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PREFACE

In this new edition of When Cells Die, we have tried to provide both a back-
ground to the subject of programmed cell death/apoptosis and an intro-
duction to the most interesting new areas in the field. We hope our readers
will find that we have provided a useful and coordinated work, and that it
helps to introduce a new generation to this exciting field. We acknowledge
the wonderful efforts of many earlier and current researchers, and we also
wish to make the following remarks:

• This book is dedicated to the memory of Samuel and Florence 
Lockshin, who would have taken great pleasure in seeing how far
this topic has grown.

• This volume is further dedicated to all the children who grew up with
the nickname “questions”—may they enjoy science as much as we
have—and to the parents who encouraged their questions.

• RAL also acknowledges, with affection, all his relatives who asked,
“You’re still working on the same question? Haven’t you answered it
yet?”

• ZZ thanks her parents Pari and Sirous Nabavi for fostering her enthu-
siasm to look for answers.

• ZZ acknowledges her teachers and students who have taught her to
love exploration.

• We both thank our friends and family who tolerated our missing
numerous occasions.

• We thank the numerous students who critiqued, commented on, and
chased down references for this book.

• Both RAL and ZZ enjoyed support from the National Institutes of
Health during the preparation of this work, and some of the results
reported in the chapters here derive from that support.

• We especially dedicate this book to all the developmental and cell
biologists who for so long quietly worked on the topic, sometimes
against all popular odds.

XI
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PLATE 2.1 Examples of several techniques to illustrate cell death or apoptosis. 
(A) Light microscopy image of haematoxylin and eosin staining of interdigital region
of a day 13.5 embryonic mouse hand palette. Darkly stained cells (arrow) are easily
distinguished but must be examined at high magnification to confirm that they are
not metaphase cells. (B) Apoptotic nuclei (arrows) are readily recognized in the vac-
uoles of phagocytes (M) in this electron micrograph. (C) Nile blue sulfate is readily
taken up into dead cells (actually vacuoles of phagocytes) in the interdigital regions
of a day 12.5 embryonic mouse hand palette. Some of the most prominent regions
are indicated by arrows. (D) Acridine orange penetrates the stage 17 zebrafish eye.
Dead cells in the lens are easily identified by green fluorescence. The phase and flu-
orescence images were overlaid. (E) Annexin V coupled to a fluor marks the exposed
phosphatidylserine on one cell of a mouse blastocyst, as is readily seen by fluores-
cence using confocal microscopy. The bright green cell is annexin-positive. (F) DNA
fragmentation detected by gel electrophoresis using conventional gel (left) and end
labeling of the fragmented DNA (right). In both figures, there are two control lanes
to the left, and the rightmost lanes are DNA from cells undergoing apoptosis. The
ladder seen at lower molecular weights represents fragments of DNA differing in
size by 180bp, indicating that the DNA was cut between nucleosomes. (G) The
TUNEL technique, here using the brown DAB-peroxidase reaction revealing dead
cells, marked by arrows, in the interdigital regions of a day 13.5 mouse hand palette.
(H) DNA fragmentation using TUNEL showing cell death (dark brown cells, TUNEL
positive) in the seminiferous tubules of the adult testis. (I) DNA fragmentation using
TUNEL showing cell death (dark brown cells) in granulosa cells of atretic follicles of
an adult mouse ovary.

When Cells Die II, Edited by Richard A. Lockshin and Zahra Zakeri.
ISBN 0-471-21947-9 © 2004 John Wiley & Sons, Inc.
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PLATE 2.2 Further examples of techniques to illustrate cell death or apoptosis, con-
tinued. (A) Interdigital region of the mouse hand palette has been incubated in the
presence of a naphthol AS-BT phosphate substrate. The magenta-to-purple color
marks high acid phosphatase activity. (B) F4/80 antibody identifies the cell mem-
brane of a macrophage, as indicated by the arrows, in a mouse embryo hand palette.
(C) In situ hybridization for bcl-2 message in a developing mouse digit reveals 
substantial labeling over the cartilaginous areas, but there is no difference in the level
of labeling in the interdigital region in which cell death is present compared to 
the adjacent regions, suggesting that there is no change in the level of Bcl-2 in this
region. (D) Immunohistochemistry reveals upregulation of transglutaminase protein
(arrows) in dying cells in a mouse hand palette. Transglutaminase is often a good
marker for cell death (Piacentini et al., 1991). (E) Although most proteins do not
change much in amount, immunohistochemistry can reveal activation of enzymes
such as Cdk5, illustrated here (arrows), from a day 13.5 mouse embryo hand palette.
(F) Double staining of DNA fragmentation (TUNEL, green) and Cdk5 protein (red)
merged (yellow) in a confocal image of a section of the interdigital region of a day
13.5 mouse hand palette. 



COLOR PLATE

G

PLATE 2.2 (continued) (G) Using immunohistochemistry to show the activation of
caspase 3 using an antibody specific to the active form. The dark staining reveals the
activation of caspase 3 in the gestation day 13.5 mouse liver.

PLATE 9.1 The intestinal epithelium.



COLOR PLATE

PLATE 19.3A Example of reduction of myocardial infarct size during ischemia-
reperfusion in Fas-deficient lpr mice. Lpr and wild-type mice were subjected to 30
minutes of left anterior descending coronary artery ligation followed by 24 hours of
reperfusion. Following sacrifice, the region at risk (or ischemic zone) is identified by
religating the coronary artery and infusing Evans blue dye. The absence of blue
demarcates the region at risk. The heart is also incubated with 2,3,5-triphenyltetra-
zolium chloride (TTC), a measure of mitochondrial reductases, to assess viable tissue
(red). Within the nonblue zone, the infarct is demarcated by the absence of red, which
appears white. Panel A shows typical Evans blue/TTC staining of a wild type (a) and
an lpr (b) heart. Note that, despite similar regions at risk (nonblue), the wild-type
heart exhibits a much larger infarct (white) than the lpr heart. See color insert. Panel
B shows the quantitative analysis for nine wild-type and eight lpr mice.
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CELL DEATH ORIGIN
AND PROGRESSION



CHAPTER

1

INTRODUCTION

RICHARD A. LOCKSHIN AND ZAHRA ZAKERI

We are all transients in the enterprise of discovery. The 2002 Nobel Prize in
medicine and physiology, for the development of studies of Caenorhabditis,
included a substantial salute to the elucidation of the genetics of cell death—
a brilliant series of experiments and interpretations, but one that had many
precedents and will have many descendants.

The tale of cell death can be described as several stages. The first was
the discovery of cell death and its recognition. The second was the survey-
ing and categorizing of types and distribution of cell death. The third began
the analysis of the physiological controls and mechanisms. We are now in
the fourth phase, in which analysis of the genetics of cell death mechanisms
is teaching us about mechanisms, means, purposes, and controls. Many
mechanisms have been established, but the normal physiological controls (as
opposed to responses of cells exposed to toxins or cells that have been altered
by knockout or upregulation of individual genes) are less well understood.
For instance, many cancers have as a major component the failure of the can-
cerous cells to undergo apoptosis on schedule. However, in most of these
cells, the machinery of apoptosis remains intact, but the threshold at which
it is activated increases. This threshold depends on many parameters deriv-
ing from the prior history of the cell, its metabolism, its stage of cell cycle,
and growth factors (Sang and Giordano*), as well as the matrix in 

When Cells Die II, Edited by Richard A. Lockshin and Zahra Zakeri.
ISBN 0-471-21947-9 © 2004 John Wiley & Sons, Inc.
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which cells are embedded (Ishizuya-Oka et al.). Thus the fifth phase, now
beginning, will address the application of knowledge of cell death to the
manipulation of cell death in clinical situations. Beyond that phase, scien-
tific predictions are too unreliable to venture.

To establish common ground, it is most useful to define our terms. The
first section, therefore, consists of a brief outline of apoptotic and other cell
deaths. This understanding allows us to address the history of the field and,
finally, the theoretical but very important question of the evolution of cell
death mechanisms.

TYPES OF CELL DEATH

There are many types of cell death (Fig. 1) defined by morphological or 
biochemical behavior of the cell. Severely injured cells may undergo 
necrosis. Physiological deaths include the best known form, apoptosis. There 
are two variants of apoptosis, described below, but physiologically cells also
die by autophagic mechanisms, as Bursch et al. describe. Plant cells, as
Mittler and Cheung discuss, osteoblasts, intestinal enterocytes (Wilson and
Potten), and other cells constrained by their environment may undergo

4 I. CELL DEATH ORIGIN AND PROGRESSION

CELL DEATH

Necrotic Physiological

Apoptosis Autophagic

Caspase-dependent Caspase-Independent

Receptor-Caspase 8 Mitochondria-Caspase 9

Other

Programmed                                                     Apoptosis

Embryonic, developmental                             Turnover Pathology

Protein synthesis required                                      Apoptotic morphology

FIGURE 1. Classifications of cell death. Most cell deaths in the body are under phys-
iological control. Necrotic deaths are presumed not to be controlled. The paradigm,
and best understood version, for physiological cell death is caspase-dependent apop-
tosis, but as described in the text, there are several other forms. Programming is most
apparent in developmental situations, and classical apoptosis is most clearly seen in
experimental and pathological situations. Turnover is presumed to be apoptotic but
is not well documented.



various forms of degeneration resulting from the failure of the dying 
cells to be consumed by phagocytes. It is also possible for cells to man-
ifest various intermediate forms. Each of these general types is described
below.

APOPTOSIS

Apoptosis was first defined by its morphological criteria (Fig. 2) and then
by the particular, limited form of degradation of DNA. Most of these char-
acteristics are controlled by the activation of restricted-target proteases called
caspases, but there are forms of apoptosis that are considered to be inde-
pendent of caspase activation.

CASPASE-DEPENDENT CELL DEATH (INITIATED BY
AN EXTRACELLULAR SIGNAL)

Paradigmatic apoptosis is substantially explained by the activation of a
cascade of site-specific proteases, the caspases (cysteinyl proteases cleav-
ing C-terminal to an aspartic acid) and the activation of proteases and nucle-
ases in the nucleus to destroy chromatin and, finally, DNA. Caspases are
further characterized by their active site, QACXG. These changes lead to the
hallmarks of apoptosis, namely: condensation and blebbing of the cyto-
plasm; condensation and margination of chromatin against the nuclear
membrane; internucleosomal degradation of DNA as determined by elec-
trophoresis (DNA ladder), FACS analysis (subdiploid DNA/cell), or TUNEL
labeling; and exteriorization of phosphatidylserine. The caspase family was
discovered relatively recently (Yuan et al., 1993) but proves to be highly 
conserved from Caenorhabditis and Drosophila to mammals (Dorstyn and
Kumar). The sequences of apoptosis will be illustrated in a bit, following a
brief discussion of the two major modes of activation of caspases.

Caspases are subdivided into two general categories: initiator caspases
(characterized by long prodomains) and effector caspases. The effector 
caspases, typified by caspase 3 and caspase 7, are those that attack critical
cytoplasmic proteins, such as cytoskeletal proteins, polyadenosylribose
polymerase, and other strategic enzymes or structural proteins. The effector
caspases typically exist in proenzyme form in the cytoplasm and are prote-
olytically activated by the initiator caspases, typified by caspases 8 and 9.
These two caspases are activated in different manners. Caspase 8 is activated
at the cell membrane. When a member of the TNF-a family including TNF-
a and Fas-ligand binds to its appropriate receptor, through a specific intra-
cellular sequence on the receptor molecule (the death receptor, DD) and, in
conjunction with several other molecules (the death-inducing signaling
complex, DISC), it recruits and activates caspase 8 by hydrolyzing the inac-
tivating peptide from the proenzyme (Fig. 3).

1. INTRODUCTION 5



6 I. CELL DEATH ORIGIN AND PROGRESSION

Condensed, marginated
chromatin (DNA fragmented
between histones) 

Cell shrunken, rounded,
(detached), blebbing (blebs
finally consumed by phagocytes)

Mitochondria depolarized,
cytochrome c leaked into 
cytoplasm

Phosphatidylserine
exposed on outer 
leaflet of cell 
membrane

Caspase 3 
activation

NO INFLAMMATION 

1,400 bp

1,000 bp

750 bp

500 bp

M 0 1 2 3 4 5

FIGURE 2. Characteristics of apoptosis. A. Left: transmission electron micrograph
of staurosporine-induced apoptosis in a lymphoid cell. Right: scanning electron
micrograph of a human keratinocyte undergoing apoptosis after 1,200 j/m2 UVB
radiation. (Photos courtesy of Walter Malorni, Istituto Superiore di Sanitá, Rome,
Italy.) B. Typical DNA ladder, from cycloheximide-treated zebrafish cells. (Courtesy
of Javier Negrón.)

A

B



CASPASE-DEPENDENT CELL DEATH (INITIATED BY
MITOCHONDRIAL CHANGES)

Cell membrane signaling is typical for cell types, especially in the immune
system, in which populations are rapidly changed. Thus, the Fas-FasL sig-
naling system is extremely important in the embryonic establishment of lym-
phocyte types and immune tolerance as well as in the downregulation of
T-lymphocytes during the resolution of an infection, and in several other sit-
uations (Brás, García-Domingo, and Martínez-A). However, often the deci-
sion to commit suicide depends on more internal considerations such as the
health of the cell. This health is often evaluated by the status of mitochon-
dria. Under various circumstances, in a series of related steps, mitochondria
become permeable to several molecules, they depolarize, and they leak
cytochrome c into the cytoplasm. The cytoplasmic cytochrome c displaces
apoptosis-inhibiting factor (AIF) from pro-caspase 9, allowing its cleavage
to the active form. Either active caspase 8 or active caspase 9 can activate
caspase 3. The sensitivity of the mitochondria to various insults and stimuli
can be adjusted by proteins that can be recruited to the mitochondrial mem-
brane and either stabilize (bcl-2) or destabilize (bax) the mitochondria (Fig.
4). Mitochondria of course handle very dangerous materials—electrons

1. INTRODUCTION 7

EXTRINSIC PATHWAY 
(death ligand delivered to

death receptor)

INTRINSIC PATHWAY 
(mitochondrial assembly of 

pro-apoptotic factors) 

Pro-casp8 Pro-casp9

DISC
Fas

FADD

APOPTOSOME
Apaf-1

Cytochrome c

casp8 casp9

Pro-casp3
Pro-casp7

Casp3
casp7

CrmA

p35 xiap

Cleavage of Substrates 
Apoptosis

Bid truncated Bid 

FIGURE 3. Control of caspase-dependent cell death in mammals. (After Salvesen,
2002.)



transported one at a time through the cytochromes—and the possibility that
reactive oxygen species will do damage increases with the disruption of
metabolism. Orrenius and Zhivotovsky analyze the impact of this impor-
tant factor, whereas Vaux discusses mitochondrial defenses, including regu-
lation of the bcl-2 family, to contain the possible damage.

The resolution of apoptosis is an important characteristic, in that (with
the exception of massively toxic insult) apoptotic fragments are phagocy-
tosed by phagocytes or neighboring cells. As Birge outlines, phagocytosis is
interesting on many accounts. There is evidence from Caenorhabditis that a
phagocyte may play an active role in convincing a teetering cell to commit
to apoptosis, and one of the remarkable features of apoptosis is the ability
of the apoptotic cell to block an inflammatory response by the phagocytos-
ing cell. The interplay between host and virus in controlling cell fate is
complex, provocative, and revealing (Chen, Fannjiang, and Hardwick).

CASPASE-INDEPENDENT CELL DEATH

Caspases generate all the characteristics of apoptosis, including rounding
and condensation of the cytoplasm (digestion of cytoskeletal proteins), con-
densation and margination of chromatin (digestion of chromosomal pro-

8 I. CELL DEATH ORIGIN AND PROGRESSION

Caspase 3 (effector)

Death receptors 
Fas

FADD
DD, DED 
Caspase 8

Caspase-9Survival factors: Bcl2 

BH3

Smac/
Diablo

XIAPs

Cyt-c

Ced9 inhibits ability of Ced4 to activate 
Ced3
Bcl-2 protects mitochondrial integrity, 
preventing Smac and cytc from 
activating caspase 9

Apoptosome

Apaf-1

FIGURE 4. Mitochondrial and receptor-mediated caspase-dependent cell death in
mammals.



teins), internucleosomal degradation of DNA (activation of endonucleases),
and exteriorization of phosphatidylserine (mechanism unclear). However,
other physiological cell deaths can take place in the apparent absence of
caspase activation, sometimes still displaying apoptotic morphology (Leist
and Jäättelä, 2001a, b). In mutants that have lost caspase activity, cells may
die by autophagic or other means. One argument is often misunderstood,
but should be clear: If a cell has been severely compromised, or is deprived
of its required growth factors, it will die. If it still has access to caspases, it
will undergo apoptosis. If caspase activity is eliminated (by caspase
inhibitors, mutation, or other means) the cell will still die, though perhaps
not by apoptosis. Thus, the hope of preventing cell deaths by the inhibition
of caspases has often proved disappointing.

It is also a bit tricky to make a clinical assessment of the impact of 
apoptosis in disease. The rate of mitosis can ultimately be traced by experi-
mental labeling of newly synthesized DNA, but many estimates of the
period during which an apoptotic cell is identifiable—based primarily on
lymphocytes or thymocytes in vitro—fall in the range of 20 minutes to 1
hour, after which there is no sign that the death has occurred. Tidball and
Albrecht (1998), using this kind of estimate, calculated that the entire liver
could disappear in 1 month with only one apoptotic cell being seen per his-
tological section. In the chapter by Mani et al., two frequencies are given for
different pathological situations in the myocardium: 0.25% of cells in a
human, but 23 cells/100,000 (0.023%) in a mouse. If we assume a reasonable
existence for an apoptotic thymocyte of 2.4 hours, the entire heart could dis-
appear in 40 days to 4,000 days (the latter in a mouse, which lives approxi-
mately 720 days). However, one effort to establish a time for myocytes
indicated an existence of perhaps 14 hours (Suzuki et al., 2001). As Mani et
al. point out, the time it takes different cell types to undergo apoptosis can
vary markedly over an order of magnitude; it is difficult to estimate apop-
totic rates in chronic disease situations when the rate of cell loss is continu-
ous and very low level; the rate of loss in these situations may not be a pure
exponential but may change over time; one needs to know the duration of
apoptosis in a given cell type to determine the impact of a given apoptotic
rate on the loss of cells in that tissue; and because of these uncertainties, the
only way to evaluate the importance of apoptosis to a given disease process
is to inhibit and/or accelerate the apoptosis and see what it does to the
disease process. In addition to two obvious unknowns (we do not know
whether apoptosis is linear, asymptotic, or irregular with time, and we are
assuming no mitotic replacement of cells—likely in the heart but not else-
where), we have no meaningful estimate of the time of persistence of apop-
totic cells. Thus, our quantitation of apoptosis in pathology is only very
approximate. (We thank Richard Kitsis for the further elaboration of these
points.)
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AUTOPHAGIC CELL DEATH

The first description of lysosomes, and indeed the name, included the
assumption that the rupture of lysosomes was the common form of cell
death. This conclusion was apparently valid for the specific situation of
carbon tetrachloride toxicity in liver, in which the CCl4 could dissolve lyso-
somal and cell membranes, but it proved to be a simplistic interpretation of
most other cell deaths. Nevertheless, the discovery launched a wide-ranging
evaluation of lysosomal activity in cell death, an active field through the
1970s. These studies led to the conclusion that, in developmental cell deaths,
the pool of lysosomal enzymes may be expanded as cell death is activated
(Lockshin, 1969a; Lockshin and Williams, 1965d) or merely “activated” (for-
mation of autophagic vacuoles rather than primary lysosomes—Helminen
and Ericsson, 1970). As interpreted today, the lysosomes detected are either
the lysosomes of phagocytic cells, or there is an expansion of the lysosomal
system driven primarily by the formation of autophagic vacuoles. As is
explained in the chapter by Bursch et al., autophagic vacuoles are most
clearly seen in large, postmitotic, sedentary cells. In these cells, the primary
consideration is the removal of large amounts of cytoplasm, and the destruc-
tion of DNA is not a high priority. Thus, the early activities are the lysoso-
mal destruction of cytoplasm, with DNA degradation occurring very late or
not at all, and generally these deaths are not caspase-driven (see next
section). Much remains to be learned of autophagic cell death. For instance,
autophagy is often seen in atrophying cells, in which cytoplasm is reduced
and the cell may enter a quiescent state, but the nucleus and the cell survive.
The turning point or threshold is not well understood, although it may
follow a schematic as presented by Tolkovsky, Bampton, and Goemans.
Also, we know very little about the mechanisms by which the membranes
of the autophagic vacuoles are formed, how they encircle target organelles
or regions of cytoplasm, or how target organelles, such as mitochondria,
expose markers or signals that identify them as targets. Many of the com-
ponents are being identified (Klionsky and Emr, 2000), but the transients and
control mechanisms remain to be explored.

NECROSIS

For a metazoan it is always preferable to control the death of cells, to contain
the escape of potentially destructive molecules such as proteases and inflam-
matory cytokinins as well as invasive organisms such as viruses. Apoptosis,
described below, contains the dying cell and avoids inflammation. Viruses,
on the other hand, typically attempt to avoid this effective virus-controlling
route. Their goal is not to lose their host cell or, if this is not an option, to
provoke lysis and an inflammatory response through which they can escape.
Therefore, viruses often have apoptosis-blocking mechanisms.

If the cell is very sick and cannot undergo apoptosis, it follows the route
of necrosis. Likewise, when a cell is suddenly confronted with a severe stress,
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such as a sharp change in tonicity, ion concentration, or pH, of the extracel-
lular medium; or if all energy resources are suddenly extinguished, as in an
infarct; if an increase or decrease of temperature makes the maintenance of
homeostasis impossible; or if the integrity of the cell or organelle membranes
is compromised by a solvent or physical disrupter of a membrane, the cell
will simply rupture. The typical sequence is that mitochondrial failure will
allow entrance of Ca++ into mitochondria, swelling and rupture of mito-
chondria, loss of ion pumps, followed by loss of osmotic control of the cell,
osmotic swelling and lysis of the cell, invasion of macrophages and inflam-
mation, and removal of the debris. In electron microscope images, nucleo-
plasm and cytoplasm show disorganized precipitation of proteins, and there
is no evidence of any active response of the cell to any stage of this disinte-
gration (Fig. 5). The process is not stepwise and may follow different
sequences.
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FIGURE 5. Necrosis. The figures illustrate swollen mitochondria (large arrow, upper
left), some with tiny dense aggregates from an ischemic proximal convoluted tubule
cell, and, following reflow, flocculent precipitations (larger arrow, lower left) and
occasional calcifications. Later, the cells will show heavy vacuoliztion and ruptured
organelles. (From Trump, Berezesky, and Osornio-Vargas (1981) with permission.) 
C. Apoptosis and necrosis in a mouse embryo treated with cyclophosphamide. In this
instance, some cells undergo apoptosis (white-bordered black arrow); some appear
to begin apoptosis, judging from the configuration of the nuclei (black-bordered
white arrow); and some cells are frankly necrotic (double arrow). The necrosis almost
certainly derives from the failure of overwhelmed phagocytes to remove the large
number of apoptotic cells. (From the research of Daniela Quaglino, University of
Modena, and Zahra Zakeri, Queens College of CUNY, with permission.)



OTHER FORMS OF CELL DEATH

There are many other forms of cell death that show varying relationship to
those best known. For instance, osteoblasts die as bones cease growing.
Phagocytes cannot reach these cells and, although the death is assuredly pro-
grammed, ultimately the dying phagocyte looks necrotic. Keratinocytes
eventually die by differentiating, in which the cytoplasm becomes com-
pletely occluded with insoluble proteins (mostly keratin). In this death the
nuclei are destroyed, but, as tested by UV irradiation, the differentiation
death is distinct from a true apoptotic response (Mammone et al., 2000). Sim-
ilarly, the expulsion of organelles and eventual death of red blood cells share
some characteristics of apoptosis (Bratosin et al., 2001). Differentiation of the
lens involves the loss of nuclei from lens fiber cells. This loss, and the 
subsequent destruction of the DNA, involve the activation of a specific
DNase and an apoptosislike destruction, although the lens fiber cells them-
selves persist and remain alive (Counis et al., 1998). Finally, the senescence
of fibroblasts and other cells in culture is technically a differentiation rather
than an apoptosis (Warner). Younger fibroblasts can undergo apoptosis, but
the senescence is a form of differentiation, in which the cells become flat-
tened squamous cells. They can persist for months in a postmitotic state, and
their eventual death is not apoptotic (Zakeri). All these deaths are interest-
ing in themselves, but remain beyond the scope of a book of reasonable size.

HISTORY OF RESEARCH ON CELL DEATH

The development of the histological techniques of embedding, sectioning,
and staining led to a flurry of observations, beginning in the late nineteenth
century of cell activities of all types (Clarke and Clarke, 1996). These
included, as a matter of course, many observations of cell death. Most 
of these were expected, as in insect and amphibian metamorphosis, and
European scientists tried to make sense of the collapse of massive tissues.
“Liquefaction” of tissues, invasion of phagocytes, vacuolization of cells, and
nuclear shrinkage and swelling were noted. Organelles were not yet known
and were not described. Several perceptive authors recognized similar con-
figurations in what were otherwise considered to be healthy tissues and,
coupled with the growing recognition of mitosis, the concept of cell turnover
was born. Each of these deaths in adult tissues was usually considered to be
unfortunate and unplanned. The extensive cell deaths in embryos were not
yet known and, until Glücksmann’s categorizations beginning in the 1950s
(see Table 1), cell death was not considered to be a normal process except in
metamorphosis (Glücksmann, 1951, 1965).

Glücksmann’s compendiums are widely cited but often misunderstood.
He clearly recognized that most embryonic deaths were not simple lysis. To
quote him directly:
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Interference with the blood supply . . . causes a process of necrosis which is characterized
by the loss of staining power of the nucleus, i.e., predominantly a process of autolysis
leading to karyolysis and cytolysis. . . . The form of cellular death most frequently
encountered in normal vertebrate embryos is characterized by a number of nuclear
changes: (1) the initial stage, chromatopycnosis, consists in the separation of the chro-
matic from the non-chromatic material of the nucleus and the precipitation and coales-
cence of the former into larger granules and finally into a single mass. The non-chromatic
material seems to liquefy and to form confluent vacuoles. (2) These nuclear changes
result in the appearance of a single chromatic mass sitting as a cap on the vacuole formed
by the non-chromatic material. This stage is described as hyperchromatosis of the nuclear
membrane. Both the nucleus and the cytoplasm, which becomes liquefied or undergoes
a fatty change, shrink by the loss of fluid. (3) After gradual shrinkage a mere chromatic
granule persists and is surrounded by a liquefied or fatty zone. The granule loses its
affinity for nuclear stains, becomes Feulgen-negative, breaks up and disappears: this is
chromatolysis.

(Glücksmann, 1951, pp. 60–65)

Given the limitations of the time, this seems to be a fairly clear description
of apoptosis, although without the final phagocytosis of the apoptotic frag-
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TABLE 1. GLÜCKSMANN’S CLASSIFICATIONS

Stage/Localization Number of examples

Embryogenesis 7
Organogenesis 8
Sense organs: eye, ear, nose 13
Epidermis, transient ectoderm 3
Digestive tract 8
Respiratory tract 3
Urogenital tract 7
Vascular system 3
Locomotion: notochord, somites, chondro- 21

and osteogenesis, morphogenesis of
muscles and skeleton

Types of degenerations Subtypes

Morphogenetic Changes in form of organs
Ingrowth of tissue
Union or detachment of parts
Formation of lumina in organs

Histiogenetic Differentiation of tissues and organs
Formation of matrix and fibers
Organ development

Phylogenetic Vestigial organs
Regression of larval organs



ments. He further classified cell deaths based on their apparent “purpose”—
morphogenetic, histiogenetic, or phylogenetic (Table 1)—but he did not
make any statements concerning mechanism. His great contribution was to
establish cell death as a normal biological process, occurring as a normal con-
sequence of development and homeostasis, thus paving the way for its
investigation.

Glücksmann’s papers represent the culmination and end of the descrip-
tive phase. By emphasizing the normality of cell death in embryonic devel-
opment, he encouraged embryologists to investigate cell death as a
developmental process. Several laboratories took different approaches to the
study. Entomologists as well as those interested in amphibian metamorpho-
sis were interested in endocrine and neural controls of metamorphic cell
death (Kuwana, 1936; Finlayson, 1956). Dame Honor Fell understood the
importance of cell death in the differentiation of cells in organ culture (Fell
and Canti, 1934). Levi-Montalcini and Hamburger recognized the depen-
dence of sympathetic and sensory neurons on peripheral tissues, although
they quickly focused on the isolation and identification of nerve growth
factor rather than the mechanism of death (Hamburger and Levi-Montalcini,
1949; Levi-Montalcini, 1987). Saunders identified specific regions of repro-
ducible cell death in chick embryos (Saunders, 1966; Saunders and Fallon,
1966). Finally, John Kerr, an Australian pathologist, began to recognize many
commonalities in widely divergent deaths. These experiments inaugurated
the experimental phase and led to the related concepts of programmed cell
death and apoptosis (Kerr, 1965).

From the information that the death of certain cells in embryos is pre-
dictable, one can infer that, like any developmental characteristic, it is in
some manner encoded in genes and therefore must be controlled by a devel-
opmental program. In chick embryos, the digits and axes of limbs are
sculpted in part by the death of specific cells. Saunders explanted such cells,
from the “posterior necrotic zone,” of the limb bud to tissue culture and
found that they died on schedule. However, these were not simply dying
cells taking their time to manifest the morphology of death, since trans-
planting them to another region allowed them to heal in and survive (Fig.
6). Thus, the death sentence was reversible, and although, in Saunders’
words, “the death clock is ticking” (Saunders, 1966), the death of the cells
could be reversed.

In a similar vein, Lockshin and Williams established that several markers
of the impending death of insect muscles (larval muscles of metamorphos-
ing insects) could be identified while the death remained reversible. These
experiments introduced the term “programmed cell death,” meaning that a
specified physiological sequence in otherwise healthy cells led to their death,
and that the death was not imposed by a toxic or inhospitable environment.
Among the markers of impending cell death was the activation of the lyso-
somal system (Table 2). These, then recently discovered, organelles were at
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the time considered to be the potential effectors of cell death, a hypothesis
widely discussed at the time, later forgotten, and of renewed interest at the
beginning of the twenty-first century.

The hypothesis of programming carried the inference of an ultimate
genetic origin, but it took the clarity of Caenorhabditis genetics to define what
this meant. Briefly, in a series of brilliant experiments, Horvitz, Sulston, and
colleagues showed that a limited number of genes controlled virtually all
embryonic cell deaths in this worm (Ellis and Horvitz, 1986; Horvitz,
Shaham, and Hengartner, 1994) (Fig. 7). The establishment of the genetics of
cell death gave full meaning to the hypothesis of programming and quickly
led to recognition that the genetics of cell death was conserved even in
mammals and to the recognition that a major effector of cell death was a spe-
cific protease (Figs. 7 and 8).

Simultaneously, Kerr and colleagues realized that many types of cells in
pathological and nonpathological situations tended to shrink and bleb; their
cytoplasm became dense, their organelles intact; and the chromatin of their
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FIGURE 6. Saunders’s experiments. In these experiments, Saunders removed the
posterior necrotic zone from the forelimb of a chick as soon as the region was anatom-
ically identifiable, but many hours before the cells were scheduled to die. When he
explanted the tissue to a Petri dish and cultured it, the cells died on schedule, indi-
cating that at the time he excised them, they already possessed the information that
would lead to their deaths. If instead of explanting the tissue, he transplanted it to
the back of a second host chick, the tissue healed into the epidermis, and the cells
did not die, but differentiated in concordance with their host environment, demon-
strating that the information to die was not a mortal but slowly developing restric-
tion to the cells.



nuclei condensed along the periphery of the nucleus. This “shrinkage necro-
sis” was difficult to explain. A cell that for any reason can no longer succeed
with oxidative phosphorylation follows a specific, easily comprehensible
sequence: It generates its remaining energy through glycolysis. Before the
cell becomes very acid, lactate ion does not easily escape, osmotically
drawing in water and swelling the cell until it lyses. This is necrosis as
described above. It was much harder to explain shrinkage necrosis, which
in a now famous paper was rechristened “apoptosis” (Kerr, Wyllie, and
Currie, 1972). The term apoptosis was a morphological description begging
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TABLE 2. WHY CELL DEATH IS PROGRAMMED (METAMORPHOSING INSECT

MUSCLES)

Stage of development Event

Day 0 Pupal-adult metamorphosis begins.
Days 0–4 Ecdysone in absence of juvenile hormone sets adult 

development; muscles also acquire signal to die; 
injection of juvenile hormone blocks this signal.

Day 17 Beginning appearance of lysosomes; slight decrease in 
muscle mass.

Day 21 (hours 0–2) Neural: Ecdysis (emergence of adult); high neural 
activity, then spontaneous quiescence of CNS 
activity.

Pharmacological or electrical maintenance of neural 
activity prevents muscle loss.

Pharmacological blockage of neural activity causes 
slightly premature death of muscles.

Genetic: Slight burst of synthesis of specific proteins; 
rapid drop of synthesis of others.

Cycloheximide and actinomycin D prevent 
degeneration of muscles.

Day 21 (hours 2–5) Rapid increase in measurable (free) lysosomal 
proteolytic activity.

Increase in rate of loss of muscle protein.
End of ability of cycloheximide to block death.

Day 21 (hours 6–10) Increase in autophagic vacuoles, targeting heavily 
mitochondria.

Continued loss of muscle protein.
Day 21 (hours 10–15) Loss of membrane resistance, depolarization of muscle 

membranes, muscles enter flaccid paralysis.
Expansion of autophagy; dissolution (in cytoplasm) of 

myofilaments.
Erosion of extracellular matrix (sarcolemma).

Day 21 (hours 15–24) Condensation of chromatin to heterochromatin; 
phagocytic consumption of remaining tissues.

Source From Lockshin and Williams (1964, 1965a–d) and Lockshin (1969b).



an explanation. For a cell to shrink, it must either contract (but the cyto-
skeleton cannot generate sufficient force to extrude water) or lose solute
(Lockshin and Beaulaton, 1981). And what was one to make of the collapsed
chromatin?

The shrinkage that occurs during apoptosis now appears to result from
the loss of K+ from the cell (Bortner and Cidlowski, 2002; Razik and 
Cidlowski, 2002). The collapse of the chromatin appears to derive from the
degradation of the DNA (Arends, Morris, and Wyllie, 1990), itself deriving
from the caspase-initiated activation of a protease (Weaver et al., 1993).

The flowering of the Caenorhabditis story, both the universality of its
genetics and the discovery of the caspase family of proteases, coincided with
the appearance of cell death (apoptosis) on the clinical horizon. Several dis-
coveries led to the medical interest, although some in particular caught atten-
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FIGURE 7. Upper: Control of cell death in Caenorhabditis elegans. Lower: The paral-
lel structure of cell death in mammals. This parallelism is illustrated in more detail
as a flowchart in Figure 8.



tion: (1) B-cell lymphoma arose from a chromosomal translocation that con-
stitutively activated bcl-2, protecting lymphocytes from death and produc-
ing a tumor by lack of cell death rather than excess mitosis—with bcl-2 being
recognized as the first antiapoptosis gene. (2) The interaction of a soluble 
or cell-surface molecule, Fas ligand, with the cell-surface molecule Fas or
Apo-1 could spectacularly destroy certain tumor (and many other) cells, thus
suggesting that the active killing of tumor cells was important in both tumor
prognosis and immune dysfunction. (3) Jean-Claude Ameisen broached the
idea that the catastrophic loss of bystander CD4+ cells in AIDS could result
from an improper management of apoptosis (Ameisen and Capron, 1991).
Clinicians on several fronts became very interested, and the accessibility of
some reasonably straightforward assays for the DNA damage marking
apoptosis (electrophoresis of DNA, FACS analysis, TUNEL staining (Zakeri)
led to the upsurge of interest that we now see. Several authors have given
their versions of the history of the field (Clarke and Clarke, 1996; Lockshin,
1997; Lockshin and Zakeri, 2001; Vaux, 2002).

EVOLUTION OF APOPTOSIS

Since apoptosis is so carefully conserved among all metazoans, the question
naturally arises as to its origin. As Ameisen has asked, either apoptosis was
created out of whole cloth or it arose as a modification of a preexistent mech-
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anism. The former is improbable. But what was the preexistent mechanism?
Plants manifest many instances of programmed cell death, but they do not
have caspases, and their cell deaths are only equivocally apoptotic (Mittler
and Cheung). Dictyostelium stalk cells undergo programmed cell death, but
again not an apoptotic one (Levraud et al.). For multicellular organisms,
there is a clear advantage in being able to control the death of cells (Chen,
Fannjiang, and Hardwick). All organisms appear to exploit lysosomal
systems already available for cytoplasmic reduction, but metazoans evolved
true apoptotic cell death.

Proteases distantly related to caspases exist in all cells and perform
various functions related to housekeeping and mitosis. Ameisen, identifying
apoptosislike phenomena in protozoans such as Tetrahymena, suggests two
means of creating apoptosis: Quorum sensing, known in bacteria, allows a
population of individual cells to respond individually to the condition of a
population. Thus, if each individual secretes a small amount of a signaling
molecule, the individual cell can sense the population density. Such a mech-
anism regulates the rate of cell division in the liver of a mammal. Popula-
tions can therefore be selected on the basis of their ability to maintain
population density within sustainable limits, and the capacity for cell death
can become a selective advantage. Second, a host can become addicted to a
parasite in the following manner: The parasite introduces into its host a toxin
but induces a host antidote (often a protease). However, the antidote has a
half-life substantially shorter than the toxin. Any host that loses the parasite
is doomed because the toxin will outlast the antidote. Any parasite that can
maintain such an “addiction cassette” of toxin and inducer will condemn its
host to bear it forever. Such arrangements are well known in microorgan-
isms and are sustained according to the Red Queen hypothesis (Ameisen,
1996, 1998, 1999). As in the Alice in Wonderland story, in which the Red
Queen engages Alice in a race that returns to the starting line, the establish-
ment of an addiction cassette engages a perpetual race in which the host
evolves to escape the parasite, selecting for parasites that do not escape, and
the coevolution goes faster and faster while going nowhere. Interestingly,
one of the most effective toxins (inducers of apoptosis) is cytoplasmic
cytochrome c. When cytochrome c escapes from mitochondria, it activates a
proteolytic cascade terminating in apoptosis. Given the presumptive origin
of mitochondria from parasitic or commensal bacteria, the similarity to
addiction cassettes is striking. Sequence analysis leads to a conclusion con-
sistent with this hypothesis. Koonin and Aravind, who have attempted to
trace the origins of caspases and other apoptosis-related genes (Aravind,
Dixit, and Koonin, 2001; Koonin and Aravind, 2002), find that “homologs of
apoptotic proteins are particularly abundant and diverse in bacteria that
undergo complex development, such as Actinomycetes, Cyanobacteria and
a-proteobacteria, the latter being progenitors of the mitochondria” (p. 394).
The apoptosis-related proteins most commonly form multidomain proteins.
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Multidomain construction is most commonly associated with the 
signal transduction and regulation of gene expression. The genes for the
apoptosis-related proteins indicate considerable fusion with other genes,
suggesting that the endosymbiosis of bacteria brought to eukaryotes several
important apoptotic effectors. These effectors were subsequently modified
by horizontal gene transfer, so that their adaptor and promoter regions were
selected for eukaryotic use. Some of these rearrangements included the
transfer of the genes to nuclear rather than mitochondrial control.

THE FUTURE

It is always dangerous to predict the future. RAL remembers as an under-
graduate getting very high marks for two papers that completely missed
what were to become the hottest stories of the time (clonal selection theory
and the function of the thymus) and later realizing that even his professors
had failed to recognize the breakthroughs. Nevertheless, we are approaching
the threshold of clinical applications for apoptosis, and it is useful to see
where we stand. In the last part of the book we address the role of apoptosis
in specific organ systems: the immune system (Brás, García-Domingo, and
Martínez-A), gastrointestinal tract (Wilson and Potten), and nervous system
(Tolkovsky, Bampton, and Goemans), as well as the role of apoptosis in
aging (Warner). We follow with chapters on apoptosis in the specific disease
states of viral infection (Chen, Fannjiang, and Hardwick), cancer (Fulda and
Debatin), and myocardial infarct (Mani et al.). To a very large extent, any
therapies based on apoptosis will depend on highly accurate targeting, a sort
of smart missile technology to destroy or protect individual cells. This is why
the application of proteomics to apoptosis theory (Saelens et al.) will prove
so important. Nevertheless, since with the obvious exception of bcl-2 muta-
tions (B-cell lymphoma) and p53 mutations (many cancers), the machinery
of apoptosis is intact in a pathological situation, but the threshold of response
is altered, in the long run we will need to understand much better the more
subtle aspects of metabolic history that set those thresholds.
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DEVELOPMENT: THE BASIS FOR THE CONCEPT

OF CELL DEATH

Developing systems have always been at the forefront of studies of cell
death. Classical naturalists recognized the disappearance of larval structures
in metamorphosing insects and amphibia. Vesalius had recognized the 
transience of the ductus venosus in the sixteenth century, and Harvey had
observed the remodeling of the embryonic heart in the seventeenth century.
However, a true recognition of the significance of cell death required the dis-
covery of microscopic lenses by van Leeuwenhoek in the late seventeenth
century, followed by the development of cell theory in the mid-nineteenth
century, and the development of sectioning and staining technology during
the same period. Observation of cell death as a naturally occurring phe-
nomenon followed remarkably quickly, as embryologists noticed the pres-
ence of cells with unusual morphology. Vogt in 1842 noted the disappearance
of the notochord of the midwife toad during metamorphosis (cited in Clarke
and Clarke, 1996; see also Ranganath and Nagashree, 2001). Embryologists
were comfortable with the possibility of transient organs. However, growth
of a fascination with mitosis took place in the context of an understanding
that mitosis (the active, constructive activity) was used to balance the acci-

When Cells Die II, Edited by Richard A. Lockshin and Zahra Zakeri.
ISBN 0-471-21947-9 © 2004 John Wiley & Sons, Inc.

27



dental and unfortunate unpredictable loss of cells. By the 1950s some change
in attitude became apparent. Hamburger and Levi-Montalcini, in the quest
that ultimately led to the discovery of nerve growth factor, recognized 
that many neurons were lost during the course of normal neurogenesis
(Hamburger and Levi-Montalcini, 1949), and Saunders, noting specific
patches of dead cells in the developing limbs of chicks, began a quest that
led to the recognition of controlled cell death in the embryo (Saunders, 1948).
Lockshin and Williams, working with insect metamorphosis, extended 
the concept and described these deaths as “programmed” (Lockshin and
Williams, 1965a, b, c). By the 1970s Kerr, Wyllie, and Currie had established
the similarities of many cell deaths in many organisms and had amalga-
mated these descriptions under the rubric “apoptosis” (Kerr, Wyllie, and
Currie, 1972). By the 1980s the existence of specific cell death genes was
demonstrated for the nematode worm Caenorhabditis, and between 1989 and
1991 cell death was identified as an important component in lymphomas, in
AIDS, and in autoimmune disease and differentiation of the immunological
system in general. The discovery of the clinical relevance of cell death
launched the frenzy that we are now experiencing, including a revisiting of
the role of cell death in developing systems.

NATURALLY OCCURRING CELL DEATH IN EMBRYOS

We cannot possibly review all the developing systems in which cell death
plays a role. We will therefore examine cell death in a few developing
systems, with an emphasis on some of the methodology used. Some of the
most valuable techniques for the study of apoptosis in maturing or mature
immune systems or in cultured cells of immunological origin, such as flow
cytometry, are rarely applicable to embryos. In embryos, the small number
of cells and the importance of temporal and spatial distribution of cell death
necessitate the use of techniques such as immunocytochemistry and in situ
hybridization.

Early observations were essentially entirely morphological, leading to
the recognition that patterns of death could be predicted and identified in
most embryos, and therefore to the conclusion that cell death is as much a
part of normal development as proliferation or differentiation (Glücksmann,
1951; Saunders, 1966; Hinchliffe, 1981; Coucouvanis, Martin, and Nadeau,
1995; Chanoine and Hardy, 2003). Glücksmann also importantly recognized
that cell death continued throughout life, including cell turnover and even
pathology, and did not distinguish any significant distinction in the mecha-
nisms of these deaths, thus presaging a conflation of all physiological cell
deaths.

Embryonic development is dynamic and extremely well coordinated,
making an embryo ideal for the study of the control of cell death. The promi-
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nence of cell death in development was the source of most of the theoretical
bases of cell death research in developmental biology, including program-
ming, identification of specific cell death genes, and discovery of the cas-
pases. However, in a developing embryo, a dying cell is often surrounded
by many dividing and/or differentiating cells, making its identification dif-
ficult. Also, the onset of cell death is usually not synchronous, making any
study of the kinetics of cell death more difficult.

In embryos, cross-talk among cells (mutual induction loops) and the
ever-changing microenvironment of cells are extremely important in estab-
lishing the level of determination and fate of cells, including both cell 
division and cell death. As is described in the introduction to this book, Saun-
ders’s brilliant transplantation studies established the importance of the
microenvironment (Saunders, 1966; Saunders and Fallon, 1966). Local fields
establish patterns of cell death, as is clearly seen where mutations produc-
ing defects in patterns lead to malformations (Zakeri, Quaglino, and Ahuja,
1994; Singh, James, and Zakeri, 1997). We now know that most cells die in
the context of their environment (Lockshin, Osborne, and Zakeri, 2000) or,
as Raff (1992) described it, there is a “social control” of apoptosis. However,
one must keep in mind that in embryonic development the social control
signals rapidly undergo changes due to the rapid change in the social milieu.

Embryonic cell death occurs throughout the animal kingdom. Neuronal,
muscle, epithelial, intestinal, and gonadal cells undergo cell death in the
developing nematode, C. elegans (Sulston and Horvitz, 1977; Ellis and
Horvitz, 1986; Hengartner and Horvitz, 1994). Insect metamorphosis is
accompanied by the death of larval muscles (Lockshin and Beaulaton, 1981;
Haas et al., 1995; Schwartz and Truman, 1982); nerves (Truman, 1984;
Fahrbach, Choi, and Truman, 1994); and glands (Jochová, Zakeri, and 
Lockshin, 1997). In the higher insects, almost all larval tissues are destroyed
at metamorphosis, and in anurans the tail and gills of the tadpole are wholly
destroyed and in many other tissues there is substantial apoptosis during
remodeling (Weber, 1969; Fox, 1973). In tadpoles, regression of the tail and
destruction of the gills are attributed to tightly controlled cell death (Jeffery,
2002). In Xenopus, cell death destroys all the primary myotomal myofibers,
which are replaced progressively by secondary “adult” multinucleated
myofibers in the construction of muscles during development (Chanoine and
Hardy, 2003). In Drosophila, cell death is induced in larval midgut by the
steroid hormone ecdysone (Lee, Cooksey, and Baehrecke, 2002).

In mammalian embryos, cell death starts as early as two cell stage as the
polar bodies die and continue in the embryo proper as soon as the inner cell
mass is formed (Fig. 1e; Zakeri et al. in preparation; also Hardy, Handyside,
and Winston, 1989; for review, see Spanos et al., 2002). Apoptosis has been
seen in fetal membranes where changes such as the condensation of chro-
matin along the periphery of the nucleus and nuclear shrinkage have also
been seen in amniotic epithelium and chorionic trophoblast cells (Wiley 
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et al., 1992; Nijhawan, Honarpour, and Wang, 2000). Cell death can also be
found in the forming placenta as the embryo implants into the wall of 
the uterus (Zakeri, unpublished). Later, cell death shapes many organs and
removes interdigital webs during limb development (Saunders and Fallon,
1966; Hinchliffe, 1981; Hurle et al., 1996). The specific spatial and temporal
patterns of cell death are, as expected, species-dependent. During limb for-
mation, cell death is first observed in the anterior and posterior marginal
zones (AMZ and PMZ) of the developing limb bud. In later stages, there is
massive cell death in almost all the interdigital mesenchymal tissue (IMT)
located between the chondrifying digits (Hurle et al., 1996). The fate of the
IMT is determined by the overlying ectoderm as well as the presence of adja-
cent digits. Cell death in the developing AER is thought to limit the size of
the AER and subridge and therefore prevent polydactyly (Hurle et al., 1996).
These patterns of death free the digits of birds (Saunders and Fallon, 1966)
and mammals (Ballard and Holt, 1968).

The patterns and connections of the developing nervous system depend
heavily on cell death (Hamburger and Oppenheim, 1967). During vertebrate
development, more nerve cells are produced than are needed, and 20 to 80%
of the neurons that are born die (Gordon, 1995; Clarke et al., 1998). Fetal
neurons compete for limited amounts of nerve growth factor (NGF), a sur-
vival factor produced by other cells, including neurons. Thus, apoptosis
induced by growth factor withdrawal adjusts the numbers of developing
neurons to the number of target cells (Jacobson, Weil, and Raff, 1997; Reis 
et al., 2002; Vyas et al., 2002). More than 80% of ganglion cells in the cat retina
die shortly after birth (Barres and Raff, 1999). In secondary palate formation,
the fusion of two opposing palatal shelves is accomplished by cell death in
the midline epithelium (Shapiro and Sweney, 1969). Likewise, immunologi-
cal tolerance is defined by the destruction of cells bearing potential antiself
immunoglobulins and “neglected” cells bearing nonfunctional immuno-
globulins also die (Osborne, 1998; Gercel-Taylor et al., 2002). Positive and
negative selection of thymocytes in embryonic and early postnatal mammals
leads to a vast repertory of immunocompetent cells coupled with self-
tolerance. The achievement of this grand design derives from a complex
series of interactions including steroids, T-cell activations, and the relative
expression of Fas and FasL (Osborne, 1998). The fact that lpr/lpr mice (which
express little or no functional Fas) and gld/gld mice (which express little or
no functional FasL) develop lupuslike syndromes indicates that this
ligand–receptor interaction is important in negative selection in the thymus.

In almost all developing organs at one time or another, one can find
dying cells that help to sculpt the organ. An example occurs in the lens,
where apoptosis plays a major role during lens vesicle development. Here,
apoptosis eliminates the cells between the surface ectoderm and the optic
vesicle to help trigger invagination and facilitate separation from the ecto-
derm. Apoptosis also aids in the bowing of the optic vesicle during lens
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invagination (Mohamed and Amemiya, 2003). Apoptotic cell death helps
shape the future inner ear structure, which starts from incubation day 5 in
chick inner ear (Avallone et al., 2002). In cardiac morphogenesis, cell death
is essential in generating the overall four-chambered architecture of the heart
(Abdelwahid, Pelliniemi, and Jokinen, 2002). In rat skeletal muscle, cell death
persists during the first three postnatal weeks, suggesting an indispensable
role for cell death in the development of skeletal muscle (de Torres et al.,
2002).

There are also many pseudodeaths or partial deaths in living organisms.
In the developing lens, the nuclei of lens fiber cells undergo nuclear apop-
tosis, but the cytoplasm survives and the cells remain as normal functional
cells after the 18th day of gestation of embryonic mice (Appleby and Modak,
1977; Wyllie, Kerr, and Currie, 1980; Gao et al., 1997; Nijhawan, Honarpour,
and Wang, 2000; Gupta, Tsai, and Wynshaw-Boris, 2002; Wu et al., 2002).
Likewise, mammalian red blood cells lose their nuclei, and epidermal 
keratinocytes ultimately keratinize and die.

Cell death also plays an important role in the development of the repro-
ductive system as the decision is made for regression of the male (Wolffian)
or female (Müllerian) duct systems to produce a male or female embryo
(Dyche, 1979). In adults, cell death remains a factor in the maintenance,
integrity, and function of the gonads. In the testis cell death is important for
normal spermatogenesis and helps to regulate sperm output (Blanco-
Rodríguez, 1998; Hikim and Swerdloff, 1999; Kierszenbaum, 2001). The
maintenance of the different cell types results in the degeneration of up to
75% of potential spermatozoa (Huckins, 1978; Allan, Harmon, and Kerr,
1987). In human females, oocyte apoptosis results in the loss of more than
80% of the original germ cells just by birth and a major level of cell death is
seen in atretic follicles (Tilly, 1998; Reynaud and Driancourt, 2000).

Plant fertilization, embryogenesis, and development all involve sub-
stantial cell death, and plants use cell death in response to environmental
stimuli such as cold and attacks by bacteria and viruses. A major role for cell
death in plants is the formation of the sexual organs, in essence much like
the mammals (Pennell and Lamb, 2001). Although death in plant cells some-
times resembles apoptosis, there are also unique types of cell death seen in
plants in which the vacuoles play a critical role (Fukuda, 2001; Mittler and
Cheung, this volume). Botanists use similar methodologies to study cell
death in plants.

GENETIC CONTROL OF DEVELOPMENTAL CELL DEATH

The notion of genetic regulation of cell death was realized due to the exis-
tence of a number of mutant animals with aberrant patterns of cell death
such as those seen in mutant mice strains with syndactyly and webbed limbs,
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in which cell death appears to fail, and the mapping of the sequence of events
in interdigital segregation led to the idea that cell death is under direct 
or indirect genetic control (Johnson, 1969; Hinchliffe and Thorogood, 1974;
Ingham and Martinez-Arias, 1992; Zakeri, Quaglino, and Ahuja, 1994a).

Studies of Caenorhabditis were crucial to our understanding of the genetic
regulation of apoptosis, in that the cell death mutants identified in Caenorhab-
ditis controlled all embryonic or developmental cell deaths, leading to the
now well-known sequence of bcl-2-like molecules normally inhibiting cell
death, the activation of caspaselike molecules destroying the cells, and the
existence of “ready for phagocytosis” signals (phosphatidylserine and other
molecules) on the surface of apoptotic cells and their counterpart receptors
on the phagocytes. A similar series of genes, the reaper-hid-grim group, was
identified from their effects on embryonic cell deaths in Drosophila, although
this group, unlike the ced (cell death) genes in Caenorhabditis, does not
appear to be universal. Beyond these studies, incidental papers have
detected cell death in preimplantation mammalian embryos, and an inter-
esting study suggested that there existed in amphibian embryos an inhibitor
of apoptosis that disappeared at the maternal-zygotic transition (Hensey and
Gautier, 1997). Similar observations in zebrafish have been reinterpreted to
suggest that the capacity to undergo apoptosis is acquired at the maternal-
zygotic transition, thereby providing access to the critical determinants of
the apoptosis machinery (Negrón and Lockshin, in preparation). Much can
be learned about the function of a gene by manipulating its expression. This
approach has been used to study the function of a number of cell-death-
related genes. Since the knockout in many systems produces an identifiable
phenotype in the developing embryo, we have learned much about the role
of these genes in the developing embryos.

However, knockout of many genes influencing cell death results in no
specific embryonic phenotype. For instance, p53 knockout mice, which are
deficient in the ability of their precancerous cells to undergo apoptosis,
present no abnormal phenotype of cell death in the embryo (Donehower et
al., 1992), although they do develop spontaneous tumors (Jacks et al., 1994;
Williams et al., 1994). This is a generic problem in using knockouts to deter-
mine function. Embryos frequently use partial redundancy to compensate
for the loss of specific genes and thus drastically reduce the phenotypic effect
of a knockout. This compensation includes cell death mechanisms. We and
others have shown that cyclin-dependent kinase 5 (Cdk5) plays a role in cell
death in both adult and embryonic tissues during development (Singh
Ahuja, Zhu, and Zakeri, 1997; Zhu et al., 2002). However, cdk5-/- embryos
are normal and present at the expected frequency (24%) as late as gestation
day 16.5 (Ohshima et al., 1996). Furthermore, knockouts of the regulator of
cdk5, p35-/- embryos develop normally, with no gross anatomical defects
found in somatic organs or tissues (Chae et al., 1997). Bak-/- mice are 
developmentally normal and reproductively fit and do not develop any age-
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related disorders (Lindsten et al., 2000). Knockouts of bcl-2 show minor
abnormalities: At E14 in vivo, the number of trigeminal neurons undergo-
ing apoptosis was significantly greater in bcl-2-/- embryos, and there were
significantly fewer neurons in the trigeminal ganglia of bcl-2-/- embryos at
E16 and E18 (Pinon, Middleton, and Davies, 1997).

Mice deficient in another antiapoptotic bcl-2 family member, bcl-XL, die
at embryonic day 13 with excess apoptosis in developing brain, spinal cord,
and dorsal root ganglia (Motoyama et al., 1995). Among the cell death genes,
caspases appear to be important in developmental cell deaths. Deletion of
the key death effector caspase, caspase-3, in mice in most cases is lethal to
the embryo. Caspase-3-/- mice are born at a frequency lower than expected
by Mendelian genetics, are small, and die before 3 weeks. The brain devel-
opment in caspase-3-deficient mice is profoundly affected, with the mice
exhibiting a variety of hyperplasias and disorganized cell deployment in the
cerebral cortex, the hippocampus, and the striatum. Furthermore, pyknotic
clusters at sites of major morphogenetic change during normal brain devel-
opment are not observed in the mutant embryos, suggesting decreased
apoptosis in the absence of caspase-3 (Kuida et al., 1996). Deletion of caspase-
9 yields a phenotype essentially identical to that of caspase-3 null mice
(Hakem et al., 1998; Kuida et al., 1998). Mice deficient for Apaf-1 (apoptosis
protease-activating factor 1, which activates caspase-9) have a strong phe-
notype similar to that of caspase-3 and -9 knockouts, revealing an apparently
lower incidence of apoptotic cells in their hindbrains compared to wild-type
mice. In addition, Apaf-1 knockout mice exhibit delayed interdigital mes-
enchymal cell death and alterations in the development of lens and retina
(Colussi and Kumar, 1999). Mice carrying a null mutation in caspase-2
develop normally and do not show an overt phenotype. The most promi-
nent feature of caspase-2-deficient mice, an inhibition of female germ cell
death, results in knockout mice containing a significantly higher number of
primordial follicles compared to the wild type (Bergeron, 1998). Null muta-
tions in caspase-8 result in embryonic lethality in mice that have develop-
mental abnormalities in cardiac tissue (thin ventricular myocardium) and
hyperemia in the abdomen and other blood vessels with extensive erythro-
cytosis in the liver (Varfoloweev et al., 1998; Yeh et al., 1998). Thus, genetic
inhibition of caspases has profound effects on development. However, the
phenotype of the caspase-8 knockout suggests functions other than cell
death for caspases. Furthermore, Oppenheim et al., examining further the
caspase-9 knockout, concluded that the elimination of this initiator caspase
did not prevent cell death; it only changed the morphology of the deaths
(Oppenheim et al., 2001). Therefore, we have much to learn about the role
of presumptively apoptosis-specific enzymes in embryos.

From these studies, it is apparent that cell death in the embryo is gov-
erned by gene action and that many of the cell-death-related genes have an
effect early in the developing embryo, indicating both the importance of their
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role in the correct implementation of cell death and the role of cell death in
the correct formation of the embryo.

Abnormalities in development can stem from mutations or environ-
mental factors that transiently affect the developing embryo. Production of
transgenic mice often leads to abnormalities in the embryo as mentioned
above, but many other factors can also lead to developmental abnormalities.
A number of investigators working on how teratogens including thalido-
mide, ethanol, neuroactive drugs, and chemotherapeutic agents such as
cyclophosphamide lead to abnormalities have found that a major effect is
the deregulation of pathways of normal cell death in the developing embryo
(Mirkes, 1985; Alles and Sulik, 1989; Zakeri, Quaglino, and Ahuja, 1994;
Zakeri and Ahuja, 1997; Little and Mirkes, 2002; Zhu et al., 2002).

FUNCTIONAL NEEDS OF CELL DEATH

DURING DEVELOPMENT

Cell death has been classified into several categories based on function or
evolution (Glücksmann, 1951; Ellis, Yuan, and Horvitz, 1991): Some cells
perhaps serve a prior evolutionary purpose, but provide no current func-
tion and undergo a phylogenetic cell death (Fallon and Simandl, 1978). Mor-
phogenetic cell death permits differentiation of a tissue to its final form
(Glücksmann, 1951; Hinchliffe, 1981). Histogenic cell death modifies a tissue
so that it acquires function, or enables the tissue to function differently from
a similar tissue type (Glücksmann, 1951). For example, three different pat-
terns of cell death occur in the somites of the developing embryo. These vari-
ations are dependent on the stage of the embryo and on the path that
migrating neural crest cells take (Jeffs and Osmond, 1992; Coucouvanis,
Martin, and Nadeau, 1995). Cell death may also occur in one sex as a means
of differentiating sexually dimorphic traits. For example, sexual differentia-
tion in vertebrates involves the hormonal control of cell death of reproduc-
tive structures such as the Müllerian and Wolffian ducts (Scheib, 1963).
Numbers of developing neurons substantially exceed that required and
therefore some are removed (Hamburger and Levi-Montalcini, 1949; Cowan
et al., 1984; O’Leary, 1987). There is less demand on DNA-encoded infor-
mation if the nervous system is wired by excess production and survival of
the best-wired rather than plans for specific wiring of each neuron. Cells may
be necessary at one stage of development and then no longer required, such
as the tadpole tail during metamorphosis (Kerr, Harmon, and Searle, 1974;
Lockshin, 1981). Some cells may be defective in shape or function such as
lymphocytes that have either failed to produce functional antigen-specific
receptors or produce autoantibodies, threatening an autoimmune attack on
the organism (Cohen, 1991; Golstein, Ojcius, and Young, 1991; McCarthy,
Smith, and Williams, 1992; Osborne, 1995). Therefore, cell death accounts for
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the deletion of cells that takes place in normal tissues. Where it occurs patho-
logically, it may serve an adaptive or homeostatic role (Walker et al., 1988).

TYPES OF CELL DEATH

Our understanding of cell death was clarified by the definition of apoptosis
by Kerr, Wyllie, and Currie (1972). Following a period of acrimony over a
binary distinction (between apoptosis and necrosis) Schweichel and Merker
(1973) attempted to classify cell death into at least three types, as defined by
high-resolution cytology, in developing embryos. They described three types
of “necrosis,” which we today recognize as apoptosis (Type I necrosis), lyso-
somal cell death (Type II), and necrosis (Type III). These were identified by
morphological criteria, as is described immediately below. The term “pro-
grammed cell death” originally referred to the existence of reversible steps
clearly leading to the destruction of the cell, operationally defined by exper-
iments. Today programmed cell death more specifically refers to defined
genetic pathways in cells but more loosely to apoptotic or other physiolog-
ical cell deaths. Likewise, the morphological appearance of the apoptotic cell
is now understood in more biochemical terms. These distinctions are elabo-
rated in the introduction and elsewhere. They are briefly summarized here
to provide relevance to the technical descriptions that follow.

In apoptosis, a dying cell loses its adherence for neighboring cells or
extracellular matrix, rounds up, and condenses. The chromatin in its nucleus
coalesces into one or a few masses along the nuclear membrane, while the
cytoplasm, dense by staining with dyes for light or electron microscopy, frag-
ments as the cell forms blebs that are ultimately taken up by phagocytes
(Figs. 1 and 2). Mitochondria are normal to shrunken in appearance rather
than dilated or swollen, but have depolarized and permitted the escape of
cytochrome c and a few other components. The characteristic appearance 
of the cytoplasm and nucleus results from the activation of preexisting 
caspases, which can cleave important components of the cytoskeleton and
nuclear matrix. DNase II-type endonucleases are activated or gain access to
the DNA and cut it between nucleosomes, producing fragments that are
identified as a ladder when the DNA is electrophoresed. This pattern of DNA
fragmentation is characteristic of apoptosis, but it may reflect failure to
degrade fragments further or failure to activate exonucleases rather than
specific activation of the endonuclease. Phagocytosis by professional phago-
cytes or neighboring cells occurs quickly, and the identifiably apoptotic cell
has often disappeared within 1 to 2 hours. The phagocytosis is mediated 
by the appearance on the external face of the cell membrane of phos-
phatidylserine, actively extruded from the internal face. Apoptosis is a very
common process and is seen in the majority of cell deaths, most typically in
dying cells that derive from mitotic cell lines and have relatively little cyto-
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plasm, such as lymphocytes and thymocytes. Most embryonic deaths are
apoptotic, but it is important to realize that both the conversion to apoptotic
morphology and the translocation of phosphatidylserine require energy
(Schlegel, Callahan, and Williamson, 2000). In situations in which energy
(ATP) is compromised, there are severe osmotic considerations (as in the
eggs of freshwater organisms), or cell death is so massive that phagocytes
cannot rapidly remove all the dying cells (toxicity or genetic problems,
perhaps also in regions of poor circulation such as bone), cells may begin to
die by an apoptotic mechanism but fail to complete it. In these cases, the cells
when recognized may have a very different appearance and the mechanism
can be misinterpreted.

Lysosomal (Type II) cell death is seen in large, quiescent, or postmitotic
cells that have massive cytoplasm, such as glandular tissues (insect glands
at metamorphosis, mammary epithelium), muscle, and differentiated
neurons. In these cells, the destruction of DNA is not an imperative as it
might be for, for example, a potentially mutated or virus- or plasmid-
carrying lymphocyte, while cytoplasm is a bulky mass that cannot be simply
shed. In these cells, many of the characteristic changes of apoptosis are
markedly delayed, and the cell undergoes substantial alteration well before
this stage. Most prominent is the appearance of large autophagic vacuoles,
lysosomal derivatives that consume the bulk of the cytoplasm. These appear
while the cell remains functional and, in the case of muscle, can retain its
resting potential (Lockshin and Beaulaton, 1979). Other lytic mechanisms
operate as well: Erosion of myofilaments in muscle can occur in these cells
external to autophagic vacuoles, most likely in proteasomes (Haas et al.,
1995). Autophagy is an intracellular substitute for phagocytosis. Finally, in
insects, when approximately 80% of the cytoplasm has been destroyed, the
cytoplasm condenses, the chromatin coalesces and marginates, elec-
trophoresis reveals the appearance of a DNA ladder, and the remnants of the
cell are phagocytosed as in classic apoptosis (Zakeri et al., 1993). Neverthe-
less, judging from the few reports extant, the apoptotic phase of death in
these circumstances amounts to approximately 10% of the period in which
the dying cell is identifiable, and most of the tests for cell death based on
characteristics of apoptosis will produce negative results (Jochová, Zakeri,
and Lockshin, 1997).

Necrosis is an uncontrolled death. If a cell encounters such severe insult
or sustains such severe injury that either its ATP-generating mechanisms or
the integrity of its permeability barriers is compromised—as might occur, for
instance, in infarct, sudden change in pH or osmolarity, or in the presence
of several toxins or poisons—then the cell is likely to lyse. The usual sce-
nario is that, in the absence of adequate mitochondrial function and effec-
tive ion pumps, the cell switches to glycolysis and accumulates lactic acid.
If the cell is not yet severely acidotic, the lactate is trapped within the cell
and acts as an osmotic attractant, pulling in water and causing the cell to
lyse. This lysis releases into the surrounding tissues many components
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including pyrogens and other elements that will, in vertebrates, attract mast
cells, leading to inflammation. Necrosis is frequently described as a multi-
cell phenomenon, as opposed to apoptosis as a single-cell phenomenon.
However, this description fails to address the situation in which a cell
attempts to undergo a dignified and self-effacing apoptosis, but because of
circumstances, cannot complete it before succumbing and reverting to
necrotic morphology. For instance, in the acutely toxic liver, cells most
exposed to the toxin (closest to the central vein) undergo necrosis. The more
peripheral cells may undergo apoptosis, or they may begin to undergo apop-
tosis but finally convert to necrosis. During maturation of bone, resident
chondrocytes appear to undergo necrosis, but this may be the outcome of
failure of phagocytes to reach them. In plants, there are several types of pro-
grammed cell death, including spontaneous deaths, for instance of flowers;
deaths activated through oxidative mechanisms or other stresses; deaths
induced by infectious agents, apparently as a defense mechanism; and
deaths induced by the hypersensitivity of this defense mechanism. In some
deaths, for instance, the maturation of tracheal elements, the expansion, and
finally collapse of the central vacuole trigger the prompt death of the cell,
perhaps by releasing lytic enzymes into the cytoplasm (Fukuda, 1996).
Claims for internucleosomal cleavage of double-stranded DNA (Danon 
et al., 2000) or potentially caspaselike proteases (Lam and del Pozo, 2000) are
disputed and the morphologies in general do not resemble either apoptosis
or autophagic cell death. Plant cell death is more fully described in the
chapter by Mittler and Cheung in this volume.

METHODS USEFUL TO STUDY CELL DEATH

IN DEVELOPMENT

Unlike cells in culture, embryos present a challenge for evaluating cell death.
Embryonic development represents a dynamic and orchestrated interplay
between cell movement, division, differentiation, and death. The cells
change constantly in state of differentiation, signals, and position. This com-
plicates analyses in that one has cells in different stages of cell cycle and
doing different things next to each other. Although many times in develop-
ment a group of cells may die in close proximity to each other, it is also pos-
sible that individual cells die within a group of otherwise healthy cells.
Therefore, many of the methods used in the determination and analysis of
cell death for cultured or normally suspended cells (lymphocytes represent
the latter category) are not useful or are more difficult to interpret when used
in the developing embryo. Although the variety of cells in a tissue and rel-
ative paucity of cells of interest in an embryo make the detection of cell death
challenging, for the same reasons embryonic development is an excellent
system in which to study the signaling systems that regulate an individual
cell’s decision to die. For instance, the failure of interdigital death and the
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consequent webbing of the Hammertoe mouse mutant result not from muta-
tion of a cell death machinery but rather from a failure of the signaling mech-
anism (Singh Ahuja, James, and Zakeri, 1997; Zakeri and Ahuja, 1994; Zakeri,
Quaglino, and Ahuja, 1994b). The advantage in studying cell death in the
embryo is that one can identify the dying cells in their spatial and temporal
context. For this reason, a number of methods are used to deal with the in
situ examination of either complete embryos or embryonic sections on slides.
There are several commonly used approaches [these methods have been
further described in a review paper (Zakeri and Lockshin, 2002)]. We aim
here to present some of the methodology used and to provide some detail,
although additional details can be found in the references cited. Images of
results using these several techniques are illustrated in Figs. 1 and 2. More
than one analytical method should be used to assure correct evaluation of
the type or number of dead cells.

DETECTION OF CELL DEATH BY MORPHOLOGY

Due to the spatial restriction of deaths of interest in embryos, one of the most
useful methods is microscopy. Since for apoptosis at least the morphology
is frequently unequivocal, standard techniques for the preparations gener-
ally suffice.

DETECTION OF CELL DEATH BY LIGHT MICROSCOPY

Many stains can be used to detect dead cells by looking for condensed cells
in which both the cytoplasm and the condensed nuclei are more darkly
stained than the live cells (Fig. 1a). The sensitivity of this method is rather
low, but it is useful for sectioned tissues and embryos. There are some vari-
ations to the specific steps to use, but generally the method is as follows:
embryos are fixed, frozen in OTC® (Miles Laboratory, Elkhard, IN, a cryo-
stat sectioning medium), or paraffin-embedded and sectioned. Sections are
brought to room temperature from -70°C, or paraffin-embedded tissue sec-
tions are deparaffinized and stained in filtered Harris Hematoxylin (Sigma)
for 3 minutes. Slides are then washed in tap water three times for 1 minute
each and mounted with Crystal Mount® (Fisher) (Zakeri and Ahuja, 1994).
Since embryos contain substantially more water than adult tissues, adequate
preservation requires close attention to osmolarity and salt balance of the
several solutions.

ELECTRON MICROSCOPY

Electron microscopy has been one of the most informative methods to iden-
tify cell death as well as to examine the state of dying cells and the status of

38 II. BIOLOGICAL ROLE OF CELL DEATH IN DEVELOPMENT AND HOMEOSTASIS



2. CELL DEATH: SHAPING AN EMBRYO 39

(a)

(d )

(g) (h) (i )

(e) (f )

(b) (c)

FIGURE 1. See color insert. Examples of several techniques to illustrate cell death or
apoptosis. (a) Light microscopy image of haematoxylin and eosin staining of inter-
digital region of a day 13.5 embryonic mouse hand palette. Darkly stained cells
(arrow) are easily distinguished but must be examined at high magnification to
confirm that they are not metaphase cells. (b) Apoptotic nuclei (arrows) are readily
recognized in the vacuoles of phagocytes (M) in this electron micrograph. (c) Nile
blue sulfate is readily taken up into dead cells (actually vacuoles of phagocytes) in
the interdigital regions of a day 12.5 embryonic mouse hand palette. Some of the most
prominent regions are indicated by arrows. (d) Acridine orange penetrates the stage
17 zebrafish eye. Dead cells in the lens are easily identified by green fluorescence.
The phase and fluorescence images were overlaid. (e) Annexin V coupled to a fluor
marks the exposed phosphatidylserine on one cell of a mouse blastocyst, as is readily
seen by fluorescence using confocal microscopy. The bright green cell is annexin-pos-
itive. (f) DNA fragmentation detected by gel electrophoresis using conventional gel
(left) and end labeling of the fragmented DNA (right). In both figures, there are two
control lanes to the left, and the rightmost lanes are DNA from cells undergoing apop-
tosis. The ladder seen at lower molecular weights represents fragments of DNA dif-
fering in size by 180bp, indicating that the DNA was cut between nucleosomes. (g)
The TUNEL technique, here using the brown DAB-peroxidase reaction revealing
dead cells, marked by arrows, in the interdigital regions of a day 13.5 mouse hand
palette. (h) DNA fragmentation using TUNEL showing cell death (dark brown cells,
TUNEL positive) in the seminiferous tubules of the adult testis. (i) DNA fragmenta-
tion using TUNEL showing cell death (dark brown cells) in granulosa cells of atretic
follicles of an adult mouse ovary.



different organelles. Typically, mitochondria and endoplasmic reticulum
shrink and condense in apoptosis, and the nucleus either rounds or blebs 
as the chromatin condenses and marginates. In autophagic cell death, the
expansion of autophagic vacuoles is prominent, whereas in necrosis mito-
chondria and endoplasmic reticulum typically swell. The difference between
apoptosis and necrosis is described in the introductory chapter, and between
apoptosis and autophagic death in the chapter by Bursch et al. Again, there
are some variations in the specific method of choice, but basically the steps
do not vary much. In brief, samples are fixed in 2.5% glutaraldehyde in 1¥
PBS at 4°C for several days, and postfixed in 1% osmium tetroxide in 1¥ PBS
at 4°C for 1 hour. They are then dehydrated in graded ethanols and propy-
lene oxide, and finally embedded in Spurr resin. Semithin sections are cut
with an ultramicrotome and then can be stained with toluidine blue and
observed by light microscopy. These semithin sections provide an excellent
overview of cell death in the tissue. Selected areas cut in thin sections are
collected on copper grids and stained with uranyl acetate (5% in 70%
ethanol) for 15 minutes and then in lead citrate for 10 minutes. The stained
sections are examined with an electron microscope (Zakeri et al., 1993).
Phagocytosed apoptotic cells are illustrated in Fig. 1b.

USE OF CELLULAR CHANGES AS MARKERS OF CELL DEATH

As is described in the introduction to this book, apoptotic cells may be
encountered very infrequently even when there is substantial tissue erosion.
Thus, techniques that highlight apoptotic cells against a negative back-
ground are preferable to those attempting to locate apoptotic cells by appear-
ance alone. Most of the methodology takes advantage of altered organelle
function or integrity. These alterations pinpoint molecular and physiologi-
cal or biochemical alterations within dead or dying cells. They include: in
vivo staining of live embryos by vital dyes, and detection of one or more of
the following: fragmented DNA; externalized phosphatidylserine; lysosomal
activity; and phagocytes, antibody-based or fluorogenic substrate-based
techniques to detect activated proteases as opposed to inactive proenzymes
or deregulated gene expression. Some laboratories attempt to assess the like-
lihood of cell death by measuring pro- and antiapoptotic factors such as bcl-
2, bax, Fas, and Fas ligand. In the reticuloendothelial system, developmental
up- or downregulation of these components may accompany the changing
sensitivities of the cells to the level of growth factors as they differentiate.
For other cells, however, there is little indication that the fate of the cell is
decided by the adjustment of these components as opposed to the signaling
mechanism. Thus, these measurements may not always be helpful. Also, for
embryos at least, mixed-cell analyses such as flow cytometry and elec-
trophoresis of DNA are of restricted interest unless they can be scaled down
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and used for specific tissues after dissociation of the cells from a given tissue
and creation of a cell suspension.

DETECTION OF CELL DEATH BY VITAL STAINING

Vital stains have long been useful for many developing amniotes such as
chicks and mice. The advantage of this method is that it is fast and one can
examine cell death in three dimensions with the embryo. However, there are
limitations in that one needs a living embryo and the number of detectable
dead cells will increase as the embryo dies in culture, leading to false posi-
tive results unless the timing and temperature are carefully regulated. For
this analysis, fetuses are freed of extraembryonic membranes and stained in
a 0.01% solution of Nile blue sulfate (NBS, Sigma) in 1¥ PBS, for 30 minutes
at 37°C with 5% CO2. The dead or dying cells stain dark blue when observed
under the microscope, as is illustrated in Fig. 1c. For deep layer observation,
it is possible to freeze the embryo in OTC® after vital staining, section, bring
to room temperature, cover with a water-based embedding medium such as
Crystal Mount® (Fisher), and observe under the microscope. One can detect
the deep layer cell death with the Nile blue staining that remains in the cells.
This stain indicates the acidic compartments of the cells such as lysosomes,
which may be activated in the dying cell, engulfing cell, or both. This method
has been used for chick and mouse embryos (Alles and Sulik, 1989; Zakeri,
Quaglino, and Ahuja, 1994).

The acridine orange technique when properly used can also be very
effective. Acridine orange is classified as a cell permeant but it is only weakly
so, and it penetrates nuclei very poorly in healthy cells. Thus, living cells flu-
oresce a pale green, reflecting the 460 excitation and 650 emission peaks for
RNA (it is more orange if the cells contain large amounts of RNA), while at
low magnification dead cells fluoresce more brightly, depending on the
amount of RNA in the cell, and reflecting the higher penetrance of the dye
and its 500 excitation and 526 emission peaks for DNA. With appropriate
optics, acridine orange staining can be easily seen, as is illustrated in Fig. 1d.
At higher magnification the shape of the nuclei can be readily seen. This
method is most effective for embryos at early stages of development, or
transparent embryos with few cell layers as penetration of the dye may be
a problem. Acridine orange can penetrate dying cells and bind to the DNA
much more readily that it can in living cells. Basically, the embryos are sub-
merged in acridine orange (15mg/mL) solution in water for 1 hour at 30°C
and rinsed well. The fluorescence can be seen using general-purpose filters
in a fluorescence microscope or better with a confocal microscope.

Commercial kits exploit similar possibilities. For instance, several dyes
such as calcein AM are cell-permeable and not fluorescent, but inside the cell
are cleaved to fluorescent ionic compounds, which are therefore trapped
within living cells. Ethidium homodimer I, on the other hand, penetrates
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living cells poorly, but penetrates apoptotic or necrotic cells and stains
nucleic acids. Live cells therefore fluoresce green and dead ones red-orange.
These commercial kits, such as the Live-Dead® kit from Molecular Probes,
do not distinguish between apoptotic and necrotic cells. They also may not
penetrate whole embryos well and are most effective in cultured cells.

DETECTION OF EXPOSED PHOSPHATIDYLSERINE

The use of annexin V labeled with a fluor is usually described as a technique
best suited to flow cytometry, but if living cells or embryos can be obtained
and examined with a good fluorescence microscope or preferably a confocal
microscope, one can detect apoptotic cells as brilliantly fluorescent cells in a
dark background. We have had excellent results with both mammalian
(mouse) embryos and zebrafish embryos. The penetration of the protein 
into a whole embryo can be a problem, and false negatives are possible 
even where some positive cells are detected. Alternatively, annexin V can
theoretically penetrate and stain ruptured cells to produce false positives,
although in practice this is either uncommon enough or so obvious (i.e., the
entire embryo is stained) that it is not a major problem. As is the case for
vital staining, the embryo needs to be alive when using this method. The
embryo is placed in a diluted mixture of annexin V as described by the
vendor for 10 minutes. The staining is visualized by confocal microscopy, as
is the case for Fig. 1e.

MEASUREMENT OF FRAGMENTED DNA BY
GEL ELECTROPHORESIS

As stated above, one of the hallmarks of apoptosis is the regulated frag-
mentation of DNA. To detect this fragmentation, different methods can be
used. The method most frequently used for the detection of fragmented
DNA is gel electrophoresis to separate the fragmented DNA. This method
works extremely well for cultured or freely suspended cells such as lym-
phocytes taken from fresh blood or ascites fluid. However, this is not the
method of choice for the study of cell death in most developing systems. It
can be used in situations when an entire tissue or organ more or less syn-
chronously undergoes cell death such as is seen in metamorphosing insect
or frog tissues. In situations such as interdigital death in the limbs of
mammals or chicks, if one can carefully isolate the area undergoing massive
cell death, this method may be used. However, the efficiency of detection of
the signal is not very good—one needs minimally 30% of the cells at the
appropriate stage of apoptosis (Zakeri et al., 1993). This method can work if
embryonic tissues are induced to die, as may be the case when embryos are
exposed to cyclophosphamide as a model teratogen, and 85 to 90% of the
cells die (Zhu et al., 2002). For this method, the tissue is dissected and imme-
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diately digested with 0.6mg/ml proteinase-K (Jersey Lab and Glove Supply)
in 50mM Tris buffer with 100mM EDTA and 0.5% SDS) overnight at 37°C.
The mixture is treated with 33mg/mL RNase A (Jersey Lab and Glove
Supply), extracted with saturated phenol (Boehringer Mannheim), and
loaded onto 2% agarose gels together with ethidium bromide. To increase
the sensitivity of the detection, one can enrich for the small molecular weight
DNA by lysing the tissue in lysis buffer (0.2% Triton X-100, 10mM Tris-HCl,
and 10mM EDTA, pH 7.5). The cell lysate is then held on ice for 15 minutes
and centrifuged at 4°C at 12,000 ¥ g for 20 minutes. The supernatant con-
tains the low molecular weight DNA and the pellet contains the high mole-
cular weight DNA. The supernatant is incubated for 1 hour with RNase and
then extracted twice with phenol : chloroform: isoamyl alcohol (24 :24 :1) and
once with chloroform: isoamyl alcohol (24 :1). The DNA is precipitated with
300mM NaCl and 2.5 volumes ethanol at -20°C overnight. The fragmented
DNA is visualized by gel electrophoresis. After electrophoresis the gels are
viewed and photographed under UV light (Fig. 1f, left; Karasavvas et al.,
1996). In some cases, either because the number of dying cells is low or
because DNA fragmentation occurs very late (Zakeri et al., 1993), one cannot
detect the DNA fragmentation even with this extraction and enrichment pro-
cedure. To increase this enrichment, one can use tritiated thymidine to label
the 3¢ end of the fragments and then run the gel and expose it to film or an
electronic sensor. In this way, the sensitivity is increased at least 10-fold, as
is illustrated in Fig. 1f, right (Zakeri et al., 1993; see also Karasavvas et al.,
1996).

THE TUNEL TECHNIQUE

TUNEL is an acronym for terminal deoxyuridine nucleotide end labeling,
and as one might expect, in principle any free 3¢ end of DNA could be
labeled. The basic idea is to identify cells with fragmented DNA. Indeed, it
is possible to see TUNEL labeling in necrotic cells (Frankfurt et al., 1996) and
in S-phase mitotic cells, particularly those of high chromosome number
(Halaby, Zakeri, and Lockshin, 1994). The distinction appears to be that most
DNA fragments are extracted from necrotic cells and the number of Okazaki
fragments in S-phase cells is much less than the number of free ends in an
apoptotic cell. Thus, TUNEL labeling is relative, although usually sufficiently
differential to be reliable as an assay. Thorough positive and negative con-
trols are a must. A positive control would be to subject the slide to DNase
before the TUNEL technique, while the negative control would be the omis-
sion of terminal transferase. This technique, which relies on the action of
exogenous terminal transferase to endogenous fragmented DNA, can be
used for frozen sections and paraffin sections, fixed by a variety of tech-
niques including ethanol/acetic acid. Several kits are available. We have
used a nonisotopic DNA end labeling in situ technique, employing digoxi-
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genin-11-dUTP and terminal transferase [ApopTagTM Peroxidase Kit, Oncor,
Gaithersburg, MD (Zakeri, Quaglino, and Ahuja, 1994; Zakeri and Ahuja,
1994) or TUNEL POD (Roche Diagnostics, Mannheim, Germany]. Briefly,
sections are postfixed in ethanol: acetic acid (2 :1) for 5 minutes at -20°C and
washed in 1¥ PBS twice for 5 minutes each. Endogenous peroxidase is
quenched with 0.1% hydrogen peroxide in 1¥ PBS for 20 minutes, and the
sections are then rinsed in 1¥ PBS twice for 5 minutes. Sections are equili-
brated in equilibration buffer for 20 minutes before the addition of reaction
buffer containing TdT (terminal deoxynucleotidyl transferase) enzyme and
digoxigenin-11-dUTP or FITC-DUTP. The reaction is stopped and the label
is detected using the appropriate detection system. Slides are counterstained
and mounted with Permount® for visualization. The fragmented DNA
within the dying cell is detected as a dark red to brown staining in the cell,
as is illustrated in the interdigital cells of a mouse embryo (Fig. 1g, h, and i).

The staining sometimes appears on the surface of the cell rather than
within the nuclei. This method detects only cells in late apoptosis, when the
DNA fragments. Cells at the early stage of cell death or cells in which the
nuclei are not in the plane of section may not be identified.

COMET ASSAYS

In situations where few cells are available but they can be suspended or oth-
erwise freed from the matrix, the comet assay is worth exploring. Like the
TUNEL assay, it depends on the retention by apoptotic cells of fragmented
DNA, but in this instance individual cells are embedded in agar and sub-
jected to electric fields. Fragmented DNA can be forced from the cell and,
when stained with acridine orange or Hoechst dye, it appears as a comet tail
to the cell’s comet head. Intact DNA moves much more slowly, if at all, and
the much smaller fragments from necrotic cells diffuse rapidly from the cell
(Benitez-Bribiesca, 1998). This technique is useful where small but adequate
numbers of cells can be isolated for study.

DETECTION OF LYSOSOMES AND AUTOPHAGIC VACUOLES

For classically apoptotic cells, cytochemical examination of lysosomal
enzymes highlights phagocytes, which can be identified as containing 
apoptotic cell fragments. In other situations, autophagic cells can also be
highlighted by the density and size of their autophagic vacuoles. Acid phos-
phatase is a simple and reliable screening enzyme that survives cryostat sec-
tioning and even, with care, paraffin embedding. It is readily assayed by the
use of naphthol-based substrates that couple with fast garnet to form insol-
uble tetrahydrofuran compounds. Other lysosomal enzymes can be assayed
using comparable substrates. However, not all phagocytes or phagocytic or
autophagic vacuoles test positive for acid phosphatase, and other lysosomal
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enzymes, such as b-glucuronidase, could be tested. Positive acid phos-
phatase results are illustrated in Fig. 2a.

This assay is useful in many situations, as the role of autophagy is 
frequently seriously underestimated. To give three examples: Involution of
mammary epithelium is often used as an example of apoptosis, but
autophagy is well documented as a major process in these cells (Helminen,
Ericsson, and Orrenius, 1968; Helminen and Ericsson, 1970, 1971); likewise,
involuting prostate epithelium is a classic example of apoptosis, but a major
upregulated gene in both involuting prostate and involuting mammary
gland is the lysosomal enzyme cathepsin B (Guenette and Tenniswood,
1994); and, lastly, although caspaselike enzymes are highly conserved, have
been identified in Drosophila, and are considered to be major players in apop-
tosis in Drosophila embryos (Dorstyn, Kinoshita, and Kumar, 1998; Dorstyn
et al., 1999a, b), the death at metamorphosis of the labial glands of the hawk-
moth Manduca sexta and apparently of the salivary glands of Drosophila is
mediated by proteases other than caspases (Facey and Lockshin, in prepara-
tion). Autophagy is prominent in other situations as well (Klionsky and Emr,
2000; Stoka et al., 2001).

To measure lysosomal activity, one can analyze acid phosphatase by the
use of a kit (Sigma, 180-A) among other lysosomal enzymes (Zakeri,
Quaglino, and Ahuja, 1994). Frozen sections are fixed in formaldehyde, 
postfixed with citrate (pH 3.6)-acetone-37% formaldehyde (13 :33 :4) for 
30 seconds, washed in dH2O, and treated with naphthol AS-BI phosphate
and fast garnet stain for 1 hour at 37°C. Slides are washed, air-dried, 
counterstained with methylene blue, and mounted with Crystal Mount
(Fisher). The acid phosphatase activity is detected as a distinct red focal 
precipitate. Paraffin embedding is also satisfactory, although the activity of
acid phosphatase, measured in deparaffinized sections brought to H2O,
is substantially lower.

DETECTION OF PHAGOCYTES

Apoptotic cells persist very transiently, primarily because they are readily
identified as prey for professional or amateur phagocytes. Both types of
phagocytes may be readily identified by a cell surface marker recognized by
a commercially available antibody. Although this technique detects phago-
cytes, not apoptotic cells, the phagocytes are large and their vacuoles can be
readily seen at higher magnifications. The cell boundaries of a macrophage
are labeled in Fig. 2b. Counterstaining or dual labeling frequently reveals,
within the vacuole, dense blebs of cytoplasm or dense nuclear fragments
containing highly condensed and marginated chromatin. Both types of inclu-
sion reveal the fate of an apoptotic cell, although it is usually not possible to
make any assumption about the number of cells consumed by a phagocyte
or the number of phagocytes containing parts of a single cell. However, one
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can use this marker to assess the level of cell death and/or the fate of dead
cells in developing systems.

It is also possible to see situations in which the dead or dying cell is not
engulfed by the phagocytic cells. This occurs in some abnormal situations
such as that caused by an insult in which the level of cell death is very high,
that is, cyclophosphamide-treated embryos (Zhu et al., 2002).

Phagocytic cells are detected by standard immunohistochemical proce-
dures. Frozen sections are brought to room temperature and rehydrated.
Endogenous peroxidase is inactivated by treating sections with hydrogen
peroxide [1 H2O2 (30%, Sigma) :2 H2O]. Nonspecific binding sites are blocked
with 5% dry milk, and primary antibody F4/80 (Serotec; Hume, Perry, and
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Gordon, 1984) diluted at 1/10 in 1¥ PBST-gelatin is applied for overnight
incubation at 4°C. A secondary antibody, a peroxidase labeled F(ab¢)2 frag-
ment of goat antirat IgG (H + L) at a dilution of 1/50 (Jackson Immunolog-
ical) in 1¥ PBST-gelatin, is applied and slides are incubated for 2 hours at
room temperature (RT). After washes immunoreactivity is visualized by
DAB staining. Slides are counterstained with hematoxylin (Sigma) and
mounted with Crystal Mount® (Zakeri, Quaglino, and Ahuja, 1994).

DETECTION OF DEREGULATION OF CERTAIN GENE

PRODUCTS DURING CELL DEATH

A characteristic of truly programmed cell death, defined in 1966 for meta-
morphosing tadpoles (Tata, 1966), in 1969 for insects (Lockshin, 1969), and
later for glucocorticoid-treated thymocytes (Makman, Dvorkin, and White,
1966; Munck, 1971) and trophin-deprived neurons (Oppenheim et al., 1990)
is a requirement for protein synthesis. The required proteins are not yet
known and therefore not identified as members of any specific pathway of
apoptosis. This situation is common in embryonic or developmental situa-
tions. Species differences, as between web-footed and other birds, and abnor-
malities such as cleft palate or hammertoe also indicate that cell death is
under genetic regulation (Singh Ahuja, James, and Zakeri, 1997), and, of
course, studies on nematodes documented several genes both responsible
for cell death and for preventing it. Genetic regulation can theoretically be
manifested in the differential expression of new gene product, differential
expression of already present gene products, or differential activation or
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FIGURE 2. See color insert. Further examples of techniques to illustrate cell death or
apoptosis, continued. (a) Interdigital region of the mouse hand palette has been incu-
bated in the presence of a naphthol AS-BT phosphate substrate. The magenta-to-
purple color marks high acid phosphatase activity. (b) F4/80 antibody identifies the
cell membrane of a macrophage, as indicated by the arrows, in a mouse embryo hand
palette. (c) In situ hybridization for bcl-2 message in a developing mouse digit reveals
substantial labeling over the cartilaginous areas, but there is no difference in the level 
of labeling in the interdigital region in which cell death is present compared to the
adjacent regions, suggesting that there is no change in the level of Bcl-2 in this 
region. (d) Immunohistochemistry reveals upregulation of transglutaminase protein
(arrows) in dying cells in a mouse hand palette. Transglutaminase is often a good
marker for cell death (Piacentini et al., 1991). (e) Although most proteins do not
change much in amount, immunohistochemistry can reveal activation of enzymes
such as Cdk5, illustrated here (arrows), from a day 13.5 mouse embryo hand palette.
(f) Double staining of DNA fragmentation (TUNEL, green) and Cdk5 protein (red)
merged (yellow) in a confocal image of a section of the interdigital region of a day
13.5 mouse hand palette. (g) Using immunohistochemistry to show the activation of
caspase 3 using an antibody specific to the active form. The dark staining reveals the
activation of caspase 3 in the gestation day 13.5 mouse liver.
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silencing of gene products. To examine these possibilities during cell death
in developing systems, efforts have focused on the regulation of known cell-
death-related genes as well as unknown genes. It is sometimes possible to
observe a changed level of transcription by in situ hybridization (see Ahuja,
Tenniswood, and Zakeri, 1996 for detailed methodology).

In most (nondevelopmental) instances, the commitment to die is not
accompanied by a transcriptional or translational change, but rather by the
activation of a proenzyme or otherwise dormant enzymatic activity. In fact,
in many situations, particularly those not involving physiological cell death
mechanisms in embryos, the program is preinstalled in the cell: Protein syn-
thesis is not required and apoptosis may even be induced by treatment with
the protein synthesis inhibitor cycloheximide. Given this situation, mea-
surements of transcriptional or translational changes are subject to skepti-
cism. Most changes, if they involve changes in the machinery as opposed to
changes in environment (pH, ionic composition) that alter the activity of
enzymes, must result from activation or inactivation of enzymes. Some of
these changes are known and should be investigated.

DETECTION OF mRNA BY IN SITU HYBRIDIZATION

The basic method for in situ hybridization can be found in Ahuja, 
Tenniswood, and Zakeri (1996) and Singh Ahuja, Zhu, and Zakeri, 1997). The
in situ hybridization is described in the same reference. Paraformaldehyde
postfixed sections are incubated with proteinase K in PK buffer (1M Tris, 
0.5M EDTA). After dehydration in graded ethanol, sections are hybridized
with hybridization buffer and the probe in 10mM DTT. Sections are then
washed in 5¥ SSC with 10mM DTT, in 50% formamide in 2¥ SSC, in 
1¥ washing solution [23.4g NaCl, 10mL 1M Tris (pH 7.5) with 5mM EDTA],
in 20mg/mL RNase A in 1¥ washing solution, in 1¥ washing solution, in 
2¥ SSC, and 0.1¥ SSC. Finally, the dehydrated sections are dipped in photo-
graphic NTB-2 emulsion (Kodak) and exposed for 1 to 2 weeks, after which
they are developed, counterstained with 0.2% toluidine blue, dehydrated,
and mounted with Permount. As illustrated in Fig. 2c, one can identify cell
populations that express a specific gene, in this case Bcl-2.

DETECTION OF CHANGES IN LEVELS OF PROTEINS OR
ACTIVATION OF ENZYMES

Many changes that occur in dying cells involve posttranslational changes
such as aggregation or proteolytic cleavage. These changes have been
detected electrophoretically as a decrease in molecular weight, for instance
as in the conversion of a procaspase to an active caspase or cleavage of a pre-
sumptive caspase substrate. Such procedures are typically not applicable to
normally developing embryos. However, immunohistochemistry has often
proved useful in revealing changes in the amounts of active forms of several
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apoptosis-related proteins such transglutaminase (Fig. 2d) or Cdk5 (Fig. 2e).
Another example is an antibody, which recently became available through
commercial sources (Cell Signaling Technology, Beverly, MA; New England
Biolabs, Beverly, MA), that is purported specifically to recognize activated
caspase 3 (Fig. 2g). Another antibody is purported to identify free nucleo-
somes and can be used in an ELISA procedure, again on the assumption that
there are sufficient numbers of cell deaths to detect. Immunohistochemical
techniques have also demonstrated an association of proteins previously
associated with apoptosis, such as cyclin-dependent kinase 5 (Qi et al., 1995;
Zhu et al., 2002). The association, detected primarily by immunohistochem-
istry, is a posttranslational change (Singh Ahuja, Zhu, and Zakeri, 1997; Zhu
et al., 2002).

Another technique of some interest is the detection of proteolytic activ-
ity in living cells by the use of cell-permeant fluorogenic substrates. The flu-
orescent cleavage product is ionic and remains trapped at least through the
early phases of apoptosis (Komoriya et al., 2000). The one most commonly
used is a substrate for caspase 3. Caspase 3 is the major effector caspase,
meaning that it is activated by an initiator caspase (caspase 8 or 9, them-
selves resident in cells as proenzymes) and digests major intracellular com-
ponents of the cytoskeleton and nuclear matrix. Although they have not 
yet been used extensively for embryos, these cell-penetrant fluorogenic 
substrates are promising. In preliminary experiments we have seen that the
fluorogenic substrate can identify in situ cells dying in zebrafish embryos.

These techniques can be used to assess apoptosis in abnormal situations,
whether locally as a result of mutation (e.g., hammertoe mutation in mice—
Zakeri, Quaglino, and Ahuja, 1994a) or massive as a result of treatment with
a strong teratogen such as camptothecin (Mirkes, 1985) or an inducer of
apoptosis such as cycloheximide (Hensey and Gautier, 1997). One may also
learn in a generic manner from knockouts, as for instance in the case of a
caspase-9 knockout in mice although, as mentioned above, the phenotype
may be more complex than anticipated (Oppenheim et al., 2001).

IMMUNOHISTOCHEMISTRY AND DNA FRAGMENTATION
DOUBLE LABELING

Fluorescence detection of DNA fragmentation and Cdk5 expression can be
used as in Singh Ahuja, Zhu, and Zakeri (1997) and Zhang et al. (1997). 
Sections are processed according to the instructions for the Apoptag® kit
(Intergen, Purchase, NY) with FITC fluorescein labeling, followed by two
washes with PBST. We have used primary anti-Cdk5 antibody at a final 
concentration of 1mg/mL with secondary biotinylated antibody and finally
have incubated the slides with cy3-conjugated IgG mouse antibiotin (Jackson
Immuno Research Laboratory, West Grove, PA) for 30 minutes. The slides
are mounted with 90% glycerol. DNA fragmentation is seen with FITC as
green and the Cdk5 as detected by cy3 is red.
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CONCLUSIONS

Cell death is a prominent part of development and historically has been the
source of ideas such as that of programmed cell death, the existence of cell
death genes, a cell death pathway, and the role of caspases. The study of cell
death in embryos could produce much more, including an understanding of
the subtle mechanisms controlling patterning of cell death and the impor-
tant cell-to-cell and tissue-to-tissue interactions as well as the molecules
defining the ability to undergo apoptosis, to name two obvious examples.
Limitations include the small size and regional specificity of embryos. The
most functional techniques for studying embryonic cell death are primarily
microscopic; other techniques are possible following microsurgery. Genetic
analysis using knockout or overexpression systems is sometimes limited 
by the ability of embryos to make use of redundant pathways, but has 
nevertheless provided much information about the function of cell death.
Transiently controlled alteration of expression is likely to produce more
meaningful results. Future researchers will hopefully exploit the unique 
possibilities in embryos to lead us to a more profound understanding of 
both embryonic development and the mechanisms of cell death.
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CASPASE-INDEPENDENT MECHANISMS OF DEATH,

THE CASE FOR NONANIMAL MODELS,

AND THE CHOICE OF DICTYOSTELIUM

We animals are the exception. Not that animals are the only beings to exhibit
cell death; far from it, cell death pervades life, and can probably be found,
provided it is looked for, in every multicellular organism of every kingdom
of life. However, animals alone (Uren et al., 2000) exhibit a caspase-
dependent mechanism of death (Ellis and Horvitz, 1986), which translates
morphologically into apoptosis (Kerr et al., 1972).

Animal cells can also harbor caspase-independent mechanisms of cell
death, leading to nonapoptotic, necrotic (Fiers et al., 1999; Searle et al., 1982),
or vacuolar (Clarke, 1990; Schwartz et al., 1993; Zakeri et al., 1995) cell death.
Such underlying mechanisms can surface in particular if and when caspase
activation is impaired or prevented, be it for experimental (Vercammen et
al., 1998), genetic (Chautan et al., 1999), or pathological reasons such as 
infections. Indeed, some pathogens can encode molecules interfering with
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caspase activation (Bump et al., 1995; Clem and Miller, 1994; Hawkins et al.,
1996). Thus, caspase-independent cell death may well occur in pathologi-
cal situations. This calls for convenient methods, faster than electron
microscopy, equivalent to the TUNEL technique for caspase-dependent cell
death, to detect this sort of cell death. However, no such method is currently
available, which stems from a general lack of knowledge as to the mecha-
nisms of caspase-independent cell death, which in turn calls for further
efforts to elucidate these mechanisms.

In which experimental model should one study caspase-independent
mechanisms? Since genuine caspase-encoding genes have been found only
in animals (Uren et al., 2000), it follows that cell death outside the animal
kingdom must be based on caspase-independent mechanisms. It is conceiv-
able that caspase-independent mechanisms of cell death might be conserved
in evolution, and that some of these mechanisms could be shared between
nonanimals and animals. Establishing bases of cell death in nonanimals
might thus provide helpful hints as to caspase-independent mechanisms of
cell death in us. Which nonanimal model might then be of convenience, in
particular of genetic convenience? Among several appealing possibilities
(such as the Alga Volvox; Tam and Kirk, 1991), the protist Dictyostelium
discoideum strikes us as especially promising.

Dictyostelium seems to have emerged in evolution after divergence of the
kingdom Plantae and before individualization of the kingdoms Animalia
and Fungi (Baldauf et al., 2000). Demonstration of a common cell death
mechanism between this organism and some of the higher eukaryotes would
be a strong argument for a degree of generality of this mechanism. Also, the
study of cell death occurring during Dictyostelium development should be
facilitated by the relatively simple pattern of this development: Upon 
starvation, isolated Dictyostelium cells aggregate, differentiate, and mor-
phogenize into 1 to 2mm high multicellular fruiting bodies. Each of these
contains a mass of spores supported by a stalk. Cells in the stalk resulting
from starvation-induced Dictyostelium development have been considered
dead on the basis of nonregrowth when these cells were incubated in a rich
medium (Whittingham and Raper, 1960). This developmental cell death can
be mimicked in vitro using Dictyostelium discoideum mutant cells HMX44A
that, upon starvation and the addition of DIF, differentiate as a monolayer
from vegetative to “stalk” vacuolated dead cells (Kay, 1987; Cornillon et al.,
1994), thus facilitating the isolation of dying Dictyostelium cells for study. The
genome of Dictyostelium is small (~3.4 ¥ 107 base pairs; about 100-fold smaller
than that of higher eukaryotes), its sequencing is currently approaching com-
pletion, and it is haploid. Genome haploidy makes it relatively easy to 
generate and select mutants of function-associated genes and to identify the
latter (Kuspa and Loomis, 1992; Loomis, 1987; Kuspa et al., 1995). Because
of the temporal separation between vegetative growth and development,
developmental mutants (such as those related to cell death) can be propa-
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gated under vegetative conditions, thus behaving like conditional mutants
(Loomis, 1987). Finally, and more trivially, Dictyostelium cells can be grown
in large quantities on inexpensive media, are robust, and have been a
popular model system for the biochemical and physiological analysis of
signal transduction for many years. Wild Dictyostelium, which are found in
decaying leaf litter, feed on bacteria. While the initial laboratory strains
required bacteria to feed on, axenic strains have been derived, which greatly
facilitates in vitro work.

Altogether, one proposes to analyze cell death in an organism phyloge-
netically relatively distant from the usual models used to study cell death,
simpler, and endowed with at least equivalent genetic advantages. This
might allow one to define molecular bases of cell death, which might be
experimentally accessible in this organism more than in others.

We wish here, after a brief survey of the main features of Dictyostelium
cell death, to describe in some detail a genetic approach aimed at defining
its molecular bases, to list the main results obtained, and to critically assess
this approach in comparison with similar attempts in other organisms.

MAIN FEATURES OF DICTYOSTELIUM CELL DEATH

Developmental cell death in Dictyostelium is a caspase-independent and mor-
phologically vacuolar cell death. Let us consider in more detail occurrence,
caspase independence, and phenomenology, respectively.

Although Dictyostelium cells have been observed to die also at the uni-
cellular stage when constrained (Tatischeff et al., 2001), to focus on naturally
occurring cell death, we investigated only developmental cell death, that is,
cell death observed in the stalk upon starvation-induced development, or a
likely in vitro equivalent thereof. Stalk cells were known to be vacuolated
(de Chastellier and Ryter, 1977; George et al., 1972; Maeda and Takeuchi,
1969; Quiviger et al., 1980; Raper and Fennell, 1952; Schaap et al., 1981) and
were considered nonviable according to the criterium of nonregrowth in a
culture medium (Whittingham and Raper, 1960). Differentiation to stalk cells
seems to result from the sequential action of at least two factors, that is, cyclic
AMP (cAMP) promoting in particular cell aggregation, and a factor called
DIF promoting in particular the differentiation of starved cAMP-subjected
cells to stalk cells (Morris et al., 1987; Sobolewski et al., 1983; Town and 
Stanford, 1979; Town et al., 1976).

Since it is not convenient to study cell death in stalks, we used a model
system that in many respect behaves as an in vitro equivalent of stalk cell
death in vivo. HMX44, an axenic mutant derived from V12M2, not produc-
ing DIF but responding to exogenously added DIF, was obtained from J. G.
Williams (University of Dundee, Dundee, Scotland). The subclone HMX44A
was derived and used in this laboratory. As stated above, Dictyostelium
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HMX44A cells upon starvation and the addition of the differentiation factor
DIF differentiate as a monolayer from vegetative to “stalk” vacuolated dead
cells (Cornillon et al., 1994; Kay, 1987). Both starvation and the presence of
DIF were required for cell death. Since DIF did not induce the death of 
vegetative cells, it follows that it can induce Dictyostelium death only when
added to cells that have already reached a certain level of differentiation.
More generally, in agreement with previous work (Kay, 1987), under our
experimental conditions cell death occurred only when a given program of
successive extracellular signals, that is, starvation and DIF, was applied to
the cells (not shown). In any case, the use of these HMX44A cells enables one
to distinguish between the effect of starvation alone, not leading to cell death
for at least 3 to 4 days, and the effect of starvation plus DIF leading within
10 to 12 hours to irreversible block of the ability to regrow (Cornillon et al.,
1994). Although in vitro DIF is strictly required for the induction of HMX44A
cell death, in vivo DIF is required only with regard to one of the major pre-
stalk cell types, the pstO cells (Thompson and Kay, 2000).

We investigated whether cell death depended on caspases (Olie et al.,
1998). Even high concentrations of the caspase inhibitors zVADfmk, BOC-
Asp-fmk, DEVDfmk, or YVADcmk, added together with DIF, did not lead
to the inhibition of cell death as assessed both morphologically and by cell
counts after regrowth. Absence of inhibition of cell death by caspase
inhibitors suggested that Dictyostelium cell death is not dependent on
caspase activation (Olie et al., 1998). More recently, no genuine caspase gene
could be found in the Dictyostelium genome (Uren et al., 2000), strongly sup-
porting the conclusion that Dictyostelium cell death is caspase-independent.
Interestingly, and controlling in part for the caspase inhibitor experiments,
cyclosporin A and the general serine- and cysteine-protease inhibitor 
TPCK inhibited Dictyostelium cell death (Olie et al., 1998). From another point
of view, the addition of high concentrations of caspase inhibitors on devel-
opmentally competent Dictyostelium AX2 cells resulted upon induction 
of development in a sharp decrease in the proportion of complete sorocarps,
and to a correlative increase in the percentage of aggregates/culminants 
and (near)stalk-less elements. This effect was dependent on the concentra-
tion of DEVDfmk or YVADcmk, whereas the addition of zVADfmk or BAF
had no detectable effect at all concentrations tested (Olie et al., 1998). It could
well be that caspase inhibitors affected nonspecifically other proteases
(Schotte et al., 1999) that are required at a predeath stage of Dictyostelium
development.

Phenomenologically, in temporal succession after the triggering of dif-
ferentiation, PCD included first an irreversible step leading to the inability
of about 50% of the cells to regrow in 8 to 12 hours. If nonregrowth means
that an irreversible event has occurred in the differentiating cell, then clearly
this irreversible event occurred significantly before any morphological 
alteration detectable by the techniques used here. Then, at 12 to 14 hours,
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increased vacuolization was best evidenced by confocal microscopy, and
prominent cytoplasmic condensation and focal chromatin condensation
could be observed by electron microscopy. Membrane permeabilization
occurred only very late (at 40–60 hours) as judged by propidium iodide
staining. No early DNA fragmentation could be detected by standard or
pulse field gel electrophoresis. DNA from Dictyostelium cells subjected to DIF
for 12 or 24 hours showed no sign of massive degradation, that is, neither
small nor large DNA fragments, nor marked smears (Cornillon et al., 1994).
It was recently confirmed that Dictyostelium cell death showed no oligonu-
cleosomal DNA degradation as assessed by agarose gel electrophoresis
(Arnoult et al., 2001). The more marked smear obtained with 66-hour cells
also occurred in control groups without DIF (Cornillon et al., 1994). Inter-
estingly, Dictyostelium cell death was accompanied with a marked decrease
of mitochondrial membrane potential, and cells could be labeled with
Annexin V, suggesting phosphatidylserine externalization, however rela-
tively late in the process (Arnoult et al., 2001).

By electron microscopy, vegetatively growing Dictyostelium cells showed
in particular a highly developed cytoplasmic system of small vacuoles and
a nucleus with a large nucleolus associated with the nuclear membrane and
homogeneously dispersed chromatin without condensation. After 8 to 12
hours of starvation without DIF, spots of condensed chromatin were visible
within the nucleus, with significant cytoplasmic condensation (Cornillon et
al., 1994). Thus, perhaps surprisingly, cells starved with or without DIF
showed similar aspects of chromatin and cytoplasmic condensation, differ-
ent from those of vegetative cells. Since HMX44A cells do not immediately
die when starved without DIF, the results above indicated that the observed
levels of cytoplasmic and chromatin condensation are not enough to ensure
PCD in Dictyostelium (Cornillon et al., 1994). Similar nuclear alterations were
one of the arguments that AIF, released from mitochondria and translocated
to the nucleus, might be involved in Dictyostelium cell death (Arnoult et al.,
2001).

After 14 hours of incubation in the presence of DIF, the most obvious
difference with cells starved without DIF was the presence of large cyto-
plasmic vacuoles, either appearing empty or containing residual material.
Thus, a major feature of cell death in Dictyostelium is vacuolization. Vacuo-
lization could be triggered independently of cell death but by the same
sequence of extracellular events, and might then be related to differentiation
toward an aspect reminiscent of that of plant cells or fungi. Alternatively,
vacuolization may be directly related to cell death, either as a cause or 
consequence; the latter seems more likely, considering that the inability to
regrow occurs on average a few hours earlier than detectable vacuolization.
Electron microscopy studies indicated that in developing Dictyostelium,
vacuoles may be related to autophagy (de Chastellier and Ryter, 1977;
George et al., 1972; Maeda and Takeuchi, 1969; Quiviger et al., 1980; Schaap
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et al., 1981). However, the presence of large vacuoles cannot be just a reflec-
tion of an autophagic process secondary to the incubation in starvation
medium (as observed in some mutant strains of yeast cells; Takeshige et al.,
1992), since HMX44 cells starved without DIF do not show large vacuoles.

This phenomenological analysis has revealed several features of Dic-
tyostelium cell death, some of which are encountered in many other cases of
cell death, whereas some other features are more restricted. However—and
perhaps not surprisingly—this has not provided much information as to
mechanisms at play. After all, the features of cell death are a function of
mechanical constraints and preexisting enzyme stores perhaps more than of
nature of molecular triggers. We view these results more as an investment
for the molecular future, when known phenomenological landmarks will
make it easier to functionally map candidate molecules. But how to identify
these?

A GENETIC APPROACH TO THE MOLECULAR MECHANISM

OF DICTYOSTELIUM CELL DEATH: METHOD

As stated above, a mutagenesis approach in Dictyostelium benefits from 
Dictyostelium’s haploidy; moreover, developmental mutants sparing the 
vegetative stage are conditional. On the basis of this background, insertional
mutagenesis offers additional advantages. Insertional mutagenesis involves
introducing in Dictyostelium a plasmid, which will integrate in the genome
and thus may in very rare cells disrupt a gene involved in the function of
interest. Insertion is believed to be random: This approach is not biased by
preconceived ideas as to possible mechanisms. An obvious advantage over
chemical mutagenesis is the possibility, from a selected (in this case, cell-
death-resistant) cell, of rescuing the disrupting plasmid together with the
flanking genomic sequences, which allows the identification of the disrupted
gene.

We obtained transformants through electroporation (Howard et al.,
1988) of a plasmid bearing a blasticidin resistance marker (Adachi et al.,
1994), using the REMI approach (restriction enzyme-mediated integration)
and leading to frequencies of around 4 ¥ 10-5 integrating transformations
(Kuspa and Loomis, 1992, 1994). In our experiments, transformants were
then selected, first for their blasticidin resistance, then for their resistance to
cell death induced by starvation and DIF. The resulting cell population was
resuspended in a rich axenic medium, in which cell-death-resistant mutants
regrew (Levraud et al., 2001). However, even in nontransfected HMX44A
cells, upon the induction of cell death and resuspension in a rich medium as
many as 10 to 20% of cells will regrow. To enable mutants to emerge from
this high background, successive cycles (up to eight) of cell death induction
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and regrowth were required (Cornillon et al., 1998). The problems raised by
the recycling procedure imposed by a high background are discussed below.
If at this stage a cell population is obtained that exhibits significant resis-
tance to cell death, it is cloned. Clones are again checked for resistance to
cell death, and the inserted plasmid is rescued, sequenced, and used for
homologous recombination on wild-type Dictyostelium to check that homol-
ogous recombinants show the same resistance phenotype, demonstrating
that it was indeed the disruption of this gene that led to the acquisition of
this phenotype.

A GENETIC APPROACH TO THE MOLECULAR MECHANISM

OF DICTYOSTELIUM CELL DEATH: RESULTS

The approach outlined above [and described in detail in Cornillon et al.
(1998) and Levraud et al. (2001)] provided cell-death-resistant mutants at a
frequency of about 10-9. Thus, out of about 2 ¥ 1010 transfected cells, a total
of 16 such mutants were obtained. They were called DDM, for Dictyostelium
death mutant. In these DDMs, we investigated the relationship between cell
death resistance phenotype and intended insertional mutagenesis.

For 12 out of these 16 DDMs, plasmid insertion was irrelevant or imprac-
tical, for various reasons. DDM6, 7, and 8 showed inconsistent cell death
resistance phenotype. Their study was discontinued prior to any attempt at
plasmid rescue. DDM11 showed concatemeric insertion of the plasmid. This
not infrequent event (Adachi et al., 1994; Barth et al., 1998) makes plasmid
rescue very difficult. The disrupted gene was not identified. For DDM1, 2,
5, 10, and 14, plasmid rescue or PCR-based walking in genomic DNA
allowed the identification of sequences flanking the integrated plasmid.
These sequences however were coding for sequences that were either irrel-
evant, or noncoding while apparently not corresponding to regulatory
sequences. DDM9, 15, and 16 showed plasmid insertion in a promising open
reading frame, but further analysis showed that this insertion was not causal
to the cell death resistance phenotype, since homologous recombination
using plasmids rescued from these cell-death-resistant mutants did not reca-
pitulate the mutant phenotype.

A further group of three DDMs showed insertions in genes that may be
involved in the signaling of cell death. Namely, DDM3 showed a single inser-
tion into a noncoding region upstream of the RegA coding region (sequence
no. AJ005398), which encodes the cytoplasmic cAMP phosphodiesterase
(Shaulsky et al., 1998). The response regulator RegA and the histidine phos-
photransfer protein, RdeA, constitute two essential elements in a eukaryotic
His-Asp phospho-relay network that regulates Dictyostelium development
and fruiting body maturation. Comparative northern blot analysis on RNA
extracted from HMX44A and DDM3 cells undergoing development showed
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the dysregulation of RegA in DDM3 cells, which may be due to the insertion
and may account for the DDM3 phenotype. In DDM12, insertion of the
plasmid was in a MAP kinase phosphatase gene (sequence no. AB018543),
which had previously been identified by T. Kon, H. Adachi, and K. Sutoh
while working on aggregation minus mutants in Dictyostelium. This group
is proceeding with the study of this gene. Plasmid insertion in DDM13 was
in a gene (sequence no. JC2b141a01) with significant homology to Rab. 
Altogether, these three insertional mutants showing resistance to cell death
had insertions in genes encoding molecules consistent with their possible
involvement in cell death signaling. In other words, if the insertions are 
relevant to the cell death resistance phenotype, it would be for “upstream”
signalization rather than at the level of the mechanism of cell death itself.
This led us to not attempt homologous recombination or further functional
analysis for these genes.

For the last of these 16 DDMs, DDM4, plasmid rescue led to the identi-
fication of DlrA, the involvement of which was further validated through
homologous recombination. The gene disrupted in DDM4 encodes a protein
with a leucine-rich repeat domain. The molecule was named DeliriumA (for
Dictyostelium leucine-rich repeat molecule A, gene symbol DlrA; sequence
no. AF272150). The rescued plasmid was transfected into HMX44A cells,
leading to disruption of the DeliriumA gene via homologous recombination
in some transfected cells. These were indeed relatively resistant to cell death,
confirming that disruption of the DeliriumA gene leads to resistance to cell
death. An extensive study further revealed that DeliriumA regulates PKA-
C expression by inhibiting a previously unsuspected PKA-C mRNA coding-
region control (Adam et al., in preparation). In DlrA- cells, the absence of a
PKA-C expression can account at several levels for the absence of develop-
mental cell death.

A GENETIC APPROACH TO THE MOLECULAR MECHANISM

OF DICTYOSTELIUM CELL DEATH: CRITICAL DISCUSSION

Our first mutagenesis campaign thus provided two main sets of results. First,
in the majority of the mutants we obtained, the plasmid insertions were irrel-
evant to cell death. Second, in those mutants where plasmid insertion was
probably or certainly causal of resistance to cell death, signalization rather
than mechanism was affected: These few mutants thus provided inadequate
answers to our initial question about mechanism (while at least one of these
mutants provided unasked for but interesting answers about signalization).
Possible explanations for these results are discussed below.
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FROM HIGH BACKGROUND TO MULTIPLE CYCLES OF
SELECTION TO UNEXPLAINED ACQUISITION OF
RESISTANCE TO MISLEADING “MUTANTS”

A problem we identified early when setting up this system was that not all
cells died in our assay. This “background,” initially thought of as only a prac-
tical annoyance, turned out to exert profound influences on the outcome of
the screen. As mentioned above, our analysis of cell death in Dictyostelium
relies on an in vitro assay (Cornillon et al., 1994; Kay, 1987), during which
cells can be induced to differentiate into stalk cells and die without under-
going morphogenesis. This convenient assay was also the basis of our
mutant screen. What we call the background in this assay corresponds to the
fraction of cells that do not die during this process, usually 10 to 15%. This
background is measured after a period of regrowth in a rich medium,
required to reach a cell density sufficient for counting, by comparing
numbers of cells in the experimental group with control cells starved in the
same way but in the absence of DIF (Cornillon et al., 1998; Levraud et al.,
2001). On a few occasions, this background was also measured using a more
rigorous assay based on a loss of clonogenicity, which confirmed that our
standard procedure was not biased and did correctly measure the fraction
of nondying cells.

A number of approaches to reduce this background, using various drugs
or changing culture conditions, were unsuccessful. The origin of this back-
ground of cell death resistance in “virgin” cells is a matter of speculation.
One may think of cells differentiating along the prespore pathway or of cells
that do not differentiate at all; this may be a stochastic process, or may be
related to the position of the cell along the cell cycle at the time of starva-
tion. Whatever the cause, it strongly depends on the strain used, as was
shown before we started our screen (Berks and Kay, 1988). As far as we know,
the cell line we initially chose still appears to be the most appropriate for
such experiments.

Following mutagenesis and antibiotic-mediated selection of clones har-
boring stable integrations, putative cell death mutants may be present in the
population, but rare and thus undetectable. Because of the background, bulk
differentiation into stalk cells and regrowth of surviving cells result at best
in the enrichment of these mutants. The problem was to make cell death-
resistant mutant cells emerge from the background. The solution was to
repeat several times these cycles of induction of death followed by regrowth
in rich medium. At least four cycles are required for a cell death mutant 
to become quantitatively dominant in the population (if we consider sub-
populations of about 3,000 independent clones, and, at best, a 7-fold relative
enrichment in mutant cells at each cycle, since 10–15% of wild-type cells also
survive the process). Thus, following REMI mutagenesis, polyclonal popu-
lations of cells with many different genomic integrations were subjected to
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repeated cycles of induction of programmed cell death, followed by
regrowth of surviving cells by the addition of culture medium (Cornillon et
al., 1998).

The emergence of a mutant in the population may be monitored by mea-
suring the effective background at each cycle (as defined above: ratio of 
surviving cells in the DIF-treated population, relative to the DIF-less popu-
lation). A background that would become significantly higher than the 10 to
15% value of wild-type cells is a sign that the mutant cells become numeri-
cally dominant in the population. This was the initial procedure we used,
leading to the isolation of several mutants (Cornillon et al., 1998). However,
cell counts performed at each cycle, if we consider the fact that a large
number of independently mutagenized subpopulations have to be treated
in parallel, represents a large amount of work, which effectively limits the
number of mutants obtained. Cell regrowth was therefore checked only after
a given number of cycles had been performed.

Given the expected number of independent clones in a given mutage-
nized population (c. 3,000 in our usual procedure), and an average fraction
of 10 to 15% of wild-type cells that do not respond to the cell death induc-
tion protocol, checking for cell survival in each subpopulation only after the
eighth differentiation cycle had been performed seemed optimal. The
expected result was that subpopulations which did not contain a cell death
mutant to start with would still display a wild-type background, whereas
subpopulations in which the enrichment of a mutant cell would have taken
place would show much higher cell survival.

Thus, further mutagenesis experiments were undertaken, following this
“blind” protocol. A surprise came at the end of the process after eight cycles
of differentiation and regrowth, as all the cell lines turned out to score as
“resistant to cell death.” However, control cells, which had not been sub-
jected to mutagenesis but went through the same eight cycles of differenti-
ation and regrowth, turned out to be significantly more resistant to cell death
than virgin HMX44A cells as well. This “acquisition of resistance” by non-
mutagenized cells was reproducible.

An obvious possibility was that, perhaps because of a spontaneous
mutation event, the HMX44A cell line contained a very low frequency of
cells with a greater resistance to cell death, and that these rare cells were
selected during the process. To test this hypothesis, the cell line was then
subcloned, and several clones were subjected to a carefully monitored series
of cell death induction/regrowth cycles. The results were clearcut: All these
clones, initially quite sensitive to cell death induction (with a normal back-
ground), progressively acquired a resistant phenotype, with a background
close to 70% instead of the initial 10 to 15%. Thus, resistant cells (called “mul-
tistarved” below, by contrast with virgin cells) probably do not preexist in a
virgin population, and the phenotypical alteration appears to be induced
during the course of multistarvation.
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The resistance of the cell line steadily increased with successive cycles,
and we wondered whether this was homogeneous (i.e., all cells acquire a
progressively more resistant phenotype) or not. One of the cell lines was sub-
cloned while it still displayed only a partial resistant phenotype (background
around 45%, after four cycles of differentiation-regrowth). The resistance of
ten independent clones was measured: They clearly fell into two groups,
some with a wild-type background, some with a multistarved background.
Therefore, at the cell level, the multistarved phenotype does not appear to
be acquired progressively. Instead, it probably results from an abrupt change
of a yet unknown nature, these more resistant cells being then further
enriched during the remaining cycles.

This change in resistance to cell death was the clearest phenotypical
alteration of multistarved cells. A tendency to aggregate less well than virgin
cells was also noted. Stalk cells (based on aspect under phase contrast
microscopy, and cellulose staining) end up forming in multistarved cells, but
this requires a longer time than for virgin cells. Interestingly, multistarved
cells put to vegetative growth for many weeks and then again induced to
die still show this much higher resistance to death: The multistarved cell-
death-resistant phenotype is thus stable upon a vegetative growth for at least
an estimated 160 doublings. Virgin cells also retain a virgin phenotype upon
a vegetative culture of comparable duration.

The origins of these phenotypical alterations are, for the moment, a 
complete mystery. The apparently abrupt change at the cell level would be
compatible with a spontaneous mutation, however, of extremely high fre-
quency, which contrasts with the phenotypical stability of Dictyostelium cells
upon vegetative growth. The alteration may thus rather be of an epigenetic
nature, which is not easy to test since the genetic crossing of Dictyostelium
discoideum strains is very difficult. Another tempting hypothesis is that,
perhaps because of starvation, diploidization of some cells occurs during the
differentiation cycles, and that diploids are for some reason more resistant
to cell death. Such a hypothesis still awaits rigorous testing. Whatever the
reason, spontaneous acquisition of a cell-death-resistant phenotype clearly
occurs in HMX44A cells subjected to repeated cycles of differentiation and
regrowth.

Many of the cell death mutants selected and characterized during the
course of our successive screens turned out not to stand the test of reconsti-
tution of the mutagenesis vector insertion in virgin cells: In a majority of
cases, the homologous recombinants obtained did not display any resistance
to cell death. This is very likely due to acquisition of a multistarved pheno-
type by the original mutant cells, even though their initial genetic alteration,
due to insertion of the vector, did not confer them an increased resistance.
Such a possibility at first escaped our attention before blind differentiation-
regrowth cycles were performed. Importantly, such a phenotypical alteration
would probably not have occurred, had we not been compelled to perform
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so many cycles of differentiation and regrowth because of the relatively high
background of survival of wild-type cells. “Real” mutants were isolated
before the eighth cycle, or were isolated at the eighth cycle, were then some-
times only barely more cell-death-resistant than the multistarved mislead-
ing clones, and could unambiguously be distinguished from these only upon
homologous recombination. One obvious conclusion is that, when one
intends to perform a screen for cell death mutants, the quality of the cell
death induction assay is of paramount importance. The higher the back-
ground for such a test, the greater the chance of obtaining false positive
mutants! Time spent refining the conditions for induction of cell death is thus
definitely well spent.

POOR ADEQUATION OF THE FEW GENUINE INSERTIONAL
CELL-DEATH-RESISTANT MUTANTS OBTAINED TO THE
INITIAL QUESTION ABOUT MECHANISM

In a few of our mutants in Dictyostelium, cell death resistance was indeed
causally linked to insertion of the vector. However, the corresponding muta-
tions turned out to block cell death upstream rather than downstream, that
is, within signalization pathways rather than in the cell death mechanism
proper. Interestingly, this seems to have often been the case when similar
genetic approaches were applied to study molecular mechanisms of cell
death in other organisms, as discussed below.

In Drosophila, although cell death effector molecules akin to those gen-
erally found in the animal kingdom were found in silico through searches
for homologues (Bangs et al., 2000), some of the molecules at play were first
identified through a genetic approach, by exploiting the existence of a
number of strains with a range of chromosomal deletions. Embryos of such
diverse strains were stained with cell-death-revealing acridin orange, in
search of embryos not showing these dead cells. This led to the discovery of
several genes required for cell death, namely, Reaper (White et al., 1994), Hid
and Grim (Chen et al., 1996; Grether et al., 1995). The products of these genes
may be pro-apoptotic through their complexing with the antiapoptotic IAP
molecules (Goyal et al., 2000). Their functional (but not structural) homo-
logues in mammals seem to be Smac/Diablo (Du et al., 2000; Verhagen et
al., 2000) and Omi/HtrA2 (Martins et al., 2001). Thus, in Drosophila a direct
genetic approach uncovered molecules apparently restricted to Drosophila,
and again involved in signaling/regulating rather than effecting cell death.

Not enjoying the genetic advantages of C. elegans or Drosophila,
mammals did not lend themselves easily to a search by classical genetic
methods in vivo of molecules involved in cell death. Some such approaches
have nevertheless been possible, in vitro, on cell lines, by trying to compen-
sate diploidy with methods generating equivalents of dominant mutations.
Thus, the transfection of Hela cells with an antisense cDNA library, followed
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by selection for resistance to death, led to the isolation of several gene-
encoding molecules required for cell death. The most throughly studied of
these is DAP-kinase, a serine/threonine proteine kinase associated with
microfilaments (Deiss et al., 1995; Cohen et al., 1997). DAP-kinase is required
for cell death induced through Fas or TNFR1 (Cohen et al., 1999), or trig-
gered by TGF-beta (Jang et al., 2002), in both cases interestingly upstream of
mitochondrial events. DAP-kinase, a molecule which is clearly important for
cell death, identified with the help of an unusual genetic approach, is thus
also more involved in signaling than in a direct effector function.

In plants, most of the molecules involved in cell death uncovered so far
seem again to deal with signaling, for instance, as resistance genes in the
hypersensitivity reaction to pathogens (Bonas and Van den Ackerveken,
1999; Hammond-Kosack and Jones, 1996; Holt et al., 2000). In yeast, a genetic
approach led to the discovery of Bl-I, through a search for mutants resistant
to death induced by the transfection of Bax (Xu and Reed, 1998). In the
fungus Podospora anserina, cell death is manifest in incompatible fusions
through the death of heterokaryons (Rizet, 1952), genetically controlled by
het loci (Coustou et al., 1997, 1999; Saupe, 2000). Suppressive or subtractive
approaches uncovered other relevant genes (Loubradou et al., 1997; Bourges
et al., 1998). Some of these genes seem to be causally involved in cell death,
however again more in signaling than in the actual effector mechanism.

The findings in C. elegans were somewhat at variance with the above. In
this organism, a classical and pioneering genetic approach led to the dis-
covery of key molecules in caspase-dependent apoptotic cell death. Taking
advantage of the easy identification of dead cells in this organism by
Nomarski microscopy and of favorable genetic circumstances in this her-
maphrodite, cell death mutants were obtained through chemical mutagene-
sis. Such mutants interfered with DNA fragmentation (Sulston, 1976) or dead
cell clearance (Hedgecock et al., 1983). Others were ced-3 and ced-4 (Ellis
and Horvitz, 1986; Horvitz et al., 1983) and ced-9 (Hengartner et al., 1992),
homologous to caspases, APAF-1 and bcl-2, respectively (Miura et al., 1993;
Vaux et al., 1988; Yuan and Horvitz, 1990; Zou et al., 1997). These are clearly
encoding key molecules in the actual mechanism of caspase-dependent cell
death.

Altogether, in several (admittedly few) organisms in which a classical
genetic approach to mechanism of cell death has been used, mostly signal-
ing molecules have been identified. The apparent exception is C. elegans, an
organism that interestingly is at the basis of our knowledge of the mecha-
nism of caspase-dependent cell death. What could be the explanation for the
fact that C. elegans may be the only organism [see, however, Thomas et al.,
(1998)] in which a classical genetic approach allowed the identification by
mutagenesis of molecules involved in the mechanism of cell death per se?
The explanation for the unusually high rate of mechanism mutations in C.
elegans might reside in a combination of three factors. First, there is little or
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no molecular redundancy in this mechanism in C. elegans (ced-3, ced-4, and
ced-9 are unique), leading to a clear phenotype of no cell death in the cor-
responding mutants. Second, these mutations are well tolerated at the level
of the whole organism: In C. elegans, cell death suppression by mutagenesis
does not prevent apparently normal survival of the organism (Ellis and
Horvitz, 1986), which may, however, suffer some nondevelopmental prob-
lems (Aballay and Ausubel, 2001). Third, and in contrast, in C. elegans most
signalization mutants may severely affect cell death, but also development
in a non-death-specific and detrimental manner (which is probably true for
any organism). Altogether, in C. elegans most signalization mutants would
be counterselected, while mechanism mutants would be at the same time
detected and tolerated. These observations may have implications when
devising strategies to obtain cell death mechanism mutants in other organ-
isms. Interestingly, caspase-independent nonapoptotic cell death is also now
studied in C. elegans through genetic methods (Chung et al., 2000; Xu et al.,
2001).

CONCLUSION

Our first campaign of mutagenesis in Dictyostelium yielded the DDM4
mutant, revealing the DlrA molecule and a novel mode of control of PKA
expression. However, we were initially in search of molecules involved in
cell death mechanism rather than cell death signaling. A critical analysis
emphasized, first, a background problem leading to unexpected difficulties,
encouraging us to pay more attention in further attempts to low background
protocols, and, second, the possible predominance of mutants of signaliza-
tion in this sort of approach. The latter conclusion leads us to consider for
our second campaign another genetic approach, where downstream muta-
tions would be selectable or at least easy to screen for. Many of the argu-
ments discussed here would probably be valid for cell death mutant searches
in other organisms.
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CHAPTER

4

PROGRAMMED CELL DEATH IN

DROSOPHILA MELANOGASTER

LORETTA DORSTYN AND SHARAD KUMAR

As reviewed in previous chapters, programmed cell death (PCD) is neces-
sary for the removal of unwanted and superfluous cells in tissue patterning
during development and for homeostasis of the adult (see also Baehrecke,
2002). Although the study of cell death pathways in the worm C. elegans is
well developed, and now much is known about the cell death machinery 
in mammals, Drosophila melanogaster is a relative newcomer to the field.
Drosophila provides a system of intermediate complexity between worms
and mammals in its PCD pathways, making it much more amenable for
experimentation than the mammalian model systems. Drosophila shares
many of the PCD components and pathways found in mammals, but has
less redundancy, allowing easier dissection of function. The availability of
the complete genomic sequence and the knowledge that most cell death com-
ponents are conserved in Drosophila also has facilitated its acceptance as a
key model system to study cell death regulation. Furthermore, Drosophila
development is well characterized and genetically manipulable, thus being
an ideal system in which to study developmentally programmed cell death.
In addition, Drosophila is amenable to mutation analysis, transgenesis,
genetic modifier screens, and RNAi-mediated gene ablation in vivo. Given
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these advantages, the study of cell death in Drosophila has progressed rapidly
during the past ten years. In this chapter we review the current state of
understanding of PCD regulation in the fly.

DEVELOPMENTAL PCD IN DROSOPHILA

Most of the PCD in Drosophila occurs during development and metamor-
phosis and is essential for the sculpting and refining of all developmental
structures. The four stages of the Drosophila life cycle include the embryo,
larva, pupa, and adult, and PCD can be seen throughout the fly life cycle.
The first signs of cell death in the fly may be observed 6 hours after egg depo-
sition (Abrams et al., 1993). Thereafter, apoptosis is vital during embryoge-
nesis for cell fate specification during segmentation along the embryo
anterior/posterior axis (Klingsensmith et al., 1989). Each segment comprises
imaginal disc structures, which are ultimately responsible for giving rise to
the principle structures and tissues in the adult organism (Rusconi et al.,
2000). Extensive cell death can also be observed in cells of the central nervous
system to provide spatial precision and organization of axons and the 
neural network. During Drosophila oogenesis, germline cell death is essen-
tial particularly to eliminate nurse cells once they have nourished develop-
ing oocytes, and for the generation of mature fertile eggs (Buszczak and
Cooley, 2000). In the adult fly, apoptosis is required to further sculpt tissues,
particularly the Drosophila retina, to provide a precisely ordered lattice
network of ommatidia (Rusconi et al., 2000).

The most prominent PCD in the fly occurs during metamorphosis,
where larval tissues undergo excessive reorganization to establish adult
structures. The steroid hormone ecdysone induces the morphogenetic
changes that occur throughout Drosophila development, and its major peak
of activity occurs at the start of puparium formation, which triggers the start
of metamorphosis (Jiang et al., 1997). Ecdysone is crucial for the controlled
cell death of many larval tissues including midgut and salivary gland,
during oogenesis and for the apoptosis of some muscle and neuronal cells
in both larva and adult (Robinow et al., 1993; Buszczak and Cooley, 2000;
Baehrecke, 2000). The details of ecdysone induced cell death in the fly are
discussed in the “Ecdysone-mediated PCD during Metamorphosis” section
below.

THE CORE CELL DEATH MACHINERY IN FLY

REAPER, HID, GRIM, AND SICKLE

Most of the key components of the apoptotic machinery are conserved in 
the fly (Table 1). Homologues of the Caenorhabditis elegans proteins CED-3,
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CED-4, and CED-9 have been found in Drosophila, but at present no EGL-1-
like proteins have been described. The death machinery in Drosophila is of
much higher complexity than the worm, and in accordance comprises addi-
tional proteins, many of which are functionally conserved in mammals.

The first genetic studies of apoptosis in Drosophila led to the identifica-
tion of a deficiency [Df(3L) H99] that severely affected cell death during
embryogenesis. This deficiency corresponds to a deletion of three essential
apoptosis genes, reaper (rpr), hid (head involution defect/wrinkled), and grim,
which are important mediators of developmental cell death (White et al.,
1994; Chen et al., 1996). The expression of rpr, hid, and grim is upregulated
during apoptosis, and each act in synchrony to induce the death of various
embryonic tissues, including the CNS and death associated with the mor-
phogenetic changes in the head region (Nassif et al., 1998; Wing et al., 1998).
Most importantly though, rpr and hid expression is regulated by ecdysone
and, in effect, is responsible for the metamorphic death of neurons, salivary
gland, and midgut (Robinow et al., 1997; Jiang et al., 2000). Transcriptional
upregulation of the Drosophila tumor suppressor gene Dmp53 also directly
induces the transcriptional activation of rpr in response to DNA damage
(Nordstrom et al., 1996; Brodsky et al., 2000). The rpr gene contains a Dmp53
response element (p53RE), which is specifically induced in response to radi-
ation, leading to enhanced rpr expression and cell death (Brodsky et al., 2000;
Nordstrom and Abrams, 2000; Ollmann et al., 2000). Although these three
genes are associated with the majority of embryonic PCD, they do not appear
to be required for nurse cell death during oogenesis (Foley and Cooley, 1998).
A recent study shows that rpr activity is also transcriptionally controlled by
the homeobox protein Deformed, which maintains the boundary between
the maxillary and mandibular head lobes by selective cell death (Lohmann 
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TABLE 1. EVOLUTIONARY CONSERVATION OF THE APOPTOTIC MACHINERY.

DROSOPHILA CONTAINS MOST OF THE PRINCIPAL EFFECTOR MOLECULES OF

APOPTOSIS THAT ARE HIGHLY CONSERVED IN BOTH WORM AND MAMMALS

C. elegans Mammals Drosophila

Not present Smac/Diablo, Htra2 Rpr, Hid, Grim, Sickle
EGL-1 BH3 only protein family ?
CED-9 Bcl-2 family Debcl, Buffy
CED-4 Apaf-1 Dark
CED-3 Caspase family Dronc, Dredd, Strica, Drice, 

Dcp-1, Decay, Damm
BIR1, BIR2 XIAP, cIAP1, cIAP2 Diap1, Diap2
Not present FADD dFADD
Not present TNF Eiger
Not present TNFR Wengen



et al., 2002). Thus, Reaper appears to play a key function in developmental
PCD in multiple tissues.

The expression of hid is not specifically confined to cells undergoing
apoptosis, but is also detected in cells destined to survive, indicating that
Hid may function in physiological events other than apoptosis (Grether 
et al., 1995). Hid activity is negatively regulated by the epidermal growth
factor receptor (EGFR) signaling pathway (Kurada and White, 1998;
Bergmann et al., 1998). Specifically, the mitogen-activated protein kinase
(MAPK) downregulates the hid transcript and can also phosphorylate Hid
protein, thereby ensuring suppression of Hid-induced cell death (Kurada
and White, 1998). Recently characterized is a fourth gene that maps just
outside of the H99 region, named sickle (skl) (Christich et al., 2002; Wing et
al., 2002). As with rpr, hid, and grim, the expression of skl is consistent with
cell death during embryogenesis, but in contrast, skl cannot itself support all
PCD in the embryo and is not expressed in all cells destined to die (Wing et
al., 2002). Although the expression of skl alone does not appear to specify
cell death, it is presumed that skl can act as an enhancer of PCD in cooper-
ation with rpr, hid, and grim (Wing et al., 2002).

The only structural similarity between Rpr, Hid, Grim, and Sickle resides
in a short N-terminal sequence, referred to as the RHG motif (Wing et al.,
1998, 2002; Christich et al., 2002). Grim, Rpr, and Sickle also contain a GH3
motif, an internal 15 amino acid amphipathic a-helical domain, which in
contrast is essential for the pro-apoptotic activity of these proteins (Claveria
et al., 2002). Furthermore, the GH3 motif in Grim is required for its mito-
chondrial targeting and subsequent activation of caspases (Claveria et al.,
2002). These RHG-containing proteins are able to induce cell death by inac-
tivating the Drosophila inhibitor of apoptosis proteins (Diap1 and Diap2; see
section entitled “Drosophila Inhibitor of Apoptosis Proteins”). In effect, Rpr,
Hid, and Grim are able to interact with Diap1 in an RHG-dependent manner
to promote Diap1 ubiquitination and degradation (Wang et al., 1999; Goyal
et al., 2000; reviewed in Martin, 2002). The expression of an amino-terminal
RHG truncation of Grim potently induces apoptosis that is not inhibited by
Diap1, and cannot be suppressed by caspase inhibition (Wing et al., 2001).
These findings imply that Grim can function to promote cell death inde-
pendent of caspases. Grim and Rpr are also able to induce a general inhibi-
tion of translation, which correspondingly decreases the levels of Diap1
protein and thereby allows the apoptosis pathway to proceed (Holley et al.,
2002; Ryoo et al., 2002). There are no structural homologues of Rpr, Hid, and
Grim in mammals. However, two putative functional homologues contain-
ing an RHG-like motif named Smac/Diablo and Htra2 have been identified
based on their ability to interact with mammalian IAPs (Du et al., 2000; 
Verhagen et al., 2000, Suzuki et al., 2001; Hedge et al., 2002; Martins et al.,
2002; Van Loo et al., 2002; Verhagen et al., 2002). Both these proteins can inac-
tivate IAP-like proteins to facilitate caspase activation in mammalian cells
(Du et al., 2000; Verhagen et al., 2000; Martins, 2002).
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Bcl-2 HOMOLOGUES

In C. elegans there are two Bcl-2-like family members, a pro-apoptotic BH3-
only protein EGL-1 and a prosurvival Bcl-2-like protein CED-9 (see Chapter
11). In mammals, the Bcl-2 family of proteins comprises at least 20 pro-apop-
totic and pro-survival members, which interact with each other to determine
cell fate (reviewed in Baliga and Kumar, 2001). The regulation of apoptosis
by Bcl-2-like proteins in mammals is a highly complex process and their
precise course of action is still unclear. In Drosophila, there are two Bcl-2-like
proteins, both of which are closely related to mammalian Bax-like proteins.
One of these, Debcl/dBorg-1/d-Rob-1/dBok, acts as a pro-apoptotic
member (Brachmann et al., 2000; Colussi et al., 2000; Igaki et al., 2000; Zhang
et al., 2000; reviewed by Chen and Abrams, 2000). The other Bcl-2-like
member, Buffy, appears to act as an antiapoptotic protein (Quinn et al., 2003).
Both Debcl and Buffy contain three BH domains (BH1, BH2, BH3) and a car-
boxyl-terminal membrane anchor that localizes to mitochondrial or ER mem-
branes. Surprisingly, unlike its mammalian pro-survival Bcl-2 counterparts,
Buffy lacks a BH4 domain and, like Debcl, it shares the greatest similarity
with pro-apoptotic Bok. Debcl induces cell death when overexpressed in
various Drosophila tissues, and ablation of debcl by RNAi significantly
reduces the level of embryonic PCD, emphasizing the importance of Debcl
in developmental cell death (Igaki et al., 2000; Brachmann et al., 2000; Colussi
et al., 2000). Genetic studies have shown that Debcl promotes cell death
through CED-4-like protein Dark, in a caspase-dependent fashion (Colussi
et al., 2000). Currently, no pro-apoptotic EGL-1-like protein has been 
characterized in the fly.

DROSOPHILA INHIBITOR OF APOPTOSIS PROTEINS

Inhibitors of apoptosis (IAP) proteins serve to regulate apoptosis through
the direct binding and inhibition of caspases (reviewed in Goyal et al., 2001).
Similar to their viral counterparts, the Drosophila IAPs, Diap1 and Diap2,
contain two amino-terminal BIRs (baculovirus inhibitor of apoptosis repeat)
that mediate binding to caspases, and a carboxy-terminal RING finger
domain that has E3 ubiquitin-ligase activity (Hay et al., 1995; Yang et al.,
2000). Diap1 and Diap2 were among the first cellular IAPs to be isolated as
potent suppressors of death induced by rpr, hid, and grim (Hay et al., 1995;
reviewed in Hay, 2000; Goyal et al., 2000). Early studies characterized a loss-
of-function mutation in diap1/thread in a genetic screen that strongly
enhanced cell death induced by ectopic expression of rpr, hid, and grim in
the developing fly eye (Hay et al., 1995). In fact, loss of diap1/thread function
is embryonic lethal and embryos display increased caspase activity, which
suggests that Diap1 acts to suppress apoptosis through the inhibition of cas-
pases (Wang et al., 1999). It has now been established that Diap1 functions
by directly interacting with the caspases Dcp-1, Drice, and Dronc to inhibit
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their processing and activation (Meier et al., 2000; Hawkins et al., 1999;
Kaiser et al., 1998; Wang et al., 1999; Goyal et al., 2000; Quinn et al., 2000;
Muro et al., 2002). During apoptosis, Rpr, Hid, and Grim are able to directly
interact with Diap1, thereby disrupting the Diap1–caspase interaction (Wang
et al., 1999; Goyal et al., 2000). The removal of Diap1 inhibition occurs con-
currently with Dark-dependent activation of caspases (Igaki et al., 2002b;
Rodriguez et al., 2002). The RHG domain of Rpr, Hid, and Grim was initially
thought to be essential for the interaction with the BIR2 domain of Diap1;
however, deletion mutants of this domain are still able to promote cell death
and complex with Diap1 (Chen et al., 1996; Vucic et al., 1998; Wing et al.,
1998; Goyal et al., 2000). Nevertheless, it is clear that binding of these RHG-
proteins to Diap1 stimulates Diap1 degradation through autoubiquitination
(Hays et al., 2002; Holley et al., 2002; Yoo et al., 2002). Diap1 degradation is
further enhanced by the E2 ubiquitin conjugase-related protein, Morgue, 
that acts in synergy with Rpr, Hid, and Grim to regulate Diap1 levels and
promote apoptosis (Hays et al., 2002). Although controversial, Diap1 was
recently shown to promote degradation of Dronc, which would suggest that
Diap1 does not merely sequester and silence caspase activity, but can target
caspases for ubiquitination and proteosomal degradation (Wilson et al.,
2002). The precise function of Diap2 in cell death inhibition is obscure. Diap2
is able to inhibit Dronc-induced apoptosis in the fly eye, but cannot physi-
cally interact with Dronc (Quinn et al., 2000). In fact, the only caspase shown
to physically associate with Diap2 is Strica (Doumanis et al., 2001). Diap2
can interact with the Drosophila Decapentaplegic (Dpp) Type-I receptor, thick
veins (Tkv) (Oeda et al., 1998), which implicates a possible role for Diap2 in
apoptosis regulation via the Jun N-terminal kinase (JNK) signaling pathway.
Additional Drosophila IAP-like proteins, Deterin and dBRUCE, have since
been characterized in the fly, but their exact role in cell death is not yet under-
stood (Jones et al., 2000; Vernooy et al., 2000).

CASPASES, ADAPTORS, AND CASPASE ACTIVATION

The Drosophila caspase family consists of seven members, including Dcp-1,
Dredd/Dcp-2, Drice, Dronc, Decay, Strica, and Damm (Song et al., 1997;
Fraser and Evan, 1997; Chen et al., 1998; Dorstyn et al., 1999a, b; Doumanis
et al., 2001; Harvey et al., 2001; reviewed by Kumar and Doumanis 2000).
Three of these, Dredd, Dronc, and Strica, contain long amino-terminal pro-
domains, while the rest have short or absent pro-domains and thereby are
likely to be downstream caspases (Kumar and Doumanis, 2000). As in
mammals, the long amino-terminal pro-domains in Dronc and Dredd
contain specific protein–protein interaction motifs, which are likely to be
required for recruitment of caspases to adaptor molecules to promote their
autocatalytic activation. Dredd contains two DEDs (death effector domains)
in its prodomain region, which is similar to mammalian caspase-8 and -10,
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the mediators of the death receptor signaling pathways. Dronc has a CARD
(caspase recruitment domain) that can mediate its interaction with the CARD
in Dark (Dorstyn et al., 1999a). Interestingly, Strica contains a unique amino-
terminal Ser/Thr-rich domain of unknown function, which is devoid of any
known protein–protein interaction motifs (Doumanis et al., 2001).

The first Drosophila caspase identified was Dcp-1, which shares the
highest homology with mammalian caspase-3 and -7 (Song et al., 1997). The
importance of Dcp-1 in developmental PCD has been illustrated by dcp-1
null mutations, which results in third instar larval lethality (Song et al., 1997).
Surviving larvae have a normal central nervous system but exhibit melan-
otic tumors and interestingly lack imaginal discs and gonads (Song et al.,
1997). A loss of function mutation in dcp-1 causes defects in somatic and germ
cell development due to the deficient transfer of nurse cell constituents to
nourish developing oocytes, so consequently, female flies lacking dcp-1 are
sterile (McCall and Steller, 1998). Consistent with its role as a caspase effec-
tor, transgenic expression studies have established that Dcp-1 can promote
cell death in the Drosophila eye and that Rpr and Grim are able to activate
Dcp-1 in the same death pathway (Song et al., 2000).

Similarly to Dcp-1, Drice shares the highest homology with caspase-3
and -6 (Fraser and Evan, 1997). As no drice mutants are currently available,
the importance of Drice in apoptosis has been established by studies in the
Drosophila S2 cell line. Drice is rapidly processed and activated in apoptotic
cells, and the depletion of Drice significantly reduces caspase activity and
apoptosis (Fraser and Evan, 1997; Fraser et al., 1997). Drice is able to cleave
Drosophila DNase (CAD) and its inhibitor (ICAD), resulting in DNA frag-
mentation during cell death (Yokoyama et al., 2000).

Dredd/Dcp-2 shares the highest degree of homology with mammalian
caspase-8 (Chen et al., 1998). As mentioned previously, Dredd contains two
amino-terminal DEDs that are able to interact with Drosophila Fas-associated
death domain protein, FADD, but its role in a Fas-like death receptor
pathway in the fly has not been documented (Hu and Yang, 2000). Dredd is
processed and activated by Rpr, Hid, and Grim, and the loss of a dredd allele
affects cell death induced by rpr and grim, indicating that Dredd acts to
induce cell death downstream of these apoptotic inducers (Chen et al., 1998).
In addition to its role in PCD, Dredd was recently found to be a regulator of
the Drosophila immune response (Elrod-Erikson et al., 2000; Leulier et al.,
2000). Mutations in dredd resulted in impaired inducibility of antibacterial
genes and high susceptibility to bacterial infection. Dredd appears to func-
tion to activate the NFkB-like protein, Relish, which in turn acts to tran-
scriptionally activate various antimicrobial peptide genes (Stoven et al.,
2000).

Dronc is the only Drosophila caspase that contains a CARD and is likely
to be the CED-3/caspase-2/-9 homologue in the fly (Dorstyn et al., 1999a).
Interestingly, dronc mRNA expression is upregulated in late third instar
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larval salivary glands and midgut in response to ecdysone, and recent data
suggest that Dronc is an essential mediator of ecdysone-regulated cell death
(Dorstyn et al., 1999a; Lee et al., 2000; Lee and Baehrecke, 2001; Cakouros 
et al., 2002). Dronc overexpression causes cell death in transgenic flies, and
its ablation by siRNA results in a block in embryonic PCD (Meier et al., 2000;
Hawkins et al., 2000; Quinn et al., 2000). Dronc is required for cell death
mediated by Rpr, Hid, and Grim (Quinn et al., 2000).

The remaining three caspases, Damm, Decay, and Strica, have not been
well characterized, and their specific function in cell death is not known at
present (Dorstyn et al., 1999b; Doumanis et al., 2001; Harvey et al., 2001).
Ectopic overexpression of damm in the Drosophila eye results in a slight rough
eye phenotype, and the expression of damm sensitizes cells to apoptosis
(Harvey et al., 2001). Interestingly, Damm is suggested to function down-
stream of Hid in apoptosis (Harvey et al., 2001).

In mammals, the CED-4 homologue, Apaf-1, is an essential component
of the “mitochondrial death pathway” for the activation of casapse-9 (Zou
et al., 1999). In Drosophila there is a single CED-4-like protein Dark/Dapaf-
1/Hac-1 (Kanuka et al., 1999; Rodriguez et al., 1999; Zhou et al., 1999). Like
CED-4/Apaf-1, Dark is an essential mediator of developmental PCD, and
although hypomorphic dark mutants are viable, they exhibit many cell death
defects, including melanotic tumors, neuronal hyperplasia, defective wing
development, and extra cells in the eye (Kanuka et al., 1999; Rodriguez 
et al., 1999; Zhou et al., 1999). In addition, dark mutant embryos exhibit a
general decrease in the number of apoptotic cells and reduced caspase activ-
ity, indicating that like CED-4/Apaf-1, Dark-mediated cell death depends on
the activation of caspases (Kanuka et al., 1999; Rodriguez et al., 1999; Zhou
et al., 1999; Quinn et al., 2000). Recent data show that Dark mediates the acti-
vation of Dronc (Quinn et al., 2000; Dorstyn et al., 2002). Like Apaf-1, Dark
contains a large C-terminal WD40 region that can also complex in vitro with
cytochrome c. However, cytochrome c is not released from mitochondria
during fly cell death, and RNAi-mediated knockdown of cytochrome c in
Drosophila cells has no apparent effect on caspase activation (Dorstyn et al.,
2002; Zimmermann et al., 2002). Thus, it is likely that despite the similarities
between Apaf-1 and Dark, Dark-mediated Dronc activation may not require
cytochrome c.

THE TNF PATHWAY IN THE FLY

Until recently, an extrinsic receptor-mediated death pathway had not been
documented in Drosophila. This was partly due to the fact that the Drosophila
genomic sequence did not uncover any proteins with significant homology
to mammalian death domain (DD) or DED containing receptors (Vernooy 
et al., 2000; Aravind et al., 2001). As mentioned above, although there is a
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FADD-like molecule in Drosophila (dFADD), it does not appear to be
involved in a death receptor signaling pathway. The DD-containing proteins
in Drosophila largely function in the innate immune response (Imler and
Hoffman, 2001; Georgel et al., 2001). Given that no other DD-containing
protein is known to interact with dFADD, it appears that dFADD may only
function to activate DREDD primarily during innate immune response.
However, further studies are required to fully establish the function of
dFADD.

The identification of Drosophila tumor necrosis factor receptor associated
factors (dTRAF), which can activate NFkB, was the first indication that a
tumor necrosis factor receptor (TNFR) signaling pathway may exist in the
fly (Liu et al., 1999; Zapata et al., 2000). Recently, a TNFR-like molecule
Wengen and its ligand Eiger, were characterized in Drosophila (Igaki et al.,
2002a; Kanda et al., 2002; Moreno et al., 2002). Initial studies with Wengen
demonstrated that it is a transmembrane protein comprising the conserved
TNFR homology domain that acts as a functional receptor for the TNF ligand
Eiger (Kanda et al., 2002). Eiger is also a transmembrane protein with a
carboxy-terminal TNF homology domain and appears to activate cell death
in association with dTRAF, through the JNK pathway (Liu et al., 1999; Igaki
et al., 2002a; Moreno et al., 2002). Interestingly, Eiger-mediated cell death
does not require dFADD or Dredd, but rather depends on the activity of Dark
and Dronc (Moreno et al., 2002) and is inhibited by Diap1 (Igaki et al., 2002a;
Moreno et al., 2002) (Fig. 1). Furthermore, the expression of Eiger induces
transcriptional upregulation of hid and to a lesser extent rpr (Moreno et al.,
2002). Together, these results provide a link between the extrinsic death
receptor pathway and the intrinsic pro-apoptotic signaling components. JNK
signaling has previously been associated with epithelial morphogenesis and
segment polarity during embryonic development, but its precise mechanism
of signaling is poorly understood in Drosophila (Noselli and Agnaas, 1999).
Although wengen is expressed at all stages of Drosophila development, the
expression of eiger is predominant in the nervous system, indicating that
Eiger may be involved with normal development of the CNS (Igaki et al.,
2002a; Kanda et al., 2002). Moreover, it is possible that additional unidenti-
fied TNF-like family members in the fly function to activate the cell death
program in other tissues.

ECDYSONE-MEDIATED PCD DURING METAMORPHOSIS

In vertebrates steroid hormones play a crucial role in regulating cell prolif-
eration and cell death, but the signaling mechanisms underlying their action
remain poorly understood. PCD during Drosophila metamorphosis is pri-
marily regulated by a single steroid hormone 20-hydroxyecdysone (com-
monly called ecdysone), and recent studies in the fly have provided much
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insight into the mechanisms of steroid-mediated cell death (Baehrecke, 2000).
At the onset of metamorphosis, a large increase in ecdysone levels triggers
the cell death of larval midgut and anterior muscle, and then a second peak
12 hours postpuparium formation induces the PCD of larval salivary glands
(Jiang et al., 1997; Lee and Baehrecke, 2001). Ecdysone mediates its effects
through a heterodimeric receptor complex, which comprises the nuclear
hormone receptor family members, ecdysone receptor (EcR), and ultraspir-
acle (Usp) (Thomas et al., 1993; Hall and Thummel, 1998; Baehrecke, 2000).
This ecdysone receptor complex is able to directly activate the transcription
of several early genes, including Broad-complex (BR-C), E74A, and E75. Each
of these genes encodes transcription factors that regulate transcription of 
late genes in a tissue and stage-specific manner, to induce cell differentiation
and cell death (Thummel, 1996; Baehrecke, 2000). The initial peak of
ecdysone at the end of the third instar larval stage induces activation of BR-
C, E74, and E75 genes, which in turn regulate transcription of glue genes in
the salivary gland (Lee and Baehrecke, 2001). The factors responsible for
specifying the initiation of PCD in larval midgut remain obscure, but it is
clear that the expression of both BR-C and E93 is crucial for midgut cell death
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(Lee et al., 2002a). In fact, ecdysone induction of BR-C and E93 leads to an
increase in transcription of the apoptosis genes rpr, hid, dark, and dronc,
which ultimately cause destruction of the larval midgut (Lee et al., 2002a).
A second peak in ecdysone titer occurs prior to salivary gland histolysis and
initiates transcription of BR-C, E74, E75, and E93 early genes. The compe-
tence factor bFTZ-F1 is upregulated just prior to the ecdysone peak and is
necessary for the reinduction of BR-C, E74, E75, and E93 genes (Baehrecke,
2000).

The E93 gene is transcribed in a stage-specific manner, and while the
other transcription factors act to mediate a variety of regulatory responses,
E93 appears to function specifically during the cell death of larval tissues
(Lee et al., 2002a, b). bFTZ-F1 functions as a pupal-specific factor, and its
expression is crucial for DNA fragmentation and the destruction of larval
salivary glands (Lee et al., 2002b). A loss-of-function mutation in bFTZ-F1
dramatically reduces the transcription of BR-C, E74, and E93 genes (Broadus
et al., 1999). In addition, the ectopic expression of bFTZ-F1 is sufficient to
induce early transcription of the cell death genes rpr, hid, dark, dronc, and crq,
thereby making them able to prematurely initiate salivary gland death (Lee
et al., 2002b). E75 suppresses the bFTZ-F1 mediated upregulation of diap2 in
late prepupal salivary glands, thus allowing PCD to proceed (Jiang et al.,
2000). Furthermore, E93 is an important regulator of cell death mediated by
bFTZ-F1 expression (Lee et al., 2002b). While BR-C and E74A are essential
for the maximal induction of rpr and hid in salivary glands, E93 is vital for
the proper transcriptional upregulation of dark, dronc, and crq (Jiang et al.,
2000). Mutations in E93 also affect transcription of both BR-C and E74A and
consequently result in decreased levels of rpr and hid, indicating that E93 is
the principal effector of salivary gland PCD (Lee and Baehrecke, 2000; 
Lee et al., 2000). In addition, BR-C can directly regulate dronc transcription
(Cakouros et al., 2002). Recent data suggest that drice is also controlled by
ecdysone in salivary glands (Kilpatrick and Kumar, unpublished), suggest-
ing that upregulation of the death effectors such as Dronc, Dark, and Drice,
and a downregulation of PCD inhibitors such as Diap1 may regulate large-
scale PCD during metamorphosis.

PERSPECTIVES

Drosophila has thus far proved to be an important tool for the study of PCD
and has provided useful information for understanding the functions of indi-
vidual components of the apoptotic signaling pathways in vivo. Although
most of the core cell death machinery in the fly is similar to that in mammals,
there are several unique features of Drosophila cell death. For example, while
Reaper, Hid, and Grim play a very significant initiator role in Drosophila cell
death, the mammalian functional homologues of these proteins, Diablo and
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Htra2, have a relatively minor role in promoting downstream caspase acti-
vation. The role of IAPs, particularly Diap1, is central in the regulation of
cell survival in the fly, whereas knockout studies suggest that IAPs serve
more of a side role in mammals (Hay, 2000). Another unresolved issue is 
the role of cytochrome c in caspase activation in Drosophila. Although
cytochrome c has not been shown to play any role in CED-4-mediated CED-
3 activation in C. elegans, in mammals it is crucial for the formation of the
“Apaf-1 apoptosome” that recruits and activates caspase-9 and subsequently
caspase-3 (Zou et al., 1999; Cain et al., 2002). A lack of cytochrome c release
from mitochondria during apoptosis of fly cells indicates that cytochrome c
may not be required for Dark-mediated Dronc activation (Dorstyn et al.,
2002). Significantly, Dark contains multiple WD40 repeats similar to those
found in Apaf-1 (but not in CED-4), and has the ability to bind cytochrome
c in vitro (Kanuka et al., 1999). Thus, the key question that remains to be
addressed is whether in the absence of cytochrome c release, Dark binds a
yet unknown protein via its WD40 repeats, which mediates its oligomeriza-
tion. If such a protein exists, then we will need to establish where it is local-
ized and what promotes its binding to Dark during cell death.

Perhaps the most unexpected feature of the core death machinery in
Drosophila is the relatively minor role of Bcl-2 family members. There have
been no BH3-only proteins discovered in the fly so far, but this may simply
be because of a low degree of BH3 sequence conservation, making it 
difficult to identify them based on sequence homology. More interesting,
however, is the observation that both Bcl-2 homologues in the fly are related
to pro-death Bax-like protein Bok in mammals, even though one, Buffy, may
function as a pro-survival protein. This is surprising as CED-9, the only Bcl-
2 homologue in C. elegans, is a pro-survival protein with all four BH domains
(BH1–BH4) that are characteristic of the mammalian pro-survival Bcl-2
family members (reviewed in Baliga and Kumar, 2002). While CED-9 in C.
elegans is essential for the survival of all cells, it remains to be determined
whether Buffy is a universal cell survival molecule, or its function is required
only in some cell types. The exact physiological function of Debcl in specific
cell death pathways is also far from understood. Many of these questions
await creation/isolation of appropriate fly mutants and their characteriza-
tion to fully understand the role of various cell death proteins in develop-
mental PCD.
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CHAPTER

5

CELL DEATH IN PLANT

DEVELOPMENT AND DEFENSE

RON MITTLER AND ALICE Y. CHEUNG

Programmed cell death (PCD) is emerging as a fundamental concept in
modern biology. It plays a vital role in almost all known organisms from uni-
cellular bacteria to complex multicellular organisms such as animals. Within
these two evolutionary extremes, plants may serve as an excellent example
of how a relatively simple multicellular organism uses PCD for many of its
functions. The study of PCD in plants may therefore provide a link between
PCD in unicellular organism and PCD in more complex multicellular organ-
isms from different kingdoms.

Unlike animal cells, plant cells contain rigid cell walls composed mainly
of cellulose, a large vacuole that participates in many chemical and bio-
chemical processes, and a specialized organelle conducting photosynthesis,
that is, the chloroplast. Plants do not have an immune system similar to
animals, but are capable of mounting a large array of defenses, including
PCD, when attacked by pathogens. In addition, the development of plants
is solely determined by cell division and not by a combination of cell divi-
sion and cell migration, as in animals. Despite these differences, plants, much
like animals, require PCD for their proper development and response to dif-
ferent environmental stimuli (Greenberg, 1996; Dangl et al., 1996; Lam et al.,
2000; Beers and McDowell, 2001).

When considering PCD in plants, it is important to remember that
although PCD in plants is similar in its conceptual and functional definitions
to PCD in animals, in many characteristic and mechanistic aspects PCD in
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plants is different from apoptosis in animals (Mittler, 1998). For example, the
lack of an immune system eliminates the need for the formation of apoptotic
bodies and the “clean” removal of cells, because an inflammatory response
is not likely to occur when the content of a plant cell is spilled. In addition,
in most examples of PCD in plants the cell wall remains intact, making the
trafficking of apoptotic bodies from one cell to the other, or the engulfment
of a dying cell by neighboring cells, unlikely. Despite these differences, the
genome of plants appears to encode for a large number of PCD pathways
activated during development, differentiation, and the defense of plants
against different biotic and abiotic insults.

PCD DURING DEVELOPMENT

From embryogenesis and seed germination to fertilization, the life cycle of
a plant is marked by dramatic morphological evolution on the organ and
whole plant levels. The biochemical, molecular, and cellular events that
orchestrate the ontogeny of new cells at the meristems which give rise to
morphologically distinct organs, and those that activate distinct biochemi-
cal pathways to support specialized functions of different tissue and cell
types have been extensively studied. Similarly important but often less com-
manding of our attention are cell dedifferentiation, degeneration, and death
processes that permit the plasticity which is associated with plant develop-
ment. Every stage of plant development is marked by PCD events. 
Examples include selective cell death during embryogenesis, xylem (water-
conducting system) differentiation, leaf and flower petal senescence. Devel-
opment of the reproductive organs and the reproductive processes of
pollination and fertilization are a progression of PCD processes in meris-
tematic cells to terminally differentiated cell types within the male and
female organs as well as in the gametophytes (pollen and embryo sac) 
themselves (Fig. 1).

LEAF SENESCENCE

In vegetative development, leaf senescence provides a most vivid example
of the consequence of PCD in plants (Quirino et al., 2000). Leaf senescence
is apparently a genetically regulated process involving active gene activity
(Oh et al., 1997; Nam, 1997). It is also regulated by both intracellular signals
such as the phytohormone cytokinins and ethylene and environmental
signals such as light (Park et al., 1998). Visible loss of chlorophyll in senesc-
ing leaves is actually preceded by structural and biochemical deterioration
of the chloroplasts. Increased cysteine proteases, nucleases, stress-related
enzymes, and defense-related proteins are associated with leaf senescence
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(see Quirino et al., 2000). Mitochondria apparently remain active until the
final stages of leaf senescence, probably to provide the energy needed for
resource mobilization. The ensuing oxidative damages as the result of an
aging- or stress-induced decline in photosynthetic activity might signal other
biochemical changes accompanying senescence in similar capacity as mito-
chondria are involved in PCD in other cell systems (Bleeker and Patternson,
1997; Susin et al., 1998; Jones, 2000; Quirino et al., 2000). Although degrada-
tion of the photosynthetic membrane system is a biochemical and structural
hallmark of leaf senescence, the senescent program at least transiently main-
tains or probably even induces the pigments (carotenoids) and membrane
components that constitute the chromoplasts, especially in species that
display a period of bright color display before abscission. Except for a more
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FIGURE 1. Major PCD events during plant development: (1) Tracheary element dif-
ferentiation in the formation of water-conducting vessels. (2) Leaf senescence. (3) Sex
determination in unisexual flowers; picture shows a very young floral bud with
developing floral organ primordia. The most internal organ is the emerging gynoe-
cium. The male initials are not visible here. (4) Petal senescence. (5) Tapetum cell
death in pollen development; picture shows several anthers filled with mature pollen.
(6) Pollen cell death in incompatible pollination; picture shows an arrested pollen
tube. (7) Female tissue death in mature and pollinated female organ; pollen tubes
grow within this organ. (8) Cell death in the guided entrance of pollen tubes (pt) into
the female chamber, the embryo sac. (9) Cell death in seed development and germi-
nation. [Illustrations are not to scale. Some of the PCD phenomena are not universal
to all plants.]



exaggerated chromoplast developmental pathway, tomato fruit ripening
may be considered an analogous senescent event to leaf senescence in terms
of the involvement of changes in plastid pigment contents. The light-
harvesting membrane and carotenoid-binding membrane systems clearly
coexist in the plastids of a ripening, or scenescing, tomato (Cheung et al.,
1993). Therefore, even in dying, plant cells are programmed for a last episode
of activity.

XYLEM DIFFERENTIATION

Less obvious to the casual observer, the differentiation of tracheary elements
(TE) in developing plants is the result of terminal differentiation involving
PCD and the dismantling of progenitor cells to form the xylem vessels that
transmit water from roots to shoot (Fukuda, 2000). Understanding the in situ
events of TE differentiation has been much aided by the availability of an in
vitro traecheid differentiation system from cultured Zinnia mesophyll cells.
In response to proper auxin and cytokinin conditions, these mesophyll cells
initially dedifferentiate, a state that could be considered analogous to con-
ditions at the meristem where cell fate is still plastic. These dedifferentiated
cells progress in two stages, II and III, during which cellular and biochemi-
cal changes, cell structural changes such as wall thickening and lignification,
and ultimately cell death occur, mimicking the in planta process (Fukuda,
2000). Studies made of the Zinnia system have allowed the predetermined
TE precursor cells in stage II to be distinguished from those that have under-
gone the final differentiation steps in stage III. This allowed the identifica-
tion of several critical cellular, molecular, and ionic factors involved in TE
differentiation (e.g., Roberts and Haigler, 1990; Kobayashi and Fukuda, 1994;
Yamamoto et al., 1997; Groover et al., 1997; Woffenden et al., 1998; Groover
and Jones, 1999; Fukuda, 2000; Yu et al., 2002). Vacuole collapse and the 
cessation of cytoplasmic streaming are the earliest signs of organelle degra-
dation, followed by the degeneration of other membranous structures,
including the mitochondria whose inner membrane depolarizes, and ulti-
mately autolysis. Chromatin degradation, as revealed by TUNEL assay, is a
relatively late event in TE differentiation, believed to be promoted by nucle-
ases released upon vacuole collapse. Cysteine, serine proteases, and com-
ponents of the ubiquitin-regulated proteolytic pathways are apparently
involved in the PCD, leading to TE formation. Besides auxin and cytokinins
being involved in triggering the initiation of TE differentiation, brassinos-
teroid, which apparently is synthesized in stage II cells, plays a critical role
in promoting the transition into stage III events. Influx of Ca2+ precedes and
is necessary for entrance into stage III, and transient increases in calmodulin
and calmodulin binding proteins also accompany this transition, suggest-
ing the involvement of this ubiquitous regulator in TE-PCD. Although
cytochrome c release accompanies mitochondria degeneration, it is not suf-
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ficient to trigger PCD in these cells (Yu et al., 2002), suggesting the mito-
chondria involvement in TE-PCD occurs through a mechanism distinct from
that of mammalian cell death (Earnshaw, 1999).

PETAL SENESCENCE

Nature’s most unforgiving way of illustrating mortality among creatures is
probably the short life-time of flowers. By the time a flower opens, most cells
have progressed to considerably advanced stages of declining activities.
Studies in the highly synchronized life cycle of the daylily flower, which
spans a 24-hour period and is most likely hardwired to an internal program,
provided the most thorough correlation of biochemical and physiologi-
cal events during the cell death process that occurs in senescing petals
(Rubinstein, 2000). In general, increasingly oxidative conditions and loss of
cell membrane permeability are early events in petal PCD. Gene expression
and enzyme activity patterns reflect the enzymatic needs to accomplish
degenerative cellular conditions during petal senescence. Proteases, DNases
RNases, sugar hydrolases, and enzymes related to lipid metabolism are all
upregulated. The senescing pathway in petals most likely shares significant
similarity with other senescing plant cell systems. For example, common
senescence-associated RNases could be found in both leaves and petals
(Taylor et al., 1993; Lers et al., 1998), and proteases common to those induced
in other senescing systems have been observed to be upregulated in petals
(Buchanan-Wallaston, 1997; Stephenson and Rubistein, 1998; Courtney et al.,
1994; Panavas et al., 1999).

While petal development per se may be viewed already as the initiation
of senescence, abrupt aging and death in the petals of many flowers are
induced only after pollination (Van Doorn, 1997). For instance, pollinated
tobacco flowers show visible signs of cell death within 24 hours after polli-
nation and abscise in about 3 days after anthesis (and pollination). On the
other hand, unpollinated flowers remain vibrant for at least 3 days longer
than pollinated ones and abscission occurs 1 week after anthesis. In the
orchid Phalaenopsis, flowers are in bloom for months but pollination induces
death within a day (Halevy, 1998). This would seem a reasonable strategy
for flowers to adopt to prolong their attraction to pollination agents. Once
the mission is accomplished, they quickly alter to a mode in which defense
and resource mobilization should be the most important goal for preserva-
tion of the next generation. Floral senescence will minimize opportunistic
infestation and recycle cellular resources to the developing fruits and seeds.
Pollination-induced petal senescence probably invokes similar mechanisms
as developmentally regulated senescence. For instance, increase levels of
nucleases, membrane disorganization, and DNA fragmentation are all asso-
ciated with pollination-induced senescence in petunia and these processes
are enhanced by Ca2+ (Xu and Hanson, 2000).
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REPRODUCTIVE DEVELOPMENT

SEX DETERMINATION. Cell death occurs early in reproductive develop-
ment in the selective abortion of primordia for one or the other sexual organ
in some unisexual flowers (Wu and Cheung, 1998, 2000). For example, in
maize, the male flowers are segregated to the plant apex, whereas the female
flowers develop in the ears borne on the lower part of the stem. However,
early in development, the flowers of maize are hermaphroditic, producing
primordia for both stamens and carpels in all the floral meristems. Early in
development, gynoecial initials are aborted in the male-destined flowers;
slightly later in development, male differentiation is arrested in the female-
destined flowers, resulting in separate male and female flowers on the same
plant (Irish and Nelson, 1989). In both cases, cellular vacuolization and the
loss of organelle and cytoplasmic integrity precede primordial abortion or
arrest (Cheng et al., 1983). Genes defective in gibberellic acid biosynthesis
induce masculinized female flowers (Bensen et al., 1995; Winkler and 
Helentjaris, 1995), indicating a critical role for this hormone in suppressing
male differentiation in female-destined flowers. Characterization of mutants
with feminized male flowers, tasselseed2, led to the identification of a gene
with homology with steroid dehydrogenases (De Long et al., 1993). The 
Tasselseed2 mRNA is found in the gynoecial primordium before its abortion
in developing male-destined florets, suggesting a role for a steroid-related
compound in arresting female development in these flowers.

ANTHER AND POLLEN DEVELOPMENT. In a later stage of the reproduction
phase that involves the development of the male gametophyte (pollen)
within the anther, cell degeneration and death in different anther tissues are
important for pollen maturation and dispersal. Pollen grains are covered
with a coat of proteinaceous, lipoidal, and carotenoid-containing materials
that are largely derived from cells in the tapetal layers, which line the
chamber in which pollen develops. Tapetal cells secrete nutritive materials
during pollen development and increasingly more hydrolytic enzymes
against cell wall polymers to release individual pollen grains from a tetrad
arrangement as pollen matures. Mature tapetal cells lack a well-developed
primary cell wall and are packed with secretory organelles on the surface
exposed toward the developing pollen. They begin to degenerate even before
pollen fully mature. Tapetal cell deterioration is marked by cell shrinkage,
polarization of cytoplasmic materials, vacuolation, and thinning of cell walls.
On the cytological levels, tapetal cell degradation shows condensation of
chromatin, swelling of the endoplasmic reticulum, and the persistence of
mitochondria (Papini et al., 1999), typical of PCD. DNA fragmentation may
also be associated with this process (Wang et al., 1998). Ultimately, these cells
rupture and degeneration of the entire tapetum occurs (Chapman, 1987;
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Bedinger, 1992). Through their death, the tapetal cells further contribute to
the extracellular architecture of the pollen grains and provide their surface
with adhesive and signaling molecules important for interactions with the
female tissues. Deficiency in the pollen coating, defects in tapetal secreted
enzymes, arrest in tapetal development, or precocious tapetal deterioration
can all result in male sterility (Wu and Cheung, 2000). At maturity, pollen
grains need to be exposed and dispersed from the anther to achieve polli-
nation. This again requires the breakdown of specific anther cells that leads
to anther rupture, exposing the pollen grains (Goldberg et al., 1993; Beals
and Goldberg, 1997). Failure of anther rupture can lead to male sterility.

CYTOPLASMIC MALE STERILITY. Cytoplasmic male sterility (CMS) is a
maternally inherited and male-expressed phenotype in which the plant fails
to produce viable pollen grains and is thus an important agricultural trait
(Levings, 1993; Schnabe and Wise, 1998). In a maize CMS line, cms-T, mito-
chondrial DNA rearrangement created a novel gene, T-urf13, which encodes
an inner mitochondrial membrane protein that induces ion leakage and dis-
sipation of membrane potential (Dewey et al., 1986, 1987, 1988; Holden and
Sze, 1987). In cms-T plants, the tapetum undergoes precocious vacuolation
and degeneration, and pollen development is blocked significantly earlier
than in normal plants. In these cms plants, the major defect is on male steril-
ity, and this has been attributed to the extraordinary metabolic demand on
mitochondrial functions in anther cells during development (Levings, 1993).
In sunflower PET-CMS, through DNA rearrangement a novel gene (orf522)
has been fused to the 3¢ end of the mitochondrial atpA gene. The two genes
are expressed as a dicistronic transcript (Gagliardi and Leaver, 1999). In PET-
CMS tapetal cells, DNA fragmentation occurs in concert with the condensa-
tion of young microspores. Cytochrome c release from intact mitochondria
into the cytosol can be detected before these visible cell death symptoms and
mitochondrial decline (Balk and Leaver, 2001), suggesting the involvement
of the CMS mitochondria in the premature tapetal cell death. Interestingly,
although RNA degradation is usually associated with cell death, degrada-
tion of the orf522 actually restored fertility, suggesting a deleterious role for
the orf522 gene product (Gagliardi and Leaver, 1999).

POLLINATION AND FERTILIZATION. Pollination and fertilization are also
associated with cell deterioration and death in various female tissues (Wu
and Cheung, 2000). Pollen tubes, the structure derived from pollen grains to
deliver the male germ cells to the embryo sac, penetrate several female
tissues on their way to the egg cell. Prior to pollination, cells in the mature
stigmatic papillae and the underlying glandular zone, the first layers of
female tissue penetration by the pollen tubes, degenerate and release large
amounts of cellular materials to the extracellular space. This facilitates pollen
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grain germination and tube penetration of pistil tissues. Pollen tube growth
deeper into the female tissues is accompanied by severe cell degeneration
and death in what is known as the transmitting tissue (Wang et al., 1996),
which provides nutrient resources and guidance cues for the passing pollen
tubes (Cheung et al., 1995; Wu et al., 1995). This releases large amounts of
nutrient resources as well as hydrolytic enzymes, both beneficial for the 
penetrating pollen tubes. The degeneration of the female tissues has also
been postulated to be a defense mechanism to ablate a passage that could
be used by pathogens to invade the ovary (Herrero, 1992). This pollination-
induced female cell death is highly specific since adjoining cortical cells
remain intact. Regulated RNA degradation has been suggested as one of the
underlying mechanisms for the observed cell deterioration process (Wang et
al., 1996).

Development of the female gametophyte also involves death in selected
haploid precursor cells, leaving only one to undergo three rounds of mitosis,
nuclear migrations and fusion, and cellularization to produce the typical
seven-cell, eight-nucleate embryo sac (Russell, 1979, 1993). Degenerating
haploid cells show shrinkage, cytoplasmic disorganization, and pycnotic
nuclei (Bell, 1996). As the embryo sac develops, surrounding tissues also
degenerate.

Programmed cell death in early female gametophyte development
ensures the production of an egg cell that is protected deep inside the ovule
within the embryo sac. To ensure that sperm cells are provided with access
and guidance to the embryo sac for fertilization, an equally important cell
death process is also programmed within the embryo sac (Russell, 1996). A
pair of cytologically and probably functionally equivalent cells called the
synergid cells occupy the entrance to the embryo sac. Death in one, or some-
times both, of these cells either precedes or accompanies the entrance of the
pollen tubes and is believed to provide guidance cues for their entrance into
the female chamber (Higashiyama et al., 2001; Cheung and Wu, 2001). In the
degenerating synergid cell, the cytoplasm condenses, the nucleus becomes
distorted, the vacuole collapses, and organelle degeneration, autolysis of cel-
lular content, and cell membrane disintegration follow. Ca2+ emitted from
the ruptured synergid cell is speculated to be connected with pollen tube
entrance.

In compatible pollination, fertilization occurs after pollen tube ruptures
inside the embryo sac to deliver the male germ cells. But death in pollen
tubes occurs significantly earlier in self-incompatible pollination in which
the development of a pollen tube is arrested by specific female factors to
prevent self-fertilization (see McCubbin and Kao, 2000). Pollen tubes elon-
gating in incompatible pistil tissues develop thick cell walls, their tip swells,
cellular inclusions lose their integrity, some tubes burst, and others are
enveloped by cell wall materials at their tips. RNases are key factors in the
arrest of self-incompatible pollen tubes in many systems (see McCubbin and
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Kao, 2000). In poppies, DNA fragmentation as detected by TUNEL assays
occurs in self-incompatible pollen tubes. Treatment with a caspase inhibitor
appears to reduce the level of DNA fragmentation in these tubes (Jordan 
et al., 2000).

SEED DEVELOPMENT AND GERMINATION

Endosperm development in cereal seeds depends on cell death events that
lead to the dormancy of endosperm cells in the outermost aleurone layer and
the death of the more internally located but starchy endosperm. The aleu-
rone cells will be activated by germination. Hydrolytic enzymes are secreted
by the aleurone to break down reserves stored in the dead starchy
endosperm cells to support seedling growth (Young and Gallie, 2000). The
utilization of resources in the endosperm by aleurone cells is also accompa-
nied by cellular and biochemical events marking progressive cell death 
(Fath et al., 2000). The cell death events in maize and wheat endosperm
development begin when the biosynthetic phase of endosperm development
is close to a conclusion and the pattern of cell death progression has been
described in detail on the histological level (Kowles and Phillips, 1988;
DeMason, 1997). On the molecular level, it is accompanied by DNA frag-
mentation. DNA degradation apparently is already initiated during the
biosynthetic phase of endosperm development. Very large DNA fragments
(above 50kbp and up to several hundred kbp) are detectable before visible
signs of cell death can be observed. The appearance of internucleosomal
fragmentation accompanies late stages of cell death (Young and Gallie, 1999).
Cell death in the starchy endosperm proceeds in close spatial proximity with
the developing embryo and the aleurone layer, which remain alive. The level
and activity of nucleases increase during endosperm development through-
out the developing seeds. But the level of nucleases involved in endosperm
cell death is between 5- to 10-fold higher than in the embryo (Young 
and Gallie, 2000). Clearly, the tight regulation of compartmentalized events
exists in different tissue types differentiating within a developing seed. 
Cell death in the starchy endosperm is believed to facilitate access of hydro-
lases released from the aleurone for rapid mobilization of resources during
germination.

Upon germination, the aleurone cells are activated to secrete hydrolytic
enzymes to mobilize resources from the starchy endosperm for early devel-
opment. As opposed to the starchy endosperm cells, aleurone cells undergo
PCD only upon germination or activation by gibberellic acid under tissue
culture conditions (Fath et al., 2000), and this process can be delayed by
abscisic acid. The cell death process involves vacuolation, loss in cell mem-
brane integrity, and ultimately cellular autolysis. Although cell death is
accompanied by the accumulation of a large variety of nucleases and nucle-
ases, the degradation of nuclear DNA into internucleosomal size fragments
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is said not to occur, a phenomenon clearly distinct from the death of the
starchy endosperm cells (Young and Gallie, 2000).

PCD IN RESPONSE TO ENVIRONMENTAL STRESS

Some examples of PCD induced in response to extreme physical conditions,
that is, abiotic stress, exist in plants. The adaptation of plants to environ-
mental conditions such as high light and low humidity often involves 
covering their surfaces with a thick layer of dead hair cells. These are thought
to undergo PCD, resulting in the formation of a protective layer that 
functions to block damaging sunlight and trap humidity (Greenberg, 1996).
Submerged roots, stems, and petioles often suffer from a condition of low
oxygen tension. In order to facilitate the transfer of gas through the root,
patches of root cells undergo PCD to form pockets and channels of air. This
tissue is called aerenchyma. Recently, the plant hormone ethylene was impli-
cated in regulating this cell death process. Aerenchyma may also be formed
by differential cell growth. This process may accompany the normal devel-
opment of some plant species and may not be the result of anoxic conditions
(Lam et al., 2000).

UV, ionizing radiation, and oxidative stress are also thought to induces
PCD in plants (Lam et al., 2001). Oxidative stress induced by different com-
pounds such as paraquat, a herbicide that enhances the rate of superoxide
generation in cells, or by ionizing radiation, induces PCD in plants. Recently,
it was reported that the animal antiapoptotic genes Bcl-XL and CED-9 can
inhibit paraquat- and radiation-induced cell death in plants (Mitsuhara et
al., 1999). Other environmental stresses such as high light, salt stress, and
certain toxins were shown to induce cell death that was accompanied by
DNA laddering, suggesting that they may involve some processes similar to
apoptosis in animals (Mittler, 1998).

PATHOGEN-INDUCED PCD

Pathogens are microorganisms capable of penetrating the plant’s preexisting
structural and chemical barriers and multiplying within plant tissues
(Goodman and Novacky, 1994). The interaction of plants with pathogens can
generally result in one of two outcomes: (1) The pathogen will infect the
plant, multiply, and cause a disease. (2) The plant will rapidly mount a
defense response that will block the spread of the pathogen, and prevent the
disease (Nurnberger and Scheel, 2001). The outcome of this interaction is
dependent on a set of plant-encoded genes (resistance genes) and a set of
pathogen-encoded genes (avirulence genes), and is termed gene-for-gene
(Bent, 1996). Gene-for-gene interactions determine whether the plant will
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recognize the pathogen and activate its defenses, thereby become resistant,
or will fail to recognize the pathogen, will not activate defense mechanisms,
and become infected (Hammond-Kosack and Jones, 1996). Interestingly,
some of the plant’s gene-for-gene genes were found to be similar to animal
genes controlling bacterial pathogenicity and PCD (Rahme et al., 1997;
Inohara and Nunez, 2001).

Different types of PCD are activated during plant–pathogen interactions.
During the development of disease, symptoms such as cell death can appear.
For years it was thought that these are the result of toxins produced by
pathogens during the infection process (Goodman and Novacky, 1994).
However, in recent years it became apparent that this type of cell death actu-
ally results from the activation of a PCD pathway. Thus, mutants that 
activate symptom-associated cell death in the absence of a pathogen were
isolated (Greenberg, unpublished). In addition, the expression of antiapop-
totic genes was found to inhibit certain symptom-associated cell deaths
(Dickman et al., 2001), and some toxins produced by pathogens were shown
to induce PCD when applied to plant cells in the absence of the pathogen
(Wang et al., 1996).

During plant–pathogen interactions that result in the successful inhibi-
tion of pathogen growth, a different type of PCD is activated. This type of
PCD is activated in infected cells or in cells that surround the infection site
and result in the formation of a lesion, called the hypersensitive response
(HR) lesion (Dangl et al., 1996). During the HR cells undergo a very rapid
process of cell death (hence, the name hypersensitive) and prevent the
pathogen, mostly an obligate parasite such as a virus or certain types of bac-
teria and fungi, from replicating, because these require living cells for their
proliferation. Due to the association of this type of cell death with disease
resistance, it has been the focus of considerable research (in contrast to
symptom-associated cell death), and will be described in more detail below.

PCD activated during the HR can be very successful in preventing oblig-
ate parasites from replicating within living cells. However, it was found that
some pathogens which feed on dead plant tissue (necrotrophic pathogens)
deliberately cause the activation of this PCD pathway in plants in order to
propagate on the resulting dead plant tissue (Govrin and Levine, 2000).

PCD INDUCED DURING THE HYPERSENSITIVE RESPONSE

The recognition of an invading pathogen by the plant, that is, the recogni-
tion of an avirulence Avr factor by the resistance R gene, triggers a signal
transduction pathway that results in the induction of multiple defense path-
ways, including PCD (Fig. 2; Godiard et al., 1994). Some of the early events
associated with the induction of this response are the rapid generation of
reactive oxygen species (ROS) in the form of superoxide and H2O2, the so-
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called oxidative burst (Jabs et al., 1996; Tenhaken et al., 1995; Grant and
Loake, 2000), and a rapid flux of ions across the plasma membrane (Mittler
et al., 1995; Jabs et al., 1997). The rapid generation of ROS by plant cells upon
the recognition of pathogens may be analogous to the production of ROS by
macrophages. Moreover, it is thought that a membrane-bound NADPH
oxidase complex is involved in this process (Hammond-Kosack and Jones,
1996). Thus, much like macrophages that produce ROS to kill pathogens,
plant cells may also generate ROS at a very high level. These may function
to kill the pathogen, the plant cell, or both. Initially, it was thought that ROS
are sufficient to induce PCD. However, it was recently shown that nitric
oxide (NO) is required for the activation of PCD by ROS (Delledone et al.,
2001; Klessig et al., 2000). In addition to inducing PCD, ROS such as 
H2O2 function as signals that activate other defense mechanisms, that is,
pathogenesis-related (PR) proteins (Linthorst, 1991), and phytoalexins, and
as oxidizing agents that cause the cross-linking and strengthening of cell
walls (Hammond-Kosack and Jones, 1996). It should however be noted that
the oxidative burst alone may not be sufficient to trigger cell death in all
plant–pathogen systems (Glazener et al., 1996; Delladone et al., 2001).

The enhanced production of ROS during the HR is accompanied by the
suppression of antioxidative enzymes such as ascorbate peroxidase and cata-
lase. This suppression occurs at the activity level by salicylic acid (SA) and
NO (Klessig et al., 2000), as well as at the gene expression level (Mittler et
al., 1999). The process of ROS production during the HR is therefore
enhanced due to the suppression of the cellular antioxidative mechanism.
Thus, ROS produced by NADPH oxidases and other cellular sources during
the HR can accumulate to very high levels because their removal is 
suppressed.

Under conditions of low oxygen pressure or high humidity, cell death
may be inhibited without affecting the activation of other defense mecha-
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FIGURE 2. Pathogen-induced PCD. (A) Induction of PCD in tobacco by a bacterial
pathogen (after Mittler et al., 1999). (B) Induction of PCD in tomato by expression of
a bacterial proton pump (bacterio-opsin; bO; after Mittler and Rizhsky, 2000).



nisms such as the synthesis of SA and the induction of PR proteins (Mittler
et al., 1996; Hammond-Kosack and Jones, 1996). These results suggest that
PCD can be uncoupled from the activation of other defense mechanisms
during the HR. This hypothesis is supported by previous studies in which
the activation of defense mechanisms was shown to occur in the absence of
PCD (Hammond-Kosack et al., 1996). Therefore, although the signal trans-
duction events that lead to the activation of PCD and defense mechanisms
during the HR are controlled by a single gene-for-gene interaction, it appears
as if two independent pathways may be set into motion by this recognition
event, a pathway for PCD and a pathway for the induction of PR proteins
and perhaps other defense mechanisms (Fig. 3).

The signal transduction pathway that leads to the activation of PCD was
shown to involve an increase in proton and Ca2+ flux into the cytosol, and the
activation of a MAPK cascade (Jabs et al., 1997; Zhang and Klessig, 2001). The
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FIGURE 3. A model depicting some of the signaling pathways activated in plants in
response to pathogen attack. Different pathogens are shown to be recognized by plant
receptors. These activate a signal transduction pathway that results in the inward
flux of Ca2+ and protons, the enhanced generation of ROS, and the activation of a
MAPK cascade(s). The plant hormones SA and NO, and ROS coordinate the induc-
tion of PCD and defense mechanism in infected cells and in neighboring cells.



increased intracellular concentration of Ca2+, accompanied by the acidifica-
tion of the cytoplasm (inward increase in proton flux), is thought to signal
the activation of different kinases and the phosphorylation of several cellu-
lar targets. These may include the phosphorylation and activation of the
NADPH oxidase complex (Dangl et al., 1996). Several studies using mutants
altered in the activation or propagation of PCD in plants (lesion mimic
mutants; Walbot et al., 1983; Dangl et al., 1996; Loake, 2001), suggest that
plants contain a set of genes encoding proteins that suppress PCD at differ-
ent levels, and a set of proteins that induce PCD, depending on the type of
environmental signal perceived. Unfortunately, although some of these genes
were cloned (Lam et al., 2000), little is known about how they function.

Lesion mimic mutants are mutants that spontaneously activate the HR
in the absence of a pathogen (Dangl et al., 1996). They are often referred to
as “accelerated cell death” (acd; Greenberg and Ausubel, 1993), or “lesion
simulating disease” (lsd; Dietrich et al., 1994) mutants. The mutations that
cause the appearance of HR lesions in the absence of a pathogen in these
plants are thought to occur in plant genes that control PCD. Thus, mutations
in these genes would result in the abnormal activation or suppression of
pathogen-induced PCD (Greenberg and Ausubel, 1993; Dietrich et al., 1994;
Greenberg et al., 1994). Disease lesion mimic mutants have been isolated
from tomato, maize, barley, rice, and Arabidopsis. They were classified
according to their appearance into two groups: initiation, and feedback or
propagation mutants (Walbot et al., 1983; Dietrich et al., 1994). Several cell
death mutants express molecular and biochemical markers associated with
the antimicrobial defense response of plants. These include PR proteins, the
accumulation of SA, the deposition of callose or other cell wall strengthen-
ing compounds, and the synthesis of phytoalexins (Dietrich et al., 1994;
Greenberg et al., 1994). The activation of these antimicrobial defenses in the
absence of a pathogen further indicates that the cell death pathway activated
in these mutants is the same pathway activated during the response of plants
to invading pathogens.

Cell death mutants are powerful tools for the study of PCD in plants. By
crossing these mutants for complementation studies, the order of the cell
death genes along the PCD pathway may be determined (Dangl et al., 1996;
Rusterucci et al., 2001; Loake, 2001). For example, it was recently reported
that LSD1, a novel zinc finger protein that regulates PCD induced by super-
oxide or pathogen infection, downregulates a PCD pathway that is driven
by ROS, SA and the plant genes PAD4, EDS1, and NPR1. This pathway is
activated in cells that surround the initial infection site. Thus, when LSD1 is
mutated, it can no longer suppress PCD in these cells and the lesion that 
is formed upon infection or ROS application becomes a runaway cell death
process that spreads to the entire leaf instead of being confined to only a few
cells (Fig. 4; Rusterucci et al., 2001; Loake, 2001).

Additional tools that may prove beneficial for the study of PCD in plants
are transgenic plants that spontaneously activate the HR in the absence of a
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pathogen. For example, transgenic tobacco plants that express a bacterial
gene encoding the proton pump bacterio-opsin (bO) were found to sponta-
neously activate the HR and defense mechanisms in a manner similar to
some of the dominant initiation cell death mutants (Fig. 2; Mittler et al.,
1995). The expression of other transgenes was also reported to cause the acti-
vation of the HR (Mittler and Rizhsky, 2000). The expression of some of these
genes is thought to drastically alter the metabolism of the cell. These alter-
ations may result in the activation of PCD similar to the activation of PCD
by alterations in cellular homeostasis in animals (Dangl et al., 1996; Mittler
and Rizhsky, 2000). In support of this hypothesis, the majority of disease
lesion mimic mutants appear to result from dominant mutations. It was
therefore suggested that some of these mutations alter the homeostasis of
the cell, thus, generating a cell death signal (Walbot et al., 1983).

MOLECULAR MACHINERY OF PCD IN PLANTS

The sequencing of the entire genome of the flowering plant Arabidopsis
thaliana failed to identify plant homologs of key regulators of PCD in animals
such as caspases and Bcl-2 or Bax. Plants were however found to contain a
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FIGURE 4. A model showing the PCD-inhibiting function of LSD1. LSD1 is shown
to suppress PCD in cells that surround the primary infected cells, and therefore to
limit the spread of cell death and create a lesion with a defined border. In the absence
of this gene, PCD is not suppressed and a runaway PCD process is initiated. In lsd1
plants this process will continue until the entire leaf is dead. See also Loake (2001).



group of proteases called metacaspases, and homologs of BI-1 (Bax inhibitor-
1) and DAD-1 (Lam et al., 2001). There are two types of metacaspases in
plants: Type I that contains a predicted caspaselike proteolytic domain but
lacks the death effector domain, and Type II that contains in addition to the
caspaselike domain an N-terminal zinc finger and proline-rich domains, also
found in LSD-1, a protein involved in the control of PCD during the HR (see
above). Molecular and pharmacological studies support the involvement of
caspases in PCD in plants (possibly mediated by the metacaspase family).
These include the suppression of HR-associated PCD by synthetic peptides
that act as inhibitors of caspase activity, and measurements of caspaselike
protease activity in plant cells undergoing HR-PCD (Lam et al., 2001). Thus,
in plants metacaspases may play a role similar to that of caspases in animals.
Additional players that may be similar to some of those controlling PCD 
in animals are small GTP-binding proteins of the Ras class and cysteine-
sensitive proteases (Ono et al., 2001; Lam et al., 2000, 2001).

Although Bax homologs were not found in plant cells, the expression of
Bax in plants induces PCD (Kawai-Yamada et al., 2001). Moreover, this
induction requires the proper oligomerization and cellular localization of
Bax in plants. The animal protein BI-1 was recently found to inhibit Bax toxi-
city in yeast. Homologs of this protein were found in plants. Coexpression
of Bax and the plant homolog of BI-1 resulted in the inhibition of 
Bax-induced cell death in plants (Kawai-Yamada et al., 2001). These results,
as well as the finding that mitochondrial permeability transition (MPT) and
release of cytochrome c from mitochondria accompany certain types of PCD
in plants (Balk and Leaver, 2001; Curtis and Wolpert, 2002), suggest an active
role for the mitochondria in plant PCD processes. Further support for this
hypothesis comes from overexpression of animal antiapoptotic genes such
as Bcl-2, Bcl-XL, and CED-9 in plants. These were found to inhibit pathogen-
induced PCD and oxidative stress-induced PCD in plants (Mitsuhara et al.,
1999; Dickman et al., 2001). A recent homology search using BI-1 sequences
revealed the possible existence of a functional homolog of Bcl-2 in plants
(called ABR proteins; Lam et al., 2001). However, further experimental work
is required to support this possibility. A model illustrating some of the events
associated with plant PCD is shown in Fig. 5.

Interestingly, when the different animal antiapoptotic genes were ectopi-
cally overexpressed in plants, they did not appear to affect certain develop-
mental processes that require PCD such as xylem formation, suggesting that
different PCD pathways in plants may be controlled by different mechanisms.

SUMMARY

PCD is a basic biological process essential for the survival of almost all living
organisms. The many examples of PCD in plants may suggest that plants
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use different pathways for PCD. These may be activated by different devel-
opmental signals, environmental insults, hormones, toxins, or pathogens.
PCD induced by different agents may require different modes of cell death.
For example, the death of an infected plant cell should occur in a relatively
rapid rate to prevent the spread of the invading pathogen, whereas the death
of a senescing cell should occur at a relatively slow rate that will allow the
efficient transfer of nutrients from the dying cell to younger cells. In addi-
tion, different cell deaths in plants are inhibited by different proteins. For
example, pathogen-induced PCD can be inhibited by the expression of 
Bcl-2, whereas developmental PCD of xylem vessels is not. Although plants
and animals use PCD for similar purposes, many differences exist between
PCD in plants and PCD in animals. It is possible that these result from the
different anatomical and physiological characteristics between plants and
animals.

Most PCD strategies utilized during plant development are likely to
involve variations in themes around a relatively conserved cellular, molec-
ular, and biochemical framework. The stimulus that triggers each in-
dividual cell death program is expected to differ, although various phyto-
hormones may overlap in their roles as stimulating or suppressing agents
for individual processes (Quirino et al., 2000; Rubinstein, 2000; Young and
Gallie, 2000; Fukuda, 2000; Fath et al., 2000). Their exact functional roles and
how they initiate the cell death programs remain to be understood. The story
of early signaling pathways of developmentally regulated PCD is almost an
untouched territory. A heterotrimeric G protein has been implicated in the
senescence of the orchid Phalaenopsis (Porat et al., 1994). Rac-like small
GTPases have been shown to mediate pathogen-induced PCD (Ono et al.,
2001) and in secondary cell wall differentiation in cotton, a terminal differ-
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FIGURE 5. A model showing some of the players involved in regulating PCD in
plants. Abbreviations: ABR, At-BI-2-related proteins; At-BI, Arabidopsis thaliana Bax
inhibiotor; cyt-c, cytochrome c; MPT, mitochondrial permeability transition.



entiation process (Potikha et al., 1999). We have observed that tobacco and
Arabidopsis Rac-like GTPases are mediators for auxin responses (Tao et al.,
2002). This suggests the potential use of a large family of molecular switches
in mediating endogenous as well as environmental signals to activate devel-
opmental PCD pathways.

Interestingly, at least some mechanisms of PCD appear to be conserved
between yeast, plants, and animals. These appear to involve as a central
player the mitochondrion. Because the mitochondrion is believed to have
originated from an endosymbiotic event between a primitive eukaryotic cell
and a proteobacteria, the finding of different PCD processes in bacteria
(Lewis, 2000) may extend the link between yeast, plants, and animals, to
include bacteria and mechanisms of PCD in bacteria that involve the rupture
of bacterial cells. PCD appears therefore to be a key mechanism for the 
survival of almost all known organisms.
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CHAPTER

6

REGULATION OF APOPTOSIS BY

EXTRACELLULAR MATRIX DURING

POSTEMBRYONIC DEVELOPMENT

IN XENOPUS LAEVIS

ATSUKO ISHIZUYA-OKA, TOSIKAZU AMANO,
LIEZHEN FU, AND YUN-BO SHI

Programmed cell death or apoptosis is an integral part of animal develop-
ment. It is essential for the establishment and maintenance of tissue struc-
ture and organ function and is precisely controlled both temporally and
spatially during development (Jacobson et al., 1997; Meier et al., 2000). Some
cells, such as the neurons, are produced in large excess early in development
and the unwanted ones, that is, those fail to find target cells, are eliminated
through apoptosis later. Another major type of physiological cell death is
responsible for the removal of the organs/tissues that serve specific roles
only during certain developmental periods but are not needed in adult life.
In addition, apoptosis is also important for the high levels of plasticity in the
development of many animal species by compensating for genetic and/or
environmental changes.

Anurans are among the earliest models used for developmental studies
in vertebrates where apoptosis is obviously critical for the formation of the
adults (Dodd and Dodd, 1976; Gudernatch, 1912; Shi, 1999). They undergo
biphasic development, embryogenesis to generate a free living tadpoles, and
subsequent metamorphosis to produce the adults with a new habitat (Dodd
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and Dodd, 1976; Shi, 1999). The metamorphic process changes essentially
every single tissue/organ. Some develop de novo, whereas others resorb
completely. The majority of the tissues/organs undergo partial but often
drastic transformations to adapt to their new roles in the adult. All these
diverse changes are, however, under the control of thyroid hormone (TH)
(Dodd and Dodd, 1976; Shi, 1999). The addition of TH to the rearing water
of premetamorphic tadpoles can induce precocious changes, while blocking
the synthesis of endogenous TH leads to the formation of giant tadpoles that
fail to undergo the transformation. Furthermore, most, if not all, of these
changes are organ autonomous as in vitro cultures of tadpole organs, such
as the limb and intestine, can metamorphose in response to TH added to the
culture medium (Ishizuya-Oka and Shimozawa, 1991; Tata et al., 1991). Such
properties have made anuran metamorphosis an attractive model to study
postembryonic development in vertebrates. Here we review the involvement
and regulation of apoptosis during Xenopus laevis metamorphosis. We focus
primarily on the remodeling of the animal intestine and the role of the extra-
cellular matrix (ECM) in this process.

APOPTOSIS DURING METAMORPHOSIS

The organ autonomous nature of anuran metamorphosis indicates that the
TH-dependent process is genetically predetermined in different organs. Fur-
thermore, as early as 1966, Tata (Tata, 1966) showed that both protein and
RNA synthesis are required for tail resorption, indicating that tail resorption
involves programmed cell death. Direct demonstration that apoptosis occurs
during metamorphosis came when Kerr and coworker (Kerr et al., 1974)
examined electron microscopically the resorption of the tail muscle and epi-
dermal cells during metamorphosis of the dwarf tree frog Litoria glauerti.
Their studies indicated that these two major cell types of the tail undergo a
series of well-defined, sequential morphological changes of apoptosis,
including the condensation of the cytoplasm, segregation of the compacted
chromatin into dense masses that lie against the nuclear envelope, and the
subsequent formation of apoptotic bodies. Similar findings have also been
reported for Rana japonica (Kinoshita et al., 1985) and Xenopus laevis
(Nishikawa and Hayashi, 1995) (Fig. 1).

Cell death is also important for the de novo development of the limbs.
As the limbs undergo morphogenesis, the interdigital cells are selectively
removed, although it remains to be shown that they undergo apoptosis 
(Fig. 1).

Intestinal remodeling represents the third type of transformation during
metamorphosis. Here, an existing organ is converted into an adult organ
with a drastically reduced size but more complex cross-sectional morphol-
ogy to accommodate the dietary change from being herbivorous to being
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carnivorous. The tadpole intestine is a simple tubular structure consisting of
predominantly the larval epithelial cells surrounded by sparse connective
tissue and muscles (Shi and Ishizuya-Oka, 1996). During metamorphosis, the
larval epithelium undergoes complete degeneration and is replaced by adult
epithelium (Fig. 1). Morphological and biochemical analyses indicate that
the larval epithelial cells undergo apoptosis and the apoptotic bodies are
removed at least in part through phagocytosis by macrophages migrating
over from the connective tissue (Ishizuya-Oka and Shimozawa, 1992b;
Ishizuya-Oka and Ueda, 1996). Accompanying this apoptosis is the prolifer-
ation of the adult epithelial cells, whose origin remains unclear, followed by
their differentiation and morphogenesis to form the multiply folded adult
epithelium. Concurrently, elaborate connective tissue and muscles develop
around the adult epithelium (Fig. 1).

In vitro studies suggest that TH can induce cell death by targeting the
dying cells directly at least for some larval cells when cultured in vitro. This
was first shown by Yoshizato and colleagues for tail epidermal cells
(Nishikawa et al., 1989; Nishikawa and Yoshizato, 1986). They isolated the
epidermal cells from the tail of Rana catesbeiana tadpoles and cultured them
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FIGURE 1. Stage-dependent apoptosis in different organs during Xenopus laevis
metamorphosis. The developmental stages are from Nieuwkoop and Faber (1956).
The tails at stages 62 through 66 are drawn to the same scale to show the resorption
(no tail remains by stage 66), whereas the tadpoles, intestinal cross sections (middle),
and hindlimbs at different stages are not in the same scale in order to show the 
morphological differences. Tadpole small intestine has a single epithelial fold (the
typhlosole, Ty), where connective tissue (CT) is abundant, while a frog has a multi-
ply folded intestinal epithelium (E), with elaborate connective tissue and muscle (M).
Fo: epithelial folds. Dots: proliferating adult intestinal epithelial cells. Open circles:
apoptotic primary intestinal epithelial cells.



in vitro in the presence or absence of TH. Although these cells survived well
and proliferated in the absence of TH, the addition of TH to the culture
medium caused these cells to die, suggesting that the TH-dependent epi-
dermal cell death is cell autonomous, at least when cultured in isolation 
in vitro.

Similarly, we isolated the larval epithelial cells and the fibroblasts from
the intestine of Xenopus laevis tadpoles and cultured them in vitro (Su et al.,
1997a, 1997b). Our results showed that the larval epithelial cells were
induced to die by physiological concentrations of TH. On the other hand,
the fibroblasts were refractory to TH-induced death, although both the
fibroblasts and epithelial cells were capable of proliferation in vitro and TH
stimulated their DNA synthesis. Biochemical and morphological analyses
indicated that the TH-induced epithelial cell death had all the characteris-
tics of apoptosis, including the formation of apoptotic bodies and nucleoso-
mal sized nuclear DNA fragments. Although these studies suggest a cell
autonomous response to TH for isolated larval cells, in vivo, apoptosis likely
involves both direct action of TH in the dying cells as well as indirect effects
through cell–cell and cell–ECM interactions as described below.

ECM REMODELING AND CELL FATE DETERMINATION

The vast majority of the cells in an organism are in constant contact with the
ECM. The ECM not only provides the essential physical support for cells
that constitute individual organs but also serves as a media for cell–cell inter-
actions/signaling (Hay, 1991). In addition, the ECM can signal cells directly
through many cell surface receptors that bind to ECM components (Brown
and Yamada, 1995; Schmidt et al., 1993). Finally, numerous extracellular
factors such as growth factors and morphogens are stored in the ECM and
their availability to signal nearby cells depends on the nature of the ECM.
Thus, changes in the ECM can result in two types of signals for the nearby
cells: direct signaling through cell surface ECM receptors and indirect effects
through alterations in cell–cell and cell–extracellular factor interactions.

The drastic changes in various organs during anuran metamorphosis
undoubtedly involve extensive remodeling of the ECM. As early as 1962,
Gross and colleagues (Gross and Lapiere, 1962) identified collagenase activ-
ity in the resorbing tail. Such activity is believed to be mainly responsible
for the degradation of the collagen, a major component of the ECM in 
the tail, during tail resorption. However, little is known about whether and
how ECM remodeling may play a role in various metamorphic events.

We have been studying the remodeling of the intestine during Xenopus
laevis metamorphosis. This process involves the complete degeneration of
the larval epithelium and de novo development of the adult epithelium.
Concurrently, the underlying connective tissue and outer muscle layers
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develop extensively. In between the epithelium and the connective tissue is
a distinct ECM, the basal lamina, which is composed of laminin, entactin,
collagens, and proteoglycans, and so on (Hay, 1991; Timpl and Brown, 1996).
As the epithelium undergoes metamorphic transformations, one would
expect that the basal lamina also undergoes remodeling. Indeed, electron
microscopic examination shows that in premetamorphic Xenopus laevis tad-
poles, the basal lamina is a thin but continuous structure (Fig. 2A). During
metamorphosis, it becomes thick (Fig. 2B) and remains so until the larval
epithelium finally disappears through massive apoptosis (Ishizuya-Oka and
Shimozawa, 1992b; Shi and Ishizuya-Oka, 1996). Interestingly, the basal
lamina appears to be much more permeable at the climax of metamorpho-
sis (stages 60–63) in spite of the increased thickness. This permeability is
reflected by the frequently observed migration of macrophages across the
ECM into the degenerating epithelium, where they participate in the
removal of apoptotic epithelial cells. In addition, extensive contacts are
present between the proliferating adult epithelial cells and the fibroblasts on
the other side of the basal lamina. Larval epithelial cells are completely
replaced by the adult epithelial cells around stages 62 and 63. After stage 
63, with the progress of intestinal morphogenesis, that is, intestinal fold for-
mation, the adult epithelial cells differentiate into absorptive epithelium.
Concurrently, the basal lamina underlining the differentiated adult epithe-
lium becomes thin and flat again (Fig. 2C). Such changes support the role of
ECM in intestinal transformation.

Direct evidence for the role of ECM in influencing cell fate has come from
in vitro studies. As described above, tadpole intestinal epithelial cells can be
cultured in vitro and induced to undergo apoptosis by TH just as in vivo (Su
et al., 1997a, 1997b). When the plastic culture dishes are coated with various
ECM proteins, such as fibronectin and laminin, the cells become more resis-
tant to TH-induced cell death. Consistent with these apoptosis-inhibiting
effects of the ECM coatings, when proliferating/differentiating adult epithe-
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FIGURE 2. Electron micrographs showing the remodeling of the basal lamina (BL)
just beneath the intestinal epithelium (E) during metamorphosis. (A) at stage 56; 
(B) stage 61; (C) stage 66. Bars: 0.5mm.



lial cells of the intestine at stage 64 are cultured in vitro on plastic dishes,
they also undergo TH-induced apoptosis. In vivo, these adult cells prolifer-
ate and differentiate instead of undergoing apoptosis in the presence of high
levels of circulating plasma TH. Thus, dissociating the adult cells from the
ECM alters their response to TH. On the other hand, the ECM components
do not influence TH-stimulated cellular DNA synthesis and the downregu-
lation of two epithelial specific genes in the primary culture of the intestinal
epithelial cells. Thus, the ECM preferentially affects cell death.

A role for cell–cell interactions in metamorphosis is also supported by
organ culture studies. For example, when tail fragments are cultured in vitro,
TH can induce cell death and tail resorption. The removal of tail epidermis
prevents TH-induced tail resorption in organ cultures (Niki et al., 1982; Niki
and Yoshizato, 1986). On the other hand, there is also evidence to suggest
that adult-type non-T leukocytes may participate in the specific elimination
of larval tail cells (Izutsu and Yoshizato, 1993; Izutsu et al., 1996). In addi-
tion, when intestinal fragments are cultured in the presence of TH, larval cell
death takes place within 3 days, followed by the development of adult
epithelium after 5 days (Ishizuya-Oka and Shimozawa, 1991). When isolated
epithelium is cultured with TH, only cell death occurs. The development of
the adult epithelium requires the presence of the connective tissue as cocul-
tures of the larval epithelium and the connective tissue restore adult epithe-
lial development (Ishizuya-Oka and Shimozawa, 1992a). Thus, cell–cell
interactions, which are dependent on and/or influenced by the nature of 
the ECM, are likely important for both larval tissue degeneration and adult
tissue development.

GENE REGULATION DURING METAMORPHOSIS

The biological effects of TH are believed to be mainly manifested through
the regulation of direct TH response genes by thyroid hormone receptors
(TRs). TRs belong to the superfamily of nuclear receptors that includes
steroid hormone receptors and 9-cis retinoic receptors (RXRs), and the like
(Mangelsdorf et al., 1995; Sachs and Shi, 2000; Shi and Ishizuya-Oka, 2001;
Tsai and O’Malley, 1994; Yen, 2001). They are transcription factors that rec-
ognize specific DNA sequences, or TH response elements (TREs), in their
target genes. Both TR monomers and dimers can bind to TREs. In vitro and
in vivo studies show that TRs most likely function as heterodimers formed
with RXRs in vivo. In the absence of TH, TR/RXR heterodimer represses the
expression of TH-inducible genes. Upon binding by TH, TR/RXR switches
from being a repressor to being an activator to upregulate the expression of
the TH-inducible genes. Thus, the key to understanding how TH regulates
anuran metamorphosis lies in identifying and functionally characterizing 
the TH-response genes within individual metamorphosing organs/tissues.
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TH RESPONSE GENES

To affect tissue transformations during metamorphosis, TH is presumed to
induce a cascade of gene regulation. The earliest genes, or so-called direct
response genes, are those regulated by TRs at the transcriptional level im-
mediately after TH becomes available. The products of the genes, in turn,
are likely to participate in the regulation of downstream genes either directly
or indirectly. For the purpose of the discussion here, we refer to those genes
whose mRNA levels are altered by a 24-hour TH treatment of premetamor-
phic tadpoles as early TH response genes, with the rest designated as late
TH response genes.

Systematic isolation of early TH response genes has been carried out by
using PCR-based subtractive differential screen for the hindlimb, tail, brain,
and intestine of Xenopus laevis (Buckbinder and Brown, 1992; Denver et al.,
1997; Shi, 1999; Shi and Brown, 1993; Wang and Brown, 1993). This had led
to the identification and characterization of many genes in those organs. In
general, there are many more genes upregulated by TH than those down-
regulated by TH. Of the four organs analyzed, the tail and intestine share
more similarities with each other than with the other two. Both organs
involve the predominantly apoptotic degeneration of larval tissues at early
stages of metamorphosis. Many of the TH response genes are regulated by
TH similarly in the two organs. Sequence analyses reveal that the genes
belong to several different groups. The first groups include gene-encoding
transcription factors, such as TRb and NF-I. These transcription factors are
expected to regulate the expression of the downstream genes directly, thus
propagating the TH signal. The second groups contain genes that can affect
cell–cell and cell–ECM interactions, for example, those encoding matrix 
metalloproteinases (MMPs), which digest various proteinaceous compo-
nents of the ECM (see below). The rest encode various other enzymes or cell-
specific proteins, and their functions during metamorphosis are likely to
vary depending on the cells in which they are expressed.

Notably absent among the isolated early TH response genes are those
encoding cell death effectors and regulators, such as caspases and Bcl-2
superfamily members (Adams and Cory, 1998; Cryns and Yuan, 1998; Rao
and White, 1997; Shi et al., 1998). This may be because the mRNA levels of
such genes do not change significantly during metamorphosis and thus
escaped the PCR-based screens. Alternatively, the PCR-based screens are not
saturated. Finally, the regulation of such genes by TH may be delayed rela-
tive to the early TH response genes. A PCR-based screen for genes regulated
in the intestine after a 4-day TH treatment of premetamorphic Xenopus laevis
tadpoles also failed to isolate any cell death genes (Amano and Yoshizato,
1998). Instead, it isolated many late TH response genes. These genes again
fall into several categories, including transcription factors and signaling
molecules, and their roles, if any, in apoptosis, remain to be investigated. 
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A caveat in this screen is, however, that after 4 days of TH treatment, apop-
tosis is largely completed in the intestine and the screen may, therefore, miss
cell death genes.

EXPRESSION OF CELL DEATH GENES
DURING METAMORPHOSIS

The morphological and biochemical similarities between cell death during
metamorphosis and that in other animal species suggest the existence of con-
served molecular pathways. Consistently, TH-induced apoptotic DNA frag-
mentation in the primary cell cultures of the larval epithelial cells from
Xenopus laevis tadpole intestine can be inhibited by known inhibitors of
mammalian cell death, including inhibitors of caspases and nucleases (Su 
et al., 1997a, 1997b). Similarly, caspase inhibitors also blocked TH-
induced apoptosis of a cell line derived from tadpole tail muscle (Yaoita and
Nakajima, 1997).

The cloning of several members of the caspase family in Xenopus laevis
has allowed the analysis of their expression profiles (Nakajima et al., 2000;
Yaoita and Nakajima, 1997). Several caspases are expressed in the cell line
derived form the tadpole tail muscles and most of them are upregulated by
TH. Their upregulation, however, requires more than 1 day of TH treatment.
Thus, they are most likely regulated indirectly by TRs. This is consistent with
the fact that they are presumed to act late in the TH-induced apoptotic path-
ways and also explains why none of them were found in any differential
screens for early response genes above.

All the cloned Xenopus caspases are expressed during tail resorption
(Nakajima et al., 2000; Yaoita and Nakajima, 1997), although their mRNA
levels and regulation during development vary. In general, they are upreg-
ulated during tail resorption and by prolonged TH treatment of premeta-
morphic tadpoles. Thus, they are presumably involved in the apoptotic
degeneration of the tail. In the intestine, both caspase-1 and -3 are expressed
at low levels prior to metamorphosis (before stage 58), but are upregulated
moderately during intestinal remodeling (around stages 60–62) (Su, Amano,
and Shi, unpublished data). Thus, the larval epithelial cell death may also
involve caspases, consistent with the ability of a caspase inhibitor to block
TH-induced DNA fragmentation in primary intestinal epithelial cell cultures
(Su et al., 1997a, 1997b).

Two Bcl-2 family members have also been cloned in Xenopus laevis (Cruz-
Reyes and Tata, 1995). They are highly homologous to those Bcl-2 family
members capable of inhibiting apoptosis and are capable of doing so in
tissue culture cells. Furthermore, transgenic expression of one of them, the
Xenopus Bcl-xl, under the control of neural b-tubulin promoter indicates that
it inhibits the death of some but not all neuronal cells during metamorpho-
sis (Coen et al., 2001). These results suggest that Bcl-2 family members may
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participate in cell death regulation during Xenopus development and that
different mechanisms may be responsible for the degeneration of different
larval cells. Unfortunately, little is known about the temporal and spatial 
profiles of the expression of these and other members of this superfamily.
Thus, their possible roles during metamorphosis remain to be investigated.

ROLES OF MMPS IN TH-INDUCED APOPTOTIC

TISSUE REMODELING

ECM remodeling and degradation are mediated largely by matrix metallo-
proteinases (MMPs). MMPs are extracellular enzymes that are capable of
degrading various components of the ECM (Alexander and Werb, 1991;
Birkedal-Hansen et al., 1993; McCawley and Matrisian, 2001; Parks and
Mecham, 1998). This growing family of enzymes includes collagenases,
gelatinases, and stromelysins, and so on. They are secreted into the ECM as
pro-enzymes with the exception of stromelysin-3 (ST3) and membrane-type
MMPs, which appear to be secreted in the active form and membrane-
bound, respectively (McCawley and Matrisian, 2001; Pei and Weiss, 1995).
The pro-enzymes can be activated in the ECM through the proteolytic
removal of their propeptide (Murphy et al., 1999; Nagase, 1998; Nagase 
et al., 1992). The mature MMPs are then capable of cleaving various com-
ponents of the ECM with distinct but often overlapping substrate specificity.
Thus, selective expression and/or activation of different MMPs will lead 
to distinct modifications of the ECM to influence cell behavior and tissue
transformation.

DIFFERENTIAL REGULATION OF MMP EXPRESSION
DURING METAMORPHOSIS

The participation of MMPs in amphibian metamorphosis was first impli-
cated over 30 years ago by the drastic increases in collagen degradation activ-
ity in the resorting tadpole tail (Gross and Lapiere, 1962). However, the
cloning of frog MMP genes came only after two Xenopus MMP genes were
identified as thyroid hormone-inducible genes from subtractive differential
screens (Shi, 1999; Shi and Brown, 1993; Wang and Brown, 1993). The full-
length proteins encoded by these two genes are highly homologous to their
mammalian counterparts, collagenase-3 (Col3) and stromelysin-3 (ST3),
respectively (Brown et al., 1996; Patterton et al., 1995), suggesting a func-
tional conservation as well. Another frog MMP, the Rana catesbeiana collage-
nase-1, was cloned by screening an expression cDNA library with an
antiserum against purified Rana tail collagenase (Oofusa et al., 1994), and
this gene was shown to contain a TRE (Sawada et al., 2001). All three frog
MMP genes as well as the subsequently cloned Xenopus collagenase-4 (Col4)
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are upregulated by TH in the tail, while only ST3 is highly upregulated
during intestinal remodeling (Fig. 3) (Brown et al., 1996; Damjanovski et al.,
1999; Ishizuya-Oka et al., 1996; Oofusa et al., 1994; Patterton et al., 1995;
Stolow et al., 1996; Wang and Brown, 1993).

In situ hybridization analyses have revealed that the expression of ST3
but not other MMPs is spatially and temporally correlated with apoptosis in
both the intestine and tail during Xenopus laevis metamorphosis. In the intes-
tine, ST3 is highly expressed in the fibroblastic cells underlying the degen-
erating larval epithelium and proliferating adult epithelial cells (Fig. 4)
(Damjanovski et al., 1999; Ishizuya-Oka et al., 1996). In contrast, Col3 and
Col4 have little or sporadic expression in these fibroblasts. Furthermore, the
expression of both ST3 mRNA and protein is drastically activated prior to
cell death and is temporally correlated with epithelial apoptosis and ECM
remodeling (Ishizuya-Oka et al., 2000; Patterton et al., 1995), while Col3 and
Col4 expression does not change significantly during metamorphosis (Fig.
3A) (Damjanovski et al., 1999; Stolow et al., 1996). In addition, using a human
cDNA as a probe, we have also found that Xenopus gelatinase A (GLA) is not
upregulated until stage 62 (Fig. 3A) (Patterton et al., 1995), when larval cell
death is essentially complete. Such correlations argue that ST3 directly or
indirectly causes specific degradation/cleavage of certain ECM components
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that facilitates ECM remodeling to alter cell–cell and/or cell–ECM inter-
actions. These changes in the ECM, in turn, facilitate larval epithelial cell 
death. The other MMPs, especially GLA, may be involved in the removal of
the ECM associated with the degenerated larval epithelium at stage 62 or
later.

In the tail, all the MMP genes examined so far are highly upregulated
during tail resorption in both Rana catesbeiana and Xenopus laevis (Fig. 3B)
(Brown et al., 1996; Damjanovski et al., 1999; Oofusa et al., 1994; Patterton 
et al., 1995; Stolow et al., 1996; Wang and Brown, 1993). Interestingly, in situ
hybridization analyses of Col3, Col4, and ST3 expression during tail resorp-
tion show that only ST3 mRNA is spatially and temporally associated with
apoptosis (Berry et al., 1998b; Damjanovski et al., 1999). In particular, ST3
mRNA is highly expressed at stages 62 to 64 in the connective tissue under-
lying the degenerating epidermis and surrounding the dying muscles. 
In contrast, high levels of Col3 and Col4 mRNAs are present only in the 
connective tissue surrounding the notochord, where few apoptotic cells are
detected. Thus, ST3 but not Col3 or Col4 is likely involved in the apoptotic
degeneration of the tail epidermis and muscles.

Expression studies indicate that Col3, Col4, and ST3 are also expressed
in other tissues/organs, including the developing limbs and remodeling
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to CT, while the small arrows point to apoptotic epithelial cells. Note that at stage
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nal metamorphosis, ST3, is highly expressed in the connective tissue underlying the
dying larval epithelial cells.



head (Berry et al., 1998a, 1998b; Patterton et al., 1995; Stolow et al., 1996;
Wang and Brown, 1993). In situ hybridization shows that they are often asso-
ciated with tissue degeneration events, likely involving apoptosis. Such asso-
ciations may not be surprising as ECM removal is required during tissue
degeneration. However, more detailed studies are needed to determine if
any of these MMPs actively participates in the apoptotic process in these
tissues/organs.

In addition to their involvement during larval tissue degeneration, all
the MMPs are expressed at stage 62 or later in the intestine when adult tissue
morphogenesis takes place (Fig. 3A) (Patterton et al., 1995; Stolow et al.,
1996). In particular, both ST3 and GLA are highly expressed at stage 62 
but repressed after stage 64. During this period, adult epithelial cells and
cells of the connective tissue and muscles differentiate. The morphogenesis
of intestinal folds also progresses through migration of the epithelial and/
or fibroblastic cells, thereby establishing a crest-trough axis of the fold 
that is similar to the villus-crypt axis in higher vertebrates (Shi and Ishizuya-
Oka, 1996). Thus, it is likely that the MMPs also participate in the establish-
ment of new adult basal lamina to facilitate differentiation and/or cell
migration.

FUNCTIONAL INVESTIGATIONS OF MMPS
DURING METAMORPHOSIS

Organ culture studies have provided direct evidence for the involvement of
MMPs during tissue remodeling. As MMPs are extracellular proteins, it is
possible to block their function in such cultures by adding inhibitors to the
culture medium. For example, when tail fins are cultured in vitro in the pres-
ence of TH, they undergo resorption as during natural metamorphosis. The
addition of TIMP(s) (the naturally occurring tissue inhibitors of metallopro-
teinases) purified from bovine dental pulp can block this TH-induced resorp-
tion (Oofusa and Yoshizato, 1991), supporting the importance of MMP
activity in tail resorption.

Similarly, intestinal metamorphosis, including the apoptosis of the larval
epithelial cells, can be reproduced in vitro by treating intestinal fragments
with physiological concentrations of TH (Fig. 5A). In such organ cultures,
ST3 expression is induced by TH as during natural metamorphosis
(Ishizuya-Oka et al., 2000). Its protein level correlates with the thickening
and folding of the basal lamina separating the epithelium and connective
tissue as well as the death of the larval epithelial cells. In order to modulate
the activity of ST3 in such organ cultures, we have generated a polyclonal
antibody against the catalytic domain of Xenopus ST3 and shown that the
antibody blocks the catalytic function of ST3 in vitro (Ishizuya-Oka et al.,
2000). When this antibody is added to the culture medium of tadpole intesti-
nal fragments, it inhibits (1) the remodeling (thickening and folding) of the
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basal lamina (compare Fig. 5H to Fig. 5B), (2) larval epithelial cell death
(compare Fig. 5G to Fig. 5A), and (3) the invagination of the adult epithelial
cells into the connective tissue (compare Fig. 5I to Fig. 5C), a process critical
for the adult epithelial morphogenesis (Ishizuya-Oka et al., 2000). In con-
trast, nonspecific antibodies or the preimune serum have no effect on TH-
induced apoptosis. In addition, a synthetic MMP inhibitor, which likely
inhibits the activity of many MMPs, also inhibits TH-induced apoptosis in
the intestinal organ cultures (Ishizuya-Oka et al., 2000). Thus, the MMP activ-
ity of ST3 is likely responsible for its role in larval epithelial cell death and
adult tissue morphogenesis.

The mechanism underlying this role of ST3 is yet unknown. Interest-
ingly, mammalian ST3 has only weak activities toward ECM proteins but 
can effectively cleave a1-proteinase inhibitor (a1-antitrypsin), a non-ECM-

6. REGULATION OF APOPTOSIS BY EXTRACELLULAR MATRIX 135

FIGURE 5. Intestinal remodeling can be reproduced in organ cultures in vitro and
a blocking ST3 function inhibits this process. Intestinal explants were cultured in the
presence (A–C) or absence (D–F) of TH, or in the presence of both TH and 1% anti-
ST3 antiserum (G–I). (A, D, G) TUNEL assay for apoptosis in the larval epithelium.
Anti-ST3 antiserum inhibits TH-induced apoptosis of the larval epithelium (LE) on
day 3. Bars: 20mm. (B, E, H) electron microscopic analyses of the basal lamina struc-
ture. Anti-ST3 antiserum inhibits TH-induced thickening of the basal lamina (BL) on
day 3. Bars: 0.5mm. (C, F, I) Methyl green-pyronin Y staining for adult epithelial cells
(AE), which are stained strongly due to RNA-rich cytoplasm compared to the dying
larval epithelial cells. Anti-ST3 antiserum inhibits invagination of the adult epithe-
lial primordial (AE) into the connective tissue (CT) on day 5. Bars: 20mm.



derived serine proteinase inhibitor (Murphy et al., 1993; Pei et al., 1994; Uria
and Werb, 1998). Although ST3 may cleave ECM substrates efficiently in
vivo, its ability to cleave a non-ECM substrate raises the possibility that ST3
may also affect cell behavior through non-ECM mediated pathways.

CONCLUSIONS AND PROSPECTS

Cell death is an essential aspect of animal development ranging from C.
elegans, Drosophila, to human (Jacobson et al., 1997; Jiang et al., 1997; Lee and
Baehrecke, 2000; Meier et al., 2000; Wyllie et al., 1980). The apoptotic execu-
tion pathways employ several families of evolutionarily highly conserved
proteins. However, the upstream signals that trigger apoptosis in devel-
opment are much more complex and diverse. ECM remodeling is one such
upstream signal that can facilitate or inhibit apoptosis depending on the
developmental system. MMPs are critical players in the remodeling of the
ECM. Many expression studies and limited in vivo function analyses have
provided strong support for the participation of MMPs in regulating cell fate
during vertebrate development. Our in vitro organ culture studies have
demonstrated a requirement for stromelysin-3, most likely through ECM
remodeling, in facilitating larval epithelial cell death and adult epithelial
development during intestinal metamorphosis. The future challenge here is
to confirm the findings in vivo and determine the underlying mechanisms.
The recently developed transgenic methodology in Xenopus laevis (Kroll and
Amaya, 1996) should facilitate such an endeavor. In fact, preliminary trans-
genic studies using the ubiquitous promoter CMV to drive the expression of
Xenopus Col3 or ST3 or a mammalian membrane type MMP show that pre-
cocious overexpression of these MMPs leads to embryonic defects and lethal-
ity (Damjanovski et al., 2001). On the other hand, a catalytically inactive ST3
mutant has no effects on animal development. These findings are consistent
with the tight regulation of MMP expression during Xenopus embryogene-
sis (Damjanovski et al., 2000). Thus, it is conceivable that by using tissue-
specific and/or inducible promoters to drive MMP expression, one should
be able to determine the roles of individual MMPs in ECM remodeling and
cell fate determination in different organs/tissues at various development
stages.
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CHAPTER

7

APOPTOSIS IN THE

IMMUNE SYSTEM

ALEXANDRA BRÁS, DAVID GARCíA-DOMINGO,
AND CARLOS MARTíNEZ-A.

Apoptosis is the innate mechanism by which an organism eliminates
unwanted cells. Apoptotic cell death is characterized by controlled auto-
digestion of the cell. Cells initiate their own apoptotic death through the 
activation of endogenous proteases. This results in membrane blebbing,
cytoskeletal disruption, and cell shrinkage. Biochemically, these alterations
are associated with the translocation of phosphatidylserine to the outer layer
of the plasma membrane and loss of mitochondrial function. Apoptosis also
involves characteristic changes within the nucleus, with chromatin conden-
sation and activation of endonucleases, which cleave genomic DNA into
multiple internucleosomal fragments. An important feature of apoptosis is
that it results in the elimination of the dying cell without induction of an
inflammatory response, since the dying cell maintains the integrity of its
plasma membrane.

Apoptosis is important for maintaining homeostasis in many physio-
logical situations such as embryogenesis, tissue remodeling, and tumor for-
mation. In the immune system, apoptosis plays an essential role in the
development and maturation of T and B lymphocytes by maintaining the
size of the lymphoid pool at many stages of lymphocyte maturation and 
activation.

When Cells Die II, Edited by Richard A. Lockshin and Zahra Zakeri.
ISBN 0-471-21947-9 © 2004 John Wiley & Sons, Inc.

143



The immune system consists of a wide range of distinct cell types, each
with an important role; the lymphocytes occupy the central stage, as they
recognize and respond to antigens, determining the specificity of immunity.
Lymphocytes differ from one another not only in the specificity of their
receptors, but also in their functions. Two broad classes of lymphocytes are
recognized: the B lymphocytes, which are precursors of antibody-secreting
cells, and the T (thymus-dependent) lymphocytes. T lymphocytes have
important regulatory functions, such as the ability to help or inhibit the
development of specific types of immune responses, including antibody pro-
duction and increased microbicidal activity of macrophages. Other T lym-
phocytes are involved in direct effector functions, such as the lysis of
virus-infected cells or certain neoplastic cells.

APOPTOSIS IN PRIMARY LYMPHOID TISSUES

An important feature of the immune system is the discrimination between
self and nonself, so that the lymphocytes of each individual are able to 
recognize and respond to many foreign antigens, while they are normally
unresponsive to the potentially antigenic substances present in the indi-
vidual. Immunological unresponsiveness is also called tolerance. Antigen-
dependent proliferation of a lymphocyte clone is an example of positive
selection, that is, the antigen promotes growth of the cells that it activates.
Under some conditions, however, contact with antigens or other stimuli
results in negative selection of a responsive clone, meaning that cells in the
clone selectively die. Negative selection of lymphocytes is a common event
and is essential to the ability of the immune system to discriminate self from
nonself (1–3). In particular, most naive T or B cells, whose antigen receptors
recognize self, are thought to be killed selectively before they leave bone
marrow or thymus, as a mechanism that protects the host from attack by these
potentially autoreactive (self-reactive) cells. The clonal composition of the
immune system is thus shaped not only by positive clonal selection, but also
by active elimination of potentially deleterious clones by apoptosis (4–6).

DEATH IN THE THYMUS

Precursor cells migrate from bone marrow into the thymus, where immature
precursor T lymphocytes develop into mature antigen-reactive T cells while
subjected to selection (Fig. 1). Antigen recognition by T cells is self major his-
tocompatibility complex (MHC)-restricted, meaning that T cells can recog-
nize and respond to peptide fragments of foreign antigens only in association
with self MHC. MHC molecules are expressed by many of the nonlymphoid
cells in the thymus, including macrophages, epithelial cells, and dendritic
cells. Interaction of maturing thymocytes with these MHC molecules in the
thymus is essential in selection of the mature T cell repertoire.
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Maturation is associated with the acquisition of high levels of T cell
receptor (TCR)-CD3 complex expression and with tolerance to self antigens
as a consequence of positive and negative selection. Positive selection
ensures survival of immature T cells (CD4-CD8-, DN or CD4+CD8+, DP) that
have rearranged the appropriate TCR; further development and prolifera-
tion of these cells depend on expression of a functional TCR b chain. Via
apoptosis, negative selection deletes thymocytes with an autoreactive 
TCR that binds with high affinity to self antigens. The great majority of thy-
mocytes die as a result of neglect, however, meaning that they are neither
positively nor negatively selected. Death by neglect is apoptotic and occurs
via exposure to endogenous glucocorticoids in thymocytes with a TCR
unable to recognize self MHC. In contrast, cells bearing TCRs that recognize
self MHC with moderate avidity are positively selected, whereas those that
recognize MHC with high avidity are negatively selected by apoptosis 
(Fig. 2).

Many steps involved in apoptosis in thymus are unknown, but at least
three apoptotic pathways have been identified in thymocytes: (1) a TCR-
mediated pathway (6, 7), (2) a glucocorticoid-responsive pathway (8, 9), and
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(3) a g irradiation-sensitive pathway (10). Recent evidence suggests that these
pathways can be distinguished at the molecular level. Thus, for example, g
irradiation-induced thymocyte apoptosis requires p53 and does not occur in
p53-deficient thymocytes. In contrast, anti-CD3-mediated thymocyte apop-
tosis is p53-independent (10, 11). Bcl-2, an antiapoptotic protein, does not
prevent apoptosis induced by negative selection, but is able to increase 
survival of immature T lymphocytes that have been positively selected (12).
In contrast, other antiapoptotic proteins such as the baculovirus caspase
inhibitors p35 and OpIAP are able to prevent negative selection (13, 14).
Thymic hormones and cytokines secreted by thymic stromal cells, including
epithelial cells, have also been described to promote T cell maturation.
Among them, IL-7 requires special mention due to its central role in thy-
mocyte proliferation (15, 16).
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DEATH DURING B CELL DEVELOPMENT

Clonal deletion and negative selection also take place in immature B cells,
leading to the elimination of self-reactive B clones. B cell development is
characterized by sequential maturation steps that are guided by the surface
immunoglobulin (sIg) through an incompletely characterized set of signal-
ing pathways that appear to differ depending on developmental stage (17).
Large numbers of B lymphocytes are produced in the bone marrow, but few
of these cells pass the many developmental checkpoints required for toler-
ance and selection into the mature recirculating B cell pool. Fewer still are
able to participate and expand in an antigen-driven germinal center reaction.
These checkpoints are mediated by the B cell antigen receptor (BCR) and also
involve positive and negative signals that control not only cell survival and
death, respectively, but also regulate the Ig V(D)J gene recombinase system.
Recombinase regulation maintains allelic exclusion in some circumstances,
but can also modify receptor specificity in B cells through ongoing Ig gene
rearrangements.

Self antigens that cross-link antigen receptors extensively cause elimi-
nation of immature B cells in bone marrow. Antigens that trigger less exten-
sive cross-linking do not induce deletion of the B cell clones that recognize
them, but produce unresponsiveness by rendering B cells anergic. In this
way, when emerging sIgM on bone marrow B cells is reactive to nearby self
tissue, differentiation is blocked and the cells undergo apoptosis. Nonethe-
less, transitional B cells may also proceed with light chain gene rearrange-
ments (4). This developmental arrest is reversible, and a new B cell antigen
receptor can be created by secondary Ig gene rearrangements that can alter
BCR specificity, a process termed receptor editing. This mechanism thus
rescues autoreactive cells from death, allowing them to alter their specifici-
ties and to mature. Unlike clonal selection, receptor editing provides a novel
mechanism of immune tolerance that imposes selection at the receptor level
(18, 19) (Fig. 3).

Recent studies are bringing into focus the relative roles of apoptosis and
receptor editing in central tolerance. Compared to mature B cells, immature
B cells have classically been considered more sensitive to apoptosis and tol-
erance mechanisms. Highly purified immature B cells undergo rapid apop-
tosis after BCR cross-linking, whereas mature B cells are more resistant to
death induced by anti-BCR antibodies (20). In contrast, in unfractionated
bone marrow B cell cultures, BCR ligation did not accelerate B cell apopto-
sis, but induced receptor editing (21–23). Bcl-2 expression promotes recep-
tor editing in autoreactive immature B cells, suggesting that apoptosis limits
the time window in which immature B cells can edit their receptors (24).
Transitional B cells, which represent an intermediate stage between imma-
ture and recirculating mature B cells, are highly sensitive to antigen-induced
apoptosis in vivo, whereas immature B cells edit their receptors after BCR

7. APOPTOSIS IN THE IMMUNE SYSTEM 147



ligation (25) (Fig. 3). Receptor editing may therefore be the preferred toler-
ance mechanism of newly formed B cells, but as B cells mature, they lose
their ability to edit their receptors and undergo apoptosis upon self antigen
binding.

REGULATION OF NEGATIVE SELECTION IN IMMATURE B CELLS. Caspase
and calpain activation have been implicated in BCR-induced apoptosis in
immature B cells (26, 27). In fact, NOD/SCID mice reconstituted with pre-B
cells expressing calpastatin (an endogenous calpain inhibitor) show deficient
BCR-induced apoptosis of IgM+ B cells recovered from the reconstituted
mice, demonstrating the role of calpain in B cell repertoire generation (28).

CD40 signaling blocks BCR-induced deletion in immature B cells
(29–34). One mechanism through which CD40 signaling prevents BCR-
induced deletion of immature B cells is by blocking caspase activity (26).
CD40 ligation upregulates calpastatin levels, and therefore interferes with
the caspase activation pathway in immature B cells (27).

Studies with Bcl-2 transgenic mice also show that Bcl-2 expression may
impair negative selection of B cells (4); nevertheless, the mechanism involved
in this process is unknown. Bcl-2 overexpression counteracts BCR-triggered
caspase activation in immature B cells (26), but Bcl-2 is not able to prevent
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BCR cross-linking-induced growth arrest. This suggests that the pathways
leading to growth arrest and apoptosis are distinct, which is supported by
data showing that BCR-mediated triggering of growth arrest precedes 
apoptosis.

Bcl-xL also plays a role in resistance to BCR-induced apoptosis. As for
Bcl-2, Bcl-xL prevents apoptosis, but not BCR-induced growth arrest (33),
indicating that signals other than Bcl-xL and Bcl-2 are necessary to promote
cell cycle progression. This is supported by the observation that Bcl-xL-
overexpressing WEHI-231 cells, a cell line model commonly used to study
immature B cell negative selection, are protected against BCR-induced apop-
tosis and that CD40 but not BCR signaling induces Bcl-xL expression (32,
34–36).

Bcl-2 and Bcl-xL are thought to block apoptosis by preventing caspase
activation (37–41), although the mechanisms are still not clear. Cytochrome
c release, which activates the mitochondrial apoptosis pathway, is prevented
by Bcl-2. This pathway does not appear to play an important role in the early
phase of BCR-triggered apoptosis. Caspases are essential effector molecules
in apoptosis, but specific cofactor molecules are required for caspase activa-
tion and apoptosis (42, 43). Following cytochrome c release from the mito-
chondria, one of these adapters, Apaf-1 (apoptotic protease activating
factor-1), binds and activates caspase-9 in the presence of ATP, triggering cell
death (44–46). Since Bcl-2 can regulate the subcellular localization of Apaf-1
(47), this may be one mechanism by which Bcl-2 prevents apoptosis induced
by BCR cross-linking.

APOPTOSIS IN THE PERIPHERY

After selection, naive lymphocytes are continually released from the primary
lymphoid organs into the periphery, each carrying surface receptors that
enable it to bind to antigen. Antigen binding in B cells is sIg-mediated,
whereas in T cells it is mediated by T cell receptors, and when accompanied
by other stimuli, it can lead to B or T cell activation. Naive lymphocytes that
fail to be activated die within days of entering the periphery, but those that
are activated survive and proliferate, yielding progeny that may then
undergo further activation and proliferation cycles. All progeny cells derived
from a single naive lymphocyte constitute a lymphocyte clone. Some
members of each clone differentiate into effector cells, whereas the remain-
der are memory cells.

DEATH IN PERIPHERAL T CELLS

ACTIVATION-INDUCED CELL DEATH. As we mentioned above, during
establishment of the T cell repertoire in thymus, thymocytes that recognize
self antigens with high affinity die by apoptosis through signals induced by
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their clonal receptors (negative selection), whereas thymocytes that recog-
nize antigens with intermediate affinity, in the context of the correct MHC,
leave the thymus as mature T cells. Some cells may nonetheless escape this
thymic tolerance control. In addition, tolerance to self antigens present in
peripheral tissues is induced only after T cells leave the thymus (peripheral
tolerance). For these cells, and for those that have expanded following an
immune response and must be eliminated, there is a regulated apoptotic
process called activation-induced cell death (AICD) that controls immune
responses. Repeated stimulation of T lymphocytes by antigens or polyclonal
activators may result in death of the activated cells by AICD as a means of
preventing uncontrolled T cell activation (Fig. 4).

In CD4 T cells, cell death is usually the result of paracrine interactions
mediated by two molecules that are coexpressed in activated cells. These
molecules, the surface receptor Fas (APO-1/CD95) and its ligand (FasL), 
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regulate the choice between cell proliferation and cell death (48–50). Fas
belongs to the superfamily of the tumor necrosis factor cell surface recep-
tors (TNF-R) (51, 52). FasL is expressed primarily on activated T cells.
Binding of FasL to Fas, or of TNF to TNF-R, activates a series of intracellu-
lar cysteine proteases (caspases) that ultimately cause nucleoprotein frag-
mentation, apoptotic cell death, and rapid removal of dead cells by
phagocytosis. Fas is the major mediator of AICD in CD4 T cells, whereas the
TNF-R has a role in triggering death of CD8 T cells. AICD has an important
in vivo function in T cell responses triggered by superantigens, which 
stimulate a large fraction of cells. In this setting, the elevated concentration
produced of the interleukin IL-2 enhances FasL expression on antigen-stim-
ulated T cells and the development of sensitivity to Fas-mediated apoptosis.
IL-2 is thus both a growth factor for T cells and a feedback regulator of T cell
responses.

The function of the Fas receptor and its ligand have been elucidated
mainly by the finding that both molecules are mutated in mouse strains suf-
fering from severe autoimmune diseases. lpr (for lymphoproliferation) mice,
which lack a functional Fas receptor, as well as gld (for generalized 
lymphoproliferative disease) mice, which bear a mutant Fas ligand 
(FasL), exhibit various autoimmune manifestations that resemble systemic
lupus erythematosus in man (53, 54). Both mouse strains produce autoanti-
bodies and accumulate CD4-CD8- T cells, leading to lymphadenopathy,
splenomegaly, and other signs of autoimmune disorder, suggesting that Fas
has an important role in regulating the immune response and maintaining
self-tolerance.

In contrast, there is no convincing evidence that Fas is involved in neg-
ative selection. This assumption is consistent with relatively normal thymic
architecture and correct thymic deletion of activated T cells in lpr mice (55,
56). On the other hand, peripheral and clonal deletion and the elimination
of activated T cells are impaired in lpr and gld mice (57, 58). The Fas system
is involved in both clonal deletion and elimination of activated T cells fol-
lowing a response to foreign antigen.

CELL DEATH TRIGGERED BY GROWTH FACTOR DEPRIVATION. TCR trig-
gering has several effects in peripheral T cells. First, primary activation of
resting T cells via TCR may lead to proliferation of the T cell population.
Second, in the absence of costimulatory signals, TCR triggering may cause
anergy (a state of immune unresponsiveness). Finally, TCR triggering of pre-
viously activated T cells may lead to death by apoptosis, unless the cells are
rescued by additional signals. There is, however, a fraction of activated lym-
phocytes that undergo apoptosis. This is because the local antigen and/or
growth factor concentration is limiting, and the cells are deprived of essen-
tial survival stimuli. This is another homeostatic mechanism of programmed
cell death independent of Fas–FasL interactions.
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TARGET CELL DEATH BY CYTOTOXIC T LYMPHOCYTES. Cytotoxic T lym-
phocytes (CTL) are well-known inducers of apoptosis in target cells. CTL-
induced apoptosis occurs through the action of granzymes and perforin. The
mechanism used to kill by granzyme and perforin is not totally understood,
but granzyme B is known to induce a G2 cell cycle kinase, cdc2, whose acti-
vation is sufficient to kill cells. Granzyme B also triggers caspase-3, linking
the activation of a cell cycle kinase with that of caspases.

Mice lacking perforin or granzyme B nonetheless show low levels of CTL
activity, so there is a killing mechanism distinct from perforin/granzyme-
mediated death. This pathway appears to be mediated through Fas, since T
cells from gld mice, which have no FasL, are unable to lyse Fas-positive target
cells (59–63).

DEATH IN PERIPHERAL B CELLS

Newly produced B cells are exported from bone marrow to peripheral lym-
phoid tissues, from which the autoreactive population is eliminated through
the process of negative selection, implicated in maintaining immunological
tolerance to self. Only a subset of these new emigrants enter the long-lived
pool. Positive selection mediated by basal signaling via BCR (usually by
foreign antigens) may enhance B cell survival (1) (Fig. 5).

In the absence of specific helper T cells, mature B cells that encounter
self antigens in peripheral tissues can be rendered unresponsive by many of
the same mechanisms that cause functional anergy or death of immature B
cells (64). Self-reactive B cells cannot proliferate or increase their expression
of costimulators in response to self antigen, and thus cannot stimulate or
respond to T cell help. Other mature B lymphocytes that have encountered
self antigen become incapable of terminal differentiation into antibody secre-
tors, by blockage of activation and germinal center entry. Self-reactive B cells
may also remain functionally competent, but are unable to produce auto-
antibody since self antigen-specific helper T lymphocytes are deleted or
anergic. Failure or breakdown of the mechanisms that control tolerance,
among them apoptosis, leads to autoimmune disease. lpr and gld mice show
B cell hyperreactivity associated with autoantibody production, suggesting
that Fas also controls expansion of the B cell compartment (65, 66). During
development in the bone marrow, B cells that are strongly reactive to self
components are deleted, apparently by a Fas-independent mechanism (67).
Surviving B cells then migrate to peripheral lymphoid organs, where they
can be activated by antigens. As with T cells, Fas is involved in deletion of
peripheral B cells that have been activated by self or foreign antigen. Acti-
vation of mature B cells causes Fas expression and renders the cells sensi-
tive to Fas-mediated killing (68). In this way, FasL on activated T cells binds
to Fas on autoaggressive B cells, which undergo apoptosis. This process is
blocked in lpr and gld mice, and the B cells that escape deletion are respon-
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sible for the production of a large quantity of Ig, including autoantibodies.
Fas–FasL interactions are therefore important in B cell homeostasis in the
absence of self reactivity (68, 69), since activated B cells are subject to pro-
grammed cell death through the Fas pathway by cognate T cells (70–74).

Mature recirculating B cells exhibit little Fas, and BCR-mediated apop-
tosis is not caused by a Fas–FasL interaction (75). After activation, however,
Fas expression is induced and B cells acquire susceptibility to cytotoxicity
by T helper type 1 (Th1) effector cells that express Fas ligand (74, 76, 77) 
(Fig. 6).

Another pathway for B cell stimulation is the result of engagement by
CD40, another TNF-R superfamily member, which interacts with its ligand
to regulate induction of Fas expression and susceptibility to Fas-mediated
apoptosis (74, 78, 79). In contrast, BCR cross-linking produces only a small
increase in Fas expression that is not accompanied by sensitivity to Fas

7. APOPTOSIS IN THE IMMUNE SYSTEM 153

Foreign antigen 

Mature B cell 

Self antigen 

Apoptosis

Activation
and survival

Mature B cell 

Negative selection Positive selection

FIGURE 5. Peripheral B cell selection. Newly formed peripheral B cells that recog-
nize self antigens are deleted by negative selection, as they cannot proliferate or
respond to T cell help. Those that recognize foreign antigens are positively selected
by basal signaling through the BCR, which allows them to increase expression of 
costimulators necessary for response to T cell help.



killing. Furthermore, if B cells are stimulated through both CD40 and BCR
in vitro, they become resistant to Fas-mediated apoptosis; this absence of
susceptibility that is associated with BCR-mediated stimulation actually rep-
resents an active, dominant, protective process (74). Another agent able to
modulate susceptibility to Fas killing is the cytokine IL-4, produced by T
cells (70, 71, 80).

HOMEOSTASIS IN THE IMMUNE SYSTEM

Discrimination between self and nonself is an important characteristic of the
immune system, and alterations in the mechanisms that normally maintain
self-tolerance can lead to a disease state called autoimmunity. Even when
there is a failure in the selection processes that delete immature self-reactive
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lymphocytes, the peripheral mechanisms should be able to maintain unre-
sponsiveness to many self antigens. Autoimmunity may therefore be the
result of a failure in peripheral tolerance, in which the anergy or deletion of
autoreactive lymphocytes is altered. Encephalomyelitis and insulin-
dependent diabetes mellitus (IDDM) are examples of autoimmune diseases
due to T cell anergy breakdown. T cell anergy failure may occur because of
abnormalities in the T cells themselves or to defects induced by inflammation,
which may occur after certain infections, due to induction of tissue necrosis.

Autoimmune diseases may also result from inappropriate cell death, for
instance, failure of activation-induced cell death. A defect in the Fas system
is intimately linked to autoimmune diseases caused by the impaired removal
of autoreactive lymphocytes. As already mentioned, the human autoimmune
disease systemic lupus erythematosus resembles that found in lpr and gld
mice, with a dysfunction of Fas or FasL, respectively (53, 54). Children with
autoimmune lymphoproliferative syndrome (ALPS), also called Canale–
Smith syndrome, have massive nonmalignant lymphadenopathy, hepatos-
plenomegaly, altered T cell populations, and other manifestations of 
systemic autoimmunity (81). The loss-of-function phenotype therefore indi-
cates that Fas plays an important role in the regulation of the immune
response and maintenance of self-tolerance.

Conversely, inappropriate induction of apoptosis may also lead to
pathological conditions. Fas is critically involved in the progression of viral
diseases such as HIV-1 or hepatitis B virus infection, in which massive apop-
tosis occurs. It was shown that indirect mechanisms lead to sensitization of
noninfected T cells toward AICD after HIV-1 infection (82, 83). The two HIV-
1-derived proteins gp120 and Tat activate FasL expression in T cells, causing
the death of uninfected T lymphocytes. This results in the continuous deple-
tion of CD4+ T cells during AIDS disease.

FasL is also responsible for the maintenance of immune privilege, which
characterizes the ability of certain organs to suppress graft rejection, even
when transplanted in nonmatched individuals (84). In this case, FasL acts by
killing infiltrating lymphocytes of the host, preventing the resulting inflam-
mation from destroying the tissue (85–87). FasL-mediated depletion of cyto-
toxic T lymphocytes may not only be beneficial, however, but may also have
a role in aiding tumor cells to escape host immune surveillance. High con-
stitutive FasL expression has been found in distinct tumor lineages, such as
colon, lung, renal carcinoma, melanoma, hepatocellular carcinoma, astrocy-
toma, and T cell- and B cell-derived neoplasms (88–94). This suggests that
the same mechanisms responsible for protecting tissues from autoimmune
destruction may be used by tumors to eliminate activated lymphocytes
which attempt to attack tumor cells.

Maintenance of immune system homeostasis thus depends on the strict
control of cell proliferation and cell death through apoptosis, and many
disease states result from errors in the regulation of apoptosis.
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TRANSCRIPTION FACTORS AND APOPTOSIS IN THE IMMUNE

SYSTEM: THE MEETING POINT?

EFFECTS OF STEROIDS IN LYMPHOCYTE CELL DEATH

Steroids, especially glucocorticoids, as well as retinoids, have immuno-
suppressive and antiinflammatory effects and have been used in the thera-
peutic treatment of autoimmune diseases, leukemias, and lymphomas.
Glucocorticoids have been known for many years to induce apoptosis in thy-
mocytes (9) as well as in activated peripheral T cells (95). They are produced
at high levels in the embryonic thymus and have been implicated in posi-
tive selection by antagonizing antigen-driven apoptosis (reviewed in 96).
Both glucocorticoids and retinoids induce apoptosis and inhibition of c-Myc
expression in Jurkat cells (97). The molecular mechanism of this inhibition
has recently become clear. The glucocorticoid receptor (GR) binds directly
to the p65 subunit of the transcription factor NF-kB, an important regulator
of c-Myc transcription, thereby inhibiting its transcriptional activity (98).
Dexamethasone induces transcription of IkB, an inhibitor of NF-kB, in
murine T hybridoma cells and in HeLa cells (99). In addition to inducing
apoptosis, steroids and retinoids also induce G1 arrest in several different
primary cells and cell lines (reviewed in 100) by downregulating cyclins and
CDK (101–103) as well as by upregulating CKI (104, 105).

IgM cross-linking induces NF-kB inactivation (106, 107), c-Myc down-
regulation (108), and cyclin kinase inhibitor p27Kip1 accumulation in WEHI-
231 murine B lymphoma cells (109). p27Kip1 upregulation leads to decreased
cyclin-dependent kinase 2 activity, retinoblastoma protein hypophosphory-
lation, G1 arrest, and apoptosis (110–112). Similar to membrane (m) IgM
cross-linking, treatment of immature B cells with steroids/retinoids inacti-
vates NF-kB, leading to c-Myc downregulation, subsequent accumulation 
of p27Kip1, G1 arrest, and apoptosis. Interestingly, these hormones en-
hance anti-IgM-induced apoptosis in immature B cells, suggesting that
steroids/retinoids and mIgM cross-linking share a common signal trans-
duction pathway. All these steroids/retinoid-induced effects can be pre-
vented via CD40/CD40L signaling, which rescues cells from G1 arrest and
apoptosis (113).

This common signal transduction pathway may at least partially explain
why steroids and retinoids enhance anti-BCR-mediated apoptosis in B lym-
phoma cells, in contrast to thymocytes and T cell hybridomas, in which they
antagonize AICD (114, 115).

APOPTOTIC FUNCTIONS OF p53

One of the most important links between the proliferation and cell death
machinery is the tumor suppressor p53, which promotes cell cycle arrest or
apoptosis in response to DNA damage or a strong oncogenic stimulus to pro-
liferate (116). Recent evidence shows that oncogene expression and DNA
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damage use different mechanisms to induce p53-dependent apoptosis (117).
The importance of oncogene-dependent p53 death is illustrated by the fact
that most tumors show disruption of either p53 or an upstream activator of
this pathway, the p19ARF tumor suppressor. Expression of oncogenes such
as those encoding E2F1, c-Myc, E1A, or oncogenic versions of Ras results in
the accumulation of p19ARF (118–121), the product of an alternative reading
frame (ARF) of INK4 (122). This induction occurs through several mecha-
nisms (118, 121), and p19ARF acts in different ways to promote p53 stabi-
lization and function (123–126). Oncogene expression in p19ARF null cells
results in strongly attenuated p53 induction (although it is not lost com-
pletely) and these cells do not undergo apoptosis (120, 121). Normal cells
that survive the senescence crisis or c-Myc overexpression generally show
mutations in either p53 or p19ARF, but not in both, consistent with the idea
that these genes function in the same death-promoting pathway (121, 127).
The fact that p19ARF null cells show normal p53 induction following expo-
sure to DNA-damaging agents (127), and that cells lacking elements of the
DNA damage-dependent p53 pathway are normal with respect to oncogene-
dependent p53 induction (128), indicates that DNA damage and oncogene
expression induce p53 through separate pathways.

The best understood activity of p53 is its ability to function as a tran-
scription factor that can induce or repress expression of a large and growing
number of genes, although less well-defined transcriptionally independent
activities of p53 have also been described (129). The importance of 
transcriptional regulation by p53 has been demonstrated in many studies, in
particular by the generation of mice or embryonic stem cells in which
replacement of the wild-type protein by a transcriptionally inactive mutant
p53 resulted in loss of cell cycle arrest and apoptotic functions (130, 131).
Transcriptional activation of the p21WAF1/CIP1 cyclin-dependent kinase
inhibitor plays a key role in the induction of cell cycle arrest by p53, but there
does not appear to be a similar critical apoptotic target. Possible mechanisms
include transcriptional activation of the proapoptotic Bcl-2 family member
Bax (132, 133), the generation of reactive oxygen species (134), and tran-
scriptional upregulation of death receptors such as CD95/Fas/APO-1 or
DR5/KILLER (135–138). In fact, p53 can directly engage each of the major
apoptotic pathways in the cell, stimulating both death receptor signaling and
mitochondrial perturbation, including cytochrome c release. Loss of caspase-
9 or Apaf-1 renders mouse fibroblasts resistant to p53-dependent apoptosis
(139). It was recently shown that Apaf-1 is a direct transcriptional target of
p53, independent of the pRb pathway, suggesting that p53 might sensitize
cells to apoptosis by increasing Apaf-1 levels (140, 141).

THE ROLE OF Rb IN APOPTOSIS

The retinoblastoma protein pRb and its close relatives p107 and p130 have
key roles as negative regulators of cell proliferation. Consistent with this role,
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the pRb pathway is deregulated in most human cancers (reviewed in 142,
143). Although loss of pRb results in hyperproliferation, it also results in p53-
dependent and -independent apoptosis (144). The best-characterized targets
for the pRb family members are the E2F transcription factors (145, 146). The
E2Fs are best known for their role in regulating the timely expression of
genes required for DNA replication and cell cycle progression. Concurring
with their role as essential downstream targets of pRb, ectopic expression of
several of the E2Fs results in hyperproliferation and apoptosis (147–156).
E2F1-induced apoptosis is potentiated by the presence of wild-type p53, and
it is believed that loss of pRb results in apoptosis as a consequence of
increased E2F activity (144–146). This model is supported by data showing
that loss of E2F1 expression suppresses apoptosis and hyperproliferation in
Rb-deficient mouse embryos (157). A few E2F target genes have been
described that might mediate E2F-induced apoptosis; most prominent
among these are p14/p19ARF and p73 (120, 155, 156). Although ARF
appears to play a role in potentiating E2F-induced apoptosis through stabi-
lization of p53, ectopic ARF expression results in cell cycle arrest rather than
apoptosis (158), suggesting that other genes involved in apoptosis are regu-
lated by E2F. In contrast to ARF, ectopic p73 expression results in apoptosis
(159); however, it is at present unclear whether the p73 levels achieved as a
consequence of E2F1 expression are sufficient to affect cell proliferation.

A direct link between deregulation of the pRb pathway and apoptosis is
provided by the finding that Apaf-1 expression is directly regulated by E2F1
(140), and that Apaf-1 is required for E2F-induced apoptosis (Fig. 7).

Rel/NF-kB TRANSCRIPTIONAL REGULATORS ARE
CRITICAL FOR CELL DIVISION, CELL SURVIVAL,
AND CELL DEATH

Several studies reflect the fact that NF-kB can regulate expression of distinct
proapoptotic and antiapoptotic programs in different cell lineages, at differ-
ent developmental stages of a single lineage, and/or in response to 
different extracellular signals.

Members of the Rel/NF-kB family of transcriptional regulators are acti-
vated by a broad range of signals including cytokines, mitogens, free radi-
cals, and stress signals. These transcription factors control the expression of
a wide range of genes implicated in cytokine signaling, immunity, and devel-
opment. Studies using mice that lack members of the Rel/NF-kB gene family
have identified their essential roles; for example, B lymphocytes require 
the NF-kB proteins p50 and p65, as well as c-Rel for mitogen- and antigen-
receptor-induced proliferation (160). Interestingly, p50 is needed for the sur-
vival of quiescent B cells, whereas c-Rel is more important for the survival
of activated B cells. Impaired B cell survival is probably due to reduced
induction of pro-survival Bcl-2 family members such as A1/Bfl1 or Bcl-xL
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(161). Expression of the antiapoptotic proteins Bcl-2 or A1 permits survival
of Rel/NF-kB-deficient B cells, but does not restore cell proliferation. Col-
lectively, these results demonstrate that Rel/NF-kB transcription factors are
critical regulators of both cell proliferation and cell survival. The data also
indicate that Rel/NF-kB proteins control these two processes by activating
and/or repressing distinct sets of genes.

Mice lacking p65 die during development due to abnormal hepatocyte
apoptosis (162), a lethality that can be prevented by TNF deficiency (163).
As TNF/TNF-R1 signaling is essential for hepatocyte proliferation after
partial liver resection, it appears that p65 (and possibly other Rel/NF-kB
family members) control expression of proteins that determine whether this
signaling triggers cell proliferation or apoptosis.

T lymphocytes require c-Rel and, to a lesser extent, other Rel/NF-kB-
related genes for mitogen- or antigen-induced proliferation (164). Surpris-
ingly, these molecules appear to be unnecessary for T cell survival, although
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FIGURE 7. Model for the regulation of E2F-induced apoptosis. E2F directly regu-
lates the transcription of ARF, p73, and Apaf-1. The increased ARF or p73 levels result
in the transcriptional activation of Bax (and other p53/p73 target genes), and the 
subsequent triggering of cytochrome c release from mitochondria. Simultaneously,
Apaf-1 levels are increased, and the active Apaf-1/procaspase-9 holoenzyme can
stimulate apoptosis.



they are obligatory for B cell survival. Rel/NF-kB may be involved in AICD
of T lymphocytes, as it stimulates Fas ligand expression (165), which is essen-
tial for this process (166). This suggests that Rel/NF-kB proteins have dif-
ferent effects on apoptosis in different cell types. NF-kB is not required for
p53-dependent thymocyte apoptosis, but is a critical positive regulator of at
least one p53-independent pathway of programmed cell death in DP thy-
mocytes. In fact, NF-kB mediates anti-CD3-triggered apoptosis in wild-type
DP thymocytes by downregulating expression of the Bcl-xL antiapoptotic
gene. As Bcl-xL is the predominant antiapoptotic gene expressed in DP
thymocytes (167, 168), it is not surprising that its downregulation would 
predispose these cells to apoptosis. Such a model is also consistent with pre-
vious studies showing that constitutive expression of a Bcl-xL transgene in
DP thymocytes protects them from anti-CD3–mediated apoptosis (168).

OTHER ANTIAPOPTOTIC TRANSCRIPTION FACTORS

In addition to NF-kB, other transcription factors act by activating antiapop-
totic genes. The TAFII105 subunit of TFIID transcription factor is essential
for the activation of antiapoptotic genes in response to TNF-a, serving as
coactivator for NF-kB. This was further demonstrated after antisense expres-
sion, which sensitized cells to TNF-a-mediated cytotoxicity (169).

In contrast to NFATp and NFATc, NFAT4 is expressed preferentially in
DP thymocytes. Mice lacking NFAT4 have a thymus defect characterized by
increased apoptosis of DP thymocytes. Increased sensitivity to apoptosis
may reflect heightened sensitivity to TCR-mediated signaling. These mice
also have impaired production of Bcl-2 mRNA and protein; NFAT4 thus has
an important role in the successful generation and survival of T cells (170).

c-Myc: A DOUBLE-EDGED SWORD

The c-Myc protein, encoded by the c-myc proto-oncogene, is a potent
inducer of both cell proliferation and apoptosis (171, 172). The proapoptotic
property of c-Myc is shared with other mitogenic oncoproteins such as E1A
(173) and is thought to act as a built-in restraint to the emergence of neo-
plastic clones (174–176). Substantial evidence indicates that c-Myc-induced
apoptosis and mitogenesis are discrete downstream programs, neither of
which is necessarily dependent on the other. Activation of the molecular
machinery that mediates cell-cycle progression is not required for c-Myc-
induced apoptosis (177). Furthermore, c-Myc-induced apoptosis in serum-
deprived fibroblasts is inhibited by survival factors such as insulinlike
growth factor 1 (IGF-1) that exert little, if any, mitogenic effect on such cells
(178). The apoptosis suppressor Bcl-2 likewise inhibits c-Myc-induced apop-
tosis (179–181), with no measurable effect on the oncoprotein’s mitogenic
activity (180). Finally, experiments in mice in which c-myc has been specifi-
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cally deleted in B cells show that B cells are resistant to FasL-mediated apop-
tosis due to lower Fas expression (182, 183).

One intriguing possibility is that c-Myc does not itself induce apoptosis,
but rather acts to sensitize cells to other pro-apoptotic insults. Indeed, c-Myc
expression has been shown to sensitize cells to a wide range of mechanisti-
cally distinct insults such as serum or growth-factor deprivation (171, 172),
nutrient privation (173), hypoxia (184), p53-dependent response to genotoxic
damage (172), virus infection (185), interferons (172, 186), TNF (187), and
CD95/Fas (188), many of which have no obvious effect on cell proliferation.
This role as a sensitizer to different apoptotic stimuli implies that c-Myc 
must act at some common node in the regulatory and effector machinery of
apoptosis.

DIO-1: THE DIRECT CONNECTION

DIO-1 (death inducer-obliterator-1) was first identified using a differential
display approach in WOL-1 pre-B cells that were induced to undergo apop-
tosis by IL-7 starvation (189). Its predicted amino acid sequence showed tran-
scriptional activation domains, a canonical bipartite nuclear localization
signal (NLS), a PHD finger, and a lysine-rich carboxy-terminal region. DIO-
1 mRNA and protein levels were upregulated soon after apoptotic induction
by various stimuli, including IL-7 removal, dexamethasone or g-interferon
addition in WOL-1 cells, sIgM receptor cross-linking in WEHI-231 cells, or
c-Myc activation under serum-free conditions in the absence of p53 expres-
sion in MEF(10.1)Val5MycER cells. Overexpression of the gene product in
cells or misexpression in chick limb induces massive apoptosis in the absence
of any apoptotic stimulus. DIO-1-induced cell death can be inhibited by Bcl-
2 overexpression or incubation with the general caspase inhibitor z-VAD-
fmk. These results suggest that DIO-1-induced apoptosis requires caspase
activation. In addition, DIO-1 upregulates procaspase-3 and -9 protein levels,
and increases the activity of their mature forms. This direct link between acti-
vation of an apoptosis-regulating gene and caspase activation provides an
explanation for the rapid apoptosis induction observed after DIO-1 expres-
sion (190).

Overexpression of a DIO-1 deletion mutant lacking both NLS failed to
induce cell death, linking its lack of lethality to an inability to translocate.
More interesting, this mutant prevented B cells from undergoing growth
factor withdrawal-induced apoptosis, behaving as a dominant negative
mutant. In fact, the DIO-1 protein is located in the cytoplasm of healthy cells,
but is rapidly translocated to the nucleus in the presence of an appropriate
apoptotic stimulus (190).
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CONCLUSIONS

Apoptosis is the mechanism of programmed cell death that controls the gen-
eration of B and T cell repertoires and regulates immune responses. This
process must be highly regulated, since deregulation of apoptosis can lead
to several pathological situations. Failure of apoptosis may lead to auto-
immune disease, probably due to the presence of self-reactive clones, as well
as to an increase in inflammatory responses, since activated lymphocytes
generated after an immune response may not be correctly eliminated.
Uncontrolled activation of the apoptotic pathway may prevent the induction
of immune responses required for elimination of pathogens. Apoptosis thus
controls T and B cell numbers during development and following an
immune response by maintaining the balance between cell death and cell
survival, ensuring the homeostasis of the immune system.
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8

CELL DEATH IN NEURONAL

DEVELOPMENT AND

MAINTENANCE

AVIVA M. TOLKOVSKY, CHRISTOPH G. GOEMANS

AND EDWARD T. W. BAMPTON

The mammalian nervous system is composed of highly complex assemblies
of neurons, which interact with each other in very specific patterns, and also
make connections with virtually every other structure in the body. The CNS
of a human brain is estimated to have 10 to 12 billion neurons, and each
neuron can make as many as 1,500 synaptic connections. Given this enor-
mous complexity (and not forgetting the presence of 100-fold more glial cells
that are also of neurogenic origin), it is not surprising that a stochastic rather
than deterministic model of apoptotic neural cell death in development has
been adopted during evolution. Overall, it is estimated that between 30 and
50% of all the neurons born die during development (Oppenheim et al.,
1992).

In the past few years, a vast amount of evidence has accumulated
showing that the intrinsic and the extrinsic (death receptor) pathways of
apoptosis play key roles in developmental neuronal cell death, especially
when neurons are establishing connections with their targets. The questions
of interest currently are therefore primarily to identify the signaling mecha-
nisms that give rise to apoptosis, to understand how apoptosis is directed
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so that only selected structures are eliminated, and whether the survival
strategies enacted during development can be applied to prevent neuronal
cell death in injury and neurodegenerative disorders. More recently, there
has been increasing interest in the roles of apoptosis during the earlier devel-
opmental periods of neurulation, neurogenesis, and neural migration, espe-
cially since the targeted disruption of Apaf-1 (Cecconi et al., 1998; Cecconi
and Gruss, 2001), caspase-9 (Yoshida et al., 1998), or caspase-3 (Kuida 
et al., 1996) was found to cause immense hyperplasia during the earliest
stages of brain development, and gross brain malformations in the more
mature brain. The identity of survival factors that regulate these early cell
deaths, their source, and their signaling mechanisms are almost unknown.
An interesting correlate of these studies is the increased evidence for the
requirement for DNA recombination and repair during neurogenesis (Chun
and Schatz, 1999; Frank et al., 2000; Lee et al., 2000). Given the considerable
amount of information that has accrued in these areas, and the questions that
still remain regarding mechanisms of survival in the more mature brain, we
have chosen here to focus on two aspects of neuronal death during devel-
opment where immense progress has been made recently: (1) the evidence
for apoptosis during early neural development, and the mechanisms that
regulate it and (2) new insights into the regulation of neuronal death in the
established nervous system.

ROLE OF APOPTOSIS DURING NEURAL TUBE CLOSURE

AND NEURAL TUBE DEFECTS

Neurulation is the earliest process where apoptosis has been described as
being essential. During neurulation, the dorsal ectoderm is induced to form
the neural plate, which folds to form the neural tube. Newborn cells differ-
entiate and migrate out into the tube’s periphery, giving rise to the CNS
(brain and spinal cord). Other cells derived from the hinge region adjacent
to where the neural tube closes form the neural crest; these cells migrate
along the body axis and coalesce into ganglia to form the peripheral sensory,
autonomic, and digestive nervous systems. Lack of neural tube closure
causes neural tube defects (NTD), leading to conditions such as exencephaly
and spina bifida. Weil and coworkers (1997) examined the process of neural
tube closure in the thoracic region of explanted chick embryos where closure
first begins and noted the presence of many acridine orange staining cells in
the neural tube and neural folds, elevated regions where the hinges meet
and seal the neural tube. When they inhibited nominal caspases using zVAD-
fmk or Boc-D-fmk, closure of the neural tube was prevented but zFA-fmk (a
cathepsin inhibitor) had no effect. The essential involvement of apoptosis in
this process is also demonstrated by the forebrain overgrowth in the fog
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mutant mouse, which possesses a hypomorphic allele of Apaf-1 and, among
other symptoms, shows NTD (Honarpour et al., 2001).

How might this apoptosis be regulated? NTD are found in a high pro-
portion of female mice in which the p53 tumor suppressor gene is disrupted
(Armstrong et al., 1995; Sah et al., 1995), raising the possibility that p53 medi-
ates the apoptotic death during this period. However, it appears that the
defect caused by the absence of p53 is sexually dimorphic and not univer-
sal as only a tiny proportion of p53 null male mice show NTD. The causes
of NTD are very heterogeneous and only a small proportion of NTD are due
to direct defects in apoptosis (reviewed by Harris and Juriloff, 1999).
Recently, the involvement of p53 in apoptosis and NTD has been examined
in a different way. Pani and colleagues (2002) investigated the causes of
apoptosis and NTD in the Sp/Sp mice (which are Pax3 null) by crossing the
mice with p53 null mice. They observed that apoptosis in the neural tube
and NTD are absent in double Sp/Sp ¥ p53 null mice and that NTD was
reduced by 55% in Sp/Sp mice by pifithrin-a, a nominal inhibitor of p53-
induced apoptosis (Komarov et al., 1999). It is suggested that Pax3 functions
to suppress p53 protein expression (but not its mRNA), thereby inhibiting
apoptosis and hence implying that p53 is causing NTD through excessive
apoptosis. But since Sp/Sp mice show increased levels of p53 compared to
wild-type embryos, it is still not clear whether apoptosis in the normal neural
tube is mediated by p53. Extensive p53-dependent cell death was also speci-
fically detected at E10.5 in Mdm4 mutant embryos, but here too the consti-
tutive activity of p53 is particularly high (Migliorini et al., 2002). Thus, if p53
is utilized to mediate apoptosis during normal development of the neural
tube, its effects are clearly dependent on other factors. Moreover, these
factors must be kept under tight regulation if excessive apoptosis, as well as
the inhibition of apoptosis, leads to NTD.

Two groups described severe NTD in JNK1/2 double knockout mice
(but not in the JNK3 null mice, although the JNK3 gene is expressed only in
the CNS) (Haydar et al., 1999; Kuan et al., 1999; Sabapathy et al., 1999). Inter-
estingly, apoptosis decreased at E9.5 in the neural folds, roughly equivalent
to the developmental period studied by Weil and coworkers in the chick
embryo, and consistent with a proposed role for JNK and its downstream
target c-Jun in inducing neuronal apoptosis (reviewed by Ham et al., 2000;
Herdegen and Waetzig, 2001; Weston and Davis, 2002). However, by E10.5
there was massive apoptosis in the forebrain that led subsequently to its
extensive degeneration. Interestingly, there was no degeneration in other
nascent brain structures such as the mid- and hindbrain, demonstrating how
regionally specific and context-dependent these apoptotic inducers can be.
Extrinsic pathways may also play a role in NTD, as mice null for one of the
tumor necrosis factor (TNFa) receptor-associated factors, TRAF 6, also show
NTD. However, apoptosis has not been examined during neural tube closure
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itself and a reduction in apoptosis is observed in later development 
(Lomaga et al., 2000). Interestingly, the penetrance of this mutation is also
dependent on genetic background, as are those of Apaf-1, caspase-9 and -3
(see below).

If apoptosis is necessary for neural tube closure, what sets the limits on
the amount of cell death in the neural tube? Little work addressing this ques-
tion has been performed in mammals. Work by de la Rosa and de Pablo (de
la Rosa and de Pablo, 2000; Rubio et al., 2002) in the chick embryo suggests
that unprocessed pro-insulin expressed locally induces selective survival 
by upregulating the expression of the chaperone and heat shock-cognate
protein HSc70, consistent with the notion that the survival of all cells requires
an active suppression of cell-autonomous cell death pathways (Raff, 1992).
Antisense constructs directed against either pro-insulin or HSc70 mRNA
were found to exacerbate apoptotic death throughout the neural tube. The
further role of heat shock proteins in preventing neuronal death is suggested
by recent data from C. Woolf’s lab (Costigan et al., 1998; Lewis et al., 1999)
which has showed that sensory and sympathetic neurons expressing higher
levels of the chaperone Hsp27 were more likely to survive during the PCD
period. The involvement of pro-insulin (or the insulin-like signaling
pathway) in shaping the brain in mammals is supported by the differences
in brain sizes when the expression of IGF-1/2, their receptors, or binding
proteins is perturbed (reviewed by D’Ercole et al., 2002). However, there are
no gross morphological defects or NTD reported so the effects are quite
subtle. The main effect is on oligodendrocytes and the process of myelina-
tion. In the IGF1 null mouse, for example, although brain size is reduced,
this effect takes shape postnatally. There appears to be a selective loss of
some types of neurons (Beck et al., 1995), but the major loss is of “white”
matter, the myelinated axons and oligodendrocytes. In the IGF1 receptor null
mouse there is also decreased size of the brain and spinal cord (and of the
whole body), but the number and organization of the neurons in the CNS
appear to be normal (Liu et al., 1993), although increased crowding of the
neurons is observed. There thus remains a great deal to learn about the medi-
ators of apoptosis during neurulation, and in particular, there is a need to
define the mechanisms that spare most of the cells from apoptosis.

APOPTOTIC DEATH DURING NEUROGENESIS IN NEUROBLAST

AND IMMATURE NEURON POPULATIONS: EPISTATIC

RELATIONSHIPS BETWEEN Bcl-2 FAMILY MEMBERS,

Apaf-1, AND CASPASES

Neurogenesis is the period that occurs after neurulation when almost all the
neurons and glial cells inhabiting the adult brain are born in the region of
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the neural tube closest to the ventricles, the ventricular and subventricular
zones. Depending on the polarity of cell division, neuroblasts and glioblasts
become committed to their respective fates, begin to withdraw from the cell
cycle, and migrate out to form layers (as in the cortex, cerebellum, and retina)
or nuclei (collections of cells that serve a common function). As mentioned
already, striking brain malformations are observed in Apaf-1 (Cecconi et al.,
1998; Cecconi and Gruss, 2001), caspase-9 (Yoshida et al., 1998), and caspase-
3 (Kuida et al., 1996) knockout mice, consistent with the remarkable amount
of hyperplasia observed during neurogenesis. Ceconni and Gruss (1998)
further showed that Apaf1, caspase-9, and caspase-3 are epistatically related
in the apoptotic pathway during neurogenesis in the cortex and retina—
there is no activation of caspase-3 without caspase-9, and no activation of
caspase-9 or -3 in the absence of Apaf-1 (reviewed by Cecconi and Gruss,
2001). A major feature in these knockouts is the extended proliferation and
survival specifically of neural progenitor cells, defined by their expression
of some proneuronal markers, and their relatively normal distribution in the
different brain areas. Hence, it is a differentiated type of cell that is affected,
arguing against random proliferation as being the cause of hyperplasia.

Roth and colleagues have further analyzed the epistatic relationships
between the Bcl2-family members Bcl-xL, Bax, Bcl2, and Bid, and Apaf-1,
caspase-3, and caspase-9. Using Bcl-xL null mice (Motoyama et al., 1995) as
their pivot, they limited their analysis to immature telencephalic cortical
neurons that are early postmitotic cells, since Bcl-xL null mice die at E13.5
probably due to defective hematopoiesis (reviewed by Kuan et al., 2000; Roth
and D’Sa, 2001). Crossing these different lines of mice, they found that the
excessive neuronal death in Bcl-xL null mice—in which caspase-3 was exces-
sively activated—was almost completely rescued by crossing the mice with
mice null for Apaf-1, caspase-9, caspase-3, or Bax. Although Bcl2 null mice
showed no gross abnormalities at this stage, double Bcl-xL/Bcl2 knockouts
showed more widespread signs of apoptosis. However, Bid null mice
showed no obvious developmental abnormalities, arguing against the
involvement of the Fas/TNF family of death receptors in developmental
PCD in the brain during this period (Leonard et al., 2001). Furthermore, no
rescue of Bcl-xL-/- neurons was obtained by crossing the mice to p53-/- mice
(Klocke et al., 2002), arguing against an essential role for p53 in regulating
cell death after neurulation. This contrasts with a notable role for p53 in
mediating the cell death of similarly staged neurons in response to DNA
damage (D’Sa-Eipper et al., 2001). Here, nonepistatic relationships were
found between p53 and Bax, Apaf-1, or caspases, consistent with nonapop-
totic mechanisms being available to execute death in apoptosis-execution-
deficient cells, which may involve the mitochondrial release of the
pro-apoptotic protein AIF (Cregan et al., 2002).

Numerous studies have shown that Bax plays a key role in regulating
the final number of many types of postmitotic neurons, including motoneu-

8. CELL DEATH IN NEURONAL DEVELOPMENT AND MAINTENANCE 179



rons, sensory neurons, sympathetic neurons (Deckwerth et al., 1996; White
et al., 1998), retinal ganglion neurons (Mosinger Ogilvie et al., 1998), and
cerebellar Purkinje neurons (Fan et al., 2001). There are increased numbers
of mature neurons in each of these populations in the Bax knockout mice.
However, despite the epistatic relationship between Bcl-xL and Bax in the
embryonic brain, Bax deletion by itself seems to have only minor effects on
the programmed cell death during early development. The overall appear-
ance of the brains of adult Bax null mice is amazingly normal, as is their
apparent behavior. Even in Bax/Bak double knockouts, where tissues that
were hitherto unaffected in the single knockouts are now malformed (no
digit formation, no vaginal opening), there is some increase in the number
of dividing neuroblasts found in the ventricles, but certainly no massive
alteration of cortical lamination or differentiation (Lindsten et al., 2000). In
vitro, however, postnatal cortical neurons from Bax null mice are extremely
resistant to trophic factor deprivation and DNA damage (A. Wong and 
A. Tolkovsky, unpublished observations), in keeping with an important role
for Bax later in development. Since the absence of Bax also prevents AIF-
mediated death induced by DNA damage (Cregan et al., 2002) in early
(E14.5) embryonic cortical neurons, it may be that none of the insults in the
in vitro studies match the conditions that give rise to PCD during develop-
ment. Curiously, none of the morphological features that are so striking in
the brains of caspase-3 null mice were found after the 129X1/SvJ strain in
which they were developed was exhaustively bred into the inbred C57Bl/6
strain for 9 to 12 generations (Leonard et al., 2002). However, just one back-
cross into the 129 strain was sufficient to regenerate the malformations. Thus,
strain-specific modifiers and/or compensatory caspase activation/inhibition
mechanisms (Zheng et al., 2000; Troy et al., 2001) must be taken into account
when trying to draw conclusions about the importance of apoptosis in
mouse brain development from global knockouts (see also the discussion
below). At the same time, these experiments provide the possibility of iden-
tifying such modifiers if they exist. Whether there is less cell death during
neurogenesis in these and other mutants that affect apoptosis in the C57Bl/6
strain remains to be investigated.

WHY IS THERE SO MUCH CELL DEATH DURING

NEUROGENESIS: IS IT THE RESULT OF CONFLICT

OR DNA DAMAGE?

In a striking and initially controversial study by J. Chun’s group, apoptosis
demonstrated by labeling DNA ends using the ISEL (in situ end labeling)
technique suggested that over 50% of all the newborn neuroblasts die in the
mouse CNS (Blaschke et al., 1996, 1998). These deaths were apoptotic as they

180 II. BIOLOGICAL ROLE OF CELL DEATH IN DEVELOPMENT AND HOMEOSTASIS



were greatly reduced in caspase-3 knockout mice (Pompeiano et al., 2000).
Thomaidou and colleagues (1997) compared the number of mitotic figures
and that of TUNEL-positive nuclei (another DNA-labeling technique) in the
neurogenic ventricular zones of rats and calculated that cell death affects one
in every 14 cells (7%) produced by dividing ventricular zone cells at embry-
onic day 16 and about one in every 1.5 cells (40%) produced in the subven-
tricular zone of newborn rats. Although this extent of cell death was known
to occur in peripheral neuron populations during the period of target inner-
vation (Oppenheim et al., 1992), this result was unexpected in the CNS since
neurogenesis was thought to be target-independent. Strikingly, recent work
using spectral karyotyping in diving neuroblasts and interphase FISH analy-
sis in early postmitotic populations has identified approximately 33% of 
neuroblasts as being aneuploid (Rehen et al., 2001). One probable fate is cell
death as there is decreased aneuploidy observed in the adult cortex relative
to the embryonic cortex. Moreover, this cell death may be controlled, since
FGF2 added to cultures of cortex derived from these layers reduces the
amount of aneuploidy apparently by preferential loss of those cells with
greater than one chromosome gained or lost. However, aneuploidy may not
necessarily augur death as some aneuploid neurons survived into adulthood
as postmitotic neurons. An alternative, but not mutually exclusive, possibil-
ity is that mature neurons may also undergo distinct processes, resulting in
aneuploidy.

Also of note is the observation that cortical layering is not affected by
the migration of aneuploid neurons to their final destinations. Interestingly,
although it might be expected that changes in brain size reflect changes in
the incidence of apoptosis, changes in brain size provide little indication of
the existence of excessive, or lack of, apoptosis as evidenced by two mouse
models (different from those in which IGF-1 or IGF-2 was expressed trans-
genically beginning at birth; D’Ercole et al., 2002): In one model, the 
pro-apoptotic kinase GSK-3 [whose activity can be suppressed by phospho-
rylation by survival-related kinases such as Akt and by the Wnt signaling
pathway (Woodgett, 2001)] was expressed transgenically in a constitutively
active form; in the other model, a constitutively active, stable from of b-
catenin (which is normally destabilized and targeted for degradation by
phosphorylation by GSK-3) was transgenically targeted to neuronal precur-
sor cells. Expression of activated GSK-3 promoted a 20% decrease in brain
size without any signs of excessive apoptosis, the reduction in volume being
ascribed to decreased neuronal soma size and concordant increases in 
neuronal density (Spittaels et al., 2002). In contrast, expression of b-catenin
in neural precursors caused a huge expansion in neuronal numbers and an
increase in brain size, but this was due primarily to a massive increase in the
surface area of the cortex through creation of numerous deep folds (as found
in human brains) (Chenn and Walsh, 2002). However, migration and lami-
nation appear to be normal. What supports the survival of these numerous
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neurons is not clear. The authors expected apoptosis to have decreased given
the increased number of surviving cells (Haydar et al., 1999), but instead
observed a 2-fold increase in the number of TUNEL-positive cells. This might
not be too surprising, given a probable mismatch between the increased
neuron numbers and availability of survival factors from neighboring cells
that, as discussed above, presumably control the number of apoptotic cells
during development. However, if we consider that caspase-3 or -9 and 
Apaf-1 knockout animals show a different set of morphological abnormali-
ties involving increased neurogenic zones and ectopic growth while these
brains seem to be organized normally, it is tempting to speculate that b-
catenin might have actually suppressed cell death in some of the precursor
population, thus accounting for the rather small increase in TUNEL positive
cells compared to the final cell number achieved. Transgenic overexpression
of b-catenin in the postmitotic adult mouse brain (under the control of the
PrP promoter) does not cause any cancers (Kratz et al., 2002), arguing against
it being very mitogenic.

The problem with studying cell death during cortical development is
that 3 to 4 weeks may elapse between the period of time when neurons are
generated and the time when they project to their final targets so it is not
possible to study the signals that regulate apoptosis in different types of
identified neurons in the same age of the animal. This problem is somewhat
overcome in the retina. In the retina of newborn mice and rats, fully differ-
entiated postmitotic neurons coexist with neuroblasts and newly postmitotic
neurons. Retinal ganglion cells (RGC) are already fully differentiated, and
project to their targets, such that retinal excision causes deprivation of target-
derived factors and RGC apoptosis within 24 hours. At the same time, the
ventricular layer is still generating neuroblasts, while the neuroblastic layer
(NBL) contains immature postmitotic but undifferentiated neurons that are
in the process of migration to form the other layers of the retina. These
processes continue according to schedule when the retinas are cultured in
vitro. Linden and colleagues compared the sensitivities of these different
classes of neurons to agents that disrupt cell cycle and cell death. For
example, Rehen and coworkers (1999) found that anisomycin, which inhibits
protein synthesis, inhibited the apoptotic death of RGC and the proliferat-
ing neuroblasts while enhancing the apoptotic death of the newly post-
mitotic neurons in the NBL. They suggest that during migration and initial
differentiation in the NBL, the apoptotic machinery may be blocked by 
suppressor proteins, thus allowing recently formed postmitotic cells to find
their final positions and differentiate while being protected from apoptosis.
Partially selective inhibitors of cyclin-dependent kinases (cdks) (some of
which also inhibit JNKs and other kinases) also revealed differential sensi-
tivities to the induction of apoptosis in the RGC, neuroblasts, and newly
postmitotic neurons migrating in the NBL. Taken together with the studies
of Roth and colleagues, and Slack and colleagues, it appears that immature
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neurons that have recently emerged from the cell cycle are most vulnerable
to cell death during development. Whether this is because they are migrat-
ing away from—or even changing—their requirement for survival factors
(Davies, 1994) is not clear.

The neurotrophic factors that support survival of some of the cell types
in the chick retina have been partially characterized. One group (Karlsson 
et al., 2001) suggests that NGF is produced by the more differentiated 
horizontal cells in the retina and is used to support these cells’ survival in an
autocrine fashion. Another group (Gonzalez-Hoyuela et al., 2001), studying
retinal ganglion cell development, found that NGF, which promotes the
death of RGC neuronal precursor cells via activation of the p75NTR receptor
when they are in the last M phase (Frade et al., 1999), is produced by RGC
that have completed migration to their final layer. This NGF is proposed to
diffuse so as to kill the incoming p75NTR-expressing RGC while protecting
the NGF-generating RGC from death through TrkA, thus autoregulating their
cell numbers. Killing lots of migrating RGC depleted the eventual numbers
of other neuron types in the postmitotic retina, suggesting that the number
of neuroblasts born is not limitless. In their discussion, Gonzalez-Hoyuela
and colleagues also remark that they observed that NT-3 promotes RGC
genesis also by binding to p75NTR, consistent with the multifarious effects
mediated by signaling via p75NTR (for a review, see Roux and Barker, 2002);
the abnormal cell cycle of trigeminal sensory neuronal precursors in NT3-/-

mice was also noted (El Shamy et al., 1998). The p75NTR can thus signal for
mitosis, survival, and death independently of Trks depending on which neu-
rotrophin is bound, and shift its signaling mechanisms to additional para-
digms when cognate Trk receptors are expressed and stimulated. These
combinations expand enormously the repertoire of effects that are induced
by neurotrophins. Although Fas/TNF family death receptors may also show
complex signaling patterns, and the p55 TNF receptor, at least, has more than
one ligand, their impact on brain development is not as apparent as that of
p75NTR. One wonders whether there are additional receptors in the nervous
system that behave like p75NTR.

Given the enhanced sensitivity of newly differentiated neurons to cell
death over the proliferating and postmitotic populations, the idea promoted
first by Ucker (1991) that “physiological cell death occurs through a process
of abortive mitosis” is still a favored hypothesis among some researchers.
This theme was later adopted and applied to neuronal cell death by Heintz
(1993) and Rubin et al. (1994). The idea is that an aberrant attempt at S phase
entry in differentiating neurons leads to apoptosis as a result of conflicting
growth control signals. Greene’s lab has done the most to examine this
hypothesis (reviewed in Liu and Greene, 2001). From this body of work, it
is proposed that the retinoblastoma (Rb) protein is the key link to death, as
Rb null embryos exhibit gross neurological (but also hematopoietic) defects
and there is extensive apoptosis in the nervous system. Moreover, the expres-
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sion of several classes of cdk inhibitors, or DN forms of cdk4/6, which
permit Rb to function as a repressor of the E2F family of transcription factors,
inhibited apoptosis in model systems (reviewed by Ferguson and Slack,
2001). Frade (2000) also suggested that in the chick retina unscheduled entry
into the cell cycle precedes killing by NGF through p75NTR. To reexamine
the role of Rb in neuronal apoptosis, and eliminate the contribution of
hematopoiesis to embryonic lethality, Slack and colleagues (Ferguson et al.,
2002) interbred mice with a floxed Rb allele with mice in which Cre was
knocked into the Foxg1 locus (Foxg1 promotes gene expression that is
restricted to the telencephalon in the cortex; Hebert and McConnell, 2000).
They found that although the Rb null progenitor cells divided ectopically,
they were able to generate postmitotic neurons, the mice survived until birth,
and there were no signs of excessive apoptosis. Although it might be argued
that the Rb-related proteins p107 and p130 replaced the roles of Rb in sur-
vival, this should have also happened in the global Rb knockout mouse, and
indeed it has been hypothesized that muscle cells and neurons from Rb null
mice are unable to undergo terminal differentiation because p107 and p130
replace this function of Rb (Schneider et al., 1994). There are too few groups
testing the “signal-conflict” model to decide on its value; perhaps this 
is because we now prefer to understand the function of genes and are 
reluctant to give processes names that may prove to be stumbling blocks to
understanding function.

RECENT INSIGHTS INTO NEUROTROPHIN ACTIONS AND

NEURONAL MAINTENANCE

The developing nervous system was the first system in which it was noted
by Hamburger (1975) and Levi-Montalcini (Levi-Montalcini and Angeletti,
1968) that the final number of cells is determined by PCD. Hamburger and
Levi-Montalcini were also the first to propose that the size of neuronal pop-
ulations was controlled by the limited supply—or access to the supply—of
trophic factors from these targets. Although their main research was devoted
to spinal motoneurons and peripheral neurons, it is now clear that similar
dependencies occur in the postmitotic CNS, for example, in the retina, where
retinal ganglion neurons that project to the superior colliculus depend, at
least in part, on as yet poorly defined trophic factors for their survival
(reviewed in Cellerino et al., 2000). In the cerebellum too, granule neurons
that synapse onto pyramidal neurons depend on the latter for their survival
(as these neurons die in the Lurcher mouse in concordance with the death
of pyramidal neurons, but fail to die to a large extent in mice in which Bax
was deleted by targeted disruption; Doughty et al., 2000). There remain
however vast numbers of structures in the CNS whose natural period of
death both before and after target innervation has not been charted, for
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example, many of the deep nuclei, the striatum, the thalamus, the hip-
pocampus. This is a difficult area that cries out for further investigation.

An interesting twist with regard to the neurotrophic hypothesis has
arisen from studies of muscle innervation by incoming motoneurons in
zebrafish. During innervation of the muscle target, two neurons—the
CaP/VaP pair—start out being equivalent, but only one normally lives.
However, the neuron that ends up dying does not die because of a limiting
amount of neurotrophic factors or available space at the muscle target; rather,
it seems that the first neuron to reach and grow past an intermediate cell
type becomes CaP, and by doing so induces the intermediate cells to produce
a factor that disables the second neuron, which is now identified as VaP, from
arriving at the final target. Hence, ablation of the intermediate cells allows
both CaP and VaP to arrive at the final target and live (Eisen and Melancon,
2001). The type of death of VaP, and the mechanisms of apoptosis in zebrafish
in general, are just beginning to be understood (Cole and Ross, 2001).

An interesting feature in the developing CNS that has become appreci-
ated recently is the reciprocal nature of source and target survival. Thus,
axonal transport of trophic molecules occurs not only in a retrograde manner
(from the target to the cell body), but also in an anterograde fashion, with
release at the nerve terminals. In the visual system, the RGC neurons that
project to the superior colliculus (or tectum in chick) also promote tectal
neuron survival as the blockade of anterograde transport or electrical activ-
ity in the nerve (electrical activity is required for neurotransmitter and neu-
rotrophin release in the CNS; Canossa et al., 1997) increases apoptosis in the
target (Cellerino et al., 2000). NT-3 appears to be the major anterograde signal
responsible for this effect as endogenous NT-3 was shown to be transported
anterogradely by tracing the course of radiolabeled NT-3 (von Bartheld and
Butowt, 2000), and intraocular NT-3 injection prevented the anterograde
degeneration of tectal neurons that occurs after injection of pertussis toxin
into the eye (a process thought to ablate endogenous NT-3 levels without
affecting anterograde transport; von Bartheld et al., 1996). In the rat, simi-
larly, intraocular administration of BDNF can reduce cell death in the target
structures (Spalding et al., 2002). Reciprocal relationships have also been
noted between Schwann cells and sensory spinal DRG neurons. A Schwann
cell forms an intimate one-to-one relationship with its axon, which it pro-
ceeds to myelinate; those cells that fail to find a free axon fail to receive the
appropriate signal and die by apoptosis (Jessen and Mirsky, 1998). This
signal derived from the axon is neuregulin (one of multiple splice forms 
from the NRG-1 gene), the ligand for the ErbB3 receptor (in a heterodimer
with ErbB2). In ErbB3 receptor null mice there is a complete lack of Schwann
cell precursors and thus mature Schwann cells in peripheral nerves 
(Riethmacher et al., 1997). Detailed analysis of developing embryos shows
that at E12.5, the DRG in the ErB3 knockout mice is much the same as the
wild-type embryo, but by E14.5 there are 70% fewer neurons and by E18.5
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82% fewer. A similar loss is noted for spinal motoneurons, although at a later
stage of development. Axonal control of glial survival is also seen with
oligodendrocytes in the developing CNS [reviewed in (Barres and Raff,
1999)]. How much of this reciprocity occurs in other systems is still unclear,
although the retrograde effects of neurons on other facets of incoming inner-
vation, such as the number of synaptic inputs, have long been known (e.g.,
Lichtman and Purves, 1980). Moreover, there is now clear evidence for BDNF
being able to stimulate electrical activity in target neurons, just as if it were
a bona fide neurotransmitter (Blum et al., 2002).

Notwithstanding these new kinds of regulatory roles ascribed to neu-
rotrophic factors, the availability of knockouts for all the neurotrophins
(NGF, BDNF, NT3, NT4/5) and their receptors (Trks A, B, and C, p75NTR)
has provided incontrovertible evidence that the absence of death suppres-
sion by these factors has devastating effects on survival maintenance of the
nervous system (reviewed by Snider, 1994; Bibel and Barde, 2000; Ernfors,
2001; Huang and Reichardt, 2001). Although single knockouts are sufficient
to decimate specific populations of peripheral neurons, it is necessary and
sufficient to reduce the gene dosage of two different Trk gene allelles to
promote widespread cell death in the developing CNS (Minichiello and
Klein, 1996). The dominance of neurotrophic support over the availability of
specific cell death mechanisms (Du and Montminy, 1998) can be see in
animals lacking caspase-3 or caspase-9 expression, where the same final
number of motoneurons is found in the spinal cord of mutant and wild-type
mice, although this death occurs with some delay and its mechanism is non-
apoptotic and nonnecrotic (Oppenheim et al., 2001). As mentioned above,
motoneurons are spared in Bax knockout mice but in trigeminal sensory
neurons, even the lack of Bax expression could not replace the loss of NGF
or TrkA expression (although sympathetic neurons were completely rescued
in the NGF or TrkA null backgrounds by Bax deletion) (Middleton and
Davies, 2001).

The mechanisms by which neurotrophins support survival during
development seem to be similar to those described in other cell types,
namely through a dominant, Ras-, PI 3-kinase-, and PKB/Akt-dependent
pathway whose function is to suppress cell death signaling upstream of the
point of Bax activation (reviewed recently by Brunet et al., 2001; Miller and
Kaplan, 2001). Interestingly, although the Ras/ERK pathway appears to have
little impact on survival in the context of neurotrophic factor deprivation,
this pathway in the same neurons is used to suppress death induced by DNA
damage (Anderson and Tolkovsky, 1999; Hetman and Xia, 2000). The targets
of survival-signaling pathways are cell-type- and cell-context-dependent,
and not all these targets are found in every neuronal type. A summary of
some of these pathways and their interrelationships is given in Fig. 1. Since
the PKB/Akt pathway is predominant during the development of many
neuronal classes, we shall describe what is known about this pathway in a
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little more detail. There is evidence that PKB/Akt can suppress a JNK-
dependent pro-apoptotic pathway by phosphorylation of the upstream MLK
family member, ASK-1, phosphorylation of Rac1 (Kwon et al., 2000; Kim et
al., 2001), and/or by rearranging the JNK scaffold protein JIP-1 (Kim et al.,
2002). Further pro-apoptotic targets phosphorylated and inactivated by
PKB/Akt include the pro-apoptotic BH3-domain protein BAD and the Fork-
head transcription factor FKHRL1 (Brunet et al., 2001), whose functions are
abrogated by their binding to 14-3-3 proteins in the cytoplasm, and the
kinase GSK-3 (Cross et al., 1995) mentioned above. Inhibiting death signal-
ing, though, is not enough; there are also pathways that are required to
nurture the neurons to maintain them alive (Fletcher et al., 2000; Xue et al.,
2001). Pro-survival pathways induced by Akt phosphorylation include 
activation of the survival-inducing transcription factor CREB (Du and 
Montminy, 1998; Lonze and Ginty, 2002). However, although overexpression
of activated Akt1 can inhibit neuronal death in response to the absence 
of trophic factors (Philpott et al., 1997; Crowder and Freeman, 1998; Virdee
et al., 1999; Hetman and Xia, 2000; Xue et al., 2000), inhibition of the PI 3-
kinase signaling pathway both pharmacologically and using dominant neg-
ative inactive Akt1 does not always culminate in apoptosis as rapidly as that
which occurs by removal of the survival factor itself, suggesting that addi-
tional survival pathways operate, at least in sympathetic neurons (Philpott
et al., 1997; Virdee et al., 1999; Tsui-Pierchala et al., 2000). Additional survival
signals activated by neurotrophic factors include the transcription factor
NFkB, whose activity in mouse CNS neurons was demonstrated recently
using a transgenic reporter, and shown to be involved in the survival of CNS
neurons in the brain (Bhakar et al., 2002). In a few select cases, but not all
types of neurons, upregulation of Bcl-xL and IAP-family proteins have also
been observed in response to NGF (Wiese et al., 1999).

Many of the mediators of survival and death during development are
being proposed based on culture studies. Transcription factors such as c-Fos,
c-Jun, and NFkB are notorious for being activated by cellular stresses or
injury. Hence, while uncovering survival and death pathways that are acti-
vated by neurotrophic factors is important in the context of trying to negate
the effects of injury or disease, establishing their relevance to early devel-
opment will require techniques that interrupt signaling in vivo in a cell- and
developmentally-restricted manner without causing extraneous signals
(although these types of studies are not without their own problems).

Another interesting and controversial area of research is the role of death
receptors in apoptosis during brain development. p75NTR has been men-
tioned already as a receptor that can promote apoptosis (as well as survival)
in the presence (or absence) of specific ligands in the appropriate develop-
mental context. In addition to numerous in vitro studies, in vivo studies
show that transgenic overexpression of the p75NTR intracellular domain
promoted the death of several neuronal populations (Majdan et al., 1997). In
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addition, TrkA suppresses apoptosis in part via its suppression of p75NTR
signaling, since a dysfunctional (although incomplete) p75NTR knockout
[p75NTRexon3 (Lee et al., 1992; Naumann et al., 2002)] delayed the loss of some
of the sympathetic neurons that would have been dead in TrkA-/- sympa-
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thetic ganglia (Majdan et al., 2001). For receptors of the Fas/TNF family,
there are less clear roles during development. A cursory observation of the
brains of lpr (Fas-defective) and gld (Fas-ligand defective) mice, as well as
Bid-/- mice, does not reveal dramatic abnormalities. However, Fas has been
implicated in the death of embryonic motoneurons by Raoul and colleagues
(1999, 2002) who also propose a motoneuron-specific death signaling
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FIGURE 1. (A) The role of neurotrophins in regulation of neuronal survival and
death. Neurotrophins bind to two types of receptors: The pan-neurotrophin receptor
p75NTR binds all neurotrophins (nerve growth factor [NGF], brain-derived neu-
rotrophic factor [BDNF], neurotrophin-3 [NT-3] and NT-4 [NT-4]) with low affinity,
whereas the receptor tyrosine kinases of the Trk family (TrkA, B, and C) bind them
in a specific manner. TrkA binds preferentially NGF, TrkB binds BDNF and NT-4, and
TrkC binds NT-3. Although the Trk receptors are often quoted as high-affinity recep-
tors, they require association with p75 to form these high-affinity binding sites
(Dechant, 2001). In the absence of neurotrophin-mediated signaling through the Trk
receptor, the low-affinity pan-neurotrophin receptor p75 elicits a pro-apoptotic sig-
naling pathway. Interestingly, p75 can initiate pro-apoptotic signals either in the
absence of any neurotrophins or when it is ligated with neurotrophin ligands that 
do not stimulate the corresponding Trk receptor. Furthermore, pro-forms of neu-
rotrophins (that do not bind to Trks) or unrelated proteins (Prion protein, Ab) are
able to activate p75 (Dechant and Barde, 2002). Pro-apoptotic signaling leads to the
upregulation of death effector proteins (e.g., BH3-only proteins) that enhance pro-
apoptotic signaling, or it even induces expression of soluble death factors (e.g., FasL),
which are secreted and act by paracrine stimulation on other death receptors. 
Eventually, this pro-apoptotic signaling culminates in the release of apoptogenic
factors from the mitochondria that commit the cell to death through a caspase- and
nuclease-dependent destruction of proteins and genomic DNA. Activation of the Trk
receptor initiates a signal transduction pathway that inhibits pro-apoptotic signaling,
as well as affecting cellular growth and differentiation, and it can also provide pro-
tection against various insults. (B) The PI3K/Akt pathway is an example of a multi-
functional suppressor of pro-apoptotic signaling and a mediator of growth signals.
The Trk-stimulated effector Akt antagonizes pro-apoptotic signaling at various levels.
It inhibits activation of the JNK pathway by phosphorylation and inactivation of sig-
naling constituents (Rac1, Ask1, MKK-4), and by (a phosphorylation-independent)
disruption of the assembly of a signaling module involving JIP and the JNK pathway
(Kwon et al., 2000; Kim et al., 2001, 2002; Park et al., 2002). Phosphorylation of the
BH3-only protein Bad and the transcription factor FKHRL1 (Forkhead) sequesters
them into a cytoplasmic complex with 14-3-3 proteins, preventing them from 
participating in mitochondrial permeabilization or induction of pro-apoptotic gene
products, respectively (Brunet et al., 1999; Datta et al., 1997). On the other hand, tran-
scription factors are activated that lead to expression of antiapoptotic proteins 
(Bcl-2, Bcl-xL, IAPs, etc.) (Brunet et al., 2001). Furthermore, Akt-dependent phos-
phorylation inactivates glycogen synthase kinase-3b, which results in an increase of
glucose utilization and transcriptional activation, and possibly also inhibits other
pro-apoptotic signaling (Cohen and Frame, 2001).
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pathway in apoptosis, which integrates canonical Fas signaling via caspase-
8, and a special pathway that is mediated by Fas activation of Daxx, which
in turn activates p38 kinase, which in turn activates nNOS expression and
activity. Readers who wish to learn more about neurotrophic factors, the
mechanisms of survival signaling, how and in what form these signals are
transported to cell bodies from targets, and the different roles emerging for
secreted, mature, and pro-NGF (reminiscent of the specialized role found 
for proinsulin, perhaps) are referred to some of the many excellent 
recent reviews on these topics (e.g., Huang and Reichardt, 2001; Neet and
Campenot, 2001; Airaksinen and Saarma, 2002; Dechant and Barde, 2002;
Ginty and Segal, 2002; Hempstead, 2002).

ADULT NEURONS SWITCH THEIR MECHANISMS

OF TROPHIC FACTOR DEPENDENCE

The brain never ceases to develop. Thus, it is valid to ask how mature long-
lived neurons that have been spared from cell death during formation of the
nervous system maintain their integrity during subsequent periods. This
question is interesting as there are numerous stresses and potentially
harmful stimuli that impinge on neurons throughout their life. In the sym-
pathetic and sensory peripheral nervous systems, where this question has
been studied most, there are substantial shifts in neurotrophic requirements
from extrinsic to intrinsic mechanisms of protection. The progress of matu-
ration to gain independence from exogenous support by NGF can be mim-
icked in vitro by long-term culturing of NGF-dependent neurons in the
presence of NGF, thus allowing the biochemical investigation of the under-
lying mechanisms. Although NGF withdrawal from long-term cultures of
DRG and SCG neurons still resulted in c-Jun-phosphorylation [which can be
pro-apoptotic (Ham et al., 2000)], Bax translocation and subsequent
cytochrome c release, events committing the young neurons to death, did
not occur in the mature neurons (Easton et al., 1997; Vogelbaum et al., 1998).
Furthermore, NGF-deprived long-term cultures of SCG neurons were resis-
tant to apoptosis induced by cytoplasmic injections of cytochrome c (Putcha
et al., 2000), whereas 6-day cultured neurons lost their initial resistance to
cytochrome c during NGF deprivation (Deshmukh and Johnson, 1998;
Neame et al., 1998). Further shortening of the apoptotic response time after
cytochrome c injection can be induced by severing neuronal connections to
their (axonlike) neurites, showing that there is wide scope for the regulation
of apoptosis in response to cytochrome c (Fletcher et al., 2000). Little is
known about this aspect of regulation in other classes of neurons. During
the process of becoming NGF-independent, DRG neurons increased their
expression of Bcl-xL relative to that of Bax (Vogelbaum et al., 1998). Fur-
thermore, these mature neurons became less dependent on PI 3-kinase
signals for NGF-mediated survival (Klesse and Parada, 1998; Vogelbaum et
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al., 1998). However, PI3-kinase was deemed necessary for NGF-independent
survival of adult SCG neurons in culture (Orike et al., 2001). How active PI
3-kinase is maintained in these neurons is still not known. The same authors
also proposed that the survival of NGF-independent SCG neurons is
Bcl2/Bcl-xL-dependent, as antisense-Bcl-2 or Bcl-xL induced apoptotic cell
death in culture. Yet mature Bcl-2 null SCG neurons still achieved NGF inde-
pendence (Greenlund et al., 1995). Careful monitoring of the expression
levels of all pro- and antiapoptotic Bcl-2 family members will be necessary
to rule out the possibility that the redundant regulation of other Bcl-2 pro-
teins (e.g., Bcl-xL, Bcl-w, A1, Diva, or Mcl-1) accounts for growth factor inde-
pendence in the Bcl2 null neurons. Interestingly, another Bcl2 null mouse
showed gradual loss of neurons in postnatal life after the natural cell death
period but hardly any deficiency during the PCD period (Michaelidis et al.,
1996; Cellerino et al., 2000).

SUMMARY

Although there have been huge advances in understanding neuronal cell
death during development, several questions remain to be answered. The
description and temporal map of PCD for several types of neurons are still
not complete. The signals that give rise to apoptosis need to be better under-
stood. The survival factors that interact with apoptotic pathways so that only
selected structures are eliminated remain to be identified, and their mecha-
nisms of death suppression during early development need to be elucidated.

The value of studying mechanisms of PCD during development are
clear; by understanding the survival strategies enacted during development,
it may be possible to devise similar strategies to prevent neuronal cell death
in injury and neurodegenerative disorders. There is now burgeoning inter-
est in the use of embryonic and adult neural stem cells to replace neurons
in disease. The roles of apoptosis in controlling neural stem cell numbers in
the adult brain, and the survival factors that counterbalance mitosis and
apoptosis to maintain this population are just beginning to be deciphered.
Given the pace of current research, and recent advances in analyzing
complex genomics, transcriptomics, and proteomics (and soon meta-
bolomics), it is likely that the new tools emerging will also help unfold the
answers to these complex problems. As in the pioneering days of Santiago
Ramon y Cajal (1928), however, the best neuroscience research still, and
always will, require painstaking attention to detail.
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CHAPTER

9

CELL TURNOVER: INTESTINE

AND OTHER TISSUES

JAMES W. WILSON AND

CHRISTOPHER S. POTTEN

In recent years, our knowledge of the cellular and molecular mechanisms
that regulate cell turnover in epithelial tissues has grown significantly. In
particular, the intestine has been an organ system that has yielded impor-
tant information about cell survival and cell death controls in epithelial
tissues. The late 1970s and 1980s were characterized by experiments that
defined the classical methodologies, still used today, for assessment of pro-
liferation and apoptosis in vivo using light and electron microscopy-based
techniques. These experiments established the concept of stem cells and cel-
lular hierarchies, with their differential capacities for proliferation, differen-
tiation, and apoptosis. The late 1980s and early 1990s saw the emergence of
chimeric and transgenic animal models, which have since had a major role
in defining the regulation of cell death and cell proliferation in epithelial
tissues. In particular, the ROSA 26 mouse (in which stem cells and early prog-
enitor cells express b-galactosidase) and the targeted expression of genes in
the intestinal epithelium, using specific promoters such as for FABPI (fatty
acid binding protein of the intestine), have been important developments.
Gene knockout animals have also been developed during this time and have
been particularly useful in defining genes important in the response to cell
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injury. Our understanding of epithelial biology has grown also with our
understanding that cell types do not exist in isolation but exist as part of 
a dynamic, interactive environment within the tissue as a whole. Conse-
quently, cells such as fibroblasts, lymphocytes, and commensal and patho-
genic microorganisms are appreciated as being important in directing
epithelial cell fate. Given the vast amount of new data, this review will con-
centrate on the intestine as a model tissue.

DEFINITION OF KEY TERMS

CRYPT. This is the proliferative unit within the small and large intestine.
All epithelial cell production takes place within the crypts, which are flask-
shaped pits within the intestinal mucosa.

STEM CELLS. Multipotent cells within a tissue that are capable of self-
renewal and that have the potential to generate all the differentiated, cell
phenotypes within that tissue. In the intestine crypts are monoclonal, that is,
all the cells are descended from one master stem cell.

CELL LINEAGES. A defined pathway of cellular descent from a single stem
cell. A single lineage may branch one or more times with each branch having
its own defined fate, that is, to fulfill a particular differentiated function
within the tissue. Lineages of different stem cells in a crypt all are ultimately
descended from the master stem cell.

CELLULAR HIERARCHY. A cell’s position within the hierarchy is usually
defined by its ability to function as a stem cell, and physically relates to the
cell’s position within the crypt.

CELL TURNOVER. Net cell turnover is defined as the difference between
the rate of cell production and the rate of cell loss. Loss may be defined as
being from either (1) the proliferative cell population within a tissue, in
which case it may be due to either differentiation or cell death; or (2) from
the epithelium as a whole, in which case it is due to cell death alone.

VILLUS. Small projection into the gut lumen of mature, differentiated,
epithelial cells. Each villus may be formed from cells derived from up to half
a dozen crypts, that is, unlike crypts, they are polyclonal.

CRYPT-VILLUS AXIS. Specifically refers to the small intestinal epithelium
and relates to the direction in which the majority of epithelial cells move
during their lifetime as proliferative and, consequently, mature differenti-
ated cells.
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THE INTESTINE

CELL PRODUCTION

THE BASICS. Cell turnover in both the small and large intestine is high,
with the turnover time for the entire small intestinal epithelium being esti-
mated at approximately 54 hours (in mouse) and for the colon, about 
60 hours (mouse) (Cheng and Bjerknes, 1983). Total cell production in the
human small intestine has been estimated at being up to 2 ¥ 1011 cells per
day (Potten, 1995). Cell production takes place at or near the base of the
intestinal crypts. Cells then divide several more times as they migrate up the
crypt and finally differentiate into mature villus cells with either absorptive,
secretory, or endocrine function. A few cells, the Paneth cells, migrate to the
base of the crypt and fulfill an antimicrobial role. After a short functional life
(3 days), cells are lost from the tips of the villi in the small intestine or from
the crypt table in the large intestine (after 5–9 days). Because of its complex
morphology, a tight balance needs to be maintained between cell loss and
cell gain in the intestinal epithelium in order to maintain its tissue architec-
ture and optimal function: That is, crypt output has to match cell loss from
the villi. Primarily, control of cell numbers is exercised at the level of the stem
cells, from which all the other intestinal cell lineages are derived. Anotated
photomicrographs showing the histological appearance of the small and
large intestinal epithelia are shown in Fig. 1.

STEM CELLS. In the small intestine, the stem cells are thought to be located
at about the 4th cell position from the bottom of the crypts, directly above the
Paneth cells (Potten et al., 1997). They are suggested to reside in an annulus
of 16 cells surrounded by their immediate daughter cells. As yet, there are no
defined molecular markers for the stem cells. Their position has been deter-
mined on the basis of in vivo DNA labeling experiments that show the origin
of cell proliferation and migration to be at the 4th cell position (Qiu et al.,
1994). Certain cells at this position also show retention of label, perhaps indi-
cating that they retain a master copy of DNA (Potten et al., 2002). Intriguingly,
individual cells with high levels of telomerase expression have also been
demonstrated at position 4 (Booth and Potten, 2000), which coincides nicely
with the idea of a stem cell with a well-maintained master DNA template that
undergoes many rounds of replication during the lifetime of the animal.

Data from studies on chimeric animals (Winton et al., 1988) and on
animals demonstrating X-linked enzyme polymorphism (Thomas et al.,
1988) suggest that crypts become monoclonal during early (fetal) develop-
ment and, therefore, all the cells in an individual crypt are ultimately
descended from one master stem cell. The precise molecular control of this
monoclonal selection process has yet to be defined (see later on in this
chapter).
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When a stem cell divides, its usual fate is thought to be forming one stem
cell and one daughter cell; the daughter may either divide several more
times, migrating up the crypt and differentiating into an absorptive, secre-
tory, or endocrine cell or, alternatively, it may migrate down to the very base
of the crypt and differentiate into a Paneth cell. Occasionally, a stem cell divi-
sion may result in the formation of two equivalent stem cells. There are very
few stem cells per crypt (four to six), and so each stem cell’s lineage makes
a considerable contribution to the crypt’s output of 300 cells per day. A single
extra stem cell, therefore, can considerably upset the status quo; hence, the
need for tight regulation. Consequently, these excess stem cells are deleted
by apoptosis, thus preventing crypt hyperplasia and the enhanced possibil-
ity of malignant transformation. The scoring of apoptotic events on a cell
positional basis reveals a peak in spontaneous apoptosis at the stem cell posi-
tion near the base of the small intestinal crypts, and this is thought to reflect
the deletion of excess stem cells (Potten et al., 1997).

The other way in which crypt cell numbers are regulated is through
crypt fission. It has been proposed that crypts bifurcate, thus forming two
crypts when crypt/stem cell numbers reach an upper threshold limit. It has
been further proposed that there is an ongoing cycle of crypt division, but
estimates of crypt cycle times and the number of crypts in cycle vary wildly.

204 II. BIOLOGICAL ROLE OF CELL DEATH IN DEVELOPMENT AND HOMEOSTASIS

Small intestine Colon

stem cells

proliferative
cells

table

Paneth
cells

villus

cell loss
by anoikis

crypt

FIGURE 1. The intestinal epithelium.



One study suggests that crypts are not in steady state but are constantly
expanding until they reach the threshold cell number at which they 
bifurcate (Totafurno et al., 1987); this cycle time was estimated at 110 days
(mouse). Others have proposed that less than one-third of crypts divide
during the lifetime of the animal and that crypt cycle time is much greater
(>100 months; mouse) (Li et al., 1994).

On some occasions, however, extra stem cells are required to be pro-
duced, either to replace single stem cells that have been deleted by apopto-
sis because they have sustained genomic damage, or to enhance crypt output
or allow crypt multiplication through fission, in order to affect epithelial
repair following gross mucosal damage. The response of the epithelium to
mucosal damage is discussed later.

There is a cellular hierarchy relating to stem cell potential and commit-
ment to differentiated fate in the crypt, based on cell position. Much infor-
mation on this has been obtained from studies of the response of the
epithelium to injury. If all the stem cells are deleted, then there is a cohort of
up to six immediate daughter cells that are able to substitute for them and
take over as the stem cells and repopulate the epithelium with all cell lin-
eages. If these cells are deleted also, there is a further cohort of between 16
to 24 cells at higher crypt positions that can fulfill this role. Proliferative cells
further up the crypt are not able to substitute as stem cells if this latter cohort
is deleted, having reached a point of commitment from which there is no
turning back (Potten, 1998). Is a cell committed to a particular differentiated
fate (absorptive/goblet/endocrine) at this point, or does this occur later
when it eventually stops dividing? Some recent studies suggest that long-
lived stem cell daughters can only go on to produce cells of one particular
lineage. Dolichos biflorus agglutinin (DBA) is a lectin that binds to the intesti-
nal epithelial cells of mice that express the genetic locus, Dlb-1. Some strains
of mice express this locus and some do not. Treating a Dbl-/- strain such as
Swiss–Webster (SWR) with a mutagen will introduce random genetic muta-
tions into the genome. Some of these may occur with the Dlb-1 locus and
result in its expression, and consequently, epithelial cells may be labeled by
the lectin. Following treatment of SWR mice with N-ethyl-N-nitrosourea, a
rapid increase in DBA-positive staining can be observed in the intestinal
crypt epithelium (Bjerknes and Cheng, 1999). The majority of these cells dis-
appear within 3 to 4 weeks, but some DBA-positive cells remain for many
months. These cells must arise from mutated stem cells or, at least, long-lived
progenitor cells. Indeed, such DBA-positive cells can be viewed near the base
of the crypts. The interesting thing about these studies is that they revealed
that in some crypts the DBA-positive cells were of a single lineage, either
columnar (absorptive) or mucus (goblet precursors). Crypts with both lin-
eages were also seen. The initial burst of DBA positivity that disappears must
be due to mutations in short-lived progenitor cells. Again, these short-lived
cell clones could be of either columnar or mucus lineage, or both.
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These results may be interpreted as suggesting that there are both short-
and long-lived progenitor cells within crypts that already have a specified
fate (columnar or mucus), the latter presumably the immediate daughters of
a stem cell. These studies did not suggest from which lineage the endocrine
and Paneth cells might be derived. From the data generated, the number of
long-lived progenitors (stem cells and immediate daughters) was suggested
to be four to five per crypt (Bjerknes and Cheng, 1999). These could 
correspond to the four to six stem cells identified on the basis of their
radiosensitivity.

How is it determined then that stem cells need to be created or deleted
by apoptosis and how are stem cells themselves maintained? Also, what
determines the ordered proliferation, migration, differentiation, and ulti-
mately the death of epithelial cells? The molecular control of cell turnover
in the small intestinal is just beginning to be unraveled. Cell-cell and cell-
basement membrane adhesion molecules provide important signals that
govern proliferation, differentiation, and apoptosis. Autocrine and paracrine
secretory molecules also play a key role in regulating the dynamics of the
epithelium. These subjects will now be discussed in more detail.

REGULATION OF EPITHELIAL PROLIFERATION,
DIFFERENTIATION, AND APOPTOSIS

CELL ADHESION SIGNALS

E-CADHERIN. The cell-cell adhesion molecule, E-cadherin, has been shown
to regulate cell proliferation, migration, and apoptosis in the small intes-
tinal (SI) epithelium in a chimeric mouse model (Hermiston et al., 1996; 
Hermiston and Gordon, 1995). Disruption of E-cadherin function through
the overexpression of a dominant negative N-cadherin in SI epithelium
results in increased apoptosis and proliferation, loss of cell polarity and per-
turbed cell migration along the entire crypt–villus axis, and apparent pathol-
ogy (neoplasia and inflammatory bowel disease; Hermiston and Gordon,
1995). In contrast, forced expression of wild-type E-cadherin results in
reduced numbers of crypt mitoses and perturbed patterns of epithelial cell
apoptosis (Herminston et al., 1996). The effects of cadherins on proliferation/
migration/apoptosis are mediated through their interaction with Armadillo-
family proteins such as b-catenin, plakoglobulin, and desmoplakin, which
link cadherin adhesion junctions with cytoskeletal elements (Kikuchi, 2000;
Nagafuchi, 2001; Jamora and Fuchs, 2002). Also, E-cadherin may regulate the
free cytoplasmic levels of b-catenin, which in its monomeric form can act as
a transcriptional regulator to promote cell proliferation.

LAMININS. Signal transduction from extracellular matrix (ECM) compo-
nents (e.g., laminins) through their cell surface receptors, integrins, is also
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crucial in providing signals controlling proliferation, differentiation, and
apoptosis. Laminins are multisubunit glycoproteins, consisting of a, b, and
g chains. Both laminins and integrins show differential distribution along the
crypt–villus axis. In human SI epithelium, expression of laminin-2 appears
to be specifically restricted to the base of the crypts, whereas laminin-1 and
-5 show villus-specific expression (Bouatrouss et al., 2000). This pattern of
expression may reflect their possible role in defining/maintaining the func-
tion of the enterocytes found in these specific regions. Laminin-1 expression
is associated with the expression of differentiation markers in vitro, such as
sucrase isomaltase, and presumably has the same role in promoting differ-
entiation of villus enterocytes in vivo. This relationship may be mediated via
laminin-1-regulated expression of the Caudal-related transcription factor, 
Cd¥2 (Lorentz et al., 1997), possibly signaled through a7Bb1 integrin (Basora
et al., 1997).

INTEGRINS. Integrins consist of two subunits, a and b, that determine their
ligand specificity and their cytoplasmic interactions. Two integrins, a3b1
and a6b4, have been implicated in the migration of enterocytes along the
crypt–villus axis, primarily through data acquired from models of intestinal
epithelial would healing (Mecurio et al., 2001). The b4 subunit is particularly
interesting; its cytoplasmic domain is different from other b subunits and it
is able to self-associate, meaning that it functions in signaling pathways inde-
pendently of laminin binding by its associated a chain (Rezinczek et al.,
1998). Mice with defective b4 demonstrate impaired crypt epithelial cell 
proliferation and this is associated with increased expression of the CDK
inhibitor, p27Kip1 (Murgia et al., 1998).

In addition to cell migration within the intestinal epithelium, in vitro
studies on isolated colonic crypts demonstrate that the b1 subunit is respon-
sible for transducing antiapoptotic signals, following the engagement of
matrix components such as collagen 1 (Sträter et al., 1996). Constitutive over-
expression of integrin a5b1 in intestinal epithelial cells in vitro also protects
against a range of apoptotic stimuli (Lee and Juliano, 2000). However, the in
vivo role of a5b1 and its interaction with its major ligand, fibronectin, in con-
trolling enterocyte survival are not yet defined.

LAMININ/INTEGRIN SIGNALING. The binding of laminins by integrins
results in integrin clustering and the recruitment of a number of different
cytoplasmic proteins, including kinases and structural proteins, to form com-
plexes called focal adhesions (Miranti and Brugge, 2002; Schwartz, 2001).
One of the key proteins in these foci is focal adhesion kinase (pp125FAK; for
a review, see Schaller, 2001), which undergoes autophosphorylation on
defined tyrosine residues in response to integrin ligation. Phosphorylated
pp125FAK can, in turn, recruit and phosphorylate components of the
Ras/MAP kinase signaling pathway, such as Grb2/SOS, to ultimately 
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initiate Elk-1-mediated transcriptional events such as upregulated expres-
sion of cyclin D1. Alternatively, it can recruit and activate PI-3 kinase, the
consequence of which is activation of AKT/PK-B that, in turn, phosphory-
lates and inactivates (via sequestration) the pro-apoptotic Bcl-2 family
protein, Bad. It has been demonstrated recently that pp125FAK undergoes
specific cleavage by caspase-3 and -6 during the apoptosis of isolated, human
colonic epithelial cells in vitro (Grossmann et al., 2001).

Integrins may also serve to regulate signaling via growth factor recep-
tors (GFRs) (reviewed by Yamada and Even-Ram, 2002). This interaction
may result from coclustering of integrins and GFRs and mutually enhanced
ligand binding (Miyamoto et al., 1996). Alternatively, integrin ligation may
result in the phosphorylation of the cytoplasmic, signaling domain of the
GFR, independent of GFR-ligand binding (Moro et al., 2002). Specifically, lig-
ation of avb3 integrin or fibronectin binding to b1-containing integrins can
induce activation of epidermal growth factor receptor (EGFR), dependent on
the protein tyrosine kinase, c-Src, and the adaptor protein, p130Cas (Moro
et al., 2002). This effect is independent of EGF binding to its receptor and
interestingly, independent of pp125FAK. This mechanism could contribute
to the antiapoptotic signaling of b1 integrins discussed previously.

These results show that cell–cell contacts and cell–ECM interactions are
important in providing survival and proliferative signals to epithelial cells.
Apoptosis that results from the loss of signals provided by adhesion mole-
cules is given the more specific name of anoikis (Frisch and Francis, 1994).
Excellent reviews on cell adhesion and apoptosis (Gilmore and Streuli, 1998)
and anoikis mechanisms (Frisch and Screaton, 2001) are available. The loss
of cells at the villus tip is also probably due to anoikis. Electron microscopic
studies clearly demonstrate the morphological changes occurring in cells
being lost at the villus tip, in particular the loss of microvilli (Potten and
Allen, 1977). Labeling of DNA strand breaks also shows positive cells at the
tips of the villi, consistent with the cells undergoing apoptosis (Hall et al.,
1994; Shibahara et al., 1995).

The increased expression of J1/tenascin, which increases repulsion
between epithelial cells and basement membrane, is also observed in murine
intestinal villi and may contribute to the loss of cells from the villi by anoikis
(Probstmeier et al., 1990). An elegant study by Rosenblatt et al. (2001) demon-
strates the precise changes occurring in dying cells in simple epithelium in
vitro, mechanisms that probably apply also to cell loss in the intestine. These
studies show that apoptotic cells are extruded from epithelial layers by an
active process which involves the contraction of neighboring cells, by an
actin/myosin-dependent process, so they close in underneath the apoptotic
cell and squeeze it out of the monolayer. This process is aided by the general
contraction of the apoptotic cell itself. In this way, the integrity of the mono-
layer and hence barrier function can be maintained despite the loss of indi-
vidual cells.
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PARACRINE AND AUTOCRINE SIGNALING

WNT SIGNALING. Wnt proteins are secretory glycoproteins that play an
important part in directing cell fate during development. More than a dozen
Wnts have been identified, many with different isoforms, and they show a
high level of conservation across different species, emphasizing their basic
importance in cell regulation. Roel Nusse at Stanford University main-
tains an excellent site on Wnts at ·http://www.stanford.edu/~rnusse/
wntwindow.html.Ò Wnts signal through the cell surface receptors of the 
Frizzled family. Multiple Frizzled members across various species have 
been cloned and show ligand specificity. Wnt/Frizzled interaction may
either affect b-catenin-regulated transcription, or Ca2+-dependent signaling 
(Miller et al., 1999; Kūhl et al., 2000), depending on the subtype of Frizzled
receptor.

Wnt Ligands and the Intestinal Epithelium. Most studies on the role of this
signaling pathway in regulating intestinal epithelial cell fate, during devel-
opment and in adult tissue, primarily focus on the downstream components
of the pathway, such as b-catenin. Studies on the expression Wnt ligands in
the mammalian intestine are limited to studies of gene expression during
gut development in the mouse (Lickert et al., 2001) and the dysregulated
expression of Wnts in colonic tumors (Dimitriadis et al., 2001; Katoh et al.,
1996; Vider et al., 1996). Wnts 4 and 13 are expressed in the embryonic and
adult small intestine, respectively (Lickert et al., 2001; Katoh et al., 1996); Wnt
11 is expressed in embryonic colon (Lickert et al., 2001); Wnts 2, 5a, 11, and
13 are expressed in the adult colon (Dimitriadis et al., 2001; Katoh et al., 1996;
Vider et al., 1996); and Wnts 2, 4, 5a, 6, and 7a are reported to be over-
expressed in colonic tumors (Dimitriadis et al., 2001; Vider et al., 1996).

What controls the expression of the Wnt genes themselves is not well
characterized, although specific Wnts have been shown to be regulated by
Sonic hedgehog (see section that follows; Reddy et al., 2001) and by ECM
components such as collagen (Bui et al., 1997).

b-Catenin-Regulated Transcription. Free (monomeric) b-catenin is transcrip-
tionally active via its heterodimerization with T cell factor 4 (Tcf-4), and other
members of the high mobility group (HMG) of transcription factors. The
levels of free b-catenin are tightly controlled through its targeted degrada-
tion by the ubquitination pathway (Miller and Moon, 1996; Kikuchi, 2000).
In the absence of Wnt ligands, free b-catenin is constantly degraded, a
process directed by the proteins Axin, APC (the product of the Apc gene,
mutated in familial andenomatous polyposis coli; Nishisho et al., 1991) and
glycogen synthase kinase-3b (GSK-3b). There is some experimental evidence
to suggest that E-cadherin expression can also regulate the level of
monomeric b-catenin within the cell (Fagotto et al., 1996; Heasman et al.,
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1994). The transcriptional activity of b-catenin is also regulated by other
mechanisms, which will be described in a subsequent section. Binding of
Wnt ligands to their cell surface receptor Frizzled results in the G-protein-
dependent activation of Dvl (Deshevelled), which in turn inhibits the action
of GSK-3b and prevents b-catenin degradation, allowing its association with
HMG transcription factors.

Experimental evidence from a Tcf-4-/- mouse model suggests that Tcf-
4/b-catenin signaling is essential for the maintenance of epithelial stem cells
in the small intestine during development (Korinek et al., 1998). Further evi-
dence of the importance of b-catenin signaling for intestinal stem cells is pro-
vided by studies using a chimera constructed by injecting embryonic stem
cells (derived from a sv129 mouse), expressing a lymphocyte enhancer
factor-1 (Lef-1)/b-catenin fusion protein, into the blastocysts of B6-ROSA26
transgenic mouse (Wong et al., 2002). Lef-1 is another HMG transcription
factor. ROSA26-derived crypts express b-galactosidase and can be stained
blue following tissue isolation and incubation with X-gal: sv129 epithelium
remains unstained. The expression of the transgene results in increased
apoptosis in the sv129 intervillus epithelium (which ultimately forms the
crypts in the developing gut), in the absence of the increased proliferation:
This effect is observed 2 days prior and 1 day after birth—at this time the
crypts are still polyclonal. ROSA26 crypts that do not express the fusion
protein show no such response. Two weeks after birth, only ROSA26-derived
crypts remain. In chimaeras that do not express the transgene, 
both monoclonal ROSA26 and sv129 crypts (with polyclonal villi) can be
observed; therefore, expression of the Lef-1/b-catenin transgene must result
in the deletion of stem cells as the intestinal epithelium develops, probably
through the induction of apoptosis.

These studies suggest that the absolute level of b-catenin signaling deter-
mines stem cell fate (Wong et al., 2002), there being a minimum signaling
requirement for stem cell survival (Korinek et al., 1998) and a threshold
beyond which stem cell fate is apoptosis (Wong et al., 2002). This mechanism
has been proposed to explain the tight regulation of stem cell numbers
within the crypts and the formation of monoclonal crypts during develop-
ment (Wong et al., 2002; see Fig. 2). It is possible that the response may have
intermediate levels between these two extremes, with there being optimal
levels of b-catenin signaling that support proliferation and differentiation.
There are data suggesting that downregulation of b-catenin signaling in pro-
liferative enterocytes is required to allow differentiation (Mariadason et al.,
2001b).

In the adult intestine, the expression of Tcf-4 is highest in cells further
along the crypt–villus axis, up and away from the stem cell compartment
(Barker et al., 1999). Cells in the upper crypt and villus are more refractory
to apoptosis induction than the stem cells at the base (Potten, 1990; Wilson
et al., 1998); therefore, Tcf-4/b-catenin signaling in these cells cannot be at a
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sufficient level to induce apoptosis, although the cells of the upper crypt and
villus are committed to their fate and will be dead within 3 days.

The promotion of cell survival and proliferation by Tcf-4/b-catenin
(Korenik et al., 1998; Chen et al., 2001) are mediated via regulating the
expression of a number of genes including those coding for cyclin D1 (Qiao
et al., 2001) and the transcriptions factors Cdx-1 (Lickert et al., 2000) and 
c-myc (He et al., 1998). Cdx-1 demonstrates an almost identical expression
pattern to Tcf-4, being expressed in the proliferative cell compartment, above
the stem cells and Paneth cells, in the SI crypts (Subramanian et al., 1998).
The effect of Cdx-1 on proliferation is associated with its ability to upregu-
late the expression of the C-lectin domain-containing, pancreatitis-associated
protein 1 (PAP1) (Moucadel et al., 2001). The mode of action of PAP-1 (which
is a secretory protein) is not clear, although C-type lectins are known to bind
integrins (Matsumoto et al., 2001; Marcinkiewicz et al., 2000).

The related transcription factor, Cdx-2, shows a contrasting pattern of
expression being expressed just in the villi (that is, in differentiated cells;
James and Kazenwadel, 1991) and is associated with the expression of dif-
ferentiation markers, such as lactase (Fang et al., 2000) and the vitamin D
receptor (Yamamoto et al., 1999).

The Wnt/Ca2+ pathway. In addition to their ability to regulate Disheveled,
Wnts can also stimulate phospholipase C in a G protein-dependent manner,
via ligation of Frizzled-2, to liberate inositol 1,4,5-triphosphate (IP3) and dia-
cylglycerol (DAG), with the consequent activation of Ca2+-Calmodulin-
dependent kinase II (CamKII) and protein kinase C (Malbon et al., 2001).
Recently, the transcription factor, nuclear factor of activated T cells (NF-AT),
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was identified as a downstream target of the Wnt/Ca2+ pathway in Xenopus
(Saneyoshi et al., 2002). Also, Wnt/Ca2+ signaling can inhibit Wnt/b-catenin
signaling. Again in Xenopus, the Wnt-dependent activation of PKC results in
phosphorylation and inactivation of Dishevelled and CamKII functions 
to phosphorylate specific b-catenin-binding partners, such as the HMG 
transcription factor LEF, in order to prevent their homodimerization with 
b-catenin (Kūhl et al., 2001).

Of the Wnt genes identified as being expressed in the GI tract (Wnts 2,
4, 5a, 6, 7a, 11, and 13; see the previous discussion), the Wnt proteins 5a and
possibly 4 and 11 function to activate the Ca2+ signaling pathway (Kūhl et
al., 2000).

HEDGEHOG SIGNALING. hedgehog is a Drosophila gene coding for a secre-
tory growth factor involved in establishing segmental polarity (for an exten-
sive review, see Ingham and McMahon, 2001). Three mammalian
homologues of hedgehog have been identified. They are Sonic hedgehog
(Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). Hedgehogs are syn-
thesized as precursor proteins (c. 45kDa size) that undergo autocatalytic pro-
cessing to yield an N terminal signaling polypeptide (c. 20kDa), which
interacts with two transmembrane proteins, Patched (Pct) and Smoothened
(Smo). Ligation of Pct derepresses the activity of Smo and results in Smo-
mediated activation of the Gli family of transcription factors, which regulate
the expression of a range of genes including Wnts (Reddy et al., 2001; Mullor
et al., 2001) and Bone morphogenic protein 4 (Bmp-4; Roberts et al., 1995).

During gut development, both Shh and Ihh are expressed in the inter-
villus epithelium, which is the location of the stem cells and ultimately gives
rise to the crypts (Ramalho-Santos et al., 2000). This expression pattern is the
same as that for Tcf-4 (Korinek et al., 1998). Genes coding downstream 
components of the signaling pathway, such as Ptc and Gli and Bmp-4, are
expressed in the subepithelial mesenchymal cells, indicating the importance
of this signaling pathway in epithelial–mesenchymal cross-talk. Like Tcf-4,
Ihh appears to play an important role in the maintenance of the stem cell
population during intestinal development. On day 18.5 of fetal development,
Ihh-/- mice show greatly reduced numbers of proliferating cells within the
intercrypt region, a reduction in mature villus enteroendocrine cells, and
villus atrophy (Ramalho-Santos et al., 2000). The effect of the lack of Ihh sig-
naling is, however, independent of any change in Tcf-4 expression. It is not
clear what the downstream targets of Ihh signaling in the intervillus/crypt
cells are that maintain the stem cell population; however, Ihh-dependent
expression of the transcription factor Pdx-1 appears to be essential for main-
tenance of the enteroendocrine lineage. Pdx-1 expression is absent from the
villi of Ihh-/- mice (Ramalho-Santos et al., 2000); previously, Pdx-1-/- mice
have also been found to lack cells of the enteroendocrine lineage (Offield 
et al., 1996).
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FORKHEAD TRANSCRIPTION FACTORS. These are a diverse range of tran-
scription factors that share a conserved winged helix DNA binding domain.
Initially described in Drosophila, a wide range of mammalian homologues
have now been described that include hepatocyte nuclear factors (HNFs),
forkhead homologues (FHHs), human forkheads (HFFs), and murine fork-
heads. Forkhead signals are known to be important in regulating cell cycle
progression and apoptosis. The forkheads AFX and FKHR-L1 upregulate 
Rb-like p130 protein to induce G0 (quiescence; Kops et al., 2002); FKHR
upregulates the cyclin-dependent kinase inhibitor p27kip1 to induce arrest in
G1 (Nakamura et al., 2000); also, FKHR-L1 upregulates the expression of
Gadd45a to allow cycle arrest and DNA repair during G2/M (Tran et al.,
2002). In addition, forkheads have been shown to drive apoptosis. AFX reg-
ulates the expression of the transcriptional repressor BCL-6, which in turn
downregulates the expression of the key antiapoptotic protein, Bcl-XL, by
binding directly to the Bcl-XL promoter (Tang et al., 2002). FKHR-L1 is known
to upregulate the pro-apoptotic Bcl-2 protein Bim (Dijkers et al., 2000).

Forkheads are downstream targets for many cell survival-signaling mol-
ecules including insulin and insulin-like growth factor 1 (IGF-1; Nakae et al.,
2000), Il-2 (Stahl et al., 2002), and TGF-b (Shin et al., 2001). These survival
ligands are known to activate the serine/threonine kinase, Akt/PKB, result-
ing in the phosphorylation of forkheads and their subsequent sequestration
by the cytoplasmic protein 14-3-3, thus repressing forkhead activity and
apoptosis and promoting cell proliferation (Brunet et al., 1999; Shin et al.,
2001; Dijkers et al., 2002; Kops et al., 2002).

In the intestine, forkheads are found in both epithelial and mesenchy-
mal cells. Forkhead genes expressed in the epithelium include HFH11,
HNF3-b, and Fkh6 (Ye et al., 1997; Kaestner et al., 1997). Expression of HFH11
and HNF6 is specific to the proliferative compartment of the epithelium
(there is some mesenchymal expression also). Fkh6 is only expressed in the
subepithelial mesenchymal cells; however, gene knockout models suggest
that it plays an important part in regulating epithelial cell proliferation.
Fkh6-/- mice show deregulated crypt cell proliferation and abnormal crypt
morphology, with a general increase in the epithelial cell numbers and a 
specific increase in the number of goblet cells (Kaestner et al., 1997). These
results emphasize the role of forkheads in controling cell numbers through
the repression of proliferation and promotion of apoptosis. Also, they
demonstrate the importance of epithelial–mesenchymal communication.

NOTCH SIGNALING. Notch is a cell surface receptor that is sequentially
cleaved by a series of proteases upon binding of ligands such as Jagged and
Delta (Weinmaster, 2000). Proteolysis releases the intracellular domain of
Notch (NICD), which translocates to the nucleus where it regulates tran-
scription in combination with the DNA-binding protein CSL (Jarriault et al.,
1995). One of the genes regulated by Notch is Hes-1, which codes for a basic
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Helix-Loop-Helix (bHLH) transcriptional repressor (Jarriault et al., 1998).
Hes-1 is important in the intestinal epithelium. Results from Hes-1-/- mice
suggest that Hes-1 suppresses the specification of endocrine cell fate for
villus epithelial cells during embryogenesis, as Hes-1-/- mice have greatly
increased numbers of mature villus endocrine cells on day E17, just prior to
birth (Jensen et al., 2000). Hes-1 is normally expressed by villus enterocytes
during embryogenesis, but not by the cells of the intercrypt epithelium. In
adult mice, Hes-1 is expressed in the proliferating cells of the crypt but not
in the villus, suggesting that its expression is downregulated to allow dif-
ferentiation. Other bHLH transcriptional repressors such as the Ids also
inhibit differentiation (hence, their name Id) and promote proliferation. Ids
are also expressed in the intestinal epithelium and their dysregulation may
be important in colorectal cancer (see discussion that follows).

TGF-b SIGNALING. The polypeptide growth factor TGF-b plays an impor-
tant role in suppressing cell proliferation and promoting cellular differenti-
ation in epithelial tissues (Yue and Mulder, 2001). Inhibition of cell
proliferation is achieved through targeted expression of the CDK inhibitors
such as p15INK4b and p21WAF-1/Cip1 and repression of c-myc. All three isoforms
of TGF-b are present in the adult intestinal epithelium. Recent studies show
that TGF-b2 is specifically expressed and presumably secreted by entro-
endocrine cells and TGF-b3 by goblet cells (Dünker et al., 2002).

Both TGF-b2+/- and TGF-b3+/- mice show significant increases in villus
length and significant decreases in intestinal epithelial cell apoptosis at the
villus tips, in association with increased Bcl-2 and Bcl-XL expression (Dünker
et al., 2002). The inference from these results is that TGF-b isoforms secreted
by mature enterocytes regulate the death of cells as they reach the villus tip,
which coincidentally show the highest expression of the Type II TGF-b recep-
tor (TGF-b-RII), although it is expressed along the length of the crypt–villus
axis.

TGF-b-RII expression is positively regulated by the ETS transcription
factor E74-like factor 3 (Elf3). Elf3-/- mice show gross developmental abnor-
malities of the intestine (Ng et al., 2002). Villus development is delayed
during embryogenesis and villi are sparse and abnormal in neonatal
animals. The absorptive, columnar cells also have an unusual appearance
and lack of microvilli, and there is a significant reduction in mature goblet
cells. These effects are associated with a decreased expression of TGF-b-RII
by the epithelial cells, but not by lamina propria cells, again highlighting the
importance of TGF-b signaling for the intestinal epithelium.

The expression of TGF-b-RII is also regulated by the Kruppel-like 
transcription factors Sp1 (positively, Liu et al., 2000) and Sp3 (negatively,
Ammanamanchi and Brattain, 2001) in MCF-7 breast adenocarcinoma cells.
Sp1 and Sp3 are known to be expressed in intestinal epithelial cell lines
(Aslam et al., 2001; Gartel et al., 2000), and Sp1 positively regulates TGF-b-
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RII in colon carcinoma cells also (Periyasamy et al., 2000). Other experiments
show epithelial differentiation is associated with a high Sp1:Sp3 ratio and,
consequently, support the hypothesis that TGF-b-RII expression is important
in the differentiation of epithelial tissues.

Sp1 and Sp3 regulate the production of Type 2 Mucin (MUC2) by intesti-
nal epithelial cells. The MUC2 promotor contains GC-rich boxes that act as
Sp1/Sp3 binding sites (Aslam et al., 2001), and MUC2 transcription is depen-
dent on the methylation status of the promotor, with increased methylation
resulting in reduced expression (Gratchev et al., 2001). It is known that Sp1
acts synergistically with other transcription factors, including Kruppel-like
factor-4 (Klf-4), to regulate the transcription during differentiation (Higaki
et al., 2002). Mice null for Klf-4 expression have abnormal goblet cells,
reduced goblet cell numbers (10% of wild-type), and altered MUC2 expres-
sion (Katz et al., 2002). Mice null for MUC2 expression show a more extreme
phenotype with increased epithelial cell proliferation and migration,
decreased apoptosis, and elongated crypts (Velcich et al., 2002). Precisely
why the absence of MUC2 has these effects is not known.

Glp-2. Glucagonlike peptide-2 (Glp-2) is another secreted polypeptide
growth factor that has a positive influence on enterocyte proliferation. It is
produced by a subset of enteroendocrine cells (L cells), it is thought in
response to nutrient signals from the gut lumen. It acts to promote specifi-
cally the proliferation of columnar (absorptive) epithelial cells in the SI, and
this is associated with increased c-Fos expression in these cells. However, the
effect of Glp-2 on the columnar cells is indirect. Glp-2 receptors are only
found on enteric neurons and not epithelial cells, and it appears that a second
proliferative signal is secreted by the enteric neurons in response to the 
Glp-2 secreted by the L cells (Bjerkes and Cheng, 2001).

BCL-2 FAMILY PROTEINS. In the colon, tissue architecture is simpler than in
the SI. There are longer crypts but no villi, with the crypts opening out on
to an intercrypt, table region. Stem cells are located at the base of the colonic
crypts; again evidence for this comes from DNA labeling studies showing
the 1st cell position to be the origin of cell proliferation and migration
(Potten, 1995). Studies indicate that there are fewer stem cells in large bowel
crypts compared to the small bowel, perhaps just one, and this correlates
well with reduced cell turnover and increased transit times for epithelial cells
along the length of the crypts. There is less spontaneous apoptosis in the
large bowel (Potten et al., 1997). This is partly explained by there being fewer
stem cells, but also spontaneous apoptosis in colonic stem cells is suppressed
by their expression of Bcl-2 (Merritt et al., 1995). This role for Bcl-2 is high-
lighted by studies using bcl-2-/- mice, which show significantly elevated
levels of spontaneous apoptosis at the base of their colonic crypts but not in
their small intestinal crypts (Merritt et al., 1995). Colonic epithelium from
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bcl-2-/- mice also shows elevated expression of the pro-apoptotic, Bcl-2
family protein, Bad (Wilson and Potten, 1996). The consequences of Bcl-2
expression by colonic stem cells are later discussed below.

RESPONSE OF THE INTESTINAL EPITHELIUM TO INJURY

This is an important area of study as gastrointestinal toxicity is a major lim-
iting factor in systemic radio- and chemotherapy for cancer. Studies of radi-
ation and cytotoxic drug-induced injury have yielded important information
regarding the hierarchical cellular organization in the crypts (Potten and
Grant, 1998). The epithelia of the small and large intestine respond very dif-
ferently to cell injury. Reflecting its greater cell turnover and higher rates of
spontaneous apoptosis in adult, normal tissue, the small intestine shows
higher levels of apoptosis in response to injury from exposure to ionizing
radiation (IR) or chemotherapeutic agents (Potten et al., 1992; Merritt et al.,
1995; Wilson et al., 1998). The proliferative cells of the crypts, particularly
those within the putative stem cell zone, show much greater sensitivity than
the differentiated villus cells (Wilson et al., 1998). The exquisite sensitivity
of cells at the base of the SI crypts to apoptotic stimuli has been recognized
for many years and well characterized in a number of studies (Potten, 1977,
1990). It is only more recently that the molecular basis for the differences in
apoptotic sensitivity between the SI and the colon has been established, pri-
marily through the use of knockout and transgenic mouse models (Watson
and Pritchard, 2000).

REGULATORS OF APOPTOTIC RESPONSE—Bcl-2 FAMILY PROTEINS AND

p53. As with levels of spontaneous apoptosis, the sensitivity of entero-
cytes to apoptotic stimuli such as ionizing radiation is dependent on Bcl-2
expression. Colonic crypts from bcl-2 null mice show elevated levels of 
IR-induced apoptosis compared to wild-type animals (Merritt et al., 1995).
Bcl-2 status is not important for SI response, but another bcl-2 family
member, bcl-w, is, with bcl-w-/- mice showing increased SI apoptosis 
following administration of 5-fluorouracil (Pritchard et al., 2000).

Other determinants of major importance in the dichotomy of sensitivity
between the SI and the colon are p53 and the p53-regulated gene product,
the CDK inhibitor, p21WAF-1/cip1. The acute apoptotic response (within 4–6
hours), to IR in the intestinal epithelium, is entirely dependent on p53 in both
the colon and SI (Merritt et al., 1994, 1997; Clarke et al., 1994); however, both
p53 and p21waf-1/cip1 are differentially expressed in the SI and colonic crypts
following IR exposure (Wilson et al., 1998). In the SI crypts, the peak fre-
quency of p53 expression at 3 to 4 hours (postirradiation) is twice that
observed in colonic crypts (Merritt et al., 1994; Wilson et al., 1998). In the
colonic crypts, although the frequency of p53 expression is less, it is main-
tained over a longer time period (up to 96 hours), and this is associated with
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an accumulation of p21WAF-1/cip1-positive cells in the colonic crypts to a very
high level (almost 40% of all crypt cells by 72 hours) and associated cell cycle
arrest. p21WAF-1/cip1 expression is lower in the SI crypts and cell cycle arrest is
quickly overcome (within 24 hours) (Wilson et al., 1998).

It might be argued from these studies that p21WAF-1/cip1 expression plays
an important role in protecting cells (i.e., in the colon crypts and at the top
of SI crypts) against apoptosis by promoting cell cycle arrest. Studies on
p21WAF-1/cip1-/- cell lines, grown in vitro and as xenografts, show that 
p21WAF-1/cip1 deficiency prevents cell cycle arrest and increases the sensitivity
of the cells to radio/chemotherapeutic agents (Waldman et al., 1996, 1997).
These observations can be allied with the fact that SI villus cells do not cycle
and are not responsive to IR. Absence from the cell cycle or cell cycle arrest
do not, however, appear to be dominant influences in determining apoptotic
response. Restoration of villus cells into cycle by forced expression of SV40
large T antigen does not confer apoptotic sensitivity to IR (Coppersmith and
Gordon, 1997). Data from several studies suggest that it is the absolute level
of p53 expression that a cell is able to produce in response to a DNA damage
event that determines its fate (Chen et al., 1996; Ronen et al., 1996; Lassus et
al., 1996). In the studies on intestinal epithelium, the frequency distribution
of cells showing the strongest immunoreactivity of p53 correlates well 
with the frequency distribution for apoptosis in SI crypts, and the frequency
distribution of the remainder of the p53-positive cells (those with
weak/moderate p53 immunoreactivity) correlates well with the frequency
distribution of the p21WAF-1/cip1-positive cells, at least during the acute phase
of the response (Merritt et al., 1994; Wilson et al., 1998).

It should be noted that p53-independent apoptosis, subsequent to arrest
in G2/M, does occur in p53-/- mice, although with a longer time course
(after 12–24 hours) than p53-dependent apoptosis (Clarke et al., 1997; Merritt
et al., 1997). Also, spontaneous apoptosis, that is, homeostatic regulation of
stem cell numbers is p53-independent: Its positional frequency is unaltered
in p53-/- mice (Merritt et al., 1994).

The pro-apoptotic, Bcl-2 family protein Bax is another p53-regulated gene
product (Miyashita et al., 1994). Bax expression, like p21WAF-1/cip1, is upregu-
lated in IECs following IR exposure (Kitada et al., 1996). However, bax-/-
mice show normal levels of apoptosis in response to IR (Pritchard et al., 1999).
This may reflect functional redundancy within the pro-apoptotic Bcl-2 pro-
teins expressed in the IECs. Another pro-apoptotic, Bcl-2 family protein Bak
(Moss et al., 1996) is also upregulated following apoptotic stimuli.

CYTOKINES. Local cytokine signaling plays an important role in deter-
mining the sensitivity of IECs to apoptosis. The cytokine IL-7 and its recep-
tor are expressed by several cell types, including IECs. IL-7Ra-/- mice
exhibit impaired T and B cell development, and have few mature peripheral
or mucosal lymphocytes and no Peyer’s patches. These mice have no appar-
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ent defect in IEC apoptosis under normal conditions. However, they show
enhanced IEC apoptosis in response to IR compared to wild-type controls,
which is associated with sustained, elevated levels of Bak (Welniak et al.,
2001). The lack of mucosal lymphoid cells does not seem to be the reason for
the sensitization, as other lympho-deficient mice such as Rag1-/- do not
show such a response. Il-7 appears, therefore, to be specifically involved in
promoting IEC survival following cell injury. IL-11 is another cytokine that
can regulate IEC survival following IR exposure or administration of
chemotherapeutic agents in animal models (Du et al., 1994), through the sup-
pression of apoptosis and the stimulation of cell proliferation within SI
crypts (Orazi et al., 1996). Endogenous Il-11 expression is also upregulated
in the intestinal mucosa following luminal exposure to alcohol (Fleming et
al., 2001). As yet, it is not clear whether IL-11 exerts its pro-survival effects
on epithelial cells directly or indirectly, via mesenchymal signals.

VASCULAR ENDOTHELIAL CELLS. Nonepithelial cell types are important
in regulating crypt epithelial survival after radiation-induced injury.
Mucosal vascular endothelial cell (MCECs) undergo ceramide-dependent
apoptosis in response to lethal doses of whole-body, g-radiation (doses of
12–15Gy; Paris et al., 2001), which can be attenuated by administration of
bFGF. The consequence of this is delayed mortality in animals exposed to 15
Gy radiation and prolonged survival of irradiated animals that have also
received autologous marrow graft. Maintenance of the microvasculature pre-
sumably aids the regeneration of the crypt units from surviving stem cell
daughters, as evidenced by improved mucosal histology after radiation,
through maintaining supply of nutrients and oxygen to the epithelium.
MVEC apoptosis is unlikely to contribute to epithelial cell apoptosis in
response to sublethal doses of ionizing radiation.

APOPTOSIS, BARRIER FUNCTION, AND INFLAMMATORY
DISEASE

As discussed above, epithelial tissue is able to tolerate the loss of cells via apop-
tosis without compromising its barrier function (Rosenblatt et al., 2001). Even
when substantial apoptosis is induced, barrier function (as measured by
transepithelial resistance) can be maintained in the short term (<6 hours).
Studies in colorectal adenocarcinoma cell line T84 suggest that barrier function
is lost, as a consequence of apoptosis induction, if cell monolayers are studied
over a longer time period (>24 hours; Abreu et al., 2001). However, permeabil-
ity increases are dependent on the apoptotic stimulus. Permeability changes
are limited in Fas-induced apoptosis to small molecules (<3kDa), although UV-
induced apoptosis results in more profound changes to larger molecules.

Damage to the epithelium, ulceration, and consequent impairment of
epithelial barrier function occur in inflammatory bowel diseases, such as
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Crohn’s (Secondulfo et al., 2001; Irvine and Marshall, 2000) and ulcerative
colitis (Nejdfors et al., 1998; Den Hond et al., 1998). Similar changes are also
observed in animal models of colitis (Venkatraman et al., 2000; Kitajima 
et al., 1999). Multiple mechanisms probably contribute to loss of epithelial
cells, including death-receptor-induced apoptosis, in response to pro-
inflammatory cytokines such as TNF-a and IFN-g, and anoikis, in response
to matrix metalloproteinase-mediated degradation of extracellular matrix
components such as laminins.

Following damage to the gastrointestinal epithelium, either by inflam-
matory processes (i.e., Crohn’s disease) or cytotoxic agents (i.e., following
cancer chemotherapy), repair processes will be initiated. Key to this repair
process is the trefoil protein (so-called due to its tertiary structure) trefoil
factor 3 (TFF3, also known as the intestinal trefoil factor), which is primar-
ily expressed by goblet cells (Chinery et al., 1992; Mashimo et al., 1995). This
protein and other trefoil proteins such as TFF1 (aka pS2) and TFF2 (aka SP)
are upregulated in response to inflammation-induced injury (Wright et al.,
1993; Podolsky et al., 1993; Alison et al., 1995) and hypoxia (Furuta et al.,
2001). They are highly resistant to degradation, presumably a requisite for
their functionality in a protease-rich inflammatory site, and appear to 
stimulate the migration of epithelial cells into the area of damaged mucosa.

Mice that lack TFF3 protein show reduced ability to repair GI mucosal
damage and high mortality following treatment with dextran sulphate
sodium, which usually causes just mild colitis in wild-type mice (Mashimo
et al., 1996). These studies also demonstrated that exogenous TFF3 could
enhance reepithelialization and improve healing following acetic acid-
induced damage to the gastric mucosa. Forced overexpression of growth
hormone (GH) can promote intestinal epithelial regeneration and upregu-
late TFF3 expression (Williams et al., 2001); however, the physiological role
of GH in GI mucosal repair is not known. The precise mechanism of TFF3
function is not clear, although it can regulate MAP kinase signaling via 
inhibition of ERK phosphorylation (Kanai et al., 1998).

There is evidence to suggest that the epithelial cells which migrate into
areas of mucosal damage constitute a distinct cell lineage, termed the ulcer-
associated cell lineage (UACL; Wright, 1998). These cells arise from the stem
cells in crypts adjacent to areas of damage, in response to undefined stimuli
resulting from the ulceration. The buds of UACL cells from these crypts then
merge together to form a tubular, glandular network not dissimilar from the
Brunner’s gland in the duodenum (Ahnen et al., 1994). A duct from this glan-
dular structure then arises that emerges onto the mucosal surface, from which
dividing UACL cells in the neck of the duct repopulate the epithelium. UACL
cells express all three trefoil factors; in addition, they express the epidermal
growth factor (EGF), lysozyme and have an altered pattern of mucin expres-
sion compared to other enterocytes (Ahnen et al., 1994). These cells may also
upregulate TFF1 expression in neighboring, normal epithelium.
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DYSREGULATION OF ENTEROCYTE SURVIVAL AND
PROLIFERATION IN INTESTINAL CANCER

It is well characterized that the suppression of apoptosis and dysregulated
proliferation are specifically associated with neoplastic conditions. With
regard to the intestine, the development of colon cancer is very common in
adult humans. Over 30% of all cancer deaths in Western Europe and North
America can be attributed to colorectal cancer. Many of the genes that func-
tion in the different control mechanisms governing epithelial cell turnover
have been characterized, to a greater or lesser extent, has having potentially
oncogenic roles. Unsurprisingly then, many of these have also been defined
as potential targets for cancer therapy. The role of some of these genes and
their protein products will now be discussed.

ROLE OF Bcl-2 FAMILY PROTEINS IN COLORECTAL CANCER. Contrary
to the incidence of colorectal cancer, small intestinal cancer is very rare
despite its greater cellularity and higher rates of proliferation. The differen-
tial sensitivity of the small and large bowel epithelia to apoptosis has been
proposed to partially contribute to this phenomenon (Potten et al., 1992). In
the SI, apoptosis is an efficient mechanism for eliminating stem cells, the
probable origins of neoplastic change, which have sustained genomic
damage. As discussed above, apoptosis is suppressed in colonic stem 
cells through the expression of Bcl-2 (Merritt et al., 1995). This may be an
adaptational change to cope with the harsh microenvironment of the 
colon, where cells are exposed to, among other things, food-derived 
carcinogens and high concentrations of bacterial fermentation products such
as the short-chain fatty acid butyrate, which can induce IEC apoptosis
(Hague et al., 1997; see next section), and in particular, the apoptosis of undif-
ferentiated cells, as these are poor metabolizers of butyrate (Mariadason 
et al., 2001a).

Nonhereditary, hyperplastic conditions of the colonic mucosa are asso-
ciated with an enlargement of the Bcl-2 expressing cell population within the
crypts, with a majority of colonic adenomas reported as being Bcl-2 positive
(Hague et al., 1994; Öfner et al., 1995; Sinicrope et al., 1995; Watson et al.,
1996). Some studies suggest that Bcl-2 hyperexpression appears to be super-
fluous to tumor cell survival in advanced disease as the majority of adeno-
carcinomas of the colon do not show expression (Watson et al., 1996:
Krajewska et al., 1996); this is probably due to the acquisition of other dom-
inant mutations such as mutant p53 (Watson et al., 1996). Although Bcl-2
expression is lost, another antiapoptotic Bcl-2 protein, Bcl-w, is expressed in
the majority of colonic adenocarcinomas (but not in colonic adenomas)
(Wilson et al., 2000). Studies by other groups suggest that increased expres-
sion of the antiapoptotic Bcl-XL and pro-apoptotic Bak is also important in
colorectal adenocarcinomas (Krajewska et al., 1996).
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CELL ADHESION SIGNALS AND CANCER. Changes to cell adhesion signal
transduction also play an important role in tumors of the colon. As with other
tumors of epithelial origin, reduced E-cadherin expression is associated with
tumor progression (Dorudi et al., 1993), increased metastatic potential 
(Kinsella et al., 1994), and decreased patient survival (Dorudi et al., 1995). In
vitro, decreased E-cadherin expression is associated with the expression of
the transcription factor Snail (Batlle et al., 2000), which binds to elements
within the E-cadherin promoter and suppresses transcription. E-cadherin
function is dependent on binding b-catenin and may regulate the levels of
monomeric cytoplasmic b-catenin (as described previously). Loss of E-
cadherin expression, therefore, may lead to increased free b-catenin levels.

WNT SIGNALING. Accumulation of b-catenin can be readily observed in col-
orectal tumors. Cytoplasmic levels of b-catenin may also be enhanced, via sta-
bilizing mutations in the region phosphorylated by GSK-3b that prevents its
degradation (Morin et al., 1997); other mutations in b-catenin have also been
reported (Ilyas et al., 1997). Also, mutation of the tumor suppressor APC results
in an inability to target b-catenin for degradation and enhanced b-catenin
levels (Sparks et al., 1998). APC +/- mice spontaneously develop intestinal
adenomas during adult life, through loss of heterozygosity (Su et al., 1992).

As discussed previously, b-catenin binds to Tcf-4 to form a transcrip-
tionally active complex that regulates the expression of a number of genes
including cyclin D1 and c-myc, which drive cell proliferation and are known
to be overexpressed in human tumors (for a review, see Morin, 1999).

Dysregulated expression of Wnts 2, 4, 5a, 6, and 7a has been reported in
colonic tumors (Dimitriadis et al., 2001; Katoh et al., 1996; Vider et al., 1996),
as has Frizzled 10 (Terasaki et al., 2002), which codes for the Frizzled 10 recep-
tor and is known to upregulate b-catenin signaling.

As mentioned previously, the bHLH transcriptional inhibitor Hes-1 is
important in the small intestinal epithelium in regulating differentiation of
endocrine cells in the intestinal epithelium. Id proteins are also bHLH tran-
scriptional inhibitors. In addition to their inhibition of DNA binding of ubiq-
uitous bHLH transcription factors such as E47 and tissue-specific bHLH
proteins like BETA2, they also bind to a number of other cellular proteins
such as pRB and the ETS proteins, SAP-1 and ELK-1 (Norton, 2000). They
are known to drive proliferation and apoptosis and inhibit differentiation in
a variety of cell systems. Studies show that the expression of Id is elevated
in colorectal cell lines and primary colorectal tumors and that this is associ-
ated with increased proliferation (Wilson et al., 2001). These studies also
show that Id dysregulation is associated with loss of wild-type p53 expres-
sion both in primary tumors and the intestinal epithelium of p53-/- mice.
Id2 expression is also upregulated by the b-catenin/Tcf-4 pathway and can
promote the anchorage-independent growth of colon cancer cells in vitro
(Rockman et al., 2001).
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EFFECTS OF COMMENSAL BACTERIA ON INTESTINAL
EPITHELIA, IN HEALTH AND DISEASE

The contents of the gut lumen play an important part in regulating epithe-
lial turnover in the intestine. The major influences are diet and the microflora
of the gut, both of which are responsible for the production of compounds
that can regulate epithelial cell proliferation and apoptosis.

SHORT-CHAIN FATTY ACIDS. Butyrate, propionate, and acetate are prod-
ucts of colonic bacterial fermentation of soluble fiber in the diet (Cummings
and Englyst, 1987). Short-chain fatty acids (SCFAs) are taken up by the
epithelial cells and are metabolized by b-oxidation, primarily in differenti-
ated enterocytes, and may represent a valuable energy source for these cells
(Roediger, 1982). Butyrate is also an inhibitor of histone deacetylase (HDA;
Riggs et al., 1977; Sealy and Chalkley, 1978) and consequently can alter the
expression of a number of genes by regulating the accessibility of transcrip-
tional regulators to promoter sites. A recently published microarray study
highlights the wide range of transcriptional regulation that takes place in
response to butyrate and the synthetic HDA inhibitor, trichostatin A
(Mariadason et al., 2000).

Butyrate at physiological concentrations has been shown to regulate
epithelial cell turnover by influencing cell proliferation, differentiation, and
apoptosis. A number of studies have shown that butyrate induces cell cycle
arrest at both G1 and G2/M phases of the cell cycle and that this is related
to the increased expression of the cyclin-dependent kinase inhibitors, 
p21WAF-1/cip1 and p27Kip1 (Litvak et al., 1998; Siavoshian et al., 2000; Mariada-
son et al., 2000). Butyrate is also able to influence the profile of IGF-binding
protein secretion by colonic epithelial cells; these are important growth-reg-
ulatory molecules and so this effect may contribute to altered epithelial pro-
liferation (Nishimura et al., 1998).

Another important effector of the cellular response to butyrate is the
transcription factor Cdx2 (see previous discussion), which plays a key role
in enterocyte differentiation and is upregulated by butyrate (Domon-Dell 
et al., 2002). Also, butyrate regulates cell signaling through the b-catenin/
Tcf-1 pathway (see below; Bordonaro et al., 2002). Butyrate-induced colono-
cyte differentiation is associated with its ability to upregulate the vitamin D
receptor (VDR) (Gaschott et al., 2001), with butyrate-induced differentiation
being inhibited by a specific VDR antagonist. Many studies also show that
butyrate can induce apoptosis in colorectal cell lines. This pro-apoptotic
action of butyrate has been linked to the downregulation of antiapoptotic
proteins such as Bcl-2 (Hague et al., 1997) and upregulation of pro-apoptotic
proteins such as Bak (Hague et al., 1997; Ruemmele et al., 1999), Bax (Mandal
et al., 1998), and Fas/FasL (Fan et al., 1999).

Many of the studies on butyrate action have been performed in vitro,
using colorectal carcinoma cell lines. They show many cell-line-dependent
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effects. For example, butyrate can enhance Tcf binding to DNA in SW620
cells; however, in HCT-116 cells butyrate downregulates Tcf expression 
(Bordonaro et al., 2002). Studies on the role of Bcl-2 proteins in butyrate-
induced apoptosis show increased Bak but not Bax in some cell lines (Hague
et al., 1997; Reummele et al., 1999), an upregulation of Bax in others (Mandal
et al., 1998), and in some, no change in either Bak or Bax but downregula-
tion of Bcl-2.

In vivo studies on butyrate action contrast sharply with in vitro results.
In vivo, butyrate promotes cell proliferation and inhibits differentiation and
apoptosis. Studies on guinea pig, isolated, intestinal colonic mucosa show
that butyrate can inhibit enterocyte apoptosis and increased Bax expression,
which occur spontaneously following isolation of the tissue (Luciano et al.,
1996; Hass et al., 1997). Butyrate can also increase mucosal mass in rats
(Friedel and Levine, 1992): It not known whether this effect is due to
increased proliferation or decreased apoptosis. Butyrate-induced prolifera-
tion is observed in biopsies of human caecal mucosa incubated ex vivo with
butyrate (Scheppach et al., 1992), rat ileum (Sakata, 1987; Kripke et al., 1989),
and rat jejunum and colon (Kripke et al., 1989).

Some of the differences observed between different cell lines and
between in vitro and in vivo experimental models may relate to the dif-
ferentiation status of the cells being studied. CaCo-2 cells are a colorectal
adenocarcinoma cell line that undergoes differentiation in vitro, over a
period of 3 weeks, when maintained as confluent cultures. Undifferentiated
CaCo-2 cells are highly responsive to butyrate, which can induce IL-8 secre-
tion, increase transepithelial resistance and apoptosis (at the appropriate
concentration) among other effects (Mariadason et al., 2001a). Fully differ-
entiated CaCo-2 cells (after 3 weeks of culture at confluence) are not respon-
sive to butyrate, an effect associated with the cells’ increased ability to
metabolize butyrate. HT-29cl.19A cells, which also undergo differentiation
during long-term culture, give similar results but nondifferentiating SW640
cells do not (Mariadason et al., 2001a). Increased metabolism of butyrate will
reduce the intracellular levels of butyrate and subsequently the transcrip-
tional effects of butyrate related to its inhibition of deacetylation. This is
shown in Fig. 3.

BUTYRATE AND ANALOGUES AS SENSITIZING AGENTS FOR CHEMOTHER-
APY. Given its pro-apoptotic role in many colorectal cell lines, butyrate 
has become of great interest to researches looking for new therapeutic
approaches for the treatment of colorectal cancer. Many studies now show
that butyrate can specifically sensitize colorectal cancer cells to apoptosis
induced by a wide range of agents including the death receptor ligands TNF-
a (Giardina et al., 1999), TRAIL (Hernandez et al., 2001), and ligation of the
Fas receptor (Bonnotte et al., 1998) and to agents such as 5-fluorouracil that
are currently used to treat colorectal cancer (Bras-Goncalves et al., 2001). 
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Specific analogues of butyrate have also been developed that are more 
pro-apoptotic than butyrate itself (Bras-Goncalves et al., 2001; Milovic et al.,
2000). Cancer cells are likely to be more sensitive that mature colonocytes
due to their being less differentiated (Mariadason et al., 2001a). Given the
findings of the many studies on the action of butyrate, it has been proposed
(not unreasonably) that intestinal levels of butyrate may act as a protective
mechanism to suppress the growth of tumors in vivo. Consequently, much
research has been directed at examining the prophylactic benefit of modu-
lating intracolonic butyrate level via enteral nutrition.

EFFECT OF DIETARY FIBER AND PROBIOTICS ON THE INTESTINAL

EPITHELIUM. Dietary fiber and probiotics (live bacteria cultures that may
be taken orally and have some “health benefit” to the consumer) can directly
influence bacterial fermentation in the gut and hence the production of
agents such as butyrate (Wang et al., 1994; Fredstrom et al., 1994) and by
other, less defined mechanisms. Dietary fiber has long been held up as a
healthy necessity and an important factor in suppressing colon cancer;
however, many studies suggest that fiber may be more of a risk than a
benefit. For example, increasing the fiber content of diet can increase colon
mass, via increased crypt cell production; this is amplified by increased crypt
branching and fission, which serves to increase total stem cell numbers in
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the colon (McCullogh et al., 1998). The controversy surrounding the role of
dietary fiber is reviewed in a commentary by Goodlad (2001).

Lactobacilli also have positive effects on epithelial cell proliferation in
both rats and mice (Ichikawa et al., 1999; Thoreux et al., 1998), although as
yet there is no direct evidence to link their effects with altered levels of
SCFAs. The proliferative effects of probiotics on the intestinal epithelium
have led to their use as therapeutic agents to aid the restitution of the intesti-
nal mucosa following injury, for example, in chronic inflammatory condi-
tions such as Crohn’s and ulcerative colitis (Madsen, 2001; Gassull and
Cabre, 2001).

METHODS/TECHNOLOGY

The methodologies used to study epithelial cell turnover in the intestine are
much the same as for any other tissue. The highly organized structure of the
tissue does, however, have the specific advantage of allowing the analysis
of cellular events on a positional basis within the cellular hierarchy.

The techniques most commonly applied to studying apoptosis in the
intestinal epithelium are simple assessment of cellular morphology using
light; fluorescence or electron microscopy, with which one can readily dis-
tinguish apoptotic cells on the basis of cell shrinkage; loss of cytoplasm;
plasma membrane blebbing; and nuclear condensation and fragmentation.
These forms of analysis may be complemented by labeling cells for evidence
of biochemical change such as labeling of DNA strand breaks, or used in par-
allel with the assessment of proliferation markers such as labeling with tri-
tiated thymidine or bromodeoxyuridine, expression of nuclear proteins such
as Ki67, and quantitation of mitotic figures. These methods have been exten-
sively reviewed elsewhere and readers are referred to Merritt et al. (1996)
and Wilson and Potten (1999) for a full description of the various method-
ologies. These classical techniques and imaging systems have both been
refined over the years, but one of the major improvements has been in the
use of more sophisticated animal models such as the ROSA28/sv190
chimeric mouse and transgenic and knockout mice, many of which have
been discussed in this chapter (Wong et al., 2002). The culture of primary
human intestinal biopsies is slowly being developed as a technique, but is
still not universally established in all gastroenterology laboratories.

Like many other areas of cell biology, new techniques such as laser
capture microdissection and microarray analysis of gene expression are
being applied to the study of intestinal epithelium. The response of colo-
rectal cancer cells to butyrate (Mariadason et al., 2000) and the study of dif-
ferential gene expression along the anterior–posterior axis of the
gastrointestinal tract (Bates et al., 2002) are just two recent examples of the
application of microarray analysis in gastrointestinal biology.
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CONCLUSION

The current vogue, reiterated by many articles of this type, is the expecta-
tion that our understanding of the molecular and genetic controls which 
regulate intestinal stem cells and IEC apoptosis, proliferation, and differen-
tiation will grow rapidly over the next few years through the utilization of
knowledge from genome sequencing projects and the application of high
throughput genomic and proteomic technologies.

This may be true, but so far the majority of our knowledge has resulted
from in vivo studies in mice, examining responses to epithelial injury, and
also through the use of transgene and knockout models. Maybe over the next
few years we will come to know precisely what determines stem cell status
and hierarchical status in the intestinal epithelium. Also, perhaps we will
learn how to manipulate IEC apoptosis and proliferation more directly at a
molecular level, in order to contribute to improved treatment of intestinal
disease.

WEB RESOURCES. For everything you always wanted to know about
wnts, see ·http://www.stanford.edu/~rnusse/wntwindow.htmlÒ. To review
Science magazine’s online STKE (Signal Transduction Research Environ-
ment), go to ·http://stke.sciencemag.org/index.dtlÒ (requires subscription
payment for full access).
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CHAPTER

10

CELL DEATH, AGING

PHENOTYPES, AND MODELS

OF PREMATURE AGING

HUBER R. WARNER

The idea that cell death may be an important factor in aging is not new, as
several comprehensive reviews on this subject have been published during
the past five years (Warner et al., 1997; Zakeri and Lockshin, 2001; Joaquin
and Gollapudi, 2001; Zhang and Herman, 2002a). Although it seems obvious
that the loss of cells from any particular tissue may ultimately compromise
the function of that particular tissue and/or its ability to fulfill the needs of
the whole organism, the relative vulnerability of different tissues to net cell
loss is not so clear. This uncertainty stems from our lack of precise knowl-
edge about how much intrinsic cell death occurs in the absence of overt
pathology, the potential for replacement of lost cells, the amount of excess
functional capacity in each tissue, and how any of these parameters might
change with age. Although it is well known that cell loss in postmitotic
tissues has particularly tragic consequences because of the very low rate of
cell replacement in these tissues, there is much that remains to be learned
about the death of cells and their replacement during aging in other tissues
as well.

Cell death in vivo occurs by a variety of mechanisms depending on the
nature and magnitude of the insult experienced by the cell. In their recent
review, Zakeri and Lockshin (2001) briefly described apoptosis (also referred

When Cells Die II, Edited by Richard A. Lockshin and Zahra Zakeri.
ISBN 0-471-21947-9 © 2004 John Wiley & Sons, Inc.
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to as programmed cell death), necrosis due to acute injury, and autophagic
cell death in which damaged cells are engulfed by phagocytes. They also
pointed out that there are not always clear borders among these three
processes. Recently, Sperandio et al. (2000) proposed the existence of an
apoptosis-like form of programmed cell death in some cases of neurode-
generation that they called paraptosis. It differs from apoptosis in its lack of
response to caspase inhibitors, and the absence of nuclear fragmentation and
caspase-3 processing. It mainly differs from necrosis in its requirement for
RNA and protein synthesis, and it is induced by expression of the receptor
for IGF-I or caspase-9.

The purpose of this review is not to exhaustively rereview this entire
area of research. Zakeri and Lockshin (2001) summarized the molecular fea-
tures of receptors, inducers and cell death pathways in their review, and
briefly discussed the roles of cell death in immune function, neurodegener-
ative disease, and cancer. They also discussed the effect of replicative senes-
cence of cultured cells on their vulnerability to apoptosis, which remains a
controversial area of research. Several investigators have reported that senes-
cent cells are resistant to apoptosis in vitro (Wang, 1995; Spaulding et al.,
1999), whereas Pignolo et al. (1994) reported that there is also substantial loss
of cells from senescent cultures. The effect of replicative senescence on sus-
ceptibility to apoptosis in vivo thus remains unclear, although it is clear that
postmitotic cells such as neurons and cardiomyocytes do die in vivo, and do
at least sometimes by apoptosis (see below). This brief review will focus pri-
marily on a few recent publications that implicate cell death as a risk factor
for various aging phenotypes and pathologies in mice, and is intended to be
more speculative than comprehensive.

DOES APOPTOTIC POTENTIAL CHANGE WITH AGING?

We postulated in 1995 that the ability to undergo apoptosis in rodent liver
may decrease with age (Warner et al., 1995), and suggested that this might
be a factor in increasing tumorigenesis with increasing age. This hypothesis
was based primarily on the positive association between aging and tumori-
genesis, and the ability of caloric restriction to attenuate both, while up-
regulating apoptosis in rat and mouse liver ( James and Muskhelishvili, 1994;
Grasl-Kraupp et al., 1994). Caloric restriction also increases the expression of
both Fas and Fas-ligand in mouse lymphocytes, which may contribute to the
increased life expectancy of calorically restricted mice (Avula et al., 1999).
However, these are weak, indirect arguments, and little data on age-related
changes in the rate of apoptosis in specific tissues are available.

One of the main problems is that it is not clear what to measure, and
what the measurements would mean. Can one evaluate apoptotic potential
by measuring any one component or several components of an apoptotic
pathway? This latter approach was used by Lacelle et al. (2002), who 
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measured caspase mRNA levels in peripheral blood mononuclear 
(PBM) cells taken from members of a Taiwanese population of individuals
between 10 and 102 years old. The levels of caspase-1 and caspase-3 mRNAs
measured in this survey did increase with age, while the levels of caspase-8
mRNAs peaked at about 80 years of age, but then fell dramatically. Whether
these mRNA levels reflect the amount of apoptosis actually going on in 
the PBM cells, or whether these differences are obtained in any other 
tissue, is not known. The mRNA levels of Fas, an apoptosis inducer, 
have also been shown to increase with age in rat liver (Higami 
et al., 1997).

A second approach is to look at the intrinsic level of cells undergoing
apoptosis in tissues as a function of age, but such data might also be hard
to interpret. It would not be known for sure whether the differences observed
in the number of apoptotic bodies counted reflect different rates of apopto-
sis, that is, the length of time required for a cell to die, or a different sensi-
tivity to the damaging events that induce apoptosis. Using such an approach,
Barnes et al. (1999) reported that apoptotic cells decrease with age in rat 
seminiferous tubules, and Holt et al. (1998) reported a slight decrease in the
apoptotic index in small intestine epithelial cells between 4 and 24 months
of age, but a 5-fold increase in this index in old rats, but not young rats,
during caloric restriction. A similar increase was observed in the colon.

Suh et al. (2002) also employed such an approach, but challenged young
and old rats with the carcinogen methyl methanesulfonate (MMS), and then
looked at the number of cells undergoing DNA fragmentation in liver tissue,
both before and 2 hours after MMS injection. This genotoxic stress induced
substantial apoptosis in the livers of 2-month-old rats, but almost no apop-
tosis in the livers of 26-month-old rats, even though DNA damage in the
liver is known to be higher in old mice than in young mice (Gaubatz and
Tan, 1997). Thus, even though DNA damage is presumably also occurring
in the old rats, the liver cells appear to be resistant to MMS-induced apop-
tosis. The authors suggest that the signaling systems involved in liver cell
apoptosis are downregulated with increasing age, thereby contributing to
age-related carcinogenesis in the rat.

Thus, this question of whether apoptotic potential increases with age is
unresolved, at least partly because of the lack of suitable strategies to
measure apoptotic potential. Furthermore, it would be difficult to justify
extrapolating results obtained with any one tissue such as liver, to any other
tissue because of the multiplicity of factors that might be involved in main-
taining tissue homeostasis in different tissues.

CELL DEATH IN POSTMITOTIC TISSUES

In an earlier review (Warner et al., 1997), we briefly summarized the evidence
for loss of neurons by apoptosis in a variety of neurodegenerative diseases.
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Nevertheless, this conclusion remains controversial, and the on-going debate
has been recently summarized by Jean Marx (2001) in Science. Cotman and
Anderson (1995) reported that TUNEL staining in Alzheimer’s patients’
brains is markedly greater than that found in the brains of people who died
from other causes, but the results suggested that too many neurons were
dying, considering the slow onset of this disease. Thus, more recent
approaches have focused on determining the level of active caspases, the pro-
teases that actually kill the cell. The main executioner is thought to be caspase-
3, with caspases-8, -9, and -12 playing important supporting roles in the
apoptotic cascade. Using antibodies specific for the active form of caspase-3,
Su et al. (2001) showed that caspase-3 is elevated in Alzheimer’s brain neurons
at a level of about 0.1% of the total neurons surveyed. Caspase-8 is also acti-
vated in the Alzheimer’s brain, and may be involved in activating caspase-3
(Rohn et al., 2001), whereas Nakagawa et al. (2000) have reported that caspase-
12 is required for Ab-induced apoptosis of cultured cortical neurons. These
results indicate that apoptotic pathways are elevated in the brains of
Alzheimer’s patients, and may be a major factor in Ab neurotoxicity.

Piero Anversa (1998) has reviewed the role of myocyte death in heart
failure, and has estimated that about 5 ¥ 107 myocytes are lost from the heart
per year, but that myocyte regeneration compensates for most of this loss,
and may even result in hypertrophy. Anversa raises the question of whether
apoptosis is an important factor in heart failure, or whether necrosis is the
major factor. Guerra et al. (1999) measured the frequency of apoptosis and
necrosis in the failed hearts of patients undergoing heart transplantation and
reported that necrosis exceeds apoptosis by 7-fold in both men and women,
but that both are about 2-fold higher in men than in women. Apoptosis is
35- and 85-fold higher in diseased hearts compared to control hearts in
women and men, respectively. Increases in necrosis represented only one-
third of these values. These results suggest that both necrosis and apoptosis
contribute to heart failure, but that apoptosis is selectively more elevated
than necrosis.

A critical issue, however, is whether these cells can be replaced by the
proliferation of appropriate stem cells. Orlic et al. (2001) have shown that
exogenous bone marrow cells can repopulate the infracted heart and gener-
ate myocardium. Although many questions remain (Sussman, 2001), this
result suggests that stem cell therapy for heart failure remains a possibility.

CELL DEATH IN MUTANT MOUSE MODELS OF AGING

p66shc FUNCTION

The concept that cell death in mitotic tissues is an important factor in 
mammalian aging and longevity is strengthened by the observation of 
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Migliaccio et al. (1999) that a mutation in the p66shc gene increases the ability
of mouse cells to resist apoptosis induced by hydrogen peroxide or UV light,
and increases life expectancy of the mice by about 30% in the absence of an
oxidative challenge. The p66shc gene product is part of a signal transduction
pathway that is activated by reactive oxygen species and leads to apoptosis.
Although we do not yet know enough to place this finding in an aging per-
spective, Zhang and Herman (2002b) point out the following: “Our overall
health relies to a great extent on the proper balance between normal removal
of damaged cells via apoptosis and proliferation of the cells that comprise
our body. Tipping the delicate balance towards either side may cause dis-
eases and hamper successful aging”. (p. 563). However, in this p66shc mutant
mouse, longevity is enhanced. Thus, it is clear we do not yet have a coher-
ent picture of the connections between cell death and replacement, and aging
in mammals. To study this, premature aging models may be as informative
as models of extended longevity, as discussed below.

p53 FUNCTION

It is well documented that the p53 tumor suppressor protein plays a critical
role in several cellular phenomena that have implications for aging. The p53
protein regulates the transcription of genes involved in both cell cycle regu-
lation and survival (Levine, 1997), and is required for radiation-induced and
oxidative-stress-induced apoptosis (Lowe et al., 1993). Cellular stresses such
as radiation or oxidative stress activate expression of the p53 gene that may
then induce expression of the p21 gene whose gene product leads to growth
arrest until repair takes place, or to apoptosis if the cellular damage is too
great to be repaired (Duttaroy et al., 1997). Replicative senescence results
from the p53 induction of p21 in response to various stresses, including
telomere shortening.

Thus, the p53 protein plays a critical balancing role in the cell by con-
trolling both cell proliferation and apoptosis. p53 deficiency leads to early
induction of cancer in both mice (Donehower et al., 1992) and humans 
(Hollstein et al., 1994), and human tumor cells frequently contain mutant p53
genes. However, Tyner et al. (2002) recently reported the unexpected result
that deletion of a particular part of the p53 gene in mice can lead to a gain
in its tumor suppression function, and mice containing one good p53 allele
and one such mutant allele (p53+/m) are actually resistant to cancer. However,
instead of living longer because of their resistance to cancer, these mice
appear to age prematurely, and die about 20 to 25% earlier than normal mice
even though they have far fewer tumors. The p53+/m mice exhibited gener-
alized organ atrophy, reduced stress resistance and osteoporosis, whereas
subcutaneous fat, dermal thickness, and wound healing were all reduced in
these mutant mice.
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These authors hypothesized that these early aging phenotypes resulted
from a failure to maintain adequate cell numbers, particularly in those
tissues dependent on stem cells for replacement of cells lost through normal
cell turnover. They were unable to conclude whether this is due to excessive
apoptosis, or inadequate cell replacement in these tissues, but they suggested
that “an aging-related reduction in stem cell proliferation may have a more
important role in longevity than previously recognized recognized” (Tyner
et al., 2002, p. 50). In these mice, cell loss could be particularly acute because
of hyperactive pro-apoptotic p53 function. Thus, p53 function in mammals
now becomes another possible example of antagonistic pleiotropy in aging
(Campisi, 2002); although p53 function represses cancer early in life, it may
compromise replacement of cells by stem cell proliferation late in life
(Warner, 2002), thus leading to slowly atrophying tissues with increasing
age.

An important linkage between aging and p53 function is also supported
by recent findings on the role of the sir2 protein in aging and regulation of
p53 activity. The active form of p53 is both phosphorylated and acetylated.
The mouse sir2 gene product functions as an NAD-dependent p53 deacety-
lase activity that preferentially removes the acetyl group on lysine 382 of p53
in vitro (Vaziri et al., 2001). Other studies have shown that overexpression
of the sir2 gene in yeast and nematodes extends their life span (Kaeberlin et
al., 1999; Tissenbaum and Guarente, 2001). Such overexpression presumably
leads to attenuation of both p53 function and apoptosis, and increased 
proliferative potential (Luo et al., 2001). As is often the case, this is an 
oversimplified model, as Kang et al. (2002) have shown that pharmacologic
inhibition of histone deacetylase activity in fruit flies by phenylbutyrate also
extends life expectancy. Thus, there may be an optimal level of histone
deacetylase activity, subject to a number of regulatory influences, that differs
among organisms.

DNA DAMAGE/XPD FUNCTION

De Boer et al. (2002) recently created transgenic mice carrying a mutation in
the XPD gene that codes for a DNA helicase involved in both transcription
and repair of DNA damage. The mutation does not knock out the helicase
activity, but significantly reduces it. As a result, these mice have substantially
impaired transcription and mildly impaired DNA repair. The phenotype of
these transgenic mice includes not only osteoporosis, loss of female fertility,
and premature graying of hair, but also reduced life span (median life
expectancy of <12 months vs. 24 months for the controls). These mice appear
to be normal at birth and remain normal for about 4 months, although they
are 10 to 20% smaller. However, by 6 months of age the above aging phe-
notypes begin to appear. The molecular basis for the age-related onset of
these aging-like phenotypes is not known, but de Boer et al. suggest that the
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failure to repair DNA damage and allow transcription to proceed triggers
programmed cell death, “leading to functional decline and depletion of cell
renewal capacity” (p. 1279).

WHAT CAN THESE MOUSE MODELS TELL US
ABOUT AGING?

Although we do not know what a “pure” aging phenotype unencumbered
by age-related disease would look like, most gerontologists agree that the
aging phenotype includes failure to maintain and/or return to homeostasis
after exposure to a stress, no matter what system they happen to be study-
ing. Until recently, there has been little direct experimental evidence to back
up this assumption. Homeostatic failure in this context implies the inability
to maintain an adequate number of normally functioning cells in each tissue
with increasing age. The respective authors of these two papers (Tyner et al.,
2002; de Boer et al., 2002) speculate that stem cell populations, and their
ability to proliferate in order to replace cells lost through normal wear and
tear, may play a more important role in maintaining tissue homeostasis
during aging than was previously appreciated, and may therefore play a 
critical role in the regulation of life expectancy in mammals. Hasty and Vijg
(2002) also make such a suggestion in their review of the results reported by
de Boer et al. (4). The dynamics of cell turnover during aging has not been
comprehensively studied on a tissue-by-tissue basis, possibly because cell
turnover rates are normally so low that these dynamics would be hard to
measure with any accuracy. Whether the p53 and XPD mutants will provide
an opportunity to measure accelerated turnover rates, and relate these to
tissue homeostasis in these mutants remains to be seen.

HUMAN PREMATURE AGING SYNDROMES

Some comparisons of the p53 and XPD mouse mutant phenotypes with those
of several segmental progeroid syndromes in humans are summarized in
Table 1. Two of the most well known human progeroid syndromes are
Hutchinson–Gilford syndrome (HGS), also referred to as progeria, and
Werner syndrome (WS). HGS patients appear normal at birth, but by the end
of their second year growth begins to slow and loss of hair and subcutaneous
fat begin (De Busk, 1972). Although their intellectual development is normal,
these children reach a height of only about 3 feet and a weight of about 
35 pounds, and usually die of cardiovascular complications at an average
age of 13 years. The syndrome is very rare (about 1 per 10 million births),
and the genetic defect in HGS is not known, although it is usually assumed
that HGS is due to an autosomal dominant mutation, possibly arising 
during germ cell production or development. The short stature and 

10. CELL DEATH, AGING PHENOTYPES, AND MODELS OF PREMATURE AGING 247



T
A

B
L
E

 1
.

C
O

M
P

A
R

A
S

O
N

O
F

S
E

V
E

R
A

L
M

O
U

S
E

M
U

T
A

N
T

S
W

IT
H

H
U

M
A

N
P

R
O

G
E

R
O

ID
S

Y
N

D
R

O
M

E
S

M
ou

se
 M

ut
an

t
H

um
an

 S
yn

d
ro

m
es

Ph
en

ot
yp

e
p5

3
X

PD
H

G
S

B
S

W
S

B
io

ch
em

ic
al

 d
ef

ec
t

H
yp

er
ac

ti
ve

 p
53

L
ac

k 
a 

D
N

A
he

lic
as

e
U

nk
no

w
n

L
ac

k 
a 

D
N

A
he

lic
as

e
L

ac
k 

a 
D

N
A

he
lic

as
e

L
if

e 
ex

pe
ct

an
cy

10
0 

w
ee

ks
<5

0 
w

ee
ks

13
 y

ea
rs

25
 y

ea
rs

50
 y

ea
rs

Pe
rc

en
ta

ge
 o

f 
no

rm
al

80
%

<5
0%

17
%

33
%

67
%

G
ro

w
th

 f
ai

lu
re

 b
eg

in
s

L
at

e 
in

 li
fe

a
M

on
th

 4
–6

Ye
ar

 2
B

ef
or

e 
bi

rt
h

Ye
ar

 1
5–

18

C
an

ce
r 

ri
sk

R
ed

uc
ed

?
N

or
m

al
 ?

E
le

va
te

d
E

le
va

te
d

O
st

eo
po

ro
si

s
Pr

em
at

ur
e

Pr
em

at
ur

e
N

o 
?

N
o 

?
Pr

em
at

ur
e

Su
bc

ut
an

eo
us

 f
at

 lo
ss

Ye
s

?
Ye

s
?

Ye
s

Sl
ow

 w
ou

nd
 h

ea
lin

g
Ye

s
?

?
?

Ye
s

a
G

en
er

al
 o

rg
an

 f
ai

lu
re

 o
cc

ur
s 

by
 1

8–
24

 m
on

th
s.

248



musculoskeletal abnormalities are more consistent with developmental
abnormalities than premature aging, although fibroblasts taken from HGS
patients have short telomeres and little replicative potential remaining, sug-
gesting the replicative life span of these cells may have been compromised
by excessive apoptosis and cell replacement early in life. The short stature
and developmental abnormalities might then be due to insufficient cell
replacement from the various stem cell reservoirs with increasing age.
However, other than short telomeres, there is no strong evidence for genetic
instability in HGS that might trigger such an early and continuing apoptotic
response.

WS patients also appear normal at birth, and a diagnosis of WS is usually
not made until puberty, when growth begins to slow down (Martin and
Oshima, 2000). This is followed by premature graying of hair, atrophy of
various tissues (particularly reproductive tissues and skin), type 2 diabetes,
atherosclerosis, and osteoporosis. Most striking, however, is the genetic insta-
bility that accompanies WS, so WS patients are at high risk for neoplasia. This
is consistent with the discovery that the WRN gene codes for a protein with
DNA helicase (known as a recQ helicase) and 3¢ Æ 5¢ exonuclease activities
(Gray et al., 1997; Huang et al., 1998). Thus, this protein may be involved in
any one or all of the following: replication, repair, recombination, and tran-
scription. Fibroblasts isolated from WS patients have short life spans, but
longer than that of HGS fibroblasts. WS patients usually die of either cancer
or myocardial infarction at a median age of about 47 to 48 years.

In contrast to HGS and WS, patients with Bloom syndrome (BS) do not
appear normal at birth, but are born small, and remain smaller than normal
throughout their short life, with death usually occurring in their twenties
due to cancer. The defective gene (BLM) associated with Bloom syndrome
also codes for an enzyme with a recQ-like DNA helicase activity, but not
exonuclease activity. Several speakers at the recent Keystone symposium on
“DNA Helicases, Cancer and Aging” (March 12–17, 2002) suggested that the
small stature of Bloom syndrome patients may result from excessive cell
death, even in the fetal stage of life. Because BS is characterized by genomic
instability, particularly sister chromatid exchanges, such cell death may be
triggered by the accumulation of replication intermediates (Bischof et al.,
2001) that either induce cell death or lead to illegitimate recombination. The
growth defects associated with these three human syndromes appear not to
be caused by growth hormone deficiency (Laron, 2002).

The preliminary results with Bloom syndrome raise the issue of 
whether excessive cell death also contributes to the phenotype of Werner,
Hutchinson–Gilford, or Cockayne syndrome, all of which are characterized
by short stature, and/or to other segmental progeroid syndromes. On the
other hand, the increased susceptibility to cancer might indicate that
decreased apoptosis is occurring in WS patients (Campisi, 2002). These ques-
tions seem to deserve increased attention in future research on the roles of
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cell death in aging and development of various aging phenotypes, and this
may also tell us something about p53 function and aging, as Yang et al. (2002)
have reported that p53 may also play a role in regulating the activity of the
DNA helicases associated with Werner and Bloom syndromes.

DISCUSSION

Six mouse mutants with increased life expectancy have so far been identi-
fied; four of these are dwarf mice and the reduced growth rate observed in
these mice is due either to growth hormone deficiency or the inability to
respond to growth hormone (Bartke et al., 2001). Thus, growth failure per se
is clearly not an indication of premature aging. Another class of mouse
mutants is apparently normal at birth and the pups initially grow normally,
but their growth rate eventually slows and the mice appear to age prema-
turely. The collective phenotype of these mice (growth failure, osteoporosis,
loss of subcutaneous fat, small organ size) has been interpreted as indica-
tions of excessive cell death and/or inadequate cell replacement with
increasing age, although this has not been demonstrated directly. If this
hypothesis is true, it suggests that cell turnover may be a more important
factor in aging and the development of aging phenotypes than was previ-
ously appreciated, and suggests the need for better methods to measure
intrinsic rates of various forms of cell death as a function of tissue and age.

Some parallels between these mouse models and some human segmen-
tal progeroid syndromes suggest the possibility that failure to maintain
tissue homeostasis may have a role in the premature aging phenotypes seen
in these human syndromes. Determining whether this is so, and what causes
it, would appear to be a fruitful area of research on the molecular basis of
aging in humans. It would be particularly interesting to determine whether
cell death and replacement are factors in “timing” the growth failure that
occurs in various human segmental progeroid syndromes.

Note added in proof: The recent discovery that HGS is caused by mutations
in the gene for lamin A/C is consistent with the above discussion (Eriksson
et al. Recurrent de novo point mutations in lamin A cause Hutchinson-
Gilford progeria syndrome, Nature 423: 293–298 (2003)). Lamin A is a major
component of the nuclear envelope and the nuclei in HGS cells are visibly
mishapen, suggesting these cells may be susceptible to apoptosis.
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SURVIVAL FACTORS

DAVID L. VAUX

Survival factors are a convenient place to begin a description of mechanisms
of apoptosis for historical reasons. The gene for Bcl-2 is involved in chro-
mosomal translocations found in the common lymphoid malignancy, follicu-
lar lymphoma, which suggested that it may be a cancer gene. Experiments
designed to determine how Bcl-2 caused lymphoma revealed that it did not
act like other oncogenes by stimulating cell proliferation. It turned out to be
an apoptosis inhibitor, the first component of the mechanism for physiolog-
ical cell death to be identified in any organism (Vaux et al., 1988). These
experiments also indicated that inhibition of cell death could lead to cancer.

Although experiments such as these made it clear that Bcl-2 could inhibit
physiological cell death, for a number of years it was unclear how Bcl-2
worked, or what the other components of the apoptotic mechanism might
be. Meanwhile, experiments in C. elegans had shown that the nematode had
a genetic program that was specific for developmental programmed cell
death, and had no other role in worm physiology (Ellis and Horvitz, 1986).
However, at this stage the genes had not been cloned and it was unclear
whether programmed cell death in the worm had anything in common with
apoptosis in mammals.

That cell death studies in C. elegans were indeed relevant to mammalian
apoptosis became clear when transgenic expression of human bcl-2 in C.
elegans was shown to prevent most of the programmed cell death during
worm development (Vaux et al., 1992). Subsequently it was shown that bcl-
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2 and ced-9 had similar sequences, and human bcl-2 could prevent cell death
in ced-9 mutant worms (Hengartner and Horvitz, 1994). These experiments
showed that programmed cell death and apoptosis are one and the same
process, and possibly even more important, suggested that just as CED-9
acted by inhibiting the pro-apoptotic molecules CED-4 and CED-3 in the
worm, Bcl-2 would prevent apoptosis of mammalian cells by inhibiting pro-
teins homologous to them. We now know that CED-4 is an adaptor protein
similar to mammalian Apaf-1 (Zou et al., 1997), and CED-3 is a caspase (Yuan
et al., 1993).

In addition to acting prior to caspase activation, survival factors have
been identified that act by inhibiting activated caspases (Fig. 1). The first sur-
vival factors that acted as protease inhibitors were derived from viruses.
CrmA from cowpox virus was identified as an inhibitor of caspase 1 (Ray et
al., 1992), the protease responsible for processing interleukin 1b. Later exper-
iments showed that it could also strongly inhibit caspase-8 (Zhou et al.,
1997), and thereby inhibit apoptosis triggered by ligation of receptors related
to the TNF receptor, sometimes called “death receptors.” Baculoviruses were
found to encode two different kinds of caspase inhibitors, p35 and inhibitor
of apoptosis (IAP) proteins (Clem et al., 1991; Crook et al., 1993). p35 is able
to bind to and inhibit caspases from many different species, including
worms, insects, and mammals. The viral IAPs allowed the subsequent iden-
tification of cellular IAP homologues in insects and vertebrates. Biochemical
and structural studies have shown how these three different proteins directly
bind to and inhibit active caspases.
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FIGURE 1. Survival factors control apoptosis either by preventing caspases from
activating, or by binding to and inhibiting caspases after they have been activated.
In this way, they can integrate and control many different signals that determine
whether a cell kills itself or remains alive.



UPSTREAM INHIBITION OF CASPASE ACTIVATION:

THE Bcl-2 FAMILY

THREE TYPES OF BCL-2 FAMILY PROTEINS

Mammals have over a dozen different proteins that resemble Bcl-2, and these
can be grouped into three classes (Fig. 2). A1, Mcl-1, Bcl-x, Boo, and Bcl-w
are, like Bcl-2, antiapoptotic proteins that can prevent cells from killing them-
selves, thus allowing them to reproduce, even after pro-apoptotic insults
such as growth factor deprivation, or exposure to radiation, steroids, or
toxins.

Bax, Bak, and Bok, on the other hand, are pro-apoptotic, increasing 
the likelihood that cells exposed to an insult will kill themselves, and yet
they have a structure comprised almost entirely of alpha helices that is very
much like that of the antiapoptotic Bcl-2 family members. These pro-
apoptotic proteins also have several of the four “Bcl-2 homology” (BH)
domains that are seen in the antiapoptotic proteins. The third class of Bcl-2
family proteins, which includes Bid, Bim, Blk, Bmf, Puma, Noxa, Hrk, Bad,
and Bik, is pro-apoptotic, but their similarity to Bcl-2 is restricted to posses-
sion of a single BH3 domain. Hence, they are often referred to as “BH3-only”
proteins.

BH3-ONLY PROTEINS: Bcl-2 ANTAGONISTS

Most of the regulation of the antiapoptotic proteins, including CED-9 in C.
elegans, and Bcl-2 and Bcl-x in mammals, occurs posttranslationally, by direct
binding of pro-apoptotic BH3-only proteins (Huang and Strasser, 2000). For
example, genetic analysis in C. elegans has shown that the BH3-only protein
EGL-1 inhibits the antiapoptotic activity of CED-9, and CED-9 bearing a
mutation in its BH3 binding groove is not efficiently antagonized by EGL-1
(Conradt and Horvitz, 1998). In mammalian systems structural studies have
shown the BH3 alpha helix of Bad binds to a groove on the surface of Bcl-x
(Kelekar et al., 1997; Sattler et al., 1997) (Fig. 3). Similarly, Bcl-x and Bcl-2 are
inhibited by binding of BIM, Noxa, Bad, and the like. via their BH3 domains
(reviewed in Adams and Cory, 2001).

The BH3-only proteins themselves are regulated in a variety of ways that
allow a cell to respond to a large variety of apoptotic stimuli. Egl-1 in C.
elegans is under transcriptional control. So are the mammalian BH3-only pro-
teins Noxa and Puma, whose expression is induced by p53. Bad is regulated
by phosphorylation, so that the phosphorylated form is sequestered by 
14-3-3 proteins, whereas its unphosphorylated form can bind and antago-
nize Bcl-x. Bim is sequestered away from antiapoptotic proteins into micro-
tubules via its association with dynein light chain, such that it can be released
following apoptotic stimuli such as treatment with Taxol. Bmf associates
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FIGURE 2. Three kinds of Bcl-2 family members. The subgroup that includes 
Bcl-2 itself inhibits apoptosis, whereas the Bax group promotes apoptosis. The “BH3-
only” group, which resembles the others only by possessing a BH3 alpha helix, is
also pro-apoptotic. Interactions between Bcl-2 family members involve binding of the
BH3 helix of one protein (represented by three small bumps) to a groove on the
surface of another protein. No Bax-like pro-apoptotic protein has been identified in
C. elegans.
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with the actin cytoskeleton, allowing it to promote apoptosis in response to
loss of attachment (“anoikis”) (Puthalakath et al., 2001). Bid is activated by
proteolysis, either by caspase-8, caspase-3, or following attack by a cytotoxic
T cell, by granzyme B.

PRO-APOPTOTIC Bcl-2 FAMILY MEMBERS BAK
AND BAX

These proteins resemble Bcl-2 much more than the BH3-only proteins do,
because in addition to bearing BH3 domains, they also have BH1 and BH2
domains. However, like the BH3-only proteins, they are pro-apoptotic.
Exactly how they work remains controversial. What is clear is that Bax and
Bak are essential for apoptosis in some, but not all, circumstances, because
mice lacking both Bax and Bak retain the webbing between their digits, accu-
mulate lymphoid cells, and have increased populations of certain kinds of
neurons (Lindsten et al., 2000). bax/bak double mutant cells are resistant to



many apoptosis inducers, but not that triggered by death receptors (Wei 
et al., 2001).

In general terms there are two models for how Bax and Bak function
(reviewed in Adams and Cory, 2001). One is that they act like the BH3-only
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FIGURE 3. Structures of Bcl-2 family members. Top: structure of Bcl-2. Bcl-2 is
almost entirely comprised of alpha helices. It has been proposed that the two central
ones (a5 and a6) insert into membranes to form a pore. The BH3 region is colored
gray, and a conserved glycine residue that lies at the end of the groove into which
the BH3 of other family members can bind is colored black. Middle: structure of 
Bcl-x with bound BH3 peptide of Bad (dark gray). Bottom: structure of Bax. Note 
the overall similarity to Bcl-2. The groove in Bax is occupied by Bax’s hydrophobic
C-terminal tail (black).



proteins by directly binding to and antagonizing antiapoptotic Bcl-2 
family members such as Bcl-2 and Bcl-x, via their BH3 domains. The other
possibility is based on the fact that Bax and Bak, like Bcl-2 and Bcl-x, are
comprised almost entirely of alpha helices, which is reminiscent of the 
bacterial channel or pore-forming proteins diphtheria toxin and colicin
(Muchmore et al., 1996). This has led to speculation that these proteins
oligomerize, inserting their central two alpha helices into cell membranes to
form channels or pores (Jurgensmeier et al., 1998). According to this model,
these channels directly or indirectly allow release of cytochrome c, which
binds to the adaptor protein, Apaf-1, causing it to activate caspase-9. Bax or
Bak oligomerization might be triggered by a BH3-only protein such as 
Bid (Eskes et al., 2000; Korsmeyer et al., 2000). Although some propose 
that Bax and Bak are capable of forming pores on their own, others think
that they form channels in association with mitochondrial proteins such 
as the adenine nucleotide translocator (ANT) or VDAC (Zamzami et al.,
2000).

The crystal structure of Bax revealed that an alpha helix in its C-
terminal tail is folded over to occupy the groove on the surface of Bax into
which the BH3 helix of other proteins might bind (Suzuki et al., 2000) (Fig.
3). The significance of this finding is not certain, but it may allow regulation
of the localization of Bax, because the C-terminus would only be free to inter-
act with membranes once it was displaced from this groove, and binding of
other BH3 proteins or oligomerization of Bax would be prevented until the
C-terminal tail was displaced. When cells are exposed to an apoptotic 
stimulus, Bax is often observed to translocate from the cytosol to mito-
chondrial membranes (Nechushtan et al., 1999). This may occur when the
apoptotic stimulus frees a BH3-only protein, which binds to Bax, displacing
its C-terminal tail, allowing it to associate with membranes.

The structures determined for Bcl-2 and Bcl-x were of proteins lacking
the C-terminal helix, so it is possible that it lies in the BH3-binding groove
of these proteins as it does in Bax.

Bcl-2 FUNCTION

Experiments in which the worm Bcl-2 homologue CED-9 and the worm
Apaf-1-like adaptor protein CED-4 were expressed in yeast or insect cells
have shown that these proteins can bind directly to each other, and this has
led to the simple model that CED-9 inhibits programmed cell death by
binding to CED-4, thereby stopping it from binding to the caspase CED-3
and activating it (Hengartner, 2000). Because human Bcl-2 can function in C.
elegans, and even function in CED-9 mutants, it seems likely that Bcl-2 and
CED-9 act in a similar way (Vaux et al., 1992; Hengartner and Horvitz, 1994).
Therefore, in mammalian cells Bcl-2 would presumably also bind directly to
an adaptor such as Apaf-1.
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Unfortunately, the situation seems to be either different or much more
complicated in mammalian cells than in the worm. Initial reports that the
CED-4 homologue Apaf-1 could bind directly to the mammalian Bcl-2-like
antiapoptotic protein Bcl-xl could not be confirmed, and Bcl-2 can still inhibit
apoptosis in cells in which Apaf-1 has been knocked out (Haraguchi et al.,
2000). Bcl-2 must therefore be able to function independently of Apaf-1, but
exactly how it does so is one of the most contentious areas of cell death
research.

There are now, in essence, two models for how antiapoptotic Bcl-2 family
members work. One is that they act as antagonists of yet-to-be-discovered
CED-4-like adaptor proteins, that is, just as CED-9 appears to work in C.
elegans. According to this model, Bcl-2 keeps a CED-4-like adaptor protein
from activating caspases (Hengartner, 2000). If there is insufficient Bcl-2, or it
is antagonized by Bax, Bak, or BH3-only proteins, the adaptors are free to acti-
vate caspases, which as well as cleaving proteins in the cytosol digest proteins
in the mitochondrial membranes, leading to release of proteins such as
cytochrome c, resulting in cell death. In this model, secondary mitochondrial
events such as the release of cytochrome c are caspase-dependent and not
essential for the cell to die, but may amplify and hasten full caspase activation.

The other model is that within mitochondrial membranes, Bcl-2 and Bcl-
x directly, or indirectly via pro-apoptotic proteins such as Bax and Bak,
prevent release of cytochrome c from the mitochondria. In this model, Bcl-2
and Bcl-x do not interact with a CED-4-like protein such as Apaf-1; rather,
Apaf-1 is bound by cytochrome c after it is released from the mitochondria,
and Apaf-1 then activates caspase-9 (Wang, 2001; Yang et al., 1997). Accord-
ing to this model, release of cytochrome c from the mitochondria, and its
activation of Apaf-1, are essential for all apoptosis that can be blocked by
Bcl-2 (Fig. 4).

There are a large number of variations on this second model, which was
based on observations that the alpha helical tertiary structure of Bcl-x resem-
bles that of the bacterial toxin colicin and the diphtheria toxin translocation
domain (Muchmore et al., 1996). In these models, Bcl-2 and Bcl-x, and their
pro-apoptotic cousins Bax and Bak, act as pores through which ions or pro-
teins can transit. In some variations of the model, Bax and Bak make the pore
through which cytochrome c leaves the mitochondria, and Bcl-2 somehow
blocks this pore. Another variation is that Bcl-2 and Bcl-x, like Bax and Bak,
make channels through which ions pass, leading to changes in membrane
potentials that indirectly determine whether cytochrome c is able to exit the
mitochondria.

ROLE OF Bcl-2 FAMILY MEMBERS IN VIVO

Gene deletion studies have revealed a lot about the requirement for various
Bcl-2 family members during development and for normal physiology, but
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have not yet resolved which of the functional models is correct. Mice lacking
Bcl-2 develop kidney disease and grey hair, and their white blood cell counts
drop at an early age. Deletion of the BH3-only protein BIM in addition to
Bcl-2 reverses these effects (Bouillet et al., 2001). These experiments have
shown that not all of the effects of Bim are caused by antagonism of Bcl-2,
and not all of the effects of Bcl-2 are caused by antagonism by Bim. In other
words, antiapoptotic Bcl-2 family members such as Bcl-2 and Bcl-x can be
countered by several BH3-only proteins, and each BH3-only protein may
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FIGURE 4. Function of Bcl-2 family proteins. There are two general models for how
Bcl-2 family members work. The “adaptor inhibitor” model above is based on the
genetic analysis of C. elegans, and suggests that unless inhibited by a BH3-only
protein, antiapoptotic Bcl-2 family members prevent adaptor molecules such as Apaf-
1 from activating caspases such as caspase-9, just as EGL-1 can prevent CED-9 from
stopping CED-4 from activating CED-3 in the worm. The main problem with this
model is that mammalian Bcl-2 does not bind to Apaf-1. The “mitochondrial pore-
forming” model below suggests that the pro-apoptotic Bcl-2 family members Bax and
Bak are the key players, whereas Bcl-2 and the other antiapoptotic proteins are
passive “sinks” for BH3-only proteins. In this model, BH3-only proteins cause Bax
and Bak to form pores in the mitochondria through which cytochrome c escapes, to
then activate Apaf-1. The main problems with this model are that most BH3-only
proteins do not bind to Bax or Bak, the nature of the pores formed is not clear, and
it is not consistent with the genetics of cell death in the worm.



antagonize several antiapoptotic proteins. The fact that mice heterozygous
for Bim show a distinct phenotype, whereas mice heterozygous for Bcl-2,
Bcl-xl, Bid, Bax, and Bak do not, suggests that Bim levels are critical, whereas
levels of the other proteins are not. This means that the key point of con-
trol is likely to be at the level of certain BH3-only proteins, rather than 
downstream.

The resistance of cells from Bim-deleted or Bax/Bak-deleted mice to
apoptosis induced by cytokine withdrawal or treatment with a variety of
drugs (Wei et al., 2001) indicates that much of the regulation of apoptosis
signaled via BH3-only proteins requires the presence of Bax or Bak.

UPSTREAM INHIBITION OF CASPASE ACTIVATION: FLIP

Although Bcl-2 is efficient at inhibiting apoptosis induced by many agents,
it is relatively poor at inhibiting apoptosis triggered by ligation of TNF recep-
tor family members (“death receptors”), a pathway that uses the adaptor
molecule FADD to activate caspase-8 (Strasser et al., 1995). This raised the
possibility that other survival factors would act to control death-receptor-
triggered apoptosis. Searching viral genomes for caspaselike sequences
revealed several genes for proteins resembling the pro-domain of caspase-8,
which were named vFLIPs (Thome et al., 1997). Once the vFLIPs were found,
it was a short step to finding their cellular counterpart, now known simply
as FLIP (Irmler et al., 1997).

Structurally, FLIP resembles caspase-8 and -10, consisting of two death
effector domains (DEDs) and a catalytically inactive caspaselike domain.
FLIP seems to work like a dominant negative form of caspase-8 (Irmler et
al., 1997). By binding to FADD, FLIP can prevent caspase-8 from activating.
Presumably viruses carry vFLIPs to prevent defensive apoptosis. Deletion of
the genes for FLIP in mice led to embryonic lethality with abnormal heart
development at day 10.5, a phenotype similar to that observed in FADD-/-
and caspase-8-/- embryos. However, unlike FADD-/- and caspase-8-/-
cells, FLIP-/- fibroblasts were not resistant to FasL- or TNF-induced apop-
tosis, suggesting FLIP may cooperate with FADD and caspase-8 during
embryogenesis but antagonizes death-receptor-induced apoptosis (Yeh et al.,
2000).

DOWNSTREAM INHIBITION OF ACTIVATED CASPASES:

p35 AND CrmA

Just as caspases can be controlled by regulating their activation, they can also
be controlled by inhibitors that bind to them after they have become active.
Many viruses carry genes for upstream inhibitors of apoptosis, such as
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vFLIPs or Bcl-2 homologues, so that they can keep the cell alive long enough
for them to replicate (Tschopp et al., 1998). Historically, it was the study of
viral antiapoptotic proteins that led to the identification of the downstream
regulators of apoptosis. The first to be identified was CrmA, an inhibitor of
caspase-1 and caspase-8 encoded by cowpox virus (Ray et al., 1992). By
binding to caspase-8, CrmA can inhibit apoptosis triggered via TNF recep-
tor family members (Zhou et al., 1997). Structurally, CrmA belongs to the
serpin family of protease inhibitors.

The gene-encoding baculoviral protein p35 was identified by Lois Miller
and colleagues as a gene deleted in a so-called annihilator strain of virus—
one that induced a massive apoptotic response in insect cells which greatly
reduced virus production (Clem et al., 1991). Restoring the p35 gene pre-
vented this defensive apoptotic response, allowing time for much greater
viral replication. Baculoviral p35 is able to inhibit caspases from a variety of
different organisms, but no cellular homologues have been identified.

DOWNSTREAM INHIBITION OF ACTIVATED CASPASES:

THE IAPS

The inhibitor of apoptosis (IAP) proteins were also identified by Miller and
colleagues as baculoviral proteins that were not related to p35, but never-
theless could still complement loss of p35 in the “annihilator” strain of 
baculovirus (Crook et al., 1993). The ability of baculoviral IAPs to inhibit
apoptosis in mammalian cells showed that they interacted with conserved
components of the apoptotic mechanism, and also raised the possibility of
the existence of cellular IAP homologues (Hawkins et al., 1996). Such homo-
logues were indeed identified in insects and vertebrates by searching
sequence databases for genes resembling the baculoviral IAPs (Liston et al.,
1996; Uren et al., 1996). Cellular IAPs were also identified by more elegant
methods, in insects in a search for mutants that modified cell death in the
eyes of transgenic flies (Hay et al., 1995), and in mammalian cells as proteins
in a complex associated with TNF receptor 2 (Rothe et al., 1995).

All IAPs bear one or more copies of a zinc-binding domain termed a
baculoviral IAP repeat, or BIR (Hinds et al., 1999). Most also bear a second
zinc-binding domain termed a RING finger that is thought to be involved in
protein ubiquitination (Yang et al., 2000), but most of the functional activity
of IAPs resides in the BIRs. Most IAPs have been shown to be able to inhibit
apoptosis, but it appears that a subset, namely, Survivin and its homologues,
are involved in cell division but not apoptosis (reviewed in Silke and Vaux,
2001).

Mammals have genes for about 10 BIR-bearing proteins, but most work
has been done on XIAP, which has three BIRs and a RING finger.
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IAP FUNCTION

IAPs inhibit apoptosis by directly binding to activated caspases (Deveraux
and Reed, 1999), but they can interact with the caspases in two different
ways, either via a groove in the core of a BIR domain or via residues just
before the BIR domain (Fesik and Shi, 2001). For example, the primary inter-
action between XIAP and active caspase-3 involves binding of the regions
just upstream of BIR2 deep into the caspase’s catalytic site, whereas the
primary interaction with caspase-9 involves binding of the processed N ter-
minus of the caspase into the core of BIR3 (Fig. 5).

IAP ANTAGONISTS

A genetic screen in Drosophila for mutants in which developmental cell death
was abnormal led to the identification of a number of small, pro-apoptotic
proteins termed Reaper, Grim, and HID (Abrams, 1999). Subsequently,
another closely linked gene was identified that encodes a fourth member of
this group termed Sickle (Christich et al., 2002; Srinivasula et al., 2002; Wing
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FIGURE 5. Model of XIAP function. XIAP bears three BIRs and a RING finger motif.
The linker N-terminal to BIR2 can bind deeply into the catalytic site of active caspase-
3 and caspase-7, inhibiting them. A pocket in the core of BIR3 of XIAP can bind to
the N-terminus of processed caspase-9. Binding of the processed N-termini of
Diablo/Smac or HtrA2/Omi into the pockets in the cores of BIR3 or BIR2 can dis-
place caspases, allowing apoptosis to proceed.



et al., 2002). All these proteins are small and their similarity is restricted to
their first few amino acid residues. Fly embryos bearing the so-called H99
deletion, which removes Reaper, Grim, and HID, exhibit practically no 
apoptosis, demonstrating that these pro-apoptotic proteins are essential for
developmental cell death.

Another genetic screen, this time for modifiers of transgenically overex-
pressed Reaper, yielded DIAP1, one of the Drosophila IAPs (Hay et al., 1995).
This experiment showed that Reaper and DIAP1 worked in the same apop-
totic pathway, DIAP1 as an inhibitor, and Reaper as an inducer. Subsequent
experiments showed that Reaper binds directly to DIAP1 to relieve its sup-
pression of caspase activity, and this interaction occurs mainly via the amino
terminus of Reaper, the part that resembles those of HID, Grim, and Sickle.

Thus, in Drosophila, caspase activity can be controlled by IAPs, and the
IAPs themselves are controlled by Reaper, Grim, HID, and Sickle. Because
mammals also have IAPs, it was assumed they would also have IAP antag-
onists, but searches for mammalian proteins resembling Reaper, Grim, and
HID were not productive. However, using a different approach, namely, iso-
lating XIAP-binding proteins from mammalian cell extracts, was successful,
and to date it has yielded two mammalian pro-apoptotic IAP antagonists,
Diablo/Smac (Verhagen et al., 2000; Du et al., 2000) and HtrA2/Omi (Hegde
et al., 2002; Martins et al., 2002; Suzuki et al., 2001; Verhagen et al., 2002).

Unlike the Drosophila IAP antagonists, Diablo/Smac and HtrA2/Omi are
mitochondrial proteins. After synthesis, they are targeted to the mitochon-
drial intermembrane space by N-terminal sequences that are then removed,
generating new N-termini that resemble those of the insect pro-apoptotic
proteins Grim, Reaper, HID, and Sickle.

In healthy cells Diablo/Smac and HtrA2/Omi remain in the intermem-
brane space where they are unable to interact with IAPs, which are in the
cytosol. However, if a cell receives certain apoptotic signals, proteins such
as cytochrome c, Diablo/Smac, and HtrA2/Omi are released from the mito-
chondria. Once in the cytosol, they can bind to IAPs such as XIAP. If they
are sufficiently abundant, they can compete caspase-9 away from XIAP, and
caspase-9 can then process caspase-3 (Ekert et al., 2001).

ROLE OF IAPS IN VIVO

In Drosophila, deletion of DIAP1 results in massive cell death and embryonic
lethality (Wang et al., 1999). Partial loss of function, such as in the mutation
to DIAP1 (originally known as Thread), causes less severe effects, with death
of cells of the aristae, giving threadlike antennae. In mammals, by way of
contrast, deletion of IAP genes has resulted in very minor phenotypes
(Harlin et al., 2001; Holcik et al., 2000). This means either there are enough
other IAPs to take over their roles (redundancy), or in mammals IAPs do not
serve important functions.
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By antagonizing IAPs, the Drosophila proteins Reaper, Grim, HID, and
Sickle play essential roles in regulating apoptosis during development and
in response to DNA damage. For example, Reaper gene expression is, in part,
controlled by the Drosophila homologue of p53 (Brodsky et al., 2000), and
HID protein can be regulated by phosphorylation by MAP kinase signaling
(Bergmann et al., 1998). By comparison, Diablo/Smac-deleted mice (Okada
et al., 2002) have very minor phenotype. Once again, this may reflect redun-
dancy, or perhaps the fact that the BH3-only/Bcl-2 pathway is more impor-
tant in vertebrates, whereas in insects the IAP/IAP antagonist pathway has
assumed greater importance.

CONCLUSION

Most of the regulation of apoptosis is achieved via the modulation of the
levels or activity of survival factors. These survival factors are, in turn, con-
trolled by inhibitory signal transduction pathways such that the cell death
effector mechanisms, and the decision for a cell to survive or kill itself, can
be influenced by a huge number of inputs. The importance of the roles
played by survival factors is demonstrated by what happens when their
genes are mutated, leading to either an increase or decrease in their activity.
Overactivity of Bcl-2 caused by translocations in B cells results in the cancer
follicular lymphoma. Translocations of cIAP2 are found in MALT 
lymphomas.

Identification of survival factors may provide targets for new anticancer
pharmaceuticals. For example, a number of approaches are being investi-
gated to decrease Bcl-2 expression by antisense oligonucleotides, or to antag-
onize Bcl-2 activity by agents that mimic the BH3 alpha helix. Similarly, it
may be possible to counter IAP activity by drugs designed to act like the N-
termini of Diablo/Smac and HtrA2/Omi.
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CHAPTER

12

CASPASE-INDEPENDENT

AND AUTOPHAGIC PROGRAMMED

CELL DEATH

WILFRIED BURSCH, ADOLF ELLINGER,
CHRISTOPHER GERNER, AND

ROLF SCHULTE-HERMANN

The occurrence of cell death under a variety of physiological and patholog-
ical conditions in multicellular organisms has been documented many times
during the past 150 years (Vogt, 1842; Fleming, 1885; Clarke and Clarke,
1995). In 1871 Virchow described the diversity of cell death as “necrosis” and
“necrobiosis” (Virchow, 1871). Subsequently, numerous reports described
cell death that occurs during metamorphosis of invertebrates and lower ver-
tebrates and the development of mammals; in adults, cell loss may ensue
according to physiological demands as well as after various kinds of damage
by chemicals, injury, radiation, hypoxia, and so on (for a review, see Kerr et
al., 1972; Wyllie et al., 1980; Beaulaton and Lockshin, 1982; Schulte-Hermann
et al., 2000; Bratton and Cohen, 2001; Hickman, 2002). In developmental
biology cell death mainly was considered a “programmed” event 
(Glücksmann, 1951; Lockshin and Williams, 1964; Lockshin et al., 2000). On
the other hand, in toxicology and pathology cell death traditionally was
viewed as a passive, degenerative phenomenon occurring after severe
damage of tissues (for a review, see Bursch et al., 1992). It was not before the
early 1970s when Farber et al.—based on a characteristic morphology of cell

When Cells Die II, Edited by Richard A. Lockshin and Zahra Zakeri.
ISBN 0-471-21947-9 © 2004 John Wiley & Sons, Inc.

275



death and its requirement for protein synthesis—suggested the occurrence
of a “suicide” type of cell death in liver, intestine, and other organs after
treatment with cytotoxic anticancer drugs (Farber et al., 1971). The wide-
spread occurrence and biological relevance of programmed cell death were
also advocated by Kerr, Wyllie, and Currie, who in 1972 proposed a mor-
phologically based classification of cell death into two broad categories.
According to this proposal, the term “necrosis,” which commonly was used
to describe all types of cell death, was redefined and restricted to events
caused by violent environmental perturbation leading to collapse of internal
homeostasis. The new term “apoptosis” (now often and in a broader sense
called programmed cell death) was coined to describe the orchestrated self-
destruction of a cell (Kerr et al., 1972; Wyllie et al., 1980; Kerr, 2002). Apop-
tosis gained considerable credit when modern techniques provided insights
into its molecular pathways. Thus, during the last decade tremendous gains
in knowledge concerning the molecular events of signaling, preparation, and
execution of apoptosis have been achieved (for a review, see Chang and
Yang, 2000; Lockshin et al., 2000; Nicholson, 2000; Salvesen, 2001; Bratton
and Cohen, 2001; Kaufmann and Hengartner, 2001; Leist and Jäättelä, 2001;
Coleman and Olson, 2002; Gozani et al., 2002; Igney and Krammer, 2002;
Nicotera, 2002; Martin, 2002; Mathiasen and Jäättelä, 2002).

However, a large body of morphological and biochemical evidence indi-
cates that programmed cell death (PCD) is not confined to “classical” apop-
tosis, but that cells use different pathways for active self-destruction (for a
review, see Clarke, 1990; Schwartz et al., 1993; Zakeri et al., 1995; Trump et
al., 1997; Bursch 2001). Morphologically, three types of cell death have been
discriminated: Type I is most likely identical to apoptosis (condensation and
fragmentation prominent). Type II is characterized by a prominent forma-
tion of autophagic vacuoles (“autophagic cell death”). Type III is described
as occurring through disintegration of cells into fragments without involve-
ment of the lysosomal system and without marked condensation 
(Schweichel and Merker, 1973; Clarke, 1990). As for the molecular mecha-
nisms underlying these different PCD morphologies, those of apoptosis are
best characterized (for a review, see Chang and Yang, 2000; Lockshin et al.,
2000; Hengartner, 2000; Bratton and Cohen, 2001; Leist and Jäättelä, 2001;
Coleman and Olson, 2002; Mathiasen and Jäättelä, 2002). Briefly, apoptosis
can be triggered by a broad range of physiological and nonphysiological
signals ranging from ligation of plasma-membrane death receptors by
cytokines/hormones to DNA damage by genotoxic chemicals. Mitochondria
constitute a major site for integration of diverse pro-apoptotic pathways, but
accumulating evidence suggests that the endoplasmic reticulum (Rao et al.,
2002), lysosomes (Salvesen, 2001; Turk and Salvesen, 2002), and the trans-
Golgi network (Mancini et al., 2000) play important roles as well. Thus, each
organelle possesses sensors that detect specific alterations, locally activates
signal transduction pathways, and emits signals which ensure interorganel-
lar cross-talk (Ferri and Kroemer, 2001). Among the pro- and antiapoptotic
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molecules bringing about the cells’ suicide, a family of proteases denoted
caspases plays a prominent role. In fact, their discovery provided the first
evolutionarily conserved molecular machinery for initiation and final exe-
cution of the apoptotic program; caspases are responsible for most of the
stereotypic morphological features of apoptotic cells (Hengartner, 2000;
Chang and Yang, 2000; Coleman and Olson, 2002). The model of “caspase-
dependent” apoptosis turned out to be an extremely important paradigm,
but is not universal as demonstrated by the existence of caspase-
independent forms of PCD (for a review, see Borner and Monney, 1999; Leist
and Jäättelä, 2001; Mathiasen and Jäättelä, 2002; Nicotera, 2002). For instance,
caspase-coding sequences are absent from many nonmammalian species, but
nevertheless, these organisms may undergo PCD (for a review, see Fröhlich
and Madeo, 2000; Wyllie and Golstein, 2001). Several authors have recently
pointed out that the introduction of caspases during evolution may reflect a
decisive refinement of the ancient caspase-independent death programs
including autophagic PCD (for a review, see Aravind et al., 2001; Leist and
Jäättelä, 2001; Wyllie and Golstein, 2001; Candé et al., 2002). Only a few
studies have addressed the molecular mechanisms steering autophagic PCD
in mammalian cells. Thus, evidence for the involvement of the RAS-
signaling pathway has been provided by Kuchino’s group (Chi et al., 1999;
Kitanaka and Kuchino, 1999; Kitanaka et al., 2002). Furthermore, Kimchi and
colleagues have demonstrated that DAP-kinases may control initiating steps
in autophagic PCD (Inbal et al., 2002); in both instances, autophagic PCD
ensues independent of caspases. However, autophagic PCD cannot gener-
ally be attributed to the “caspase-independent PCD category” as revealed
by studies of insect metamorphosis (Lee and Baehrecke, 2001).

The present chapter reviews the role of autophagy in PCD. In addition
to a comparative view of the morphological and functional features of
autophagic PCD and those of apoptosis, an attempt is made to identify links
between the autophagocytosis control in general and those molecular events
that specifically may affect the life–death decision of cells. Finally, it is tempt-
ing to speculate that the diversity in PCD morphologies might reflect
“caspase-functional” or “caspase-nonfunctional” pathways, and therefore,
the relation of autophagic PCD to caspase-independent mechanisms of ini-
tiation and execution of cell death will be addressed.

MORPHOLOGICAL DIVERSITY OF PCD

APOPTOSIS

Apoptosis originally was defined on the basis of a specific pattern of mor-
phological changes in the dying cell (Kerr et al., 1972; Wyllie et al., 1980; Kerr,
2002): condensation of cytoplasm, in solid tissues separation from neigh-
boring cells, condensation of chromatin at the nuclear membrane to sharply
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delineated masses, and cell fragmentation into apoptotic bodies (Fig. 1a and
b). In highly condensed dead cells or cell fragments, organelles are still intact
as shown by electron microscopy; cellular membranes are well preserved
and, consequently, cell contents are not liberated. In vivo, apoptotic bodies
are rapidly phagocytosed and degraded by neighboring cells. In fact, apop-
totic cells display “eat me signals” at their surface accommodating their
recognition and rapid uptake by adjacent vital cells, and thus prevent inflam-
mation and secondary tissue damage (Kerr et al., 1972; Wyllie et al., 1980;
Savill and Fadok, 2000; Fadok and Chimini, 2001). No evidence for lysoso-
mal or autophagic events in apoptotic cells in vivo was noted in early mor-
phological and histochemical studies (Kerrr et al., 1972; Wyllie et al., 1980;
Bursch et al., 1985). Rather, degradation of apoptotic bodies ensues as the
final step of phagocytosis by vital cells (heterophagy) (Kerr et al., 1972;
Wyllie et al., 1980; Bursch et al., 1985; Savill and Fadok, 2000; Fadok and
Chimini, 2001).

OCCURRENCE OF APOPTOSIS. The occurrence of apoptosis cannot be nar-
rowed down to certain biological conditions. Rather, apoptosis is a wide-
spread phenomenon in the living world and plays important roles in states
of health and disease (Kerr et al., 1972; Wyllie et al., 1980; Bursch et al., 1992;
Krammer, 2000; Nicholson, 2000; Hickman, 2002). Nevertheless, it seems that
cells consisting of relatively small amounts of cytoplasm such as nonsecre-
tory cells enter the apoptotic pathway more readily than large, secretory cells
that frequently were found to undergo autophagic PCD (see below; Zakeri
et al., 1995).

AUTOPHAGIC CELL DEATH

Autophagic cell death, at the electron microscopic level, is characterized by
the degradation of cytoplasmic components, resulting in progressive loss of
electron density; the descriptions of autophagic cell death consistently
include the fact that the degradation of cytoplasmic components precedes
nuclear collapse (for details, see below and Fig. 1c–f). However, denoting cell
death as “autophagic/Type II PCD” needs a cautionary note. A review of the
literature reveals an inconsistent use of terms to describe cell death associ-
ated with autophagocytosis as it includes necrosis, nonapoptotic types of cell
death, apoptosis/Type I PCD, autophagic cell death/Type II PCD, and
others (for a review, see Bursch, 2001). Relatively little is known of the mol-
ecular events underlying the initiation and execution of autophagic cell
death. Therefore, here an electron microscopic demonstration of autophagic
vacuoles (AVs) in dying cells is taken as conditio sine qua non to denote cell
death as autophagic/Type II PCD. Autophagosomes in the first steps of the
pathway (autophagic sequestration) are separated from the cytoplasm by a
double membrane followed by vacuolation of the intercisternal space and
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FIGURE 1. Development and patterns of cell death. Scheme for apoptosis: condensa-
tion of cytoplasm and of chromatin at the nuclear membrane to sharply delineated
masses (often like crescents) followed by cell fragmentation into apoptotic bodies.
Phagocytosis (in vivo) and heterophagic degradation. Note: According to the origi-
nal description, autophagy/lysosomes do not play a distinct role early in apoptosis.
Ultrastructural features of apoptosis: lung carcinoma cells (A549) (a) control and (b)
fragmentation of apoptotic cell (cisplatin 24 hours, 5mg/mL) ¥ 9,000. Scheme for
autophagic cell death: Autophagy: formation of autophagic vacuoles (AVs; scheme:
open circles) and degradation of cytoplasmic constituents. Nuclear collapse (as
observed in MCF-7 cells): pyknosis, single pyknotic mass in the center of the nucleus,
nuclear envelope still intact, cytoplasm amorphous with few clusters of AVs and
mitochondria. Note: Autophagocytosis with apoptoticlike DNA condensation/frag-
mentation may also occur. Phagocytosis (in vivo) and final degradation. Ultrastruc-
tural features of autophagic PCD: MCF- 7 cultures after TAM treatment (c–f). (c)
control, day 7; electron translucent vacuoles (≠), intact nucleus (N). The plasma 
membrane exhibits extended areas with villi; the cytoplasm typically shows multi-
ple polyribosomes (R). (e) 10-6 M TAM, day 7; the nucleus appears normal (N); in the
cytoplasm numerous AVs (≠) are visible. (f) TAM 10-6 M, day 7; ribbons of condensed
chromatin are detached from the nuclear envelope (≠≠). (g) TAM 10-6 M, day 7;
rounded cell, surface characterized by loss of microvilli. The condensed chromatin is
detached from the nuclear envelope and concentrated in the center of the nucleus
(PYK); the nuclear envelope appears intact (≠≠). In the amorphous cytoplasm 
polyribosomes are not visible; mitochondria and AVs are clustered at the cell 
poles (≠). Numerous AVs (≠) and the prominent Golgi regions (G) of the cytoplasm.
For references, see text.



loss of inside membrane. Typical inclusions of the enveloped cytoplasmic
portions comprise mixed contents like curled membranes and organelles
gradually undergoing degradation (Fig. 1d–f; Seglen et al., 1996; Klionsky
and Emr, 2000). In addition to electron microscopy, histo- and biochemical
criteria indicating the role of the autophagosomal-lysosomal compartment
can be taken into account as reviewed in detail elsewhere (Bursch, 2001). It
should be emphasized that referring to the morphological/histochemical
features does not imply a causative relationship between autophagocytosis
and eventual manifestation of a cell’s suicide; this will require either an
established functional link between these phenomena and/or elucidation of
specifically related molecular events. Finally, in cultured cells cytoplasmic
vacuolization—which might be mistaken as autophagic vacuoles—is widely
observed; however, based on their electron translucent appearance, this type
of vacuole can be discriminated from autophagic vacuoles (for a review, see
Henics and Wheatley, 1999).

OCCURRENCE OF AUTOPHAGIC PCD. Autophagic cell death appears to
be a phylogenetically old phenomenon as it has been observed in the slime
mold Dictyostelium discoideum and in the nematode C. elegans (Cornillon et
al., 1994; Olie et al., 1998; Hall et al., 1997). It is important during insect meta-
morphosis, which is one of the most extreme biological conditions of tissue
remodeling; here cells of ecto-, endo- and mesodermal origin are affected (for
a review, see Beaulaton and Lockshin, 1982; Clarke, 1990; Zakeri et al., 1995;
Bursch, 2001). Likewise, in vertebrate development, autophagic cell death
appears to be a prominent feature. It is associated with organ morphogene-
sis as exemplified by the shaping of extremities, cavity formation in intes-
tine, and regression of sexual anlagen (for a review, see Beaulaton and
Lockshin, 1982; Clarke, 1990; Zakeri et al., 1995; Bursch, 2001). Autophagic
cell death also is reported to occur in adult insects and vertebrates includ-
ing humans; it is often associated with the elimination of (large secretory)
cells during adjustment of sexual organs and ancillary tissues to seasonal
reproduction. As for pathophysiology, autophagic cell death has been asso-
ciated with experimental and human neurological diseases, with cell injury
after cytotoxic drug treatment, but also during spontaneous regression of
human tumors (Kitanaka et al., 2002; for a review, see Bursch, 2001).

Taken together, autophagic PCD predominantly appears to be activated
when the developmental program or (in adulthood) homeostatic mecha-
nisms demand massive cell elimination; in all cases, the bulk of cytoplasm
is degraded by autophagy before nuclear collapse ensues. In instances of cell
injury, damaged organelles or membranes may be transferred into the
autophagic pathway, serving as a protective response at the subcellular scale,
and in the instance of the cell becoming overwhelmed, elimination of the
whole cell may result. Thus, these functional features of autophagic cell
death are in line with the general function of autophagy, namely, being the
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major inducible pathway for degradation of cytoplasmic components
including whole organelles (Blommaart et al., 1997; Klionsky and Emr, 2000).
It should be noted, however, that autophagic cell death and apoptosis are
not mutually exclusive phenomena. Thus, both types of cell death can occur
simultaneously in tissues, but also subsequently as governed by the devel-
opmental program. Moreover, individual dying cells may exhibit both apop-
totic and autophagic features (“mixed type”) (for a review, see Beaulaton and
Lockshin, 1982; Zakeri et al., 1995; Bursch, 2001). This morphological phe-
nomenon now can be traced back—at least to some extent—to molecular
events reflecting the “coexistence” of different suicide programs (or their
high degree of plasticity) within a cell (see the section entitled “Caspase-
dependent versus Caspase-independent Suicide Programs”).

Remarkably, the mode of cell death does not necessarily affect the effi-
cient clearance of cell residues from the body through phagocytosis. Thus,
in vivo, autophagic PCD has been found to be completed by heterophagy
(for a review, see Beaulaton and Lockshin, 1982; Clarke, 1990; Bursch, 2001).
Obviously, dying cells in general display surface signals to facilitate their
phagocytosis, the expression of which constitutes an integral part of the
overall PCD signaling (Savill and Fadok, 2000; Fadok and Chimini, 2001).

MOLECULAR DIVERSITY OF PROGRAMMED CELL DEATH

APOPTOSIS

In the last decade, tremendous progress has been made in understanding the
molecular biology of apoptosis, and the reader is referred to a number of
recent reviews (Chang and Yang, 2000; Lockshin et al., 2000; Nicholson, 2000;
Salvesen, 2001; Bratton and Cohen, 2001; Kaufmann and Hengartner, 2001;
Leist and Jäättelä, 2001; Coleman and Olson, 2002; Gozani et al., 2002; Igney
and Krammer, 2002; Nicotera, 2002; Martin, 2002; Mathiasen and Jäättelä,
2002). Here, only those molecular features of apoptosis necessary for identi-
fying the differences from autophagic PCD and the role of caspases are
briefly addressed.

CASPASE-DEPENDENT VERSUS CASPASE-INDEPENDENT SUICIDE PRO-
GRAMS: A MOLECULAR SWITCH FOR DIFFERENT CELL DEATH MORPHOLO-
GIES? Caspases (cysteinyl-aspartic-proteases) belong to a large family of
highly conserved proteins that have been found in hydra, insects, nema-
todes, and mammals (Alnemri, 1997; Aravind et al., 2001). More than a dozen
caspases have been identified in humans; about two-thirds of these consti-
tute a set of sequentially acting “initiator” and “executioner” caspases medi-
ating diverse pro-apoptotic signals down to the final coordinated
self-destruction of the cell (for a review, see Thornberry and Labzenik, 1998;
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Chang and Yang, 2000; Hengartner, 2000; Krammer, 2000; Ferri and Kroemer,
2001; Coleman and Olson, 2002; Köhler et al., 2002).

Activation of caspase-cascades may ensue through a number of path-
ways; the best-studied are the following two: (1) “extrinsic pathway,” a
receptor-mediated death signaling (“death receptor”) that ultimately 
triggers caspase-8 as exemplified by the interaction of the CD95- or TNF-
receptor with its ligands (Fig. 2). (2) “Intrinsic pathway,” a release of a set of
molecules such as cytochrome c and APAF-1 from mitochondria in response
to intracellular death signals such as oxidative stress or DNA damage;
cytochrome c and APAF-1 form a complex responsible for the activation of
caspase-9 (apoptosome, Fig. 2). This pathway is subjected to the control of
pro- and antiapoptotic members of the bcl-2 family (for a review, see Thorn-
berry and Labzenik, 1998; Lockshin et al., 2000; Nicholson, 2000; Bratton and
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FIGURE 2. Signaling in apoptosis and autophagic PCD in mammalian cells 
(simplified). The figure is fully explained in the text. Lysosomotropic agents 
include a-tocopheryl succinate (Neuzil et al., 1999); 9-acetoxy-2,7,12,17-tetrakis-
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other references, see the text. Events considered to be caspase-independent are high-
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Cohen, 2001; Kaufmann and Hengartner, 2001; Gozani et al., 2002). Both
pathways are considered to join at the level of caspase-3, which is the
common substrate for caspase-8 and -9, and thereby trigger the final execu-
tion of apoptosis and its characteristic morphological manifestation. The
extrinsic and intrinsic pathway may communicate upstream of caspase-3
through caspase-8-mediated BID cleavage at Arg59; truncated BID targets
mitochondria and stimulates release of mitochondrial pro-apoptotic mole-
cules (for a review, see Krammer, 2000; Ferri and Kroemer, 2001; Mathiasen
and Jäättelä, 2002). Further caspase activators acting downstream of mito-
chondria comprise Smac/Diablo and Omi/HtrA2 (both inhibit IAP-
proteins) (Ferri and Kroemer, 2001; Hegde et al., 2002; Ravagnan et al., 2002).
In the context of this review, it should be noted that lysosomal cathepsins
may cleave BID at Arg65, and thus, a diversity of relatively nonspecific
signals such as photodamage or lysosomotropic agents may be transduced
to the specific enzyme cascades that trigger the apoptosis program (Fig. 2).

Caspases have been considered central executioners of the apoptotic
pathway. Indeed, eliminating caspase activity, either through mutation or the
small pharmacological inhibitors, slows down or even prevents apoptosis
(for a review, see Chang and Yang, 2000; Hengartner, 2000; Leist and 
Jäättelä, 2001; Coleman and Oslon, 2002; Mathiasen and Jäättelä, 2002).
However, cell suicide may also ensue in a caspase-independent fashion. In
general, denoting apoptosis/PCD as belonging to the caspase-independent
category mostly is based on at least one of three criteria: (1) PCD may
progress in spite of the presence of caspase inhibitors. (2) PCD occurs in spite
of genomic/functional knockout of a given caspase. (3) PCD is not associ-
ated with detectable caspase activation, for example, as demonstrated by the
lack of specific caspase-cleavage products. However, classification of PCD as
caspase-independent deserves some cautionary notes: (1) The specificity of
the caspase inhibitor used may be confining. (2) An inherent cognitive
problem results from the fact that only known phenomena (caspases) can be
considered. (3) Caspase inhibition may result in the delay of PCD rather than
in the rescue (survival) of cells. Thus, proof of clonogenicity should be con-
sidered essential to ascertain cell rescue and survival.

Caspase-independent apoptosis/PCD came into focus in apoptosis
research not more than a few years ago, and we are currently witnessing a
rapid accumulation of reports on this phenomenon; therefore, the examples
addressed here are far from being complete. PCD independent of known cas-
pases have been reported to occur in response to drug exposure, as in all of
the following examples, among many others: in liver cancer cells treated
with camptothecin (Roberts et al., 1999); mammary carcinoma cells treated
with vitamin D compounds (Mathiasen et al., 1999); carcinoma cells of
breast, colon, prostate, and liver; as well as glioblastoma upon Hsp70 deple-
tion (Nylandsted et al., 2000); nonsmall lung cancer cells (NCI-H460) upon
exposure to paclitaxel (Huisman et al., 2002); and human pancreatic cancer
cells expressing peroxisome proliferator-activated receptor (PPAR)-g upon
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treatment with PPAR-g agonists (Eibl et al., 2001). Furthermore, in human
mammary carcinoma cells (MCF-7, MCF-7/AdrR, T47D, and SKBr3), sigma-
2 receptor agonists have been found to induce cell death involving a p53- and
caspase-independent apoptotic pathway, which is considered to be distinct
from mechanisms used by some DNA-damaging, antineoplastic agents and
other apoptotic stimuli (Crawford and Bowen, 2002). Cells may commit
caspase-independent suicide also in response to viral or bacterial infection of
cells. For instance, fibroblasts upon exposure to adenoviral E4orf (Lavoie et
al., 1998) as well as glioma cells consequently upon exposure to an aden-
ovirus encoding chimeric tumor suppressor 1 (Ad-CTS1) and in synergy
with irradiation or CD95-ligation (Naumann et al., 2001). Productive HIV-1
infection of primary CD4+ T cells induces mitochondrial membrane perme-
abilization, leading to caspase-independent cell death (Petit et al., 2002).
Macrophages infected with the bacterium Chlamydia die independent of cas-
pases (Perfettini et al., 2002). Furthermore, caspase-independent forms of
PCD have been observed in neurodegenerative and lymphatic diseases. Thus,
the caspase-derived C-terminal fragment of beta-amyloid precursor
(betaAPP) induces caspase-independent toxicity in TSM1 neurons and
potentiates the pathogenic betaAPP maturation pathway by increasing selec-
tively a beta42 species in wild-type betaAPP-expressing human cells
(Dumanchin-Njock et al., 2001). Complement-mediated cell death induced
by rituximab in B-cell lymphoproliferative disorders is mediated in vitro by
a caspase-independent mechanism involving the generation of reactive
oxygen species (Bellosillo et al., 2001). In summary, these examples demon-
strate that the activation of caspase-independent PCD pathways apparently
cannot be attributed to distinct biological conditions. Rather, it appears that
the broad spectrum of extrinsic and intrinsic death stimuli known to activate
caspase-dependent apoptosis may also trigger alternative suicide programs.

Caspase-dependent and caspase-independent pathways may coexist in
the same cell and may even be coactivated. For instance, in lung carcinoma
(NSCLC) cells, where the caspase-dependent pathway is less efficient, the
triggering of an AIF-mediated caspase-independent mechanism circumvents
the resistance of these cells to treatment (Joseph et al., 2002). Furthermore,
cladribine (2-chloro-2¢-deoxyadenosine) has been reported to induce 
apoptosis in human leukemia cells by caspase-dependent and caspase-
independent pathways acting on mitochondria (Marzo et al., 2001); caspase
activity is involved in, but is dispensable for, early motoneuron death in the
chick embryo cervical spinal cord (Yaginuma et al., 2001). Likewise, cell
suicide pathways in peripheral blood lymphocytes include caspase-inde-
pendent and caspase-dependent events as revealed by studies on their
response to chemotherapeutic agents (Stahnke et al., 2001). Notably, a
protein may possess a bifunctional role by being involved in caspase-
dependent as well as caspase-independent cascades. Thus, apoptosis signal-
regulating kinase 1 (Ask1) possesses a caspase-independent killing function
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that is independent of its kinase activity and may be activated by interaction
with Daxx. In the physiological situation, such an activity is induced as a
consequence of the translocation of Daxx from the nucleus to the cytoplasm,
a condition that occurs following activation of the death receptor Fas
(Charette et al., 2001). Mature Omi can induce apoptosis in human cells in a
caspase-independent manner through its protease activity and in a caspase-
dependent manner via its ability to disrupt caspase–IAP interaction (Hegde
et al., 2002). Likewise, all death induced by the basic fibroblast growth factor
(bFGF) is mediated through a caspase-dependent and p53-independent cell
death receptor pathway (Westwood et al., 2002).

Caspases bring about most of the morphologically visible changes char-
acteristic of apoptotic cell death, namely, cell shrinkage, degradation of
cytoskeleton, plasma membrane blebbing, chromatin condensation, and
DNA fragmentation (for a review, see Chang and Yang, 2000; Hengartner,
2000; Coleman and Olson, 2002). Cytoskeletal proteins and their regulators
cleaved by caspases (mainly caspase-3, but also -6, -7, and -8) comprise actin,
gelsolin, Gas2, fodrin, beta II spectrin, filamin, cadherins, catenins, keratins,
vimentin, tau, FAK, and p130Cas (for a review, see Chang and Yang, 2000;
Coleman and Olson, 2002). Lamins, the intermediate filament scaffold pro-
teins of the nuclear envelope, are cleaved by caspase-6, leading to nuclear
fragmentation in the final phase of apoptosis (for a review, see Chang and
Yang, 2000; see also the section entitled “Link between Cytoplasmic
(autophagic) Degradation and Final Nuclear Collapse”). In addition to mor-
phological changes, dynamic rearrangements of the actin cytoskeleton are
also central in phagocytosis (for a review, see Coleman and Olson, 2002).
Nevertheless, caspase-independent cell death may share morphological and
biochemical features with “classical” apoptosis. The morphology of caspase-
independent modes of cell death have been described as ranging from
“apoptosislike” to “necrosislike (autophagy)” as recently suggested by
Mathiasen and Jäättelä (2002):

apoptosis-like: chromatin condensation to lumpy masses that are less compact than in
apoptosis, display of phagocytosis recognition molecules, any degree and combination of
other apoptotic features such as cytoplasmic shrinkage, chromatin condensation to cres-
cent masses can be found; necrosis-like: absence of chromatin condensation or, at best,
with chromatin clustering to loose speckles, varying degree of apoptosis-like changes
including phosphatidylserine exposure; aborted apoptosis and type 2 physiological cell
death fall in this category.

For instance, caspase-independent cell death of alveolar macrophages 
dying upon exposure to cigarette smoke resembles apoptosis with respect to
chromatin condensation, cell shrinkage, and mitochondrial cytochrome c
release; visible nuclear condensation was not associated with chromatin
fragmentation (Aoshiba et al., 2001). Macrophages infected with Chlamydia
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undergo apoptosis in terms of morphological and biochemical features
including condensation of nuclei and DNA fragmentation, but broad-
spectrum caspase inhibitors failed to prevent cell death (Perfettini et al.,
2002). Caspase-independent pathways that may result in a necrosis pheno-
type are exemplified by c-myc-Bin1-mediated cell death (Elliott et al., 2000).
Likewise, TNF-induced death of fibrosarcoma cells (L929) exhibits a necro-
sis phenotype that is caspase-independent and does not involve DNA frag-
mentation; it requires increased production of reactive oxygen species (ROS)
in the mitochondria and protein kinase A-mediated phoshorylation of gly-
oxalase I (Van Herreweghe et al., 2002). In prostate tumors treated with a
combination of cisplatin and vitamin C plus K3, cell death exhibiting over-
lapping features of apoptosis and necrosis has been reported (the authors
exclude secondary necrosis); this phenomenon was denoted “autoschizis”
(Buc Calderon et al., 2002).

In a few cases, the apoptotic and nonapoptotic morphological features
of the same cell can be dissected into caspase-dependent and caspase-
independent events. For instance, sympathetic neurons treated with
colchicine activate caspase-dependent steps (as revealed by zVAD-caspase
inhibition) that appear responsible for mitochondrial swelling and nuclear
fragmentation, whereas caspase-independent events affect formation of
cytoplasmic vesicles; the cytoplasmic vacuolization cannot be prevented by
caspase inhibitors and may eventually result in necrosis (Mitsui et al., 2001).
Studies by Sperandio et al. (2000) showed that unoccupied insulinlike
growth factor receptor I (IGFIR-IC) can mediate death of fibroblasts. The
dying cells lack chromatin condensation and DNA cleavage; lack of caspase
activation was demonstrated by the failure of the caspase inhibitors
zVAD.fmk, BAF, p35, XIAP, and Bcl-XL to prevent IGFIR-IC-induced cell
death (Sperandio et al., 2000). The cytoplasm exhibited strong vacuolization,
although not of the autophagic type (see below; Sperandio et al., 2000). Para-
doxically, recruitment of caspase-9—but none of the other caspases—by
IGFIR appears to trigger this nonapoptotic manifestation of cell death.
Sperandio et al. (2000) denoted this type of cell “paraptosis.” Notably, this
PCD type is not simply a result of the lack of apoptosis machinery as bax
can trigger the “classical” apoptosis pathway. Likewise, studies by Chi et al.
(1999) have shown that cells may switch between apoptotic (caspase-depen-
dent) and nonapoptotic (caspase-independent necroticlike/autophagy)
suicide programs depending on the cell death stimulus. These phenomena
will be discussed in some more detail in the subsequent section on
autophagic PCD.

Taken together, in a substantial number of cases, the morphology of
caspase-independent cell death exhibits massive deviation from the classi-
cal apoptotic morphology. However, prominent morphological features of
apoptosis, namely, cell shrinkage and chromatin condensation [note: not
(oligo)nucleosomal DNA fragmentation] may also ensue in a caspase-
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independent fashion. Obviously, the activation of caspase-independent cell
death pathways does not necessarily result in shutting down cell shrinkage.
Thus, caspases appear to constitute a major but not the sole determinant for
the manifestation of different PCD morphologies; it seems likely that other
proteases may functionally replace (known) caspases. From a teleological
point of view, this seems to be an advantage for the organism: (1) A cell
would be equipped with two distinct, but interchangeable, sets of enzymes
to commit suicide. (2) Both pathways include condensation of dying cells as
it may facilitate their phagocytosis. In this respect, it is tempting to specu-
late that autophagic cell death—as will be outlined below in greater detail—
might reflect an additional cell death strategy, namely, not relying on precise
cleavage of a limited set of crucial proteins but removal of bulk cytoplasmic
constituents prior to final removal through phagocytosis. Depending on the
contribution of caspase-functional and nonfunctional pathways to the cell’s
suicide, its morphological manifestation may result in transitional stages as
described above. Furthermore, as outlined by Chang and Yang (2000), the
possibility of uncoupling morphological features in apoptosis should also
caution investigators to identify clearly the morphological and biochemical
criteria used to measure apoptosis.

A number of noncaspase proteases have been implicated in PCD, acting
either upstream or downstream of mitochondria (Fig. 2): Perforin/granzymes
involved in CTL- and NK-cell-triggered PCD (Waterhouse and Trapini,
2002), and lysosomal cathepsins involved in TNF- and TRAIL-mediated PCD
pathways, cell death upon exposure to detergents, to ROS generated by oxi-
dants, as well as to lysosomotropic and DNA damaging agents (for a review,
see Salvesen, 2001; Uchiyama, 2001; Bursch, 2001; Turk et al., 2002). Granzyme
A activates an endoplasmic reticulum-associated caspase-independent
nuclease to induce single-stranded DNA nicks (Beresford et al., 2001). The
concerted action of endoplasmic reticulum, calpains, and Bax may also 
constitute a “caspase-alternative” suicide pathway upon exposure to 
differentiation-inducing agents or in response to misfolded proteins (Rao et
al., 2002). Likewise, calpains may participate in the early phases of radiation-
induced apoptosis, upstream of the caspases (Waterhouse et al., 1998) as well
as in apoptosislike death induced by vitamin D compounds in breast cancer
cells (Mathiasen et al., 2002). Mitochondria may release pro-apoptotic but
caspase-independent effectors such as apoptosis-inducing factor (AIF), endonu-
clease G, as well as Omi/HtrA2, which possess serine protease activity (Candé
et al., 2002; van Loo et al., 2002; Ravagnan et al., 2002; Lazebnik et al., 2002).
Notably, Omi/HtrA2—in addition to its inhibition of IAPs—acts in cell
rounding and shrinkage. DNA fragmentation/nuclear condensation impli-
cates the activity of AP24 (Wright et al., 1997). It should be also noted that
exposure of “eat me signals,” namely, phosphatidylserine on the outer cell
membrane, implicates the action of calpains (Leist et al., 1998) or cathepsin
B (Castino et al., 2002; Foghsgaard et al., 2001). The implication of caspase-
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independent mechanisms in phagocytosis recognition can be seen in line
with current views on the evolution of cell death programs, namely, that 
the introduction of caspases reflects a refinement of ancient caspase-
independent death programs including auto- and heterophagy of dying cells
(see below).

Finally, for the sake of completeness, it should be noted that caspase inhi-
bition may also cause cell death. Thus, benzyloxycarbonyl-Val-Ala-Asp-
fluoromethylketone (zVAD) or t-butyloxycarbonyl-Asp-fluoromethylketone
(Boc-D) have been found to induce the death of lipopolysaccharide (LPS)-
activated macrophages and RAW 264.7 cells with apoptotic features, sug-
gesting that LPS+zVAD-induced apoptosis of macrophages is independent
from the known proapoptotic caspases and the involvement of unidentified
zVAD-sensitive molecule(s) (Kim et al., 2001). Likewise, broad-spectrum
caspase inhibition augmented cell death in TNFa-stimulated neutrophils
(Liu et al., 2002). In this context, it should be noted that caspase function is
not restricted to cell death phenomena (for a review, see Chang and Yang,
2000; Hengartner, 2000).

AUTOPHAGIC PCD

Prior to discussion of the relation of autophagy to PCD in detail, it should
be remembered that autophagocytosis constitutes the major inducible
pathway for degradation of cytoplasmic components including whole
organelles that does not necessarily result in the death of cells. It ensues
through a sequence of events that are highly conserved from yeast to
humans, including sequestration of cytoplasmic constituents, formation and
maturation of autophagosomes, their fusion with lysosomes to give rise to
autophagic vacuoles, and the final degradation of cytoplasmic material
(Blommaart et al., 1997; Klionsky and Emr, 2000). By autophagocytosis cells
may adapt to environmental changes such as nutrient deprivation, damage
of subcellular structures including membranes, and whole organelles
(Bloommart et al., 1997; Klionsky and Emr, 2000). Thus, the question arises
whether autophagy might be just a side effect of the stress imposed on the
cells. Or does a functional link exist between autophagocytosis and execu-
tion of the (final) death program? If so, what are the underlying molecular
mechanisms? Which are the key pathways mediating external signals to
autophagocytosis and/or cell death? To answer some of these questions,
current knowledge on autophagy was applied in studies on nonapoptotic
cell death/PCD in MCF-7 cells.

HUMAN MAMMARY CARCINOMA (MCF-7) CELLS AS A MODEL FOR

AUTOPHAGIC PCD. For almost three decades, human mammary carci-
noma (MCF-7) cells have been used as a biological test system in drug devel-
opment, namely, to select drugs with a strong antiproliferative potency for
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treatment of human mammary tumors (for a review, see England and Jordan,
1997; Wakeling et al., 2001). More recently, we and others have used MCF-7
cells as a model to study the antisurvival effect of antiestrogens such as
tamoxifen, ICI 164384, and toremifene (Bardon et al., 1987; Wärri et al., 1993;
Otto et al., 1996; Gompel et al., 2000; Bursch et al., 1996, 2000). Thus, tamox-
ifen at high doses (10-5 M) causes lysis (necrosis) of almost all cells within 24
hours that cannot be prevented by estradiol (Bursch et al., 1996). The cyto-
toxic action of tamoxifen may result from perturbations in membrane fluid-
ity (Wiseman, 1994), formation of reactive oxygen species (Tuner et al., 1991),
and DNA damage by DNA adducts or chromosomal aberrations, which have
been found to occur in kidney and liver (Han and Liehr, 1992; Sargent et al.,
1994). On the other hand, lower concentrations of tamoxifen (10-6 M and
below) induced a gradual appearance of cell death that started to occur 3
days after treatment. This type of cell death is considered to be a receptor-
mediated, active cell suicide because it can be inhibited by estradiol (Bursch
et al., 1996). This “mitogen rescue” is considered to be characteristic of an
active or programmed mode of death and is often used to functionally dis-
criminate PCD from necrosis, which—according to this view—would be pre-
vented only by removal of the noxious agent (for a review, see Bursch et al.,
1992; Leist and Jäättelä, 2001). Closer electron microscopic studies revealed
that the active self-destruction of MCF-7 cells after tamoxifen belongs to the
autophagic type of PCD; representative morphological features are shown
in Figure 1c–f. In MCF-7 cells upon TAM treatment, the first changes visible
at the electron microscope level comprise formation of autophagic vacuoles
(AV), which gradually degrade cytoplasmic structures (cf. Fig. 1d and e).
Notably, in cells exhibiting a highly condensed nucleus, structures required
for protein synthesis such as polyribosomes, ER, and Golgi have disap-
peared, whereas a few clusters of intact mitochondria persist in close vicin-
ity to AVs and the nuclear envelope (Fig. 1f). The electron microscopic
studies were confirmed and extended by histochemical studies with mon-
odansylcadaverine (MDC), which has been described to selectively accu-
mulate in autophagic vacuoles (Biederbick et al., 1995; Munafo and
Colombo, 2001). MDC was used to visualize AVs in MCF-7 cells and to
compare the kinetics of AV formation with those of nuclear condensation at
the light (fluorescence) microscopic level. Clearly, AV formation preceded
nuclear collapse, which reflects the irreversible stage of cell death (Bursch et
al., 1996, 2000). As will be outlined subsequently, this experimental model
has been successfully used to tackle a number of questions concerning the
functional and molecular features of autophagic PCD.

FUNCTIONAL LINK BETWEEN AUTOPHAGOCYTOSIS AND CELL DEATH. A
functional link between autophagocytosis and cell suicide was suggested by
a number of inhibition experiments with 3-methyladenine (3-MA), wort-
mannin, and LY294002 (Bursch et al., 1996; Chi et al., 1999; Kitanaka and
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Kuchino, 1999; Jia et al., 1997; Petiot et al., 2000). Thus, 3-MA, an inhibitor
of the sequestration of cytoplasmic components (Seglen and Jordan, 1982;
Sandvig and van Deurs, 1992), has been found to prevent both the forma-
tion of autophagic vacuoles and the eventual cell death (indicated by nuclear
destruction) in a variety of different cell types, including tamoxifen-treated
human mammary carcinoma cells (MCF-7; Bursch et al., 1996), gastric and
glioma cells overexpressing Ras (Kitanaka and Kuchino, 1999), TNF-a-
treated human T-lymphoblastic leukemic cells (Jia et al., 1997), neuronal cells
upon serum withdrawal or treatment with arabinoside (Xue et al., 1999),
kidney cell lines treated with bacterial toxins such as ricin, abrin, Shiga toxin,
and diphtheria toxin (Sandvig and van Deurs, 1992). Likewise, our studies
on the “mitogen rescue” of MCF-7 cells with estradiol revealed that estra-
diol not only prevents nuclear destruction, it also inhibits the preceding for-
mation of autophagic vacuoles.

At the molecular level, recent studies suggested the involvement specif-
ically of the class III PI3-K product PtdIns(3)P in sequestration: Formation of
PtdIns(3)P as well as of autophagosomes was found to be inhibited not only
by 3-MA, but also by wortmannin and LY294002 (Petiot et al., 2000). Impor-
tantly, it was pointed out by Tolkovsky et al. that although 3-MA has been
described to specifically block the sequestration step, its effects are not exclu-
sively limited to the autophagic process (Tolkovsky et al., 2002). Thus, 3-MA
was found to inhibit the phosphorylation of JNK and p38 kinases in NGF-
deprived neurons (both may be involved in apoptosis signaling; Xue et al.,
1999) and to attenuate mitochondrial permeability transition pore opening.
Nevertheless, although 3-MA may affect additional pathways, studies with
autophagy inhibitors other than 3-MA, namely, estradiol, wortmannin, and
LY294002, strongly support a functional link between the formation of
autophagic vacuoles and PCD pathway(s).

FATE OF THE CYTOSKELETON IN AUTOPHAGIC PCD. In apoptosis, the
cell’s preparatory as well as execution steps include depolymerization or
caspase-driven cleavage of actin, cytokeratins, lamins, and other cytoskele-
tal proteins, resulting in the typical final shape of apoptotic cells (see the
earlier section “Caspase-dependent versus Caspase-independent Suicide
Programs”; for a review, read Chang and Yang, 2000; Hengartner, 2000;
Coleman and Olson, 2002). On the other hand, all steps of autophagocyto-
sis are known to depend on certain cytoskeletal elements (for a review, see
Blommaart et al., 1997; Klionsky and Emr, 2000). For instance, intermediate
filaments (cytokeratin and vimentin) are necessary for sequestration of cyto-
plasmic structures (for a review, see Blommaart et al., 1997; Klionsky and
Emr, 2000). Furthermore, all stages including the final degradation of cyto-
plasmic material in AVs are ATP-dependent (for a review, see Blommaart et
al., 1997; Klionsky and Emr, 2000). Therefore, we investigated whether cleav-
age of the cytoskeleton as described for apoptosis would, or would not, occur
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during autophagic cell death. The fate of cytoskeletal elements was closely fol-
lowed during autophagic cell death in individual MCF-7 cells after TAM by
immunocytochemistry; in addition, the protein pattern was analyzed by bio-
chemical means (Bursch et al., 1996, 2000). Indeed, the cytoskeleton was
found to be redistributed but largely preserved, even in cells exhibiting
nuclear condensation/fragmentation, that is, the irreversible stage of cell
death (Bursch et al., 1996). A pronounced fragmentation of the cytokeratin
was not detected before MCF-7 cells detached from the substrate, which is
a very late stage of cell death in MCF-7 cells and probably reflects secondary
necrosis (Bursch et al., 2000). Remarkably, the vast majority (about 85%) of
MCF-7 cells still contained F-actin when the nucleus was already condensed
(Bursch et al., 2000). Polymerization of G- to F-actin is an ATP-dependent
process and, therefore, F-actin is a sensitive indicator of the metabolic state
of a cell. In support of this notion, electron microscopy and rhodamine 123
staining revealed that even at late stages of the death process, autophagic
vacuoles were associated with clusters of structurally and functionally intact
mitochondria although most of the cytoplasm appeared amorphous (Fig. 1f;
Bursch et al., 1996, 2000). It appears likely that ATP synthesis is maintained
during the progress of autophagic cell death at a level required for the com-
pletion of autophagocytosis. Moreover, transglutaminase, an enzyme cross-
linking proteins and subcellular structures, is activated in apoptotic
hepatocytes (Bursch et al., 1992), but not in tamoxifen-induced PCD of MCF-
7 cells. Thus, the preservation of the cytoskeleton during autophagic death
of MCF-7 cells agrees with current concepts on the cytoskeleton’s function
in autophagy.

LINK BETWEEN CYTOPLASMIC (AUTOPHAGIC) DEGRADATION AND FINAL

NUCLEAR COLLAPSE. This topic constitutes the most enigmatic part of the
autophagic cell death sequence. In apoptosis, many of the essential players
have been identified. Briefly, the typical morphology of apoptotic nuclei,
namely, condensation of chromatin to crescent masses abutting to the nuclear
membrane, results from a specific sequence of cleavage events. Thus, the
genomic DNA is cleaved into large chromatin domains of 50 to 300kbp, and
then in many but not all cell types to oligonucleosomes (for a review, see
Zhang and Xu, 2002). All but the earliest large-domain cleavage events
depend on caspases: The caspase-activated DNAse (CAD/DFF-40), nor-
mally sequestered in the cytoplasm by the chaperone ICAD/DFF-45, is
released and translocated to the nucleus once the chaperone has been
degraded by caspase-3, finally resulting in the oligonucleosomal cleavage
pattern. Furthermore, the nuclear envelope becomes discontinuous, and the
lamin polymer that normally underlies the nuclear membrane is broken
down by proteolysis (Goldberg et al., 1999). What about the nuclear destruc-
tion during autophagic PCD? Cell death induced in caspase-3-deficient
MCF-7 cells by TNF-a as well as staurosporine was not associated with low
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molecular weight (LMW), that is, (oligo)nucleosomal DNA fragmentation,
cell shrinkage, and blebbing (Jänicke et al., 1998). We have confirmed and
extended these observations by showing that caspase-3-deficient MCF-7 cells
exhibit high molecular weight (HMW) DNA fragmentation into 50 to 
300kbp (Bursch et al., 1996). These observations agree well with others
showing that HMW-DNA fragmentation is brought about by caspase-inde-
pendent mechanism(s). Alternative noncaspase proteases conceivably
involved in completion cell suicide may include cathepsins (Roberts et al.,
1999), calpains (Doerfler et al., 2000), serine proteases (Wright et al., 1997),
granzymes (Johnson, 2000), and/or the proteasome complex (Jones et al.,
1995; Johnson, 2000). A nonapoptotic type of cell death was identified in
insect tissues characterized by strong expression of the polyubiquitin gene
and of the multicatalytic proteinase (proteasome; Schwartz et al., 1993).
Ubiquitin binds to cellular proteins to label them for proteolytic degradation
by the proteasome protease. In our studies MCF-7 cells treated with tamox-
ifen showed neither induction of ubiquitin mRNA expression nor synthesis
of proteasome protein above control level. However, preliminary results of
our own obtained with high throughput two-dimensional gel electrophore-
sis of subcellular fractions suggest translocation of proteasome subunits (a,
d, z, t) from the cytoplasm to the nucleus. Interestingly, Arnoult et al.
reported that cytoplasmic extracts from dying Dictyostelium cells were found
to trigger the breakdown of isolated mammalian and Dictyostelium nuclei in
a cell-free system (Arnoult et al., 2001). DNA fragmentation was prevented
by a polyclonal antibody specific for Dictyostelium discoideum apoptosis-
inducing factor (DdAIF), and therefore the authors suggested that DdAIF is
involved in DNA degradation during Dictyostelium cell death. A further can-
didate is endonuclease G, which has been found to be involved in CAD-
independent DNA fragmentation during cell death pathways in which
truncated Bid is generated (van Loo et al., 2002).

Exciting new insights into molecular events regulating cytoplasmic and
nuclear destruction have been provided by studies on developmental cell
death in Drosophila (Lee and Baehrecke, 2001). Thus, salivary gland cell death
during development of Drosophila has been found to include autophagocy-
tosis. At the molecular level, the gene E93 was reported to be sufficient to
trigger cell death and, based on gain-of-function studies, E93 is considered
to be necessary for autophagy (Lee and Baehrecke, 2001). The downstream
effector of E93 includes crq (croquemort) for pro-autophagic signaling, a gene
that is required for phagocytosis during normal embryonic development
(Franc et al., 1999). Importantly, other downstream E93 effectors, namely, rpr,
hid, and grim, are considered to be essential for nuclear apoptotic responses
such as DNA fragmentation (Lee and Baehrecke, 2001). Taken together, these
data suggest that in Drosophila the E93 gene may constitute a key regulator
driving a concerted cytoplasmic and nuclear breakdown during autophagic
PCD.
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MOLECULAR CONTROL AND SIGNAL TRANSDUCTION FOR AUTOPHAGIC

PCD. One of the first molecular links between autophagy and pro-
grammed cell death in mammalian cells has been provided by studies on the
RAS-signaling pathway: expression of oncogenically mutated Ras gene in
human glioma and gastric cancer cell lines induced cell death associated
with autophagocytosis (Kitanaka and Kuchino, 1999; Chi et al., 1999;
Kitanaka et al., 2002). The nuclei remained relatively well preserved and
were negative for TUNEL staining, thus matching the features of autophagic
PCD (cf. Table 1; Kitanaka and Kuchino, 1999; Chi et al., 1999; Kitanaka et
al., 2002). Furthermore, Ras-induced cell death occurred in the absence of
caspase activation, it did not require wt-p53 activity, and it was not inhib-
ited by the antiapoptotic Bcl-2 protein (Kitanaka and Kuchino, 1999; Chi 
et al., 1999; Kitanaka et al., 2002). These features of Ras-induced cell death
as demonstrated in experimental systems were recently confirmed and
extended by clinical observations on spontaneous regressing neuroblastoma
in humans: Cell death was found to be associated with increased Ras expres-
sion, but lack of capase-3 activation and DNA fragmentation (Kitanaka et al.,
2002). Notably, the functional effector machinery for the execution of apop-
tosis could be activated in the Ras-transformed cells by TNF-a, demonstrat-
ing that the manifestation of autophagic cell death does not simply reflect
defective apoptosis (Chi et al., 1999). Rather, cells apparently switch among
different suicide pathways depending on the external death signal. Likewise,
MCF-7 may enter the autophagic, caspase-independent PCD pathway upon
antiestrogen treatment, whereas TNF-a/TRAIL-induced cell death of MCF-
7 cells was found to involve activation of the initiator caspase-8 at the apex
of a caspase cascade including cleavage cytoskeletal proteins (Fig. 2, Table
1; MacFarlane et al., 2000).

Of note is that cell death induced by the oncogenic Ras was dependent
on the activity of phosphatidylinositol-3-kinases (PI3-K), a physiological
downstream effector of Ras (Chi et al., 1999). In turn, PI3-kinases downstream
effectors comprise the mTOR/p70S6-kinase pathway, which is considered to
be the master switch between catabolism and anabolism of cells; mTOR may
also exert a plethora of functions in various pathways of programmed cell
death (Blommaart et al., 1997; Klionsky and Emr, 2000; Raught et al., 2001;
Castedo et al., 2002). The hypophosphorylated p70S6-kinase promotes
detachment of ribosomes from endoplasmic reticulum, presumably one of
the initial molecular events in the sequestration step of autophagy (for a
review, see Blommaart et al., 1997; Klionsky and Emr, 2000). mTOR also might
turn out to link recent observations on some of the yeast Apg-genes
(autophagy-defective genes) to cell death. To date, 14 Apg-genes are known
to act in a conjugation cascade controlling the initiation and execution of
autophagy; notably, these molecular processes have been found to be highly
conserved from yeast to humans as reviewed elsewhere (Blommaart et al.,
1997; Mizushima et al., 1998; Klionsky and Emr, 2000). In the context of pro-
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grammed cell death, two members of this gene family will be discussed
briefly. First, human Apg5 (hApg5) was considered to be homologous to
“apoptosis specific protein” (ASP; Hammond et al., 1998), and this work 
has been repeatedly cited as providing evidence for a molecular link bet-
ween programmed cell death and autophagy (for a review, see Yung et al.,
2002). However, this hypothesis can no longer be maintained. Thus, as most
recently demonstrated by Tolkovsky and coworkers, the apoptosis-
specific protein (ASP 45kDa) and hApg5 are unrelated proteins that share the
property (along with other proteins) of interacting with c-jun polyclonal anti-
bodies used in the earlier studies (Yung et al., 2002). Second, beclin-1
(Apg6/vps30) has been described as inducing autophagocytosis in mam-
malian cells; it is a bcl-2-interacting protein with structural similarity to the
yeast autophagy gene apg6/vps30 (Aita et al., 1999; Liang et al., 1999). In
MCF-7 cells, the autophagocytosis-promoting activity of beclin 1 was associ-
ated with the inhibition of MCF7 cell proliferation, in vitro clonogenicity and
tumorigenesis in nude mice, but no evidence for an induction of cell death
was observed (Liang et al., 1999). However, most recent studies on neurode-
generation in Lurcher mice provided evidence for the interaction of beclin-1
with two other proteins, namely, the mutated glutamate GluRdelta2(Lc)
receptor and nPIST, a novel isoform of a PDZ domain-containing protein that
binds to this receptor, and that the interaction of these proteins results in
autophagic death of cerebellar Purkinje cells (Yue et al., 2002).

Most recent studies by Kimchi and coworkers revealed the death-
associated protein (DAP)-kinases as important regulators for both apoptosis
and autophagic PCD (Inbal et al., 2002). DAP-kinases (DAPk) are a group of
Ca2+ calmodulin-regulated serine/threonine kinases, known for a few years
to be involved in a wide array of apoptotic pathways initiated by interferon-
g, TNF-a, CD95-L, and detachment from extracellular matrix (Cohen and
Kimchi, 2001). Recently, DAPk-related protein kinase (DRP-1) was isolated
as a novel member of the DAP-kinase family of proteins (Shani et al., 2001).
DRP-1 and DAPk have been found to possess rate-limiting functions in two
distinct cytoplasmic events, namely, membrane blebbing (characteristic of
apoptotic cell death) as well as extensive autophagy (typical of autophagic
PCD). These two different cellular enzyme activation outcomes occurred
independent of caspase activity (Inbal et al., 2002). Furthermore, expression
of a dominant negative mutant of DRP-1 or of DAPk antisense mRNA
reduced autophagy induced by antiestrogens, amino acid starvation, or
administration of interferon-gamma (Inbal et al., 2002). Notably, these
mutants did not prevent nuclear fragmentation, suggesting that DRP-1 and
DAPk specifically act in signal transduction for cytoplasmic rather than
nuclear degradation (Inbal et al., 2002). In line with this, immunogold 
staining showed that DRP-1 is localized inside the autophagic vesicles 
(Inbal et al., 2002). Taken together, these findings strongly suggest the direct
involvement of DRP-1 in the process of autophagy.
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BIOGENESIS OF LYSOSOMES IN AUTOPHAGIC PCD. As outlined thus far,
there is cumulative evidence that a set of molecules closely associated with
the initial steps of autophagocytosis also appears to affect the life–death deci-
sion of cells. What about interactions between the control of biogenesis of lyso-
somes (Luzio et al., 2000) and their subsequent fusion with autophagosomes
with that of the cell’s suicide? In regressing endocrine-dependent tumors, de
novo synthesis and the increased activity of lysosomal enzymes were
described (Gullino, 1980). More recently, TNF-a was found to induce an
autophagic type of cell death in T-lymphoblastic leukemic cells; 3-MA inhib-
ited both the formation of autophagosomes and cell death (Jia et al., 1997).
However, asparagine, which inhibits the fusion of lysosomes with
autophagosomes, did not prevent TNF-a-induced cell death (Jia et al., 1997).
Thus, inhibition of an event downstream of sequestration did not affect the
execution of autophagic cell death, suggesting that at least in T lymphocytes
the supply of lysosomes might not be a checkpoint for initiation of this type
of PCD. Furthermore, increasing the lysosomal pH by monensin or NH4Cl
did not protect kidney cells against ricin-induced lysis, a type of cell death
exhibiting characteristic features of PCD (Sandvig and van Deurs, 1992).
Notably, 3-MA has been reported to slightly increase lysosomal pH
(Tolkovsky et al., 2002). However, as an increase in lysosomal pH seems not
to prevent cell death, an increase in lysosomal pH as a possible cause for the
protective action of 3-MA in the MCF-7 model of autophagic PCD appears
unlikely (Sandvig and van Deurs, 1992). In support of this hypothesis,
tamoxifen-induced autophagic cell death in MCF-7 cells was found not to be
associated with an expansion of the lysosomal compartment. Thus, based on
histochemical and biochemical studies, we found evidence of neither an
increased rate of synthesis nor activity of lysosomal proteases (Table 1; L.
Török, U. Fröhwein, C. Gerner, W. Bursch, unpublished observation). In
summary, at present the interactions of lysosome biogenesis with the
pathway(s) leading to autophagic cell death remain elusive. However, the
current functional and molecular data suggest that the events controlling 
the formation of autophagosomes rather than the biogenesis of lysosomes
might provide a superior regulatory link(s) between autophagocytosis 
and cell suicide.

DIFFERENCES AND COMMONALITIES BETWEEN PCD

PATWAYS: IS AUTOPHAGIC PCD CASPASE-INDEPENDENT?

As outlined above, apoptosis and autophagic PCD are not mutually exclu-
sive phenomena; they may occur simultaneously in tissues. The same cell
also may respond to death signals by entering either the apoptotic (Type I)
or autophagic (Type II) PCD pathway as demonstrated by Kuchino and
coworkers (Chi et al., 1999; Kitanaka and Kuchino, 1999; Kitanaka et al.,
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2002). Studies on isolated neurons revealed that the manifestation of
autophagic cell death may be controlled upstream of caspase cascades, but
downstream of JNK/p38 (after NGF withdrawal) and p53 (after cytosine ara-
binoside; Xue et al., 1999). These studies also suggested that the same apop-
totic signals which target mitochondria also activate autophagy (cf. Fig. 2,
Tolkovsky et al., 2002). Once activated, autophagy may mediate caspase-
independent neuronal cell death (Xue et al., 1999). The lysosomotropic agent
chloroquine induced cell death with overlapping features of neuronal
autophagic PCD and apoptosis, namely, concentration- and time-dependent
accumulation of autophagosomes, caspase-3 activation; cell death was inhib-
ited by 3-methyladenine, but not by Boc-Asp-FMK (BAF), a broad caspase
inhibitor. Furthermore, targeted gene disruptions of p53 and bax inhibited
that of bcl-x-potentiated chloroquine-induced neuron death. Caspase-9- and
caspase-3-deficient neurons were not protected from chloroquine cytotoxic-
ity (Zaidi et al., 2001). In studies with MCF-7 cell cultures, at the morpho-
logical level a subfraction of dying cells showed autophagic cell death with
an apoptotic nuclear morphology (Bursch et al., 1996). At the biochemical
level, some nuclear proteins are cleaved during apoptosis and autophagic
cell death such as SUPT6H, HA95, and PWP-1; other nuclear proteins are
cleaved exclusively during apoptosis (of Jurkat cells) but not during
autophagic PCD, for example, lamin-B and the scaffold attachment factor
(Franc et al., 1999; Table 1). Likewise, autophagic and apoptotic PCD seem
to share the cell’s stress response as indicated by translocation of heat shock
protein-90 (Table 1). Recent studies of the role of DAP-kinases also revealed
some commonalities between the apoptotic and autophagic death pathway
(Inbal et al., 2002). Thus, the expression of both the death-associated protein
kinase (DAPk) and DAPk-related protein kinase (DRP-1) was found to
trigger two major cytoplasmic events: (1) membrane blebbing, which is 
characteristic of “classical” apoptosis, and (2) autophagy as typical of Type
II PCD. In conclusion, although a few molecular pieces such as the 
DAP-kinases and RAS-signaling pathway in mammals as well as the E93-
pathway in Drosophila have emerged recently, the specific molecular
pattern(s) of autophagic cell death remain to be proven.

Remarkably, a number of observations suggest that the autophagic type
of cell death ensues independent of caspases. Thus, neuronal cell death was
induced by RAS expression (Chi et al., 1999; Kitanaka and Kuchino, 1999;
Kitanaka et al., 2002), death of sympathetic cells (Xue et al., 1999), death of
MCF-7 after tamoxifen (C. Gerner and U. Fröhwein, unpublished observa-
tion), or as a consequence of DAP-kinase expression (Inbal et al., 2002).
However, salivary gland cell death during development of Drosophila has
been reported to include autophagocytosis but also to require caspase activ-
ity; the role of caspases at distinct stages of autophagy is not clear (Lee and
Baehrecke, 2001). Thus, autophagic PCD cannot be specifically attributed to
caspase-independent pathway(s) of PCD.
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What would the advantage of autophagic PCD be? It is tempting to 
speculate that self-digestion preceding suicide might reduce the functional
load imposed on the surviving cells by phagocytosis and breakdown of huge
amounts of dead cells as necessary in remodeling tissues; thereby, a rapid
elimination of cells would be facilitated and help to prevent inflammatory
and immunological responses. In addition, soluble molecules resulting from
autophagic breakdown might be recycled by other mechanisms such as
pinocytosis. Autophagy preceding cell death may also reflect a cell’s adap-
tive response to sublethal (nonnecrotic) conditions such as nutrient/growth
factor deprivation or cell damage by cytotoxic drugs, hypoxia, and so on.

CONCLUSIONS

PCD is an essential phenomenon in normal development and adulthood of
multicellular organisms. Cells use different ways for active self-destruction,
with the morphology ranging from apoptosis to autophagic cell death. A
functional link between autophagocytosis and a subsequent nuclear collapse
(cell death) is suggested by a number of studies showing that 3-
methyladenine inhibits both formation of autophagosomes and the mani-
festation of cell death (nuclear collapse). In mammalian systems, molecular
links between autophagocytosis and eventual cell death have been provided
by recent findings on DAP-kinases and Ras-signaling (including PI3-
kinases). Additional—but less clear—evidence for molecular events that
might be associated with a cell’s choosing autophagic PCD includes
mTOR/p70/S6 signaling and the autophagocytosis gene apg6/vps30
(beclin-1). In Drosophila, the E93 gene appears to be a key regulator, driving
a concerted cytoplasmic and nuclear breakdown during autophagic PCD.
However, apoptosis and autophagic cell death are not mutually exclusive
phenomena; they may occur simultaneously in tissues or even conjointly in
the same cell. In vivo, cell residues resulting from both processes may be
cleared by heterophagy. It should be emphasized that autophagic and apop-
totic PCD appears to be highly conserved during evolution as it occurs in
unicellular organisms (Ameisen, 1996), in the green alga Volvox sp. regulat-
ing the germ-soma dichotomy (Kirk et al., 1987), in the slime mold Dic-
tyostelium discoideum (Cornillon et al., 1994; Olie et al., 1998), and last but not
least, in plants (Beers and McDowell, 2001). Golstein and coworkers devel-
oped the hypothesis that a single core mechanism of PCD may have devel-
oped before the postulated multiple emergences of multicellularity
(Cornillon et al., 1994; Olie et al., 1998). According to this hypothesis, the
phenotypic variations of PCD would result from differences in a cell’s enzy-
matic equipment and mechanical constraints. Probably the “older”
autophagic cell death pathway has been improved by caspases rendering
possible more precise and more rapid cutting down of molecules essential
for survival of cells. Evolutionary conservation of death pathways would
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increase the organism’s flexibility to respond to physiological and nonphys-
iological demands.
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CHAPTER

13

THE RECOGNITION AND

ENGULFMENT OF APOPTOTIC

CELLS BY PHAGOCYTES

RAYMOND B. BIRGE

ABBREVIATIONS

C. elegans Caenorhabditis elegans
Crk CT10-regulator of kinase
DOCK180 Downstream of Crk-binding protein
SH2 domain Src homology 2 domain
SH3 domain Src homology 3 domain
PTB domain Protein tyrosine-binding domain
LRP Low density lipid-related protein
ABCA1 ATP-binding cassette transporter 1
SP-A, SP-D Surfactant protein A, D
SR-A (B, C, D, E, F) Scavenger receptor class A (B–F)
MBL Mannose-binding lectin
C1q, iC3b Complement factors
CRP C-reactive protein
LOX-1 Lectin like oxidized LDL receptor-1
SAP Serum amyloid protein
PTX Pentraxin
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Ig Immunoglobulin
CR3, CR4 Complement receptors 3, 4
PAMP Pathogen-associated molecular pattern
ACAMP Apopototic cell-associated molecular pattern
TGF-b Transforming growth factor-beta
IL-10 Interleukin-10
PGE2 Prostoglandin E2
PS Phosphatidylserine
PS-R Phosphatidylserine receptor
avb5/avb3 integrin Alpha v beta 3,5 integrin
MAC Membrane attack complex
ICAM Intercellular adhesion molecule-3
Gas-6 Growth arrest gene factor-6
MFG-E8 Milk fat globule EGF factor-8
TSP Thrombospondin
Mf Macrophage
DC Dendritic cell
RPE Retinal pigmented epithelial cells
ROS Rod outer segments
VN Vitronectin
MerKD Mer receptor tyrosine kinase-dead
APC Antigen-presenting cells
CTL Cytotoxic T lymphocyte
MHC Major histocompatibility complex
FAK Focal adhesion kinase
PKC Protein kinase C

During evolution, the progression from unicellular autonomous organisms
to socialized multicellular organisms led to a fundamental set of new bio-
logical rules with respect to how cells recognize and respond to damaged or
unnecessary neighbors. Not only did such early multicellular organisms
have to learn to socialize and “love thy neighbor,” they also had to learn to
“respect their dead.” As part of this doctrine, not only did life and death
decisions change meanings with respect to the survival of the organism, but
once death occurred, the remaining living cells were responsible for dispos-
ing of corpses to prevent them from decaying and poisoning the tissue envi-
ronment. In this capacity, cells in multicellular organisms have coevolved
mechanisms to cannibalize their neighbors in a safe and efficient manner. As
outlined below, the recognition and efficient clearance of apoptotic cells by
phagocytes occur via evolutionarily conserved and tightly regulated path-
ways, whose function is essential for the homeostasis of the multicellular
organism.
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LESSONS FROM C. ELEGANS

The genetics of cell death learned from studies in C. elegans established the
notion of a centralized cell death machine, collectively referred to as the
“apoptosome.” In C. elegans, the basic machinery is encoded by three genes:
ced-3, a pro-caspase (pro-Ced-3); ced-4, an Apaf-1-related procaspase activa-
tor; and ced-9, a Bcl-2-like cell death inhibitor (1). This machinery is inactive
but poised to become activated in all somatic and germ line cells. Following
a pro-apoptotic stimulus, the Ced-9 antiapoptotic function is antagonized,
leading to Ced-4-dependent activation of Ced-3, and the execution of various
aspects of apoptosis (2). The final result of apoptosis is not simple cell
destruction and dissolution, but rather a complex network of cell interac-
tions in which the apoptotic cell interacts with a phagocyte to initiate signals
that promote rapid internalization. In the C. elegans model, seven genes have
been identified (ced-1, ced-2, ced-5, ced-6, ced-7, ced-10, and ced-12) that, when
mutated, induce a phenotype in which apoptotic corpse removal or diges-
tion is impaired (3–5). Based on the conceptual framework established for
the apoptosome, it is tempting to speculate that the aforementioned engulf-
ment genes might comprise interacting modules, such as ligand–receptor
pairs, or signaling networks that internalize apoptotic cell-bound receptors,
perhaps termed an “engulfosome,” which is fundamentally the same in all
phagocytosing cells. This teleological argument, which in certain aspects
may be correct, also appears oversimplified based on the diversity of phago-
cytosis receptors and pathways in mammalian cells. A centralized engulfo-
some analogous to the apoptosome required for all engulfment pathways
has yet to be observed experimentally.

ENGULFMENT MODELS IN C. ELEGANS

The genetic studies in C. elegans revealed that the seven genes involved in
engulfment act in two distinct and partially redundant complementation
groups. The Ced-2, Ced-5, and Ced-10 proteins are components of a Rac-
GTPase signaling network that regulates cytoskeletal reorganization, cell
adhesion and motility, and membrane ruffling and filopodial formation (6–8)
(Fig. 1). Interestingly, mutations in ced-2, ced-5, or ced-10 genes result not only
in defects in engulfing corpses, but also in defects in distal tip cell migration,
suggesting that cytoskeletal events governing phagocytosis and cell migra-
tion must be fundamentally similar (6, 9). Ced-2 is similar to the SH2/SH3
domain containing Crk II protein (10) and Ced-5 is similar to human
DOCK180, which was originally cloned as a Crk-SH3-binding partner
(downstream or CRK signaling) (11, 12). Ced-10 encodes the worm homolog
of Rac1, a Rho-family GTPase involved in polarized cell migration (6). In
addition to the Crk-binding motif, DOCK180 itself contains a centralized
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DOCKER domain that binds Rac1, and an N-terminal SH3 domain that binds
Ced-12/ELMO (13). Recent biochemical studies suggest that together 
the complex of DOCK180 (Ced-5)/ELMO (Ced-12) constitutes an unusual
guanine nucleotide exchange protein for Rac1, resulting in GTP loading and
activation (14). Hence, the Ced-2, Ced-5, Ced-10, and Ced-12 complementa-
tion group comprises an integrated network of signaling proteins that can
form a molecular complex to activate Rac1 at the plasma membrane. In mam-
malian cells, the Crk/DOCK180/Rac1 complex is brought to the plasma
membrane by the activation of avb5 integrin, although it is not yet clear what
receptors in the nematode are upstream of this module (Fig. 1). An impor-
tant question for both mammalian and nematode studies will be to elucidate
how universally Crk, DOCK180, and Rac1 are employed in postreceptor
engulfment pathways.

The second complementation in C. elegans comprises the ced-1, ced-6, and
ced-7 genes. In general, the nature of interaction of the gene products is less
defined compared to the GTPase pathway described above since only two
of the three gene products (Ced-1 and Ced-6) exist in a functional complex.
Ced-6, as well as its human homolog GULP, encodes a Shc-like adapter
protein, containing an N-terminal phosphotyrosine binding (PTB) domain,
a central leucine zipper that mediates protein dimerization, and a carboxyl-
terminal serine/proline-rich region (15–17). Although originally Ced-6/
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ced-2/crk

ced-5/Dock180

ced-10/Rac1

ced-7/ABCA1
ced-6/Gulp

Extracellular

ced-12/Elmo

= membrane microdomains 

ced-1/CD91

cytoskeletal
rearrangements

(membrane changes)

Signal from receptor (integrin) 

Cholesterol transport 
(membrane changes)

FIGURE 1. Ced-2, ced-5, ced-12, ced-10, ced-1, and ced-6 are signaling modules that
mediate phagocytosis. In the phagocytosing cell, the Ced-2, -5, -10, -12 module is
involved in Rac activation, a Rho-GTPase implicated in cytoskeletal and membrane
reorganization. Ced-6 is a PTB-domain adapter protein that interacts with the cyto-
plasmic tail of Ced-1, and may be regulated by Ced-7, a lipid transport protein. Both
complementation groups have effects on membrane structure and function, and 
as illustrated, the possibility exists that these pathways create as yet unidentified
membrane microdomains (the engulfosome) required for apoptotic cell recognition
(shown as hatched microdomains on the membrane).



Gulp was identified as an “orphan adapter,” it has now been clearly demon-
strated that Ced-6/Gulp can bind to the cytoplasmic domain of Ced-1 (18).
Ced-1 encodes a transmembrane receptor that contains atypical EGF-like
repeats in the extracellular domain, a single transmembrane spanning
domain, and a short cytoplasmic domain that contains a NPXY and YXXL
motifs, the former of which mediates a specific interaction with the PTB
domain of Ced-6 (19, 20). Employing a combination of in silica informatics
studies as well as classic biochemical confirmation, Ravichandran and col-
leagues identified the mammalian homolog of Ced-1 as CD91/LRP (low
density receptor-related protein), an endocytic/phagocytic receptor impli-
cated in the phagocytosis of microbial pathogens (18). Interestingly, using a
Ced-1-GFP reporter protein (where GFP was fused to the intracellular
domain of Ced-1), Zhou and colleagues showed that Ced-1 becomes clus-
tered around apoptotic cells at the plasma membrane, suggesting that it
binds a specific ligand on the apoptotic cell which triggers receptor capping
and internalization (19). Although Ced-6 binding to Ced-1 may trigger reor-
ganization of the actin cytoskeleton, possibly via a Rho family GTPase, it is
unlikely that Ced-1 activates the Crk-DOCK180-Rac1 switch, at least from
genetic studies, since ced-2, 5, or 10 do not compensate for ced-1 or ced-6
mutations in the nematode (21).

The third gene in this group, ced-7 (ABCA1), encodes a protein that
belongs to the large family of ATP-binding cassette proteins or ATP-
hydrolyzing proteins which are associated with active membrane transport
processes (22, 23). Although the function of ABC1 is not completely under-
stood, experiments utilizing neutralizing antibodies or pharmacological
inhibitors suggest that ABCA1 functions as a lipid transporter and may play
a role in general phospholipid organization and topology (24). One of the
most interesting aspects of Ced-7/ABCA1 biology is that the protein is
required on both the phagocytic cell as well as the apoptotic cell (25).
Although it is possible that Ced-7 participates in a homotypic interaction,
erythrocytes isolated from ABCA1-deficient mice exhibit defects in phos-
phatidylserine (PS) externalization that normally result from increases in
cytosolic calcium. This supports the idea that Ced-7/ABCA1, at least on the
apoptotic cell, promotes PS externalization which serves as a recognition
signal to the phagocyte (22, 26). Interesting, with respect to the phagocyte
biology, studies by Zhou et al. showed that Ced-7 was required for Ced-1-
mediated receptor clustering around the apoptotic cell (19). Therefore, an
attractive idea, posited by Hengartner, suggests that Ced-7 indirectly pro-
motes Ced-1/Ced-6 signaling by regulating specific lipid microdomains,
such as Cholesterol-rich membrane domains or rafts or caveoli, or not yet
defined microdomain compartments that regulate engulfment modules (27)
(Fig. 1). It is also noteworthy that Crk (via binding p130cas) induces the for-
mation of membrane ruffles, which themselves contain membrane rafts (9).
Therefore, returning to the issue of the putative engulfosome described
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above, such a concept might be envisioned as a higher-order membrane
structure in which central components of the engulfment machinery reside.
Although speculative, such microdomains might be specialized for phago-
cyte/apoptotic cell recognition, as well as housing signaling molecules
required for internalization (Fig. 1).

CHANGES IN CELL SURFACE MOLECULES CONTRIBUTE TO

THE RECOGNITION OF APOPTOTIC CELLS BY PHAGOCYTES

The generally accepted paradigm for engulfment of apoptotic cells is that
apoptotic cells display “eat me” signals which are recognized and processed
by the phagocyte (28, 29). In all organisms investigated to date, the most
prominent cell surface change is the exposure of PS on the outer leaflet of
the plasma membrane. In mammalian cells, the phospholipids of the 
plasma membrane are asymmetrically distributed between the inner and 
outer bilayer leaflets (the extracellular leaflet membrane contains zwitteri-
onic phospholipids, phosphatidylcholine, and sphingomyelin, and the 
intracellular leaflet membrane partitions aminophospholipids, phos-
phatidylethanolamine, and PS) (24). With respect to the function of PS in
normal cells, such asymmetry is maintained by the action of at least two
competing enzymes, an ATP-dependent translocase or “flipase” that actively
transports PS to the inner membrane, and a calcium-dependent scramblase
that functions to randomize phospholipids in the plasma membrane (24).
During apoptosis, for reasons that are only beginning to be understood and
that are in part cell-type-specific (30), the activities of the cytoplasmically
directed translocases are inhibited, and the activity of the scramblase acti-
vated, resulting in the rapid relocalization of PS (31). In mature erythrocytes,
for example, the loss of PS-translocase activity observed during apoptosis is
blocked by Z-DEVD-FMK inhibitors, indicating that PS exposure may occur
downstream of caspase activation (32). It is also noteworthy that Ced-7 may
potentially serve as an ATP-dependent translocase which transports PS from
the inner to outer membrane (33). Although the generality of ABCA1 being
a PS transporter is still controversial, it is apparent that redundant pathways
for PS exposure can occur, and early PS exposure on the extracellular surface
is clearly a central theme with respect to the recognition of apoptotic cells
by phagocytes.

However, it is important to note that such a loss in transmembrane
phospholipid asymmetry and PS exposure in apoptotic cells is only a single
readout of many other complex perturbations in the biophysical and bio-
chemical properties of the plasma membrane. Indeed, there is now a great
deal of evidence demonstrating the complex modification of lipids, sugar
chains, and glycoproteins on the surface of the apoptotic cell that is recog-
nized by scavenger receptors on the phagocytes (34). Although the nature of
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the altered lipids and proteins and the mechanism(s) by which they are mod-
ified remain unclear, mass spectrometry and biochemical studies by Podrez
et al. identified specific oxidized species of phosphatidylcholine (PC), but
not nonoxidized PC, as high-affinity ligands for the type-B scavenger recep-
tor CD36 (35, 36). Interestingly, in some cases, PS oxidation has also been
implicated in both the PS externalization and recognition by macrophages,
again suggesting that phospholipid oxidation is an important component of
phagocyte recognition (37). Other changes in the apoptotic cell membrane
include alterations in mannose- and galactose-containing glycoproteins (38),
recruitment of heparin-binding sites (39), and the modifications of adhesion
molecules such as ICAM-3, the latter of which is recognized by CD14 on
phagocytes (40). In general, the relevant ligands on the apoptotic cell have
not been well characterized. Clearly, a careful survey by mass spectrometry
to identify altered glycoproteins during apoptosis, analogous to what has
been performed to identify proteins in the phagosome (41), is a valid and
important use of modern proteomics.

ROLE OF PHAGOCYTOSIS IN THE CELL DEATH PROGRAM:

EVIDENCE FOR BIDIRECTIONAL SIGNALING BETWEEN

PHAGOCYTES AND TARGET CELLS

Although it is clear that specific “eat me” signals on the apoptotic cell trigger
recognition by the phagocyte, new genetic studies in the C. elegans suggest
that phagocytes play a much more active role in the cell death process than
originally realized (42, 43). Hence, in the refined models, phagocytes are not
simply bystander cells, but participate in a nonautonomous manner to the
killing. While there has been a great deal of speculation about the rationale
for such bidirectional signaling and how relevant it may be in vivo (44, 45),
the idea is attractive because it suggests that apoptosis and phagocytosis 
are tightly coupled. As discussed below, persistent apoptotic corpses in the
absence of engulfment proceed to a secondary necrosis, which in turn can
lead to the production of pro-inflammatory cytokines and tissue inflamma-
tion, or possibly fragments of apoptotic blebs that could serve as autoanti-
gens. In the nematode studies, the effects of the feedback circuit were most
striking in partial ced-3 loss of function mutants and not observed in mutant
worms that completely lacked ced-3, indicating that the signals from the
phagocyte positively feed back to the central apoptosome machinery, result-
ing in caspase activation (42, 43).

The idea that phagocytes actively participate in the process of apoptosis
raises a number of potentially interesting questions. What is the nature of
the signals initiated by the apoptotic cell? What are the counteractive signals
contributed by the phagocyte and are they reversible? How quickly are the
signals transmitted and in which cell compartments do the “committed
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steps” occur? With respect to the recognition stages, these could include
classic “eat me” signals, such as exposure of PS on the outer leaflet of the
cell, as well as modified lipids and carbohydrates (29). In addition, Savill and
colleagues advanced a conceptual argument that in addition to “eat me”
signals, cells also use another mechanism in which repulsive cues that typ-
ically repel live cells and phagocytes are “disabled” (46). In the first example,
during apoptosis, homophilic ligation of platelet-endothelial cell adhesion
molecule 1-PECAM-1 or CD31 (a signal that would normally mediate
detachment and repulsion) is inactivated, reversing the repulsive signal 
and promoting cell-cell tethering between the apoptotic cell with the
macrophage. Perhaps it is in this context that life and death decisions
between the apoptotic cell and the phagocyte are decided. Moreover, from
a practical viewpoint, if the phagocyte mechanism of cell death is wide-
spread, then extreme caution must be exhibited in interpreting apoptosis
studies in vitro or without phagocytes. Typically, in vivo, apoptotic cells,
with distinctive condensed and marginated nuclei, are found inside 
membrane-bound phagocytic vacuoles, and indeed this may be the more
physiological milieu for the execution phase of apoptosis.

MULTIPLE RECEPTORS IN MAMMALIAN CELLS PARTICIPATE

IN THE PHAGOCYTOSIS OF APOPTOTIC CELLS

The recognition of apoptotic cells by receptors on phagocytes is an exceed-
ingly complex process in which multiple receptors simultaneously interact
with multiple surface components of the apoptotic cell (Table 1). In part
because the nature of the apoptotic cell membrane has not been fully appre-
ciated, the full complement of surface proteins that recognize apoptotic cells
is also not fully known. The complexity of receptor utilization in mammalian
cells is clearly different from the genetic studies in C. elegans, where only two
transmembrane proteins (Ced-1 and Ced-7) were identified. Why are so
many receptors used in the recognition of apoptotic cells? The answers to
these questions are beginning to emerge based on studies showing that
ingestion of apoptotic cells can influence multiple differentiation and
immunological outcomes in immune cells such as macrophages and den-
dritic cells (DCs) (47). Indeed, specialized and nonoverlapping receptor
systems can permit bifurcations toward specific postreceptor signaling
events as well as variations in trafficking and processing of the apoptotic cell
once internalized. Clearly, the importance of receptor redundancy will be
better defined as the downstream signaling of the individual receptors
becomes more clearly elucidated. As outlined in Fig. 2, although not mutu-
ally exclusive, there are four general subclasses of receptors that recognize
apoptotic cells. These receptors recognize (1) pattern recognition, (2) oxi-

318 III. HOW CELL DEATH IS CARRIED OUT



dized phospholipid/LDL-like structures, (3) in the context of PS, and (4) in
the context of homotypic interactions (Fig. 2).

SUBCLASS I: PATHOGEN-ASSOCIATED MOLECULAR

PATTERNS VERSUS APOPTOTIC CELL-ASSOCIATED

MOLECULAR PATTERNS

An interesting analogy has been recently proposed suggesting that 
structures on the surface of apoptotic cells share common epitopes with
structures on the surface of the microbial pathogen, the so-called pathogen-
associated molecular patterns (PAMPs) (48). The basic argument is that (i)
apoptotic cells, like microbial pathogens, are able to activate complement
proteins and recruit acute-phase serum proteins to their surface, and (ii) once
opsonized, the modified apoptotic cells are recognized by pattern recogni-
tion receptors important for the innate immune response (49–52). Such recep-
tors include CD14 (the LPS receptor), CD91/calreticulm, complement
receptors CR3 and CR4, Fc-gR1, and several of the scavenger receptors (Table
1). As part of the innate immune response, soluble opsonizing factors that
include immunoglobulins and complement factors recognize PAMPs, and
through direct binding coat microorganisms that gain access to the host envi-
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TABLE 1. PHAGOCYTIC RECEPTORS (LEFT COLUMN) INVOLVED IN THE

RECOGNITION AND CLEARANCE OF APOPTOTIC CELLS. THE PUTATIVE LIGANDS

ON THE APOPTOTIC CELL (MIDDLE COLUMN) AND THE INDICATION WHETHER THE

LIGANDS REQUIRE SOLUBLE OPSONIZING FACTORS (RIGHT COLUMN) TO

FACILITATE RECEPTOR BINDING ARE NOTED

Requires
Surface Receptor Ligand Opsonization

CD91/calreticulum C1q, SP-A, SP-D, MBL Yes
(collectin receptors) (Ced-1)

CD14 ICAM-3 No
FCgRI, III IgG, CRP, SAP, PTX Yes
CR-3/CR-4 C1q, iC3b Yes
Scavenger receptors (SR-A, SR-B1, OxLDL, phospholipid No

CD36, CD68, SREC, Lox-1
Croquemort)

C-Mer/Tyro-3 Gas-6, protein S Yes
PS-R Phosphatidylserine (PS) No
b-GPI-R b-GPI Yes
Ced-7 Ced-7 No
avb5/avb3 MFG-E8, TSP Yes



ronment, thereby permitting recognition and engulfment by immune cells.
By a mechanism that is not clearly understood, apoptotic cells also induce
activation of both the classical and alternative complement pathways, result-
ing in the formation of intermediates that include C1q, iC3b, and mannose-
binding lectin (MBL) (members of the collectin family of proteins) (52) (Fig.
2, panel 1). Once generated, these factors bind and opsonize apoptotic cells,
and similar to PAMPs, direct their binding to receptors such as CR3 and CR4
(53, 54).

However, an important distinction between PAMPs and apoptotic cell-
associated molecular patterns (ACAMPs) has to be drawn given the vastly
different inflammatory responses mediated when phagocytes encounter
pathogens versus apoptotic cells. Phagocytic engulfment of bacterial
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FIGURE 2. Mechanisms of apoptotic cell recognition by phagocyte receptors. Many
receptors have been identified on the phagocyte membrane (see Table 1). Based on
the discussion in the text, the receptors can be grouped into four subclasses based on
how they recognize the apoptotic cell. These include receptors such as FC-gRI, CR3,
CR4, and CD91, implicated in the innate immune response, that recognize ACAMP
on the apoptotic cell in the context of complement or acute-phase proteins (panel I);
scavenger receptors (SR-A, SC-B, CD68, Lox, and SREB) that recognize oxidized LDL
and phospholipids on the apoptotic cells (panel II); signaling receptors, such as inte-
grins, Mer, and PS-R, that recognize apoptotic cells within the context of PS exposure
(panel III); and CD31 and Ced-7/ABCA1 that recognize apoptotic cells homo-
typically, either to promote engulfment (ABCA1) or promote repulsion (CD31) (panel
IV).



pathogens promotes a robust pro-inflammatory response, whereas engulf-
ment of apoptotic cells mediates secretion of antiinflammatory factors such
as transforming growth factor b (TGF-b), PGE2 (prostaglandin E2), and 
interleukin-10 (IL-10), which block inflammation (55, 56). In an attempt to
resolve this conundrum, Fadok and colleagues suggest that one mechanism
accounting for these distinctions is the expression of PS itself on the surface
of the apoptotic cell (57, 58). These investigators suggest that the binding of
PS to the PS receptor (PS-R) on the phagocyte acts as an overriding molec-
ular switch, bypassing the inflammatory response (Fig. 3). Because of their
cell walls, microbial organisms do not possess surface PS, and hence do not
elicit PS-mediated antiinflammatory signaling. Necrotic cells, possibly via
the leakage of cytoplasmic PS-binding proteins such as annexin V or cytoso-
lic protease which cleave the PS-R, mask PS-R–PS interactions and thereby
bypass the antiinflammatory switch. Consistent with this latter example,
cystic fibrosis patients show infiltrating neutrophils that secrete elastase,
which cleaves and inactivates the PS-R, resulting in downmodulation 
and concomitant impairment of phagocytosis in the resident alveolar
macrophages (59). Clearly, an important question pertains to the molecular
mechanisms of PS-mediated TGF-b upregulation, and whether other recep-
tors, besides PS-R, participate in cytokine secretion.
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FIGURE 3. PS exposure on the apoptotic cell acts as an antiinflammatory molecular
switch. As indicated in the text, both microbial pathogens and apoptotic cells utilize
similar receptors for phagocytic clearance. An interesting model, by Fadok and col-
leagues, suggests that PS exposure on the apoptotic cell, but not on the bacterial cell
wall, downmodulates the inflammatory response, and induces secretion of TGF-b
and other antiinflammatory cytokines from the phagocyte.



PENTRAXANS AND APOPTOTIC CELL CLEARANCE

A second but related mechanism that directs “safe” clearance of apoptotic
cells is mediated by acute-phase proteins, which belong to the family pen-
traxin family of cyclic pentameric proteins that include C-reactive protein
(CRP), serum amyloid P component (SAP), and PTX3 (60). Like components
of classic and mannose-binding lectin pathways, pentraxans also bind com-
ponents of the early apoptotic cell membrane (61) and direct them to the
phagocyte through Fcg receptors (62). Although the epitopes have not been
completely confirmed, possible candidates include PS, PE, oxidized PC, as
well as heparin and components of chromatin, such as histones and DNA,
that might be exposed on the surface of the apoptotic cell (60, 63). Interest-
ingly, both CRP and SAP potentiate the activation of the early complement
pathway in the context of the apoptotic cell membrane, and promote the accu-
mulation of C1q, C3b, and iC3b on the surface, but block the assembly of the
terminal complement components and the formation of the membrane attack
complex (MAC) that would result in necrotic cell lysis and inflammation (60).
This is important since CRP has been shown to promote macrophage phago-
cytosis in a noninflammatory manner, accompanied by the secretion of TGF-
b (64). These results again suggest that recognition pathways, designed for
pattern recognition and the clearance of microbial pathogens, have coopted
specialized pathways that are able to recognize apoptotic cells, but cleverly
do so in the absence of inflammation and tissue injury.

SUBCLASS II: SCAVENGER RECEPTORS AND

APOPTOTIC CELL RECOGNITION

A second group of surface glycoproteins implicated in the recognition and
clearance of apoptotic cells are the scavenger receptors (SRs) (Fig. 2). Scav-
enger receptors represent a complex multifunctional family of cell surface
glycoproteins that bind a diverse array of foreign material (such as Gram
negative and Gram positive material through LPS), as well as modified
endogenous material including oxidized and acetylated lipoproteins (LDLs)
(34). Relevant to the discussion here, SRs also recognize the modified sur-
faces of apoptotic cells (65–67). Although all are characterized as having
highly complex extracellular recognition and extremely short intracellular
domains, the intracellular domains appear to be important for cell signaling
and function (68, 69). Accordingly, SRs have been grouped into six sub-
groups (SR-class A through SR-class F) based on the nature of their extra-
cellular structural motifs (34). Curiously, although structurally divergent,
several SRs have been shown to participate in apoptotic cell clearance,
including SRA-1, SR-A2, SR-B1, CD36, SR-C1, and Lox (class E-SR) (34).
Moreover, in Drosophila embryos, where macrophages are the predominant
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cell for apoptotic cell clearance, deficiencies of the dCD36 (called 
Croquemort), result in low efficiency of apoptotic cell clearance, suggest-
ing that the SR pathway, at least in some circumstances, may play a pre-
dominant role in developmental phagocytosis (70). From these observations,
it is again apparent that altered self-components of the apoptotic surface,
likely related to oxidized LDLs, mimic recognition components utilized as
part of the innate immune response.

SUBCLASSES III AND IV: SIGNALING RECEPTORS IN THE

PHAGOCYTOSIS OF APOPTOTIC CELLS

An interesting group of receptors that recognize and internalize apoptotic
cells is classified as receptors that have coopted during specialized functions
in the phagocytosis of apoptotic cells. Such receptors include the avb5 and
avb3 integrin receptors, the Mer receptors tyrosine kinase, and PS-R (Table
1). Since the original observation by Savill’s group that avb3 integrin, in a
complex with the type-B scavenger receptor CD36, promoted uptake of
apoptotic cells by macrophages (71, 72), several subsequent studies have cor-
roborated the findings that avb3, and its related receptor avb5, mediate
engulfment in other cell types, including immature DCs (73), retinal pig-
mented epithelial cells (RPE) (74), and epithelial cells (7). avb3 and avb5
integrins are also critical for proliferation, cell adhesion, and migration of
smooth muscle cells and endothelial cells required during angiogenesis,
including pathological conditions that occur during tumor growth and
metastasis (75). For cell adhesion and migration, the ligand for these inte-
grins is an RGD motif in the extracellular matrix (ECM) molecule vitronectin
(VN). VN provides a physical link between the cytoskeleton, where the force
needed for contraction is generated, and the extracellular matrix. Integrin
activation is closely associated with the activation of tyrosine kinases, such
as FAK- and Src-family kinases, which transmit signals resulting in the PI-3
kinase and Rho-GTPases (76).

Recent studies suggest that recognition and interaction of avb3 and avb5
integrins in the context of the apoptotic cells occur not by ECM, but rather
by RGD-containing soluble opsonizing molecules MFG-E8/lactadherin 
(77, 78) and thrombospondin (TSP) (72, 79, 80). Both MFG-E8 and TSP are
secreted glycoproteins that appear to play a primary role in cell adhesion,
but also because of their multidomain structure, they bridge apoptotic cells
to phagocytes via avb3 and avb5 integrins. Structurally, both MFG-E8 and
TSP contain aminophospholipid-binding sites that bind PS, as well as N-
terminal RGD motifs which bind to avb3 and avb5 integrins (65). Nagata
and colleagues not only showed that MFG-E8 stimulated engulfment of
apoptotic cells in thioglycolate-stimulated macrophages, but also that muta-
tions in the RGD domain blocked uptake and served as dominant negative
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MFG-E8 mutants (78). Hence, together with previous biochemical data
showing that integrins activate tyrosine kinases and mediates Rac1 activa-
tion through Crk, DOCK180, and ELMO (7), these data suggest that 
MFG-E8 and TSP, when bound to the apoptotic cell, probably act as RGD-
containing ligands to activate integrin signaling. In macrophages, avb3 inte-
grin-mediated uptake of apoptotic cells was similarly dependent on tyrosine
phosphorylation (phosphotyrosine was shown to accumulate around the
phagocytic cup) and inhibited by blocking Rac/Cdc42 activation (81). It is
also important to note that TSP, and potentially MFG-E8, are also ligands for
CD36 and can bridge avb3 integrin and CD36 into a functional complex (72)
(Fig. 4b). With respect to the tyrosine phosphorylation and cell signaling,
CD36 is interesting for two reasons. First, CD36 can associate with Src-family
members such as Lyn, Fyn, and Yes (82), which can potentially mediate phos-
phorylation of p130cas. Second, CD36 is predominantly associated with cave-
olin-rich Triton X-100 insoluble membrane rafts, which are greatly enriched
in cellular signaling proteins (83). Although CD36 has been shown to recruit
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a6b1 and a3b1 integrins into membrane rafts (84), an unexplored but impor-
tant question is whether TSP or MFG-E8, indirectly through CD36, recruits
avb3 or avb5 integrins into membrane rafts.

A second tyrosine phosphorylation-dependent pathway important 
for the clearance of apoptotic cells emerge from studies showing that
macrophages expressing a kinase-dead Mer product are defective in phago-
cytosis (85). Moreover, mutant mice expressing MerKD exhibit an accumula-
tion of remnant apoptotic cells in their thymus and develop autoimmune
illness similar to systemic lupus erythematosis (SLE) (86). Mer is also
mutated in the Royal College of Surgeons (RCS) rat strain that develops
retinal degeneration and shows defects in rod outer segment (ROS) phago-
cytosis in RPE cells, further supporting the conclusion of Mer’s role in the
recognition and internalization process (87). Mer (Tyro-12) is structurally
related to two other receptor tyrosine kinases, Axl (Tyro-7) and Rse (Tyro-3),
which together play a role in the development of several tissues, including
cells of the immune system (88). Analogous to MFG-E8 and TSP, the ligand
for Mer is growth-arrest-specific gene-6 (Gas-6), a multidomain opsonizing
protein containing an N-terminal domain that binds PS, several EGF-like
repeats, and a large C-terminal steroid-hormone-binding protein-link
domain that can activate the tyrosine kinase activity of Mer (89). The ligand
for Rse (Tyro-3) appears to be protein S, a vitamin-K-dependent serum
protein involved in blood coagulation that is highly homologous to Gas-6
(90). Depletion of protein S from serum markedly reduces macrophage-
mediated phagocytosis of apoptotic cells, suggesting the important role of
these opsonizing agents in targeting apoptotic cells to the Mer-family recep-
tors. Presently, the signaling pathway responsible for Mer/Tyro-3-mediated
phagocytosis is unclear, and like avb3 and avb5, activation of Mer has been
linked to several downstream signaling pathways, including activation of
PI3-kinase and Rac1 (91, 92), although it is not clear whether Mer or Tyro-3
signaling converge on Crk and DOCK180.

PS-R SIGNALING AND RECEPTOR CROSS-TALK

For both the integrin and Mer-receptor tyrosine kinase-dependent engulf-
ment pathways described above, PS exposure on the apoptotic cell plays a
pivotal role in the recruitment of opsonizing proteins, MFG-E8, TSP, Gas-6,
and protein S. However, a direct PS-binding receptor has also been molecu-
larly characterized that directs PS on the apoptotic cell to the phagocyte in
the absence of bridging proteins (93, 94). Although overexpression of PS-R
resulted in enhanced uptake of apoptotic cells and antibodies against PS-R
block uptake, the molecular mechanisms of PS-R-mediated signaling are not
well understood. Topologically, the PS-R likely acts as a Type II membrane
protein and might possibly become an ectoprotein on the external surface of
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the phagocyte under certain conditions. Although the PS-R is not homolo-
gous by sequence to other known proteins, it does contain a WW domain
implicated in intracellular signal transduction, and potential tyrosine phos-
phorylation sites (93, 94). However, cell biological studies by Hoffmann and
colleagues provided some compelling evidence that PS-R functions in a two-
step model, by internalizing apoptotic cells that have been “tethered” to the
phagocyte membrane by other receptors and mechanisms (Fig. 4a). Using a
clever system in which biotinylated red cell membranes were used as “apop-
totic particles” to target individual receptors, including avb3 integrin, avb5
integrin, CD14, and CD36, these investigators showed that PS-R functions
as the predominant internalizing pathway, while the scavenger receptors
and integrins appear to have a tethering or recruitment function (95).
Although such studies require molecular validation, the studies do support
the idea that different receptors have distinct functions with respect to apop-
totic cell recognition and internalization, and importantly, proper uptake
appears to require cross-talk among different receptors.

MODULATION OF PHAGOCYTE FUNCTION

During the engulfment phase the phagocyte must adapt to the stress invoked
by the engulfment process. First and foremost, the phagocyte must protect
itself from the potentially lethal cargo of the apoptotic cell, which includes
caspases and other degradative enzymes. With respect to phagocyte cell sur-
vival, recent studies in macrophages suggest that the process of phagocyto-
sis of apoptotic cells actually promote cytokine-independent survival via the
activation of PI3-kinase and the Akt pathway (96). Perhaps related to this, it
has also been shown in trypanosome-infected macrophages (with the pro-
tozoan Trypanosoma cruzi) avb3 integrin-mediated engulfment of apoptotic
cells drives the growth and survival of the parasite (97). Although these find-
ings might simply reflect the phagocyte’s attempt to avoid toxicity, they also
raise an intriguing idea that there may be metabolic or nutritional value to
the phagocyte in cell corpse eating.

MODULATION OF IMMUNE RESPONSES

Because phagocytosis generally occurs early in the apoptotic process, prior
to the loss of membrane integrity, an argument has been made that phago-
cytosis is a passive noninflammatory event. However, as alluded to above,
it is now recognized there is a much more active attempt to minimize in-
flammation during engulfment. For example, during engulfment many 
cell types, including macrophages, dendritic cells, and nonprofessional 
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cells, actively secrete antiinflammatory cytokines, such as transforming 
growth factor (TGF)-b, prostaglandin E-2 (PGE2), and interleukin 10 (IL-10),
and platelet-activating factor (PAF) (57). As these factors act as paracrine
factors to downmodulate other pro-inflammatory factors such as TNF-a and
macrophage inflammatory protein-2 (Mip-2), phagocytosis of apoptotic 
cells is not only antiapoptotic for the phagocyte, but also creates an anti-
inflammatory milieu that permeates the surrounding tissue (98). TGF-b
secretion from thioglycolate-stimulated macrophages was dependent on the
ligation of PS on the apoptotic cells to the phagocyte, mediated at least in
part by the PS-R (58), although the contribution of the integrin receptors,
Mer-RTK, and CRP signals for antiinflammatory signaling presently cannot
be ruled out.

Consistent with the idea that the rapid “safe” physiological clearance of
apoptotic cells is required for the resolution of inflammation, improper han-
dling and persistent accumulation of apoptotic cells in tissue have been
linked to autoimmunity and the development of a SLE-like disease (52). For
example, in humans, deficiencies in C1q lead to increased residual apoptotic
bodies in the kidney and renal pathology, concomitant with the appearance
of increased circulating autoantibodies against self-components (99). Simi-
larly, mice that are deficient in CRP or SAP, or that express mutant Mer-
receptors, also manifest autoimmune disease with delayed degradation of
chromatin and spontaneous development of lupuslike disease (100). Pre-
sumably related to the breakdown of the nuclear envelope structure and
events related to nuclear condensation during apoptosis, apoptotic cells and
their membrane “blebs” are potent sources of chromatin, DNA, and nuclear
antigens that can be sources of autoantigens if released into tissue. Conse-
quently, defects in clearance, mediated by mutations or loss of activity of
opsonizing factors or their receptors, would lead to secondary necrosis and
the leakage of these antigens into the tissue. Recent studies by Nagata and
colleagues showed that chromosomal DNA fragmentation, a hallmark of
apoptosis in the dying cell, is facilitated by nucleases within the intracellu-
lar lysosomes of the phagocyte, suggesting that engulfment is required for
the degradation of potential autoantigens (101). These investigators showed
that apoptotic thymocytes derived from mice defective in caspase-activated
DNase (CAD) were resistant to intrinsic DNA fragmentation, but could
degrade DNA inside the phagocyte upon coculturing with wild-type
macrophages. Similar observations have been reported in C. elegans,
whereby the DNA of the apoptotic cells is also degraded by nuc-1 in the
phagocyte, and in Drosophila melanogaster, defects in CAD-like nucleases lead
to DNA accumulation and the activation of an anti-DNA immune response
(102). Again, these studies suggest that inflammation resulting from the mis-
handling of apoptotic cells can lead to autoimmune disease, and that the eti-
ology of lupuslike disease may reside in faulty phagocytosis mechanisms.
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SPECIALIZED POSTENGULFMENT PATHWAYS;

PHAGOCYTOSIS IN DENDRITIC CELLS AND

ANTIGEN PRESENTATION

Recently, there has been considerably interest in elucidatcing how apoptotic
cells, once engulfed and processed, affect the function of immature DCs (48).
Whereas both macrophages and DCs are professional “scavengers” capable
of engulfing apoptotic cells and pathogens, immature DCs, in contrast, are
potent antigen-presenting cells (APCs) to naive T cells and are uniquely spe-
cialized to initiate T-cell immunity by activating a class I-specific CTL
response (47) (Fig. 5). DC activation is governed by the maturation of imma-
ture DCs, which involves the downmodulation of endocytic and phagocytic
receptors, and the concomitant upregulation of MHC molecules and cos-
timulatory molecules on the surface of the DCs, which are capable of inter-
action with T cells via the T-cell receptor (103). Similar to the case of
macrophages, engulfment of apoptotic cells by immature DCs under phys-
iological conditions induces TGF-b and antiinflammatory cytokines, and
fails to induce DC maturation (104, 105). However, under certain conditions
that are not well understood, engulfment of apoptotic cells can induce DC
maturation and the presentation of apoptotic cell antigens, via a process
called “cross-presentation.” In these pioneering studies, Albert et al. showed
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FIGURE 5. Macrophages and dendritic cells process apopotic cells differently. 
Upon their ingestion, DCs and macrophages process antigen differently. Whereas
macrophages degrade internalized material in phagolysosomes, DCs can process
antigens in a class I-restricted manner to cross-present or cross-tolerize antigen to 
T cells.



in vitro that immature peripheral DCs could stimulate antigen-specific CD8+
CTLs following engulfment of apoptotic influenza-infected thymocytes 
in the presence of exogenous maturation signal (106).

An important question that remains is under what conditions does it
become appropriate to cross-present antigen from apoptotic cells? In the
aforementioned arguments, maintenance of tissue homeostasis and preven-
tion of autoimmunity would favor engulfment followed by noninflamma-
tory events, in which either immune ignorance (degradation of apoptotic
material), or immune tolerance (the recognition of self and inducing anergy
or T-cell depletion) would ensue. Recent studies suggest that mature DCs
expressing costimulatory molecules are required for induction of both
immunity and tolerance, a choice mediated in part by the presence or
absence of TH cells interacting with the mature DC (107). Therefore, engulf-
ment of apoptotic cells by immature DCs, followed by maturation, can either
cross-tolerize or cross-present antigens to CD8+ CTLs, depending on yet
unknown signals. These signals will likely reflect the environment in which
the apoptotic cells are engulfed, the inflammatory status of the tissue, 
and possibly unique epitopes/opsonizing factors on the surface of the 
apoptotic cell. Nevertheless, the implication that under certain conditions
DCs can cross-present viral or tumor antigens to CTLs is potentially astound-
ing if it can be directed toward the development of anticancer- or antiviral-
based DC vaccines. Clearly, one of the long-term goals of apoptotic
cell–phagocyte interactions will be toward modulating the immune
response. In the long term, gene therapy and cellular manipulations of apop-
totic cells and DCs might prove valuable for the development of anticancer
therapies.

TRAFFICKING OF APOPTOTIC CELLS

A final important area of consideration with respect to engulfment centers
on the trafficking of apoptotic material following internalization. Phagocy-
tosis of apoptotic cells is initiated by binding to the phagocyte surface,
leading to reorganization of the cortical actin cytoskeleton mediated in part
by the activation of Rho- and Rab-family GTPases and products of the PI3-
kinase pathway (108) in the phagocyte. The nascent phagosomes lack the
ability to degrade apoptotic cells, but instead require a series of maturation
steps in which the phagosome is remodeled and finally becomes a late endo-
some or lysosome that degrades engulfed material at acidic pH. One of the
new and exciting findings with respect to phagosome function comes from
both cell biology studies and a proteosome analysis that show the early
phagosome is formed by direct fusion of the plasma membrane with endo-
plasmic reticulum (ER) membranes (109). ER-mediated phagocytosis not
only provides a framework to explain the source of membrane required for
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engulfing large particles, but may also offer an explanation for how antigens
from apoptotic cells can be presented on class I MHC molecules as described
in the preceding section (110). Finally, it also interesting to speculate that
internalized apoptotic cells may traffic different routes, and in so doing, reg-
ulate different immunological outcomes. For example, it has been suggested
that the trafficking of apoptotic cells in macrophages and dendritic cells is
different, whereby macrophages degrade ingested antigen and dendritic
cells cross-present or cross-tolerize antigen (73) (Fig. 5). It is also interesting
that these cells express different integrins (avb3 on macrophages and avb5
on dendritic cells) that have subtly different regulatory properties. For
example, avb3 integrin and avb5 integrin signal FAK and PKC differently
(111), and result in differential trafficking of adenovirus (AdV) (112). In this
capacity, avb5 integrin directs AdV to the cytoplasm, while avb3 integrin
directs AdV to the lysosomal compartment. Clearly, an important future
direction with respect to the phagocytosis of apoptotic cells will be to discern
whether different receptors on the phagocyte surface direct differential traf-
ficking or influence phagosome maturation.

SUMMARY

There is a great deal of experimental evidence now indicating that cell death
can no longer be viewed as an endpoint. Specific ligands on apoptotic cells
interact with receptors on phagocytes and trigger complex signaling events
that lead to internalization and intracellular trafficking of the ingested 
material. One of the most exciting new ideas that has emerged over the past
several years is that phagocytosis has immunological value. The uptake of
apoptotic cells by macrophages and DCs affects several aspects of immune
function, including inflammation and antigen presentation. There is also
great hope that phagocytosis pathways can be manipulated to modulate the
immunological response in disease situations. Harnessing the power of
apoptotic cells within the context of human disease and gene therapy is an
important but feasible challenge for the next several years.
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CHAPTER

14

CELL CYCLE GENES:
pRb AND p53

NIANLI SANG AND ANTONIO GIORDANO

CELL DIVISION AND CELL DEATH: A SIMPLIFIED MODEL

FOR LIFE AND DEATH

Cell division is the process by which two daughter cells are reproduced from
a single cell. Two types of division may occur: mitosis and meiosis. Meiosis
produces germ cells with a haploid set of chromosomes by one round of
DNA replication and two rounds of cell division. Mitosis, however, takes
place in somatic cells and generates two diploid daughter cells that are iden-
tical to the original cell. The orchestrated sequence of cellular processes by
which one mother cell grows and divides into two daughter cells is termed
cell division cycle, or cell cycle. In multicellular organisms, a precisely reg-
ulated balance between cell division and cell death is essential for normal
development and homeostasis.

A typical cell cycle consists of four phases: a G1 phase, which is the first
gap; an S phase, in which DNA synthesis takes place; a G2 phase or second
gap; and an M phase, otherwise known as the mitotic phase. The G1-S-G2
phases are collectively termed interphase. Based on morphological changes,
the mitotic phase can be further divided into prophase (DNA condensed to
form sister chromatids), metaphase (sister chromatids migrate to the equa-
torial plane of the cell and are oriented in the center of the mitotic spindle),
anaphase (simultaneous separation of all the sister chromatids at their cen-
tromeres), and telophase (chromosomes uncoil and new nuclear membranes

When Cells Die II, Edited by Richard A. Lockshin and Zahra Zakeri.
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form). In addition, G0 phase is used to refer to postmitotic, nondividing cells
that exit the cell cycle and are at a resting state. G0 cells may reenter the cell
cycle under certain conditions. The duration of the cell cycle varies in dif-
ferent cell types and this variation is generally caused by the G1 phase. Typ-
ically, a rapidly dividing human cell takes 24 hours to finish a complete
division cycle.

A cell is a complex entity that consists of hundreds of thousands of
macromolecules, including, but not limited to, lipid structure, proteins, and
most importantly, the nucleic acids. To grow and divide, a cell needs to
produce these macromolecules. Among these productive activities, the accu-
rate duplication of DNA is the most important issue in cell division. To
achieve this, a cell demands coordinated expression of cellular genes encod-
ing mitotic growth factors and receptors, proteins involved in mitotic sig-
naling pathways (most of them are proto-oncogenes), transcriptional factors,
regulatory proteins that control cellular processes, and enzymes or other
components for biological synthesis and metabolism, and finally, structure
proteins. In this chapter, however, we will confine our discussion to genes
proven to be essential for cell division, with a special focus on genes encod-
ing cell cycle regulatory proteins and their functional regulation.

When a cell reproduces itself, a fundamental principle is the accurate
transmission of genetic material from the mother cell to daughter cells. The
accuracy of reproduction and transmission of genetic information depends
on at least the following aspects: faithful DNA replication, effective DNA
repair, proper spindle assembly, and successful chromosome segregation. 
To ensure accuracy, sequential events of the cell cycle are well coordinated
and strictly controlled. On the one hand, downstream events will not occur
until an upstream event has been completed successfully. On the other, an
upstream event will not repeat itself unless the downstream events have
taken place. Several checkpoints have evolved to control the cell cycle
(Murray, 1992, 1994). The first identified checkpoint occurs at late G1, which
is called “start” in yeast and “restriction point” in mammalian cells. Cells
that have passed through start or restriction point initiate DNA replication
and commit to division. Cells with damaged DNA in G1 cannot initiate DNA
replication, and those with incompletely replicated DNA in G2 cannot 
enter mitosis (Hartwell and Weinert, 1989; Murray, 1992, 1994). Anaphase
does not start until all the chromosomes have been adequately aligned on
the spindle.

Over the past few decades, many efforts have been made to understand
cell cycle control. It is generally agreed that the activity of E2Fs, a family of
transcriptional factors, is essential for G1/S transition and cell cycle pro-
gression (Helin, 1998). The activity of E2Fs is governed by pRb-family tumor
suppressors, whose function is controlled by phosphorylation (Sang et al.,
1995). Phosphorylation of pRb-family proteins is a function of cyclin-
dependent kinases (Cdks), which are activated by association with cyclins
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but inhibited by Cdk inhibitors (CDKI) (MacLachlan et al., 1995). The protein
levels of cyclins oscillate during the cell cycle as a result of de novo synthe-
sis at one stage, and of destruction by the ubiquitination system at another
stage of the cell cycle (Koepp et al., 1999). Functional regulation of cell cycle
proteins involves posttranslational modifications such as phosphoryla-
tion/dephosphorylation, acetylation/deacetylation, and multiple feedback
loops. The tumor suppressor p53 serves as a “quality control” protein that
continuously monitors the chromosome replication and possibly other cell
division processes, and induces growth arrest or apoptosis in response to
DNA damage or other genomic alteration to ensure genomic integrity and
stability (Lane, 1992). A simplified, actually oversimplified, model is given
in Fig. 1 and more details will be discussed later.

CDC GENES: FROM S. CEREVISIAE TO H. SAPIENS

Yeast, especially budding yeast, S. cerevisiae, has contributed so much to our
current understanding of the cell cycle that we cannot ignore them when-
ever we discuss this topic. Extremely well-designed studies in the genetic
analysis of yeast cell cycles have identified several dozens of genes that are
essential for cell division, demonstrated by the fact that mutation of each of
these genes leads to cell cycle arrest at various stages of the cell cycle. These
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FIGURE 1. General roles of p53 and pRb in cell cycle regulation and apoptosis. Solid
arrows: stimulating or up-regulating. Open arrows: inhibitive or repressive.



genes have been termed cell division cycle genes. Earlier work about yeast
cell cycle and cell division cycle genes have been summarized (Murray and
Hunt, 1993). Because cell division cycle genes have been identified from both
S. cerevisiae and S. pombe, and because homologues of most of these genes
have been identified from mammals, the terms used for these genes and their
products are somehow confusing. For clarity, we will follow the current con-
sensus to indicate cell division cycle genes identified in S. cerevisiae as CDC,
the corresponding mutants as cdc, and the proteins encoded by CDC genes
as Cdc proteins. We will term cell cycle genes identified in fission yeast as
cdc+, the mutants as cdc-, and the protein products as Cdcp.

Cloning and characterization of CDC and cdc+ genes reveal that most
CDC and cdc+ gene-encoded proteins can be classified into several groups:
(1) proteins involved in DNA synthesis and DNA repair; (2) enzymes essen-
tial for protein degradation; (3) protein kinases (including Cdks) and protein
phosphatases that regulate protein functions by altering the phosphoryla-
tion status; (4) proteins involved in signal transduction; (5) proteins involved
in energy metabolism, transcription, and protein translation; and (6) struc-
ture proteins required for cytokinesis and morphorgenesis. A complete list
of CDC genes is provided in Table 1 for reference.

As DNA replication is a key process for cell division, it is not surprising
to see that some CDC genes are involved in DNA synthesis and/or DNA
repair. CDC2 (POL3) encodes the catalytic subunit of DNA polymerase delta,
and its importance is demonstrated by the fact that cdc2ts mutants arrest in
late S phase when cultured at a restrictive temperature (Francesconi et al.,
1993). Another CDC gene, CDC17 (POL1), encodes DNA polymerase a,
which is implicated in telomere homeostasis during DNA replication
(Carlson and Hartwell, 1985; Adams Martin et al., 2000). Mutation of CDC17
leads to cell arrest at mid to late S phase.

During a cell cycle, one, but only one, round of DNA replication is ini-
tiated. This is controlled by an important initiator encoded by CDC6, which
is homologous to cdc18 in fission yeast (Nishitani and Nurse, 1995) (Fig. 2).
In collaboration with Cdt1, Cdc6/Cdc18p loads the minichromosome main-
tainence (MCM) proteins, which function as initiators of DNA replication
(Tye, 1999), onto chromatin at the end of mitosis, thus licensing the DNA to
replicate (Nishitani et al., 2000). As an essential component of the prerepli-
cation complex, the Cdc6/cdc18p level is tightly regulated during the cell
cycle and peaks at G1-S transition. Cdc18p is controlled transcriptionally by
Cdc10p in fission yeast, and the human homologue Cdc6 is controlled by the
E2F family of transcriptional factors (Nishitani and Nurse, 1995; Hateboer et
al., 1998). After G1-S transition, Cdc6/Cdc18p protein is phosphorylated by
cyclins/Cdks that promote the degradation of Cdc6/Cdc18p (Baum et al.,
1998; Jallepalli et al., 1997). Overexpression of Cdc6/Cdc18p results in a
repeated round of DNA replication without mitosis (Nishitani and Nurse,
1995).
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Another group of genes involved in the initiation of DNA replication
includes CDC46, CDC47, and CDC54 (cdc21 in fission yeast), which encode
members of minichromosome maintenance proteins (MCM5, MCM7, and
MCM4, respectively), the key components of the replication initiation
complex that binds to the origin recognition complex (ORC) and initiates
DNA synthesis in all eukaryotes (Tye, 1999) (Fig. 2). CDC45 encodes a
polypeptide that binds to MCMs and is essential for the initiation of DNA
replication too (Hopwood and Dalton, 1996; Tercero et al., 2000). CDC8 and
CDC21 encode thymidylate kinase and thymidylate synthetase, respectively,
and are essential for DNA replication (Murray and Hunt, 1993). CDC9
encodes a DNA ligase involved in DNA repair at G2 phase (Murray and
Hunt, 1993). Another gene involved in DNA replication and DNA repair at
G2 phase is CDC13, which encodes a protein that binds to the single-
stranded telomere, thus protecting the telomere from degradation, and
recruits telomerase (Nugent et al., 1996; Pennock et al., 2001). cdc13 mutant
arrests at G2 with damaged DNA (Murray and Hunt, 1993). cdc40 mutant
shows defect in DNA repair and arrest at S phase with partially replicated
DNA (Murray and Hunt, 1993), and CDC40-encoded protein has been impli-
cated in pre-mRNA splicing (Ben-Yehuda et al., 2000). CDC44 encodes one
of the five subunits of replication factor C (RFC). RFC interacts with the pro-
liferating cell nuclear antigen (PCNA), which plays a role in both DNA repli-
cation and repair (Cullmann et al., 1995; McAlear et al., 1994). Cdc68/Spt16
forms a heterodimer with partners and acts in both DNA replication and
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transcription (John et al., 2000; Formosa et al., 2001). In addition, some other
genes, such as CDC7, encode regulatory protein that plays an indirect role
in DNA replication.

As the cell cycle progresses, expression levels of many proteins such as
cyclins, Cdc6, and so on are regulated dynamically. This regulation not only
depends on de novo transcription and translation, but also requires protein
degradation (Koepp et al., 1999). The first step for protein degradation is to
mark the proteins to be degraded by ubiquitination systems (Hershko and
Ciechanover, 1998). Two protein complexes have been shown to be essential
for cell-cycle-regulated ubiquitination of proteins. The first one is termed
anaphase-promoting complex (APC) or cyclosome (Page and Hieter, 1999),
which consists of multiple subunits including protein products from CDC16,
CDC23, CDC26, and CDC27 (Fig. 3). Functioning as a cell-cycle-regulated
ubiquitin-protein ligase, cyclosome is essential for mitosis in a wide range
of eukaryotes (Lamb et al., 1994; King et al., 1995; Zachariae et al., 1996; Yu
et al., 1998). In addition, CDC20 encodes the activating subunit of APC 
(Vinsitin et al., 1997; Fang et al., 1998a, 1998b). Other APC regulators include
the activator CDH1 and inhibitors Emil1, MAD2, and MAD2B (Reimann et
al., 2001; Chen and Fang, 2001). APC targets the anaphase inhibitor Pds1p
and cyclins for destruction, a function indispensable for cells to pass through
anaphase and to exit mitosis (Shirayama et al., 1998; Noton and Diffley, 2000;
Strohmaler et al., 2001). Another complex that is essential for cell cycle pro-
gression is SCF (Skip1-Cullin-F-box factor) (Deshaies, 1999) (Fig. 4). Cdc4
complexes with Cdc34 (ubiquitin-conjugating enzyme) and Cdc53, and this
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FIGURE 3. Role and regulation of APC (cyclosome) ubiquitinase activity in cell
cycle. APC is a multi-unit complex composed of Cdc16, 23, 26, 27. Upon activation
by Cdc20, it promotes the degradation of cell cycle regulators such as cyclins.



complex possesses ubiquitin-protein ligase activity (Kamura et al., 1999; Chi
et al., 2001) required not only for the degradation of FAR1 and GCN4
(Blondel et al., 2000; Meimoun et al., 2000), but also for the degradation of
Cln1 and Cln2, two G1 cyclins that regulate Cdc28 activity (Murray and
Hunt, 1993) in yeast. cdc4ts mutant cannot initiate DNA synthesis and fails
to separate the spindle pole body at restrictive temperatures (Murray and
Hunt, 1993). The human homologue of CDC4 encodes SCF(Cdc4), a member
of the F-box family that interacts with hsCdc34 and targets cyclins
(Strohmaler et al., 2001). Cdc53 is one of the core subunits of the SCF complex
called cullin (Seol et al., 1999).

The third group of CDC genes code for various protein kinases and
protein phosphatases involved in the regulation of protein functions by
phosphorylation. The kinases and phosphatases form multiple protein
kinase cascades and feedback regulation pathways. The most extensively
studied one is Cdc28 kinase that associates with cyclins and will be discussed
in more detail later. Cdc28 is the homologue of Cdc2p in fission yeast whose
activity is essential for cell cycle progression at multiple stages in mam-
malian cells. CDC5 encodes a pololike protein kinase whose function is indis-
pensable for cytokinesis (Murray and Hunt, 1993). At the onset of anaphase
in yeast cells, a caspase-related protease, separase, destroys the link between
sister chromatids by cleaving the cohesin subunit Scc1. Cdc5 phosphorylates
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serine residues adjacent to cleavage sites of Scc1 and enhances the cleavage
(Alexandru et al., 2001). It is likely that this is a conserved mechanism which
exists in higher organisms as well. Cdc5 is also involved in the proteolysis
of Clb2p (Shirayama et al., 1998) (Fig. 5). Cdc7 was first identified as a
serine/threonine protein kinase. The kinase activity is regulated by its asso-
ciation with Dbf4p, a cyclinlike regulatory subunit that is targeted for cell-
cycle-regulated degradation by APC (Weinreich and Stillman, 1999; Ferreira
et al., 2000). The Dbf4p/Cdc7 complex binds the origin recognition complex
(ORC), and phosphorylates members of MCMs and other proteins essential
for initiation of DNA replication, thus promoting DNA replication during
the S phase (Pasero et al., 1999; Weinreich and Stillman, 1999; Jiang et al.,
1999) (Fig. 6). Cdc15 protein kinase is a major component of the mitotic exit
network (MEN), which consists of several other proteins such as Lte1, Tem1,
Cdc5, Dbf2/Dbf20, and Mob1 (Mah et al., 2001). cdc15 mutants arrest in
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mitosis with a long spindle and two separated masses of DNA. Cdc15 serves
as both an activator and substrate for Cdc14, a tyrosine phosphatase required
for mitosis (Wan et al., 1992; Visintin et al., 1998, 1999; Shou et al., 1999) (Fig.
7). On one hand, Cdc15 functions in the mitotic exit network to activate
Cdc14 phosphatase, and Cdc14-mediated dephosphorylation triggers the
inactivation of mitotic cyclins. On the other, Cdc14 also activates Cdc15 activ-
ity by dephosphorylation, thus forming a positive feedback (Mah et al., 2001;
Jaspersen and Morgan, 2000; Xu et al., 2000). Cdc55 is the counterpart of the
beta subunit of protein phosphatase 2A with multiple functions in mitosis
and is required for the kinetochore/spindle checkpoint, whereas mutants
show defects in cytokinesis (Healy et al., 1991; Wang and Burke, 1997; Yang
et al., 2000). Finally, CDC37 is genetically related to CDC28 and is required
for Cdc28 function. cdc37 mutants show a phenotype similar to Cdc28ts
(Murray and Hunt, 1993). The polypeptide encoded by CDC37 is a molecu-
lar chaperone and specifically targets Cdc28 and several other protein
kinases, stabilizes Cdc28, and facilitates the formation of Cdc28/cyclin
complex (Stepanova et al., 1996; Kimura et al., 1997; Farrel and Morgan, 2000)
(Fig. 8).

Signal transduction is required for cell cycle regulation at all phases
during the cell cycle. A traditional example is that mating factor pheromone
signaling blocks cell division (MacLachlan et al., 1995). The CDC genes also
are involved in transducing signals to regulate the cell cycle. CDC72 (NMT1)
encodes N-myristol transferase, which blocks mating factor signaling by
modifying Scg1, the alpha subunit of the trimeric G protein that is coupled
to the mating factor receptor. cdc72 mutants show constitutive activation of
the mating factor signaling pathway and cell cycle arrest (Murray and Hunt,
1993). Both CDC25 and CDC35 have been implicated in the cAMP-protein
kinase A signaling pathway (Fig. 9). CDC35 (CYR1) encodes an adenylate
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cyclase and affects intracellular cAMP levels (Casperson et al., 1985). In
response to glucose and acidification of the environment, Cdc35 increases
the cAMP levels in cells and promotes glucose uptake by cells (Oehlen et al.,
1994). Cdc25 is a guanine nucleotide exchange protein that regulates Cdc35
activity (Engelberg et al., 1990). Either cdc35 or cdc25 mutation causes growth
arrest prior to the “start” of the cell cycle and a failure in increase of cell
mass. Rho-type GTPases control many cytoskeletal rearrangements. Cdc42
is a small GTPase that is involved in polarity establishment during bud for-
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mation (Fig. 10). Cdc24 is the GDP/GTP exchange factor for Cdc42 and is
sequestered in the nucleus by Far1. The activation of Cdc28/Cln upon bud
emergence triggers the degradation of Far1 and the relocation of Cdc24 from
the nucleus to the polarization site, where it binds directly to Bem1 and acti-
vates Cdc42 (Shimada et al., 2000). Activated Cdc42 and its effectors polar-
ize the cytoskeleton (Gulli et al., 2000). One of the Cdc42 effectors, Cla1,
phosphorylates Cdc24 and releases it from Bem1, thus forming a negative
feedback control loop (Bose et al., 2001). Human Cdc24 also catalyzes
guanine nucleotide exchange on human Cdc42 (Bender and Pringle, 1991;
Butty et al., 2002). Cdc43 is a subunit of geranylgeranyltransferase that modi-
fies Cdc42 function (Finegold et al., 1991).

The fifth group of CDC genes consists of genes involved in basic energy
metabolism, transcriptional regulation, and protein translation. Defects in
this group of genes usually lead to growth arrest prior to the start of the cell
cycle and cells cannot increase in size. Two CDC genes are involved in energy
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metabolism: CDC19 (PYK1), which encodes pyruvate kinase (Moore et al.,
1990), and CDC30, which encodes phosphoglucose isomerase (Dickinson,
1991). Cdc33 is the eukaryotic initiation factor 4E (eIF-4E) that binds to the
cap at the 5¢ end of mRNA. CDC60 is a leucyl-tRNA sythetase (Hohmann
and Thevelein, 1992). CDC63 (PRT1) is essential for the initiation of protein
synthesis (Hanic-Joyce et al., 1987). CDC64 encodes Ala1p, an alanyl-tRNA
synthetase (Wrobel et al., 1999).

Finally, components of the cell skeleton and organelles are equally essen-
tial for cell division, especially in the late cytokinesis phase. CDC3, CDC10,
CDC11, and CDC12 form a group of related genes whose products are
required for assembling a ring at the neck to divide mother and daughter
cells. Mutation of any of these genes leads to a failure in cytokinesis (Kim 
et al., 1991). CDC31-encoded small calcium-binding protein is required 
for spindle pole body duplication (Spang et al., 1993) and is homologous 
to human centrins (Middendorp et al., 1997). CDC48 is homologous to
oligomeric ATPase involved in membrane fusion and organelle biogenesis.
cdc48 mutants arrest in G2 with a single-spindle pole body and abnormally
distributed microtubules (Murray and Hunt, 1993).

Cell division cycle genes also have been identified from fission yeast S.
pombe and termed cdc+ genes to distinguish them from CDC genes of S. cere-
visiae. Some of the cdc+ genes that have corresponding CDC homologues
have been discussed, and other important genes are summarized in Table 2.
Among these genes we now focus on cdc10+ and cdc25+. cdc10p binds to
Sct1 to form a heterodimer that functions as a transcriptional factor to
promote the expression of S phase genes. Swi6 in S. cerevisiae is a homologue
of cdc10p, whereas in mammalian cells E2F is the functional counterpart of
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TABLE 2. SUMMARY OF CYCLIN-DEPENDANT KINASES

Cdks Alias Cell Cycle Cyclin Substrates

Cdk1 Cdc2p/Cdc28 G2/M A, B Histone H1, lamins
Cdk2 G1/S A, E, J DNA replication 

protein?
Cdk3 G1 E2 E2F?
Cdk4 G1 D1, D2, D3 pRbs
Cdk5 G0 p35 Tau, neurofilamin, 

NUDF
Cdk6 G1 D1, D2, D3 pRbs
Cdk7 CAK/MO15 ? H Cdks and CTD of

PoIII
Cdk8 G1? C Cyclin H in TFIIH
Cdk9 PITALRE/TAK/P-TEFb Ubiquitous K, T1, T2 CTD
Cdk10 PISSALRE Ubiquitous ? Ets?



cdc10p. cdc25+ encodes a tyrosine phosphatase, cdc25p, which dephospho-
rylates cdc2p and activates its kinase activity at late G1. In mammalian cells,
three cdc25p homologues (Cdc25A, B, and C) have been identified. Cdc25A
dephosphorylates and activates Cdk2, a process required for DNA synthe-
sis. But in response to DNA damage, Cdc25A is phosphorylated by ATM-
chk2 and degraded by the ubiquitin system. Loss of Cdc25A leads to a
transient blockage of DNA replication, thus facilitating DNA repair (Falck 
et al., 2001) (Fig. 11).

CYCLIN AND CYCLIN-DEPENDENT KINASES:

THE PROMOTING ENGINE OF THE CELL CYCLE MACHINERY

Historically, three lines of investigation converged and eventually led to the
identification of cyclins and cyclin-dependent kinases as the engine of cell
cycle machinery. In the 1970s, a factor produced in mature eggs from frogs
(Xenopus laevis) was found to be able to promote the maturation and divi-
sion of immature oocytes and was termed maturation-promoting factor
(MPF). Through the use of this oocyte maturation assay, MPF activity was
detected in extracts from all cell types tested. In addition, it was observed
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that MPF fluctuated during the cell cycle with a peak activity as cells entered
mitosis that dropped rapidly after the cell division was completed. In the
1980s, three lines of investigation resolved the biochemical nature of MPF.
First, during the embryonic cell cycle of sea urchins, proteins characterized
by cyclic accumulation and disappearance were observed and termed
cyclins. Second, characterization of yeast mutations that led to cell cycle
arrest isolated p34cdc2 (cdc2p) in fission yeast (Broek et al., 1991). Finally,
the purification and identification of MPF revealed that MPF is a protein
kinase complex which consists of cyclin B and cdc2p kinase. Although cdc2p
is the catalytic subunit, its kinase activity depends on the regulatory sub-
unit cyclin B. Now cdc2p is considered the prototype of cyclin-dependent
kinases.

In budding yeast or fission yeast, a single Cdk encoded by CDC28 or
cdc2, respectively, is responsible for promoting the cell cycle by interacting
with several cyclins at various phases (Nasmyth, 1993; Sherr, 1994) (Fig. 12).
The association with phase-specific cyclins activates the kinase activity to
promote the cells forward to the next phase. At the G1 phase, Cln3, a con-
stitutive cyclin, promotes the accumulation of Cln1 and Cln2 and their asso-
ciation with Cdc28/cdc2p. Cln1 and Cln2 work cooperatively to promote 
the transition through the checkpoint called “start.” After entering S phase,
Cln5 and Cln6 replace Cln1 and Cln2 to associate with Cdc28 and promote
progress through the S phase. At M phase, the mitotic cyclins Clb1 and Clb2
form complexes with Cdc28 kinase.

In mammalian cells, at least nine additional members of the cyclin-
dependent kinase family have been identified and named, from Cdk2 to the
newest Cdk9 and Cdk10 (Graña et al., 1994a, b; De Falco and Giordano, 1998;
Kasten and Giordano, 2001) (Table 2). These Cdks associate with members
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of the cyclin family, including cyclin A, B1, B2, C, D1, D2, D3, E, F, G, H, I,
J, K, and T, in a combinatorial manner to form diverse Cdk/cyclin com-
plexes. These cyclin/Cdk complexes coordinately regulate the cell cycle and
other cellular processes (Table 3). Although the essential roles of cyclin A, B,
D, E, and H complexes in cell cycle regulation have been proven, it should
be pointed out that a few members of the cyclin and Cdk families may not
be directly involved in cell cycle control. These members obtained their
names by their structural homology to, and/or by their ability to genetically
complement, yeast deficiency in the cyclin genes or the CDC28/cdc2 genes.
The existence of multiple types of cyclin-dependent kinases and the intricate
combination between cyclins and Cdks in multicellular organisms such as
mammals reflect the complex regulation of cell division and perhaps of other
cellular processes such as differentiation and development.

There are three members of D-type cyclins: D1, D2, and D3. Although
they are cyclins, their protein levels generally do not oscillate through the
cell cycle (Fig. 12). The association between D-type cyclins and Cdk4 or Cdk6
is responsible for G1 progression. Cyclin E protein begins to rise in mid G1
and peaks near the G1/S boundary. During the G1/S transition, cyclin E acti-
vates Cdk2 activity (Koff et al., 1992). Cyclin A is located in the nucleus of
cells and appears late in G1 just before the start of DNA synthesis; it slowly
increases in amount and associates with both Cdk2 and Cdc2p until the cells
reach prophase. There are two forms of B-type cyclins: B1 and B2. Cyclin B1
binds only to cdc2p and appears in the cytoplasm late in S phase and is then
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TABLE 3. SUMMARY OF CYCLINS

Cyclins Cell Cycle Associated Cdks Regulation

A S to M Cdk2, Cdc2 E2F (+), APC (-)
B1 G2/M Cdc2 Transcriptional (+), Degradation (-)
B2 G2/M ? Transcriptional (+), Degradation (-)
C G1? Cdk8 ?
D1 G1 Cdk4, Cdk6 Transcriptional (+), Degradation (-)
D2 G1 Cdk4, Cdk6 Transcriptional (+), Degradation (-)
D3 G1 Cdk4, Cdk6 Transcriptional (+), Degradation (-)
E G1/S Cdk2 Transcriptional (+), Degradation (-)
F G2/M Cdk2?
G Ubiquitous? ?
H Ubiquitous Cdk7
I Ubiquitous ?
J Cdk2
K Cdk9
T Cdk9



imported into the nucleus. Association of cdc2p kinase with cyclin B or cyclin
A in G2 phase initiates mitosis (King et al., 1994).

Cyclin degradation is required for inactivation of cyclin/Cdk activity
and for exit from mitosis. Nondegradable cyclins arrest cells in mitosis. 
Ubiquitination-dependent proteasome is involved in cyclin degradation.
Both cyclin A and cyclin B have destruction boxes located at the N-terminus
that are responsible for their rapid turnover at metaphase via a ubiquitin-
dependent pathway such as the APC and SCF complexes.

In addition to its association with cyclins, phosphorylation regulates the
kinase activity of Cdks. Wee-1 is a tyrosine kinase controlling the G2/M 
transition in yeast by phosphorylating tyrosine 15 of Cdc28/cdc2p, and a
Wee1-like kinase existing in human cells phosphorylates Cdc2p at threonine
14 and tyrosine 15. This phosphorylation, however, is inhibitory (Fig. 11).
mik1 (mitotic inhibitory kinase gene) is closely related to wee1 and encodes
a kinase with a similar activity to Wee1 in fission yeast. Another protein
kinase, CAK/MO15, also called Cdk7 (cyclin-H-dependent), directly phos-
phorylates Cdc2p and activates its kinase activity. Cdc25p, a protein phos-
phatase that specifically dephosphorylates Cdc2p at threonine 14 and
tyrosine 15, controls the G2-M transition and plays a role as a mitotic inducer.
Three Cdc2p-activating Cdc25p phosphatases have been identified in
humans, namely, Cdc25A, B, and C, with a partially redundant function
(Chen et al., 2001).

Cyclin/Cdks modify protein function by phosphorylation. Most of the
substrates of cyclin/Cdks are cell-cycle-related proteins. First of all, one type
of cyclin/Cdk complex may phosphorylate and regulate the kinase activ-
ity of another cyclin/Cdk complex, as in the case of cyclin H/Cdk7 (King 
et al., 1994; Tsai et al., 1994) (Fig. 11). The second group of substrates for
cyclin/Cdk complexes are the pRb-family proteins, which are transcription
regulators and play important roles in cell cycle control (Sang et al., 1995;
Paggi et al., 1996) (Fig. 13). The third substrate group includes transcription
factors and coactivators. DP1, the dimerization partner of E2F, for example,
undergoes phosphorylation during cell cycle progression, possibly by cyclin
A/Cdk2 (Krek et al., 1994). Phosphorylation decreases the DNA-binding
activity of the DP1/E2F heterodimer (Bandara et al., 1994). Phosphorylation
of the C-terminus of RNA polymerase II by Cdc2p controls the transition
from transcription initiation to elongation. The fourth group of substrates
consists of chromosome components such as histone H1 (Giordano et al.,
1989, 1991). Chromatin consists of histone proteins. Two copies each of
histone H2A, H2B, H3, and H4 form an octomer core around which DNA is
wound. Histone H1 interacts with the outer surface of the DNA and pro-
motes DNA packaging. Cyclin B/cdc2p complex phosphorylates histone H1,
and this phosphorylation leads to the dissociation of H1 from chromatin. In
addition, nuclear lamins are part of the nuclear envelope. Cyclin B/Cdc2p
phosphorylates lamin B2 at two sites, triggering a cascade of reactions and
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ultimately leading to the phosphorylation of lamin B2 at a third site, which
promotes the nuclear envelope to break down. The mitotic spindle has three
Cdc2p kinase sites and is phosphorylated only during mitosis. For some pro-
teins, phosphorylation may serve as a signal for ubiquitination and ultimate
degradation.

CYCLIN-DEPENDENT KINASE INHIBITORS:

BRAKES OF THE CELL CYCLE MACHINE

Several negative regulatory subunits of Cdks, for example, cyclin-dependent
kinase inhibitors (CDKI), have been identified and can be categorized 
into two groups: the universal CDKI family that includes p21, p27kip, and
p57kip, and the INK4 family, consisting of p16INK4a, p15INK4b, p18INK4c,
and p19INK4d, that specifically targets Cdk4 and Cdk6.

The prototype of the first family of CDKI is p21 (Elledge and Harper,
1994; Hunter and Pines, 1994; MacLachlan et al., 1995). p21 was identified
by several independent groups with different approaches. First, it was iden-
tified as a Cdk-interacting protein, Cip1 (Harper et al., 1993; Xiong et al.,
1993a). A second group identified it as a 20KDa Cdk-associated protein,
CAP20 (Gu et al., 1993). As a direct transcriptional target of p53, it was iden-
tified as wild-type p53-activated factor-1, WAF1 (El-Diery et al., 1993). Iden-
tification by various approaches reflects various aspects of p21 activity and
function. As cell cycle regulators, kinases directly inhibited by p21 include
cyclin D/Cdk2 and cyclin D/Cdk4 at G1, cyclin E/Cdk2 at the G1/S tran-
sition, and cyclin A/cdc2 and cyclin B/cdc2 during mitosis (MacLachlan et
al., 1995). In addition, p21 has been found to inhibit DNA replication by its
interaction with proliferating cell nuclear antigen (PCNA), which plays an
essential role in both DNA replication and DNA repair (Waga et al., 1994).
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Overexpression of p21 in cells inhibits cell growth that substantiates its role
in cell cycle control (El-Diery et al., 1993). Mice deficient in p21 display
neither developmental defects nor increased rate of spontaneous tumorige-
nesis; however, p21-deficient embryonic fibroblasts are partially refractory
to G1 arrest induced by DNA damage (Brugaroslas et al., 1995; Deng et al.,
1995).

Another universal Cdk inhibitor, p27kip1, was first identified in com-
plexes with cyclin E/Cdk2 in transforming growth-factor-beta-induced,
growth-arrested cells (Koff et al., 1993; Polyack et al., 1994). It is able to bind
a broad range of Cdks and controls the G1/S transition (Firpo et al., 1994;
Polyack et al., 1994). p57kip was first identified as a member of the p21
family and as a tumor suppressor (Lee et al., 1995; Matsuoka et al., 1995).
Like p21, p57kip inhibits cell proliferation and promotes cell differentiation,
and thus is responsible for cell cycle withdrawal and terminal differentia-
tion. Mice deficient in p57 die perinatally within 1 day, and display short
limbs and an inflated gastrointestinal tract.

The INK4 family of cyclin-dependent kinase inhibitors includes four
members: p16INK4a, p15INK4b, p18INK4c, and p19INK4d, which are
expressed in a tissue-specific manner. p16INK4a and p15INK4b are struc-
turally and functionally related. p16INK4a, the prototype of this subgroup,
was first identified as a 16kDa protein associated with Cdk4 in transformed
cell lines and as a melanoma tumor suppressor, MTS1 (Xiong et al., 1993b;
Kamb et al., 1994). Both p15INK4b and p16INK4a are able to inhibit cyclin
D/Cdk4 and cyclin D/Cdk6 (Hannon and Beach, 1994) through direct inter-
action and to act as G1 inhibitors. In human keratinocytes, p15 is signifi-
cantly induced by treatment with TGF-beta transcriptionally (Hannon and
Beach, 1994). In addition to p16, the same locus encodes another transcript
from an alternative reading frame, p19ARF (Quelle et al., 1995), which is 
not a CDKI, but also has growth-suppressing activity, which is caused by
sequesting MDM2, a protein that binds p53 and promotes the degradation
of p53 to the nucleoli, thus stabilizing p53 (Fig. 14). p16-deficient mice are
viable without major defects in development, but often develop spontaneous
tumors, predominantly lymphoma and fibrosarcoma (Serrano et al., 1996).
In addition, the mice are more sensitive to DMBA or UV-induced carcino-
genesis. p16-/- MEFs have a much shorter doubling time. p18INK4c specifi-
cally targets Cdk6 at the G1 phase (Guan et al., 1994). Overexpression of
p18INK4c induces growth suppression in RB+ /+ cells but not in RB-/- cells.

THE pRb FAMILY TUMOR SUPPRESSORS: TARGETS OF

CYCLIN AND CYCLIN-DEPENDENT KINASES

RB1 is the prototype of tumor suppressor genes and was initially identified
as a locus mutated in retinoblastoma, a childhood tumor of the retina (Lee
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et al., 1987). Mutations in both alleles of RB1 not only exist in all retino-
blastomas, but also in other tumors, such as osteosarcomas, small cell lung
cancers, soft tissue sarcomas, breast cancers, bladder carcinomas, and
prostate carcinomas. RB1 transcript and the protein product pRb, a 105kD
nuclear phosphoprotein (Lee et al., 1987), are present in all normal tissues
examined. In RB1-/- cell lines, microinjection of the pRb protein in early 
to mid G1, or transfection of the cDNA-encoding pRb, results in a reversal
of the tumor phenotype and arrests cells at G1 phase (Huang et al., 1988;
Bookstein et al., 1990). These early findings show that pRb is a universal
growth suppressor that functions at the G1 phase.

The function of pRb is regulated largely through phosphorylation by
cyclin/Cdk complexes (Fig. 13). The phosphorylation status of pRb oscillates
regularly throughout the cell cycle (Chen et al., 1989). At G0 and early G,
pRb is hypophosphorylated, associates with histone deacetylase and E2F,
and functions as a negative regulator of the cell cycle. As the cell cycle pro-
gresses, pRb is phosphorylated by cyclin/Cdk complexes at different steps:
mid G1, S, and near the G2/M transition (De Caprio et al., 1992). At least
cyclin D/Cdk4, cyclin D/Cdk6, and cyclin E/Cdk2 are responsible for the
phosphorylation of pRb in vivo. Phosphorylation of pRb by cyclin/Cdk
complexes at the G1 phase disrupts its association with histone deacetylase
(HDAC) and E2F, thus inactivating pRb and removing pRb-mediated cell
cycle block. At the late mitotic phase and just before reentry into G1 phase,
pRb is converted to the hypophosphorylated state by Type I phosphatases
(PP1) and becomes active. In addition, apoptotic proteases have been shown
to be involved in the degradation of pRb (Kasten and Giordano, 1998).

Structurally and functionally related to pRb, p107 and p130/Rb2 share
large regions of homology especially in the “pocket region” (Ewen et al.,
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1991; Hannon et al., 1993; Mayol et al., 1993; Li et al., 1993), and all three
members form the pocket protein family. The growth suppressive activity of
the pocket protein family depends on the pocket regions to interact with 
E2F (Hiebert et al., 1992; Qin et al., 1992). Like pRb, the other two members
undergo cell-cycle-regulated phosphorylation (Baldi et al., 1995; Mayol et al.,
1993), associate with HDAC and E2F, and have growth suppressive proper-
ties (Ewen et al., 1991; Claudio et al., 1994; Stiegler et al., 1998).

pRb represses cell cycle progression by modulating the activity of the
E2F family of transcription factors. At G0 and G1, unphosphorylated or
hypophosphorylated pRb binds to E2F through the pocket region. This inter-
action blocks the expression of E2F target genes whose products are required
for DNA synthesis and cell cycle progression (Zhu et al., 1993; Sala et al.,
1994). p107 and p130/Rb2 also bind to E2F and function in a similar way
(Cobrinik et al., 1993; Schwarz et al., 1993). However, each pocket protein
has a different temporal profile of expression and interacts with different
members of the E2F family during the cell cycle (Classon and Dyson, 2001).
The binding of p130/Rb2 to E2F4,5 is detected predominantly during G0,
and the binding of p107 is detected during G1 and S phase, while the binding
of pRb is detected during late G1 and continues through S phase. In addi-
tion, recruitment of HDAC may enhance the repression of E2F activity 
(Ferreira et al., 1998; Stiegler et al., 1998). Interestingly, the role of pRb2/p130
in promoting apoptosis was suggested by recent reports (Bellan et al., 2002;
Pucci et al., 2002). Viral oncoproteins, including the adenoviral E1A protein,
the large T antigens of polyomavirus such as SV40, the human JC and BK
viruses, and the E7 oncoprotein of HPV, specifically bind to and inactivate
unphosphorylated or hypophosphorylated pRb, thus stimulating E2F activ-
ity. Therefore, the association between the viral proteins and pRb mimics the
phosphorylation of pRb by cyclin-Cdk complexes and the genetic alteration
of RB1 in tumor cells.

E2F was originally identified as a DNA-binding factor that is required
for adenoviral E1A-mediated induction of the viral E2 promoter. Five
members of E2F family, E2F1 (Helin et al., 1992; Kaelin et al., 1992; Shan 
et al., 1992), E2F2 (Ivey-Hoyle et al., 1993; Lees et al., 1993), E2F3 (Lees et al.,
1993), E2F4 (Beijersbergen et al., 1994; Ginberg et al., 1994; Sardet et al., 1995),
and E2F5 (Hijmans et al., 1995; Sardet et al., 1995), have been identified and
functionally characterized. Although E2F1–3 are transcriptionally active and
can be repressed by Rb family, E2F4 and E2F5 are considered repressive and
their repressive activity depends on p130/RB2 and p107. The sixth member
of E2F family, E2F6, has been cloned but its function remains unclear. E2F
family members form heterodimers with either of two dimerization partners,
DP1 or DP2. Studies have revealed that DP1 is slightly phosphorylated 
by cyclin/Cdk complexes during early cell cycle progression and that its
levels of phosphorylation increase during progression through the cell cycle.
This increase in phosphorylation levels is associated with a decrease in
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DNA-binding activity of the E2F/DP-1 heterodimer. A variety of genes that
code for proteins involved in DNA replication are activated at the boundary
between G1 and S of the cell cycle. Many of these genes contain E2F-binding
sites at their promoter regions. Important E2F target genes include, but are
not limited to, c-Myc/N-myc, dihydrofolate reductase (DHFR), thymidine
kinase, DNA polymerase alpha, thymidylate synthase, PCNA, ORC1, cyclins
and Cdks, pRb family, and E2Fs themselves. While E2F activity is required
for S phase progression, it is proposed that uncontrolled, overactive E2F
function leads to apoptosis (Fig. 1).

p53: THE GOVERNOR OF LIFE AND DEATH

p53 was identified as a cellular protein associated with SV40 large T antigen
in SV40-transformed cells and was initially termed SV40-associated tumor
antigen. Overexpression of wild-type p53 inhibits the growth of both normal
and transformed cells, thus showing that it actually is a tumor suppressor
(Finlay et al., 1989). Indeed, p53 mutations are present in more than 50% of
human tumors. p53 function, however, is not limited to growth suppression.
The current notion is that p53 is a multifunctional protein with a key role in
the maintenance of genomic integrity so that not only can the cells and the
organisms as a whole survive, but also live much better. To achieve that goal,
p53 responds to various signals, integrates these signals, and coordinates cell
growth, DNA repair, and apoptosis.

p53 has the structural characteristics of a transcriptional factor and func-
tions in the form of a homotetramer. It interacts with the TATA-box binding
protein (TBP) and p300/CBP through its transactivation domain (Seto et al.,
1992; Mack et al., 1993; Avantaggiati et al., 1997; Sang et al., 1997; Giordano
and Avantaggiati, 1999). As a sequence-specific DNA-binding protein, p53
can regulate gene transcription either positively or negatively. First of all, 
the universal Cdk inhibitor p21 (WAF1) is a transcriptional target of p53 
(Fig. 15). Since p21 inhibits cyclin/Cdk complexes that are responsible for
the inactivation of the pRb family through multiple-site phosphorylation, the
coordinated control of the cell cycle by p53 and pRb has been proposed (Sang
et al., 1995). In addition, the complex formation between p21 and PCNA sug-
gests that p53 is involved in DNA repair, a notion substantiated by the iden-
tification of another p53 target gene, gadd45. gadd45 belongs to a family of
genes called “growth arrest to DNA damage” (gadd) genes whose expression
is enhanced upon growth arrest induced by DNA damage (Fornace et al.,
1989). Gadd45 recognizes altered chromatin state and modulates DNA acces-
sibility to cellular proteins (Carrier et al., 1999). Gadd45 also stimulates the
DNA excision repair pathway and plays a role in inhibition of the G1/S tran-
sition by interacting with PCNA. p53 induces apoptosis by transcriptionally
controlling the expression of the bax gene that encodes a key promoter of
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apoptosis, and of the protooncogene bcl-2. Bax and Bcl-2 form either homod-
imers with themselves or heterodimers with each other to switch between
apoptosis and survival (Oltvai et al., 1993). Increased p53 activity transcrip-
tionally enhances the expression of bax but represses the expression of bcl2.
In addition, the level of Mdm2 is transcriptionally enhanced by p53, pro-
viding negative feedback to regulate p53 (Momand et al., 1992; Barak et al.,
1993; Oliner et al., 1993) (Figs. 14 and 15).

As a guardian of the genome, p53 continuously monitors the genomic
integrity and responds to it accordingly. Exposure of cells to different kinds
of DNA-damaging agents, such as UV, X-rays, ionizing radiation, and geno-
toxic chemicals, leads to p53 accumulation and activation. DNA damage also
occurs during normal cell processes, including DNA replication, rearrange-
ments, homologous recombination and chromosomal reshuffling during 
cell division, differentiation, spermatogenesis, and oogenesis. When DNA
damages are detected, p53 transcriptionally regulates the expression of its
target genes and arrests the cell cycle at G1 to repair the damaged DNA
before replication can occur. At G2, genomic alteration caused by improper
DNA replication could induce p53 and cause G2 arrest. 14-3-3e, a protein
factor that is involved in G2 arrest, is induced by DNA damage agents in 
a p53-dependent manner (Hermeking et al., 1997). In response to DNA
damage, 14-3-3e-deficient cells fail to arrest at G2, but die upon entering
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mitosis (Chan et al., 1999). p53-induced cell cycle arrest provides the cells
with enough time to repair the damaged DNA. Alternatively, if the DNA
damage is too severe to be repaired, p53 triggers the apoptosis pathway to
actively destroy mutant cells. By these means, it prevents the expansion of
cell clones with mutations. p53-deficiency would favor the expansion of cells
containing damaged DNA, which can be oncogenic.

Three Ser/Thr kinases have been involved in sensing DNA damage,
transducing signals, and activating p53. Double-strand breaks (DSB), one of
the most severe types of DNA damage, activate the ATM, ATR, and DNA-
PK kinases (Khanna and Jackson, 2001). ATM is a protein kinase that is defi-
cient in ataxia-telangiectasia syndrome, a disorder characterized by
radiosensitivity and genomic instability (Kastan et al., 1992). atm-/- cells are
highly sensitive to ionizing radiation and show chromosomal instability and
defects in multiple checkpoints of the cell cycle. Both p53 and Mdm2 can be
phosphorylated by ATM kinase (Banin et al., 1998; Canman et al., 1998; 
Khosravi et al., 1999). Phosphorylation of p53 (Ser-15) and Mdm2 by ATM
represses the Mdm2-mediated degradation of p53 (Maya et al., 2001). Other
downstream targets of ATM include Brca1, Nbs1, Chk1, and Chk2 (Li et al.,
2000; Cortez et al., 1999; Lim et al., 2000; Zhao et al., 2000). ATR is an ATM-
related kinase, recognizing the same consensus sites, but showing little func-
tional redundancy to ATM. ATR specifically mediates UV-induced rapid
phosphorylation of p53 (Tibbetts et al., 1999). DNA-PK is a DSB repair
enzyme that binds DSB, promotes nonhomologous end joining, and induces
p53-dependent apoptosis but not growth arrest (Wang et al., 2000; Khanna
and Jackson, 2001). In addition, Chk1 and Chk2 also phosphorylate p53 (Ser-
20), which contributes to the stabilization and accumulation of p53 (Caspari,
2000; Chehab et al., 2000; Hirao et al., 2000).

In response to DNA damage, p53 activity is regulated through protein
stabilization and posttranslational modification. Mdm2 targets p53 at the
amino terminus and promotes the degradation of p53 through the ubiqui-
tin-26S proteasome system (Kubbutat et al., 1997; Haupt et al., 1997). Since
Mdm2 is transcriptionally activated by p53, the effects of p53 and Mdm2 on
each other form a negative feedback control. p19ARF, one of the two prod-
ucts of INK4a/ARF locus, sequesters Mdm2 to the nucleoli and stabilizes
p53 (Pomerantz et al., 1998; Zhang et al., 1998; Weber et al., 1999; Zhang 
and Xiong, 1999) (Fig. 14). DNA-damage-induced posttranslational modifi-
cations include at least phosphorylation, which has partially been discussed,
and acetylation (Liu et al., 1999; Sakaguchi et al., 1998). In addition to the
stabilization of p53, phosphorylation also enhances its transactivation activ-
ity and its association with cofactors (Lambert et al., 1998). The major phos-
phorylation sites in p53 have been mapped within the amino and carboxyl
termini. p53 also is susceptible to acetylation at its lysine residues in the car-
boxyl terminal region. p300 and CBP, two coactivators for p53-mediated
transactivation that physically interact with p53 (Avantaggiati et al., 1997;
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Sang et al., 1997), and the recently identified p33ING2 are acetyltransferases
and are able to acetylate p53 (Ito et al., 2001; Nagashima et al., 2001).
However, the precise effects of such modification are still controversial (Gu
and Roeder, 1997; Espinosa and Emerson, 2001).

Two p53 homologues have been identified and termed p63 and p73. p53,
p63, and p73 form a structurally related protein family and share most of the
features of p53 with differences in some aspects (Levrero et al., 2000; Irwin
and Kaelin, 2001).

As discussed, p53 and pRb utilize different mechanisms to control 
different steps of cell division and to safeguard the reproduction of healthy
daughter cells. In RB-deficient cells, deregulated DNA replication leads to
p53 accumulation that eventually results in apoptosis. Although p53-
induced apoptosis provides a way to actively remove RB-deficient cells, it is
also construed to be a selective pressure for RB-/-, p53-/- cell. RB-/-,
p53-/- cells completely lack the growth control of both p53 and pRb, rapidly
accumulate more genomic alterations, and eventually form tumors. DNA
tumor viruses typically use their oncoproteins to target both pRb and p53 in
order to transform cells. As mentioned before, SV40 large T antigen targets
p53 and pRb by direct interaction. Adenovirus uses E1A to target the pRb
family and E1B oncoprotein to inactivate p53. HPV possesses E6 to acceler-
ate the ubiquitination-mediated p53 degradation and E7 to disrupt pRb 
functions.

SUMMARY AND CONCLUSION

Cell division is a very complex but well-coordinated process that involves
several groups of genes. Proteins encoded by these genes play important
roles in signal transduction, DNA replication, transcription regulation,
protein synthesis, and degradation and morphogenesis. Deficiency in any
part of the cell cycle machinery leads to growth arrest or apoptosis. Cyclins
and Cdks are the essential forces that promote the cell cycle forward. pRb
and p53 coordinately control the cell cycle at different steps. pRb is
hypophosphorylated at G0 to early G1 and represses S phase gene expres-
sion by association with E2F and HDAC. Upon receiving the cell division
signal, cyclin/Cdk complexes phosphorylate pRb, dissociate the pRb-
HDAC-E2F complex, and thus activate E2F. E2F transactivates c-Myc and
E2F itself. E2F and Myc transactivate a spectrum of genes that are required
for DNA replication and S phase progression. At any phase during the cell
cycle, DNA damage activates ATM/ATR kinases that will eventually acti-
vate p53. Enhanced p53 activity transcriptionally regulates target genes to
induce growth arrest, DNA repair, or apoptosis to safeguard the integrity of
the genome and faithful duplication of the cells. The transforming activity
of DNA tumor virus oncoproteins depends on their capacity to inactivate
both pRb and p53.
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CHAPTER

15

MITOCHONDRIA AND OXIDATION

IN THE REGULATION OF

CELL DEATH

JOHN D. ROBERTSON, STEN ORRENIUS,
AND BORIS ZHIVOTOVSKY

Mitochondria have long been known to be critical for overall cell survival
because of their role in energy metabolism. In the mid-1990s, however, 
it became evident that mitochondria also actively participate in a gene-
regulated form of cell death known as apoptosis. Before the epoch of apopto-
sis, cell death was studied quite intensively in radiation biology. In search-
ing for mechanisms of cell death in radio-sensitive tissues during the 1950s,
a suppression of respiration—specifically between cytochromes b and c—in
mitochondria from thymus and spleen was described (for a review, see Zhiv-
otovsky et al., 1998). Moreover, the suppression of respiration was associ-
ated with the formation of pyknotic nuclei, now known to be a characteristic
of cells undergoing apoptosis. In contrast, these phenomena were not
observed in cells taken from radio-resistant tissues. Thus, the radiation lesion
was believed to be due to impaired binding of cytochrome c to the mito-
chondrial inner membrane after X-irradiation (Scaife, 1964).

Complementary studies to those just described demonstrated that the
addition of exogenous cytochrome c could stimulate respiration in mito-
chondria isolated from radio-sensitive, but not radio-resistant, tissues of irra-
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diated rats (Manoilov and Hanson, 1964). Importantly, loss of cytochrome c
was not a result of its simple escape from mitochondria during the isolation
procedure, since additional washing of the mitochondrial fraction with an
isotonic buffer did not increase the “cytochrome c effect” (van Bekkum,
1957). Neither did in vitro irradiation of isolated mitochondria cause
increased enzyme release. Thus, it was suggested that the perturbation of
mitochondrial electron transfer in radio-sensitive tissues was based on a con-
trolled release of cytochrome c from the mitochondria and the appearance
of this protein in the cytosol.

Following relatively little movement over the next 25 years, Wang and
coworkers demonstrated that the release of cytochrome c from mitochondria
into the cytosol resulted in caspase activation and the execution of apopto-
sis (Liu et al., 1996). This critical observation, combined with the following
important discoveries from other research groups, is largely responsible for
a recent explosion in research focusing on mitochondrial regulation of 
apoptosis:

• The antiapoptotic protein Bcl-2 is localized in the outer mitochondr-
ial membrane (Hockenberry et al., 1990).

• A membrane fraction containing mitochondria was required for the
induction of nuclear apoptosis in a cell-free system (Newmeyer et al.,
1994).

• A drop in mitochondrial transmembrane potential (DY) precedes
chromatin cleavage and typical morphological changes induced by
diverse apoptotic stimuli (Zamzami et al., 1995).

• Although reactive oxygen species (ROS) do not seem to be required
for the execution step of apoptosis, they can be involved in the acti-
vation phase as intracellular signaling molecules (Jacobson, 1996).

• The apoptotic program can be halted at different stages by lowering
intracellular ATP levels (Leist et al., 1997).

Taken together, a number of early observations and more recent findings
have clearly demonstrated that mitochondria play an important role in cell
death.

MITOCHONDRIA: CENTRAL COMPONENTS IN THE

ACTIVATION OF APOPTOSIS

The mitochondrion consists of two membranes: the inner and outer mem-
branes (Fig. 1). The inner mitochondrial membrane, which forms the cristae,
contains the molecular components of the electron transport chain and the
ATP-synthase. Oxidation of mitochondrial respiratory chain substrates
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results in the formation of a proton electrochemical gradient across the inner
mitochondrial membrane. This gradient is exploited by the F0F1-ATP-
synthase to produce ATP from ADP and Pi (Fig. 1). Cytochrome c is a 
component of the electron transport chain and supports respiration by 
shuttling electrons between complex III (cytochrome bc1) and complex IV
(cytochrome oxidase) (Fig. 1). Apo-cytochrome c is encoded by a nuclear
gene and synthesized in the cytosol. It is imported into the mitochondrial
intermembrane space in an unfolded configuration where it receives its
heme group by heme ligase. Covalent attachment of this heme group stim-
ulates a conformational change, and holo-cytochrome c subsequently
assumes its functional role as a component of the electron transport chain.
Importantly, cytochrome c is a basic protein, which is normally bound to the
outer surface of the inner mitochondrial membrane (IMM) by an association
with the acidic phospholipid cardiolipin, and evidence (see below) suggests
that early modification of cardiolipin is important for cytochrome c release
to occur during apoptosis (Fig. 2C).

Both in vitro and in vivo studies have demonstrated the release of
cytochrome c from mitochondria during apoptosis, although the precise
mechanism controlling this event is unclear (see below). Once in the cytosol,
cytochrome c interacts with Apaf-1 (apoptosis protease activating factor) and
pro-caspase-9, forming the apoptosome complex. The result is the cleavage
and activation of pro-caspase-9 and other pro-caspases that are responsible
for the execution stage of apoptotic cell death (Robertson et al., 2000). Impor-
tantly, only holo-cytochrome c, and not apo-cytochrome c, is able to stimu-
late pro-caspase-9 activation (Hampton et al., 1998). In fact, there is recent
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evidence that apo-cytochrome c may inhibit apoptosome activity in the
cytosol.

In addition to cytochrome c, several other proteins, normally located in
the intermembrane space of mitochondria, are released into the cytosol
during the early stages of apoptotic cell death. Among these proteins are
Smac/DIABLO (second mitochondria-derived activator of caspase/direct
IAP-binding protein with low pI), AK-2 (adenylate kinase), several pro-
caspases, EndoG (endonuclease G), Omi/HtrA2, sulfite oxidase, HSPs (heat
shock proteins), CIDE-B (cell-death-inducing DFF45-like effector), and ARTS
(apoptosis-related protein in the TGF-b signaling pathway) (for a review, see
van Loo et al., 2002). Another protein known as AIF (apoptosis-inducing
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FIGURE 2. A schematic representation of mechanisms accounting for outer mito-
chondrial membrane (OMM) permeabilization and the release of cytochrome c. (A)
Induction of permeability transition (PT) due to PT pore activation, leading to matrix
expansion and rupture of the OMM. (B) Bax-mediated permeabilization of the OMM,
involving tBid-induced Bax insertion and homooligomerization that can be inhibited
by Bcl-2 or Bcl-XL. (C) Peroxidation of cardiolipin is a key first step in mobilizing
cytochrome c from the inner mitochondrial membrane prior to Bax-induced (B) per-
meabilization of the OMM.



factor), whose intramitochondrial location is unclear, was also shown to be
released from mitochondria during some forms of apoptosis.

Although the role of many of these proteins in the apoptotic process is
well characterized, the involvement of others (AK-2, sulfite oxidase) is still
unclear. In addition, it should be noted that the extra-mitochondrial function
of many of these proteins is different from their specific role within mito-
chondria. For instance, mitochondrial cytochrome c is involved in support-
ing respiration, whereas once it is released into the cytosol, it acts as a
cofactor for the activation of the caspase cascade. AIF is a flavin-adenine-
dinucleotide-(FAD-)binding oxidoreductase, but neither its FAD-binding
property nor its oxidoreductase activity is required for its ability to induce
apoptosis after translocation to the nucleus (Susin et al., 1999). The functions
of Smac/DIABLO, EndoG, and Omi/HtrA2 within mitochondria are also
unclear. However, evidence suggests that once released from the mitochon-
dria, Smac/DIABLO and Omi/HtrA2 are involved in the potentiation of
caspase activity by relieving the caspase-inhibitory properties of the cytoso-
lic inhibitor of apoptosis proteins (IAPs), whereas EndoG is translocated into
the nucleus where it is involved in chromatin degradation (for a review, see
van Loo et al., 2002).

The role of cytosolic caspases in the initiation and execution of cell death
is well defined; however, the functions of pro-caspases that are constitutively
located within mitochondria is still unclear. Recently, it was shown that the
majority of mitochondrial caspase-3 and caspase-9 are S-nitrosated and thus
undergo posttranslational inhibitory modifications (Mannick et al., 2001).
During the apoptotic process, these caspases are denitrosated, allowing the
catalytic site to function. However, it is unknown whether mitochondrial
pro-caspases are activated within the mitochondria or must translocate to
the cytosol in order to be activated.

The Bcl-2 family of proteins includes more than 20 members that fulfill
pro- or antiapoptotic functions. All members of the Bcl-2 family contain up
to four conserved domains, denoted Bcl-2 homology domains (BH1 to BH4)
(for a review, see Cory and Adams, 2002). Accumulating evidence indicates
that a number of Bcl-2 family proteins act, at least in part, at the level of mito-
chondria to either promote or prevent the release of apoptogenic proteins
from the intermembrane space of mitochondria. In particular, Bcl-2 and Bcl-
XL, which can be found in the outer mitochondrial membrane and share 47%
amino acid homology, block the release of cytochrome c and other proteins;
however, the precise mechanism responsible for this effect is unclear. Reports
describing the three-dimensional structure of Bcl-XL may reveal additional
information about its function. Specifically, Bcl-XL protein possesses struc-
tural similarities with the pore-forming domains of bacterial toxins. Thus, it
may be that Bcl-XL’s capacity to form pores in lipid membranes is instru-
mental for its antiapoptotic function insofar as it maintains ion homeostasis
across mitochondrial membranes. Additionally, it was demonstrated that
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Bcl-2 and Bcl-XL may interact with the BH3 domain of pro-apoptotic Bcl-2
family molecules, namely, Bax, Bak, Bid, Bim, Noxa, and Puma. The ability
to form heterodimers with these molecules was shown to be crucial for the
antiapoptotic function of Bcl-2 or Bcl-XL. However, in some experimental
systems, mutants of Bcl-2 or Bcl-XL that do not interact with Bax retain sig-
nificant antiapoptotic potency, suggesting that the antiapoptotic capacity of
these proteins is only partially mediated by the functional sequestration of
pro-apoptotic family members.

There is accumulating evidence that pro-apoptotic Bax, Bak, Bim, Puma,
Noxa, and tBid proteins translocate to mitochondria in the presence of a
death stimulus, where they exert their pro-apoptotic effect. Bax and Bak are
reported to integrate into the mitochondrial membrane as oligomers in the
presence of a pro-apoptotic stimulus. Recent evidence suggests that confor-
mational changes in both proteins, or removal of 20 amino acids at the NH2-
terminal of Bax, are critical steps in their targeting to the outer mitochondrial
membrane (OMM). Once integrated into the mitochondrial membrane, Bax
and Bak are believed to elicit a pro-apoptotic response by stimulating the
release of cytochrome c, an effect that is blocked by Bcl-2 or Bcl-XL in most
systems. Like Bax and Bak, Bid exists in an inactive state prior to an apop-
totic stimulus and undergoes posttranslational modification during its 
activation. Initial studies with Bid showed that an intact BH3 domain was
essential for its ability to bind Bcl-2 or Bax and to promote cell death. This
model was developed further by the understanding that the activation 
of Bid involves cleavage by caspase-8 and insertion of this product, tBid, 
into the outer mitochondrial membrane. Recently, other proteases, such as
granzyme B, lysosomal proteases, and caspase-2, have been reported to also
cleave Bid, resulting in an amplification of their pro-apoptotic effect by mito-
chondrial recruitment. Concerning caspase-2, there is also recent evidence
that this protease can act directly on mitochondria, independently of Bid 
or other Bcl-2 proteins, to trigger cytochrome c release (Guo et al., 2002;
Robertson et al., 2002). There is some controversy concerning the possible
mechanism of Bim action. It is likely that Bim, by itself, does not induce
release of cytochrome c; however, being a member of the BH3-only subfam-
ily of proteins, it might bind and antagonize Bcl-2 or Bcl-XL, as well as acti-
vate the BH1-3 proteins Bax and Bak (Terradillos et al., 2002).

MULTIPLE ROUTES AND MECHANISMS OF CYTOCHROME c

RELEASE FROM MITOCHONDRIA

As mentioned above, cytochrome c is normally bound to the IMM by an
association with the acidic phospholipid cardiolipin (Nicholls, 1974). Cardi-
olipin is unique to mitochondria and present predominantly, if not exclu-
sively, in the IMM. Evidence suggests that dissociation of cytochrome c from
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cardiolipin is a critical first step for cytochrome c release into the cytosol and
the induction of apoptosis (Ott et al., 2002) (Fig. 2C). In particular, it was
demonstrated that exposing submitochondrial particles to ROS produced by
the mitochondrial electron transport chain stimulates a pronounced mobi-
lization of cytochrome c and a concomitant loss of cardiolipin. Similarly,
other studies showed that lowering mitochondrial cardiolipin content cor-
relates not only with a decrease in respiration, but also with a stoichiomet-
ric increase in cytochrome c release. Further, a recent study from this
laboratory demonstrated that simple permeabilization of the OMM by the
addition of oligomeric Bax to isolated mitochondria in low ionic strength
buffer is insufficient for cytochrome c release, and that peroxidation of 
cardiolipin may be a critical first step in order to mobilize cytochrome c 
from the IMM (Ott et al., 2002). Combined, these findings indicate that 
cardiolipin plays an important role in the structure and function of the 
respiratory chain, as well as in the retention of cytochrome c within the inter-
membrane space.

As already mentioned, the precise molecular mechanisms controlling
cytochrome c release from mitochondria in the presence of a pro-apoptotic
stimulus are not clear, although at least two distinct models for cytochrome
c release have emerged that can be distinguished on the basis of whether
Ca2+ is required for the event. In one instance, mitochondrial Ca2+ overload
results in opening of a pore in the inner mitochondrial membrane with 
subsequent swelling, and the rupture of the outer membrane followed by
the release of cytochrome c and other intermembrane space proteins
(Crompton, 1999; Fig. 2A). Although it was originally believed that MPT
(mitochondrial permeability transition) induction was the root mechanism
responsible for cytochrome c release in response to different cytotoxic
stimuli, more recently this notion has been challenged. Ample evidence from
recent studies suggests that, although MPT is likely to be one mechanism
responsible for cytochrome c release, it is no longer regarded as the only
mechanism. In fact, it was shown that mitochondria of NGF-deprived sym-
pathetic neurons undergoing apoptosis released cytochrome c and were
reduced in size, yet remained intact and resumed normal function when
reincubated with NGF (Martinou et al., 1999). A more recent study from our
laboratory demonstrated that etoposide stimulated cytochrome c release
from isolated mitochondria, despite the presence of 1mM EGTA (a known
inhibitor of MPT) in the reaction buffer. Thus, when Ca2+ loading is insuffi-
cient to induce observable manifestations of MPT, the release of cytochrome
c can still occur.

The Ca2+-independent model asserts that a more selective protein release
occurs without changes in mitochondrial volume (Fig. 2B). This mechanism
involves specific channels or pores in the outer mitochondrial membrane
that may be opened and regulated by certain pro-apoptotic members of the
Bcl-2 family of proteins, including Bax. We reported recently that depend-
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ing on experimental conditions, this protein can act either directly on mito-
chondria to stimulate the release of cytochrome c by forming a selective pore
in the OMM, or it may facilitate opening of the PTP (permeability transition
pore) (Gogvadze et al., 2001). A different study demonstrated the ability of
recombinant Bax and cleaved or truncated Bid (tBid) to stimulate complete
cytochrome c release that was unaffected by cyclosporin A and did not result
in mitochondrial depolarization or alterations in ultrastructure as assessed
by electron microscopy (von Ahsen et al., 2000). Recent evidence indicates
that tBid induces a conformational change in Bax that allows this protein to
insert in the outer membrane, oligomerize, and stimulate cytochrome c
release (Eskes et al., 2000). These data pointed to the possibility that
cytochrome c release involves a specific pore in the OMM that may be
formed de novo by Bax or tBid.

The PTP consists of both inner and outer mitochondrial membrane pro-
teins, such as ANT (adenine nucleotide translocator) and VDAC (voltage-
dependent anion channel), respectively, and is formed at contact sites
between these two membranes (Fig. 1). Recently, Tsujimoto’s group demon-
strated the ability of recombinant Bax, Bak, and Bim proteins to hasten the
opening of VDAC in liposomes and induce changes in DY, whereas Bcl-XL

was able to bind and close VDAC directly (Shimizu et al., 1999; Sugiyama
et al., 2002). A subsequent and complementary study reported the ability of
certain Bcl-2 family members, that is, Bid and Bik, to stimulate apoptosis in
a fashion different from that of other pro-apoptotic Bcl-2 family proteins,
such as Bax and Bak. Specifically, Bid and Bik stimulated cytochrome c
release without inducing changes in DY or interacting directly with VDAC.
On the other hand, the same group has shown that Bim, which also belongs
to the BH3-only subfamily, can activate VDAC directly. However, it is
unclear how general this phenomenon is.

Hexokinases are known to bind to VDAC and directly couple intrami-
tochondrial ATP synthesis to glucose metabolism. It was demonstrated
recently that hexokinase II interferes with the ability of Bax to bind to mito-
chondria and induce the release of cytochrome c (Vander Heiden et al., 2001).
Detachment of hexokinase from the mitochondria-enriched fraction isolated
from HeLa cells promoted the binding of recombinant Bax-D19 and subse-
quent release of cytochrome c (Pastorino et al., 2002). Similarly, the addition
of recombinant hexokinase II to the mitochondria-enriched fraction isolated
from hepatocytes—cells that do not express this protein constitutively—pre-
vented the ability of recombinant Bax-D19 to bind to mitochondria and
promote cytochrome c release. Similar results were found in intact cells
insofar as removing hexokinase II, or overexpressing it, resulted in a poten-
tiation or inhibition, respectively, of Bax-induced mitochondrial dysfunction
and cell death. Mitochondria-associated hexokinase activity is regulated by
serine/threonine kinase Akt/PKB. It was suggested that Akt increases cou-
pling of glucose metabolism to oxidative phosphorylation and regulates PTP
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opening via the promotion of a hexokinase–VDAC interaction at the outer
mitochondrial membrane (Gottlob et al., 2001).

ANT constitutes the most abundant protein of the mitochondrial inner
membrane and catalyzes the import of cytosolic ADP and the export of
matrix ATP synthesized during aerobic energy metabolism. Kroemer’s
group (Belzacq et al., 2002) has demonstrated that a direct physical interac-
tion occurs among ANT, Bax, and Bcl-2. They found that ANT-Bax channels
were selectively permeable to cations, whereas Bax channels were selectively
permeable to anions. Importantly, Bcl-2, bongkrekic acid (a specific ANT
inhibitor), or ATP and ADP (the natural ligands of ANT) closed ANT-Bax
channels. Functional analysis of ANT pore opening in liposomes demon-
strated that ANT might be a target for multiple apoptosis modulators. It
seems that ANT is a bifunctional protein: a vital ADP/ATP translocator, and
a lethal pore regulator. However, the nature of the signal and how it can
induce a switch from one ANT function to another are unclear. Moreover, 
it is unclear how ANT may integrate death signals arising from so many 
different stimuli.

Finally, recent studies employing patch-clamping of intact mitochondria
and proteoliposomes generated from these organelles have uncovered a
novel ion channel whose activity correlates with the onset of apoptosis
(Pavlov et al., 2001). The pore or channel diameter, inferred from the 
largest conductance state of this channel, is sufficient to allow the diffusion
of cytochrome c and larger proteins. The activity of the channel is 
affected by Bcl-2 family proteins in a manner that is consistent with their
pro- or antiapoptotic properties. A similar channel activity was found in
OMMs isolated from yeast expressing human Bax. These findings implicate
this mitochondrial apoptosis-induced channel as a candidate for the outer
membrane pore through which cytochrome c and other factors exit during
apoptosis. However, it is unclear how the activity of this channel relates to
other documented release mechanisms for intermembrane space proteins.

It is still unclear whether cytochrome c and other mitochondrial proteins
are released simultaneously and by the same mechanism. In fact, although
Bcl-2 blocks the release of cytochrome c and Smac/DIABLO equally well,
Smac/DIABLO release has been found to be caspase-dependent, which is
normally not true for cytochrome c release (Adrain et al., 2001). A more
recent study examined cytochrome c and Smac/DIABLO release at the 
single cell level and found that cytochrome c release preceded that of
Smac/DIABLO (Springs et al., 2002). Although the reason for this is unclear,
it is possible that release of these proteins is affected by differences in their
intramitochondrial localization or by mitochondrial remodeling, especially
that of cristae (Scorrano et al., 2002).
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ROLE OF OXIDATIVE STRESS IN THE MODULATION

OF APOPTOSIS

The role of oxidative stress in apoptosis has been shaped by several inde-
pendent observations. Thus, direct treatment of cells with oxidants, such as
hydrogen peroxide or redox-active quinones, was originally thought to
exclusively cause necrosis, but more recent studies have shown that lower
concentrations of these agents can trigger apoptosis (Hampton and Orrenius,
1997). In addition, many groups have suggested that the generation of intra-
cellular ROS (reactive oxygen species) may constitute a conserved apoptotic
event, and cite ROS production as a critical determinant of toxicity associ-
ated with exposure to ionizing radiation and chemotherapeutic drugs.
Depletion of glutathione (GSH) pools has also been suggested to be part of
the cell death effector machinery since it often accompanies ROS production
(Macho et al., 1997). Moreover, oxidative modification of proteins and lipids
has been observed in cells undergoing apoptosis, also in response to non-
oxidative stimuli, suggesting that intracellular oxidation may be a general
feature of the effector phase of apoptosis. The ability of various cellular
antioxidants to block apoptosis induced by diverse agents other than oxi-
dants also argues for the central role of oxidative stress in apoptosis. Recip-
rocally, broad-spectrum antiapoptotic proteins like Bcl-2 and the baculovirus
protein p35 have been ascribed an antioxidant function, indicating that ROS
generation may be a requisite apoptotic event.

Several mechanisms for ROS induction of apoptosis have been pro-
posed; however, an integrated model has yet to be established. We generally
favor a scheme in which ROS, for example, H2O2, act upon mitochondria,
causing a disruption of mitochondrial membrane potential and the release
of cytochrome c; this, in turn, is followed by the activation of caspase cascade
(Stridh et al., 1998). An alternative model for ROS-induced apoptosis
involves upregulation of the Fas/FasL system (Dumont et al., 1999). The
observation that various chemotherapeutic drugs cause intracellular ROS
production and Fas upregulation has perpetuated this paradigm; however,
other studies contend that H2O2-induced apoptosis is Fas-independent.
Finally, transcription factors can be modulated by oxidative stress. Nuclear
translocation of p53 and the ubiquitous transcription factors, NFkB and AP-
1, are activated by ROS (Pinkus et al., 1996). Once activated, these tran-
scription factors might drive transcription of pro-apoptotic genes or perhaps
cause expression of inhibitors of survival-related proteins. The issue of p53-
induced apoptosis has gained momentum in the oxidative stress field
recently since the activation of p53 has been shown to increase the synthe-
sis of proteins that generate or respond to oxidative stress. Taken together,
these data suggest that some of the above-mentioned mechanisms for ROS-
induced apoptosis may be linked.
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COMPONENTS OF THE APOPTOTIC MACHINERY THAT

MAY BE MODULATED BY OXIDATIVE STRESS

Several components of the apoptotic machinery are susceptible to modula-
tion by oxidants (Table 1). Thus, mitochondrial regulation of apoptosis,
coupled with this organelle’s innate production of ROS, makes it a likely can-
didate for such modulation. The release of cytochrome c from mitochondria,
which was described above, is critical for the mitochondria-dependent
pathway of caspase activation and is an important amplification step for
other models of caspase activation, such as death receptor ligation or
granzyme B. Despite its apparent indispensability for several models of
apoptosis, the precise mechanism by which cytochrome c is released remains
contentious (Martinou and Green, 2001; Zamzami and Kroemer, 2001). As
was mentioned above, existing models for cytochrome c release can be
divided roughly into Ca2+-dependent or -independent paradigms. Increases
in cytosolic Ca2+, oxidants, and inorganic phosphates are all classical triggers
of MPT, while pore opening is blocked by cyclosporin A and bongkrekic acid.
Once triggered, MPT results in mitochondrial swelling, outer membrane
rupture, and release of mitochondrial proteins. Interestingly, the ability of
cytochrome c to be released may rely significantly on the peroxidation status
of specific mitochondrial elements. As mentioned, under normal conditions,
the bulk of cytochrome c is tethered to cardiolipin, a phospholipid, which is
a unique component of the mitochondrial inner membrane. In order for
cytochrome c release to occur, it must first be released from the grip of 
cardiolipin before it can exit the mitochondria (Ott et al., 2002).

Several independent groups have reported alterations in cardiolipin that
occur concomitantly with cytochrome c release. Peroxidation of cardiolipin
initiates the release of cytochrome c from mitochondria by dissociating
cytochrome c from the mitochondrial membrane (Shidoji et al., 1999). In vitro
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TABLE 1. COMPONENTS OF THE APOPTOTIC PATHWAYS MODIFIED BY

OXIDATIVE STRESS

Plasma membrane Fas
Phosphatidylserine

Cytosol Caspase-3
Caspase-8
Caspase-9

Mitochondrion Cardiolipin
Caspase-3
ANT
DY

Nucleus Transcription factors (NFkB, AP-1, p53)



experiments using cytochrome c, preferentially bound to cardiolipin lipo-
somes, have demonstrated that cytochrome c is released from liposomes by
oxidation of cardiolipin. An antioxidant protein, phospholipid hydroper-
oxide glutathione peroxidase (PHGPx), has been shown to inhibit apoptosis
and prevent cytochrome c release by a number of triggers; it also prevents
cardiolipin peroxidation. Overexpression of mitochondrial PHGPx also
inhibits the opening of the mitochondrial permeability transition pore by
oxidative stimuli (Nomura et al., 2000). In light of these findings and what
was discussed earlier, the modification of cardiolipin may be an obligatory
step in initiating the liberation and release of cytochrome c from mitochon-
dria. This is further supported by the finding that tBid inserts preferentially
into mitochondria at sites where cardiolipin is present, and thereby facili-
tates the release of cytochrome c. Thus, cardiolipin serves as a docking site
for tBid (Lutter et al., 2000). Whether this holds true for other pro-apoptotic
Bcl-2 family members remains to be seen.

Caspases contain an active-site cysteine nucleophile, which is prone to
oxidation or thiol alkylation. It is therefore not surprising that the activity of
caspases is optimal under reducing environments. Any deviation from such
reducing conditions within an injured cell could be detrimental to caspases
and render them inactive. It has been demonstrated by our group that H2O2

suppresses both the activation and activity of caspases, possibly through
modulation of the redox status of the cell and the oxidation of cysteine
residues in caspases. Furthermore, the oxidation of dithiocarbamates to
thiuram disulfides has been shown to inhibit apoptosis through disulfide
formation at the active-site cysteine of caspases, leading to an inhibition of
their enzymatic activity (Nobel et al., 1997).

Exposure to NO or activation of iNOS has also been reported to inhibit
apoptosis in several cell types (Melino et al., 1997). NO-mediated inhibition
of apoptosis in most cases is due to direct inhibition of caspase activity
through S-nitrosation of the active-site cysteine conserved in all caspases.
NO inhibition of caspases is reversible by dithiothreitol, consistent with
direct S-nitrosation of the caspase catalytic cysteine residue. Interestingly,
pro-caspase-3 was recently shown to be S-nitrosated on its catalytic site cys-
teine (Cys-163) in unstimulated human cell lines, and was denitrosated upon
activation through the Fas pathway. It was proposed that nitrosation/deni-
trosation might serve as a regulatory mechanism, analogous to phosphory-
lation/dephosphorylation, during apoptotic cell death. Indirect effects of
NO on caspases can also be a component of toxicity in certain systems.

Work carried out in our laboratory has demonstrated that the redox-
active quinone, menadione, could not only induce necrosis in HepG2 cells,
but that exposure of Fas-treated cells to menadione also switched the mode
of cell death to necrosis. Menadione, like other redox-active quinones, is
known to have cytotoxic effects, which are mediated through oxidative stress
and alterations in cellular Ca2+ homeostasis. Metabolism of menadione leads
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to the generation of ROS and to the oxidation of GSH to GSSG. Preincuba-
tion of apoptotic cells with catalase reduced the ROS levels and reversed the
inhibitory effect of menadione on caspase activity. Taken together, these
results strongly suggest that the inhibitory effects of menadione are due to
the production of hydrogen peroxide and subsequent inactivation of cas-
pases, and not to the direct effect of menadione on caspase thiol group(s)
(Samali et al., 1999).

An important feature of apoptotic cell death is efficient clearance of
dying cells by macrophages, and appearance of the aminophospholipid,
phosphatidylserine (PS), on the outer leaflet of the cell membrane serves as
a recognition signal for macrophages to engulf the apoptotic cell. Both PS
exposure and phagocytosis appear to be events that can be modulated by
oxidative stress. Diamide and N-ethylmaleimide (NEM) are two classic
examples of thiol-reactive compounds that are capable of creating oxidative
stress. Both compounds efficiently lower intracellular thiol levels, resulting
in GSH depletion. However, these agents may also cause MPT, probably by
modifying critical sulfur residue(s) in this complex. Whether the mitochon-
drial dysfunction precedes the GSH depletion seen with these agents is not
known (Fadeel et al., 1999). Interestingly, it has been demonstrated that NEM
and diamide can cause PS exposure. One of the enzymes that maintain
normal phospholipid asymmetry, the aminophospholipid translocase, has
been shown to contain a critical thiol residue, which may be modified by
NEM or diamide treatment (Waring et al., 1999). However, it is unclear
whether PS exposure by these agents is due to an inhibitory effect on the
aminophospholipid translocase, or if the mitochondrial or GSH-related
effects of these agents result in PS exposure by some other mechanism.

Observations indicating that several cytoprotective proteins can also
defend cells against oxidative stress have bolstered the role of redox regula-
tion in homeostasis. One of the most widely recognized antiapoptotic pro-
teins is Bcl-2 (see above). This protein resides in mitochondrial, ER, and
nuclear membranes, and for each of these subcellular localizations, a differ-
ent protective mechanism has been proposed. It has also been suggested that
Bcl-2 inhibits cell death by diminishing the generation of reactive oxidants,
thus preventing critical intracellular oxidations that are requisite for the com-
pletion of the apoptotic program. Separate studies of Bcl-2-overexpressing
cells illustrate that they have higher levels of total cellular glutathione.
Expression of Bcl-2 has also been shown to increase intracellular GSH by
inhibiting methionine-dependent GSH efflux, implicating the sinusoidal
GSH transporter in the protective effects of Bcl-2 (Meredith et al., 1998). 
Bcl-XL is another antiapoptotic member of the Bcl-2 family of proteins, 
which may exert its effects, at least in part, through GSH modulation. In an
IL-3-dependent murine pro-lymphocytic cell line, Bcl-XL overexpression has
been shown to prevent drops in GSH and to block apoptosis following IL-3
withdrawal (Bojes et al., 1997).
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ROLE OF ANTIOXIDANTS IN THE PROTECTION

AGAINST APOPTOSIS

The tripeptide GSH is the most abundant weapon against intracellular ROS
accumulation and regulates the redox state of many other cellular compo-
nents. Drops in GSH levels and concomitant increases in ROS during the
apoptotic process have been reported by several groups. In Fas-treated
Jurkat cells, the drop in GSH was shown not to be due to an inhibition 
of GSH synthesis, or oxidation of GSH to GSSG, nor to a deficit in the 
GSH salvage pathway, but to an increased rate of GSH efflux (van den
Dobbelsteen et al., 1996). This was ascertained by quantitatively recovering
the reduced form of the GSH from the medium. The efflux of GSH was
blocked by several inhibitors of the canalicular membrane GSH transporter,
including bathophenanthroline disulfonate (BPS) and bathocuproine disul-
fonate (BCPS) (Oda et al., 1999).

Redistribution of cellular GSH is another event that may be critical
during apoptosis. Although GSH is synthesized in the cytosol, it is trans-
ported into organelles, including mitochondria and the nucleus, where it can
be used as a cofactor in glutathione peroxidase- and S-transferase-mediated
reactions. Nuclear pools of glutathione appear to be more resistant to deple-
tion by agents like buthionine sulfoximine (BSO), diethyl maleate (DEM),
and NEM than cytosolic stores of GSH, suggesting that GSH is an important
guardian against oxidative damage to DNA and nuclear proteins (Bellomo
et al., 1992). More recently, overexpression of the antiapoptotic protein Bcl-
2 was found to promote sequestration of GSH into the nucleus, indicating
that suppression of apoptosis may be linked to modulation of the nuclear
redox state by GSH (Voehringer et al., 1998). However, it has also been sug-
gested that the impact of Bcl-2 on glutathione metabolism is cell-line-depen-
dent. These data addressed GSH accumulation and consumption upon
treatment with N-acetylcysteine (NAC) and neocarzinostatin (NCS), respec-
tively, and did not address compartmentalization in the overexpressing cells.
Interestingly, 10 to 15% of the total level of intracellular GSH is localized to
mitochondria, and depletion of mitochondrial GSH causes increased sensi-
tivity to killing by antimycin A, which stimulates mitochondrial ROS pro-
duction by inhibiting electron transport. Whether drops in GSH levels
precede intracellular ROS production during apoptosis has been difficult to
discern. However, treatment with BSO does not cause apoptosis in many cell
types, indicating that GSH depletion alone may not trigger apoptosis (Schor
et al., 2000). In addition to the glutathione system, superoxide dismutases
(SODs) are critical components of the cell’s natural antioxidant defenses.
These enzymes constitute the first line of defense against oxygen toxicity 
and exist as copper/zinc (Cu, Zn-SOD) and manganese (Mn-SOD) met-
alloproteins in mammalian tissues. Mn-SOD is localized in the mitochondr-
ial matrix, whereas Cu, Zn-SODs function in the cytosol as well as in the
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extracellular space (Ec-SOD). Interestingly, insertion of the cytosolic enzyme
into mitochondria can protect cells lacking Mn-SOD from oxidative stress-
induced apoptosis, suggesting that localization precedes differences between
the SOD species. Although SODs efficiently reduce superoxide, they also
generate hydrogen peroxide as a byproduct of this function, which can be
detrimental.

MITOCHONDRIAL INVOLVEMENT DURING CELL DEATH IN

WORMS AND FLIES

Strikingly, many of the apoptotic components that are involved in the mam-
malian mitochondrial pathway are evolutionarily conserved and critically
involved in cell death also in the worm and fly (Fig. 3). In the nematode 
C. elegans, for instance, CED-4 (ced, meaning cell death abnormal), an ana-
logue of mammalian Apaf-1, is normally associated with mitochondria but
translocates and assumes a perinuclear location during apoptosis. Impor-
tantly, CED-4 translocation precedes the activation of CED-3, just as Apaf-1
activity precedes that of the CED-3 mammalian homologue, caspase-3. Thus,
although the molecular mechanisms and significance of CED-4 translocation
are still unknown, a disruption of this protein’s normal association with the
mitochondria may act to drive the cell death process in the worm (Chen 
et al., 2000). As discussed above, cytochrome c release is important for the
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FIGURE 3. Conservation of core death genes among C. elegans, Drosophila, and man.
Although mitochondria, in general, have been important cell death regulators
throughout evolution, a key difference is that mitochondrial cytochrome c release is
required for Apaf-1 activation in man, whereas cytochrome c release is not required
for CED-4 activation in C. elegans. Whether cytochrome c is required for Dark acti-
vation in Drosophila is unclear.



activation of Apaf-1 via an interaction with a WD-40 repeat domain found
at the C-terminus of Apaf-1. In contrast, cytochrome c is not required for the
activation of CED-4, which lacks a similar WD-40 repeat, and cytochrome 
c is not released from mitochondria during cell death in the nematode 
(Metzstein et al., 1998).

In Drosophila, the Apaf-1/CED-4 homologue is known as DARK
(Drosophila melanogaster Apaf-1-related killer) and is essential for apoptosis
induced by diverse stimuli. Structurally, DARK is more similar to Apaf-1
than Ced-4. Although in vitro binding between DARK and cytochrome c has
been demonstrated, just as in the worm, cytochrome c is not released from
Drosophila mitochondria during stress-induced apoptosis and thus is not
available for such binding (Zimmermann et al., 2002). In fact, the precise
mechanism for DARK activation is unknown; however, it seems that its acti-
vation precedes the activation of the caspase cascade, which is consistent
with mammalian and C. elegans models (Dorstyn et al., 2002). Of interest is
the fact that a significant proportion of the Drosophila initiator caspase
DRONC and effector caspase DRICE appears to localize near mitochondria,
suggesting that mitochondria may play some role in caspase activation also
in the fly.

As mentioned above, AIF and EndoG belong to the group of pro-
apoptotic mitochondrial proteins that are released into the cytosol during
apoptosis (for a review, see van Loo et al., 2002). After translocation to the
nucleus, they exert their apoptogenic functions by mediating caspase-
independent DNA degradation. Exactly how this occurs is unclear, since AIF
has no apparent nuclease activity and high concentrations of EndoG are
required to induce DNA degradation in vitro. Thus, it appears that these two
proteins do not act in isolation but must interact with each other, or with
other proteins, to achieve full activity.

Support of such a notion was provided recently when homologues of
AIF (WAH-1) and EndoG (CPS-6) were discovered in C. elegans (Wang et al.,
2002). Similar to mammalian systems, WAH-1 and CPS-6 are normally
present in the mitochondria of the nematode. During cell death, these pro-
teins are released from mitochondria and translocate to the nucleus to induce
DNA degradation. In doing so, it appears that WAH-1 specifically interacts
with CPS-6, and as a result of this association, both mitochondrial proteins
cooperate to promote DNA fragmentation. Thus, it appears that AIF and
EndoG represent a unique mitochondrial pathway leading to apoptotic DNA
degradation that is conserved between C. elegans and mammals.

CONCLUDING REMARKS

Many lines of research have focused recently on achieving an emergent
understanding of the role mitochondria play in the regulation of cell death.
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Despite researchers’ best efforts, however, mitochondrial involvement in
apoptosis remains one of the more contentious issues in the field. Still, very
few investigators would challenge the importance of these organelles as 
critical modulators of apoptosis. Additionally, emerging evidence indicates
that different steps in the apoptotic pathway, including cytochrome c release
and caspase activity, are often regulated by changes in the intracellular 
redox state, which may serve as a “switch” between apoptosis and necrosis.
Combined, however, it is clear from the present discussion that a number of
issues relating to the precise role of mitochondria and oxidation in cell death
are unresolved and require further study.
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ABBREVIATIONS

Ac Acetyl
AIF Apoptosis-inducing factor
AK2 Adenylate kinase 2
Apaf-1 Apoptotic protease-activating factor 1
ASC Apoptosis-associated specklike protein containing a CARD
ATP Adenosine triphosphate
Bax Bcl2-associated X protein
Bbc3 Bcl-2-binding component 3
Bcl-2 B-cell lymphoma 2
BH Bcl-2 homology domain
Bid BH3-interacting death agonist
Bim Bcl-2-interacting mediator of cell death
BIR Baculovirus inhibition of apoptosis protein repeat
BNIP3 Bcl-2/adenovirus E1B 19kD-interacting protein 3
BNIP3L Bcl-2/adenovirus E1B 19kD-interacting protein Like
CAP Cytotoxicity-dependent APO-1-associated protein
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CARD Caspase-activating recruitment domain
caspase Cysteinyl aspartate-specific protease
CD95 Cluster of differentiation antigen 95
cDNA Complementary DNA
Ced-3 Cell death defective-3
Ced-4 Cell death defective-4
Ced-9 Cell death defective-9
CID Collision-induced dissociation
CPP32 Cysteine protease protein of 32kDa
dATP Deoxyadenosine triphosphate
DCP-1 Drosophila caspase-1
DD Death domain
1, 2-DE One- or two-dimensional gel electrophoresis
DED Death effector domain
DIABLO Direct IAP-binding protein with low pI
DISC Death-inducing signaling complex
DP5 Death-promoting factor 5
DR5 Death receptor 5
DREDD Death-related ced-3/Nedd2-like gene
egl-1 Egg-laying defective 1
ES Electrospray
ESI Electrospray ionization
EST Expressed sequence tag
FADD Fas-receptor-associated death domain
FLICE FADD-like interleukin-1b-converting enzyme
FMK Fluoromethylketone
Gaq Alpha component of the heterotrimeric Gq protein
GST Glutathion-S-transferase
HRK Harakiri
HSN Hermaphrodite specific neurons
Htra High-temperature requirement
IAP Inhibition of apoptosis protein
ICE Interleukin-1b-converting enzyme
IL-1b Interleukin-1b
IRES Internal ribosome entry site
IRF-1 Interferon responsive factor 1
MACH Mort1-associated Ced-3 homolog
MALDI Matrix-assisted laser desorption/ionization
MEF Mouse embryonic fibroblast
MORT Mediator of receptor-induced toxicity
mRNA Messenger ribonucleic acid
MS Mass spectrometry
MS/MS Tandem mass spectrometry
NIP3L Adenovirus E1B 19kD-interacting protein 3 Like
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Nix Nip3-like protein X
NOD Nucleotide-binding oligomerization domain
PCR Polymerase chain reaction
PSD Postsource decay
PUMA p53-upregulated modulator of apoptosis
PYCARD Pyrin- and CARD-containing protein
RDA Representational difference analysis
RIP Receptor interacting protein
RP Reverse phase
RPA RNase protection assay
SAGE Serial analysis of gene expression
SDS Sodium dodecyl sulphate
Smac Second mitochondria-derived activator of caspase
TAP Tandem affinity tagged
tBid Truncated Bid
TGFb Transforming growth factor b
TNF-R1 Tumor necrosis factor-receptor 1
TOF Time of flight
TRAIL Tumor-necrosis-factor-related apoptosis-inducing ligand
TRAIL-R2 TRAIL-receptor 2
XIAP X-linked inhibitor of apoptosis protein
Y2H Yeast two-hybrid
z Benzyloxycarbonyl

Today’s genome sequencing and differential messenger RNA expression
analysis techniques have generated an immense amount of data, providing
the opportunity for cell biologists to investigate molecular signaling path-
ways at a much larger scale than previously anticipated. In addition, the
technology platform to analyze and try to understand the function of pro-
teins, namely, proteomics, in complex biological samples has advanced
steadily. This chapter summarizes some contributions of these rapidly evolv-
ing technologies in the field of cell death research (overview in Table 1). In
the first section of this chapter, “Genomics in Cell Death,” we illustrate how
the conserved domain architecture of cell death proteins and the access to
an increasing number of genomic sequences have led to the comprehen-
sion that the basic cell death machinery is present in all kingdoms of life.
“Transcriptomics in Cell Death,” the second part of this chapter, presents 
different examples from the literature in which transcriptional profiling tech-
niques have advanced our understanding of cell death pathways. “Pro-
teomics,” the third section, comprises an introduction to the technology of
mass spectrometry to identify proteins in complex mixtures, and a glimpse
into gel-free proteomics. The subsequent discussion on proteomics in cell
death research highlights the use of yeast two-hybrid, affinity-based, and gel
filtration techniques, and mass spectrometry to analyze cell death signaling
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complexes. The last part of this chapter focuses on the development of novel,
protease-activity-based approaches in a nonhypothesis-driven way, reveal-
ing unexpected modulatory pathways in cell death.

GENOMICS IN CELL DEATH

The ultimate biochemical features of apoptosis such as cytoplasmic shrink-
age, chromatin condensation and fragmentation, membrane blebbing, and
phosphatidyl serine exposure rely on the existence of a limited number of
conserved protein domains present in pro- and antiapoptotic proteins. These
domains include the death domain (DD), the caspase recruitment domain
(CARD), the death effector domain (DED), the pyrin domain, the Bcl-2
homology domain (BH), the nucleotide-binding oligomerization domain
(NOD), and the baculovirus IAP repeat (BIR) domains (Aravind et al., 1999,
2001; Inohara and Nunez, 2001; Uren et al., 2000; Verhagen et al., 2001).
During evolution these domains emerged as “building blocks” that became
arranged in distinct linear combinations, often together with other protein
functions (e.g., kinases and proteases), to give rise to a plethora of gene prod-
ucts operating in apoptotic signal transduction and execution and far beyond
(Aravind et al., 2001). The availability of an increasing number of genome
sequences allows the systematic search for the presence of paralogs (signi-
ficantly similar counterparts present in the same organism) and orthologs
(direct evolutionary counterparts present in a different organism) among the
proteins encoded in these genomes. Phylogenetic analysis of the theoretical
protein set of Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens
on the presence and arrangement of archetype domains from known apop-
totic proteins has revealed the increasing degree of complexity of the apop-
totic molecular machinery in vertebrates relative to insects and nematodes
(Aravind et al., 2001). Furthermore, such analysis, supported by a compari-
son of structural data, has demonstrated that a considerable number of 
apoptosis-associated domains or structural motifs are even present in bac-
teria, fungi, and plants (Aravind et al., 1999; Uren et al., 2000). A notable
example of this comparative genomics approach is the identification of two
families of caspaselike proteins, namely, the paracaspases found in meta-
zoans and Dictyostelium and the metacaspases found in plants, fungi, and
protozoa (Uren et al., 2000).

Clearly, genomic data analysis provides a wealth of information to cell
death research, but, as with any other scientific approach, it also has its lim-
itations. For example, the Bcl-2 protein family is conserved in animals but in
particular the BH3-only subfamily displays hardly any significant mutual
sequence similarity, and therefore is not amenable to genome-wide compar-
ison studies. In addition, in more complex organisms, molecules emerged
with clear homology to core apoptotic proteins, yet displaying additional
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functions that are, according to current knowledge, unrelated to apoptosis.
Survivin, for example, has a role in cell cycle regulation, yet its BIR domain
architecture advocates its classification in the IAP family (Ambrosini et al.,
1998). The CARD-containing proteins represent another example of diversi-
fication with members functional in inflammation and immune responses
such as caspase-1, RIP2, NOD1 and NOD2, Bcl-10, CARD-10, and CARD-11
(Bouchier-Hayes and Martin, 2002). Furthermore, activation of pro-apoptotic
caspases does not always lead to cell death. Caspase-3, -6 and -8 activity is
even required for T lymphocyte activation and proliferation (Alam et al.,
1999; Kennedy et al., 1999; Miossec et al., 1997). Although genome compar-
isons provoke many questions, they provide leads for designing experiments
that will eventually allow the functional annotation of the genetic informa-
tion with respect to cell death. The functional genetic approaches that are
applicable to model organisms such as Saccharomyces cerevisiae, C. elegans,
and D. melanogaster will surely assist in providing some of the needed
answers. The availability of complete genome sequences allows the predic-
tion of all putative proteins encoded in a genome (defined as the proteome).
This information has also facilitated the use of mass spectrometry (MS) to
identify proteins: The sequence of a protein does not need to be determined
de novo, but rather the task is to recognize the determined peptide sequence
or peptide fingerprint in available databases. These databases are based in
part on predicted protein sequences and, provided that the genome annota-
tion covers the complete proteome of a given organism, this information
strongly limits the number of possible peptide sequences and proteolytic 
fingerprints that can be obtained from a given organism. Therefore, even a
limited number of peptide masses after proteolytic digestion of proteins will
usually allow the correlation of a characteristic “peptide mass fingerprint”
with a unique protein (see below).

TRANSCRIPTOMICS IN CELL DEATH

With the advent of cDNA and oligonucleotide arrays, it became possible to
simultaneously monitor the messenger RNA expression profile of thousands
of genes, the so-called transcriptome (Shoemaker and Linsley, 2002). Without
a doubt, such immense information output is an asset of gene array tech-
nology. At the same time, the overflow of data often makes it difficult to
deduce adequate information and to distinguish between causative and cir-
cumstantial changes in expression profiles. Here we attempt to highlight 
a number of examples where transcriptional profiling techniques have
advanced our understanding of cell death pathways. We focus on BH3-only
proteins.

Connections between certain stress conditions such as DNA-damaging
agents and transcriptional induction of pro-apoptotic genes such as Bax
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(Schmidt et al., 1999), Apaf-1, and Fas ligand have been reported (Kannan et
al., 2001; Kasibhatla et al., 1998; Miyashita and Reed, 1995; Robles et al.,
2001). These upregulations are often, but not exclusively, dependent on the
activation of the tumor suppressor protein p53. P53 controls apoptosis, at
least partially, by transcriptional activation of target genes (Shen and White,
2001). Differential transcription profiling approaches in response to p53 acti-
vation have led to the discovery of several novel BH3-only Bcl-2 proteins.
The differential display method is a method comparing mRNA expression
levels in different experimental settings. The method is based on the com-
parison among different samples of the amount of cDNA fragments gener-
ated by reverse transcription and subsequent amplification using a set of
random decamer forward primers and oligodTXY (X = A, C, or G; Y = A, C,
G, or T) reverse primers (Liang and Pardee, 1992). With this technique, Noxa
has been identified as a gene that was induced upon X-ray irradiation of
wild-type but not interferon responsive factor 1 (IRF-1)/p53 double-deficient
MEFs (Oda et al., 2000). Noxa encodes a 103 (mouse) or 54 (human) amino
acid residue long BH3-only protein that is transcriptionally upregulated by
p53 to stimulate the mitochondrial apoptotic pathway. Likewise, PUMA
(p53-upregulated modulator of apoptosis) was cloned after microarray
analysis (Butte, 2002) and serial analysis of gene expression (SAGE) 
(Velculescu et al., 1995) of transcripts upregulated upon p53 gene expression
(Nakano and Vousden, 2001; Velculescu et al., 1995; Yu et al., 2001). PUMA,
dubbed bbc3 (Bcl-2-binding component 3) was also isolated by a yeast two-
hybrid approach using Bcl-2 as bait (Han et al., 2001). Like Noxa,
PUMA/Bbc3 delocalizes to the mitochondria, interacts with Bcl-2 through
its BH3 domain, and induces cytochrome c release. Differential display has
also been applied to reveal the expression of DP5/HRK (harakiri) in neurons
upon nerve growth factor withdrawal (Imaizumi et al., 1997). Transcriptional
induction of DP5/HRK is associated with apoptotic cell death in neuronal
development and upon exposure of cultured neurons to b amyloid protein
(Imaizumi et al., 1997, 1999).

Although transcription analysis was often not the starting point for
cloning new cell death genes, transcriptional regulation of these genes can
be crucial in the balance between live and death. The C. elegans egl-1 (egg-
laying defective 1) gene, which encodes a proapoptotic BH3-only protein, is
transcriptionally repressed in the hermaphrodite specific neurons (HSN).
These neurons are required for egg laying and are absent in male worms
because male nematodes lack egl-1 repression (Conradt and Horvitz, 1999).
In fact, Egl-1 turned out to be a general cell death activator in C. elegans.
Direct Egl-1–Ced-9 interaction overcomes the antiapoptotic effect of the Bcl-
2-like protein CED-9 (cell death defective 9) (Conradt and Horvitz, 1998) and
induces the release of WAH-1, the ortholog of AIF (apoptosis-inducing
factor), an apoptogenic mitochondrial factor (Wang et al., 2002). Alternative
splicing can provide an additional level of transcriptional regulation in cell
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death. Pre-mRNA of Bim (Bcl-2-interacting mediator of cell death), which is
inducible, gives rise to three splice variants, BimEL (196aas), BimL (140aas),
and BimS (110aas), the latter displaying the highest cytotoxicity (O’Connor
et al., 1998).

The use of microarray technology to analyze mRNA expression has
uncovered a molecular mechanism induced in cardiac hypertrophy that can
trigger cardiomyocyte cell death. Hypertrophy of the heart can be caused by
a compensatory mechanism that allows the heart to cope with an increased
labor demand as a result of hemodynamic stress, for example, imposed by
artery obstruction. However, this condition predisposes to heart failure,
which is associated with cardiomyocyte cell death. Overexpression of Gaq,
the alpha component of the heterotrimeric Gq protein, induces cardiac
hypertrophy. Yussman et al. compared the mRNA expression levels of
normal and Gaq cardiac-specific overexpressing mice using microarrays
(Yussman et al., 2002). This approach identified Nix (NIP3-like protein X),
also named (B)NIP3L [(B)cl-2/adenovirus E1B 19kD-interacting protein 3
Like], as one of the few cell-death-associated genes to be transcriptionally
upregulated in this mouse model as well as in hypertensive cardiac hyper-
trophy patients. Moreover, it was demonstrated that transgenic, heart-
specific overexpression of Nix causes cardiomyopathy. The induction and
contribution of the BH3-only protein Nix/(B)NIP3L in cardiac hypertrophy
and associated cardiomyocyte cell death are remarkable given that pro-
apoptotic Bcl-2 family members are barely expressed in the developed heart
(Cook et al., 1999). Cardiomyocyte loss in heart failure is not always associ-
ated with apoptotic cell death. Also autophagic and necrotic cell death phe-
notypes have been documented (Martinet et al., 2002; Ohno et al., 1998). In
this respect, it is perhaps not surprising that (B)NIP3, a Nix homolog, has
been shown to induce a necrotic type of cell death characterized by early
plasma membrane permeability, mitochondrial damage, extensive cytoplas-
mic vacuolation, and mitochondrial autophagy (Vande Velde et al., 2000).
Nix and (B)NIP3 share the ability to induce cell death that is not readily over-
come by Bcl-2 and is not dependent on the BH3 domain. Unlike most other
BH3-only proteins, they both form stable homodimers (Chen et al., 1999).
Upregulation of Nix and (B)NIP3 at the transcript and protein level has also
been documented in tumors and cardiomyocytes under hypoxic conditions
(Guo et al., 2001; Kubasiak et al., 2002; Sowter et al., 2001). Tissue hypoxia
can be the result of atherosclerotic plaque formation, which restricts blood
flow and can cause the induction of a hypoxic condition in the tissue down-
stream from the affected region of the artery. Recently, it has been shown
that hypoxia in combination with acidosis, as a result of increased glycoly-
sis in hypoxia, leads to BNIP3-mediated caspase-independent cardiomy-
ocyte death (Kubasiak et al., 2002). These findings illustrate the importance
of Nix and BNIP3 expression regulation in a pathological condition, making
these molecules interesting prognostic and therapeutic targets.
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Clearly, transcriptional analysis has contributed substantially to unrav-
eling cell death responses at the molecular level. Nevertheless, microarray
data, and quantitative transcription data in general, should be scrutinized
carefully as mRNA levels do not always reflect the relative amount of the
encoded protein. In fact, both values may sometimes be opposites. An
example of the latter is the transcriptional upregulation of the creatine kinase
M chain during heart failure, as detected by microarray data, whereas the
protein was actually downregulated, as deduced from two-dimensional gel
electrophoresis (2-DE) data (Jiang et al., 2001). Another example where tran-
script and protein levels are not in accord is the downregulation of Rad51
protein expression in lung epithelial cells treated with TGFb1. In an effort to
identify new targets of this pleiotropic cytokine, Kanamoto et al. performed
2-DE analysis and showed that Rad51, an essential component of DNA
double-strand break repair, is downregulated by TGFb1 (Kanamoto et al.,
2002). However, Rad51mRNA levels were induced by TGFb1. Proteasomal
degradation of Rad51 turned out to be responsible for this discrepancy.

These examples illustrate the fact that it is imperative to consider trans-
lational and posttranslational control mechanisms when interpreting quan-
titative mRNA profiling data in order to draw conclusions based on gene
product levels. Recently, it became clear that a number of apoptotic proteins
such as XIAP and Apaf-1 contain an internal ribosomal entry site (IRES) to
control their level of expression during cellular stress conditions (Holcik et
al., 2000). An IRES is a structural element, usually located near the 5¢ end of
a mRNA, that allows its translation independent of a 5¢ Cap. Cap-dependent
translation is the normal mode of translation for most transcripts. However,
when Cap-dependent translation is compromised, as, for example, can occur
during stress conditions such as heat shock, hypoxia, or viral infection, IRES-
dependent translation usually continues or is induced (Vagner, Galy and
Pyronnet, 2001). Therefore, the use of the translated mRNA population,
namely, the polysomal fraction, rather than the total mRNA pool for the gen-
eration of expression profile data could improve the accuracy of the infor-
mation obtained (Pradet-Balade et al., 2001).

PROTEOMICS

Cellular functions are executed by proteins. So, in order to grasp how a cell
responds to its environment and carries out its “housekeeping” biochemical
functions, which in the context of development and homeostasis of multi-
cellular organisms include programmed cell death, we need to understand
the behavior and role of proteins in a global context. Proteomics, or proteome
analysis, encompasses the methods that allow qualitative and quantitative
protein analysis (Blackstock and Weir, 1999; Lee, 2001). In general, “classi-
cal” proteomic studies include (1) the isolation of the protein(s) of interest,
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(2) separation of the isolated sample into its individual components, (3) visu-
alization and quantification of the proteins, and (4) identification of the
(selected) proteins (Figeys et al., 2001; Mann et al., 2001; Rappsilber and
Mann, 2002). In the following sections, a brief overview of the available
modern protein identification techniques and some examples of proteomics’
contributions to cell death research will be presented.

PROTEIN IDENTIFICATION TECHNIQUES

Signal transduction pathways are traditionally studied using biochemical,
genetic, and functional approaches. Identification of unknown signaling
components using classical techniques, such as Edman degradation, requires
large amounts of pure protein material. Mass spectrometry (MS) has revo-
lutionized protein identification because it quickly measures the mass of 
biomolecular ions with extreme accuracy and sensitivity. Modern MS tech-
niques are routinely used for protein identification and characterization, e.g.,
in classical biochemical studies, which in general allow the identification of
a single isolated protein. On the other hand, large-scale proteome studies
yield a global, holistic view of the protein content of a cell or an organelle
under certain conditions and allow speculation about the connections and
interactions among these components.

STATE-OF-THE-ART PROTEIN IDENTIFICATION METHODS. The first step in
proteomics is the separation of a protein mixture, generally by one- or two-
dimensional polyacrylamide gel electrophoresis (1-DE or 2-DE), and the
visualization of the components by staining techniques, the classic approach
being the use of Coomassie brilliant blue or metallic silver. Coomassie stain-
ing is one of the least sensitive methods, requiring 10 to 100ng of material,
whereas silver staining is one of the most sensitive nonradioactive methods,
visualizing proteins in the low nanogram range (<10ng). Selected protein
bands, for example, those for which the staining intensity and/or gel posi-
tion changes between two cell states, are excised out of the gel and in gel
digested, generally using a highly specific protease such as trypsin. The
obtained peptide mixture is analyzed by MS and the obtained peptide mass
fingerprint, which is unique for the investigated protein, can be used to iden-
tify the protein (reviewed by Cottrell, 1994). MS analysis, however, requires
charged, gaseous molecules for analysis, a prerequisite, in the past, not easily
matching large, polar biomolecules. Two ionization techniques, matrix-
assisted laser desorption/ionization (MALDI) and electrospray ionization
(ESI), made this possible, allowing detection of biomolecules with more than
reasonable throughput. Both MALDI and ES ionization techniques were
developed in the late 1980s (Karas and Hillenkamp, 1988) and have been
optimized since then (reviewed in Figeys et al., 2001; Mann et al., 2001). A
third step in the identification of the proteins is the use of software algo-
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rithms that link experimental MS data to protein and DNA sequence entries
stored in databases. If, for instance, the excised protein band contained mul-
tiple proteins, then a peptide mass map may not lead to an unambiguous
identification. In this case, individual peptides are selected and fragmented
in the mass spectrometer, commonly by collision with an inert gas, such as
argon or helium. The obtained peptide fragmentation spectrum contains
valuable information about the sequence of the selected peptide and is used
by software algorithms to link it to a peptide sequence stored in a database
(Rappsilber and Mann, 2002).

MALDI-MS. MALDI is a technique in which the sample peptides or pro-
teins are cocrystallized on a target plate with matrix compounds. Matrix mol-
ecules are usually small organic molecules that absorb the laser light used
to irradiate the crystals in the ion source region of the mass spectrometer.
The precise nature of this ionization process is still elusive, but generally
leads to the formation of singly charged ions, either by protonation or depro-
tonation of amino acid side chains. MALDI has been predominantly coupled
to time-of-flight (TOF) mass analyzers, which measure the time needed for
peptide ions to reach a detector placed at the end of their flight path. 
Following electroextraction out of the ion source region, smaller peptide ions
obtain higher velocities than bigger ones, and this is the basis of ion sepa-
ration in the TOF region according to their mass/charge (m/z) ratio. When
the mass spectrometer is calibrated using standard peptides of known mass,
the TOF for any given ion can be converted into a highly accurate mass,
resulting in a spectrum containing peptide ion intensities (y-axis) and
peptide ion masses (x-axis). This set of empirical peptide masses is called a
“peptide mass fingerprint”; it is subsequently compared to theoretical
peptide mass maps generated by in silico digestion of (selected) sequences
stored in a database (Cottrell, 1994).

This MALDI-MS mass fingerprinting method may however fail to iden-
tify the protein of interest, especially when working with complex protein
mixtures, for example, when proteins are poorly resolved and the excised
protein band contains multiple proteins (generally observed when analyz-
ing one-dimensional PAGE separated proteins). Many MALDI-peptide ions
fragment at their peptide bonds in the TOF region of the mass spectrometer,
a phenomenon known as postsource decay (PSD) (Kaufmann et al., 1993).
Upon fragmentation of the peptide backbone, two types of fragment ions are
generally observed. Those containing the peptide’s amino terminus are
called bn ions and those containing the carboxyl terminus are called yn ions.
Since the mass difference between two consecutive peptide fragment ions of
the same type (e.g., between the yn and the yn+1 ion) depends only on the
nature of the amino acid side chain, PSD spectra can be used to sequence at
least a part of the analyzed peptide (commonly called a peptide sequence
tag). Nowadays, these spectra are routinely used to automatically identify
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the original protein using bioinformatic tools without the need of any user
interpretation (reviewed by Gevaert et al., 2001; van Loo et al., 2002a).

ESI-MS. In ESI, a liquid containing the sample is sprayed at a low flow
rate through a needle with a small internal diameter, placed in front of the
orifice of the mass spectrometer. Through the use of a high electrical field,
the generated droplets travel to the inlet of the mass spectrometer, and with
the aid of raised temperature and/or an inert drying gas, the droplet solvent
rapidly evaporates. Eventually, gaseous, multiple-charged sample ions are
generated (Fenn et al., 1989). With nano-electrospray, small sample volumes
(1–2mL) can be analyzed at very low flow rates (a few tens of nL/min), allow-
ing highly in-depth analysis of complex peptide mixtures (Wilm et al., 1996).
ESI mass spectrometers are routinely coupled in-line with a reverse-phase
(RP) liquid chromatographic system, allowing the separation of complex
peptide mixtures prior to mass spectrometric analysis. In most cases, ESI-
based MS techniques are the methods of choice for peptide fragmentation
studies (called tandem mass spectrometry or MS/MS) and the obtained
information is used to identify the investigated protein(s). In such a setup,
a particular peptide ion is first physically selected out of a mixture and then
fragmented by collision to inert gas molecules, so-called collision-induced
dissociation or CID. Since the obtained CID spectra are highly specific for
the selected peptides, they can be finally linked to sequence entries stored
in databases using commercially available database-searching tools [e.g.,
MASCOT (Perkins et al., 1999) and SEQUEST (MacCoss et al., 2002)] without
any manual interpretation. Due to the nature of the investigated peptides
and CID-fragmentation characteristics, in many cases, easily interpretable
CID spectra are obtained. This can be used for de novo sequence analysis
and even for the generation of degenerated oligonucleotide primers that can
be finally used to clone the corresponding gene (Wilm et al., 1996). Further-
more, these types of mass spectrometric analyses are more and more rou-
tinely used for studying important amino acid modifications such as
phosphorylation (reviewed by McLachlin and Chait, 2001) and glycosylation
(reviewed by Dell and Morris, 2001).

GEL-FREE PROTEOMICS. Over the last couple of years, novel peptide-
centric mass-spectrometry-based approaches have been described that allow
differential monitoring of protein expression in two different samples (e.g.,
Gygi et al., 1999). These approaches do not use polyacrylamide gel elec-
trophoresis to separate the protein mixture. Instead, the protein sample is
digested in solution, and either as many peptides as possible are analyzed
(Washburn et al., 2001) or a specific set of representative peptides is isolated
prior to analysis (Gygi et al., 1999; Gevaert et al., 2002). The main advantage
of these gel-free techniques lies in the fact that most of the shortcomings of
gel-based proteomics are no longer encountered. In gel-free proteome
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studies, low abundant proteins next to highly hydrophobic proteins, which
are classes of proteins that are very difficult to analyze by 2DE, are more fre-
quently identified. Ultimately, this implies that a significantly larger number
of the expressed proteome is covered (Gevaert et al., 2002), which leads to
an increased understanding of the dynamics of a given proteome.

PROTEOMICS IN CELL DEATH RESEARCH

DETECTION OF PROTEIN COMPLEXES. Proteins usually do not operate
alone but rather interact with other proteins to form transient or stable, small
or large complexes, also referred to as “molecular machines” (Alberts, 1998).
Sometimes, these protein assemblies are large enough to deduce their three-
dimensional structure by cryo-electron microscopy, a technique which, for
example, revealed the wheellike arrangement with 7-fold symmetry of the
apoptosome (Acehan et al., 2002). Multiprotein complexes constitute the
hardware of biochemical and signal transduction pathways. Therefore, a
comprehensive view of the cell’s protein–protein interaction map can lead
to better insight into signaling responses at the molecular level and will help
define novel drug targets to treat diseases. Yeast two-hybrid (Y2H), affinity
capture, and gel filtration techniques are among the most widely and suc-
cessfully applied techniques to study interactions and analyze multiprotein
assemblies.

YEAST TWO-HYBRID SYSTEM. Y2H is a genetic method for screening
protein–protein interaction that in its original, still often used, setting is
based on the reconstitution of a functional GAL4 transcription factor through
the binding of two hybrid proteins. One contains the GAL4 DNA-binding
domain fused to a “bait” protein; the other comprises the GAL4 activation
domain fused to a potential bait-binding partner (the “prey”), often provided
as a cDNA library (Fields and Song, 1989). This method has led to the iden-
tification of a host of novel Bcl-2 family members that, by mutual interaction
between pro- and antiapoptotic members, control the trigger that initiates
the intrinsic cell death pathway (Boyd et al., 1994; Cory and Adams, 2002;
Yang et al., 1995).

Elucidation of the extrinsic, namely, the death domain receptor-
mediated pathway to cellular demise, also profited from the Y2H method.
Fas (CD95, APO-1) is an apoptosis-inducing receptor belonging to the TNF
receptor superfamily, which contains several death domain receptors
(Beyaert et al., 2002; Nagata, 1999). Cell death signaling by Fas requires the
presence of its intracellular death domain (DD). Using the Y2H approach,
two groups have isolated the cytoplasmic adaptor molecule FADD/MORT
(Fas-associated death domain/mediator of receptor-induced toxicity). FADD
homotypically associates with the DD of the ligated Fas/CD95 receptor and
transduces the death stimulus by recruiting FLICE, now officially called
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caspase-8 (Boldin et al., 1995; Chinnaiyan et al., 1995). Caspase-8, also named
MACH (MORT1-associated CED-3 homolog), in turn was cloned by David
Wallach’s group using FADD/MORT as bait in Y2H screening (Boldin et al.,
1996). Caspase-8 binds FADD/MORT through a DED–DED interaction
motif, which resembles the DD, CARD, and PYRIN domains consisting of
six to seven a helices with different topological orientations (Weber and
Vincenz, 2001).

AFFINITY-BASED PURIFICATION OF COMPLEXES. Affinity capturing of a
protein along with its possible associates is a direct biochemical approach to
trace possible interaction partners. This method entails the immobilization
of the protein of interest to allow its isolation from complex mixtures such
as cell lysates. Immobilization is usually accomplished by an antibody
directed to the bait protein or to its epitope-tagged counterpart. Other
methods to enrich a protein of interest together with interacting molecules
include its genetic fusion with heterologous domains such as gluthatione-S-
transferase (GST), maltose-binding protein, or even a tandem arrangement
of affinity modules, which allow specific adsorption to their respective
immobilized ligand (Rigaut et al., 1999). A prerequisite for the affinity-
capturing technique is that the protein bait maintains its native conforma-
tion and that the interactions be strong enough to withstand lysis and
washing procedures during isolation of a particular complex. In addition, in
order to allow MS-based identification of captured endogenous binding
partner(s), a large amount of starting material is required. Despite these con-
siderations, affinity-capture experiments have helped to clarify the Fas sig-
naling pathway by studying the endogenous molecules that are recruited to
the activated Fas receptor.

Activation of the Fas receptor by cross-linking, either with its natural
ligand, FasL, or with an agonistic anti-Fas antibody, induces apoptosis in
Fas-sensitive cells (Suda et al., 1993; Trauth et al., 1989; Yonehara et al., 1989).
Fas signaling requires oligomerization into SDS-stable high molecular
weight microaggregates that partition in membrane rafts (Dhein et al., 1992;
Hueber et al., 2002; Kischkel et al., 1995). In an elegant approach advanced
by Peter Krammer and coworkers, these proteins that physically associate 
in vivo with the activated receptor, and which they called cytotoxicity-
dependent APO-1-associated proteins (CAP), were isolated and identified.
CAP1 and CAP2 were identified as FADD. CAP-1 and -2 are both phospho-
rylated forms of FADD, as was shown by antibodies directed against the DD
of FADD (Kischkel et al., 1995). Not long there after, procaspase-8 (CAP4)
and the prodomain of caspase-8 (CAP3) were identified using MALDI mass
spectrometry and nano-electrospray tandem mass spectrometry (nano-ES
MS/MS) (Muzio et al., 1996). The latter method allows sequencing of fem-
tomole quantities of proteins directly isolated from silver-stained gels (Wilm
et al., 1996) (see above). Two other CAP proteins, CAP5 and CAP6, were
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detected by 2-DE after prolonged Fas stimulation and identified as different
forms of the caspase-8 prodomain using antibodies directed against differ-
ent parts of caspase-8. The latter probably result from proteolysis at two 
different sites (Medema et al., 1997). This complex of intracellular signaling
proteins that are recruited to the receptor upon activation was named the
death-inducing signaling complex (DISC) (Kischkel et al., 1995). A similar
approach, using recombinant soluble Flag-tagged TRAIL, was employed to
purify affinity and analyze the death domain receptor TRAIL receptor-2, also
called DR5, signaling complex (Bodmer et al., 2000). Like the Fas receptor,
TRAIL-R2 activation induces the formation of a DISC that requires FADD
and caspase-8 recruitment for its cytotoxic activity.

Flag-tagged or tandem affinity-tagged (TAP)-XIAP as well as GST-IAP-
BIR3 fusions have been used by a number of groups to probe mammalian
cell extracts for IAP-binding partners. Subsequent separation of the binding
proteins by 1- or 2-DE followed by mass spectrometry has led to the identi-
fication of Smac/DIABLO and Omi/Htra2. Smac/DIABLO and the serine
protease Omi/Htra2 were also identified by different approaches (see
below); they turned out to be cell death agonists released from mitochondria
that act, at least in part, as IAP antagonists (Hegde et al., 2002; Martins et al.,
2002; Suzuki et al., 2001; van Loo et al., 2002b, c; Verhagen et al., 2000, 2002).

GEL FILTRATION–BASED PURIFICATION OF COMPLEXES. The mere size of
multiprotein complexes permits their isolation by gel filtration in order to
analyze their constituents and activity. This method has allowed the demon-
stration and functional characterization of the apoptosome. This is a high
molecular weight caspase-activating complex that is formed by the scaf-
folding protein Apaf-1 (apoptosis protease-activating factor 1), cytochrome
c, dATP, and cytosolic procaspase-9 (Cain et al., 1999, 2000; Saleh et al., 1999;
Zou et al., 1999). In vitro activation of cell lysates with dATP induces the for-
mation of two forms of the apoptosome: one of approximately 1.4MDa and
a second form of approximately 700kDa (Cain et al., 2000). The latter form
is the most prominent in apoptotic cells and is more active in processing pro-
caspase-9 and -3 than the 1.4MDa complex that seems to harbor Apaf-1 in
an altered conformation (Bratton et al., 2001a). Caspase-3 and -7 are also
associated with the apoptosome, but because these caspases are removed by
washing, the apoptosome with a low salt (50mM) concentration buffer, their
association is not very strong (Cain et al., 2000). Remarkably, XIAP is also
readily recruited to the apoptosome where it can prevent full caspase-9 (and
-3) processing by binding to the amino terminus of the small subunit of
caspase-9, which is generated upon the first autocatalytic cleavage at posi-
tion D315 of human pro-caspase-9 in the apoptosome (Bratton et al., 2001b;
Srinivasula et al., 2001). Caspase-3-dependent cleavage of pro-caspase-9 
at position 315 generates a caspase-9 form that is not able to bind XIAP
(Srinivasula et al., 2001). This subtle inhibitory mechanism may have
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evolved to prevent inadvertent caspase-9 activation. However, competition
for XIAP-binding by the mitochondrial factors Smac/DIABLO and Omi/
Htra2 (reviewed by van Loo et al., 2002b) can overcome this inhibition.

In analogy with the apoptosome, the recent discovery of the “inflam-
masome,” a multiprotein complex that activates inflammatory caspases to
generate active IL-1b, suggests that the recruitment of a large prodomain
containing caspases into high molecular weight assemblies is a prevailing
prerequisite for their activation (Martinon et al., 2002). The formation of the
inflammasome, which was demonstrated by gel filtration analysis of cell
lysates, relies on the presence of the apoptosis-associated specklike protein
containing a CARD (ASC), also named the Pyrin- and CARD-containing
protein (PYCARD) (Martinon et al., 2002).

ROLE OF MITOCHONDRIA IN CELL DEATH. It is now obvious and well
accepted that mitochondria integrate apoptogenic signals from various
origins by initiating the intrinsic cell death pathway. The concept that dif-
ferent organelles may act as sensors for stress signals which can eventually
converge on the release of mitochondrial factors has been extensively
reviewed (Ferri and Kroemer, 2001). Important aspects of these sensing func-
tions are phosphorylation and dephosphorylation status of pro-apoptotic
Bcl-2 family member proteins (reviewed by Cory and Adams, 2002), prote-
olysis of target proteins, and subcellular relocation of proteins. It is obvious
that lysosomal proteases, mitochondrial factors, BH3-only proteins, DNAses,
and proteases gain their cell death function only when targeted in the proper
complex or organelle, or released in the cytosol. The relocation of apopto-
genic factors is an important issue in cell death signaling. One approach to
studying this is the in vitro reconstitution of a pathway by combining sub-
cellular fractions such as cytosol, mitochondria, and nuclei. In this way,
Xiaodong Wang using large-scale biochemical purification steps has identi-
fied mitochondrial factors that once added to cytosol were able to activate
caspases and to induce internucleosomal DNA fragmentation on isolated
nuclei (Li, Luo and Wang, 1997; Zou et al., 1997). This experimental approach
was a milestone in unraveling the molecular mechanisms of the intrinsic cell
death pathway leading to a cytochrome-c-dependent generation of the 
apoptosome complex and the activation of a caspase cascade. In a similar
approach, his group identified a cytosolic factor that was proteolytically acti-
vated by recombinant caspase-8 to cause cytochrome c release from isolated
mitochondria, namely, Bid, a BH3-only member of the Bcl-2 family of pro-
teins (Luo et al., 1998).

Besides cytochrome c, other apoptogenic proteins, such as apoptosis-
inducing factor (AIF) and Smac/DIABLO, are released from the intermem-
brane space of mitochondria to the cytosol of cells that have received an
apoptotic stimulus (Du et al., 2000; Susin et al., 1999; Verhagen et al., 2000).
To identify other proteins released from mitochondria in a tBid-dependent
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way, we used an in vitro reconstitution system in which isolated mouse liver
mitochondria were treated with purified recombinant tBid. The proteins
released from the isolated mitochondria were identified by MALDI-PSD MS;
see above (van Loo et al., 2002a). This approach led to the identification of
cytochrome c, Smac/DIABLO, adenylate kinase 2 (AK2), and some new pro-
teins, such as endonuclease G, a mitochondrial nuclease involved in caspase-
independent DNA degradation (Li et al., 2001; van Loo et al., 2001), and the
serine protease Omi/HtrA2. The latter, just like Smac/DIABLO, can inhibit
IAP proteins, but also has cell-death-inducing activity dependent on its cat-
alytic serine protease property (Hegde et al., 2002; Martins et al., 2002; Suzuki
et al., 2001; van Loo et al., 2002c; Verhagen et al., 2002).

It can be expected that similar experimental approaches using subcellu-
lar fractions and recombinant proteins implicated in cell death will lead to
the identification of new molecular mechanisms that affect the turnover of
organelles such as lysosomes, autophagosomes, mitochondria, peroxisomes,
nuclei, and endoplasmic reticulum and explain how these organelles inter-
act with each other in the process of cell death. The in vitro reconstitution
assays combine old, somewhat forgotten technologies of organelle prepara-
tion by density gradient ultracentrifugation with powerful and sensitive
methods in MS.

PROTEOMICS OF THE DYING CELL. In an attempt to obtain a holistic view
of the protein changes occurring during cell death, several groups have per-
formed high throughput proteome analyses and cataloged the observed
protein alterations in the whole cell associated with the progression of the
cell death program. In the following section we will give one example of
such an approach. Gerner and colleagues focused on the cytosolic protein
fraction and attempted to unravel the underlying mechanisms of the
observed protein alterations occurring in the dying cell. To this end, pro-
teome alterations were correlated with de novo protein synthesis, protein
translocation, or posttranslational modification (Gerner et al., 2000). By com-
paring 2-DE patterns of control cytosol with cytosol from Jurkat cells treated
for 5 hours with an agonistic anti-Fas antibody, 19 silver-stained spots were
found to decrease and 38 spots to increase after anti-Fas treatment, whereas
the majority of proteins, around 1,000 spots, seemed unaffected. The obser-
vation of caspase-3 processing served as an internal control. Differential
spots in control and apoptotic conditions were identified by mass spec-
trometry. By comparative 2-DE analysis of protein from a 35S-Met/Cys label-
ing setup started 3 hours after anti-Fas treatment, it was shown that hsp27
and hsp70B, among others, appeared because of de novo synthesis. The latter
experiment seems somewhat odd because several groups have reported on
the rapid drop in translational activity in most apoptotic cells, including
Jurkat T cells (Clemens et al., 2000; Saelens et al., 2001). This discrepancy
may be due to de novo protein synthesis association with a stress response
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in the nondying part of the population. 32P labeling demonstrated changes
in the phosphoproteome of the dying cells. Also a number of proteins were
identified that relocate from the cytosol to the nucleus or vice versa. A fourth
type of modification was the proteolytic fragmentation of certain proteins in
apoptotic conditions. This became apparent with the disappearance of spots
under apoptotic conditions associated with the appearance of spots of frag-
ments of the same proteins at other positions in the 2-DE. In addition, the
proteome alteration profile of necrotically dying Jurkat cells was analyzed.
For these studies, Jurkat cells were treated with oligomycin, an inhibitor of
the ATP synthetase (complex V) of the oxidative phosphorylation at the inner
membrane of mitochondria. Overall, very few of the identified proteins dis-
playing alterations in anti-Fas-killing were also altered in the necrotic setting,
suggesting that most of the proteomic alterations observed in the anti-Fas-
treated cells were related to the execution of the apoptotic pathway and not
the result of mere cellular demise. This high throughput proteome analysis
of a dying cell population essentially has provided an inventory of protein
alterations occurring during cell death, with some preliminary information
on the cause of these alterations (de novo synthesis, proteolysis, phospho-
rylation, relocation). However, a global functional understanding of these
proteome alterations will need further investigation that sheds light on the
function of sets of proteins under normal as well as pathophysiological 
circumstances (Huber, 2003; Rappsilber and Mann, 2002).

DEGRADOMICS: FUNCTIONAL PROFILING OF PROTEASES. The function
of a protein in its cellular environment is determined in many ways, includ-
ing by its expression level in space and time, its interaction with other 
proteins and its posttranslational modification, such as phosphorylation/
dephosphorylation and proteolysis. These control mechanisms are dynamic
and allow the cell to swiftly respond to its environment. Therefore, the cor-
relation between the mere presence or expression level of a protein, for
example, a protease or a kinase, and its activation state or participation in
cellular function, is mostly not obvious. Therefore, techniques are being
developed that allow profiling of a protein’s posttranslational modifications
and activity (Kuster et al., 2001; Mann et al., 2002). Because of the important
role of proteases in cell death, we will draw attention to some recent progress
in the development of degradomics, the application of genomic and pro-
teomic approaches to identify and characterize proteases, their activity, sub-
strates and inhibitors to unravel the role of proteases in vivo (Lopez-Otin
and Overall, 2002).

Using a colorimetric DEVD-peptide cleavage assay to monitor caspase-
3 activity in HeLa S-100 extracts, the group of Xiaodong Wang identified 
a-(trichloromethyl)-4-pyridineethanol (PETCM) from a 184,000 compound
library screening as a potent activator of caspase-3 in the cytosol. PETCM
activated caspase-3 in these lysates by inducing the formation of the apop-
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tosome complex. By further fractionation of the HeLa cell lysate, the tumor
suppressor putative HLA-DR-associated proteins (PHAP) and the oncopro-
tein prothymosin-a (ProtT) were discovered as a stimulator of apoptosome
activity and an inhibitor of apoptosome formation, respectively. PETCM was
shown to relieve ProtP-mediated inhibition of apoptosome formation,
explaining its selection in the drug screening. This relief by PETCM could
not be reproduced in an in vitro reconstituted system containing purified
Apaf-1, procaspase-9 cytochrome c, PHAP, and ProT, suggesting that an
additional, so far unknown, cytosolic factor is required. These results illus-
trate how the use of a defined protease activity readout (apoptosome activ-
ity) in a drug screening can lead to the dissection of a novel regulatory
pathway in cell death.

To visualize caspase activity inside a cell in a facile, noninvasive way,
fluorescence resonance energy transfer (FRET) technology has been applied
by linking two fluorescent proteins, for example, green (GFP) and blue flu-
orescent protein (BFP), with a short-peptide sequence containing the caspase
cleavage site (Xu et al., 1998). Cleavage of this linkage by a caspase elimi-
nates the FRET effect and allows visualizing caspase activity by monitoring
the shift in the fluorescence spectrum that occurs upon cleavage. This 
technique has also been used in drug screening to identify small-molecule
inducers of apoptosis (Jones et al., 2000).

Because the catalytic mechanism of caspases at some stage involves the
formation of a covalently bound acyl-enzyme intermediate (reviewed by
Lamkanfi et al., 2003), compounds were developed that are based on the sta-
bilization of this intermediate by using an irreversible inhibitor, for example,
the pan-caspase inhibitor z-VAD-fluoromethylketone. The latter functional
group binds covalently with the catalytic cysteine of an active caspase.
Linkage of the inhibitor to an immobilizable ligand such as biotin permits
the selective pulldown of the pool of active caspases. Based on this princi-
ple, an elegant profiling approach to caspase activity was recently reported
by Winsssinger et al. (2002). The authors probed a cell lysate using a small-
molecule inhibitor covalently linked to a unique peptide nucleic acid (PNA)
(Fig. 1). The PNA moiety has a dual purpose. First, its sequence allows the
identification of the attached small molecule, which is important if candi-
date inhibitors from a library of small molecules are tested as a pool. Second,
it permits immobilization of the inhibitor, after interaction with its target pro-
tease, to a specific location in an oligonucleotide microarray by hybridiza-
tion to a complementary sequence. Since the PNA part is also fluorescently
labeled, it allows location and quantification of the signal in the microarray
setting. In order to profile enzymatic activities in a complex sample, the
small-molecule moiety was designed to serve as a mechanism-base inhibitor
that can form a covalent association with the active enzyme(s) of interest. As
proof of principle of their technique, the authors made use of a peptide-
acrylate (the small-molecule moiety) that covalently and irreversibly 
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Fluorescence
detection

Protein sample
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FIGURE 1. Overview of peptide nucleic acid (PNA)-small-molecule-based affinity
screening. A library of small molecules (top left) consists of a pool of unique small
molecules with potential affinity for a target in a complex mixture, for example, a cell
lysate (protein sample, top right). Each individual small molecule is coupled to a
unique PNA tag. The nucleotide sequence (PNA-1, -2, -3) of this tag encodes the
chemical nature of the small molecule, is complementary to a dedicated oligonu-
cleotide sequence (NA-1¢, NA-2¢, bottom part of figure) present in an array, and is
labeled with an FITC fluorogen to allow quantitative detection. After incubation of
the small-molecule library and the protein sample to allow covalent interaction, free
PNA-small molecules are removed by size exclusion and the high molecular weight
fraction is applied to an oligonucleotide array. This allows the hybridization between
complementary NA strands and quantification of the immobilized protein-small-
molecule complex.



modifies nucleophylic thiols such as the catalytic site of active cysteine pro-
teases. The selectivity for a particular cysteine protease, in this case caspase-
3, was governed by using Asp-Glu-Val-acrylateAsp as the peptide-acrylate.
This peptide-acrylate-PNA was incubated with apoptotic cell lysate from
Jurkat T cells followed by removal of free peptide-acrylate-PNA molecules
by a size exclusion step. Hybridization of the resulting fraction on a microar-
ray yielded a fluorescent signal at the expected location and with an inten-
sity that correlated with the amount of active caspase-3 present in the
sample. MS/MS data analysis of the protein immobilized by the peptide-
acrylate probe identified human caspase-3 as its specific target.

CONCLUSIONS AND FUTURE PERSPECTIVES

This chapter has focused on the available technologies that have assisted and
will continue to assist in identifying and unraveling the role of proteins in
death signaling pathways. These technologies cover a range of experimen-
tal methods going from classical biochemical approaches that have led, for
example, to the identification of caspase-1 (Thornberry et al., 1992) to yeast
two-hybrid to modern-day genomics, transcriptomics, and high throughput
proteomics. The technology that allows the capture and identification of pro-
teins from complex mixtures is evolving at a continuous pace. Two main
challenges that need to be tackled in proteomics-based research are sample
preparation and protein activity measurements. This includes the develop-
ment of techniques that allow one to analyze the proteome from very small
samples from a few cells and that allow the simultaneous analysis of a highly
complex mixture of proteins. On the other hand, sensitive techniques that
allow the measurement or labeling of active proteins will help to interpret
the metabolic state of cells and subcellular compartments. Without an ampli-
fication method at hand, such as the polymerase chain reaction for nucleic
acid research, it is difficult to envision an approach that will eventually
permit cataloging the proteome of only a few cells, since otherwise only the
most abundant proteins will be detected.
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CHAPTER

17

CELL DEATH IN

VIRAL INFECTIONS

YING-BEI CHEN, YIHRU FANNJIANG,
AND J. MARIE HARDWICK

Viral infection is often accompanied by the death of host cells. Living as
intracellular parasites, viruses have adapted to employ cellular replication,
transcription, and translation machinery for their own benefits. The disrup-
tion of normal cellular functions or damage to cellular structures was once
thought to explain how viruses forced host cells to die. It was only until the
concept of programmed cell death (PCD) was proposed that cell death
caused by viral infection was recognized as altruistic suicide through spe-
cialized cellular machinery. In multicellular organisms, the activation of 
cellular suicide program in response to virus infections is now considered to
be an effective early defense strategy to prevent the spread of infection,
reducing the virus burden for the later, more specific immune-mediated exe-
cution of infected cells. Therefore, this altruistic suicide of infected cells is a
crucial component of the host defense system. The suicide program by which
cells die upon infection is often called apoptosis, but is more broadly referred
to as PCD because not all genetically programmed deaths exhibit morpho-
logical and biochemical characteristics of apoptosis.

Dying by PCD involves a cascade of events that is regulated by a wide
variety of cellular factors which either inhibit or facilitate the program. 
The classical form of PCD, or apoptosis, is characterized by distinct mor-
phology changes, including chromatin condensation, DNA fragmentation to 
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nucleosome-sized pieces, membrane blebbing, cell shrinkage, and compart-
mentalization of the dead cells into membrane-enclosed vesicles or apoptotic
bodies that are engulfed by neighboring cells. Cell death induced by some
viruses exhibits these characteristic apoptotic morphologies. However, many
viruses have devised methods to suppress the programmed death pathway
of their host cells. In such situations where the infected cell ultimately dies,
the morphology of the dying cell may be primarily that of necrosis rather than
apoptosis. Also in some virus-infected tissue localities, the extent of apopto-
sis can be severe. The presence of apoptotic bodies bearing foreign viral anti-
gens, or perhaps the eventual lysis of accumulated unengulfed apoptotic
bodies may contribute to the intense inflammatory response observed in some
virus infections. In these situations, the immune response is often more dam-
aging than the virus. In this regard, virus-induced apoptosis can differ from
developmental or homeostatic apoptosis, which is generally noninflamma-
tory. However, a complicated relationship exists between inflammatory
immune responses and the cell death pathway that has not yet been clarified.
Virus-infected cells can also be eliminated by natural killer (NK) cells or cyto-
toxic T cells (CTLs) and these processes have been attributed to programmed
cell death. These immune cells either secrete cytotoxic cytokines such as
tumor necrosis factor (TNF) or deliver FasL (Fas ligand) to one or more death
receptors on the cell surface, or release perforin or granzymes into targeted
virus-infected cells based on antigen recognition (Tortorella et al., 2000).

The fact that many viruses are found to encode genes that inhibit the cel-
lular apoptotic process strongly supports the concept that virus-activated
cellular suicide programs have evolved as an effective antiviral strategy. E1B
of adenovirus and P35 of baculovirus were the first identified viral anti-
apoptotic genes, and mutation of these genes in the viral genome causes
severe impairment of progeny virus production apparently due to prema-
ture death of host cells (Clem et al., 1991; Clem and Miller, 1993; White, 2001;
White et al., 1984). In addition to E1B-19K and P35, many other antiapop-
totic genes have been found in the genomes of numerous viruses. Thus,
apoptosis was proposed as a mechanism to prevent viruses from complet-
ing their replication cycles and producing progeny, thereby blocking the
spread of infection. However, there may be other protective roles of apop-
tosis as it has also been observed that many animal viruses grow efficiently
in cells undergoing apoptosis. For example, phagocytosis of apoptotic bodies
may be an important route to present viral antigens and initiate an acquired
immune response (Koyama et al., 2000).

In contrast, apoptosis is not always beneficial for the host. Certainly,
apoptosis is envisaged as the mechanism of choice to rid the host of virus-
infected cells, and failure to do so often results in viral persistence. However,
continuing to harbor a virus for the life of the host may be a more desirable
outcome if the price of deleting virus-infected cells is the elimination of 
postmitotic neurons of the central nervous system or other irreplaceable cell
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population. As in the cases of the neuronotropic poliovirus or herpes simplex
virus, these viruses induce neuronal cell death in motor neurons or tempo-
ral lobe neurons, respectively, and the extent of neuron loss determines the
severity of disease or rate of fatality. Human immunodeficiency virus (HIV)
challenges us with an even more complicated scenario. HIV encodes several
genes (tat, nef, vpr, etc.) that have been reported to have both antiapoptotic
and pro-apoptotic functions. Indeed, this virus likely employs both anti- and
pro-apoptotic mechanisms that preserve the latently infected cell and facili-
tate transmission, but at the same time contributes to the relentless death of
CD4+ lymphocytes characteristic of the later stages of disease and loss of
immune competence in patients. Therefore, both inhibition and enhance-
ment of apoptosis can contribute to viral pathogenesis. In the past few years,
we have started to understand many aspects of programmed cell death 
regulation, yet the significance and net effect of apoptosis on the conse-
quence of virus infection are a territory that is poorly understood.

Recent research into virus-infection-mediated cell death has identified
new viral genes that modulate the host cellular apoptotic response. These
investigations have not only expanded the possibility of developing new
antiviral agents, but have also greatly deepened our understanding of the
molecular mechanisms of cellular pathways. In this chapter, we first review
the viral gene products that inhibit the initiation or execution phases of 
apoptosis at multiple levels in the pathway, followed by a discussion of the
mechanisms involved in virus-induced cell death.

INHIBITION OF APOPTOSIS BY VIRUSES

Viruses interfere with the cell death pathway at almost every possible point
(Roulston et al., 1999). The responsible viral proteins have been identified in
many cases and have been grouped into several major categories according
to where they act in the cellular apoptotic pathways (Table 1). Some exam-
ples are discussed in the following sections and their points of interface with
cellular apoptosis pathways are summarized in Fig. 1.

INHIBITORS OF DEATH-RECEPTOR-MEDIATED APOPTOSIS

Death receptors are members of the tumor necrosis factor receptor (TNFR)
superfamily, and have a cytoplasmic death domain (DD) required for relay-
ing extrinsic death signals into the cell. Binding of specific ligands to these
receptors induces trimerization or other conformational changes that trans-
late to their cytoplasmic tails, leading to the formation of protein complexes
referred to as the death-inducing signaling complex (DISC). Adaptor pro-
teins are recruited to the DISC complex through DD interactions and acti-
vate a series of intercellular events that lead to diverse biological processes,
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TABLE 1. VIRAL INHIBITORS OF APOPTOSIS

Homologues/mechanisms Virus Viral Inhibitors

Inhibitors of Death-receptor-mediated Apoptosis
TNF receptor mimics Cowpox virus CrmB,C,D
TNF receptor mimics Myxoma virus M-T2
Degradation of death receptors Adenovirus RID (E3-10.4/14.5K)
vFLIP Pox virus MCV MC159/MC160

g-herpes viruses
vFLIP EHV-2 E8
vFLIP HHV-8/KSHV K13
vFLIP HVS Orf 71
Blocks ASK activity HIV Nef

Bcl-2 Homologue EBV BHRF1
Inhibits pro-death cellular Bcl-2 family HHV-8/KSHV KSBcl-2

proteins and maintains mitochondrial HVS Orf 16
integrity during cell death by an ASFV A179L
unknown biochemical mechanism Murine g-68 M11

Adenovirus E1B 19K
EBV BARF

Inhibitors That Act at Mitochondria
Blocks permeability transition Myxoma poxvirus M11L
Binds ANT CMV vMIA

Caspase and Granzyme B Inhibitors
Serpin Cowpox virus CrmA
No homologue identified Baculovirus P35
IAP Baculovirus Cp-IAP
IAP Baculovirus Op-IAP
Granzyme B inhibitor Adenovirus L4-100K

Inhibitors of p53
Inhibits activity; degradation Adenovirus E1B55K
Inhibits activity; degradation Adenovirus E4orf6
Binds to and inactivates p53 SV40 Large TAg
Targets p53 for degradation HPV E6

Inhibitors Enhancing Survival Signals
Activates Akt, phosphorylates BAD Polyoma virus Middle TAg
Activates PAK, phosphorylates BAD HIV Nef
Induces PI3K activation HIV Tat
Induces PI3K activation Hepatitis B HBx



including cell death, proliferation, inflammatory and stress responses
(Ashkenazi and Dixit, 1998; Chen and Goeddel, 2002). One of these adap-
ters, FADD (Fas-associated death-domain-containing protein), recruits and
induces autoactivation of caspase-8 (FLICE), thereby initiating the apoptotic
caspase cascade. As this extrinsic cell death pathway is extensively involved
in antiviral immune responses, it is not surprising to see a variety of
inhibitory plots invented by viruses.

Pox viruses devote approximately a quarter of their genome to genes
that are not required for virus replication but are presumably critical for 
survival of the virus in the environment. Among these nonessential genes
are mimics of TNFR that come in several forms, secreted, associated with the
cell surface or intracellular. When the cytokine response modifiers CrmB,
CrmC, and CrmD encoded by cowpox virus are secreted at different stages
of infection, they can bind and neutralize TNF. Although the role of these
proteins in regulating inflammatory responses of the host is well docu-
mented, their role in apoptosis inhibition in the infected host is less clear (Hu
et al., 1994; Loparev et al., 1998; Smith et al., 1996). The M-T2 protein of
myxoma virus, another pox virus, not only has a secreted form that blocks
TNF signaling, but also an intracellular form that cannot bind to TNF
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FIGURE 1. Viral proteins that inhibit programmed cell death. Viral proteins (bold)
encoded by the indicated viruses (rounded boxes) interface with cellular factors (red).
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directly, yet still protects infected lymphocytes from apoptosis probably
through abrogating distinct cellular responses (Nash et al., 1999; Xu et al.,
2000).

Adenovirus adopts another strategy to desensitize cells to TNF-induced
death. RID (receptor internalization and degradation) complex is composed
of E3-10.4K and E3-14.5K that mediate rapid internalization and lysosomal
degradation of cell surface Fas and another death receptor TRAIL-R1 
(Tollefson et al., 1998, 2001). By removal of death receptors from the cell
surface, the RID complex grants protection to infected cells from cytotoxic
immune response.

In the DISC complex, adapter proteins such as FADD have a DD to bind
the receptor and a related death effector domain (DED) to recruit caspase-8
through interactions with the DED domains present in the N-terminal 
pro-domain of caspase-8. Therefore, interference with these interactions
serves to block the activation of caspases. Several g-herpes viruses and MCV
(molluscum contagiosum virus), a pox virus, are found to encode viral
FLICE/capase-8 inhibitory proteins (vFLIPs). vFLIP proteins mimic the 
pro-domains of caspases in that they contain two DED domains and bind to
FADD and/or caspase-8 and -10, inhibiting activation of initiator caspases
after death receptor ligation (Thome et al., 1997). However, the details of
their inhibitory mechanisms are still under investigation. The identification
of vFLIPs instantly led to the identification of cellular FLIPs (cFLIPs), which
have two forms; the short form contains two death effector domains and is
structurally related to vFLIPs, whereas the long form, cFLIP(L), contains an
additional caspaselike domain but without proteolytic activity. The cFLIP
proteins are predominantly expressed in muscle, lymphoid tissue, and some
tumor cells, strongly suggesting the critical role of cFLIPs as endogenous
modulators of apoptosis (Irmler et al., 1997). Recent evidence suggests cFLIP
and vFLIP are also involved in the regulation of NF-kB and c-Fos activation
downstream of TNF receptors (Kataoka et al., 2000; Liu et al., 2002; 
Siegmund et al., 2001).

Many viruses trigger an upregulation of Fas and/or TNFR in infected
cells. When these cells encounter TNF or other death signals, stress-activated
protein kinase, also known as c-Jun NH(2)-terminal kinase (JNK), is acti-
vated in cells treated with TNF and can mediate both transcription-
dependent (e.g., upregulation of FasL) and transcription-independent 
(e.g., mitochondrial cytochrome c release) apoptotic signaling (Davis, 2000).
Apoptosis signal-regulating kinase 1 (ASK1) is a MAPKKK family member,
and its activation by TRAF2 (TNF-receptor-associated protein 2) is impor-
tant for TNF-mediated activation of JNK in signaling cell death (Ichijo et al.,
1997; Nishitoh et al., 1998; Tobiume et al., 2001). HIV-1 does not encode a
FLIP protein. Instead, it takes a different tack and utilizes a multifunctional
protein, Nef, to bind and inhibit ASK1 activity, thereby blocking JNK acti-
vation and subsequent cell death (Geleziunas et al., 2001).
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Bcl-2 HOMOLOGUES

Cellular Bcl-2 family proteins are key regulators of apoptosis. At the mito-
chondrial level, they can regulate permeability of the outer mitochondrial
membrane, blocking or promoting the release of pro-death factors such as
cytochrome c, SMAC/Diablo, AIF, EndoG, and HtrA/OMI from the inter-
membrane space. Yet the biochemical mechanisms by which Bcl-2 family
members achieve these functions are still a mystery. Generally, Bcl-2 proteins
are divided into three subgroups. Antiapoptotic family members include 
Bcl-2, Bcl-xL, Mcl-1, and Bcl-w, and often have the full complement of BH
(Bcl-2 homology) domains. The multidomain pro-apoptotic family members
such as Bax and Bak generally have three of the four BH domains. A subset
of pro-apoptotic family members has only a short 12 to 15 amino acid motif
that has recognizable sequence homology with the Bcl-2 family, and these
proteins are referred to as BH3-only proteins. Although these classifications
generally apply, the functions of Bcl-2 family proteins can be reversed. That
is, Bax can be antiapoptotic (Lewis et al., 1999) and Bcl-2 can promote cell
death (Cheng et al., 1997; Clem et al., 1998). Their abilities to regulate apop-
tosis are dependent on cell type and the particular death stimulus. However,
until the biochemical functions of Bcl-2 family proteins are known, their
reversible functions remain an enigma. The current working hypothesis is
that the antiapoptotic proteins bind and inhibit BH3-only proteins, prevent-
ing them from activating the multidomain pro-apoptotic members Bax and
Bak (Cheng et al., 2001). Upon receiving a death stimulus, Bax is translocated
from the cytosol to mitochondria where it promotes the release of apopto-
genic mitochondrial factors into cytosol. The mechanism by which Bax 
facilitates this release is still debated, but it has been suggested that it
involves formation or induction of channels in the outer mitochondrial 
membrane. However, other possibilities remain and these issues are still far
from clear (Adams and Cory, 2001; Martinou and Green, 2001).

Viral Bcl-2 homologues have been found in g-herpes viruses, including
human EBV and Kaposi’s sarcoma-associated herpes virus (KSHV) and in
the unrelated deoxyvirus African swine fever virus (ASFV). Even though the
viral homologues found share only low amino acid sequence similarity with
cellular Bcl-2 proteins (20%), the NMR structure of KSBcl-2 from KSHV is
quite similar to that of Bcl-xL and Bax (Huang et al., 2002; Muchmore et al.,
1996; Suzuki et al., 2000). In addition to herpes viruses, adenovirus also
encodes a functional Bcl-2 homologue, E1B-19K. E1B-19K lacks significant
overall sequence similarity to the Bcl-2 family, but it still remains possible
that its 3-dimensional fold will be similar to that of other members of the
Bcl-2 family when the structure is known.

Most viral Bcl-2 homologues contain only the BH1 and BH2 domains,
but with poorly conserved or unrecognizable BH4 and BH3 domains. The
N-terminal BH4 domain is required for the antiapoptotic function of cellu-
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lar Bcl-2, but this domain is poorly preserved among cellular as well as viral
Bcl-2 family members, perhaps suggesting novel functions or interactions.
The BH3 domain is thought to be important for pro-apoptotic function;
therefore, it is not surprising that viral Bcl-2 homologues have a poorly con-
served BH3. However, the structure of KSBcl-2 reveals that alpha helices cor-
responding to the BH4 and BH3 domains are retained in viral Bcl-2. Like
their cellular counterparts, the mechanisms by which viral Bcl-2 inhibits cell
death are not yet clear.

Poor conservation of the BH3 sequence motif among viral Bcl-2 proteins
correlates with the finding that viral Bcl-2 proteins are only capable of anti-
apoptotic function and cannot be converted into pro-death factors in a
manner similar to cellular Bcl-2 and Bcl-xL (Bellows et al., 2000). Unlike their
cellular relatives, viral Bcl-2 proteins are resistant to proteolysis in a loop
domain between BH4 and BH3. Cleavage by caspases or other proteases in
this loop region converts Bcl-2 and Bcl-xL into killer proteins, and further
enhances the killing activity of Bax, Bad, and Bid. Furthermore, deletion of
N-terminus of viral Bcl-2 proteins to mimic caspase cleavage products gen-
erally fails to reveal any pro-death activity. These key differences between
cellular and viral homologues provide one possible mechanism for viruses
to escape cellular regulation. Another example of vBcl-2 deregulation is seen
in KSHV, which encodes a viral cyclin homologue that directs cellular cyclin-
dependent kinase (CDK) 6 to phosphorylate cellular Bcl-2, leading to its
degradation. In contrast, KSBcl-2 is not a substrate of the viral cyclin-CDK6
complex, thereby escaping the degradation process (Ojala et al., 2000).

Despite the compelling evidence that viral Bcl-2 homologues inhibit
apoptosis in vitro, the role of these viral Bcl-2 homologues in vivo remains
unclear. Most g-herpes viruses express their Bcl-2 homologues early in the
lytic cycle, suggesting a role for these proteins in prolonging cell survival
during virus replication, rather than a role during latency and subsequent
tumor formation. However, the expression pattern of herpes virus Bcl-2 pro-
teins remains unresolved, and verification that the murine g-herpes virus 68
(gHV68) expresses its Bcl-2 homologue during latency as well as the lytic
cycle fuels the earlier but unconvincing evidence that other herpes viruses
may be capable of the same. Interestingly, recent studies using a mouse
model to study gHV68 have provided valuable new information over the
earlier cell culture models. In vitro studies of EBV mutants lacking vBcl-2
revealed no detectable change in virus replication and immortalization of
primary human B cells (Marchini et al., 1991). Consistent with this, the vBcl-
2 of the gHV68 virus was also not essential for acute replication, establish-
ment of latency, or for virulence in vivo. More importantly, vBcl-2 was
required for efficient reactivation from latent infection, and Bcl-2-defective
viruses had markedly reduced pathological consequences in immunocom-
promised (IFN-g-/-) mice compared to wild-type virus. This study provides
the first evidence that vBcl-2 contributes to both persistent replication and
virulence during chronic infection (Gangappa et al., 2002). Even though each
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g-herpes virus is highly adapted to its specific host, the lessons learned from
gHV68 may help unravel the complicated interaction of the human viruses
EBV and KSHV where other factors also contribute to development of
herpes-virus-associated tumors, including status of immune competency,
and environmental and genetic factors.

Adenovirus E1B-19K blocks E1A-induced, p53-dependent or 
-independent apoptosis through its binding to Bak or activated Bax at the
mitochondrial membrane. Thus, E1B-19K abrogates the potential pore-
forming ability of Bak and Bax, and has been extensively reviewed elsewhere
(White, 2001).

OTHER VIRAL CELL DEATH INHIBITORS
ACTING ON MITOCHONDRIA

In addition to viral Bcl-2 homologues, there are other viral proteins that
inhibit apoptosis at the level of mitochondria. Like Bcl-2 proteins, these viral
factors also prevent loss of mitochondrial membrane potential and perme-
abilization of the outer membrane. For example, the myxoma pox virus
protein M11L, which is required to prevent apoptosis during viral infection,
is targeted to mitochondria through its short carboxy-terminal region. 
M11L blocks mitochondrial permeability transition (DYm loss) that occurs
following a death stimulus. Mutation of the mitochondrial targeting signal
of M11L prevents mitochondrial localization and eliminates its antiapoptotic
activity (Everett et al., 2000). Thus far, it is not clear whether M11L exerts its
protective function independently or by interacting with other proteins on
mitochondria.

Cytomegalovirus (CMV) encodes the protein vMIA (viral mitochondrial
inhibitor of apoptosis), a product of the immediate early gene UL37 exon 1.
vMIA suppresses apoptosis triggered by diverse stimuli by blocking per-
meabilization of the mitochondrial outer membrane (Goldmacher, 2002). It
is predominantly localized in mitochondria, where it appears to form a
complex with the adenine nucleotide translocator (ANT). The ANT is an
inner membrane component of mitochondrial transition pore complex and
has been suggested to act in regulating mitochondrial events during apop-
tosis and as a target of pro-apoptotic mechanisms. Intriguingly, despite its
mitochondrial localization and ANT interaction, vMIA presumably works
by a mechanism distinct from Bcl-2 as vMIA neither shares homology with
the Bcl-2 family nor binds to Bax and VDAC, properties ascribed to cellular
Bcl-2 and Bcl-xL, although the in vivo relevance of these interactions is yet
unclear. Thus, vMIA may represent a distinct class of cell death inhibitor.

CASPASE AND GRANZYME B INHIBITORS

Caspases are a family of cysteine proteases and are the principal execution-
ers of apoptosis. All caspases are produced as inactive proenzymes and must
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be activated through cleavage to release their active subunits. During cell
death, initiator caspases such as caspase-8 are activated by autoprocessing.
These activated initiator caspases cleave the precursor form of the more
downstream effector caspases such as caspase-3, leading to a loosely defined
cascade of caspase activation. Once activated, they cleave a variety of 
cellular substrates at one or two sites with high specificity (Thornberry and
Lazebnik, 1998). Cleavage of cellular substrates by caspases either inactivates
their normal function or releases fragments that can further promote cell
death. Therefore, caspases are obvious targets for apoptosis inhibition in
viral infections. Indeed, the naturally occurring caspase inhibitors were first
discovered in the genomes of viruses, including P35 and IAP (inhibitor of
apoptosis) of baculoviruses. Moreover, these studies led to the discovery of
the cellular IAP protein family that regulates many complex cellular events
in addition to apoptosis.

Pox viruses are the only family of viruses encoding serpins (serine pro-
tease inhibitors), but unlike cellular serpins, pox virus serpins also inhibit
caspases. For example, the CrmA protein of cowpox virus is a specific and
potent inhibitor of immunity-modulating caspases such as caspase-1 (ICE)
and caspase-8, -4, and -5. Like other serpins, CrmA has been shown to 
serve as a suicidal pseudosubstrate that covalently inhibits proteases. After
binding to the protease, serpins undergo a springlike movement from an
initial metastable state to a final hyperstable form, causing distortion of the
active site and irreversible inhibition of protease activity (Huntington and
Carrell, 2001; Huntington et al., 2000). Caspase-1 is responsible for cleaving
the pro-form of IL-1b and IL-18 to release these active pro-inflammatory
cytokines. Mice deficient in caspase-1 fail to produce IL-1b and are protected
from LPS-induced mortality. Thus, the virus uses this potent modulator of
the immune response to greatly reduce the inflammatory response triggered
by this cytokine. Overexpressed CrmA inhibits caspase-8, thereby protecting
cells from apoptosis induced by TNF, FasL, and, to a less extent, granzyme
B (Turner et al., 1999). However, the role of CrmA in blocking apoptosis
during pox virus infections is unclear, but CrmA clearly plays an important
role in regulating the host inflammatory response.

Another potent caspase inhibitor encoded by baculoviruses is P35 (not
to be confused with p53). P35 is a broad-spectrum caspase inhibitor and is
required for efficient late viral gene expression and progeny production
(Clem et al., 1991; Clem and Miller, 1994). Caterpillars infected with bac-
uloviruses literally melt away as the virus takes over. However, caterpillars
infected with P35 mutants are resistant to disease because the virus fails to
replicate efficiently. Thus, baculovirus infection of insects is perhaps the
clearest example of how inhibition of programmed cell death modulates
viral pathogenesis. There is little doubt that equivalent roles for programmed
cell death will be uncovered in human disease, but the processes are much
more complex. Overexpression of baculovirus P35 blocks cell death in 
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phylogenetically diverse organisms including mammals in response to many
death stimuli. The structure of P35 in a complex with caspase-8 reveals that
a covalent thioester linkage between P35 and the caspase active site is sta-
bilized by a postcleavage conformational change in P35 (Xu et al., 2001).
Comparing the activity and specificity of P35 to initiator versus effector 
caspases reveals that P35 more potently inhibits effector caspases such as
caspase-3. Some of this specificity might be conferred by slight differences
between the structures of initiator and effector caspases (Eddins et al., 2002).
Interestingly, although P35 is a potent inhibitor of caspase-9 in vitro, it fails
to efficiently block caspase-9 activity in cells or in an animal model (Ryan et
al., 2002), suggesting that its function may be dependent on cellular context.
So far, there is still no known homologue of P35 outside baculoviruses.

IAP proteins were first identified in baculoviruses because this type of
gene could functionally substitute for the P35 gene in the baculovirus
AcMNPV. Of the three known baculovirus iap genes (Cp-iap, Op-iap, and
Ac-iap), only two of them (Cp-iap and Op-iap) have antiapoptotic activity.
Intriguingly, they both exist in strains that lack P35 gene, whereas AcMNPV,
the strain encoding P35, has Ac-iap, which lacks antiapoptotic function.
Mutagenesis studies of these IAP proteins indicate that the N-terminal BIRs
(baculovirus IAP repeats) and the C-terminal RING finger domains are
important for their antiapoptotic functions (Clem and Miller, 1994). The only
other IAP homologue found in viruses is the pA224L protein of African swine
fever virus, although less is known about this protein (Neilan et al., 1997).

Shortly after the identification of baculovirus IAPs, cellular IAP proteins
were identified in genomes of humans, Drosophila, nematodes, and yeast as
defined by the presence of one to three BIR motifs each with a single zinc
finger (Salvesen and Duckett, 2002). Until now, eight human IAP-related 
proteins have been found: c-IAP1, c-IAP2, XIAP, ILP-2, ML-IAP, NAIP, sur-
vivin, and Apollon, the human homolog of Bruce (Bir repeat ubiquitin-
conjugating enzyme). Not every IAP protein has the ability to inhibit apop-
tosis. The subset of BIR-containing proteins that lack the C-terminal RING
finger is referred to as BIRPs (BIR-containing proteins). New functions of IAP
family members continue to be uncovered. Although some of their functions
may ultimately be linked to regulation of cell death, other newly assigned
functions including cell cycle control, signal transduction, and protein degra-
dation may be unrelated to apoptosis.

Among all the human IAP proteins, XIAP has the strongest activity to
inhibit certain caspases (caspase-3, -7, and -9). Close examinations of the 
molecular and structural basis of XIAP revealed that two separate domains
of XIAP are responsible for the suppression of caspase-9 and caspase-3/7. A
pocket in the third BIR domain, BIR3, binds to the N-terminus of the caspase-
9 small subunit, which is exposed only after cleavage between the large and
small subunits. A short stretch of amino acids immediately preceding BIR2
motif of XIAP binds in the active site of caspase-3/7 (Chai et al., 2001; Huang
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et al., 2001; Riedl et al., 2001). These two views of how BIR domains inhibit
caspases may mean that both mechanisms actually occur within a single BIR
domain. In contrast to the covalent inhibitor binding we saw in the case of
CrmA and P35, the inhibition of caspases by XIAP is the classical reversible
noncovalent binding, but surprisingly the amino-carboxy orientation of
XIAP in the caspase active site is opposite to that of the caspase substrates
(Stennicke et al., 2002).

Therefore, there are multiple mechanisms for inhibiting caspases
employed by both viruses and host cells. Although caspases seem to be a
convenient and logical target for viruses to inhibit cell death, few viruses are
known to encode direct inhibitors of caspases. There are no P35 homologues
in other viruses, the link between CrmA and cell death regulation is tenuous,
IAP proteins came from insect viruses and may have additional functions in
the virus life cycle. Is the paucity of direct caspase inhibitors in viral genomes
explained by the pressure from coevolution? Mammalian cells contain
various caspases that are exquisitely and distinctly regulated upon receiv-
ing death stimuli, leading to a massive expansion in the activation of cas-
pases. Furthermore, in other situations at least some of these proteases likely
carry out many functions not directly related to cell death. Thus, the virus
has a challenge to economically block all the caspases that will become acti-
vated during cell death without perturbing required functions. So it is
perhaps not surprising that most viruses have evolved to target the upstream
caspases, thereby blocking the cascade from the top. Viral IAP proteins may
competitively inhibit caspases but they do so weakly, suggesting that their
sole purpose may not be caspase inhibition or even cell death regulation. It
will be easier for us to appreciate these tricks when more is learned about
the control of caspases in cell death as well as their other potential physio-
logical functions.

An important arm of the immune system in fighting off viruses is the
killing of virus-infected cells by cytotoxic lymphocytes. This is accomplished
when lymphocytes activate the Fas death receptor pathway discussed above,
but also when lymphocytes deliver granule components to target cells. The
serine proteases granzyme A and granzyme B are key components of lym-
phocyte granules, and when delivered to virus-infected target cells, these
proteases facilitate programmed cell death. Though the mechanisms are still
unclear, granzymes may induce a caspase-independent death pathway in
part because granzyme B cleaves some of the same substrates that are
cleaved by caspases. In addition, the granzyme and caspase pathways may
converge as granzyme B can also cleave and activate caspases. The L4-100K
adenovirus assembly protein was recently discovered to be a potent inhibitor
of granzyme B (Andrade et al., 2001). L4-100K is abundantly produced in
virus-infected cells and protects these cells from death induced by cytotoxic
granules. The other apoptosis inhibitors encoded by adenovirus cannot 
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substitute for the L4-100K function. Therefore, adenovirus encodes multiple
mechanisms for controlling the host response to infection.

INHIBITORS OF p53 LINK APOPTOSIS AND
CELL CYCLE DEREGULATION

As an essential gatekeeper in cell cycle progression, p53 also induces apop-
tosis primarily through its transactivation or suppressive effects on cellular
transcription. Many genes involved in apoptotic pathways are up- or down-
regulated by p53, including the well-known pro-apoptotic genes such as Fas,
Apaf-1, Bax, and several BH3-only proteins such as PUMA and NOXA. The
level of p53 protein in a cell is normally low because of its short half-life.
However, p53 is readily activated and stabilized during DNA damage, onco-
gene activation, or other abnormal cell cycle progression (Hickman et al.,
2002). Replication of some viruses requires host cells to enter the cell cycle.
The aberrant growth signals from viral proteins in many cases lead to p53
mediated apoptosis. Therefore, many viruses have devised mechanisms to
override p53-induced cell death.

Adenovirus E1A protein has been known for a long time to stimulate
cell proliferation and induce cell death through Rb and p53, which will be
discussed later in this chapter. To balance the death-inducing effects of E1A
and win time for proper replication, adenoviruses have evolved another
three genes that inhibit the apoptosis induced by E1A. E1B-19K blocks apop-
tosis at the mitochondrial level as mentioned earlier; E1B 55K and E4orf6
independently bind to p53 at the N- and C-terminus, respectively, and inhibit
the transcription activity of p53 (Dobner et al., 1996; Sarnow et al., 1982; Yew
and Berk, 1992). Furthermore, E1B-55K and E4orf6 also collaborate to target
p53 for ubiquitination and degradation by forming a multiprotein complex
containing a novel E3 ubiquitin ligase (Querido et al., 1997, 2001). Similarly,
the large T antigen encoded by SV40 binds to and inactivates p53 (Mietz et
al., 1992), while human papillomavirus (HPV) E6 protein binds p53 and
targets it for degradation via the ubiquitin-proteosome pathway (Scheffner
et al., 1990). Other large DNA viruses also target p53. The beta herpes virus,
human cytomegalovirus (CMV) immediate early gene IE2, has been linked
to p53 targeting and cell cycle regulation (Tsai et al., 1996).

VIRAL CELL DEATH INHIBITORS THAT STIMULATE
CELLULAR SURVIVAL SIGNALING

The PI3 kinase-Akt signaling pathway is a major pathway in relaying 
survival signals from cell surface growth factor receptors. Recruitment and
activation of PI3K by tyrosine kinase receptors generate phosphoinositide
phosphates PIP2 and PIP3 at the inner side of plasma membrane. The pleck-
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strin homology (PH) domain of Akt then binds to these phospholipids and
translocates to the plasma membrane where it is activated by phospho-
inositide-dependent kinase (PDK1)-mediated phosphorylation (Brunet et al.,
2001; Datta et al., 1999).

Several substrates of activated Akt have been identified and shown to
promote cell survival. Akt directly phosphorylates forkhead box transcrip-
tion factors and inactivates their capacity to upregulate death genes, such as
FasL and Bim. Pro-apoptotic Bcl-2 family protein Bad can be phosphorylated
by Akt, and then sequestered by 14-3-3 in the cytosol to inhibit its death-
promoting functions. Further phosphorylation in the BH3 domain of Bad 
by other kinases is important for the release of antiapoptotic Bcl-xL from 
Bad (Datta et al., 1997, 2000; del Peso et al., 1997). The link between Akt and 
Bad phosphorylation thus provides a mechanism for viruses to directly 
modulate apoptosis at the mitochondria level, preventing the amplification
phase of the caspase cascade. Akt also indirectly inhibits the activity of 
p53, activates CREB and NF-kB to increase the expression of survival genes
such as Bcl-xL and IAP, and may phosphorylate caspase-9 under some cir-
cumstances. Akt has also been suggested to promote cell survival through
control of metabolic processes and repression of GSK3 (glycogen synthase
kinase-3).

The middle T antigen (mTAg) of polyoma virus interacts with tyrosine
kinases and PI3K, and has been shown to activate Akt in a PI3K-dependent
manner (Dahl et al., 1998; Meili et al., 1998; Summers et al., 1998). Thus, the
PI3K-Akt pathway is presumed to contribute to the transforming ability of
mTAg and tumorigenic activity of polyoma virus. A recent study of HIV
revealed another strategy to inhibit cell death by phosphorylating Bad. The
Nef protein of HIV activates PI3K, leading to activation of another kinase,
p21-activated kinase (PAK), which then phosphorylates Bad and inhibits
apoptosis (Wolf et al., 2001). Therefore, Nef inhibits death by at least two
means, directly associating and blocking ASK1 activation as discussed
earlier, and by activating PI3K to eventually target Bad. Another multifunc-
tional protein of HIV, Tat, also has a role in the activation of PI3K (Borgatti
et al., 1997; Deregibus et al., 2002), as does HBx protein of hepatitis B virus
(Lee et al., 2001). In addition, antiapoptotic signaling and NF-kappaB acti-
vation in respiratory syncytial virus (RSV) infections involve activation of
PI3K-dependent pathways. Blockade of PI3K in this case results in rapid,
premature apoptosis (Thomas et al., 2002). Undoubtedly, many more viral
proteins will be found to regulate cellular survival pathways.

INDUCTION OF APOPTOSIS BY VIRUSES

Cell death in viral infections can be induced directly by specific viral pro-
teins or through indirect mechanisms as the consequence of disrupting 
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cellular functions. The broad array of antiapoptotic strategies employed by
virtually all virus families validates the proposed role for apoptosis as a host
defense mechanism against viruses. However, apoptotic responses to viruses
can also be detrimental to the host organisms, as in cases where the virus
takes advantage of this pathway to facilitate invasion, or when the apoptotic
response enhances the pathogenesis. We will review here some of the mech-
anisms of virus-induced apoptosis and cell death, although in general this
aspect of virology is less well understood.

ADENOVIRUS

E1A is a multifunctional protein and the first viral gene to be transcribed
after adenovirus infects a cell. E1A is a transcription factor that activates 
transcription of other viral genes to facilitate viral replication. E1A also binds
to cellular proteins that negatively regulate cell growth, including the
retinoblastoma protein (Rb) and transcription coactivator p300. These and
other activities of E1A serve to deregulate cell cycle control and promote a
gene expression pattern that is suitable for productive virus infection and
primary cell transformation. However, shortly after these cells begin to
divide, they die. This pro-death function of E1A maps to its Rb- and p300-
binding sites (White, 2001).

Rb is a cell cycle checkpoint protein that normally binds to and inhibits
the transcription factor E2F from driving cells into S phase. Phosphorylation
of Rb by cyclin-dependent kinases causes Rb to release E2F or other E2F
family proteins and associated factors. E2F induces a variety of genes
involved in S phase progression and upregulates p14ARF, a protein that
binds and neutralizes the activity of MDM2. MDM2 functions by targeting
p53 for proteolysis via the ubiquitin pathway to maintain the normally low
level of p53 in a cell. Therefore, inhibition of MDM2 by p14ARF results in
the stabilization of p53 and contributes to p53-dependent apoptosis induced
by E1A. Inhibition of p300 by E1A also leads to a rise in p53 levels and apop-
tosis. Yet this is not the only way that E1A can induce apoptosis since p53-
null cells are still susceptible to E1A-induced apoptosis, and we do not yet
fully understand the consequences of E1A binding to Rb and p300. One
recent report shows that E1A indirectly triggers proteosome-dependent
degradation of the cellular apoptosis inhibitor cFLIP, which results in sensi-
tization of infected cells to TNF-induced apoptosis (White, 2001). E1A also
affects downstream events in the death pathway. After double knockout cells
lacking both of the pro-apoptotic Bcl-2 family proteins Bax and Bak were 
utilized, it was reported the death signaling initiated by E1A is dependent
on Bax and Bak. Thus, E1A-induced apoptosis ultimately goes through the
same mitochondrial apoptosis pathway that is used by many other death
stimuli (Cuconati et al., 2002; Degenhardt et al., 2002).
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Adenovirus E4orf4, a 14kD polypeptide that may play multiple roles
during adenovirus infection, has been implicated in the selective killing of
transformed cells through a p53-independent cell death mechanism (Branton
and Roopchand, 2001). When overexpressed in mammalian cells, E4orf4
localizes to the nucleus, cytoplasm, and plasma membrane. At least two dis-
tinct mechanisms of cell death are likely to be initiated from these different
cellular compartments, and both pathways appear not to require the partic-
ipation of caspases. Cytoplasmic E4orf4 induces a Src kinase-mediated apop-
totic signal requiring the tyrosine phosphorylation of E4orf4, and rapidly
leads to membrane blebbing and cell death. Calpain activity is involved in
this pathway (Gingras et al., 2002; Lavoie et al., 2000). Nuclear E4orf4, on the
other hand, does not require phosphorylation and induces a still mysterious
death signal from the nucleus (Robert et al., 2002). Interestingly, E4orf4 was
suggested to promote cell death by binding protein phosphatase 2 (PP2A),
which has a wide variety of substrates playing roles in cell metabolism, cell
cycle and cell growth regulation (Janssens and Goris, 2001). However, the
connection between PP2A and either of these two potential mechanisms of
E4orf4 killing has not yet become apparent.

RETROVIRUS HIV-1

The loss of CD4+ and CD8+ T cells by apoptosis, including both infected and
uninfected cells, contributes significantly to the pathogenesis of HIV infec-
tion. Despite the enormous amount of work performed over the past decade,
the relationship between HIV infection and T cell death remains a very
complex issue. We now know that multiple viral genes and various apop-
totic mechanisms are involved at different stages for different targets, but
little is known about the exact regulation of these switches and what their
contributions are to viral infection and disease progression.

Apoptosis induced by HIV-1 is often described as being one of three
types (Roshal et al., 2001). “Death from without” refers to a type of extrin-
sic cell death occurring before or immediately after binding/entry of virus
particles to the cell, prior to de novo viral gene expression. One example of
this is the ability of the HIV envelope glycoprotein gp120 to cross-link CD4
receptors and/or the chemokine coreceptors on T cells, which primes these
cells to Fas-mediated killing. Virus-induced engagement of Fas or TNFa
death-receptor-initiated apoptosis also can be assigned to this category.
“Death from within” is caused by cellular responses to virus replication or
to the expression of individual viral genes capable of inducing apoptosis,
such as Tat, Nef, and Vpr. Tat was also shown to kill uninfected cells when
secreted from infected cells and taken up directly by uninfected cells. Thus,
Tat can induce cell death “in trans.”

Besides being famous for its ability to be released from infected cells 
and target uninfected cells, Tat has also been associated with the upregula-
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tion of caspase-8, increased secretion of TNF-a, and inhibition of superox-
ide dismutase. However, the mechanisms by which Tat sensitizes cells to
death receptor signaling leading to caspase activation, and how Tat alters
the cellular redox status toward oxidation are not understood (Li et al., 1995;
Westendorp et al., 1995a, 1995b). Nef enhances the expression of both 
Fas and FasL (Xu et al., 1999; Zauli et al., 1999), whereas Vpr has not 
only been implicated in G2/M cell-cycle-arrest-related cell death, but also
directly affects mitochondrial permeability (Jacotot et al., 2000; Stewart et al.,
1997). However, these very same HIV proteins can also inhibit apoptosis at
least at early stages of infection. Thus, we are still far away from under-
standing the regulation of HIV-induced apoptosis, and the role of HIV-
induced apoptosis in the pathogenesis of AIDS is even further beyond our
grasp.

SINDBIS VIRUS

Sindbis virus is a positive-sense single-stranded RNA alphavirus that is
transmitted by mosquitoes in nature and has been used for decades in a
mouse model of viral encephalomyelitis where Sindbis virus is profoundly
neuronotropic. In newborn mice, Sindbis virus causes apoptosis in neurons
of the central nervous system, which is believed to directly correlate with
mouse mortality (Lewis et al., 1996). Interestingly, although Sindbis virus
readily induces apoptosis in a variety of mammalian cell lines and in the
mouse brain, its ability to induce apoptosis in mosquito cells and in mos-
quitoes is severely impaired. Sindbis virus kills newborn mice but does not
kill mosquito larvae despite efficient replication, consistent with the obliga-
tory role of mosquitoes in completing the virus life cycle (Karpf and Brown,
1998). Thus, it appears that neuronal death induced by Sindbis virus is a
major pathogenic factor instead of being an important host defense mecha-
nism, especially when we consider that it has been shown the virus repli-
cates efficiently in apoptotic neurons. One interesting feature of Sindbis
infection is the age-dependent susceptibility of the host. Immature neurons
are killed by both avirulent and virulent strains, whereas older mice and
more mature neuron cultures become resistant to cell death induced by the
avirulent strains (Griffin et al., 1994; Lewis et al., 1996). This indicates that
there is an age-dependent regulation of cell death in the mouse central
nervous system that suppresses neuronal cell death as the animal matures.
Recently, a study using GeneChip technology to compare mock or infected
neonatal and weanling mouse brains revealed developmental regulation of
numerous genes, including some apoptosis regulatory genes, consistent with
age-dependent susceptibility. Proapoptotic factors caspase-3 and TRAF4
were downregulated, and one inflammatory response gene, ISG12, was
upregulated in brains of 4-week-old mice compared to 1-day-old mice 
following infection with Sindbis virus (Labrada et al., 2002).
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Taking advantage of the ability of Sindbis virus to act as both an expres-
sion vector and a death stimulus, various cellular apoptosis regulators have
been tested for their potential roles in Sindbis virus infections (Hardwick and
Levine, 2000). Both Bcl-2 and Bax are capable of inhibiting apoptosis in
Sindbis-infected neurons even though they are thought to have opposite
functions in many other cases (Levine et al., 1993; Lewis et al., 1999). A neu-
rovirulent strain of Sindbis virus, NSV, can induce death of mature neurons
in older animals. NSV harbors a point mutation in the E2 glycoprotein that
is involved in the early events of virus entry but also plays a role in repli-
cation. The intracellular events prior to initiation of the caspase cascade that
lead to Sindbis-virus-induced cell death are not understood. Interestingly,
antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate
receptors have a small but significant protective effect against Sindbis-virus-
induced death in neurons. These findings are consistent with the idea that
Sindbis virus infection of neurons may trigger excitatory death pathways
and cause damage not only to infected neurons but also to bystander 
uninfected neurons (Kerr et al., 2002; Nargi-Aizenman and Griffin, 2001).

OTHER VIRAL FACTORS INVOLVED IN CELL DEATH

The chicken anemia virus protein Apoptin is a nonstructural protein that has
been shown to induce apoptosis in a large number of transformed and tumor
cell lines, but not in normal diploid cells. This appealing feature makes
Apoptin a good candidate anticancer agent. Unlike many apoptotic stimuli
such as irradiation or chemotherapy agents that are most effective in cells
possessing a functional p53 and are inhibited by Bcl-2, Apoptin acts inde-
pendently of p53, and the pro-death activity of Apoptin can be enhanced by
Bcl-2 (Pietersen and Noteborn, 2000). The mechanism of Apoptin-induced
apoptosis is still under investigation.

A new pro-apoptotic protein was recently identified in influenza virus
A. This 87–90 amino acid protein, PB1-F2, is encoded by an alternative
reading frame in the gene for one of the three viral polymerase subunits
(Chen et al., 2001). Influenza viruses that have maintained this open reading
frame are more efficient at killing infected cells, and viruses with targeted
mutations that interfere with PB1-F2 expression have a reduced capacity to
induce death. PB1-F2 localizes to mitochondria and causes a loss of mito-
chondrial membrane potential. Like HIV Vpr, PB1-F2 can form pores in
membranes. Expression of PB1-F2 by influenza virus infection, by micro-
injection or transfection of a plasmid encoding PB1-F2, or by simply adding
the PB1-F2 protein to cells induces extensive apoptosis in a cell-type-
dependent manner (Chen et al., 2001). Thus, PB1-F2 can kill cells in both cis
and trans. Again, the mechanisms of action or the role of PB1-F2 in patho-
genesis is not known. Further understanding of PB1-F2 may help us to
conquer this widely distributed pathogen of humans and animals.
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CONCLUSION

From the above examples of how various viruses inhibit or induce apopto-
sis, it is obvious that apoptosis is a dual-blade sword. While preventing virus
replication or spread in the host, it is also responsible for the loss of func-
tional cells to the detriment of the host. Research into the mechanisms by
which viruses regulate apoptosis has provided an abundance of information
about how both viruses and cells initiate and proceed through the suicidal
execution, but there remain many gaps in both the details and especially in
mechanisms of disease pathogenesis. We still do not know how most viruses
induce programmed cell death, and much more needs to be learned about
the surveillance system normally running in a cell to sense changes upon
viral infection. Besides the well-known death receptor and mitochondrial
pathways, there are likely to be other yet undiscovered mechanisms of virus-
induced cell death.
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CHAPTER

18

CELL DEATH IN CANCER

AND CANCER THERAPY

SIMONE FULDA AND KLAUS-MICHAEL DEBATIN

Apoptosis or programmed cell death is a distinct, intrinsic cell death
program that occurs in various physiological and pathological situations
(Hengartner, 2000). Apoptosis is a key regulator of tissue homeostasis, which
critically depends on the balance between proliferation and cell death (Evan
and Vousden, 2001). One of the most important recent advances in cancer
research is the recognition that apoptosis plays a major role in both tumor
formation and treatment response (Johnstone et al., 2002; Lowe and Lin,
2000; Reed, 1999; Herr and Debatin, 2001; Kaufmann and Gores, 2000). The
realization that apoptosis is a gene-directed program implies that it can be
disrupted by genetic mutations (Johnstone et al., 2002). Some oncogenic
mutations block apoptosis, leading to tumor initiation and progression 
(El-Deiry, 1997). To this end, failures in apoptosis pathways may create a 
permissive environment for genetic instability and accumulation of gene
mutations, promote resistance to immune-based destruction, facilitate
growth-factor- or hormone-independent survival, and support anchorage-
independent survival during metastasis (Igney and Krammer, 2002). Con-
versely, other oncogenic changes such as the myc oncogene can promote
apoptosis, thereby producing selective pressure on tumor cells to override
apoptosis during multistage carcinogenesis (Evan and Vousden, 2001). 
In addition, killing of tumor cells by diverse cytotoxic approaches, such as
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anticancer, drugs, g-irradiation, suicide genes, or immunotherapy, has been
shown to be mediated through induction of apoptosis in target cells 
(Kaufmann and Earnshaw, 2000; Herr and Debatin, 2001). Since the same
oncogenic alterations and defects in apoptosis programs that suppress cell
death during tumor development can also confer resistance to cytotoxic ther-
apies, apoptosis provides a conceptual framework to link cancer formation
and cancer therapy. Thus, elucidation of the core machinery of the cell death
pathway has provided new insight into cancer biology, revealing novel
strategies for cancer therapy.

MECHANISMS OF APOPTOSIS

CASPASES AS CENTRAL DEATH EFFECTOR MOLECULES

Most apoptosis signaling pathways ultimately result in activation of cas-
pases, a family of cysteine proteases that act as common death effector 
molecules in various forms of cell death (Thornberry and Lazebnik, 1998;
Earnshaw et al., 1999; Los et al., 1999). Twelve human caspases with differ-
ent substrate specificity have so far been identified that cleave next to aspar-
tate residues. Caspases are synthesized as inactive zymogens and activated
by proteolytic cleavage, for example, cleavage between the large and the
small subunit followed by cleavage between the large subunit and the
prodomain. The fact that active caspases can activate each other by cleavage
at identical sequences results in amplification of activity through a protease
cascade.

Caspases involved in apoptosis signaling are categorized into initiator
and effector caspases, respectively (Thornberry and Lazebnik, 1998). Initia-
tor caspases transduce various signals into protease activity and are directly
linked to death-inducing signaling complexes (DISCs): Caspase-8 or -10 via
their death effector domain (DED) interact with adaptor proteins (FADD)
recruited and bound to activated death receptors, while caspase-9 is
recruited to the apoptosome via its CARD domain. Effector caspases cleave
various cytoplasmic or nuclear substrates, marking many of the morphologic
features of apoptotic cell death (Hengartner, 2001). For example, polynucle-
osomal DNA fragmentation is initiated by cleavage of ICAD (inhibitor of
caspase-activated Dnase), the inhibitor of the endonuclease CAD (caspase-
activated DNase) that cleaves DNA into the characteristic oligomeric 
fragments (Hengartner, 2001). DNA condensation is caused by AIF, a 
mitochondrial protein that translocates to the nucleus upon death trigger-
ing, and by Acinus, which stands for “apoptotic chromatin condensation
inducer in the nucleus” (Ferri and Kroemer, 2000). AIF may also mediate
caspase-independent cleavage of DNA into larger fragments (Daugas et al.,
2000). Likewise, loss of overall cell shape is due to proteolysis of cytoskele-
tal proteins including fodrin, gelsolin, actin, plectrin, and cytokeratin, 
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while nuclear shrinking and budding occur after degradation of lamin 
(Hengartner, 2001).

PATHWAYS OF CASPASE ACTIVATION

Activation of caspases can be triggered principally by two different mecha-
nisms (Fig. 1): According to the induced proximity model initiator, caspases
such as caspase-8 or -9 are activated in a multimeric complex, for example,
caspase-8 in the death-inducing signaling complex (DISC) and caspase-9
within the apoptosome (Walczak and Krammer, 2000; Schulze-Osthoff et al.,
1998; Krammer, 2000; Fulda and Debatin, 2002b). Alternatively, caspases 
are activated by catalytic processing of the zymogens at specific cleavage
sites (Thornberry and Lazebnik, 1998). Caspase activation can be initiated
through different entry sites, for example, at the plasma membrane by death-
receptor-mediated signaling (receptor pathway) or at the mitochondria
(mitochondrial pathway) (Fulda and Debatin, 2002b). Stimulation of death
receptors of the tumor necrosis factor (TNF) receptor superfamily such as
CD95 (APO-1/Fas) or TRAIL receptors results in receptor aggregation and
recruitment of the adaptor molecule Fas-associated death domain (FADD)
and caspase-8 to form the DISC (Scaffidi et al., 1998; Walczak and Krammer,
2000). Upon recruitment, caspase-8 becomes activated and initiates apopto-
sis by direct cleavage of downstream effector caspases. The mitochondrial
pathway is initiated by the release of apoptogenic factors such as cytochrome
c, apotosis-inducing factor (AIF), Smac/Diablo, Omi/HtrA2, endonuclease
G, caspase-2 or -9 from the mitochondrial intermembrane space (Kroemer
and Reed, 2000; Constantini et al., 2000). The release of cytochrome c into
the cytosol triggers caspase-3 activation through formation of the cyto-
chrome c/Apaf-1/caspase-9-containing apoptosome complex. Smac/Diablo
and Omi/HtrA2 promote caspase activation by neutralizing the inhibitory
effects to IAPs, while AIF and endonuclease G cause DNA condensation 
(Li et al., 2001; Martins, 2002; Daugas et al., 2000; Du et al., 2000).

The receptor and mitochondrial pathway can be interconnected at 
different levels (Roy and Nicholson, 2000). Following death receptor stimu-
lation, activation of caspase-8 may result in cleavage of Bid, a BH3-domain-
containing protein of the Bcl-2 family that assumes cytochrome-c-releasing
activity upon cleavage, thereby initiating a mitochondrial amplification loop
(Roy and Nicholson, 2000). In addition, mitochondria-triggered caspase-6
cleavage may feed back to the receptor pathway by cleaving caspase-8 (Slee
et al., 1999).

APOPTOSIS AND CANCER

The accumulation of neoplastic cells can occur through enhanced prolifera-
tion, diminished cell turnover, or both (Evan and Vousden, 2001). The 
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FIGURE 1. Activation of apoptosis pathways by anticancer therapy. Apoptosis 
pathways can be initiated through different entry sites, for example, at the plasma
membrane by death-receptor-mediated signaling (receptor pathway) or at the mito-
chondria (mitochondrial pathway). Stimulation of death receptors of the tumor
necrosis factor (TNF) receptor superfamily (DIL-R) such as CD95 (APO-1/Fas) or
TRAIL receptors by death-inducing ligands (DIL) results in receptor aggregation and
recruitment of the adaptor molecule Fas-associated death domain (FADD) and
caspase-8. Upon recruitment, caspase-8 becomes activated and initiates apoptosis by
direct cleavage of downstream effector caspases. The mitochondrial pathway is ini-
tiated by the release of apoptogenic factors such as cytochrome c, apoptosis-
inducing factor (AIF), or Smac/Diablo from the mitochondrial intermembrane space.
The release of cytochrome c into the cytosol triggers caspase-3 activation through for-
mation of the cytochrome c/Apaf-1/caspase-9-containing apoptosome complex.
Smac/Diablo promotes caspase activation by neutralizing the inhibitory effects to
IAPs, while AIF causes DNA condensation. The receptor and mitochondrial pathway
can be interconnected at different levels, for example, by Bid, a BH3-domain-
containing protein of the Bcl-2 family that assumes cytochrome-c-releasing activity
upon cleavage by caspase-8. Activation of caspases is negatively regulated at the
receptor level by FLIP that block caspase-8 activation, at the mitochondria by Bcl-2
family proteins, and by inhibitor of apoptosis proteins (IAPs). See the text for further
details.



importance of apoptotic cell death in the control of the carcinogenic process
has been suggested by studies of colon specimens harvested at various times
along the adenoma-to-carcinoma transition (Lowe and Lin, 2000). These
studies revealed that the rate of apoptosis is relatively high in normal colonic
epithelium, intermediate in adenomas, and low in carcinomas. The poten-
tial contribution of reduced cell death to tumor development was first estab-
lished, when the Bcl-2 oncogene was identified. Bcl-2 did not behave like a
typical oncogene, since instead of disturbing the control of proliferation, Bcl-
2 promotes cell survival by blocking apoptosis (Antonsson and Martinou,
2000). Bcl-2 was first identified at the chromosomal breakpoint of the t(14;18)
translocation in a human leukemia cell line, a translocation commonly found
in follicular lymphoma leading to deregulated expression of the Bcl-2 protein
(Tsujimoto et al., 1984). Alterations in the expression of antiapoptotic or pro-
apoptotic members of the Bcl-2 family proteins have been described in
various human cancers (Reed, 1999). Some of these mechanisms involve
structural gene alterations, for example, single nucleotide substitution or
frameshift mutations that inactivate the Bax gene in certain types of colon
cancer and hematopoetic malignancies (Reed, 1999). However, in most cases
aberrant expression of Bcl-2 proteins is regulated at the transcriptional or
posttranscriptional level. Imbalances in the ratio of anti- and pro-apoptotic
Bcl-2 proteins favor tumor cell survival instead of cell death (Antonsson and
Martinou, 2000). Also, Bcl-2 can cooperate with oncogenes such as the c-myc
oncogene in the process of multistep carcinogenesis by blocking c-myc-
induced apoptosis (Evan and Vousden, 2001).

p53 was the first tumor suppressor gene linked to apoptosis (Vogelstein
et al., 2000; Vousden, 2000). p53 mutations occur in the majority of human
cancers and are often associated with advanced disease and poor prognosis
(Wallace-Brodeur and Lowe, 1999). p53 functions as a checkpoint protein
involved in cell cycle arrest, DNA repair, and apoptosis (Vogelstein et al.,
2000; Vousden, 2000). Studies using p53 knockout mice showed that p53 was
required for radiation-induced apoptosis in the thymus (Lowe et al., 1993).
In addition to p53 mutations, several upstream or downstream components
of the p53 pathway are disrupted in human tumors (Vogelstein et al., 2000;
Vousden, 2000). For example, amplification of Mdm-2, which antagonizes
p53 through proteasome-mediated degradation of p53, or loss of the tumor
suppressor gene INK4a/ARF, which activates the p53 pathway, for example,
during oncogene-induced apoptosis, similarly results in disruption of the
p53 pathway of apoptosis. Likewise, alterations in p53 effectors such as
caspase-9, Apaf-1, or Bax have been shown to promote oncogenic transfor-
mation and tumor development in mouse tumor models.

In addition to the studies on Bcl-2 and p53 that established the impor-
tance of apoptosis in tumor formation, mutations in many apoptosis-related
genes have subsequently been demonstrated to contribute to carcinogenesis
(Lowe and Lin, 2000). Given the central role of caspases for cell death exe-
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cution, one might expect a high frequency of caspase mutations in tumors.
Interestingly, however, screening for mutations in initiator or executioner
caspases in a variety of human tumors has not revealed a high frequency of
genomic aberrations in caspase genes (Mandruzzato, 1999; Teitz, 2000).
Instead, caspase expression and function may be impaired by epigenetic
alterations such as promoter hypermethylation (Teitz et al., 2000). To this
end, caspase-8 expression was found to be frequently inactivated by hyper-
methylation of regulatory sequences of the caspase-8 gene in a number of
different tumor cells derived from neuroblastoma, malignant brain tumors,
Ewing tumor, and small lung cell carcinoma both in vitro and also in vivo
in primary tumor samples (Teitz et al., 2000; Fulda et al., 2001b).

Several antiapoptotic alterations can disrupt signaling through the death
receptor pathway. First, mutations of the CD95 receptor, which normally
controls cell numbers in the immune system by eliminating cells through
apoptosis, can lead to lymphoproliferative disorders and malignant lym-
phatic disease (Debatin, 1998). Also, death receptor expression may vary
between different cell types and can be downregulated in tumor cells, for
example, CD95 in hepatomas compared to normal hepatocytes, which has
been assumed to contribute to the escape of tumor cells from negative
growth control (Igney and Krammer, 2002). Moreover, overexpression of
decoy receptors such as DcR3, which binds CD95 ligand, in colon or lung
carcinoma may help tumor cells to avoid the lethal signals after death recep-
tor stimulation (Krammer, 2000). Signaling by death receptors can be nega-
tively regulated by proteins that associate with their cytoplasmic domains,
for example, SODD, or by proteins such as FLIP that prevent the interac-
tion between the adaptor molecule FADD and pro-caspase-8 (Igney and
Krammer, 2002; French, 2002). High FLIP expression found in many tumor
cells has been correlated with resistance to CD95- and TRAIL-induced apop-
tosis (Tschopp et al., 1998). Importantly, FLIP expression was associated with
tumor escape from T cell immunity and enhanced tumor progression in
experimental studies in vivo, pointing to the role of FLIP as a tumor-
progression factor (French and Tschopp, 2002). Thus, inactivation of the
death receptor pathway may facilitate carcinogenesis by rendering tumor
cells resistant to killing by CD95 ligand-expressing cytotoxic T lymphocytes
(French and Tschopp, 2002). Also, tumor cells may become resistant to
suicide pathways activated upon suboptimal growth condition or upon
detachment from the extracellular matrix, which involve death receptor sig-
naling (Igney and Krammer, 2002). Alternatively, expression of the cytotoxic
CD95 ligands on the cell surface of tumor cells may promote immune escape
of tumors via the tumor cell’s counterattack against cytotoxic T lymphocytes,
which express CD95 receptor and are susceptible to CD95-triggered apop-
tosis, resulting in an immune privileged environment around the tumor site
(Green and Ferguson, 2001).

Inhibitor of apoptosis proteins (IAPs) such as XIAP, cIAP1, cIAP2, sur-
vivin, livin, or ML-IAP have emerged as endogenous caspase inhibitors
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(Deveraux and Reed, 1999; Holczik and Korneluk, 2001). Interestingly, 
survivin is expressed at high levels in the majority of human cancers and
represents the fourth most common transcriptome of the human genome,
indicating that it may contribute to the malignant phonotype of cancer cells
(Altieri, 2001; Velculescu et al., 1999). Elevated survivin expression has been
associated with poor prognosis in a variety of human neoplasms, for
example, neuroblastoma, colon carcinoma, gastric carcinoma, or leukemia
(Adida, 1998, 2000; Altieri, 2001). In contrast, low or undetectable levels of
survivin are found in most nonproliferating, normal adult tissues (Altieri,
2001).

Moreover, mounting evidence suggests that perturbations of the
PI3K/Akt pathway play a central role in tumorigenesis (Datta et al., 1999;
Blume-Jensen and Hunter, 2001). The PI3K/Akt pathway can be altered at a
variety of steps in tumor cells. As a result of production of autocrine growth
factors, elevated levels of growth factor receptors, or constitutively active,
mutated receptors, enhanced signaling from receptor tyrosine kinases can
occur, for example, in breast carcinoma as a result of HER2/neu over-
expression (Blume-Jensen and Hunter, 2001). Alternatively, the gene for PI3K
or for AKT2 is amplified in a subset of ovarian carcinoma (Blume-Jensen and
Hunter, 2001). Likewise, absence of the tumor suppressor gene PTEN
because of gene loss or mutations, which antagonize the pro-survival func-
tion of Akt through dephosphorylation and inactivation of Akt, frequently
occurs in several tumors including malignant glioma (Simpson and Parsons,
2001). Also, mutated constitutively active Ras isoforms, which are found in
30% of cancers, in particular in pancreatic carcinoma, or the fusion protein
bcr/abl, the transforming kinase of CML, can directly activate PI3K (Down-
ward, 1998). In addition to the diversity of changes, which may result in
enhanced signaling through the PI3K/Akt pathway in tumors, numerous
substrates for the serine/thronine kinase Akt have been implicated in
tumorigenesis (Datta et al., 1999). Among its pleiotropic effects, activated Akt
is a well-established survival factor and exerts its antiapoptotic function
through transcriptional and posttranscriptional modifications of key mole-
cules involved in apoptosis signaling, for example, Bad, fork head tran-
scription factors, NFkB, or cell cycle regulatory proteins (Datta et al., 1999).

The transcription factor NFkB has been connected with multiple aspects
of oncogenesis, including cell proliferation, inhibition of apoptosis, cell cycle,
and migration (Mayo and Baldwin, 2000). The t(10,14) chromosomal translo-
cation breakpoint associated with NFkB2 was originally found in a case of
B-cell non-Hodgkin’s lymphoma and occurs in a number of lymphoid neo-
plasms (Karin et al., 2002). Multiple human tumors, for example, Hodgkin
lymphoma, pancreatic carcinoma, or breast carcinoma, have evolved 
mechanisms for deregulating the NFkB pathway, suggesting that NFkB is
involved in tumorigenesis (Karin et al., 2002). Mutations in the IkBa gene
have been detected in Hodgkin’s lymphoma, thereby rendering NFkB con-
stitutively active (Karin et al., 2002).
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APOPTOSIS PATHWAYS IN CANCER THERAPY

Most chemotherapeutic agents now in clinical use were developed using
empirical screens designed to identify agents that selectively or nonselec-
tively kill cancer cells. Studies on drug action initially focused on intracel-
lular drug targets, drug–target interaction, or resistance mechanisms that
prevent drug–target interaction. It is now well established, at least in vitro,
that the majority of anticancer agents primarily act by triggering apoptosis
in tumor cells (Herr and Debatin, 2001; Kaufmann and Earnshaw, 2000). This
implies that cellular responses occurring after drug–target interaction have
a profound impact on drug-induced cytotoxicity. The underlying mecha-
nisms for initiation of an apoptosis response upon cytotoxic therapy may be
different for different stimuli and are only partially understood. However,
damage to DNA or to other critical molecules and/or subcellular structures
appears to be a common early hit by some inducers, which is then propa-
gated by the cellular stress response (Herr and Debatin, 2001; Rich et al.,
2000). Multiple stress-inducible molecules, for example, JNK, MAPK/ERK,
NFkB, or ceramide, may have a profound impact on apoptosis pathways
(Leppa and Bohmann, 1999; Davis, 2000). On the other hand, cytotoxic T cells
or NK cells may release compounds such as granzyme B, which directly acti-
vate downstream apoptosis effector mechanisms inside the cell (Herr and
Debatin, 2001). Since the cytotoxic effects of current therapies are mediated
by apoptosis, disruption of apoptosis signal transduction pathways can
reduce treatment sensitivity. Since agents with distinct primary intracellular
targets can initiate apoptosis through similar mechanisms, defects in apop-
tosis programs may produce multidrug resistance.

SIGNALING PATHWAYS IN CANCER THERAPY

Apoptosis in response to cancer therapy proceeds through activation of the
core apoptotic machinery including the receptor and mitochondrial signal-
ing pathway (Herr and Debatin, 2001; Kaufmann and Earnshaw, 2000). The
relative contribution of the receptor and mitochondrial pathway to drug-
induced apoptosis has been a subject of controversy (Herr and Debatin, 2001;
Kaufmann and Earnshaw, 2000). Although a number of initial studies sug-
gested that cancer-therapy-triggered apoptosis involves activation of the
CD95 receptor/ligand system (Friesen et al., 1996; Muller et al., 1998; Fulda
et al., 1998; Debatin, 1999), compelling evidence subsequently indicated 
that the majority of cytotoxic drugs initiate cell death by triggering the
cytochrome c/Apaf-1/caspase-9 dependent pathway through the mito-
chondria (Eischen et al., 1997; Constantini et al., 2000). To this end, targeted
disruption of genes involved in the mitochondrial pathway points to the
crucial and indispensable role of this pathway for apoptosis in response to
anticancer drug treatment. Caspase-9-/- embryonic stem cells and Apaf-1-/-
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thymocytes are resistant to cytotoxic drugs, but nevertheless remain sensi-
tive to death receptor triggering (Hakem et al., 1998; Yoshida et al., 1998). In
contrast, FADD-/- and caspase-8-/- fibroblasts are refractory to death recep-
tor stimulation, but equally sensitive to cytotoxic drugs, suggesting that this
death receptor pathway has a dispensable role in drug-induced apoptosis,
at least in nontransformed cells (Yeh et al., 1998; Varfolomeev et al., 1998).
However, the relative contribution of the death receptor versus the mito-
chondrial pathway may depend on the cytotoxic drug, dose, and kinetics, or
on differences between certain cell types similar to the cell-type-dependent
signaling in the CD95 pathway (Fulda, 2001b). Importantly, this amplifica-
tion of the chemoresponse through activation of the CD95 system may be
clinically meaningful, since it may critically affect the time required for exe-
cution of the death program (Tang et al., 2000). The net outcome of signal-
ing through the core apoptotic machinery is regulated by multiple pro- and
antiapoptotic signaling paths as discussed below.

PRO-APOPTOTIC SIGNALING IN CANCER THERAPY

CASPASES. Given the important role of caspases as effector molecules in
various forms of cell death including drug-induced apoptosis, the ability of
anticancer agents to trigger caspase activation appears to be a critical deter-
minant of sensitivity or resistance to cytotoxic therapies (Fulda and Debatin,
2002b). As a consequence, inhibition of caspase activation may be an impor-
tant factor in chemoresistance (Fulda and Debatin, 2002; Faderl and Estrov,
2001; Svingen et al., 2000).

First, expression levels of individual caspases may have an impact on
their overall activity, since activation of caspases may simply be impaired by
deficient expression levels of caspases (Teitz et al., 2000; Fulda et al., 2001a,b;
Estrov et al., 1998; Koomagi and Volm, 2000). For example, MCF-7 breast car-
cinoma cells completely lack caspase-3 expression due to a frameshift muta-
tion within exon 3 of the caspase-3 gene (Janicke et al., 1998). These cells can
be sensitized by transfection of pro-caspase-3 toward treatment with cyto-
toxic drugs (Yang et al., 2001). Next, caspase expression may be impaired by
epigenetic alterations such as promoter hypermethylation (Teitz et al., 2000;
Fulda et al., 2001). To this end, caspase-8 expression was found to be fre-
quently inactivated by hypermethylation of regulatory sequences of the
caspase-8 gene in a number of different tumor cells derived from neuro-
blastoma, malignant brain tumors, Ewing tumor, and small lung cell carci-
noma both in vitro and also in vivo in primary tumor samples (Teitz et al.,
2000; Fulda et al., 2001a,b). Importantly, restoration of caspase-8 expression
by gene transfer or demethylation treatment sensitized resistant tumor cells
for death-receptor- or drug-induced apoptosis (Fulda et al., 2001a,b). Con-
versely, enhanced transcription of caspase genes in response to cytotoxic
treatment may increase expression levels. Thus, treatment with IFNg resulted
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in enhanced expression of caspase proteins mediated by direct activation of
STAT-1, a downstream transcription factor involved in IFNg signaling (Fulda
and Debatin, 2002). Moreover, transcriptional upregulation of caspase-3 or 
-8 was reported upon drug treatment independent of STAT1 (Micheau et al.,
1999).

p53. As a sensor of cellular stress, p53 is activated by a variety of stimuli
such as anticancer drugs, irradiation, hypoxia, oncogenes, or heat shock,
leading to cell cycle arrest and/or apoptosis (Fig. 2; Vogelstein et al., 2000;
Vousden, 2001). In response to cellular stress or DNA damage, p53 is phos-
phorylated at the N-terminus by two major kinases, ATM and Chk2, and
also by ATR, casein kinase II, or the s46 kinase complex, which in turn results
in stabilization of the p53 protein through inhibition of ubiquitin-mediated
proteolysis (Vogelstein et al., 2000). Phosphorylation of the N-terminal
residues alters the binding of p53 to Mdm2, while binding to the negative
regulators JNK and Rb is controlled by caspase-mediated cleavage 
(Vogelstein et al., 2000). Also, phosphorylation of C-terminal residues of p53,
acetylation, sumolation, or conformation changes can regulate p53 tran-
scriptional activity (Vogelstein et al., 2000). The transcriptional activity of p53
is important for mediating its biological function and includes cell cycle reg-
ulatory genes such as p21, GADD45, reprimo, or 14-3-3, and apoptosis 
genes such as Bax, Noxa, p53AIP1, p53DINP1, CD95, TRAIL-R2, and PIG
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FIGURE 2. p53 and apoptosis. Various stress stimuli can activate the p53 protein, for
example, chemotherapy, oncogenes, hypoxia, heat shock, or irradiation. p53 induces
cell cycle arrest to ensure DNA repair or triggers apoptosis for elimination of
damaged cells through the induction of various target genes. See the text for further
details.



(Vogelstein et al., 2000). In addition, transcription-indendent regulation of
cell growth and apoptosis by p53 has also been described, for example, by
promoting the translocation of CD95 from intracellular compartments such
as the Golgi stores to the plasma membrane or by the direct effect of p53 on
mitochondria (Vogelstein et al., 2000).

However, the relationship of p53, apoptosis, and the sensitivity of tumor
cells to anticancer agents has been controversial. On the one hand, loss of
p53 function has been shown to attenuate drug-induced apoptosis in vitro
(Lowe, 1995). In addition, several clinical correlative studies and studies in
mice showed an association between wt. p53 and chemosensitivity, indicat-
ing that p53 status may predict clinical response to chemotherapy (Wallace-
Brodeur and Lowe, 1999). On the other hand, it has been proposed that p53
plays little or no role in the sensitivity of cancer cell to chemotherapy or radi-
ation (Brown and Wouters, 1999). Although wt. p53 was found to predipose
cells to die more rapidly by apoptosis as assessed by short-term assays, p53
status had no effect on clonogenic survival, indicating that p53 status may
determine the threshold and kinetics of cell death rather than overall sur-
vival (Brown and Wouters, 1999). Also, p53 is not absolutely required for
drug-induced cell death, since at sufficient doses virtually all anticancer
agents induce apoptosis or other types of cell death independently of p53
(Brown and Wouters, 1999). Moreover, cells harboring wild-type p53 may
fail to respond to cytotoxic treatment and those lacking functional p53 may
even respond better (Brown and Wouters, 1999). Also, the contribution of
p53 to apoptosis in response to cytotoxic therapies may depend on doses 
or tumor cell type and/or drug-specific patterns of modulation of chemo-
sensitivity by p53.

ANTIAPOPTOTIC SIGNALING IN CANCER THERAPY

Bcl-2 PROTEINS. Bcl-2 family proteins play a pivotal role in the regula-
tion of the mitochondrial pathway, since these proteins localize to intracel-
lular membranes, in particular the mitochondrial membrane (Antonsson and
Martinou, 2000). They comprise both antiapoptotic members, for example,
Bcl-2, Bcl-XL, and Mcl-1, as well as pro-apoptotic molecules such as Bax, Bak,
Bad, and BH3 domain-only molecules that link the death receptor pathway
to the mitochondrial pathway (Bid, Bim, Puma, and Noxa) (Antonsson and
Martinou, 2000; Oda et al., 2000; Cheng et al., 2001; Zhang et al., 2000). Upon
apoptosis induction, pro-apoptotic Bcl-2 proteins with multidomains such
as Bax translocate from the cytoplasm to the outer mitochondrial membrane,
where they oligomerize to form a porelike structure, thereby promoting
cytochrome c release (Cheng et al., 2001). This translocation to mitochondria
can be triggered by Bcl-2 proteins that have a BH3 domain only (Cheng 
et al., 2001). BH3-domain-only proteins include Bid, which is activated 
by caspase-8-mediated cleavage; Bim, a microtubule-associated protein; or
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Noxa and PUMA, two p53-induced proteins (Antonsson and Martinou,
2000). Bcl-2 or Bcl-XL exert their antiapoptotic function, at least in part, by
sequestering BH3-domain-only proteins in stable mitochondrial complexes,
thereby preventing activation and translocation of Bax or Bak to mitochon-
dria (Antonsson and Martinou, 2000). In addition, Bcl-2 and Bcl-XL block
apoptosis by preventing cytochrome c release through a direct effect on mito-
chondrial channels such as the voltage-dependent anion channel (VDAC) 
or the permeability transition pore complex (PTPC). Mutations or altered
expression of pro- or antiapoptotic Bcl-2 family proteins can drastically alter
drug response in experimental systems. In addition, several clinical correla-
tive studies have supported the concept that high-level expression of 
antiapoptotic Bcl-2 proteins confers a clinically important chemoresistant
phenotype on cancer cells, including AML, ALL, CLL, multiple myeloma,
prostate carcinoma, malignant brain tumors, and neuroblastoma (Campos et
al., 1993; Prokop et al., 2000). Likewise, reduced Bax levels have been asso-
ciated with poor responses to chemotherapy and shorter overall survival in
breast or colorectal carcinoma (Sturm et al., 2001; Bargou et al., 1995). Con-
versely, enhanced Bax levels correlated in several cell types with response to
chemotherapy in vivo (Sturm et al., 2001).

INHIBITOR OF APOPTOSIS PROTEINS. “Inhibitor of apoptosis proteins”
(IAPs) have been reported to directly inhibit active caspase-3 and -7 and to
block caspase-9 activation (Deveraux and Reed, 1998; Holczik and Korneluk,
2001). In addition to regulation of apoptosis, IAP members such as survivin
have been found to be involved in the regulation of mitosis (Altieri, 2001).
The activity of IAPs is controlled at various levels, for example, by the tran-
scription factor NFkB that has been reported to stimulate expression of
cIAP1, cIAP, and XIAP (Deveraux and Reed, 1998). Inhibition of apoptosis
by IAPs in response to cytotoxic therapy has been suggested by several
experimental studies. XIAP, cIAP1, or cIAP2 suppressed apoptosis in vitro
following treatment with cisplatin, cytarabine, TRAIL, or staurosporine, or
after g-irradiation (Datta et al., 2000; Altieri, 2001). Also, increased IAPs
expression correlated with poor treatment response in myeloid leukemia
cells and elevated survivin expression predicted adverse prognosis in
several tumors, for example, neuroblastoma, AML, and colon, lung, and
esophagus carcinoma (Tamm et al., 2000; Adida et al., 2000). IAPs are nega-
tively regulated by caspase-mediated cleavage. In addition, Smac/Diablo
and Omi, two proteins released from mitochondria upon apoptosis induc-
tion, neutralize IAPs through binding to IAPs, thereby displacing them from
their caspase partners (Du et al., 2000; Suzuki et al., 2001; Martins, 2002).
Likewise, XAF1 has been found to displace IAPs from bound caspases in the
nucleus. Overexpression of Smac or Smac peptides sensitized even resistant
tumor cells for apoptosis induction and strongly synergized with TRAIL to
eradicate established tumors in an orthotopic mouse model of malignant
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glioma, indicating that Smac agonists represent novel promising cancer ther-
apeutics (Fulda et al., 2002).

NFkB. The ability of the transcription factor NFkB to suppress apoptosis
has been implied to confer resistance to cytotoxic therapies (Mayo and
Baldwin, 2000). As outlined above, NFkB can already be constitutively active
in certain tumor types such as pancreatic carcinoma (Mayo and Baldwin,
2000). In addition, NFkB activity is induced in response to a variety of
stimuli, for example, in response to cellular stress and anticancer agents (Fig.
3) (Karin and Ben-Neriah, 2000). NFkB is composed of hetero- or homod-
imers of the NFkB/Rel family of proteins, which mediate protein dimeriza-
tion, nuclear import, and specific DNA binding (Karin and Ben-Neriah,
2000). In most cell types, NFkB is sequestered in the cytoplasm by its inter-
action with IkB proteins and therefore remains inactive (Karin and Ben-
Neriah, 2000). Upon stimulation, IkB becomes phosphorylated following
activation of the IKK complex and is degraded via the proteasome, thereby
releasing NFkB to translocate into the nucleus for transcription of target
genes (Karin and Ben-Neriah, 2000). NFkB target genes include several anti-
apoptotic proteins, for example, cIAP1, cIAP2, TRAF1, TRAF2, Bfl-1/A1, Bcl-
XL, and FLIP (Pahl, 1999; Barkett and Gilmore, 1999). Interestingly, promoter
activation of certain pro-apoptotic factors such as CD95L, CD95, TRAIL-R1,
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and TRAIL-R2 is also controlled by NFkB, consistent with reports that NFkB
can promote apoptosis under certain circumstances (Pahl, 1999). The NFkB
signaling pathway has been linked to death receptor signaling, since RIP that
serves as an adaptor molecule for the TNFRI receptor to the NFkB pathway
can be cleaved by caspases, thereby modulating the balance between pro-
and apoptotic signals upon TNF receptor signaling (Herr and Debatin, 2001).
Since certain types of anticancer treatments result in induction of NFkB
transcriptional activity, inhibition of NFkB in parallel with chemotherapy
strongly enhanced the cytotoxic effect of chemotherapy (Mayo and Baldwin,
2000). Thus, NFkB may play an important role in inducible chemoresistance,
and inhibition of NFkB may serve as a potential new adjuvant approach to
chemotherapy (Mayo and Baldwin, 2000).

PI3K/AKT. The PI3K/Akt pathway is a potent mediator of cell survival
signals such as those delivered by growth factors or interactions with neigh-
boring cells or with the extracellular matrix (Blume-Jensen and Hunter, 2001;
Datta et al., 1999). Upon growth factor binding, transmembrane receptor
tyrosine kinases undergo auto- and transphosphorylation, thereby recruit-
ing PI3K to the plasma membrane where PI3K in turn recruits Akt via gen-
eration of phospholipids (Fig. 4) (Blume-Jensen and Hunter, 2001). Once
activated, Akt regulates multiple signaling pathways involved in cell prolif-
eration, apoptosis, glucose metabolism, or angiogenesis (Datta et al., 1999).
The pro-survival function of Akt is mediated by phosphorylation of apop-
tosis signaling molecules such as Bad or caspases-9, or by inhibiting
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cytochrome c release from mitochondria (Datta et al., 1999). The role of the
PI3K/Akt pathway in treatment resistance has been suggested, since dereg-
ulated activation of Akt conferred resistance to apoptosis upon death recep-
tor ligation or cytotoxic drug treatment (Datta et al., 1999). Thus, targeting
the PI3K/Akt pathway, for example, by small-molecule inhibitors, may be
useful to restore the sensitivity of tumor cells to cytotoxic therapies (Stein
and Waterfield, 2000).

CASPASE-INDEPENDENT AND NONAPOPTOTIC
MODES OF CELL DEATH

Although a large body of data point to the essential role of caspase-
dependent apoptosis in mediating tumor cell death upon cytotoxic therapy,
this concept has also been challenged (Finkel, 1999). So far, a consistent link
between the cells’ ability to undergo apoptosis and their susceptibility to
anticancer therapy could not be observed (Finkel, 1999). Thus, nonapoptotic
modes of cell death, for example, necrosis or some forms of cell death that
cannot be easily classified at present, have also been taken into considera-
tion as a response to cytotoxic therapy (Leist and Jäättelä, 2001; Sperandio
et al., 2001; Borner and Monney, 1999; Johnson, 2000). Also, delayed repres-
sion of tumors upon, for instance, irradiation has been interpreted as evi-
dence against a predominant apoptotic mode of cell death, since apoptosis
appears to be induced fairly rapidly in vitro and in vivo upon appropriate
stimulation (Brown and Wouters, 1999). Although the signaling pathways
and molecules involved in these alternative forms of cell death have not yet
exactly been defined, noncaspase proteases such as calpains or cathepsins,
Bax or Bax-like molecules, and AIF or endonuclease G may be involved
(Johnson, 2000). The relative contribution of these different modes of cell
death for chemoresponses in vitro and in vivo remains to be defined.

CONCLUSION

Numerous studies over the last several years have indicated that cell death
by apoptosis plays a crucial role in the surveillance of tumor formation and
in anticancer therapies that primarily act by triggering apoptosis in tumor
cells (Herr and Debatin, 2001; Kaufmann and Earnshaw, 2000; Johnstone et
al., 2002). However, a few points remain to be addressed in future studies:
First, most of the apoptosis signaling components have not been studied in
clinical samples. Second, many experimental studies indicate that alterations
in components of the apoptotic machinery have an impact on tumor forma-
tion and on sensitivity of tumor cells toward cytotoxic therapy; this premise
remains to be tested in clinical settings. Moreover, the biology that deter-
mines the individual responses of different tumors to cytotoxic therapies
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warrants further investigations to provide the basis for more specific thera-
peutic interventions. Finally, the concept that apoptosis represents the major
mechanism by which tumor cells are eliminated by cytotoxic therapies may
not universally apply, and caspase-independent apoptosis and nonapoptotic
modes of cell death have also to be considered.

Nonetheless, studies on the role of apoptosis regulatory molecules in
tumor development and in the response to anticancer therapies have pro-
vided substantial insights into cancer biology. Future studies on the role of
apoptosis in individual tumors both in vitro and in vivo in tumor cells of
patients under chemotherapy, for example, by DNA microarrays or pro-
teomic studies, may provide the basis for “tailored” tumor therapy and may
identify new targets for therapeutic interventions.
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Apoptosis is a ubiquitous process that is critical for normal development,
tissue homeostasis, and cell surveillance in all metazoan organisms. Given
its importance in normal biology, it is not surprising that dysregulation of
apoptosis—either too little or too much—can result in disease. This is illus-
trated by certain cancers in which inadequate apoptosis accounts, in large
part, for the increase in tumor cells (McDonnell et al., 1989; Reed et al., 1988;
Tsujimoto et al., 1985; Vaux et al., 1988). Conversely, an excess of apoptosis
has been hypothesized to contribute to the pathogenesis of other disorders
such as stroke, myocardial infarction, and heart failure (Thompson, 1995).

Cardiovascular disease is the most common cause of death in the de-
veloped world. Of the 2,400,000 annual deaths due to all causes in the 
United States, approximately 60%, or 1,400,000, are the result of cardiovas-
cular disease (AHA, 2002). This figure far exceeds the total annual deaths
from all cancers combined. The cardiovascular disorders primarily respon-
sible for this extraordinary burden of mortality and disability are myocar-
dial infarction, heart failure, and stroke. Although the pathogenesis of these
syndromes is multifactorial, an increasing body of evidence suggests that
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apoptosis plays a significant role. In this chapter, we focus on the role of
heart muscle cell apoptosis in myocardial infarction and heart failure and its
potential therapeutic implications.

NATURE OF THE PROBLEM: THE COMMON

HEART SYNDROMES

MYOCARDIAL INFARCTION

Myocardial infarction is usually caused by the thrombotic occlusion of one
or more of the coronary arteries, the blood vessels that carry oxygenated
blood from the aorta to the myocardium or heart muscle (De Wood et al.,
1980; Fallon, 1996). Thrombus (clot) formation is most often due to the
rupture of a preexisting atherosclerotic plaque in the wall of the coronary
artery (Falk et al., 1996). Typically, the plaque itself causes only a low-grade
narrowing of the vessel. Following plaque rupture, however, a complex set
of events triggers the recruitment of platelets and formation of thrombus that
produces high-grade narrowing or complete occlusion of the coronary artery.
This, in turn, causes myocardial ischemia, defined as decreased or absent
blood flow to the myocardium. Ischemia results in the deprivation of
oxygen, nutrients, and survival factors as well as the accumulation of waste
products in the cells downstream of the occlusion, most notably heart muscle
cells (cardiac myocytes) and cells lining the blood vessels (endothelial cells).
Cell death ensues. Cardiac myocyte death during myocardial infarction has
traditionally been thought to occur solely by necrosis. As will be discussed,
this concept has been challenged by more recent work suggesting that a 
significant portion of cardiac myocyte death in human (Olivetti et al., 1996;
Saraste et al., 1997) and rodent models of myocardial infarction (Bialik et al.,
1997; Buerke et al., 1995; Fliss and Gattinger, 1996; Gottlieb et al., 1994; 
Kajstura et al., 1996; Palojoki et al., 2001) occurs by apoptosis.

Approximately 1,100,000 cases of myocardial infarction occur annually
in the United States (AHA, 2002). Patients generally experience chest pres-
sure that may spread into either arm, the neck, or jaw accompanied by short-
ness of breath and sweating. A cornerstone of acute therapy has been drugs
that reduce the work which the heart muscle must carry out and, thereby,
its need for oxygen. In addition, one of the most revolutionary developments
in cardiology over the past 15 years, however, has been the recognition that
the timely restoration of blood flow to the ischemic myocardium can reduce
the size of a myocardial infarction and improve subsequent cardiac function 
and survival rates (1994; 1986). Accordingly, a second cornerstone of therapy
is the reestablishment of blood flow through pharmacologic (thrombolytic
agents) or mechanical (angioplasty or bypass surgery) means (Ryan et al.,
1999). Although the net benefit of restoring blood flow to the ischemic
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myocardium during myocardial infarction has been clearly demonstrated,
reperfusion itself has been associated with some tissue damage primarily
due to oxidative stress from the sudden reintroduction of oxygen-rich 
blood into a previously ischemic area (Bolli et al., 1989; Verma et al., 2002). 
Oxidative stress is a well-recognized apoptotic stimulus in diverse systems.
Consistent with the importance of reperfusion-induced injury, most apop-
tosis during “ischemia-reperfusion” occurs in the reperfusion phase 
(Freude et al., 2000; Kang et al., 2000). Moreover, compared with continuous
ischemia, ischemia-reperfusion appears to accelerate the onset of apoptosis
but to reduce its overall magnitude (Fliss and Gattinger, 1996). Thus, 
reperfusion is a proven effective therapy for myocardial infarction, but it
might be improved further by strategies to decrease reperfusion-related cell
deaths.

HEART FAILURE

The most general definition describes heart failure as a complex syndrome
in which the heart is unable to pump sufficient blood to maintain home-
ostasis in the tissues in the body. A simpler definition that encompasses most
cases is that heart failure is a weakening of the heart muscle. Patients expe-
rience fatigue, shortness of breath, and swelling of the feet and legs. (Despite
the common meaning of “failure,” the heart does not stop in heart failure
unless the patient dies.) Approximately 4,900,000 Americans live with heart
failure (AHA, 2002).

Heart failure can result from multiple disease states including high
blood pressure, present or past myocardial infarctions, toxic insults to the
myocardium (e.g., certain drugs, alcohol, viruses), problems with heart
valves, and others. Prior to inducing heart failure, many of these stresses first
elicit a compensatory response termed cardiac hypertrophy. Cardiac hyper-
trophy appears macroscopically as a thickening of the walls of the ventricles
without much increase in the volumes of those chambers. During hyper-
trophy, cardiac myocytes, which are postmitotic terminally differentiated
cells, grow by becoming larger in volume, rather than more numerous, and
acquire increased intracellular protein with specific increases in the number
of sarcomeres (contractile apparatus in striated muscle cells). In heart failure
resulting from some causes (e.g., hypertension), hypertrophy occurs dif-
fusely throughout the ventricles. In other situations (e.g., following myo-
cardial infarction), hypertrophy is restricted to the remote, noninfarcted
myocardium as the previously infarcted myocardium has usually become
scar tissue. Although there is debate, hypertrophy probably functions as a
compensatory mechanism to help the heart surmount stress. Over a period
of months to years, however, this compensatory response fails and the ven-
tricular chambers undergo enlargement, the walls change from thickened to
thin, and contractile function deteriorates. This endpoint, termed dilated car-
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diomyopathy, is the final common denominator of all forms of heart failure
regardless of the initial inciting etiology.

The mechanisms that mediate the transition from compensated hyper-
trophy to dilated cardiomyopathy remain poorly understood. Although
abnormalities of b-adrenergic signaling (Lefkowitz et al., 2000), Ca++

handling and excitation-contraction coupling (Luo et al., 1994; Marks, 2002),
cytoskeleton, (Chien, 1999), and myocardial energetics (Taegtmeyer, 2002)
have been implicated in the pathogenesis of heart failure, none has emerged
as the “main cause,” perhaps because a single abnormality cannot explain
this complex and chronic disorder. Recently, low, but abnormal, levels of
cardiac myocyte apoptosis have been noted in rodent models of heart failure
(Adams et al., 1998; Bisognano et al., 2000; Condorelli et al., 1999; Geng et
al., 1999; Hirota et al., 1999; Li et al., 1997b; Liu et al., 1995; Palojoki et al.,
2001; Sam et al., 2000; Sharov et al., 1996; Wencker et al., 2003; Xing et al.,
2000; Zhang et al., 2000) and failing human hearts (Guerra et al., 1999;
Olivetti et al., 1997; Saraste et al., 1999). We will consider these data below
as well as studies suggesting that this low-level cell loss contributes to the
pathogenesis of heart failure.

In summary, myocardial infarction and heart failure are two common
and potentially lethal forms of heart disease. Myocardial infarction is an
acute event that evolves over hours to 1 to 2 days. In contrast, heart failure
is a chronic condition that usually develops over months to years. Chronic
heart failure is often the result of prior myocardial infarctions, in which case
it is the surviving, noninfarcted myocardium that “fails” over time.

APOPTOSIS IN MYOCARDIAL INFARCTION AND HEART

FAILURE: HOW MUCH, WHEN, AND WHERE?

MYOCARDIAL INFARCTION

Cardiac myocyte apoptosis has been documented during human myocardial
infarction (Olivetti et al., 1996; Saraste et al., 1997) as well as in rodent models
of this syndrome involving intact animals (Bialik et al., 1997; Buerke et al.,
1995; Fliss and Gattinger, 1996; Gottlieb et al., 1994; Kajstura et al., 1996; 
Palojoki et al., 2001), isolated hearts (Maulik et al., 1998; Chen et al., 2001a,
2001b), and isolated cardiac myocytes (Bialik et al., 1999; de Moissac et al.,
2000; Kang et al., 2000; Malhotra and Brosius, 1999; Tanaka et al., 1994; von
Harsdorf et al., 1999). Cardiac myocyte apoptosis has been demonstrated 
by various combinations of TUNEL, caspase activation, cytochrome c
release, phosphatidylserine externalization, and electron microscopy.

During myocardial infarction (due to both continuous ischemia and
ischemia-reperfusion), there is a large burst of cardiac myocyte apoptosis
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that can comprise 5 to 30% of the total number of cardiac myocytes within
the ischemic zone (Bialik et al., 1997; Fliss and Gattinger, 1996; Kajstura 
et al., 1996; Fig. 1). This burst of apoptosis takes place over a relatively short
period of time. It is first detectable after ~2 hours of continuous ischemia or
~1 hour of reperfusion following 45 minutes of ischemia (Fliss and Gattinger,
1996). According to one study that used a loss of membrane integrity assay
to recognize necrosis in vivo, most of the cell death in the early hours of
myocardial infarction is apoptosis, with necrosis peaking at 24 hours 
(Kajstura et al., 1996). As judged by DNA fragmentation, apoptosis is largely
completed by 24 hours and not detectable after 48 hours (Bialik et al., 1997).
In cultured cardiac myocytes stimulated by hydrogen peroxide, a surrogate
for reactive oxygen species as with reperfusion, 14 hours were required for
DNA fragmentation (Suzuki et al., 2001). Estimates are lacking, however, as
to the precise time required for a cardiac myocyte to go from death stimu-
lus to engulfment.

Much of the apoptosis in the ischemic brain is localized to the penum-
bra (Linnik et al., 1995), a border zone between ischemic and perfused tissue.
In the heart, opinion is split as to the primary location of the acute burst of
cell death during myocardial infarction. Most studies report that cardiac
myocyte apoptosis occurs diffusely throughout the area at risk (Bialik et al.,
1997; Fliss and Gattinger, 1996), whereas others note that apoptosis is of
greater magnitude in the border zone (Palojoki et al., 2001; Saraste et al.,
1997).
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FIGURE 1. Apoptosis during and after myocardial infarction. Schematic represen-
tation of cross-section of normal heart (left) or heart following myocardial infarction
(right). Right ventricle (RV) and left ventricle (LV) are indicated. There is a large burst
of cardiac myocyte apoptosis in the infarct zone during myocardial infarction. With
time, the infarct zone becomes hypocellular scar tissue. Weeks to months following
infarction, a low, but abnormal, level of cardiac myocyte apoptosis occurs within the
remote (noninfarcted) myocardium. For reference, the apoptotic rate in normal
myocardium is 0.001%.



Following the high-intensity, short-duration burst of cardiac myocyte
apoptosis in the ischemic zone during the acute infarction, low levels of
apoptosis commence in the noninfarcted myocardium within 1 to 2 days and
continue for months (Abbate et al., 2002; Baldi et al., 2002; Cheng et al., 1996;
Olivetti et al., 1996; Palojoki et al., 2001; Sam et al., 2000; Saraste et al., 1997;
Fig. 1). We will consider these remote regions in the discussion of heart
failure.

In addition to cardiac myocytes, endothelial cells lining small coronary
arteries also undergo apoptosis following ischemia-reperfusion (Scarabelli 
et al., 2001). Apoptosis in endothelial cells appears to take place even 
earlier than that in cardiac myocytes. In addition, there appears to be a 
radial pattern of cardiac myocyte apoptosis surrounding blood vessels with
endothelial cell apoptosis. These observations suggest that endothelial cells
and/or vessel damage may participate in the amplification and/or trans-
mission of apoptotic stimuli to the myocytes.

HEART FAILURE

In contrast to the high-frequency, short-duration pattern of cardiac myocyte
apoptosis during myocardial infarction, the failing heart exhibits a very low,
but still abnormal, frequency of apoptotic events that persist for weeks to
months in rodents—and presumably months to years in humans. Although
the magnitude of this cell death in human heart failure was initially over-
estimated probably due to technical issues (Narula et al., 1996), several sub-
sequent studies have consistently demonstrated frequencies of cardiac
myocyte apoptosis of 0.08 to 0.25%, while the baseline rate in normal hearts
is ~0.001% (Guerra et al., 1999; Olivetti et al., 1997; Saraste et al., 1999; 
Fig. 1). Thus, although failing hearts exhibit very low frequencies of apop-
tosis, these frequencies are at least 80- to 250-fold above baseline.

In advanced heart failure of some causes, this cell death occurs diffusely
throughout the ventricles. In the case of heart failure due to previous
myocardial infarction, the distribution of cardiac myocytes apoptosis occurs
primarily in the remote (noninfarcted) myocardium and border zones of the
infarcts as the infarcts themselves have long since become scar tissue (Abbate
et al., 2002; Baldi et al., 2002; Cheng et al., 1996; Olivetti et al., 1996; Palojoki
et al., 2001; Sam et al., 2000; Saraste et al., 1997). Although the precise mech-
anisms that elicit cardiac myocyte apoptosis in the remote, noninfarcted
myocardium are incompletely understood, it is likely that a combination of
mechanical stresses due to the previous loss of contracting myocytes in the
infarct and humoral factors induce this apoptosis. We will discuss below
some of the stimuli that trigger cardiac myocyte apoptosis.

In summary, cardiac myocyte apoptosis during myocardial infarction is
high-level, short-duration, and localized primarily in the central infarct zone.
In contrast, apoptotic death of cardiac myocytes during heart failure is very
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low-level, ongoing, and usually occurs diffusely except in the case of heart
failure due to prior myocardial infarctions, in which instance it is localized
to the remote, noninfarcted myocardium.

STIMULI THAT MODULATE APOPTOSIS

From the preceding discussion, it is evident that myocardial infarction 
and heart failure are complex pathophysiological processes. Accordingly,
one would anticipate that numerous component stimuli play roles in the
pathogenesis of these syndromes. Because of the inherent difficulties in
manipulating individual stimuli in vivo, our knowledge in many cases is
limited to whether a putative stimulus can induce cardiac myocyte apopto-
sis rather than whether that stimulus is actually responsible for cardiac
myocyte apoptosis in a given pathological situation. Nevertheless, this infor-
mation provides a beginning framework within which to place the signal-
ing pathways that mediate cardiac myocyte apoptosis. Potential component
stimuli for apoptosis during myocardial infarction and heart failure and their
associated signaling pathways will be considered in this section, whereas the
central death pathways with which they connect will be discussed in the fol-
lowing section.

Potential apoptotic stimuli during myocardial infarction include
hypoxia, loss of nutrients, and loss of survival factors (during ischemia) and
oxidative stress and calcium overload (during reperfusion). Hypoxia has
been shown to induce apoptosis in cultured cardiac myocytes (de Moissac
et al., 2000; Tanaka et al., 1994), although some data suggest that it is the con-
comitant acidosis that is the trigger (Webster et al., 1999). The mechanism of
hypoxia-induced apoptosis in cardiac myocytes is not completely under-
stood. Hypoxia increases levels of p53 in these cells. Moreover, overexpres-
sion of p53 in normoxic cells suffices to induce apoptosis. These observations
suggest that hypoxia-induced apoptosis in cardiac myocytes may be 
p53-dependent (Long et al., 1997). Experiments using p53 knockout 
mice, however, demonstrate that p53 is not required for hypoxia-induced
apoptosis in cultured cardiac myocytes and ischemia-induced apoptosis 
in vivo (Bialik et al., 1997; Webster et al., 1999). This lack of an absolute
requirement, however, does not preclude a role for p53 in cardiac myocyte
apoptosis.

Loss of nutrients, and metabolic stress in general, can also induce apop-
tosis in cardiac myocytes. An example is glucose deprivation, as during
ischemia. In cultured cardiac myocytes, omission of glucose from the media
induces little or no apoptosis. When combined with deprivation of serum
factors (see below) and the addition of 2-deoxyglucose, a nonmetabolizable
glucose analog that blocks glycolysis, however, more apoptosis results than
with either stimulus alone (Bialik et al., 1999). Conversely, low to moderate
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concentrations of glucose can suppress hypoxia-induced apoptosis in these
cells (Malhotra and Brosius, 1999). In contrast, high concentrations of glucose
appear to be pro-apoptotic in cardiac myocyte (Fiordaliso et al., 2001), in 
part due to activation of the local tissue renin-angiotensin system and p53
(Fiordaliso et al., 2000, 2001) and due to the production of reactive oxygen
species (Shizukuda et al., 2002). The basis for the differences between the
pro-apoptotic and antiapoptotic effects of glucose in these systems is not well
understood. In addition to the differences in glucose concentrations, another
possibility is differences in experimental systems. Most of the experiments
showing the pro-apoptotic effect of glucose were carried out in adult cardiac
myocytes, whereas experiments demonstrating a protective effect occurred
in neonatal cells.

Serum contains a variety growth/survival factors whose access to 
the myocardium is severely impeded during ischemia. In cultured cardiac
myocytes as in many other cell types, omission of serum from cell culture
media induces apoptosis (Fujio et al., 1997; Sheng et al., 1997). Many serum
factors function both to stimulate growth (cardiac myocyte hypertrophy 
in this case) and to inhibit apoptosis. One factor that is particularly well 
characterized with respect to cardiac myocytes is insulin-like growth factor-
1 (IGF-1). In cultured cardiac myocytes, IGF-1 inhibits apoptosis induced by
serum withdrawal (Fujio et al., 2000; Wang et al., 1998b) and by the cancer
chemotherapeutic agent doxorubicin (Wang et al., 1998b), which incidentally
can cause heart failure in part by inducing cardiac myocyte apoptosis. In
intact animals, IGF-1 limits apoptosis and myocardial damage in the in-
farct zone during ischemia-reperfusion (Buerke et al., 1995) and during the
chronic remodeling of the remote myocardium following permanent coro-
nary occlusion (Li et al., 1997a). One mechanism of IGF-mediated protection
in cardiac myocytes involves activation of the phosphatidylinositol 3-kinase
(PI 3-kinase)–Akt axis (Fujio et al., 2000; Matsui et al., 1999). Other serum
factors that block cardiac myocyte apoptosis include insulin (Aikawa et al.,
2000), hepatocyte growth factor/scatter factor (Kitta et al., 2001, 2003; 
Nakamura et al., 2000), growth hormone (Gu et al., 2001), and basic fibrob-
last growth factor (Iwai-Kanai et al., 2002).

Oxidative stress is an important apoptotic stimulus during the reperfu-
sion phase of ischemia-reperfusion. It is often modeled in cell culture by
hypoxia followed by reoxygenation (Kang et al., 2000) or by the addition of
hydrogen peroxide to the media (von Harsdorf et al., 1999), both of which
efficiently induce cardiac myocyte apoptosis. Among many other cellular
changes, oxidative stress stimulates increases in p53 and translocation 
of Bax and Bad to mitochondria (von Harsdorf et al., 1999), although the
precise molecular mechanisms connecting the stimulus with these events is
unknown.

Another component of ischemia-reperfusion is intracellular Ca++ over-
load, which can result from intracellular acidosis, leading first to Na+/H+
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exchange and then to Na+/Ca++ exchange across the cell membrane 
(Karmazyn, 1999). Although Ca++ has long been suspected to be involved in
some types of apoptosis, its role has not been precisely defined nor have the
mechanisms by which it acts. In the heart, things are further complicated by
the phasic 10-fold increases in intracellular Ca++ concentration from 100nM
to 1mM levels that occur with each heart beat, suggesting that if increases in
Ca++ do play a role in cardiac myocyte apoptosis, other mechanisms must
also be present (Marks, 2003). These caveats notwithstanding, it is likely that
increased intracellular calcium following ischemia-reperfusion contributes
to mitochondrial calcium overload and dysfunction as well as the activation
of calcium-activated enzymes such as calpain. In fact, calpain is activated 
by ischemia-reperfusion and can cleave Bid to produce a carboxy fragment
capable of triggering cytochrome c release (Chen et al., 2001a, 2002). Further
work is needed to determine the importance of this mechanism as well as 
to understand the full spectrum of apoptotic mechanisms that might result
from increases in intracellular Ca++.

Potential apoptotic stimuli during heart failure include mechanical
stretch, adrenergic overstimulation, and certain cytokines and hormones.
During hypertrophy and heart failure, pressures are elevated within the
cardiac chambers. This tends to stretch the heart muscle. Mechanical stretch
is a well-established stimulus for hypertrophic cardiac growth (Knoll et al.,
2002). It can also induce cardiac myocyte apoptosis, however (Cheng et al.,
1995). The mechanisms of stretch-induced apoptosis are likely to be complex
because stretch activates numerous signaling pathways. Two mechanisms
that may be involved are stretch-generated reactive oxy-gen species (Cheng
et al., 1995) and angiotensin II, which is secreted by cardiac myocytes in
response to stretch and then acts in an autocrine manner to stimulate hyper-
trophy (Sadoshima et al., 1993) and, as discussed below, death.

During heart failure, b-adrenergic tone is very high and serves to
increase heart rate acutely and improve cardiac contractility, resulting in
improved delivery of blood to the tissues of the body. This compensatory
response is part of the ancient “fight-flight” response. It was perplexing,
therefore, that medicines designed to augment b-adrenergic signaling, while
improving cardiac function in the short term, were found to be detrimental
when used chronically (Packer et al., 1991). Conversely, b-adrenergic recep-
tor blockers were found to improve symptoms and mortality in heart failure
(Packer et al., 1996). In retrospect, studies dating back more than 40 years
have demonstrated cardiac toxicity from b-adrenergic stimulation (Rona,
1959). It is now known that b-adrenergic agents induce cardiac myocyte
apoptosis (Communal et al., 1998; Shizukuda et al., 1998) Suggesting a 
possible mechanism for this toxicity. Specifically, b1-adrenergic receptor 
activation induces apoptosis through a Gs-dependent mechanism, while 
b2-adrenergic receptor activation is antiapoptotic, presumably through a 
Gi-dependent mechanism (Chesley et al., 2000; Communal et al., 1999; Geng
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et al., 1999; Zaugg et al., 2000; Zhu et al., 2001). Although the mechanism 
by which b1-adrenergic stimulation induces apoptosis was initially felt to
occur through increases in cAMP and protein kinase A (PKA) activation
(Communal et al., 1998), more recent studies suggest that this process may
be independent of cAMP and PKA and involve Ca++/calmodulin kinase II
(Zhu et al., 2003).

Many patients with heart failure, as well as those with myocardial infarc-
tion, have elevated blood levels of the cytokine tumor necrosis factor-a
(TNF) (Levine et al., 1990; Mann, 2003). In addition to various extracardiac
sources, TNF is also produced by several cell types within the heart, includ-
ing myocytes, to act as a paracrine/autocrine factor (Kapadia et al., 1995,
1997). When present at high levels for sustained periods, TNF can damage
the heart in several ways. First, it can stimulate cardiac myocyte apoptosis
(Krown et al., 1996; Sivasubramanian et al., 2001; D. L. Mann, personal 
communication). Second, independent of its apoptotic actions, TNF can 
elicit hypertrophy (Yokoyama et al., 1997), contractile dysfunction (Mann,
2003; Yokoyama et al., 1993), and degradation of the extracellular matrix
(Sivasubramanian et al., 2001). Taken together, these cellular changes can
promote dilated cardiomyopathy. In contrast to high, sustained levels of
TNF, there is evidence that low concentrations for short periods of time are
actually cardioprotective. The cardioprotection of TNF is most clearly illus-
trated by TNF receptor (TNFR) loss of function experiments. Although mice
that lack either TNFR1 or TNFR2 exhibit normal-sized infarcts following
ischemia-reperfusion, mice lacking both TNFR1 and TNFR2 exhibit infarcts
that are larger than the wild type (Kurrelmeyer et al., 2000). Thus, in the
setting of ischemia-reperfusion, the net effect of TNF is cardioprotective. The
mechanism of TNF’s cardioprotection may involve its transcriptional upreg-
ulation, through nuclear factor-kB (NF-kB), of several protective molecules,
including manganese superoxide dismutase (MnSOD) (Wong and Goeddel,
1988), heat shock protein 72 (HSP72) (Nakano et al., 1996), inhibitor of apop-
tosis proteins 1 (cIAP1) and 2 (cIAP2) (Wang et al., 1998a), and c-FLIP
(Micheau et al., 2001).

Interleukin-6 (IL-6) is another cytokine that is elevated in a variety of
cardiac disease states. As in the case of TNF, IL-6 can elicit cardiac contrac-
tile dysfunction (Mann, 2003). IL-6 is a member of a family that also includes
leukemia inhibitory factor (LIF), oncostatin M, ciliary neurotrophic factor,
interleukin 11, and cardiotrophin-1 (CT-1). Interestingly, CT-1 and LIF are
potent cardiac survival cytokines (Fujio et al., 1997; Sheng et al., 1996, 1997).
Survival is mediated via the gp130 cell surface receptor through the mitogen-
activated protein kinase (MAPK) pathway (Sheng et al., 1997), Janus kinase-
signal transducer and activator of transcription (JAK-STAT) pathway leading
to upregulation of bcl-x (Fujio et al., 1997), and the Akt pathway (Negoro 
et al., 2001). Mice with a ventricular-specific knockout of gp130 are normal
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at baseline but exhibit massive cardiac myocyte apoptosis, ventricular
enlargement (heart failure), and organismal death in response to the impo-
sition of a hemodynamic stress on the heart (Hirota et al., 1999). Thus, an
important purpose of gp130-mediated signaling in cardiac myocytes may be
to suppress stress-induced apoptosis to allow cardiac hypertrophy to take
place in response to a hemodynamic stimulus.

Heart failure is also characterized by activation of the systemic renin-
angiotensin system, resulting in arterial constriction and the retention of salt
and water by the kidney (Francis et al., 1984). This “compensatory” mecha-
nism may be good in a short-term emergency where maintenance of the
blood pressure in the face of a failing heart is of paramount concern. In the
long term, however, renin-angiotensin activation places a hemodynamic
stress on the heart. The arterial constriction increases the resistance against
which the heart must pump, and the retained fluid causes the cardiac cham-
bers to be stretched. Given that stretch can elicit cardiac myocyte apoptosis
(Cheng et al., 1995), it might be expected that these hemodynamic stresses
would also activate this death program. In addition to these mechanical
effects, angiotensin II can act directly on cardiac myocytes to induce apop-
tosis (Cigola et al., 1997; Kajstura et al., 1997). In fact, as described above,
one of the mechanisms by which stretch elicits apoptosis may occur by stim-
ulating the secretion of angiotensin II made by the local renin-angiotensin
system in cardiac myocytes to act in an autocrine manner (Sadoshima et al.,
1993). Angiotensin II-induced cardiac myocyte apoptosis requires the Type
1 angiotensin II receptor (Cigola et al., 1997; Kajstura et al., 1997) and appears
to involve activation of protein kinase C (PKC) isoforms d and e (Kajstura
et al., 1997) and increased intracellular Ca++ (Cigola et al., 1997; Kajstura 
et al., 1997). Downstream events include increases in p53, resulting in acti-
vation of the genes encoding angiotensinogen (a precursor of angiotensin II),
angiotensin II Type 1 receptor, and Bax, all of which are transcriptional
targets of p53 (Leri et al., 1998; Pierzchalski et al., 1997). The production of
additional angiotensinogen and angiotensin II Type 1 receptor results in a
potential positive feed-forward loop. The role of p53 in this pathway is essen-
tial (Leri et al., 2000).

CENTRAL APOPTOTIC PATHWAYS IN CARDIAC MYOCYTES

Given the high degree of conservation of the central death pathways over
evolution, it is not surprising that the basic features of these pathways in
cardiac myocytes are similar to those in other cell types. There are, however,
several striated muscle-enriched proteins that modify the regulation of these
pathways in cardiac myocytes. We will first consider the evidence that 
the mitochondrial and death receptor pathways are operative and used in
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cardiac myocytes, following which we will discuss how these pathways are
modulated by cardiac myocyte-enriched proteins.

In the mitochondrial pathway (Green and Reed, 1998), various upstream
signals, some conveyed by BH3-only proteins, impinge on the mitochondria
and stimulate the release of apoptogenic molecules including cytochrome c,
Smac (second mitochondrial activator of cytochrome c)/DIABLO (direct
IAP-binding protein with low PI) (Du et al., 2000; Verhagen et al., 2000), AIF
(apoptosis-inducing factor) (Susin et al., 1999), and Endo G (Li et al., 2001).
Once in the cytoplasm, cytochrome c binds Apaf-1 (apoptotic protease-
activating factor-1) along with dATP. This stimulates the oligomerization of
Apaf-1 and the subsequent recruitment of pro-caspase-9 to form the apop-
tosome. Formation of this holoenzyme results in pro-caspase-9 activation,
which is further augmented by pro-caspase-9 processing. Once activated,
caspase-9 cleaves downstream effector pro-caspases.

The density of mitochondria in cardiac myocytes is one of the highest of
all cell types. Not surprisingly, the mitochondrial pathway is activated by
many apoptotic stimuli in these cells. This has been shown in cultured
cardiac myocytes for hypoxia (de Moissac et al., 2000; Malhotra and Brosius,
1999), hypoxia-reoxygenation (Kang et al., 2000), serum/glucose with-
drawal ± 2-deoxyglucose (Bialik et al., 1999), and reactive oxygen species
(von Harsdorf et al., 1999). As with many other systems, cytochrome c
translocation occurs in a caspase-independent manner (Bialik et al., 1999).
Mitochondrial release of cytochrome c has also been observed in isolated,
perfused rodent hearts (Chen et al., 2001a) and hearts of intact rodents (K.
Mani, C.-F. Peng, P. Lee, unpublished observations) subjected to ischemia-
reperfusion, and in infarcted human hearts (Narula et al., 1999). Moreover,
Smac/DIABLO release has been observed in the hearts of intact rodents fol-
lowing ischemia-reperfusion (K. Mani, C.-F. Peng, R. N. Kitsis, unpublished
observations). The importance of the mitochondrial pathway in disease
pathogenesis is underscored by the 53 to 68% reductions in infarct size
observed following ischemia-reperfusion in mice deficient in Bid (Peng et
al., 2001), or with cardiac-specific overexpression of Bcl-2 (Brocheriou et al.,
2000; Chen et al., 2001b) or a dominant negative mutant of pro-caspase-9
(Peng et al., 2001), as compared with wild-type mice (Fig. 2).

In the death receptor pathway (Ashkenazi and Dixit, 1998), soluble
ligands (e.g., TNF) or cell membrane ligands (e.g., Fas ligand) bind to their
cognate cell surface receptors. This induces a presumed conformational
change in the receptor that causes its cytoplasmic tail to recruit an adaptor
such as FADD (Fas-associated death domain protein) through interactions
involving death domains in both molecules. FADD subsequently recruits
pro-caspase-8 through homotypic interactions involving death effector
domains. These proteins are some of the components of the DISC (death-
inducing signaling complex). Once forced into close proximity, pro-
caspase-8 autoactivates. Caspase-8 can then cleave and activate downstream
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effector caspases and/or activate the mitochondrial pathway by cleaving
Bid.

Many investigators believed initially that the death receptor pathway
was not important in cardiac myocytes. This was based on an experiment 
in which an activating Fas antibody was injected into a whole mouse 
(Ogasawara et al., 1993). The mouse died due to massive liver cell ap-
optosis. The hearts, however, appeared normal. Of course, there are several
potential explanations for these observations in addition to the possibility
that Fas signaling is unimportant in the heart. For example, liver cells and
cardiac myocytes may have different sensitivities to Fas activation or require
different amounts of time for pathology to be manifest. The ability of the Fas
death pathway to be activated in cardiac myocytes was subsequently
demonstrated in both cultured cells and intact animals using a recombinant 
adenovirus expressing Fas ligand (Lee et al., 2003). Induction of cardiac
myocyte apoptosis by Fas ligand is a specific response because it is absent
in cardiac myocytes in the lpr mice, a naturally occurring mutant that is defi-
cient in Fas. Moreover, the importance of the Fas pathway for disease patho-
genesis is emphasized by the 64% reduction in cardiac myocyte apoptosis
and the 63% reductions in infarct size in lpr mice subjected to ischemia-
reperfusion, as compared with wild-type mice (Lee et al., 2003; Figs. 2 and
3). Interestingly, cardiac myocyte apoptosis is reduced to a similar extent
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FIGURE 2. Multiple, independent mutations in apoptotic signaling molecules
reduce myocardial infarct size in mouse models of ischemia-reperfusion. Def denotes
deficient, Tg transgenic, DN dominant negative. Downward arrows and percentages
indicate the percent reduction in myocardial infarct size of the given mutant relative
to wild type.



496 IV. DEREGULATION OF CELL DEATH IN DISEASE AND FUTURE INTERVENTION

FIGURE 3. Example of reduction of myocardial infarct size during ischemia-
reperfusion in Fas-deficient lpr mice. Lpr and wild-type mice were subjected to 30
minutes of left anterior descending coronary artery ligation followed by 24 hours of
reperfusion. Following sacrifice, the region at risk (or ischemic zone) is identified by
religating the coronary artery and infusing Evans blue dye. The absence of blue
demarcates the region at risk. The heart is also incubated with 2,3,5-triphenyltetra-
zolium chloride (TTC), a measure of mitochondrial reductases, to assess viable tissue
(red). Within the nonblue zone, the infarct is demarcated by the absence of red, which
appears white. Panel A shows typical Evans blue/TTC staining of a wild type (a) and
an lpr (b) heart. Note that, despite similar regions at risk (nonblue), the wild-type
heart exhibits a much larger infarct (white) than the lpr heart. See color insert. Panel
B shows the quantitative analysis for nine wild-type and eight lpr mice.



(56%) in lpr hearts studied as isolated, buffer-perfused (bloodless) prepara-
tions (Jeremias et al., 2000). This suggests that Fas deficiency in the heart,
rather than blood cells, is responsible for the reduction in apoptosis. In addi-
tion, the isolated, perfused experiments demonstrated Fas ligand in the
drainage from the heart following ischemia-reperfusion, showing that a
source of Fas ligand is the heart itself, although the exact cell type has not
been identified.

One connection between the death receptor and mitochondrial path-
ways is provided by Bid, a BH3-only pro-apoptotic Bcl-2 family member (Li
et al., 1998; Luo et al., 1998). In many cell types, Bid is cleaved by caspase-8
that has been activated through death receptor signaling. The carboxy frag-
ment of Bid containing the exposed BH3 domain then translocates to and
inserts into the outer mitochondrial membrane. This stimulates Bak and Bax
oligomerization and, through mechanisms yet to be elucidated, cytochrome
c release (Wei et al., 2000, 2001). Bid undergoes cleavage and translocation
to the mitochondria during ischemia-reperfusion in isolated, perfused 
hearts (Chen et al., 2001a; Scarabelli et al., 2002) and in intact animals (P. 
Lee and R. N. Kitsis, unpublished observations). As discussed previously,
controversy remains concerning whether Bid cleavage during ischemia-
reperfusion is mediated solely by caspase-8 (Scarabelli et al., 2002) or
whether calpain also plays a role (Chen et al., 2001a). The importance of Bid
in disease pathogenesis is highlighted by the 53% reduction in infarct size
when mice deficient in Bid are subjected to ischemia-reperfusion, as com-
pared to wild types (Peng et al., 2001; Fig. 2).

One cardiac myocyte-enriched protein that interacts directly with and
modulates components of the central death machinery is ARC [apoptosis
repressor with a CARD (caspase recruitment domain)]. Also referred to as
CARD 2, ARC belongs to a multiprotein family of CARD-containing pro-
teins (Bouchier-Hayes and Martin, 2002). Although some of these proteins
are involved in the regulation of caspase activation and apoptosis (e.g., Apaf-
1), some may have other primary roles (e.g., inflammation). ARC is
expressed primarily in cardiac and skeletal myocytes and, to a limited extent,
in the brain (Geertman et al., 1996; Koseki et al., 1998). It potently suppresses
apoptosis induced by activators of both the death receptor and mitochon-
drial pathways (Ekhterae et al., 1999; Gustafsson et al., 2002; Koseki et al.,
1998; Li et al., 2002; Neuss et al., 2001). ARC has been shown to interact with
pro-caspases-8 and -2, and through its interaction with pro-caspase-8, to
decrease death-receptor-induced caspase-8 activity (Koseki et al., 1998; Li et
al., 2002). ARC also protects mitochondria from such stimuli as hypoxia and
oxidative stress by inhibiting loss of mitochondrial membrane potential and
cytochrome c release (Ekhterae et al., 1999; Neuss et al., 2001). The mecha-
nisms that mediate these actions have not been elucidated. In short-term
ischemia-reperfusion experiments, ARC has been shown to limit infarct size
in isolated, perfused hearts (Gustafsson et al., 2002).
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FLIP (Fas-associated death domain protein-like-interleukin-1 b-
converting enzyme inhibitory protein) is another striated muscle-enriched
apoptosis inhibitor (Irmler et al., 1997). FLIP is expressed as two isoforms.
The short isoform consists of essentially two death effector domains,
whereas the long form resembles pro-caspase-8 but lacks the active cysteine.
FLIP inhibits death-receptor-induced apoptosis by binding both FADD and
pro-caspase-8. FLIP levels are particularly high in cardiac muscle. During
ischemia-reperfusion, however, FLIP abundance decreases markedly (Iman-
ishi et al., 2000; Rasper et al., 1998). In other systems, apoptosis-induced
decreases in FLIP abundance have been shown to be mediated by the ubiq-
uitin-proteasome pathway (Fukazawa et al., 2001). Interestingly, FLIP plays
an important role in heart development as mice deficient in this protein die
in mid-gestation (embryonic day 10.5) due to maldevelopment of the
myocardium. Somewhat paradoxically, a similar phenotype is observed in
mice lacking FADD (Yeh et al., 1998) and pro-caspase-8 (Varfolomeev et al.,
1998). Further investigation will be needed to determine whether these
defects are cardiac myocyte autonomous and the common mechanisms
involved in these knockouts.

BH3-only proteins such as Bid are thought to play the major activating
role in the mitochondrial death pathway (Wei et al., 2001). Until recently, it
was unclear which, if any, BH3-only proteins transmit pathological signals
in heart disease. Two BH3-only proteins, Bnip3 (Kubasiak et al., 2002; Regula
et al., 2002) and Nix/Bnip3L (Yussman et al., 2002), which are not cardiac-
specific, have recently been noted to play important roles in hypoxia-
induced and heart-failure-related cardiac myocyte apoptosis. Both of these
proteins appear to be regulated at the level of transcription. Bnip3 mRNA
and protein levels increase in response to hypoxia, and Bnip3 translocates to
the mitochondria (Kubasiak et al., 2002; Regula et al., 2002), an event that
may require the acidosis that accompanies hypoxia (Kubasiak et al., 2002).
Cell death results. Bnip3 plays a critical role in hypoxia-induced cell death
because cardiac myocytes are more resistant to hypoxia when Bnip3 levels
are knocked down with antisense (Kubasiak et al., 2002) or when a Bnip3
mutant lacking a transmembrane domain necessary for mitochondrial
memebrane insertion is expressed (Regula et al., 2002). Nix/Nip3L was
found to be transcriptionally induced in a transgenic model of heart failure,
resulting from overexpression of Gaq in the myocardium (Yussman et al.,
2002). The rationale for this model is that Gq transduces the activation of
several receptors (angiotensin II Type 1 receptor, a1-adrenergic receptor,
endothelin receptor) that play roles in cardiac hypertrophy and failure (Dorn
and Brown, 1999). These mice exhibit baseline cardiac failure (D’Angelo 
et al., 1997). In addition, during or after pregnancy, a percentage of the mice
die due to fulminant heart failure accompanied by cardiac myocyte ap-
optosis (Adams et al., 1998). Nix/Bnip3 translocates to the mitochondria and
stimulates cytochrome c release and cell death. Transgenic overexpression of
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Nix/Bnip3 in the heart results in massive cardiac myocyte apoptosis and
death of the animals. Conversely, transgenic overexpression of sNix, a splice
variant of Nix/Bnip3 leading to a truncated cytosolic protein, decreases
cardiac myocyte apoptosis, improves cardiac function, and attenuates the
mortality during pregnancy of the Gaq transgenic mice (Yussman et al.,
2002). Thus, Nix/Bnip3L appears to be a BH3-only protein that is important
in the pathogenesis of heart failure. Interestingly, there is also evidence that
Bnip3 is induced during heart failure as well (Regula et al., 2002).

CARDIAC APOPTOSIS AS A CAUSAL COMPONENT

IN MYOCARDIAL INFARCTION AND HEART FAILURE

Although cardiac myocyte apoptosis occurs during myocardial infarction
and heart failure, it need not necessarily play a role in the pathogenesis of
these syndromes. In theory, this cell death could be merely an epipheno-
menon or even serve some beneficial function. Accordingly, this section 
will examine the causal role, if any, of cardiac myocyte apoptosis in the
pathogenesis of myocardial infarction or heart failure. The major question
being asked here is: If apoptosis is removed, is the pathogenesis of these 
syndromes altered?

MYOCARDIAL INFARCTION

Genetic disruption of various apoptotic signaling molecules has consistently
demonstrated reductions of 53 to 68% in infarct size following ischemia-
reperfusion in intact mice (Fig. 2). Thus, the lpr mouse (Fas-deficient) exhibits
infarcts that are 63% smaller with 64% less cardiac myocyte apoptosis, as
compared with wild types, following 30 minutes of ischemia and 24 hours
of reperfusion (Lee et al., 2003; Fig. 3). Bid knockout mice show a 53% reduc-
tion in infarct size and improved cardiac function after being subjected to 45
minutes of ischemia and 24 hours of reperfusion (Peng et al., 2001). Cardiac-
specific overexpression of Bcl-2 reduced infarct size by 64% and cardiac
myocyte apoptosis by 61%, accompanied by improved cardiac function fol-
lowing 1 hour of ischemia and 24 hours of reperfusion (Brocheriou et al.,
2000). Cardiac-specific overexpression of either of two independent domi-
nant negative alleles of pro-caspase-9 reduced infarct size by 53 to 68%,
markedly decreased cardiac myocyte apoptosis, and improved cardiac func-
tion following 45 minutes of ischemia and 24 hours of reperfusion (Peng 
et al., 2001). Since, as expected, cytochrome c release is not affected in the
pro-caspase-9 dominant negative mice, some other caspase-dependent
mechanism may be responsible for the marked reduction in infarct size in
this model. Cardiac overexpression of Akt, which inactivates multiple 
apoptotic mechanisms, reduces infarct size by 50 to 64% and cardiac myocyte
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apoptosis by 84%, and improves cardiac function following 30 minutes of
ischemia and 24 hours of reperfusion (Matsui et al., 2001, 2002). Similar
results were obtained in other studies with shorter periods of reperfusion
(Chen et al., 2001b; Fujio et al., 2000; Miao et al., 2000). Thus, multiple inde-
pendent mutations in apoptotic signaling molecules all yield the same
answer: less apoptosis, smaller infarcts, and better cardiac performance than
wild-type hearts subjected to the same insult.

To determine whether inhibition of cardiac myocyte apoptosis could be
employed as a therapeutic modality, the effect of caspase inhibitors on
myocardial ischemia-reperfusion has been assessed. Administration to rats
of the peptide pseudosubstrate poly-caspase inhibitor zVAD-fmk starting
prior to 30 minutes minutes of ischemia and continuing through 24 hours of
reperfusion resulted in only a 22% reduction in infarct size despite a 73%
reduction in cardiac myocyte apoptosis (Yaoita et al., 1998). Cardiac function
improved mildly. Decreases of 31% in infarct size and 70% in cardiac
myocyte apoptosis were observed in rabbits given YVAD-cmk starting prior
to 30 minutes of ischemia and continuing through 3 hours of reperfusion
(Holly et al., 1999). Another study in which YVAD-CHO or DEVD-CHO was
initiated prior to 30 minutes of ischemia and continued through 6 hours of
reperfusion in rats noted no reduction in infarct size, although a 40 to 50%
decrease in cardiac myocyte apoptosis was observed (Okamura et al., 2000).
Thus, despite inhibition of cardiac myocyte apoptosis, these standard
caspase inhibitors resulted in mild to no reduction in infarct size and
improvement in cardiac function following ischemia-reperfusion. In con-
trast, IDN-6734 is a dipeptide pseudosubstrate poly-caspase inhibitor that is
at least two orders of magnitude more potent than zVAD-fmk. Infarct size
was reduced by 52% and cardiac myocyte apoptosis by 64%, and cardiac
function improved following 1 hour of ischemia and 7 days of reperfusion—
even when dosing was initiated following 55 minutes of ischemia and con-
tinued for only 48 hours (Mani et al., 2002). Thus, delayed dosing of this
potent caspase inhibitor resulted in sustained reductions in infarct size and
improvements in cardiac function following ischemia-reperfusion.

HEART FAILURE

Genetic manipulation of central apoptotic pathways has also been used to
assess the role of cardiac myocyte apoptosis in the pathogenesis of heart
failure. To test the sufficiency of cardiac myocyte apoptosis to cause heart
failure, transgenic mice with cardiac-restricted expression of an inducible
caspase-8 allele were created (Wencker et al., 2003). These mice develop heart
failure and die over 2 to 6 months. Strikingly, an apoptotic frequency of only
23/105 cardiac myocytes, which is 15-fold higher than controls but never-
theless a very small number, is sufficient to cause this lethal heart failure 
syndrome. Moreover, this apoptotic rate is actually 4- to 10-fold lower than
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that observed in the hearts of patients with advanced heart failure. Thus,
although there are limitations to cross-species comparisons, these data
suggest that the small amount of cardiac myocyte apoptosis in failing human
hearts may be important in pathogenesis as well. To test whether the low
frequency of cardiac myocyte apoptosis in these transgenic mice was neces-
sary for heart failure to develop, transgenics were treated with continuous
long-term infusions of caspase inhibitors through osmotic minipumps.
Caspase inhibition rescued most of the abnormalities in cardiac structure and
function. Thus, in this model, a low level of cardiac myocyte apoptosis plays
a critical role in the pathogenesis of heart failure. These data provide direct
evidence that low levels of cardiac myocyte apoptosis can be a causal 
component of heart failure.

Several other studies have also examined the necessity of caspase acti-
vation and cardiac myocyte for heart failure in various models. Cardiac over-
expression of Bcl-2 resulted in decreased cardiac myocyte apoptosis and
improvement in cardiac dilation and function 6 weeks following myocardial
in rabbits (Chatterjee et al., 2002). At 3 days postinfarct, there were similar
degrees of cardiac dysfunction in the Bcl-2-treated and control groups, sug-
gesting that infarct sizes were similar in the two groups. Thus, one inter-
pretation of these data is that Bcl-2 ameliorated postinfarction myocardial
remodeling in this study.

In a rabbit model in which heart failure is induced by rapid electrical
cardiac pacing, the baculoviral caspase inhibitor p35 decreased cardiac
myocyte apoptosis and improved cardiac function (Laugwitz et al., 2001). In
addition to its effect on apoptosis, however, caspase inhibition also appeared
to improve the structure and function of individual surviving cardiac
myocytes. These data suggest that the positive effects of caspase inhibitors
in heart failure may not be limited to inhibition of cell death. They may also
improve the function of damaged, but living, cardiac myocytes. Observations
suggesting that contractile proteins may be caspase substrates might provide
one mechanism for this effect (Communal et al., 2002; Moretti et al., 2002).

Caspase inhibition was also tested in the previously described lethal
peripartum cardiomyopathy exhibited by Gaq transgenic mice (Hayakawa
et al., 2001). Administration of the dipeptide pseudosubstrate poly-caspase
inhibitor IDN-1965 to pregnant Gaq mice markedly decreased cardiac
myocyte apoptosis and moderately improved cardiac function. Remarkably,
however, mortality was completely suppressed. Thus, although these effects
may be due to suppression of apoptosis, functional improvements in indi-
vidual cardiac myocytes, or both, inhibition of apoptotic signaling in small
animal heart failure models appears to be beneficial.

The above studies provide hope that inhibition of apoptosis may provide
a new therapeutic approach to myocardial infarction and heart failure. It 
is critical, however, that the reader recognize that large animal and 
human studies are essential to determine whether these observations in small
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animal models will translate to the treatment of human disease. Even if 
inhibition of cardiac myocyte apoptosis is found to be beneficial in 
human myocardial infarction and heart failure, certain safety issues need to
resolved. Foremost among these are the potential pro-carcinogenic effects of
inhibiting apoptosis. Although this may not be a problem when inhibiting
apoptosis for 24 to 48 hours as following myocardial infarction, it may be an
issue with chronic therapy for heart failure. Even in this case, however, a
weighing of the risks versus benefits may in the end determine whether a
given therapy is appropriate for an individual patient. In addition, it may be
possible to develop cell type-restricted approaches to apoptosis inhibition.

POTENTIAL THERAPIES FOR CARDIAC MYOCYTE APOPTOSIS

In this section, we will only comment on some of the potential therapeutic
implications of the principles that have been discussed. Important consid-
erations when thinking about antiapoptosis therapies include (1) premito-
chondrial versus postmitochondrial inhibition; (2) small-molecule versus
gene therapy; and (3) cardiac-restricted versus systemic. For practical 
considerations, we will restrict our discussion to small molecules that are
administered systemically.

b-adrenergic blockers are a class of medications with potentially 
antiapoptotic properties. They are in common usage as they have been
shown to limit infarct size and decrease mortality in myocardial infarction
(Freemantle et al., 1999; Hjalmarson et al., 1981) and to improve symptoms,
cardiac function, and survival in heart failure (Lechat et al., 1998). The 
positive effects of b-blockers in these syndromes have been attributed to their
decreases in myocardial oxygen consumption and/or antiarrhythmic effects.
These agents also inhibit cardiac myocyte apoptosis in animal models of
ischemia-reperfusion and heart failure (Asai et al., 1999; Sabbah et al., 2000;
Yue et al., 1998). Given the previously described pro-apoptotic effects of b-
adrenergic agonists in cell culture (Chesley et al., 2000; Communal et al.,
1999; Zaugg et al., 2000; Zhu et al., 2001), it is possible that some of the pos-
itive effects of b-blockers are attributable to inhibition of apoptosis. Further
studies will be required to test this possibility. If correct, however, one might
predict from the cell culture studies that b1 subtype-specific blockade would
be more effective than nonspecific b-inhibition.

Inhibitors of the renin-angiotensin system, including angiotensin II-
converting enzyme inhibitors and angiotensin II Type 1 receptor blockers,
also have potential antiapoptotic effects. These drugs are widely used in
human myocardial infarction, where they have favorable effects on post-
myocardial infarction ventricular remodeling and mortality (Pfeffer, 1998),
and in heart failure, where they improve symptoms and survival (Hunt et
al., 2001). The beneficial effects of these agents are incompletely understood.
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Although inhibition of the systemic renin-angiotensin system can produce
favorable hemodynamic effects, beneficial effects in these disorders may also
result from inhibition of the local renin-angiotensin system. Renin-
angiotensin inhibition has been shown to decrease cardiac myocyte apopto-
sis in animal models of ischemia-reperfusion and heart failure (Goussev 
et al., 1998; Li et al., 1997b; Moudgil et al., 2001). In light of the direct anti-
apoptotic effects of these agents (Cigola et al., 1997; Kajstura et al., 1997), it
is again possible that inhibition of apoptosis may contribute to their effects
in myocardial infarction and heart failure. As in the case of b-blockers,
however, this speculation needs to be tested experimentally.

Sodium/hydrogen exchange blockers, such as cariporide, can reduce the
intracellular Ca++ overload associated with ischemia-reperfusion. These
agents have been shown to reduce cardiac myocyte apoptosis and infarct
size in animal models of ischemia-reperfusion (Chakrabarti et al., 1997; Linz
et al., 1998). Human trials for ischemia-reperfusion have thus far been largely
negative (Theroux et al., 2000), however, although subgroup analysis 
suggests that dosing may have been inadequate (Karmazyn, 2000). Further
investigations are in progress.

IGF-1 and insulin have been shown to inhibit cardiac myocyte apopto-
sis and reduce infarct size in animal models of ischemia-reperfusion (Buerke
et al., 1995; Gao et al., 2002; Jonassen et al., 2001; Yamamura et al., 2001).
Decades before a role for cardiac myocyte apoptosis in heart disease was
even contemplated, a cocktail of insulin-glucose-potassium was tested as an
acute therapy for myocardial infarction. Although trials over the years have
suggested a beneficial effect (Diaz et al., 1998), they have been inconclusive
because of their small size or flawed design (Demots, 2001). A large trial is
needed to provide a definitive answer to the usefulness of this therapy and
whether any positive effects are attributable to inhibition of apoptosis or
other actions (e.g., metabolic).

From a more general perspective, there are many growth/survival
factors, some of which have already been shown to inhibit cardiac myocyte
apoptosis in various paradigms. Some of these factors might be useful in the
acute treatment of myocardial infarction or the long-term treatment of heart
failure. For example, the gp130 receptor suppresses cardiac myocyte apop-
tosis induced by situations that require the heart to pump against an
increased hemodynamic stimulus (e.g., hypertension) (Hirota et al., 1999). A
gp130 ligand, such as CT-1, might provide a means to suppress cardiac
myocyte apoptosis during myocardial infarction (Liao et al., 2002) or heart
failure. In light of the growth-promoting effects of almost all these agents,
potential undesirable effects such as cardiac hypertrophy and carcinogene-
sis need to be investigated.

Given the role of reactive oxygen species in apoptosis during ischemia-
reperfusion and heart failure, the possibility is raised that pharmacological
reduction of these species might be useful in the treatment of such condi-
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tions. Although animal studies have demonstrated the clear benefits of this
approach in ischemia-reperfusion (Dhalla et al., 2000), human studies have
been negative (Flaherty et al., 1994; Lefer and Granger, 2000; Murohara 
et al., 1991). The reasons for this discordance are not well understood.

Mitochondrial K+ ATP channels (Garlid and Paucek, 2001; Paucek 
et al., 1992), analogous to those on the plasma membrane, are thought to
mediate a phenomenon known as preconditioning, in which repeated sub-
lethal periods of myocardial ischemia limit the injury resulting from a 
subsequent more severe insult (Mei et al., 1996; Tomai et al., 1999). Although
preconditioning has been demonstrated to reduce injury in animals 
and humans, the precise mechanism is unclear. Some drugs, such as dia-
zoxide, open the mitochondrial K+ ATP channel, inhibit loss of the mito-
chondrial membrane potential, reduce cardiac myocyte apoptosis, and limit
infarct size in cell and animal models of ischemia-reperfusion (Akao et al.,
2001, 2003; Takashi et al., 1999). Conversely, these effects are inhibited by 5-
hydroxydecanoic acid, a mitochondrial K+ ATP channel closer. The mecha-
nistic relationship between the mitochondrial K+ ATP channel and the
mitochondrial membrane potential and apoptosis is not precisely under-
stood. Moreover, in distinction to cell membrane K+ ATP channels, the 
existence of mitochondrial K+ ATP channels is supported mainly by phar-
macological data; these channels have neither been isolated nor cloned.
Thus, it remains possible that the positive effects of mitochondrial K+ ATP
channel openers are actually mediated by other actions of these drugs. 
Nevertheless, these drugs merit further investigation as treatments for
ischemia-reperfusion.

From a conceptual perspective, the most specific antiapoptosis therapies
would be those directed against targets in the central death machinery. There
are many points within this machinery against which therapy could be
directed. A potential advantage to intervening at a distal point (e.g., caspases)
is that the redundancy of proximal pathways can be circumvented. A poten-
tial drawback to a distal target, however, is that it may lie beyond the point
of no return for salvaging a cell. Thus far, the most widely tested small mol-
ecular inhibitors of the central death machinery have been caspase inhibitors.
While the earliest such agents were tetrapeptide pseudosubstrates, later com-
pounds are dipeptides or (nonpeptide) peptidomimetic compounds with
improved cell permeability and pharmacological potency. As discussed in the
previous section, experiments in rodents demonstrate that caspase inhibitors
(1) reduce cardiac myocyte apoptosis and infarct size, resulting in sustained
improvements in cardiac function following ischemia-reperfusion, and (2)
reduce cardiac myocyte apoptosis and improve cardiac function and survival
during heart failure. Given these promising results, it is important that these
agents be tested in large animal models prior to possible clinical trials. Impor-
tant endpoints will include not only efficacy but also safety, especially with
respect to cancer, when long-term dosing is contemplated.
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In the future, it is likely that additional small molecules will be identi-
fied that can inhibit more upstream events in the central death pathways
(e.g., BH3-only proteins). Experiments will be required to determine how
these approaches compare to caspase inhibition and whether synergism
results from combining pre- and postmitochondrial therapies.

CONCLUSION

In this chapter, we have reviewed mechanisms that mediate cardiac myocyte
apoptosis and the increasing evidence that this cell death plays a critical role
in the pathogenesis of myocardial infarction and heart failure. These data
suggest that inhibition of cardiac myocyte apoptosis may provide a novel
therapeutic modality for these common heart syndromes. Further studies in
large animals will be critical before proceeding to human trials.
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