A.C. Antoulas and D. Sorensen in 2005; this method needs a special
eigenvalue algorithm to determine the most dominant spectral zeros as generalised
eigenvalues of a special matrix pencil (a Hamiltonian eigenvalue problem). The
eigenvalue method used in this paper is a generalisation of the dominant-pole al-
gorithm, proposed by J. Rommes and N. Martins in 2006 for MOR using modal
expansion. Synthesis of the reduced-order model is achieved.

The paper by Yetkin and Dag proposes MOR by approximating dominant poles
in a modal expansion. The number of dominant eigenvalues of interest are de-
termined by Gershgorin eigenvalue-inclusion methods. For the Gershgorin cluster
closest to the imaginary axis, the eigentriples are computed by some eigenvalue-
deflation algorithm. For each eigentriple, the correction to the transfer function de-
termines the error-control to stop.

Roos et al. present a global-approximation-based order reduction (GABOR) that
preserves passivity and reciprocity for RLC circuits. A two-sided moment match-
ing using Laurent expansions around zero and at infinity is exploited. The specific
algorithm may be improved further, if a more stable implementation, based on fully
implicit moment matching, is found in the future.
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The contribution by Feng and Benner exploits recent developments in parame-
terized MOR dealing with non-rational occurrences of frequency-dependent terms.
The first author developed stable methods to deal with MOR of state-space systems
where the matrices are expressed in series with respect to the parameters. In princi-
ple, frequency can be treated as a parameter as well. In the paper, two appropriate
parameters that both depend on frequency, and hence are correlated, are identified.
A recursive procedure is proposed that uses orthogonalization at each iteration.

The paper by Benner and Schneider considers the MIMO, or multi-terminal,
problem. They consider truncated SVD methods to make some existing methods like
SVDMOR and extended SVDMOR (ESVDMOR), which are based on effectively
reducing the number of input and/or output terminals, more efficient for large-scale
problems.

Ugryumova and Schilders start from a full circuit model described by Kirchhoff’s
laws in the frequency domain involving all voltages and branch currents. The model
describes the electromagnetic properties of an interconnect system. The terminal
voltage-to-current transfer can be described by an admittance matrix Y (s). The re-
duction in size of this matrix is based on selecting several nodes as “super nodes”
and effectively treating them as terminals as well. This set includes the original
ports. The selection corresponds to a block partitioning. Given this set, the effective
admittance matrix is written as sum of RL and of C contributions. The first part is
approximated by a dominant-pole expansion, while the second term is reduced by
an eigenvalue decomposition and setting the non-positive eigenvalues to zero. This
ensures a stable and passive approximation that also is realizable.

The paper by Honkala et al. presents a hierarchical MOR flow, where the linear
parts of the (flat or hierarchically defined) circuit are divided into independently re-
ducable subcircuits by using the hMETIS graph-partitioning algorithms. A suitable
MOR method can be then applied to the different types of subcircuits. In the pa-
per, the PRIMA and Liao–Dai methods are used. The latter only approximates two
moments. Hence, here the blocks to be reduced should not be too large.

Miettinen et al. propose a passive, stable, netlist-in–netlist-out-type MOR method
suitable for the reduction of very large RL-circuit blocks. The method relies on
partitioning the circuit into subcircuits that can be efficiently approximated with
low-order macromodels. Here, expansion in 1/s is considered. The efficiency of the
method is demonstrated with several simulations and comparison to the PRIMA
method. By using a partitioning to match a small section of the original circuit with
a low-order approximation, they avoid the possible ill-conditioning issues related to
direct high-order macromodel matching approaches. Also here the hMETIS algo-
rithms are used.

The paper by Rommes et al. considers MOR of large resistive MIMO networks.
Full reduction of all internal unknowns would generate a system with a full matrix
in which every terminal is connected to every other terminal. This smaller system
may require more time to solve than the original large but sparse system. Hence one
has to guarantee some level of sparsity in the reduced-order model. This is done by
marking some key internal unknowns as important and to raise them to the status of
terminal. This corresponds to a block partitioning of the original system. Each block
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is reduced in an exact way using Schur complements to guarantee that the same path
resistances between input and output terminals as in the original problem are found.
For the partitioning, the authors use concepts from matrix-reordering algorithms.
They first bring the matrix to a balanced bordered block-diagonal (BBBD) form
and next apply an approximate minimum-degree (AMD) ordering on each block to
minimize fill-in. The partitioning can be graphically displayed by special tools.

The last three papers of Part V deal with nonlinear MOR.
In the paper by Mohaghegh et al., the trajectory piecewise-linear (TPWL) ap-

proach is adopted, in which, at specific time points (linearization points) along a
time trajectory, a reduced-order model is generated in the solution space around
a local linearization in the solution space. From the projections associated with
each model, a global projection is defined in a larger subspace that encompasses
all individual subspaces of the reduced-order model. This paper studies different
linear MOR approaches with respect to their performance when used as a kernel
for TPWL. The studied MOR approaches are PRIMA, SPRIM, and poor man’s
truncated balanced realization (PMTBR). The first two rely on Krylov-subspace
methods. The last one exploits the direct relation between the multipoint rational
projection framework and the TBR. During the training to define the linearization
time points, errors should be measured in the full space and not in the reduced space.
Also, the weighting procedure between different models is important. Finally, sen-
sitivity with respect to slight changes of the input signal are considered.

In the contribution by Verhoeven et al., the proper orthogonal decomposition
(POD) approach is studied for reducing nonlinear IC models. POD results in much
more accurate models than obtained with TPWL, but also is more costly: without
additional adaptions, the reduced-order model may even require more CPU time
than the original unreduced model. This is due to the fact that replacing a linear op-
eration Ax by a nonlinear evaluation f (x) prevents evaluating the projected version
W T f (V z) efficiently (in the linear case one can multiply the matrices in advance)
and also the Jacobian. Missing-point estimation is a technique to select the most
dominant state variables. The adapted POD presented in this paper applies different
selections for V and W , resulting in a significantly improved POD method.

The last paper by Condon and Grahovski studies MOR of perturbed nonlinear
neural networks with feedback. It focusses on empirical BT-based MOR that builds
empirical gramians. The nonlinearity is assumed to be written as a linear combina-
tion of linear and nonlinear parts (Hopfield model). Nonlinear neural networks fit in
this framework. The feedback can be a nonlinear function of the output. Nonlinear
controllability and observability gramians can be defined using the empirical BT
approach. For perturbed Hopfield models, integral estimates for the perturbations,
that guarantee the hyperstability property after MOR, are derived. The paper studies
the qualitative behaviour of the solutions of the reduced perturbed model. Special
attention is paid to the Popov hyper-stability properties.
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Advances in Balancing-Related Model
Reduction for Circuit Simulation

Peter Benner∗
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Abstract We discuss algorithms for balanced truncation (BT) based model reduc-
tion of linear systems. BT is known to have good global approximation properties
and to preserve important system properties. A computable error bound allows to
choose the order of the reduced-order model adaptively. We will emphasize those
aspects that makes the application of BT to models arising in circuit simulation a
non-straightforward task. In recent years, these issues have been addressed by sev-
eral authors. We will survey some of these developments and demonstrate that BT
is now suitable for linear descriptor systems encountered in circuit simulation.

1 Introduction

Model order reduction (MOR) is an indispensable tool in the design and analysis of
integrated circuits (ICs) and circuit simulation in general. This is due to the fact that
on the one hand, almost all IC design relies heavily on simulation and on the other
hand, the complexity of the mathematical models used to replicate the behavior
of an actual electronic circuit is growing more rapidly than computing resources.
This is caused by the increased packing density and multi-layer technology which
nowadays requires the modeling of thermic and other parasitic effects caused by
the interconnect. In many situations, only the use of MOR techniques allows the
numerical simulation of the usually very large systems of ordinary differential and
differential-algebraic equations used to describe (parts of) complex circuit layouts.
MOR has been particularly successful in reducing the complexity of large linear
subcircuits modeling parasitic effects of interconnect and in small signal analysis,
and it is becoming an increasingly useful tool also in other areas of circuit design [1].
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Linear circuit models can be described by linear descriptor systems of the form

Eẋ(t) = Ax(t)+ Bu(t), y(t) = Cx(t)+ Du(t), (1)

where A,E ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, and x(t)∈ R
n,y(t)∈ R

p,u(t)∈
Rm denote generalized states, outputs, inputs, respectively. The corresponding trans-
fer function

G(s) = C(sE −A)−1B + D (2)

results from describing the input-to-output map u → y in frequency domain.1 One
difficulty for balancing-related model reduction methods arises from E being singu-
lar as it is usually the case in circuit simulation. In this paper we will mainly focus
on advances made for resolving this issue.

The model reduction problem now consists of finding a reduced-order system,

Ê ˙̂x(t) = Âx̂(t)+ B̂u(t), ŷ(t) = Ĉx̂(t)+ D̂u(t), (3)

of order r, r � n, with the same numbers of inputs (m) and outputs (p), i.e., Â, Ê ∈
Rr×r, B̂ ∈ Rr×m, . . . , and associated transfer function Ĝ(s) = Ĉ(sÊ − Â)−1B̂+ D̂, so
that for the same input function u ∈ L2(0,∞;Rm), we have y(t) ≈ ŷ(t).

The most popular MOR methods in circuit simulation are Padé(-type) approx-
imations, also known as moment-matching methods. The rth Padé approximant
Ĝ of G is defined by the property G(s) = Ĝ(s) +O((s − s0)2r), i.e., Mj = M̂j for
j = 0, . . . ,2r − 1, where the moments Mj,M̂j are the coefficients in a power (Lau-
rent) expansion of G,Ĝ, respectively, about some expansion point s0 �∈ Λ(A,E)2.
Moment-matching and Padé approximation properties are obtained for methods
based on the unsymmetric Lanczos process, called the (matrix) Padé-via-Lanczos
((M)PVL) method [2–4]. Padé-type methods are also based on the moment match-
ing property, but the approximations need not match the maximum possible number
of moments. One such method is PRIMA [5] which employs the Arnoldi process
to compute the reduced-order model. PRIMA is a success story in MOR for circuit
simulation as besides having moment-matching properties, it preserves stability and
passivity of RLC circuit models.

Despite the success with Padé(-type) approximation techniques based on the
moment-matching properties of Krylov subspace methods, some major difficulties
of this approach persist:

1. So far there exists in general no computable error estimate or bound for ‖y− ŷ‖
in some appropriate norm.

2. The reduced-order model provides good approximation quality only locally.
3. The preservation of physical properties like stability or passivity can only be

shown in very special cases; usually some post processing which (partially) de-
stroys the moment matching properties, is required.

1 Note that frequently in the area of circuit simulation, different notation is used: there E,A, and C
become C,G, and LT , respectively. The notation used here is standard in systems theory.
2 Λ(A,E) denotes the set of generalized eigenvalues of the matrix pencil A−λE.
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There are many recent advances with respect to items 1.–3. discussed in the recent
literature, see, e.g., [6, 7], but due to space limitations we can not discuss all these
new developments here.

All the above problems of moment-matching methods are avoided when using
balanced truncation (BT) or its relatives. Computable error bounds or estimates ex-
ist and come essentially for free as by-product of the computational procedures for
obtaining the reduced-order model. The methods have good global approximation
properties and thus, the reduced-order models can serve as surrogate for a large fre-
quency range. Stability of the linear system is preserved for all variants of BT, other
properties like passivity (which is important for passive devices) can be preserved
by a variant of BT called positive-real BT (PRBT) (see, e.g., [8, 9] and references
therein). Note that the error estimate for PRBT given, e.g., in [9], needs a good
estimate of the H∞-norm (defined below) of G(s)+ DT and thus is not as cheap to
evaluate as, e.g., the BT error bound (7) below. On the other hand, for any reasonable
approximation this quantity can be replaced without significant loss of information
by the H∞-norm of Ĝ(s)+ DT which can be computed at moderate cost.

It has been common belief until recently that BT-related methods are not appli-
cable in circuit simulation due to the O(n3) complexity required by matrix equation
solvers used to solve the underlying Lyapunov or algebraic Riccati equations. But
advances in numerical linear algebra nowadays allow to compute solutions to those
Lyapunov and Riccati equations arising in BT-related methods for linear systems at
a computational cost that scales with the cost for solving linear systems of equations
with coefficient matrix A+ s0E . Thus, these methods can now be applied to systems
of order O(106). Moreover, most of the difficulties resulting from a singular E ma-
trix have now also been overcome. Many of these developments are discussed in
[6, 10] and references therein.

In the main part of this paper (Section 2), we will focus on one possibility to
extend BT to descriptor systems. A parallel implementation of an earlier version
of this algorithm is already described in [11]. This method does not make use of
possible sparsity of the system matrices and can thus be applied in order to reduce
fairly small linear subcircuits with up to a few thousands elements. We will com-
ment briefly on extensions to the case of large-scale, sparse matrices in Section 3.
Some further issues like sparsification of the reduced-order model and passivity
preservation using balancing-related methods will also be discussed in Section 3.

2 A Balanced Truncation Algorithm for Descriptor Systems

The method described in this section is based on two stages. In the first stage, we
decompose the transfer function of the descriptor systems into a part corresponding
to all finite poles and a polynomial part. Standard BT can then be applied to the
first part while the transfer function of the polynomial part is preserved, but may be
realized by a system of smaller order.



472 P. Benner

First, we briefly explain how we apply BT to the part corresponding to the fi-
nite poles, then we present a method to compute the required decomposition of the
transfer function. In subsection 2.3 we combine these algorithms to a BT algorithm
for descriptor systems and some numerical results are reported in subsection 2.4.

2.1 Balanced Truncation for Generalized State-Space Systems

In this section, we briefly describe BT for systems of the form (1) when E is non-
singular. Such systems will be called generalized state-space (GSS) systems in the
following. For more thorough descriptions and in particular the mathematical back-
ground of the method in case E = In see [8, 12, 13].

Throughout this and the following sections, we always assume λE − A to be
stable, i.e., to have all its (finite) eigenvalues in the open left half of the complex
plane. We call a GSS system, realized by (A,B,C,D,E) as in (1) with E nonsingular
balanced, if the solutions P,Q of the dual Lyapunov equations

APET + EPAT + BBT = 0, AT QE + ET QA +CTC = 0, (4)

satisfy

P = ET QE = diag(σ1, . . . ,σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0. (5)

The σ j are the Hankel singular values (HSVs) of the GSS system.

Remark 1. P,ET QE are the controllability and observability Gramians of the linear
time-invariant system ẋ(t) = E−1Ax(t)+ E−1Bu(t), y(t) = Cx(t)+ Du(t), which is
equivalent to (1). As our method is equivalent to applying BT to this standard state-
space system, this definition appears to be quite natural here. Our algorithm to solve
(4) computes ET QE directly rather than Q — this has a certain advantage over
using Q as observability Gramian as in [14, 15]. On the other hand, the definition
used in [14, 15] yields Gramians directly for the descriptor system (1) and turns
out to be the appropriate approach in this case. Note also that in case E is singular,
in contrast to common belief in many references in the literature, BT can not be
directly based on (4) as the Lyapunov equations may or may not have solutions [14,
15]. The BT method for descriptor systems developed in [14, 15] therefore makes
use of so-called projected Lyapunov equations. It turns out that Algorithm 4 below
is mathematically equivalent to this approach, but solves the projected Lyapunov
equations only implicitly.

A balanced realization of a minimal GSS system can be computed via a system
equivalence transformation

T : (A,B,C,D,E) %→ (LAT,LB,CT,D,LET )

=
([

A11 A12

A21 A22

]
,

[
B1

B2

]
,
[

C1 C2
]
,D,

[
E11 E12

E21 E22

])
, (6)
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where L,T are nonsingular matrices so that (5) is true for the transformed system.
Such a transformation always exists which easily follows from the theory for stan-
dard systems [12].

Now if σr > σr+1 and the partitioning in (6) is chosen according to r, simple
truncation leads to the reduced-order model (Â, B̂,Ĉ,D̂, Ê) = (A11,B1,C1,D,E11)
with some benign properties: first, it can be shown that the reduced-order model is
again stable, and second, the error bound

‖G− Ĝ‖H∞ ≤ 2
n

∑
j=r+1

σ j, (7)

holds. Here, ‖ .‖H∞ denotes the H∞-norm, i.e., the 2-induced Hardy operator norm
of real rational matrix functions having no poles in the right half plane (see, e.g., [8]
and references therein). Due to its nature as 2-induced operator norm, the bound (7)
implies (using the Paley-Wiener theorem)

‖y− ŷ‖L2(0,∞;Rp) = ‖y− ŷ‖H
p

2
= ‖Gu− Ĝu‖H

p
2

≤ ‖G− Ĝ‖H∞‖u‖H m
2

≤ 2

(
n

∑
j=r+1

σ j

)
‖u‖H m

2
= 2

(
n

∑
j=r+1

σ j

)
‖u‖L2(0,∞;Rm),

where H q
2 is the frequency domain equivalent of L2(0,∞;Rq) obtained by the (nor-

malized) Laplace transform. Thus, the output error in both, frequency and time do-
main, can be bounded. The existence of this bound is considered to be the main
advantage of BT over other MOR methods, in particular as it can be computed as
a by-product of the BT procedure without additional cost and allows to adaptively
choose the order of the reduced-order model if it is requested that ‖y− ŷ‖ ≤ τ‖u‖
for a given tolerance τ and either one of the 2-norms in frequency or time domain.

It remains to show how to solve (4) and how to compute L,T as in (6). First we
note that it is actually not necessary to compute P,Q and L,T explicitly. Following
the ideas for standard systems from [13], one can show that the reduced-order model
can be computed (even for non-minimal systems) by the following procedure: as
P,Q are positive semidefinite, there exist matrices S ∈ RrP×n,R ∈ RrQ×n (by rP,rQ

we denote the ranks of P,Q, respectively) so that P = ST S and ET QE = RT R. Now
compute a singular value decomposition (SVD)

SRT = [U1, U2 ]

[
Σ1

Σ2

][
V T

1
V T

2

]
, Σ1 = diag(σ1, . . . ,σr)

and set L̂ = Σ−1/2
1 V1RE−1 ∈ R

r×n, T̂ = STU1Σ
−1/2
1 ∈ R

n×r. Then it is easy to verify
that L̂ and T̂ are the first r rows and columns of L,T from (6) and thus the reduced-
order model can equivalently be computed by

(Â, B̂,Ĉ,D̂, Ê) = (L̂AT̂ , L̂B,CT̂ ,D, L̂ET̂ ).
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Algorithm 2 Coupled Newton iteration for dual Lyapunov equations

INPUT: (A,B,C,E) ∈ Rn×n ×Rn×m ×Rp×n ×Rn×n as in (4); a convergence tolerance τ .
OUTPUT: Numerical full-rank factors such that P = ST S, ET QE = RT R, where P,Q are the solu-

tions of (4).
1: A0 ← A, S0 ← B, R0 ← C, j = 0.
2: while ‖A j +E‖1 > τ do
3: Determine scaling factor c j .

4: S j+1 ← full-rank factor of 1√
2c j

[
S j c jEA−1

j S j

]
.

5: R j+1 ← full-rank factor of 1√
2c j

[
R j

c jR jA
−1
j E

]
.

6: A j+1 ← 1
2c j

(
A j + c2

jEA−1
j E

)
.

7: j ← j +1.
8: end while
9: Solve SET = ST

j for S and set R := R j .

Note that Ê = Ir and thus the corresponding computations can be saved. Also ob-
serve that Σ−1/2

1 V1R ∈ Rr×n and thus L̂ can be obtained as the solution of the linear

system of equations L̂E = Σ−1/2
1 V1R with only r right-hand sides so that E−1 needs

not be formed explicitly.
In many cases, the numerical ranks of P,Q are small (rP,rQ � n) and thus it is

desirable to compute S,R as above directly without first computing Cholesky fac-
tors of P and ET QE as it is done in Hammarling’s method for (4) [14–16]. A very
efficient method to get S,R directly can be based on the sign function method, for
details see [17,18]. The resulting algorithm is given in Algorithm 2. There, the scalar
c j is a scaling factor used to accelerate convergence of this iteration (which is ulti-
mately quadratic). The full-rank factors are computed using rank-revealing LQ/QR
factorizations (RRLQ/RRQR) with respect to a tolerance ε for rank determination,
without accumulation of orthogonal factors which makes their computation fairly
cheap with a computational complexity bounded by 4nmax{rP,rQ}2 operations per
iteration step. For details on the scaling parameter c j and the column/row compres-
sion step see [17]. As lim j→∞ A j = −E , the iteration can easily be stopped as soon
as ‖A + E‖ ≤ τ · ‖E‖ for an appropriate convergence tolerance τ and an easy to
compute matrix norm. After convergence, we obtain the desired full-rank factors
of the Gramians as S = 1√

2
(E−1 lim j→∞ S j)T , R = 1√

2
lim j→∞ R j. Note that again,

there is no need to compute E−1 as S can be obtained by solving a system of linear
equations with rP right-hand sides. In [17] a variant of this iteration is discussed
that employs the R-factor of the QR factorization of E in the iteration instead of E
itself. In this way, each iteration step becomes a lot cheaper and furthermore, the
QR factorization can be used to solve the required linear systems of equations with
coefficient matrix E (when computing L̂ and S) just by application of the transposed
orthogonal factor of E and backward substitution.
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2.2 Additive Decomposition of the Transfer Function

In this section we show how to compute an explicit additive decomposition of the
transfer function G(s) as in (2) so that G(s) = G f (s) + G∞(s), where G f (s) and
G∞(s) have exclusively finite and infinite poles, respectively. Such an algorithm
was already proposed in [19]. Here, we suggest a method which employs different
computational kernels to achieve this decomposition. The required computations are
particularly efficient on computer architectures where matrix multiplication can be
performed (almost) at peak performance.

The additive decomposition is achieved by computing nonsingular matrices
U,V ∈ Rn×n that block-diagonalize λE −A, i.e.,

λ Ê − Â := U(λE −A)V = λ

[
E0 0

0 E∞

]
−
[

A f 0

0 A∞

]
,

and setting B̂ := UB =:
[

B f
B∞

]
, Ĉ := CV =:

[
Cf C∞

]
, D̂ := D. Then

G(s) = C(sE −A)−1B + D = Ĉ(sÊ − Â)−1B̂ + D̂

=
[

Cf C∞
][ sE f −A f

sE∞ −A∞

]−1 [
B f

B∞

]
+ D (8)

= Cf (sE f −A f )−1B f︸ ︷︷ ︸
=:Gf (s)

+C∞(sE∞ −A∞)−1B∞ + D︸ ︷︷ ︸
:=G∞(s)

.

Thus, we can apply balanced truncation as described in the previous subsection to
G f in order to obtain a reduced-order system with transfer function Ĝ f .

The block-diagonalization is achieved using a two stage process. First, a block-
triangularization of λE −A is computed using the disk function method as described
next, then a block diagonalization is achieved by solving a certain generalized
Sylvester equation.

Block-triangularization using the disk function method. The algorithm discussed
here is adapted from [20], and is based on earlier work by Malyshev [21]. This
algorithm is referred to as disk function method as it can be used to compute the disk
function of a matrix pencil, for details see [22]. We also make use of improvements
suggested in [23] to reduce its cost.

Given a regular matrix pencil λE −A having all finite eigenvalues inside the unit
circle, Algorithm 3 provides an implementation of the disk function method which
computes Ũ ,Ṽ such that

Ũ(λE −A)Ṽ = λ

[
E f WE

0 E∞

]
−
[

A f WA

0 A∞

]
, (9)
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Algorithm 3 Disk function method

INPUT: A matrix pencil λE −A, E,A ∈ Rn×n with no eigenvalues on the unit circle.
OUTPUT: Orthogonal Ũ ,Ṽ ∈ Rn×n that block-triangularize λE −A.
1: Set E0 = E, A0 = A.
2: for j = 0,1, . . . until convergence do

3:

[
E j

−A j

]
→

[
Q11 Q12

Q21 Q22

][
R j

0

]
(QR factorization),

4: A j+1 ← QT
12A j and E j+1 ← QT

22E j,
5: s = j +1.
6: end for
7: Use the subspace extraction procedure from [23] in order to compute Ũ ,Ṽ .

where E f ∈ R
n f ×n f ,A∞ ∈ Rn∞×n∞ are nonsingular, n f is the number of eigenvalues

inside the unit circle (here, this equals the number of finite eigenvalues), n∞ := n−n f

is the number of infinite eigenvalues, and E∞ ∈ Rn∞×n∞ is of nilpotency index ν
which is the index of λE − A. (Note that in general, if there are also finite eigen-
values outside the unit circle, a block-triangularization is achieved where λE∞−A∞
contains the finite eigenvalues of modulus larger than 1 and the infinite eigenvalues.)

Algorithm 3 is based on a generalized power iteration (see [23, 24] for more
details) and the fact that (see [21, 24])

lim
j→∞

(A j + E j)−1E j = P0, lim
j→∞

(A j + E j)−1A j = P∞,

where P0 and P∞ are projectors onto the right deflating subspaces of A−λE cor-
responding to the eigenvalues inside and outside the unit disk D1(0). Convergence
of the algorithm is usually checked based on the relative change in R j. Note that
the QR decomposition in Step 1 is unique if we choose positive diagonal elements

as
[

ET
j , −AT

j

]T
has full rank in all steps [25]. The convergence rate of the iter-

ation in Algorithm 3 is globally quadratic [20] with deferred convergence in the
presence of eigenvalues very close to the unit circle and stagnation in the limiting
case of eigenvalues on the unit circle. Also, the method is proven to be numerically
backward stable in [20]. Again, accuracy problems are related to eigenvalues close
to the unit circle due to the fact that the spectral decomposition problem becomes
ill-conditioned in this case.

It should be noted that for our purposes, neither the disk function nor the projec-
tors P0 nor P∞ need to be computed explicitly. All we need are the related matrices
Ũ ,Ṽ from (9). This only requires orthogonal bases for the range and nullspace of
these projectors. These can be obtained using a clever subspace extraction technique
proposed in [23]. Due to space limitations, we can not provide further details here.

In order to separate finite from infinite eigenvalues using the disk function
method for a stable matrix pencil λE −A, Algorithm 3 is applied to (A,αE), where
α is the radius of a circle, centered at the origin, enclosing the finite eigenvalues of
λE −A. Sometimes, α can be estimated from the physical background, otherwise a
generalization of the Geršgorin circles to matrix pencils [26, 27] may be employed.
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Block-diagonalization. After block-triangularization as described above, the ma-
trix pencil λE − A has the form (9). A block-diagonal form can now be obtained
using the solution matrices Y,Z of the generalized Sylvester equation

A fY + ZA∞ +WA = 0, E fY + ZE∞ +WE = 0. (10)

Then

λ Ê − Â := U(λE −A)V :=

[
I Z

0 I

]
Ũ(λE −A)Ṽ

[
I Y

0 I

]
(11)

=

[
I Z

0 I

](
λ

[
E f WE

0 E∞

]
−
[

A f WA

0 A∞

])[
I Y

0 I

]
= λ

[
E f 0

0 E∞

]
−
[

A f 0

0 A∞

]
.

A significant simplification can be observed for matrix pencils of index ν = 1: in
this case, E∞ = 0 so that (10) boils down to the subsequent solution of the two linear
systems of equations

E fY = WE , ZA∞ = −(WA + A fY ). (12)

Otherwise, i.e., for ν > 1, one can use an appropriate solver for generalized
Sylvester equations, e.g., the Fortran 77 subroutine SB04OD from the Subroutine
Library in Control Theory (SLICOT)3 or its MATLAB gateway function slgesg
from the SLICOT Basic Systems and Control Toolbox in order to solve (10).

2.3 Balanced Truncation for Descriptor Systems

In this section, we combine the algorithms from the previous two sections in order to
derive a method for balanced truncation for descriptor systems. The resulting algo-
rithm is mathematically equivalent to an algorithm proposed in [14, 15], but differs
in the underlying computational routines employed. Our method may be more effi-
cient in computing environments where matrix multiplication is very fast compared
to the fine-grain computations required in the GUPTRI algorithm [28] employed in
[14,15], while our method may suffer from wrong rank decisions in situations when
it is difficult to numerically distinguish finite and infinite eigenvalues of λE −A.

Employing a minimal realization of G∞, the reduced-order descriptor system be-
comes Ĝ(s) = Ĝ f (s)+ G∞(s). In [14, 15] it is shown that the order n̂∞ of a minimal
realization of G∞ satisfies n̂∞ ≤ min{νm,ν p,n∞}. In case of ν = 1, we get

G∞(s) ≡ D̂ := D−C∞A−1
∞ B∞.

3 See www.slicot.org.

www.slicot.org
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Algorithm 4 BT algorithm for descriptor systems

INPUT: A stable descriptor system realized by (A,B,C,D,E) as in (1).
OUTPUT: A stable reduced-order model (Â, B̂,Ĉ, D̂, Ê) of order r satisfying the error bound (7).

1: {Compute the additive decomposition of the transfer function.}
2: Compute α > 0 so that Λ(A,αE) ⊂ D1(0).
3: Apply Algorithm 3 to (A,αE) in order to block-triangularize λE −A as in (9).
4: if ν = 1 then
5: Solve the linear systems of equations (12).
6: else
7: Solve the generalized Sylvester equation (10).
8: end if
9: Compute the block-diagonalization as in (11).

10: Apply the resulting system equivalence transformation in order to obtain (8).
11: {Compute the reduced-order model.}
12: Apply BT as described in subsection 2.1 to G f and obtain Ĝ f .
13: if ν = 1 then
14: Set D̂ := D−C∞A−1

∞ B∞ and Ĝ(s) = Ĝ f + D̂.
15: else
16: Compute a minimal realization of G∞ and set Ĝ(s) = Ĝ f +G∞.
17: end if

In case no feed-through term (“D term”) is allowed in the simulation software
for which the reduced-order model is generated, Ĝ(s) can then be realized as

Ĝ(s) =
[

Ĉ, D̂
](

s

[
Ê 0

0 0

]
−
[

Â 0

0 −Im

])−1 [
B̂
Im

]
.

Procedures for computing a minimal realization of G∞ in case of index ν > 1 can
be found in [14, 15] and amount to applying discrete-time balanced truncation with
zero error to the polynomial part. The cost of this procedure is in general O(n3

∞). It
can be reduced if the corresponding discrete Lyapunov equations can be solved for
their low-rank factors directly similar to Algorithm 2, see, e.g., [29].

As G∞ is not reduced, just a different realization of possibly smaller order is
employed so that G(s)− Ĝ(s) = G f (s)− Ĝ f (s), the error bound (7) applies.

The resulting BT algorithm for descriptor systems is summarized in Algorithm 4.

2.4 Numerical Examples

Algorithm 4 was implemented as C subroutine in the circuit simulator TITAN4 [30].
In the following, we will present simulation results for two examples provided by
Qimonda AG, München, obtained by using reduced-order circuits computed by this
subroutine within TITAN.

4 Copyrighted software, developed by Qimonda AG, München
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Fig. 1: TITAN simulation results for small nonlinear circuit, 1 linear subcircuit (n = 297) replaced
by reduced-order model (r = 31)

Fig. 2: TITAN simulation results for industrial circuit, 14 linear subcircuits are reduced

In the first example, a small nonlinear circuit model, designed for testing and ver-
ification of algorithms, is used. The circuit consists of 297 resistors,
268 capacitors, 4 voltage sources, and 8 MOSFETs. A linear subcircuit of order
n = 297 was extracted and replaced by a model of order r = 31 computed by Algo-
rithm 4. Simulation results are shown in Fig. 1. The figure shows results obtained
by a MATLAB implementation of Algorithm 4 developed by the author and the C
implementation from [30]. A slightly larger error results from using the C version
which hints to an unresolved bug in the software. This is under current investigation.

In the second example, an industrial example with 14,677 resistors, 15,404 ca-
pacitors, 14 voltage sources, and 4,800 MOSFETs was investigated. The analysis
showed that 14 linear subcircuit of varying order could be extracted and reduced.
Simulation results for the original circuit and for a model where the 14 linear sub-
circuits were replaced by BT reduced-order models are shown in Fig. 2. Here we
see again that the reduced-order model behaves well in time domain simulation.
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3 Further Developments

Besides the aspect of singular E often arising in circuit simulation, a number of
further issues need to be addressed when applying BT for MOR in this area.

Large-scale, sparse systems. Large-scale Lyapunov equations can nowadays be
solved by using, e.g., the low-rank ADI method, at a cost that scales with the cost of
solving linear systems of equations with coefficient matrices A−μE; see the surveys
[10,31] and references therein. Thus, BT can be implemented at a cost proportional
to Krylov-subspace based methods. Usually more sparse factorizations have to be
computed using ADI methods, but the resulting MOR method has the advantageous
properties of BT5. The ADI method for Lyapunov equations can also be extended
to descriptor systems, see [32].

Sparsification of reduced-order models. BT is often criticized for producing dense
reduced-order models. (Note: this is also true for most moment-matching methods
like PRIMA, except for PVL-like methods.) Mostly, reduced-order models are used
when solving linear systems of equations of the form

(iωÊ − Â)x = b in frequency-domain analysis, (13)

(Ê −hkÂ)xk+1 = Êxk + . . . in implicit integrators (transient analysis,. . . ). (14)

The cost for solving the linear systems may not benefit from the smaller order, if
efficient sparse direct solvers for the full-size sparse system matrices are available.

A significant reduction can be achieved by transforming (Â, Ê) to Hessenberg-
triangular form [25, Algorithm 7.7.1], i.e., compute orthogonal Q,Z such that

Q(λ Ê − Â)Z = λ
[
�

��

]
−
[
��
�

��

]
≡
[
��
�

��

]
.

The new reduced-order system is then (QÂZ,QB̂,ĈZ,D̂,QÊZ), the linear systems
of equations (13) and (14) then have Hessenberg form, and can thus be solved using
r−1 Givens rotations only! This only requires the introduction of a dedicated solver
for Hessenberg systems in the simulation software.

Passivity preservation. An important physical property in circuit simulation is pas-
sivity as, e.g., RLC circuits only contain passive devices. Thus, the reduced-order
model should preserve this property. For symmetric transfer functions as they are
usually encountered in RLC circuit models, BT automatically preserves passiv-
ity. Other possibilities are balancing-related methods such as PRBT, see [8, 9] and
references therein. A number of recent papers deal with the efficient implementa-
tion of PRBT, see [9] for a review. Current efforts are directed towards extending
the method to large-scale descriptor systems with sparse coefficient matrices and

5 Despite unavoidable errors, loss of the theoretical properties of BT is usually not observed in
practice.
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employing the structure of circuit matrices more efficiently so that explicit compu-
tation of projectors can be avoided6.

Synthesis. BT variants based on split-congruence transformations as in [33] are un-
der current investigation. As split-congruence BT preserves reciprocity of the trans-
fer function, this allows synthesis of the reduced-order model as circuit. The basic
idea here is to exploit the structure of RLC circuits, leading to a “symmetric” trans-
fer function with (for networks without voltage sources)

sE −A = s

[
E1 0

0 E2

]
+

[
A1 AT

2

−A2 0

]
, B =

[
B1

0

]
= CT , D = 0,

where A1,E1 ≥ 0, E2 > 0. This structure can be preserved in the reduced-order
model if the BT truncation matrices L̂, T̂ are embedded in a so-called split-
congruence transformation [33]. The mathematical properties of this approach are
not clear yet; we will report on this BT variant in the future.
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27. Kostić, V.: Eigenvalue localization for matrix pencils. Presented at workshop Applied Linear
Algebra — in honor of Ivo Marek. Novi Sad, April 28–30, 2008
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Passivity-Preserving Balanced Truncation
Model Reduction of Circuit Equations

Tatjana Stykel and Timo Reis

Abstract We consider passivity-preserving model reduction of circuit equations
using the bounded real balanced truncation method applied to a Moebius-transfor-
med system. This method is based on balancing the solutions of the projected Lur’e
or Riccati matrix equations. We also discuss their numerical solution exploiting the
underlying structure of circuit equations. A numerical example is given.

1 Introduction

A modified nodal analysis (MNA) for linear RLC circuits yields a linear system of
differential-algebraic equations (DAEs)

Eẋ(t) = Ax(t)+ Bu(t),
y(t) = Cx(t), (1)

where

E =

⎡
⎢⎣

ACCAT
C 0 0

0 L 0

0 0 0

⎤
⎥⎦, A=

⎡
⎢⎣
−AR R

−1AT
R −AL −AV

AT
L 0 0

AT
V 0 0

⎤
⎥⎦, B=−

⎡
⎣AI 0

0 0
0 I

⎤
⎦=CT .

(2)
Here AC ∈ Rnη,nC , AL ∈ Rnη,nL , AR ∈ Rnη,nR , AV ∈ Rnη,nV and AI ∈ Rnη,nI are
incidence matrices describing the circuit topology, and R , L and C are resistance,
inductance and capacitance matrices, respectively. Linear RLC circuits are often
used to model interconnects, transmission lines and pin packages in VLSI networks.

In the following we will assume that
• the matrix AV has full column rank;
• the matrix [AC , AL , AR , AV ] has full row rank;
• the matrices R , L and C are symmetric and positive definite.
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These assumptions guarantee that the pencil λE −A is regular, i.e., det(λE −A) �≡ 0.
Moreover, system (1), (2) is passive, i.e., it does not generate energy, and recipro-
cal, i.e., its transfer function G(s) = C(sE − A)−1B satisfies the symmetry relation
G(s) = SextG(s)T Sext with an external signature Sext = diag(InI ,−InV ), see [1]. Fur-
thermore, passivity is equivalent to the positive realness of G meaning that G is
analytic in the open right half-plane C+ and G(s)+ GT (s) is positive semidefinite
for all s ∈ C+, see [2].

The number n = nη + nL+ nV of state variables in (1) is related to the number of
circuit elements and usually very large. This makes the analysis and numerical si-
mulation of circuit equations unacceptably time consuming. Therefore, model order
reduction is of great importance.

A general idea of model reduction is to approximate the large-scale system (1)
by a reduced-order model

Ẽ ˙̃x(t) = Ã x̃(t)+ B̃u(t),
ỹ(t) = C̃ x̃(t), (3)

where Ẽ , Ã ∈ R�,�, B̃ ∈ R�,m, C̃ ∈ Rm,� and � � n. It is required that the approxi-
mate system (3) captures the input-output behaviour of (1) to a required accuracy
and preserves passivity and reciprocity. The preservation of these properties allows
a back interpretation of the reduced-order model (3) as an electrical circuit which
has fewer electrical components than the original one [1, 2].

Krylov subspace based methods [3, 4] are mostly used model reduction methods
in circuit simulation. Although these methods are efficient for very large sparse
problems, stability and passivity are not necessarily preserved in the reduced-order
model. Passivity-preserving model reduction methods based on Krylov subspaces
have been developed for standard state space systems [5, 6] and also for structured
generalized state space systems describing interconnect circuits [4, 7, 8]. Despite
the successful application of these methods in circuit simulation, they provide only
a good local approximation and, so far, there exist no global error bounds.

Balanced truncation is another model reduction approach commonly used in con-
trol design. In order to capture specific system properties, different balancing tech-
niques have been developed for standard state space systems, e.g., [9, 10] and also
for DAEs [11, 12]. An important property of balancing-related model reduction is
the existence of computable error bounds. Balanced truncation is based on the trans-
formation of the dynamical system into a balanced form whose controllability and
observability Gramians are both equal to a diagonal matrix. Then a reduced-order
model is determined by the truncation of the states corresponding to small diagonal
elements of the balanced Gramians.

In this paper, we present a passivity-preserving model reduction method for cir-
cuit equations (1), (2) that is based on so-called bounded real balanced truncation
applied to a Moebius-transformed system. It requires balancing two Gramians that
satisfy the projected Lur’e equations. Under some assumptions such equations can
be rewritten as the projected Riccati equations. We also discuss the numerical so-
lution of these matrix equations via Newton’s method and present some results of
numerical experiments.
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Throughout the paper Rn,m denotes the spaces of n × m real matrices and AT

stands for the transpose of A ∈ Rn,m. An identity matrix of order n is denoted by In

or simply by I. Further, for symmetric matrices X ,Y ∈ R
n,n, we write X >Y (X ≥Y )

if X −Y is positive (semi)definite. For a real diagonal matrix D = diag(d1, . . . ,dn),
we have |D| = diag(|d1|, . . . , |dn|) and sign(D) = diag(sign(d1), . . . ,sign(dn)).

2 Passivity-Preserving Balanced Truncation

In this section, we present a passivity-preserving balanced truncation method for
circuit equations. This method is based on the fact that the transfer function G(s) is
positive real if and only if the Moebius-transformed function

G (s) = M (G(s)) :=
(
I −G(s)

)(
I + G(s)

)−1

is bounded real, i.e., G is analytic in C+ and I −G (s)G T (s) is positive semidefinite
for all s ∈ C+, see [2]. Note that for G(s) = C(sE − A)−1B + D with a nonsin-
gular matrix I + D, the transfer function G (s) = M (G(s)) can be represented as
G (s) = C (sE −A )−1B +D , where

E = E, A = A−B(I + D)−1C, B = −√
2B(I + D)−1,

C =
√

2(I + D)−1C, D = (I −D)(I + D)−1.
(4)

For system (1), (2), a passive reduced-order model (3) can be computed by the
model reduction method presented in [11, 13]. First, we consider the Moebius-
transformed system G = M (G) and apply a bounded real balanced truncation
method to G , i.e., to (4). The obtained bounded real reduced-order system G̃ is
then transformed into G̃ = M (G̃ ) which is positive real.

2.1 Bounded Real Balanced Truncation

The bounded realness of G implies that G is proper, i.e., there exists M0 = lim
s→∞

G (s).

Furthermore, for E , A, B and C as in (2), the projected Lur’e equations 1

E X (A−BC)T +(A−BC)XET + 2PlBBT PT
l = −2KcKT

c ,

EXCT −PlBMT
0 = −KcJT

c , JcJT
c = I −M0MT

0 , X = PrXPT
r ≥ 0,

(5)

and
ETY (A−BC)+ (A−BC)YE + 2PT

r CTCPr = −2KT
o Ko,

−ETYB + PT
r CTM0 = −KT

o Jo, JT
o Jo = I −MT

0 M0 Y = PT
l YPl ≥ 0,

(6)

are solvable for X ∈ Rn,n, Kc ∈ Rn,m, Jc ∈ Rm,m and Y ∈ Rn,n, Ko ∈ Rm,n, Jo ∈ Rm,m,
respectively, see [13]. Here, Pr and Pl are the projectors onto the right and left
deflating subspaces of the pencil λE −A + BC corresponding to the finite eigenval-
ues along the right and left deflating subspaces corresponding to the eigenvalue at

1 These equations are named after the Russian mathematician and engineer A.I. Lur’e (1901-1980).
In the literature, they are also known as Kalman-Yakubovich-Popov equations [14].
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infinity. The minimal solutions Xmin and Ymin of (5) and (6) that satisfy 0 ≤ Xmin ≤ X
and 0 ≤Ymin ≤Y for all symmetric solutions X and Y of (5) and (6), respectively, are
called the bounded real controllability Gramian and the bounded real observability
Gramian of G .

In the bounded real balanced truncation method, we determine the Cholesky fac-
tors R and L of Xmin = RRT and Ymin = LLT , respectively, and compute the singular
value decomposition

LT ER = [U1, U2 ]diag(Π1,Π2)[V1, V2 ]T ,

where [U1, U2] and [V1, V2] have orthonormal columns, Π1 = diag(π1Il1 , . . . ,πrIlr)
and Π2 = diag(πr+1Ilr+1 , . . . ,πqIlq) with π1 > .. . > πr > πr+1 > .. . > πq. The va-
lues π j are called the characteristic values of G . They determine the importance
of state variables. A reduced-order model for G = [E , A , B, C , I ] as in (4) can
be computed by projection onto the left and right subspaces corresponding to the
dominant characteristic values. Such a model is given by G̃ = [ Ẽ , ˜A , B̃, C̃ , I ]
with

Ẽ =
[

I 0
0 0

]
, ˜A =

[
W T (A−BC)T 0

0 I

]
,

B̃ =
[−√

2W T B
B∞

]
, C̃ =

[√
2CT, C∞

]
,

where W = LU1Π
−1/2
1 , T = RV1Π

−1/2
1 , and the matrices B∞ and C∞ are chosen such

that I −M0 = C∞B∞.

2.2 Application to Circuit Equations

By exploiting the structure of circuit equations, the model reduction procedure pre-
sented above can be made more efficient and accurate. Since the MNA matrices in
(2) satisfy

ET = Sint E Sint, AT = Sint ASint, BT = SextC Sint,

where Sint = diag(Inη ,−InL ,−InV ) and Sext = diag(InI ,−InV ), we find that

Pl = Sint P
T
r Sint, Xmin = SintYmin Sint = SintLLT ST

int = RRT .

Thus, for the linear circuit equations (1), (2), it is enough to compute only one pro-
jector and solve only one projected Lur’e equation. Another projector and also the
solution of the dual Lur’e equation are given for free. Furthermore, we can show
that LT ER = LT ESintL is symmetric. Then the characteristic values π j can be com-
puted from an eigenvalue decomposition of LT ESintL instead of a more expensive
singular value decomposition. Finally, using the symmetry of (I − M0)Sext, we can
determine B∞ and C∞ from the eigenvalue decomposition of (I −M0)Sext.

Summarizing, we obtain the following PAssivity-preserving Balanced Trunca-
tion method for Electrical Circuits (PABTEC).
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Algorithm 1 Passivity-preserving balanced truncation for electrical circuits
Given G = [E, A, B, C ] as in (2), compute a reduced-order model G̃ = [ Ẽ, Ã, B̃, C̃ ].
1. Compute the Cholesky factor L of Ymin = LLT that is the minimal solution of the

projected Lur’e equation (6).
2. Compute the eigenvalue decomposition

LT ESintL = [U1, U2 ]diag(Λ1,Λ2)[U1, U2 ]T ,

where [U1, U2] is orthogonal, Λ1 = diag(λ1I, . . . ,λrI), Λ2 = diag(λr+1I, . . . ,λqI)
and |λ1| > .. . > |λr| > |λr+1| > .. . > |λq|.

3. Compute the eigenvalue decomposition (I − M0)Sext = U0Λ0UT
0 , where U0 is

orthogonal and Λ0 = diag(λ̂1, . . . , λ̂m).
4. Compute the reduced-order system

Ẽ =
[

I 0
0 0

]
, Ã =

1
2

[
2WT AT

√
2W T BC∞

−√
2 B∞C T 2 I −B∞C∞

]
,

B̃ =
√

2
2

[√
2W T B
−B∞

]
C̃ =

√
2

2

[√
2C T, C∞

]
,

(7)

where B∞ = S0|Λ0|1/2UT
0 Sext, C∞ = U0|Λ0|1/2, S0 = sign(Λ0),

W = LU1|Λ1|−1/2, T = SintLU1S1|Λ1|−1/2, S1 = sign(Λ1).

One can show that the reduced-order system (7) is passive and reciprocal [13].
Furthermore, we can estimate the H∞-norm of the error defined as

‖G̃−G‖H∞ = sup
s∈C+

‖G̃(s)−G(s)‖,

where ‖·‖ denotes the spectral matrix norm. If ‖I +G‖H∞(πr+1 + . . .+πq) < 1, then
we have the following error bound

‖G̃−G‖H∞ ≤ ‖I + G‖2
H∞

(πr+1 + . . .+πq)
1−‖I + G‖H∞(πr+1 + . . .+πq)

, (8)

see [11] for details.

3 Computation of the Bounded Real Gramian

If I − MT
0 M0 is nonsingular, then I − M0MT

0 is also nonsingular and the projected
Lur’e equation (6) can be rewritten as the projected algebraic Riccati equation

ETYÂ + ÂTY E + ETY B̂ B̂TYE + PT
r ĈTĈPr = 0, Y = PT

l YPl, (9)

where Â = A − BC − 2PlB(I − MT
0 M0)

−1MT
0 CPr, B̂ =

√
2PlBJ−1

o , Ĉ =
√

2J−1
c C,

JT
o Jo = I − MT

0 M0 and JcJT
c = I − M0MT

0 . One can show that the minimal solu-
tion Ymin of (6) is at least a semi-stabilizing solution of (9) in the sense that all the
finite eigenvalues of λE − Â− B̂B̂TYminE are in the closed left half-plane. Thus, the
bounded real Gramian Ymin can be computed by solving (9) via Newton’s method.
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Algorithm 2 Newton’s method for the projected Riccati equation
Given E , Â ∈ Rn,n, B̂ ∈ Rn,m, Ĉ ∈ Rm,n, projectors Pr, Pl and a stabilizing initial
guess Y0, compute an approximate solution of the projected Riccati equation (9).

FOR j = 1,2, . . . , jmax

1. Compute Kj = B̂TYj−1E and A j = Â+ B̂Kj.
2. Solve the projected Lyapunov equation

ETYj A j + AT
j Yj E = −PT

r (ĈTĈ −KT
j Kj)Pr, Yj = PT

l YjPl.

END FOR

Similarly to the standard state space case [15, 16], one can show that if all the
finite eigenvalues of λE − Â have negative real part, then starting with Y0 = 0, all
λE −A j have finite eigenvalues in the open left half-plane only and lim

j→∞
Yj = Ymin.

Some difficulties may occur if the pencil λE − Â has eigenvalues on the imaginary
axis. This problem remains for future work.

If the eigenvalues of Ymin decay to zero very rapidly, then Ymin can be well appro-
ximated by a matrix of low rank. Such a low-rank approximation can be computed
in factored form Ymin ≈ L̃L̃T with L̃ ∈ Rn,k, k � n. To determine the low-rank factor
L̃ we can use the same approach as in [17]. Starting with Y1,0 = Y0 and Y2,0 = 0, in
each Newton iteration we compute Kj = B̂T (Y1, j−1 −Y2, j−1)E , A j = Â + B̂Kj and
then solve two projected Lyapunov equations

ETY1, j A j + AT
j Y1, j E = −PT

r ĈTĈPr, Y1, j = PT
l Y1, j Pl, (10)

ETY2, j A j + AT
j Y2, j E = −PT

r KT
j KjPr, Y2, j = PT

l Y2, j Pl, (11)

for the low-rank factors L1, j and L2, j such that Y1, j ≈ L1, jL
T
1, j and Y2, j ≈ L2, jL

T
2, j,

respectively. Once the convergence is observed, an approximate solution Ymin ≈ L̃L̃T

of the projected Riccati equation (9) can be computed in factored form by solving
the projected Lyapunov equation

ETYÂ + ÂTYE = −PT
r ĈT

0 Ĉ0Pr, Y = PT
l YPl (12)

with Ĉ0 = [ĈT , ET (Y1, jmax −Y2, jmax)B̂ ]T . For computing low-rank factors of the
solutions of the projected Lyapunov equations (10)–(12), we can use the genera-
lized alternating direction implicit method [18]. Note that in this method we need
to compute the products (ET + τAT

j )
−1v with τ ∈ C− and v ∈ Rn. Taking into ac-

count that E +τA j = E +τ(A−BC)− B̂K̂ j with the low-rank matrices B̂ ∈ Rn,m and
K̂j = τ(J−T

o MT
0 CPr −Kj) ∈ Rm,n we can use the Sherman-Morrison-Woodbury for-

mula [19, Section 2.1.3] to compute these products as

(ET + τAT
j )

−1v = v1 + MK̂

(
(Im − B̂T MK̂)−1B̂T )v1,

where v1 = (ET + τ(A−BC)T )−1v and MK̂ = (ET + τ(A−BC)T )−1K̂T
j . The latter

can be determined by solving linear systems with the sparse matrix ET +τ(A−BC)T

either by computing sparse LU factorization or by using iterative Krylov subspace
methods [20].
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A major difficulty in the numerical solution of the projected Lyapunov and Ric-
cati equations with large matrix coefficients is that the matrix M0 and the spec-
tral projectors Pl and Pr are required. Fortunately, we can exploit the structure of
the MNA matrices (2) to construct the required projectors in explicit form using
a matrix chain approach from [21]. Furthermore, we can obtain an explicit formula
for the matrix M0 and derive necessary and sufficient conditions for invertibility of
I −MT

0 M0 in terms of the circuit topology, see [13] for details.

4 Numerical Example

In this section, we present some results of numerical experiments to demonstrate the
feasibility of the PABTEC method.

Example This example describing a three-port RC circuit was provided by NEC
Laboratories Europe. We have a passive system of order n = 2007. The minimal
solution of the projected Riccati equation (9) was approximated by a low-rank mat-
rix Ymin ≈ L̃ L̃T with L̃ ∈ Rn,118 using
Newton’s method. Figure 1 shows that
the characteristic values decay rapidly,
so we can expect a good approxima-
tion by a reduced-order model. The
original system was approximated by
a model of order � = 44. The spec-
tral norms of the frequency responses
‖G(iω)‖ and ‖G̃(iω)‖ for a frequency
range ω ∈ [1, 1015] are presented in
Figure 2. We also display there the ab-
solute error ‖G̃(iω)− G(iω)‖ and the
error bound (8).
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Fig. 2: RC circuit: (left) the frequency responses of the original and the reduced-order systems;
(right) the absolute error and error bound
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A New Approach to Passivity Preserving Model
Reduction: The Dominant Spectral Zero Method

Roxana Ionutiu, Joost Rommes, and Athanasios C. Antoulas

Abstract A new model reduction method for circuit simulation is presented, which
preserves passivity by interpolating dominant spectral zeros. These are computed as
poles of an associated Hamiltonian system, using an iterative solver: the subspace
accelerated dominant pole algorithm (SADPA). Based on a dominance criterion,
SADPA finds relevant spectral zeros and the associated invariant subspaces, which
are used to construct the passivity preserving projection. RLC netlist equivalents for
the reduced models are provided.

1 Introduction

The design of integrated circuits has become increasingly complex, thus electro-
magnetic couplings between components on a chip are no longer negligible. To
verify coupling effects, on-chip interconnections are modeled as RLC circuits and
simulated. As these circuits contain millions of electrical components, the underly-
ing dynamical systems have millions of internal variables and cannot be simulated
in full dimension. Model order reduction (MOR) aims at approximating the math-
ematical description of a large scale circuit with a model of smaller dimension,
which replaces the original model during verification and speeds up simulation. The
reduction method should preserve important properties of the original model (i.e.,
stability, passivity) and have an efficient, robust implementation, suitable for large-
scale applications. RLC circuits describing the interconnect are passive systems,
with positive real transfer functions [1], thus reduced models should also be pas-
sive. A passive reduced model can be synthesized back into an RLC circuit [1],
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which is placed instead of the original in the simulation flow. Passive reduced cir-
cuits also guarantee stable simulations when integrated with the overall nonlinear
macro-model [2–4] during later simulation stages.

The proposed dominant spectral zero method (dominant SZM) is a model reduc-
tion method which preserves passivity and stability, and is efficiently implemented
using the subspace accelerated dominant pole algorithm (SADPA) [5, 6]. Passivity
preservation is ensured via a new approach, that of interpolation at dominant spec-
tral zeros, a subset of spectral zeros of the original model. Dominant SZM reduces
automatically all passive systems, including those with formulations unsuitable for
PRIMA (first order susceptance-based models for inductive couplings (RCS cir-
cuits) [7] or models involving controlled sources, such as vector potential equiva-
lent circuit (VPEC) [8] and partial element equivalent circuit (PEEC) models [9]).
In comparison to positive real balanced truncation (PRBT) [10], dominant SZM ef-
ficiently handles systems with a possibly singular E matrix [see (1)]. Unlike modal
approximation (MA) [5, 11] where interpolation is at dominant poles, our method
matches the dominant spectral zeros of the original system, guaranteeing passivity.

The remainder of this article is structured as follows. The introduction continues
with the mathematical setup of MOR in Sect. 1.1, and with a brief description of
MOR via spectral zero interpolation in Sect. 1.2. Dominant SZM is presented con-
cisely in Sect. 2.1 (following [12]). It is extended with the concept of dominance at
∞ (Sect. 2.2), and with an approach for converting the reduced models to circuit rep-
resentations (Sect. 2.3). Numerical results follow in Sect. 3 and the paper concludes
with Sect. 4.

1.1 Background on MOR

The model reduction framework involves approximation of an original dynamical
system described by a set of differential algebraic equations in the form:

Eẋ(t)=Ax(t)+ Bu(t), y(t)=Cx(t)+ Du(t), (1)

where the entries of x(t) are the system’s internal variables, u(t) is the system input
and y(t) is the system output, with dimensions x(t) ∈ R

n, u(t) ∈ R
m, y(t) ∈ R

p.
Correspondingly, E ∈ Rn×n, A ∈ Rn×n, (A,E) is a regular pencil, B ∈ Rn×m, C ∈
Rp×n, D ∈ Rp×m. The original system Σ(E,A,B,C,D) is stable and passive and has
dimension n, usually very large. We seek a reduced order model Σ̂(Ê,Â, B̂,Ĉ,D),
which satisfies: Ê ˙̂x(t) = Âx̂(t)+ B̂u(t), ŷ(t) = Ĉx̂(t)+ Du(t), where x̂ ∈ R

k, Ê ∈
Rk×k, Â ∈ Rk×k, B̂ ∈ Rk×m, Ĉ ∈ Rp×k, D ∈ Rp×m. Σ̂ is obtained by projecting
the internal variables of the original system x onto a subspace ColSpan V ⊂ R

n×k,
along Null W∗ ⊂ R

k×n. The goal is to construct V and W, such that Σ̂ is stable
and passive. Additionally, V and W should be computed efficiently. The reduced
matrices are obtained as follows:

Ê = W∗EV, Â = W∗AV, B̂ = W∗B, Ĉ = CV. (2)
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1.2 MOR by Spectral Zero Interpolation

We revise the spectral zero interpolation approach for model reduction as pro-
posed in [13, 14]. The ingredient for passivity preservation are the spectral zeros
of Σ(E,A,B,C,D), defined as follows:

Definition 1. For system Σ with transfer function: H(s) := C(sE−A)−1B+D, the
spectral zeros areall s∈C such that H(s)+H∗(−s) = 0, whereH∗(−s)=B∗(−sE∗−
A∗)−1C∗+D∗.

According to [13, 14], model reduction via spectral zero interpolation involves
forming rational Krylov subspaces:

V=[(s1E−A)−1B, · · · , (skE−A)−1B], W=[(−s∗1E∗−A∗)−1C∗, · · · , (−s∗kE∗−A∗)−1C∗],(3)

where s1 . . . sk,−s∗1 . . .− s∗k are a subset of the spectral zeros of Σ . By projecting the
original system with matrices (3) according to (2), the reduced Σ̂ interpolates Σ at
the chosen si and their mirror images −s∗i , i = 1, . . . ,k [1, 13]. Projection matrices
V and W insure that the reduced system satisfies the positive real lemma [1,13,14],
thus passivity is preserved. If in the original system D �= 0, the reduced system is
strictly passive, and realizable with RLC circuit elements. In Sect. 2.2 we show one
way of obtaining strictly passive reduced systems also when D = 0.

2 The Dominant Spectral Zero Method

The new dominant spectral zero method (dominant SZM) is presented. The spectral
zero method [13, 14] is extended with a dominance criterion for selecting finite
spectral zeros. These are computed efficiently and automatically using the subspace
accelerated dominant pole algorithm (SADPA) [5, 6]. We show in addition how, for
certain RLC models, dominant spectral zeros at ∞ can also be easily interpolated.

2.1 Dominant Spectral Zeros and Implementation

In [14] it was shown that spectral zeros are solved efficiently from an associated
Hamiltonian eigenvalue problem [15,16]. In [13,14] however, the selection of spec-
tral zeros was still an open problem. We propose a solution as follows: we extend the
concept of dominance from poles [6] to spectral zeros, and adapt the iterative solver
SADPA for the computation of dominant spectral zeros. The corresponding invari-
ant subspaces are obtained as a by-product of SADPA, and are used to construct the
passivity preserving projection matrices V and W. Essentially, dominant SZM is the
SADPA-based implementation of modal approximation for the Hamiltonian system
associated with G(s) = [H(s)+ H∗(−s)]−1. Recalling Def. 1, the spectral zeros of

Σ are the poles of G(s), with partial fraction expansion: G(s) = ∑2n
j=1

R j
s−s j

, where si

are the poles of G with associated residues R j [5, 17]. The modal approximate of

G(s) is obtained by truncating this sum: Ĝ(s) = ∑2k
j=1

R j
s−s j

. Dominant SZM together
with the SADPA implementation is explained in detail in [12]. The procedure is
outlined next.
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1. Given Σ(E,A,B,C,D) with D = 0, construct the associated Hamiltonian system1

Σs, associated with transfer function G(s):

As =

⎛
⎝A 0 B

0 −A∗ −C∗
C B∗ 0

⎞
⎠ , Es =

⎛
⎝E 0 0

0 E∗ 0
0 0 0

⎞
⎠ , Bs =

⎛
⎝ B

−C∗
I

⎞
⎠ , Cs =−(C B∗ I

)
(4)

2. Solve the Hamiltonian eigenvalue problem (Λ ,R,L) = eig(As,Es), i.e., AsR=
EsRΛ , L∗As =ΛL∗Es. R = [r1, . . . ,r2n], L = [l1, . . . , l2n] and eigenvalues Λ =
diag(s1, . . . ,sn,−s∗1, . . . ,−s∗n) are the spectral zeros of Σ .

3. Compute residues R j associated with the stable2 spectral zeros s j , j = 1 . . .n as
follows: R j =γ jβ j, γ j =Csr j(l∗jEsr j)−1, β j = l∗jBs.

4. Sort spectral zeros descendingly according to dominance criterion
‖R j‖

|Re(s j)| [6,

Chapter 3], and reorder right eigenvectors R accordingly.
5. Retain the right eigenspace R̂ = [r1, . . . , rk]∈ C

2n×k, corresponding to the stable
k most dominant spectral zeros.

6. Construct passivity projection matrices V and W from the rows of R̂: V =
R̂[1:n,1:k], W= R̂[n+1:2n,1:k], and reduce Σ according to (2).

As explained in [12–14], by projecting with (2), Σ̂ interpolates the k most dominant
spectral zeros of Σ , guaranteeing passivity and stability. For large-scale applications,
a full solution to the eigenvalue problem in step 2, followed by the dominant sort 3–4
is computationally unfeasible. Instead, the iterative solver SADPA [6, Chapter 3] is
applied as explained in [12], with appropriate adaptations for spectral zero compu-
tation. SADPA implements steps 2–4 efficiently and automatically gives the k most
dominant spectral zeros and associated 2n × k right eigenspace R̂. The implemen-
tation requires performing an LU factorization of (s jE−A) at each iteration. The
relevant s j are nevertheless computed automatically in SADPA, which may have
several advantages over other methods (see [12] for a more detailed cost analysis).

2.2 D = 0 and Dominance at s → ∞
Systems arising in circuit simulation often satisfy D = 0 in (1). In this case, the
projection (2), with W and V obtained in step 6 in Sect. 2.1, gives a lossless sys-
tem [12]. This is because W and V only interpolate dominant finite spectral zeros,
whereas the original system has spectral zeros at ∞, some of which may be dominant
[18]. A strictly passive system (with all poles in the left half plane) can nevertheless
be obtained by recovering this dominant behavior. For systems often occurring in
circuit simulation this is achieved as follows. Consider the modified nodal analysis
(MNA) description of an RLC circuit:⎛

⎝0 0 0
0 C 0
0 0 L

⎞
⎠

︸ ︷︷ ︸
E

˙⎛
⎝vp

vi

iL

⎞
⎠

︸ ︷︷ ︸
ẋ

+

⎛
⎝ G11 G12 E1

G ∗
12 G22 E2

−E ∗
1 −E ∗

2 0

⎞
⎠

︸ ︷︷ ︸
−A

⎛
⎝vp

vi

iL

⎞
⎠

︸ ︷︷ ︸
x

=

⎛
⎝B1

0
0

⎞
⎠

︸ ︷︷ ︸
B

u, (5)

1 For D �= 0 see [12] for the form of the Hamiltonian system; the algorithm follows as for D = 0.
2 s ∈ C is stable if Re(s) < 0.
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where u(t) ∈ R
m are input currents and y(t) = Cx ∈ R

m are output voltages, C = B∗.
The states are x(t) = [vp(t), vi(t), iL(t)]T , with vp(t) ∈ R

np the voltages at the
input nodes (circuit terminals), vi(t) ∈ R

ni the voltages at the internal nodes, and
iL(t) ∈ R

niL the currents through the inductors, np + ni + niL = n. C and L are the
capacitor and inductor matrix stamps respectively. With (5) it is assumed that no
capacitors or inductors are directly connected to the input nodes, thus B ∈ Null(E)
and C∗ ∈ Null(E∗). As B and C are right and left eigenvectors corresponding to
dominant poles (and spectral zeros) at ∞ [18], the modified projection matrices are:

W̃ = [W,C∗], Ṽ = [W,B], (6)

where W and V are obtained from step 6 in Sect. 2.1. With (6), the finite dominant
spectral zeros are interpolated as well as the dominant spectral zeros at ∞, and the
reduced system is strictly passive [18]. In [12] two alternatives were proposed for
ensuring strict passivity for systems in the more general form (1) with D = 0.

2.3 Circuit Representation of Reduced Impedance Transfer
Function

Reduced models obtained with dominant SZM and other Krylov-type methods
(PRIMA [2], SPRIM [3, 19], SPRIM/IOPOR [20, 21]) are mathematical abstrac-
tions of an underlying small RLC circuit. Circuit simulators however can only han-
dle mathematical representations to a limited extent, and reduced models have to be
synthesized with RLC circuit elements. We reduce all circuits with respect to the
input impedance transfer function (i.e., the inputs are the currents injected into the
circuit terminals and the outputs are the voltages measured at the terminals). After
converting the reduced input impedance transfer function to netlist format, the re-
duced circuit can be driven easily by currents or voltages when simulated. Thus both
the input impedance and admittance of an original model can be reproduced (see
Sect. 3). Here, models obtained with dominant SZM are converted to netlist repre-
sentations using the Foster impedance realization approach [22,23]. Netlist formats
for the SPRIM/IOPOR [3, 20, 21] reduced models are obtained via the RLCSYN
unstamping procedure in [20]. With both approaches, the resulting netlists may still
contain circuit elements with negative values, nevertheless this does not impede the
circuit simulation. Obtaining realistic synthesized models with positive circuit ele-
ments only is still an open problem.

3 Numerical Results
Two transmission line models are reduced with the proposed dominant spectral
zero method and compared with the input-output structure preserving method
SPRIM/IOPOR [3,20,21]. For both circuits, the circuit simulators3 yield systems in
the form (5), thus the dominant SZM projection is (6). RLC netlist representations
for the reduced models are obtained (see Sect. 2.3) and simulated with Pstar.

3 Pstar and Hstar in-house simulators at NXP Semiconductors
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The RLC transmission line with connected voltage controlled current sources
(VCCSs) from [12] is reduced with dominant SZM, SPRIM/IOPOR [3, 20] and
modal approximation (MA). The transfer function is an input impedance i.e., the
circuit is current driven. Matlab simulations of the original and reduced models, as
well as the Pstar netlist simulations are shown in Fig. 1: the model reduced with
Dominant SZM gives the best approximation. Table 1 summarizes the reduction:
the number of circuit elements and the number of states were reduced significantly
and the simulation time was sped up.
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Fig. 1: Original, reduced and synthesized systems: Dominant SZM, SPRIM/IOPOR

Table 1: Transmission line with VCCSs: reduction and synthesis summary

System Dimension R C L VCCs States Simulation time

Original 1501 1001 500 500 500 1500 0.5 s
Dominant SZM 2 3 2 0 - 4 0.01 s
SPRIM/IOPOR 2 6 3 1 - 4 0.01 s

In [12], the voltage driven input admittance of an RLC transmission line (con-
sisting of cascaded RLC blocks) was reduced directly as shown in Fig. 3. Here we
reduce and synthesize the underlying input impedance of the same transmission line
(see Figures 2 and 4). When driving the reduced netlist by an input voltage during
the actual circuit simulation, the same input admittance is obtained as if the input ad-
mittance had been reduced directly, as seen in Figures 3 and 5. Table 2 summarizes
the reduction results. Although the reduced mathematical models have the same di-
mension (k = 23), the reduction effect can only be determined after obtaining the
netlist representations. Although the SPRIM/IOPOR synthesized model has fewer
states, it has more circuit elements than the dominant SZM model, i.e., the matrix
stamp of the model is more dense. This suggests that simulation time is jointly deter-
mined by the number of states and the number of circuit elements. Thus for practical
purposes it is critical to synthesize reduced models with RLC components.
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Table 2: RLC transmission line: Input impedance reduction and synthesis summary

System Dimension R C L States Simulation time

Original 901 500 300 300 901 1.5 s
Dominant SZM 23 22 11 10 34 0.02 s
SPRIM/IOPOR 23 78 66 6 18 0.02 s
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original, synthesized SPRIM/IOPOR model

4 Concluding Remarks

A novel passivity preserving model reduction method is presented, which is based
on interpolation of dominant spectral zeros. Implemented with the SADPA itera-
tive solver, the method solves approximately an associated Hamiltonian eigenvalue
problem, and constructs the passivity preserving projection. Netlist equivalents for
the reduced models are simulated and directions for future work are revealed. Es-
pecially in model reduction of multi-terminal circuits, achieving structure preserva-
tion, sparsity and small dimensionality simultaneously is an open question. In this
context, RLC synthesis with positive circuit elements will also be addressed.
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Applications of Eigenvalue Counting and
Inclusion Theorems in Model Order Reduction

E. Fatih Yetkin and Hasan Dağ

Abstract We suggest a simple and an efficient iterative method based on both the
Gerschgorin eigenvalue inclusion theorem and the deflation methods to compute
a Reduced Order Model (ROM) to lower greatly the order of a given state space
system. This method is especially efficient in symmetric state-space systems but it
works for the other cases with some modifications.

1 Introduction

The computational cost of the simulation of today’s technological equipments, es-
pecially those of the integrated circuits, can be very high. Hence the model order
reduction methods have very wide application areas especially in sub-micron elec-
tronic device and microelectronic mechanical system (MEMS) modeling and simu-
lation [1]. In general, a single input single output (SISO) system can be defined with
the state equations in the standard form as below.

ẋ = Ax + bu

y = cT x + du (1)

where A ∈ Rnxn, b,c ∈ Rn and d is a scalar. Here, the dimension of the state space
n is very large and the model order reduction techniques are employed to build an
mth order system where m � n. The reduced system can be given as below,
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ż = Âz + b̂u

y = ĉT z + du (2)

where Â ∈ Rmxm, b̂, ĉ ∈ Rm and d is a scalar [2]. Use of the dominant eigenmodes
is one of the ways to build a reduced state space model of the system under study.
However, it is not computationally feasible due to high cost of computing all eigen-
modes of the system at hand [3]. Therefore, computing only the dominant poles of
a transfer matrix can also be an effective way for computing the reduced system
matrices [4].

In this study, we suggest a new method based on the eigenvalue inclusion theo-
rems such as Gerschgorin’s. Gerschgorin discs are very useful and there are quite a
few computationally efficient methods to determine the area of possible eigenvalue
locations of a given matrix.

In our approach, a possible eigenvalue location and the number of dominant
eigenvalues of interest are determined using Gerschgorin theorem automatically.
Then, this number is selected as maximum iteration number for the algorithm. In
each step of the algorithm the required number of eigenpairs are computed by us-
ing any eigenvalue deflation algorithms till the loop reaches the maximum iteration
number or required error tolerance. The method works for symmetric systems. But
one can use the Sturm sequences with the Wilf method to apply the algorithm to
general systems [5].

The remaining of the paper is organized as follows. In the second section, the
eigenvalue inclusion theorems are briefly introduced. In the third section, we present
the suggested method. Some numerical examples are given in the fourth section. The
conclusions and the future work are presented in the last section.

2 Eigenvalue Inclusion Theorems

2.1 Gerschgorin Theorem

Computing all eigenvalues of a matrix is not easy in most cases. In such cases one
can use Gerschgorin’s method to estimate the eigenvalues. Let A be an n×n matrix
and ai j’s be its entries. One can define Ci disks in the complex plane whose centers
are values of diagonal entries of matrix A as follows:

Ci = {z ∈ C| |z−aii| ≤ Rii} (3)

Ri =
n

∑
j=1

|ai j| i �= j. (4)

Here, the radius is the row sum in absolute values except the diagonal element.
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Gerschgorin Theorem: All eigenvalues of the A have to be in the union of these
Ci discs.

C =
n⋃

i=1

Ci (5)

Another important part of the Gerschgorin’s theorem is that if m of those disks do
not touch to the remaining disks, then there exist exactly m eigenvalues in these m
disks [6]. The proof of the theorem can be found in the literature such as [7].

2.2 Modal Approximation

Let us consider the standard state space system given in (1). The matrix A can be
expressed in a different way by using its eigenpairs

A = EΛE−1, (6)

where E contains eigenvectors of A matrix in its columns and Λ is a diagonal matrix
containing the eigenvalues of A matrix in its diagonal entries. If Ew(t) = x(t) change
of variables is applied then (1) can be written as follows:

dw(t)
dt

= E−1AEw(t)+ E−1bu(t)

y(t) = cT Ew(t). (7)

The transfer function of the system in (7 and its pole-residue representation can be
written as,

H(s) = cT E︸︷︷︸
ĉ

(sI − Λ︸︷︷︸
Â

)E−1b︸ ︷︷ ︸
b̂

H(s) =
N

∑
i=1

b̂iĉi

s−λi
(8)

where Â = Λ , b̂ = E−1b and ĉ = cT E . In modal approximation methods, the terms
having small residues and the terms having large negative part for Re(λi) are
dropped from the pole-residue formulation [8]. Although the modal approximation
method is conceptually familiar, it requires huge computational effort because of
full eigen-decomposition.

3 Method and Algorithm

In our algorithm, modal approximation based method is used iteratively, but in or-
der to avoid full eigen-decomposition the Gerschgorin theorem is used. Clusters of
the Gerschgorin discs are determined first. Then the cluster, which is located near-
est position to the jω axis, is selected. The number of the eigenvalues in it can be
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used as a limit for the iteration. In each step of the iteration, a deflation algorithm
(Wielandt, etc.) is used to find the related eigenpairs of A matrix [9]. For example,
first i eigenpairs are computed and the reduced system matrices are built by modal
approximation approach in ith step. Then the difference between the standard Eu-
clidian norm of the frequency response of (i−1)th order transfer function and the ith

order one is computed. Until the difference of norms is smaller than the set tolerance
value or the iteration number reaches its limit, iteration does not stop.

In the first step of the algorithm, the number of separated Gerschgorin discs is
determined. To obtain this information, one can build a n×2 dimensional T matrix.
Entries of the first column of T matrix are the center coordinates of Gerschgorin
discs (ci) and the entries of second one are the radius of the discs (ri). Then the rows
of the T matrix have to be reordered in the increasing order according to ci. After
reordering the T matrix, it has the information about the Gerschgorin discs from
the most negative one to the most positive one. Then one can create a P matrix
consisting of only 0 and 1 entries according to below relation

Pi j =
{

1 if ci + ri > c j + r j

0 if ci + ri ≤ c j + r j.
(9)

Because of the symmetry of the relation given in (9) we can say that, Pi j = P ji.
The rank of the P matrix is equal to the number of separated Gerschgorin discs.
Moreover, the structure of the block matrices on the diagonal gives the number of
the eigenvalues.

To illustrate this approach, one can find the matrix P from the given A

A =

⎡
⎢⎢⎢⎢⎣

−4.0 0.0 0.0 −0.5 −0.5
−0.1 −4.5 −0.4 0.0 −1.0
0.0 −0.03 −0.1 −0.02 −0.05
−0.3 0.0 −0.1 −4.0 −0.2
−0.01 −0.04 0.0 0.0 −0.1

⎤
⎥⎥⎥⎥⎦ P =

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦ . (10)

As we can see from the (10) matrices rank(P) = 2 and then we can say that
Gerschgorin discs of the A matrix clustered in two different region of the complex
plane. Another information arising from the P matrix, first disc cluster has three
eigenvalues and second one has two eigenvalues. The Gerschgorin discs of the ma-
trix A are given in Fig.1.

The algorithm of the proposed method is given in Alg. 1. In the case of the
rank(P) = 1, the algorithm works up to convergence.

If P matrix is a rank-one matrix, the Gerschgorin based method does not give
any information about the number of dominant eigenvalues of the A matrix. In that
case, more specific methods like modified Sturm sequences method or Gleyse-Jo
method have to be used. The number of the eigenvalues in a specific geometric
shape can be determined in these kinds of methods [10, 11].
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Algorithm 5
Require: A, b, c system matrices.
Ensure: Reduced system matrices Â, b̂, ĉ.

1: Find the P matrix from A to determine the number of Gerschgorin disc clusters.
2: Find the number of eigenvalues of the Gerschgorin disc cluster closest to the jω axis and assign

it as itnum.
3: for r ≤ itnum do
4: Find first r eigenpairs with using any deflation method.
5: Build r-dimensional system matrices using (8).
6: if ||Hr −Hr−1||2 < TOLERANCE then
7: Give outputs as Â, b̂ and ĉ and exit.
8: else
9: r=r+1

10: end if
11: end for

4 Numerical Applications

In this work we used two different type of benchmark examples. First one is a sym-
metric state-space model of a spiral inductor obtained by PEEC (Partial Element
Equivalent Circuit) method . This inductor is intended as an integrated RF passive
inductor first. For detailed information about technical properties and mathematical
modelling of inductor we refer the reader to [12] and [13]. Original dimension of
the system equals to 1434. But in our tests size of the system is reduced to 50 first.
The spiral model has a symmetric structure. Hence its eigenvalues are all real.

If we apply the Gerschgorin method, we can find that rank(P) = 1; thus the
algorithm will work till it converges. We use the below relative error definition for
the convergence criterion.
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eb =
||HN ||2 −||Hn||2

||HN ||2 (11)

where HN is the original system frequency response and Hn is the reduced system
frequency response.

Frequency dependent resistance and inductance graphics of the spiral inductor
for different reduction order is given in Fig.2.
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Fig. 2: Bode diagram of the spiral inductor example for different reduction order

An equivalent circuit of a simple interconnect geometry is used for the second
numerical example. Two inductively coupled transmission line systems are selected
as the example circuit. For the mathematical and electrical details of the example
we refer the reader to [14]. The Bode diagram for different reduction order is given
in Fig.3.

The convergence graphics of the method for both examples are given in Fig.4
and Fig. 5. In the spiral inductor example, relative error has an decreasing affinity
as expected. It is obvious that if the number of the estimated eigenpairs is increased,
the error will be reduced. On the other hand in the second example, the system
has complex poles and the proposed method is not successful enough to estimate
complex poles of the system. Although the method can achieve some accuracy, it is
not robust. This is due to the complex eigenvalues of the A matrix and the rank-one
structure of the related P matrix. We have some suggestions to solve this problem,
although, our suggestions are not conclusive yet. We plan to improve our method
using more sophisticated algorithms like the Wilf method. That is, the method is
expected behave the same as that of symmetric cases in the case of system matrices
with complex eigenpairs.
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5 Conclusions and Future Work

In this study, dominant poles of the linear state space system are estimated by
using the Gerschgorin theorem and the Wielandt deflation algorithm in an itera-
tive way. The method gives very accurate results especially for multi-time systems
(means that the Gerschgorin discs of the A matrix clustered in different locations in
complex plane or rank(P) �= 1). However, if all eigenvalues of system are within
the same part of the complex plane and Gerschgorin discs are nested (means that
rank(P) = 1), the method becomes unstable. There is another pitfall in the sug-
gested algorithm. If the system matrix A has several complex eigenvalues, Wielandt
(or another) deflation methods are not be sufficient to find these complex eigen-
values. In this case, the exact number of real and complex eigenvalues has to be
known to get some satisfactory results from the algorithm. Therefore, a way has to
be found to combine the Sturm sequences with the generalized bisection algorithm
to get quick information about the approximate eigenvalues of the non-symmetric
general system. Future work will be focused on these concepts.
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GABOR: Global-Approximation-Based Order
Reduction

Janne Roos, Mikko Honkala, and Pekka Miettinen

Abstract This paper proposes a new approach for the Model-Order Reduction
(MOR) of RLC circuits: Global-Approximation-Based Order Reduction (GABOR).
GABOR preserves passivity and reciprocity, and matches the ‘moments’ of the un-
derlying global approximation. However, GABOR has some problematic features,
too. First, many matrices must be recursively precomputed into the memory space.
Second, it is difficult to circumvent the singularity of the conductance matrix by any
conventional frequency shifting. On the other hand, some tryouts for solving the
second problem lead to finding interesting links between GABOR and other MOR
methods. The correct operation of GABOR is verified with a simulation example.

1 Introduction

Typical Krylov subspace Model-Order Reduction (MOR) methods [1–3] are based
on implicit moment matching. This approach results in a Taylor-series-like approx-
imation, which is exact at the expansion point (e.g., at the origin of the complex
plane), but which looses accuracy when moving far away (e.g., towards high fre-
quencies). Therefore, one avenue to decrease (or, at least, to spread more equally)
the approximation error could be to base the MOR on a global approximation. The
RLC MOR method proposed in this paper, GABOR, is based on this idea.

PRIMA [1] operates with Y-parameters; SPRIM [2] and ENOR [3], in turn, are
formulated using Z-parameters. Since circuit simulators use the Modified Nodal
Analysis (MNA), Y-parameters are better suited for the (SPICE-netlist) synthesis of
the reduced-order model [4]. However, for simplicity, we limit the discussion in this
paper to the (frequency-domain) treatment of Z-parameters, only.
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2 Derivation of GABOR

Let us consider an RLC circuit with n = ni +N nodes, where ni and N are the number
of internal nodes and external port nodes, respectively; typically, N � ni. Let the
RLC circuit be excited by N current sources for obtaining the Z-parameter matrix
Z(s). Applying plain nodal analysis (which excludes voltage sources such that the
n node voltages are the only unknowns needed) to an RLC circuit, we obtain

Z(s) = LT
(

G + sC+
1
s
Γ
)−1

B

= LT
(

I+ sG−1C+
1
s

G−1Γ
)−1

G−1B

� LT
(

I− sD− 1
s

E
)−1

R

(1)

where G, C, and Γ are n-by-n symmetric semidefinite conductance, capacitance,
and inverse-inductance matrices [3], respectively, and L = B is an n-by-N selector
matrix. Also, we have denoted D = −G−1C, E = −G−1Γ, and R = G−1B.

The idea behind GABOR is to approximate Z(s) in (1) by a (Laurent-series like)
two-sided ‘moment’ series:

Z(s) = LT
(
· · ·+ N−2

1
s2 + N−1

1
s

+ N0 + N1s+ N2s2 + . . .

)

= · · ·+ M−2
1
s2 + M−1

1
s

+ M0 + M1s+ M2s2 + . . .

(2)

where the N-by-N ‘moments’, Mi, are related to the n-by-N matrices, Ni, by

Mi = LTNi, i = . . . ,−2,−1,0,1,2, . . . (3)

Combining the last row of (1) and the first row of (2) and some algebra gives
(

I− sD− 1
s

E
)(

· · ·+ N−2
1
s2 + N−1

1
s

+ N0 + N1s+ N2s2 . . .

)
= R (4)

Equating the negative/zero/positive powers of s results in the following matrix equa-
tion (truncated to ±3 terms for notational convenience):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −D
−E I −D

−E I −D
−E I −D

−E I −D
−E I −D

−E I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N3

N2

N1

N0

N−1

N−2

N−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
R
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)
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Equation (5) can be solved semi-analytically by a two-sided Gaussian elimina-
tion process, resulting in two sets of recursions (shown for ±3 terms):

↓ A3 = D ↑ N3 = A3N2

↓ A2 = (I−EA3)−1D ↑ N2 = A2N1

↓ A1 = (I−EA2)−1D ↑ N1 = A1N0

→ → N0 = (I−DA−1 −EA1)−1R

↑ A−1 = (I−DA−2)−1E ↓ N−1 = A−1N0

↑ A−2 = (I−DA−3)−1E ↓ N−2 = A−2N−1

↑ A−3 = E ↓ N−3 = A−3N−2

(6)

That is, starting from A−3 and A3, one recursively obtains A−1 and A1 that are used
to solve N0. Then, starting from N0, one obtains all the N−i and Ni terms, which,
together with (3), give the negative and positive ‘moments’ up to the desired order.
Note that with (2), (3), and (6), a global approximation is created, since the term
M0 = LTN0 (and all the other ‘moments’, Mi) depend on the predefined number of
‘moments’, (k−,k+). There is no expansion point: M0 �= Z(0) and M0 �= Z(∞).

Here, let us point out that although the N−i and Ni terms could be calculated
explicitly to obtain a global approximation for Z(s), this is not done in GABOR;
instead, the relations N−i = A−iN−i+1 and Ni = AiNi−1 between the successive N−i

and Ni terms, respectively, are just used to span a Krylov subspace.
The next step is to find the projection matrices needed for MOR. To start, let us

define the following Krylov subspace:

Kr(Ni,k−,k+) ≡ colspan{N−k− , . . . ,N−2,N−1,N0,N1,N2, , . . . ,Nk+} (7)

In GABOR, a ‘bidirectional’ block-Arnoldi method is used to obtain

X = [X−k− , . . . ,X−2,X−1,X0,X1,X2, . . . ,Xk+] (8)

such that the orthonormalized n-by-N blocks Xi span Kr(Ni,k−,k+). Finally, the
desired reduced-order matrices of GABOR are obtained by setting

G̃ = XTGX, C̃ = XTCX, Γ̃ = XTΓX, B̃ = XTB, L̃ = XTL (9)

It can be shown [3] that any reduced-order model represented by (9) preserves
passivity and reciprocity of the original RLC circuit. Moreover, GABOR matches
the Z-parameter block ‘moments’ M−k− , . . . ,M−2,M−1,M0,M1,M2, . . . ,Mk+ of
the underlying global approximation:

M̃i = Mi, i = −k−, . . . ,−2,−1,0,1,2, . . . ,k+ (10)

A proof of the moment-matching property of GABOR is given in the Appendix.
Note that it is also possible to write (1) as a Neumann series:
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Z(s) = LT
[

I−
(

sD+
1
s

E
)]−1

R = LT
∞

∑
i=0

(
sD+

1
s

E
)i

R (11)

However, if we assume predefined k− and k+, then GABOR evaluates the ‘mo-
ments’ M−k− , . . . ,M0, . . . ,Mk+ ‘exactly’, while with the Neumann-series approach,
an infinite number of terms (from which the ‘moments’ could be obtained after
multiplications and grouping of si and 1/si terms) would be required for the same
accuracy. Also, to study the connections between these two approaches, one could
expand each of the terms A−2,A−1,N0,A1,A2 in (6) in a Neumann series.

Here, it is fair to mention that GABOR has some problematic features, too. First,
in (6), the recursive calculation of the Ai terms and N0 and the associated matrix
inversions may result in numerical problems. Second, due to the global nature of
the approximation, all the Ai terms (or the related LU factorizations) must be pre-
computed into the memory space. Third, the conductance matrix G in (1) is often
singular for real-life RLC interconnect circuits; the last problem is treated in more
detail in the next section.

3 Frequency Shifting

The possible singularity of the conductance matrix G in (1) is an issue in other
nodal-formulation-based MOR methods, too. For GABOR, we would like to find
such a frequency shifting (and/or scaling) that converts (1) into the following form:

Z(z) = LT
(

Ĝ + zĈ+
1
z
Γ̂
)−1

B = LT
(

I− zD̂− 1
z

Ê
)−1

R̂ (12)

where z is the shifted frequency variable and Ĝ is an invertible matrix, preferably

Ĝ = G+ s0C+
1
s0

Γ (13)

and s0 is an appropriate real frequency (e.g., s0 = 109 rad/s).
First, set s = s+ s0 − s0 and 1/s = 1/s+ 1/s0 −1/s0 and use (13) to obtain:

Z(s) = LT
[

Ĝ+(s− s0)C+
(

1
s
− 1

s0

)
Γ
]−1

B � LT
(

Ĝ+ z1C+
1
z2

Γ
)−1

B (14)

This approach can not be used with GABOR, since we have z1 �= z2, thus violating
(12). However, just to show an interesting link, (14) could be further processed as
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Z(s) = LT
[

I−
(

s
s0

−1

)(
−s0Ĝ

−1
C
)
−
(s0

s
−1

)(
− 1

s0
Ĝ

−1Γ
)]−1

Ĝ
−1

B

� LT (I−σ1D̂−σ2Ê
)−1

R̂ = LT
∞

∑
i=0

(
σ1D̂+σ2Ê

)i
R̂

(15)
from which one could continue with the Krylov-subspace techniques of Ref. [5].

Second, we consider the specific frequency shifting and scaling that was an inte-
gral part of ENOR [3]:

z = − s− s0

s0
⇒ s = s0(1− z) ⇒ 1

s
=

1
s0

1
1− z

=
1
s0

(1 + z+ z2 + . . .) (16)

Unfortunately, the expression for 1/s (that was not converted, explicitly, into a
power series in Ref. [3]) is not in a convenient form for GABOR. In fact, if we insert
these expressions for s and 1/s in (1), require that Z(z) = M0 + M1z+ M2z2 + . . . ,
equate the powers of z, and do some algebra, it turns out that we have just obtained
an alternative way to derive the recursion formulas for the ENOR method.

In the course of this work, the above and many other scalings were tried with
GABOR. Unfortunately, it seems that any consistent scaling ‘breaks the symmetry’
of (1), and thus cannot convert it into the form of (12). Therefore, a ‘dirty trick’ was
applied; s = s0(1− z) was, still, used, but 1/s was very roughly approximated as

1
s

=
1
s0

1
1− z

≈ − 1
s0

1
z

(17)

The other ‘dirty trick’ was to ensure the invertibility of the enhanced G matrix by
introducing an auxiliary diagonal perturbation, gI. Inserting these in (1) results in

Z(z) = LT
[
(G+ s0C+ gI)− z(s0C)− 1

z

(
1
s0

Γ
)]−1

B (18)

which is (nearly) in the form of (12), and thus can be processed by applying the
GABOR formulas (2)–(9).

4 Simulation Example

A dispersive transmission line was modeled with 50 LRCG sections, each hav-
ing L = 1nH, R = 1mΩ, C = 1pF, and G = 1mS. This two-port RLC circuit was
reduced using a MATLAB/C implementation of (the frequency scaled) GABOR
with (k−,k+) = (5,5), s0 = 5 · 109 rad/s ⇒ f0 = 5/(2π) GHz ≈ 0.796 GHz, and
g = 10−9 S. (Without the term gI, the MOR fails.) Figure 1 shows |Z21( f )| in the
frequency range ]0,5]GHz; the match is quite good up to 2GHz. The original and
reduced circuit resulted in 101-by-101 and 22-by-22 circuit matrices, respectively.
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Fig. 1: Original (dashed) and reduced (solid) |Z21( f )|

5 Conclusions

This paper proposed a Global-Approximation-Based Order Reduction (GABOR),
which preserves the passivity and reciprocity of the original RLC circuit, and
matches the ‘moments’ of the underlying global approximation. Also, the problems
associated with GABOR were thoroughly discussed, and links between GABOR
and other MOR methods were identified. While GABOR in itself is not a com-
petitive MOR method for RLC circuits, the concept of global-approximation-based
MOR might be worth further studies.

Appendix

Theorem 1. GABOR matches the Z-parameter block ‘moments’:

M̃i = Mi, i = −k−, . . . ,−2,−1,0,1,2, . . . ,k+

where the global-approximation ‘moments’ Mi and M̃i are obtained from the origi-
nal RLC circuit (1) and the reduced-order model (9), respectively.

Proof. (The proof is partially based on some ideas of Ref. [1].) Let In, (0n), IN (0N),
and Iq (0q) denote n-by-n, N-by-N, and q-by-q unit (zero) matrices, respectively,
where n is the number of nodes, N that of ports, and q = (k− + 1 + k+) · N is the
order of reduction. Let us, due to lack of space but without loss of generality, derive
formulas for M1 and M̃1 in the case where (k−,k+) = (1,1). By applying (1)–(5)
for the original M1, we can write

M1 = LTN1 = LT[In 0n 0n]

⎡
⎣N1

N0
N−1

⎤
⎦= LT[In 0n 0n]

⎡
⎣ I G−1C

G−1Γ I G−1C
G−1Γ I

⎤
⎦

−1⎡
⎣ 0n×N

G−1B
0n×N

⎤
⎦

= LT[In 0n 0n]

⎡
⎣G C

Γ G C
Γ G

⎤
⎦

−1⎡
⎣ 0n

In

0n

⎤
⎦B � LT[In 0n 0n]G−1

T BT � LT[In 0n 0n]N
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where we have denoted

GT =

⎡
⎣G C

Γ G C
Γ G

⎤
⎦ , BT =

⎡
⎣ 0n

In

0n

⎤
⎦B, G−1

T BT = N =

⎡
⎣N1

N0
N−1

⎤
⎦

Next, an appropriate expression is derived for M̃1:

M̃1 = L̃T[Iq 0q 0q]

⎡
⎣ G̃ C̃

Γ̃ G̃ C̃
Γ̃ G̃

⎤
⎦

−1⎡
⎣ 0q

Iq

0q

⎤
⎦ B̃

= (XTL)T[Iq 0q 0q]

⎡
⎣XTGX XTCX

XTΓX XTGX XTCX
XTΓX XTGX

⎤
⎦

−1⎡
⎣ 0q

Iq

0q

⎤
⎦XTB

= LTX[Iq 0q 0q]

⎛
⎝
⎡
⎣XT

XT

XT

⎤
⎦
⎡
⎣G C

Γ G C
Γ G

⎤
⎦
⎡
⎣X

X
X

⎤
⎦
⎞
⎠

−1⎡
⎣ 0q

Iq

0q

⎤
⎦XTB

� LTX[Iq 0q 0q]
(
XT

DGTXD
)−1

⎡
⎣ 0q

Iq

0q

⎤
⎦XTB

= LTXXT[In 0n 0n]

⎡
⎣X

X
X

⎤
⎦(XT

DGTXD
)−1

⎡
⎣XT

XT

XT

⎤
⎦
⎡
⎣ 0n

In

0n

⎤
⎦XXTB

= LTXXT[In 0n 0n]XD
(
XT

DGTXD
)−1 XT

D

⎡
⎣ 0n

In

0n

⎤
⎦XXTB

where we have denoted

XD =

⎡
⎣X

X
X

⎤
⎦

Now, starting from the right, the long expression of M̃1 is simplified step by step:

XT
D

⎡
⎣ 0n

In

0n

⎤
⎦XXTB =

⎡
⎣XT

XT

XT

⎤
⎦
⎡
⎣ 0n

In

0n

⎤
⎦XXTB =

⎡
⎣ 0n(

XTX
)

XTB
0n

⎤
⎦=

⎡
⎣ 0n

XTB
0n

⎤
⎦

=

⎡
⎣XT

XT

XT

⎤
⎦
⎡
⎣ 0n

In

0n

⎤
⎦B = XT

DBT

⇒ M̃1 = LTXXT[In 0n 0n]XD
(
XT

DGTXD
)−1

XT
DBT

As a preprocessing step for simplifying the term XD
(
XT

DGTXD
)−1

XT
DBT in the

above M̃1 formula, let us, first, treat an auxiliary term XDXT
DN. Let Ni = XiTi be

the factorization (QR decomposition) of Ni into an orthonormal n-by-N matrix, Xi

(with XT
i Xi = I) and upper triangular N-by-N matrix, Ti; here, the matrices Xi are

the block columns of the congruence-transform matrix X, see (8). Now we can write
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XDXT
DN =

⎡
⎣X

X
X

⎤
⎦
⎡
⎣XT

XT

XT

⎤
⎦
⎡
⎣N1

N0
N−1

⎤
⎦=

⎡
⎣XXTN1

XXTN0

XXTN−1

⎤
⎦

where, e.g.,

XXTN1 = [X−1 X0 X1]

⎡
⎢⎣

XT
−1

XT
0

XT
1

⎤
⎥⎦X1T1 = [X−1 X0 X1]

⎡
⎢⎣

XT
−1X1T1

XT
0 X1T1

XT
1 X1T1

⎤
⎥⎦

= [X−1 X0 X1]

⎡
⎢⎣

0NT1

0NT1

INT1

⎤
⎥⎦= [X−1 X0 X1]

⎡
⎣ 0

0
T1

⎤
⎦= X1T1 = N1

Also, XXTN0 = N0 and XXTN−1 = N−1 ⇒ XDXT
DN =

⎡
⎣N1

N0
N−1

⎤
⎦= N

Now, we can write
N = XDXT

DN

⇔ XT
DGTN = XT

DGTXDXT
DN

⇔ XT
DBT = (XT

DGTXD)XT
DN

⇔ (
XT

DGTXD
)−1

XT
DBT = XT

DN

⇔ XD
(
XT

DGTXD
)−1 XT

DBT = XDXT
DN

⇔ XD
(
XT

DGTXD
)−1

XT
DBT = N

⇒ M̃1 = LTXXT[In 0n 0n]N = LTXXT[In 0n 0n]

⎡
⎣N1

N0
N−1

⎤
⎦= LTXXTN1 = LTN1 = M1

Similarly, M̃i = Mi, i = −k−, . . . ,−2,−1,0,1,2, . . . ,k+ Q.E.D.
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Model Order Reduction for Systems with
Non-Rational Transfer Function Arising in
Computational Electromagnetics

Lihong Feng and Peter Benner

Abstract We consider model order reduction of a system described by a non-
rational transfer function. The systems under consideration result from the dis-
cretization of electromagnetic systems with surface losses [1]. In this problem, the
frequency parameter s appears nonlinearly. We interpret the nonlinear functions con-
taining s as parameters of the systems and apply parametric model order reduction
(PMOR) to the system. Since the parameters are functions of the frequency s, they
are coupled to each other. Nevertheless, PMOR treats them as individual parameters.
We review existing PMOR methods, and discuss their applicability to the problem
considered here. Based on our findings, we propose an optimized method for the
parametric system considered in this paper. We report on numerical experiments
performed with the optimized method applied to real-life data.

1 Problem Description

The transfer functions of the systems considered here take the form

H(s) = sBT(s2In −1/
√

sD+ A)−1B, (1)

where A,D are n × n matrices, B is an n × p matrix (p � n), and In is the identity
matrix of size n. These transfer functions result from the spatial discretization of
electromagnetic field equations, i.e., the Maxwell equations, describing the electro-
dynamical behavior of microwave devices, when surface losses are included in the
physical model. For details see [1].
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Due to the symmetry inherent in the model under consideration, we will fo-
cus here on one-sided projection methods for model order reduction. That is, the
reduced-order model is obtained by finding a projection matrix V ∈ R

n×q and
V TV = Ir, such that

Ĥ(s) = sB̂T (s2Ir −1/
√

sD̂+ Â)−1B̂ ≈ H(s)

is the reduced-order transfer function, with D̂ = V T DV , Â = V T AV ∈ Rq×q, B̂ =
V T B ∈ Rq×p, and q � n.

Since H(s) contains not only s, but also two nonlinear functions of s, namely s2

and 1/
√

s, we intend to apply parametric model order reduction (PMOR) methods
(e.g., [2,3]) in order to compute Ĥ(s). Notice that model reduction of a similar trans-
fer function as in (1) is also discussed in [1], where a conventional non-parametric
model order reduction method is considered. There, the generated projection matrix
V depends not only on some expansion point s0, but also on some value s̃ used for
fixing the term 1/

√
s to 1/

√
s̃ in order to obtain a standard rational transfer function.

This may cause poor approximation properties of Ĥ(s) at values s where 1/
√

s is
not close to 1/

√
s̃. In our situation, the basic difference of PMOR compared to non-

parametric model reduction is that the computed projection matrix V only depends
on the expansion point s0, but not on any fixed value s̃ other than s0 as the term 1/

√
s

is treated as free parameter. Usually, this strategy produces a reduced-order model
(transfer function) with evenly distributed small error for a large frequency range.

In order to apply PMOR methods as those suggested in [2, 3], H(s) has to be
expanded into a power series, then the projection matrix V is computed based on
the coefficients of the series expansion. Different ways of computing V constitute
different PMOR algorithms. Therefore, in the following we first consider various
series expansions of H(s) and discuss their suitability for PMOR.

The first possibility for an expansion of H(s) into a Neumann series is obtained
when A is nonsingular as follows:

H(s) = sBT (s2In −1/
√

sD+ A)−1B
= sBT (s2A−1 − 1√

s A−1D+ In)−1A−1B

= sBT [In − ( 1√
s A−1D− s2A−1)]−1A−1B

= sBT
∞
∑

i=0
( 1√

s A−1D− s2A−1)iA−1B,

where the last equality only holds if ‖ 1√
s A−1D− s2A−1)‖ < 1 for a suitably chosen

matrix norm. However, in the considered application, A is a singular matrix. Thus,
the series expansion above cannot be used.

Extracting s2 from the inverse in (1),

H(s) =
1
s

BT (In − 1
s2

√
s

D+
1
s2 A)−1B, (2)

a second possibility for a Neumann series expansion is obtained:
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H(s) =
1
s

BT (In − 1
s2

√
s

D+
1
s2 A)−1B =

1
s

BT
∞

∑
i=0

(
1

s2
√

s
D− 1

s2 A
︸ ︷︷ ︸

:=Q(s)

)iB. (3)

Next we check whether the above Neumann series expansion is convergent or not.
Although the interesting frequency in applications of (1) is relatively high (s = jω ,
ω ≈ 109 Hz for the real-life data used in Section 4), ill-scaling of the matrices D
and A also often encountered in practice prevents convergence of the above series
expansion. (Note: in the example considered in Section 4, Di j ∼ 1027, Ai j ∼ 1023.)
Therefore, the series expansion in (3) is not applicable in practice either. (One would
need |s| > 1012 in order to achieve convergence of the Neumann series!)

Finally, we study a third alternative for power series expansion of (1). We also
use (2) and define s1(s) := 1

s2√s
, s2(s) := 1

s2 . If we choose a nonzero expansion point

s0 and let s1(s) = s1(s0)+σ1(s), s2(s) = s2(s0)+σ2(s), then we get

H(s) = 1
s BT (In − s1(s)D+ s2(s)A)−1B

= 1
s BT (In − s1(s0)D+ s2(s0)A︸ ︷︷ ︸

:=G

−σ1D+σ2A)−1B

= 1
s BT [In − (σ1G−1D−σ2G−1A)]−1G−1B

= 1
s BT

∞
∑

i=0
(σ1G−1D−σ2G−1A︸ ︷︷ ︸

:=Q

)iG−1B

(4)

Simple calculations show that the entries of Q are small enough to guarantee
‖Q‖ < 1 for small σ1,σ2, so that the series is convergent. Therefore, we will use
the series expansion (4) in the following analysis. We will treat σ1 and σ2 as two
individual parameters, although, they are both functions of s, and hence are cou-
pled parameters. For ease of notation, in the following we will use BM := G−1B,
M1 := G−1D, and M2 := −G−1A. The difference between PMOR methods lies in
the computation of the projection matrix V . Therefore, in the next section, we review
two different methods for computing V and analyze drawbacks of these methods.
Based on these considerations, we propose an improved method in Section 3. We
will report on numerical experiments with these methods in Section 4.

2 Different Methods for Computing the Projection Matrix V

2.1 Directly Computing V

A simple and direct way of obtaining V is to compute the coefficient matrices in the
series expansion:

H(s) = 1
s BT[BM + M1BMσ1 + M2BMσ2

+M2
1 BMσ2

1 +(M1M2 + M2M1)BMσ1σ2 + . . .+ M3
1BMσ3

1 + . . .].
(5)
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by direct matrix multiplication, then orthogonalize these coefficients to get the ma-
trix V [2] as below:

range{V} = orth{BM,M1BM, . . . ,(M1M2 + M2M1)BM, . . .}. (6)

Unfortunately, the coefficients quickly become linearly dependent due to numer-
ical instability (see the analysis, e.g., in [3, 4]). In the end, the matrix V is often so
inaccurate that it does not possess the expected theoretical properties.

2.2 Recursively Computing V

A recursive method for computing V is proposed in [3], which is based on certain
recursions between the coefficients of the series expansion. The series expansion (4)
can also be written in the following form:

H(s) =
1
s
[BM +(σ1M1 +σ2M2)BM + . . .+(σ1M1 +σ2M2)iBM + . . .]. (7)

Using (7), we define
R0 = BM,
R1 = [M1R0,M2R0],

...
R j = [M1R j−1,M2R j−1],
....

(8)

We see that R0,R1, . . . ,R j, . . . include all the coefficient matrices in the series expan-
sion (7). Therefore, we can use R0,R1, . . . to generate the projection matrix V :

range{V} = colspan{R0,R1, . . . ,Rm}. (9)

Here, V can be computed by employing the recursive relations between R j, j =
0,1, . . . ,m combined with the modified Gram-Schmidt process [3].

A disadvantage of this approach is that coefficients of the same powers of σ1,σ2

are treated separately and are orthogonalized sequentially using, e.g., the modified
Gram-Schmidt process. This may lead to reduced-order models of larger order than
the direct approach.

3 An Optimized Method for Computing the Projection Matrix V

In this section, we will overcome the drawback of the recursive method at least
for the situation with two parameters as encountered in the electromagnetics model
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considered in the introduction. We will explain our approach using the first “mixed
moment” in the series expansion (4).

For this purpose, note that the coefficients M1M2BM and M2M1BM are treated
as two individual terms in (8). Observing that they are actually both coefficients of
σ1σ2, they can be considered as one term during the computation as in (6). There are
some similar coefficients which are computed separately in (8), but which are added
up in (6), such as M2M2

1 BM,M2
1 M2BM,M1M2M1BM, since they are all coefficients

of σ2
1 σ2. Their treatment as individual matrices in (8) will, in some cases, result in

more columns in the final projection matrix V as compared to (6). This will produce
reduced-order models which are not as small as possible. Next we develop a new set
of recursions for the coefficient matrices in (6), such that the coefficients of σ i

1σ
j

2 ,
i, j > 0, yield only one term. Furthermore, the modified Gram-Schmidt algorithm is
applied to these recursions in order to compute the matrix V in a numerically robust
way which will result in an accurate reduced-order model.

Using the coefficient matrices in (6), we define new matrices V i as below, where
i is to be understood as an index, not as a power. If J = i + j, corresponding to the
powers of the monomial σ i

1σ
j

2 , then

J = 0 : BM := V 1 = [V 1
1 ]

J = 1 : [M1BM,M2BM] := V 2 = [V 2
1 ,V 2

2 ]
J = 2 : [M2

1 BM,(M1M2 + M2M1)BM,M2
2 BM] := V 3 = [V 3

1 ,V 3
2 ,V 3

3 ]
J = 3 : [M3

1 BM,(M2M2
1 + M2

1 M2 + M1M2M1)BM,

(M2M1M2 + M2
2M1 + M1M2

2)BM,M3
2 BM] := V 4 = [V 4

1 ,V 4
2 ,V 4

3 ,V 4
4 ]

...
J = m : [Mm

1 BM, · · · ,Mm
2 BM] := V m+1 = [V m+1

1 , · · · ,V m+1
m+1 ]

The above definitions are based on the observation that J = i actually corresponds
to i+ 1 coefficient matrices. Let V i

0 = 0 and V i
i+1 = 0, i = 1,2, . . . ,m+ 1, we derive

the following recursions:

V i
j = M2V i−1

j−1 + M1V i−1
j , j = 1,2, . . . , i; i = 2,3, . . . ,m+ 1. (10)

Based on the recursions in (10), we propose an algorithm which computes V as
in (6) using a modified Gram-Schmidt process. We describe this algorithm as in
Algorithm 1. In this algorithm,

• p is the number of columns of BM, i.e., the number of inputs.
• BM(:, i) is the ith column of BM , i = 1,2, . . . , p,
• tol is a tolerance determining linear dependency of the next computed column

vector of V .
• V i

j(:, l) is the lth column in matrix V i
j , s0 is the expansion point in (4).

Algorithm 1
1. Apply the modified Gram-Schmidt process to the columns of V 1 = BM:

V 1
1 (:,1) = BM(:,1)/‖BM(:,1)‖;
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for i = 2 : p
w = BM(:, i);
for j = 1 : i−1

w = w− ((V 1
1 (:, j))T ∗w)∗V1

1 (:, j);
end
if ‖w‖ > tol

V 1
1 (:, i) = w/‖w‖;

else
V 1

1 (:, i) = 0;
end

end
2. Apply the modified Gram-Schmidt process to the columns in V i

j ,
i = 2,3, . . . ,m+ 1, j = 1, . . . , i

for i = 2 : m+ 1, j = 1 : i, l = 1 : p, do
w = M2V i−1

j−1(:, l)+ M1V i−1
j (:, l); (�)

for ti = 1, . . . , i−1, t j = 1, . . . ,ti, t = 1, . . . , p, do
w = w− ((Vti

t j
(:,t))T ∗w)∗Vti

t j
(:,t);

end
for t j = 1, . . . , j −1, t = 1, . . . , p, do

w = w− ((V i
t j
(:,t))T ∗w)∗Vi

t j
(:,t);

end
for t = 1, . . . , l −1, do

w = w− ((V i
j(:,t))

T ∗w)∗Vi
j(:,t);

end
if ‖w‖ > tol

V i
j(:, l) = w/‖w‖;

else
V i

j(:, l) = 0;
end

end
3. Delete the zero columns in V i, yielding Ṽ i, i = 1,2, . . . ,m+ 1.
4. V = {Ṽ 1,Ṽ 2, · · · ,Ṽ m+1}.
5. if s0 is not a real number, range{V} = span{real(V ), imag(V )}.

Remark 1. a) In step 2. (�), the multiplication with zero columns can be avoided,
thus saving a matrix multiplication and the application of G−1. Moreover, if both
V i−1

j−1(:, l) and V i−1
j (:, l) are zero, the whole orthogonalization procedure can be

skipped. This is implemented with conditional statements and careful bookkeep-
ing for the zero columns (which must be kept until step 3. for dimension con-
sistency). The necessary statements are not shown in Algorithm 1 to keep the
algorithmic description brief.

b) A more efficient variant of Algorithm 1 would apply modified Gram-Schmidt
orthogonalization only on level i of the recursion and then run modified Gram-
Schmidt again at step 4. in order to obtain V with orthonormal columns. Whether
this results in noticeable numerical inaccuracies requires further investigation.



MOR for Systems with Non-Rational Transfer Function in EM 521

It is shown in the next section that the order of the reduced-order model computed
by Algorithm 1 is smaller than the order of the one derived by (9). The improved
algorithm is well suited for the parametric system from computational electromag-
netics considered in this paper. Its performance will be illustrated using an industrial
test example in the next section.

4 Simulation Results

In this section, we compare the three introduced methods for computing V when ap-
plied to an industrial test case.1 For convenience, we call the method directly com-
puting V DirectV. The recursive method in Section 2.2 is named RecV, the optimized
method proposed in Section 3 is called ImRecV, since it is an improved method
based on both DirectV and RecV. The order of the original system is n = 29,295.
We show the numerical instability of DirectV in Table 1. In Table 2, we compare the
orders of the reduced-order models derived by RecV and ImRecV.

In Table 1 and Table 2, J is defined as above, i.e., the coefficients corresponding
to σ i

1σ
j

2 , i + j = 0,1,2, . . . ,J are used to compute V . q is the number of columns
in the final projection matrix V and thus also the order of the reduced-order model.
From Table 1 we see that although DirectV and ImRecV use the same coefficient
matrices (6) to compute V , the number of columns of V computed by DirectV is
smaller than for V computed by ImRecV. The 4th column of Table 1 shows the dif-
ference in the number of columns of V . This difference increases with J which is due
to the numerical instability of DirectV, resulting in linear dependency of computed
columns of V that would be linearly independent if they were computed exactly.

Table 1: Numerical instability of DirectV

Number of columns
J q of DirectV q of ImRecV

deleted by DirectV

2 12 12 12-12=0

4 32 38 38-32=6

5 44 58 58-44=14

6 52 82 82-52=30

In Table 2, we compare ImRecV with RecV. Recall that RecV computes V accord-
ing to (9), where some coefficient matrices are computed separately, which results
in a larger reduced-order model for the system considered here. The second row
of Table 2 shows that RecV computes more columns than ImRecV, therefore, the
reduced-order model computed by RecV is less compact than that computed by Im-
RecV and thus less efficient for numerical simulations.

1 Provided by Dr. S. Reitzinger, CST Computer Simulation Technology, Darmstadt, Germany.
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The accuracy of ImRecV is illustrated in Fig. 1, where the order of the reduced
transfer function Ĥ(s) computed by ImRecV is q = 38. The solid line in Fig. 1 is
the magnitude of the original transfer function H(jω) in the frequency range of in-
terest in the application. The star markers correspond to Ĥ(s), and match the solid
line very well. Furthermore, the CPU time for evaluating H(jω) at 1000 frequency
points for ω ∈ [4 × 109, 8 × 109] is around 8 hours, while the CPU time for eval-
uating Ĥ(jω) of order q = 38 at the same frequency points is only 0.84 seconds.
All simulations are run on an IBM notebook with Intel CPU T2400, 1.83GHz, 1GB
RAM.

Table 2: Compactness of reduced-order models computed by RecV and ImRecV

J 2 4 5 6

q (RecV) 24 116 242 494
q (ImRecV) 12 38 58 82

4 5 6 7 8
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Fig. 1: Comparison of transfer functions
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Model Order and Terminal Reduction
Approaches via Matrix Decomposition and Low
Rank Approximation

Peter Benner and André Schneider

Abstract We discuss methods for model order reduction (MOR) of linear systems
with many input and output variables, arising in the modeling of linear (sub) circuits
with a huge number of nodes and a large number of terminals, like power grids. Our
work is based on the approaches SVDMOR and ESVDMOR proposed in recent
publications [1–5]. In particular, we discuss efficient numerical algorithms for their
implementation. Only by using efficient tools from numerical linear algebra, these
methods become applicable for truly large-scale problems.

1 Introduction

Nowadays, MOR is an important and conventional step in the preprocessing of cir-
cuit simulation. The original model resulting from methods like modified nodal
analysis has to be simplified due to its complexity. One issue of this simplifica-
tion for VLSI design is the MOR of parasitic linear interconnect circuits. These
circuits form substructures in the design of ICs and contain linear elements with
comparatively little or no influence on the result of the simulation.

In some applications, the structure of these parasitic linear subcircuits has re-
cently changed in the following sense. So far, the number of elements in these in-
terconnect circuits was significantly larger than the number of connections to the
whole circuit, the so-called pins or terminals. This assumption is no longer valid in
all cases. Circuits with a lot of elements need extra power supply networks, so-called
power grids [6,7]. In clock distribution networks, the clock signal is distributed from
a common point to all the elements that need it for synchronization [8]. For simu-
lating these circuits new methods are needed. Often, a lot of their terminals behave
similar so that it is possible to compress the input-/output matrices in such a way that

Peter Benner, André Schneider
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the I/O behavior can be realized through a few so-called virtual inputs/outputs [1–
5]. As a consequence we deal with these virtual terminals, the number of which is
much less than the original number of terminals. This allows the use of well known
MOR methods like balanced truncation or Krylov subspace methods to reduce the
number of inner nodes.

The intention of this paper is to explain the existing (E)SVDMOR approaches
[1,4] and show improvements within the implementation in particular for large scale
systems. In the following section, we review the fundamentals of the underlying ap-
proaches. We introduce the moments of a transfer function of the circuit describing
system and show how to use the information in these moments in order to reduce the
number of terminals. Later, we point out the weak point of the algorithm for really
large scale systems and present a solution for this problem. After the introduction of
this efficient algorithm to achieve a very compact model we show and discuss first
numerical results in Section 3.

2 SVDMOR and ESVDMOR

Recent studies [1–5] have shown that we can make use of correlations between
the plurality of input and output terminals. We use the singular value decomposition
(SVD) based method SVDMOR [1,5] as well as the extended version of SVDMOR,
the so-called ESVDMOR [2–5], which is the foundation for our work and will be
explained in the following.

2.1 Extended-SVDMOR

We assume that the linear system to be reduced has the following transfer function
in frequency domain:

H(s) = L(sC + G)−1B, (1)

with C,G ∈ Rn×n, B ∈ Rn×min , and L ∈ Rmout×n.
The number of inputs min is not necessarily equal to the number of outputs, here

mout . Consider the i-th block moment of (1) defined as

mi = L(−G−1C)iG−1B, (2)

in terms of mi as an mout ×min matrix

mi =

⎡
⎢⎢⎢⎣

mi
1,1 mi

1,2 . . . mi
1,min

mi
2,1 mi

2,2 . . . mi
2,min

...
...

. . .
...

mi
mout ,1 mi

mout ,2 . . . mi
mout ,min

⎤
⎥⎥⎥⎦ . (3)
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Note that the moments in (2) are equal to the coefficients of the Taylor series ex-
pansion of (1) in s = 0. The expansion in s = s0 leads to frequency shifted moments
defined as

mi(s0) = L(−(s0C + G)−1C)i(s0C + G)−1B. (4)

The ESVDMOR approach uses the information of a combination of these moments
to create a decomposition of (1) in the following way. To allow terminal reduction
for inputs and outputs separately, r different block moments forming two moment
matrices are used: the input response matrix MI and the output response matrix MO

defined as

MI =

⎡
⎢⎢⎢⎣

m0
m1

...
mr−1

⎤
⎥⎥⎥⎦ , MO =

⎡
⎢⎢⎢⎣

m0
T

m1
T

...
mr−1

T

⎤
⎥⎥⎥⎦ , (5)

where column k of MI represents the coefficients (moments) of the series expansion
of (1) at all outputs due to input k. Similarly, each column k of MO represents the
coefficients of output k due to all inputs. Note, that we expect the number of rows in
each matrix to be larger than the number of columns so that the rank is determined
by the column vectors. If not, r has to be increased.

Applying the SVD to these matrices, we can obtain a low rank approximation

MI = UIΣIV
T
I ≈ UIri

ΣIri
V T

Iri
, MO = UOΣOV T

O ≈ UOro
ΣOro

V T
Oro

, (6)

where

• ΣIri
is an ri × ri diagonal matrix,

• ΣOro
is an ro × ro diagonal matrix,

• V T
Iri

and V T
Oro

are orthogonal ri ×min and ro ×mout matrices that contain the dom-
inant column subspaces of MI and MO

• UIri
and UOro

are rmout × ri and rmin × ro matrices that are not used any further,
• ri and ro are the numbers of significant singular values as well as the numbers of

the reduced virtual input and output terminals.

Equations (6) are the crucial points for our improvements described in Section 2.2.
Due to the fact that the important information about the dependencies of the I/O-

ports is hidden in the matrices V T
Iri

and V T
Oro

, approximations of B and L using the
results of (6) lead to

B ≈ BrV
T
Iri

and L ≈ VOro
Lr, (7)

where Br ∈ R
n×ri and Lr ∈ R

ro×n are consequences of applying the Moore-Penrose
pseudoinverse (denoted by (·)+) of V T

Iri
and VOro

(which are isometric) to B and L,
respectively. In detail, we have

Br = BVIri
(V T

Iri
VIri

)−1 = BV T+
Iri

= BVIri
(8)
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and
Lr = (V T

Oro
VOro

)−1V T
Oro

L = V+
Oro

L = V T
Oro

L, (9)

where Br ∈ Rn×ri and Lr ∈ Rro×n. Consequently, we get a new internal transfer
function Hr(s),

H(s) ≈ Ĥ(s) = VOro
Lr(G+ sC)−1Br︸ ︷︷ ︸

:=Hr(s)

V T
Iri

. (10)

This terminal reduced transfer function is now reduced to

H̃r(s) = L̃r(G̃+ sC̃)−1B̃r ≈ Hr(s) = Lr(G+ sC)−1Br (11)

by some well known established MOR method, e. g., balanced truncation or a
Krylov subspace method. At the end we get a very compact terminal and reduced-
order model

H(s) ≈ VOro
H̃r(s)V T

Iri
. (12)

Note that SVDMOR can be considered as a special case of ESVDMOR, using only
one moment and one SVD, e. g. r = 1, and using m0 as moment.

2.2 Drawbacks and Solutions

For very large subcircuits the (E)SVDMOR methods are not suitable due to the use
of the SVD. Suppose we have a matrix with dimension n = 106 and a modern CPU
with 3 GHz. The computation of an SVD needs about 22n3 flops. This would mean
22 · 1018 flops and therefore a total CPU time of approximately 230 years. Obvi-
ously, this is computationally too expensive. Hence, we combine the (E)SVDMOR
approaches with cheaper matrix decomposition methods, like the truncated SVD
(TSVD), which computes the needed singular values and the corresponding singular
vectors only, see (6). Also other ideas to compute a truncated SVD-like decomposi-
tion cheaply can be used [9–11].

Furthermore, an explicit computation of the moments in (2) would be numeri-
cally unstable and too expensive. Without loss of generality we explain the decom-
position of MI , so that

MI ≈ UIri
ΣIri

V T
Iri

=
ri

∑
j=1

σ ju jv
T
j . (13)

Recall that ri � min denotes the number of significant singular values and vectors.
We do not know that number so we specify it depending on the error tolerance of the
approximation. Unfortunately, there is no global error bound for the whole reduction
yet (this is the topic of current research). We therefore simply use σr+1 < tolσ1 for a
user-defined tolerance. Naturally, it is helpful to have a rapid decrease of the singular
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values σ j, that means a lot of dependencies within the ports and enables a gainful
terminal reduction, see the examples in Section 3.

The TSVD can be computed in several ways [9,10,12]. Consider the augmented
matrix A ∈ Rr·mout+min×r·mout+min of the form

A =
(

0 MI

MT
I 0

)
. (14)

One possibility is to compute the eigenvalues of matrix A by the implicitly restarted
Arnoldi method [13,14]. It can be shown that the positive eigenvalues of A are equal
to the square roots of the eigenvalues of MT

I MI , and those square roots are equal to
the singular values of MI . Using an established algorithm we only need to provide
a function applying the matrix A to a vector x to build the needed Krylov subspace
in order to determine the eigenvalues. This functions input arguments are a vector
x ∈ Rr·mout+min and a scalar r, which is equal to the number of used moments r, see
(5). Output argument is a vector y ∈ R

r·mout+min ,

Ax =: y = ((y1)T ,(y2)T , . . . ,(yr+1)T )T , (15)

where for i = 1, . . . ,r

yi =

⎛
⎜⎝

y(i−1)·mout+1
...

yi·mout

⎞
⎟⎠ and yr+1 =

⎛
⎜⎝

yr·mout+1
...

yr·mout+min

⎞
⎟⎠ . (16)

Please note that we use the analog notation for the components x j , j = 1, . . . ,r + 1
of vector x. If we insert (14) and (5) into (15) we get

y =

⎛
⎜⎜⎜⎜⎜⎝

0

⎡
⎢⎢⎢⎣

m0
m1

...
mr−1

⎤
⎥⎥⎥⎦

[
m0

T m1
T · · · mT

r−1

]
0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xr+1

⎞
⎟⎟⎟⎠ . (17)

After a simple step of matrix multiplication we get the components yi for i = 1, . . . ,r
and yr+1 of vector y as

yi = mi−1xr+1 and yr+1 = m0
T x1 + · · ·+ mr−1

T xr. (18)

To compute these components efficiently we replace the block moments by their
factors. In fact, we compute the r + 1 parts of y by repeatedly applying the same
factors to parts of x, depending on whether it is a part of (18a) or (18b). We want to
emphasize that we use the same factors each time. According to (2) the computa-
tion for (18a) follows Algorithm 6. The computation of (18b) is more involved, but
follows the same recursive principle laid out in Algorithm 6. The computation of
the decomposition of MO works analogously. These methods become numerically
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Algorithm 6 Computation of the components yi

a = Bxr+1

a = G−1a
for i = 1 to r do

yi = La
a = Ca
a = −G−1a

end for

unstable for large r but in practice r often is small. For linear circuits with the same
number of inputs and outputs, mostly one moment of the transfer function in (5),
i. e., r = 1 so that we use the SVDMOR approach, is sufficient. Summarizing, this
is a quite easy way which allows us to apply the SVD to large scale systems in a
truncated way.

3 Numerical Results and Conclusions

The decay of the singular values of the moment used for computing the SVD is
essential for (E)SVDMOR, so we firstly concentrate on this issue. Figure 1 shows
the decrease of the 500 largest singular values of a circuit provided by the NEC
Laboratories Europe, IT Research Division, NEC Europe Ltd. in St. Augustin, Ger-
many. The circuit is called circuit3 and consist of 3916 nodes, 1905 of them are
terminals. We choose about 130 singular values to be significant based on the tol-
erance σr+1 < 10−2σ1. That means, after the reduction we have 130 virtual input
and output pins instead of 1905 terminals originally. Figure 2 shows the range of the
30 largest singular values of another circuit. It was provided by the Qimonda AG,
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Fig. 1: Range of the largest 500 singular values of m0 of circuit circuit3
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Munich, Germany. It is a test circuit called RC549 and consists of 141 nodes and
therefrom 70 terminals. Figure 2 points out clearly one significant singular value.
Consequently, we reduce the system to one virtual terminal. The relative approxi-
mation error for circuit RC549 is shown in Figure 3. We can observe that the error
is sufficiently small up to the Gigahertz range which is enough for the application
behind this problem (subcircuit of a memory chip).

Finalizing we would like to draw a few conclusions. If the pencil sC + G of (1)
is stable and a stability preserving MOR methods is used in (11), then the whole
MOR algorithm described is stability preserving. Also, for typical classes of RLC
circuits, the procedure is passivity preserving if the inner MOR method in (11) is.
Due to space limitation, we will elaborate on this aspect elsewhere. In the future
we want to present a global error bound as well as other approaches to perform the
decomposition in (6) and (13) efficiently.
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Stability and Passivity of the Super Node
Algorithm for EM Modeling of IC’s

M.V. Ugryumova and W.H.A. Schilders

Abstract The super node algorithm performs model order reduction based on physi-
cal principles. Although the algorithm provides us with compact models, its stability
and passivity have not thoroughly been studied yet. The loss of passivity is a seri-
ous problem because simulations of the reduced network may encounter artificial
behavior which render the simulations useless. In this paper we explain why the
algorithm delivers not passive reduced order models and present a way in order to
overcome this problem.

1 Introduction

To increase their performance, the characteristic dimensions of interconnection sys-
tems are decreased and will decrease even further in the future. Higher speed makes
the effect of higher frequency modes on the interconnection more important. There-
fore, the analysis of the signal propagation on the interconnect system is important.
However, this requires the solution of Maxwell’s equations which is rather demand-
ing from the point of view of which can hardly be used in conventional circuit
simulators.

To be able to work with models for interconnect structures, a technique known
as reduced order modeling is employed (for the various techniques, see [1]). One
application where it is used is Fasterix. Fasterix is a layout simulation tool for elec-
tromagnetic behavior of interconnect systems such as PCBs, IC packages, filters
and passive ICs [2]. As a first step in Fasterix a geometry preprocessor subdivides
conductor into quadrilateral elements. In the lumped model derived directly from
these elements, referred to here as the original (full) circuit model, the number of
components in the circuit is of the order of the square of the number of elements.
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However, this full circuit model is inefficient, because of computer memory and
CPU limitations imply that the interconnect system cannot realistically be simu-
lated. The principle model in Fasterix is a reduced circuit model, which is derived
from the full model by the super node algorithm. Such model runs much faster and
has been shown to be equally accurate in frequency domain. The algorithm employs
a small subset of the original nodes, so called super nodes [2]. The number of super-
nodes depends on the user-defined maximum frequency, i.e. the highest frequency
at which the model has to be valid.

The advantage of the super node algorithm is that it is inspired by physical insight
into the models, and produces reduced RLC circuits depending on the maximum
predefined frequency. Although the algorithm provides us with compact models,
some of them suffer from instabilities which can be observed during time domain
simulations. Therefore investigation of stability and passivity properties of the algo-
rithm is primary important.

The paper is build up as follows. In section 2, 3 and 4, we briefly show the
concept of the super node algorithm. In section 5 stability and passivity properties
applied to the algorithm are discussed whereas in section 6 a technique to preserve
passivity of the reduced models is presented. In the last section, a numerical example
is considered.

2 Full and Reduced Order Models Used in Fasterix

Fasterix translates electromagnetic properties of the interconnect system into a full
circuit model which is described by the system of Kirchhoff’s equations [3]:

(R+ sL)I −PV = 0 (1)

PT I + sCV = J (2)

where R ∈ Rε×ε is the resistance matrix, L ∈ Rε×ε is the inductance matrix, P ∈
Rε×η is an incidence matrix, C ∈ Rη×η is the capacitance matrix, I ∈Cε is a vector
of currents flowing in the branches, V ∈ Cη is a vector of voltages at the nodes.
Vector J ∈Cη collects the terminal currents flowing into the interconnection system.
Value s is a complex number with negative imaginary part: s = − jω . Matrices R, L,
C are symmetric and positive definite. Matrices R,L,C,P are calculated by Fasterix.
Example of the circuit with η = 3 and ε = 2 is shown in Figure 1. Components Ri,
Li and Ci j are corresponding elements of the matrices R, L and C.

Fig. 1 Example of the origi-
nal RLC circuit described by
(1)-(2)

C11 C33

C12

L1 R1 C22

C23C13

L2 R2
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From (1)-(2) one can obtain the voltage to current transfer with admittance matrix
Y : Cη → Cη

J =
(
PT (R+ sL)−1P+ sC

)
︸ ︷︷ ︸

Y(s)

V. (3)

It simply says that if V is given then J can be calculated using Y(s) for some
s = s0. Admittance matrix Y(s) describes the behavior of the full circuit.

The goal is to obtain a circuit of order η1 (preferably η1 � η). The ports of the
original model are kept in the reduced one. The original and reduced circuits should
have approximately the same behavior at these ports.

In order to obtain admittance matrix of the reduced circuit, Fasterix subdivides
the set of all nodes in the circuit into two subsets N ∈ Zη1 and N′ ∈ Zη2 . Evidently
η = η1 +η2. Set N contains super nodes, i.e. nodes which will be retained in the
reduced circuit, and N′ contains other nodes. Due to this, vectors V , J and matrices
P, C can be partitioned into blocks, see [2], [3] (chapter 8). Block matrix PN′ has
full column rank. It is supposed that JN′ consists of zeros.

If we consider the voltage in the super nodes as an input VN , and currents flowing
into the system through them as an output JN , we come to the following system:

⎛
⎜⎜⎜⎝
(

R −PN′
PT

N′ 0

)

︸ ︷︷ ︸
G

+s

(
L 0
0 CN′N′

)

︸ ︷︷ ︸
C

⎞
⎟⎟⎟⎠x =

(
PN

−sCN′N

)

︸ ︷︷ ︸
Bi(s)

VN , (4)

JN =
(

PT
N sCT

N′N
)

︸ ︷︷ ︸
BT

o (s)

x + sCNNVN , (5)

where x =
(

I ,VN′
)T

. It should be noted that in (4) matrix G is positive real, and
matrix C is positive semi-definite. From (4)-(5) it follows that JN is linearly related
to VN , i.e.

JN =
(
BT

o (s)(G + sC)−1Bi(s)+ sCNN
)

︸ ︷︷ ︸
Y1(s)

VN , (6)

where Y1(s) is admittance matrix of the reduced circuit. Expression (6) can be
rewritten in the matrix form: JN = Y1(s)VN , where VN = (V 1

N . . . V η1
N ) is a ma-

trix of predescribed vectors of voltages and JN = ( J1
N . . . Jη1

N ) is a matrix of corre-
spondent vectors of current. Further we assume that VN is given and equals identity
matrix. Therefore JN = Y1(s).

In order to obtain the concrete RLC circuit described by Y1(s), two approxima-
tions of Y1(s) have to be performed. Derivation of them can be found in [3]. In this
paper we will refer to them as Y2(s) and Y3(s). The last one will be considered in
detail.



534 M.V. Ugryumova and W.H.A. Schilders

3 Admittance Matrix for the Full Frequency Range

In [3] the second approximation of Y1(s) is constructed as

Y3(s) = PT
NΨ

(
ΨT (R+ sL)Ψ

)−1ΨT PN︸ ︷︷ ︸
YRL(s)

+sYC, (7)

whereΨ is a null space of PT
N . Term YRL(s) stays for the contribution of resistances

and inductances in the circuit. Term sYC comes from the high frequency range ap-
proximation and stays for the capacitance contribution [3]. YRL(s) can be presented
in the pole-residue form as

YRL(s) =
n

∑
i=1

Hi

(s−λi)
=

n

∑
i=1

(
ΨT PNxi

)(
y∗

i PT
NΨ

)
(s−λi)

, n = ε −η2. (8)

where λi are the eigenvalues of the matrix pencil (ΨT LΨ ,−ΨT RΨ). Since ΨT LΨ
and ΨT RΨ are positive definite then λi ∈ R and λi < 0. yi, xi ∈ Rη1 are left and
right eigenvectors respectively [4].

4 Realization

In this section we will show how Y3(s) in (7) can be translated into RLC circuit.
The network described by Y3(s) has branches between all nodes and ground and
between all nodes. Each branch is calculated as follows [5]. Branch between node i
and ground:

y3,ii =
n

∑
j=1

Y3,i j. (9)

Branch between node i and node j:

y3,i j = −Y3,i j, i �= j. (10)

All elements of Y3(s) have the same poles λi, and these become the poles for the
network branches when calculated by (9) and (10). Each branch in (9) and (10) is
given as a rational function ∑n

i=1
ci

s−λi
+ se. Using Foster’s canonical form [5], the

branch can be represented by an electrical network as shown in Figure 2. C, Ri,
Li are calculated as C = e, Ri = −λi/ci, Li = 1/ci. Similar to the above, symmet-
ric admittance matrix can be realized exactly by using a Π -structure template [6].
An example of the Π -structure template is shown in Figure 3, where each branch
admittance is realized by the Foster’s canonical form shown in Figure 2.

However Fasterix does not use straightforwardly this way of realization. Since
calculation of all eigenvalues λi in (8) may be time consuming process, Fasterix
first approximates y3(s) with m (m < n) terms. It is done as following. The set
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o o

Ln

L1

C

R1

Rn

Fig. 2: Synthesis by electrical network Fig. 3: A tree-port realization of the admittance
matrix 3 by 3 based on Π -structure

of m + 1 match frequencies, sk, is chosen. This set consists of some large negative
values between maximum predefined frequency −Ω and −max(λi), and some small
negative values between −min(λi) and 0. For each sk, corresponding admittance
matrix has to be calculated. Elements of Y3(s) approximate elements of Y2(s) in
frequency domain well therefore Y2(sk) instead of Y3(sk) can be used.

Solving the following set of m+ 1 equations

skyC,i j +
m

∑
l=1

H̃l,i j

(sk −λl)
= y2,i j(sk), k = 1, ...m+ 1. (11)

for the coefficients yC,i j and H̃l,i j is equivalent to determine the approximation
of y3(s) with m < n terms. Like it was shown above, the reduced circuit consists
of branches between every pair of circuit nodes. Each branch consists of m parallel
connections of a series resistor R and inductor L, in parallel with a capacitor C. Thus
for the branch between the circuit nodes i and j

Rl = −λlH̃
−1
l,i j, Ll = H̃

−1
l,i j, C = yC,i j. (12)

Evidently m influences at the computational time of simulations. Fasterix chooses
m depending on the size of the model. Usually m ≤ 8. For carrying out simulations
of the circuit we used PSTAR which is the Philips circuit simulator program.

5 Stability and Passivity

Circuits constructed using rational functions need to satisfy the stability and pas-
sivity conditions for a linear time-invariant passive system. The stability condition
requires that for a stable system, the output response be bounded for a bounded in-
put excitation [7]. Hence, the rational function representing a stable system has to
satisfy the following stability conditions: (1) the poles lie on the left half of the s
plane; (2) the rational function does not contain multiple poles along the imaginary
axis of the s plain.

The passivity condition requires that a passive circuit does not create energy.
Since non-passive models combined with a stable circuit can generate an unstable
time-domain response, this condition becomes important when model need to be
combined with other circuit for time-domain simulations.
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Passivity is closely related to positive realness of the admittance matrix. The
admittance matrix Y(s) is positive real if (1) Y(s) is analytic for all s with Re(s) > 0,
(2) Y∗(s) = Y(s̄) for all s ∈ C, and (3) Y(s)+ Y∗(s) ≥ 0 for all s with Re(s) > 0.

Condition (1) means that the system is stable. Condition (2) refers to the system
that has real response. And condition (3) is equivalent to that the real part of Y(s) is
a positive semidefinite matrix at all frequencies.

In the super node algorithm, admittance matrix plays a role of a system function.
Notice that Y3(s) in (7) is stable (all poles λi < 0) but not positive real since YC is
an indefinite matrix. However the following theorem holds.

Theorem 1. Admittance matrix YRL(s) in (7) is positive real.

Proof. In section 3 it was shown that all poles λi < 0 therefore the system is stable.
It is trivial to check out the second condition of positive realness. Let BT = PT

NΨ .
We will show that the third one is satisfied:

Y∗
RL(s)+ YRL(s) = BT (R̃+ sL̃

)−∗ B+ BT (R̃+ sL̃
)−1 B = (13)

= BT (R̃+ sL̃
)−∗ ((

R̃+ sL̃
)
+
(
R̃+ sL̃

)∗)(
R̃+ sL̃

)−1
B =

= y∗ ((R̃+ sL̃
)
+
(
R̃+ sL̃

)∗)y,

with y = (R̃+sL̃)−1B. Thus it is sufficient to prove the positive realness for W(s) =
R̃+ sL̃. For s = σ + iω with σ > 0 we have:

W∗(s)+ W(s) = (R̃+ sL̃)
∗
+ R̃+ sL̃ = 2R̃+ 2σ L̃,

which is nonnegative definite. Thus, YRL(s) is positive real. �
It is known [6] that a Π -structure template for realization of positive real admit-

tance matrix guarantees construction of the passive circuit. However the important
observation is that in the super node algorithm realization by the Π -structure tem-
plate is applied to the approximation of Y3(s) at a few frequency points sk and not
directly to Y3(s). So if Y3(s) was positive real, the constructed RLC circuit might
not be passive. In the next section, a way to obtain positive real Y3(s) will be sug-
gested.

6 Passivity Enforcement

In this section we present a technique in order to obtain positive real Y3(s) which is
efficient for the further realization. If both terms in (7) are positive real then Y3(s)
is positive real as well.

First we consider the term sYC. Matrix YC is indefinite. Following the eigen-
decomposition YC = Vdiag(σ1,σ2, . . . ,ση1)V

−1, all negative eigenvalues are set to
zero. Subsequently, the matrix is reconstructed through the operation
ỸC = Vdiag(σ̃1, σ̃2, . . . , ˜ση1)V

−1 where the modified quantities are denoted with
“˜”. This procedure allows us to get YC positive definite and positive real sYC.
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Above it was shown that YRL is positive real. However the number of terms in
YRL(s) is related to the number of RL elements in the circuit as O(nη2

1 ). Taking it
into account, we are interested to obtain an efficient approximation of YRL(s) which
consists of k < n terms and determines the effective admittance function behavior.
Positive realness of the new approximation must be preserved. One effective way to
achieve it is to use modal approximation [4]. Modal approximation requires selec-
tion of dominant eigenvalues and these can be computed via full null space methods
(QR, QZ) or iterative subspace methods [4].

A pole λ j that corresponds to a residue H j with relatively large ||H j||2/|Re(λ j)|
is called a dominant pole, i.e. a pole that is well observable and controllable in the
admittance function. In our case all λi are real and negative. An approximation of
YRL(s) that consists of k < n terms with ||H j||2/|Re(λ j)| above some value, deter-
mines the effective admittance function behavior [4]:

ỸRL(s) =
k

∑
i=1

Hi

s−λi
. (14)

Since λi < 0 and Hi = (PT
NΨxi)(y∗

i ΨT PN) > 0, with xi = yi, then it follows that
(14) is positive real. Thus applying a Π -structure template for realization of Ỹ3(s) =
ỸRL(s)+ sỸC ensures construction of passive RLC circuit.

7 Numerical Example

Fasterix model consists of two printed striplines, which are parallel to each other.
The striplines are 1 mm wide and the length is 15 mm. For the maximum frequency
5 GHz , Fasterix generates mesh with 28 elements. Then this model is interpreted
as a full RLC circuit with η = 28 nodes and ε = 26 RL-branches. In order to build
reduced circuit, Fasterix chooses 15 super nodes and applies the super node algo-
rithm.

For transient analysis, a trapezoidal pulse having rise/fall times of 1 ps and pulse
width of 1 ns is applied to the pins of the lower strip. A 50 Ω resistor Rout is con-
nected between two ports of the upper strip. The voltage is measured over Rout and
regarded as output.

The transient response at the resistor Rout is given in Figure 4. It can be seen
that the time response is unstable since initially the super node algorithm does not
preserve passivity. However, the super node algorithm with proposed passivity en-
forcement preserves passivity. Shown in Figure 5 the two waveforms of the original
and reduced circuits match very well. Table 1 shows a comparison between original
and reduced models. The reduced model has large amount of RLC elements. Nev-
ertheless, when the original circuit is of high order, the simulation time is reduced.
This happens because the number of mutual inductances is zero. For this particular
example YRL(s) contains n = 25 terms and it was truncated till k = 4 terms with the
most dominant poles.
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Fig. 5: Comparison of the original and reduced models

Table 1: Comparison of the original and the reduced models

System Dimension R L C Lmutual

Original 28 26 26 91 245
Reduced 15 420 420 120 0

8 Conclusions

In this paper an overview of a reduction technique, the super node algorithm, used
in the EM tool Fasterix has been presented. This algorithm delivers stable models,
however we have shown that passivity is not preserved. As a remedy, a technique
for passivity enforcement based partly on the modal approximation was introduced.
Realization was performed by using a Π -structure template. This strategy solves
the problem of preserving passivity. However the time complexity of the modified
version of the super node algorithm still needs to be investigated.
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Hierarchical Model-Order Reduction Flow

Mikko Honkala, Pekka Miettinen, Janne Roos, and Carsten Neff

Abstract This paper presents a hierarchical model-order reduction (HMOR) flow,
where the linear parts of a hierarchically defined circuits are divided into indepen-
dently reducable subcircuits. The impact of the hierarchical structure and circuit
partitioning on two MOR methods is discussed and some simulation results are pre-
sented.

1 Introduction

In this paper, a Hierarchical MOR (HMOR) method for very large linear blocks of
nonlinear circuits is considered. In practice, such large linear blocks arise, e.g., from
interconnect models. The HMOR approach proposed fully utilizes and preserves
the hierarchy of the SPICE netlist defined by the designer and, in addition, further
divides user-defined subcircuits into smaller subcircuits that can be independently
reduced and then put together. The benefits of HMOR are:

1. Very large circuits can be reduced with limited computer resources.
2. Circuit partitioning makes possible to apply parallel processing in a natural way.
3. The computational cost of reduction can be minimized by reducing repeated

structures (same linear subcircuit used several times in the overall circuit) only
once.

4. The most suitable MOR method can be chosen for each subcircuit independently.
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The idea of using hierarchy in MOR is not new and has been studied previously,
e.g., in Refs. [1, 2]. In this paper, it is especially shown how to use different RC
and RLC MOR methods for different subcircuits and what the impact of the circuit
partitioning is on two MOR methods.

2 Hierarchical MOR Flow

Here, a hierarchical netlist-in–netlist-out MOR flow is presented. The flow utilizes
hMETIS [3] graph-partitioning algorithms that are an extension of METIS [4] al-
gorithms for circuit partitioning and, next, uses the MOR methods in a hierarchical
manner. A suitable MOR method can be then applied to the different types of sub-
circuits. The MOR methods considered here are PRIMA [5], a Krylov subspace
method for RLC circuits, and (modified) Liao–Dai [6], a low-order RC macromodel
method. Of course, there are many other MOR methods that can be applied in this
flow, e.g., [7] for RL subcircuits, and [8] for R subcircuits.

The HMOR flow proposed is briefly outlined in the following, but each step is
discussed in more detail in Sections 3 and 4.

1. Netlist parsing: extract the graph representations of all the RLC circuits from the
‘messy’ hierarchical SPICE netlist containing linear and nonlinear elements.

2. Circuit partitioning: Separate disconnected parts, divide each RLC graph (us-
ing hMETIS) into appropriate subcircuit graphs, and map the graphs back onto
circuit netlists.

3. Matrix construction: build, for each subcircuit, G, C, and B, the conductance,
capacitance, and selector matrix of the MNA formulation, respectively.

4. Model-order reduction: use an appropriate MOR method for each subcircuit;
here, PRIMA for RLC blocks and Liao–Dai for RC blocks.

5. Macromodel realization: synthesize each reduced subcircuit using resistors, ca-
pacitors, and, if needed, voltage-controlled current sources (VCCSes).

6. Netlist reconstruction: include each macromodel in the proper position in the
final netlist to achieve the original hierarchical structure.

Note that now the original hierarchy is preserved. All the sources and nonlinear
elements are untouched, and only the linear parts are reduced.

3 Hierarchy and Circuit Partitioning

3.1 Circuit Hierarchy

Consider a netlist consisting of linear and nonlinear components defined in hierar-
chical subcircuits (see Fig. 1). The netlist has, in addition to the main-level circuit
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(treated as a subcircuit equal to other subcircuits in the following), five different
subcircuits, from which the subcircuit 4 is used twice.

S u b c i r c u i t  1

S u b c i r c u i t  2

S u b c i r c u i t  5

D i s c o n n e c t e d
p a r t  1

M a i n  c i r c u i t

D i s c o n n e c t e d
p a r t  2

S u b c i r c u i t  3

S u b c i r c u i t  4 S u b c i r c u i t  4

Ne t l i s t

S u b c i r c u i t  1

S u b c i r c u i t  2

S u b c i r c u i t  3

S u b c i r c u i t  4

S u b c i r c u i t  5

Fig. 1: Hierarchical structure of a circuit and the netlist of the corresponding circuit

Each subcircuit may have sources, nonlinear components (MOSFETs, diodes,
etc.), and linear RLC components, and can be placed at any level of hierarchy. The
netlist usually contains some plot and analysis commands, too. The HMOR flow au-
tomatically extracts the linear parts from each subcircuit separately, such that those
nodes connected to nonlinear elements, sources, or user defined subcircuit ports, or
are listed in plot commands are considered as external port nodes.

The subcircuit may have several disconnected RLC parts, e.g. two different RLC
interconnections before and after nonlinear transistor circuit that are not connected
to each other (e.g., see subcircuit 5 in Fig. 1). If disconnected parts are not separated
into different subcircuits, numerical problems may arise, e.g. nonzero components
are produced between disconnected parts. Even if no problems would occur, the
disconnection is, in any case, a natural location for further partitioning.

If the netlist is processed hierarchically, each subcircuit needs to be reduced only
once, compared to a typical approach, where the whole netlist is first flattened with
all the hierarchical structures written out for each reference. For example, subcircuit
4 in Fig. 1 needs to be reduced only once. The same subcircuit can be placed several
times in different levels of hierarchy.

3.2 Circuit Partitioning

In the HMOR-approach proposed, circuit partitioning is applied to each RLC block
extracted from user-defined subcircuits. This partitioning has two significance: 1)
large subcircuit is divided into smaller ones, such that it can be handled more easily,
2) some MOR methods are based on partitioning, like, e.g., Liao–Dai.
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For methods for which partitioning is not an essential part of the algorithm (e.g.,
PRIMA), the partitioning is useful for very large subcircuits in order to be able to
reduce them at all with limited computer resources.

The goal of the circuit partitioning regarding MOR is to obtain such subcircuits
that have a large number of internal nodes, ni, compared to external port nodes,
ne. Partitionings fulfilling this criterion are best suited for MOR, since the voltages
of internal nodes are not of interest, and they may be reduced. Full elimination of
internal nodes may destroy sparsity of the reduced model.

The MOR flow uses hMETIS [3] graph-partitioning algorithms for circuit parti-
tioning. METIS [4] is an algorithm package for partitioning large irregular graphs
and large meshes and for computing fill-in reducing orderings of sparse matrices.
hMETIS [3] is an extension of METIS, which uses hypergraphs instead of graphs.

4 MOR Methods

This section briefly presents the two methods (PRIMA and Liao–Dai) that are used
within the HMOR flow, and their applicability in a hierarchical manner is discussed.

In practice, of these methods PRIMA is suitable for RLC circuits while Liao–
Dai is a plain RC MOR method. In theory, if there are only a few inductances (e.g.,
10 inductances compared to 10000 capacitances and resistances) in the subcircuit,
they can be left out from the linear part to be reduced, and, then, RC MOR methods
can be used for the remaining RC-only part. However, omitting the inductances
increases the number of terminals, making the overall process more complicated.

4.1 PRIMA

The passive reduced-order interconnect macromodeling algorithm (PRIMA) [5] is
based on the block Arnoldi algorithm and employs congruence transformations to
project a large system of equations onto a smaller subspace, so that passivity is
preserved during reduction. To this end, PRIMA uses the Arnoldi iteration as a
numerically stable method of generating the Krylov subspace to match �q/N� block
moments of the N-port, where q is the order of reduction.

After the circuit division, the circuit equations of each subcircuit are needed. Both
PRIMA and Liao–Dai operate on the modified nodal analysis (MNA) equations.

The MNA equations of an N-port can be expressed as follows:

{
Cdx(t)

dt = −Gx(t)+ Bu(t),
ip(t) = LTx(t),

(1)

where x(t) contains nodal voltages and branch currents of ports and inductances
(x(0) = 0), u and ip denote the port voltages and currents. B = L where B ∈ ℜn×N
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is a selector matrix consisting of ones, minus ones and zeroes. n is the total number
of unknowns.

C ≡
[

Q 0
0 H

]
, G ≡

[
N E

−ET 0

]
, x ≡

[
v
i

]
. (2)

N, Q, and H are symmetric non-negative definite matrices containing the stamps
from resistors, capacitors, and inductances, respectively. Vector v is the nodal volt-
age vector and i contains the branch currents of ports and inductances. The matrices
G ∈ ℜn×n and C ∈ ℜn×n.

Define A ≡ −G−1C and R ≡ G−1B. Taking the Laplace transformation of (1)
and solving for the port current variables, the y-parameter matrix Y(s) is

Y(s) = LT(I− sA)−1R, (3)

where I is the n×n identity matrix. The block moments of Y(s) are defined as the
coefficients of the Taylor expansion of Y around s = 0:

Y(s) = M0 + M1s+ M2s2 + · · · . (4)

The block moments can be computed using the relation

Mi = LTAiR. (5)

PRIMA transforms (1) into

{
C̃dx̃(t)

dt = −G̃x̃(t)+ B̃u(t),
i(t) = L̃Tx̃(t),

(6)

where
C̃ = XTCX, G̃ = XTGX, B̃ = XTB, L̃ = XTL. (7)

These types of transformations are known as congruence transformations. The
matrix X is an n×q matrix, which is obtained after q/N + 1 iterations of the block
Arnoldi algorithm (the extra step is not necessary if q/N is an integer).

The reduced MNA equations can be synthesized with various macromodels [9].
This work uses the macromodel proposed by Matsumoto [10].

4.2 Liao–Dai Method

The detailed description of the Liao–Dai method is presented in [6] and our modified
version in [11]. Here, only a brief description of the method is given.

In principle, the Liao–Dai method can be divided into three steps.

1. Divide the circuit into smaller subcircuits. (HMOR divides each extracted RC
subcircuit, because the partitioning is an integral part of the method.)

2. Compute the first two moments, M0 and M1, of y-parameters of each subcircuit.
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3. Realize the y-parameters of each subcircuit by matching the moments of the low-
order RC macromodel that preserves the two first moments.

The the low-order macromodel from port to port is such an RC-circuit that it match
only the two first moment, i.e. its size is constant. Therefore, if the subcircuits to be
reduced are small enough (the same order as the RC macromodels) once they are
recombined, the overall behavior of the circuit is preserved. On the other hand, if
the subcircuits to be reduced are too large, much precision is lost, i.e. the error of
reduction is controlled by the size of partition. Thus, the quality of partitioning is
crucial to the MOR method. Since only the first two block moments are used in the
reduction, the method supports RC circuits only.

The reduction produces RC circuits with positive element values and thus the
macromodels are passive and stable.

In this paper, a modified version [11] of Liao–Dai method is used: the S-
parameter-based circuit partitioning algorithm used in the original Liao–Dai method
(see [6] for details) was replaced with the hMETIS algorithm, and the moment com-
putation of y-parameters is calculated as presented in (5).

5 Simulation Examples

The HMOR flow has been implemented using C and MATLAB. In the following, the
effect of circuit partitioning on PRIMA and the Liao–Dai method is studied. Even
though the program is capable of using different methods for each subcircuit, only
one method is used for all. The simulations are run using APLAC circuit simulator.

To test the partitioning with the PRIMA algorithm, the three port RLC circuit [9]
with 1081 nodes is reduced. The linear part has three external port nodes. The circuit
was divided with three different partitionings. Each subcircuit is reduced with three
different orders of reduction.

The partitioning is chosen to produce approximately equal sized partitions, such
that the ratio ne/ni is small. In some cases, the equal sized partitioning produces a
poor ration, but here this is not the case. The size of a partition is defined by the
number of components per partition. Little deviation from this number is possible.

The original/reduced circuit was run using AC analysis with a frequency sweep
from 1 Hz to 1 GHz. The results obtained are listed in Table 1, where q, Np, R,
C, L, VCCS are the order of reduction, number of partitions, number of resistors,
capacitors, inductors, and VCCSes, respectively. Furthermore, Eac/%, Tac/s, and tac

denote the normalized AC-analysis error, AC-analysis CPU time, and normalized
AC-analysis time, respectively. The error is calculated as follows:

Eac = 100% ·
√√√√ 1

nsampNout

nsamp

∑
k=1

Nout

∑
i=1

(
uk

i −dk
i

dmax,i −dmin,i

)2

, (8)
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where nsamp and Nout stand for the number of samples of output voltages and number
of output ports. d, dmax, and dmin are the desired output voltages and their maximum
and minimum values, respectively. In these simulations nsamp = 301.

Table 1: PRIMA results for RLC circuit with partitioning

q Np R C L VCCS Eac/% Tac/s tac

Orig - 363 369 360 - - 0.86 1.00
6 1 6 7 - 36 13.417 0.15 0.17

3 14 18 - 68 15.269 0.16 0.19
5 30 39 - 188 7.347 0.21 0.24

10 1 10 13 - 61 2.835 0.16 0.19
3 30 43 - 141 0.399 0.19 0.22
5 50 69 - 301 1.951 0.27 0.31

30 1 30 40 - 180 0.009 0.21 0.24
3 90 131 - 420 0.001 0.34 0.40
5 150 219 - 900 0.001 0.61 0.75

As can be seen from Table 1, the simulation time increases with the number of
partitions, and it seems that the error grows with number of partitions although the
simulation time remains about the same.

The Liao–Dai algorithm is tested with a industrial RC circuit having 12 external
port nodes and 1525 internal nodes. The results with several partitions are presented
in Table 2. Also, some reference simulations with PRIMA reduced circuits are pre-
sented in Table 3. The comparison of results in Table 2 and Table 3 shows that with
the same simulation time the RC reduction method gives a smaller simulation error
than PRIMA.

Table 2: Liao–Dai results for RC circuit with several partitions

Np n R C Eac/% Tac/s

Orig. 1537 10432 197 - 10.29
106 556 8515 573 1.083 12.49
53 237 3261 255 1.078 3.16
17 66 516 88 0.837 0.39
13 34 137 54 0.839 0.24
1 15 44 29 3.085 0.22

6 Conclusions

The hierarchical MOR flow was presented. It was shown how to reduce very large
circuits using circuit partitioning, where the linear parts of the hierarchically defined
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Table 3: PRIMA results for RC circuit (no partitioning)

q n R C VCCS Eac/% Tac/s

Orig. 1537 10432 197 - - 10.29
15 30 27 17 360 9.0 ·1015 0.30
20 35 32 24 480 40.8 0.35
25 40 37 34 600 9.9 0.40

circuit are extracted, partitioned, and then reduced with appropriate methods. The
reduced subcircuits are then put together so that the original hierarchy is preserved.
The flow preserves the stability and passivity of linear circuits. Without partitioning
the circuit may be so large that it is impossible to manage the computational cost.
The results showed how hierarchy and partitioning affects the performance of two
MOR methods. The Liao–Dai method is a circuit division oriented RC reduction
method and, thus, very suitable for HMOR. The circuit division makes it possible
to apply PRIMA to very large circuits.
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Partitioning-Based RL-In–RL-Out MOR
Method

Pekka Miettinen, Mikko Honkala, and Janne Roos

Abstract This paper proposes a passive, stable, netlist-in–netlist-out-type Model-
Order Reduction (MOR) method suitable for the reduction of very large RL circuit
blocks. The method relies on partitioning the circuit into subcircuits that can be
efficiently approximated with low-order macromodels. The efficiency of the method
is demonstrated with several simulations and comparison to the PRIMA method.

1 Introduction

Although the study of linear MOR with interconnect circuits has been centered
mainly on RC and RLC circuits, some pure RL circuit problem definitions have
also been presented, e.g., in [1–3]. The demand for RL MOR arises in certain sit-
uations, such as when modeling a conductor’s skin effect, magnetic diffusion in a
magnetic rod, or eddy currents in a magnetic lamination with lumped elements.

Furthermore, one important motivation for the RL MOR presented in this paper
is the possibility to use it (linked with circuit partitioning) on a single RL block
appearing inside a much larger RLC circuit. In this case, the RL MOR method is
used as one of the many specialized methods in a complete MOR tool.

The basic idea behind the proposed RL MOR method is to partition the circuit
into smaller subcircuits, which may then be approximated with relatively simple
fixed-size low-order macromodels, and finally combined back together. The concept
of low-order macromodels via partitioning was first presented in [4] for RC circuits,
which was further studied and refined in [5]. In [6] this was expanded with the
support for RLC circuits by also using PRIMA [7] for the partitioned subcircuits.
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In this paper, a stable MOR method for the special case of RL circuits is pro-
posed, inspired by the original RC MOR method in [4]. Compared to, e.g., many
projection-based methods, the proposed RL-in–RL-out MOR method generates an
RL netlist with positive elements as an output. The method may be conceptually di-
vided into the three steps shown in Fig. 1: circuit partitioning (description in Sect. 2),
calculation of y-parameter moments (Sect. 3), and macromodel synthesis (Sect. 4).
After the reduced macromodels for each partition are generated, the macromodels
are combined back together according to the partitioning. As a final step, parallel
elements of adjacent partitions may be also combined together by applying basic
circuit theory, to further reduce the number of generated elements.

Fig. 1: The RL MOR concept: (1) The circuit is partitioned into subcircuits. (2) For each subcir-
cuit, the y-parameter moments are calculated. (3) The macromodels for each partition are synthe-
sized using the first two moments. Afterwards, the macromodels are coupled back together

2 Circuit Partitioning

Since the RL MOR method is based on approximating interconnects between port
nodes with low-order macromodels, it is necessary to perform a partition on the large
RL(C) circuit prior to macromodel synthesis. The size of the subcircuits (measured
in the number of elements) is critical: If the subcircuit is too large, the low-order
macromodel used later is not accurate enough to model the partition, and precision
is lost. On the other hand, if the subcircuit is too small, the replacing macromodel is
of the same size as the original subcircuit, and no actual reduction takes place.

By using partitioning to match a small section of the original circuit with a
low-order approximation, we avoid the possible ill-conditioning issues related to
direct high-order macromodel matching approaches. On the other hand, when the
partitions are combined together, the final approximation is, in a sense, of order
q = qp × Npart, where qp is the order of reduction of one partition and Npart is the
number of partitions between two ports. Thus, despite the low-order approximation
per partition, we can reach high accuracy for the total reduction, depending on the
number of partitions used.

In general, it is assumed that the original circuit is used to model phenomena that
are best described by a large number of circuit element blocks of relatively equal
importance and complexity. If this is not the case, the partitioning should differ
in the size of partitions, such that for sections that need finer precision, smaller
partitions are used.
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METIS [8] is an algorithm package for partitioning large irregular graphs, par-
titioning large meshes, and computing fill-in-reducing orderings of sparse matri-
ces. The METIS algorithms are based on multilevel graph-partitioning algorithms,
which first reduce the size of the graph by coarsening the graph’s details. This takes
the form of collapsing adjacent vertices and edges. The smaller graph is then parti-
tioned and refined into the original graph. hMETIS is an extension of METIS that
uses hypergraphs instead of graphs [9]. This paper considers the hMETIS algorithm
as a partitioning method in the MOR flow [6].

As the partitioning algorithms operate with the reduced-size graph, they are ex-
tremely fast compared to traditional partitioning algorithms that compute a partition
directly on the original graph. In [8], extensive testing showed that the partitions
provided by METIS are consistently better (as measured by the sizes of the cut sets)
than those produced by spectral partitioning algorithms.

The use of METIS and hMETIS algorithms especially in circuit partitioning was
studied in [10], where it was noted that they both produced excellent partitionings
of equal size. The criteria for generating the partitions is to obtain subcircuits of
(nearly) equal size with the fewest possible number of external nodes.

3 Calculation of y-Parameter Moments

Once the RL(C) circuit is partitioned into RL subcircuits, the y-parameters are
needed to calculate the corresponding macromodel. The Laplace-domain circuit
equations for an RL circuit can be expressed as

{
(G + 1

s Γ)x(s) = Bu(s)

i(s) = LTx(s),
(1)

where x denotes the (internal and external) nodal voltages and port currents, u de-
notes the port voltages, and i denotes the port currents. Here, B = L is a selector
matrix consisting of ones, minus ones, and zeroes,

G =
[

G11 Mu

−MT
u 0

]
, and Γ =

[
Γ11 0
0 0

]
. (2)

Matrices G11 and Γ11 are symmetric positive semidefinite, and contain the con-
ductance and inverse inductance element stamps, while Mu consists of the stamps
for the port-voltage sources. The size of the G and Γ matrices is thus n × n, with
n = ni+e + N, where ni+e is the total number of nodes and N is the number of ports
in the circuit (also, the number of external nodes, ne = N). Solving now for the port
currents and defining A ≡ −G−1Γ, R ≡ G−1B, results in the following y-parameter
matrix:

Y(s) = LT(I− 1
s

A)−1R, (3)
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where I is the n × n identity matrix. Finally, the term (I− 1
s A)−1 can be expanded

into a Neumann series to obtain

Y(s) = M0 + M1
1
s

+ M2
1
s2 + · · · , (4)

where Mi = LTAiR. Note that the dimension (N × N) of the block moments Mi is
the same as the number N of ports in the (sub)circuit. For a typical interconnect-type
circuit, N is generally very small (N ≈ 2). In the case of more complex circuits, N
is larger, depending on the connectivity of the topology.

4 Macromodel Synthesis

For an N-port RL circuit, the admittance between the ith port and ground is given by
the sum of the ith row (or column) of its Y-matrix, Y(s). The admittance connecting
port i and port j is −yi j. Thus, the circuit synthesis problem amounts to synthesizing
admittances between pairs of ports and between a port and ground with lumped R
and L elements. Once M0 and M1 have been calculated, each element of Y(s) can
be approximated as

yi j ≈ mi j
0 + mi j

1
1
s
. (5)

Using a direct synthesis, the first two moments are realized with parallel R and L
elements. A subcircuit between two ports, i and j, is then realized with the macro-
model shown in Fig. 2a (included are also the port macromodels). For off-diagonal
elements yi j(i �= j),

Ri j = − 1

mi j
0

and Li j = − 1

mi j
1

. (6)

However, in some situations, mi j
1 may be positive. In this case, the macromodel

shown in Fig. 2b is used, i.e., the negative inductance is not realized. For diagonal
elements yii, the values for port macromodels are

Rii =
1

mi0
0

and Lii =
1

mi0
1

, where mi0
k = mii

k +
N

∑
j �=i

mi j
k , k = 0,1. (7)

If Lii is negative, we can set 1/Lii = 0 and scale down all the 1/Li j to keep the
total inductance unchanged similar to [4]. In practise, however, the approximation
error of simply removing the negative inductance is of the same magnitude, and the
latter approach is used in this paper.

Since the admittance between two ports is matched here with a macromodel us-
ing only the first two moments, the transfer function to be approximated (i.e., one
partition) may not be very complex in terms of poles and zeros. As described in
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Sect. 2, the circuit partitioning should ensure that the final partitions are of appro-
priate size for desired reduction-accuracy ratio.

It should be noted that M0 describes the circuit’s DC characteristics with pre-
cise accuracy. This leads to the result that if the dominant elements in the circuit
are mostly resistances, the reduction is more accurate. In the extreme case with a
resistance-only circuit, the reduction is error-free. It is worth mentioning that the
resistance-only MOR method presented in [11] is, conceptually, a special case of
the proposed RL MOR method (and of the RC methods [4] and [5]).

As all the synthesized resistances and inductances in the reduced circuit are non-
negative, the reduced circuits are passive and thus stable.

Fig. 2: The macromodels used for reduced circuit synthesis, a if m i j
1 < 0, and b if m i j

1 > 0

5 Simulation Results

The RL MOR algorithm was verified and simulated with several interconnect RL
circuits, of which four representative cases are shown in Table 1. Here, Np, p.size,
n, ne, R, L, rr, Etr, Ttr, and ttr stand for the number of partitions, approximate size of
one partition (in number of elements), the total number of nodes, number of external
nodes (ports), resistances, inductances, the element reduction ratio, the normalized
transient analysis error, transient analysis CPU time, and relative transient analysis
CPU time, respectively. For example: The first row in the table shows the statistics
for the original circuit rlchain1 before reduction. The following three rows show
the statistics for the reduced rlchain1 with various number of partitions. Here,
the circuit rlchain1 is partitioned into 11, 31, and 101 partitions with the par-
titions modelled with macromodels. Figure 3 shows the transient simulation of the
reduced rlchain31 and the normalized error with Np = 17.

The circuits rlchain1–rlchain31 are of a ladder circuit-type construction
with series and/or parallel R and L elements in turns. The circuit rlclock21 con-
sists of a ladder circuit — with R and L in series and resistances to the ground —
forming four connected loops, i.e., a four-leaved clover.

The table shows that the algorithm achieves good reduction of CPU time with
only a minimal error in transient simulation compared to the original circuit. De-
pending on the number and size of the partitions, a trade-off between simulation
speed and accuracy can be obtained. With larger (and fewer) partitions, greater re-
duction is achieved, but typically at the cost of a larger error.

The partitioning-based RL-in–RL-out MOR method was implemented in C and
Matlab using SPICE netlists for circuit description. All the simulations were done
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on a HP RX5670/1.3 GHz computer. The netlists were first reduced with the MOR
method, and then transient analysis was carried out on the reduced netlists using
APLAC [12].

Table 1: Transient simulation results after RL MOR

Circuit Np p.size n ne R L rr/% Etr/% Ttr/s ttr
rlchain1 Original - 2000 2 1998 999 - - 1.40 1.000

11 300 33 2 21 21 98.0 0.33 0.11 0.079
31 100 93 2 61 61 94.2 0.06 0.13 0.093

101 30 303 2 201 201 80.8 0.05 0.23 0.164
rlchain7 Original - 7998 2 5997 3998 - - 12.21 1.000

41 250 123 2 81 81 98.4 1.04 0.15 0.012
101 100 303 2 201 201 96.0 0.21 0.23 0.019
335 30 1005 2 669 669 86.6 0.13 0.76 0.064

rlchain31 Original - 23000 2 11499 11499 - - 150 1.000
17 1500 51 2 28 17 99.7 0.09 0.11 0.001
78 300 234 2 153 78 98.7 0.03 0.16 0.001

461 50 1383 2 790 461 94.6 0.01 0.49 0.003
rlclock21 Original - 23998 3 24000 12000 - - 145 1.000

182 200 573 3 384 384 97.9 2.92 0.56 0.004
482 75 1472 3 983 984 94.5 0.42 1.28 0.009

1202 30 3627 3 2419 2412 86.6 0.10 20.06 0.138
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Fig. 3: Transient simulation of reduced circuit rlchain31 (solid line) and the normalized error
(dashed line), Np = 17

5.1 Comparison to PRIMA

Table 2 shows the results of a reduction with transient simulation using PRIMA
(with diagonalization in macromodel synthesis and without partitioning). Note that
here, the system equations are formulated in a different manner than described in
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Sec. 3. Rather, the MNA formulation presented in [7] is used. This also results in
significantly larger system matrices in general, e.g. the size of G (and the number
of equations) is ni+e +nL +N, where nL is the number of inductances, compared to
ni+e + N.

Here, q, C, and VCCS stand for the order of reduction, the number of capaci-
tances, and voltage-controlled current sources (SPICE G element), respectively. As
can be seen comparing the results in the two tables, Table 1 and Table 2, the RL
MOR reduction results seem to be of the same order of magnitude as those reached
with PRIMA.

Table 2: Transient simulation results after PRIMA reduction

Circuit q n ne R L C VCCS Etr/% Ttr/s ttr
rlchain1 Original 2000 2 1998 999 0 0 - 1.40 1.000

10 14 2 10 0 10 60 0.21 0.11 0.079
30 34 2 30 0 34 180 0.19 0.14 0.100

rlchain7 Original 7998 2 5997 3998 0 0 - 12.21 1.000
10 14 2 10 0 10 60 0.69 0.12 0.010
30 34 2 30 0 30 180 0.12 0.16 0.013

Although the main interest in MOR is the end result — a reduced netlist and
its properties —, it is worth mentioning that the reduction process using PRIMA
took significantly more time and computer resources than with RL MOR, so that
only the first two circuits could be analyzed in reasonable time with the limited
computational resources available. Depending on algorithm implementation, code
optimization, and available CPU hardware, PRIMA has been successfully applied
to systems of much higher order. However, at some point, methods that manipulate
the circuit’s system matrices as a whole, inherently run into problems regarding
available memory. As the presented RL MOR method first partitions the circuit
into partitions, the problem is naturally divided into smaller sections, which even a
low-end computer can manage with ease. The partitioning also presents an in-built
possibility for parallel computing.

6 Limitations of the RL MOR Method

The optimum number of the partitions is generally unknown a priori. This leads to
a situation, where a short iterative process must be performed for each new type
of circuit to obtain the range of usable values for partition size. Of course, with
careful study of the circuit’s characteristics and element values, this process may be
bypassed by manual estimation, but typically a short iteration of different subcircuit
sizes is the fastest resort.

As described earlier, the RL MOR method uses only the first two moments to
describe a connection between two subcircuit ports. In a typical case, the circuit can
be divided into subsections that are simple enough to model with sufficient accuracy.
It is possible, however, that the connection between two ports appears earliest at
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the moment M2, or even at higher moments, and thus the connection is left as an
open circuit. If this connection is topologically critical to the circuit’s behavior, the
reduction fails.

7 Conclusions

In this paper, a new RL MOR method capable of efficient reduction of very large RL
circuits was proposed. Using partitioning, the method generates a positive-element
RL netlist from the first two moments of the y-parameters, preserving passivity and
stability of the original circuit. Simulation results showing excellent reduction were
presented along with a comparison to PRIMA reduction. Also, the limitations of the
partitioning-based RL-in–RL-out MOR method, derived from theory or discovered
during test simulations, were reported.
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Reduction of Large Resistor Networks

Joost Rommes, Peter Lenaers, and Wil H.A. Schilders

Abstract Electro Static Discharge (ESD) analysis is of vital importance during the
design of large-scale integrated circuits, since it gives insight in how well the inter-
connect can handle unintended peak charges. Due to the increasing amount of inter-
connect and metal layers, ESD analysis may become very time consuming or even
unfeasible. We propose an algorithm for the reduction of large resistor networks,
that typically arise during ESD, to much smaller equivalent networks. Experiments
show reduction and speed-ups up to a factor 10.

1 Introduction

Electro Static Discharge (ESD) analysis is of vital importance during the design
of large-scale integrated circuits and derived products. A human touch charged by
walking across a carpet, for instance, can affect or destroy a device containing elec-
tric components. The costs involved may vary from a few cents to millions if, due
to interconnect failures, a respin of the chip is needed. An example of a damaged
piece of interconnect that was too small to conduct the amount of current is shown
in Figure 1.

ESD analysis [1, 2] requires knowledge on how fast electrical charge on the pins
of a package can be discharged. In many cases, the discharge is done through the
power network, the interconnect and the substrate, which are resistive. Diodes are
used to protect transistors on a chip against peak charges. The discharge paths, that
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consist of very large resistor networks connected through diodes, must be of low
resistance to allow for sufficient discharge.

Fig. 1: Example of a piece of interconnect that was damaged because it was too small to conduct
the amount of current caused by a peak charge

In practice, one is only interested in the path resistances from the output of one
device to the input of another. But since one device can serve as driver to multiple
other devices, the network that needs to be analyzed can be regarded as a tree with
one root and many leaves. To complicate matters each branch (path from one in-
ternal node to another) can consist of multiple parallel paths, thus complicating the
computation of the correct resistance.

The interconnect and resistance network are typically modeled by resistors, and
diodes are used to connect different parts of the network. The resulting resistive
network may contain up to millions of resistors, hundreds of thousands of internal
nodes, and thousands of external nodes (nodes with connections to diodes). Sim-
ulation of such large networks within reasonable time is often not possible, and
including such networks in full system simulations may be even unfeasible. Hence,
there is need for much smaller networks that accurately or even exactly describe the
resistive behavior of the original network, but allow for fast analysis.

In this paper we describe a new approach for the reduction of large resistor net-
works. We show how insights from graph theory, numerical linear algebra, and ma-
trix reordering algorithms can be used to construct an equivalent network with the
same number of external nodes, but much less internal nodes and resistors. This
equivalent reduced network exactly describes the behavior of the original network,
i.e., no approximation error is made. The approach is illustrated by numerical re-
sults.

The paper is organized as follows. In section 2 we describe the relevant properties
of resistor networks and formulate the network reduction problem. An overview of
existing approaches to deal with large resistor networks is given in section 3. In
section 4 we describe a new approach to reduce resistor networks. Results of the
new approach are shown in section 5. Section 6 concludes.
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2 Properties of Resistor Networks

A resistor network consists of internal nodes, external nodes (or terminals), and re-
sistors. Figure 2 shows a simple resistor network with external nodes Z, A, B, and
C, and internal nodes X and Y (there are five resistors). Of interest are the path
resistances from Z to A, B, and C. This small example is purely for illustrational

A B

4Ω
2Ω

X

2Ω

C

1Ω

1Ω

Y

Z

Fig. 2: Simple resistor network with external nodes Z, A, B, and C. Of interest are the path resis-
tances between external nodes

purposes; in real-life applications the number of nodes and resistors is much larger:
typical networks consist of millions of resistors and nodes, of which (tens of) thou-
sands are external nodes. In the following it will be assumed that the network has
n > 0 internal nodes, m > 0 external nodes, and r > 0 resistors.

2.1 Mathematical Formulation

Using Ohm’s Law for resistors and Kirchhoff’s Current Law [3], the electrical be-
havior of a resistance network can be described by

i = Y ·v, (1)

where i,v ∈ RN and Y ∈ RN×N (with N = n + m) contain the unknown inflowing
currents, node voltages, and conductances, respectively.

We distinguish between internal and external nodes:
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Fig. 3: Graph representation of a realistic resistor network. The squares are external nodes and
need to be preserved in the reduced network. Of interest are the path resistances between external
nodes
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where ie,ve ∈ Rm and ii,vi ∈ Rn correspond to external and internal nodes, respec-
tively, and Y is partitioned accordingly. Note that ii = 0 since it is assumed that
currents can only be injected in external nodes.

One node is chosen as reference (ground) node: this makes the Y matrix non-
singular. All diagonal elements of Y are strictly positive and all off-diagonal el-
ements are negative or zero. The conductance matrix Y = (yi j) is symmetric and
(after grounding) positive-definite (xTY x > 0 for all x ∈ Rn). In most of the applica-
tions, the conductance matrix Y is very sparse, typically having O(1) nonzeros per
row. Figure 3 shows a realistic resistor network.

The impedance matrix Z can be obtained by inverting Y : Z = Y−1. For large
networks this is not possible due to memory and CPU limitations, and it is neither
necessary since usually only specific elements are needed: the path resistance from
the reference node (terminal) to another terminal b, for instance, is given by the
diagonal element zbb.
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2.2 Problem Formulation

The problem is: given a very large resistor network described by (1), find an equiva-
lent network with (a) the same external nodes, (b) exactly the same path resistances
between external nodes, (c) n̂ � n internal nodes, and (d) r̂ � r resistors. Addition-
ally, (e) the reduced network must be realizable as a netlist so that it can be (re)used
in the design flow as subcircuit of large systems (see Figure 4 for an example use of
a reduced netlist).

Fig. 4: Typical (re)use of reduced equivalent network in the design flow: the original network is
reduced to a smaller network that replaces the original network in the complete system

Simply eliminating all internal nodes will lead to an equivalent network that sat-
isfies conditions (a)–(c), but violates (d) and (e): for large numbers m of external
nodes, the number of resistors r̂ = (m2 − m)/2 in the dense reduced network is in
general much larger than the number of resistors in the sparse original network (r of
O(n)), leading to increased memory and CPU requirements.

3 Existing Approaches

There are several approaches to deal with large resistor networks. If the need for
an equivalent reduced network can be circumvented in some way, this is usually the
best to do. To see this, one has to take into account that due to sparsity of the original
network, memory usage and computational complexity are in principle not an issue,
even not for networks containing millions of resistors. Solving linear systems with
the related conductance matrices is typically of complexity O(nα), where 1 <α ≤ 2,
instead of the traditional O(n3) [4], and hence the path resistance problem can be
solved directly. Of course, α depends on the sparsity and will rapidly increase as
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sparsity decreases. This also explains why eliminating all internal nodes does not
work in practice: the large reduction in unknowns is easily undone by the enormous
increase in number of resistors, mutually connecting all external nodes.

However, if we want to (re)use the network in full system simulations, a reduced
equivalent network is needed to limit simulation times or make simulation possi-
ble at all. There is software [5, 6] available for the reduction of parasitic reduction
networks, but this software produces approximate reduced networks while in many
cases an exact reduced network is needed. In [7] approaches based on large-scale
graph partitioning packages such as (h)METIS [8] are described, but only applied to
small networks. Structure preserving projection methods for model reduction [9,10],
finally, have the disadvantage that they lead to dense reduced-order models if the
number of terminals is large.

4 Improved Approach

Knowing that eliminating all internal nodes is not an option and that projection
methods lead to dense reduced-order models, we use concepts from matrix reorder-
ing algorithms such as AMD [11] and BBBD [12], usually used as preprocessing
step for (parallel) LU- or Cholesky-factorization, to determine which nodes to elim-
inate. The fill-in reducing properties of these methods also guarantee sparsity of the
reduced network. Similar ideas have also been used in [7, 13].

Our main motivation for this approach is that large resistor networks in ESD
typically are extracted networks with a structure that is related to the underlying
(interconnect) layout. Unfortunately, the extracted networks are usually produced by
extraction software of which the algorithms are unknown, and hence the structure
of the extracted network is difficult to recover. Standard tools from graph theory,
however, can be used to recover at least part of the structure.

Note that in the context of this paper, with structure we refer to the topological
structure of the network. This is in contrast with structure preserving model order
reduction methods [9], where structure usually refers to the mathematical structure
of the dynamical system. In our applications, the reduced network should have ap-
proximately the same sparsity and topology as the original network.

Our approach can be summarized as follows:

1. The first step is to bring the conductance matrix Y into Balanced Border Block
Diagonal (BBBD) form using techniques of [11, 12, 14], see Figure 5. In this
form, the matrix consists of two parts: the main body A11 and border blocks A12,
A21 = AT

12 and A22. The main body is partitioned into subblocks, where each
block Bii represents a cluster in the network. Block Bii has a nonzero entry when
two nodes in cluster i are connected. Internal nodes that connect different clusters
are in the border. Borderblock A22 contains information on the connections be-
tween bordernodes, while borderblocks A12 and A21 contain information on the
connections between bordernodes and the different clusters. The clusters contain
both external and internal nodes, while all nodes in the border are internal.
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A11

A21

A12

B11

B41 B42 B43 B44

B22

B33

B14

B24

B34

A22

Fig. 5: Matrix in BBBD-form (left) with subblocks

2. The second step is to eliminate the internal nodes in block A11. This is done using
the Schur complement [15]. Since the ordering is chosen to minimize fill-in, the
resulting reduced matrix is sparse. Note that all operations are exact, i.e., we do
not make any approximations. As a result, the path resistances between external
nodes remain equal to the path resistances in the original network.

3. Finally, the reduced conductance matrix can be realized as an reduced resistor
network that is equivalent to the original network. Since the number of resistors
(and number of nodes) is smaller than in the original network, also the resulting
netlist is smaller in size.

An additional reduction could be obtained by removing relatively large resistors
from the resulting reduced network. However, this will introduce an approximation
error that might be hard to control a priori, since no sharp upper bounds on the
error are available [16]. Another issue that is subject to further research is that the
optimal ratio of number of (internal) nodes to resistors (sparsity) may also depend
on the ratio of number of external to internal nodes, and on the type of simulation
that will be done with the network.

5 Numerical Results

Table 1 shows results for three resistor networks of realistic interconnect layouts.
The number of nodes is reduced by a factor > 10 and the number of resistors by a
factor > 3. As a result, the computing time for calculating path resistances in the
original network (including nonlinear elements such as diodes) is 10 times smaller.

Table 1: Results of reduction algorithm

Network I Network II Network III
Original Reduced Original Reduced Original Reduced

#external nodes 274 3399 1978
#internal nodes 5558 516 99112 6012 101571 1902

#resistors 8997 1505 161183 62685 164213 39011
CPU time 10 s 1 s 67 hrs 7 hrs 20 hrs 2 hrs
Speed up 10x 9.5x 10x
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6 Conclusions

Electro Static Discharge analysis is of crucial importance for present chip design.
Because the resulting resistor networks may contain millions of nodes and resistors,
full system simulation becomes too expensive or unfeasible, leading to delay in the
design cycle. Hence, there is need for reduced networks that are much smaller but
exactly reproduce the behavior of the original networks. We propose an algorithm
based on concepts from graph and matrix reordering theory. The new method can
reduce large resistor networks to small equivalent networks. Since the reduced net-
work exactly matches the behavior of the original network, it can replace the original
network in the design flow for Electro Static Discharge analysis. Speedups of up to
a factor 10 are obtained for industrial circuits.

Acknowledgements Supported by O-MOORENICE! (MCA FP6 MTKI-CT-2006-042477).

References

1. Kolyer, J.M., Watson, D.: ESD: From A To Z. Springer (1996)
2. Electrostatic discharge association. http://www.esda.org
3. Chua, L.O., Lin, P.: Computer aided analysis of electric circuits: algorithms and computational

techniques, first edn. Prentice Hall (1975)
4. Phillips, J.R., Silveira, L.M.: Poor man’s tbr: A simple model reduction scheme. IEEE

Trans. CAD Circ. Syst. 24(1), 283–288 (2005)
5. Edxact: Jivaro. http://www.edxact.com
6. Cadence: AssuraRCX. http://www.cadence.com
7. Miettinen, P., Honkala, M., Roos, J.: Using metis and hmetis algorithms in circuit partitioning.

Circuit Theory Laboratory Report Series CT-49, Helsinki University of Technology (2006)
8. Karypis, G., Kumar, V.: METIS, A software Package for Partitioning Unstructured

Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices.
http://glaros.dtc.umn.edu/gkhome/metis/

9. Freund, R.W.: SPRIM: Structure-preserving reduced-order interconnect macromodeling. In:
Technical Digest of the 2004 IEEE/ACM International Conference on CAD, pp. 80–87 (2004)

10. Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds.): Model Order Reduction: Theory,
Research Aspects and Applications, Mathematics in Industry, vol. 13. Springer (2008)

11. Amestoy, P.R., Davis, T.A., Duff, I.S.: An Approximate Minimum Degree Ordering Algo-
rithm. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996)
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Nonlinear Model Order Reduction Based on
Trajectory Piecewise Linear Approach:
Comparing Different Linear Cores

Kasra Mohaghegh, Michael Striebel, E. Jan W. ter Maten, and Roland Pulch

Abstract Refined models for MOS-devices and increasing complexity of circuit de-
signs cause the need for Model Order Reduction (MOR) techniques that are capable
of treating nonlinear problems. In time-domain simulation the Trajectory PieceWise
Linear (TPWL) approach is promising as it is designed to use MOR methodologies
for linear problems as the core of the reduction process. We compare different linear
approaches with respect to their performance when used as kernel for TPWL.

1 Introduction

The tendency to analyze and design systems of ever increasing complexity is becom-
ing more and more a dominating factor in progress of chip design. Along with this
tendency, the complexity of the mathematical models increases both in structure and
dimension. Complex models are more difficult to analyze, and due to this it is also
harder to develop control algorithms. Therefore Model Order Reduction (MOR) is
of utmost importance. For linear systems, quite a number of approaches are well-
established and have proved to be very useful [1]. However, accurate models for
MOS-devices introduce highly nonlinear equations. And, as the packing density in
circuit design is growing, very large nonlinear systems arise. Hence, there is a grow-
ing request for reduced order modeling of nonlinear problems. In transient analysis
the Trajectory PieceWise Linear (TPWL) approach [2, 3] is a promising technique
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as it makes use of linear MOR methods. A brief introduction to TPWL is given be-
low. Analyzing the TPWL approach, we are interested in how different linear MOR
techniques perform when used as a linear kernel, how robust the reduced models are
and how they behave when combined to more complex systems.

2 MOR for Linear Problems

A continuous time-invariant (lumped) multi-input multi-output linear dynamical
system is of the form:

{
C dx(t)

dt = −Gx(t)+ Bu(t),
y(t) = Lx(t)+ Du(t), x(0) = x0,

(1)

where x(t) ∈ Rn is the inner state, u(t) ∈ Rm is the input, y(t) ∈ Rp is the output.
The dimension n of the state vector is called the order of the system. C, G, B, L and
D are the state space matrices. The dimension n of the system exhibits the order
of elements contained in the circuit. As VLSI systems exhibit a large density of
elements, n can easily reach a million.

Basically, MOR techniques aim to derive a system:

{
C̃ dx̃(t)

dt = −G̃x̃(t)+ B̃u(t), x̃(t) ∈ Rq,
ỹ(t) = L̃x̃(t)+ D̃u(t), x̃(0) = x̃0, ỹ(t) ∈ Rp,

(2)

of order q with q � n that can replace the original high-order system (1) in the sense,
that the input-output behavior, described by the transfer function in the frequency
domain, of both systems agrees. A common way is to identify a subspace of dimen-
sion q � n, that captures the dominant information of the dynamics and project (1)
onto this subspace, spanned by some basis vectors {v1, . . . ,vq}.

The reduction can be carried out by means of different techniques. Approaches
like PRIMA [4], SPRIM [5], and PMTBR [6] project the full problem (1) onto a
subspace of dimension q. The first two rely on Krylov subspace methods. The latter
one exploits the direct relation between the multipoint rational projection framework
and the Truncated Balanced Realization (TBR). This approach can take advantage
of some a-priori knowledge of the system properties, and is based on a statistical
interpretation of the system Gramians. We give a brief review on these techniques
and analyze their behavior when used as linear kernels in TPWL.

2.1 Krylov Projection Techniques and Poor Man’s TBR

In recent years, MOR techniques based on Krylov subspaces have become the meth-
ods of choice for generating macromodels of large multi-port RLC circuits. Krylov
subspace methods provide numerically robust algorithms for generating a basis of
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the reduced space, such that a certain number of moments of the transfer func-
tion of the original system is matched. Consequently, the transfer function of the
reduced system approximates the original transfer functions around a specified fre-
quency, or a collection of frequency points [7]. Owing to their robustness and low
computational cost, Krylov subspace algorithms proved suitable for the reduction
of large-scale systems, and gained considerable popularity, especially in electrical
engineering. A number of Krylov-based MOR algorithms have been developed, in-
cluding techniques based on the Lanczos method [8, 9] and the Arnoldi algorithm
[4,10]. The main drawbacks of these methods are, in general, lack of provable error
bounds for the extracted reduced models, and no guarantees for preserving stability
and passivity. Nevertheless, it has been demonstrated that if the original system has
a specific structure, both stability and passivity can be preserved in the reduced sys-
tem, by exploiting the fact that congruence transformations preserve the definiteness
of a matrix. PRIMA [4] combines the moment matching approach with projection
to arrive at a reduced system of type (2). Its main feature is that it produces provably
passive reduced models.

However, PRIMA does not preserve the structure of the system matrices which is
of an interest when trying to realize the reduced model. SPRIM [5], an adaption of
this method, preserves block structures of the circuit matrices and generates prov-
ably passive and reciprocal macromodels of multiport RLC circuits. The SPRIM
models match twice as many moments as the corresponding PRIMA models ob-
tained with the same amount of computational work. Also SPRIM is less restrictive
to matrices C and G in system (1), see [11].

Poor Man’s TBR (PMTBR) [6] is a projection MOR technique that exploits the
direct relation between the multipoint rational projection framework and the Trun-
cated Balanced Realization (TBR). More details on PMTBR can be found in [6]. In
the following simulation we assume that C = I and D = 0 in (1).

2.2 Examples

We consider the RLC ladder networks, illustrated in Figure 1.

CK

L1

u

2 1

R1

y
R2

LK–1
K

u
R

LK–1 2 1

R C1 R
C2 C1

y R2 K

CK C2

L1

R1

Fig. 1: Left: RLC circuit example 1; Right: RLC circuit example 2

The state variable x ∈ R2K−1 consists of the voltages of the K nodes and the
currents traversing the inductors {L1, . . . ,LK−1}. The voltage u and the current y
represent input and output, respectively. Note that when the number of nodes is K
the order of the system becomes n = 2K −1.
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Example 1. We choose an RLC ladder network shown in Figure 1 (left). We set all
the capacitances and inductances to the same value 1 while R1 = 1

2 and R2 = 1
5 , see

[12]. We arrange 51 nodes which gives us the order 101 for the circuit.

Example 2. We use an RLC ladder network given in Figure 1 (right). We set all the
capacitances and inductances to the same value 1 while R1 = 1

2 , R2 = 1
5 and R = 1,

we choose 51 nodes which results in order 101 for the circuit.

The main reason for choosing these two examples is the behavior of Hankel sin-
gular values, see [1]. The Hankel singular values for the first example do not show
any significant decay while in the second example we observe a rapid decay in
the values. The model is reduced by three linear techniques (PRIMA, SPRIM and
PMTBR) from order 101 to order 34 for both examples. Figure 2 shows the absolute
error between the transfer function of the full system and the transfer function of the
reduced system.
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Fig. 2: Left: Error plot for the Example 1; Right: Error plot for the Example 2

As we expected the SPRIM produces a better approximation than PRIMA since
it matches twice as much moments. Although both methods have a good match
around the expansion point 0, the error increases as we are far from the expansion
point. As the Hankel singular values for the first example do not decay, the PMTBR
cannot produce an accurate model for low frequency in that case. This shows that
we can not stick to one method for reduction in general and the method should be
chosen depending on the circuit behavior.

3 MOR for Nonlinear Problems

Large linear problems most frequently arise from modeling parasitic effects intro-
duced by the layout, i.e., the wiring. As structure sizes decrease and packing densi-
ties increase the growing complexity of the nominal circuitry that is build up from
transistors showing highly nonlinear behavior generates the need of MOR for non-
linear problems as well. In general an electric circuit can be described by a system
of differential-algebraic equations (DAEs) of the form
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d
dt

[q(x(t))]+ j(x(t))+ Bu(t) = 0, (3)

where x(t) ∈ Rn represents the unknown vector of circuit variables at time t ∈ [t0, te];
the nonlinear functions q, j : Rn → Rn describe the contribution of reactive and
nonreactive elements, respectively, and the matrix B distributes the input excitation
u : [t0, te] → R

m. Note that we concentrate on the state x only and omit the output
stage y in our consideration.

MOR techniques developed for linear problems (1) cannot be applied directly to
nonlinear models (3) as the transfer to a lower dimensional problem does not guar-
antee a reduction in the computational effort from evaluating the nonlinear model.

3.1 Trajectory Piecewise Linearization

The idea of TPWL [2, 3] is to represent the full nonlinear system (3) by a bunch of
order reduced linear models that can reproduce the typical behavior of the system.

For this purpose a training input ū(t) for t ∈ [t0,te] is chosen and a transient simu-
lation is run in order to get a trajectory, i.e., a collection of points x̄0, . . . , x̄N approx-
imating x(ti) at time-points t0 < t1 < · · · < tN = te, that reflect typical states of the
system. On the trajectory, points {xlin

1 , . . . ,xlin
s } ⊂ {x̄0, . . . , x̄N} are selected around

which the nonlinear functions q and j are linearized. To the linear models, that
are all of dimension n, any MOR for linear problems can be applied. This delivers
local reduced subspaces V1, . . . ,Vs of possibly different dimensions k1, . . . ,ks. One
common subspace V of dimension k � n is constructed that describes the primary
information of all local subspaces and on which all linear models are projected. Fi-
nally a weighting wi(Vz) ∈ [0,1] for i = 1, . . . ,s with ∑s

i=1 wi(Vz) = 1 is introduced
to decide which linear submodels are valid in a certain situation. The full system
shall be replaced by the reduced one given by

s

∑
i=1

wi(Vz)
[
V TCiV

d
dt

z+V T GiVz+V T ( j(xlin
i )−Gix

lin
i )

]
+V T Bu(t) = 0 (4)

with Ci = ∂q
∂x

∣∣∣
x=xlin

i

and Gi = ∂ j
∂x

∣∣∣
x=xlin

i
Besides the freedom in choosing which linear MOR technique to use there are

also different strategies reported for determining the linearization points along the
trajectory. In our considerations we stick to the strategy described in [3]. There
at each time-point ti both the full nonlinear system and the currently responsible
reduced linear model are discretized with the same stepsize leading to two different
approximations x̄i and x̂i = V zi. Whenever the difference x̄i − x̂i becomes too large,
a new linearization point is arranged.
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3.2 Example

We apply only PRIMA and PMTBR as a linear core for TPWL. In all simulation
below the PMTBR is used unless stated otherwise. One of the partitions which is
used inside the SPRIM algorithm is always of size 2 by 2 and the other part becomes
larger as there is no inductor in the structure of the inverter chain. Therefore SPRIM
is not reasonable to apply in this test case. The inverter chain constitutes a special
class of circuit problems. Here a signal passes through the system, activating at each
time-slot just a few elements and leaving the others latent. However, as the signal
passes through, each element is active at some time and sleeping at some others. As
in [13], the training of the inverter chain during the TPWL model extraction was
done with a single piecewise linear input voltage at ū(t) (see also Figure 3), defined
by

ū(0) = 0, ū(5ns) = 0, ū(10ns) = 5, ū(15ns) = 5, ū(17ns) = 0.
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Fig. 3: Inverter chain: training input (left) and state response (right, all stages)

In Figure 4 we see the danger of defining distances to linearization points not in
the full space but in the reduced space. Both plots are showing the signal at inverter
24. In Figure 4 in the right plot the second impulse is just not recognized where this
seems to be no problem in the left plot. However, something else seems to be miss-
ing, even if we take the distance in the full space. In Figure 5 the voltage at inverters
68 and 92 is given. In both cases, the signal cannot be recovered correctly. In the
latter one it is even not recognized at all. At the moment we cannot state reasons
for that. Obviously this is not caused by the reduction but by the linearization or the
weighting procedure as we get similar results when turning off the reduction step.

The impact of broadening the input signal u can be seen in Figure 6, which dis-
plays the voltage at inverters 18 and 68. The signals are far away from the expected
behavior. However, there seems to be a trend towards the situation that was encoun-
tered during the training. And indeed in Figure 6 (right), at inverter 68 we find a
time shifted version of the training signal instead of the wide input signal that has
been applied now.

Finally, in Figure 7 the result of using the reduced model that arises from training
input ū of given pulse width with a slightly tighter input signal u is given for the
inverters 6 and 68, respectively. In the former the characteristic is reflected quite
well. However, in the latter the output signal seems to be just a time shifted version
of the situation during the training. Having a closer look at how the inverter chain is
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Fig. 4: Inverter chain: TPWL-resimulation, reduction to order 50, repeated pulse, inverter 24, Left:
distance defined in full space; Right: distance defined in reduced space
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modeled we see that the input voltage is applied at a floating node. This could give
reasoning for the behavior encountered. However, also the backward and forward
validity of the linear models could be the reasons.
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The error in Figure 8 is an overall error for all nodes. This total error shows that
PMTBR yields better approximations than PRIMA. As changing from one linear
method to the other the problems stay the same. Thus the reduction steps do not
cause them.
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Fig. 8: Overall error for PRIMA and PMTBR used inside TPWL

Acknowledgements The work presented is supported by the Marie Curie RTN COMSON and
ToK project O-MOORE-NICE!.

References

1. A.C. Antoulas.: Approximation of large-scale Dynamical Systems, advance in design and
control, SIAM, 2005.
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Model Order Reduction for Nonlinear IC
Models with POD

Arie Verhoeven, Michael Striebel, and E. Jan W. ter Maten

Abstract Due to refined modelling of semiconductor devices and increasing pack-
ing densities, reduced order modelling of large nonlinear systems is of great im-
portance in the design of integrated circuits (ICs). Despite the linear case, method-
ologies for nonlinear problems are only beginning to develop. The most practical
approaches rely either on linearisation, making techniques from linear model order
reduction applicable, or on proper orthogonal decomposition (POD), preserving the
nonlinear characteristic. In this paper we focus on POD. We demonstrate the miss-
ing point estimation and propose a new adaption of POD to reduce both dimension
of the problem under consideration and cost for evaluating the full nonlinear system.

1 Introduction

The dynamics of electrical circuits at time t can be generally described by a nonlin-
ear, first order, differential-algebraic equation (DAE) system of the form:

{
d
dt [q(x(t))]+ j(x(t))+ Bu(t) = 0,

y(t) = CT x(t),
(1)

where x(t) ∈ Rn represents the unknown vector of circuit variables at time t ∈ R;
q, j : Rn → Rn describe the contribution of reactive and nonreactive elements, re-
spectively; B ∈ Rn×m distributes the input excitation u : R → Rm and C ∈ Rn×q
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maps the state x to the system response y(t) ∈ Rq. In circuit design the input u and
the output y are terminal voltages and terminal currents, respectively, or vice versa.
Therefore, we assume that they are linearly injected and extracted, respectively.

The dimension n of the unknown vector x(t) is of the order of the number of
elements in the circuit, which can easily reach hundreds of millions. Therefore, one
may solve the network equations (1) by means of computer algebra in an unreason-
able amount of time only.

Model order reduction (MOR) aims to replace the original model (1) by a system

{ d
dt [q̃(z(t))]+ j̃(z(t))+ B̃u(t) = 0,

ỹ(t) = C̃T x̃(t),
(2)

with z(t) ∈ Rr; q̃, j̃ : Rr → Rr and B̃ ∈ Rr×m and C̃ ∈ Rr×q, which can compute
a system response ỹ(t) ∈ Rq that is sufficiently close to y(t) given the same input
signal u(t), but in much less time.

2 Linear Versus Nonlinear Model Order Reduction

So far most research effort was spent on developing and analysing MOR techniques
suitable for linear problems. For an overview on these methods we refer to [1].

Research on and applications of MOR for nonlinear problems can still be found
less frequent. Some approaches like balanced truncation for nonlinear problems [2,
3] are accurate but yet hard to be applied in an industrial context. Others are only
feasible for weakly nonlinear dependencies. Then again, when trying to transfer
approaches from linear MOR, especially projection based methods, fundamental
differences emerge.

To see this, first consider a linear problem of the form

E
d
dt

x(t)+ Ax(t)+ Bu(t) = 0, with E,A ∈ R
n×n. (3)

Usually the state x(t) is approximated in a lower dimensional space of dimension
r � n, spanned by basis vectors which we subsume in V = (v1, . . . ,vr) ∈ Rn×r:

x(t) ≈ Vz(t), with z(t) ∈ R
r. (4)

The reduced state z, i.e., the coefficients of the expansion in the reduced space, is
defined by a reduced dynamical system that arises from projecting (3) on a test space
spanned by the columns of W. There, W and V are chosen, such that their columns
are biorthonormal, i.e., WT V = Ir×r. The Galerkin projection1 yields

Ẽ
d
dt

z(t)+ Ãz(t)+ B̃u(t) = 0, (5)

1 Most frequently V is constructed to be orthogonal, such that W = V can be chosen.
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with Ẽ = WT EV, Ã = WT AV ∈ Rr×r and B̃ = WT B ∈ Rr×m. The system matrices
Ẽ,Ã, B̃ of this reduced substitute model are of smaller dimension and fixed, i.e.,
need to be computed only once. However, Ẽ,Ã are usually dense whereas the system
matrices E and A are usually very sparse.

Applying the same technique directly to the nonlinear system means obtaining
the reduced formulation (2) by defining q̃(z) = WT q(Vz) and j̃(z) = WT j(Vz).
Clearly, q̃ and j̃ map from Rr to Rr.

To solve network problems of type (2) numerically, usually multistep methods
are used. This means that at each timepoint tl a nonlinear equation

αq̃(zl)+ β̃ + j̃(zl)+ B̃u(tl) = 0, (6)

has to be solved for zl which is the approximation of z(tl). In the above equation α is
the integration coefficient of the method and β̃ ∈ Rr contains history from previous
timesteps. Newton techniques that are used to solve (6) usually require an update of
the system’s Jacobian matrix in each iterations ν:

J̃(ν)
l =

(
α

∂ q̃
∂z

+
∂ j̃
∂z

)∣∣∣
z=z(ν)

l

= WT
[
α

∂q
∂x

+
∂ j
∂x

]∣∣∣
x(ν)=Vz(ν)

l

V. (7)

The evaluation of the reduced system, i.e., q̃ and j̃, necessitates in each step the back
projection of the argument z to its counterpart Vz followed by the evaluation of the
full system q and j and the projection to the reduced space with W and V.

Consequently, with respect to computation time no reduction will be obtained
unless additional measures are taken or other strategies are pursued.

Up to now, approaches based on linearisation, especially the approach of trajec-
tory piecewise linearisation (TPWL) [4, 5], and projection methods based on the
Proper Orthogonal Decomposition (POD) are popular. In the following we concen-
trate on POD and discuss adaptions.

3 Proper Orthogonal Decomposition and Adaptions

The POD method, also known as the principal component analysis and Karhunen–
Loève expansion, provides a technique for analysing multidimensional data [6–8].

POD sets work on data extracted from a benchmark simulation. In a finite di-
mensional setup like it is given by (1), K snapshots of the state x(t), the system is in
during the training interval [t0,te], are collected in a snapshot matrix

X = (x1, . . . ,xK) ∈ R
n×K . (8)

The snapshots, i.e., the columns of X, span a space of dimension k ≤ K. We
search for an orthonormal basis {v1, . . . ,vk} of this space that is optimal in the sense
that the time-averaged error that is made when the snapshots are expanded in the
space spanned by just r < k basis vectors to x̃r,i,
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〈‖x− x̃r‖2
2〉 with the averaging operator 〈f〉 =

1
K

K

∑
i=1

fi (9)

is minimised. This least squares problem is solved by computing the eigenvalue
decomposition of the state covariance matrix 1

K XXT or, equivalently by the singular
value decomposition (SVD) of the snapshot matrix (assuming K > n)

X = UST with U ∈ R
n×n,T ∈ R

K×K and S =

(σ1

. . .
σn

∣∣∣ 0n×(K−n)

)
, (10)

where U and T are orthogonal and the singular values satisfy σ1 ≥ σ2 ≥ ·· ·σn ≥ 0.
The matrix V ∈ Rn×r whose columns span the reduced subspace is now build from
the first r columns of U, where the truncation r is chosen such that

1− ∑n
i=1 σ2

i

∑r
i=1 σ2

i

≤ tol. (11)

For the, in this way constructed matrix, it holds VT V = Ir×r. Therefore, Galerkin
projection as described above can be applied to create a reduced system (2).

For a more detailed introduction to POD in MOR we refer to [9]. For further
studies we point to [8] which addresses error analysis for the MOR with POD and
[10] where the connection of POD to balanced model reduction can be found.

In the following we reflect two adaptions of POD to overcome the problems that
occur in MOR for nonlinear problems and where described in Sec. 2.

3.1 Missing Point Estimation

The missing point estimation (MPE) was proposed in [11] to reduce the cost of
updating system information in the solution process of time varying systems arising
in computational fluid dynamics. In [12] the MPE approach was brought forward to
circuit simulation.

Here, once a POD basis is found, such that (4) holds, there is no Galerkin pro-
jection applied. Instead a numerical integration scheme is applied which in general
leads to system of n nonlinear equations, analogue to (6), for the r dimensional un-
known z. In MPE this system is reduced to dimension g with r ≤ g < n by discarding
n−g equations. Formally this can be described by multiplying the system with a se-
lection matrix2 Pg ∈ {0,1}g×n, stating a g-dimensional overdetermined problem

αPgq(Vzl)+ Pgβ + Pgj(Vzl)+ PgBu(tl) = 0, (12)

2 This means, the matrix has exactly one non-zero entry per row.
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which is solved at each timepoint tl for zl in the least-squares sense [12]. The benefit
is that due to the structure of Pg not the full nonlinear functions q, j have to be
evaluated but just g components.

The choice of Pg is motivated by identifying the g most dominant state variables,
i.e., components of x. In terms of the POD basis this is connected to restricting the
orthogonal V to Ṽ = PgV ∈ Rg×r in an optimal way. This in turn goes down to
minimising

‖(ṼT Ṽ
)−1 − Ir×r‖. (13)

Details on reasoning and solving (13) can be found in [13, 14]

3.2 Adapted POD

We put a new approach up for discussion that combines the Galerkin projection
with the MPE method. Like described in Sec. 3 we collect snapshots in X on
which we apply an SVD (10). Then we define the matrix L = UΣ ∈ Rn×n, with
Σ = diag(σ1, . . . ,σn), i.e., we first scale the left-singular vectors with the corre-
sponding singular values. Next we transform the original system (1) by writing
x(t) = Lw(t) and using Galerkin projection:

d
dt

[
LT q(Lw(t))

]
+ LT j(Lw(t))+ LT Bu(t) = 0. (14)

Now, we identify separately the r and g most dominant columns of L and LT , re-
spectively, where the predominance of a column vector v ∈ Rn is determined by its
2-norm ‖v‖2. Note that this selection is directly connected to the singular values,
i.e., if they decrease rapidly we can expect r and g to be small. We use this infor-
mation to approximate L and LT by matrices that agree with the respective matrix
in the selected r and g selected columns but have the n − r and n − g remaining
columns set to 0 ∈ Rn, respectively. Again, formally this can be expressed with the
help of selection matrices Pr ∈ {0,1}r×n and Pg ∈ {0,1}g×n, respectively:

L ≈ LPT
r Pr and LT ≈ LT PT

g Pg. (15)

From this we conclude LT ≈ PT
r PrLT PT

g Pg. We insert these approximations in (14)
and multiply with Pr, bearing in mind that PrPT

r = Ir×r:

d
dt

[
PrLT PT

g Pgq(LPT
r Prw̃)

]
+ PrLT PT

g Pgj(LPT
r Prw̃)+ PT

r LT Bu = 0. (16)

Note that due to the approximations to L and LT in the above equation w has
changed to w̃ which can merely be an approximation to the former. We introduce
Sr = diag(σ1, . . . ,σr) and keep the first r columns of U in V ∈ Rn×r. Therewith we
express LPT

r = VSr. Finally we scale (16) with S−1
r and introduce a new unknown
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z = SrPrw̃ ∈ Rr from which we can reconstruct the full state by approximation
x ≈ Vz. We end up with

d
dt

[Wr,gPgq(Vz)]+ Wr,gPgj(Vz)+ B̃u(t) = 0, (17)

with Wr,g = VT PT
g ∈ Rr×g and B̃ = VT B. Like in the MPE approach just g compo-

nents of the nonlinear function q and j have to be evaluated.

4 Numerical Results

We consider the academic diode chain model shown in Fig. 1 with 300 nodes. The
current traversing a diode with potential Va and Vb at the input- and output-node,
respectively is described by the nonlinear equation

q(Va,Vb) =

{
Is(e

Va−Vb
VT −1) if Va −Vb > 0.5,

0 otherwise,

with threshold voltage VT = 0.0256V and static current Is = 10−14 A. The resistors
and capacitors have uniform size R = 10kΩ and C = 1pF.

Fig. 1 Diode chain

The voltage source defines the input u(t). For the model extraction we choose
the step given by

u(t) =

⎧⎨
⎩

20 if t ≤ 10ns,
170−15 ·109 · t if 10ns < t ≤ 11ns,
5 if t > 11ns.

As Fig. 2 shows, the signal dies out very quickly and just the first 30 diodes
operate. This reflects also in the singular values which drop very rapidly. Therefore,
for extracting a reduced order model we start the algorithm with the parameters
r = 30 and g = 35, i.e., the state space is reduced to dimension 30 and the nonlinear
functions are downsized to dimension 35.

Of special interest is how a reduced substitute model behaves when signals dif-
ferent to the training signal are applied. For testing purposes we choose

ū1(t) = 7.5cos

(
2πt

60 ·10−9

)
+ 12.5 and ū2(t) = 9.5cos

(
2πt

60 ·10−9

)
+ 12.5.
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Fig. 2: Diode chain: system’s response (left) and singular values (right)

Note that the maximum of ū1(t) is less than the maximum of the signal u(t) applied
for training, whereas ū2 exceeds u(t).

Figure 3 shows the voltages of different nodes as they were produced by solving
both the full and the reduced nonlinear system. With the reduced model we were
able to accurately reproduce the behaviour of the full system when ū1(t) was taken
as the input. From Table 1 we see that we also achieved a high speedup. Here we
also see that the classical POD, i.e, the combination with direct Galerkin projection
may even cause more computational work. But, considering the trajectory that was
produced with ū2(t), we see one of the limitations. An explanation might be that
the energy in the system during resimulation was higher than during training and
extraction. Similar statements can be found in [15] with respect to TPWL.
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Fig. 3: Resimulation with differing input signal ū1(t) and ū2(t)

Table 1: Comparison of cpu time [s]

Input Full Classical POD Adapted POD

Like training 42.01 35.51 5.12
7.5cos . . . 40.22 45.34 6.28
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5 Conclusion and Outlook

In this paper we study reduced order modelling of nonlinear IC models. We review
the problems that show up when MOR techniques for linear problems are applied to
nonlinear systems. These problems arise from the necessity to still evaluate the full
nonlinear system. To this point ways to overcome the problem are to either linearise
the nonlinear system and apply MOR to the arising linear systems, like done in
TPWL, or to adapt projection methods, like done in MPE in connection with POD.
We introduce a new adaption of the latter approach. Put to test with an academic
example it shows nice results, especially with input signals that differ from training
signals. However, the new approach has to be studied more carefully regarding its
general applicability.
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7. Loève, M.: Probability Theory. Van Nostrand (1955)
8. Rathinam, M., Petzold, L.R.: A new look at proper orthogonal decomposition. SIAM J. Nu-

mer. Anal. 41(5), 1893–1925 (2003)
9. Pinnau, R.: Model reduction via proper orthogonal decomposition. In: W. Schilders, H. van der

Vorst, J. Rommes (eds.) Model order reduction: theory, applications, and research aspects, pp.
95–109. Springer (2008)

10. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition.
AIAA Journal 40(11), 2323–2330 (2002)

11. Astrid, P.: Reduction of process simulation models: a proper orthogonal decomposition ap-
proach. Ph.D. thesis, Technische Universiteit Eindhoven (2004)

12. Astrid, P., Verhoeven, A.: Application of least squares mpe technique in the reduced order
modeling of electrical circuits. In: Proceedings of the 17th Int. Symp. MTNS, pp. 1980–1986
(2006)

13. Astrid, P., Weiland, S.: On the construction of pod models from partial observations. In:
Proceedings of the 44rd IEEE Conference on Decision and Control, pp. 2272–2277 (2005)

14. Verhoeven, A.: Redundancy reduction of ic models by multirate time-integration and model
order reduction. Ph.D. thesis, Technische Universiteit Eindhoven (2008)
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On Model Order Reduction of Perturbed
Nonlinear Neural Networks with Feedback

Marissa Condon and Georgi G. Grahovski

Abstract The paper addresses the dynamical properties of large-scale perturbed
nonlinear systems of the Hopfield type with feedback. In particular, it focuses on
the hyperstability of the equilibria of the system. It proceeds to examine the effect
of the empirical balanced truncation model reduction technique on the hyperstability
properties. Finally, estimates of the additional conditions for preserving hyperstabil-
ity when perturbations are present are derived.

1 Introduction

Neural networks have attracted the attention of the scientific community for several
decades [2, 6]. One of the most important nonlinear neural networks is the Hop-
field model [4, 5] which was introduced by J. J. Hopfield in the 1980s. It has been
extensively studied (see, e.g., [7] and the references therein) and has found many
important applications such as pattern recognition, associative memory and combi-
natorial optimisation.

The study of the stability of the equilibrium points of dynamical systems is an
important area which has been the focus of study over the past number of years.
One of the reasons for its importance is that if an equilibrium of a Hopfield neural
network is globally asymptotically stable, then the domain of attraction of this point
is the entire state space [7].
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A special subclass of Hopfield neural networks are Hopfield networks models
with feedback. In this case, there is an additional functional dependence imposed
between the inputs and the corresponding outputs.

In most of the applications involving neural networks, the model equations form
a large-scale system (see e.g. [7] and the references therein). For example, there are
approximately 1012 neurons in the human brain [2]. As a rule, this leads to costly and
inefficient computations. Therefore, model reduction is of paramount importance.
The reduced model must mirror the properties of the original system if it is to be of
practical utility.

Nonlinear model reduction has increasingly become a focus of research as in
general, linear models are inadequate to describe real-world processes. While nu-
merous approaches for linear model reduction have been proposed [1], there is a
dearth of effective nonlinear model reduction techniques. Balanced truncation, as
pioneered by Moore [9], is a very effective linear model reduction technique and
consequently, it has been extended by several authors for nonlinear systems. For
example, Scherpen introduced the notion of controllability and observability func-
tions to generalise the controllability and observability gramians which characterise
linear systems [10]. However, their calculation is computationally expensive and
their use is hence, restricted [10, 11]. To counteract this, empirical gramians have
been proposed by several authors [12], [13] and [3]. It is the technique in [3] that is
adopted in this work.

In the present article, the effect of model reduction on the hyper/stability proper-
ties of the nonlinear Hopfield model with feedback is studied.

The structure of the paper is as follows: In Section 2, the perturbed Hopfield
neural network model with feedback is described briefly. In Section 3, empirical
balanced truncation as a form of model reduction technique is reviewed. The hyper-
stability criteria (in Popov’s sense) and their modification for perturbed nonlinear
systems are outlined in Section 4. The effects of model reduction (balanced trunca-
tion style) on the hyperstability of nonlinear systems of Hopfield type are studied in
Section 5.

2 Perturbed Hopfield Model with Feedback

Consider the following system of non-linear ODE’s (known as Hopfield models
[4, 5]) of the form

ẋi = −bixi +
N

∑
j=1

Ai jG j(x j)+Ui(t), (1)

where i = 1, . . . ,n, bi’s are constants, Ai j form a constant matrix and the external
inputs Ui(t) are functions of the time variable t. The functions G j are, in general,
nonlinear with respect to the state variables x j, j = 1, . . .N (here N is the number
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of the neurons in the network). The second term in (1) gives the interconnection
between the neurons.

The corresponding perturbed version of the Hopfield model (1) takes the form

ẋi = −b̃ixi +
N

∑
j=1

Ãi jG̃ j(x j)+Ui(t), (2)

where b̃i = bi +Δbi, Ãi j = Ai j +ΔAi j (note, that ΔAi j does not need to be symmet-
ric) and G̃ j(u j) = G j(u j)+ΔG j(u j), 1 ≤ i ≤ n. Here Δbi, ΔAi j and ΔG j(u j) are
considered as (small) perturbations of the system (1).

Model order reduction (Empirical Balance truncation) is applied to the model
equations (1), and the paper studies the qualitative behaviour of the solutions of
the reduced perturbed model. Special attention is paid to the Popov hyper-stability
properties.

Feedback v(t) in the Hopfield model (1) is introduced by defining a (vector)
function F (nonlinear, in general) of the corresponding outputs yi(t): vi(t) = F(yi).
The function v(t) is, in fact, the output of the corresponding feedback block. This
will be discussed in Section 3.

3 Model Reduction

The Hopfield model corresponds to a nonlinear system of the generic form

ẋ(t) = f(t,x(t))+ B(t)u(t), (3)

y(t) = h(t,x(t)),

where f : IRn → IRn and h : IRn → IRq are non-linear functions, the vector u(t) ∈ IRn

is the input to the system (3), while the vector y(t) ∈ IRq is regarded as an output.
For the model equations (1), we identify

f(t,x(t)) = −bixi +
n

∑
j=1

Ai jG j(x j)

and the feedback v(t) is given by a nonlinear function F(y) relating the output y(t)
of the system (3) and the output of the corresponding feedback block v(t): v(t) =
−F(y). The block diagram of such a model is depicted on Fig. 1.

Suppose that the equilibrium point is reached when u(t) = 0. Consider the vicin-
ity of an isolated asymptotically stable equilibrium point (steady–state solution)
which is supposed to be a constant solution and is chosen for simplicity at x = 0,
i.e. f(t,0) ≡ 0. It is also assumed that the system does not leave the region of at-
traction of this equilibrium point when the input is applied. If the system exhibits
multiple steady–state solutions, then the analysis may be applied separately in the
vicinity of each solution provided that extra care is taken to ensure that the system
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Non-linear Block

Feedback Block

v(t ) = –F(t.y(t ))

x(t ) = f(t .x(t )) + B(t )u(t )

y(t ) = h(t .x(t ))

x(t ) – state vector

B(t )U(t )
input

y(t )
output

Fig. 1: Block diagram of a nonlinear system (3) with feedback

does not leave the region of attraction of the corresponding (asymptotically stable)
equilibrium point.

Let also xilm(t) be the solution of (3) with u ≡ 0:

ẋ(t) = f(t,x(t)), xilm(0) = cmTlei. (4)

It is assumed that the initial condition in (4) does not take the system outside the
region of attraction of the equilibrium point x = 0. Then the ‘state-space average’ of
the ‘nonlinear’ fundamental solution may be defined as

〈Θ(t)〉 =
1
rs

s

∑
m=1

r

∑
l=1

n

∑
i=1

1
cm

xilm(t)eT
i T T

l , (5)

where M ≡ {c1,c2, . . . ,cs} is the set of s positive constants, Tn ≡ {T1,T2, . . . ,Tr} is
the set of r orthogonal n×n matrices and En ≡ {e1,e2, . . . ,en} is the set of standard
unit vectors in IRn. Here, also, the superscript “T” denotes transposition of a matrix.
So for the system in (3), the nonlinear controllability gramian is defined as

P =
∫ ∞

0
〈Θ(−τ)〉−1B(−τ)BT (−τ)〈Θ(−τ)〉−1T dτ, (6)

where 〈Θ(t)〉 is as described in (5) and the nonlinear observability gramian is de-
fined as [3]

Q =
∫ ∞

0
zT (τ)z(τ)dτ, z(t) =

1
rs ∑

i,l,m

1
cm

yilm(t)eT
i T T

l . (7)

yilm(t) is the output which corresponds to an initial state xilm(0) = cmTlei and a zero
source term.

Let T be the matrix that transforms both P and Q into diagonal form S as follows:

T PT ∗ = S, (T−1)∗QT−1 = S, (T PQT−1 = S2).
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The states of the system are then ordered according to decreasing values of the
diagonal entries in S. Once balanced, a Galerkin projection Π = [I,0], where Π is
k × n projection matrix and I is k × k unit matrix, is then employed to project the
transformed system onto the states corresponding to the k largest singular values
(i.e. the k largest values of the diagonal matrix S where k is the desired dimension
of the reduced-order model).

The reduced model (via empirical balanced truncation) that corresponds to (3)
has the form

ż(t) = ΠT f(t,T−1Π ∗z(t))+ΠTB(t)u(t),
y(t) = h(t,T−1Π ∗z(t)), (8)

where T is the transformation matrix which casts into a diagonal form both the
empirical controllability and observability gramians, associated with the nonlinear
system (3), and Π is a Galerkin projection [3].

4 Hyperstability of Nonlinear Neural Networks with Feedback

The hyperstability property of dynamical systems is a generalisation of Lyapunov
stability. It gives the most general conditions to be imposed on the system in (3) in
order to ensure that the solutions are bounded. V. M. Popov introduced the concept
of hyperstability in 1973. He introduced it as a generalization of absolute stability
for nonlinear systems.

Consider a linear, time-invariant, completely controllable and completely observ-
able system:

ẋ(t) = A(t)x(t)+ B(t)u(t), y(t) = C(t)x(t)+ D(t)u(t). (9)

It is said to be hyperstable [8], if there exists a positive definite symmetric matrix
P, a regular matrix L and an arbitrary matrix V satisfying the so-called Kalman-
Yakubovich-Equations (KYEs):

AT P + PA = −LLT , CT = PB+ LV, D+ DT = VT V, (10)

and the Popov integral inequality

∫ t

0
vT (τ)y(τ)dτ ≥ −β 2

0 (11)

holds for all t ≥ 0 and for some positive constant β0. Here, v(t) is the output of the
nonlinear feedback block (Fig. 1). Note that Lyapunov stability is governed by the
first Kalman-Yakubovich equation [8].

For nonlinear systems of the form (3), let xR = 0 be the equilibrium point and
f(0) = 0. The condition for asymptotical hyperstability of (3) is as follows: The
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system (3) is asymptotically hyperstable if there exists a continuous feedback con-
trol v(t) = −F(y) satisfying

∫ t

0
vT (τ)Qx(τ)dτ ≤ β 2, (12)

where Q is the nonlinear observability gramian (7) (being a positive-definite and
symmetric matrix) and for some positive constant β < ∞. This condition must hold
true for arbitrary time t ≥ 0 and does not depend on the initial conditions x(0).

In order to ensure that Popov’s hyperstability criteria is satisfied for generic per-
turbed nonlinear systems, the perturbations of the nonlinear system must satisfy
some additional relations.

In particular, for perturbed nonlinear models of Hopfield type (2), if the pertur-
bations satisfy the estimates ∫ t

0
|Δ b̃i|2 dt < ∞

and

∫ t

0
|

N

∑
i=1

ΔAiiGi|2 dt +
∫ t

0
|

N

∑
i=1

AiiΔGi|2 dt +
∫ t

0
|

N

∑
i=1

ΔAiiΔGi|2 dt

< α
∫ t

0
vT (t)Qx(t)dt (13)

for some positive constant α , then the perturbed Hopfield network (2) will be again
asymptotically hyperstable at the origin.

5 Model Reduction and Hyperstability of Perturbed Neural
Networks

Since most of the nonlinear neural networks with feedback that are of interest are
large-scale systems, it is important to determine whether model order reduction for
such systems will affect its hyperstability.

Application of empirical balanced truncation as outlined in Section 3, yields a
reduced model of the form

x̄ = ΠT x,

Ā = ΠT AT−1Π ∗ Ḡ = ΠT GT−1Π ∗.

Since the transformations T do not depend on time t, applying model reduction
to the Popov inequality does not affect it. Hence, the hyperstability condition also
holds true for the reduced model.

For perturbed Hopfield models, one can derive the following integral estimate for
perturbations that preserve the hyperstability property after model reduction:
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∫ t

0
|

N

∑
i=1

ΔAiiGi|2 dt +
∫ t

0
|

N

∑
i=1

AiiΔGi|2 dt +
∫ t

0
|

N

∑
i=1

ΔAiiΔGi|2 dt (14)

< α
∫ t

0
vT (t)Qx(t)dt/||T ||2,

where T is the matrix which casts both the gramians into diagonal form and || · || is
the standard matrix norm in IRn. This is an explicit relation between the perturba-
tions of the interconnection matrix and the nonlinearities of (2) in order to preserve
the stability of the origin for the reduced model.

6 Conclusions

Hyperstability of nonlinear networks of the Hopfield type with feedback has been
studied. It is shown that empirical balanced truncation preserves hyperstability. In
addition, it is shown that if the perturbations of the model parameters satisfy certain
additional conditions: (12) and (13), then the reduced perturbed nonlinear Hopfield
network is also hyperstable for perturbations satisfying the estimate (14).
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Schneider, Rudolf, 109
Schoenmaker, Wim, 321, 395
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