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Preface

�
N THIS BOOK we develop at the gate level the complete design of a
pipelined RISC processor with delayed branch, forwarding, hardware

interlock, precise maskable nested interrupts, caches, and a fully IEEE-
compliant floating point unit. The design is completely modular. This
permits us to give rigorous correctness proofs for almost every part of the
design. Also, because we can compute gate counts and gate delays, we can
formally analyze the cost effectiveness of all parts of the design.
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Chapter
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Introduction

�������� �� ��� �������

In this book we develop at the gate level the complete design of a pipelined
RISC processor with delayed branch, forwarding, hardware interlock, pre-
cise maskable nested interrupts, caches, and a fully IEEE-compliant float-
ing point unit.

The educated reader should immediately ask “So what? Such designs
obviously existed in industry several years back. What is the point of
spreading out all kinds of details?”

The point is: the complete design presented here is modularand clean.
It is certainly clean enough to be presented and explained to students. This
opens the way to covering the following topics, both in this text and in the
class room.

� To begin with the obvious: we determine cost and and cycle times of
designs. Whenever a new technique is introduced, we can evaluate
its effects and side effectson the cycle count, the hardware cost,
and the cycle time of the whole machine. We can study tradeoffs
between these very real complexity measures.

� As the design is modular, we can give for each module a clean and
precise specification, of what the module is supposed to do.

� Following the design for a module, we give a complete explanation
as to why the design meets the specification. By far the fastest way to
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give such an explanation is by a rigorous mathematical correctness
proof.1

� From known modules, whose behavior is well defined, we hierar-
chically construct new modules, and we show that the new compli-
cated modules constructed in this way meet their specifications by
referring only to the specifications of the old modules and to the
construction of the new modules. We follow this route up to the
construction of entire machines, where we show that the hardware
of the machines interprets the instruction set and that interrupts are
serviced in a precise way.

Because at all stages of the design we use modules with well defined
behavior, the process of putting them all together is in this text completely
precise.

��� �� �� ��� ����

We see three ways to use this book:

� Again, we begin with the obvious: one can try to learn the material
by reading the book alone. Because the book is completely self con-
tained this works. A basic understanding of programming, knowl-
edge of high school math, and some familiarity with proofs by in-
duction suffices to understand and verify (or falsify!) each and every
statement in this book.

� The material of this book can be covered in university classes during
two semesters. For a class in “computer structures” followed by
“computer architecture 1” the material is somewhat heavy. But our
experience is, that students of the classes “computer architecture 1
and 2” deal well with the entire material. Many advanced topics like
superscalar processors, out-of-order execution, paging, and parallel
processing, that are not covered in this book, can be treated very well
in a seminar parallel to the class “computer architecture 2”. Students
who have worked through the first part of this book usually present
and discuss advanced material in seminars with remarkable maturity.

Sections 2.1 to 2.5, chapter 7 and chapter 8 present a self-contained
construction of the data paths of an IEEE-compliant floating point
unit. This material can be covered during one semester in a class on
computer arithmetic.

1Whether mathematical correctness proofs are to be trusted is a sore issue which we
will address shortly.

�
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� The book can be used as supplementary reading in more traditional

architecture classes or as a reference for professionals.

��  ������ �� !�� ��  ������ �� "����
Computer architects tend not to like proofs. It is almost as if computer
architects do not believe in mathematics. Even mathematical formulae are
conspicuously rare in most textbooks on computer architecture, in contrast
to most other engineering disciplines. The reason for this is simple:

� Correctness proofs are incredibly error prone. When it comes to the
verification of computer systems, it is very difficult to tell a correct
proof from a proof, which is almost but not quite correct. The proofs
in this book are no exception.

� Shipping hardware which is believed to be correct and which turns
out to be faulty later can cost a computer manufacturer a GREAT deal
of money.

Thus, do we expect our readers to buy the correctness of all designs
presented here based solely on the written proofs? Would we – the authors
– be willing to gamble our fortune on the correctness of the designs? The
only sane answer is: no. On the contrary, in spite of our best efforts and
our considerable experience we consider it quite likely, that one or more
proofs in the second half of the book will receive a nontrivial fix over the
next two years or so.

Keeping the above stated limitations of written correctness proofs firmly
in mind, we see nevertheless three very strong points in favor of using
mathematics in a text book about computer architecture.

� The main foremost reason is speed. If one invests in the development
of appropriate mathematical formalism, then one can express one’s
thoughts much more clearly and succinctly than without formalism.
This in turn permits one to progress more rapidly.

Think of the famous formula stating, that the square of the sum of
a first number and a second number equals the sum of the square of
the first number, two times the product of the first number with the
second number, and the square of the second number. The line

�a�b�2 � a2 �2ab�b2

says the very same, but it is much easier to understand. Learning the
formalism of algebra is an investment one makes in high school and
which costs time. It pays off, if the time saved during calculations
with the formalism exceeds the time spent learning the formalism.

#
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In this book we use mathematical formalism in exactly this way. It
is the very reason why we can cover so much material so quickly.

� We have already stated it above: at the very least the reader can
take the correctness proofs in this book as a highly structured and
formalized explanation as to why the authors think the designs work.

� But this is not all. Over the last years much effort has been invested
in the development of computer systems which allow the formula-
tion of theorems and proofs in such a precise way, that proofs can
actually be verified by the computer. By now proofs like the ones
in this book can be entered into computer-aided proof systems with
almost reasonable effort.

Indeed, at the time of this writing (February 2000) the correctness
of a machine closely related to the machine from chapter 4 (with a
slightly different more general forwarding mechanism) has been ver-
ified using the system PVS [CRSS94, KPM00]. This also includes
the verification of all designs from chapter 2 used in chapter 4. Ver-
ification of more parts of the book including the floating point unit
of chapter 8 is under way and progressing smoothly (so far).

$�% �������

There are three key concepts, which permit us to develop the material of
this book very quickly and at the same time in a completely precise way.

1. We distinguish rigorously between numbers and their representation.
The simple formalism for this is summarized in chapter 2. This will
immediately help to reduce the correctness proofs of many auxiliary
circuits to easy exercises. More importantly, this formalism main-
tains order – and the sanity of the reader – in the construction of
floating point units which happen to manipulate numbers in 7 differ-
ent formats.2

2. The details of pipelining are very tricky. As a tool to better under-
standing them, we introduce in chapter 4 preparedsequential ma-
chines. This are machines which have the data path of a pipelined
machine but which are operated sequentially. They are very easy to
understand.

Pipelined machines have to simulate prepared sequential machines
in a fairly straightforward formal sense. In this way we can at least

2packed single and double precision, unpacked single and double precision, binary
numbers, two’s complement numbers, and biased integers

&



������� ���

INTRODUCTION
easily formulate what pipelined machines are supposedto do. Show-
ing that they indeed do what they are supposed to do will occasion-
ally involve some short but subtle arguments about the scheduling of
instructions in pipelines.

3. In chapter 7 we describe the algebra of rounding from [EP97]. This
permits us to formulate very concise assertions about the behavior
of floating point circuits. It will allow us to develop the schematics
of the floating point unit in a completely structured way.

��
���
��
We conclude the introduction by highlighting some results from the chap-
ters of this book. In chapter 2 we develop many auxiliary circuits for later
use: various counters, shifters, decoders, adders including carry lookahead
adders, and multipliers with Booth recoding. To a large extent we will
specify the control of machines by finite state diagrams. We describe a
simple translation of such state diagrams into hardware.

In chapter 3 we specify a sequential DLX machine much in the spirit
of [PH94] and prove that it works. The proof is mainly bookkeeping. We
have to go through the exercise because later we establish the correctness
of pipelined machines by showing that they simulate sequential machines
whose correctness is already established.

In section 4 we deal with pipelining, delayed branch, result forwarding,
and hardware interlock. We show that the delayed branch mechanism can
be replaced by a mechanism we call “delayed PC” and which delays all
instruction fetches, not just branches.3 We partition machines into data
paths, control automaton, forwarding engine, and stall engine. Pipelined
machines are obtained from the prepared machines mentioned above by an
almost straightforward transformation.

Chapter 5 deals with a subject that is considered tricky and which has not
been treated much in the literature: interrupts. Even formally specifying
what an interrupt mechanism should do turns out to be not so easy. The
reason is, that an interrupt is a kind of procedure call; procedure calls in
turn are a high level language concept at an abstraction level way above
the level of hardware specifications.

Achieving preciseness turns out to be not so bad. After all preciseness
is trivial for sequential machines, and we generate pipelined machines by
transformation of prepared sequential machines. But the interplay of in-
terrupt hardware and forwarding circuits is nontrivial, in particular when it
comes to the forwarding of special purpose registers like, e.g., the register,
which contains the masks of the interrupts.

3We are much more comfortable with the proof since it has been verified in PVS.

'
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Chapter 6 deals with caches. In particular we specify a bus protocol by

which data are exchanged between CPU, caches, and main memory, and
we specify automata, which (hopefully) realize the protocol. We explain
the automata, but we do not prove that the automata realize the protocol.
Model checking [HQR98] is much better suited to verify a statement of
that nature.

Chapter 7 contains no designs at all. Only the IEEE floating point stan-
dard is rephrased in mathematical language and theorems about rounding
are proven. The whole chapter is theory. It is an investment into chap-
ter 8 where we design an entire fully IEEE-compatible floating point units
with denormals, and exceptions, dual precision adder, multiplier, iterative
division, format conversion, rounding. All this on only 120 pages.

In chapter 9 we integrate the pipelined floating point unit into the DLX
machine. As one would expect, the control becomes more complicated,
both because instructions have variable latency and because the iterative
division is not fully pipelined. We invest much effort into a very com-
fortable forwarding mechanism. In particular, this mechanism will permit
the rounding mode of floating point operations to be forwarded. This, in
turn, permits interval arithmetic to be realized while maintaining pipelined
operation of the machine.

(



Chapter

2
Basics

��� �������� 	
���

�
TUDYING COMPUTER architecture without counting the cost of hard-
ware and the length of critical paths is great fun. It is like going shop-

ping without looking at price tags at all. In this book, we specify and
analyze hardware in the model from [MP95]. This is a model at the gate
level which gives at least rough price tags.

����� ���������

In the model there are five types of basic components, namely: gates,
flipflops, tristate drivers, RAMs and ROMs. Cost and delay of the basic
components are listed in table 2.1. They are normalized relative to the cost
and delay of a 1-bit inverter. For the basic components we use the symbols
from figure 2.1.

Clock enable signals ce of flipflops and registers, output enable signals
oeof tristate drivers and write signals w of RAMs are always active high.
RAMs have separate data input and data output ports. All flipflops are
assumed to be clocked in each cycle; thus there is no need to draw clock
inputs.

A RAM with A addresses and d-bit data has cost

Cram�A� d� � CRAMcell� �A�3� � �d� log logd�
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BASICS ����� ��� Cost [g] (gate equivalents) and delay [d] of the basic components

cost delay cost delay
not 1 1 flipflop 8 4
nand, nor 2 1 3-state driver 5 2
and, or 2 1 RAM cell 2 –
xor, xnor 4 2 ROM cell 0.25 –
mux 3 2

ce

Din

Dout

Ad Din
RAM
Dout

w

Ad

Dout
ROM

Axd ROM

Axd RAM

NOR

oe

tristate driver

10sl

XNOR

XOR

inverter

OR

NAND

AND multiplexer

flipflop

�	
��� ��� Symbols of the basic components

��
��
��
��

��
��
��
��

�
�
�
�

a
b

��
��
��
��

s

c

c’

�	
��� ��� Circuit of a full adder FA

)
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HARDWARE MODEL����� ��� Read and write times of registers and RAMs; dram denotes the access
time of the RAM.

register RAM

read 0 dram

write ∆ � Df f �δ dram�δ

and delay

Dram�A� d� �

�
logd�A�4 ; A� 64
3 � logA�10 ; A� 64

For the construction of register files, we use 3-port RAMs capable of
performing two reads and one write in a single cycle. If in one cycle a read
and a write to the same address are performed, then the output data of the
read operation are left undefined.

Cost and delay of these multi-port RAMs are

Cram3�A� d� � 1�6 �Cram�A� d�

Dram3�A� d� � 1�5 �Dram�A� d��

The circuit in figure 2.2 has cost CFA and delay DFA, with � ������� ��	

CFA � 2 �Cxor�2 �Cand�Cor

DFA � Dxor �max�Dxor� Dand�Dor��

����� �%��� ����

In the computation of cycle times, we charge for reads and writes in regis-
ters and RAMs the times specified in table 2.2. Note that we start and end
counting cycles at the point in time, when the outputs of registers have new
values. The constant δ accounts for setup and hold times; we use δ� 1.

Suppose circuit S has delay dS and RAM R has access time dram. The four � ������� ���
schematics in figure 2.3 then have cycle times

τ �

����
���

dS�∆ in case a)
dram�dS�∆ in case b)
dS�dram�δ in case c)
dS�2 �dram�δ in case d)

*
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It is common practice to specify designs in a hierarchical or even recursive
manner. It is also no problem to describe the cost or delay of hierarchi-
cal designs by systems of equations. For recursive designs one obtains
recursive systems of difference equations. Section 2.3 of this chapter will
contain numerous examples.

Solving such systems of equations in closed form is routine work in the
analysis of algorithms if the systems are small. Designs of entire proces-
sors contain dozens of sheets of schematics. We will not even attempt
to solve the associated systems of equations in closed form. Instead, we
translate the equations in a straightforward way into C programs and let
the computer do the work.

Running a computer program is a particular form of experiment. Scien-
tific experiments should be reproducible as easily as possible. Therefore,
all C programs associated with the designs in this book are accessible at our
web site1. The reader can easily check the analysis of the designs, analyze
modified designs, or reevaluate the designs with a new set of component
costs and delays.

����& !������� ��� +���% ,���-���

Let Sbe a circuit with inputs I and outputs O as shown in figure 2.4. It is
often desirable to analyze the delay DS�I �;O�� from a certain subset I� of
the inputs to a certain subset O� of the outputs. This is the maximum delay
of a path p from an input in I� to an output in O�. We use the abbreviations

DS�I
�;O� � DS�I

��

DS�I ;O�� � DS�O
��

DS � DS�I ;O�

Circuits Sdo not exist in isolation; their inputs and outputs are connected
to registers or RAMs, possibly via long paths. We denote by AS�I �;O�� the
maximum delay of a path which starts in a register or RAM, enters Svia I�

and leaves Svia O�. We call AS�I �;O�� an accumulated delay. If all inputs
I � are directly connected to registers, we have

AS�I
�;O�� � DS�I

�;O���

1���������������	
����
��������������
������


��



������� ���

HARDWARE MODEL

circuit S

A Din

RAM

Dout
w1

A Din

d) RAM to RAM

w
RAM

Dout
0

A Din

RAM

Dout
w1

circuit S

c) register to RAM

circuit S

A Din

b) RAM to register

w
RAM

Dout
0

a) register to register

circuit S

�	
��� �� The four types of transfer between registers and RAMs

P
P’P’’

inputs I

outputs O

O’

I’

�	
��� ��� Paths through a circuit S. I � is a subset of its inputs I , and O� is a subset
of its outputs O.

Similarly we denote by TS�I �;O�� the maximum cycle time required by
cycles through I� and O�. If I � � I or O� � O we abbreviate as defined
above.

The schematic Sc of figure 2.5 comprises three cycles: � ������� ��


� leaving circuit S1 via output d3,

� entering circuit S2 via input d1,

� entering circuit S2 via input d2.

Thus, the cycle time of Sc can be expressed as

TSc � max�TS1�d3�� TS2�d1�� TS2�d2���

��
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d2

d1

d3
d4

circuit S2circuit S1

registers

�	
��� ��� Schematic Sc

with

TS1�d3� � AS1�d3��∆ � DS1�d3��Df f �δ
TS2�d1� � AS2�d1��∆ � DS2�d1��Df f �δ
TS2�d2� � AS2�d2��∆ � AS1�d2��DS2�d2��Df f �δ�

��� ����� ������������
�� ��� ����� �������

����� !��-��� !-����

For bits x� �0�1� and natural numbers n, we denote by xn the string con-
sisting of n copies of x. For example, 03 � 000 and 15 � 11111. We usually
index the bits of strings a� �0�1�n from right to left with the numbers from
0 to n�1. Thus, we write

a� an�1 � � �a0 or a� a�n�1 : 0��

For strings a� an�1 � � �a0 � �0�1�n, we denote by

�a� �
n�1

∑
i�0

ai �2
i

the natural number with binary representation a. Obviously we have

�a� � �0� � � � �2n�1��

We denote by Bn � �0� � � � �2n� 1� the range of numbers which have a
binary representation of length n. For x� Bn and a� �0�1�n with x� �a�,
we denote by

binn�x� � a

the n-bit binary representation of x. A binary numberis a string which is
interpreted as a binary representation of a number. We have for example

�10n� � 2n

�1n� � 2n�1�

��
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����� �� Computing the binary representation �c�s� of the sum of the bits a� b� c.

a b c c’ s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

From the definition one immediately concludes for any j � �0� � � � �n�1�

�a�n�1 : 0�� � �a�n�1 : j�� �2 j � �a� j�1 : 0��� (2.1)

Addition The entries in table 2.3 obviously satisfy

s � a	b	c

c� � 1 
 a�b�c� 2

�c� s� � a�b�c�

This is the standard algorithm for computing the binary representation of
the sum of three bits. For the addition of two n-bit numbers a�n�1 : 0� and
b�n�1 : 0�, one first observes that

�a�n�1 : 0��� �b�n�1 : 0�� � �0� � � � �2n�1�2��

Thus, even the sum� 1 can be represented with n� 1 bits. The standard
algorithm for adding the binary numbers a�n�1 : 0� and b�n�1 : 0� as well
as a carry in cin is inductively defined by

c�1 � cin

�ci si� � ci�1 �ai �bi

sn � cn�1

(2.2)

for i � �0� � � � �n� 1�. Bit si is called the sum bitat position i, and ci is
called the carry bit from position i to position i�1. The following theorem
asserts the correctness of the algorithm.

�a�n�1 : 0��� �b�n�1 : 0���cin � �cn�1s�n�1 : 0��. � ������ ��	

�#
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by induction on n. For n � 0, this follows directly from the definition of
the algorithm. From n to n� 1 one concludes with equation (2.1) and the
induction hypothesis:

�a�n:0��� �b�n:0���cin � �an�bn� �2
n� �a�n�1:0��

��b�n�1:0���cin

� �an�bn� �2
n� �cn�1s�n�1:0��

� �an�bn�cn�1� �2
n� �s�n�1:0��

� �cn sn� �2
n� �s�n�1:0��

� �cn s�n:0��
���

����� .���
��

For strings a�n� 1 : 0�, we use the notation a � an�1 � � �a0, e.g., 104 �
01111, and we denote by

�a� ��an�1 �2
n�1 � �a�n�2 : 0��

the integer with two’s complement representation a. Obviously, we have

�a� � ��2n�1� � � � �2n�1�1��

We denote by Tn � ��2n�1� � � � �2n�1�1� the range of numbers which have
a two’s complement representation of length n. For x� Tn and a� �0�1�n

with x� �a�, we denote by

twon�x� � a

the n-bit two’s complement representation of x. A two’s complement num-
ber is a string which is interpreted as a two’s complement representation
of a number. Obviously,

�a�� 0 
 an�1 � 1�

The leading bit of a two’s complement number is therefore called its sign
bit. The basic properties of two’s complement numbers are summarized in

Let a� a�n�1 : 0�, then����� ��� �

�&
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�0a� � �a�

�a� � �a�n�2 : 0�� mod 2n�1

�a� � �a� mod 2n

�an�1a� � �a� (sign extension)

��a� � �a��1

The first two equations are obvious. An easy calculation shows, that �����

�a�� �a� � an�1 �2
n;

this shows the third equation.

�an�1a� � �an�1 �2
n� �a�n�1 : 0��

� �an�1 �2
n�an�1 �2

n�1 � �a�n�2 : 0��

� �a�

This proves the fourth equation.

�an�1� � � � �a0� � �2n�1 �an�1 �
n�2

∑
i�0

ai �2
i

� �2n�1 � �1�an�1��
n�2

∑
i�0

�1�ai� �2
i

� �2n�1 �2n�1 �an�1 �
n�2

∑
i�0

2i �
n�2

∑
i�0

ai �2
i

� �2n�1 �2n�1 �an�1 �2n�1�1��a�n�2 : 0��

� ��a�n�1 : 0���1

This proves the last equation. ���

Subtraction The basic subtraction algorithm for n bit binary numbers a
and b in the case where the result is nonnegative works as follows:

1. Add the binary numbers a�b and 1.

2. Throw away the leading bit of the result

We want to perform the subtraction �1100���0101�� 12�5 � 7� We compute � ������� ���

1. �1100���0101� � �1100�� �1010��1 � �1100�� �1011� � �10111��

2. We discard the leading bit and state that the result is �0111�� 7�

�'
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This is reassuring but it does not prove anything. In order to see why the

algorithm works, observe that �a���b� � 0 implies �a���b� � �0� � � � �2n�
1�. Thus, it suffices to compute the result modulo 2n, i.e., throwing away
the leading bit does not hurt. The correctness of the algorithm now imme-
diately follows from

Let a� a�n�1 : 0� and b� b�n�1 : 0�, then������ ��
 �

�a���b� � �a�� �b��1 mod 2n�

�����

�a���b� � �a�� �0b�

� �a���1b��1

� �a�� �b��1 mod 2n

���

The salient point about two’s complement numbers is that addition al-
gorithms for the addition of n-bit binary numbers work just fine for n-bit
two’s complement numbers as long as the result of the addition stays in the
range Tn. This is not completely surprising, because the last n�1 bits of n-
bit two’s complement numbers are interpreted exactly as binary numbers.
The following theorem makes this precise.

Let a� a�n� 1 : 0�, b� b�n� 1 : 0� and let cin � �0�1�. Let �s�n : 0�� ������� ��� �

�a�n�1 : 0��� �b�n�1 : 0���cin and let the bits ci and si be defined as in
the basic addition algorithm for binary numbers. Then

� �a�� �b��cin � Tn 
 cn�1 � cn�2�

� If �a�� �b��cin � Tn, then�a�� �b��cin � �s�n�1 : 0��.

�����

�a�� �b��cin � 2n�1��an�1�bn�1�� �a�n�2 : 0��� �b�n�2 : 0���cin

� �2n�1�an�1 �bn�1�� �cn�2s�n�2 : 0��

� �2n�1�an�1 �bn�1 �cn�2�2 �cn�2�� �s�n�2 : 0��

� �2n�1��cn�1sn�1��2 �cn�2�� �s�n�2 : 0��

� 2n � ��cn�1 �cn�2�� �s�n�1 : 0��

One immediately verifies

2n � ��cn�1 �cn�2�� �s�n�1 : 0�� � Tn 
 cn�1 � cn�2

and the theorem follows.���

�(
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Observe that for a� a�n�1 : 0� and b� b�n�1 : 0� we have

�a�� �b��cin � Tn�1�

Thus, if we perform the binary addition

�an�1a�� �bn�1b��cin � �s�n�1 : 0���

then we always get
�a�� �b��cin � �s�n : 0���

��� ����� �������

�
N THIS section a number of basic building blocks for processors are con-
structed.

��#�� ������� �����-�����

One calls n multiplexers with a common select line sl an n-bit multiplexer
or n-bit mux. Similarly, n flipflops with common clock enable line ceare
called an n-bit register, and n tristate drivers with a common output enable
line oeare called an n-bit driver.

For x � x�n� 1 : 0�, we defined x � xn�1 � � �x0. For a � a�n� 1 : 0�,
b� b�n�1 : 0� and Æ � �AND, OR, NAND, NOR, XOR, XNOR�, we define

aÆb� �an�1 Æbn�1� � � � �a0 Æb0��

The circuit in figure 2.6 (a) has inputs a�n� 1 : 0� and outputs b�n� 1 :
0� � a. It is called an n-bit inverter. The circuit in figure 2.6 (b) has inputs
a�n�1 : 0��b�n�1 : 0� and outputs c�n�1 : 0� � aÆb. It is called an n-bit
Æ-gate.

For a� �0�1�� b � b�n� 1 : 0� and Æ � �AND, OR, NAND, NOR, XOR,
XNOR�, we define

aÆb� an Æb� �aÆbn�1� � � �aÆb0��

The circuit in figure 2.6 (c) has inputs a�b�n�1 : 0� and outputs c� aÆb�
The circuit consists of an n-bit Æ-gate where all inputs ai are tied to the
same bit a.

For Æ � �AND, OR�, a balanced tree of n� 1 many Æ-gates has inputs
a�n�1 : 0� and output b� an�1 Æ � � �Æa0. It is called an n-inputÆ-tree.

The cost and the delay of the above trivial constructions are summarized
in table 2.4. The symbols of these constructions are depicted in figure 2.7.

�/
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...

a[n-1] b[n-1]

c[0]

b[0]a[0]

c[n-1]

b)

a[n-1] a[0]

b[0]b[n-1]

...

a)

����
...

b[n-1]

c[0]

b[0]a

c[n-1]

c)

�	
��� ��� Circuits of an n-bit inverter (a) and of an n-bit Æ-gate. The circuit (c)
computes aÆb�n�1 : 0�.

ce oe

n

a) b) c)

d)

nn

n

f)e)

n

n nn

n n

n

n

n

n

a

bc[n-1:0]c[n-1:0]

a[n-1:0]b[n-1:0]b[n-1:0]a[n-1:0]

a[n-1:0]

b[n-1:0] c[n-1:0] b[n-1:0]

a[n-1:0]b[n-1:0]a[n-1:0]

0 1sl

�	
��� ��� Symbols of an n-bit register (a), an n-bit mux (b), an n-bit tristate driver
(c), an n-bit Æ-gate (d, e), and an n-input Æ-tree (f). In (e), all the inputs a i are tied
to one bit a.

����� ��� Cost and delay of the basic n-bit components listed in figure 2.7.

n-bit n-input
register mux driver Æ-gate Æ-tree

cost n �Cf f n �Cmux n �Cdriv n �CÆ �n�1� �CÆ

delay Df f Dmux Ddriv DÆ log n� �DÆ

�)
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An n-zero testeris a circuit with input a�n�1 : 0� and output

b � an�1� � � ��a0�

The obvious realization is an n-bit OR-tree, where the output gate is re-
placed by a NOR gate. Thus,

Czero�n� � �n�2� �Cor �Cnor

Dzero�n� � �log n��1� �Dor �Dnor�

An n-equality testeris a circuit with inputs a�n� 1 : 0� and b�n� 1 : 0�
and output c such that

c� 1 
 a�n�1 : 0� � b�n�1 : 0��

Since a�i� � b�i� is equivalent to a�i�	b�i� � 0, the equality test can also be
expressed as

c� 1 
 a�n�1 : 0�	b�n�1 : 0� � 0n�

Thus, the obvious realization is to combine the two operands bitwise by
XOR and to pass the result through an n-zero tester:

Cequal�n� � n �Cxor�Czero�n�

Dequal�n� � Dxor�Dzero�n��

��#�# +���	��

An n-decoderis a circuit with inputs x�n� 1 : 0� and outputs Y�2n� 1 : 0�
such that for all i

Yi � 1 
 �x� � i�

A recursive construction with delay logarithmic in n is depicted in figure
2.8. Let k � n�2� and l � �n�2�. The correctness of the construction is
shown by induction on n. For the induction step one argues

Y�2k � i � j� � 1 
 V�i� � 1 � U � j� � 1


 �x�n�1 : k��� i � �x�k�1 : 0��� j


 �x�n�1 : k�x�k�1 : 0��� 2k � i � j

�*
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dec(k)

dec(l)

K=2k

L=2l �
�
�
�

�
�
�
�

Y[2n-1]

V[i] U[j]

Y[K i + j]...Y[0]

k

l

x[k-1 : 0]

x[n-1 : k]

U[K-1 : 0]

...

V[L-1 : 0]

n > 1

x[0]

Y[1] Y[0]

n = 1

�	
��� ��� Recursive definition of an n-decoder circuit

The cost and delay of this decoder circuit run at

Cdec�1� � Cinv

Cdec�n� � Cdec�n�2���Cdec��n�2���2n �Cand

Ddec�1� � Dinv

Ddec�n� � Ddec�n�2���Dand�

Half Decoder An n-half decoderis a circuit with inputs x�n�1 : 0� and
outputs Y�2n�1 : 0� such that

Y�2n�1 : 0� � 02n��x�1�x��

Thus, input x turns on the �x� low order bits of the output of the half de-
coder.

Let L denote the lower half and H the upper half of the index range
�2n�1 : 0�:

L � �2n�1�1 : 0� � H � �2n�1 : 2n�1��

With these abbreviations, figure 2.9 shows a recursive construction of a
half decoder. The cost and the delay are

Chdec�1� � 0

Chdec�n� � Chdec�n�1��2n�1 � �Cand�Cor�

Dhdec�1� � 0

Dhdec�n� � Dhdec�n�1��max�Dand� Dor��

��
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hdec(n-1)

2n-1

2n-1 2n-1

n = 1

Y[1] Y[0]

0 x[0]

n > 1

x[n-1]

U[L]

Y[H] Y[L]

x[n-2 : 0]

�	
��� ��� Recursive definition of an n-half decoder circuit

In the induction step of the correctness proof the last �x�n� 2 : 0�� bits
of U are set to one by induction hypothesis. If xn�1 � 0, then

�x� � �x�n�2 : 0��

y�H� � 02n�1
and

y�L� � U�

If xn�1 � 1, then

�x� � 2n�1 � �x�n�2 : 0��

y�H� � U and

y�L� � 12n�1
�

Thus, in both cases the last �x� bits of y are one.

��#�& 3��	��
 0��� ��-����

For strings x, we denote by lz�x� the number of leading zeros of x. Let
n � 2m be a power of two. An n-leading zero counter is a circuit with
inputs x�n�1 : 0� and outputs y�m : 0� satisfying �y�� lz�x�.

Figure 2.10 shows a recursive construction for n-leading zero counters.
For the induction step of the correctness proof we use the abbreviations

H � �n�1 : n�2�

L � �n�2�1 : 0�

�yH� � lz�x�H�� and

�yL� � lz�x�L���

��
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y

L
lz(n/2)

lz(n/2)x[H]

x[L]

y
H

0

1
m-1

m-1

m

m
0

y[m:0]

m > 0m = 0

y[0]

x[0]

�	
��� ���� Recursive definition of an n-leading zero counter

Thus,

lz�x�H�x�L�� �

�
lz�x�H�� if lz�x�H��� 2m�1

2m�1 � lz�x�L�� if lz�x�H��� 2m�1

�

�
�0yH �m�1 : 0�� if yH �m�1� � 0
z if yH �m�1� � 1

where

z � �10m�1�� �yL�m�1 : 0��

�

�
01yL�m�2 : 0� if yL�m�1� � 0
10yL�m�2 : 0� if yL�m�1� � 1

� yL�m�1�yL�m�1�yL�m�2 : 0��

Cost and delay of this circuit are

Clz�1� � Cinv

Clz�n� � 2 �Clz�n�2��Cmux�m�1��Cinv

Dlz�1� � Dinv

Dlz�n� � Dlz�n�2��Dinv�Dmux�

��� ���������� �������

�
E USE three varieties of adders: carry chain adders, conditional sum
adders, and carry look ahead adders.

��&�� ����% ����� �		��

A full adder is a circuit with inputs a�b�c and outputs c��s satisfying

�c� s�� a�b�c�

��
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1s

FA

a0 0b

0s

FA

n-1b

n-1s

an-1

FA

o o o

sn

cn-2

inc

1c

�	
��� ���� Circuit of the n-bit carry chain adder CCA

����� ��� Functionality of a half adder

a c c’ s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Full adders implement one step of the basic addition algorithm for binary
numbers as illustrated in table 2.3 of section 2.2. The circuit in figure 2.2
of section 2.1 happens to be a full adder with the following cost and delay

CFA � 2 �Cxor�2 �Cand�Cor

DFA � Dxor�max�Dxor� Dand�Dor��

An n-adderis a circuit with inputs a�n�1 : 0�, b�n�1 : 0�, cin and outputs
s�n : 0� satisfying

�a�� �b��cin � �s��

The most obvious adder construction implements directly the basic ad-
dition algorithm: by cascading n full adders as depicted in figure 2.11, one
obtains a carry chain adders. Such adders are cheap but slow, and we
therefore do not use them.

A half adderis a circuit with inputs a�c and outputs c��s satisfying

�c� s�� a�c�

The behavior of half adders is illustrated in table 2.5. As we have

s � a	c and c� � a�c�

�#
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sc’

ca

�	
��� ���� Circuit of a half adder HA

HA

HA

HA

a0

a1

cin

n-1can-1

s0

sn sn-1

0c

c1 s1
. . .

�	
��� ��� Circuit of an n-carry chain incrementer CCI

the obvious realization of half adders consists of one AND gate and one OR

gate, as depicted in figure 2.12.
An n-incrementeris a circuit with inputs a�n� 1 : 0��cin and outputs

s�n : 0� satisfying
�a��cin � �s��

By cascading n half adders as depicted in figure 2.13 (b), one obtains a
carry chain incrementerwith the following cost and delay:

CCCI�n� � n � �Cxor�Cand�

DCCI�n� � �n�1� �Dand�max�Dxor� Dand��

The correctness proof for this construction follows exactly the lines of the
correctness proof for the basic addition algorithm.

��&�� ���	������� �-� �		��

The most simple construction for conditional sum adders is shown in figure
2.14. Let m� n�2� and k� �n�2� and write

s�n : 0� � s�n : m�s�m�1 : 0��

�&
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adder(m)

����
����

adder(k) adder(k)

cm-1

cin

b[m-1:0] a[m-1:0]a[n-1:m]b[n-1:m]

s[n:m]

m
k+1

s1[n:m] s0[n:m]

s[m-1:0]

1 0

�	
��� ���� Simple version of an n-bit conditional sum adder; m� �n�2� and
k� 	n�2
.

then

�s�n : m�� � �a�n�1 : m��� �b�n�1 : m���cm�1

�

�
�a�n�1 : m��� �b�n�1 : m�� if cm�1 � 0
�a�n�1 : m��� �b�n�1 : m���1 if cm�1 � 1

Thus, the high order sum bits in figure 2.14 are computed twice: the sum
bits s0�n : m� are for the case cm�1 � 0 and bits s1�n : m� are for the case
cm�1 � 1. The final selection is done once cm�1 is known.

This construction should not be repeated recursively because halving the
problem size requires 3 copies of hardware for the half sized problem and
the muxes. Ignoring the muxes and assuming n � 2ν is a power of two,
one obtains for the cost c�n� of an n-adder constructed in this manner the
estimate

c�n� � 3 �c�n�2�

� 3ν �c�1� � 2ν�log3 �c�1�

� nlog 3 �c�1� � n1�57 �c�1�

This is too expensive.
For incrementers things look better. The high order sum bits of incre-

menters are

�s�n : m�� � �a�n�1 : m���cm�1

�

�
�a�n�1 : m�� if cm�1 � 0
�a�n�1 : m���1 if cm�1 � 1

This leads to the very simple construction of figure 2.15. Our incrementer
of choice will be constructed in this way using carry chain incrementers

�'
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cm-1

����

m

s[m-1:0]

inc(m)

a[m-1:0]

0

s[n:m]

k+1

s1[n:m]

inc(k)

s0[n:m]

a[n-1:m]

1 0

�	
��� ���� An n-bit conditional sum incrementer; m� �n�2� and k� 	n�2
.

for solving the subproblems of size k and m. Such an n-incrementer then
has the following cost and delay

Cinc�n� � CCCI�m��CCCI�k��Cmux�k�1�

Dinc�n� � DCCI�m��Dmux�

Note that in figure 2.15, the original problem is reduced to only two
problems of half the size of the original problem. Thus, this construction
could be applied recursively with reasonable cost (see exercise 2.1). One
then obtains a very fast conditional sum incrementer CSI.

Indeed, a recursive construction of simple conditional sum adders turns
out to be so expensive because disjoint circuits are used for the computa-
tion of the candidate high order sum bits s0�n : m� and s1�n : m�. This flaw
can be remedied if one constructs adders which compute both, the sum and
the sum +1 of the operands a and b.

An n-compound adderis a circuit with inputs a�n�1 : 0��b�n�1 : 0� and
outputs s0�n : 0��s1�n : 0� satisfying

�s0� � �a�� �b�

�s1� � �a�� �b��1�

A recursive construction of the n-compound adders is shown in figure
2.16. It will turn out to be useful in the rounders of floating point units.
Note that only two copies of hardware for the half sized problem are used.
Cost and delay of the construction are

Cadd2�1� � Cxor�Cxnor�Cand�Cor

Cadd2�n� � Cadd2�k��Cadd2�m��2 �Cmux�k�1�

Dadd2�1� � max�Dxor�Dxnor�Dand�Dor�

Dadd2�n� � Dadd2�m��Dmux�k�1��

�(
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a b

0[1:0]S1[1:0]S

mux(k+1) mux(k+1)

add2(k)

[n:m]S1 0[n:m]S 1[m-1:0]S 0[m-1:0]S

add2(m)

b[n-1:m]a[n-1:m] a[m-1:0] b[m-1:0]n=1 n>1

�	
��� ���� An n-compound adder add2�n�; m� �n�2�, k� 	n�2


PP  (n/2)

X n-1 n-2X

n-1Y n-2Y 2Y 1Y 0Y

X 0

...

...

XXX 123

�	
��� ���� The recursive specification of an n-fold parallel prefix circuit of the
function Æ for an even n

��&�# "������� "��4� ����-������

Let Æ : M�M � M be an associative, dyadic function. its n-fold parallel
prefix function PPÆ�n� : Mn � Mn maps n inputs x1� � � � �xn into n results
y1� � � � �yn with yi � x1 Æ � � � Æxi .

A recursive construction of efficient parallel prefix circuits based on Æ-
gates is shown in figure 2.17 for the case that n is even. If n is odd, then
one realizes PPÆ�n�1� by the construction in figure 2.17 and one computes
Yn�1 � Xn�1 ÆYn�2 in a straightforward way using one extra Æ-gate.

The correctness of the construction can be easily seen. From

X�
i � X2i�1 ÆX2i�

it follows

Y�
i � X�

i Æ � � � ÆX�
0 � X2i�1 Æ � � �ÆX0 � Y2i�1�

The computation of the outputs

Y2i � X2i ÆY2i�1

�/
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is straightforward. For cost and delay, we get

CPPÆ�1� � 0

CPPÆ�n� � CPPÆ��n�2����n�1� �CÆ

DPPÆ�1� � 0

DPPÆ�n� � DPPÆ��n�2���2 �DÆ�

��&�& ����% 3�������	 �		��

For a�n�1 : 0��b�n�1 : 0� and indices i� j with i � j one defines

pi� j�a�b� � 1 
 �a� j : i��� �b� j : i��� �1 j�i�1��

This is the case if cj � ci�1, in other words if carry ci�1 is propagatedby
positions i to j of the operands to position j . Similarly, one defines for
0 � i � j:

gi� j�a�b� � 1 
 �a� j : i��� �b� j : i�� � �10 j�i�1��

i.e., if positions i to j of the operands generatea carry cj independent of
ci�1. For i � 0 one has account for cin, thus one defines

g0� j�a�b�cin� � 1 
 �a� j : 0��� �b� j : 0���cin � �10 j�1�1��

In the following calculations, we simply write gi� j and pi� j , respectively.
Obviously, we have

pi�i � ai 	bi

gi�i � ai �bi for i � 0

g0�0 � ��a0	b0��cin�� �a0�b0��

Suppose one has already computed the generate and propagate signals
for the adjacent intervals of indices �i : j� and � j � 1 : k�, where i � j � k.
The signals for the combined interval �i : k� can then be computed as

pi�k � pi� j � pj�1�k

gi�k � gj�1�k�gi� j � pj�1�k�

This computation can obviously be performed by the circuit in figure
2.18 which takes inputs �g1� p1� and �g2� p2� from M � �0�1�2 to output

�g� p� � �g2� p2�Æ �g1� p1�

� �g2�g1� p2� p1� p2� �M�

�)
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g1 p1p2g2

g p

�	
��� ���� Circuit Æ, to be used in the carry lookahead adder

an-1 bn-1 an-2 bn-2 a1

b
0

G n-2

b1

a
0

gp

cin

s1sn-1

cin

s0

GG

gp p

01
G n-1

n-1g n-1

P0

...

...

0011

PP (n)

sn

�	
��� ���� Circuit of an n-bit carry lookahead adder

A simple exercise shows that the operation Æ defined in this way is asso-
ciative (for details see, e.g., [KP95]).

Hence, figure 2.18 can be substituted as a Æ-gate in the parallel prefix
circuits of the previous subsections. The point of this construction is that
the i-th output of the parallel prefix circuit computes

�Gi�Pi� � �gi � pi�Æ � � � Æ �g0� p0� � �gi�0� pi�0� � �ci � pi�0��

It follows that the circuit in figure 2.19 is an adder. It is called a carry
look ahead adder.

The circuit in figure 2.18 has cost 6 and delay 4. We change the compu-
tation of output g using

g � g2�g1� p2 � g2�g1� p2�

For the cost and the delay of operation Æ this gives

CÆ � Cand�Cnand�Cnor�Cinv � 7

DÆ � max�Dand� Dnand�max�Dnor�Dinv�� � 2�

�*
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ovf

neg

b[n-1:0]

cin

sub
a[n-1:0]

n-adder
c[n-1]

p[n-1]

s[n-1] s[n-1:0]

�	
��� ���� Circuit of an n-bit arithmetic unit AU

The cost and the delay of the whole CLA adder are

CCLA�n� � CPPÆ�n��2n �Cxor��n�1� �Cand�Cor

DCLA�n� � DPPÆ�n��2 �Dxor�Dand�Dor�

��&�' ���������� ����

An n bit arithmetic unit is a circuit with inputs a�n�1 : 0�� b�n�1 : 0�� sub
and outputs s�n : 0��neg�ov f. It performs operation

op �

�
� if sub� 0
� if sub� 1

The sum outputs s satisfy

�s� � �a� op �b� if �a� op �b� � Tn�

The flag ov f indicates that �a� op �b� �� Tn, whereas flag neg indicates that
�a� op �b� � 0. This flag has to be correct even in the presence of an over-
flow. With the help of this flag one implements for instance instructions
of the form “branch if a� b”. In this case one wants to know the sign of
a�b even if a�b is not representable with n bits.

Figure 2.20 shows an implementation of an n-bit arithmetic unit. The
equation

��b� � b�1

translates into
b� � b	sub and cin � sub�

The flag negis the sign bit of the sum �a�� �b� � Tn�1. By the argument
at the end of section 2.2, the desired flag is the sum bit sn of the addition

�an�1a�� �bn�1b��cin � �s�n�1 : 0���

#�
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It can be computed as

neg � sn � cn�1	an�1	bn�1 � cn�1	 pn�1�

By theorem 2.4, we have ov f � cn�1 	 cn�2. In the carry lookahead
adder, all the carry bits are available, whereas the conditional sum adder
only provides the final carry bit cn�1. Since the most significant sum bit
equals sn�1 � pn�1	cn�1, an overflow can be checked by

ov f � �cn�1	 pn�1�	 �cn�2	 pn�1� � sn�1	neg�

Let add denote the binary adder of choice; the cost and the delay of the
arithmetic unit, then be expressed as

CAU�n� � �n�2� �Cxor�Cadd�n�

DAU�n� � 3 �Dxor�Dadd�n��

��&�( �������

For strings a�n�1 : 0� and natural numbers i � �0� � � � �n�1� we consider
the functions

cls�a� i� � �a�n� i�1� � � �a�0�a�n�1� � � �a�n� i��

crs�a� i� � �a�i�1� � � �a�0�a�n�1� � � �a�i��

lrs�a� i� � �0i a�n�1� � � �a�i���

The function cls is called a cyclic left shift, the function crs is called a cyclic
right shift, and the function lrs is called logic right shift. We obviously
have

crs�a� i� � cls�a�n� i mod n��

Cyclic Left Shifter An �n� i�-cyclic left shifteris a circuit with inputs
a�n�1 : 0�, select input s� �0�1� and outputs r�n�1 : 0� satisfying

r �

�
cls�a� i� if s� 1
a otherwise

As shown in figure 2.21 such shifters can be built from n muxes.
Let n � 2m be a power of two. An n-cyclic left shifteris a circuit with

inputs a�n�1 : 0�, select inputs b�m�1 : 0� and outputs r�n�1 : 0� satisfy-
ing

r � cls�a��b���

#�
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an-i an-i-1 a0an-1 ai-1ai

r0ri ri-1

0 1 0 1 0 1

... ... ...

...

s

...

0 1

rn-1

�	
��� ���� �n� i�-Cyclic left shifter

r0

0cls(n, 2 )

1cls(n, 2 )

m-1cls(n, 2 )

b[0]

b[1]

. . .

r

a[n-1:0]

b[m-1]

�	
��� ���� Circuit of an n-cyclic left shifter CLS�n�

inc(m)

1

CLS(n)

r[n-1:0]

b[m-1:0]

a[n-1:0]

m

�	
��� ��� Circuit of an n-cyclic right shifter CRS�n�
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a0

0 1

r0

ai-1

0 1

ri-1

ai

0 1

ri

0

an-1

0 1

rn-1

0

...

s

...

...

...

�	
��� ���� �n� i�-Logic right shifter

Such shifters can be built by cascading �n� i�-cyclic left shifters for i � � 0,
1, 2, 4, � � � �2m�1� as shown in figure 2.22.

By induction on i, one easily shows that the output r�i� of the �n�2i�-
cyclic left shifter in figure 2.22 satisfies

r�i� � cls�a��b�i : 0����

Cyclic Right Shifter An n-cyclic right shifteris a circuit with inputs
a�n�1 : 0�, select inputs b�m�1 : 0� and outputs r�n�1 : 0� satisfying

r � crs�a��b���

It can be built from an n-cyclic left shifter by the construction shown in
figure 2.23. This works, because

n��b� � n� �0b� � n��1b��1

� �b��1 mod n�

Logic Right Shifter An �n� i�-logic right shifter is a circuit with inputs
a�n�1 : 0�, select input s� �0�1� and outputs r�n�1 : 0� satisfying

r �

�
lrs�a� i� if s� 1
a otherwise

It can be built from n muxes, as depicted in figure 2.24.
Let n� 2m be a power of two. An n-logic right shifteris a circuit with

inputs a�n�1 : 0�, select inputs b�m�1 : 0� and outputs r�n�1 : 0� satisfy-
ing

r � lrs�a��b���

In analogy to the cyclic left shifter, the n-logic right shifter can be built by
cascading the �n� i�-logic right shifters for i � � 0, 1, 2, 4, � � � �2m�1�.

##
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�
ET a� a�n�1 : 0� and b� b�m�1 : 0�, then

�a� � �b� � �2n�1� � �2m�1� � 2n�m�1� (2.3)

Thus, the product can be represented with n�mbits.
An �n�m�-multiplier is a circuit with an n-bit input a � a�n� 1 : 0�, an

m-bit input b � b�m� 1 : 0�, and an n�m-bit output p� p�n�m� 1 : 0�
such that �a� � �b� � �p� holds.

��'�� ������ 5����	

Obviously, one can write the product �a� � �b� as a sum of partial products

�a� � �b� �
m�1

∑
t�0

�a� �bt �2
t �

with
�a� �bt �2

t � �a�n�1��b�t�� � � �a�0��b�t��0t ��

Thus, all partial products can be computed with cost n �m�Cand and delay
Dand. We denote by

Sj �k � ∑ j�k�1
t� j �a� �b�t� �2t

� �a� � �b� j �k�1 : j�� �2 j � 2n�k� j
(2.4)

the sum of the k partial products from position j to position j � k� 1.
Because Sj �k is a multiple of 2 j it has a binary representation with j trailing
zeros. Because Sj �k is smaller than 2 j�n�k it has a binary representation of
length n� j �k (see figure 2.25). We have

Sj �1 � �a� �b� j� �2 j

�a� � �b� � S0�m

Sj �k�h � Sj �k�Sj�k�h

S0�t � S0�t�1 �St�1�1�

The last line suggests an obvious construction of multipliers comprising
m�1 many n-adders. This construction corresponds to the school method
for the multiplication of natural numbers. If one realizes the adders as
carry chain adders, then cost and delay of this multiplier construction can
be shown (see exercise 2.2) to be bounded by

Cmul�n�m� � m�n � �Cand�CFA�

Dmul�n�m� � Dand��m�n� �DFA�
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0 ... 0

n+k j

Sj,k

�	
��� ���� Sj �k, the sum of the k partial products starting from position j .

��'�� ����% ���� �		��

Let x be a natural number and suppose the two binary numbers s�n�1 : 0�
and t�n�1 : 0� satisfy

�s�� �t�� x�

We then call s� t a carry save representationof x with length n.
A crucial building block for speeding up the summation of partial prod-

ucts are n-carry save adders. These are circuits with inputs a�n� 1 : 0�,
b�n�1 : 0�, c�n�1 : 0� and outputs s�n�1 : 0�, t�n : 0� satisfying

�a�� �b�� �c�� �s�� �t��

i.e., the outputs s and t are a carry save representation of the sum of the
numbers represented at the inputs. As carry save adders compress the sum
of three numbers to two numbers, which have the same sum, they are also
called n-3/2-adders. Such adders are realized, as shown in figure 2.26,
simply by putting n full adders in parallel. This works, because

�a�� �b�� �c� �
n�1

∑
i�0

�ai �bi �ci� �2
i

�
n�1

∑
i�0

�ti�1 si� �2
i

�
n�1

∑
i�0

�2 � ti�1 �si� �2
i � �s�� �t��

The cost and the delay of such a carry save adder are

C3�2add�n� � n �CFA

D3�2add�n� � DFA�

The point of the construction is, of course, that the delay of carry save
adders is independent of n.
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b[0]a[0]

FA FA

s[0]t[1] t[0]

0FA

s[1]t[2]

a[1] b[1]

t[n] s[n-1]

a[n-1]
c[1] c[0]c[n-1]

b[n-1]

. . .

�	
��� ���� Circuit of an n-bit carry save adder, i.e., of an n-3/2-adder.

m-operand addition tree

add(n+m)

0j0m-1-j0m-1 0m-1

b[0]
a aa

st

p[n+m-1:0]

0

b[j]b[m-1]

. . . . . .

�	
��� ���� Circuit of an �n�m�-multiplier

��'�# 5-������������ ����%

An addition tree with m operandsis a circuit which takes as inputs mbinary
numbers and which outputs a carry save representation of their sum. Using
addition trees, one can construct �n�m�-multipliers as suggested in figure
2.27. First, one generates binary representations of the m partial products
St�1. These are fed into an addition tree with moperands. The output of the
tree is a carry save representation of the desired product. An ordinary adder
then produces from the carry save representation the binary representation
of the product.

We proceed to construct a particularly simple family of addition trees. In
figure 2.28 (a) representations of the partial sums S0�1�S1�1 and S2�1 are fed
into an n-carry save adder. The result is a carry save representation of S0�3
with length n�3. In figure 2.28 (b) the representation of St�1�1 and a carry
save representation of S0�t�1 are fed into an n-carry save adder. The result
is a carry save representation of S0�t with length n� t. By cascading m�2
many n-carry save adders as suggested above, one obtains an addition tree
which is also called a multiplication arraybecause of its regular structure.

If the final addition is performed by an �n�m�-carry lookahead adder,
one obtains an �n�m�-multiplier with the following cost and delay
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S0,1

1,1S
S2,1

0

carry save adder(n)

t-1,1S

S0,t-1

S0,t

carry save adder(n)

0 ... 0

b)

S0,3

a)

�	
��� ���� Generating a carry save representation of the partial sums S0�3 (a) and
S0�t (b).

CMULarray�n�m� � n �m�Cand��m�2� �C3�2add�n��CCLA�n�m�

DMULarray�n�m� � Dand��m�2� �D3�2add�n��DCLA�n�m��

��'�& &6�7����

The delay of multiplication arrays is proportional to m. The obvious next
step is to balance the addition trees, hereby reducing the delay to O�logm�.
We use here a construction which is particularly regular and easy to ana-
lyze.

An n-4/2-adderis a circuit with inputs a�n�1 : 0�, b�n�1 : 0�, c�n�1 : 0�,
d�n�1 : 0� and outputs s�n�1 : 0�, t�n�1 : 0� satisfying

�a�� �b�� �c�� �d� � �s�� �t� mod 2n�

The obvious construction of n-4/2-adders from two n-3/2-adders is shown
in figure 2.29. Its cost and delay are

C4�2add�n� � 2 �C3�2add�n� � 2 �n �CFA

D4�2add�n� � 2 �D3�2add�n� � 2 �DFA�

�������� �		����� ����

With the help of 4/2-adders, one constructs complete balanced addition
trees by the recursive construction suggested in figure 2.30. Note that we
do not specify the width of the operands yet. Thus, figure 2.30 is not yet
a complete definition. Let K � 2 be a power of two. By this construction,
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a b c

3/2add(n)

3/2add(n)

n nn

d

nn

nnn

t s

�	
��� ���� Circuit of an n-4/2-adder

S0S1S2S3

4/2-adder

T(K/2)

. . .

T(K/2)

. . .
S02K-1S SK-1SK

b)a)

4/2-adder

�	
��� ��� Complete balanced addition tree T�K� with 2K operands S0, � � � �

S2K�1, where K is a power of two; a) tree T�2�, b) tree T�K�.

one obtains addition trees T�K� with 2K inputs. Such a 4/2-tree T�K� has
the delay

DT�K� � logK �2 �DFA�

.��������� �		����� ����
For the construction of IEEE-compliant floating point units we will have
to construct �n�m�-multipliers where m is not a power of two. Let

M � 2�logm� and µ � log�M�4��

Thus, M is the smallest power of two with M �m. As a consequence of the
IEEE floating point standard [Ins85] and of the division algorithm used in
the floating point unit, the length m� �27�58� of the operand b�m�1 : 0�,
and hence the number of operands of the addition tree, will satisfy the
condition

3�4 �M �m� M�

In this case, we construct an addition tree T �m� with m operands as
suggested in figure 2.31 2. The tree T �m� has depth µ. The bottom portion

2For the complementary case see exercise 2.3
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S3 S0

4/2-adder

. . .Sm-3 S4a S4a-4S4a+2Sm-1

S4a-1

4/2-adder

M/4-a many a many

. . . . . .

. . .

3/2-adder 3/2-adder

complete 4/2-adder tree T(M/4)

Sm-2 S4a+1

�	
��� ��� Construction of a 4/2-adder tree T �m� adding inputs S0� � � � �Sm�1

of the tree is a completely regular and balanced 4/2-tree T�M�4� with M�4
many pairs of inputs and M�8 many 4/2-adders as leaves. In the top level,
we have a many 4/2-adders and M�4�a many 3/2-adders. Here, a is the
solution of the equation

4a�3 � �M�4�a� � m�

hence

a� m�3M�4�

Note that for i � 0�1� � � �, the partial products Si�1 are entered into the
tree from right to left and that in the top level of the tree the 3/2-adders are
arranged left of the 4/2-adders. For the delay of a multiplier constructed
with such trees one immediately sees

D4�2mul�n�m� � Dand�2 � �µ�1� �DFA�DCLA�n�m��

��� �� ��� �		����� ����

Estimating the cost of the trees is more complicated. It requires to estimate
the cost of all 3/2-adders and 4/2-adders of the construction. For this es-
timate, we view the addition trees as complete binary trees T in the graph
theoretic sense. Each 3/2-adder or 4/2-adder of the construction is a node
v of the tree. The 3/2-adders and 4/2-adders at the top level of the addition
tree are then the leaves of T.

The cost of the leaves is easily determined. Carry save representations of
the sums Si�3 are computed by n-3/2-adders in a way completely analogous
to figure 2.28 (a). The length of the representation is n� 3. Figure 2.32
shows that carry save representations of sums Si�4 can be computed by two
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0

carry save adder(n)

carry save adder(n)

0

Si,1

Si+3,1

Si,3

Si,4

Si+2,1
i+1,1S

�	
��� ��� Partial compression of Si�4

n-3/2 adders 3. The length of the representation is n�4. Thus, we have

c�v� � 2 �n �CFA

for all leaves v of T.
Let v be an interior node of the tree with left son L�v� and right son R�v�.

Node v then computes a carry save representation of the sum

Si�k�h � Si�k�Si�k�h�

where R�v� provides a carry save representation of Si�k and L�v� provides a
carry save representation of Si�k�h. If the length of the representations are
i �k and i �k�h, by Equation (2.4) we are then in the situation of figure
2.33. Hence node v consists of 2n�2h full adders.

If all 3/2-adders in the tree would have exactly n full adders, and if all
4/2-adders would have 2n full adders, the cost of the tree would be n� �m�
2�. Thus, it remains to estimate the number of excess full addersin the
tree.

� ������������� 3����

Let T be a complete binary tree with depth µ. We number the levels � from
the leaves to the root from 0 to µ. Each leaf u has weight W�u�. For some
natural number k, we have W�u�� �k� k�1� for all leaves, and the weights
are nondecreasing from left to right. Let m be the sum of the weights of

3Formally, figure 2.32 can be viewed as a simplified �n�3�-4/2-adder
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0 ... 0
0 ... 0

0 ... 0
0 ... 0

0 ... 0
0 ... 0

Si,k

Si+k,h

Si,k+h

n+h k i

h n k i

4/2-adder(n+h)

�	
��� �� Partial compression of Si�k�h

the leaves. For µ� 4, m� 53, and k � 3, the leaves would, for example,
have the weights 3333333333344444. For each subtree t of T , we define

W�t� � ∑
u leaf of t

W�u��

where u ranges over all leaves of t. For each interior node v of T we define
L�v� and R�v� as the weight of the subtree rooted in the left or right son of
v, respectively. We are interested in the sums

H� � ∑
level �

L�v� and H �
µ

∑
��1

H��

where v ranges over all nodes of level �. The cost H then obeys

� ����� ���

�µ�m��2�2µ�1 � H � �µ�m��2

By induction on the levels of T one shows that in each level weights are �����
nondecreasing from left to right, and their sum is m. Hence,

2H� � ∑
level �

L�v�� ∑
level �

R�v� � ∑
level �

W�v� � m�

This proves the upper bound.
In the proof of the upper bound we have replaced each weight L�v� by

the arithmetic mean of L�v� and R�v�, overestimating L�v� by

h�v� � �L�v��R�v���2�L�v� � �R�v��L�v���2�
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Observe that all nodes in level �, except possibly one, have weights in

�k �2�, �k�1� �2��. Thus, in each level � there is at most one node v� with
R�v�� �� L�v��. For this node we have

h�v��� ��k�1� �2��1�k �2��1��2 � 2��2�

Hence, the error in the upper bound is at most

µ

∑
��1

2��2 � 2µ�1�

���

We now use this lemma in order to estimate the number of excess full
adders in the adder tree T �m� of figure 2.31. For that purpose, we label
every leaf u of T �m� with the number W�u� of partial products that it
sums, i.e., in case of a 3/2-adder, u is labeled with W�u� � 3, and in case
of a 4/2-adder it is labeled with W�u� � 4. In figure 2.31, we then have

h�W�L�u���

and the number E of excess full adders can be estimated as

E � 2 �H � µ�m�

The error in this bound is at most

2 �2µ�1 � 2 �0�5 �M�4 � m�3�

Thus, the upper bound is quite tight. A very good upper bound for the cost
of 4/2-trees is therefore

C4�2tree�n�m� � �n � �m�2��E� �CFA

� �n � �m�2��µ�m� �CFA�

A good upper bound for the cost of multipliers built with 4/2-trees is

C4�2mul�n�m� � n �m�Cand�C4�2tree�n�m��CCLA�n�m��

��'�' 5-�������� ����  ���� 8���	��


Booth recoding is a method which reduces the number of partial products
to be summed in the addition tree. This makes the addition tree smaller,
cheaper and faster. On the other hand, the generation of partial products

&�
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add(n+m)

st

p[n+m-1:0]

0

S’0,2S’2,2S’2m’-2,2

Booth partial products Bgen(n,m’)

a[n-1:0] b[m-1:0]

m’-Booth addition tree

. . .

�	
��� ��� Structure of a �n�m�-Booth multiplier with addition tree

becomes more expensive and slower. One therefore has to show, that the
savings in the addition tree outweigh the penalty in the partial product
generation.

Figure 2.34 depicts the structure of a 4/2-tree multiplier with Booth re-
coding. Circuit Bgengenerates the m� Booth recoded partial products S�2 j �2,
which are then fed into a Booth addition tree. Finally, an ordinary adder
produces from the carry save result of the tree the binary representation of
the product. Thus, the cost and delay of an �n�m�-multiplier with 4/2-tree
and Booth recoding can be expressed as

C4�2Bmul�n�m� � CBgen�n�m
���C4�2Btree�n

��m���CCLA�n�m�

D4�2Bmul�n�m� � DBgen�n�m
���D4�2Btree�n

��m���DCLA�n�m��

 ����7� 8���	��

In the simplest form (called Booth-2) the multiplier b is recoded as sug-
gested in figure 2.35. With bm�1 � bm � b�1 � 0 and m� � �m� 1��2�,
one writes

�b� � 2�b���b� �
m��1

∑
j�0

B2 j �4
j �

where

B2 j � 2b2 j �b2 j�1�2b2 j�1�b2 j � �2b2 j�1 �b2 j �b2 j�1�

The numbers B2 j � ��2��1�0�1�2� are called Booth digits, and we define
their sign bits s2 j by

s2 j �

�
0 if B2 j � 0
1 if B2 j � 0�

&#
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Bm Bm-2 Bi B2 B0

0b

bb

b

b bb

b b bb

b

b

b

0

01

1

i-1i

i

i+1

i+1

m

m m-1

m-1

i-1

0

2<b>

-<b>

�	
��� ��� Booth digits B2 j

With

C2 j � �a� �B2 j � ��2n�1�2� � � �2n�1�

D2 j � �a� � �B2 j � � �0� � � �2n�1�

d2 j � binn�1�D2 j��

the product can be computed from the sums

�a� � �b� � ∑m��1
j�0 �a�B2 j4

j � ∑m��1
j�0 C2 j �4

j

� ∑m��1
j�0 ��1�s2 j �D2 j �4

j �

In order to avoid negative numbers C2 j , one sums the positive E2 j in-
stead:

E2 j � C2 j �3 �2n�1

E0 � C0 �4 �2n�1

e2 j � binn�3�E2 j�

e0 � binn�4�E0��

This is illustrated in figure 2.36. The additional terms sum to

2n�1�1�3 �
m��1

∑
j�0

4 j� � 2n�1�1�3 �
4m�

�1
3

� � 2n�1�2�m�

�

Because 2 �m� � m these terms are congruent to zero modulo 2n�m. Thus,

�a� � �b� �

�
m��1

∑
j�0

E2 j �4
j

�
mod 2n�m�

The binary representation e2 j of E2 j can be computed by����� ��� �

�e2 j� � �1s2 j �d2 j 	s2 j��s2 j

�e0� � �s0s0s0�d0	s0��s0�
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11

11
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��< a >     B0-+

-+

-+

-+
E        :2m’-2

4E     :

2E     :

0E     :

��

����

��
��
��
��

1

0

0

0

0

0

0

0

0 0 0 0

0

0 0

00

0

< a >     B2

d    =4

< a >     B

d    =

d    =

d       =
2m’-2 2m’-2

< a >     B4

2

�	
��� ��� Summation of the E2 j

For j � 0 and s2 j � 0, we have �����

�e2 j� � �11�0n�1�� �00�d2 j� � �11�d2 j �

� �1s2 j �d2 j 	s2 j��s2 j �

For j � 0 and s2 j � 1, we have

�e2 j� � �110n�1�� �11d2 j��1 mod 2n�3

� �10�d2 j ��1 mod 2n�3

� �1s2 j �d2 j 	s2 j��s2 j �

For j � 0, one shows along the same lines that

�e0� � �s0s0s0�d0	s0��s0

���

By lemma 2.6, the computation of the numbers

F2 j � E2 j �s2 j

f2 j � binn�3�F2 j�

f0 � binn�4�F0�

is easy, namely

f2 j � �1s2 j � d2 j 	s2 j�

f0 � �s0s0s0� d0	s0��
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0 0

2m’-2
s

1

1

1

g
g
g

g

0

2

4

2m 2m’

4

2

0 0 0

s
s
s s s

s s

d s

d s
d s

2m’ 2m’
d

4 4

2 2

0 0

0

2

’ 0

0 s
0 s

�	
��� ��� Construction of the partial products S�

2 j �2

Instead of adding the sign bits s2 j to the numbers F2 j , one incorporates
them at the proper position into the representation of F2 j�2, as suggested
in figure 2.37. The last sign bit does not create a problem, because B2m��2

is always positive. Formally, let

g2 j � � f2 j 0s2 j�2� � �0�1�n�5

g0 � � f0 00� � �0�1�n�6�

then
�g2 j� � 4 � � f2 j��s2 j�2 � 4 �F2 j �s2 j�2�

and with s�2 � s2m��2 � 0, the product can also be written as

�a� � �b� �
�
∑m��1

j�0 E2 j �4
j
�

mod 2n�m

� ∑m��1
j�0 �4 � �F2 j �s2 j�� �4

j�1

� ∑m��1
j�0 �4 �F2 j �s2 j�2� �4

j�1 � ∑m��1
j�0 �g2 j� �4

j�1�

We define

S�2 j �2k �
j�k�1

∑
t� j

�g2 j� �4
j�1�

then

S�2 j �2 � �g2 j� �4
j�1 � � f2 j �0s2 j�2� �4

j�1

S�2 j �2�k�h� � S�2 j �2k�S�2 j�2k�2h

and it holds:

S�2 j �2k is a multiple of22 j�2 bounded by S�2 j �2k � 2n�2 j�2k�2. Therefore, at����� ��� �

most n+4+2k non-zero positions are necessary to represent S�
2 j �2k in both

carry-save or binary form.
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����� by induction over k. For k� 1:

S�2 j �2 � �1n�6� �4 j�1 � 2n�6 �22 j�2 � 2n�2 j�2�1�2�

For k� 1: It is known from the assumption that S�2 j �2k�2 � 2n�2 j�2k. Thus,

S�2 j �2k � S�2 j �2�k�1�� �g2� j�k�1� �4
j�k�2�

� 2n�2 j�2k�2n�5 �22 j�2k�2

� �1�2� �2n�2 j�2k � 2n�2 j�2k�2

���

��'�( ��� ��	 +���% �� ���  ���� 5-��������

Partial Product Generation The binary representation of the numbers
S�2 j �2 must be computed (see figure 2.37). These are

g2 j � �1s2 j �d2 j 	s2 j �0s2 j�2�

g0 � �s0s0s0�d0	s0�00�

shifted by 2 j � 2 bit positions. The d2 j � binn�1��a� � �B2 j �� are easily
determined from B2 j and a by

d2 j �

��
�

�0� � � � �0� if B2 j � 0
�0�a� if �B2 j �� 1
�a�0� if �B2 j �� 2�

For this computation, two signals indicating �B2 j � � 1 and �B2 j � � 2 are
necessary. We denote these signals by

b12 j �

�
1 if �B2 j �� 1
0 otherwise

b22 j �

�
1 if �B2 j �� 2
0 otherwise

and calculate them by the Booth decoder logic BD of figure 2.38 (a). The
decoder logic BD can be derived from table 2.6 in a straightforward way.
It has the following cost and delay:

CBD � Cxor�Cxnor�Cnor�Cinv

DBD � max�Dxor� Dxnor��Dnor�

The selection logic BSLof figure 2.38 (b) directs either bit a�i�, bit a�i �
1�, or 0 to position i �1. The inversion depending on the sign bit s2 j then
yields bit g2 j �i�3�. The select logic BSLhas the following cost and delay:

CBSL � 3 �Cnand�Cxor

DBSL � 2 �Dnand�Dxor�
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BASICS ����� ��� Representation of the Booth digits

b�2 j �1 : 2 j�1� B2 j b�2 j �1 : 2 j�1� B2 j

000 0 100 -2
001 1 101 -1
010 1 110 -1
011 2 111 -0

2j+1b b2j b2j-1

b12jb22j2js2j/s

2js

[i+3]2jg

b22jb12j

2jd [i+1]

a[i]a[i+1]b)a)

�	
��� ��� The Booth decoder BD (a) and the Booth selection logic BSL(b)

The select logic BSL is only used for selecting the bits g2 j �n� 2 : 2�; the
remaining bits g2 j �1 : 0� and g2 j �n�5 : n�3� are fixed. For these bits, the
selection logic is replaced by the simple signal of a sign bit, its inverse, a
zero, or a one. Thus, for each of the m� partial products n�1 many select
circuits BSLare required. Together with the m� Booth decoders, the cost of
the Booth preprocessing runs at

CBpre�n�m
�� � m� � �CBD��n�1� �CBSL��

Redundant Partial Product Addition Let M� � 2�logm�� be the smallest
power of two which is greater or equal m� � �m� 1��2�, and let µ� �
log�M�4�. For m� �27�58�, it holds that

3�4 �M� � m� � M��

For the construction of the Booth 4/2-adder tree T ��m��, we proceed as in
section 2.5.4, but we just focus on trees which satisfy the above condition.

The standard length of the 3/2-adders and the 4/2-adders is now n� �
n�5 bits; longer operands require excess full adders. Let E� be the number
of excess full adders. Considering the sums S� instead of the sums S, one
shows that the top level of the tree has no excess full adders. Let H� be the
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MULTIPLIERS
sum of the labels of the left sons in the resulting tree. With Booth recoding,
successive partial products are shifted by 2 positions. Thus, we now have

E� � 4 �H ��

Since H � is bounded by �µ� �m���2, we get

E� � 2 � �µ� �m���

Thus, the delay and the cost of the 4/2-tree multiplier with Booth-2 recod-
ing can be expressed as

C4�2Btree � �n� � �m��2��E�� �CFA

� �n� � �m��2��2 �µ� �m�� �CFA

D4�2Btree � 2 � �µ��1� �DFA�

Let C� and D� denote the cost and delay of the Booth multiplier but with-
out the �n�m�-bit CLA adder, and let C and D denote the corresponding
cost and delay of the multiplier without Booth recoding:

C� � C4�2Bmul�n�m��CCLA�n�m�

D� � D4�2Bmul�n�m��DCLA�n�m�

C � C4�2mul�n�m��CCLA�n�m�

D � D4�2mul�n�m��DCLA�n�m��

For n� m� 58, we then get

C��C � 45246�55448 � 81�6%
D��D � 55�62 � 88�7%�

and for n� m� 27, we get

C��C � 10234�12042 � 84�9%
D��D � 43�50 � 86�0%

Asymptotically, C��C tends to 12�16 � 0�75. Unless m is a power of two,
we have µ� µ�� 1 and D�D� � 7. Hence D��D tends to one as n grows
large.

When taking wire delays in a VLSI layout into account, it can be shown
that Booth recoding also saves a constant fraction of time (independent of
n) in multipliers built with 4/2-trees [PS98].
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Finite state transducersare finite automata which produce an output in
every step. Formally, a finite state transducer is specified by a 6-tuple
�Z� In�Out�z0�δ� η�, where Z is a finite set of states; z0 � Z is called the
initial state. In is a finite set of input symbols, Out is a finite set of output
symbols,

δ : Z� In� Z

is the transition function, and

η : Z� In�Out

is the output function.
Such an automaton works step by step according to the following rules:

� The automaton is started in state z0.

� If the automaton is in state z and reads input symbol in, it then out-
puts symbol η�z� in� and goes to state δ�z� in�.

If the output function does not depend on the input in, i.e., if it can be
written as

η : Z�Out�

then the automaton is called a Moore automaton. Otherwise, it is called a
Mealy automaton.

Obviously, the input of an automaton which controls parts of a com-
puter will come from a certain number σ of input lines in�σ� 1 : 0�, and
it will produce outputs on a certain number γ of output lines out�γ�1 : 0�.
Formally, we have

In � �0�1�σ and Out� �0�1�γ�

It is common practice to visualize automata as in figure 2.39 which
shows a Moore automaton with 3 states z0, z1, and z2, with the set of input
symbols In � �0�1�2 and with the set of output symbols Out � �0�1�2.
The automaton is represented as a directed graph �V�E� with labeled edges
and nodes.

The set of nodes V of the graph are the states of the automaton. We draw
them as rectangles, the initial state is marked by a double border. For any
pair of states �z��z�, there is an edge from z� to z in the set E of edges if
δ�z�� in� � z for some input symbol in, i.e., if a transition from state z� to
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CONTROL

AUTOMATAz1
out = (101)

z0
out = (010)

z2
out = (011)

{0, 1}2

{00, 01}
{01, 10, 11}

{00} {11}

�	
��� ��� Representation of a Moore automaton with tree states, the set In �

�0�1�2 of input symbols and the set Out� �0�1�3 of output symbols.

state z is possible. The edge �z�z� is labeled with all input symbols in that
take the automaton from state z� to state z. For Moore automata, we write
into the rectangle depicting state z the outputs signals which are active in
state z.

Transducers play an important role in the control of computers. There-
fore, we specify two particular implementations; their cost and delay can
easily be determined if the automaton is drawn as a graph. For a more
general discussion see, e.g., [MP95].

��(�� ��	��
 ��� �����

Let k� #Z be the number of states of the automaton. Then the states can be
numbered from 0 to k�1, and we can rename the states with the numbers
from 0 to k�1:

Z � �0� � � � �k�1��

We always code the current state z in a register with outputs S�k�1 : 0�
satisfying

Si �

�
1 if z� i
0 otherwise

for all i. This means that, if the automaton is in state i, bit Si is turned on
and all other bits Sj with j �� i are turned off. The initial state always gets
number 0. The cost of storing the state is obviously k �Cf f .

��(�# 9��������
 ��� �-��-�

For each output signal outj �Out, we define the set of states

Zj � �z� Z � outj is active in state z�
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in which it is active. Signal outj can then obviously be computed as

outj �
�

z�Zj

Sz�

We often refer to the cardinality

ν j � #Zj

as the frequency of the output signal outj ; νmax and νsum denote the maxi-
mum and the sum of all cardinalities νj :

νmax � max�ν j �0 � j � γ� � νsum �
γ�1

∑
j�0

ν j �

In the above example, the subsets are Z0 � �z1�z2�, Z1 � �z0�z2�, Z2 �
�z1�, and the two parameters have the values νmax� 2 and νsum� 5.

Each output signal outj can be generated by a ν j -input OR-tree at the cost
of �ν j �1� �Cor and the delay of log ν j� �Dor. Thus, a circuit O generating
all output signals has the following cost and delay:

CO �
γ�1

∑
i�0

�νi �1� �Cor � �νsum�γ� �Cor

DO � max�log νi� � 1 � i � γ� �Dor � log νmax� �Dor�

��(�& ����-���
 ��� !��� �����

For each edge �z�z�� � E, we derive from the transition function δ the
booleanfunction δz�z� specifying under which inputs the transition from
state z to state z� is taken:

δz�z��in�σ�1 : 0�� � 1 
 δ�z� in�σ�1 : 0�� � z��

Let D�z�z�� be a disjunctive normal form of δz�z� . If the transition from
z to z� occurs for all inputs in, then δz�z� � 1� and the disjunctive normal
form of δz�z� consists only of the trivial monomial m� 1. The automaton
of figure 2.39 comprises the following disjunctive normal forms:

D�z0�z1� � in1� in0 � D�z0�z2� � in1 � in0 � D�z2�z0� � 1 �

D�z1�z1� � in1 � D�z1�z2� � in1� in0�

Let M�z�z�� be the set of monomials in D�z�z�� and let

M �
�

�z�z���E

M�z�z����1�
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be the set of all nontrivial monomials occurring in the disjunctive forms
D�z�z��. The next state vector N�k� 1 : 1� can then be computed in three
steps:

1. compute inj for each input signal inj ,

2. compute all monomials m�M,

3. and then compute for all z between 1 and k�1 the bit

N�z� �
�

�z��z��E Sz� �
�

m�M�z��z�m

�
�

�z��z��E
�

m�M�z��z��Sz� �m��
(2.5)

Note that we do not compute N�0� yet. For each monomial m, its length
l�m� denotes the number of literals in m; lmaxand lsumdenote the maximum
and the sum of all l�m�:

lmax � max�l�m� �m�M� � lsum � ∑
m�M

l�m��

The computation of the monomials then adds the following cost and delay:

CCM � σ �Cinv��lsum�#M� �Cand

DCM � Dinv� log lmax� �Dand�

For each node z, let

f anin�z� � ∑
�z��z��E

#M�z��z�

f aninmax � max� f anin�z� �1 � z� k�1�

f aninsum �
k�1

∑
z�1

f anin�z��

the next state signals N�k� 1 : 1� can then be generated at the following
cost and delay:

CCN � f aninsum� �Cand�Cor�� �k�1� �Cor

DCN �  log� f aninmax�� �Dor �Dand�

Thus, a circuit NScomputing these next state signals along these lines from
the state bits S�k�1 : 0� and the input in�σ�1 : 0� has cost and delay

CNS � CCM �CCN

DNS � DCM �DCN�

Table 2.7 summarizes all the parameters which must be determined from
the specification of the automaton in order to determine cost and delay of
the two circuits O and NS.
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Parameter Meaning

σ # inputs inj of the automaton
γ # output signals outj of the automaton
k # states of the automaton

νmax, νsum maximal / accumulated frequency of all outputs
#M # monomials m�M (nontrivial)

lmax, lsum maximal / accumulated length of all m�M
fanmax, fansum maximal / accumulated fanin of states z �� z0

zero(k-1)

��
��
��
��

k

σ
in

0k-1 1

��0 1

m

N[0]

NS

N[k-1:1]

γ
outCM CN O

S

ce
clr

�	
��� ���� Realization of a Moore automaton

��(�' 5���� �-������

Figure 2.40 shows a straightforward realization of Moore automata with
clock enable signal ce and clear signal clr . The automaton is clocked
when at least one of the signals ce and clr is active. At the start of the
computation, the clear signal clr is active. This forces the pattern 0k�11,
i.e., the code of the initial state 0 into register S. As long as the clear signal
is inactive, the next state N is computed by circuit NSand a zero tester. If
none of the next state signals N�k� 1 : 1� is active, then the output of the
zero tester becomes active and next state signal N�0� is turned on.

This construction has the great advantage that it works even if the tran-
sition function is not completely specified, i.e., if δ�z� in� is undefined for
some state z and input in. This happens, for instance, if the input in codes
an instruction and a computer controlled by the automaton tries to execute
an undefined (called illegal) instruction.

In the Moore automaton of figure 2.39, the transition function is not
specified for z1 and in � �10�. We now consider the case, that the automa-
ton is in state z1 and reads input �10�. If all next state signals including
signal N�0� are computed according to equation (2.5) of the previous sub-
section, then the next state becomes 0k. Thus, the automaton hangs and
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zero(k-1)

��
��
��
��

0k-1 1

����
σ

in Rout

O
γ

S

clrce
��

0 1

m

N[0]

N[k-1:1]

k

out
CM CN

NS

clr

�	
��� ���� Realization of a Moore automaton with precomputed outputs

can only be re-started by activating the clear signal clr . However, in the
construction presented here, the automaton falls gracefully back into its
initial state. Thus, the transition δ�z1�10� � z0 is specified implicitly in
this automaton.

Let A�in� and A�clr�ce� denote the accumulated delay of the input sig-
nals in and of the signals clr and ce. The cost, the delay and the cycle time
of this realization can then be expressed as

CMoore � Cf f �k��CO�CNS�Czero�k�1��Cmux�k��Cor

A�out� � DO

TMoore � max�A�clr�ce��Dor� A�in��DNS�Dzero�k�1��

�Dmux�∆�

��(�( "������-���
 ��� ������� ��
���

In the previous construction of the Moore automaton it takes time DO from
the time registers are clocked until the output signal are valid. In the con-
struction of figure 2.41, the control signals are therefore precomputed and
clocked into a separate register Rout. This increases the cycle time of the
automaton by DO, but the output signals out�γ� 1 : 0� are valid without
further delay. The cost, the delay, and the cycle time of the automaton then
run at

CpMoore � Cf f �k��CO�CNS�Czero�k�1��Cmux�k��Cf f �γ��Cor

A�out� � 0

TpMoore � max�A�clr�ce��Dor� A�in��DNS�Dzero�k�1��

�Dmux�DO�∆�

This will be our construction of choice for Moore automata. The choice
is not completely obvious. For a formal evaluation of various realizations
of control automata see [MP95].
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z0
out = (010)

z1
out = (101)

out[3] if in[0]

z2
out = (011)

out[3] if /in[1]

{0, 1}2
{11}

{01, 10, 11}

{00}

{00, 01}

�	
��� ���� Representation of a Mealy automaton with tree states, inputs in�1 : 0�,
and outputs out�3 : 0�; out�3� is the only Mealy component of the output.

��(�/ 5���% �-������

Consider a Mealy automaton with input signals in�σ� 1 : 0� and output
signals out�γ� 1 : 0�. In general, not all components out� j� of the output
will depend on both, the current state and the input signals in�σ� 1 : 0�.
We call out� j� a Mealy componentif it depends on the current state and the
current input; otherwise we call out� j� a Moore component.

Let outj be a Mealy component of the output. For every state z in which
outj can be activated, there is a boolean function fz� j such that

outj is active in state z 
 fz� j�in� � 1�

If the Mealy output outj is never activated in state z, then fz� j � 0. If the
Mealy output outj is always turned on in state z, then fz� j � 1. For any
Mealy output outj we define the set of states

Z�
j � �z � fz� j �� 0�

where outj can possibly be turned on.
Let F�z� j� be a disjunctive normal form of fz� j . With the help of F�z� j�

we can visualize Mealy outputs outj in the following way. Let z be a state
– visualized as a rectangle – in Z�j ; we then write inside the rectangle:

outj if F�z� i��

In figure 2.42, we have augmented the example automaton by a new Mealy
output out�3�.

Let MF�z� j� be the set of monomials in F�z� j�, and let

MF �
γ�1�

j�0

�

z�Z�

j

MF�z� j���1�

be the set of all nontrivial monomials occurring in the disjunctive normal
forms F�z� j�. The Mealy outputs outj can then be computed in two steps:
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1. compute all monomials m�M�MF in a circuit CM (the monomials
of M are used for the next state computation),

2. and for any Mealy output outj , circuit O computes the bit

outj �
�

z�Z�

j

S�z� �
�

m�MF�z� j�

m �
�

z�Z�

j

�

m�MF�z� j�

�S�z��m��

Circuit CM computes the monomials m� M�MF in the same way as
the next state circuit of section 2.6.4, i.e., it first inverts all the inputs ini

and then computes each monomial m by a balanced tree of AND-gates.
Let l fmax and lmax denote the maximal length of all monomials in MF and
M, respectively, and let lsumdenote the accumulated length of all nontrivial
monomials. Circuit CM can then generate the monomials of M� �MF�M
at the following cost and delay:

CCM � σ �Cinv��lsum�#M�� �Cand

DCM�MF� � Dinv� log l fmax� �Dand

DCM�M� � Dinv� log lmax� �Dand�

Circuit CM is part of the circuit NSwhich implements the transition func-
tion of the automaton.

Since the Moore components of the output are still computed as in the
Moore automaton, it holds

outj �

� �
z�Zj

S�z� for a Moore component
�

z�Z�

j

�
m�F�z� j��S�z��m� for a Mealy component.

The number of monomials required for the computation of a Mealy output
outj equals

ν j � ∑
z�Z�

j

#MF�z� j��

In analogy to the frequency of a Moore output, we often refer to νj as the
frequencyof the Mealy output outj . Let νmaxand νsumdenote the maximal
and the accumulated frequency of all outputs out�γ� 1 : 0�. The cost and
the delay of circuit O which generates the outputs from the signals m�MF
and S�k�1 : 0� can be estimated as:

CO � νsum� �Cand�Cor��γ�Cor

DO � Dand� logνmax� �Dor�

A Mealy automaton computes the next state in the same way as a Moore
automaton, i.e., as outlined in section 2.6.4. The only difference is that in
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N[0]

NS

N[k-1:1]

M

MF
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k

CM
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γ

O
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out

�	
��� ��� Realization of a Mealy automaton

the Mealy automaton, circuit CM generates the monomials required by the
transition function as well as those required by the output function. Thus,
the cost and delay of the next state circuit NScan now be expressed as

CNS � CCM �CCN

DNS � DCM�M��DCN�

Let A�in� and A�clr�ce� denote the accumulated delay of the input sig-
nals in and of the signals clr and ce. A Mealy automaton (figure 2.43) can
then be realized at the following cost and delay:

CMealy � Cf f �k��CO�CNS�Czero�k�1��Cmux�k��Cor

A�out� � A�in��DCM�MF��DO

TMealy � max�A�clr�ce��Dor� A�in��DNS�Dzero�k�1��

�Dmux�∆�

��(�) .���������� ���� ��� +��� "���

All the processor designs of this monograph consist of control automata
and the so called data paths(i.e., the rest of the hardware). In such a
scenario, the inputs in of an automaton usually code the operation to be
executed; they are provided by the data paths DP. The outputs out of the
automaton govern the data paths; these control signalsat least comprise
all clock enable signals, output enable signals, and write signals of the
components in DP.

The interface between the control automaton and the data paths must be
treated with care for the following two reasons:

1. Not all of the possible outputs out� �0�1�γ are admissible; for some
values out, the functionality of the data paths and of the whole hard-
ware may be undefined. For example, if several tristate drivers are
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connected to the same bus, at most one these drivers should be en-
abled at a time in order to prevent bus contentions.

2. The signals in provided by the data paths usually depend on the cur-
rent control signals out, and on the other hand, the output out of the
automaton may depend on the current input in. Thus, after clocking,
the hardware not necessarily gets into a stable state again, i.e., some
control signals may not stabilize. However, stable control signals
are crucial for the deterministic behavior of designs.

�	������ ������� ��
���

The functionality of combinatorial circuits is well defined [Weg87]. How-
ever, the structure of the processor hardware H is more complicated; its
schematics also include flipflops, registers, RAMs, and tristate drivers.
These components require control signals which are provided by a con-
trol automaton.

The control signals define for every value out�Out a modified hardware
H�out�. In the modified hardware, a tristate driver with active enable signal
en� 1 is treated like a gate which forwards its input data signals to its
outputs. A tristate driver with inactive enable signal en� 0 is treated like
there would be no connection between its inputs and its outputs. As a
consequence, components and combinatorial circuits of H�out� can have
open inputs with an undefined input value.

A value out � Out of the control signals is called admissibleif the fol-
lowing conditions hold:

� Tristate drivers are used in the data paths but not in the control au-
tomata.

� In the modified hardware H�out�, combinatorial circuits and basic
components may have open inputs with an undefined value. Despite
of these open inputs, each input of a register with active clock enable
signal or of a RAM with active write signal has a value in �0�1�.

� In the modified hardware H�out�, any transfer between registers and
RAMs is of one of the four types depicted in figure 2.3.

Note, for all of our processor designs, it must be checked that the control
automata only generate admissible control signals.

������ ������� ��
���

In order to keep the functionality of the whole hardware (control automa-
ton and data paths DP) well defined, the data paths and the circuit O are
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partitioned into p parts each, DP�1�� � � � �DP�p� and O�1�� � � � �O�p�, such
that

� Circuit O�i� gets the inputs in�i� � �in0� � � � � inσ�1�; these inputs
are directly taken from registers or they are provided by circuits of
DP� j�, with j � i.

� Circuit O�i� generates the output signals out�i���out0� � � � �outγ�1�.
These signals only govern the data paths DP�i�.

Circuit NS can receive inputs from any part of the data paths and from any
output circuit O�i�.

The whole hardware which uses a common clock signal works in cycles.
Let the control automaton only generate admissible control signals out. It
then simply follows by induction over p that the control signals out�i�
stabilize again after clocking the hardware, and that the functionality of
the hardware is well defined (for every clock cycle). The control signals
out�i� have an accumulated delay of

AO�i� � DO�1��
i

∑
j�2

�DDP� j��DO� j���

For Moore automata, such a partitioning of the data paths and of the
automaton is unnecessary, since the control signals do not depend on the
current state. However, in a Mealy automaton, the partitioning is essential.
The signals out�1� then form the Moore component of the output.

"�������� �� ��� 5���% �-�������
The output signals of a Mealy automaton tend to be on the time critical
path. Thus, it is essential for a good performance estimate, to provide the
accumulated delay of every output circuit O�i� respectively the accumu-
lated delay of every subset out�i� of output signals:

AO�i� � A�out�i���

Let νmax�i� denote the maximal frequency of all output signals in out�i�,
and let l fmax�i� denote the maximal length of the monomials in the dis-
junctive normal forms F�z� j�, with j � out�i�. Thus:

A�out�i�� � A�in�i���DCM�MF� i��DO�i�

DO�i� � Dand� logνmax�i�� �Dor

DCM�MF� i� � Dinv� log l fmax�i�� �Dand�

Table 2.8 summarizes all the parameters which must be determined from
the specification of the automaton in order to determine the cost and the
delay of a Mealy automaton.
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����� ��� Parameters of a Mealy control automaton with p output levels
O�1�� � � � �O�p�

Symbol Meaning

σ # input signals inj of the automaton
γ # output signals outj of the automaton
k # states of the automaton

fansum accumulated fanin of all states z �� z0
fanmax maximal fanin of all states z �� z0

#M� # monomials m�M� � MF �M of the automaton
lsum accumulated length of all monomials m�M�

l fmax�i�, maximal length of the monomials of output level O�i�
lmax and of the monomials m�M of the next state circuit
νsum accumulated frequency of all control signals

νmax�i� maximal frequency of the signals out�i� of level O�i�

Aclr�ce accumulated delay of the clear and clock signals
Ain�i�, accumulated delay of the inputs in�i� of circuit O�i�
Ain and of the inputs in of the next state circuit

���  ������� ��!������� ��� "����� ������#

�
HE FORMAL hardware model used in this book is from [MP95]. The
extensive use of recursive definitions in the construction of switching

circuits is very common in the field of Complexity of Boolean Functions;
a standard textbook is [Weg87]. The description of Booth recoding at an
appropriate level of detail is from [AT97], and the analysis of Booth re-
coding is from [PS98]. Standard textbooks on computer arithmetic are
[Kor93, Omo94]. An early text on computer arithmetic with complete cor-
rectness proofs is [Spa76].

��$ %&�������

�������� ��	 Let m� n�2� for any n � 1. The high order sum bits of
an n-bit incrementer with inputs a�n� 1 : 0�, cin and output s�n : 0� can be
expressed as

�s�n : m�� � �a�n�1 : m���cm�1

�

�
�a�n�1 : m�� if cm�1 � 0
�a�n�1 : m���1 if cm�1 � 1�

(�
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BASICS
where cm�1 denotes the carry from position m� 1 to position m. This
suggests for the circuit of an incrementer the simple construction of fig-
ure 2.15 (page 26); the original problem is reduced to only two half-sized
problems. Apply this construction recursively and derive formulae for the
cost and the delay of the resulting incrementer circuit CSI.

�������� ��� Derive formulae for the cost and the delay of an �n�m�-mul-
tiplier which is constructed according to the school method, using carry
chain adders as building blocks.

�������� ��
 In section 2.5.4, we constructed and analyzed addition trees
T �m� for �n�m�-multipliers without Booth recoding. The design was re-
stricted to m satisfying the condition

3�4 �M � m � M with M � 2�log m��

This exercise deals with the construction of the tree T �m� for the remain-
ing cases, i.e., for M�2 � m� 3�4 �M. The bottom portion of the tree is
still a completely regular and balanced 4/2-tree T�M�4� with M�4 many
pairs of inputs and M�8 many 4/2-adders as leaves. In the top level, we
now have a many 3/2-adders and M�4�a many pairs of inputs which are
directly fed to the 4/2-tree T�M�4�. Here, a is the solution of the equation

3a�2 � �M�4�a� � m�

hence
a� m�M�2�

For i � 0�1� � � �, the partial products Si�1 are entered into the tree from right
to left and that in the top level of the tree the 3/2-adders are placed at the
right-hand side.

1. Determine the number of excess adders in the tree T �m� and derive
formulae for its cost and delay.

2. The Booth multiplier of section 2.5.5 used a modified addition tree
T ��m� in order to sum the Booth recoded partial products. Extend
the cost and delay formulae for the case that M��2 � m� � 3�4 �M�.

(�



Chapter

3
A Sequential DLX Design

�
N THE remainder of this book we develop a pipelined DLX machine
with precise interrupts, caches and an IEEE-compliant floating point

unit. Starting point of our designs is a sequential DLX machine without
interrupt processing, caches and floating point unit. The cost effectiveness
of later designs will be compared with the cost effectiveness of this basic
machine.

We will be able to reuse almost all designs from this chapter. The design
process will be – almost – strictly top down.

��� '�������
�  �� �����������

�
E SPECIFY the DLX instruction set without floating point instruc-
tions and without interrupt handling. DLX is a RISC architecture

with only three instruction formats. It uses 32 general purpose registers
GPR� j��31 : 0� for j � �0� � � �31�. Register GPR�0� is always 0.

Load and store operations move data between the general purpose reg-
isters and the memory M. There is a single addressing mode: the effective
address ea is the sum of a register and an immediate constant. Except for
shifts, immediate constants are alwayssign extended.
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RS1 RS2 RD SA

RS1

5

RD

5

opcode

opcode

opcode PC offset

function

immediateI-type

R-type

J-type

5 556 5 6

6

6 26

16

�	
��� �� The three instruction formats of the DLX fixed point core. RS1 and
RS2 are source registers; RD is the destination register. SA specifies a special
purpose register or an immediate shift amount; f unction is an additional 6-bit
opcode.

#���� .���-����� ,�����

All three instruction formats (figure 3.1) have a 6-bit primary opcode and
specify up to three explicit operands. The I-type (Immediate) format spec-
ifies two registers and a 16-bit constant. That is the standard layout for
instructions with an immediate operand. The J-type (Jump) format is used
for control instructions. They require no explicit register operand and profit
from a larger 26-bit immediate operand. The third format, R-type (Regis-
ter) format, provides an additional 6-bit opcode (function). The remaining
20 bits specify three general purpose registers and a field SAwhich spec-
ifies a 5-bit constant or a special purpose register. A 5-bit constant, for
example, is sufficient for a shift amount.

#���� .���-����� ��� ��	��


Since the DLX description in [HP90] does not specify the coding of the
instruction set, we adapt the coding of the MIPS R2000 machine ([PH94,
KH92]) to the DLX instruction set. Tables 3.1 through 3.3 list for each
DLX instruction its effect and its coding; the prefix “hx” indicates that the
number is represented as hexadecimal. Taken alone, the tables are almost
but not quite a mathematical definition of the semantics of the DLX ma-
chine language. Recall that mathematical definitions have to make sense if
taken literally.

So, let us try to take the effect

RD � �RS1 � imm? 1 : 0�

(&
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����� �� I-type instruction layout. All instructions except the control instruc-
tions also increment the PC by four; sxt�a� is the sign-extended version of a.
The effective address of memory accesses equals ea� �GPR�RS1��� �sxt�imm��,
where immis the 16-bit intermediate. The width of the memory access in bytes is
indicated by d. Thus, the memory operand equals m� M�ea�d�1�� � � � �M�ea�.

IR�31 : 26� Mnemonic d Effect

Data Transfer
hx20 lb 1 RD = sxt(m)
hx21 lh 2 RD = sxt(m)
hx23 lw 4 RD = m
hx24 lbu 1 RD = 024m
hx25 lhu 2 RD = 016m
hx28 sb 1 m = RD�7 : 0�
hx29 sh 2 m = RD�15 : 0�
hx2b sw 4 m = RD

Arithmetic, Logical Operation
hx08 addi RD = RS1 + imm
hx09 addi RD = RS1 + imm
hx0a subi RD = RS1 - imm
hx0b subi RD = RS1 - imm
hx0c andi RD = RS1 � sxt(imm)
hx0d ori RD = RS1 � sxt(imm)
hx0e xori RD = RS1 	 sxt(imm)
hx0f lhgi RD = imm 016

Test Set Operation
hx18 clri RD = ( false ? 1 : 0);
hx19 sgri RD = (RS1 � imm ? 1 : 0);
hx1a seqi RD = (RS1 � imm ? 1 : 0);
hx1b sgei RD = (RS1 � imm ? 1 : 0);
hx1c slsi RD = (RS1 � imm ? 1 : 0);
hx1d snei RD = (RS1 �� imm ? 1 : 0);
hx1e slei RD = (RS1 � imm ? 1 : 0);
hx1f seti RD = ( true ? 1 : 0);

Control Operation
hx04 beqz PC = PC + 4 + (RS1 � 0 ? imm: 0)
hx05 bnez PC = PC + 4 + (RS1 �� 0 ? imm: 0)
hx16 jr PC = RS1
hx17 jalr R31 = PC + 4; PC = RS1

('
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����� �� R-type instruction layout. All instructions execute PC += 4. SAdenotes
the 5-bit immediate shift amount specified by the bits IR�10 : 6�.

IR�31 : 26� IR�5 : 0� Mnemonic Effect

Shift Operation
hx00 hx00 slli RD = sll(RS1, SA)
hx00 hx02 srli RD = srl(RS1, SA)
hx00 hx03 srai RD = sra(RS1, SA)
hx00 hx04 sll RD = sll(RS1, RS2�4 : 0�)
hx00 hx06 srl RD = srl(RS1, RS2�4 : 0�)
hx00 hx07 sra RD = sra(RS1, RS2�4 : 0�)

Arithmetic, Logical Operation
hx00 hx20 add RD = RS1 + RS2
hx00 hx21 add RD = RS1 + RS2
hx00 hx22 sub RD = RS1 - RS2
hx00 hx23 sub RD = RS1 - RS2
hx00 hx24 and RD = RS1 � RS2
hx00 hx25 or RD = RS1 � RS2
hx00 hx26 xor RD = RS1 	 RS2
hx00 hx27 lhg RD = RS2[15:0] 016

Test Set Operation
hx00 hx28 clr RD = ( false ? 1 : 0);
hx00 hx29 sgr RD = (RS1 � RS2 ? 1 : 0);
hx00 hx2a seq RD = (RS1 � RS2 ? 1 : 0);
hx00 hx2b sge RD = (RS1 � RS2 ? 1 : 0);
hx00 hx2c sls RD = (RS1 � RS2 ? 1 : 0);
hx00 hx2d sne RD = (RS1 �� RS2 ? 1 : 0);
hx00 hx2e sle RD = (RS1 � RS2 ? 1 : 0);
hx00 hx2f set RD = ( true ? 1 : 0);

����� � J-type instruction layout. sxt(imm)is the sign-extended version of the
26-bit immediate called PC offset.

IR�31 : 26� Mnemonic Effect

Control Operation
hx02 j PC = PC + 4 + sxt(imm)
hx03 jal R31 = PC + 4; PC = PC + 4 + sxt(imm)

((
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of instruction ���� in table 3.1 literally: the 5-bit string RS1 is compared
with the 16-bit string imm using a comparison “�” which is not defined
for such pairs of strings. The 1-bit result of the comparison is assigned to
the 5-bit string RD.

This insanity can be fixed by providing five rules specifying the abbre-
viations and conventions which are used everywhere in the tables.

1. RD is a shorthand for GPR�RD�. Strictly speaking, it is actually a
shorthand for GPR��RD��. The same holds for R1 and R2.

2. Except in logical operations, immediate constants imm are always
two’s complement numbers.

3. In arithmetic operations and in test set operations, the equations refer
to two’s complement numbers.

4. All integer arithmetic is modulo 232. This includes all address cal-
culations and, in particular, all computations involving the PC.

By lemma 2.2 we know that �a� � �a� mod 232 for 32-bit addresses a.
Thus, the last convention implies that it does not matter whether we in-
terpret addresses as two’s complement numbers or as binary numbers.

The purpose of abbreviations and conventions is to turn long descrip-
tions into short descriptions. In the tables 3.1 through 3.3, this has been
done quite successfully. For three of the DLX instructions, we now list the
almost unabbreviated semantics, where sxt�imm� denotes the 32-bit sign
extended version of imm.

1. Arithmetic instruction �  �:

�GPR�RD�� � �GPR�RS1��� imm mod 232

� �GPR�RS1��� �sxt�imm���

2. Test set instruction �!��:

�GPR�RD�� � ���GPR�RS1��� �imm� ? 1 : 0� ��

or, equivalently

GPR�RD� � 031 ��GPR�RS1��� �sxt�imm�� ? 1 : 0��

3. Branch instruction ����:

�PC� � �PC��4���GPR�RS1��� 0 ? �imm� : 0� mod 232

� �PC��4���GPR�RS1��� 0 ? �sxt�imm�� : 0� mod 232�

(/
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Observe that in the more detailed equations many hints for the imple-
mentation of the instructions become visible: immediate constants should
be sign extended, and the 1-bit result of tests should be extended by 31
zeros.

#���# 5����% ��
���:�����

The memory is byte addressable, i.e., each memory address j specifies
a memory location M� j� capable of storing a single byte. The memory
performs byte, half word, and word accesses. All instructions are coded in
four bytes. In memory, data and instructions are aligned in the following
way:

� half words must have even (byte) addresses. A half word h with
address e is stored in memory such that

h�15 : 0� � M�e�1 : e��

� words or instructions must have (byte) addresses divisible by four.
These addresses are called word boundaries. A word or instruction
w with address e is stored in memory such that

w�31 : 0� � M�e�3 : e��

The crucial property of this storage scheme is, that half words, words
and instructions stored in memory never cross word boundaries (see figure
3.2). For word boundaries e, we define the memory wordwith address eas

Mword�e� � M�e�3 : e��

Moreover, we number the bytes of words w�31 : 0� in little endian order
(figure 3.3), i.e.:

bytej �w� � w�8 j �7 : 8 j�

byte�i: j ��w� � bytei�w� � � �bytej �w�

The definitions immediately imply the following lemma:

Let �a�31 : 0�� be a memory address, and let e be the word boundary e������ 
�	 �

�a�31 : 2�00�. Then

1. the byte with address�a� is stored in byte�a�1 : 0�� of the memory
word with address e:

M��a�� � byte�a�1:0���Mword��a�31 : 2�00����

()
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PATHS

b0
b1
b2
b3

wordhalf wordbyte

0

e

e+4

: : : :

: : : :

: :

:: :

:

1011 0001

b3 b2 b1 b0

bank address a[1:0]

4 bytes

addr

e

e-1

e+2
e+3

e+1

e+4

0

addr
<a>

<a’>

a) 1-bank desing

b) 4-bank design

�	
��� �� Storage scheme in an 1-bank memory system (a) and in a 4-bank
memory system (b). A bank is always one byte wide. a� � �a�31 : 2�00� and
e� �a��.

08162431 23 15 7

byte3 byte2 byte1 byte0

bits

word w

�	
��� � Ordering of the bytes within a word w�31 : 0� – little endian order

2. The piece of data which is d bytes wide and has address�a� is stored
in the bytes�a�1 : 0�� to �a�1 : 0���d� 1 of the memory word with
address e:

byte��a�1:0���d�1:�a�1:0����Mword��a�31 : 2�00����

��� ��#� (�)�� *��� +����

�
IGURE 3.4 presents a high level view of the data paths of the machine.
It shows busses, drivers, registers, a zero tester, a multiplexer, and the

environments. Environments are named after some major unit or a register.
They contain that unit or register plus some glue logic that is needed to
adapt that unit or register to the coding of the instruction set. Table 3.4
gives a short description of the units used in figure 3.4. The reader should
copy the table or better learn it by heart.

(*
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ALUenv SHenv

C

A’ B’

A B

GPRenv
C’

SH4Lenv

MDRr

zero

IRenv
co

MDRwMAR

��
��
��
��

�
�
�
�

��
��
��
��

MDout

AEQZ

D

a

PCenv
PC

4 0

b

MDin

MAfetch

Menv

1 0

�	
��� �� High level view of the sequential DLX data paths

We use the following naming conventions:

1. Clock enable signals for register R are called Rce. Thus, IRceis the
clock enable signal of the instruction register.

2. A driver from X to bus Y is called XYd, its output enable signal is
called XYdoe. Thus, SH4LDdoe is the output enable signal of the
driver from the shifter for loads to the internal data bus.

3. A mux from anywhere to Y is called Ymux. Its select signal is called
Ymuxsel.

We complete the design of the machine and we provide a rigorous proof
that it worksin a completely structured way. This involves the following
three steps:

1. For each environment we specify its behavior and we then design it
to meet the specifications.

2. We specify a Moore automaton which controls the data paths.

3. We show that the machine interprets the instruction set, i.e., that the
hardware works correctly.

/�
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Large Units, Environments
GPRenv environment of the general purpose register file GPR
ALUenv environment of the arithmetic logic unit ALU
SHenv environment of the shifter SH
SH4Lenv environment of the shifter for loads SH4L
PCenv environment of the program counter PC
IRenv environment of the instruction register IR
Menv environment of the memory M

Registers
A, B output registers of GPR
MAR memory address register
MDRw memory data register for data to be written to M
MDRr memory data register for data read from M

Busses
A’, B’ input of register A and register B
a, b left/right source operand of the ALU and the SH
D internal data bus of the CPU
MA memory address
MDin Input data of the memory M
MDout Output data of the memory M

Inputs for the control
AEQZ indicates that the current content of register A equals zero
IR[31:26] primary opcode
IR[5:0] secondary opcode

Theoretically, we could postpone the design of the environments to the end.
The design process would then be strictly top down – but the specification
of seven environments in a row would be somewhat tedious to read.

��� %�)��
������

#�#�� 9������ "-���� 8�
���� ,���

The general purpose register file environment contains a 32-word 3-port
register file with registers GPRi�31 : 0� for i � 0� � � � �31. It is controlled by
three control signals, namely

/�
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� the write signal GPRwof the register file GPR,

� signal Rtypeindicating an R-type instruction, and

� signal Jlink indicating a jump and link instruction ("��# "���)

In each cycle, the behavior of the environment is completely specified
by very few equations. The first equations specify that the registers with
addresses RS1 and RS2 are always read and provided as inputs to registers
A and B. Reading from address 0, however, should force the output of the
register file environment to zero.

A� �

�
GPR�RS1� if �RS1� �� 0
0 if �RS1�� 0

B� �

�
GPR�RS2� if �RS2� �� 0
0 if �RS2�� 0

Let Cad be the address to which register C is written. This address is
usually specified by RD. In case of jump and link instructions (Jlink � 1),
however, the PC must be saved into register 31. Writing should only occur
if the signal GPRwis active:

Cad �

�
RD if Jlink � 0
31 if Jlink � 1

GPR�Cad� :� C if GPRw� 1

The remaining equations specify simply the positions of the fields RS1,
RS2 and RD; only the position of RDdepends on the type of the instruction:

RS1 � IR�25 : 21�

RS2 � IR�20 : 16�

RD �

�
IR�20 : 16� if Rtype� 0
IR�15 : 11� if Rtype� 1�

This completes the specification of the GPR environment.
Circuit CAddrof figure 3.5 generates the destination address at the fol-

lowing cost and delay:

CCAddr � 2 �Cmux�5�

DDAddr � 2 �Dmux�5��

The design in figure 3.5 is a straightforward implementation of the GPR
environment with the cost:

CGPRenv� Cram3�32�32��CCAddr�2 � �Czero�5��Cinv�Cand�32���

/�
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GPR
3-port RAM (32 x 32)

zero(5) zero(5)

DoA DoB

���� ����

IR[20:16]IR[25:21]

IR[20:16] IR[15:11]

Jlink1 0

0 1

Aad Bad

A’

32 32

B’

bzaz

C’

DinCad

GPRw

11111
CAddr

Rtype

�	
��� �� Implementation of the GPR environment

The register file performs two types of accesses; it provides data A� and B�,
or it writes data C� back. The read access accounts for the delay

DGPR�read � DGPRenv�IR�GPRw;A��B��

� max�Dram3�32�32�� Dzero�5��Dinv��Dand�

whereas the write access takes time

DGPR�write � DCAddr�Dram3�32�32��

#�#�� .���-����� 8�
���� 1����������

This environment is controlled by the three control signals

� J jumpindicating an J-type jump instruction,

� shi f tI indicating a shift instruction with an immediate operand, and

� the clock enable signal IRceof the instruction register IR.

The environment contains the instruction register, which is loaded from the
bus MDout. Thus,

IR :� MDout if IRce� 1�

The environment IRenv outputs the 32-bit constant

co�31 : 0� �

�
�27SA if shi f tI � 1
sxt�imm� if shi f tI � 0�

/#
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9IR[15] IR[10:6]

co[4:0]co[15:5]

[4:0][25] [24:16] [15:5][31:26]

IR

MDout

01
sign

IR[15]

co[31:25]

Jjump shiftI10

co[24:16]

Jjump01

�	
��� �� Implementation of the IR environment

where sxt�a� denotes the 32-bit, sign extended representation of a. The
position of the shift amount SAand of the immediate constant imm in the
instruction word is specified by

SA � IR�10 : 6�

imm �

�
IR�15 : 0� if J jump� 0
IR�25 : 0� if J jump� 1�

This completes the specification of the environment IRenv. The design in
figure 3.6 is a straightforward implementation. Its cost and the delay of
output co are:

CIRenv � Cf f �32��Cmux�15�

DIRenv�co� � Dmux�15��

#�#�# "� 1����������

This environment is controlled by the reset signal and the clock enable
signal PCceof the PC. If the reset signal is active, then the start address
032 of the boot routine is clocked into the PC register:

PC :�

�
D if PCce��reset

032 if reset

This completes the specification of the PC environment. The design in fig-
ure 3.7 implements PCenv in a straightforward manner. Let DPCenv�In;PC�
denote the delay which environment PCenv adds to the delay of the inputs
of register PC. Thus:

CPCenv � Cf f �32��Cmux�32��Cor

DPCenv�In;PC� � max�Dmux�32�� Dor��

/&
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01reset

032 D

PCPCce
reset

�	
��� �� Implementation of the PC environment

#�#�& �3� 1����������

This environment is controlled by the three control signals

� Rtypeindicating an R-type instruction,

� add forcing the ALU to add, and

� test forcing the ALU to perform a test and set operation.

The ALU is used for arithmetic/logic operations and for test operations.
The type of the ALU operation is specified by three bits which we call
f �2 : 0�. These bits are the last three bits of the primary or secondary
opcode, depending on the type of instruction:

f �2 : 0� �

�
IR�28 : 26� if Rtype� 0
IR�2 : 0� if Rtype� 1

In case a test operation is performed, the result t � �0�1� is specified by
table 3.5. In case of an arithmetic/logic operation, the result al is specified
by table 3.6. Observe that in this table al � a�b is a shorthand for �al� �
�a�� �b� mod 232; the meaning of a�b is defined similarly. For later use,
we define the notation

al � a op b�

The flag ov f of the arithmetic unit AU indicates an overflow, i.e., it indi-
cates that the value �a�op�b� does not lie in the range T32 of a 32-bit two’s
complement number.

If signal add is activated, the ALU performs plain binary addition mod-
ulo 232. The final output alu of the ALU is selected under control of the
signals testand add in an obvious way such that

alu �

�
031t if test� 1
al if test� 0 AND add� 0

�alu� � �a�� �b� mod 232 if test� 0 AND add� 1

This completes the specification of the ALU.

/'
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����� �� Specification of the test condition

cond. false a� b a� b a� b a� b a �� b a� b true

f2 � 0 0 0 0 1 1 1 1
f1 � 0 0 1 1 0 0 1 1
f0 � 0 1 0 1 0 1 0 1

����� �� Coding of the arithmetic/logical ALU operations

a+b a-b a�b a�b a	b b�15 : 0�0n�16

f2 0 0 1 1 1 1
f1 0 1 0 0 1 1
f0 * * 0 1 0 1

��� ����������
The coding of conditions from table 3.5 is frequently used. The obvious
implementation proceeds in two steps. First, one computes the auxiliary
signals l �e�g (less, equal, greater) with

l � 1 
 a� b 
 a�b� 0
e� 1 
 a� b 
 a�b� 0
g� 1 
 a� b 
 a�b� 0�

and then, one generates

t�a�b� f � � f2� l � f1�e � f0�g�

Figure 3.8 depicts a realization along these lines using an arithmetic unit
from section 2.4. Assuming that the subtraction signal sub is active, it
holds

l � neg

e� 1 
 s�31 : 0� � 032

g � e� l �

The cost and the delay of a 32-bit comparator are

Ccomp�32� � Czero�32��2 �Cinv�4 �Cand�2 �Cor

Dcomp�32� � max�Dinv�Dand� Dzero�32��Dor� Dzero�32��Dinv�

�Dand�Dor�

/(
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f0f1

subb[31:0]a[31:0]

AU(32)

��

����

����

sovf neg
s[31:0]

t
comp

zero(n)

f2

�	
��� �� Arithmetic unit supplemented by the comparator circuit

comp(32)[2:0]f

�
�
�
�

��

�
�
�
�

����

��
��
��
��

����

�
�
�
�

f0

b[15:0]

160

f0

f1

f2

01

10

10 10

10

sovf

a
b

sub

32

32

neg

alu

test

310
t

al

AU(32)

LU

�	
��� �� Implementation of the ALU comprising an arithmetic unit AU, a logic
unit LU and a comparator

��� 3�
�� ����

The coding of the arithmetic/logic functions in table 3.6 translates in a
straightforward way into figure 3.9. Thus, the cost and the delay of the
logic unit LU and of this ALU run at

CLU�32� � Cand�32��Cor�32��Cxor�32��3 �Cmux�32�

DLU�32� � max�Dand�Dor� Dxor��2 �Dmux

CALU � CAU�32��CLU�32��Ccomp�32��2 �Cmux�32�

DALU � max�DAU�32��Dcomp�32�� DAU�32��Dmux�

DLU�32��Dmux��Dmux�

//
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01

10

sub

test

f[1]

IR[2:0]IR[28:26]

000

add

f[2:0]

Rtype

�	
��� ��� Glue logic of the ALU environment

��� 9�-� 3�
��
Figure 3.10 suggests how to generate the signals sub and f �2 : 0� from
control signals addand Rtype. The mux controlled by signal Rtypeselects
between primary and secondary opcode. The mux controlled by add can
force f �2 : 0� to 000, that is the code for addition.

The arithmetic unit is only used for tests and arithmetic operations. In
case of an arithmetic ALU operation, the operation of the AU is an addition
(add or addi) if f1 � 0 and it is a subtraction (sub or subi) if f1 � 1. Hence,
the subtraction signal can be generated as

sub � test � f1�

The environment ALUenv consists of the ALU circuit and the ALU glue
logic. Thus, for the entire ALU environment, we get the following cost and
delay:

CALUglue � Cor �2 �Cmux�3�

DALUglue � 2 �Dmux�3��Dor

CALUenv � CALU �CALUglue

DALUenv � DALUglue�DALU�

#�#�' 5����% 1����������

The memory environment Menvis controlled by three signals

� mr indicating a memory read access,

� mwindicating a memory write access, and

� f etchindicating an instruction fetch.

On instruction fetch (i.e., f etch� 1), the memory write signal must be
inactive, i.e., mw� 0. The address of a memory access is always specified
by the value on the memory address bus MA�31 : 0�.

/)
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IR[27:26] d MAR[1:0] mbw[3:0]

00 1 00 0001
01 0010
10 0100
11 1000

01 2 00 0011
10 1100

11 4 00 1111

Recall that the memory M is byte addressable. Half words are aligned at
even (byte) addresses; instructions and words are aligned at word bound-
aries, i.e., at (byte) addresses divisible by 4. Due to the alignment, memory
data never cross word boundaries. We therefore organize the memory in
such a way that for every word boundary e the memory word

Mword�e� � M�e�3 : e�

can be accessed in parallel. Thus, a single access suffices in order to load
or store every byte, half word, word or instruction.

If mr � 1, the memory environment Menv performs a read operation,
i.e., a load operation or an instruction fetch. Menv then provides on the
bus MDout the word

MDout�31 : 0� � Mword��MA�31 : 2�00���

If the read operation accesses the d-byte data X, by lemma 3.1, X is then
the subword

X � byte�MA�1:0���d�1:�MA�1:0���MDout�

of the memory bus MDout.
On mw� 1, the fetch signal is inactive � f etch� 0�. Thus, a store opera-

tion is executed, and the memory environment performs a write operation.
During a store operation, the bits IR�27 : 26� of the primary opcode specify
the number of bytes d to be stored in memory (table 3.7). The address of
the store is specified by the memory address register MAR. If the d-byte
data X are to be stored, then the memory environment expects them as the
subword

X � byte�MAR�1:0���d�1:�MAR�1:0���MDin�

/*
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MB[0]
bankbank

MB[3]
bank

MB[2]
bank

MB[1]

[7:0][15:8][23:16][31:24]

[7:0][15:8][23:16][31:24]

di a

do

mr

mbw[0]

MA[31:2]
MDin

MDout

do

adi

mr

mbw[3]
di a

do

mr

mbw[2]
di a

do

mr

mbw[1]

�	
��� ��� Connecting the memory banks to the data and address busses

of the memory bus MDin and performs the write operation

M�e�d�1 : e� :� X�

The data on the memory bus MDin are provided by register MDRw. For
later use, we introduce for this the notation

m � bytes�MDRw��

Since memory accesses sometimes require multiple clock cycles, we
need a signal mbusyindicating that the current memory access will not
be completed during the current clock cycle. This signal is an input of the
control unit; it can only be active on a memory access, i.e., if mr � 1 or
mw� 1. We expect signal mbusyto be valid dmstat time units after the start
of each clock cycle.

This completes the specification of the memory environment Menv. Its
realization is fairly straightforward. We use four memory banks MB� j�
with j � �0� � � � �3�. Each bank MB� j� is one byte wide and has its own
write signal mbw� j�. Figure 3.11 depicts how the four banks are connected
to the 32-bit data and address busses.

��� 5����% �������
The bank write signals mbw�3 : 0� are generated as follows: Feeding the
address bits MAR�1 : 0� into a 2-decoder gives four signals B�3 : 0� satisfy-
ing

B� j� � 1 
 �MAR�1 : 0��� j

for all j . From the last two bits of the opcode, we decode the width of the
current access according to table 3.7 by

B � IR�26�

H � IR�27� � IR�26�

W � IR�27� � IR�26��

)�
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IR[26]

IR[27]

BHW
GenMbw

mbw[3:0]

dec(2)

B[3:0]

mw

MAR[1:0]

�	
��� ��� Memory control MC. Circuit GenMbwgenerates the bank write sig-
nals according to Equation 3.1

The bank write signals are then generated in a brute force way by

mbw�0� � mw�B�0�
mbw�1� � mw� �W�B�0� � H�B�0� � B�B�1��
mbw�2� � mw� ��W�B�0� � H �B�2�� � B�B�2��
mbw�3� � mw� ��W�B�0� � H �B�2�� � B�B�3���

(3.1)

When reusing common subexpressions, the cost and the delay of the
memory control MC (figure 3.12) runs at

CMC � Cdec�2��2 �Cinv�12 �Cand�5 �Cor

DMC � max�Ddec�2�� Dinv�Dand��2 �Dand�2 �Dor�

Let dmembe the access time of the memory banks. The memory environ-
ment then delays the data MDout by

DMenv�MDout� � DMC�dmem�

We do not elaborate on the generation of the mbusysignal. This will only
be possible when we built cache controllers.

#�#�( ������� 1���������� �����

The shifter environment SHenvis used for two purposes: for the execution
of the explicit shiftoperations sll (shift left logical), srl (shift right logical)
and sra (shift right arithmetic), and second, for the execution of implicit
shifts. An implicit shifted is only used during the store operations sb and
sw in order to align the data to be stored in memory. The environment
SHenv is controlled by a single control signal

� shi f t4s, denoting a shift for a store operation.

)�
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����� �� Coding of the explicit shifts

IR[1:0] 00 10 11
type sll srl sra

1������� �����
We formally define the three explicit shifts. Obviously, left shifts and right
shifts differ by the shift direction. Logic shifts and arithmetic shifts differ
by the fill bit . This bit fills the positions which are not covered by the
shifted operand any more. We define the explicit shifts of operand a�n�1 :
0� by distance b�m�1 : 0� in the following way:

sll�a�b� � �an��b��1� � � � �a0� f ill �b��

srl�a�b� � � f ill �b��an�1� � � � �a�b��

sra�a�b� � � f ill �b��an�1 � � � �a�b��

where

f ill �

�
0 for logic shifts
an�1 for arithmetic shifts�

Thus, arithmetic shifts extend the sign bit of the shifted operand. They
probably have their name from the equality

�sra�a�b�� � � �a��2�b���

which can be exploited in division algorithms for 2’s complement numbers.
In case of an explicit shift operation, the last two bits IR�1 : 0� of the

secondary opcode select among the three explicit shifts according to table
3.8. By shi f t�a�b� IR�1 : 0��, we denote the result of the shift specified by
IR�1 : 0� with operands a and b.

.������� �����
Implicit left shifts for store operation are necessary if a byte or half word
– which is aligned at the right end of a�31 : 0� – is to be stored at a byte
address which is not divisible by 4. The byte address is provided by the
memory address register MAR. Measured in bits, the shift distance (moti-
vated by lemma 3.1) in this case equals

8 � �MAR�1 : 0�� � �MAR�1 : 0�000��

The operand a is shifted cyclically by this distance. Thus, the output shof
the shifter environment SHenv is

sh �

�
shi f t�a�b� IR�1 : 0�� if shi f t4s� 0
cls�a�MAR�1 : 0�000� if shi f t4s� 1�

)�
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32

32

32

5

b

Scor Mask

CLS(32)

Fill

mask

sh

r

32

a MAR[1:0]

2

fill

Dist

�	
��� �� Top level of the shifter environment SHenv

This completes the specification of the shifter environment. Figure 3.13
depicts a very general design for shifters from [MP95]. A 32-bit cyclic left
shifter CLSshifts operand a�31 : 0� by a distance dist�4 : 0� provided by the
distance circuit Dist. The result r�31 : 0� of the shift is corrected by circuit
Scoras a function of the fill bit f ill and a replacement mask mask�31 : 0�
which are provided by the corresponding subcircuits.

��� ����� ����������

For every bit position i, circuit Scorreplaces bit ri of the intermediate result
by the fill bit in case that the mask bit maski is active. Thus,

shi �

�
f ill if maski � 1
ri if maski � 0

Figure 3.14 depicts a straightforward realization of the correction circuit.
For the whole shifter environment SHenv, one obtains the following cost
and delay:

CSHenv � CCLS�32��CDist �CFill �CMask�32 �Cmux

DSHenv � max�DDist �DCLS�32�� DFill � DMask��Dmux

��� ����� +������

According to the shifters of section 2.4.6, an n-cyclic right shift can also
be expressed as an n-cyclic left shift:

crs�a��b�� � cls�a��b��1 mod n��

)#
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31mask

r 31

1mask

sh1sh31

r 1 0r

0mask
���� ��

0 1 0 1 0 1. . .
fill

sh0

�	
��� ��� The shift-correction circuit Scor

inc(5)
1

MAR[1:0] 000
shift4s

right

b[4:0]

dist[4:0]

10

10

�	
��� ��� Circuit Dist selects the shift distance of shifter SH

Thus, in the distance circuit Dist of figure 3.15, the mux controlled by
signal right selects the proper left shift distance of the explicit shift. Ac-
cording to table 3.8, bit IR�1� can be used to distinguish between explicit
left shifts and explicit right shifts. Thus, we can set

right � IR�1��

The additional mux controlled by signal shi f t4scan force the shift distance
to MAR�1 : 0�000, i.e., the left shift distance specified for stores. The cost
and the delay of the distance circuit Dist are

CDist � Cinv�5��Cinc�5��2 �Cmux�5�

DDist�b� � Dinv�5��Dinc�5��2 �Dmux�5�

DDist�MAR� � Dmux�5��

��� ,���  ��
The fill bit is only different from 0 in case of an arithmetic shift, which is
coded by IR�1 : 0� � 11 (table 3.8). In this case, the fill bit equals the sign
bit a31 of operand a, and therefore

f ill � IR�1�� IR�0��a31�

The cost and the delay of the fill bit computation run at

CFill � 2 �Cand

DFill � 2 �Dand�

)&
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hd
ec
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) 1

0

1

0
mask[31:0]

shift4s
right

b[4:0]

032

�	
��� ��� Circuit Mask generating the mask for the shifter SH.

��� 8���������� 5��
During an explicit left shift, the least significant �b� bits of the intermediate
result r have to be replaced. In figure 3.16, a half decoder generates from
b the corresponding mask 032��b�1�b�. During an explicit right shift, the
most significant �b� bits of the intermediate result r have to be replaced.
The corresponding mask is simply obtained by flipping the left shift mask.
Note that no gates are needed for this. Thus, in the gate model used here,
flipping the mask does not contribute to the cost and the delay. On shifts
for store, the mask is forced to 032, and the intermediate result r is not
corrected at all. The cost and the delay of the mask circuit are

CMask � Chdec�5��2 �Cmux�32�

DMask � Dhdec�5��2 �Dmux�32��

For later use, we introduce the notation

sh � shi f t�a�dist��

Observe that in this shorthand, lots of parameters are hidden.

#�#�/ ������� 1���������� ��&3���

This environment consists of the shifter for loads SH4L and a mux; it is
controlled by a single control signal

shi f t4l denoting a shift for load operation.

If signal shi f t4l is active, the result R of the shifter SH4L is provided to
the output C� of the environment, and otherwise, input C is passed to C�:

C� :�

�
R if shi f t4l � 1
C if shi f t4l � 0�

Figure 3.17 depicts the top level schematics of the shifter environment
SH4Lenv; its cost and delay can be expressed as

CSH4Lenv � CSH4L �Cmux�32�

DSH4Lenv � DSH4L �Dmux�32��

)'
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R

shift4l

C’

MDRr
shifter SH4L

MAR[1:0]

C
32

0

1

�	
��� ��� Top level schematics of the shifter environment SH4L

The shifter SH4L is only used in load operations. The last three bits
IR�28 : 26� of the primary opcode specify the type of the load operation
(table 3.9). The byte address of the data, which is read from memory on
a load operation, is stored in the memory address register MAR. If a byte
or half word is loaded from a byte address which is not divisible by 4, the
loaded data MDRr has to be shifted to the right such that it is aligned at the
right end of the data bus D�31 : 0�. A cyclic right shift by �MAR�1 : 0�000�
bits (the distance is motivated by lemma 3.1) will produce an intermediate
result

r � crs�MDRr� MAR�1 : 0�000��

where the loaded data is already aligned at the right end. Note that this
also covers the case of a load word operation, because words are stored at
addresses with MAR�1 : 0� � 00. After the loaded data has been aligned,
the portion of the output R not belonging to the loaded data are replaced
with a fill bit:

R�31 : 0� �

��
�

f ill 24 r�7 : 0� for lb, lbu
f ill 16 r�15 : 0� for lw, lwu
r�31 : 0� for lw

In an unsigned load operation, the fill bit equals 0, whereas in signed
load operations, the fill bit is the sign bit of the shifted operand. This is
summarized in table 3.9 which completes the specification of the shifter
SH4L.

Figure 3.18 depicts a straightforward realization of the shifter SH4L.
The shift distance is always a multiple of 8. Thus, the cyclic right shifter
only comprises two stages for the shift distances 8 and 16. Recall that for
32 bit data, a cyclic right shift by 8 (16) bits equals a cyclic left shift by 24
(16) bits.

The first half word r�31 : 16� of the intermediate result is replaced by
the fill bit in case that a byte or half word is loaded. During loads, this
is recognized by IR�27�=0. Byte r�15 : 8� is only replaced when loading
a single byte. During loads, this is recognized by IR�27 : 26� � 00. This
explains the multiplexer construction of figure 3.18.

)(
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IR[28] IR[27:26] Type MAR[1:0] fill

0 00 byte, signed 00 MDRr[7]
01 MDRr[15]
10 MDRr[23]
11 MDRr[31]

01 halfword, signed 00 MDRr[15]
10 MDRr[31]

11 word �

1 00 byte, unsigned 0
01 halfword, unsigned 0

88

CSR32,16 32,16= CSL

CSR32,8 32,24= CSL

��

��

��
��
��
��

����

��
��
��
��

10

R[31:16] R[15:8] R[7:0]

1 0

fill16
LFILL

IR[26]

IR[27]

MAR[1]

MAR[0]
MDRr[31:0]

�	
��� ��� The shifter SH4L for load instructions

The circuit LFILL of figure 3.19 is a brute force realization of the fill bit
function specified in table 3.9. The cost and the delay of the shifter SH4L
and of circuit LFILL are

CSH4L � 2 �Cmux�32��Cmux�24��Cnand�CLFILL

DSH4L � max�2 �Dmux�32��Dnand�DLFILL��Dmux�24�

CLFILL � 5 �Cmux�Cand�Cinv

DLFILL � max�3 �Dmux�Dinv��Dand�

For later use, we introduce the notation

R � sh4l�MDRr�MAR�1 : 0�000��

)/



������� #

A SEQUENTIAL

DLX DESIGN
10 10

10

10

MDRr[7] MDRr[15]

MDRr[31]

MAR[1]

IR[26]

10

fill

MAR[1]

IR[28]

MDRr[15]

MAR[0]MAR[0]

MDRr[31]MDRr[23]

�	
��� ��� Circuit LFILL computes the fill bit for the shifter SH4L

���  �,������ �
���
�

�
T IS now amazingly easy to specify the control of the sequential machine
and to show that the whole design is correct. In a first design, we will

assume that memory accesses can be performed in a single cycle. Later
on, this is easily corrected by a simple stalling mechanism.

#�&�� ��2-������ ������� �����-� �������


Figure 3.20 depicts the graph of a finite state diagram. Only the names
of the states and the edges between them are presently of interest. In order
to complete the design, one has to specify the functions δz�z� for all states z
with more than one successor state. Moreover, one has to specify for each
state z the set of control signals active in state z.

We begin with an intermediate step and specify for each state z a set of
register transfer language (RTL) instructions rt �z� to be executed in that
state (table 3.10). The abbreviations and the conventions are those of the
tables 3.1 to 3.3. In addition, we use M�PC� as a shorthand for M��PC��.
Also note that the functions op, shi f t, sh4l and rel have hidden parameters.

We also specify for each type t of DLX instruction the intended path
path�t� through the diagram. All such paths begin with the states fetchand
decode. The succeeding states on the path depend on the type t as indicated
in table 3.11. One immediately obtains

))
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����� ��� RTL instructions of the FSD of figure 3.20

State RTL Instruction

fetch IR� M��PC��
decode A� RS1,

B�

�
RD if I-type instruction
RS2 if R-type instruction

co�

�
�27SA if shift immediate ����# ����# ����
sxt�imm� otherwise

PC� PC�4
alu C� AopB
test C� �A rel B?1 : 0�
shift C� shi f t�A�B�4 : 0��
aluI C� Aopco
testI C� �A rel co?1 : 0�
shiftI C� shi f t�A�co�4 : 0��
wbR RD�C (R-type)
wbI RD�C (I-type)
addr MAR� A�co
load MDRr� Mword��MAR�31 : 2�00��
sh4l RD� sh4l�MDRr�MAR�1 : 0�000�
sh4s MDRw� cls�B�MAR�1 : 0�000�
store m� bytes�MDRw�
branch
btaken PC� PC�co
jimm PC� PC�co
jreg PC� A
savePC C� PC
jalR PC� A
jalI PC� PC�co
wbL GPR�31� �C
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branch

fetch

btaken

wbR

test

shiftIalu

shift

wbI

aluI

testI addr

load sh4s

sh4l store

jreg

jalR jalI

savePC

wbI jimm

D12D2 D4 D6 D7 D8 D9 v D10

btD3D1 D5 /D13 D13 D9 D10

�
�
�

�
�
�

else

else

D11

�	
��� ��� Finite state diagram (FSD) of the DLX machine

If the design is completed such that����� 
�� �

1. for each type of instruction t, the path path�t� is taken, and that

2. for each state s, the set of RTL instructions rtl�s� is executed,

then the machine is correct, i.e., it interprets the instruction set.

The proof is a simple exercise in bookkeeping. For each type of instruc-
tion t one executes the RTL instructions on the path path�t�. The effect of
this on the visible DLX registers has to be as prescribed by the instruction
set. We work out the details in some typical cases.

���������� .���-�����

Suppose t � addi. By table 3.11, the sequence of states executed is

path�t� � � f etch�decode�alui�wbi��

and by table 3.10, the sequence of RTL-instructions on this path is:

state s rtl(s)
fetch IR� M�PC�
decode A� GPR�RS1�� B� GPR�RS2�� �PC�� �PC��4 mod 232

alui �C� � �A�� �imm� if this is in T32

wbi GPR�RD� �C

*�
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����� ��� Paths path�t� through the FSD for each type t of DLX instruction

DLX instruction type path through the FSD

arithmetic/logical, I-type: fetch, decode, aluI, wbI
�  �# �$��# �% �# ��# ���# ��!�

arithmetic/logical, R-type: fetch, decode, alu, wbR
�  # �$�# �% # �# ��# ��!

test set, I-type: fetch, decode, testI, wbI
����# �!��# ����# �!��# ����# �%��# ����#
��&�

test set, R-type: fetch, decode, test, wbR
���# �!�# ���# �!�# ���# �%�# ���# ��&

shift immediate: ����# ����# ���� fetch, decode, shiftI, wbR
shift register: ���# ���# ��� fetch, decode, shift, wbR
load: ��# ��# �'# ��$# ��$ fetch, decode, addr, load, sh4l
store: ��# ��# �' fetch, decode, addr, sh4s, store
jump register: "� fetch, decode, jreg
jump immediate: " fetch, decode, jimm
jump & link register: "��� fetch, decode, savePC, jalR, wbL
jump & link immediate: "�� fetch, decode, savePC, jalI, wbL
taken branch ����# �%�� fetch, decode, branch, btaken
untaken branch ����# �%�� fetch, decode, branch

The combined effect of this on the visible registers is – as it should be

�GPR�RD�� � C � �A�� �imm�

� �GPR�RS1��� �imm� if this is inT32�

�PC� � �PC��4

It is that easy and boring. Keep in mind however, that with literal appli-
cation of the abridged semantics, this simple exercise would end in com-
plex and exciting insanity. Except for loads and stores, the proofs for all
cases follow exactly the above pattern.

����� .���-�����

Suppose instruction M�PC� has type t � store and the operand X to be
stored is d bytes wide

X � byted�1:0�GPR�RD���

*�
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then path�t� � � f etch�decode�addr�sh4s�store�� The effect of the RTL
instructions of the last three states is

state s rtl(s)
addr �MAR�� �A���imm� mod 232

sh4s MRDw� cls�B�MAR�1 : 0�000�
store M��MAR��d�1 : �MAR��

� byte�MAR�1:0���d�1:�MAR�1:0���MDRw�

Thus, the combined effect of all states on MARis

�MAR� � �A���imm� mod 232

� �GPR�RS1����imm� mod 232

� ea�

and the combined effect of all states on MDRwis

MDRw � cls�B�MAR�1 : 0�000�

� cls�GPR�RD��MAR�1 : 0�000��

Hence,
X � byte�MAR�1:0���d�1:�MAR�1:0���MDRw�

and the effect of the store operation is

M�ea�d�1 : ea� � X�

� 3��	 .���-�����
Suppose M�PC� has type t � load, and the operand X to be loaded into
register GPR�RD� is d bytes wide. Thus, path�t� � � f etch�decode�addr,
load�sh4l�, and the RTL instructions of the last three states are:

state s rtl(s)
addr �MAR�� �A���imm� mod 232

load MDRr� Mword��MAR�31 : 2�00��
sh4l GPR�RD� � sh4l�MDRr�MAR�1 : 0�000�

As in the previous case, MAR� ea. By lemma 3.1, it follows

X � byte�MAR�1:0���d�1:�MAR�1:0��Mword��MAR�31 : 2�00��

� byte�MAR�1:0���d�1:�MAR�1:0���MDRr��

*�
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With the fill bit f ill defined as in table 3.9, one concludes

GPR�RD� � sh4l�MDRr�MAR�1 : 0�000�

� f ill 32�8dX

�

�
sxt�m� for load (signed)

032�8dm for load unsigned

The design is now easily completed. Table 3.12 is an extension of table
3.10. It lists for each state s not only the RTL instructions rtl �s� but also
the control signals activated in that state. One immediately obtains

For all states s, the RTL instructions rtl�s� are executed in state s. � ����� 
�


For all states except addr and btaken, this follows immediately from the �����
specification of the environments. In state s� addr, the ALU environment
performs the address computation

�MAR� � �A�� �sxt�imm�� mod 232

� �A���imm15�sxt�imm�� mod 232

� �A���imm��

The branch target computation of state s� btakenis handled in a com-
pletely analogous way. ���

It only remains to specify the disjunctive normal forms Di for figure 3.20
such that it holds:

For each instruction type t, the sequence path�t� of states specified by� ����� 
��
table 3.11 is followed.

Each Di has to test for certain patterns in the primary and secondary
opcodes IR�31 : 26�5 : 0�, and it possibly has to test signal AEQZas well.
These patterns are listed in table 3.13. They have simply been copied from
the tables 3.1 to 3.3. Disjunctive form D8, for instance, tests if the actual
instruction is a jump register instruction "� coded by

IR�31 : 26� � hx16 � 010110�

It can be realized by the single monomial

D8 � IR31� IR30� IR29� IR28� IR27� IR26�

In general, testing for a single pattern with k zeros and ones can be done
with a monomial of length k. This completes the specification of the whole
machine. Lemmas 3.2 to 3.4 imply

The design correctly implements the instruction set. � ������ 
��
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����� ��� RTL instructions and their active control signals

state RTL instruction active control signals

fetch IR� M��PC�� fetch, mr, IRce
decode A� RS1, Ace,

B�

�
RD if I-type
RS2 if R-type

Bce, Pce

PC� PC�4 PCadoe, 4bdoe, add, ALUDdoe,

co�

�
�27SA ; shiftI
sxt�imm� ;other.

shiftI,

alu C� A op B Aadoe, Bbdoe, ALUDdoe, Cce,
Rtype

test C� �A rel B?1 : 0� like alu, test
shift C� shi f t�A�B�4:0�� Aadoe, Bbdoe, SHDdoe, Cce,

Rtype
aluI C� A op co Aadoe, cobdoe, ALUDdoe, Cce
testI C� �A rel co?1 : 0� like aluI, test
shiftI C� shi f t�A�co�4 : 0�� Aadoe, cobdoe, SHDdoe, Cce,

shiftI, Rtype
wbR RD�C (R-type) GPRw, Rtype
wbI RD�C (I-type) GPRw
addr MAR� A�co Aadoe, cobdoe, ALUDdoe, add,

MARce
load MDRr� mr, MDRrce

Mword��MAR�31:2�00��
sh4l RD� sh4l�MDRr� shift4l, GPRw

MAR�1:0�000�
sh4s MDRw� Badoe, SHDdoe, shift4s,

cls�B�MAR�1:0�000� MDRwce
store m� bytes�MDRw� mw
branch
btaken PC� PC�co PCadoe, cobdoe, add,

ALUDdoe, PCce
jimm PC� PC�co like btaken, Jjump
jreg PC� A Aadoe, 0bdoe, add, ALUDdoe,

PCce
savePC C� PC PCadoe, 0bdoe, add, ALUDdoe,

Cce
jalR PC� A� like jreg
jalI PC� PC�co� like jimm
wbL GPR�31� �C GPRw, Jlink

*&
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����� �� Nontrivial disjunctive normal forms (DNF) of the DLX finite state
diagram and the corresponding monomials

Nontrivial Target Monomial m�M Length
DNF State IR�31 : 26� IR�5 : 0� l�m�

D1 shift 000000 0001*0 11
000000 00011* 11

D2 alu 000000 100*** 9
D3 test 000000 101*** 9
D4 shiftI 000000 0000*0 11

000000 00001* 11
D5 aluI 001*** ****** 3
D6 testI 011*** ****** 3
D7 addr 100*0* ****** 4

10*0*1 ****** 4
10*00* ****** 4

D8 jreg 010110 ****** 6
D9 jalR 010111 ****** 6
D10 jalI 000011 ****** 6
D9 � D10 savePC like D9 and D10
D11 jimm 000010 ****** 6
D12 branch 00010* ****** 5
D13 sh4s **1*** ****** 1
/D13 load **0*** ****** 1

bt btaken AEQZ ��IR�26� 2
/AEQZ �IR�26� 2

Accumulated length of m�M: ∑m�M l�m� 115

#�&�� "�������� �� ��� ������� �-�������

In the previous subsection, we have specified the control of the sequential
DLX architecture without stalling. Its output function, i.e., the value of the
control signals, depends on the current state of the control automaton but
not on its current inputs. Thus, the sequential control can be implemented
as a Moore automaton with precomputed control signals.

In this scenario, the automaton is clocked in every cycle, i.e., its clock
signal is ce� CONce� 1. Signal reset serves as the clear signals clr of
the Moore automaton in order to initialize the control on reset. Except for
signal AEQZ, all the inputs of the control automaton are directly provided

*'
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����� ��� Parameters of the Moore control automaton

Parameter Value

k # states of the automaton 23
σ # input signals inj 13
γ # output signals outj 29

νmax maximal frequency of the outputs 12
νsum accumulated frequency of the outputs 94

#M # monomials m�M (nontrivial) 20
lmax length of longest monomial m�M 11
lsum accumulated length of all monomials m�M 115

faninmax maximal fanin of nodes (�� fetch) in the FSD 4
faninsum accumulated fanin 33

by the instruction register IR at zero delay. Thus, the input signals of the
automaton have the accumulated delay:

A�in� � A�AEQZ� � Dzero�32�

A�clr�ce� � A�reset��

According to section 2.6, the cost and the delay of such a Moore automa-
ton only depend on a few parameters (table 3.14). Except for the fanin of
the states/nodes and the frequency of the control signals, these parameters
can directly be read off the finite state diagram (figure 3.20) and table 3.13.

State f etchserves as the initial state z0 of the automaton. Recall that our
realization of a Moore automaton has the following peculiarity: whenever
the next state is not specified explicitly, a zero tester forces the automaton
in its initial state. Thus, in the next state circuit NS, transitions to state
f etchcan be ignored.

,���� �� ��� !�	�

For each edge �z��z� � E and z �� f etch, we refer to the number #M�z��z�
of monomials in D�z��z� as the weight of the edge. For edges with nontriv-
ial monomials, the weight can be read off table 3.13; all the other edges
have weight 1. The fanin of a node z equals the sum of the weights of all
edges ending in z. Thus, state wbRhas the highest fanin of all states differ-
ent from f etch, namely, f aninmax� 4, and all the states together have an
accumulated fanin of f aninsum� 31.

*(
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����� ��� Control signals of the DLX architecture and their frequency. Signals
printed in italics are used in several environments.

control signals control signals

Top PCadoe, Aadoe, Badoe, GPRenv GPRw, Jlink, Rtype
level Bbdoe, 0bdoe, SHDdoe, PCenv PCce

coBdoe, 4bdoe, ALUDdoe, ALUenv add, test, Rtype
Ace, Bce, Cce, MARce, Menv mr, mw, fetch
MDRrce, MDRwce, fetch SHenv shift4s

IRenv Jjump, shiftI, IRce SH4Lenv shift4l

outputs outj with a frequency ν j � 1

Cce 7 PCce 6 GPRw 5 mr 2
PCadoe 5 Aadoe 9 Bbdoe 3 cobdoe 7
0bdoe 3 ALUDdoe 12 SHDdoe 3 Rtype 5
Jlink 2 Jjump 2 add 9 test 2

,��2-���% �� ��� ������� ��
���
The first part of table 3.15 summarizes the control signals used in the top
level schematics of the DLX architecture and in its environments. For each
control signal outj , its frequency can be derived from table 3.12 by simply
counting the states in which outj is active. These values are listed in the
second part of table 3.15; signals with a frequency of 1 are omitted. Thus,
the automaton generates γ� 29 control signals; the signals have a maximal
frequency of νmax� 12 and an accumulated frequency of νsum� 93.

#�&�# � ������ ����� 1�
���

So far, we have assumed that a memory access can be performed in a
single cycle, but that is not always the case. In order to account for those
multi-cycle accesses, it is necessary to stall the DLX data paths and the
main control, i.e., the update of registers and RAMs must be stopped. For
that purpose, we introduce a stall enginewhich provides an update enable
signal uefor each register or RAM.

��	��� 1����� ��
���
A register R is now controlled by two signals, the signal Rcewhich request
the update and the update enable signal Ruewhich enables the requested
update (figure 3.21). The register is only updated if both signals are active,
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di a
R

Rce’ Rce
Rue RAM K w

do

KwKw’
Kue

�	
��� ��� Controlling the update of registers and RAMs. The control automaton
provides the request signals Rce, Kw; the stall engine provides the enable signals
Rue, Kue.

i.e., Rce� Rue� 1. Thus, the actual clock enable signalof register R,
which is denoted by Rce�, equals

Rce� � Rce� Rue�

The clock request signal Rceis usually provided by the control automaton,
whereas signals Rueand Rce� are generated by a stall engine.

In analogy, the update of a RAM R is requested by signal Rwand enabled
by signal Rue. Both signals are combined to the actual write signal

Rw� � Rw� Rue�

���	���
 5-���7�%��� 5����% �����
A memory access sometimes requires multiple clock cycles. The memory
system M therefore provides a status signal mbusyindicating that the ac-
cess will not be completed in the current cycle. Thus, on mbusy� 1, the
DLX hardware is unable to run the RTL instructions of the current state to
completion. In this situation, the correct interpretation of the instruction is
achieved as follows:

� While mbusyis active, the memory system M proceeds its access,
but the data paths and the control are stalled. This means that the
Moore control automaton still requests the register and RAM up-
dates according to the RTL instructions of its current state z, but the
stall engine disables these updates. Thus, the hardware executes a
NOP (no-operation), and the control automaton remains in its cur-
rent state.

� In the cycle in which mbusybecomes inactive, the memory system
completes its access, the stall engine enables the requested updates,
and the data paths and the control execute the RTL instructions of
the current state z.

Since the data paths and the control automaton are stalled simultaneously,
the stall engine only provides a single update enable signal UE, which is
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inactive during an ongoing memory access �mbusy� 1). However, the up-
date must be enabled during resetin order to ensure that the DLX machine
can be restarted:

UE � mbusy� reset�

This signal enables the update of all the registers and RAMs in the data
paths and in the control automaton. Thus, the write signal of the general
purpose register file GPR and the clock signal CONce� of the Moore au-
tomaton, for instance, are then obtained as

GPRw� � GPRw� GPRue � GPRw� UE
CONce� � CONce� CONue � CONce� UE�

Note that the read and write signals Mr and Mw of the memory M are not
masked by signal UE.

According to table 3.15, the control automaton provides 8 clock request
signals and 1 write request signal. Together with the clock of the Moore
automaton, the stall engine has to manipulate 10 clock and write signals.
Thus, the cost and the delay of this simple stall engine run at

Cstall � Cinv�Cor �10 �Cand

Dstall � Dinv�Dor �Dand�

��� �������� �
�� ��� �-��� .���

�
N THE previous sections, we derived formulae which estimate the cost
and the delay of the data paths environments and of the control automa-

ton. Based on these formulae, we now determine the cost and the cycle
time of the whole DLX hardware. Note that all the adders in our DLX
designs are carry lookahead adders, if not stated otherwise.

#�'�� ���	���� ���

The hardware consists of the data paths and of the sequential control. If
not stated otherwise, we do not consider the memory M itself to be part of
the DLX hardware.

The data paths DP (figure 3.4) of the sequential DLX fixed-point core
consist of six registers, nine tristate drivers, a multiplexer and six environ-
ments: the arithmetic logic unit ALUenv, the shifters SHenv and SH4Lenv,

**
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����� ��� Cost of the DLX fixed-point core and of all its environments

cost

ALUenv 1691
SHenv 952
SH4Lenv 380

cost

IRenv 301
GPRenv 4096
PCenv 354

cost

DP 10846
CON 1105
DLX 11951

and the environments of the instruction register IR, of the general purpose
registers GPR and of the program counter PC. Thus, the cost of the 32-bit
data paths equals

CDP � 6 �Cf f �32��9 �Cdriv�32��Cmux�32��CALUenv�CSHenv

�CSH4Lenv�CIRenv�CGPR�CPCenv�

The sequential control consists of a Moore automaton, of the memory
control MC, and of the stall engine. The automaton precomputes its out-
puts and has the parameters of table 3.14. Thus, the control unit has cost

CCON � CpMoore�CMC�Cstall�

Table 3.16 lists the cost of the sequential DLX hardware and of all its
environments. The register file is the single most expensive environment;
its cost account for 37% of the cost of the data paths. Of course, this
fraction depends on the size of the register file. The control only accounts
for 9% of the whole hardware cost.

#�'�� �%��� ����

For the cycle time, we have to consider the four types of transfers illus-
trated in figure 2.3 (page 11). This requires to determine the delay of each
paths which start in a register and end in a register, in a RAM, or in the
memory. In this regard, the sequential DLX design comprises the follow-
ing types of paths:

1. the paths which only pass through the data paths DP and the Moore
control automaton,

2. the paths of a memory read or write access, and

3. the paths through the stall engine.

These paths are now discussed in detail. For the paths of type 1 and 2, the
impact of the global update enable signal UE is ignored.

���
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"��� ����-
� +" ��	 ��� 5���� �-�������
All these paths are governed exclusively by the output signals of the Moore
automaton; these standard control signals, denoted by Csig, have zero de-
lay:

A�Csig� � ApMoore�out� � 0�

One type of paths is responsible for the update of the Moore automaton.
A second type of paths is used for reading from or writing into the register
file GPR. All the remaining paths pass through the ALU or the shifter SH.

��	��� �� ��� �-�������
The time TpMoore denotes the cycle time of the Moore control automaton,
as far as the computation of the next state and of the outputs is concerned.
According to section 2.6, this cycle time only depends on the parameters
of table 3.14 and on the accumulated delay A�in�� A�clr�ce� of its input,
clear and clock signals.

8�
���� ,��� �����
For the timing, we distinguish between read and write accesses. During
a read access, the two addresses come directly from the instruction word
IR. The data A� and B� are written into the registers A and B. The control
signals Csig switch the register file into read mode and provide the clock
signals Aceand Bce. The read cycle therefore requires time:

TGPRr � A�Csig��DGPRr�∆�

During write back, the value C�, which is provided by the shifter envi-
ronment SH4Lenv, is written into the multiport RAM of the GPR register
file. Both environments are governed by the standard control signals Csig.
Since the register file has a write delay of DGPRw, the write back cycle takes

TGPRw � A�Csig��DSH4Lenv�DGPRw�δ�

This already includes the time overhead for clocking.

"��� ����-
� �3���� ��	 �����
The ALU and the shifter SH get their operands from the busses a and b.
Except for value cowhich is provided by environment IRenv, the operands
are either hardwired constants or register values. Thus, the data on the two
operand busses are stable ABUSabdelays after the start of a cycle:

ABUSab � A�Csig��DIRenv�co��Ddriv�

As soon as the operands become valid, they are processed in the ALU and
the shifter SHenv. From the data bus D, the result is then clocked into

���
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a register (MAR, MDRw or C) or it passed through environment PCenv
which adds delay DPCenv�IN;PC�. Thus, the ALU and shift cycles require
a cycle time of

TALU�SH � ABUSab�max�DALUenv� DSHenv�

�Ddriv �DPCenv�IN;PC��∆�

5����% 8��	 ��	 ;���� �����

The memory environment performs read and write accesses. The memory
M also provides a status flag mbusywhich indicates whether the access can
be completed in the current cycle or not. The actual data access has a delay
of dmem, whereas the status flag has a delay of dmstat.

According to figure 3.4, bus MA provides the memory address, and reg-
ister MDRw provides the data to be written into memory. Based on the
address MA and some standard control signals, the memory control MC
(section 3.3.5) generates the bank write signals mbw�3 : 0�. Thus,

AMC � A�Csig��Dmux�DMC

delays after the start of each cycle, all the inputs of the memory system
are valid, and the memory access can be started. The status flag mbusy
therefore has an accumulated delay of

AMenv�mbusy� � AMC�dmstat�

and a write access requires a cycle time of

TMwrite � AMC�dmem�δ�

On a read access, the memory data arrive on the bus MDout dmemdelays
after the inputs of the memory are stable, and then, the data are clocked
into the instruction register IR or into register MDRr. Thus, the read cycle
time is

TM � TMread � AMC�dmem�∆�

A read access takes slightly longer than a write access.

"��� ����-
� ��� ����� 1�
���

Based on the status flag mbusy, the stall engine generates the update enable
signal UE which enables the update of all registers and RAMs in the DLX
hardware. The stall engine then combines flag UE with the write and clock
request signals provided by the Moore control automaton.

���
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����� ��� Cycle time of the sequential DLX design

TDP TCON

TGPRr TGPRw TALU�SH TpMoore Tstall
TM

27 37 70 42 37�dmstat 16�dmem

Since mbusyhas a much longer delay than the standard control signals of
the Moore automaton, the stall engine provides the write and clock enable
signals at an accumulated delay of

Astall � AMenv�mbusy��Dstall�

Clocking a register adds delay Df f �δ, whereas the update of the 3-port
RAM in environment GPRenv adds delay Dram3�32�32� � δ. Thus, the
paths through the stall engine require a cycle time of

Tstall � Astall �max�Dram3�32�32�� Df f��δ�

1���-����� �� ��� �%��� ����

Table 3.17 lists the cycle times of the DLX data paths, of the control and
of the memory system. In the data paths, the cycles through the functional
units are most time critical; the register file itself could tolerate a clock
which is twice as fast. The DLX data paths require a minimal cycle time
of TDP � 70 gate delays.

The control does not dominate the cycle time of the sequential DLX
design, as long as the memory status time dmstat stays under 44% of TDP.
The cycle time of the memory system only becomes time critical, if the
actual access time dmemis at least 74% of TDP.

The cycle time τDLX of the sequential DLX design is usually the maxi-
mum of the cycle times required by the data paths and the control:

τDLX � max�TDP� TCON��

The cycle time TM of the memory environment only has an indirect im-
pact on the cycle time τDLX. If the memory cycle time is less than τDLX,
memory accesses can be performed in a single machine cycle. In the other
case, TM � τDLX, the cycle time of the machine must be increased to TM or
memory accesses require TM�τDLX� cycles. Our designs use the second
approach.
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�
HE DLX instruction set is from the classical textbook [HP90]. The
design presented here is partly based on designs from [HP90, PH94,

KP95, MP95]. A formal verification of a sequential processor is reported
in [Win95].
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Chapter

4
Basic Pipelining

�
N THE CPU constructed in the previous chapter DLX instructions are
processed sequentially; this means that the processing of an instruction

starts only after the processing of the previous instruction is completed.
The processing of an instruction takes between 3 and 5 cycles. Most of
the hardware of the CPU is idle most of the time. One therefore tries to
re-schedule the use of the hardware resources such that several instruc-
tions can be processed simultaneously. Obviously, the following condi-
tions should be fulfilled:

1. No structural hazardsexist, i.e., at no time, any hardware resource
is used by two instructions simultaneously.

2. The machine is correct, i.e., the hardware interprets the instruction
set.

The simplest such schedule is basic pipelining: the processing of each
instructions is partitioned into the five stages klisted in table 4.1. Stages
IF and ID correspond directly to the states f etchand decodeof the FSD
in figure 3.20. In stage M, the memory accesses of load and store instruc-
tions are performed. In stage WB, results are written back into the general
purpose registers. Roughly speaking, everything else is done in stage EX.
Figure 4.1 depicts a possible partition of the states of the FSD into these
five stages.

We consider the execution of sequence I � I0� I1� � � � of DLX instructions,
where instruction I0 is preceded by a reset. For the cycles T � 0�1� � � �, the
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BASIC PIPELINING ����� ��� Stages of the pipelined instruction execution

k shorthand name

0 IF instruction fetch
1 ID instruction decode
2 EX execute
3 M memory
4 WB write back

decode

fetch

test

wbR

alu

D2

shiftI

D4

aluI

wbI

testI

D6D5

shift

addr

sh4s

storeload

sh4l

D13/D13

D7

savePC

jalR jalI

D9 v D10

D10D9

wbL

jreg

D8

jimm branch

btaken
else

bt

D12

IF

ID

EX

WB

M

else

D3D1 D11

�	
��� ��� Partitioning of the FSD of the sequential DLX design into the five
stages of table 4.1.

stages k and the instructions Ii , we use

I�k�T� � i

as a shorthand for the statement, that instruction Ii is in stage k during cycle
T. The execution starts in cycle T � 0 with I�0�0� � 0.

Ideally, we would like to fetch a new instruction in every cycle, and each
instruction should progress by one stage in every cycle, i.e.,

� if I�0�T� � i then I�0�T �1� � i �1, and

� if I�k�T� � i and k� 4 then I�k�1�T �1� � i.

For all stages k and cycles T we therefore have

I�k�T� � i 
 T � k� i

��(
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DELAYED BRANCH

AND DELAYED PC
0I 1I 2I 3I 4I

0I 1I 2I 3I 4I

0I 1I 2I 3I 4I

0I 1I 2I 3I 4I

0I 1I 2I 3I 4I

IF

ID

EX

M

WB

idle

cycles. . .

. . .

. . .

. . .

�	
��� ��� Pipelined execution of the instruction sequence I 0� I1� I2� I3� I4

This ideal schedule is illustrated in figure 4.2. Obviously, two instructions
are never in the same stage simultaneously. If we can allocate each hard-
ware resource to a stage k such that the resource is only used by instruction
Ii while Ii is in stage k, then no hardware resource is ever used by two in-
structions simultaneously, and thus, structural hazards are avoided.

For the machine constructed so far this cannot be done for the following
two reasons:

1. The adder is used in stage decodefor incrementing the PC, and in
stage executeit is either used for ALU operations or for branch tar-
get computations. The instructions "�� and "��� use the adder even
twice in the execute stage, namely for the target computation and for
passing the PC to the register file. Thus, we at least have to provide
an extra incrementer for incrementing the PC during decodeand an
ALU bypass path for saving the PC.

2. The memory is used in stages f etch and memory. Thus, an extra
instruction memory IM has to be provided.

��� *���-�� ������ ��� *���-�� +�

�
T IS still impossible to fetch an instruction in every cycle. Before we
explain the simple reason, we introduce more notation.
For a register Rand an instruction Ii , we denote by Ri the content of regis-

ter R afterthe (sequential) execution of instruction Ii . Note that instruction
Ii is fetched from instruction memory location PCi�1. The notation can
be extended to fields of registers. For instance, immi denotes the content
of the immediate field of the instruction register IRi . The notation can be
extended further to expressions depending on registers.
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Recall that the control operationsare the DLX instructions ����# �%��#

"�# "���# " and "��. The branch target btargeti of a control operation Ii is
defined in the obvious way by

btargeti �

�
RS1i�1 for "�# "���
PCi�1 �4� immi for ����# �%��# "# "��

We say that a branch or jump is takenin Ii , (short b jtakeni � 1), if

� Ii has the type "# "��# "� or "���, or

� Ii is a branch ���� and RS1i � 0, or

� Ii is a branch �%�� and RS1i �� 0.

Now suppose that instruction Ii is a control operation which is fetched in
cycle T, where

Ii � IM �PCi�1��

The next instruction Ii�1 then has to be fetched from location PCi with

PCi �

�
btargeti if b jtakeni � 1
PCi�1 �4 otherwise�

but instruction Ii is not in the instruction register before cycle T �1. Thus,
even if we provide an extra adder for the branch target computation in stage
decode, PCi cannot be computed before cycle T � 1. Hence, instruction
Ii�1 can only be fetched in cycle T �2.

�������� �� ��� +���%�	  �����
The way out of this difficulty is by very brute force: one changes the se-
manticsof the branch instruction by two rules, which say:

1. A branch taken in instruction Ii affects only the PC computed in the
following instruction, i.e., PCi�1. This mechanism is called delayed
branch.

2. If Ii is a control operation, then the instruction Ii�1 following Ii is
called the instruction in the delay slotof Ii . No control operations
are allowed in delay slots.

A formal inductive definition of the delayed branch mechanism is

PC�1 � 0

b jtaken�1 � 0

PCi�1 �

�
btargeti if b jtakeni � 1
PCi �4 otherwise.
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AND DELAYED PC

Observe that the definition of branch targets PC�4� imminstead of the
much more obvious branch targets PC� imm is motivated by the delayed
branch mechanism. After a control operation Ii , one always executes the
instruction IM �PCi�1�4� in the delay slot of Ii (because Ii does not occupy
a delay slot and hence, b jtakeni�1 � 0). With a branch target PC� imm,
one would have to perform the computation

PCi�1 � PCi � immi�1�4

instead of
PCi�1 � PCi � immi�1�

The delayed branch semantics is, for example, used in the MIPS [KH92],
the SPARC [SPA92] and the PA-RISC [Hew94] instruction set.

�������� �� ��� +���%�	 "�

Instead of delaying the effect of taken branches, one could opt for delay-
ing the effect of all PC calculations. A program counter PC� is updated
according to the trivial sequential semantics

PC�
i �

��
�

PC�
i�1 � immi if b jtakeni � 1 � Ii � �������%��� "� "���

RS1i�1 if b jtakeni � 1 � Ii � �"�� "����
PC�

i�1 �4 otherwise

The result is simply clocked into a delayed program counter DPC:

DPCi�1 � PC�
i �

The delayed program counter DPC is used for fetching instructions from
IM , namely Ii � IM �DPCi�1�. Computations are started with

PC�
�1 � 4

DPC�1 � 0

We call this uniform and easy to implement mechanism delayed PC. The
two mechanisms will later turn out to be completely equivalent.

<-�� ��	 3��� .���-�����

We continue our discussion with a subtle observation concerning the se-
mantics of the jump and link instructions ("��# "���) which are usually used
for procedure calls. Their semantics changes by the delayed branch mech-
anism as well! Saving PC�4 into GPR�31� results in a return to the delay
slot of the jump and link instruction. Of course, the return should be to
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the instruction after the delay slot (e.g., see the MIPS architecture manual
[KH92]). Formally, if Ii � IM�PCi�1� is a jump and link instruction, then

PCi � PCi�1 �4

because Ii is not in a delay slot, and instruction

Ii�1 � IM�PCi�

is the instruction in the delay slot of Ii . The jump and link instruction Ii
should therefore save

GPR�31�i � PCi �4 � PCi�1 �8�

In the simpler delayed PC mechanism, one simply saves

GPR�31�i � PC�
i�1 �4�

12-�������� �� +���%�	  ����� ��	 +���%�	 "�
Suppose a machine with delayed branch and a machine with delayed PC������ ��	 �

are started with the same program (without control operations in delay
slots) and with the same input data. The two machines then perform exactly
the same sequence I0� I1� � � � of instructions.

This is actually a simulation theorem. By induction on i, we will show�����
two things, namely

1. �PCi�PCi�1� � �DPCi�PC�
i ��

2. and if Ii is a jump and link instruction, then the value GPR�31�i saved
into register 31 during instruction Ii is identical for both machines.

Since b jtaken�1 � 0, it follows that PC0 � 4. Thus

�PC�1�PC0� � �0�4� � �DPC�1�PC�
�1��

and part one of the induction hypothesis holds for i ��1.
In the induction step, we conclude from i�1 to i, based on the induction

hypothesis �PCi�1�PCi� � �DPCi�1�PC�
i�1�� Since

DPCi � PC�
i�1 by the definition of DPC

� PCi by the induction hypothesis�

it only remains to show that

PCi�1 � PC�
i �
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Since DPCi�1 � PCi�1, the same instruction Ii is fetched with delayed
branch and delayed PC, and in both cases, the variable b jtakeni has the
same value.

If b jtakeni � 0, it follows

PC�
i � PC�

i�1 �4
� PCi �4 by the induction hypothesis
� PCi�1 by the definition of delayed branch�

If b jtakeni � 1, then instruction Ii cannot occupy a delay slot, and there-
fore b jtakeni�1 � 0. If Ii is of type ����# �%��# " or "��, then

PC�
i � PC�

i�1 � immi

� PC�
i�2 �4� immi because b jtakeni�1 � 0

� PCi�1 �4� immi by the induction hypothesis for i�2
� btargeti
� PCi�1 because b jtakeni � 1�

If Ii is of type "� or "���, then

PC�
i � RS1i�1

� btargeti
� PCi�1 because b jtakeni � 1�

and part one of the induction hypothesis follows.
For the second part, suppose Ii is a jump and link instruction. With

delayed branch, PCi�1 � 8 is then saved. Because Ii is not in a delay slot,
we have

PCi�1 �8 � PCi �4
� DPCi �4 by induction hypothesis
� PC�

i�1 �4 by definition of delayed PC�

This is exactly the value saved in the delayed PC version. ���

Table 4.2 illustrates for both mechanisms, delayed branch and delayed
PC, how the PCs are updated in case of a jump and link instruction.

��� +�������  �,������ 	�������

�
N THIS section we construct a machine DLXσ with the following prop-
erties:

1. The machine consists of data paths, a control as well as a stall engine
for the clock generation.
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BASIC PIPELINING ����� ��� The impact of a jump and link instruction I i � ����� ����� on the PCs
under the delayed branch and the delayed PC regime

delayed branch delayed PCafter
PC GPR[31] DPC PC’ GPR[31]

Ii�1 PCi�1 PCi�1 PCi=PCi�1 �4
Ii PCi�1 �4 PCi�1 �8 PC’i�1=PCi PCi�1=btargeti PC’i�1 �4

Ii�1 btargeti PC’i=btargeti PCi�2

2. The data paths and the control of the machine are arranged in a 5-
stage pipeline, but

3. Only one stage at a time is clocked in a round robin fashion. Thus,
machine DLXσ will be sequential; its correctness is easily proved
using the techniques from the previous chapter.

4. The machine can be turned into a pipelined machine DLXπ by a very
simple transformation concerning only the PC environment and the
stall engine. Correctness is then shown by a simulation theorem
stating – under certain hypotheses – that machine DLXπ simulates
machine DLXσ.

We call machine DLXσ a prepared sequentialmachine. The overall
structure of the data paths is depicted in figure 4.3. There are 5 stages
of registers and RAM cells. Note, that we have arranged all registers and
RAM cells at the bottom of the stage, where they are computed.

For each stage k – with the numbers or names of table 4.1 – we denote by
out�k� the set of registers and RAM cells computed in stage k. Similarly,
we denote by in�k� the set of registers and RAM cells which are inputs of
stage k. These sets are listed in table 4.3 for all k. R�k denotes that R is an
output register of stage k�1, i.e., R�k� out�k�1�.

The cost of the data paths is

CDP � CPCenv�CIMenv�CIRenv�CEXenv�CDMenv

� CSH4Lenv�CGPRenv�CCAddr�7 �Cf f �32��3 �Cf f �5�12��

Most of the environments can literally be taken from the sequential DLX
designs. Only two environment undergo nontrivial changes: the PC envi-
ronment and the execute environment EXenv. The PC environment has to
be adapted for the delayed PC mechanism. For store instructions, the ad-
dress calculation of state addr and the operand shift of state sh4shave now
to be performed in a single cycle. This will not significantly slow down the
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MDRw

MDRr

sh

MAR

C

DMenv

GPRenv

IMenv

EXenv

co IR.2

CAddr

IR.1

IRenv

5

5

C’

PCenv

SH4Lenv

D

A’, B’

ID

EX

M

WB

A, B PC’, link, DPC

IF

Cad.2

Cad.3

Cad.4

5

12

IR.3

IR.4

Aad
Bad

�	
��� �� High level view of the prepared sequential DLX data paths

����� �� Inputs and outputs of each stage k of the prepared DLX data paths

stage in�k� out�k�

0 IF DPC, IM IR
1 ID GPR, PC’, IR A, B, PC’, link, DPC,

co, Cad.2
2 EX A, B, link, co, Cad.2, IR MAR, MDRw, Cad.3
3 M MAR, MDRw, DM, Cad.3, IR DM, C, MDRr, Cad.4
4 WB C, MDRr, Cad.4, IR GPR

cycle time, because only the last two bits of the address influence the shift
distance, and these bits are known early in the cycle. Trivially, the memory
M is split into an instruction memory IM and a data memory DM.

There is, however, a simple but fundamental change in which we clock
the output registers of the stages. Instead of a single update enable signal
UE (section 3.4.3), we introduce for every stage k a distinct update enable
signal ue�k. An output register R of stage k is updated iff its clock request
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... Rs

ue.k

RsceR1ceR1

�	
��� ��� Controlling the update of the output registers of stage k

signal Rceand the update enable signal of stage k are both active (figure
4.4). Thus, the clock enable signal Rce� of such a register R is obtained as

Rce� � Rce� ue�k�

As before, the read and write signals of the main memory M are not masked
by the update enable signal ue�3 but by the full bit f ull �3 of the memory
stage.

&���� "������	 +3= +��� "���

1���������� .8���

of the instruction register is still controlled by the signals J jump(J-type
jump), shi f tI and the clock signal IRce. The functionality is virtually the
same as before. On IRce� 1, the output IMout of the instruction memory
is clocked into the instruction register

IR � IMout�

and the 32-bit constant co is generated as in the sequential design, namely
as

co � constant�IR� �

��
�

PCo f f set if J jump� 1
�27 SA if shi f tI
imm otherwise�

The cost and the delay of environment IRenv remain the same.
For the use in later pipeline stages, the two opcodes IR�31 : 26� and

IR�5 : 0� are buffered in three registers IR�k, each of which is 12 bits wide.

1���������� ��&3���

is controlled by signal shi f t4l which requests a shift in case of a load
instruction. The only modification in this environment is that the memory
address is now provided by register C and not by register MAR. This has
an impact on the functionality of environment SH4Lenv but not on its cost
and delay.
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Let sh4l�a� dist� denote the function computed by the shifter SH4L as
it was defined in section 3.3.7. The modified SH4Lenv environment then
provides the result

C� �

�
sh4l�MDRr�C�1 : 0�000� if shi f t4l � 1
C if shi f t4l � 0�

1���������� ��		� ��	 9"8���
As in the sequential design, circuit CAddrgenerates the address Cadof the
destination register based on the control signals Jlink (jump and link) and
Itype. However, the address Cad is now precomputed in stage ID and is
then passed down stage by stage to the register file environment GPRenv.
For later use, we introduce the notation

Cad � CAddr�IR��

Environment GPRenv (figure 4.5) itself has still the same functionality.
It provides the two register operands

A� �

�
GPR�RS1� � GPR��IR�25 : 21��� if �RS1� �� 0
0 otherwise

B� �

�
GPR�RS2� � GPR��IR�20 : 16��� if �RS2� �� 0
0 otherwise

and updates the register file under the control of the write signal GPRw:

GPR�Cad�4� �C� if GPRw� 1�

Since circuit CAddr is now an environment of its own, the cost of the
register file environment GPRenv run at

CGPRenv� Cram3�32�32��2 � �Czero�5��Cinv�Cand�32���

Due to the precomputed destination address Cad�4, the update of the reg-
ister file becomes faster. Environment GPRenv now only delays the write
access by

DGPR�write � Dram3�32�32��

Let ACON�csWB� denote the accumulated delay of the control signals
which govern stage WB; the cycle time of the write back stage then runs at

ASH4Lenv � ACON�csWB��DSH4Lenv

TWB � TGPRw � ASH4Lenv�DGPR�write�∆�

The delay DGPR�read of a read access, however, remains unchanged; it adds
to the cycle time of stage IF and of the control unit.
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GPR
3-port RAM (32 x 32)

zero(5) zero(5)

DoA DoB

���� ����

IR[20:16]IR[25:21]

Aad Bad

A’

32 32

B’

bzaz

Cad

Cad.4

Din

C’GPRw

�	
��� ��� Environment GPRenv of the DLXσ design

5����% 1����������
The DLX design which is prepared for pipelined execution comprises two
memories, one for instructions and one for the actual data accesses.

Environment IMenv of the instruction memory is controlled by a single
signal f etch which activates the read signal Imr. The address of an in-
struction memory access is specified by register DPC. Thus, on f etch� 1,
the environment IMenv performs a read operation providing the memory
word

IMout � IMword��DPC�31 : 2�00���

Since memory IM performs no write accesses, its write signal Imw is
always inactive.1 The control IMC of the instruction memory is trivial and
has zero cost and delay. Let dImem denote the access time of the banks of
memory IM. Since the address is directly taken from a register, environ-
ment IMenv delays the instruction fetch by

DIMenv�IR� � DIMC �dImem � dImem�

The instruction memory also provides a signal ibusy indicating that the
access cannot be finished in the current clock cycle. We expect this signal
to be valid dIstat time units after the start of an IM memory access.

Environment DMenv of the data memory DM performs the memory ac-
cesses of load and store instructions. To a large extend, DMenv is identical
to the memory environment of the sequential design, but the address is now
always provided by register MAR.

Environment DMenv is controlled by the two signals Dmr and Dmw
which request a memory read or write access, respectively. Since memory

1This is of course an abstraction. In chapter 6 we treat instruction caches which of
course canbe written.
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DM is byte addressable, the control DMC generates four bank write signals
Dmbw�3 : 0� based on the address and the width of the write access as in

the sequential design. The cost and delay of the memory control remain
the same.

The data memory DM has an access time of dDmemand provides a flag
dbusywith a delay of dDstat. Signal dbusyindicates that the current access
cannot be finished in the current clock cycle. Let ACON�csM� denote the
accumulated delay of the signals Dmr and Dmw, then

TM � TDMenv�read � ACON�csM��DDMC�dDmem�∆
ADMenv�dbusy� � ACON�csM��DDMC�dDstat�

"� 1����������

The environment PCenv of figure 4.6 is governed by seven control signals,
namely:

� resetwhich initializes the registers PC’ and DPC,

� the clock signals PCceand linkce,

� jumpwhich denotes one of the four jump instructions "# "��# "� and
"���,

� jumpRwhich denotes an absolute jump instruction ("�# "���),

� branchwhich denotes a branch instruction ����# �%��, and

� bzerowhich is active on ���� and inactive on �%��.

Based on these signals, its glue logic PCgluegenerates the clock sig-
nal of the registers PC� and DPC. They are clocked simultaneously when
signal PCceis active or on reset, i.e., they are clocked by

PCce� reset�

In addition, PCgluetests operand A� for zero

AEQZ� 1 
 �A�31 : 0�� � 0

and generates signal b jtakenaccording to the specifications of section 4.1.
Thus, b jtakenis set on any jump or on a taken branch:

b jtaken� jump � branch� �bzero XNOR AEQZ��
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����

link PC’

Inc(30)

��
��
��
��

��
��
��
��

Add(32)

DPC

reset0 1

0 1

1 0

reset0 1

4

A’

co[1:0][31:2]

0bjtaken

jumpRnextPC

�	
��� ��� Environment PCenv implementing the delayed PC

Let ACON�csID� denote the accumulated delay of the control signals
which govern stage ID. The cost of the glue logic and the delay of the
signals AEQZand b jtakenthen run at

CPCglue � 2 �Cor �Cand�Cxnor�Czero�32�

DPCglue � Dor �Dand�Dxnor

A�AEQZ� � AGPRenv�A
���Dzero�32�

A�b jtaken� � max�ACON�csID��A�AEQZ���DPCglue�

The environment PCenv implements the delayed PC mechanism of sec-
tion 4.1 in a straightforward way. On an active clock signal, the two PCs
are set to

�DPC� PC�� �

�
�0� 4� if reset
�PC�� pc�� otherwise,

where the value pc� � nextPC�PC�� A�� co� of the instruction I , which is
held in register IR, is computed as

pc� �

��
�

PC��co if b jtaken� I � �������%��� "� "���
A� if I � �"�� "����
PC��4 otherwise.

PCenv also provides a register link which is updated under the control
of signal linkce. On linkce� 1, it is set to

link � PC��4�

that is the PC to be saved in case of a jump and link instruction.
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ALUenv SHenv

0 1 0 1bmuxsel

link co B A B

A

s[1:0]

shD

ba a’
a’muxsel

alu shovf

�	
��� ��� Execute environment of the prepared DLX

In order to update the two program counters, environment PCenv re-
quires some operands from other parts of the data paths. The register
operand A� is provided by the register file environment GPRenv, whereas
the immediate operand co is provided by environment IRenv. The cost and
the cycle time of environment PCenv can be estimated as

CPCenv � 3 �Cf f �32��4 �Cmux�32��Cadd�32��Cinc�30��CPCglue

TPCenv � max�Dinc�30�� AIRenv�co��Dadd�32�� AGPRenv�A
���

A�b jtaken���3 �Dmux�32��∆�

1���-�� 1����������
The execute environment EXenvof figure 4.7 comprises the ALU envi-
ronment and the shifter SHenv and connects them to the operand and re-
sult busses. Since on a store instruction, the address computation and the
operand shift are performed in parallel, three operand and two result busses
are needed.

Register A always provides the operand a. The control signals bmuxsel
and a�muxselselect the data to be put on the busses b and a�:

b�

�
B if bmuxsel� 1
co otherwise,

a� �

�
B if a�muxsel� 1
A otherwise.

The data on the result bus D is selected among the register link and the
results of the ALU and the shifter. This selection is governed by three
output enable signals

D �

��
�

link if linkDdoe� 1
alu if ALUDdoe� 1
sh if SHDdoe� 1�

Note, that at most one of these signals should be active at a time.
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ALU Environment Environment ALUenv is governed by the same con-
trol signals as in the sequential design, and the specification of its results
alu and ov f remains unchanged. However, it now provides two additional
bits s�1 : 0� which are fed directly to the shifter. These are the two least
significant bits of the result of the arithmetic unit AU�32�. Depending on
signal sub, which is provided by the ALU glue logic, the AU computes the
sum or the difference of the operands a and b modulo 232:

�s� � ��a�� ��1�sub� �b�� mod 232 �

�
�a�� �b� mod 232 if sub� 0
�a�� �b� mod 232 if sub� 1�

The cost of the ALU environment and its total delay DALUenvremain the
same, but the bits s�1 : 0� have a much shorter delay. For all the adders
introduced in chapter 2, the delay of these bits can be estimated based on
the delay of a 2-bit AU

DALUenv�s�1 : 0�� � DALUglue�DAU�2�

as it is shown in exercise 4.1.

Shifter Environment The shifter environment SHenv is still controlled
by signal shi f t4s which requests an implicit shift in case of a store oper-
ation, but its operands are different. On an explicit shift, the operands are
provided by the busses a� and b, whereas on an implicit shift, they are pro-
vided by bus a� and by the result s�1 : 0� of the ALU environment. Thus,
the output shof SHenv is now specified as

sh �

�
shi f t�a��b� IR�1 : 0�� if shi f t4s� 0
cls�a��s�1 : 0�000� if shi f t4s� 1�

However, this modification has no impact on the cost and the delay of the
environment. Assuming a delay of ACON�csEX� for the control signals of
stage EX, the cost and the cycle time of the whole execute environment
EXenv run at

CEXenv � CALUenv�CSHenv�2 �Cmux�32��3 �Cdriv�32�

AEXenv � max�DALUenv� DALUenv�s�1 : 0���DSHenv��Dmux�Ddriv

TEX � TEXenv � AEXenv�∆�

&���� ,�+ ��� ��� "������	 +��� "���

Figure 4.8 depicts an FSD for the prepared data paths; the tables 4.4 to
4.6 list the corresponding RTL instructions and their active control signals.
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wb

decode

fetch

shiftI

D4

testI

D6

savePC

D7

addrS

store

D8

noEXtestshift

D3

aluI

D2

alu

D1

addrL

load

sh4l

D9

IF

ID

EX

M

WB

noWB

noM

elseD5

passC

�	
��� ��� The FSD of the prepared sequential DLX design

����� ��� RTL instructions of stages IF and ID

RTL instruction type of I control signals

IF IR� IM�DPC� fetch, IRce
ID A� A� � RS1� Ace,

AEQZ� zero�A���
B� RS2� link � PC��4� Bce, linkce,
DPC� �reset? 0 : PC��� PCce,
PC� � �reset? 4 : pc��� PCce,
pc� � nextPC�PC��A��co� "# "�� jump

"�# "��� jumpR, jump
���� branch, bzero
�%�� branch
otherwise

co� constant�IR� "# "�� Jjump
����# ����# ���� shiftI
otherwise

Cad�CAddr�IR� "���# "�� Jlink
R-type Rtype
otherwise

The nontrivial DNFs are listed in table 4.7. Except for the clocks Ace, Bce,
PCceand linkce, all the control signals used in the decode stage ID are
Mealy signals. Following the pattern of section 3.4, one shows

Let the DLX design be completed such that � ������ ���
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state RTL instruction active control signals

alu MAR� A op B� bmuxsel, ALUDdoe, MARce,
Cad�3 �Cad�2 Rtype, Cad3ce

test MAR� �A rel B?1 : 0�� bmuxsel, ALUDdoe, MARce,
Cad�3 �Cad�2 test, Rtype, Cad3ce

shift MAR� shift�A�B�4:0��� bmuxsel, SHDdoe, MARce,
Cad�3 �Cad�2 Rtype, Cad3ce

aluI MAR� A op co� ALUDdoe, MARce,
Cad�3 �Cad�2 Cad3ce

testI MAR� �A rel co?1 : 0�� ALUDdoe, MARce,
Cad�3 �Cad�2 test, Cad3ce

shiftI MAR� shift�A�co�4 : 0��� SHDdoe, MARce, shiftI,
Cad�3 �Cad�2 Rtype, Cad3ce

savePC MAR� link� linkDdoe, MARce,
Cad�3 �Cad�2 Cad3ce

addrL MAR� A�co� ALUDdoe, add, MARce,
Cad�3 �Cad�2 Cad3ce

addrS MAR� A�co� ALUDdoe, add, MARce,
MDRw� amuxsel, shift4s, MDRwce

cls�B�MAR�1:0�000�
noEX

1. for each type of instruction, the path specified in table 4.8 is taken,

2. and for each state s, the set of RTL instructions rtl�s� is executed.

If every memory access takes only one cycle, then the machine interprets
the DLX instruction set with delayed PC semantics.

The correctness of all pipelined machines in this chapter will follow
from this theorem. Adding the stall engine from section 3.4.3 takes care of
memory accesses which require more than one cycle.

&���# "������-��	 �������

We derive from the above FSD and the trivial stall engine a new control
and stall engine with exactly the same behavior. This will complete the
design of the prepared sequential machine DLXσ.
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����� ��� RTL instructions of the memory and write back stage

state RTL instruction control signals

M passC C � MAR� Cad�4 �Cad�3 Cce, Cad4ce
load MDRr� Mword��MAR�31:2�00��, Dmr, MDRrce,

C � MAR� Cad�4 �Cad�3 Cce, Cad4ce
store m� bytes�MDRw� Dmw
noM

WB sh4l GPR�Cad�4� � shift4l, GPRw
sh4l�MDRr�MAR�1:0�000�

wb GPR�Cad�4� �C GPRw
noWB (no update)

We begin with a stall engine which clocks all stages in a round robin
fashion. It has a 5-bit register f ull �4 : 0�, where for all stages i, signal

uei � f ulli ��busy

enables the update of the registers in out�i�. Since memory accesses can
take several cycles, the update of the data memory DM is enabled by f ull3
and not by ue3. Register f ull is updated by

f ull �4 : 0� :�

��
�

00001 if reset
f ull �4 : 0� if busy� �reset
cls� f ull� otherwise�

Since the design comprises two memories, we compute the busy signal by

�busy � ibusy NOR dbusy�

With signals f ull defined in this way, we obviously can keep track of the
stage which processes the instruction, namely: the instruction is in stage i
iff f ulli � 1. In particular, the instruction is in stage IF iff f ull0 � 1, and
it is in stage ID if f ull1 � 1.

We proceed to transform the FSD by the following four changes:

1. The control signals activated in state IF are now alwaysactivated.
In cycles with f ull0 � 1, these signals then have the right value. In
other cycles, they do not matter because IR is not clocked.

2. Moore signals activated in state ID are now always activated. They
only matter in cycles with f ull1 � 1.
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����� ��� Nontrivial disjunctive normal forms (DNF) of the FSD corresponding
to the prepared data paths

Nontrivial Target Monomial m�M Length
DNF State IR�31 : 26� IR�5 : 0� l�m�

D1 alu 000000 100*** 9
D2 aluI 001*** ****** 3
D3 shift 000000 0001*0 11

000000 00011* 11
D4 shiftI 000000 0000*0 11

000000 00001* 11
D5 test 000000 101*** 9
D6 testI 011*** ****** 3
D7 savePC 010111 ****** 6

000011 ****** 6
D8 addrS 10100* ****** 5

1010*1 ****** 5
D9 addrL 100*0* ****** 4

1000*1 ****** 5
10000* ****** 5

DNF Mealy Signals

D10 Rtype 000000 ****** 6
D4 shiftI 000000 0000*0 (10)

000000 00001* (10)
D7 Jlink 010111 ****** (6)

000011 ****** (6)
D11 jumpR 01011* ****** 5
D12 Jjump 00001* ****** 5
D13 jump D11 OR D12
D14 branch 00010* ****** 5
D15 bzero *****0 ****** 1

Accumulated length of m�M: ∑m�M l�m� 126
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����� ��� Paths path�t� through the FSD for each type t of DLX instruction

DLX Instruction Type Path through FSD

�  �# �$��# �% �# ��# ���# ��!� fetch, decode, aluI, passC, wb
�  # �$�# �% # �# ��# ��! fetch, decode, alu, passC, wb
����# �!��# ����# �!��# ����# �%��# fetch, decode, testI, passC, wb
����# ��&�

���# �!�# ���# �!�# ���# �%�# ���# fetch, decode, test, passC, wb
��&

����# ����# ���� fetch, decode, shiftI, passC, wb
���# ���# ��� fetch, decode, shift, passC, wb
��# ��# �'# ��$# ��$ fetch, decode, addrL, load, sh4l
��# ��# �' fetch, decode, addrS, store, noWB
"���# "�� fetch, decode, savePC, passC, wb
others fetch, decode, noEX, noM, noWB

3. Mealy signals activated in state ID are now activated in every cycle;
they too matter only when f ull1 � 1. Thus, the Mealy signals only
depend on the inputs IR but not on the current state.

4. Finally observe that in figure 4.8 only state decodehas a fanout
greater than one. In stage ID, we can therefore precompute the con-
trol signals of all stages that follow and clock them into a register
R�2 � out�1�. Table 4.9 lists for each state the signals to be clocked
into that register. The inputs of register R�2 are computed in every
cycle, but they are only clocked into register R�2 when

ue�1 � f ull �1 � �busy� 1�

Register R�2 contains three classes of signals:

(a) signals x to be used in the next cycle only control stage EX,

(b) signals y to be used in the next two cycles control the stages
EX and M, and

(c) signals z to be used in the next three cycles control the stages
EX, M and WB.

The control signals y of stage M are delayed by one additional reg-
ister R�3 � out�2�, whereas the signals of stage WB are delayed by
the registers R�3 and R�4 � out�3� as depicted in figure 4.9.
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����� ��� Control signals to be precomputed during stage ID for each of the 10
execute states. The signals of the first table are all of type x, i.e., they only control
stage EX.

EX ALUDdoe SHDdoe linkDdoe add test Rtype
M
WB

shift 1 1
shiftI 1 1
alu 1 1
aluI 1
test 1 1 1
testI 1 1
addrL 1 1
addrS 1 1
savePC 1
noEX

EX MARce bmuxsel MDRwce Cad3ce
amuxsel
shift4s

M Dmw Cad4ce Dmr
Cce MDRrce

WB GPRw shift4l

Type x x y z z

shift 1 1 1
shiftI 1 1
alu 1 1 1
aluI 1 1
test 1 1 1
testI 1 1
addrL 1 1 1
addrS 1 1
savePC 1 1
noEX
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xyz

yz

z

R.2

R.3

R.4

ue.1

ue.2

ue.3

�	
��� ��� Buffering of the precomputed control signals

stage IF

stage ID

stage EX

stage M

stage WB

IM

out(0)

out(1)

out(2)

out(3)

out(4)
CON

DP

R.4

R.3

R.2

R.1

R.0

�	
��� ���� Structure of the data paths DP and the precomputed control CON of
the DLXσ machine

����� ���� Parameters of the two control automata; one precomputes the Moore
signals (ex) and the other generate the Mealy signals (id).

# states # inputs # and frequency of outputs
k σ γ νsum νmax

ex 10 12 11 39 9
id 1 12 9 11 2

fanin of the states # and length of monomials
fansum fanmax #M lsum lmax

ex 15 3 15 104 11
id – – 5 22 10
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The new precomputed control generates the same control signals as the

FSD, but the machine now has a very regular structure: Control signals
coming from register R�k� out�k�1� control stage k of the data paths for
all k � 1. Indeed, if we define R�0 and R�1 as dummy registers of length
0, the same claim holds for all k. The structure of the data paths and the
precomputed control of machine DLXσ is illustrated in figure 4.10.

The hardware generating the inputs of register R�2 is a Moore automaton
with the 10 EX states, precomputed control signals and the parameters ex
from table 4.10. The state noEXserves as the initial state of the automaton.
The next state only depends on the input IR but not on the current state.
Including the registers R�3 and R�4, the control signals of the stages EX to
WB can be precomputed at the following cost and cycle time:

CCON�moore� � CpMoore�ex���3�2� �Cf f

TCON�moore� � TpMoore�ex��

The Mealy signals which govern stage ID are generated by a Mealy au-
tomaton with a single state and the parameters id of table 4.10. All its
inputs are provided by register IR at zero delay. According to section 2.6,
the cost of this automaton and the delay of the Mealy signals can be esti-
mated as

CCON�mealy� � CMealy�id���3�2� �Cf f

ACON�mealy� � AO�id��

We do not bother to analyze cost and cycle time of the stall engine.

&���& �  ��� ����������

Later on, we will establish the correctness of pipelined machines by show-
ing that they simulate machine DLXσ. This will require an inductive proof
on a cycle by cycle basis. We will always argue about a fixed but arbitrary
sequence

I � I0� I1� � � �

of instructions which is preceded by reset and which is itself not inter-
rupted by reset.

If during a cycle the busysignal is active, then the state of the machine
does not change at the end of that cycle. We therefore only number the
cycles during which the busy signal is inactivewith

T � 0�1� � � �
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For such cycles T and signals R, we denote by RT the value of R during
cycle T; R can also be the output of a register. We abbreviate with

Iσ�k�T� � i

the fact that instruction Ii is in stage k of machine DLXσ during cycle T.
Formally, this can be defined as

� the execution starts in cycle T � 0, i.e., Iσ�0�0� � 0,

� if Iσ�k�T� � i and k� 4, then Iσ�k�1�T �1� � i, and

� if Iσ�4�T� � i, then Iσ�0�T �1� � i �1.

For any other combination of T and k, the scheduling function Iσ�k�T� is
undefined. Hence,

Iσ�k�T� � i 
 T � 5 � i �k 
 i � �T�5� and k� T mod 5;

and for any cycle T � 0, stage k is full ( f ullT �k� � 1) iff Iσ�k�T� is defined.
Recall that we denote by Ri the value of R after execution of instruction

Ii . By R�1 we denote the initial value of R, i.e., the value of R just after
reset. A basic observation about the cycle by cycle progress of machine
DLXσ is formulated in the following lemma.

Dateline Lemma. Let I�k�T�� � i, and let R� out�t�, then � ����� ��


RT �

�

�
Ri�1 if t � k
Ri if t � k

This is illustrated in figure 4.11. During cycle T�, registers abovestage k
already have the new value Ri , whereas registers belowstage k still have the
old value Ri�1. In other words, on downward arrows of figure 4.3 machine
DLXσ reads values Ri from the current instruction, whereas on upward
arrows the machine reads values Ri�1 from the previous instruction.

This very intuitive formulation of the lemma is the reason why in figure
4.3 we have drawn the general purpose register file at the bottom of the
pipeline and not – as is usual – in the middle of stage ID. A formal proof
uses the fact that

Ri�1 � R5i

and proceeds for T � 5i�k by induction on k. We leave the simple details
as an exercise 4.2.

Another very intuitive way to state this lemma is in the following way.
Imagine that wires between pipeline stages are so long, that we can wrap
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Ri-1

Ri

stage

0

k��������

...
...

�	
��� ���� Illustration of lemma 4.3. In the current cycle, I i is stage k.

the machine around the equator (with stage k east of stage k� 1 mod 5).
Now imagine that we process one instruction per day and that we clock the
pipeline stages at the dateline, i.e., the border between today and yesterday.
Then the lemma states that east of the dateline we already have today’s data
whereas west of the dateline we still have yesterdays data.

Let I�4�T� � i, then I�0�T �1� � i �1, and the dateline lemma applies
for all R

RT�1 � R�i�1��1 � Ri�

��� +��������# �� � .����!
�����
�

�
ITH TWO very simple changes, we transform the prepared sequen-
tial machine DLXσ from the previous section into a pipelined ma-

chine DLXπ:

1. Register DPC, i.e., the delayed PC is discarded. The instruction
memory IM is now directly addressed by PC�. At reset, the instruc-
tion memory is addressed with address 0, and PC� is initialized with
4. This is illustrated in figure 4.12. Register PC� is still clocked by

PCce� reset�

2. The stall engine from figure 4.13 is used. For all i, signal uei enables
the update of registers and RAM cells in out�i�. The update of the
data memory DM is now enabled by

f ull3 � reset�

�#�
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link PC’

Inc(30)

��

��
��
��
��

Add(32)

reset0 1

����

0 1

0 1

1 0

[31:2]

4

bjtaken

A’

jumpR

co[1:0]

IF

ID

IMdpc

0

reset
nextPC

�	
��� ���� PC environment of the DLXπ design, implementing a delayed PC

full.4

full.2

full.1

ue.0

ue.1

ue.2

ue.3

ue.4

full.3

CE

CE

CE

1

CE

CE
reset

�	
��� ��� The stall engine of the DLXπ design

At reset, the signals ue�4 : 0� are initialized with 00001. When only
counting cycles T with an inactive busysignal, the update enable sig-
nals uebecome active successively as indicated in table 4.11. Note
that we now assume the reset signal to be active during cycle T � 0.

&�#�� ���������

We want to argue, that under certain hypotheses the pipelined machine
DLXπ simulates the prepared sequential machine DLXσ. We will have to
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T reset ue[0] ue[1] ue[2] ue[3] ue[4] full[2] full[3] full[4]

0 1 1 0 0 0 0 * * *
1 0 1 1 0 0 0 0 0 0
2 0 1 1 1 0 0 1 0 0
3 0 1 1 1 1 0 1 1 0
4 0 1 1 1 1 1 1 1 1
� � � 0 1 1 1 1 1 1 1 1

argue simultaneously about registers R occurring in machine DLXπ and
their counterpart in machine DLXσ. Therefore, we introduce the notation
Rπ to denote a register in machine DLXπ; we denote by Rσ the correspond-
ing register in machine DLXσ. The notation Ri (the content of register R
at the end of instruction Ii) will only be used for the sequential machine
DLXσ.

+-������ �� 8���

We generally assume that the reset signal is active long enough to permit
an instruction memory access.

.������ �������

The registers visible to the programmer are the general purpose registers
GPR, the RAM cells in IM and DM and the program counters. The re-
maining registers are called invisible.

We assume, that during reset, the simulated machine (here DLXσ) and
the simulating machine (here DLXπ) have the same contents of the memo-
ries and the register file. In the sequential execution, reset is given in cycle
T � ��1 whereas in the pipelined execution, reset is given in cycle T � 0.
By construction, both machines do not update general purpose registers
or memory cells during reset. Thus, in the two DLX designs any register
R� �GPR�PC��DPC� and any memory cell M of DM and IM must satisfy

R�1 � R0
σ � R1

π

M�1 � M0
σ � M1

π�

Note that we make no such assumption for the remaining registers. This
will be crucial when we treat interrupts. The mechanism realizing the jump
to the interrupt service routine (JISR) will be almost identical to the present
reset mechanism.

�#�
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The schedule for the execution of instructions Ii by machine DLXπ is
defined by

Iπ�k�T� � i 
 T � k� i�

The strategy of the correctness proof is now easily described. We con-
sider cycle T for machine DLXπ and the correspondingcycle T� for ma-
chine DLXσ, when the same instruction, say Ii is in the same stage, say k.
Formally

Iπ�k�T� � i � Iσ�k�T
���

We then want to conclude by induction on T that stage k of the simulat-
ing machine has during cycle T the same inputs as stage k of the simulated
machine during cycle T�. Since the stages are identical, we want to con-
clude for all signals S inside the stages

ST
π � ST �

σ � (4.1)

This should hold in particular for the signals which are clocked into the
output registers R� out�k� of stage k at the end of cycle T . This would
permit us to conclude for these registers

RT�1
π � RT ��1

σ � Ri� (4.2)

This almost works. Indeed it turns out that equations 4.1 and 4.2 hold
after every invisible register has been updated at least once. Until this has
happened, the invisible registers in the two machines can have different
values because they can be initialized with different values.

Thus, we have to formulate a weaker version of equations 4.1 and 4.2.
We exploit the fact, that invisible registers are only used to hold intermedi-
ate results (that is why they can be hidden from the programmer). Indeed,
if the invisible register R is an input register of stage k, then the pipelined
machine uses this register in cycle T only if it was updated at the end of
the previous cycle. More formally, we have

Let Iπ�k�T� � i, and let R be an invisible input register of stage k that was� ����� ���
not updated at the end of cycle T�1, then:

1. The set of output registers R� of stage k which are updated at the end
of cycle T is independent of RT.

2. Let R� be an output register of stage k that is updated at the end of
cycle T, and let S be an input signal for R�, then ST is independent
of RT.

This can be verified by inspection of the tables 4.4 to 4.6 and 4.8.
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Therefore, it will suffice to prove equation 4.2 for all visible registers as

well as for all invisible registers which are clocked at the end of cycle T. It
will also suffice to prove equation 4.1 for the input signals Sof all registers
which are clocked at the end of cycle T.

Under the above assumptions and with a hypothesis about data depen-
dencies in the program executed we are now able to prove that the ma-
chines DLXπ and DLXσ produce the same sequence of memory accesses.
Thus, the CPUs simulate each other in the sense that they have the same
input/output behavior on the memory. The hypotheses about data depen-
dencies will be removed later, when we introduce forwarding logic and a
hardware interlock.

Suppose that for all i� 0 and for all r �� 0, the instructions Ii�3� � � � � Ii�1 do������ ��� �

not write register GPR�r�, where GPR�r� is a source operand of instruction
Ii. The following two claims then hold for all cycles T and T�, for all stages
k, and for all instructions Ii with

Iπ�k�T� � i � Iσ�k�T
�� :

1. For all signals S in stage k which are inputs to a register R� out�k�
that is updated at the end of cycle T:

ST
π � ST �

σ

2. For all registers and R� out�k� which are visible or updated at the
end of cycle T:

RT�1
π � Ri�

Proof by induction on the cycles T of the pipelined execution. Let T � 0.�����
We have Iπ�0�0� � 0 � Iσ�0�0�, i.e., instruction 0 is in stage 0 of machine
DLXπ during cycle T � 0 and in stage 0 of machine DLXσ during cycle
T � � 0. The only input of stage 0 is the address for the instruction mem-
ory. This address is the output of register DPC for machine DLXσ and
signal dpc for machine DLXπ. By construction, both signals have in the
corresponding cycles T � 0 and T� � 0 the same value, namely

DPC0
σ � dpc0

π � 0�

As stages 0 are for both machines identical, we have

S0
π � S0

σ

for all internal signals S of stage 0 and claim 1 follows. In particular in
both machines IM�0� is clocked into the instruction register at the end of
cycle T � T� � 0. Hence, claim 2 follows because of

IR1
π � IR1

σ � IR0�
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����� ���� Illustration of the scheduling function I π for the stages k�1 and k.

stage s Iπ�s�T� Iπ�s�T�1�

k-1 i
k i i-1

In the induction step we conclude from T � 1 to T. Thus, we have to
show claim 1 for signals S in cycle T, and we have to show claim 2 for
registers R in cycle T � 1. According to figure 4.14, which illustrates the
data flow between the stages of the DLXσ design, there are the following
four cases:

1. k� 2 (execute) or k� 4 (write back).This is the easy case. In figures
4.3 and 4.14, all edges into stage k come from output registers

R� out�k�1�

of stage k� 1. From the scheduling functions it can be concluded
that

Iπ�k�1�T�1� � Iπ�k�T� � Iσ�k�T
�� � i�

This is illustrated in table 4.12. Let R be an input register of stage
k which is visible or which was updated at the end of cycle T � 1.
Using lemma 4.3 with t � 1 we conclude

RT
π � Ri by induction hypothesis

� RT �

σ by lemma 4.3�

Hence, except for invisible input registers Rwhich were not updated
after cycle T�1, stage k of machine DLXπ has in cycle T the same
inputs as stage k of machine DLXσ in cycle T�. Stage k is identical in
both machines (this is the point of the construction of the prepared
machine !). By lemma 4.4, the set of output registers R� of stage k
which are updated after cycle T or T�, respectively, is identical for
both machines, and the input signals S of such registers have the
same value:

ST
π � ST �

σ �

If follows that at the end of these cycles T and T� identical values
are clocked into R�:

R�T�1
π � R�T ��1

σ

� R�
i by lemma 4.3�
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NextPC

DM

GPR

IM

M

WB

EX

ID

IF

out(3)

out(2)

out(1)

out(0)

PC’ DPC

out(4)

�	
��� ���� Data flow between the pipeline stages of the DLXσ design

2. k � 3 (memory). The inputs of this stage comprise registers from
out�2� and the memory DM which belongs to out�3�. For input
registers R� out�2�, one concludes as above that

RT
π � Ri � RT �

�

For i � 0, one concludes from the scheduling function (table 4.12)

Iπ�3�T�1� � i�1�

We have M � out�3�, i.e., every memory cell is an output register of
stage 3. Using lemma 4.3 with t � k� 3 and the induction hypothe-
sis, we can conclude

MT
π � Mi�1 � MT �

σ �

For i � 0, the scheduling function implies

Iπ�3�T� � i 
 T � 3�
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����� ��� Illustration of the scheduling function I π for the stages 0 and 1.

stage s Iπ�s�T� Iπ�s�T�1�

0 i
1 i-1 i-2

In the DLXπ design, the data memory is only updated if

reset� f ull �3� � 1�

According to table 4.11, memory cell M is not updated during cycles
t � �1�2�, because the f ull �3�tπ� 0. Since the DLXπ design is started
with contents M1

π� M�1, it follows

MT
π � M2

π � M1
π � M�1�

In the DLXσ design, the update of the data memory DM is enabled by
the flag f ull �3�. Thus, DM might be updated during reset, but then
the update is disabled until I0 reaches stage 3, since f ull �3�tσ � 0 for
t � �0�1�2�. Therefore,

M�1 � M0
σ � MT �

σ �

Now the argument is completed as in the first case.

3. k � 0 (fetch). Here we have to justify that the delayed PC can be
discarded. In the pipelined design, PC� is the only input register of
stage IF , whereas in the sequential design, the input register is DPC.
Both registers are outputs of stage s� 1.

For i � 2 one concludes from the scheduling functions (table 4.13)

Iπ�1�T�1� � Iπ�0�T�1��1 � i�2�

The induction hypothesis implies (for T � 1)

PC�T
π � PC�

i�2�

For i � 1 (and T � 1) we have by construction

PC�
�1 � 4 � PC�1

π �

Using lemma 4.3 with t � 1, we conclude for T � 1

PC�T
π � PC�

i�2 � DPCi�1 by construction
� DPCT�

σ by lemma 4.3.

Now the argument is completed as in the first case.
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BASIC PIPELINING ����� ���� Illustration of the scheduling function I π for the stages 1 to 4.

stage s Iπ�s�T� Iπ�s�T�1�

1 i
2 i-1
3 i-2
4 i-3 i-4

4. k � 1 (decode). In either design, the decode stage has the input
registers IR� out�0� and GPR� out�4�. One shows IRT

π � IRT �

as
above. If instruction Ii does not read a register GPR�r� with r �� 0,
we are done, because the outputs of stage 4 are not used. In the other
case, only the value GPR�r�T can be used. The scheduling function
implies (table 4.14)

Iπ�4�T�1� � i�4�

For i � 4, we conclude using lemma 4.3 with s� 4 that

GPR�r�Tπ � GPR�r�i�4 by induction hypothesis

� GPR�r�T
�

σ �

According to the hypothesis of the theorem, instructions Ii�3 to Ii�1

do not write register GPR�r�. Hence

GPR�r�i�1 � GPR�r�i�4�

i � 3. The update of the register file GPR is enabled by signal ue�4�.
The stall engine (table 4.11) therefore ensures that the register file is
not updated during cycles t � �1�2�3�. Thus,

GPR�1 � GPR1
π � � � � � GPR4

π�

The hypothesis of the theorem implies that instructions Ij with 0 �
j � 3 do not write register GPR�r�. Hence,

GPR�r��1 � � � � � GPR�r�i�1�

By lemma 4.3 with s� 4, we conclude

GPR�r�4π � GPR�r�i�1 � GPR�r�T
�

σ �

The argument is completed as before.���
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In the following, we determine the cost and the cycle time of the DLXπ
design. Except for the PC environment and the stall engine, the pipelined
design DLXπ and the prepared sequential design DLXσ are the same. Since
in section 4.2, the environments of the DLXσ design are described in detail,
we can focus on the PC environment and the stall engine.

��� "� 1����������
PCenv (figure 4.12) is governed by the same control signals as in the DLXσ
design, the glue logic PCgluealso remains the same. The only modifica-
tion in PCenv is that the register DPC of the delayed PC is discarded. The
instruction memory IM is now addressed by

dpc �

�
PC� if reset� 0
0 if reset� 1�

Nevertheless, the PC environment still implements the delayed PC mecha-
nism, where dpc takes the place of DPC.

Due to the modification, the PC environment becomes cheaper by one
32-bit register. The new cost is

CPCenv � 2 �Cf f �32��4 �Cmux�32��Cadd�32��Cinc�30��CPCglue�

The cycle time TPCenvof the PC environment remains unchanged, but the
address dpcof the instruction memory has now a longer delay. Assuming
that signal resethas zero delay, the address is valid at

APCenv�dpc� � Dmux�32��

This delay adds to the cycle time of the stage IF and to the accumulated
delay of signal ibusyof the instruction memory:

TIF � APCenv�dpc��DIMenv�IR��∆
AIMenv�ibusy� � APCenv�dpc��dIstat�

��� ����� 1�
���

determines for each stage i the update enable signal ue�i� according to fig-
ure 4.13. The registers f ull �4 : 2� are clocked by CE when neither the
instruction memory nor the data memory is busy or during reset:

CE � �busy� �reset��ibusy� � �busy� ��reset NOR ibusy�

�busy � ibusy NOR dbusy�

�#*
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During reset, the update is delayed until the instruction fetch is completed.
Since signal reset has zero delay, the clock CE can be generated at an
accumulated delay of

Astall�CE� � max�AIMenv�ibusy�� ADMenv�dbusy���Dnor �Dor�

For each register R� out�i� and memory M � out�i�, the stall engine
then combines the clock/write request signal and the update signal and
turns them into the clock/write signal:

Rce� � Rce� ue�i�� Mw� � Mw � ue�i��

The update of the data memory DM is only enabled if stage 3 is full, and
if there is no reset:

Dmw� � Dmw� f ull �3� � reset�

The Moore control automaton provides 7 clock/write request signals and
signal Dmw� (table 4.9). Together with two AND gates for the clocks of the
stages IF and ID, the stall engine has cost

Cstall � 3 �Cf f �4 �Cand�Cinv�2 �Cnor�Cor ��7�2�2� �Cand�

As in the sequential design, the clocking of a register adds delay Df f �δ,
whereas the update of the register file adds delay Dram3�32�32��δ. Thus,
the stall engine requires a cycle time of

Tstall � Astall�CE��3 �Dand�max�Dram3�32�32�� Df f��δ�

The write signal Dmwof the data memory has now a slightly larger accu-
mulated delay. However, an inspection of the data memory control DMC
(page 81) indicates that signal Dmw is still not time critical, and that the
accumulated delay of DMC remains unchanged.

���	���� ���
For the DLXπ design and the DLXσ design, the top level schematics of the
data paths DP are the same (figure 4.3), and so do the formula of the cost
CDP.

The control unit CON comprises the stall engine, the two memory con-
trollers IMC and DMC, and the two control automata of section 4.2.3. The
cost CCON�moore� already includes the cost for buffering the Moore sig-
nals up to the write back stage. The cost of the control and of the whole
DLXπ core therefore sum up to

CCON � CIMC �CDMC�Cstall �CCON�moore��CCON�mealy�

CDLX p � CDP�CCON�

�&�
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����� ���� Cost of the DLX data paths and all its environments for the sequential
DLX core (1) and for the pipelined design DLXπ (2). The last row lists the cost of
the DLXπ relative to that of the sequential design.

EX SH4L GPR IR PC DP CON DLX

1 4083 380 4096 301 416 10846 1105 11951
2 3315 380 4066 / 30 301 1906 12198 756 12954

0.81 1 4.58 1.12 0.68 1.08

Table 4.15 lists the cost of the DLX core and of its environments for
the sequential design (chapter 3) and for the pipelined design. The execute
environment of the sequential design consists of the environments ALUenv
and SHenv and of the 9 drivers connecting them to the operand and result
busses. In the DLXπ design, the busses are more specialized so that EXenv
only requires three drivers and two muxes and therefore becomes 20%
cheaper.

In order to resolve structural hazards, the DLXπ design requires an ex-
tended PC environment with adder and conditional sum incrementer. That
accounts for the 358% cost increase of PCenv and of the 12% cost increase
of the whole data paths.

Under the assumption that the data and control hazards are resolved in
software, the control becomes significantly cheaper. Due to the precompu-
tation and buffering of the control signals, the automata generate 19 instead
of 29 signals. In addition, the execution scheme is optimized, cutting the
total frequency νsumof the control signals by half. The constant, for exam-
ple, is only extracted once in stage ID, and not in every state of the execute
stage.

�%��� ����
In order to determine the cycle time of the DLX design, we distinguish
three types of paths, those through the control, through the memory system
and through the data paths.

Control Unit CON The automata of the control unit generate Mealy
and Moore control signals. The Mealy signals only govern the stage ID;
they have an accumulated delay of 13 gate delays. The Moore signals are
precomputed and therefore have zero delay:

ACON�csID� � ACON�mealy� � 13

ACON�csEX� � ACON�csM� � ACON�csW B� � 0�

�&�
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BASIC PIPELINING ����� ���� Cycle time of the DLX fixed-point core for the sequential (1) and for
the pipelined (2) design. In the pipelined design, dmemdenotes the maximum of
the two access times dImem and dDmem; dmstat denotes the maximum of the two
status times dIstat and dDstat.

ID EX WB IF, M control CON
GPRr PC ALU/SH GPRw memory auto stall

1 27 70 70 37 16�dmem 42 37�dmstat

2 27 54 66 33 16�dmem 32 41�dmstat

The cycle time of the control unit is the maximum of the times required by
the stall engine and by the automata

TCON � max�Tstall� Tauto��

Compared to the sequential design, the automata are smaller. The maximal
frequency of the control signals and the maximal fanin of the states are cut
by 25% reducing time Tauto by 24% (table 4.16). The cycle time of the
whole control unit, however, is slightly increased due to the stall engine.

Memory Environments The cycle time TM models the read and write
time of the memory environments IMenv and DMenv. Pipelining has no
impact on the time tM which depends on the memory access times dImem

and dDmem:
TM � max�TIMenv� TDMenv��

Data Paths DP The cycle time TDP is the maximal time of all cycles in
the data paths except those through the memories. This involves the stages
decode, execute and write back:

TDP � max�TID � TEX� TWB��

During decode, the DLX design updates the PC environment (TPCenv),
reads the register operands (TGPRr), extracts the constant, and determines
the destination address. Thus,

TID � max�TPCenv� TGPRr� ACON�csID��max�DIRenv�DCAddr��∆��

Table 4.16 lists all these cycle times for the sequential and the pipelined
DLX design. The DLXπ design already determines the constant and the
destination address during decode. That saves 4 gate delays in the execute
and write back cycle and improves the total cycle time by 6%.

�&�
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The cycle time of stage ID is dominated by the updating of the PC. In the
sequential design, the ALU environment is used for incrementing the PC
and for the branch target computation. Since environment PCenv has now
its own adder and incrementer, the updating of the becomes 20% faster.

Pipelining has the following impact on the cost and the cycle time of the� ���$�& ���
DLX fixed-point core, assuming that the remaining data and control haz-
ards can be resolved in software:

� The data paths are about 12% more expensive, but the control be-
comes cheaper by roughly 30%. Since the control accounts for 5%
of the total cost, pipelining increases the cost of the core by about
8%.

� The cycle time is reduced by 6%.

In order to analyze the impact which pipelining has on the quality of
the DLX fixed-point core, we have to quantify the performance of the
two designs. For the sequential design, this was done in [MP95]. For
the pipelined design, the performance strongly depends on how well the
data and control hazards can be resolved. This is analyzed in section 4.6.

��� ����� "
�������#

�
N THIS section, we describe a rather simple extension of the hardware of
machine DLXπ which permits to considerably weaken the hypothesis of

theorem 4.5. For the new machine, we will indeed show theorem 4.5 but
with the following hypothesis: If instruction Ii reads register GPR�r�, then
the instructions Ii�1� Ii�2 are not load operations with destination GPR�r�.

Suppose that for all i� 0 and r �� 0, the instructions Ii�1� Ii�2 are not load � ������ ���
operations with destination GPR�r�, where GPR�r� is a source operand of
instruction Ii. The following two claims then hold for all cycles T and T�,
for all stages k and for all instructions Ii with

Iσ�k�T
�� � Iπ�k�T� � i�

1. For all signals S in stage k which are inputs to a register R� out�k�
that is updated at the end of cycle T:

ST
π � ST �

σ

2. For all registers and R� out�k� which are visible or updated at the
end of cycle T:

RT�1
π � Ri�

�&#
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We first introduce three new precomputed control signals v�4 : 2� for the
prepared sequential machine DLXσ. The valid signal v� j� indicates that the
data, which will be written into the register file at stage 4 (write back), is
already available in the circuitry of stage j . For an instruction Ii , the valid
signals are defined by

v�4� � 1; v�3� � v�2� �

�
0 if instruction Ii is a load
1 otherwise

� �Dmri �

where Dmri is the read signal of the data memory for Ii . Together with the
write signal GPRwof the register file and some other precomputed control
signals, the signals v�4 : 2� are pipelined in registers R�2, R�3 and R�4 as
indicated in figure 4.15. For any stage k � �2�3�4�, the signals GPRw�k
and v�k��k are available in stage k. At the end of stage k, the following
signals C��k are available as well:

� C��2 which is the input of register MAR,

� C��3 which is the input of register C, and

� C��4 which is the data to be written into the register file GPR.

Observe that the signals C��k are inputs of output registers of stage k.
Therefore, one can apply part 1 of the theorem to these signals in certain
cycles. This is crucial for the correctness proof of the forwarding logic.

Obviously, the following statements hold:

For all i, for any stage k� 2, and for any cycle T with Iσ�k�T� � i, it����� ��( �

holds:

1. Ii writes the register GPR�r� iff after the sequential execution of Ii ,
the address r, which is different from0, is kept in the registers Cad�k
and the write signals GPRw�k are turned on, i.e.:

Ii writes GPR�r� 
 �Cad�ki�� r � r �� 0 � GPRw�ki � 1�

2. If Ii writes a register GPR�r�, and if after its sequential execution,
the valid flag v�k� is turned on, then the value of signal C��k during
cycle T equals the value written by Ii, i.e.:

Ii writes GPR�r� � v�k�i � 1 � C��kT � GPR�r�i�

Moreover, C��k is clocked into an output register of stage k at the end
of cycle T.

�&&
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FORWARDINGstage IF

stage ID

stage EX

stage M

stage WB

IM

out(0)

out(1)

out(2)

out(3)

out(4)

v[2].2xv[3].2yv[4].2z

v[3].3yv[4].3z

v[4].4z

DP

R.4

R.3

R.2

R.0

R.1

GPRw.4

GPRw.2

GPRw.3

CON

�	
��� ���� Structure of the data paths DP and of the precomputed control CON
of the extended DLXπ machine

In the decode stage, the valid signals are derived from the memory read
signal Dmr, which is precomputed by the control automata. The generation
and buffering of the valid signals therefore requires the following cost and
cycle time:

CVALID � �3�2�1� �Cf f �Cinv

TVALID � Tauto�Dinv�

This extension effects the cost and cycle time of the precomputed control
of the pipelined DLX design.

&�&�� #7���
� ,�����	��


We describe a circuit Forw capable of forwarding data from the three
stages j � 2�3�4 into stage 1. It has the following inputs

1. Cad� j�C�� j�GPRw� j as described above,

2. an address ad to be matched with Cad, and

3. a data Din from a data output port of the register file,

and it has an output Dout feeding data into stage 1. The data Din are fed
into stage 1 whenever forwarding is impossible.

�&'
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GPRoutBGPRoutA

b)

Forw(3)

Din

Forw(3)

Din

Dout Doutad ad

topA topB
Aad Ain Bad Bin

Forw(3)

Din

a) 

Cad.2, C’.2, GRPw.2

Cad.3, C’.3, GRPw.3

Cad.4, C’.4, GRPw.4

[4:2]

Doutad top

�	
��� ���� Block diagram of circuit Forw�3� and the forwarding engine

The data paths of the pipelined machine DLXπ will be augmented by
a forwarding engineconsisting of two circuits Forw�3�, as depicted in
figures 4.16. One of the circuits forwards data into register A, the other
forwards data into register B. In general, forwarding engines will take
care of all data transport from high stages to low stages, except for the
instruction memory address. Thus, in the top level data path schematics
(figure 4.17), there will be no more upward edgesbetween the stages 1 to
4.

We proceed to specify circuit Forw�3�, give a simple realization and
then prove the theorem 4.7.

����-�� ,���
For the stages j � �2�3�4�, we specify the following signals:

hit� j� � � f ull � j � GPRw� j� � �ad �� 0� � �ad�Cad� j��

Signal hit� j� is supposed to indicate that the register accessed by the in-
struction in stage 1 is modified by the instruction in stage j . Except for the
first four clock cycles T � 0� � � �3 all pipeline stages are full (table 4.13),
i.e., they process regular instructions. However, during the initial cycles,
an empty stage is prevented from signaling a hit by its full flag. Signal

top� j � hit� j� �
j�1�

x�2

�hit�x�

indicates moreover, that there occurs no hit in stages above stage j . The
data output Dout is then chosen as

Dout�

�
C�� j if top� j � 1 for some j
Din otherwise

�&(
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EX

M

WB

IF

C’.4

C’.2

C’.3

C’

SH4Lenv

D

A, B

Aad, Bad

Cad.4

IRenv

GPRoutA, GPRoutB

link, PC’

PCenv
Ain, Bin

�	
��� ���� Top level schematics of the DLXπ data paths with forwarding. For
clarity’s sake, the address and control inputs of the stall engine are dropped.

8����:����� �� ����-�� ,���

An example realization is shown in figure 4.18. The circuitry to the left
generates the three hit signals hit�4 : 2�, whereas the actual data selection is
performed by the three multiplexers. The signals top� j are implicit in the
order of the multiplexers. The signals top� j , which will be needed by the
stall engine, can be generated by two inverters and three AND gates. The
cost of this realization of circuit Forw then runs at

CForw�3� � 3 � �Cequal�5��3 �Cand�Cmux�32��

�Cortree�5��2 �Cinv�3 �Cand�

This forwarding engine provides the output Dout and the signals top� j at
the following delays

DForw�Dout;3� � Dequal�5��2 �Dand�3 �Dmux

DForw�top;3� � Dequal�5��4 �Dand�3 �Dmux;

�&/
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Cad.2

Cad.3

Cad.4

GPRw.2

GPRw.3

GPRw.4

full.2

full.3

full.4

equal(5)

equal(5)

equal(5)

0 1

0 1

0 1

C’.4Din

C’.3

C’.2

Doutad 5
OR

hit[2]

hit[3]

hit[4]

�	
��� ���� A realization of the 3-stage forwarding circuit Forw�3�

the delay is largely due to the address check. The actual data Din and C�� j
are delayed by no more than

DForw�Data;3� � 3 �Dmux�

Let A�C��Din� denote the accumulated delay of the data inputs C��i and
Din. Since the addresses are directly taken from registers, the forwarding
engine can provide the operands Ain and Bin at the accumulated delay
A�Ain�Bin�; this delay only impacts the cycle time of stage ID.

A�C��Din� � max�AEXenv� ASH4Lenv� DGPR�read�

A�Ain�Bin� � max�A�C��Din��AForw�Data�3�� DForw�Dout�3��

The construction obviously generalizes to s-stage forwarding with s� 3,
but then the delay is proportional to s. Based on parallel prefix circuits one
can construct forwarding circuits Forw�s� with delay O�log s� (see exercise
4.3).

&�&�# ���������

We now proceed to prove theorem 4.7. We start with a simple observation
about valid bits in a situation where instruction Ii reads register GPR�r� and
one of the three preceding instructions Ii�α (with α � �1�2�3�) writes to
register GPR�r�. In the pipelined machine, the read occurs in a cycle T
when instruction Ii is in stage 1, i.e., when

Iπ�k�T� � 1�

During this cycle, instruction Ii�α is in stage 1�α:

Iπ�1�α T� � i�α�
�&)
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We consider the time T�, when instruction Ii�α is in stage 1 � α of the
prepared sequential machine:

Iσ�1�α T �� � i�α�

In cycle T�, the prepared sequential machine has not yet updated register
GPR�r�. The following lemma states, where we can find a precomputed
version of GPR�r�i�α in the sequential machine.

Suppose the hypothesis of theorem 4.5 holds, Ii reads GPR�r�, instruction � ����� ��)
Ii�α writes GPR�r�, and Iσ�1�α�T �� � i�α, then

C���1�α�T �

σ � GPR�r�i�α�

If Ii�α is a load instruction, then by the hypothesis of the theorem we have �����
α � 3. In this case, the valid bits are generated such that

v�4�i�α � v�1�α�i�α � 1�

In any other case, the valid signals for any j � 2 equal

v� j�i�α � 1�

The claim now follows directly from lemma 4.8. ���

Proof of Theorem 4.7 The proof proceeds along the same lines as the �����
proof of theorem 4.5 by induction on T where T denotes a cycle in the
pipelined execution with Iπ�k�T� � i. Since only the inputs of stage 1 were
changed, the proof for the case T � 0 and the induction step for k �� 1
stay literally the same. Moreover, in the induction step, when we conclude
from T� 1 to T for k � 1, we can already assume the theorem for T and
k � 1. We only need to show the claim for those input signals of stage 1,
which depend on the results of later stages, i.e., the signals Ain and Bin.
For all the other signals and output registers of stage 1, the claim can the
be concluded as in the proof of theorem 4.5.

A read from GPR�r� can be into register A or into register B. In the
induction step, we only treat the case where instruction Ii reads GPR�r�
into register A. Reading into register B is treated in the same way with the
obvious adjustments of notation.

There are two cases. In the interesting case, the hypothesis of theorem
4.5 does not hold for instruction Ii , i.e., there is an α � �1�2�3� such that
instruction Ii�α writes GPR�r�. By the hypothesis of the theorem, this in-
struction is not a load instruction. For the valid bits this implies

v� j�i�α � 1

�&*
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for all stages j . Application of the induction hypothesis to the instruction
register gives IRi � IRT

π. Since Ii reads GPR�r�, it follows for signal Aadr:

r � �Aadi� � �AadT
π��

Since Ii�α writes register GPR�r�, it follows by lemma 4.8 for any stage
j � 2 that

GPRw� j i�α � ��Cad� ji�α�� r� � �r �� 0��

For stage j � 1�α, the pipelining schedule implies (table 4.14, page 138)

Iπ� j�T� � Iπ�1�α�T� � i�α�

Note that none of the stages 0 to i�α is empty. By the induction hypothesis
it therefore follows that

hit�1�α�Tπ � f ull ��1�α�Tπ � GPRw��1�α�T
π

� �r �� 0� � ��Cad��1�α�Tπ�� r�

� 1 � GPRw��1�α�1�α

� �r �� 0� � ��Cad��1�α�i�α�� r�

� 1�

Let Ii�α be the last instruction before Ii which writes GPR�r�. Then no
instruction between Ii and Ii�α writes GPR�r�, and we have

hit�l �Tπ � 0

for any stage l with 1 � l � 1�α, and hence

top��1�α�Tπ � 1�

Let T � denote the cycle in the sequential execution with

Iσ�1�α�T �� � Iπ�1�α�T� � i�α�

The forwarding logic delivers the output

DoutTπ � C���1�α�T
π

� C���1�α�T �

σ by lemma 4.8 and by
the theorem for T and k � 1�α

� GPR�r�i�α by lemma 4.9
� GPR�r�i�1�

In the simple second case, the stronger hypothesis of theorem 4.5 holds
for Ii . For any i � 4, this means that none of the instructions Ii�1� Ii�2� Ii�3

writes GPR�r�. As above, one concludes that

hit� j�Tπ � 0�

�'�
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HARDWARE

INTERLOCK

for all j . Hence, the forwarding logic behaves like the old connection
between the data output GPRoutAof the GPR environment and the input
Ain of the decode stage delivering

DoutTπ � DinT
π � GPR�r�i�4 � GPR�r�i�1�

For i � 3, the DLXπ pipeline is getting filled. During these initial cycles
(T � 3), either stage k � 1 is empty or instruction Ij with Iπ�k�T� � j � 2
does not update register GPR[r]. As above, one concludes that for any j

hit� j�Tπ � 0�

and that
DoutTπ � DinT

π � GPR�r��1

���

��� �������� '�����
�/

&�'�� ����� 1�
���

In this section, we construct a nontrivial stall engine called hardware inter-
lock. This engine stalls the upper two stages of the pipeline in a situation
called a data hazard, i.e., when the forwarding engine cannot deliver valid
data on time. Recall that this occurs if

1. an instruction Ii which reads from a register r �� 0 is in stage 1,

2. one of the instructions Ijwith j � �i�1� i�2� is a load with destina-
tion r ,

3. and I j is the last instruction before Ii with destination r .

This must be checked for both operands A and B. In the existing machine,
we could characterize this situation by the activation of the signal dhaz:

dhaz � dhazA� dhazB

dhazA � topA�2��v�2��2 � topA�3��v�3��3

dhazB � topB�2��v�2��2 � topB�3��v�3��3�

Based on this signal, we define the two clocks, the clock CE1 of the stages
0 and 1, and the clock CE2 of the stages 2 to 4:

CE2 � ��ibusy�dbusy� � �reset��ibusy�

CE1 � ��ibusy�dbusy�dhaz� � �reset��ibusy��

�'�
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Thus, CE2 corresponds to the old clock signal CE, whereas CE1 is also
inactive in presence of a data hazard.

Whenever the lower stages of the pipeline are clocked while the upper
stages are stalled, a dummy instruction(i.e., an instruction which should
not be there) enters stage 2 and trickles down the pipe in subsequent cycles.
We have to ensure that dummy instructions cannot update the machine.
One method is to force a NOP instruction into stage 2 whenever CE2�
�CE1� 1. This method unfortunately depends on the particular instruction
set and its encoding. When stalling a different pipeline, the corresponding
part of the hardware has to be modified. A much more uniform method is
the following:

1. Track true instructions and dummy instruction in stage k by a single
bit f ull �k, where f ull �k� 1 signals a true instruction and f ull �k� 0
signals a dummy instruction.

2. In CE2 cycles with f ull �k � 0, do not update stage k and advance
the dummy instruction to stage k�1 if k�1 � 4.

The following equations define a stall engine which uses this mecha-
nism. It is clocked by CE2. A hardware realization is shown in figure
4.19. For k� 2,

ue�0 � CE1

f ull �1 � 1

ue�1 � CE1 � reset

ue�k � CE2 � reset� f ull �k

f ull �k :� ue��k�1�

This is an almost trivial set of equations. However, enabling the hit
signals hit� j� by the corresponding full flags is a subtle and crucial part of
the mechanism. It ensures that dummy instructions cannot activate a hit
signal hit� j� nor the data hazard signal (exercise 4.4).

In order to prevent dummy instructions from generating a dbusysignal
and from updating the data memory, the read and write signals Dmr� and
Dmw� of the data memory DM are also enabled by the full flag:

Dmr� � Dmr � f ull �3

Dmw� � Dmw� f ull �3 � reset�

where Dmr and Dmw are the read and write request signals provided by
the precomputed control.

�'�
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��� ���� Hardware interlock engine of the DLXπ design

���	���� ��� ��	 +���%
The modifications presented above only effect the stall engine. The Stall
Engine of figure 4.19 determines the update enable signals ue�i based on
the clocks CE1 and CE2. These clock signals can be expressed as

CE2 � �busy� ��reset NOR ibusy�

CE1 � ��busy��dhaz� � ��reset NOR ibusy�

�busy � ibusy NOR dbusy�

The clocks now also depend on the data hazard signal dhazwhich can be
provided at the following cost and delay:

Cdhaz � 2 �Cinv�4 �Cand�3 �Cor

Astall�dhaz� � AForw�top;3��Dand�2 �Dor�

Since signal resethas zero delay, the clocks can be generated at an accu-
mulated delay of

Astall��busy� � max�AIMenv�ibusy�� ADMenv�dbusy���Dnor

Astall�CE� � max�Astall��busy�� Astall�dhaz���Dand�Dor�

For each register and memory, the stall engine turns the clock/write re-
quest signal into a clock/write signal. Due to the signal Dmr and Dmw, that
now requires 11 AND gates. Altogether, the cost of the stall and interlock
engine then runs at

Cstall � 3 �Cf f �Cinv��5�11�1� �Cand�2 �Cnor�2 �Cor �Cdhaz�

�'#
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Since the structure of the stall engine remains the same, its cycle time can
be expressed as before:

Tstall � Astall�CE��3 �Dand�max�Dram3�32�32�� Df f��δ�

&�'�� ����	-���
 ,-������

With the forwarding engine and the hardware interlock, it should be pos-
sible to prove a counterpart of theorem 4.7 with no hypothesis whatsoever
about the sequence of instructions.

Before stating the theorem, we formalize the new scheduling function
Iπ�k�T�. The cycles T under consideration will be CE2 cycles. Intuitively,
the definition says that a new instruction is inserted in every CE1 cycle into
the pipe, and that subsequently it trickles down the pipe together with its
f ull �k signals. We assume that cycle 0 is the last cycle in which the reset
signal is active.

The execution still starts in cycle 0 with Iπ�0�0� � 0. The instructions
are always fetched in program order, i.e.,

Iπ�0�T� � i � Iπ�0�T �1� �

�
i if ue�0T � 0
i �1 if ue�0T � 1�

(4.3)

Any instructions makes a progress of at most one stage per cycle, i.e., if
Iπ�k�T� � i, then

i �

�
Iπ�k�T �1� if ue�kT � 0
Iπ�k�1�T �1� if ue�kT � 1 and k�1 � 4�

(4.4)

We assume that the reset signal is active long enough to permit an access
with address 0 to the instruction memory. With this assumption, activation
of the reset signal has the following effects:

CE2 � 1

ue�0 � CE1

ue�1 � ue�2 � ue�3 � ue�4 � 0�

After at most one cycle, the full flags are initialized to

f ull �1 � 1� f ull �2 � f ull �3 � f ull �4 � 0�

read accesses to the data memory are disabled (DMr� � 0), and thus,

busy� dhaz� 0�

�'&
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When the first access to IM is completed, the instruction register holds

IR� IM �0��

This is the situation in cycle T � 0. From the next cycle on, the reset signal
is turned off, and a new instruction is then fed into stage 0 in every CE1
cycle. Moreover, we have

ue�0T � ue�1T � CE1T for all T � 1�

i.e., after cycle T � 0, stages 0 and 1 are always clocked simultaneously,
namely in every CE1 cycle. A simple induction on T gives for any i � 1

Iπ�0�T� � i � Iπ�1�T� � i�1 (4.5)

This means that the instructions wander in lockstep through the stages 0
and 1. For T � 1 and 1 � k� 3, it holds that

ue�kT � 1 � ue��k�1�T�1 � 1�

Once an instruction is clocked into stage 2, it passes one stage in each CE2
clock cycle. Thus, an instruction cannot be stalled after being clocked into
stage 2, i.e., it holds for k� �2�3�

Iπ�k�T� � i � Iπ�k�1�T �1� � i� (4.6)

The stall engine ensures the following two features: � ����� ��	*

1. An instruction Ii can never overtake the preceding instruction Ii�1.

2. For any stage k� 1 and any cycle T� 1, the value Iπ�k�T� of the
scheduling function is defined iff the flag f ull�k is active during cycle
T , f ull�kT � 1.

1) Since the instructions are always fetched in-order (equation 4.3), in- �����
struction Ii enters stage 0 after instruction Ii�1. Due to the lockstep behav-
ior of the first two stages (equation 4.5), there exists a cycle T with

Iπ�0�T� � i � Iπ�1�T� � i�1�

Let T � � T be the next cycle with an active CE1 clock. The stages 0 and 1
are both clocked at the end of cycle T�; by equation 4.4 it then follows that
both instructions move to the next stage:

Iπ�1�T
��1� � i � Iπ�2�T

��1� � i�1�
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Instruction Ii�1 now proceeds at full speed (equation 4.6), i.e., it holds for
a� �1�2� that

Iπ�2�a�T ��1�a� � i�1�

Instruction Ii can pass at most one stage per cycle (equation 4.4), and up
to cycle T � 1�a it therefore did not move beyond stage 1�a. Thus, Ii
cannot overtake Ii�1. This proves the first statement.

2) The second statement can be proven by a simple induction on T; we
leave the details as an exercise (see exercise 4.5).���

+��	���� ,��� 1���-����
Finally, we have to argue that the stall mechanism cannot produce dead-
locks. Let both clocks be active during cycle T�1, i.e.,

CE1T�1 � CE2T�1 � 1�

let the instructions I , I� and I �� be in the stages 1 to 3 during cycle T. I�� I ��

are possibly dummy instructions. Furthermore, let CE1T � 0. Thus, the
hazard flag must be raised (dhazT � 1), and one of the instructions I� and
I �� must be a load which updates a source register of I .

1. Assuming that instruction I� in stage 2 is such a load, then

v�2T � v�3T�1 � 0 and v�4T�2 � 1�

Instruction I � produces a data hazard during cycles T and T � 1.
During these cycles, only dummy instructions which cannot activate
the dhazsignal enter the lower stages, and therefore

dhazT�2 � 0 and CE1T�2 � 1�

2. Assuming that instruction I�� in stage 3 is the last load which updates
a source register of I , then

v�2T � v�3T�1 � 1� v�3T � 0 and v�4T�1 � 1�

Instruction I �� produces a data hazard during cycle T, and a dummy
instruction enters stage 2 at the end of the cycle. In the following
CE2 cycle, there exists no data hazard, and the whole pipeline is
clocked:

dhazT�1 � 0 and CE1T�1 � 1�

Thus, the clock CE1 is disabled (CE1 � 0) during at most two consecutive
CE2 cycles, and all instructions therefore reach all stages of the pipeline.
Note that none of the above arguments hinges on the fact, that the pipelined
machine simulates the prepared sequential machine.
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We can now show the simulation theorem for arbitrary sequences of in-
structions:

For all i, k, T , T� such that Iπ�k�T� � Iσ�k�T �� � i and ue�kT � 1, the � ������ ��		
following two claims hold:

1. for all signals S in stage k which are inputs to a register R� out�k�
that is updated at the end of cycle T:

ST
π � ST �

σ

2. for all registers and R� out�k� which are visible or updated at the
end of cycle T:

RT�1
π � Ri�

We have argued above that IM �0� is clocked into register IR at the end �����
of CE2 cycle 0, and that the PC is initialized properly. Thus, the theorem
holds for T � 0. For the induction steps, we distinguish four cases:

1. k � 0. Stage 0 only gets inputs from the stages 0 and 1. Without
reset, these two stages are clocked simultaneously. Thus, the inputs
of stage 0 only change on an active CE1 clock. Arguing about CE1
cycles instead of CE2 cycles, one can repeat the argument from the-
orem 4.7.

2. k� �2�4�. In the data paths, there exists only downward edges into
stage k, and the instructions pass the stages 2 to 4 at full speed. The
reasoning therefore remains unchanged.

3. k � 3. From Iπ�3�T� � i one cannot conclude Iπ�3�T � 1� � i� 1
anymore. Instead, one can conclude

Iπ�3� t� � i�1

for the last cycle t � T such that I�3� t� is defined, i.e., such that a
non-dummy instruction was in stage 3 during cycle t. Since dummy
instructions do not update the data memory cell M, it then follows
that

Mt�1
π � Mi�1 by induction hypothesis

� MT
π�

�'/
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4. k� 1. For I�1�T� � i and ue�1T � 1 we necessarily have dhazT � 0.

If Ii has no register operand GPR[r], then only downward edges are
used, and the claim follows as before. Thus, let Ii read a register
GPR[r] with r �� 0. The read can be for operand A or B. We only
treat the reading of operand A; the reading of B is treated in the same
way with the obvious adjustments of notation.

If the instructions I0� � � � Ii�1 do not update register GPR[r], it follows
for any k � 1 that

�GPRw�kT
π � 0� � ��Cad�kT

π� �� r��

or that stage k processes a dummy instruction, i.e., f ull �kT � 0.
Thus, hit signal hit�kT is inactive, and the reasoning of theorem 4.7
can be repeated.

If register GPR[r] is updated by an instruction preceding Ii , we define
last�i� r� as the index of the last instruction before Ii which updates
register GPR[r], i.e.,

last�i� r� � max� j � i�I j updates register GPR�r���

Instruction I � Ilast�i�r� is either still being processed, or it has already
left the pipeline.

If instruction I is still in process, then there exists a stage l � 2 with

Iπ�l �T� � last�i� r��

From lemma 4.10 and the definition of last�i� r�, it follows that

hitA�l T
π � 1�

and that any stage between stage 1 and l is either empty or processes
an instruction with a destination address different from r . By the
construction of circuit Forw, it then follows that

topA�kT
π � 1�

Since dhazTπ � 0, the hazard signal of operand A is also inactive,
dhazATπ � 0. By the definition of this signal and by the simulation
theorem for l � 2 it follows that

v�l T
π � 1 � v�llast�i�r��

The decode stage k � 1 then reads the proper operand A of instruc-
tion Ii ,

AinT
π � C��l T

π ; design of the forwarding engine
� GPR�r�last�i�r� ; theorem for stages 2 to 4
� GPR�r�i�1 ; definition of last�i� r��
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����� ���� Cost of the sequential DLX core and of the pipelined DLX designs

Design DP CON DLX

sequential 10846 1105 11951
basic pipeline 12198 756 12954
pipeline + forwarding 12998 805 13803
pipeline + interlock 13010 830 13840

and the claim follows for stage k � 1.

If instruction I already ran to completion, then there exists no stage
l � 2 with

Iπ�l �T� � last�i� r��

With reasoning similar to the one of the previous case it then follows
that

AinT
π � GPR�r�Tπ � GPR�r�last�i�r� � GPR�r�i�1�

and thus, I gets the proper operand A. ���

��� �
�� +��!
������ ����-���

�
N PREVIOUS sections we have described several variants of a pipelined
DLX core and have derived formulae for their cost and cycle time. In

the following, we will evaluate the pipelined and sequential DLX designs
based on their cost, cycle time, and performance-cost ratio. The SPEC
integer benchmark suite SPECint92 [Hil95, Sta] serves as workload.

&�(�� ���	���� ��� ��	 �%��� ����

Table 4.17 lists the cost of the different DLX designs. Compared to the
sequential design of chapter 3, the basic pipeline increases the total gate
count by 8%, and result forwarding adds another 7%. The hardware inter-
lock engine, however, has virtually no impact on the cost. Thus, the DLXπ
design with hardware interlock just requires 16% more hardware than the
sequential design.

Note that pipelining only increases the cost of the data paths; the control
becomes even less expensive. This even holds for the pipelined design
with forwarding and interlocking, despite the more complex stall engine.

�'*
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BASIC PIPELINING ����� ���� Cycle time of the DLX core for the sequential and the pipelined de-
signs. The cycle time of CON is the maximum of the two listed times.

Design A/B PC EX IF, M CON

sequential 27 70 70 18�dmem 40 39�dmstat

basic pipe 27 54 66 16�dmem 32 41�dmstat

pipe + forwarding 72 93a 66 16�dmem 34 41�dmstat

pipe + interlock 72 93a 66 16�dmem 57 43�dmstat

athis time can be reduced to 89 by using a fast zero tester for AEQZ

According to table 4.18, the result forwarding slows down the PC envi-
ronment and the register operand fetch dramatically, increasing the cycle
time of the DLX core by 40%. The other cycle times stay virtually the
same. The hardware interlocks make the stall engine more complicated
and increase the cycle time of the control, but the time critical paths re-
mains the same.

The significant slow down caused by result forwarding is not surprising.
In the design with a basic pipeline, the computation of the ALU and the
update of the PC are time critical. With forwarding, the result of the ALU
is forwarded to stage ID and is clocked into the operand registers A1 and
B1. That accounts for the slow operand fetch. The forwarded result is
also tested for zero, and the signal AEQZ is then fed into the glue logic
PCglueof the PC environment. PCglueprovides the signal b jtakenwhich
governs the selection of the new program counter. Thus, the time critical
path is slowed down by the forwarding engine (6d), by the zero tester (9d),
by circuit PCglue(6d), and by the selection of the PC (6d).

With the fast zero tester of exercise 4.6, the cycle time can be reduced
by 4 gate delays at no additional cost. The cycle time (89d) is still 35%
higher than the one of the basic pipeline. However, without forwarding
and interlocking, all the data hazards must be resolved at compile time by
rearranging the code or by insertion of NOP instructions. The following
sections therefore analyze the impact of pipelining and forwarding on the
instruction throughput and on the performance-cost ratio.

&�(�� "���������� 5�	��

The performance is modeled by the reciprocal of the benchmark’s execu-
tion time. For a given architecture A, this execution time is the product of
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the design’s cycle time τA and its cycle count CCA:

TA � τA �CCA�

�%��� ��-�� �� ��2-������ +��
�

In a sequential design, the cycle count is usually expressed as the product
of the total instruction count IC and the average number of cycles CPI
which are required per instruction:

CC � IC �CPI� (4.7)

The CPI ratio depends on the workload and on the hardware design. The
execution scheme of the instruction set Is defines how many cycles CPII
an instruction I requires on average. On the other hand, the workload to-
gether with the compiler defines an instruction count ICI for each machine
instruction, and so the CPI value can be expressed by

CPI � ∑
I�Is

ICI

IC
CPII � ∑

I�Is
νI �CPII � (4.8)

where νI denotes the relative frequency of instruction I in the given work-
load.

�%��� ��-�� �� "�������	 +��
�

Pipelining does not speed up the execution time of a single instruction,
but it rather improves the instruction throughput, due to the interleaved
execution. Thus, it is difficult to directly apply the formulae (4.7) and (4.8)
to a pipelined design.

In case of perfect pipelining, it takes �k� 1� cycles to fill a k-stage
pipeline. After that, an instruction is finished per cycle. In this case, the
cycle count equals

CC � k�1� IC � IC�

For very long workloads, the cycle count virtually equals the instruction
count. However, perfect pipelining is unrealistic; the pipeline must be
stalled occasionally in order to resolve hazards. Note, that the stalling is
either due to hardware interlocks or due to NOPs inserted by the compiler.
Let νh denote the relative frequency of a hazard h in the given workload,
and let CPHh denote the average number of stall cycles caused by this
hazard. The cycle count of the pipelined design can then be expressed as

CC � IC� ∑
hazard h

IC �νh �CPHh � IC �

�
1�∑

h

νh �CPHh

�
�
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In analogy to formula (4.8), the following term is treated as the CPI ratio
of the pipelined design:

CPI � 1� ∑
hazard h

νh �CPHh� (4.9)

&�(�# +���% ���� ��  �����6<-�� .���-�����

It is the matter of an optimizing compiler to make a good use of the
branch/jump delay slots. In the most trivial case, the compiler just fills
the delay slots with NOP instructions, but the compiler can do a much
better job (table 4.19, [HP96]). It tries to fill the delay slots with useful in-
structions. There are basically three code blocks to choose the instructions
from, namely:

1. The code block which immediately precedes the branch/jump. The
delay slot can be filled with a non-branch instruction from this block,
if the branch does not depend on the re-scheduled instruction, and if
the data dependences to other instructions permit the re-scheduling.
This always improves the performance over using a NOP.

2. The code from the branch/jump target. The re-scheduled instruc-
tion must not overwrite data which is still needed in the case that
the branch is not taken. This optimization only improves the perfor-
mance, if the branch is taken; the work of the delay slot is wasted
otherwise.

3. The code from the fall through of a conditional branch. In analogy
to the second case, the re-scheduled instruction must not overwrite
data needed if the branch is taken. This optimization only improves
the performance if the branch is not taken.

Strategy 1) is the first choice. The other two strategies are only used when
the first one is not applicable. How well the delay slot can be filled also
depends on the type of the branch/jump instruction:

� An unconditional, PC relative branch/jump is always taken and has
a fixed target address. Thus, if the first strategy does not work, the
target instruction can be used to fill the delay slot.

� An unconditional, absolute jump is always taken, but the target ad-
dress may change. This type of jump usually occurs on procedure
call or on return from procedure. In this case, there are plenty of
independent instructions which can be scheduled in the delay slot,
e.g., the instructions for passing a parameter/result.

�(�
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����� ���� Percentage of conditional branches in the SPECint92 benchmarks and
how well their delay slot (DS) can be filled. AV denotes the arithmetic mean over
the five benchmarks.

compress eqntott espresso gcc li AV

% branch 17.4 24.0 15.2 11.6 14.8 16.6
empty DS 49% 74% 48% 49% 75% 59%

����� ���� Instruction mix �%� of the SPECint92 programs normalized to 100%.

instructions compress eqntott espresso gcc li AV

load 19.9 30.7 21.1 23.0 31.6 25.3
store 5.6 0.6 5.1 14.4 16.9 8.5
compute 55.4 42.8 57.2 47.1 28.3 46.2
call (jal, jalr) 0.1 0.5 0.4 1.1 3.1 1.0
jump 1.6 1.4 1.0 2.8 5.3 2.4
branch, taken 12.7 17.0 9.1 7.0 7.0 10.6
�, untaken 4.7 7.0 6.1 4.6 7.8 6.0

� A conditional branch. If the branch results from an if-then-else con-
struct, it is very difficult to predict the branch behavior at compile
time. Thus, if the first strategy does not work, the delay slot can
hardly be filled with an useful instruction. For loops the branch pre-
diction is much easier because the body of a loop is usually executed
several times.

Thus, the delay slot of an unconditional branch/jump can always be filled;
only conditional branches cause some problem. For these branches, the
compiler can only fill about 40% of the delay slots (table 4.19).

&�(�& �". 8���� �� ��� +3= +��
�

For our analysis, we assume an average SPECint92 workload. Table 4.20
lists the frequencies of the DLX machine instructions on such a workload.
The table is taken from [HP96], but we have normalized the number to
100%.
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BASIC PIPELINING ����� ���� Number of CPU cycles and memory accesses per DLX instruction.

instructions CPU cycles memory accesses CPII
load, store 3 2 5�2 �WS
compute 3 1 4�WS
call (jal, jalr) 4 1 5�WS
jump 2 1 3�WS
branch, taken 3 1 4�WS
branch, untaken 2 1 3�WS

��2-������ +��
�
For the sequential DLX design, table 4.21 specifies the number of CPU
cycles and the number of memory accesses required by any machine in-
struction I . This table is derived from the finite state diagram of figure
3.20 (page 90). Let a memory access require WSwait states, on average.
The CPII value of an instruction I then equals the number of its CPU cy-
cles plus �WS�1� times the number of memory accesses. When combined
with the instruction frequencies from table 4.20, that yields the following
CPI ratio for the sequential DLX design:

CPIDLXs � 4�26�1�34 �W S�

"�������	 +��
� ���� .��������
Even with result forwarding, the pipelined DLX design can be slowed
down by three types of hazards, namely by empty branch delay slots, by
hardware interlocks due to loads, and by slow memory accesses.

Branch Delay Slots The compiler tries to fill the delay slot of a branch
with useful instructions, but about 59% of the delay slots cannot be filled
(table 4.19). In comparison to perfect pipelining, such an empty delay slot
stalls the pipeline for CPHNopB� 1 cycles. This hazard has the following
frequency:

νNopB � νbranch�0�59 � 0�166 �0�59 � 0�1�

Since these control hazards are resolved in software, every empty delay
slot also causes an additional instruction fetch.

Hardware Interlock Since the result of a load can only be forwarded
from stage WB, the forwarding engine cannot always deliver the operands
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on time. On such a data hazard, the hardware interlock engine inserts up
to two dummy instructions. The compiler reduces these data hazards by
scheduling independent instructions after a load wherever that is possible.

According to [HP96], both interlocks can be avoided for 63% of the
loads, and for another 11% at least one of the interlocks can be avoided.
Thus, two interlocks occur only for 26% of all loads. Each interlock in-
creases the cycle count by CPHNopL � 1 cycle. On the workload under
consideration, this hazard has a frequency of

νNopL � νload � �2 �0�26�0�11� � 0�253 �0�63 � 0�16�

Slow Memory Accesses In a hierarchical memory system, most of the
accesses can be completed in a single cycle, but there are also slow ac-
cesses which require some wait states. Let every memory access require
an average of CPHslowM �WSwait states. The frequency of a slow mem-
ory access then equals the number of loads, stores and instruction fetches:

νslowM � νload�νstore�ν f etch�

Since the branch hazards are resolved in software by inserting a NOP, they
cause νNopB additional instruction fetches. Load hazards are resolved by
a hardware interlock and cause no additional fetches. Thus, the frequency
of instruction fetches equals

ν f etch � 1�νNopB � 1�1�

Summing up the stall cycles of all the hazards yields the following CPI
ratio for the pipelined DLX design with forwarding:

CPIDLXπ � 1�νNopB�1�νNopL�1�νslowM �CPHslowM

� 1�26�1�44 �W S�

"�������	 +��
� �����-� ,�����	��


The design DLXπb with the basic pipeline resolves the hazards in soft-
ware; if necessary, the compiler must inserts NOPs. This design faces
the same problems as the DLXπ design, but in addition, it must manage
without result forwarding. Whenever the DLXπ pipeline would forward a
result, the compiler must re-arrange the code or insert a NOP. According to
simulations [Del97], these forwarding hazards stall the basic pipeline for
CPH f orw � 1 cycles each, and they have a frequency of

ν f orw � 0�39�

�('
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BASIC PIPELINING ����� ���� Hardware cost, cycle time and CPI ratio of the DLX designs (sequen-
tial, basic pipeline, pipeline with interlock)

Gate Count Cycle Time CPI Ratio
abs. rel. abs. rel. WS 0.3 1

DLXs 11951 1.0 70 1.0 4�26�1�34 �W S 4.66 5.60
DLXπb 12949 1.08 66 0.94 1�65�2�0 �WS 2.25 3.65
DLXπ 13833 1.16 89 1.27 1�26�1�44 �W S 1.70 2.70

The simulation assumed that the additional hazards are resolved by in-
serting a NOP. Thus, every branch, load or forwarding hazard causes an
additional instruction fetch. The frequency of fetches then runs at

ν f etch � 1�νNopB�νNopL�ν f orw

� 1�0�1�0�16�0�39 � 1�65�

and slow memory accesses have a frequency of

νslowM � νload�νstore�ν f etch � 0�253�0�085�1�65 � 2�0�

Thus, the CPI ratio of the pipelined DLX design without forwarding is:

CPIDLXπb � 1��νNopB�νNopL�ν f orw� �1�νslowM �CPHslowM

� 1�65�2�0 �WS�

&�(�' +��
� 1���-�����

"���������� ��-	%
According to table 4.22, pipelining and result forwarding improve the CPI
ratio, but forwarding also increases the cycle time significantly. The CPI
ratio of the three designs grows with the number of memory wait states.
Thus, the speedup caused by pipelining and forwarding also depends on
the speed of the memory system (figure 4.20).

Result forwarding and interlocking have only a minor impact (3%) on
the performance of the pipelined DLX design, due to the slower cycle time.
However, both concept disburden the compiler significantly because the
hardware takes care of the data hazards itself.

The speedup due to pipelining increases dramatically with the speed
of the memory system. In combination with an ideal memory system
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��� ���� Speedup of pipelining and forwarding as a function of the memory
latency (DLXs: sequential, DLXpb: basic pipeline, DLXp: pipeline with inter-
lock)

(WS� 0), pipelining yields a speedup of 2.7, whereas for WS� 5�5, the
sequential DLX design becomes even faster than the pipelined designs.
Thus, pipelining calls for a low-latency memory system.

Powerful, cache based memory systems, like that of the Dec Alpha
21064 [HP96], require about WS� 0�25 wait states per memory access,
and even with a small 2KB on-chip cache, a memory speed of WS� 0�5 is
still feasible (chapter 6). In the following, we therefore assume WS = 0.3.
Under this assumption, pipelining speeds the DLX design up by a factor
of 2.2.

.����� �� ��� ?-����% �� ��� +3=
Quality Metric The quality is the weighted geometric mean of the per-
formance P and the reciprocal of the cost C:

Q � P1�q�Cq� (4.10)

The weighting parameter q� �0�1� determines whether cost or performance
has a greater impact on the quality. Therefore, we denote q as quality
parameter. Commonly used values are:

� q� 0: Only performance counts, Q� P.

� q� 0�5: The resulting quality metric Q� �P�C�0�5 models the cost-
performance ratio.
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��� ���� Quality ratio of the pipelined designs relative to the sequential design
(DLXs: sequential, DLXpb: basic pipeline, DLXp: pipeline with interlock)

� q� 1�3: The resulting quality metric is Q� �P2�C�1�3. This means
that a design A which is twice as fast as design Bhas the same quality
as B if it is four times as expensive.

For a realistic quality metric, the quality parameter should be in the range
�0�2� 0�5�: Usually, more emphasis is put on the performance than on the
cost, thus q� 0�5. For q � 0�2, doubling the performance already allows
for a cost ratio of 16; a higher cost ratio would rarely be accepted.

Evaluation Pipelining and result forwarding improve the performance
of the DLX architecture significantly, but they also increase the cost of
the fixed-point core. Figure 4.21 quantifies this tradeoff between cost and
performance.

In combination with a fast memory system �WS� 0�3�, pipelining and
result forwarding improve the quality of the DLX fixed-point core, at least
under the realistic quality metric. In case that the cost is more emphasized
than the performance, pipelining becomes unprofitable for q� 0�8.

���  ������� ��!������� ��� "����� ������#

�
HE DESIGN presented here is partly based on designs from [PH94,
HP96, Knu96]. The concept of delayed PC and pipelining as a trans-

formation is from [KMP99a]. The formal verification of pipeline con-
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EXERCISES
trol without delayed branch is reported in [BS90, SGGH91, BD94, BM96,
LO96, HQR98].

��$ %&�������

�������� ��	 In chapter 2, we have introduced a conditional sum adder
and a carry look-ahead adder, and extended them to an arithmetical unit
AU. In addition to the n-bit sum/difference, the n-bit AU provides two
flags indicating an overflow and a negative result. Let DAU�n� denote the
maximal delay of the n-bit AU, and let DAU�s�1 : 0�;n� denote the delay of
the two least significant sum bits.

Show that for both AU designs and for any n� 2 the delay of these two
sum bits can be estimated as

DAU�s�1 : 0�;n� � DAU�2��

�������� ��� Prove the dateline lemma 4.3 by induction on T.

�������� ��
 Fast s-stage Forwarding Engine. In section 4.4.2, we have
presented a forwarding engine capable of forwarding data from 3 stages.
The construction obviously generalizes to s-stage forwarding, with s� 3.
The actual data selection (figure 4.18) is then performed by s cascaded
multiplexers. Thus, the delay of this realization of an s-stage forwarding
engine is proportional to s.

However, these s multiplexers can also be arranged as a balanced binary
tree of depth log s�. Signal top� j (as defined in section 4.4.2) indicates
that stage j provides the current data of the requested operand. These
signals top� j can be used in order to govern the multiplexer tree.

1. Construct a circuit TOP which generates the signals top� j using a
parallel prefix circuit.

2. Construct an s-stage forwarding engine based on the multiplexer tree
and circuit TOP. Show that this realization has a delay of O�logs�.

3. How can the delay of the forwarding engine be improved even fur-
ther?

�������� ��� In case of a data hazard, the interlock engine of section 4.5
stalls the stages IF and ID. The forwarding circuit Forw signals a hit of
stage j � �2�3�4� by

hit� j� � � f ull � j � GPRw� j� � �ad �� 0� � �ad�Cad� j��

�(*
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These hit signals are used in order to generate the data hazard signal dhaz.
The check whether stage j is full (i.e., f ull � j � 1) is essential for the cor-
rectness of the interlock mechanism.

Show that, when simplifying the hit signals to

hit� j� � GPRw� j � �ad �� 0� � �ad�Cad� j��

dummy instructions could also activate the hazard flag, and that the inter-
lock engine could run into a deadlock.

�������� ��� Prove for the interlock engine of section 4.5 and the corre-
sponding scheduling function the claim 2 of lemma 4.10: for any stage k
and any cycle T � 0, the value Iπ�k�T� is defined iff f ull �kT � 1.

�������� ��� Fast Zero Tester. The n-zero tester, introduced in section
2.3, uses an OR-tree as its core. In the technology of table 2.1, NAND/NOR

gates are faster than OR gates. Based on the equality

a�b�c�d � a�b�c�d � �a NOR b� NAND �c NOR d��

the delay of the zero tester can therefore roughly be halved.

Construct such a fast zero tester and provide formulae for its cost and delay.

�/�



Chapter

5
Interrupt Handling

��� ���������# � ��#
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! '��������

�
NTERRUPTS ARE events, which change the flow of control of a program
by means other than a branch instruction. They are triggered by the

activation of event signals, which we denote by ev� j�� j � 0�1� � � �. Here,
we will consider the interrupts shown in table 5.1.

Loosely speaking, the activation of an event signal ev� j� should result
in a procedure call of a routine H� j�. This routine is called the exception
handler for interrupt j and should take care of the problem signaled by

����� ��� Interrupts handled by our DLX design

index j name symbol

0 reset reset
1 illegal instruction ill
2 misaligned memory access mal
3 page fault on fetch pff
4 page fault on load/store pfls
5 trap trap
6 arithmetic overflow ovf

6� i external I/O exi
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the activation of ev� j�. The exception handler for a page fault for instance
should move the missing page from secondary memory into primary mem-
ory. Interrupts can be classified in various ways:

� They can be internal, i.e., generated by the CPU or the memory
system, or external.

� They can be maskable, i.e., they can be ignored under software con-
trol, or non maskable.

� After an interrupt of instruction I the program execution can be re-
sumed in three ways:

– repeatinstruction I ,

– continuewith the instruction I� which would follow I in the
uninterrupted execution of the program,

– abort the program.

Table 5.2 classifies the interrupts considered here.
Finally, the interrupts have priorities defined by the indices j . Activation

of ev� j� can only interrupt handler H� j�� if j � j �. Moreover if ev� j� and
ev� j �� become active simultaneously and j � j�, then handler H� j�� should
not be called. Thus, small indices correspond to high priorities.1

If we want to design an interrupt mechanism and prove that it works, we
would like to do the usual three things:

1. define what an interrupt mechanism is supposed to do,

2. design the mechanism, and

3. show that it meets the specification.

The first step turns out to be not so easy. Recall that interrupts are a
kind of procedure calls, and that procedure call is a high level language
concept. On the other hand, our highest abstraction level so far is the as-
sembler/machine language level. This is the right level for stating what the
hardware is supposed to do. In particular, it permits to define the meaning
of instructions like "��, which supportprocedure call. However, the mean-
ing of the call and return of an entire procedure cannot be defined like the
meaning of an assembler instruction.

There are various way to define the semantics of procedure call and re-
turn in high level languages [LMW86, Win93]. The most elementary way
– called operational semantics – defines the meaning of a procedure by

1Priority 1 is urgent, priority 31 is not.
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����� ��� Classifications of the interrupts

index j symbol external maskable resume

0 reset yes no abort
1 ill no no abort
2 mal no no abort
3 pff no no repeat
4 pfls no no repeat
5 trap no no continue
6 ovf no yes continue/abort

6� i exi yes yes continue

prescribing how a certain abstract machine should interpret calls and re-
turns. One uses a stack of procedure frames. A call pushes a new frame
with parameters and return address on the stack and then jumps to the body
of the procedure. A return pops a frame from the stack and jumps to the
return address.

The obvious choice of the ‘abstract machine’ is the abstract DLX ma-
chine with delayed branch/delayed PC semantics defined by the DLXσ in-
struction set and its semantics. The machine has, however, to be enriched.
There must be a place where interrupt masks are stored, and there must be
a mechanism capable of changing the PC as a reaction to event signals. We
will also add mechanisms for collecting return addresses and parameters,
that are visible at the assembler language level.

We will use a single interrupt service routine ISR which will branch
under software control to the various exception handlers H� j�. We denote
by SISRthe start address of the interrupt service routine.

We are finally able to map out the rest of the chapter. In section 5.2, we
will define at the abstraction level of the assembler language

1. an extension of the DLX machine language,

2. a mechanism collecting return addresses and parameters, and

3. a mechanism capable of forcing the pair of addresses (SISR, SISR +
4) into (DPC, PC) as reaction to the activation of event signals.

In section 5.3, we define a software protocol for the interrupt service
routine which closely parallels the usual definition of procedure call and
return in operational semantics. This completes the definitionof the inter-
rupt mechanism.

�/#
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In compiled programs, the body of procedures is generated by the com-
piler. Thus, the compiler can guarantee, that the body of the procedure
is in a certain sense well behaved, for instance, that it does not overwrite
the return address. In our situation, the compiled procedure body is re-
placed by the exception handler, which – among other things – obviously
canoverwrite return addresses on a procedure frame. They can also gen-
erate interrupts in many ways. Indeed, the attempt to execute an exception
handler for page faults, which does not reside in memory will immediately
generate another page fault interrupt, and so on.

In section 5.4, we therefore present a set of conditions for the excep-
tion handlers and show: if the exception handlers satisfy the conditions,
then interrupts behave like kind of procedure calls. The proof turns out
to be nontrivial mainly due to the fact, that instructions which change the
interrupt masks can themselves be interrupted.

Given the machinery developed so far, the rest is straightforward. In
section 5.5, we design the interrupt hardware for a prepared sequential
machine according to the specifications of section 5.2. In section 5.6, we
pipeline the machine and show that the pipelined machine simulates the
prepared sequential machine in some sense. The main technical issue there
will be a more powerful forwarding mechanism.

��� %&������ '�������
�  �� �����������

�
AGE FAULT and misalignment interrupts are obviously generated by
the memory system. Illegal interrupts are detected by the control au-

tomaton in the decode stage. Overflow interrupts can be generated by the
two new R-type instructions �  # �$� and the two new I-type instruc-
tions �  �# �$�� specified in table 5.4. They generate the (maskable)
overflow event signal ev�5�, if the result of the computation is not repre-
sentable as a 32-bit 2’s complement number. Trap interrupts are generated
by the new J-type instruction &��� (table 5.4). External interrupts are gen-
erated by external devices; for these interrupts we apply the following

.�����-�� ����������@

The active event line ev� j� of an external I/O interrupt j is only turned off,
once interrupt j received service. Interrupt j receives serviceas soon as
the ISR is started with interrupt level j� where j � � j , or where j� � j and
interrupt j� is of type abort. A formal definition of the concept of interrupt
level will be given shortly.

�/&
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����� �� Special purpose registers used for exception handling

address name meaning

0 SR status register
1 ESR exception status register
2 ECA exception cause register
3 EPC the exception PC
4 EDPC the exception delayed PC
5 Edata exception data register

The DLX architecture is extend by 7 new registers, 6 of them are visible
to the assembler programmer. They form the registers SPR�0� to SPR�5� of
the new special purpose register file SPR. Names and addresses of the SPR
registers are listed in table 5.3; their function is explained later.

Register’s contents can be copied between the general purpose register
file GPRand the special purpose register file SPRby means of the special
move instructions �+��� (move integer to special) and �+��� (move spe-
cial to integer). Both moves are R-type instructions (table 5.4). The binary
representation of the special register address is specified in field SA.

The cause register CA is the new non visible register. It catches event
signals ev� j� which become active during the execution of instructions Ii in
the following sense:

� If j is an internal interrupt, it is caught in the same instruction, i.e.,
CA� j�i � 1.

� If j is external, it is caught in the current or in the next instruction;
CA� j�i � 1 or CA� j�i�1 � 1. Once the bit CA� j� is active, it remains
active till interrupt j receives service.

In any other situation, we have CA� j�i � 0.
The interrupt masks are stored in the status register SR. For a maskable

interrupt j , bit SR� j� stores the mask of interrupt j . Masking means that
interrupt j is disabled (masked) if SR� j� � 0, and it is unmasked otherwise.
The masked cause MCAis derived from the the cause register and the status
register. For instruction Ii , the masked cause equals

MCA� j�i �

�
CA� j�i ; if interrupt j is not maskable
CA� j�i �SR� j�i�1 ; if interrupt j is maskable.

Note that this is a nontrivial equation. It states that for instruction Ii , causes
are masked with the masks valid after instruction Ii�1. Thus, if Ii happens

�/'
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to be a �+��� instruction with destination SR, the new masks have no
affect on the MCA computation of Ii .

<-�� �� ��� .�8
From the masked cause MCA, the signal JISR(jump to interrupt service
routine) is derived by

JISRi �
31�

j�0

MCA� j��

Activation of signal JISRtriggers the jump to the interrupt service routine.
Formally we can treat this jump either as a new instruction Ii�1 or as a part
of instruction Ii . We chose the second alternative because this reflects more
closely how the hardware will work. However, for interrupted instructions
Ii and registers or signals X, we have now to distinguish between

� Xi , which denotes the value of X after the (interrupted) execution of
instruction Ii , i.e., after JISR, and

� Xu
i , which denotes the value of X after the uninterrupted execution

of instruction Ii .

We proceed to specify the effect of JISRfor instruction Ii . The interrupt
level il of the interrupt is

il i � min� j �MCA� j�i � 1��

Interrupt il has the highest priority among all those interrupts which were
not masked during Ii and whose event signals ev� j� were caught. Interrupt
il can be of type continue, repeat or abort. If it is of type repeat, no register
file and no memory location X should be updated, except for the special
purpose registers. For any register or memory location X, we therefore
define

Xi �

�
Xi�1 if il i is of type repeat
Xu

i otherwise

By SISR, we denote the start address of the interrupt service routine. The
jump to ISRis then realized by

�DPC� PC�i � �SISR� SISR�4��

The return addresses for the interrupt service routine are saved as

�EDPC� EPC�i �

��
�

�DPC� PC��i�1 if il i is of type repeat
�DPC� PC��u

i if il i is of type continue
��� �� if il i is of type abort,

�/(
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i.e., on an interrupt of type abort, the return addresses do not matter. The
exception data register stores a parameter for the exception handler. For
traps this is the immediate constant of the trap instruction. For page fault
and misalignment during load/store this is the memory address of the faulty
access:

EDATAi �

�
sext�imm�i for trap interrupts
eai for p f or misaduring load/store

For page faults during fetch, the address of the faulty instruction memory
access is DPCi�1, which is saved already. Thus, there is no need to save it
twice.

The exception cause register ECAstores the masked interrupt cause

ECAi � MCAi�

all maskable interrupts are masked by

SR� 0�

and the old masks are saved as

ESRi �

��
�

SRi�1 if il i is of type repeat
SRu

i if il i is of type continue
� if il i is of type abort.

Thus, if the interrupt instruction sets new masks and it is interrupted by
an interrupt of type continue, then the new masks are saved. This com-
pletes at the instruction level the description of the semantics of JISR.

The restoration of the saved parameters is achieved by a new J-type in-
struction �,� (return from exception) specified in table 5.4.

��� '�������  ��)��� �
����� "
� ������ '��������

�
ESTED interrupts are handled by a software protocol. The protocol
maintains an interrupt stack IS. The stack consists of frames. Each

frame can hold copies of all general purpose registers and all special reg-
isters. Thus, with the present design we have a frame size of 32� 6 � 38
words.

We denote by IS�TOP the top frame of the interrupt stack. Its base
address is maintained in the interrupt stack pointer ISP. For this pointer,
we reserve a special purpose register, namely

ISP � GPR�30��

�//
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����� ��� Extensions to the DLX instruction set. Except for rfe and trap, all
instructions also increment the PC by four. SA is a shorthand for the special
purpose register SPR�SA�; sxt(imm)is the sign-extended version of the immediate.

IR[31:26] IR[5:0] effect

Arithmetic Operation (I-type)
hx08 addio RD = RS1 + imm; ovf signaled
hx0a subio RD = RS1 - imm; ovf signaled

Arithmetic Operation (R-type)
hx00 hx20 addo RD = RS1 + RS2; ovf signaled
hx00 hx22 subo RD = RS1 - RS2; ovf signaled

Special Move Instructions (R-type)
hx00 hx10 movs2i RD = SA
hx00 hx11 movi2s SA = RS1

Control Instructions (J-type)
hx3e trap trap = 1; Edata = sxt(imm)
hx3f rfe SR = ESR; PC = EPC; DPC = EDPC

We call the sequence of registers

EHR � �ESR�ECA�EDPC�EPC�EDATA�

the exception handling registers. For each frame F of the interrupt stack
and for any register R, we denote by F�R the portion of F reserved for reg-
ister R. We denote by F�EHRthe portion of the frame reserved for copies
of the exception handling registers. We denote by IS�EHR the portions
of all frames of the stack, reserved for copies of the exception handling
registers.

The interrupt service routine, which is started after an JISR, has three
phases:

1. SAVE (save status):

(a) The current interrupt level

il � min� j � ECA� j� � 1�

is determined. For this computation, ECAhas to be copied into
some general purpose register GPR�x�. This register in turn has
first to be saved to some reserved location in the memory. This
write operation in turn does better not generate a page fault
interrupt.
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(b) If il is of type abort, an empty interrupt stack is initialized, and
otherwise a new frame is pushed on the stack by the computa-
tion

ISP � ISP� f rame size�

(c) The exception handling registers are saved:

IS�TOP�EHR � EHR�

(d) All maskable interrupts j � il are unmasked:

SR� 031�il 1il �

This mask is precomputed and the assigned to SRin a single
special move instruction. After this instruction, the interrupt
service routine can be interrupted again by certain maskable
interrupts.

2. Exception Handler H�il �: The interrupt service routine branches
to the start of the proper routine for interrupt il . This routine will
usually need some general purpose registers. It will save the corre-
sponding registers to IS�TOP. After the proper work for interrupt il
is done, the general purpose registers which were saved are restored.
Observe that all this can be interrupted by (maskable) interrupts of
higher priority. Finally the handler masks all maskable interrupts by
a single special move instruction:

SR� GPR�0��

3. RESTORE (restore status): the following registers are restored from
the stack:

EDPC � IS�TOP�EDPC

EPC � IS�TOP�EPC

ESR � IS�TOP�ESR

The top frame is popped from the stack:

ISP � ISP� f rame size�

The interrupt service routine ends with an �,� instruction.

�/*
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E INTEND interrupts to behave like procedure calls. The mechanism
of the previous section defines the corresponding call and return

mechanism. Handlers unfortunately are not generated by compilers and
thus, the programmer has many possibilities for hacks which make the
mechanism not at all behave like procedure calls. The obvious point of
attack are the fields IS�EHR. Manipulation of IS�TOP�EDPC obviously
allows to jump anywhere.

If the interrupt stack is not on a permanent memory page, each interrupt,
including page fault interrupts, can lead to a page fault interrupt, and so
on. One can list many more such pitfalls. The interesting question then
obviously is: have we overlooked one?

In this section we therefore define an interrupt service routine to be ad-
missible if it satisfies a certain set of conditions (i.e., if it does not make
use of certain hacks). We then provethat with admissible interrupt service
routines the mechanism behaves like a procedure call and return.

'�&�� ��� �� ���������

An interrupt service routine is called admissibleif it complies with the
following set of constraints:

1. The data structures of the interrupt mechanism must be used in a
restricted manner:

(a) The interrupt stack pointer ISP is only written by SAVE and
RESTORE.

(b) The segments of an IS frame which are reserved for the EHR
registers are only updated by SAVE.

2. The ISR must be written according to the following constraints:

(a) Instruction �,� is only used as the last instruction of the ISR.

(b) The code segments SAVE and RESTORE avoid any non-mask-
able internal interrupt; in the current DLX architecture, that are
the interrupts j with 0 � j � 6.

(c) Every handler H� j� avoids any non-maskable internal interrupt
i with a priority i � j .

(d) If handler H� j� uses a special move with source register R in
order to update the status register SR, then the bit R�i� � 0 for
any i � j .
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Among other things, the conditions b) and c) require that page faults
are avoided in certain handlers. That can only be ensured if the
interrupt stack IS and the codes SAVE and RESTORE are held on
permanent pages, i.e., on pages which cannot be swapped out of
main memory. Let jp denote the priority level of the page fault p f f .
For any j � jp, the handler H� j� and all the data accessed by H� j�
must also be held on permanent pages.

We will have to show that the interrupt mechanism can manage with
a limited number of permanent pages, i.e., that the interrupt stack IS
is of finite size.

3. The interrupt priorities are assigned such that

(a) Non-maskable external interrupts are of type abort and have
highest priority j � 0.

(b) Maskable external interrupts are of type continue and have a
lower priority than any internal interrupt.

(c) If an instruction can cause several internal interrupts at the
same time, the highest priorized of all the caused interrupts
must then be of type repeat or abort.

The assignment of the interrupt priorities used by our DLX design
(table 5.2) complies with these constraints.

The conditions 1 and 2 must hold whether the handler H� j� is interrupted
or not. This is hard to achieve because the ISR of another interrupt could
corrupt the data structures and the registers used by H� j�. As a conse-
quence, H� j� could cause a misaligned memory access or overwrite an
EHR field on the interrupt stack.

The following approach could, for instance, protect the stack IS against
illegal updates. Besides the EHR registers, a frame of stack IS also backs
data which are less critical, e.g., the general purpose registers. It is there-
fore suitable to use two stacks, one for the EHR registers and one for the
remaining data. The EHR stack can then be placed on a special memory
page which except for the code SAVE is read-only.

'�&��  ������ ���-��-��

The code segments SAVE and RESTORE can be interpreted as left and right
brackets, respectively. Before we can establish that admissible interrupt
service routines behave in some sense like procedures we have to review
some facts concerning bracket structures.
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For sequences S� S1 � � �St of brackets ‘(’ and ‘)’ we define

l�S� � the number of left brackets in S

r�S� � the number of right brackets in S�

Sequence S is called a bracket structureif

l�S� � r�S� and
l�Q� � r�Q� for all prefixes Q of S�

(5.1)

i.e., the number of left brackets equals the number of right brackets, and in
prefixes of S there are never more right brackets than left brackets.

Obviously, if Sand T are bracket structures, then �S� and ST are bracket
structures as well. In bracket structures S one can pair brackets with the
following algorithm:

For all right brackets R from left to right do:
� pair R with the left bracket L immediately left of R;

cancel Rand L from S;�

The above algorithm proceeds in rounds k � 1�2� � � �. Let R�k� and L�k�
be the right and left bracket paired in round k, and let S�k� be the string S
before round k. We have S�1� � S. By induction on k one shows

����� ��	 � 1. R�k� is the leftmost right bracket in S�k�,

2. L�k� exists, and

3. the portion Q of S from L�k� to R�k� is a bracket structure.

The proof is left as an exercise. Observe that up to round k, the above
algorithm only works with the prefix S1 � � �R�k� of S.

'�&�# "�������� �� �	������ .�����-�� ������� 8�-����

We begin with some definitions. First, we define the interrupt level il in
situations, where SAVE sequences are not interrupted:2

il �

��
�

min� j �MCA� j� � 1� during SAVE

min� j � IS�TOP�MCA� j� � 1� outside of SAVE, if it exists
32 otherwise

2We show later that this is always the case
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A sequence of instructions SAVE H RESTORE is called an instance of
ISR� j� if during H the interrupt level equals

il � j�

It is called a non aborting execution of ISR� j� if the interrupt level obeys

il � j during SAVE and RESTORE

il � j during H�

Thus, during executions of ISR� j� the handler H� j� can be interrupted. We
do not consider infinite executions.

Assume that H does not end with a RESTORE sequence of interrupt level
j , then

SAVE1 H SAVE2 H � RESTORE

is called an aborting execution of ISR(j)if

il � j during SAVE1

il � j during H

il � 2 during SAVE2, H � and RESTORE�

We call the execution of an interrupt service routine properly nestedor
simply nested, if

1. no code segment SAVE or RESTORE is interrupted,

2. the sequence of code segments SAVE and RESTORE forms an initial
segment of a proper bracket structure, and if

3. paired brackets belong to an instanceof some ISR� j� in the follow-
ing sense: Let L and R be paired SAVE and RESTORE sequences.
Let H consist of the instructions between L and R

(a) which do not belong to SAVE and RESTORE sequences, and

(b) which are not included by paired brackets inside L and R.

Then L H R is an instance of some ISR� j�.

We call an execution perfectly nestedif it is properly nested and the se-
quence of SAVEs and RESTOREs forms a proper bracket structure. In the
following proofs we will establish among other things

Executions of admissible interrupt service routines are properly nested.� ������ ���

We will first establish properties of perfectly nested executions of in-
terrupt service routines in lemma 5.3. In lemma 5.4 we will prove by
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induction the existence of the bracket structure. In the induction step, we
will apply lemma 5.3 to portions of the bracket structure, whose existence
is already guaranteed by the induction hypothesis. In particular, we will
need some effort to argue that RESTOREs are never interrupted.

The theorem then follows directly from the lemmas 5.3 and 5.4.

Let the interrupt mechanism obey software constraints 1 to 3. Consider a����� ��
 �

perfectly nested execution of ISR� j�. The sequence of instructions executed
has the form

Ia � � � Ib	 
� �
SAVE

� � �	 
� �
H� j�

Ic � � � Id	 
� �
RESTORE

�

we then have:

1. If the execution of ISR� j� is not aborted, then the interrupt stack IS
holds the same number of frames before and after ISR� j�, and the
segments of IS reserved for the EHR registers remain unchanged,
i.e.,

ISPa�1 � ISPd and IS�EHRa�1 � IS�EHRd�

2. Preciseness. If ISR� j� is not aborted, the execution is resumed at

�DPCd� PC�
d� �

�
�DPCa�2� PC�

a�2� if j is a repeat interrupt

�DPCu
a�1� PC�u

a�1� if j is a continue interrupt

with the masks

SRd �

�
SRa�2 if j is a repeat interrupt
SRu

a�1 if j is a continue interrupt�

Proof by induction on the number n of interrupts which interrupt the exe-�����
cution of an ISR� j�.

n � 0. The execution of ISR� j� is uninterrupted. Since interrupt j is
not aborting, SAVE allocates a new frame on the stack IS, and RESTORE

removes one frame. The handler H� j� itself does not update the stack
pointer (constraint 1), and thus

ISPa�1 � ISPd�

According to constraint 1, the EHR fields on the interrupt stack ISare only
written by SAVE. However SAVE just modifies the top frame of IS which
is removed by RESTORE. Thus

IS�EHRa�1 � IS�EHRd�
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and claim 1 follows. With respect to claim 2, we only show the preciseness
of the masks SR; the preciseness of the PCs can be shown in the same way.

SRd � ESRd�1 by definition of �,�
� IS�TOP�ESRc�1 by definition of RESTORE �

where IS�TOP denotes the top frame of the stack IS. Since the handler
itself does not update the stack pointer ISPnor the EHR fields on the stack
IS (constraint 1), it follows

IS�TOP�ESRc�1 � IS�TOP�ESRb

� ESRa�1 by definition of SAVE �

and by the definition of the impact of JISRit then follows that

SRd � ESRa�1 �

�
SRa�2 if j is a repeat interrupt
SRu

a�1 if j is a continue interrupt�

In the induction step, we conclude from n to n� 1. The execution of
ISR� j� is interrupted by n�1 interrupts, and the codes SAVE and RESTORE

of the corresponding instances of the ISR form a proper bracket structure.
Since SAVE and RESTORE are uninterrupted, there are m top level pairs
of brackets in the instruction stream of the handler H� j�; each pair corre-
sponds to an instance ISR� jr�:

Ia � � � Ib	 
� �
SAVE

� � �

ISR� j1�� �	 

Ia1 � � � Id1 � � �

ISR� j2�� �	 

Ia2 � � � Id2 � � �

ISR� jm�� �	 

Iam � � � Idm � � �	 
� �

H� j�

Ic � � � Id	 
� �
RESTORE

Each of the ISR� jr� is interrupted at most n times, and due to the induction
hypothesis, they return the pointer ISP and the EHR fields on the stack
unchanged:

ISPar�1 � ISPdr and IS�EHRar�1 � IS�EHRdr �

Since the instructions of the handler H� j� do not update these data, it fol-
lows for the pointer ISP that

ISPb � ISPa1�1 � ISPd1 � � � �� ISPam�1 � ISPdm � ISPc�1�

The same holds for the EHR fields of the interrupt stack:

IS�EHRb � IS�EHRa1�1 � � � �� IS�EHRdm � IS�EHRc�1� (5.2)

Since RESTORE removes the frame added by SAVE, and since SAVE only
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updates the EHR fields of the top frame, the claim 1 follows for n�1. The
preciseness of the ISR� j� can be concluded like in the case n � 0, except
for the equality

IS�TOP�EHRb � IS�TOP�EHRc�1�

However, this equality holds because of equation 5.2.���

Let the interrupt mechanism obey the software constraints. Then, non����� ��� �

aborting executions of the interrupt service routine are properly nested.

We proceed in three steps:�����
1. SAVE is never interrupted: According to the software constraint 2, the
codes SAVE and RESTORE avoid any non-maskable internal interrupt. Re-
set is the only non-maskable external interrupt, but we are only interested
in a non aborted execution. Thus, SAVE and RESTORE can only be inter-
rupted by a maskable interrupt.

If an instruction Ii causes an interrupt, all masks are cleared, i.e., SRi � 0,
and a jump to the ISR is initiated: JISRi � 1. In the code SAVE, the masks
are only updated by the last instruction. Since new masks apply to later
instructions, SAVE cannot be interrupted by maskable interrupts either.

2. The code RESTORE avoids non-maskable interrupts, and only its last
instruction updates the status register. Thus, RESTORE cannot be inter-
rupted if it is started with SR� 0. The last instruction of any non-aborting
interrupt handler is a special move

SR :� GPR�0� � 0�

If this special move is not interrupted, then RESTORE is not interrupted
either.

3. Let the code RESTORE comprise the instructions R1 � � �Rs. Note that by
the construction of interrupt service routines every instance of ISRstarts
with a SAVE and – in case it is not aborted – it produces later exactly one
first instruction R1 of its RESTORE sequence. Therefore, in executions
of the interrupt service routine the sequence of SAVEs (which are never
interrupted) and instructions R1 form an initial segment of a proper bracket
structure.

In a non aborting execution, we denote by Rn
1 the nth occurrence of R1.

We prove by induction on n that until Rn
1

� the code segment RESTORE is always started with SR� 0 (hence it
is not interrupted),
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� the code segments SAVE and RESTORE form a start sequence of a
proper bracket structure, and

� paired brackets belong to an executionof some ISR� j�.

For n� 1 there must be a SAVE to the left of the first R1. Consider the
first such SAVE to the left of R1

1. Then, this SAVE and R1
1 belong to an

uninterrupted instance of an ISR� j�. Thus, R1
1 is started with SR� 0 and

the first RESTORE is not interrupted.
For the induction step, consider Rn�1

1 . There are n instructions Ri
1 to

its left. By induction hypothesis the code segments SAVE and RESTORE

up to Rn
1 form a start sequence of a proper bracket structure with paired

brackets belonging to executions of some ISR� j�. By lemma 5.3, these
executions are precise. Since the sequence of SAVEs and R1s forms an
initial segment of a bracket structure, we can pair Rn�1

1 with a preceding
SAVE code sequence L. Let H� be the sequence of instructions between
L and Rn�1

1 . Construct H from H� by canceling all executions of some
ISR� j�. Because these executions are precise, we have during H a constant
interrupt level

il � i�

thus, handler H�i� is executed during H .
Let ISR� jn� denote the instance of the ISR which belongs to Rn

1. Instruc-
tion Rn�1

1 is then either directly preceded

(a) by the special move I with SR:� 0, or

(b) by the special move I followed by ISR� jn�.

The first case is trivial (see n� 1). In the second case, ISR� jn� interrupts
the special move, and interrupt jn is of type continue. Due to the precise-
ness of ISR� jn�, Rn�1

1 is started with the masks SRu
m � 0, and the �n�1�st

RESTORE block is not interrupted. ���

Priority Criterion. For admissible interrupt service routines, it holds: � ����� ���

1. During the execution of ISR� j�, maskable interrupts i with i� j are
masked all the time.

2. ISR� j� can only be interrupted by an interrupt i� j of higher prior-
ity.

According to lemma 5.4, the codes SAVE and RESTORE can only be in- �����
terrupted by reset. Thus, we focus on the interrupt handlers. For any non-
maskableinterrupt j � 6, claim two follows directly by constraint 2. For
the maskable interrupts j� 6, we prove the claims by induction on the
number n of interrupts which interrupt the handler H� j�.
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� n � 0: The ISR is always started with SR� 0, due to signal JISR.
The ISR only updates the masks by a special move �+��� or by an
�,� instruction. Since �,� is only used as the last instruction of an ISR
(constraint 2), it has no impact on the masks used by the ISR itself.
In case of a special move SR:� R, the bit R�i� must be zero for any
i � j . Thus, the maskable interrupts are masked properly. Due to the
definition of the masked interrupt cause of instruction Il

MCA� j ��l �

�
CA� j ��l �SR� j ��l�1 ; if interrupt j� is maskable
CA� j ��l ; otherwise

and the definition of the interrupt level

il l � min� j � � MCA� j ��l � 1��

ISR� j� cannot be interrupted by a maskable interrupt j� � j , and the
claim follows.

� n� 0: The handler H� j� is interrupted n times, and the codes SAVE

and RESTORE form a proper bracket structure. Thus, the instruction
sequence of ISR� j� has the following form

Save � � � ISR� j1� � � � ISR� jm� � � �Restore�

for an m� n. The instructions which belong to the code of the han-
dler H� j� do not unmask interrupts j� with j � � j . Due to the pre-
ciseness of the ISR, any ISR� jr� returns the masks SRdelivered to it
by register ESR. By induction on m it then follows that interrupt jr
has a higher priority than j , i.e., jr � j .

Since any ISR� jr� is interrupted at most n� 1 times, the induc-
tion hypothesis applies. ISR� jr� keeps all interrupts j� with j � � jr
masked, and especially those with j� � j .���

Theorem 5.2 and lemma 5.5 imply:

Non aborting executions of admissible interrupt service routines are per-������ ��� �

fectly nested.

Let LHRbe a non aborting execution of ISR� j�, where L is a save sequence�����
and R is a restore sequence. By theorem 5.2, the sequence of SAVEs and
RESTOREs in LHR is an initial segment of a bracket structure. If the brack-
ets L and R are paired, then the SAVE and RESTORE sequences in H form
a bracket structure. Hence, the brackets in LHR form a bracket structure
and LHR is perfectly nested.

�))



������� '�&

ADMISSIBLE

INTERRUPT

SERVICE ROUTINES

Assume R is paired with a left bracket L� right of L:

L � � � L� � � � R	 
� �
ISR� j�

�

Then by lemma 5.5, the interrupt level immediately before L� is greater
than j , and LHR is not a non aborting execution. ���

According to lemma 5.5, the ISR of an interrupt j � 0 can only be
interrupted by an interrupt of higher priority. Thus, there can be at most
one frame on the stack IS for each interrupt level j � 0. Reset can even
interrupt ISR�0�. However, on reset, the ISR does not allocate a new frame,
the stack IS is cleared instead. The size of the interrupt stack IS is therefore
limited; the ISR uses at most 32 frames.

Like for many software protocols, fairness seems to be desirable for the
interrupt mechanism. In this context, fairness means that every interrupt
finally gets service. Due to the pure priority scheme, that cannot always
be achieved. Consider the case that the event signals of two external inter-
rupts ev�15� and ev�17� become active at the same time, that the external
interrupt ev�16� occurs whenever leaving ISR�15� and vice versa. Under
these conditions, interrupt 17 is starved by the interrupts 15 and 16. Thus
fairness and a pure priority scheme do not go together. Nevertheless, one
would at least like to guarantee that no internal interrupt gets lost.

Completeness Let the interrupt mechanism obey the software constraints.� ����� ���
Every internal interrupt j which occurs in instruction Ii and which is not
masked receives service in instruction Ii�1, or instruction Ii is repeated
after the ISR which starts with instruction Ii�1.

Let instruction Ii trigger the internal interrupt j , i.e., ev� j�i � 1. The cause �����
bit CA� j�i is then activated as well. Under the assumption of the lemma, j
is either non-maskable or it is unmasked (SR� j�i�1 � 1). In either case, the
corresponding bit of MCA is raised, and an jump to the ISR is initiated.
Thus, Ii�1 is the first instruction of routine ISR�k�, where k � ili denotes
the interrupt level after Ii . Due to the definition of the interrupt level, k� j .
For k � j , the claim follows immediately. For k � j , interrupt k is either
external or internal. In case of an external interrupt, k must be a reset (con-
straint 3) which aborts the execution servicing any pending interrupt. If k is
an internal interrupt, it is of type abort or repeat due to constraint 3. Thus,
ISR�k� either services any pending interrupt by aborting the execution, or
after ISR�k�, the execution is resumed at instruction Ii . ���
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If the constraint 3 is relaxed, the completeness of the interrupt mecha-
nism in the sense of lemma 5.7 cannot be guaranteed. Assume that instruc-
tion Ii causes two internal interrupts j and j�, and that j � j�. If j is of type
continue, ISR� j� just services j and resumes the execution at the instruc-
tion which would follow Ii in case of JISRi � 0. Thus, interrupt j� would
get lost. If interrupt j is of type repeat, ISR� j� does not service interrupt j�

either. However, instruction Ii is repeated after the ISR, and the fault which
corresponds to interrupt j� can occur again.

��� '������� ��������

�
N THIS section, we design the interrupt hardware of the prepared se-
quential architecture DLXΣ according to the specifications of section 5.2.

The instruction set architecture (ISA) is extended by

� the special purpose register file SPR,

� a register Swhich buffers data read from SPR,3

� the circuitry for collecting the interrupt events,

� the actual ISR call mechanism which in case of an active interrupt
event forces the interrupt parameters into the SPR register file and
the pair of addresses �SISR� SISR� 4� into the registers DPC and
PC�, and by

� control realizing the instructions from table 5.4.

The enhanced ISA requires changes in the data paths and in the control
(section 5.5.6). The data paths get an additional environment CAenv which
collects the interrupt event signals and determines the interrupt cause (sec-
tion 5.5.5). Except for the PC environment, the register file environment
RFenv and circuit Daddr, the remaining data paths undergo only minor
changes (section 5.5.4). Figure 5.1 depicts the top level schematics of the
enhanced DLX data paths. Their cost can be expressed as

CDP � CPCenv�CIMenv�CIRenv�CEXenv�CDMenv�CSH4Lenv

� CRFenv�CDaddr�CCAenv�Cbu f f er�8 �Cf f �32��

Note that without interrupt hardware, reset basically performs two tasks,
it brings the hardware in a well defined state (hardware initialization) and

3Registers A and B play this role for register file GPR
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CAenv

MAR

DMenv

IMenv

EXenv

MDRw

MDRr

buffers:
IR.j

Cad.j
PCs.j

Sad.j

IR.1

IRenv

S A, B

SH4Lenv

RFenv

��������

D sh

C’

C.4

EPCs

SR

Daddr

colink, PCs

PCenvSin

Ain, Bin

Sout

�	
��� ��� Data paths of the prepared sequential designs with interrupt support

restarts the instruction execution. In the DLXΣ design with interrupt hard-
ware, the reset signal itself initializes the control and triggers an interrupt.
The interrupt mechanism then takes care of the restart, i.e., with respect to
restart, signal JISRtakes the place of signal reset.

'�'�� 1���������� "����

The environment PCenv of figure 5.2 still implements the delayed PC
mechanism, but it now provides an additional register DDPC (delayed de-
layed PC) which buffers the PC of the current instruction Ii:

DDPCi � DPCi�1�

The functionality of the environment also needs to be extended in order
to account for the new control instruction �,� and to support a jump to
the ISR. Without interrupt handling, the PCs are initialized on reset. Now,
reset is treated like any other interrupt, and therefore, the PCs are initialized
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PC’

��
��
��
��

Add(32)
Inc / +4

�
�
�
�

DPClink

��
��
��
��

0 1

0 1 JISR

0 1

0 1

0 11 0

DDPC

co

SISR+4

EPC

SISR

EDPC
Ain

jumpR rferfe

bjtaken

JISR

nextPC

�	
��� ��� Environment PCenv with interrupt support

on JISR, instead:

�DPCi� PC�
i � �

�
�SISR� SISR�4� if JISRi � 1
�DPCu

i � PC�u
i � otherwise.

Except for an �,� instruction, the values PC�u
i and DPCu

i are computed as
before:

PC�u
i �

��
�

EPCi�1 if Ii � �,�
PC�

i�1 � immi if b jtakeni � 1 � Ii � �������%��� "� "���
RS1i�1 if b jtakeni � 1 � Ii � �"�� "����
PC�

i�1 �4 otherwise

DPCu
i �

�
EDPCi�1 if Ii � �,�
PC�

i�1 otherwise

Thus, the new PC computation just requires two additional muxes con-
trolled by signal r f e. The two registers link and DDPC are only updated
on an active clock signal PCce, whereas PC� and DPC are also updated on
a jump to the ISR:

DPCce� PC�ce � PCce�PCinit�

These modifications have no impact on register link nor on the glue logic
PCgluewhich generates signal b jtaken. The cost of the environment now
are

CPCenv � 4 �Cf f �32��6 �Cmux�32��Cadd�32��Cinc�30��CPCglue�

The two exception PCs are provided by environment RFenv. Let csID
denote the control signals which govern stage ID, including signal JISR;
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Sad

IR[10:6] 00000

0 1

Cad

IR[20:11]

Sas

IR[10:6] 00001

Saddr
rfe.1

Jlink

Rtype

�	
��� �� Circuit Daddr

and let ACON�csID� denote their accumulated delay. Environment PCenv
then requires a cycle time of

TPCenv � max�Dinc�30�� AIRenv�co��Dadd�32�� AGPRenv�Ain��

ARFenv�EPCs�� A�b jtaken�� ACON�csID��

�3 �Dmux�32��∆�

'�'�� ����-�� +�		�

Circuit Daddrconsists of the two subcircuits Caddrand Saddr. As before,
circuit Caddrgenerates the destination address Cadof the general purpose
register file GPR. Circuit Saddr(figure 5.3) provides the source address
Sasand the destination address Sad of the special purpose register file
SPR.

The two addresses of the register file SPR are usually specified by the
bits SA� IR�10 : 6�. However, on an �,� instruction, the exception status
ESR is copied into the status register SR. According to table 5.3, the reg-
isters ESR and SR have address 1 and 0, respectively. Thus, circuit Saddr
selects the source address and the destination address of the register file
SPR as

�Sas� Sad� �

�
�SA� SA� if r f e� 0
�00001� 00000� if r f e� 1�

Circuit Daddr provides the three addresses Cad, Sasand Sad at the
following cost and delay:

CDaddr � CCaddr�CSaddr

CSaddr � 2 �Cmux�5�

DDaddr � max�DCaddr�Dmux�5�� � DCaddr�
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���� ,��� 1���������� 8,���

The DLX architecture now comprises two register files, one for the general
purpose registers GPR and one for the special purpose registers SPR. Both
register files form the environment RFenv.

CRFenv � CGPRenv�CSPRenv

The environment GPRenv of the general purpose register file has the same
functionality as before. The additional SPR registers are held in a register
file with an extended access mode. The special move instructions �+���
and �+��� access these registers as a regular register file which permits
simultaneously one read and one write operation. However, on JISR all
registers are read and updated in parallel. Before describing the environ-
ment SPRenv in detail, we first introduce a special register file with such
an extended access mode.

� ������� 8�
���� ,���
An �K�n� special register file SF comprises K registers, each of which
is n bits wide. The file SF can be accessed like a regular two-port register
file:

� the flag w specifies, whether a write operation should be performed

� the addresses adr and adwspecify the read and write address of the
register file, and

� Din and Dout specify the data input and output of the register file.

In addition, the special register file SF provides a distinct write and read
port for each of its registers. For any register SF�r�,

� Do�r� specifies the output of its distinct read port, and

� Di�r� specifies the data to be written into register SF�r� on an active
write flag w�r�.

In case of an address conflict, such a special write takes precedence over
the regular write access specified by address adw. Thus, the data d�r� to be
written into SF�r� equals

d�r� �

�
Di�r� if w�r� � 1
Din otherwise.

The register is updated in case of w�r� � 1 and in case of a regular write to
address r:

ce�r� � w�r� � �w � ��adw� � r��� (5.3)

�*&
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Do[K-1] DoutDo[0]

1 0 1 0

wadwadr

w[K-1]

ce[K-1] . . .

w[0]

ce[0]
ce

K

sl

AdDec

SF[K-1] SF[0]

Di[K-1] Di[0] Din w[ ]

�	
��� ��� Special register file SF of size �K�n)

ce[K-1 : 0]

w[K-1 : 0]w

k-dec

K

sl[K-1 : 0]

k-dec

K

adr adw

�	
��� ��� Address decoder AdDec of an SF register file

We do not specify the output Dout of the special purpose register file if a
register is updated and read simultaneously.

8����:�����
Figure 5.4 depicts an example realization of a special register file SF of
size (K�n). The multiplexer in front of register SF�r� selects the proper
input depending on the special write flag w�r�.

The address decoder circuit AdDecin figure 5.5 contains two k-bit de-
coders (k � log K�). The read address adr is decoded into the select bits
sl�K�1 : 0�. Based on this decoded address, the select circuit DataSelse-
lects the proper value of the standard data output Dout. For that purpose,
the data Do�r� are masked by the select bit sl�r�. The masked data are then
combined by n-OR-trees in a bit sliced manner:

Doutj �
K�1�

r�0

�Do�r� j � sl�r��

The write address adw is decoded into K select bits. The clock signals of
the K registers are generated from these signals according to equation 5.3.

Thus, the cost of the whole register file SF runs at

CSF�K�n� � K � �Cf f �n��Cmux�n���CAdDec�K�

�n �Cor �Ctree�K��K �Cand�n�

�*'
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adw

Sad.4

1 0

0 1

0 1

(6 x 32) special register file

Di[0]

Do[0]

SR

SPRw

SPRw[]w[5:0]
w

0

SPRsel

adr

Sas.1

Di[5]

Do[5] Dout

Din

SoutEdata

C.4

ECA

PC.4 DPC.4 DDPC.4

EDPCEPC

repeat

repeat

Di[3] Di[4]Di[2]

Do[3] Do[4]Do[2]

MCA

ESR

C.4 SR

Di[1]

Do[1]

sel

�	
��� ��� Environment SPRenv of the DLXΣ design

CAdDec�K� � 2 �Cdec�log K���Cand�K��Cor�K��

The distinct read ports have a zero delay, whereas the standard output Dout
is delayed by the address decoder and the select circuit:

DSF�Do�r�� � 0;

DSF�Dout� � Ddec�log K���Dand�Dor �Dtree�K��

On a write access, the special register file has an access time of DSFw, and
the write signals w and w�� delay the clock signals by DSF�w;ce�:

DSFw � max�Dmux�n�� Ddec�log K���Dand�Dor��Df f

DSF�w;ce� � Dand�Dor�

1���������� �"8���

The core of the special purpose register environment SPRenv (figure 5.6) is
a special register file of size 6�32. The names of these registers SPR[5:0]
are listed in table 5.3. The environment is controlled by the write signals
SPRwand SPRw�5 : 0�, and by the signals JISR, repeat, and sel.

The standard write and read ports are only used on the special move
instructions �+��� and �+��� and on an �,� instruction. The standard
data output of the register file equals

Souti � SPR�Sas�i�1�

and in case of a write request SPRw� 1, the register file is updated as

SPR�Sad�ui :� C�4i �

�*(
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According to the specification of section 5.2, the SPR registers must also
be updated on a &��� instruction and on a jump to the ISR. These updates
are performed via the six distinct write ports of the special register file.

Since a &��� instruction always triggers an interrupt, i.e., trapi � 1 im-
plies JISRi � 1, the SPR register only require a special write on JISR. The
write signals are therefore set to

SPRw�r� � JISR�

On JISR, the status register SR is cleared. Register ECA buffers the
masked cause MCA, and register Edata gets the content of C�4. On a trap,
C�4 provides the trap constant, and on a load or store, it provides the effec-
tive memory address:

�Di�0�� Di�2�� Di�5�� � �0� MCA�C�4��

The selection of input Di�1� is more complicated. If instruction Ii is
interrupted, the new value of ESR depends on the type of the interrupt and
on the type of Ii

Di�1�i �

��
�

SRi�1 if il i is of type repeat
SRu

i if il i is of type continue
� if il i is of type abort.

where

SRu
i �

�
C�4i if SPRwi � ��Sadi�� 0�
SRi�1 otherwise.

The environment SPRenv selects the proper input

Di�1�i �

�
C�4i if seli � 1
SRi�1 otherwise,

with
sel � repeat� SPRw� ��Sad� � 0��

According to the specification of JISR, if instruction Ii is interrupted, the
two exception PCs have to be set to

�EPC� EDPC�i �

�
�PC�� DPC�i�1 if il i is of type repeat
�PC�� DPC�u

i if il i is of type continue;

whereas on an abort interrupt, the values of the exception PCs do not mat-
ter. Environment PCenv generates the values PCu

i , DPCu
i , and

DDPCu
i � DPCi�1�

�*/
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which are then passed down the pipeline together with instruction Ii . Ex-
cept on an �,� instruction,

DPCu
i � PCi�1�

but due to the software constraints, �,� can only be interrupted by reset
which aborts the execution. Thus, the inputs of the two exception PCs can
be selected as

�Di�3�� Di�4�� �

�
�PC�4� DPC�4� if repeat� 0
�DPC�4� DDPC�4� if repeat� 1

Environment SPRenv consists of a special register file, of circuit SPRsel
which selects the inputs of the distinct read ports, and of the glue logic
which generates signal sel. Thus, the cost run at

CSPRenv � CSF�6�32��CSPRsel�CSPRglue

CSPRsel � 3 �Cmux�32�

CSPRglue � Czero�3��2 �Cand�Cinv�

All the data inputs are directly provided by registers at zero delay. Let its
control inputs have a delay of ACON�csSPR�. The output Sinand the inputs
Di then have an accumulated delay of

ASPRenv�Sin� � DSF�Dout�

ASPRenv�Di� � max�ACON�csSPR�� Dzero�3���2 �Dand�Dmux�

and the write access requires a cycle time of at most

TSPRenv � ASPRenv�Di��DSFw�δ�

'�'�& 5�	�4�	 +��� "���

The decode stage ID gets the new output register S. The two opcodes
IR[31:26] and IR[5:0] and the destination address Cad of the general pur-
pose register file are provided by stage ID, but they are also used by later
stages. As before, these data are therefore passed down the pipeline, and
they are buffered in each stage. Due to the interrupt handling, stage WB
now also requires the three PCs and the address Sad of the register file
SPR. Like the opcodes and the address Cad, these data wander down the
pipeline together with the instruction. That requires additional buffering
(figure 5.7); its cost runs at

Cbu f f er � Cf f �22��2 �Cf f �22�3 �32��

�*)
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PC.4 DPC.4 DDPC.4IR.4 Cad.4 Sad.4ue.3

PC.3 DPC.3 DDPC.3IR.3 Cad.3 Sad.3ue.2

IR.2 Cad.2 Sad.2ue.1

IR.1[31:26, 5:0] Cad.1 Sad.1

22
PC DPC DDPC

96

�	
��� ��� Buffering

The interrupt handling has no impact on the instruction register envi-
ronment IRenv which extracts the immediate operand co and the shifter
environment SH4Lenv.

1���-�� 1����������

The execute environment EXenvof figure 5.8 still comprises the ALU en-
vironment and the shifter SHenv and connects them to the operand and
result busses. The three operand busses are controlled as before, and the
outputs shand ov f also remain the same.

The only modification is that the result D is now selected among six
values. Besides the register value link and the results of the ALU and the
shifter, environment EXenv can also put the constant co or the operands S
or A on the result bus:

D �

��
�

link if linkDdoe� 1
alu if ALUDdoe� 1
sh if SHDdoe� 1
co if coDdoe� 1
A if ADdoe� 1
S if SDdoe� 1�

The result D � co is used in order to pass the trap constant down the
pipeline, whereas the result D � A is used on the special move instruction
�+���. D � S is used on �,� and �+���.

The selection of D now requires two additional tristate drivers, but that
has no impact on the delay of the environment. The cost of EXenv are

CEXenv � CALUenv�CSHenv�2 �Cmux�32��6 �Cdriv�32��
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ALUenv SHenv
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�
�
�
�

0 1 0 1

co B A BS link

����

a’muxselbmuxselA

s[1:0]

sh

b a’a

shovf alu

D

�	
��� ��� Execute environment EXenv with interrupt support

.���-����� 5����% 1���������� .5���
The environment IMenv of the instruction memory is controlled by a single
control signal Imr. The address is still specified by register DPC, but the
memory IM has a slightly extended functionality. In addition to the data
output IMout and the busy flag ibusy, IM provides a second status flag ip f .
The flag ip f indicates that the memory is unable to perform the requested
access due to a page fault. The flag ibusy indicates that the memory re-
quires at least one more cycle in order to complete the requested access.
Both flags are inactive if the memory IM does not perform an access. In
case of a successful access (ibusy� ip f � 0), the instruction memory IM
provides the requested memory word at the data output IMout and other-
wise, it provides an arbitrary but fixed binary value IMde f ault:

IMout �

�
IMword��DPC�31 : 2�00�� if Imr � �ibusy� �ip f
IMde f ault otherwise,

The instruction memory control IMC checks for a misaligned access.
The 4-byte instruction fetch is misaligned if the address is not a multiple
of four:

imal � DPC�0� � DPC�1��

Let dIstat denote the status time of the instruction memory. Since the ad-
dress is directly taken from a register, the status flags imal, ibusyand ip f
are provided at the following cost and accumulated delay:

CIMC � Cor

AIMenv� f lags� � max�Dor� dIstat��

+��� 5����% 1���������� +5���
The environment DMenv still consists of the data memory DM and the
memory controller DMC. The memory DM performs the actual load or

���
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store access, whereas the controller DMC generates the four bank write
signals Dmbw�3 : 0� and checks for misalignment.

Except for the data output DMout and an additional flag dp f, the func-
tionality of the data memory DM itself remains the same. The flag dp f
indicates that the memory is unable to perform the requested access due to
a page fault. If the memory DM detects a page fault (dp f � 1), it cancels
the ongoing access. Thus, the memory itself ensures that it is not updated
by a store instruction which causes a page fault. The flags dp f and dbusy
are inactive if the memory performs no access (Dmr�3 �Dmw�3 � 0). On a
successful read access, the data memory DM provides the requested mem-
ory word, and otherwise it provides a fixed value DMde f ault:

DMout �

�
DMword��MDRw�31 : 2�00�� if Dmr � �dbusy� �dp f
DMde f ault otherwise,

Memory Control DMC In addition to the bank write signals, the mem-
ory controller DMC now provides signal dmal which indicates a mis-
aligned access.

The bank write signals Dmbw[3:0] are generated as before (page 81). In
addition, this circuit DMbw provides the signals B (byte), H (half word),
and W (word) which indicate the width of the memory access, and the
signals B[3:0] satisfying

B� j� � 1 
 �s�1 : 0��� j�

A byte access is always properly aligned. A word access is only aligned,
if it starts in byte 0, i.e., if B�0� � 1. A half word access is misaligned, if it
starts in byte 1 or 3. Flag dmal signals that an access to the data memory
is requested, and that this access is misaligned (malAc� 1):

dmal � �Dmr�3 � Dmw�3� � malAc

malAc � W�B�0� � H � �B�1��B�3��

The cost CDMC of the memory controller is increased by some gates, but
the delay DDMC of the controller remains unchanged:

CDMC � CDMbw�Cinv�3 �Cand�3 �Cor

� Cdec�2��3 �Cinv�15 �Cand�8 �Cor�

Let ACON�csM� denote the accumulated delay of the signals Dmr and
Dmw, the cycle time of the data memory environment and the delay of
its flags can then be expressed as

TM � ACON�csM��DDMC�dDmem�∆
ADMenv� f lags� � ACON�csM��DDMC�dDstat�

���



������� '

INTERRUPT

HANDLING CA.1

[4]

dpf

ovf
ovf?

cause processing
CAproCA.3’

ipf, imal

ue.0

ue.1 CA.2

CA.3ue.2

CAcol

ev[31:7] [0]

reset dmal

[6]

trap, ill

MCA, jisr.4, repeat

[3, 2]

[5, 1]

[2]

CA4ce

�	
��� ��� Schematics of the cause environment CAenv

'�'�' ��-� 1���������� �����

The cause environment CAenv (figure 5.9) performs two major tasks:

� Its circuit CAcol collects the interrupt events and clocks them into
the cause register.

� It processes the caught interrupt events and initiates the jump to the
ISR. This cause processing circuit CApro generates the flags jisr
and repeat, and provides the masked interrupt cause MCA.

��-� ����������
The internal interrupt events are generated by the data paths and the control
unit, but the stage in which a particular event is detected depends on the
event itself (table 5.5).

The instruction memory and its controller IMC provide the flags ip f and
imal which indicate a page fault or misaligned access on fetch. The flag
dmal, generated by the controller DMC signals a misaligned data memory
access. The flags dmal and imal are combined to the event flag mal. In
the memory stage, the flag dp f of the data memory signals a page fault on
load/store.

A trap and an illegal instruction ill are detected by the control unit. This
will be done in stage EX in order to keep the automaton simple (see page
208). The ALU provides the overflow flag ov f, but an arithmetical over-
flow should only be reported in case of an instruction �  # �$�# �  �,
or �$��. Such an instruction is indicated by the control signal ov f? which
activates the overflow check.
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����� ��� Assignment of Internal Interrupt Events. It is listed in which stage an
event signal is generated and by which unit.

event signal stage unit

ill ill EX control unit
mal imal IF instruction memory control IMC

dmal M data memory control DMC
pff ip f IF instruction memory environment IMenv
pfls dp f M data memory environment DMenv
trap trap EX control unit
ovf ov f�ov f? EX ALU environment, control unit

Since the interrupt event signals are provided by several pipeline stages,
the cause register CA cannot be assigned to a single stage. Register CA is
therefore pipelined: CA�i collects the events which an instruction triggers
up to stage i. That takes care of internal events. External events could be
caught at any stage, but for a shorter response time, they are assigned to
the memory stage.

The control signals of the stage EX are precomputed. The cycle time of
the cause collection CAcol, the accumulated delay of its output CA�3�, and
its cost can be expressed as:

TCAcol � max�AIMenv� f lags�� AALUenv�ov f��Dand��∆
ACAcol�CA�3�� � max�ADMenv� f lags�� ADMC�Dor�

CCAcol � Cand�Cor �9 �Cf f �

��-� "������

(figure 5.10) The masked cause mcais obtained by masking the maskable
interrupt events CA�3� with the corresponding bits of the status register SR.
The flag jisr is raised if mcais different from zero, i.e., if at least one bit
mca�i� equals one.

mca�i� �

�
CA�3��i��SR�i� if i � 6
CA�3��i� otherwise

jisr �
31�

i�0

mca�i�

A repeat interrupt is signaled if one of the page faults is the event of
highest priority among all the interrupt events j with mca� j� � 1:

repeat � mca�0� � mca�1� � mca�2� � �mca�3� � mca�4��
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jisr.4MCA repeat

CAtype

SR[31:6]
OR(32)

jisr

mca

CA4ce CA4ce

CA.3’[31:6] CA.3’[5:0]

�	
��� ���� Cause processing circuit CApro.

Circuit CAtypegenerates flag repeat according to this equation. At the
end of the cycle, the masked cause and the two flags jisr and repeatare
clocked into registers. The cost and cycle time of the cause processing
circuit CApro can be estimated as

CCApro � Cand�26��Ctree�32� �Cor �Cf f �34��CCAtype

CCAtype � 3 �Cor �Cand�Cinv

DCApro � Dand�Dtree�32� �Dor

TCApro � ACAcol�CA�3���DCApro�∆�

The cost and cycle time of the whole cause environment CAenv run at

CCAenv � CCAcol�CCApro

TCAenv � max�TCAcol� TCApro��

'�'�( ������� ����

As in the previous designs, the control unit basically comprises two cir-
cuits:

� The control automaton generates the control signals of the data paths
based on an FSD. These signals include the clock and write request
signals of the registers and RAMs.

� The stall engine schedules the instruction execution. It determines
the stage which currently executes the instruction and enables the
update of its registers and RAMs.

The control automaton must be adapted to the extended instruction set, but
the new instructions have no impact on the stall engine. Nevertheless, the
DLXΣ design requires a new stall engine, due to the ISR call mechanism.
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full.3

CE

CE

full.0
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CE

reset

/reset

/reset
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ue.0

ue.1

ue.2

ue.4

ue.3

CE

CE

CE

CE

�	
��� ���� Stall engine of the sequential DLX design with interrupt hardware

����� 1�
��� �� ��� DLXΣ +��
�
There is still one central clock CE for the whole DLXΣ design. The stall
engine (figure 5.11) clocks the stages in a round robin fashion based on the
vector f ull �4 : 0�. This vector is initialized on reset and shifted cyclically
on every clock CE. However, in the first cycle after reset, the execution is
now started in stage WB:

f ull �4 : 0� :�

��
�

10000 if reset
cls� f ull� if CE��reset
f ull otherwise.

The update enable bit ue�i enables the update of the of the output registers
of stage i. During reset, all the update enable flags are inactive

ue�4 : 0� � f ull �4 : 0� � CE � reset�

A jump to the interrupt service routine is only initiated, if the flag jisr�4
is raised and if the write back stage is full:

JISR� jisr�4 � f ull �4��

Thus, a dummy instruction can never initiate a jump to the ISR.
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On reset, the flags CA�3��0� and jisr are raised. However, a jump to the
ISR can only be initiated in the following cycle, if the global clock CE and
the clock CA4ce of the cause processing circuit are also active on reset

CE � �Ibusy NOR Dbusy� � reset

CA4ce � ue�3 � reset�

As before, the clock CE is stalled if one of the memories is busy. In order
to avoid unnecessary stalls, the busy flags are only considered in case of
a successful memory access. Since the memories never raise their flags
when they are idle, the flags Ibusyand Dbusycan be generated as

Ibusy � ibusy� f ull �0 � �imal NOR ip f �

Dbusy � dbusy� f ull �3 � �dmal NOR dp f��

The interrupt mechanism requires that the standard write to a register file
or to the memory is canceled on a repeat interrupt. Since the register files
GPR and SPR belong to stage WB, their protection is easy. Thus, the write
signals of the two register files are set to

GPRw� � GPRw� ue�4 � �JISR NAND repeat�

SPRw� � SPRw� ue�4 � �JISR NAND repeat��

For the data memory, the protection is more complicated because the
memory DM is accessed prior to the cause processing. There are only two
kinds of repeat interrupts, namely the two page faults p f f and p f ls; both
interrupts are non-maskable. Since the interrupt event p f ls is provided by
the memory DM, the memory system DM itself must cancel the update if
it detects a page fault. The other type of page fault (ev�2� � p f f) is already
detected during fetch. We therefore redefine the write signal Dmwas

Dmw�3 :� Dmw�2 � CA�2�2��

As before, the memory update is disabled if the memory stage is empty

Dmw��3 � Dmw�3 � f ull �3�

Signal Dmw��3 is used by the memory controller DMC in order to generate
the bank write signals.

��(
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The remaining clock and write signals are enabled as before. With this
stall engine, a reset brings up the DLXΣ design no matter in which state the
hardware has been before:

Let T be the last machine cycle in which the reset signal is active. In� ����� ��(
the next machine cycle, the DLXΣ design then signals a reset interrupt and
performs a jump to the ISR:

resetT � 1 � resetT�1 � 0 � JISRT�1 � 1 and MCA�0�T�1 � 1�

Since the global clock is generated as �����

CE � �Ibusy NOR Dbusy� � reset�

the DLXΣ design is clocked whenever the reset signal is active, and espe-
cially in cycle T. Due to reset, the flags f ull �4 : 0� get initialized

f ull �4 : 0�T�1 � 10000�

and the clock enable signal for the output registers of CApro is

CA4ceT � ue�3T � resetT � 1�

Hence, the output registers of the cause processing circuit are updated at
the end of cycle T with the values

MCA�0�T�1 � mca�0�T � resetT

jisr�4T�1 �
31�

j�0

mca� j�T � 1�

Consequently,

JISRT�1 � jisr�4T�1 � f ull �4T�1 � 1�

and ISR(0) is invoked in cycle T �1. ���

������� �-�������
The control automaton is constructed as for the DLXσ design without in-
terrupt handling (section 4.2.3). The automaton is modeled by a sequential
FSD which is then transformed into precomputed control:

� The control signals of stage IF and the Moore signals of ID are al-
ways active, whereas the Mealy signals of stage ID are computed in
every cycle.

��/
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� The control signals of the remaining stages are precomputed during
ID. This is possible because all their states have an outdegree of one.
There are three types of signals: signals x are only used in stage EX,
signals y are used in stage EX and M, and signals z are used in all
three stages.

However, there are three modifications. The automaton must account for
the 8 new instructions (table 5.4). It must check for an illegal opcode,
i.e., whether the instruction word codes a DLX instruction or not. Unlike
the DLXσ design, all the data paths registers invisible to the assembler
programmer (i.e., all the registers except for PC’, DPC, and the two register
files) are now updated by every instruction. For all these registers, the
automaton just provides the trivial clock request signal 1.

The invisible registers of the execute stage comprise the data registers
MAR and MDRw and the buffers IR.3, Cad.3, Sad.3, PC.3, DPC.3, and
DDPC.3. By default, these registers are updated as

�IR�3�Cad�3� Sad�3� :� �IR�2�Cad�2� Sad�2�

�PC�3� DPC�3� DDPC�3� :� �PC�2� DPC�2� DDPC�2�

�MAR� MDRw� :� �A� shi f t�A�co�4:0���

Besides the buffers, the invisible registers of the memory stage comprise
the data registers C.4 and MDRr. Their default update is the following:

�IR�4�Cad�4� Sad�4� :� �IR�3�Cad�3� Sad�3�

�PC�4� DPC�4� DDPC�4� :� �PC�3� DPC�3� DDPC�3�

�C�4� MDRr� :� �MAR� DMde f ault��

The automaton is modeled by the FSD of figure 5.12. The tables 5.6
and 5.7 list the RTL instruction; the update of the invisible registers is
only listed if it differs from the default. Note that in the stages M and
WB, an �,� is processed like a special move �+���. Table 5.8 lists the
nontrivial disjunctive normal forms, and table 5.10 lists the parameters of
the automaton.

In stage ID, only the selection of the program counters and of the con-
stant got extended. This computation requires two additional Mealy sig-
nals r f e�1 and Jimm. In stage EX, the automaton now also has to check
for illegal instructions; in case of an undefined opcode, the automaton gets
into state Ill. Since this state has the largest indegree, Ill serves as the new
initial state. State noEX is used for all legal instructions which already
finish their actual execution in stage ID, i.e., the branches ���� and �%��
and the two jumps "� and ".
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fetch

noEX

store noM

noWBmi2sW

mi2sM

wb

savePC

rfetestI

test

shiftI

shift

aluIo

aluI

aluo

alu

ms2i

ms2iM

addrL

sh4l

IF

WB

ID

M

passC

addrS

Ill trapmi2s

EX

load

�	
��� ���� FSD of the DLXΣ design with interrupt handling

����� ��� RTL instructions of the stages IF and ID

RTL instruction type of I signals

IF IR�1 � IM�DPC� fetch, IRce

ID A� A� � RS1� AEQZ� zero�A��� Ace,
B� RS2� PC� � �reset? 4 : pc��� Bce, PC’ce,
DPC� �reset? 0 : dpc�� DPCcee
S� SPR�Sas�� Sce
link � PC��4� DDPC� DPC� PCce,
IR�2 � IR�1� Sad�2 � Sad�
co� constant�IR�1� "# "��# &��� Jimm

����# ����# ���� shiftI
otherwise

�pc��dpc� � �,� rfe.1
nextPC�PC��A��co�EPCs� "# "�� jump

"�# "��� jumpR, jump
���� branch, bzero
�%�� branch
otherwise

Cad�Caddr�IR�1� "���# "�� Jlink
R-type Rtype
otherwise

�Sas�Sad� � Saddr�IR�1� �,� rfe.1
otherwise
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����� ��� RTL instructions of the stages EX, M, and WB. The update of the
invisible registers is only listed if it differs from the default.

state RTL instruction control signals

EX alu MAR� A op B� ALUDdoe, Rtype,
MDRw� shift�A�B�4:0�� bmuxsel

aluo MAR� A op B� overflow? ALUDdoe, Rtype, ovf?
MDRw� shift�A�B�4:0�� bmuxsel

test MAR� �A rel B?1 : 0�� ALUDdoe, test, Rtype,
MDRw� shift�A�B�4:0�� bmuxsel

shift MAR� MDRw� SHDdoe, Rtype,
shift�A�B�4:0��� bmuxsel

aluI MAR� A op co, ALUDdoe,
aluIo MAR� A op co� overflow? ALUDdoe, ovf?
testI MAR� �A rel co?1 : 0� ALUDdoe, test
shiftI MAR� shift�A�co�4:0�� SHDdoe, shiftI, Rtype
savePC MAR� link linkDdoe,
addrL MAR� A�co� ALUDdoe, add,
addrS MAR� A�co� ALUDdoe, add,

MDRw� amuxsel, shift4s
cls�B�MAR�1:0�000�

trap MAR� co� trap� 1 coDdoe, trap
Ill MAR� A� ill � 1 ADdoe, ill
rfe MAR� S SDdoe
ms2i MAR� S SDdoe
mi2s default updates ADdoe
noEX

M load MDRr� Dmr
Mword��MAR�31:2�00��

store m� bytes�MDRw� Dmw
others default updates

WB sh4l GPR�Cad�4� � shift4l, GPRw
sh4l�MDRr�MAR�1:0�000�

wb GPR�Cad�4� �C�4 GPRw
mi2sW SPR�Sad�4� �C�4 SPRw
noWB no update

���
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����� ��� Nontrivial disjunctive normal forms of the DLXΣ control automaton

stage DNF state/signal IR�31 : 26� IR�5 : 0� length

EX D1 alu 000000 1001** 10
000000 100**1 10

D2 aluo 000000 1000*0 11
D3 aluI 0011** ****** 4

001**1 ****** 4
D4 aluIo 0010*0 ****** 5
D5 shift 000000 0001*0 11

000000 00011* 11
D6 shiftI 000000 0000*0 11

000000 00001* 11
D7 test 000000 101*** 9
D8 testI 011*** ****** 3
D9 savePC 010111 ****** 6

000011 ****** 6
D10 addrS 10100* ****** 5

1010*1 ****** 5
D11 addrL 100*0* ****** 4

1000*1 ****** 5
10000* ****** 5

D12 mi2s 000000 010001 12
D13 ms2i 000000 010000 12
D14 trap 111110 ****** 6
D15 rfe 111111 ****** 6
D16 noEX 00010* ****** 5

000010 ****** 6
010110 ****** 6

ID D17 Rtype 000000 ****** 6
D6 shiftI 000000 0000*0 (10)

000000 00001* (10)
D9 Jlink 010111 ****** (6)

000011 ****** (6)
D18 jumpR 01011* ****** 5
D19 jump 00001* ****** 5

01011* ****** (5)
D20 branch 00010* ****** (5)
D21 bzero *****0 ****** 1
D15 rfe.1 111111 ****** (6)
D22 Jimm 00001* ****** (5)

111110 ****** (6)

Accumulated length of all nontrivial monomials 206 ���
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����� ��� Control signals to be precomputed during stage ID

EX M WB

y shift4s, Dmw
amuxsel

z Dmr shift4l
SPRw
GPRw

type x signals (stage EX only)

trap, ADdoe ovf?
coDdoe SDdoe add?
linkDdoe Rtype ill
ALUDdoe bmuxsel test
SHDdoe

ill add test Rtype ovf? bmuxsel Dmw Dmr SHDdoe

shift 1 1 1
shiftI 1 1
alu 1 1
aluo 1 1 1
aluIo 1
test 1 1 1
testI 1
addrL 1 1
addrS 1 1
Ill 1
inactive in states: aluI, savePC, trap, mi2s, rfe ms2i, noEX

ALUDdoe linkDdoe trap ADdoe SDdoe SPRw GPRw

shift 1
shiftI 1
alu 1 1
aluo 1 1
aluI 1 1
aluIo 1 1
test 1 1
testI 1 1
addrL 1 1
addrS 1
savePC 1 1
trap 1
mi2s 1 1
ms2i 1 1
rfe 1 1
Ill 1
noEX 1
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����� ���� Parameters of the two control automata; one precomputes the Moore
signals (ex) and the other generate the Mealy signals (id).

# states # inputs # and frequency of outputs
k σ γ νsum νmax

ex 17 12 16 48 11
id 1 12 9 13 2

fanin of the states # and length of monomials
fansum fanmax #M lsum lmax

ex 26 3 26 189 12
id – – 4 17 10

The stage EX, M and WB are only controlled by Moore signals, which
are precomputed during decode. All their states have an outdegree of one.
It therefore suffices to consider the states of stage EX in order to generate
all these control signals. For any of these signals, the table 5.9 list its type
(i.e., x, y, or z) and the EX states in which it becomes active.

��������� �� ��� +��
�
Along the lines of section 3.4 it can be show that the DLXΣ design interprets
the extended DLX instruction set of section 5.2 with delayed PC semantics.

In the sequential DLX design without interrupt handling, any instruction
which has passed a stage k only updates output registers of stages k� � k
(lemma 4.3). In the DLXΣ design, this dateline criterion only applies for
the uninterrupted execution. If an instruction Ii gets interrupted, the two
program counters PC’ and DPC get also updated when Ii is in the write
back stage. Furthermore, in case of a repeat interrupt, the update of the data
memory is suppressed. Thus, for the DLXΣ design, we can just formulate
a weak version of the dateline criterion:

Let IΣ�k�T �� � i. For any memory cell or register R� out�t� different from � ����� ��)
PC’ and DPC, we have

RT �

�

�
Ri�1 if t � k
Ri if t � k�

If R� �PC�� DPC�, then R is an output register of stage t� 1 and

RT �

�

�
Ri�1 if k � �0�1�
Ru

i if k � 2�
��#
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If the execution of instruction Ii is not interrupted, i.e., if JISRT
�

� 0 with
IΣ�4�T �� � i, then Ri � Ru

i for any register R.

If IΣ�4�T �� � i, then IΣ�0�T �� 1� � i � 1 and lemma 5.9 implies for all
R

RT ��1 � Ri�

��� +�������� '������� ��������

�
S IN the basic DLX design (chapter 4), the same three modifications
are sufficient in order to transform the prepared sequential design

DLXΣ into the pipelined design DLXΠ. Except for

� a modified PC environment,

� extensive hardware for result forwarding and hazard detection, and

� a different stall engine,

the DLXΣ hardware can be used without changes. Figure 5.13 depicts the
top-level schematics of the DLXΠ data paths. The modified environments
are now described in detail.

'�(�� "� 1����������

Figure 5.14 depicts the PC environment of the DLXΠ design. The only
modification over the DLXΣ design is the address provided to the instruc-
tion memory IM. As for the transformation of chapter 4, memory IM is
now addressed by the input dpcof register DPC and not by its output.

dpc �

��
�

SISR if JISR� 1
EDPC if JISR� 0 � r f e�1 � 1
PC� otherwise

However, the delayed program counter must be buffered for later use, and
thus, register DPC cannot be discarded.

The cost of environment PCenv and most of its delays remain the same.
The two exception PCs are now provided by the forwarding circuit FORW.
Thus,

APCenv�dpc� � max�AJISR� AFORW�EDPC���2 �Dmux�32�

TPCenv � max�Dinc�30�� AIRenv�co��Dadd�32�� AGPRenv�Ain��

AFORW�EPCs�� A�b jtaken�� ACON�csID��

�3 �Dmux�32��∆�
��&
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�	
��� ��� Data paths of the pipelined design DLXΠ with interrupt support

PC’

��

Add(32)
Inc / +4

�
�
�
�

link

0 1 JISR

0 1

1 0
��
��
��
��

DPC DDPC

0

1

0

1
0 1
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SISR+4

EPC Ain

jumpR

bjtaken

JISR
rfe.1

SISREDPC

dpc

(to IMenv)nextPC

rfe.1

�	
��� ���� Environment PCenv of the DLXΠ design
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The modified PC environment also impacts the functionality and delay
of the instruction memory environment. On a successful read access, the
instruction memory now provides the memory word

IMout � IMword��dpc�31 : 2�00���

The cycle time of IMenv and the accumulated delay of its flags are

TIMenv � APCenv�dpc��dImem�∆
AIMenv� f lags� � APCenv�dpc��max�Dor� dIstat��

'�(�� ,�����	��
 ��	 .����������


The data paths comprise two register files, GPR and SPR. Both are up-
dated during write back. Since their data are read by earlier stages, result
forwarding and interlocking is required. The two register files are treated
separately.

9������ "-���� 8�
����

During �+��� instructions, data are copied from register file SPR via reg-
ister S and the C�k registers into the register file GPR. The forwarding
circuits to Shave to guarantee that the uninterrupted execution of Ii , i.e.,

IΠ�2�T� � IΠ�3�T �1� � IΠ�4�T �2� � i�

implies ST � Si�1. During stages EX, M and WB the data then wander
down the C�k registers like the result of an ordinary fixed point operation.
Thus we do not modify the forwarding circuits for registers A and B at all.

������� "-���� 8�
����

Data from the special purpose registers are used in three places, namely

� on a �+��� instruction, SPR�Sas� is read into register S during de-
code,

� the cause environment reads the interrupt masks SR in the memory
stage, and

� on an �,� instruction, the two exception PCs are read during decode.

Updates of the SPR registers are performed in three situations:

� On a �+��� instruction, value C�4 is written into register SPR�Sad�.

��(
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Sad.2, C’.2, SRPw.2

Sad.3, C’.3, SRPw.3

Sad.4, C’.4, SRPw.4

Sout

SFor(3)

Din

ad Dout

Sas.1 Sin

�	
��� ���� Forwarding of SPR into register S

� Register SRis updated by �,�. Recall that in stages 2 to 4, we have
implemented this update like a regular write into SPR with write
address Sad� 0.

� All special purpose registers are updated by JISR. Forwarding the
effect of this looks like a nightmare. Fortunately, all instructions
which could use forwarded versions of values forced into SPR by
JISRget evicted from the pipe by the very same occurrence of JISR.

Therefore, one only needs to forward data from the inputs of the C�k reg-
isters with destinations in SPRspecified by Sad.

Forwarding of S Forwarding data with destination SPRinto register S
is exactly like forwarding data with destination GPR into A or B, except
that for address ad � 0 the data are now forwarded as well. Thus, con-
necting the three stage forwarding circuit SFor�3� as depicted in figure
5.15 handles the forwarding into register S. Note that no data hazards are
introduced.

Circuit SFor Figure 5.16 depicts a realization of the 3-stage forwarding
circuit SFor. It is derived from the circuit Forw of figure 4.18 in the ob-
vious way. Let DSFor�Data;3� denote the delay, the data inputs require to
pass circuit SFor(3). For an n-bit address ad, the cost and delay of SFor(3)
can be modeled as

CSFor�3� � 3 �Cmux�32��6 �Cand�3 �Cequal�n�

DSFor�hit� � Dequal�n��Dand

DSFor�Dout;3� � DSFor�hit��3 �Dmux�32�

DSFor�Data;3� � 3 �Dmux�32��

Circuit SForis slightly faster than the forwarding circuit Forw for the GPR
operands.

��/
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Sad.3

Sad.4

ad

�	
��� ���� 3-stage forwarding circuit SFor�3� for an SPR register

Sad.2, C’.2, SRPw.2

Sad.3, C’.3, SRPw.3

Sad.4, C’.4, SRPw.4

EPC

SFor(3)

Din

ad Dout

011 EPC’

Sad.4, C’.4
SPRw.4

ad Dout

000 SR’

SR

SFor(1)

a) b)

�	
��� ���� Forwarding of EPC into register PC’ (a) and of register SR into the
memory stage (b)

Forwarding of EPC The forwarding of EPC into the program counter
PC� during �,� instructions is done by a circuit SFor�3� which is connected
as depicted in figure 5.17 (a). Note that the address input ad of the for-
warding circuit has now been tied to the fixed address 3 of the register
EPC. No data hazards are introduced.

Forwarding of SR The forwarding of register SRinto the memory en-
vironment requires forwarding over a single stage with a circuit SFor�1�
connected as depicted in figure 5.17 (b). This circuit is obtained from cir-
cuit SFor�3� by the obvious simplifications. It has cost and delay

CSFor�1� � Cmux�32��2 �Cand�Cequal�3�

DSFor�Dout;1� � DSFor�hit��Dmux�32�

DSFor�Data;1� � Dmux�32��

Again, no data hazards were introduced.

Forwarding of EDPC The forwarding of EDPC during �,� instructions
to signal dpc in the PC environment would work along the same lines,

��)
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SPRw.4

full.2

full.3

full.4

Sad.2

Sad.3

Sad.4

100 dhaz(EDPC)

�	
��� ���� Data hazard detection for EDPC

but this would increase the instruction fetch time. Therefore, forwarding
of EDPC to dpc is omitted. The data hazards caused by this can always
be avoided if we update in the RESTORE sequence of the interrupt service
routine register EDPC before register EPC.

If this precaution is not taken by the programmer, then a data hazard
signal

dhaz�EDPC� � hit�2 � hit�3 � hit�4

is generated by the circuit in figure 5.18. Note that this circuit is obtained
from circuit SFor�3� by the obvious simplifications. Such a data hazard is
only of interest, if the decode stage processes an �,� instruction. That is the
only case in which a SPR register requests an interlock:

dhazS� dhaz�EDPC� � r f e�1�

Cost and Delay The hazard signal dhazSis generated at the following
cost and delay

CdhazS � 3 �Cequal�3��7 �Cand�2 �Cor

AdhazS � Dequal�3��2 �Dand�2 �Dor�

The address and control inputs of the forwarding circuits SForare directly
taken from registers. The input data are provided by the environment EX-
env, by register C.4 and by the special read ports of the SPR register file.
Thus,

AFORW�S�EPC� � max�DSFor�Dout;3�� DSFor�Data;3��AEXenv�

AFORW�SR� � max�DSFor�Dout;1�� DSFor�Data;1��ASH4Lenv�

AFORW�EDPC� � 0�

��*
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The forwarding of the SPR operands is performed by an 1-stage and two
3-stage forwarding circuits:

CSFORW � CSFor�1��2 �CSFor�3��

'�(�# ����� 1�
���

The stall engine of the DLXΠ design is very similar to the interlock engine
of section 4.5 except for two aspects: the initialization is different and there
are additional data hazards to be checked for. On a data hazard, the upper
two stages of the pipeline are stalled, whereas the remaining three stages
proceed. The upper two stages are clocked by signal CE1, the other stages
are clocked by signal CE2.

A data hazard can now be caused by one of the general purpose operands
A and B or by a special purpose register operand. Such a hazard is signaled
by the activation of the flag

dhaz� dhazA� dhazB� dhazS�

��	����
 �� ��� ,-�� >�����
The full vector is initialized on reset and on every jump to the ISR. As in
the DLXΣ design, a jump to the ISR is only initiated if the write back stage
is not empty

JISR� jisr�4 � f ull �4�

On JISR, the write back stage is updated and stage IF already fetches the
first instruction of the ISR. The update enable signals ue�4 and ue�0 must
therefore be active. The instructions processed in stages 1 to 3 are canceled
on a jump to the ISR; signal JISRdisables the update enable signals ue�3 :
1�. In the cycle after JISR, only stages 0 and 1 hold a valid instruction, the
other stages are empty, i.e., they process dummy instructions.

Like in the DLXΣ design, an active reset signal is caught immediately
and is clocked into register MCA even if the memory stage is empty. In
order to ensure that in the next cycle a jump to the ISR is initiated, the reset
signal forces the full bit f ull �4 of the write back stage to one.

The following equations define such a stall engine. A hardware realiza-
tion is depicted in figure 5.19.

ue�0 �CE1
ue�1 �CE1��JISR f ull�1 � 1
ue�2 �CE2��JISR� f ull �2 f ull �2 :� ue�1
ue�3 �CE2��JISR� f ull �3 f ull �3 :� ue�2
ue�4 �CE2� f ull �4 f ull �4 :� ue�3� reset
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full.4
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�	
��� ���� Stall engine of the DLXΠ design with interrupt support

����� ��
���
Like in the pipelined design DLXπ without interrupt handling, there are two
clock signals. Signal CE1 governs the upper two stages of the pipeline, and
signal CE2 governs the remaining stages.

CE1 � ��busy��dhaz� � �JISR��Ibusy�

� ��busy��dhaz� � ��JISR NOR Ibusy�

CE2 � �busy� ��JISR NOR Ibusy� � reset�

Both clocks are inactive if one of the memories is busy; CE1 is also inactive
on a data hazard. However, on JISR both clocks become active once the
instruction memory is not busy. In order to catch an active reset signal
immediately, the clock CE2 and the clock CA4ceof the cause processing
circuit must be active on reset

CA4ce � ue�3 � reset�

In order to avoid unnecessary stalls, the busy flags are only considered in
case of a successful memory access. Since the memories never raise their
flags when they are idle, the busy flags are generated as

Ibusy � ibusy� �imal NOR ip f �

Dbusy � dbusy� �dmal NOR dp f�

�busy � Ibusy NOR Dbusy�

The interrupt mechanism requires that the standard write to a register
file or memory is canceled on a repeat interrupt. The register files GPR

���
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and SPR are protected as in the sequential design. A special write to the
SPR register file is enabled by signal ue�4. The write signals of the register
files are therefore generated as

GPRw� � GPRw� ue�4 � �JISR NAND repeat�

SPRw� � SPRw� ue�4 � �JISR NAND repeat�

SPRw��5 : 0� � SPRw�5 : 0� � ue�4�

For the data memory, the protection becomes more complicated. Like in
the sequential design DLXΣ, the memory system DM itself cancels the
update if it detects a page fault, and in case of a page fault on fetch, the
write request signal is disabled during execute

Dmw�3 :� Dmw�2 � CA�2�2��

However, the access must also be disabled on JISR and on reset. Thus,
signal Dmw3 which is used by the memory controller DMC in order to
generate the bank write signals is set to

Dmw��3 � Dmw�3 � f ull �3 � �JISR NOR reset��

The remaining clock and write signals are enabled as in the pipelined de-
sign DLXπ without interrupt handling: the data memory read request is
granted if stage M is full

Dmr��3 � Dmr�3 � f ull �3�

and the update of an register R� out�i� is enabled by ue�i

Rce� � Rce� ue�i�

Like for the DLXΣ design (lemma 5.8), it follows immediately that with this
stall engine, an active reset signal brings up the DLXΠ design, no matter in
which state the hardware has been before:

Let T be the last machine cycle in which the reset signal is active. In the����� ��	* �

next machine cycle, the DLXΠ design then signals a reset interrupt and
performs a jump to the ISR:

resetT � 1 � resetT�1 � 0 � JISRT�1 � 1 and MCA�0�T�1 � 1�
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����� ���� Start of the execution after reset under the assumption that no data
hazards occur. A blank entry indicates that the value is undefined.

T reset JISR ue�0� 1� 2� 3� 4� f ull �2� 3� 4� IF

-1 1 1
0 0 1 1 0 0 0 1 1 I0
1 0 0 1 1 0 0 0 0 0 0 I1
2 0 0 1 1 1 0 0 1 0 0 I2
3 0 0 1 1 1 1 0 1 1 0 I3
4 0 0 1 1 1 1 1 1 1 1 I4

����	-���
 ,-������

The scheduling functions of the pipelined DLX designs with and without
interrupt handling are very much alike. The execution starts in cycle T � 0,
which is the first cycle after reset (table 5.11). According to lemma 5.10,
the first instruction I0 of the ISR is fetched in cycle T � 0, and

IΠ�0�0� � 0�

The instructions are still fetched in program order and wander in lock-
step through the stages 0 and 1:

IΠ�0�T� � i � IΠ�0�T �1� �

�
i if ue�0T � 0
i �1 if ue�0T � 1

IΠ�1�T� � i � IΠ�0�T� � i �1

Any instruction makes a progress of at most one stage per cycle, and it
cannot be stalled once it is clocked into stage 2. However, on an active
JISRsignal, the instructions processed in stages 1 to 3 are evicted from the
pipeline. Thus, IΠ�k�T� � i � �JISRT � 0 � k� 0� implies

i �

�
IΠ�k�T �1� if ue�kT � 0
IΠ�k�1�T �1� if ue�kT � 1 and k�1 � 4

and for k� 2, the instructions proceed at full speed:

IΠ�k�T� � i � JISRT � 0 � IΠ�k�1�T �1� � i�

Note that on JISR� 1, the update enable signals of the stages 0 and 4 are
active whereas the ones of the remaining stages are inactive.
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The computation of the inverted hazard signal �dhazrequires the data haz-
ard signals of the two GPR operands A and B and the data hazard signal
dhazSof the SPR operands.

�dhaz � �dhazA� dhazB� NOR dhazS�

Since for the two GPR operands, the hazard detection is virtually the same,
the cost and delay of signal �dhazcan be modeled as

Cdhaz � 2 �CdhazA�CdhazS�Cor �Cnor

Adhaz � max�AdhazA�Dor� AdhazS��Dnor�

The inverted flag �busy, which combines the two signals Dbusy and
Ibusy, depends on the flags of the memory environments. Its cost and
delay can be modeled as

Cbusy � 2 �Cand�3 �Cnor

Abusy � max�AIMenv� f lags�� ADMenv� f lags���Dand�2 �Dnor�

The two clock signals CE1 and CE2 depend on the busy flag, the data
hazard flag �dhaz, and the JISR flags.

JISR� jisr�4 � f ull �4 �JISR� jisr�4 NAND f ull �4�

We assume that the reset signal has zero delay. The two clocks can then be
generated at the following cost and delay

CCE � 3 �Cor �Cnor�Cand�Cdhaz�Cbusy�Cand�Cnand

AJISR � max�Dand� Dnand�

ACE � max�Adhaz� AJISR� Abusy��Dand�Dor�

The core of the stall engine is the circuit of figure 5.19. In addition,
the stall engine generates the clock signals and enables the update of the
registers and memories. Only the data memory, the two register files, the
output registers of environment CApro, and the registers PC’ and DPC
have non-trivial update request signals. All the other data paths registers
R� out�i� are clocked by ue�i. The cost and the cycle time of the whole
stall engine can therefore be modeled as

Cstall � 3 �Cf f �Cor �5 �Cand

�CCE�Cnand�Cnor�Cor �Cinv�9 �Cand

Tstall � ACE�3 �Dand�δ
�max�DSF�w�ce;6�32��Df f � Dram3�32�32��
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����� ���� Cost of the data paths of the pipelined DLX designs with/without
interrupt hardware

environment EX RF PC CA buffer FORW DP

DLXπ 3315 4066 1906 – 408 812 13010
DLXΠ 3795 7257 2610 471 2064 1624 20610
increase 14% 78% 37% – 406% 100% 58%

'�(�& ��� ��	 +���% �� ��� DLXΠ ���	����

In following, we determine the cost and the cycle time of the DLXΠ de-
sign and compare these values to those of pipelined design DLXπ without
interrupt handling.

��� �� ��� +��� "���

Except for the forwarding circuit FORW, the top level schematics of the
data paths of the two DLX design with interrupt support are the same. The
cost of the DLXΠ data paths DP (figure 5.13) can therefore be expressed as

CDP � CIMenv�CIRenv�CPCenv�CDaddr

�CEXenv�CDMenv�CSH4Lenv�CRFenv

�Cbu f f er�CCAenv�CFORW�8 �Cf f �32��

Table 5.12 lists the cost of the data paths and its environments for the
two pipelined DLX designs. Environments which are not effected by the
interrupt mechanism are omitted. The interrupt mechanism increases the
cost of the data paths by 58%. This increase is largely caused by the reg-
ister files, the forwarding hardware, and by the buffering. The other data
paths environments become about 20% more expensive.

Without interrupt hardware, each of the stages ID, EX and M requires
17 buffers for the two opcodes and one destination address. In the DLXΠ
design, each of these stages buffers now two addresses and three 32-bit
PCs. Thus, the amount of buffering is increased by a factor of 4.

The environment RFenv now consists of two register files GPR and SPR.
Although there are only 6 SPR registers, they almost double the cost of en-
vironment RFenv. That is because the GPR is implemented by a RAM,
whereas the SPR is implemented by single registers. Note that an 1-bit
register is four times more expensive than a RAM cell. The register imple-
mentation is necessary in order to support the extended access mode – all
6 SPR registers can be accessed in parallel.
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����� ��� Cost of the control of the two pipelined DLX designs

environment stall MC automata buffer CON DLX

DLXπ 77 48 609 89 830 13840
DLXΠ 165 61 952 105 1283 21893
increase 114% 27% 56% 18% 44% 58%

��� �� ��� �������
According to the schematics of the precomputed control (figure 4.15), the
control unit CON buffers the valid flags and the precomputed control sig-
nals. For the GPR result, 6 valid flags are needed, i.e., v�4 : 2��2� v�4 : 3��3
and v�4��4. Due to the extended ISA, there is also an SPR result. Since
this result always becomes valid in the execute stage, there is no need for
additional valid flags.

Since the control automata already provide one stage of buffering, pre-
computed control signals of type x need no explicit buffering. Type y sig-
nals require one additional stage of buffers, whereas type z signals require
two stages of buffers. According to table 5.9, there are three control signals
of type z and one of type y. Thus, the control requires

6�2 �3�1 �1 � 13

flipflops instead of 11. One inverter is used in order to generate the valid
signal of the GPR result. In addition, the control unit CON comprises the
stall engine, the two memory controllers IMC and DMC, and two control
automata (table 5.10). Thus, the cost of unit CONcan be modeled as

CCON � CIMC �CDMC�Cstall �CCON�moore��CCON�mealy�

�13 �Cf f �Cinv�

Table 5.13 lists the cost of the control unit, of all its environments, and
of the whole DLX hardware. The interrupt mechanism increases the cost
of the pipelined control by 44%. The cost of the stall engine is increased
above-average (�114%).

�%��� ����
According to table 5.14, the interrupt support has virtually no impact on the
cycle time of the pipelined DLX design. The cycle times of the data paths
environments remain unchanged, only the control becomes slightly slower.
However, as long as the memory status time stays below 43 gate delays,
the cycle time of the DLXΠ design is dominated by the PC environment.
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����� ���� Cycle times of the two pipelined DLX designs; dmemdenotes the max-
imum of the two access times dImem and dDmemand dmstat denotes the maximum
of the two status times dIstat and dDstat.

ID CON / stall
A/B PC

EX WB DP IF, M
max( , )

DLXπ 72 89 66 33 89 16�dmem 57 43�dmstat

DLXΠ 72 89 66 33 89 16�dmem 57 46�dmstat

��� �
��������� 
! ��� '������� ��������

�
N THIS section, we will prove that the pipelined hardware DLXΠ to-
gether with an admissible ISR processes nested interrupts in a precise

manner. For a sequential design, the preciseness of the interrupt processing
is well understood. We therefore reduce the preciseness of the pipelined
interrupt mechanism to the one of the sequential mechanism by showing
that the DLXΠ design simulates the DLXΣ design on any non-aborted in-
struction sequence.

In a first step, we consider an uninterrupted instruction sequence I0� � � � �
Ip, where I0 is preceded by JISR, and where Ip initiates a JISR. In a sec-
ond step, it is shown that the simulation still works when concatenating
several of these sequences. With respect to these simulations, canceled
instructions and external interrupt events are a problem.

�������	 .���-�����

Between the fetching of instruction Ip which initiates a jump to the ISR and
the actual JISR, the DLXΠ design starts further instructions Ip�1� � � � � Ip�δ.
However, these instructions are canceled by JISR before they reach the
write back stage. Thus, with respect to the simulation, we consider se-
quence P� I0� � � � � Ip� � � � � Ip�δ for the pipelined design, and sequence P� �
I0� � � � � Ip for the sequential design.

1������� .�����-�� 1����

are asynchronous to the instruction execution and can occur at any time.
Due to the pipelined execution, an instruction sequence P is usually pro-
cessed faster on the DLXΠ design than on the DLXΣ design. For the simu-
lation, it is therefore insufficient to assign a given external event to a fixed
cycle. Instead, the instruction sequences P and P� are extended by a se-
quence of external events. For any external interrupt ev� j�, we use the
following assignment, which is illustrated in table 5.15:
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����� ���� Assignment of external interrupt events for an uninterrupted instruc-
tion sequence P

cycle ev[j] JISR full.3 full.4 M WB

T�1 0 0
T 1 0 0 –

T �1 1 0 0 0 – –
� � � 1 0 0 0 – –

t�1 1 0 1 0 Ii –
t 1 0 1 Ii

Let the external interrupt event ev� j� be raised during cycle T of the
pipelined execution of P

ev� j�T�1
Π � 0 and ev� j�TΠ � 1�

let t be the first cycle after T for which the write back stage is full, and let
T ��1 be the cycle in the sequential execution of P� corresponding to cycle
t, i.e.,

IΠ�4� t� � i � IΣ�4�T
��1��

In the sequential execution of P, event ev� j� is then assigned to cycle T�

ev� j�T
�

Σ � 1�

Since the external events are collected in stage 3, it is tempting to argue
about the first cycle t̂ � T in which stage 3 is full, i.e., i � IΠ�3� t̂ �. For
a single uninterrupted instruction sequence P that makes no difference be-
cause the instruction processed in stage 3 is always passed to stage 4 at the
end of the cycle. Thus,

IΠ�3� t̂ � � IΠ�4� t̂ �1� � IΠ�4� t��

However, when concatenating two sequences P� I0� � � � Ip�δ and Q � J0�
J1� � � �, the instruction processed in stage 3 can be canceled by JISR. There-
fore, it is essential to argue about the instruction executed in stage 4. In
the example of table 5.16, the external event ev� j� is signaled while the
DLXΠ design performs a jump to the ISR. When arguing about stage 3, the
external event is assigned to instruction Ip�1 which has no counterpart in
the sequential execution, whereas when arguing about stage 4, the event is
assigned to the first instruction of sequence Q.
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����� ���� Assignment of external interrupt events when concatenating two in-
struction sequences P and Q

cycle ev[j] JISR full.3 full.4 M WB

T�1 0 0 1 Ip

T � t̂ 1 1 1 1 Ip�1 Ip

T �1 1 0 0 0 – –
� � � 1 0 0 0 – –

t�1 1 0 1 0 J0 –
t 1 0 1 J0

The proofs dealing with the admissibility of the ISR (section 5.4) only
argue about signal JISRand the values of the registers and memories vis-
ible to the assembler programmer, i.e., the general and special purpose
register files, the two PCs and the two memories IM and DM:

C � �GPR�0�� � � �GPR�31��SPR�0�� � � � �SPR�5��PC��DPC�DM� IM��

For the simulation, signal JISRand the contents of storage C are therefore
of special interest.

Let P� I0� � � � � Ip� � � � � Ip�δ and P� � I0� � � � � Ip be two instruction sequences� ������ ��		
extended by a sequence of external events, as defined above. Sequence P
is processed by the pipelined design DLXΠ and P� by the sequential design
DLXΣ. Let instruction I0 be preceded by JISR

JISR�1
Σ � 1 and JISR0Π � 1�

and let both designs start in the same configuration, i.e.,

�R� C R0
Σ � R1

Π�

Let Tp and T�p denote the cycles in which Ip is processed in the write back
stage

IΠ�4�Tp� � IΣ�4�T
�
p� � p � ue�4

Tp

Π � 1�

The initial PCs then have values PC�0
Σ � SISR�4 and DPC0

Σ � SISR. For
any instruction Ii � P�, any stage k, and any two cycles T, T� with

IΠ�k�T� � IΣ�k�T
�� � i � ue�kT

Π � 1

the following two claims hold:
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0I

Ip

Ip

1I

Tp
 T

k=0

k=1

k=2

k=3

k=4

box 1box 0 box 2

0

�	
��� ���� Pairs �k�T� of the pipelined execution. Box 0 is covered by the
hypothesis of the simulation theorem, the boxes 1 and 2 correspond to the claims
1 and 2.

1. (a) for all signals S in stage k which are inputs to a register R�
out�k� that is updated at the end of cycle T:

ST
Π � ST �

Σ �

(b) for all registers R� out�k� which are visible or updated at the
end of cycle T:

RT�1
Π � RT ��1

Σ �

�
Ru

i if T � Tp

Ri if T � Tp�

(c) for any cell M of the data memory DM and k� 3:

MT�1
Π � MT ��1

Σ � Mi�

2. and for any R� C and T� Tp

RT�1
Π � RT ��1

Σ � Rp�

With respect to the pipelined execution, there are three types of pairs
�k�T� for which the values ST and RT�1 of the signals Sand output regis-
ters Rof stage k are of interest (figure 5.20):

� For the first cycle, the theorem makes an assumption about the con-
tents of all registers and memories R� C independent of the stage
they belong to (box 0).

� Claim 1 covers all the pairs �k�T� for which IΠ�k�T� is defined and
lies between 0 and p (box 1).
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����� ���� Start of the execution after reset or JISR respectively

DLXσ DLXΣ
T’ reset ue[0:4] full[0:4] reset JISR ue[0:4] full[0:4]

-2 1 * * *
-1 1 * * 0 1 00001 00001
0 0 10000 10000 0 0 10000 10000
1 0 01000 01000 0 0 01000 01000
2 0 00100 00100 0 0 00100 00100
3 0 00010 00010 0 0 00010 00010
4 0 00001 00001 0 0 00001 00001
5 0 10000 10000 0 0 10000 10000

DLXπ DLXΠ
T reset ue[0:4] full[2:4] reset JISR ue[0:4] full[2:4]

-1 1 * * *
0 1 10000 * 0 1 10001 **1
1 0 11000 000 0 0 11000 000
2 0 11100 100 0 0 11100 100
3 0 11110 110 0 0 11110 110
4 0 11111 111 0 0 11111 111

� For the final cycle Tp, claim 2 covers all the registers and memories
R� C independent of the stage they belong to (box 2).

The above theorem and the simulation theorem 4.11 of the DLX design
without interrupt handling are very similar. Thus, it should be possible to
largely reuse the proof of theorem 4.11. Signal JISRof the designs DLXΣ
and DLXΠ is the counterpart of signal resetin the designs DLXσ and DLXπ.
This pair of signals is used to initialize the PC environment and they mark
the start of the execution. In the sequential designs, the execution is started
in cycle �1, whereas in the pipelined designs, it is started in cycle 0:

reset�1
σ � JISR�1

Σ � JISR0
Π � reset0π � 1�

Proof of Theorem 5.11 �����
Claim 1 is proven by induction on the cycles T of the pipelined execution,
but we only present the arguments which are different from those used in
the proof of theorem 4.11. The original proof strongly relies on the dateline
lemma 4.3 and on the stall engines (the scheduling functions).

Except for the initial cycle, the stall engines of the two sequential designs
produce identical outputs (table 5.17). The same is true for the stall engines
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of the two pipelined designs. For the initial cycle T � 0, the pipelined
scheduling function is only defined for stage k � 0:

IΠ�0�0� � IΣ�0�1� � 0�

Stage 0 has the instruction memory and its address as inputs. In the pipe-
lined design, IM is addressed by dpc, whereas in the sequential design it is
addressed by register DPC. Since

DPCce� PCce� ue�1 � JISR�

it follows from the hypothesis of the theorem and the update enable flags
that

dpc0
Π � DPC1

Π � DPC0
Σ � DPC1

Σ�

The memory IM is read-only and therefore keeps its initial contents. Thus,
on design DLXΠ in cycle T � 0 stage 0 has the same inputs as on design
DLXΣ in cycle T� � 1.

Note that the stages k of the designs DLXΣ and DLXΠ generate the same
signals Sand update their output registers in the same way, given that they
get identical inputs. This also applies to the data memory DM and its write
request signal Dmw��3 which in either design is disabled if the instruction
encounters a page fault on fetch. Thus, with the new dateline lemma 5.9,
the induction proof of claim 1 can be completed as before.

Claim 2 is new and therefore requires a full proof. For the output regis-
ters of stage 4, claim 1 already implies claim 2. Furthermore, in the designs
DLXΣ and DLXΠ, the instruction memory is never updated. Thus, claim 2
only needs to be proven for the two program counters PC’ and DPC, and
for the data memory DM.

The instruction sequence P� of the sequential design was constructed
such that instruction Ip causes an interrupt. Since signal JISRis generated
in stage 4, claim 1 implies

JISR
T �

p

Σ � JISR
Tp

Π � 1�

In either design, the two PCs are initialized on an active JISRsignal, and
therefore

DPC
T �

p�1
Σ � SISR � DPC

Tp�1
Π

PC�T
�

p�1
Σ � SISR�4 � PC�Tp�1

Π �

The data memory DM belongs to the set out�3�. For stage 3, the two
scheduling functions imply

IΠ�3�Tp�1� � IΣ�3�T
�
p�1� � p�

�#�
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In the sequential design, the data memory is only updated when the in-
struction is in stage 3, i.e., when f ull �3 � 1. Claim 1 then implies that

DM
Tp

Π � DM
T �

p

Σ � DMp�

JISR is only signaled if f ull �4 � 1. For cycle T�
p, the sequential stall engine

then implies that

f ull �3
T �

p

Σ � 1 and Dmw
T�

p

Σ � 0�

Thus, the data memory is not updated during JISR, and therefore

DM
T�

p

Σ � DM
T �

p�1
Σ �

In the pipelined design, the write enable signal of the data memory is gen-
erated as

Dmw�3 � Dmw��3 � f ull �3 � �JISR NOR reset��

Since signal Dmw�3 is disabled on an active JISRsignal, the data memory
is not updated during cycle Tp, and therefore,

DM
Tp�1
Π � DM

Tp

Π �

That completes the proof of claim 2. ���

We will now consider an arbitrary instruction sequence Q, which is pro-
cessed by the pipelined DLX design, and which is interrupted by several
non-aborting interrupts. Such a sequence Q can be broken down into sev-
eral uninterrupted subsequences

Pi � I�i�0�� � � � � I�i�pi �� � � � � I�i�pi�δi��

This means that for any sequence Pi , instruction I�i�0� is preceded by JISR,
I�i�pi � is the only instruction of Pi which causes an interrupt, and instruction
I�i�pi�δi� is the last instruction fetched before the jump to the ISR. For the
sequential execution, we consider the instruction sequence Q� � P�

1�P
�
2� � � �

which is derived from sequence Q by dropping the instructions evicted by
JISR, i.e.,

P�
i � I�i�0�� � � � � I�i�pi ��

The external interrupt events are assigned as before. The scheduling func-
tions are extended in an obvious way. For the designs DLXΣ and DLXΠ,

IΣ�k�T� � �i� j� and IΠ�k�T� � �i� j�

denote that in cycle T pipeline stage k processes instruction I�i� j�.
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Like the two DLX designs without interrupt hardware, the designs DLXΣ
and DLXΠ are started by reset and not by JISR. Lemmas 5.8 and 5.10
imply that after reset, both designs come up gracefully; one cycle after
reset JISR� 1 and the designs initiate a jump to ISR(0). Thus, we can
now formulate the general simulation theorem for the designs DLXΣ and
DLXΠ:

Let Q� P1�P2� � � � and Q� � P�
1�P

�
2� � � � be two instruction sequences ex-������ ��	� �

tended by a sequence of external events, as defined above. Sequence Q is
processed by the pipelined design DLXΠ and Q� by the sequential design
DLXΣ. In the sequential execution, reset is given in cycle�2, whereas in
the pipelined execution, reset is given in cycle�1:

reset�2
Σ � 1 � reset�1

Π �

Let both designs be started with identical contents, i.e.,any register and
memory R of the data paths satisfies

R�1
Σ � R0

Π� (5.4)

and let the first instruction I�1�0� be preceded by JISR

JISR�1
Σ � 1 � JISR0

Π�

For every pair�Pi �P�
i � of subsequences, the DLXΠ design processing Pi

then simulates the DLXΣ design on P�i in the sense of theorem 5.11.

As shown in the proof of theorem 5.11 claim 2, both designs initialize the�����
PCs on JISR in the same way, thus

�PC�� DPC�0
Σ � �PC�� DPC�1

Π�

The instruction memory is ready-only, and the update of the data memory
is disabled on ue�3 � 0. Table 5.17 and equation 5.4 therefore imply

�IM � DM�0
Σ � �IM � DM�1

Π�

In either design, the output registers of stage 4 are updated during JISR.
Since stage 4 gets identical inputs it also produces identical outputs. Thus,

�R� C R0
Σ � R1

Π�

and for the subsequences P1 and P�
1 simulation theorem 5.11 is applicable.

Since instruction I�1�p1� causes an interrupt, claim 2 of theorem 5.11 implies
that during the cycles T1 and T�

1 with

IΠ�4�T1� � �1� p1� and IΣ�4�T
�

1� � �1� p1�
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box’ 0

box’ 1

 T

�	
��� ���� Scheduling of the first two subsequences P1�P2 for the pipelined ex-
ecution of sequence Q

the two designs are in the same configuration, i.e.,

�R� C R
T �

1�1
Σ � RT1�1

Π � (5.5)

In the sequential execution, the next subsequence is stared one cycle
after JISR, i.e.,

IΣ�4�T
�

i � � �i� pi� � JISR
T �

i
Σ � 1 � IΣ�0�T

�
i �1� � �i �1�0��

whereas in the pipelined execution, the next subsequence is already started
during JISR, i.e.,

IΠ�4�Ti� � �i� pi� � JISRTi
Π � 1 � IΠ�0�Ti� � �i �1�0��

For the first two subsequences, figure 5.21 illustrates this scheduling be-
havior.

Thus, cycle T�
1 �1 corresponds to the cycle 0 of the sequential execution

of P�
2, and that cycle T1 � 1 corresponds to the cycle 1 of the pipelined

execution of P2. Equation 5.5 then implies that the subsequences P2 and P�
2

are started in the same configuration, and that theorem 5.11 can be applied.
With the same arguments, the theorem follows by induction on the sub-

sequences of Q and Q�. ���

��$  ������� ��!������� ��� "����� ������#

�
NTERRUPT SERVICE routines which are not nested are, for example,
described in [PH94]. Mechanisms for nested interrupts are treated in

[MP95] for sequential machines and in [Knu96] for pipelined machines.
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�������� ��	 Let t1 and t2 be cycles of machine DLXΠ, and let t1 � t2. Sup-
pose external interrupts i and j are both enabled, interrupt i becomes active
in cycle t1, interrupt j becomes active in cycle t2, and no other interrupts
are serviced or pending in cycle t2.

1. Show that it is possible that interrupt j is serviced before interrupt i.

2. Why does this not constitute a counterexample for the correctness
proof?

�������� ��� Invalid address exception. Two addresses are stored in spe-
cial purpose registers UP and LOW. A maskable exception of type abort
has to be signalled, if a memory location below LOW or above UP is ac-
cessed.

1. Design the hardware for this exception.

2. Design the forwarding mechanism for the registers UP and LOW.

3. Determine the effect on the cost and the cycle time.

�������� ��
 Protected mode. We want to run the machine in two modes,
namely protected mode and user mode. Only the operating system should
run in protected mode.

1. Design an interrupt mechanism for a mode exception which is acti-
vated if a change of the following values is attempted in user mode:
mode, UP, LOW, the mask bits for the mode exception and the in-
valid address exception.

2. Is it possible to merge the invalid address exception and the mode
exception into a single exception?

3. What should be the priorities of the new exception(s)?

4. How is the correctness proof affected?

�������� ��� Protection of the interrupt stack.

1. Design an interrupt mechanism, where the interrupt stack can only
be accessed by the operating system; the code segments SAVE and
RESTORE are part of the operating system.

2. What requirements for the interrupt service routine from the correct-
ness proof can be guaranteed by the operating system?

3. What requirements for the interrupt service routine cannot be guar-
anteed by the operating system alone?

�#(
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EXERCISES
�������� ��� Suppose we want to make the misaligned exception of type
repeat.

1. Sketch an exception handler which fetches the required data.

2. What should be the priority of such an exception?

3. How is the correctness proof affected?
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Chapter

6
Memory System Design

	
NE WAY to improve the performance of an architecture, is trying to
increase the instruction throughput, for example by pipelining, but

that calls for a fast memory system, as the analysis of section 4.6.5 has
turned out.

Thus, users would like to have a very large (or even unlimited) amount
of fast and cheap memory, but that is unrealistic. In general, only small
RAM is fast, and fast RAMs are more expensive than slower ones. In this
chapter we therefore study the key concept for designing a memory system
with high bandwidth, low latency, high capacity, and reasonable cost.

The pipelined DLX design requires two memory ports, one port for in-
struction fetch and the second port for data accesses. Since the sequential
DLX design can manage with just one memory port, we first develop a fast
memory system based on the sequential DLX architecture. In section 6.5,
we then integrate the memory system into the pipelined DLX design.

��� � 	
�
������ 	��
�- *���#�

�
N THE simplest case, the memory system is monolithic, i.e., it just com-
prises a single level. This memory block can be realized on-chip or

off-chip, in static RAM (SRAM) or in dynamic RAM (DRAM). DRAM is
about 4 to 10 times cheaper and slower than SRAM and can have a 2 to
4 times higher storage capacity [Ng92]. We therefore model the cost and
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delay of DRAM as

CDRAM�A�d� � CSRAM�A�d��α
DDRAM�A�d� � α �DSRAM�A�d��

with α � �4�8�16�. Thus, on-chip SRAM yields the fastest memory sys-
tem, but that solution has special drawbacks, as will be shown now.

(���� ��� 3���� �� ��7���� 8�5

Chapter 3 describes the sequential design of a DLX fixed point core. The
main memory is treated as a black box which has basically the function-
ality of a RAM; its temporal behavior is modeled by two parameters, the
(minimal) memory access time dmemand the memory status time dmstat.

All CPU internal actions of this DLX design require a cycle time of
τCPU � 70 gate delays, whereas the memory access takes TM � 18�dmem

delays. If a memory access is performed in 1�W cycles, then the whole
DLX fixed point unit can run at a cycle time of

τDLX � max

�
τCPU �

�
TM

W�1

��
� (6.1)

The parameter W denotes the number of wait states. From a performance
point of view, it is desirable to run the memory without wait states and at
the speed of the CPU, i.e.,

TM � 18�dmem � τCPU � 70� (6.2)

Under these constraints, the memory access time dmemcan be at most 52
gate delays. On-chip SRAM is the fastest memory available. According to
our hardware model, such an SRAM with A entries of d bits each has the
following cost and access time

CSRAM�A�d� � 2 � �A�3� � �d� log log d�

DSRAM�A�d� � 3 � logA�10� if A� 64�

The main memory of the DLX is organized in four banks, each of which
is one byte wide. If each bank is realized as an SRAM, then equation (6.2)
limits the size of the memory to

4 �A � 4 �2��52�10��3	 � 216 bytes�

That is much to small for main memory. Nevertheless, these 64 kilo bytes
of memory already require 1.3 million gates. That is roughly 110 times the

�&�



������� (��

A MONOLITHIC

MEMORY DESIGN

����� ��� Signals of the bus protocol

signal type CPU memory

data of the write read
MDat

memory access
bidirectional

read write
MAd memory address unidirectional write read

burst burst transfer
w/r write/read flag

status
unidirectional write read

BE byte enable flags
flag

req request access write read
reqp request pending

hand-
unidirectional

Brdy bus ready
shake read write

cost of the whole DLX fixed point core �CDLX � 11951�. Thus, a large,
monolithic memory system must be implemented off-chip, and a memory
access then definitely takes several CPU cycles. The access time of the
main memory depends on many factors, like the memory address and the
preceding requests. In case of DRAMs, the memory also requires some
time for internal administration, the so called refresh cycles. Thus, the
main memory has a non-uniform access time, and in general, the processor
cannot foresee how many cycles a particular access will take. Processor
and main memory therefore communicate via a bus.

(���� � �%�������-  - "�������

There exist plenty of bus protocols; some are synchronous, the others are
asynchronous. In a synchronous protocol, memory and processor have a
common clock. That simplifies matters considerably. Our memory designs
therefore uses a synchronous bus protocol similar to the pipelined protocol
of the INTEL Pentium processor [Int95].

The bus signals comprise the address MAd and the data MDat of the
memory access, the status flags specifying the type of the access, and the
handshake signals coordinating the transfer. The data lines MDat are bidi-
rectional, i.e., they can be read and written by both devices, the processor
and the memory system. The remaining bus lines are unidirectional; they
are written by one device and read by the other (table 6.1). The protocol
uses the three handshake signals request (req), request pending (reqp), and
bus ready (Brdy) with the following meaning:

�&�
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� Requestis generated by the processor. This signal indicates that a
new transfer should be started. The type of the access is specified by
some status flags.

� Request Pending reqpis generated by the main memory. An active
signal reqp� 1 indicates that the main memory is currently busy
performing an access and cannot accept a new request.

� Bus Readyis also generated by the main memory. On a read access,
an active bus ready signal �Brdy� 1� indicates that there are valid
data on the bus MDat. On a write access, an active bus ready signal
indicates that the main memory no longer needs the data MDat.

The main memory provides its handshake signals reqpand Brdyone cycle
ahead. That leaves the processor more time for the administration of the
bus. During the refresh cycles, the main memory does not need the bus.
Thus, the processor can already start a new request but the main memory
will not respond �reqp� 1�Brdy� 0� until the refresh is finished.

 - ����������
The data unit to be transferred on the bus is called bus word. In our memory
design, the bus word corresponds to the amount of data which the processor
can handle in a single cycle. In this monograph, the bus width is either 32
bits or 64 bits. The memory system should be able to update subwords
(e.g., a single byte) and not just a whole bus word. On a write access, each
byte i of the bus word is therefore accompanied by an enable bit BEi.

On a burst transfer, which is indicated by an active burst flag, MAd
specifies the address of the first bus word. The following bus words are
referenced at consecutive addresses. The bus word count bwcspecifies the
number of bus words to be transferred. Our protocol supports burst reads
and burst writes. All the bursts have a fixed length, i.e., they all transfer the
same amount of data. Thus, the bwcbits can be omitted; the status flagsof
the bus protocol comprise the write/read flag w�r , the burst flag, and the
byte enable flags BE.

8��	  - �������
Figure 6.1 depicts the idealized timing of the bus protocol on a single-word
read transfer (burst� 0) followed by a fast burst read (burst� 1). The two
transfers are overlapped by one cycle.

In order to initiate a read access, the processor raises the request signal
req for one cycle and pulls the write/read signal to zero, w�r � 0. In the
same cycle, the processor provides the address MAd and the burst flag to
the memory. The width bwc of the access can be derived from the burst

�&�
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D1 Dx-1 Dx

MAd

burst

w/r

req

reqp

Brdy

MDat

1st  address

D ...

2nd address

*

�	
��� ��� A single-word read transfer followed by a fast x-word burst read. On
a fast read transfer, the cycle marked with * is omitted.

MAd

burst

w/r

req

reqp

Brdy

MDat D1 D2 D3 D4

address

�	
��� ��� A 4-2-3-1 read burst transfer

flag. The memory announces the data by an active bus ready signal Brdy�
1, one cycle ahead of time. After a request, it can take several cycles till
the data is put on the bus. During this time, the memory signals with
repq� 1 that it is performing an access. This signal is raised one cycle
after the request and stays active �repq� 1� till one cycle before a new
request is allowed. The processor turns the address and the status signals
off one cycle after req� 0. A new read access can be started one cycle
after req� 0 and reqp� 0.

On a burst read any of the bus words can be delayed by some cycles, not
just the first one. In this case, the Brdy line toggles between 0 and 1. The
burst transfer of figure 6.2 has a 4-2-3-1 access pattern; the first bus word
arrives in the fourth cycle, the second word arrives two cycles later, and so
on. The fastest read access supported by this protocol takes 2�bwc bus
cycles. The first word already arrives two cycles after the request.

�&#
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MAd

burst

w/r

req

reqp

Brdy

MDat Dread Dwrite Dread

1st  address 2nd address 3rd  address

�	
��� �� Fast read transfer followed by a write transfer and another read.

;����  - �������

Figure 6.3 depicts the idealized timing of the bus protocol on a fast read
followed by a write and another fast read. The write transfer starts in the
fourth cycle.

In order to initiate a write transfer, the processor raises the request line
req for one cycle, it raises the write/read line and puts the address MAd, the
burst flag burstand the byte enable flags BEon the bus. In the second cycle,
the (first) bus word is transferred. The memory signals with Brdy� 1 that
it needs the current data MDat for just one more cycle.

Like on a read access, signal reqpis turned on one cycle after the request
if the transfer takes more than 3 cycles. One cycle before the memory can
accept a new access, it turns signal reqpoff. One cycle later, the processor
turns the address and the status signals off.

On a write burst transfer, each of the bus words can be delayed by some
cycles. The burst write of figure 6.4 performs a 4-2-1-1 transfer. The
fastest write transfer supported by this protocol takes bwc�2 bus cycles.

 ��� ��  ��� �������

The bus protocol supports that two succeeding transfers can be overlapped
by one cycle. However, when switching between reads and writes, the data
bus MDat must be disabled for at least one cycle in order to prevent bus
contention. On a write transfer, the processor uses the MDat bus from the
second to the last cycle, whereas on a read transfer, the bus MDat is used in
the third cycle at the earliest. Thus, a read transfer can be overlapped with
any preceding transfer, but a write transfer can only be overlapped with a
preceding write. At best, the processor can start a new read transfer one
cycle after

req� 0 � reqp� 0�

�&&
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MAd

burst

w/r

req

reqp

Brdy

MDat D1 D2 D3

1st  address

D D4

2nd address

�	
��� ��� Fast single-word write transfer followed by a 4-2-1-1 burst write.

and it can start a new write transfer one cycle after

req� 0 � reqp� 0 � �w�r � 0 � Brdy� 0��

(���# ��2-������ +3= ���� �A7���� 5��� 5����%

In this section, we connect the sequential DLX design of chapter 3 to a 64
MB (Mega Byte) off-chip memory, using the bus protocol of section 6.1.2.
This modification of the memory system only impacts the implementation
of the memory environment and its control. The other environments of the
DLX design remain unchanged.

Moreover, the global functionality of the memory system and its inter-
action with the data paths and main control of the design also remains the
same. The memory system is still controlled by the read and write signals
mr and mw, and by the opcode bits IR�27 : 26� which specify the width of
the access. On a read, the memory system provides the memory word

MDout�31 : 0� � Mword��MA�31 : 2�00���

whereas on a d-byte write access with address e� �MA�31 : 0�� and offset
o� �MA�1 : 0��, the memory system performs the update

M�e�d�1 : e� :� byte�o�d�1:o��MDin��

With mbusy� 1, the memory systems signals the DLX core that it cannot
complete the access in the current cycle.

.������������� �� ��� 5����% �%���
So far, the memory environment, i.e., the data paths of the memory system,
consists of four memory banks, each of which is a RAM of one byte width

�&'
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a

do

di MifC

MAd MC MA[1:0]

mw

mr

mbusy

mbw
BE[3:0]

req, w/r

reqp, Brdy

Mif

MA[31:2]

MDatMDout

MDin

MAdoe, MDindoe

�	
��� ��� Memory system of the DLX with off-chip memory

(figure 3.11). Based on the control signals and the offset, the memory
control MC generates the bank write signals mbw[3:0] which enable the
update of the memory (figure 3.12).

Now the memory system (figure 6.5) consists of the off-chip main mem-
ory M, the memory interface Mi f , the memory interface control Mi fC,
and the original memory control MC. The memory interface connects the
memory M to the data paths.

The memory of the 32-bit DLX architecture is byte addressable, but all
reads and the majority of the writes are four bytes (one word) wide. Thus,
the data bus MDat between the processor and the main memory can be
made one to four bytes wide. On a one-byte bus, half word and word
accesses require a burst access and take at least one to three cycles longer
than on a four-byte bus. In order to make the common case fast, we use
a four-byte data bus. On a write transfer, the 32-bit data are accompanied
by four byte enable flags BE�3 : 0�. Since bursts are not needed, we restrict
the bus protocol to single-word transfers.

Memory Interface The memory interface Mif which connects the data
paths to the memory bus and the external memory uses 32-bit address and
data lines. Interface Mif forwards the data from the memory bus MDat to
the data output MDout. On MAdoe� 1, the interface puts the address MA
on the address bus MAd, and on MDindoe� 1 it puts the data MDin on
the bus MDat.

Except for the memory interface Mif, the data paths of environment
Menv are off-chip and are therefore not captured in the cost model. Thus,

CMenv � CMi f � 2 �Cdriv�32��

Off-Chip Memory The off-chip memory M obeys the protocol of sec-
tion 6.1.2. On a read access requested by req� 1 and w�r � 0, it provides
the data

MDat�31 : 0� � Mword��MAd�31 : 2�00���

�&(
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On a write access (w�r � 1), the memory performs the update

Mword��MAd�31 : 2�00�� :� X3�X2�X1�X0�

where for i � �0� � � � �3� the byte Xi is obtained as

Xi �

�
M��MAd�31 : 2�00�� i� if BE�i� � 0
bytei�MDat� if BE�i� � 1�

Memory Interface Control The memory interface control MifC con-
trols the tristate drivers of the memory interface and generates the hand-
shake signal req and the signals w�r and mbusyaccording to the bus pro-
tocol of section 6.1.2. In the sequential DLX design, transfers are never
overlapped, and the address on bus MAd is always provided by the same
source MA. The bus protocol can therefore be simplified; the address MA
and signal w/r are put on the bus during the wholetransfer.

In the FSD of the main control (figure 3.20) there are three states per-
forming a memory access, namely ,�&��# �� and �&��. The only combi-
nation of accesses which are performed directly one after another is �&�� -
,�&��. In the first two cycles of a read access, bus MDat is not used. Thus,
the memory interface can already put the data on the bus MDat during the
first cycle of the write transfer without risking any bus contention. The
control MifC can therefore generate the enable signals and the write/read
signal as

w�r � mw

MAdoe � mem� mr � mw

MDindoe � mw�

The handshake signals are more complicated. Signal req is only active
during the first cycle of the access, and signal mbusyis always active except
during the last cycle of the transfer. Thus, for the control MifC a single
transfer is performed in three steps. In the first step, MifC starts the off-
chip transfer as soon as reqp� 0. In the second step, which usually takes
several cycles, MifC waits till the memory signals Brdy� 1. In the third
step, the transfer is terminated. In addition, MifC has to ensure that a
new request is only started if in the previous cycle the signals reqp and
Brdy were inactive. Since the accesses are not overlapped, this condition
is satisfied even without special precautions.

The signals req and mbusyare generated by a Mealy automaton which
is modeled by the FSD of figure 6.6 and table 6.2. According to section
2.6, cost and delay of the automaton depend on the parameters listed in

�&/
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D2else
D3D1

�	
��� ��� FSD underlying the Mealy automaton MifC; the initial state is start.

����� ��� Disjunctive normal forms DNF of the Mealy automaton of MifC

DNF source state target state monomial m�M length l�m�

D1 start wait mem 1
D2 wait wait /Brdy 1
D3 wait finish Brdy 1

DNF mealy signal state m�M l�m�

D1 req start mem (1)
D4 mbusy start mem (1)

wait 1 0

table 6.3 and on the accumulated delay of its inputs Brdy and mem. Let
CMealy�Mi fC� denote the cost of the automaton, then

CMi fC � CMealy�Mi fC��Cor�

The input Brdy only affects the next state of the automaton, but input
memalso affects the computation of the Mealy outputs. Let the main mem-
ory provide the handshake signals with an accumulated delay of AM�Brdy�,
and let the bus have a delay of dbus. The inputs and outputs of the automa-
ton then have the following delays:

Ain�Mi fC� � AM�Brdy��dbus (next state)

Ain�1��Mi fC� � ACON�mw�mr��Dor (outputs only)

AMi fC � AMealy�out��

��� ��	 +���%

Table 6.4 lists the cost of the DLX design and of the environments affected
by the change of the memory interface. The new memory interface is fairly
cheap and therefore has only a minor impact on the cost of the whole DLX
design.

�&)
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����� �� Parameters of the Mealy automaton used in the control MifC

# states # inputs # and frequency of outputs
k σ γ νsum νmax

3 2 2 3 2

fanin of the states # and length of monomials
fanmax fansum #M lsum lmax

2 3 3 3 1

����� ��� Cost of the memory interface Mi f , of the data paths DP, of the control
CON and of the whole DLX for the two memory interfaces.

Mif DP CON DLX

old memory interface – 10846 1105 11951
new memory interface 320 11166 1170 12336
increase [%] +3 +6 +3

Cycle Time The cycle time τDLX of the DLX design is the maximum of
three times, namely: the cycle time TCON required by the control unit, the
time TM of a memory access, and the time TDP for all CPU internal cycles.

τDLX � max�TCON� TM� TDP�

The connection of the DLX to an off-chip memory system only affects the
memory environment and the memory control. Thus, the formula of TCON

and TM need to be adapted, whereas the formula of TDP remains unchanged.
So far, time TCON accounted for the update of the main control automaton

�Tauto� and for the cycle time Tstall of the stall engine. The handling of
the bus protocol requires a Mealy automaton, which needs to be updated
as well; that takes TMealy�Mi fC� delays. In addition, the new automaton
provides signal mbusyto the stall engine. Therefore,

Tstall � AMi fC �Dstall �max�Dram3�32�32�� Df f��δ

and the control unit now requires a minimal cycle time of

TCON � max�Tauto� Tstall� TMealy�Mi fC���

�&*
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Timing of Memory Accesses The delay formula of a memory access
changes in a major way. For the timing, we assume that the off-chip mem-
ory is controlled by an automaton which precomputes its outputs. We fur-
ther assume that the control inputs which the off-chip memory receives
through the memory bus add dMhsh (memory handshake) delays to the cy-
cle time of its automaton.

The memory interface starts the transfer by sending the address and the
request signal req to the off-chip memory. The handshake signals of the
DLX processor are valid AMi fC delays after the start of the cycle. For-
warding signal req and address MA to the memory bus and off-chip takes
another Ddriv �dbus delays, and the processing of the handshake signals
adds dMhsh delays. Thus, the transfer request takes

TMreq � AMi fC �Ddriv �dbus�dMhsh�∆�

After the request, the memory performs the actual access. On a read
access, the memory reads the memory word, which on a 64 MB memory
takes DMM�64MB� gate delays. The memory then puts the data on the
bus through a tristate driver. The memory interface receives the data and
forwards them to the data paths where they are clocked into registers. The
read cycle therefore takes at least

TMread � DMM�64MB��Ddriv �dbus�∆�

In case of a write access, the memory interface first requests a transfer.
In the following cycles, the memory interface sends the data MDin and the
byte enable bits. Once the off-chip memory receives these data, it performs
the access. The cycle time of the actual write access (without the memory
request) can be estimated as

TMwrite � max�AMC�AMi fC �Ddriv��dbus�DMM�64MB��δ
TMaccess � max�TMwrite� TMread� � TMwrite�

Table 6.5 lists the cycle times of the data paths and control, as well as
the access and request time of the memory system, assuming a bus delay
of dbus� 15 and dMhsh� 10. The access time of the memory depends on
the version of the DRAM used.

The control and the memory transfer time are less time critical. They can
tolerate a bus delay and handshake delay of dbus�dMhsh� 56 before they
slow down the DLX processor. However, the actual memory access takes
much longer than the other cycles, even with the fastest DRAM �α � 4�.
In order to achieve a reasonable processor cycle time, the actual memory
access is performed in W cycles; the whole transfer takes W� 1 cycles.

�'�
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����� ��� Cycle time of the DLX design and of its main parts, which are the data
paths DP, the control unit CON and the memory system MM.

TCON TMaccessTDP max�A� B�
TMreq α � 4 α � 8 α � 16

13�dbus 14�dbus�dMhsh70
� 28

42
� 39

355 683 1339

The DLX design with a direct connection to the off-chip memory can then
be operated at a cycle time of

τDLX�W� � max�TDP� TCON� TM�W��

TM�W� � max
�

TMreq� TMaccess�W�
�
�

Increasing the number W of wait states improves the cycle time of the DLX
design, at least till W � TMaccess�TDP�. For larger W, the main memory
is no longer time critical, and a further increase of the wait states has no
impact on the cycle time.

According to section 4.6, the performance is modeled by the reciprocal
of a benchmark’s execution time, and on a sequential DLX design, the run
time of a benchmark Be is the product of the instruction count IC�Be� of
the benchmark, of the average cycles per instruction CPI, and of the cycle
time τDLX:

TDLX�Be� � IC�Be� �CPI�Be�W� � τDLX�W��

Increasing the number of wait states improves the cycle time, but is also
increases the CPI ratio. Thus, there is a trade-off between cycle time and
cycle count which we now quantify based on SPECint92 benchmark work-
loads. Table 6.6 lists the DLX instruction mix of these workloads and the
number of cycles required per instruction. According to formula (4.8) from
section 4.6, the benchmarks ������� and �� and the average SPECint92
workload, for example, achieve the following CPI ratios:

CPI�compress� � 4�19�1�25 �W

CPI�li� � 4�38�1�49 �W

CPI�SPECint� � 4�26�1�34 �W�

We increase the number of wait states W from 1 to TMaccess�TDP� and
study the impact on the cycle time, on the CPI ratio and on the run time of

�'�
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����� ��� DLX instruction mix for the SPECint92 programs and for the average
workload. CPII denotes the average number of cycles required by instruction I .

instruction mix
CPII compress eqntott espresso gcc li AV

load 5�2 W 19.9 30.7 21.1 23.0 31.6 25.3
store 5�2 W 5.6 0.6 5.1 14.4 16.9 8.5
compute 4�1 W 55.4 42.8 57.2 47.1 28.3 46.2
call 5�1 W 0.1 0.5 0.4 1.1 3.1 1.0
jump 3�1 W 1.6 1.4 1.0 2.8 5.3 2.4
taken 4�1 W 12.7 17.0 9.1 7.0 7.0 10.6
untaken 3�1 W 4.7 7.0 6.1 4.6 7.8 6.0

����� ��� Performance of the DLX core on the �������� and �	 benchmarks and
on the average SPECint92 workload. Parameter α denotes the factor by which
off-chip DRAM is slower than standard SRAM.

DRAM compress li SPEC aver.
α

W τDLX CPI TPI CPI TPI CPI TPI

1 355 5.4 1934.0 5.9 2083.8 5.6 1988.7
2 178 6.7 1193.1 7.4 1309.2 6.9 1235.3
3 119 8.0 947.0 8.8 1052.0 8.3 985.1

4
4 89 9.2 820.0 10.3 918.9 9.6 855.8
5 71 10.5 743.2 11.8 838.5 11.0 777.7
6 70 11.7 820.6 13.3 930.6 12.3 860.4
9 76 15.5 1177.1 17.8 1349.0 16.3 1239.3

8
10 70 16.7 1172.0 19.2 1346.5 17.6 1235.1
19 71 28.0 1990.7 32.6 2314.6 29.7 2107.7

16
20 70 29.3 2050.5 34.1 2386.0 31.0 2171.7

the benchmarks. Since the instruction count IC of the benchmarks remains
the same, table 6.7 lists the average time required per instruction

TPI �
T
IC

� CPI � τDLX�

instead of the run time. The CPI ratio and the TPI ratio vary with the
workload, but the optimal number of wait states is the same for all the
benchmarks of the SPECint92 suite.

On fast DRAM �α � 4�, the best performance is achieved on a memory
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����� ��� Typical memory hierarchy of a large workstation in 1995

level size location technology access time

register � 1 KB on-chip custom memory 2–5 ns
CMOS / BiCMOS

L1 cache � 64 KB on-chip
L2 cache � 4 MB off-chip

CMOS SRAM 3–10 ns

main memory � 4 GB off-chip CMOS DRAM 80–400 ns
disk storage � 1 GB off-chip Magnetic disk 5 ms

system with five wait states. The DLX system then spends about 61%
�1�34 � 5�11�0� of the run time waiting for the off-chip memory. On the
slower DRAM with α � 8 (16), the memory is operated with 10 (19) wait
states, and the DLX even waits 76% (86%) of the time.

Thus a large, monolithic memory has got to be slow, and even in a se-
quential processor design, it causes the processor to wait most of the time.
Pipelining can increase the performance of a processor significantly, but
only if the average latency of the memory system is short �W � 2�. Thus,
the monolithic memory is too slow to make pipelining worthwhile, and
the restriction to a single memory port makes things even worse. In the
next section, we therefore analyze whether a hierarchical memory system
is better suited.

��� .�� 	��
�- ��������-

�
RESENTLY (2000) a low to mid range desktop machine has about 64
to 128 MB of main memory. In order to provide that much memory at

reasonable cost and high speed, all commercial designs use a memory hi-
erarchy. Between the on-chip register files and the off-chip main memory,
there are placed several levels of memory (table 6.8, taken from [HP96]).
The levels close to the CPU are called cache.

As one goes down the hierarchy, the cost per bit decreases and the stor-
age capacity and the access time increase. This is achieved by changing
the type of memory and the technology. With respect to the memory type,
one switches from fast on-chip SRAM (static random access memory) to
off-chip SRAM, to DRAM (dynamic RAM) and then to disks and tapes.

On a memory access, the processor first accesses the first level (L1)
cache. When the requested data is in the L1 cache, a hit occurs and the
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data is accessed at the speed of the L1 cache. When the data is not in this
memory level, a missoccurs and the hardware itself forwards the request
to the next level in the memory hierarchy till the data is finally found.

A well designed multi-level memory system gives the user the illusion
that the whole main memory runs roughly at the speed of the L1 cache. The
key to this temporal behavior is the locality of memory references(section
6.2.1). In addition, the levels of the memory hierarchy are transparent, i.e.,
invisible to the user. For the levels between the CPU and the main memory,
this is achieved by caching (section 6.2.2).

In a hierarchical memory system, special attention has to be payed to the
following aspects:

� The identificationof a memory reference, i.e., how can a memory
reference be found in the memory hierarchy.

� The placement policydetermines where the data is placed in a par-
ticular memory level.

� If a particular level of the memory hierarchy is full, new data can
only be brought into this level, if another entry is evicted. The re-
placement policydetermines which one to replace.

� The allocation policydetermines under which circumstances data is
transfered to the next higher level of the hierarchy.

� The write policy determines which levels of the memory hierarchy
are updated on a write access.

� The initialization of the cache after power-up.

The transfer between two neighboring levels of RAM memory goes al-
ways along the same lines.1 For simplicity, we therefore focus on a two-
level memory system, i.e., an L1 cache backed by the main memory.

(���� ��� "�������� �� 3������%

The key for the nice temporal behavior of multi-level memory is a princi-
ple known as locality of reference[Den68]. This principle states that the
memory references, both for instructions and data, tend to cluster. These
clusters change over time, but over a short time period, the processor pri-
marily works on a few clusters of references. Locality in references comes
in two flavors:

1Additional considerations come into play, when one level is no random access mem-
ory, like disks or tapes.
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� Temporal Locality After referencing a sequence Sof memory loca-
tions, it is very likely that the following memory accesses will also
reference locations of sequence S.

� Spatial Locality After an access to a particular memory location s,
it is very likely that within the next several references an access is
made to location s or a neighboring location.

For the instruction fetches, the clustering of the references is plausible
for the following two reasons: First, the flow of control is only changed by
control instructions (e.g., branch, trap, and call) and interrupts, but these
instructions are only a small fraction of all executed instructions. In the
SPEC benchmarks, for example, the control instructions account for 15%
of all instructions, on average [HP96]. Second, most iterative constructs,
like loops and recursive procedures, consist of a relatively small number of
instructions which are repeated may times. Thus, in the SPEC benchmarks,
90% of the execution time is spent in 10 to 15% of the code [HP96].

For the data accesses, the clustering is harder to understand, but has for
example been observed in [Den80, CO76]. The clustering occurs because
much of the computation involves data structures, such as arrays or se-
quences of records. In many cases, successive references to these data
structures will be to closely located data items.

Hierarchical memory designs benefit from the locality of references in
the following two ways: Starting a memory transfer requires more time
than the actual transfer itself. Thus, fetching larger blocks from the next
level of the memory hierarchy saves time, if the additional data is also
used later on. Due to spatial locality, this will often be the case. Temporal
locality states, that once a memory item is brought into the fast memory,
this item is likely to be used several times before it is evicted. Thus, the
initial slow access is amortized by the fast accesses which follow.

(���� ��� "�������� �� �����

All our designs use byte addressable memory. Let the main memory size be
2m bytes, and let the cache size be 2c bytes. The cache is much smaller than
the main memory; 2c � 2m. The unit of data (bytes) transferred between
the cache and the main memory is called block or cache line. In order
to make use of spatial locality, the cache line usually comprises several
memory data; the line sizes specifies how many. The cache size therefore
equals

2c � # lines � line size�
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The cache lines are organized in one of three ways, namely: direct mapped,
set associative, or fully associative.

� +����� 5����	 �����
For every memory address a � �a�m� 1 : 0��, the placement policy spec-
ifies a set of cache locations. When the data with memory address a is
brought into the cache, it is stored at one of these locations. In the simplest
case, all the sets have cardinality one, and the memory address a is mapped
to cache address

ca � �ca�c�1 : 0�� � a mod 2c

� �a�m�1 : 0�� mod 2c � �a�c�1 : 0���

i.e., the memory address is taken modulo the cache size.
A cache which implements this placement policy is called direct mapped

cache. The replacement policy of such a cache is trivial, because there is
only one possible cache location per memory address. Thus, the requested
cache line is either empty, or the old entry must be evicted.

Since the cache is much smaller than the main memory, several memory
locations are mapped to the same cache entry. At any given time, one needs
to know whether a cache entry with address ca holds valid memory data,
but that is not enough. If the entry is valid �valid�ca� � 1�, one also needs
to know the corresponding memory address madr�ca�. The cache data C
with address ca then stores the following memory data

C�ca� � M��madr�ca����

Since the cache is direct mapped, the c least significant bits of the two
addresses caand a� �madr�ca�� are the same, and one only needs to store
the leading m�c bits of the memory address as tag:

tag�ca� � a�m�1 : c�

madr�ca� � a�m�1 : 0� � tag�ca�� ca�c�1 : 0��

A cache line therefore comprises three fields, the valid flag, the address
tag, and the data (figure 6.7). Valid flag and tag are also called the directory
information of the cache line. Note that each of the 2l cache lines holds
line-size many memory data, but the cache only provides a singletag and
valid bit per line. Let the cache address ca be a line boundary, i.e., ca is
divisible by the line size 2o, then

valid�ca� � valid�ca�1� � � � � � valid�ca�2o�1�
tag�ca� � tag�ca�1� � � � � � tag�ca�2o�1��
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valid tag data

tag line addr. line offset

2lline

lt o

data (bytes) per line2o

memory address

cache address

cache  directory cache data

lines

�	
��� ��� Organization of a byte addressable, direct mapped cache. The cache
comprises 2l lines, each of which is 2o bytes wide.

Thus, all the bytes of a cache line must belong to consecutive memory
addresses.

Cline�ca� � C�ca�2o�1 : ca� � M��madr�ca���2o�1 : �madr�ca����

Such a data structure makes it straightforward to detect whether the
memory data with address a is in the cache or not. If the data is in the
direct mapped cache, it must be stored at cache address ca� �a�c�1 : 0��.
The cache access is a hit, if the entry is valid and if the tag matches the
high-order bits of the memory address, i.e.,

hit � �valid�ca� � �tag�ca� � a�m�1 : c����

On a read access with address ca, the cache provides the valid flag v�
valid�ca�, the tag t � tag�ca� and the data

d �Cline��ca�c�1 : o�0o���

Each field of the cache line, i.e., valid flag, tag and data, can be updated
separately. A write access to the cache data can update as little as a single
byte but no more than the whole line.

�������	 �����
The cache line can be very wide, because it holds several memory data. In
order to reduce the width of the cache data RAM, the line is broken into
several �2s� sectorswhich are stored in consecutive cells of the cache data
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valid tag

offset

2b

2l lines

line offset

l bst

tag line addr. sector

bytes per sector

2s sectors
=  1 line

memory address

cache data

cache  directory

�	
��� ��� Organization of a byte addressable, direct mapped cache with sectors.
Each cache line comprises 2s sectors, each of which is 2b bytes wide.

RAM. However, all the sectors of a cache line still have the same tag and
valid flag2. The line-offset in the memory address is split accordingly in
an s-bit sector address and in a b-bit sector offset, where o� s�b. Figure
6.8 depicts the organization of such a direct mapped cache.

With sectoring, the largest amount of cache data to be accessed in par-
allel is a sector not a whole line. Thus, on read access with address ca the
sectored cache provides the data

d � Csector��ca�c�1 : b�0b��

� C��ca�c�1 : b�0b��2b�1 : �ca�c�1 : b�0b���

� �7;�% ��� ��������� �����
A k-way set associative cache provides a setof k possible cache locations
for a memory address. Such an associative cache comprises k ways(figure
6.9), which are referenced with the same cache address. Each way is a
direct mapped cache with directory and cache data providing exactly one

2Some cache designs allow that each sector has its own valid flag, in order to fetch only
some sectors of a line.
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tag line addr. line offset

d0v0 t0

2l

lt o

setsset . . . line

dir

cache address

memory address

way k-1

bytes per line2o

way 0  (direct mapped)

line

dir data data

�	
��� ��� Organization of a byte addressable, k-way set associative cache. The
cache comprises k ways (direct mapped caches). Each way holds 2 l lines which
are 20 bytes wide; vi , t i and di denote the valid flag, the tag and the data of way i.

cache position per cache address ca. These k positions form the set of ca.
There are two special cases of k-way set associative caches:

� For k � 1, the cache comprises exactly one way; the cache is direct
mapped.

� If there is only one set, i.e., each way holds a single line, then each
cache entry is held in a separate way. Such a cache is called fully
associative.

The associativity of a set associative, first level cache is typically 2 or 4.
Occasionally a higher associativity is used. For example, the PowerPC
uses an 8-way cache [WS94] and the SuperSPARC uses a 5-way instruc-
tion cache [Sun92]. Of course, the cache line of a set associative cache can
be sectored like a line in a direct mapped cache. For simplicity’s sake, we
describe a non-sectored, set associative cache. We leave the extension of
the specification to sectored caches as an exercise (see exercise 6.1).

����� ��:�
Let l denote the width of the line address, and let o denote the width of
the line offset. Each way then comprises 2l lines, and the whole cache
comprises 2l sets. Since in a byte addressable cache, the lines are still 2o

bytes wide, each way has a storage capacity of

size�way� � 2c� � 2l �2o
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bytes. The size (in byte) of the whole k-way set associative cache equals

k � size�way� � k �2l �2o�

Since in a k-way set associative cache there are several possible cache
positions for a memory address a, it becomes more complicated to find
the proper entry, and the placement and replacement policies are no longer
trivial. However, the placement is such that at any given time, a memory
address is mapped to at most one cache position.

.	����4������ �� � ����� 1���%

The set of a set associative cache corresponds to the line of a direct mapped
cache (way). Thus, the cache address ca is computed as the memory ad-
dress a modulo the size 2c� of a cache way

ca�c��1 : 0� � a�c��1 : 0��

For this address ca, every way provides data di , a valid flag vi , and a tag ti:

vi � validi�ca�� ti � tagi�ca�� di �Clinei��ca�c��1 : o�0o���

A local hit signal hi indicates whether the requested data is held in way i
or not. This local hit signal can be generated as

hi � vi � �ti � a�m�1 : m� t���

In a set associative cache, a hit occurs if one of the k ways encounters a hit,
i.e.,

hit � h0�h1� � � ��hk�1�

On a cache hit, exactly one local hit signal hj is active, and the corre-
sponding way j holds the requested data d. On a miss, the cache provides
an arbitrary value, e.g., d � 0. Thus,

d �

�
dj if hit � 1 and hj � 1
0 if hit � 0

�
k�1�

i�0

�di �hi��

3��� 8����������

In case of a miss, the requested data is not in the cache, and a new line
must be brought in. The replacement policy specifies which way gets the
new line. The selection is usually done as follows:

1. As long as there are vacant lines in the set, the replacement circuit
picks one of them, for example, the way with the smallest address.
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2. If the set is full, a line must be evicted; the replacement policy sug-
gests which one. The two most common policies are the following:

� LRU replacement picks the line which was least recently used.
For each set, additional history flags are required which store
the current ordering of the k ways. This cache historymust be
updated on every cache access, i.e., on a cache hit and on a line
replacement.

� Randomreplacement picks a random line of the set and there-
fore manages without cache history.

���������� ��	 ;���� "������

The allocation policy distinguishes between read and write accesses. New
data is only brought into the cache on a miss, i.e., if the referenced data
is not in the cache. Besides the requested data, the whole line which cor-
responds to that data is fetched from the next level of the memory hierar-
chy. The cache allocation operation can either be combined with the actual
cache access (forwarding), or the cache access must be re-started after the
allocation.

In case the miss occurs on a read access, i.e., on an instruction fetch or
on a load operation, the requested data is always brought into the cache.
For write accesses, three different types of allocation policies are possible:

1. Read Allocate:A write hit always updates the data RAM of the
cache. On a write miss, the requested data and the corresponding
line will not be transferred into the cache. Thus, new data is only
brought in on a read miss.

2. Write Allocate:A write always updates the data RAM of the cache.
In case of a write miss, the referenced line is first transferred from
the memory into the cache, and then the cache line is updated. This
policy allocates new lines on everycache miss.

3. Write Invalidate:A write never updates the data RAM of the cache.
On the contrary, in case of a write hit, the write even invalidates the
cache line. This allocation policy is less frequently used.

A particular piece of data can be stored in several levels of the hierar-
chical memory system. In order to keep the memories consistent, a write
access must update all the instances of the data. For our two-level mem-
ory system, this means that on a write hit, cache and main memory are
updated. However, the main memory is rather slow. From a performance
point of view, it is therefore desirable to hide the main memory updates or
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����� ��� Combinations of write and allocation policies for caches.

Write Allocate Read Allocate Write Invalidate

Write Through + + +
Write Back + + –

even avoid some of them. The latter results in a weak memory consistency.
The write policy specifies which of the two consistency models should be
used:

1. Write Throughsupports the strong consistency model. A write al-
ways updates the main memory. Write buffers between cache and
main memory allow the processor to go on, while the main memory
performs the update. Thus, the slow memory updates can largely
be hidden. The update of the cache depends on the allocation pol-
icy. Write through can be combined with any of the three allocation
policies.

2. Write Backapplies the weak consistency model. A write hit only
updates the cache. A dirty flag indicates that a particular line has
been updated in the cache but not in the main memory. The main
memory keeps the old data till the whole line is copied back. This
either occurs when a dirty cache line is evicted or on a special update
request. This write policy can be combined with read allocate and
write allocate but not with write invalidate (exercises in section 6.7).

Table 6.9 lists the possible combinations of the allocation and write poli-
cies.

.�������:����� ��	 .�����	�����

After power-up, all the cache RAMs hold binary but arbitrary values, and
the information stored in a cache line is invalid even if the correspond-
ing valid flag is raised. Thus, the valid flags must be cleared under hard-
ware control, before starting the actual program execution. In case that
the replacement policy relies on a cache history, the history RAM must be
initialized as well. This initialization depends on the type of the history
information.

Besides reads and writes, the cache usually supports a third type of ac-
cess, namely the line invalidation. In case that the line invalidation access
is a hit, the corresponding cache line is evicted, i.e., its valid flag is cleared,
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Update M Cache UpdateInvalidate

Cache Read Last Sector

Fill Request Line Fill

hit * mwlinv * hit

else

mw

mr

/hit * (mr + mw)
scnt = S-1

scnt < S-1

�	
��� ���� Cache accesses of the memory transactions read, write and line in-
validate on a sectored, write through cache with write allocation.

and the history is updated as well. In case of a miss, the invalidation access
has no impact on the cache. Line invalidation is necessary, if a particular
level of the memory system comprises more than one cache, as it will be
the case in our pipelined DLX design (section 6.5). In that situation, line
invalidation is used in order to ensure that a particular memory word is
stored in at most one of those parallel caches.

(���# 1���-���� �� 5����% ����������

The cache as part of the memory hierarchy has to support four types of
memory transactions which are reading (rw � 1) or writing (mw� 1) a
memory data, invalidating a cache line (linv� 1), and initializing the whole
cache. Except for the initialization, any of the memory transactions is
performed as a sequence of the following basic cache accesses:

� reading a cache sector including cache data, tag and valid flag,

� updating the cache directory, and

� updating a sector of the cache data.

The sequences of the memory transactions depend on the allocation and
write policies. The flow chart of figure 6.10 depicts the sequences for a
sectored, write through cache with write allocation and read forwarding.
Each transaction starts in state .���� ��� . A cache line is Ssectors wide.
Let the sector boundary a denote the memory address of the transaction,
and let ca denote the corresponding cache address.

8��	 ����������

The read transaction starts with a .���� ��� access. The cache generates
the hit signal hit�ca� and updates the cache history. On a hit (hit�ca� � 1),
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the cache determines the address way of the cache way which holds the
requested data, and it provides these data

d � Csectorway�ca� � Msector�a��

That already completes the read transfer.
In case of a miss, address way specifies the cache way chosen by the

replacement policy. In subsequent cycles, the cache performs a line fill,
i.e., it fetches the memory line Mline�a�� with a� � �a�m�1 : o�0o�� sector
by sector and writes it at cache line address ca� � �ca�c�1 : o�0o�.

This line fill starts with a ���� ���$��&. The cache line is invalidated,
i.e., validway�ca� � 0. This ensures that a valid cache line always holds
consistent data, even if the line fill is interrupted in between. The cache
also requests the line from memory and clears a sector counter scnt.

In each of the next S�1 ��%� ���� cycles, one sector of the line is written
into the cache and the sector counter is incremented:

Csectorway�ca��scnt� :� Msector�a� �scnt�

scnt :� scnt�1�

In the cycle ���& /��&�, the cache fetches the last sector of the line. Due to
forwarding, the requested data are provided at the data output of the cache.
In addition, the directory is updated, i.e., the new tag is stored in the tag
RAM and the valid flag is turned back on:

tagway�ca� :� a�m�1 : m� t�� validway :� 1�

This is the last cycle of a read transaction which does not hit the cache.

;���� ����������

Like a read transaction, the write transaction starts with a .���� ��� ac-
cess, which in case of a miss is followed by a line fill. The write transaction
then proceeds with a .���� 0� �&� cycle, in which a memory update is
requested and the cache sector is updated as

Csectorway�ca� :� XB�1� � � � �X0�

with

Xi �

�
bytei�Csectorway�ca�� if CDw�i� � 0
bytei�Din� if CDw�i� � 1�

The transaction ends with an 0� �&� 1 cycle, in which the memory per-
forms the requested write update.
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3��� .�����	����� ����������
This transaction also starts with a .���� ��� access, in order to check
whether the requested line is in the cache. In case of a miss, the line is not
in the cache, and the transaction ends after the .���� ��� access. In case
of a hit, the line is invalidated in the next cycle (2%+��� �&�):

validway :� 0�

��� � ����� *���#�

�
K-WAY set associative cache comprises k cache ways, each of which
is identical with a direct mapped cache. In a first step, we therefore

design a byte addressable, sectored, direct mapped cache. We then extend
the design to a k-way associative cache (section 6.3.2). Finally, the cache
is integrated into a cache interface which implements the write allocation,
write through policy.

The cache design must support all the cache accesses which according
to section 6.2.3 are required to perform the standard memory transactions.
In order to split the update of the directory and of the cache data, the tags,
valid flags and cache data are stored in separate RAMs. The cache is con-
trolled by the following signals:

� the $rd flag which indicates a cache read access,

� the clear flag which clears the whole cache,

� the write signals Vw and Tw which enable the update of the cache
directory (valid and tag), and

� the B� 2b bank write signals CDw�B�1:0� which specify the bytes
of the cache sector to be updated.

The cache gets a memory address a� �a�m� 1 : 0��, a valid flag, and a
B-byte data Di and provides a flag hit and data Do. The flag hit indicates
whether the requested memory data are held in the cache or not. As de-
picted in figure 6.8 (page 258), the memory address a is interpreted as tag
a tag, line address a line, sector address a sector, and sector offset a byte:

a tag � a�m�1 : l �s�b�

a line � a�l �s�b�1 : s�b�

a sector � a�s�b�1 : b�

a byte � a�b�1 : 0��
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�	
��� ���� Byte addressable, direct mapped cache with L � 2 l lines. The cache
line is organized in S� 2s sectors, each of which is B� 2b bytes wide.

According to the FSD of figure 6.10, all the memory transactions start
with a cache read access ($rd � 1); updates of the directory and of the
cache data only occur in later cycles. The design of the k-way set associa-
tive cache will rely on this feature.

(�#�� +��
� �� � +����� 5����	 �����

Figure 6.11 depicts the data paths of a sectored, byte addressable, direct
mapped cache with L� 2l cache lines. The cache consists of valid, tag and
data RAMs and an equality tester. The valid RAM V and the t bits wide
tag RAM T form the cache directory.

Since all sectors of a line share the same tag and valid flag, they are only
stored once; the valid and tag RAM are of size L�1 and L�t. Both RAMs
are referenced with the line address a line. The write signals Vw and Tw
control the update of the directory. On Tw� 0 the tag RAM provides the
tag

tag � T��a line���

and on Tw� 1, the tag a tag is written into the tag RAM

T��a line�� :� a tag�

The valid RAM V is a special type of RAM which can be cleared in just a
few cycles3. That allows for a fast initialization on reset. The RAM V is

3The IDT71B74 RAM, which is used in the cache system of the Intel i486 [Han93],
can be cleared in two to three cycles [Int96].
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cleared by activating signal clear. On Vw� clear� 0, it provides the flag

v � V��a line���

whereas on a write access, requested by Vw� 1 and clear� 0, the RAM
V performs the update

V��a line�� :� valid�

On every cache access, the equality tester EQ checks whether the line
entry is valid and whether the tag provided by the tag RAM matches the
tag a tag. If that is the case, a hit is signaled:

hit � 1 
 �v � �tag� a tag�� 
 ��v� tag� � �1� a tag���

The data portion of the cache line is organized in S� 2s sectors, each of
which is B� 2b bytes wide. The data RAM of the cache therefore holds
a total of 2l�s sectors and is addressed with the line and sector addresses
a line and a sector. The cache is byte addressable, i.e., a single write can
update as little as a single byte but no more than a whole sector. In order to
account for the different widths of the writes, the data RAM is organized
in B banks. Each bank is a RAM of size L �S� 8, and is controlled by a
bank write signal CDw�i�.

On a read access, the B bank write signals are zero. In case of a hit, the
cache then provides the whole sector to the output Do:

Do � data��a line�a sector��B�1 : �a line�a sector���

If CDw�B�1 : 0� �� 0B and if the access is a hit, the data RAMs are updated.
For every i with CDw�i� � 1, bank i performs the update

data��a line�a sector�� i� :� bytei�Di��

The cost of this direct mapped cache (1-way cache, $1) run at:

C$1�t� l �s�b� � CSRAM�2
l �1��CSRAM�2

l � t�

�CEQ�t �1��2b �CSRAM�2
l�s�8��

The cache itself delays the read/write access to its data RAMs and directory
and the detection of a hit by the following amount:

D$1�data� � DSRAM�L �S�8�

D$1�dir� � max�DSRAM�L�1��DSRAM�L� t��

D$1�hit� � D$1�dir��DEQ�t �1��
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�	
��� ���� Byte addressable, k-way set associative cache. The sectors of a cache
line are B� 2b bytes wide.

(�#�� +��
� �� � ��� ��������� �����

The core of a set associative cache (figure 6.12) are k sectored, direct
mapped caches with L lines each. The k cache ways provide the local
hit signals hi , the valid flags vi , and the local data di . Based on these sig-
nals, the select circuit Sel generates the global hit signal and selects the
data output Do. An access only updates a single way. The write signal
adapter Wadapttherefore forwards the write signals Tw�Vw, and CDw to
this active cache way.

The replacement circuit Repl determines the address way of the active
cache way; the address is coded in unary. Since the active cache way
remains the same during the whole memory transaction, address way is
only computed during the first cycle of the transaction and is then buffered
in a register. This first cycle is always a cache read ($rd). Altogether, the
cost of the k way cache is:

C$k�t� l �s�b� � k �C$1�t� l �s�b��CSel�CWadapt

�CRepl�Cf f �k��

+��� ������ ����-��
Each cache way provides a local hit signal hi , a valid flag vi , and the local
data di . An access is a cache hit, if one of the k-ways encounters a hit:

hit � h0�h1� �� ��hk�1�
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On a cache hit, exactly one local hit signal hi is active, and the correspond-
ing way i holds the requested data Do. Thus,

Do �
�

j�0�����k�1

�dj �hj�

When arranging these OR gates as a binary tree, the output Do and the hit
signal can be selected at the following cost and delay:

CSel � Ctree�k� �Cor �8B � �Cand�k��Ctree�k� �Cor�

DSel � Dand�Dtree�k� �Dor�

;���� ��
��� �	�����
Circuit Wadaptgets the write signals Tw, Vw and CDw�B� 1 : 0� which
request the update of the tag RAM, the valid RAM and the B data RAMs.
However, in a set associative cache, an access only updates the active cache
way. Therefore, the write signal adapter forwards the write signals to the
active way, and for the remaining k�1 ways, it disables the write signals.

Register way provides the address of the active cache way coded in
unary. Thus, the write signals of way i are obtained by masking the signals
Tw, Vw and CDw�B�1:0� with signal bit way�i�, e.g.,

Vwi �

�
Vw if way�i� � 1
0 if way�i� � 0

� Vw�way�i��

The original B�2 write signals can then be adapted to the needs of the set
associative cache at the following cost and delay

CWadapt � k �Cand�B�2�

DWadapt � Dand�

38� 8���������� ����-��
The replacement circuit Repl performs two major tasks. On every cache
read access, it determines the address way of the active cache way and
updates the cache history. On a cache miss, circuit Repl determines the
eviction address ev; this is the address of the way which gets the new data.

The circuit Repl of figure 6.13 keeps a K-bit history vector for each
set, where K � k � log k. The history is stored in an L�K RAM which is
updated on a cache read access ($rd � 1) and by an active clear signal:

Hw � $rd � clear�

On clear� 1, all the history vectors are initialized with the value Hid.
Since the same value is written to all the RAM words, we assume that
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�	
��� ��� Circuit Replof a k-way set associative cache with LRU replacement

this initialization can be done in just a few cycles, as it is the case for the
valid RAM. Circuit LRUupdetermines the new history vector H� and the
eviction address ev; circuit activeselects the address way.

Updating the cache history involves two consecutive RAM accesses, a
read of the cache history followed by a write to the history RAM. In order
to reduce the cycle time, the new history vector H� and the address are
buffered in registers. The cache history is updated during the next cache
read access. Since the cache history is read and written in parallel, the
history RAM is dual ported, and a multiplexer forwards the new history
vector H�

l , if necessary. On clear� 1, register H� is initialized as well. The
cost of circuit Replcan be expressed as:

CRepl � CSRAM2�L�K��Cf f �K��3 �Cmux�K�

�Cf f �l��CEQ�l��Cor �CLRUup�Cactive�

We now describe the circuits activeand LRUupin detail.

+�������� �� ��� ������ ;�%
On a cache hit, the active cache way is the way which holds the requested
data; this is also the cache way which provides an active hit signal hi .
On a miss, the active way is specified by the eviction address ev which
is provided by the cache history. Since ev is coded in binary, it is first
decoded providing value EV. Thus,

way �

�
EV if hit � 0
h�k�1 : 0� � �hk�1� � � � �h0� if hit � 1

is the address of the active way coded in unary. The circuit active(figure
6.13) determines the address of the active way at the following cost and
delay:

Cactive � Cdec�log k��Cmux�k�

�/�
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Dactive�ev� � Ddec�logk��Dmux�k�

Dactive�hit� � Dmux�k��

����� �����%

For each set l , circuit Replkeeps a history vector

Hl � �H0
l � � � � �H

k�1
l �� �Hi

l � � �0� � � � �k�1��

Hl is a permutation of the addresses 0� � � � �k�1 of the cache ways, it pro-
vides an ordering of the k ways of set l . The elements of the vector Hl

are arranged such that the data of way Hi
l was used more recently than the

data of way Hi�1
l . Thus, H0

l (Hk�1
l ) points to the data of set l which was

most (least) recently used. In case of a miss, the cache history suggests
the candidate for the line replacement. Due to LRU replacement, the least
recently used entry is replaced; the eviction address evequals Hk�1

l .
On power-up, the whole cache is invalidated, i.e., all the valid flags in

the k direct mapped caches are cleared. The cache history holds binary but
arbitrary values, and the history vectors Hl are usually not a permutation
of the addresses 0� � � � �k� 1. In order to ensure that the cache comes up
properly, all the history vectors must be initialized, e.g., by storing the
identity permutation. Thus,

Hid � �H0� � � � �Hk�1�� �Hi�� i�

��	��� �� ��� ����� �����%

The cache history must be updated on every cache read access, whether
the access is a hit or a miss. The update of the history also depends on the
type of memory transaction. Read and write accesses are treated alike; line
invalidation is treated differently.

Let a read or write access hit the way Hi
l . This way is at position i in

vector Hl . In the updated vector R, the way Hi
l is at the first position, the

elements H0
l � � � � �H

i�1
l are shifted one position to the right, and all the other

elements remain the same:

,  ...  , Hi-1
l

,  ...  , Hi-1
l

, Hi 0

H  =  ( H0 , Hi
l

l l

l

R  =  ( H , H )i+1 ,  ...  , Hk-1
l l

, H )i+1 ,  ...  , Hk-1
l l

......x  =  ( 0 0 )  0    1    0

... )y  =  (   0    0    1 1*   0   ...

The meaning of the vectors x and y will be described shortly.
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In case of a read/write miss, the line of way ev�Hk�1
l is replaced. Thus,

all the elements of the history vector Hl are shifted one position to the right
and ev is added at the first position:

R � �ev�H0
l �H

1
l � � � � �H

k�2
l � � �Hk�1

l �H0
l �H

1
l � � � � �H

k�2
l ��

In case that an invalidation access hits the way Hi
l , the cache line corre-

sponding to way Hi
l is evicted and should be used at the next line fill. In

the updated vector I , the way Hi
l is therefore placed at the last position, the

elements Hi�1
l � � � � �Hk�1

l are shifted one position to the left, and the other
elements remain the same:

,  ...  , Hi-1
lH  =  ( H0

l

, Hi+1 ,  ...  , Hk-1
l l,  ...  , Hi-1

l ), Hl
i

, H )i
l , Hi+1 ,  ...  , Hk-1

l l

0
lI  =  ( H

If the invalidation access causes a cache miss, the requested line is not in
the cache, and the history remains unchanged: I � Hl . Note that the vector
I can be obtained by shifting cyclically vector Rone position to the left

I � �R1� � � � �Rk�1�R0�� (6.3)

8����:����� �� ��� �����% ��	���

Circuit LRUup(figure 6.14) performs the update of the history vector. On
a cache hit, the binary address J of the cache way with h�J� � 1 is obtained
by passing the local hit signals h�k�1 : 0� through an encoder. The flag

xi � 1 
 �Hi
l � J � hit � 1��

indicates whether the active cache way is at position �i �1� of the history
vector Hl . Circuit LRUupobtains these flags in the obvious way. A parallel
prefix OR circuit then computes the signals

yi �
i�1�

n�0

xn � i � 1 � � �k�1�

where yi � 0 indicates that the active cache way is not among the first i
positions of the history vector Hl . Thus, the first element of the updated
history vector Rcan be expressed as

R0 �

�
J if hit � 1
Hk�1

l if hit � 0�
�/�
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�	
��� ���� Circuit LRUupwhich updates the cache history

and for any i � 1

Ri �

�
Hi�1

l if yi � 0
Hi

l if yi � 1�

According to equation 6.3, the new history vector H� can be obtained as

H � �

�
R if linv � 0

I if linv � 1
�

�
�R0�R1� � � � �Rk�1� if linv � 0

�R1� � � � �Rk�1�R0� if linv � 1�

Circuit Hsel implements these selections in a straightforward manner at
the following cost and delay

CHsel � 2k �Cmux�logk�

DHsel � 2 �Dmux�logk��

The cost of the whole history update circuit LRUuprun at:

CLRUup � Cenc�log k��k � �CEQ�log k��Cand�

�CPP�k� �Cor �CHsel�

+���% �� ��� 8���������� ����-��
The circuit Replgets the address a and the hit signals hi and hit. Based
on these inputs, it updates the history RAM and the registers H� and way.
The update of the RAM is obviously much faster than the update of the
registers. We therefore focus on the amount of time by which circuit Repl
itself delays the update of its registers. For any particular input signal, the
propagation delay from the input to the registers of Replcan be expressed
as:

DRepl�hit� � Dand�DPP�k� �Dor �DHsel�Dmux�Df f
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. . . . . .
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1 0

0 1 y[k-1]0 1 hit

J

A
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linv
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�	
��� ���� Circuit Hsel selects the history vector H �. Flag linv signals a line
invalidation access.

����� ���� Updating the LRU history of set l in a 2-way cache.

inputs read/write line invalidation
H1

l H0
l h1 h0 H �1

l H �0
l way1 way0 H �1

l H �0
l way1 way0

0 * 0 0 1 0 0 1 0 1 * *
1 * 0 0 0 1 1 0 1 0 * *
* * 0 1 1 0 0 1 0 1 0 1
* * 1 0 0 1 1 0 1 0 1 0

DRepl�h
i� � Denc�log k��DEQ�log k��DRepl�hit�

DRepl�a� � max�DSRAM2�L�K��DEQ�l���Dmux�K�

�max�DEQ�log k��DRepl�hit��Dactive�ev��Df f��

where K � k � logk. Note that these delays already include the propagation
delay of the register. Thus, clocking just adds the setup time δ.

38� 8���������� �� � �7;�% �����
When accessing a set l in a 2-way cache, one of the two ways is the active
cache way and the other way becomes least recently used. In case of a
line invalidation (linv � 1), the active way becomes least recently used.
According to table 6.10, the elements of the new history vector H�

l and the
address of the active way obey

way1 �

�
H1

l ; on a miss
h1 ; on a hit

way0 � �way1

H �1
l � way1 XNOR linv H �0

l � �H �1
l �

Thus, it suffices to keep one history bit per set, e.g., H1
l . That simplifies

the LRU replacement circuit significantly (figure 6.16), and the initializa-
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�	
��� ���� LRU replacement circuit Replof a 2-way set associative cache.

tion after power-up can be dropped. Since an inverter is not slower than an
XNOR gate, the cost and delay of circuit Replcan then be estimated as

CRepl � CSRAM2�L�1��Cf f �l��CEQ�l��2 �Cmux�Cinv�Cxnor�Cf f

DRepl�h
i� � DRepl�hit� � Dmux�Dxnor�Df f

DRepl�a� � max�DSRAM2�L�1��DEQ�l���2 �Dmux�Dxnor�Df f �

+���% �� � ��� ��������� �����
The k-way set associative cache receives the address a, the data Di and
the control signals clear, $rd, Vw, Tw and CDw�B� 1 : 0�. In the delay
formula, we usually distinguish between these three types of inputs; by cs$
we denote all the control inputs of the cache design.

The cache design of figure 6.12 delays its data Do and its hit signal by
the following amount:

D$k�Do� � D$1�Do��DSel

D$k�hit� � D$1�hit��DSel�

The cache also updates the directory, the data RAMs and the cache history.
The update of the cache history H is delayed by

D$k�;H� � max�D$1�hit��DRepl�h
i��D$k�hit��DRepl�hit��DRepl�a���

Thus, the propagation delay from a particular input to the storage of the
k-way cache can be expressed as:

D$k�a;$k� � max�D$k�;H��D$1�;data�dir��

D$k�cs$;$k� � max�D$k�;H��DWadapt�D$1�;data�dir��

D$k�Di;$k� � D$1�;data��
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����� ���� Active cache interface control signals for each state of the standard
memory transactions, i.e., for each state of the FSD of figure 6.10.

state cache control signals CDw[B:0]

Cache Read $rd, (linv)
Fill Request scntclr, scntce, Vw, lfill

0B

Line Fill scntce, lfill, Sw
Last Sector scntce, valid, Vw, Tw, lfill,Sw

1B

Cache Update $w MBW[B-1:0]
Update M —
Invalidate Vw

0B

(�#�# +��
� �� � ����� .��������

In the following, a sectored cache is integrated into a cache interface $i f
which implements the write allocate and write through policies. The cache
interface also supports forwarding, i.e., while a cache line is fetched from
main memory, the requested sector is directly taken from the memory bus
and is forwarded to the data output of $if.

Section 6.2.3 describes how such a cache interface performs the standard
memory transactions as a sequence of basic cache accesses. That already
specifies the functionality of $if. Those sequences, which are depicted in
the FSD of figure 6.10, consist of four types of cache accesses, namely a
read access ($rd), a write hit access ($w), a line invalidation (linv) and a
line fill (l f ill ). The line fill requires several cycles.

The cache interface is controlled by the following signals:

� the signals $rd� $w� linv and l f ill specifying the type of the cache
access,

� the write signals Vw and Twof the valid and tag RAM,

� the memory bank write signals MBW�B�1 : 0�,

� the write signal Sw(sector write) requesting the update of a whole
cache sector, and

� the clock and clear signal of the sector counter scnt.

Table 6.11 lists the active control signals for each state of the standard
memory transactions.
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�	
��� ���� Cache interface $if with forwarding capability

The cache interface receives the address a and the data Din and MDat.
Since all cache and memory accesses affect a whole sector, address a is a
sector boundary:

�a byte� � 0�

and the cache and memory ignore the offset bits a byte of the address.
The interface $if provides a hit signal, the data Dout, the memory address
MAd, a cache address, and the input data Di of the cache. On a line fill, Di
is taken from the memory data bus MDat, whereas on a write hit access,
the data is taken from Din

Di �

�
MDat if l f ill � 1
Din if l f ill � 0�

(6.4)

Figure 6.17 depicts an implementation of such a cache interface. The
core of the interface is a sectored k-way cache, where k may be one. The
width of a sector (B� 2b bytes) equals the width of the data bus between
the main memory and the cache. Each line comprises S� 2s sectors. A
multiplexer selects the input data Di of the cache according to equation
6.4. The address generator circuit AdG generates the addresses and bank
write signals CDw for the accesses. Circuit $ f orw forwards the memory
data in case of a read miss. The cost of the cache interface runs at

C$i f �t� l �s�b� � C$k�t� l �s�b��Cmux�B �8��CAdG�C$ f orw

C$ f orw � 2 �Cmux�B �8��Cf f �B �8��

��� ����� �		�� 9��������
The address generator (figure 6.18) generates the write signals CDw and
the low order address bits of the cache and main memory address.

According to section 6.2.3, a standard access (l f ill � 0) affects a single
sector of a cache line. On such an access, the low order bits of the main
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�	
��� ���� Address generation for the line fill of a sectored cache. The outputs
ca and ma are the low order bits of the cache and memory address. Signal rs
indicates that the current sector equals the requested sector.

memory and of the cache address equal the sector address a sector. On
a line fill (l f ill � 1), the whole line must be fetched from main memory.
The memory requires the start address of the cache line:

MAd�31 : b� � �a tag� a line� ma�

with

ma �

�
a sector if l f ill � 0
0s if l f ill � 1�

Thus, the address generator clears maon a line fill.
On a line fill, the cache line is updated sector by sector. The address

generator therefore generates all the sector addresses 0� � � � �2s� 1 for the
cache, using an s-bit counter scnt. The counter is cleared on scntclr� 1.
The sector bits of the cache address equal

ca �

�
a sector if l f ill � 0
scnt if l f ill � 1�

In addition, circuit AdG provides a signal rs (requested sector) which indi-
cates that the current sector with address scntequals the requested sector

rs� 1 
 a sector� scnt�

This flag is obtained by an s-bit equality tester.
The address generator also generates the bank write signal CDw�B�1 :

0� for the data RAM of the cache. Because of write allocate, the data RAM
is updated on a line fill and on a write hit (table 6.11). On a line fill, signal
Sw requests the update of the whole cache sector �CDw�B� 1 : 0� � 1�,
whereas on a write hit �$w � 1�, the bank write signals of the memory
determine which cache banks have to be updated. Thus, for 0 � i � B, the
bank write signal CDw�i� is generated as

CDw�i� � Sw� MBW�i��$w�
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By cs$i f , we denote all the control inputs of the cache interface. These

signals are provided by the control unit CON. The data paths provide the
address a. Let ACON�cs$i f � and ADP�a� denote the accumulated delay of
these inputs. The cost and the cycle time of circuit AdG and the delay of
its outputs can then be expressed as

CAdG � Cf f �s��Cinc�s��CEQ�s��3 �Cmux�s�

�Cand�B��Cor�B�

AAdG�ma� � AAdG�ca� � max�ADP�a��ACON�cs$i f ���Dmux

AAdG�rs� � ADP�a��DEQ�s�

AAdG�CDw� � ACON�cs$i f ��Dand�Dor

TAdG � max�ACON�cs$i f ��Dinc�s���Dmux�Df f �δ�

,�����	��
 �� ��� 8�2-���	 ����� ������
Circuit $ f orw of figure 6.17 performs the read forwarding. On a read
hit, the output data Dout are provided directly by the cache. On a cache
miss, the line is fetched from main memory. During the line fill access, the
requested sector, i.e., the sector with address ca� a sector, is clocked into
a register as soon as it is provided on the MDat bus. This event is signaled
by rs � 1. In the last line fill cycle, circuit $forw provides the requested
sector to the output Dout, bypassing the cache. If �a sector� � S� 1, the
requested sector lies on the bus MDat during the last fill cycle and has not
yet been clocked into the register. Thus, the forwarding circuit selects the
data output as

Dout �

��
�

Do if l f ill � 0
sector if l f ill � 1 � rs� 0
MDat if l f ill � 1 � rs� 1

at the following delay

D$ f orw � 2 �Dmux�8B��

+���% �� ��� ����� .��������
Based on the cache address ca, the cache itself provides the hit signal and
the data Do. These two outputs therefore have an accumulated delay of:

A$i f �hit� � AAdG�ca��D$k�hit�

A$i f �Do� � AAdG�ca��D$k�Do��

As for the whole DLX design, we distinguish between cycles which
involve the off-chip memory and those which are only processed on-chip.
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The memory address MAd and the data MDat are used in the first kind
of cycles. The cache interface provides address MAd at an accumulated
delay of

A$i f �MAd� � AAdG�ma��

The propagation of the data MDat to the output Dout and to the registers
and RAMs of the interface adds the following delays:

D$i f �MDat;Dout� � D$ f orw

D$i f �MDat;$i f � � Dmux�8B��D$k�Di;$k��

With respect to the on-chip cycles, the output Doutand the input data Di
of the cache have the following accumulated delays:

A$i f �Dout� � max�A$i f �Do��AAdG�rs���D$ f orw

A$i f �Di� � max�ACON�cs$i f ��ADP�Din���Dmux�8B��

The k-way cache comprises RAMs and registers, which have to be up-
dated. The actual updating of a register includes the delay Df f of the reg-
ister and the setup time δ, whereas the updating of a RAM only includes
the setup time. The additional delay Df f for the registers is already incor-
porated in the delay of the k-way cache. In addition to the cache address
ca, the cache also needs the input data Di and the write signals in order to
update its directory and cache data. The minimal cycle time of the cache
interface can therefore be expressed as:

T$i f � max�TAdG� AAdG�CDw��D$k�cs$;$k��δ�
AAdG�ca��D$k�a;$k��δ� A$i f �Di��D$k�Di;$k��δ��

���  �,������ *(1 ���� ����� 	��
�-

(�&�� ����
� �� ��� +3= +��
�

�
N SECTION 6.1.3, it has turned out that the sequential DLX core which
is directly connected to the slow external memory spends most of its

run time waiting for the memory system. We now analyze whether a fast
cache between the processor core and the external memory can reduce
this waiting time. Adding the cache only affects the memory environment
Menv and the memory control. As before, the global functionality of the
memory system and its interaction with the data paths and main control of
the DLX design remain the same.
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��� ���� Memory environment of the sequential DLX with cache memory

5����% 1����������
Figure 6.19 depicts the memory environment Menv. The cache interface
$i f of section 6.3 is placed between the memory interface Mif and the data
paths interface Dif. The cache interface implements the write through,
write allocate policy. Since there is only a single cache in the DLX design,
line invalidation will not be supported. The cache is initialized/cleared on
reset. The off-chip data bus MDat and the cache sectors are B � 2b � 8
bytes wide.

Memory Interface Mif The memory interface still forwards data and
addresses between the off-chip memory and the memory environment.
However, the memory address MAd is now provided by the cache inter-
face, and the data from the memory data bus are forwarded to the data
input MDat of the cache interface.

Interface Dif The cache interface is connected to the data paths through
a 32-bit address port MA and two data ports MDin and MDout. In the
memory environment, the data busses are 64 bits wide, whereas in the data
paths they are only 32 bit wide. Thus, the data ports must be patched
together. On the input port MDin, circuit Di f duplicates the data MDRw

MDin�63 : 32� � MDin�31 : 0� � MDRw�31 : 0��

On the output port Dout, a multiplexer selects the requested 32-bit word
within the double-word based on the address bit MA[2]:

MDout �

�
Dout�31 : 0� if MA�2� � 0
Dout�63 : 32� if MA�2� � 1�

Let the sectored cache comprise 2l lines, each of which is split in S� 2s

sectors. The cost of the memory environment and of the interfaces Mif and
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�	
��� ���� Block diagram of the memory control

Dif then run at

CMi f � Cdriv�32��Cdriv�64�

CDi f � Cmux�32�

CMenv � CMi f �CDi f �C$i f �29� l �s� l �s�3��

��� 5����% �������
As in the sequential DLX design which is directly connected to the off-chip
memory (section 6.1.3), the memory system is governed by the memory
control circuit MC and the memory interface control Mi fC (figure 6.20).

Memory Controller MC The memory controller generates the memory
bank write signals. Since the memory system now operates on double-
words, twice as many write signals Mbw[7:0] are required. The original
four signals mbw[3:0] still select within a word, and the leading offset bit
of the write address MA[2] selects the word within the sector. Thus, the
new bank write signals can be obtained as

Mbw�4 � i � j� �

�
mbw� j� � MA�2� ; i � 1
mbw� j� � �MA�2� ; i � 0

j � 0� � � �3�

Stores always take several cycles, and the bank write signals are used in
the second cycle, at the earliest. The memory control therefore buffers the
signals Mbw in a register before feeding them to the cache interface and
to the byte enable lines BE of the memory bus. Register MBW is clocked
during the first cycle of a memory transaction, i.e., on $rd � 1:

MBW�7 : 0� :�

�
Mbw�7 : 0� if $rd � 1
MBW�7 : 0� if $rd � 0�

Thus, circuit MC provides the signal MBW at zero delay

AMC�MBW� � 0�
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The cost and cycle time of the memory control MC run at

CMC � CMC�mbw��Cand�8��Cinv�Cf f �8�

TMC � AMC�mbw��Dand�8��∆�

Memory Interface Control As in the DLX of section 6.1.3, the memory
interface control MifC controls the tristate drivers of the memory interface
and generates the handshake signal req and the bust status signals burst,
w�r and mbusyaccording to the bus protocol. In addition, control MifC
provides the control signals of the cache interface.

The FSD of figure 6.10 together with table 6.11 specify the cache oper-
ations for the different memory transactions. However, the line fill and the
write hit also access the off-chip memory. On such a memory access, the
bus protocol of section 6.1.2 must be obeyed. Thus, the FSD must be ex-
tended by the bus operations. Figure 6.21 depicts the extended FSD. Note
that on a burst read (line fill), the memory turns signal reqpoff two cycles
before sending the last sector. Thus, signal reqp� 0 can be used in order
to detect the end of the line fill. Table 6.12 lists the active control signals
for each state of the FSD.

Circuit MifC uses a Mealy automaton which generates the control sig-
nals as modeled by the FSD. Table 6.13 lists the parameters of the au-
tomaton. There are only two Mealy signals, namely mbusyand $rd. Both
signals are just used for clocking. According to section 2.6.8, their accu-
mulated delay can be expressed as

ACON�mbusy�$rd� � AMi fC�Mealy� � Aout�2��Mi fC��

The remaining MifC control signals are Moore signals. Since the automa-
ton precomputes its Moore outputs, these control signals are provided at
zero delay

AMi fC � AMi fC�Moore� � 0�

The MifC automaton receives the inputs mwand mr from the main con-
trol, the hit signal from the cache interface, and the handshake signals Brdy
and reqpfrom the memory. These inputs have an accumulated delay of

Ain�Mi fC� � max�ACON�mw�mr�� A$i f �hit�� AM�Brdy� reqp��dbus��

�����
 �� 5����% �����
As in the DLX design without cache, we assume that the off-chip memory
is controlled by an automaton which precomputes its outputs and that the
control inputs which the off-chip memory receives through the memory
bus add dMhsh delays to the cycle time of its automaton. With a cache, the
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$writewrite Mlast M
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/Brdy * reqp/Brdy

/hit * mw

/hit * mr

mw
hit * mw

Brdy

/Brdy

Brdy
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else
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mrBrdy * reqp

Brdy * /reqp

Brdy

/Brdy * /reqp

/Brdy * /reqp

�	
��� ���� FSD of the MifC control automaton; $RD is the initial state.

����� ���� Active control signals for the FSD modeling the MifC control. Signals
$rd and �mbusyare Mealy signals, the remaining signals are Moore signals.

state signals for $if additional signals

$RD $rd = mr � mw /mbusy = (hit � mr)
� (/mr � /mw)

fill req scntclr, scntce, Vw, lfill req, burst, MAddoe
fill scntce, lfill, Sw burst, MAddoe
wait lfill burst, MAddoe
last wait lfill burst, MAddoe
last fill scntce, valid, Vw, Tw, MAddoe

lfill, Sw /mbusy = mr
$ write $w w/r, req, MAddoe, MDindoe
write M w/r, MAddoe, MDindoe
last M MDindoe, /mbusy

off-chip memory only performs a burst read access or a single write access.
Both accesses start with a request cycle.

The memory interface starts the memory access by sending the address
and the request signal req to the off-chip memory, but the address is now
provided by the cache interface. That is the only change. Forwarding
signal req and address MAd to the memory bus and off-chip still takes
Ddriv�dbusdelays, and the processing of the handshake signals adds dMhsh

delays. Thus, the memory request takes

TMreq � max�AMi fC�A$i f �MAd���Ddriv�dbus�dMhsh�∆�

After the request, the memory performs the actual access. The timing
of the single write access is modeled as in the design without cache. The
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����� ��� Parameters of the MifC Mealy automaton; index (1) corresponds to
the Moore signals and index (2) to the Mealy signals.

# states # inputs # and frequency of the outputs
k σ γ νsum νmax�1� νmax�2�

9 5 15 40 7 4

fanin of the states #, length, frequency of the monomials
fansum fanmax #M lsum lmax lmax�2�

18 3 14 24 2 2

memory interface sends the data MDin and the byte enable bits. Once the
off-chip memory receives these data, it performs the access:

TMwrite � max�AMC�MBW��AMi fC �Ddriv��dbus�DMM�64MB��δ�

On a burst read transfer, we distinguish between the access of the first
sector and the access of the later sectors. A 64 MB memory provides the
first sector with a delay of DMM�64MB�. Sending them to the memory
interface adds another Ddriv �dbus delays. The sector is then written into
the cache. Thus, reading the first sector takes at least

TMread � DMM�64MB��Ddriv �dbus�D$i f �MDat;$i f ��δ�

We assume, that for the remaining sectors, the actual memory access time
can be hidden. Thus, the cache interface receives the next sector with
a delay of Ddriv � dbus. Circuit $if writes the sector into the cache and
forwards the sector to the data paths where the data are multiplexed and
clocked into a register:

TMrburst � Ddriv �dbus�δ
�max�D$i f �MDat;$i f �� D$i f �MDat;Dout��Dmux�Df f��

Due to the memory access time, the write access and the reading of the
first sector take much longer than the CPU internal cycles. Therefore, they
are performed in W CPU cycles.

If a read access hits the cache, the off-chip memory is not accessed
at all. The cache interface provides the requested data with an delay of
A$i f �Dout�. After selecting the appropriate word, data MDout is clocked
into a register:

T$read � A$i f �Dout��Dmux�Df f �

�)'



������� (

MEMORY SYSTEM

DESIGN

����� ���� Cost of the DLX design which is connected to the off-chip DRAM,
either directly or through a 16 KB, direct mapped cache.

L1 cache Menv DP CON DLX

no 320 11166 1170 12336
16KB 375178 386024 1534 387558

increase factor 1170 35 1.3 31

Updating the cache interface on a read or write access takes T$. Thus, the
memory environment of the DLX design requires a CPU cycle time of at
least

TM�W� � max�T$read� T$i f � TMreq� TMrburst� TMaccess�W��

TMaccess � max�TMwrite� TMread��

��� ��	 �%��� ����

Presently (2000) large workstations have a first level cache of 32KB to
64KB (table 6.8), but the early RISC processors (e.g. MIPS R2000/3000)
started out with as little as 4KB to 8KB of cache. We consider a cache
size of 16KB for our DLX design. This sectored, direct mapped cache is
organized in 1024 lines. A cache line comprises S� 2 sectors, each of
which is B � 8 bytes wide. The cache size and other parameters will be
optimized later on.

According to table 6.14, the 16KB cache increases dramatically the cost
of the memory environment Menv (factor 1200) and of the DLX processor
(factor 31), but the cost of the control stays roughly the same. Adding a
first level cache makes the memory controller MC more complicated; its
automaton requires 9 instead of 3 states. However, this automaton is still
fairly small, and thus, the whole DLX control is only 30% more expensive.

Table 6.15 lists the cycle times of the data paths, the control, and the
memory system. The stall engine generates the clock and write signals
based on signal mbusy. Due to the slow hit signal, signal mbusyhas a
much longer delay. That more then doubles the cycle time of the control,
which now becomes time critical. The cycle time τDLX of the DLX core is
increased by a factor of 1.27.

A memory request, a cache update, and a cache read hit can be per-
formed in a single processor cycle. The time TMrburst is also not time crit-
ical. Reading the first word from the off-chip memory requires several
processor cycles; the same is true for the write access (TMaccess). Since
the memory data is written into a register and into the cache, such a read
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����� ���� Cycle time of the DLX design which and without cache memory

cache Ahit Ambusy TMi fC Tstall TCON TDP

no – 7 28 33 42 70
16KB 55 64 79 89 89 70

TMaccesscache T$i f T$read TMreq TMrburst α � 4 α � 8 α � 16

no – – 39 – 355 683 1339
16KB 48 57 36 63 391 719 1375

access takes even 36 delays longer.
The DLX design with first level cache can be operated at a cycle time of

τDLX�W� � max�TDP� TCON� TM�W���

Increasing the number W of wait states improves the cycle time, but it also
increases the CPI ratio. There is a trade-off between cycle time and cycle
count.

"���������� ��	 ?-����% �� ��� +��
�
In order to make the cache worthwhile, the cache better improves the per-
formance of the DLX quite a bit. The memory system has no impact on
the instruction count. However, the cache can improve the CPI ratio and
the TPI ratio by speeding up the average memory accesses.

TPI �
T
IC

� CPI � τDLX�

Number of Memory Cycles In the DLX design without cache, a mem-
ory access takes always 1�W cycles. After adding the cache, the time
of a read or write access is no longer fixed. The access can be a cache
hit or miss. In case of a miss, the whole cache line (S� 2 sectors) must
be fetched from the external memory. Such a line fill takes W�Scycles.
Thus, the read access can be performed in a single cycle, if the requested
data is in the cache, and otherwise, the read access takes 1�W�Scycles
due to the line fill.

A store first checks the cache before it performs the write access. Due to
the write through, write allocate policy, the write always updates the cache
and the external memory. Like in the system without cache, the update
of the memory takes 1�W cycles, and together with the checking of the
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����� ���� Number of processor cycles required for a memory access.

read hit read miss write hit write miss

with cache 1 1�S�W 2�W 2�W�S�W
without cache 1�W 1�W

cache, a write hit takes 2�W cycles. A cache miss adds another W�S
cycles (table 6.16).

CPI Ratio For a given benchmark, the hit ratio ph measures the fraction
of all the memory accesses which are cache hits, and the miss ratio�pm �
1� ph� measures the fraction of the accesses which are cache misses. This
means that the fraction pm of the memory accesses is a cache miss and
requires a line fill.

Let CPIideal denote the CPI ratio of the DLX design with an ideal mem-
ory, i.e., with a memory which performs every access in a single cycle.
In analogy to the CPI ratio of a pipelined design (section 4.6), the cache
misses and memory updates can be treated as hazards. Thus, the CPI ratio
of the DLX design with L1 cache can be expressed as:

CPIL1 � CPIideal�νstore� �1�W��νmiss� �W�S�

νmiss � pm � �1�νload�νstore��

The CPI ratio of the DLX design with ideal memory can be derived from
the instruction mix of table 6.6 in the same manner as the CPI ratio of the
DLX without cache. That table also provides the frequency of the loads
and stores. According to cache simulations [Kro97, GHPS93], the 16KB
direct mapped cache of the DLX achieves a miss ratio of 3�3% on the
SPECint92 workload. On the compress benchmark, the cache performs
slightly better �pm � 3�1%�. Thus, the DLX with 16KB cache yields on
these two workloads a CPI ratio of

CPIL1�compr� � 4�19�0�056 � �1�W��0�031 �1�255 � �S�W�

� 4�32�0�09 �W

CPIL1�SPEC� � 4�26�0�085 � �1�W��0�033 �1�338 � �S�W�

� 4�43�0�13 �W�

Based on these formulae, the optimal cycle time and optimal number of
wait states can be determined as before. Although the CPI and TPI ra-
tios vary with the workload, the optimal cycle time is the same for all the

�))



������� (�&

SEQUENTIAL DLX
WITH CACHE

MEMORY

����� ���� Optimal cycle time and number W of wait states

L1 α � 4 α � 8 α � 16
cache W τ W τ W τ

no 5 71 10 70 19 71
16KB 5 89 8 90 16 89

����� ���� CPI and TPI ratios of the two DLX designs on the compress bench-
mark and on the average SPECint92 workload.

compress (pm � 3�1%) SPECint (pm � 3�3%)
DRAM: α 4 8 16 4 8 16

CPInoL1 10.5 16.7 28.0 11.0 17.6 29.7
CPIL1 4.8 5.0 5.8 5.1 5.5 6.5
CPInoL1�CPIL1 2.2 3.3 4.8 2.1 3.2 4.6

TPInoL1 753.7 1172.0 1990.7 788.7 1235.1 2107.7
TPIL1 424.5 453.6 512.6 452.1 492.3 579.4
TPInoL1�TPIL1 1.8 2.6 3.9 1.7 2.5 3.6

Break even: eq 0.14 0.21 0.28 0.14 0.21 0.28

SPECint92 benchmarks; it only depends on the speed of the main mem-
ory (table 6.17). Depending on the speed of the main memory, the cache
increases the optimal cycle time by 25% or 30%, but for slow memories it
reduces the number of wait states.

According to table 6.18, the cache improves the CPI ratio roughly by
a factor of 2 to 5. Due to the slower cycle time, the TPI ratio and the
performance of the DLX processor is only improved by a factor of about
2 to 4. Especially in combination with a very slow external memory �α �
16�, the cache achieves a good speedup. Thus, there is a trade-off between
cost and performance.

Cost Performance Trade-Off For any two variants A and B of the DLX
design, the parameter eq specifies the quality parameter q for which both
variants are of the same quality:

1

Cq
A �TPI1�q

A

�
1

Cq
B �TPI1�q

B

�
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For quality parameters q � eq, the faster of the two variants is better, and
for q � eq, the cheaper one is better. For a realistic quality metric, the
quality parameter q lies in the range of �0�2�0�5�.

Depending on the speed of the off-chip memory, the break even point lies
between 0.14 and 0.28 (table 6.18). The DLX with cache is the faster of the
two designs. Thus, the 16KB cache improves the quality of the sequential
DLX design, as long as the performance is much more important than the
cost.

Altogether, it is worthwhile to add a 16KB, direct mapped cache to the
DLX fixed point core, especially in combination with a very slow external
memory. The cache increases the cost of the design by a factor of 31, but
it also improves the performance by a factor of 1.8 to 3.7. However, the
DLX still spends 13% to 30% of its run time waiting for the main memory,
due to cache misses and write through accesses.

(�&�� >�������� �� ��� ����� +��
�

Every cache design has many parameters, like the cache size, the line size,
the associativity, and the cache policies. This section studies the impact
of these parameters on the performance and cost/performance ratio of the
cache design.

.����� �� ��� 3��� ��:�

As already pointed out in section 6.2.1, the memory accesses tend to clus-
ter, i.e., at least over a short period of time, the processor only works on
a few clusters of references. Caches profit from the temporal and spatial
locality.

Temporal Locality Once a memory data is brought into the cache, it is
likely to be used several times before it is evicted. Thus, the slow initial
access is amortized by the fast accesses which follow. If the cache is to
small, it cannot accommodate all the clusters required, and data will be
evicted although they are needed shortly thereafter. Large caches can re-
duces these evictions, but cache misses cannot vanish completely, because
the addressed clusters change over time, and the first access to a new clus-
ter is alwaysa miss. According to table 6.19 ([Kro97]), doubling the cache
size cuts the miss ratio by about one third.

Spatial Locality The cache also makes use of the spatial locality, i.e.,
whenever the processor accesses a data, it is very likely that it soon ac-

�*�



������� (�&

SEQUENTIAL DLX
WITH CACHE

MEMORY

����� ���� Miss ratio of a direct mapped cache depending on the cache size [K
byte] and the line size [byte] for the average SPECint92 workload; [Kro97].

cache line size [byte]
size 8 16 32 64 128

1 KB 0.227616 0.164298 0.135689 0.132518 0.150158
2 KB 0.162032 0.112752 0.088494 0.081526 0.088244
4 KB 0.109876 0.077141 0.061725 0.057109 0.059580
8 KB 0.075198 0.052612 0.039738 0.034763 0.034685

16 KB 0.047911 0.032600 0.024378 0.020493 0.020643
32 KB 0.030686 0.020297 0.015234 0.012713 0.012962
64 KB 0.020660 0.012493 0.008174 0.005989 0.005461

cesses a data which is stored close by. Starting a memory transfer requires
W cycles, and then the actual transfer delivers 8 bytes per cycle. Thus
fetching larger cache lines saves time, but only if most of the fetched data
are used later on. However, there is only limited amount of spatial locality
in the programs.

According to table 6.19, the larger line sizes reduces the miss ratio sig-
nificantly up to a line size of 32 bytes. Beyond 64 bytes, there is virtually
no improvement, and in some cases the miss ratio even increases. When
analyzing the CPI ratio (table 6.20), it becomes even more obvious that
32-byte lines are optimal. Thus, it is not a pure coincidence that commer-
cial processors like the Pentium [AA93] or the DEC Alpha [ERP95] use
L1 caches with 32-byte cache lines.

However, 32 bytes is not a random number. In the SPECint92 integer
workload, about 15% of all the instructions change the flow of control
(e.g., branch, jump, and call). On average, the instruction stream switches
to another cluster of references after every sixth instruction. Thus, fetching
more than 8 instructions (32 bytes) rarely pays off, especially since the
instructions account for 75% of the memory references.

Impact on Cost and Cycle Time Doubling the cache size cuts the miss
ratio by about one third and improves the cycle count, but it also impacts
the cost and cycle time of the DLX design (table 6.21). If a cache of 8KB
or more is used, the fixed point core with its 12 kilo gates accounts for less
than 10% of the total cost, and doubling the cache size roughly doubles the
cost of the design.

For a fixed cache size, doubling the line size implies that the number of
cache lines in cut by half. Therefore, the cache directory only requires half
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����� ���� CPI ratio of the DLX with direct mapped cache on the SPECint92
workload. Taken from [Kro97].

DRAM cache line size [byte]
α size 8 16 32 64 128

1 KB 6.60 6.31 6.40 7.08 8.99
2 KB 6.07 5.83 5.84 6.19 7.25
4 KB 5.65 5.49 5.51 5.76 6.44

4 8 KB 5.37 5.26 5.25 5.37 5.74
16 KB 5.15 5.08 5.06 5.13 5.35
32 KB 5.02 4.96 4.95 4.99 5.13
64 KB 4.94 4.89 4.87 4.87 4.92

1 KB 7.77 7.22 7.20 7.86 9.85
2 KB 6.98 6.53 6.45 6.77 7.86
4 KB 6.35 6.06 6.02 6.25 6.94

8 8 KB 5.93 5.73 5.66 5.77 6.14
16 KB 5.60 5.46 5.42 5.46 5.69
32 KB 5.39 5.30 5.27 5.30 5.44
64 KB 5.27 5.19 5.16 5.15 5.20

as many entries as before, and the directory shrinks by half. Thus, doubling
the line size reduces the cost of the cache and the cost of the whole DLX
design. Increasing the line size from 8 to 16 bytes reduces the cost of the
DLX design by 7-10%. Doubling the line size to 32 bytes saves another
5% of the cost. Beyond 32 bytes, an increase of the line size has virtually
no impact on the cost.

Table 6.21 also lists the cycle time imposed by the data paths, the control
and the cache interface:

TDLX � max�TDP� TCON� T$i f � T$read��

The cache influences this cycle time in three ways: T$i f and T$read account
for the actual update of the cache and the time of a cache read hit. The
cache directory also provides the hit signal, which is used by the control in
order to generate the clock and write enable signals (TCON). This usually
takes longer than the cache update itself and for large caches it becomes
even time critical. Doubling the line size then reduces the cycle time by 3
gate delays due to the smaller directory.
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����� ���� Cost and cycle time of the DLX design with a direct mapped cache

cache cost CDLX [kilo gates] cycle time TDLX

size line size [B]
[KB] 8 16 32 64 128 8 16 32 64 128

1 42 39 37 36 36 80 70 70 70 70
2 69 62 59 57 57 83 80 70 70 70
4 121 109 103 100 98 86 83 80 70 70
8 226 202 190 185 182 89 86 83 80 70

16 433 388 365 354 348 92 89 86 83 80
32 842 756 713 692 681 95 92 89 86 83
64 1637 1481 1403 1364 1345 98 95 92 89 86

.�������
 ��� ����������%
Caches are much smaller than the main memory, and thus, many memory
addresses must be mapped to the same set of cache locations. In the direct
mapped cache, there is exactly one possible cache location per memory
address. Thus, when fetching a new memory data, the cache line is either
empty, or the old entry must be evicted. That can cause severe thrashing:

Two or more clusters of references (e.g., instruction and data) share the
same cache line. When accessing these clusters by turns, all the accesses
are cache misses and the line must be replaced every time. Thus, the slow
line fills cannot be amortized by fast cache hits, and the cache can even
deteriorate the performance of the memory system.

Using a larger cache would help, but that is very expensive. A standard
way out is to increase the associativity of the cache. The associativity of a
first level cache is typically two or four. In the following, we analyze the
impact of associativity on the cost and performance of the cache and DLX
design.

Impact on the Miss Ratio Table 6.22 lists the miss ratio of an asso-
ciative cache with random or LRU replacement policy on a SPECint92
workload. This table is taken from [Kro97], but similar results are given in
[GHPS93]. LRU replacement is more complicated than random replace-
ment because it requires a cache history, but it also results in a significantly
better miss ratio. Even with twice the degree of associativity, a cache with
random replacement performs worse than a cache with LRU replacement.
Thus, we only consider the LRU replacement.

In combination with LRU replacement, 2-way and 4-way associativity
improve the miss ratio of the cache. For moderate cache sizes, a 2-way
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����� ���� Miss ratio [%] of the SPECint92 workload on a DLX cache system
with 32-byte lines and write allocation; [Kro97].

cache direct 2-way 4-way
size mapped LRU random LRU random

1 KB 13.57 10.72 19.65 9.41 12.30
2 KB 8.85 7.02 13.34 6.53 8.40
4 KB 6.17 4.54 8.82 4.09 5.41
8 KB 3.97 2.52 6.16 2.04 3.05

16 KB 2.44 1.39 3.97 1.00 1.52
32 KB 1.52 0.73 2.44 0.58 0.83
64 KB 0.82 0.52 1.52 0.44 0.56

����� ��� Cost and CPU cycle time of the DLX design with a k-way set associa-
tive cache (32-byte lines).

cache cost CDXL [kilo gates]
size absolute increase

TDLX

[KB] k = 1 2 4 1 � 2 2 � 4 1 2 4

1 37 38 41 3.9 % 7.2 % 70 70 70
2 59 61 62 2.6 % 5.0 % 70 70 70
4 103 105 108 1.7 % 3.4 % 80 74 70
8 190 193 197 1.2 % 2.4 % 83 84 76

16 365 368 375 0.9 % 1.8 % 86 87 86
32 713 718 729 0.7 % 1.5 % 89 90 89
64 1403 1416 1436 0.8 % 1.4 % 92 93 92

cache achieves roughly the same miss ratio as a direct mapped cache of
twice the size.

Impact on the Cost Like for a direct mapped cache, the cost of the cache
interface with a set associative cache roughly doubles when doubling the
cache size. The cache interface accounts for over 90% of the cost, if the
cache size is 8KB or larger (table 6.23). 2-way and 4-way associativity
increase the total cost by at most 4% and 11%, respectively. The relative
cost overhead of associative caches gets smaller for larger cache sizes.

When switching from 2-way to 4-way associativity, the cost overhead
is about twice the overhead of the 2-way cache. That is for the following
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reasons: In addition to the cache directory and the cache data RAMs, a
set associative cache with LRU replacement also requires a cache history
and some selection circuits. In a 2-way cache, the history holds one bit per
sector, and in a 4-way cache, it holds 8 bits per sector; that is less than 0.5%
of the total storage capacity of the cache. The significant cost increase
results from the selection circuits which are the same for all cache sizes.
In the 2-way cache, those circuits account for about 900 gate equivalents.
The overhead of the 4-way cache is about three times as large, due to the
more complicated replacement circuit.

Impact on the Cycle Time The cache provides the hit signal which is
used by the control in order to generate the clock signals. Except for small
caches (1KB and 2KB), the control even dominates the cycle time TDLX

which covers all CPU internal cycles (table 6.23). Doubling the cache size
then increases the cycle time by 3 gate delays due to the larger RAM.

In a 32-bit design, the tags of a direct mapped cache of size X KB are

t1 � 32� logX

bits wide according to figure 6.7. Thus, doubling the cache size reduces the
tag width by one. In a set associative cache, the cache lines are distributed
equally over the k cache ways, and each way only holds a fraction (1�k) of
the lines. For a line size of 32 bytes, we have

Lk � L1�k � X��32 �k�

tk � 32� logX� logk � t1 � logk

The cache tags are therefore log k bits wider than the tags of an equally
sized direct mapped cache.

In each cache way, the local hit signal h�i� is generated by an equality
tester which checks the tk-bit tag and the valid flag:

D$k�h�i�� � DRAM�Lk� tk��DEQ�tk�1��

The core of the tester is a �tk�1�-bit OR-tree. For a cache size of of 1KB
to 64KB and an associativity of k� 4, we have

32� log�64K�� log 1 � tk � 32� log�1K�� log4
17 � tk�1 � 25

and the equality tester in the hit check circuit of the k-way cache has a fixed
depths. However, the access of the cache data and the directory is 3 log k
delays faster due to the smaller RAMs

D$k�h�i�� � D$1�h�i���3log k�
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����� ���� Optimal cycle time τDLX and number of wait states for the DLX design
with caches and two types of main memory (α � �4�8�).

cache α � 4 α � 8
size 1 2 4 1 2 4

C W τ W τ W τ W τ W τ W τ
1 KB 6 70 6 70 5 72 10 71 10 70 10 70
2 KB 6 70 6 70 6 70 10 71 10 71 10 70
4 KB 5 80 6 74 6 70 9 80 10 74 10 71
8 KB 5 83 5 84 5 77 9 83 9 84 10 76

16 KB 5 86 5 87 5 86 9 86 9 87 9 86
32 KB 5 89 5 90 5 89 9 89 8 90 8 90
64 KB 5 92 5 93 5 92 8 92 8 93 8 92

The local hit signals of the k cache ways are combined to a global hit
signal using an AND gate and an k-bit OR-tree. For k� 2, we have

D$k�hit� � D$k�h�i���Dand�DORtree�k�

� D$1�h�i���3log k�2�2logk�

Thus, for a moderate cache size, the 2-way cache is one gate delay slower
than the other two cache designs.

Impact on the Performance Table 6.24 lists the optimal cycle time of
the DLX design using an off-chip memory with parameter α � �4�8�, and
table 6.25 lists the CPI and TPI ratio of these designs. In comparison to a
direct mapped cache, associative caches improve the miss ratio, and they
also improve the CPI ratio of the DLX design. For small caches, 2-way
associativity improves the TPI ratio by 4� 11%, and 4-way associativity
improves it by 5�17%. However, beyond a cache size of 4KB, the slower
cycle time of the associative caches reduces the advantage of the improved
miss ratio. The 64KB associative caches even perform worse than the
direct mapped cache of the same size.

Doubling the cache size improves the miss ratio and the CPI, but it also
increases the cycle time. Thus, beyond a cache size of 4KB, the 4-way
cache dominates the cycle time TDLX, and the larger cycle time even out-
weights the profit of the better miss ratio. Thus, the 4KB, 4-way cache
yields the best performance, at least within our model. Since larger caches
increase cost and TPI ratio, they cannot compete with the 4KB cache.

In combination with a fast off-chip memory (α � 4), this cache speeds
the DLX design up by a factor of 2.09 at 8.8 times the cost. For a memory
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lists the CPI and TPI reduction of the set associative cache over the direct mapped
cache (32-byte lines).

CPI ratio
cache α � 4 α � 8

size 1 2 4 1 2 4

1 KB 6.67 6.29 5.90 7.74 7.20 6.96
2 KB 6.04 5.79 5.73 6.85 6.51 6.42
4 KB 5.51 5.46 5.40 6.18 6.05 5.96
8 KB 5.25 5.07 5.02 5.80 5.55 5.58

16 KB 5.06 4.94 4.89 5.53 5.35 5.28
32 KB 4.95 4.86 4.84 5.37 5.14 5.12
64 KB 4.87 4.83 4.82 5.16 5.11 5.10

TPI ratio
cache α � 4 α � 8

size 1 2 4 1 2 4

1 KB 466.9 440.3 425.0 549.3 504.2 487.0
2 KB 422.7 405.6 401.1 486.5 462.2 449.3
4 KB 441.1 404.2 378.2 494.7 447.4 423.2
8 KB 435.6 426.2 386.2 481.5 466.1 423.9

16 KB 435.5 429.6 420.6 475.9 465.7 454.5
32 KB 440.9 437.2 430.7 478.4 462.8 460.6
64 KB 447.9 449.4 443.7 474.4 475.0 468.8

CPI reduction TPI reduction
cache α � 4 α � 8 α � 4 α � 8

size 2 4 2 4 2 4 2 4

1 KB 6.1 13.0 7.4 11.2 6.1 9.9 8.9 12.8
2 KB 4.2 5.4 5.3 6.8 4.2 5.4 5.3 8.3
4 KB 0.9 2.1 2.3 3.7 9.1 16.6 10.6 16.9
8 KB 3.4 4.6 4.5 4.0 2.2 12.8 3.3 13.6

16 KB 2.5 3.5 3.4 4.7 1.4 3.5 2.2 4.7
32 KB 2.0 2.4 4.5 5.0 0.8 2.4 3.4 3.9
64 KB 0.7 0.9 0.9 1.2 -0.3 0.9 -0.1 1.2
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����� ���� Speedup and cost increase of the DLX with 4-way cache over the
design without cache

cache size 1KB 2KB 4KB

speedup: α � 4 1.86 1.97 2.09
α � 8 2.54 2.75 2.92

relative cost increase 3.34 5.16 8.78
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��� ���� Quality ratio of the designs with 4-way cache relative to the design
without cache for two types of off-chip memory.
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system with α � 8, the cache even yields a speedup of 2.9. According to
table 6.26, the speedup of the 1KB and 2KB caches are at most 6% to 15%
worse than that of the 4KB cache at a significantly better cost ratio. Thus,
there is a trade-off between cost and performance, and the best cache size
is not so obvious. Figure 6.22 depicts the quality of the DLX designs with
a 4-way cache of size 1KB to 4KB relative to the quality of the design
without cache. The quality is the weighted geometric mean of cost and
TPI ratio: Q�C�q �TPIq�1.

As long as more emphasis is put on the performance than on the cost,
the caches are worthwhile. In combination with fast off-chip memory
(α � 4), the design with an 1KB cache is best over the quality range of
q� �0�1� 0�34�. For slower memory, the 1KB cache even wins up to a qual-
ity parameter of p � 0�55 (at q � 0�5 cost and performance are equally
important). Only for q � 0�13, the 4KB cache wins over the 1KB cache,
but these quality parameters are not realistic (page 167). Thus, when opti-
mizing the DLX design for a reasonable performance and quality, a cache
size of 1 KB is most appropriate.

Artifact The performance optimization suggests a 4 times larger cache
than the quality metric. This is due to the very inexpensive DLX core
which so far only comprises a simple fixed point core without multiplier
and divider. Adding a floating point unit (chapter 9) will increase the cost
of the DLX core dramatically, and then optimizing the DLX design for
a good performance or for a good quality will result in roughly the same
cache size.

��� +�������� *(1 ���� ����� 	��
�-

�
N ORDER to avoid structural hazards, the pipelined DLX core of the sec-
tions 4 and 5 requires an instruction memory IM and a data memory DM.

The cache system described in this section implements this split memory
by a separate instruction and data cache. Both caches are backed by the
unifiedmain memory, which holds data and instructions.

The split cache system causes two additional problems:

� The arbitration of the memory bus.Our main memory can only
handle one access at a time. However, an instruction cache miss can
occur together with a write through access or a data cache miss. In
such a case, the data cache will be granted access, and the instruction
cache must wait until the main memory allows for a new access.
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� The data consistency of the two caches.As long as a memory word is
placed in the instruction cache, the instruction cache must be aware
of the changes done to that memory word. Since in our DLX design,
all the memory writes go through the data cache, it is only the in-
struction cache which must be protected against data inconsistency.

Although we do not allow for self modifying code, data consistency is
still a problem for the following reason. During compile time, the program
code generated by the compiler is treated as data and is therefore held in the
data cache. When running the program, the code is treated as instructions
and must be placed in the instruction cache. After re-compiling a program,
the instruction cache may still hold some lines of the old, obsolete code.
Thus, it must be ensured that the processor fetches the new code from the
main memory instead of the obsolete code held in the instruction cache.

As usual, one can leave the consistency to the user and the operating
system or can support it in hardware. In case of a software solution, the
instruction cache must be flushed(i.e., all entries are invalidated) whenever
changing existing code or adding new code. It is also feasible to flush the
instruction cache whenever starting a new program.

In our design, we will go for a hardware solution. The two caches snoop
on the memory bus. On a data cache miss, the requested line is loaded
into the data cache, as usual. If the instruction cache holds this line, its
corresponding cache entry is invalidated. In analogy, a line of the data
cache which holds the instructions requested by the instruction cache is
also invalidated on an instruction cache miss. At any time a particular
memory line is in at most onecache.

(�'�� ����
� �� ��� +3= +��� "���

As in the sequential DLX design (section 6.4), the caches only impact
the memory environments and the memory control circuits. This section
describes how to fit the instruction and data cache into the memory en-
vironments IMenv and DMenv of the pipelined design DLXΠ supporting
interrupts, and how the memory interface Mif connects these two environ-
ments to the external main memory. The new memory control is described
in section 6.5.2.

1���������� �� ��� +��� 5����%

The core of the data environment DMenv(figure 6.23) is the cache interface
D$i f as it was introduced in section 6.3. The data cache (Dcache) is a
sectored, write through, write allocate cache with a 64-bit word size. In
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�	
��� ��� Data memory environment DMenv with cache

addition to the standard control signals of a cache interface, the memory
environment is governed by the reset signal and by signal Dlinv which
requests a line invalidation access due to an instruction cache miss.

As in the sequential design (section 6.4), the cache interface D$if is con-
nected to the data paths through a 32-bit address port and two data ports
MDin and DMout. Due to the 64-bit cache word size, the data ports must
be patched together. On the input port MDin, data MDRw is still dupli-
cated

MDin�63 : 32� � MDin�31 : 0� � MDRw�31 : 0��

On the output port Dout, a multiplexer selects the requested 32-bit word
within the double-word based on the address bit MAR[2]:

DMout �

�
Dout�31 : 0� if MAR�2� � 0
Dout�63 : 32� if MAR�2� � 1�

On an instruction cache miss the data cache is checked for the requested
line (Dlinv � 1). In case of a snoop hit, the corresponding Dcache entry
is invalidated. For the snoop access and the line invalidation, the Dcache
interface uses the address dpcof the instruction memory instead of address
MAR:

a �

�
MAR if Dlinv � 0
dpc if Dlinv � 1�

A multiplexer selects between these two addresses. Since the Dcache is
only flushed on reset, the clear input of the Dcache interface D$if is con-
nected to the reset signal. The hit signal Dhit is provided to the memory
control.

The data memory environment communicates with the memory interface
Mif and the external memory via the address port D$a and the data ports
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�	
��� ���� Instruction memory environment IMenv with cache

MDin and MDat. The Dcache interface provides the memory address

D$a � Mad�

Let the sectored cache comprise 2ld lines, each of which is split in S�
2sd sectors. The data memory environment then has cost

CDMenv � C$i f �29� ld�sd� ld�sd�3��2 �Cmux�32��

Assuming that control signal Dlinv is precomputed, address a and data Din
have the following accumulated delay:

AD$i f �a� � APCenv�dpc��Dmux

AD$i f �Din� � 0�

1���������� �� ��� .���-����� 5����%
Figure 6.24 depicts how to fit a first level instruction cache (Icache) into
the instruction memory environment IMenv. The instructions in the Icache
are only read by the DLX core but never written. Thus, the Icache interface
I$i f could actually be simplified. Nevertheless, we use the standard cache
interface. However, the input data port Din is not connected.

The address port a and the data port Dout of the cache interface I$if
are connected to the data paths like in the environment DMenv. However,
the program counter dpc now serves as standard cache address, whereas
address MAR is only used in case of a snoop access or a line invalidation.
Flag Ilinv signals such an access:

IDout �

�
Dout�31 : 0� if dpc�2� � 0
Dout�63 : 32� if dpc�2� � 1

a�

�
MAR if Ilinv � 1
dpc if Ilinv � 0�

#��



������� (�'

PIPELINED DLX
WITH CACHE

MEMORY

MDatD$a MDinI$a Mdat

1 0Igrant

a dido

64

Mad

external memory

MDat

32

MDindoe

Mif

IMenv DMenv

�	
��� ���� Interface Mif connecting IMenvand DMenvto the external memory

The Icache is, like the Dcache, flushed on reset; its hit signal Ihit is
provided to the memory control. The environment IMenv communicates
with memory interface Mif and the external memory via the address port
I$a and the data port MDat. The Icache interface provides the memory
address I$a� Mad.

Let the instruction cache comprise 2li lines with 2si sectors per line and
2b � 8 bytes per sector; the cost of environment IMenv can be expressed
as

CIMenv � C$i f �29� li �si� li �si�3��2 �Cmux�32��

The Icache address a has the same accumulated delay as the Dcache ad-
dress.

.�������� �� ��� 5��� 5����%

The memory interface Mif (figure 6.25) connects the two memory envi-
ronments of the pipelined DLX design to the external memory. The envi-
ronments DMenv and IMenv communicate with the external memory via
the 32-bit address bus MAd and the 64-bit data bus MDat. The memory
interface is controlled by the signals MDindoeand Igrant.

On Igrant � 1, the Icache interface is granted access to the external
memory; the memory interface forwards address I$a to the address bus.
On Igrant � 0, the Dcache interface can access the external memory and
circuit Mif forwards address D$a:

MAd �

�
I$a if Igrant � 1
D$a if Igrant � 0�

On MDindoe� 1, the memory interface forwards the data MDin of the
data memory environment to the data bus MDat.

#�#



������� (

MEMORY SYSTEM

DESIGN

(�'�� 5����% �������

In analogy to the sequential DLX design with cache, the memory system
is governed by the memory control circuits DMC and IMC and by the
memory interface control MifC.

.���-����� 5����% ������� .5�
The control IMC of the instruction memory is exactly the same as the one
used in the pipelined design DLXΠ of chapter 5. Circuit IMC signals a
misaligned instruction fetch by imal � 1. Since the DLX core never writes
to the instruction memory, the bank write signals are always inactive and
can be tied to zero:

Imbw�7 : 0� � 08�

+��� 5����% ������� +5�
As in the pipelined design DLXΠ without caches, the data memory control
DMC generates the bank write signals of the data memory and checks for
a misaligned access. However, twice as many write signals DMbw[7:0]
are required because the memory system now operates on double-words.
The original four signals Dmbw[3:0] select within a word, and the address
bit MAR[2] selects the word within the sector. Thus, the new bank write
signals are obtained as

DMbw�3 : 0� � Dmbw�3 : 0� � �MAR�2�

DMbw�7 : 4� � Dmbw�3 : 0� � MAR�2��

As in the sequential design with cache, the control DMC buffers these
bank write signals in a register before feeding them to the Dcache interface
and to the byte enable lines BE of the memory bus. Register DMBw is
clocked during the first cycle of a data memory transaction, signaled by
D$rd � 1:

DMBw�7 : 0� :� DMbw�7 : 0� if D$rd � 1�

Circuit DMC detects a misaligned access like in the DLXΠ design. Flag
dmal� 1 signals that an access to the data memory is requested, and that
this access is misaligned (i.e., malAc� 1):

dmal � �Dmr�3 � Dmw�3� � malAc�

In addition, it now also masks the memory read and write signals Dmr and
Dmwwith the flag dmal:

Dmra � Dmr�3 � �dmal � �Dmr�3 NOR malAc

Dmwa � Dmw�3 � �dmal � �Dmw�3 NOR malAc�
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Let dmcdenote the data memory control of the pipelined design without
cache. The cost, delay and cycle time of the extended memory control
DMC can then be expressed as

CDMC � Cdmc�Cand�8��3 �Cinv�Cf f �8��2 �Cnor

ADMC�DMBw� � 0

ADMC�dmal� � ADMC�Dmra� Dmwa� � Admc

TDMC � Admc�Dand�∆�

5����% .�������� �������
Like in the sequential design, the memory interface control MifC controls
the cache interface and the access to the external memory bus. Since there
are two caches in the pipelined DLX design, the control MifC consists
of two automata I$i fC and D$i fC. Each automaton generates a busy flag
(ibusy, dbusy), a set of cache control signals, a set of handshake and control
signals for the memory bus, and some signals for the synchronization. The
cache control signals (i.e.: $rd, Vw, Tw, Sw, lfill, valid, scntce, scntclr,
linv, $w) are forwarded to the corresponding cache interface I$if and D$if.

The D$ifC control provides the following synchronization signals

� Dinit indicating that D$ifC is in its initial state,

� Igrant granting the Icache access to the memory bus, and

� isnooprequesting the Icache to perform a snoop access.

The I$ifC signal iaccessindicates an ongoing transaction between Icache
and memory.

For the memory bus, control D$ifC provides the request signal Dreq,
the flags Dw�r , Dburst and the enable signal MDindoe. Since the Icache
interface only uses the bus for fetching a new cache line, its burst and r/w
flag have a fixed value. Based on flag Igrant, control MifC selects the bus
signals as

�req�w�r�burst� �

�
�Dreq�Dw�r�Dburst� if Igrant � 0
�Ireq�0�1� if Igrant � 1

using a 3-bit multiplexer. Thus, the cost of circuit MifC can be expressed
as

CMi fC � Cmux�3��CI$i fC �CD$i fC�

The two automata I$ifC and D$ifC are very much like the Mealy au-
tomaton of the sequential MifC control, except that they provide some new
signals, and that they need two additional states for the snoop access. In
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DLfillDfill

Dmra

Dhit
/Dhit

Ireq

else

Dmwa

Brdy

Dmwa * Dhit * /iaccess

Dinit * /Brdy

Dinit * Brdy
isnoop

/Ihit
Ihit

D$ifC

else

I$ifC

/Ihit * /imal * /isnoop

/Dinit * /isnoop

isnoop

/Brdy

/Brdy * reqp

/Brdy * reqp
Brdy

Brdy * reqp

Brdy * /reqp

Brdy

/Brdy * /reqp

/Brdy * /reqp

Iwait ILwait

ILfillIfill

/Brdy

�	
��� ���� FSDs modeling the Mealy automata of the controls D$if and I$if

the I$ifC automaton, the states for the memory write access are dropped.
Figure 6.26 depicts the FSDs modeling the Mealy automata of the D$ifC
and I$ifC control. Table 6.27 lists the active control signals for each state;
table 6.28 lists the parameters of the two automata, assuming that the au-
tomata share the monomials.

The inputs of the two automata have the following accumulated delay:

Ain�I$i fC� � max�AIMC�AIMenv�Ihit ��AM�reqp�Brdy��dbus�

Ain�D$i fC� � max�Admc�ADMenv�Dhit��AM�reqp�Brdy��dbus��

The two busy signals and the signals D$rd and I$rd are the only Mealy
control signals. As in the sequential design, these signals are just used for
clocking. The remaining cache control signals (cs$if) and the bus control
signals are of type Moore and can be precomputed. They have delay

AMi fC�cs$i f � � 0

AMi fC�req�w�r�burst� � Dmux�

Since the automata only raise the flags ibusyand dbusyin case of a non-
faulty memory access, the clock circuit of the stall engine can now simply
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����� ���� Active control signals for the FSDs modeling the MifC control; X
denotes the data (D) or the instruction (I) cache.

state $if control D$ifC only I$ifC only

XFreq scntclr, scntce, Dreq, Dburst, isnoop Ireq, iaccess
Vw, lfill

Xfill scntce, lfill, Sw Dburst iaccess
Xwait lfill Dburst iaccess
XLwait lfill Dburst iaccess
XLFill scntce, valid, Vw, /dbusy = Dmra /ibusy, iaccess

Tw, lfill, Sw
Xsnoop D$rd, Dlinv, Igrant I$rd, Ilinv
Xlinv Vw Dlinv, Igrant Ilinv

I$RD I$rd = /imal, /ibusy = (imal � /isnoop) � (Ihit � /isnoop)

D$w $w, Dw/r, Dreq, MDindoe
Mwrite Dw/r, MDindoe
Mlast MDindoe, /mbusy
D$RD Igrant, Dinit, D$rd = Dmra � Dmwa

/dbusy = (dmal � /Ireq) � (Dhit � /Ireq)

����� ���� Parameters of the Mealy automata used in the memory interface con-
trol MifC

# states # inputs # and frequency of outputs
k σ γ νsum νmax�1� νmax�2�

D$ifC 11 8 18 42 5 3
I$ifC 8 6 11 29 5 3

fanin of the states # and length of nontrivial monomials
fansum fanmax #M lsum lmax lmax�2�

D$ifC 20 3 18 35 3 2
I$ifC 16 3 10 17 3 2
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obtain the busy signal as

busy � ibusy� dbusy

at an accumulated delay of

Ace�busy� � max�Aout�2��I$i fC��Aout�2��D$i fC���Dor�

 - �����������

This is the tricky part. Let us call D$i fC the D-automaton, and let us call
I$i fC the I-automaton. We would like to show the following properties:

����� ��	 � 1. Memory accesses of the D-automaton and of the I-automaton do not
overlap,

2. memory accesses run to completion once they are started, and

3. a cache miss in DM (IM) always generates a snoop access in IM
(DM).

Before we can prove the lemma, we first have to formally define, in what
cycles a memory access takes place. We refer to the bus protocol and count
an access from the first cycle, when the first address is on the bus until the
last cycle, when the last data are on the bus.

Proof of the lemma:�����
After power up, the automata are in their initial state and no access is taking
place.

The D-automaton controls the bus via signal Igrant. It grants the bus to
the I -automaton (Igrant � 1) only during states �3��# ��%� and ���%+,
and it owns the bus (Igrant � 1) during the remaining states. Therefore, ac-
cesses of the D-automaton can only last from state ����� to ��4�� or from
state �3' to 1���&. During these states, the I -automaton does not have the
bus. Thus, accesses do not overlap, and accesses of the D-automaton run
to completion once they are started.

The I -automaton attempts to start accesses in state IFreq, but it may not
have the bus. Thus, accesses of the I–automaton can only last from state
2���� with Igrant � 1 until state 2�4��. In each of these states we have
iaccess� 1.

Suppose state 2���� is entered with Igrant � 0. Then, the access starts
in the cycle when the D-automaton is back in its initial state �3��. In this
cycle we have

Igrant � Dinit � iaccess� 1�

#�)
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Thus, the access of the I -automaton starts, the I -automaton leaves state
2����, and the active signal iaccessprevents the D-automaton from en-
tering states ����� or �3' before the access of the I -automaton runs to
completion.

If state 2���� is entered with Igrant � 1, the access starts immediately,
and the D-automaton returns to its initial state within 0, 1 or 2 cycles. From
then on, things proceed as in the previous case.

In state ����� signal isnoopis active which sends the I -automaton from
its initial state into state 2�%�. Similarly, in state 2���� signal Ireq is
active which sends the D-automaton from its initial state into state ��%�. ���

(�'�# +��
� 1���-�����

For the sequential DLX design (section 6.4) which is connected to a 64 MB
main memory, it has turned out that a 4 KB cache with 32 byte lines yields
a reasonable performance and cost performance ratio. Thus, our pipelined
DLX design will also implement 4 KB of first level cache; the data and the
instruction cache comprise 2 KB each.

�����
 �� ��� 5����% �����

As for the sequential DLX design with cache, the temporal behavior of the
memory system is modeled by the request cycle time TMreq, the burst read
time TMrburst, the read/write access time TMaccessto off-chip memory, the
cache read access time T$read, and the cycle time T$i f of the caches (see
page 283).

In the pipelined DLX design, the Icache and the Dcache have the same
size, and their inputs have the same accumulated delay, thus

T$i f � TI$i f � TD$i f and T$read � TI$read � TD$read�

The formulae of the other three memory cycle times remain unchanged.
The cycle time TDLX of all internal cycles and the cycle time τDLX of the
whole system are still modeled as

TDLX � max�TDP�TCON�T$read�T$i f �TMreq�TMrburst�

τDLX � max�TDLX�TMaccess�W���

.����� �� ��� ��	 �%��� ����

According to table 6.29, the 4KB cache memory increases the cost of the
pipelined design by a factor of 5.4. In the sequential design this increase
factor is significantly larger (8.8) due to the cheaper data paths.
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����� ���� Cost of the DLXΠ design without cache and with 2KB, 2-way Icache
and Dcache

Menv DP CON DLX

no cache – 20610 1283 21893
with caches 96088 116698 2165 118863

����� ��� Cycle time of the design DLXΠ with 2KB, 2-way Icache and Dcache

Maccess
MifC stall DP $read $if Mreq Mrburst

α � 4 α � 8

65 79 89 55 47 42 51 379 707

The two caches and the connection to the external memory account for
81% of the total cost of the pipelined design. The memory interface con-
trol now comprises two Mealy automata, one for each cache. It therefore
increases the cost of the control by 69%, which is about twice the increase
encountered in the sequential design.

Table 6.30 lists the cycle time of the DLXΠ design and of its memory
system, assuming a bus and handshake delay of dbus� 15 and dMhsh �
10. The data paths dominate the cycle time TDLX of the processor core.
The caches themselves and the control are not time critical. The memory
request and the burst read can be performed in a single cycle; they can
tolerate a bus delay of dbus� 53.

.����� �� ��� ����� ��:�

The pipelined DLX design implements a split cache system, i.e., it uses a
separate instruction cache and data cache. The cost of this cache system is
roughly linear in the total cache size (table 6.31). Compared to the unified
cache system of the sequential DLXs design, the split system implements
the cache interface twice, and it therefore encounters a bigger overhead.
Using 2-way set associative caches, the split system with a total cache size
of 1KB is 15% more expensive than the unified cache system. For a larger
cache size of 4KB (32 KB), the overhead drops to 4% (1%).

The split cache can also be seen as a special associative cache, where
half the cache ways are reserved for instructions or data, respectively. The
cost of the split and unified cache system are then virtually the same; the
difference is at most 2%.

Like in the sequential design, the cycle time of the control increases with
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����� ��� Cost of the memory environments and the cycle time of the pipelined
DLX design depending on the total cache size and the associativity. CMenv�Σ de-
notes the cost of the unified cache in the sequential DLX design. The cost is given
in kilo gates.

CMenv�Σ CMenv TCON TDP

# way 2 4 1 2 1 2 1,2

1 KB 26 29 27 30 71 73 89
2 KB 48 51 49 52 75 75 89
4 KB 92 96 93 96 83 79 89
8 KB 178 185 181 184 93 87 89

16 KB 353 363 356 360 96 97 89
32 KB 701 717 705 711 99 100 89

the cache size, due to the computation of the hit signal. However, if the size
of a single cache way is at most 2KB, the control is not time critical. In
spite of the more complex cache system, this is the same cache size bound
as in the sequential DLX design. That is because the stall engine and main
control of the pipelined design are also more complicated than those used
in the sequential design.

.����� �� ��� "���������� ��	 ��� ?-����%

CPI Ratio In section 4.6.4, we have derived the CPI ratio of the pipelined
design DLXΠ on a SPECint92 workload as

CPIDLXΠ � 1�26��ν f etch�νload�νstore� �CPHslowM�

The workload comprises 25.3% loads and 8.5% stores. Due to some empty
delay slots of branches, the pipelined DLX design must fetch 10% addi-
tional instructions, so that νf etch� 1�1.

As in the sequential DLX design with cache interface, the memory ac-
cess time is not uniform (table 6.16, page 288). A read hit can be per-
formed in just a single cycle. A standard read/write access to the external
memory (TMaccess) requires W processor cycles. Due to the write through
policy, a write hit then takes 2�W cycles. For a cache line with Ssectors,
a cache miss adds another S�W cycles. Let pIm and pDm denote the miss
ratio of the instruction and data cache. Since on a cache miss, the whole
pipeline is usually stalled, the CPI ratio of the pipelined design with cache
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����� ��� Miss ratios of a split and a unified cache system on the SPECint92
workload depending on the total cache size and the associativity.

Icache Dcache Effective Unified Cache
# way 1 2 1 2 1 2 1 2 4

1 KB 8.9 8.2 22.8 15.2 12.4 9.9 13.6 10.8 9.4
2 KB 6.6 5.9 14.1 9.4 8.5 6.8 8.9 7.0 6.5
4 KB 4.7 4.4 9.4 5.5 5.9 4.7 6.2 4.5 4.1
8 KB 3.0 2.4 6.8 3.5 4.0 2.7 4.0 2.5 2.0

16 KB 2.0 1.1 3.5 2.6 2.4 1.5 2.4 1.5 1.0
32 KB 1.1 0.4 2.6 1.8 1.5 0.8 1.5 0.7 0.6

interface can be expressed as

CPIL1p � 1�26�νstore� �1�W�
��ν f etch� pIm�νload�store� pDm� � �W�S�

� 1�35�0�085 �W
��1�1 � pIm�0�34 � pDm� � �W�S��

(6.5)

Effective Miss Ratio According to table 6.32, the instruction cache has a
much better miss ratio than the data cache of the same size. That is not sur-
prising, because instruction accesses are more regular than data accesses.
For both caches, the miss ratio improves significantly with the cache size.

The pipelined DLX design strongly relies on the split first level cache,
whereas the first level cache of the sequential DLX design and any higher
level cache can either be split or unified. We have already seen that a split
cache system is more expensive, but it maybe achieves a better perfor-
mance.

For an easy comparison of the two cache designs, we introduce the ef-
fective miss ratio of the split cache as:

pmisse f f �
#miss on fetch�#miss on load/store

#fetch�#load/store

�
ν f etch� pIm�νload�store� pDm

ν f etch�νload�store
�

This effective miss ratio directly corresponds to the miss ratio of a unified
cache. According to table 6.32, a split direct mapped cache has a smaller
miss ratio than a unified direct mapped cache; that is because instructions
and data will not thrash each other. For associative caches, the advantage
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����� �� Optimal cycle time τ, number of wait states W, CPI and TPI ratio of
the pipelined DLX design with split 2-way cache.

total memory: α � 4 memory: α � 8
cache size W τ CPI TPI W τ CPI TPI

1 KB 4 90 2.82 253.5 8 89 3.72 331.2
2 KB 4 92 2.46 226.3 8 89 3.19 283.7
4 KB 4 95 2.22 211.1 8 89 2.83 251.9
8 KB 5 89 2.12 188.4 8 89 2.49 221.4

16 KB 4 97 1.85 179.2 8 97 2.27 220.1
32 KB 4 100 1.77 177.3 7 103 2.06 212.3

of a split system is not so clear, because two cache ways already avoid
most of the thrashing. In addition, the unified cache space can be used
more freely, e.g., more than 50% of the space can be used for data. Thus,
for a 2-way cache, the split approach only wins for small caches (� 4KB).

On the other hand, the split cache can also be seen as a special asso-
ciative cache, where half the cache ways are reserved for instructions or
data, respectively. Since the unified cache space can be used more freely,
the unified 2-way (4-way) cache has a better miss ratio than the split direct
mapped (2-way) cache. Commercial computer systems use large, set asso-
ciative second and third level caches, and these caches are usually unified,
as the above results suggest.

Performance Impact Table 6.33 lists the optimal number of wait states
and cycle time of the pipelined DLX design as well as the CPI and TPI
ratios for two versions of main memory. The CPI ratio improves signifi-
cantly with the cache size, due to the better miss ratio. Despite the higher
cycle time, increasing the cache size also improves the performance of the
pipelined design by 30 to 36%. In the sequential DLX design, the cache
size improved the performance by at most 12% (table 6.25). Thus, the
speedup of the pipelined design over the sequential design increases with
the cache size.

Compared to the sequential design with 4-way cache, the pipelined de-
sign with a split 2-way cache yields a 1.5 to 2.5 higher performance (table
6.34). The cache is by far the most expensive part of the design; a small
1KB cache already accounts for 60% of the total cost. Since the pipelined
and sequential cache interfaces have roughly the same cost, the overhead
of pipelining decreases with the cache size. The pipelined DLX design is at
most 27% more expensive, and the cost increase is smaller than the perfor-
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����� ��� Speedup and cost increase of the pipelined design with split 2-way
cache relative to the sequential design with unified 4-way cache.

total cost [kilo gates] speedup
cache size DLXΣ DLXΠ increase α � 4 α � 8

1 KB 41 52 27% 1.68 1.47
2 KB 62 74 19% 1.77 1.58
4 KB 108 118 9% 1.79 1.68
8 KB 197 207 5% 2.05 1.91

16 KB 375 383 2% 2.35 2.06
32 KB 729 734 1% 2.43 2.17

mance improvement. In combination with caches, pipelining is definitely
worthwhile.

���  ������� ��!������� ��� "����� ������#

�
WO TEXTBOOKS on cache design are [Prz90, Han93]. A detailed
analysis of cache designs can also be found in Hill’s Thesis [Hil87].

��� %&�������

�������� ��	 In section 6.2.2, we specified a sectored, direct mapped cache
and a non-sectored, set associative cache. Extend these specifications to a
sectored, set associative cache. As before, a cache line comprises Ssectors.

�������� ��� This and the following exercises deal with the design of a
write backcache and its integration into the sequential DLX design. Such
a cache applies the weak consistency model. A write hit only updates the
cache but not the external memory. A dirty flag for each line indicates
that the particular line has been updated in the cache but not in the main
memory. If such a dirty line is evicted from the cache, the whole line
must be copied back before starting the line fill. Figure 6.27 depicts the
operations of a write back cache for the memory transactions read and
write.

Modify the design of the k-way cache and of the cache interface in order
to support the write back policy and update the cost and delay formulae.
Special attention has to be payed to the following aspects:

#�&
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� A cache line is only considered to be dirty, if the dirty flag is raised

and if the line holds valid data.

� The memory environment now performs two types of burst accesses,
the line fill and the write back of a dirty cache line. The data RAMs
of the cache are updated on a line fill but not on the write back.

�������� ��
 Integrate the write back cache interface into the sequential
DLX design and modify the cost and delay formulae of the memory sys-
tem. The memory environment and the memory interface control have to
be changed. Note that the FSD of figure 6.27 must be extended by the bus
operations.

�������� ��� A write back cache basically performs four types of accesses,
namely a cache read access (read hit), a cache update (write hit), a line fill,
and a write back of a dirty line. Let a cache line comprise S sectors. The
read hit then takes one cycle, the write hit two cycles, and the line fill and
the write back take W�Scycles each.

Show that the write back cache achieves a better CPI ratio than the write
through cache if the number of dirty misses and the number of writes
(stores) obey:

W�1
W�S

�
# dirty misses

# writes
�

�������� ��� Analyze the impact of the write back policy on the cost, per-
formance, and quality of the sequential DLX design. Table 6.35 lists the
ratio of dirty misses to writes for a SPECint92 workload [Kro97].
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wback
request

line
wback

wback
last sector

/hit * dirty
*(mw + mr)

cache
read request

fill

line 
fill

fill last
sector

cache
write

scnt = S-1

scnt < S-1

else

/hit * /dirty * (mw + mr)

scnt < S-1

mwmw * hit scnt = S-1

mr

�	
��� ���� Cache operations of the memory transactions read and write

����� ��� Ratio of dirty misses to write accesses on the SPECint92 workload.

cache line size [byte]
size 8 16 32 64 128

1 KB 0.414 0.347 0.328 0.337 0.402
2 KB 0.315 0.243 0.224 0.223 0.262
4 KB 0.256 0.190 0.174 0.169 0.183
8 KB 0.197 0.141 0.107 0.093 0.098

16 KB 0.140 0.097 0.073 0.061 0.060
32 KB 0.107 0.072 0.053 0.044 0.042
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7
IEEE Floating Point
Standard and Theory of
Rounding

�
N THIS chapter, we introduce the algebra needed to talk concisely about
floating point circuits and to argue about their correctness. In this for-

malism, we specify parts of the IEEE floating point standard [Ins85], and
we derive basic properties of IEEE-compliant floating point algorithms.
Two issues will be of central interest: the number representation and the
rounding.

��� ����� "
�����

/����  ����% ,�������

Let a� a�n�1 : 0�� �0�1�n and f � f �1 : p�1���0�1�p�1 be strings. We
then call the string a�n� 1 : 0�� f �1 : p� 1� a binary fraction. An example
is 110.01. The value of the fraction is defined in the obvious way

�a�n�1 : 0�� f �1 : p�1�� �
n�1

∑
i�0

ai �2
i �

p�1

∑
i�1

fi �2
�i �

In the above example, we have �110�01� � 6� �25 � 6�25. We permit
the cases p� 0 and n��1 by defining

�a�� � �a�0� � �a�

�� f � � �0� f ��
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Thus, binary fractions generalize in a natural way the concept of binary
numbers, and we can use the same notation to denote their values. Some
obvious identities are

�0a� f � � �a� f � � �a� f 0�

�a� f � � �a f� �2��p�1�

As in the decimal system, this permits to use fixed point algorithms to
perform arithmetic on binary fractions. Suppose, for instance, we want to
add the binary fractions a�n�1 : 0�� f �1 : p�1� and b�m�1 : 0��g�1 : q�1�,
where m� n and p� q. For some result s�m : 0��t�1 : p�1� of an ordinary
binary addition we then have

�a� f �� �b�g� � �0m�na� f �� �b�g0p�q�

� ��0m�na f�� �bg0p�q�� �2��p�1�

� �s�m : 0� t�1 : p�1�� �2��p�1�

� �s�t�

/���� ���B ���������� ,�������

Of course, also two’s complement arithmetic can be extended to fractions.
One can interpret a string a�n�1 : 0�� f �1 : p�1� as

�a�n�1 : 0�� f �1 : p�1�� � �a�n�1� �2n�1 � �a�n�2 : 0�� f �1 : p�1���

We call string a� f interpreted in this way a two’s complement fraction.
Using

�a�n�1 : 0�� f �1 : p�1�� � �a�n�1 : 0� f �1 : p�1�� �2��p�1�

one immediately translates algorithms for two’s complement numbers into
algorithms for two’s complement fractions.

/���#  ���	 .���
�� ,�����

The IEEE floating point standard makes use of a rather particular integer
format called the biased integer format. In this format, a string

e�n�1 : 0� �� �0n�1n�

represents the number

��e�n�1 : 0���bias � �e�n�1 : 0���biasn
#�)
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where

biasn � 2n�1�1�

Strings interpreted in this way will be called biased integersBiased inte-
gers with n bits lie in a range �emin : emax�, where

emin � 1� �2n�1�1� ��2n�1 �2

emax � 2n�2� �2n�1�1� � 2n�1�1�

Instead of designing new adders and subtractors for biased integers, we
will convert biased integers to two’s complement numbers, perform all
arithmetic operations in ordinary two’s complement format, and convert
the final result back. Recall that for n-bit two’s complement numbers, we
have

�x�n�1 : 0�� � �xn�1 �2
n�1 � �x�n�2 : 0��

and therefore

�x�n�1 : 0�� � ��2n�1� � � � �2n�1�1��

Thus, the two numbers excluded in the biased format are at the bottom of
the range of representable numbers. Converting a biased integer x�n�1 : 0�
to a two’s complement number y�n� 1 : 0� requires solving the following
equation for y

��x��bias � �y�


 �x��2n�1 �1 � �yn�1 �2n�1 � �y�n�2 : 0��


 �x��1 � 2n�1 � �1�yn�1�� �y�n�2 : 0��
� �yn�1�y�n�2 : 0���

This immediately gives the conversion algorithm, namely:

1. Interpret x as a binary number and add 1. No overflow will occur.

2. Invert the leading bit of the result.

Conversely, if we would like to convert a two’s complement number
y�n�1 : 0� with �y� �� ��2n�1� � � � �2n�1 �1� into biased representation, the
above equation must be solved for x. This is equivalent to

�x� � �y��2n�1�1 � �y�� �1n�1� � �y�� �1n�1� mod 2n�

It suffices to perform the computation modulo 2n because the result lies
between 1 and 2n�1�2.
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����� ��� Components of an IEEE floating point number

normal denormal

exponent ��e��bias emin

significand �1� f �� �0� f ��
hidden bit 1 0

/���& .111 ,������
 "���� !-����

An IEEE floating point number is a triple �s�e�n�1 : 0�� f �1 : p�1��, where
s� �0�1� is called the sign bit, e� e�n� 1 : 0� represents the exponent,
and f � � f �1 : p�1� almost represents the significandof the number (if it
would represent the significand, we would call it f ). The most common
parameters for n and p are

�n� p� �

�
�8�24� for single precision

�11�53� for double precision

Obviously, single precision numbers fit into one machine word and double
precision numbers into two words.

IEEE floating point numbers can represent certain rational numbers as
well as the symbols �∞, �∞ and NaN. The symbol NaN represents ‘not a
number’, e.g., the result of computing 0�0. Let �s�e� f�� be a floating point
number, then the value represented by �s�e� f�� is defined by

��s�e� f ��� �

��
�

��1�s �2��e��bias � �1� f �� if e �� �0n�1n�
��1�s �2emin � �0� f �� if e� 0n

��1�s �∞ if e� 1n and f � 0p�1

NaN if e� 1n and f �� 0p�1�

The IEEE floating point number �s�e� f �� is called

� normal if e �� �0n�1n� and

� denormal(denormalized) if e� 0n.

For normal or denormal IEEE floating point numbers, exponent, signifi-
candand hidden bitare defined by table 7.1. Observe that the exponent
emin has two representations, namely e� 0n�11 for normal numbers and
e� 0n for denormal numbers. Observe also, that string f� alone does not
determine the significand, because the exponent is required to determine
the hidden bit. If we call the hidden bit f �0�, then the significand obviously
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2z+12z

2z - (p-1)

Xmax

emin2

2emax

Xmin

emax

emin emin

emin

emax

0

2 - (p-1)

2 - (p-1) 2 - (p-1)

2 +1

2 +1

�	
��� ��� Geometry of the non-negative representable numbers

equals � f �0�� f �1 : p�1��. The binary fraction f � f �0�� f �1 : p�1� then is
a proper representation of the significand. It is called normal, if f �0� � 1
and denormal if f �0� � 0. We have

f �0� � � f � � f �0�� � f �1 : p�1�� �2��p�1�

� f �0�� �2p�1�1� �2��p�1�

� f �0��1�2��p�1��

Thus, we have
1 � � f � � 2�2��p�1�

for normal significands and

0 � � f � � 1�2��p�1�

for denormal significands.

/���' 9������% �� 8����������� !-����

A rational number x is called representableif x� ��s�e� f��� for some IEEE
floating point number. The number x is called normalif �s�e� f�� is normal.
It is called denormalif �s�e� f �� is denormal.

Normal numbers have a significand in the range �1�2�2��p�1��� �1�2�.
Denormal numbers have a significand in the range �0�1�2��p�1��� �0�1�.
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Figure 7.1 depicts the non-negative representable numbers; the picture for
the negative representable numbers is symmetric. The following properties
characterize the representable numbers:

1. For every exponent value z� �emin� � � � �emax�, there are two inter-
vals containing normal representable numbers, namely �2z�2z�1� and
��2z�1��2z�. Each interval contains exactly 2p�1 numbers. The
gap between consecutive representable numbers in these intervals is
2z��p�1�.

2. As the exponent value increases, the length of the interval doubles.

3. Denormal floating point numbers lie in the two intervals �0�2emin�
and ��2�emin�0�. The gap between two consecutive denormal num-
bers equals 2emin��p�1�. This is the same gap as in the intervals
�2emin�2emin�1� and ��2emin�1��2emin�. The property, that the gap be-
tween the numbers 2emin and �2emin is filled with the denormal num-
bers is called gradual underflow.

Note that the smallest and largest positive representable numbers are

Xmin � 2emin �2��p�1�

Xmax � 2emax � �2�2��p�1���

The number x� 0 has two representations, one for each of the two pos-
sible sign bits. All other representable numbers have exactly one represen-
tation. A representable number x� ��s�e� f��� is called evenif f �p�1� � 0,
and it is called odd if f �p�1� � 1. Note that even and odd numbers alter-
nate through the whole range of representable numbers. This is trivial to
see for numbers with the same exponent. Consecutive numbers with dif-
ferent exponent have significands 0, which is even, and 1� �1p�1�, which
is odd.

/���( ���������� �� !�������

One should always work on as high an abstraction level as possible, but
not on a higher level. In what follows, we will be able to argue for very
long periods about numbers instead of their representations.

So far, we have used the letters eand f for the representations e� e�n�
1 : 0� and f � f �0�� f �1 : p�1� of the exponent and of the significand. Since
there is a constant shortage of letters in mathematical texts, we will use
single letters like eand f also for the valuesof exponents and significands,
respectively. Obviously, we could use �e� and � f �0�� f � instead, but that

#��
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would mess up the formulae in later calculations. Using the same notation
for two things without proper warning can be the source of very serious
confusion. On the other hand, confusion can be avoided, as long as

� we are aware that the letters e and f are used with two meanings
depending on context, and

� the context indicates whether we are talking about values or repre-
sentations.

But what do we do if we want to talk about values and representations
in the same context? In such a case, single letters are used exclusively for
values. Thus, we would, for instance, write

e � ��e�n�1���bias and f � �� f �0�� f �1 : p�1����

but we would not write

e � ��e��bias nor f � �� f ���

��� �
����#

/���� 8�-�	��
 5�	�

We denote by R the set of representable numbers and by

R ∞ � R ��∞��∞��

Since R is not closed under the arithmetic operations, one rounds the result
of an arithmetic operation to a representable number or to plus infinity or
minus infinity. Thus, a rounding is a function

r : RI � R ∞�

mapping real numbers x to rounded values r�x�. The IEEE standard defines
four rounding modes, which are

� ru round up,

� rd round down,

� rz round to zero, and

� rne round to nearest even.

#�#
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emax2 +1Xmax Xmax

emax

*

2 - p

�	
��� ��� Geometry of X�

max

The first three modes have the obvious meaning

ru�x� � min�y� R ∞ � x� y�

rd�x� � max�y� R ∞ � x� y�

rz�x� �

�
rd�x� if x� 0
ru�x� if x� 0

The fourth rounding mode is more complicated to define. For any x with
�Xmax� x� Xmax, one defines rne�x� as a representable number y closest
to x. If there are two such numbers y, one chooses the number with even
significand. Let

X

max � 2emax�2�2�p�

(see figure 7.2). This number is odd, and thus, it is the smallest number,
that would be rounded by the above rules to 2emax�1 if that would be a
representable number. For x �� ��Xmax�Xmax�, one defines

rne�x� �

��
�

∞ if X

max� x

Xmax if Xmax� x� X

max

�Xmax if �Xmax�� x��Xmax

�∞ if x��X

max

The above definition can be simplified to

� For �X

max� x� X


max, one defines rne�x� as a representable number
y closest to x. If there are two such numbers y, one chooses the
number with even significand.

� For the remaining x, one defines

rne�x� �

�
∞ if X


max� x

�∞ if x��X

max
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Let
r : RI � R ∞

be one of the four rounding functions defined above, and let

Æ : RI 2 � RI

be an arithmetic operation. Then, the corresponding operation

ÆI : R 2 � R ∞

in IEEE arithmetic is – almost – defined by

xÆI y � r�xÆy��

The result has to be represented in IEEE format. The definition will be
completed in the section on exceptions.

If we follow the above rule literally, we first compute an exact result, and
then we round. The computation of exact results might require very long
intermediate results (imagine the computation of Xmax�Xmin). In the case
of divisions the final result will, in general, not even have a significand of
finite length, e.g., think of 1/3. Therefore, one often replaces the two exact
operands x and y by appropriate inexact – and in general shorter – operands
x� and y� such that the following basic identity holds

r�xÆy� � r�x� Æy��� (7.1)

This means that no harm is done by working with inexact operands,
because after rounding the result is the same as if the exact operands had
been used. Identities like (7.1) need, of course, proof. Large parts of
this section are therefore devoted to the development of an algebra which
permits to formulate such proofs in a natural and concise way.

/���# ,�������
 ��	 !������:����� �����

Factorings are an abstract version of IEEE floating point numbers. In fac-
torings, the representations of exponents and significands are simply re-
placed by values. This turns out to be the right level of abstraction for the
arguments that follow. Formally, a factoring is a triple �s�e� f � where

1. s� �0�1� is called the sign bit ,

#�'
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2. e is an integer, it is called the exponent, and

3. f is a non-negative real number, it is called the significand.

We say that f is normal if f � �1�2� and that f is denormalif f � �0�1�.
We say that a factoring is normal if f is normal and that a factoring is
denormalif e� emin and f is denormal. Note that f �� �0�2� is possible.
In this case, the factoring is neither normal nor denormal. The valueof a
factoring is defined as

��s�e� f �� � ��1�s �2e � f �

For real numbers x, we say that �s�e� f � is a factoring of xif

x � ��s�e� f ��

i.e., if the value of the factoring is x. For x � ∞ and x � �∞ we provide
the special factorings �s�∞�0� with

��s�∞�0�� � ��1�s �∞�

We consider the special factorings both normal and IEEE-normal.
Obviously, there are infinitely many factorings for any number x, but

only one of them is normal. The function η̂ which maps every non-zero
x� RI ��∞��∞� to the unique normal factoring �s� ê� f̂ � of x is called nor-
malization shift. Note that arbitrary real numbers can only be factored if
the exponent range is neither bounded from above nor from below.

A factoring �s�e� f � of x is called IEEE-normalif

�s�e� f � is

�
normal if �x� � 2emin

denormal if �x� � 2emin�

The function η which maps every value x� RI ��∞��∞� to the unique
IEEE-normal factoring of x is called IEEE normalization shift. The IEEE-
normal factoring of Zero is unique except for the sign. Note that arbi-
trary real numbers can only be IEEE factored, if the exponent range is not
bounded from above. Finally observe, that

η̂�x� � η�x� if �x� � 2emin�

/���& ��
���� �� 8�-�	��
 ��	 �����%  ��

We define a family of equivalence relations on the real numbers which will
help us identify real numbers that are rounded to the same value.
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�	
��� �� Partitioning of the real numbers

Let α be an integer. Let q range over all integers, then the open intervals
�q � 2�α ��q� 1� � 2�α� and the singletons �q � 2�α� form a partition of the
real numbers (see figure 7.3). Note that 0 is always an endpoint of two
intervals.

Two real numbers x and y are called α–equivalent if according to this
partition they are in the same equivalence class, i.e., if they lie either in the
same open interval or if they both coincide with the same endpoint of an
interval. We use for this the notation x�α y. Thus, for some integer q we
have

x�α y 
 x�y� �q �2�α ��q�1� �2�α�

or x� y� q �2�α �

From each equivalence class, we pick a representative. For singleton
sets there is no choice, and from each open interval we pick the midpoint.
This defines for each real number x the α–representativeof x:

�x�α �

�
�q�0�5� �2�α if x� �q �2�α ��q�1� �2�α�
x if x� q �2�α �

for some integer q.
Observe that an α-representative is always the value of a binary frac-

tion with α � 1 bits after the binary point. We list a few simple rules for
computations with α–equivalences and α–representatives.

Let x�α x�. By mirroring intervals at the origin, we see

�x�α �x� and ��x�α ���x�α �

Stretching intervals by a factor of two gives

2x�α�1 2x� and �2x�α�1 � 2�x�α �

and shrinking intervals by a factor of two gives

x�2 �α�1 x��2 and �x�2�α�1 � �x�α�2�

Induction gives for arbitrary integers e

2e �x�α�e 2e �x� and �2e �x�α�e � 2e � �x�α �

#�/
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�	
��� ��� Geometry of the values y, y�2e�p, and z

Let y be a multiple of 2�α . Translation of intervals by y yields

x�y�α x��y�

Let β � α, then the equivalence classes of �α are a refinement of the
equivalence classes of β, and one can conclude

x�β x��

The salient properties of the above definition are, that under certain cir-
cumstances rounding x and its representative leads to the same result, and
that representatives are very easy to compute. This is made precise in the
following lemmas.

Let η�x� � �s�e� f �, and let r be an IEEE rounding mode, then����� ��	 �

1. r�x� � r��x�p�e�

2. η��x�p�e� � �s�e� � f �p�

3. if x� �p�e x, then r�x� � r�x��.

For the absolute value of x, we have�����

�x� �

�
�2e�2e�1� if f is normal
�0�2emin� if f is denormal�

In this interval, representable numbers have a distance of

d � 2e��p�1��

Thus, x is sandwiched between two numbers

y � q �2e��p�1�

z � �q�1� �2e��p�1�

as depicted in figure 7.4. Obviously, x� �y�z� can only be rounded to y, to

#�)
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y�2e�p, or to z. For any rounding mode it suffices to know �x�p�e in order
to make this decision. This proves part one.

Since

�x�p�e � ���1�s �2e � f �p�e

� ��1�s � �2e � f �p�e

� ��1�s �2e � � f �p�

we know that �s�e� � f �p� is a factoring of �x�p�e. This factoring is IEEE-
normal because

� �s�e� f � is IEEE-normal,

� �x� � 2emin 
 ��x�p�e� � 2emin, and

� f is normal iff � f �p is normal.

This proves part 2. Part 3 follows immediately from part 1, because

r�x� � r��x�p�e� � r��x��p�e� � r ��x��

���

The next lemma states how to get p-representatives of the value of a
binary fraction by a so called sticky bitcomputation. Such a computation
simply replaces all bits f �p�1 : v� by the OR of these bits.

Let f � f ��u : 0�� f �1 : v� be a binary fraction. Let � ����� ���

g � f ��u : 0�� f �1 : p��

and let

s �
v�

i�p�1

f �i�

be the sticky bit of f for position p (see figure 7.5), then

�� f ��p � �gs��

If s� 0 then � f � � �gs�, and there is nothing to show. In the other case, �����
we have

�g� � f � �g��
v

∑
i�p�1

f �i� �2�i � �g��2�p�

Thus,
�� f ��p � �g��2��p�1� � �g1� � �gs��

���
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f[-u : 0] . f[1 : p] f[p+1 : v]

OR-tree

g s

f :

�	
��� ��� Sticky bit s of f for position p

/���' 8�-�	��
 ���� ��������	 1������� 8��
�

We define the set R̂ of real numbers that would be representable if the
exponent range would be unlimited. This is simply the set of numbers

��1�s �2e � �1� f �1 : p�1��

where e is an arbitrary integer. Moreover, we include 0 �R̂ .
For every rounding mode r , we can define a corresponding rounding

mode
r̂ : RI � R̂ �

For the rounding modes r̂u� r̂d� r̂z one simply replaces R by R̂ in the defi-
nition of the rounding mode. One defines r̂ne�x� as a number in R̂ closest
to x. In case of a tie, the one with an even significand is chosen.

Observe that

r�x� � r̂�x� if 2emin � �x� � Xmax�

Let η̂�x� � �s� ê� f̂ �. Along the lines of the proof of lemma 7.1, one shows
the following lemma:

Let x �� 0, let η̂�x� � �s� ê� f̂ �, and let r be an IEEE rounding mode, then����� ��
 �

1. r̂�x� � r̂��x�p�ê�

2. �η̂��x�p�ê�� � �s� ê� � f̂ �p�

3. if x� �p�ê x, thenr̂�x� � r̂�x��.

/���( +����������� ������� ��� 8�-�	��


Let r be any rounding mode. We would like to break the problem of com-
puting r�x� into the following four steps:
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1. IEEE normalization shift. This step computes the IEEE-normal fac-

toring of x

η�x� � �s�e� f ��

2. Significand round. This step computes the rounded significand

f1 � sigrd�s� f ��

The function sigrd will be defined below separately for each round-
ing mode. It will produce results f1 in the range �0�2�.

3. Post normalization. This step normalizes the result in the case f1 � 2

�e2� f2� � post�e� f1� �

�
�e1 �1� f2�2� if f1 � 2
�e� f1� otherwise

4. Exponent round. This step takes care of cases where the intermediate
result ��1�s �2e2 � f2 lies outside of R . It computes

�e3� f3� � exprd�s�e2� f2��

The function exprdwill be defined below separately for each round-
ing mode.

We will have to define four functions sgrd and four functions exprd such
that we can prove

For all rounding modes r holds � ������ ���

�s�e3� f3� � η�r�x���

This means that the result �s�e3� f3� of the rounding algorithm is an
IEEE-normal factoring of the correctly rounded result.

Let η�x� � �s�e� f �, then f � �0�2�. Significand rounding rounds f to an
element in the set

F � ��g�0��g�1 : p�1�� � g�i� � �0�1�� for all i� � �2��

For any f , the binary fractions

y � �y��1 : 0��y�1 : p�1�� � max�y� F � f � y�
y� � �y���1 : 0��y��1 : p�1�� � min�y� F � f � y�

##�



������� /

IEEE FLOATING

POINT STANDARD

AND THEORY OF

ROUNDING

satisfy y� f � y�. The definitions for the four rounding modes are

sigrdu�s� f � �

�
y���1 : p�1� if s� 0
y��1 : p�1� if s� 1

sigrdd�s� f � �

�
y��1 : p�1� if s� 0
y���1 : p�1� if s� 1

sigrdz�s� f � � y��1 : p�1��

In case of round to nearest even, sigrdne�s� f � is a binary fraction g closest
to f with g��1 : 0��g�1 : p� 1� � F . In case of a tie one chooses the one
with g�p�1� � 0. Let f � � � f �0�� f �1 : p�1�1�, then

sigrdne�s� f � �

��
�

y��1 : p�1� if f � f �

or � f � f � � f �p�1� � 0�

y���1 : p�1� if � f � f � � � f �p�1� � 1�
or f � f �

(7.2)

We define
x1 � ��s�e� f1�� � ��1�s �2e � f1�

The following lemma summarizes the properties of the significand round-
ing:

����� ��� �

x1 �

�
r�x� if �x� � Xmax

r̂�x� if �x�� Xmax

For f � �1�2�, x lies in the interval �2e�2e�1� if s � 0, and it lies in�����
��2e�1�2e� if s� 1. Mirroring this interval at the origin in case of s� 1
and scaling it by 2�e translates exactly from rounding with r̂ to signifi-
cand rounding in the interval �1�2�. Mirroring if s� 1 and scaling by 2e

translates in the other direction.
If f � �0�1� then e� emin. Mirroring if s� 1 and scaling by 2�emin trans-

lates from rounding with r into significand rounding in the interval �0�1�.
Mirroring if s� 1 and scaling by 2emin translates in the other direction.

Finally observe that r�x� � r̂�x� if �x� � Xmax and f is normal.���

The following lemma summarizes the properties of the post normaliza-
tion:

����� ��� � �s�e2� f2� � η�x1��

##�
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Post normalization obviously preserves value:

x1 � x2 :� ��s�e2� f2�� � ��1�s �2e2 � f2�

Thus, we only have to show that �s�e2� f2� is IEEE-normal. We started out
with η�x� � �s�e� f � which is IEEE-normal. Thus,

1. f is normal if �x� � 2emin, and

2. f is denormal and e� emin if �x� � 2emin�

If �x� � 2emin, then �x1� � 2emin and f1 � �1�2�. If f1 � �1�2�, then f2 � f1 is
normal, and if f1 � 2, then f2 � 1 is normal as well.

If �x� � 2emin, then �x1� � 2emin or �x1� � 2emin, and e2 � e� emin. In the
first case, f2 � f1 � �0�1� is denormal. In the second case, f2 � f1 � 1 is
normal. ���

We proceed to specify the four functions exprd.

exrdu�s�e2� f2� �

��
�

�∞�0� if e2 � emax and s� 0
�emax�2�2��p�1�� if e2 � emax and s� 1
�e2� f2� if e2 � emax

exrdd�s�e2� f2� �

��
�

�∞�0� if e2 � emax and s� 1
�emax�2�2��p�1�� if e2 � emax and s� 0
�e2� f2� if e2 � emax

exrdz�s�e2� f2� �

�
�emax�2�2��p�1�� if e2 � emax

�e2� f2� if e2 � emax

exrdne�s�e2� f2� �

�
�∞�0� if e2 � emax

�e2� f2� if e2 � emax

Let
x3 � ��s�e3� f3�� � ��1�s �2e3 � f3�

We can proceed to prove the statement

�s�e3� f3� � η�r�x��

of the theorem.

Proof of Theorem 7.4 �����
If �e3� f3� � �e2� f2�, then �s�e3� f3� is IEEE-normal by lemma 7.6. In all
other cases, the factoring �s�e3� f3� is obviously IEEE-normal taking into
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account the convention that the special factorings are IEEE-normal. Thus,
it remains to show that

x3 � r�x��

If �x� � Xmax, then lemma 7.5 implies that

x2 � x1 � r�x��

According to lemma 7.6, �s�e2� f2� is an IEEE-normal factoring of x1, and
therefore

e2 � emax�

Thus, we can conclude that

�e3� f3� � �e2� f2� and x3 � x2 � r�x��

Now let �x�� Xmax. One then easily verifies for all rounding modes r:

r̂�x� �� r�x�

 r̂��x�� � Xmax


 r̂��x�� � 2emax�1


 e2 � emax by lemmas 7.5 and 7.6

(7.3)

Recall that in the definition of rne, the threshold X

max was chosen such

that this holds. We now can complete the proof of the theorem. For r � ru,
we have

x3 � ��s�e3� f3��

�

��
�

∞ if e2 � emax and s� 0
�Xmax if e2 � emax and s� 1
x2 if e2 � emax

�

��
�

∞ if r̂�x� �� r�x� and s� 0
�Xmax if r̂�x� �� r�x� and s� 1
x2 if r̂�x� � r�x�

� r�x�

because x2 � r̂�x� by lemma 7.5.
The proof for the other three rounding modes is completely analogous.���

We summarize the results of this subsection: Let η�x� � �s�e� f �, it then
holds

η�r�x�� � �s�exprd�s� post�e�sigrd�s� f ����� (7.4)

Exactly along the same lines, one shows for x �� 0 and η̂�x� � �s� ê� f̂ � that

r̂�x� � ��s� ê�sigrd�s� f̂ ����

and then
η̂�r̂�x�� � �s� post�ê�sigrd�s� f̂ ���� (7.5)

##&
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symbol meaning

INV invalid operation
DBZ division by 0
OVF overflow
UNF underflow
INX inexact result

/���/ 8�-�	��
 ��
������

By the lemmas 7.1 and 7.2, we can substitute in the above algorithms f and
f̂ by their p-representatives. This gives the following rounding algorithms:

� For limited exponent range: let η�x� � �s�e� f �, then

η�r�x�� � �s�exprd�s� post�e�sigrd�s� � f �p���� (7.6)

� For unlimited exponent range: let x �� 0 and η̂�x� � �s� ê� f̂ �, then

η̂�r̂�x�� � �s� post�ê�sigrd�s� � f̂ �p�ê���� (7.7)

��� %&�����
��

�
HE IEEE floating point standard defines the five exceptions of table
7.2. These exceptions activate event signals of maskable interrupts.

The mask bits for these interrupts are also called enable bits. Here, we will
be concerned with the enable bits OVFenand UNFen for overflow and
underflow.

Implementation of the first two exceptions will turn out to be easy. They
can only occur if at least one operand is from the set �0�∞��∞�NaN�. For
each operation, these two exceptions therefore just require a straightfor-
ward bookkeeping on the type of the operands (section 7.4).

According to the standard, arithmetic on infinity and NaN is always
exact and therefore signals no exceptions, except for invalid operations.
Thus, the last three exceptions can only occur if both operands are finite
numbers. These exceptions depend on the exact result of the arithmetic
operation but not on the operation itself. Therefore, we will now concen-
trate on situations, where a finite but not necessarily representable number

##'
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x�RI is the exactresult of an operation

x� aÆb where a�b� R �

In this section, we will also complete the definition of the result of an
arithmetic IEEE operation, given that both operands are finite, non-zero,
representable numbers. The arithmetic on infinity, zero, and NaN will be
defined in section 7.4.

/�#�� ����C��

An overflowoccurs, if the absolute value of r̂�x� exceeds Xmax, i.e.,

OVF�x� 
 �r̂�x��� Xmax�

Let x� �p�ê x. Since r̂�x� � r̂��x�p�ê�, it follows that

OVF�x� 
 OVF��x�p�ê� 
 OVF�x���

Only results x with �x�� Xmaxcan cause overflows, and for these results,
we have η�x� � η̂�x�� Let

η�x� � η̂�x� � �s�e� f ��

By lemma 7.5, we then have

OVF�x� 
 2e �sigrd�s� f � � Xmax


 e� emax or
e� emax and sigrd�s� f � � 2

(7.8)

The first case is called overflow before rounding, the second case over-
flow after rounding.

/�#�� ��	��C��

Informally speaking, an underflowoccurs if two conditions are fulfilled,
namely

1. tininess: the result is below 2emin and

2. loss of accuracy: accuracy is lost, when the result is represented as
a denormalized floating point number.

The IEEE standard gives twodefinitions for each of these conditions. Thus,
the standard gives four definitions of underflow. It is, however, required
that the same definition of underflow is used for all operations.

##(
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The two definitions for tininess are tiny–after–rounding

TINYa�x� 
 0 � �r̂�x��� 2emin

and tiny–before–rounding

TINYb�x� 
 0 � �x� � 2emin�

In the four rounding modes, we have

TINYa�x� 


��
�

0 � �x�� 2emin � �1�2��p�1�� if rne

0 � �x�� 2emin if rz

�2emin � x� 2emin � �1�2�p� � x �� 0 if ru

�2emin � �1�2�p�� x� 2emin � x �� 0 if rd

For all rounding modes, one easily verifies that tiny-after-rounding im-
plies tiny-before-rounding

TINYa�x� � TINYb�x��

Let x �� 0 and η̂�x� � �s� ê� f̂ �, it immediately follows that

TINYb�x� 
 TINYb��x�p�ê�

As r̂�x� � r̂��x�p�ê�, we can also conclude that

TINYa�x� 
 TINYa��x�p�ê��

3� �� ���-���%
The two definitions for loss of accuracy are denormalization loss:

LOSSa�x� 
 r�x� �� r̂�x�

and inexact result
LOSSb�x� 
 r�x� �� x�

An example for denormalization loss is x� �0�0p1� because

rne�x� � 0 and r̂�x� � x�

A denormalization loss implies an inexact result, i.e., � ����� ���

LOSSa�x� � LOSSb�x��

The lemma is proven by contradiction. Assume r�x� � x, then x�R �R̂ � �����
and it follows that

r̂�x� � x � r�x��

���
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Let η̂�x� � �s� ê� f̂ � and η�x� � �s�e� f �. By definition,

�x�p�ê �p�ê x�

Since ê� e, we have
�x�p�ê �p�e x�

and hence,
r��x�p�ê� � r�x��

This shows, that
LOSSb�x� 
 LOSSb��x�p�ê��

As r̂�x� � r̂��x�p�ê�, we can conclude

LOSSa�x� 
 LOSSa��x�p�ê��

Hence, for any definition of LOSSand TINY, we have

LOSS�x� 
 LOSS��x�p�ê�

TINY�x� 
 TINY��x�p�ê��

and therefore, the conditions can always be checked with the representative
�x�p�ê instead of with x.

Detecting LOSSb�x� is particularly simple. If η�x� � �s�e� f � and �x� �
Xmax, then exponent rounding does not take place and

r̂�x� �� x 
 sigrd�s� f � �� f


 sigrd�s� � f �p� �� � f �p�

Whether the underflow exception UNF should be signaled at all depends
in the following way on the underflow enable flag UNFen:

UNF 


�
TINY�LOSS if �UNFen
TINY if UNFen

/�#�# ;�����	 1�������

In this subsection we complete the definition of the resultof an IEEE float-
ing point operation. Let

α � 3 �2n�2�

let a�b� R be representable numbers, and for Æ � ���������, let

x� aÆb

##)
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be the exact result. The proper definition of the result of the IEEE operation
is then

aÆI b � r�y�

where

y �

��
�

x �2�α if OVF�x��OVFen
x �2α if UNF�x��UNFen
x otherwise.

Thus, whenever non masked overflows or underflows occur, the expo-
nent of the result is adjusted. For some reason, this is called wrapping the
exponent. The rounded adjustedresult is then given to the interrupt service
routine. In such cases one would of course hope that r�y� itself is a normal
representable number. This is asserted in the following lemma:

The adjusted result lies strictly between2emin and Xmax: � ����� ��(

1. OVF�x� � 2emin � x �2�α � Xmax

2. UNF�x� � 2emin � x �2α � Xmax

We only show the lemma for multiplication in the case of overflow. The �����
remaining cases are handled in a completely analogous way.

The largest possible product of two representable numbers is

x � X2
max� �2emax�1�2 � 22emax�2�

For the exponent, it therefore holds

2 �emax�2�α � 2 � �2n�1�1��2�3 �2n�2

� 4 �2n�2�3 �2n�2

� 2n�2 � emax�

and thus, �x�� Xmax.
There cannot be an overflow unless

�x� � Xmax � 2emax�

For the exponents, we conclude that

emax�α � 2n�1�1�3 �2n�2

� �2n�2�1

� �2n�1 �2 � emin�

Thus, it also holds that �x�� 2emin. ���
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The following lemma shows how to obtain a factoring of r�y� from a
factoring of x.

Let η̂�r̂�x�� � �s�u�v�, then����� ��) �

1. OVF�x� � η�x �2�α� � �s�u�α�v��

2. UNF�x� � η�x �2α� � �s�u�α�v��

We only show part 1; the proof of part 2 is completely analogous. Let�����

η̂�x� � �s� ê� f̂ ��

then
η̂�x �2�α� � �s� ê�α� f̂ ��

Define f1 and �u�v� as

f1 � sigrd�s� � f̂ �p�ê�

�u�v� � post�ê� f1��

The definition of post normalization implies

�u�α�v� � post�ê�α� f1��

Applying the rounding algorithm for unlimited exponent range (equation
7.7) gives:

η̂�r̂�x�� � �s� post�ê� f1�� � �s�u�v�

and
η̂�r̂�x �2�α�� � �s� post�ê�α� f1�� � �s�u�α�v��

Lemma 7.8 implies

2emin � �y�� �x� �2�α � Xmax�

For such numbers, we have

2emin � r��y�� � r̂�y� � Xmax�

It follows that
η�r�y�� � η̂�r̂�y��

and part 1 of the lemma is proven.���
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Let

y�

��
�

x �2�α if OVF�x��OVFen
x �2α if UNF�x��UNFen
x otherwise.

be the exact result of an IEEE operation, where the exponent is wrapped in
case an enabled overflow or underflow occurs. The IEEE standard defines
the occurrence of an inexact result by

INX�y� 
 r�y� �� y � �OVF�y� � �OVFen��

So far, we have only considered finite results y. For such results, OVF�y�
always implies r�y� �� y and the second condition is redundant. Hence, we
have for finite y

INX�y� 
 r�y� �� y�

When dealing with special operands ∞��∞ and NaN, computations like
∞�∞ � ∞ with r�∞� � ∞ will be permitted. However, the IEEE standard
defines the arithmetic on infinity and NaN to be always exact. Thus, the
exceptions INX, OVF and UNF never occur when special operands are
involved.

Let η�x� � �s�e� f � and η̂�x� � �s� ê� f̂ �. If

�OVF�x� � OVFen� � �UNF�x� � UNFen�

holds, then exponent rounding does not take place, and significand round-
ing is the only source of inaccuracy. Thus, we have in this case

INX�y� 
 sigrd�s� f̂ � �� f̂


 sigrd�s� � f̂ �p� �� � f̂ �p�

In all other cases we have

INX�y� 
 sigrd�s� f � �� f � OVF�x�


 sigrd�s� � f �p� �� � f �p � OVF��x�p�e��

��� ���������� 
�  ������ 2�������

�
N THE IEEE floating point standard [Ins85], the infinity arithmetic and
the arithmetic with zeros and NaNs are treated as special cases. This

special arithmetic is considered to be always exact. Nevertheless, there
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are situations in which an invalid operation exception INX or a division by
zero exception DBZ can occur.

In the following subsections, we specify this special arithmetic and the
possible exceptions for any IEEE operation. The factorings of the numbers
a and b are denoted by �sa�ea� fa� and �sb�eb� fb� respectively.

/�&�� ��������� ���� !�!

There are two different kinds of not a number, signaling NaN and quiet
NaN. Let e� e�n� 1 : 0� and f � � f �1 : p� 1�. The value represented by
the floating point number �s�e� f �� is a NaN if e� 1n and f � �� 0p�1. We
chose f �1� � 1 for the quiet and f �1� � 0 for the signaling variety of NaN1.

��s�e� f �� �

�
quiet NaN if e� 1n � f �1� � 1
signaling NaN if e� 1n � f �1� � 0 � f � �� 0p�1�

A signaling NaN signal an invalid operation exception INV whenever
used as an operand. However, copying a signaling NaN without a change
of format does not signal INV. This also applies to operations which only
modify the sign, e.g., the absolute value and reversed sign2 operations.

If an arithmetic operation involves one or two input NaNs, none of them
signaling, the delivered result must be one of the input NaNs. In the spec-
ifications of the arithmetic operations, we therefore distinguish between
three types of NaNs:

� qNAN denotes an arbitrary quiet NaN,

� sNAN denotes an arbitrary signaling NaN, and

� qNAN
 indicates that the result must be one of the quiet input NaNs.

For the absolute value and reversed sign operations, this restriction does
not apply. These two operations modify the sign bit independent of the
type of the operand.

1The IEEE standard only specifies that the exponent e�n�1 : 0� � 1n is reserved for in-
finity and NaN; further details of the coding are left to the implementation. For infinity and
the two types of NaNs we therefore chose the coding used in the Intel Pentium Processor
[Int95]

2x :��x
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����� �� Result of the addition; x and y denote finite numbers.

a�b b
a y �∞ �∞ qNAN sNAN

x r�x�y� �∞ �∞
�∞ �∞ �∞ qNAN
�∞ �∞ qNAN �∞

qNAN qNAN


sNAN qNAN

/�&�� �		����� ��	 �-���������

The subtraction of two representable numbers a and b can be reduced to
the addition of the two numbers a and c, where c has the factoring

�sc�ec� fc� � �sb�eb� fb��

In the following, we therefore just focus on the addition of two numbers.
Table 7.3 lists the result for the different types of operands. There are just
a few cases in which floating point exceptions do or might occur:

� An INV exception does occur whenever

– one of the operands a� b is a signaling NaN, or

– when performing the operation ‘�∞�∞’ or ‘�∞�∞’.

� The exceptions OVF, UNF and INX can only occur when adding two
finite non-zero numbers. However, it depends on the value of the
exact result, whether one of these interrupts occurs or not (section
7.3).

��
�
Since zero has two representations, i.e., �0 and �0, special attention must
be paid to the sign of a zero result a�b. In case of a subtraction, the sign
of a zero result depends on the rounding mode

x�x � �x�x �

�
�0 if ru� rne� rz

�0 if rd�

When adding two zero numbers with like signs, the sum retains the sign of
the first operand, i.e., for x� ��0��0�,

x�x � x� ��x� � x�

#&#
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����� ��� Result of the multiplication a�b; x and y denote finite non-zero numbers.

a �b b
a y 0 ∞ qNAN sNAN

x r�x �y� 0 ∞
0 0 0 qNAN
∞ ∞ qNAN ∞

qNAN qNAN


sNAN qNAN

/�&�# 5-������������

Table 7.4 lists the result of the multiplication a � b for the different types
of operands. If the result of the multiplication is a NaN, the sign does not
matter. In any other case, the sign of the result c� a �b is the exclusive or
of the operands’ signs:

sc � sa	sb�

There are just a few cases in which floating point exceptions do or might
occur:

� An INV exception does occur whenever

– one of the operands a� b is a signaling NaN, or

– when multiplying a zero and an infinity number, i.e., ‘0 �∞’ or
‘∞ �0’.

� The exceptions OVF, UNF and INX depend on the value of the exact
result (section 7.3); they can only occur when both operands are
finite non-zero numbers.

/�&�& +������

Table 7.5 lists the result of the division a�b for the different types of
operands. The sign of the result is determined as for the multiplication.
This means that except for a NaN, the sign of the result c is the exclusive
or of the operands’ signs: sc � sa	sb.

In the following cases, the division signals a floating point exception:

� An INV exception does occur whenever

#&&
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����� ��� Result of the division a�b; x and y denote finite non-zero numbers.

a�b b
a y 0 ∞ qNAN sNAN

x r�x�y� ∞ 0
0 0 qNAN 0
∞ ∞ ∞ qNAN

qNAN qNAN


sNAN qNAN

– one of the operands a� b is a signaling NaN, or

– when performing the operation ‘0�0’ or ∞�∞’.

� An DBZ (division by zero) exception is signaled whenever dividing
a finite non-zero number by zero.

� The exceptions OVF, UNF and INX depend on the value of the exact
result (section 7.3); they can only occur when both operands are
finite non-zero numbers.

/�&�' ���������

The comparison operation is based on the four basic relations greater than,
less than, equal and unordered. These relations are defined over the set
R ∞�NaN consisting of all representable numbers, the two infinities, and
NaN:

R ∞�NaN � R � ��∞��∞� NaN��

Let the binary relation Æ � ����� �� be defined over the real numbers
RI , the corresponding IEEE floating point relation is denoted by ÆI . For
any representable number x � R ∞, none of the pairs �x�NaN�, �NaN�x�
and �NaN�NaN� is an element of ÆI . Thus, the relation ÆI is a subset of
R 2

∞.

� IEEE floating point relations ignore the sign of zero, i.e., �0 ��0.
Thus, over the set of representable numbers, the relations Æ and ÆI
are the same:

�x�y� R � RI x ÆI y 
 x Æ y

#&'
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����� ��� Floating point predicates. The value 1 (0) denotes that the relation is
true (false). Predicates marked with  are not indigenous to the IEEE standard.

predicate greater less equal unordered INV if
true false � � � ? unordered

F
 T
 0 0 0 0
UN OR 0 0 0 1
EQ NEQ 0 0 1 0
UEQ OGL 0 0 1 1
OLT UGE 0 1 0 0

No

ULT OGE 0 1 0 1
OLE UGT 0 1 1 0
ULE OGT 0 1 1 1
SF ST 0 0 0 0
NGLE GLE 0 0 0 1
SEQ
 SNE
 0 0 1 0
NGL GL 0 0 1 1
LT NLT 0 1 0 0

Yes

NGE GE 0 1 0 1
LE NLE 0 1 1 0
NGT
 GT
 0 1 1 1

� The two infinities (�∞ and �∞) are interpreted in the usual way. For
any finite representable x� R , we have

�∞ �I x �I �∞�

NaN compares unorderedwith every representable number and with
NaN. Thus, for every x � R ∞�NaN, the pairs �x�NaN� and �NaN�x� are
elements of the relation ‘unordered’, and that are the only elements. Let
this relation be denoted by the symbol ?, then

? � ��x�NaN�� �NaN�x� � x� R ∞�NaN��

The comparison of two operands x and y delivers the value Æ�x�y� of a
specific binary predicate

Æ : R ∞�NaN�R ∞�NaN � �0� 1��

Table 7.6 lists all the predicates in question and how they can be obtained
from the four basic relations. The predicates OLT and UGE, for example,

#&(
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can be expressed as

OLT�x�y� � UGE�x�y� � �x�I y� � �x�I y� � �x�I y� � �x?y��

Note that for every predicate the implementation must also provide its
negation.

In addition to the boolean value Æ�x�y�, the comparison also signals an
invalid operation. With respect to the flag INV, the predicates fall into one
of two classes. The first 16 predicates only signal INV when comparing a
signaling NaN, whereas the remaining 16 predicates also signal INV when
the operands are unordered.

Comparisons are always exact and never overflow or underflow. Thus,
INV is the only IEEE floating point exception signaled by a comparison,
and the flags of the remaining exceptions are all inactive:

INX � OVF � UNF � DBZ � 0�

/�&�( ,����� ���������

Conversions have to be possible between the two floating point formats and
the integer format. Integers are represented as 32-bit two’s complement
numbers and lie in the set

INT � T32 � ��231� � � � �231�1��

Floating point numbers are represented with an n-bit exponent and a p-
bit significand. The range of finite, representable numbers is bounded by
�Xmaxand Xmax, where Xmax� �1�2�p� �22n�1

. For single precision n� 8,
p� 24 and the finite, representable numbers lie in the range

R s � ���1�2�24� �2128� �1�2�24� �2128��

whereas for double precision n� 11, p� 53 and

R d � ���1�2�53� �21024� �1�2�53� �21024��

Table 7.7 lists the floating point exceptions which can be caused by the
different format conversions. The result of the conversion is rounded as
specified in section 7.2, even if the result is an integer. All four rounding
modes must be supported.
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����� ��� Floating point exceptions which can be caused by format conversions
(d: double precision floating point, s: single precision floating point, i: 32-bit
two’s complement integer)

INV DBZ OVF UNF INX

d � s + + + +
s� d +
i � s +
i � d
s� i + +
d � i + +

,������
 "���� ,����� ���������

Double precision covers a wider range of numbers than single precision,
and the numbers are represented with a larger precision. Thus, a conversion
from single to double precision is always exact and never overflows or
underflows, but that is not the case for a conversion from double to single
precision.

The conversion signals an invalid operation exception iff the operand
is a signaling NaN. Unlike the arithmetical operations, a quiet input NaN
cannot pass the conversion unchanged. Thus, in case of an input NaN, the
result of the conversion is always an arbitrary, quiet NaN.

.���
�� �� ,������
 "���� ���������

For either floating point format, we have

�Xmax��231 and 231 � Xmax�

Thus, any 32-bit integer x can be represented as a single or double pre-
cision floating point number. In case of double precision, the conversion
is performed without loss of precision, whereas the single precision result
might be inexact due to the 24-bit significand. Other floating point excep-
tions cannot occur.

,������
 "���� �� .���
�� ���������

When converting a floating point number into an integer, the result is usu-
ally inexact. The conversion signals an invalid operation if the input is a
NaN or infinity, or if the finite floating point input x exceeds the integer
range, i.e.,

x��231 or x� 231�

#&)
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In the latter case, a floating point overflow OVF is not signaled because the
result of the conversion is an integer.

���  ������� ��!������� ��� "����� ������#

�
HE TRANSLATION of the IEEE standard 754 [Ins85] into mathemat-
ical language and the theory of rounding presented in this chapter is

based on [EP97].

��� %&�������

�������� ��	 Prove or disprove: For all rounding modes, rounding to sin-
gle precision can be performed in two steps:

a) round to double precision, then

b) round the double precision result to single precision.

�������� ��� Complete the following proofs:

1. the proof of lemma 7.3

2. the proof of theorem 7.4 for rounding mode rne

3. the proof of lemma 7.9 part 2

�������� ��
 Let x be the unrounded result of the addition of two repre-
sentable numbers. Show:

1. TINYa�x�
 TINYb�x�

2. LOSSa�x� � LOSSb�x� � FALSE

�������� ��� Let x� 2e � f , where e is represented as a 14-bit two’s com-
plement number e� �e�13 : 0�� and the significand f is represented as a
57-bit binary fraction f � � f �0�� f �1 : 56��� Design circuits which compute
for double precision:

1. LOSSa�x�

2. LOSSb�x�

Compare the cost and delay of the two circuits.

#&*





Chapter

8
Floating Point Algorithms
and Data Paths

�
N THIS chapter the data paths of an IEEE-compatible floating point unit
FPU are developed. The unit is depicted in figure 8.2. It is capable

of handling single and double precision numbers under control of signals
like db�dbs�dbr� � � � (double). This requires embedding conventionsfor
embedding single precision numbers into 64-bit data.

The data inputs of the the unit are (packed) IEEE floating point numbers
with values

a � ��sA�eA�n�1 : 0�� fA�1 : p�1���

b � ��sB�eB�n�1 : 0�� fB�1 : p�1����

where

�n� p� �

�
�53�11� if db� 1
�24�8� if db� 0�

As shown in figure 8.1, single precision inputs are fed into the unit as
the left subwords of FA�63 : 0� and FB�63 : 0�. Thus,

�sA�eA�n�1 : 0�� fA�1 : p�1��

�

�
�FA2�63��FA2�62 : 55��FA2�54 : 32� if �db
�FA2�63��FA2�62 : 52��FA2�51 : 0� if db�

The b operand is embedded in the same way.
The unpacking unit detects special inputs 0�∞�NaN�sNaNand signals

them with the flags f la and f lb. For normal or denormal inputs, the hidden
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31 0

zx.s

63 32

�	
��� ��� Embedding a single precision floating point data x�s into a 64-bit word;
z is an arbitrary bit string. In our implementation z� x�s.

Mul/Div

(sq, eq, fq, flq)

(sa, ea, fa, fla) nan (sb, eb, fb,flb)

FXunp

(su, eu, fu, flu)

FCon
test/abs/neg

FXrnd

Fx

FPrnd
Fp

FA2 FB2

Add/Sub

(ss, es, fs, fls)

fccFc

Cvt

(sv, ev, fv, flv)

129 (sr, er, fr, flr)

Fr

unpacker FPunp fla’ flb’

�	
��� ��� Top level schematics of the floating point unit. The outputs Fc, Fx and
Fp consist of a 64-bit data and the floating point exception flags.

bit is unpacked, the exponent is converted to two’s complement represen-
tation, and single precision numbers are internally converted into double
precision numbers. Under control of signal normal, denormal significands
are normalized, and the shift distances lza�5 : 0� and lzb�5 : 0� of this nor-
malization shift are signaled.

Thus, the a-outputs of the unpacker satisfy for both single and double
precision numbers

a �

�
��1�sa �2�ea�10:0�� � � fa�0�� fa�1 : 52�� if normal� 0

��1�sa �2�ea�10:0����lza�5:0�� � � fa�0�� fa�1 : 52�� if normal� 1

The b-outputs of the unpacker satisfy an analogous equation. The normal-
ization shift activated by normal� 1 is performed for multiplications and
divisions but not for additions and subtractions.

#'�
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����� ��� Coding of the IEEE rounding modes

RM[1:0] symbol rounding mode

00 rz round to zero
01 rne round to nearest even
10 ru round up
11 rd round down

Let
x� aÆb

be the exact result of an arithmetic operation, and let

η̂�x� � �s� ê� f̂ ��

In the absence of special cases the converter, the multiply/divide unit and
the add/subtract unit deliver as inputs to the rounder the data �sr �er �12 :
0�� fr ��1 : 55�� satisfying

x �p�ê ��1�sr �2�er �12:0�� � � fr ��1 : 55���

and
fr ��1 : 0� � 00 � OVF�x� � 0�

Note that η̂�x� is undefined for x � 0. Thus, a result x � 0 is always
handled as a special case. Let

y�

��
�

x �2�α if OVF�x��OVFen
x �2α if UNF�x��UNFen
x otherwise�

The rounder then has to output r�y� coded as a (packed) IEEE floating
point number. The coding of the rounding modes is listed in table 8.1.

��� ��	 +���%
The cost of the floating point unit depicted in figure 8.2 can be expressed
as

CFPU � CFCon�CFPunp�CFXunp�CCvt�CMulDiv

�CAddSub�CFXrnd�CFPrnd�Cf f �129��4 �Cdriv�129��

We assume that all inputs of the FPU are taken from registers and therefore
have zero delay. The outputs Fx, Fp, Fc and f cc then have the following
accumulated delay:

AFPU � max�AFCon� AFXrnd� AFPrnd��

#'#
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sa, ea[10:0], lza[5:0], fa[0:52]

Unpack

F2[63:0]

FB2[63:0]

F2[63:0]

FA2[63:0]

Unpack

fla

4

flb

4

ZEROb, INFb, SNANb, NANb

ZERO,  INF,  SNAN,  NAN NaN select

nan

53

s,  e[10:0],  lz[5:0],  f[0:52],  einf,  fz,  ez,  h[1],  h[2:52] h[2:52],  s,  e[10:0],  lz[5:0],  f[0:52],  einf,  fz,  ez,  h[1]

sa  ha hb  sb

sb, eb[10:0], lzb[5:0], fb[0:52]

ZEROa, INFa, SNANa, NANa snan, fnan[1:52]

ZERO,  INF,  SNAN,  NAN

SpecUnp SpecUnp

�	
��� �� Top level schematics of the unpacker FPUNP

Note that AFCon includes the delay of the inputs f la� and f lb�. In our
implementation, the multiply/divide unit, the add/subtract unit and the two
rounders FPRND and FXRND have an additional register stage. Thus, the
FPU requires a minimal cycle time of

TFPU � max�TMulDiv�TAddSub�TFPrnd�TFXrnd� AFPU�Fr��∆�
AFPU�Fr� � max�AFPunp�DCvt�AFXunp�AMulDiv�AAddSub��Ddriv�

$�� 3����/��#

�
IGURE 8.3 depicts the schematics of an unpacking unit FPUNP which
unpacks two operands FA2 and FB2. For either operand, the unpack

unit comprises some registers (for pipelining), a circuit UNPACK and a
circuit SPECUNP. In addition, there is a circuit NANSELECT which deter-
mines the coding of an output NaN.

����-�� UNPACK

The circuit UNPACK (figure 8.4) has the following control inputs

� dbswhich indicates that a double precision source operand is pro-
cessed,

� and normal which requests a normalization of the significand.

#'&
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10

101

6

029

11

F2[62:55]F2[62:52]

71

8

7

ezd ezs

F2[63]

11 11

1 0dbs

s einf e[10:0] ez lz[5:0] f[0:52] fz h[1:52]

52

F2[54:32]F2[51:0]

h[1:52]

01dbs

normal
1 0

ez

h[0]inc(8)

zero(11)

zero(11)

zero(8)

zero(8)

zero(52)

CLS(53)

inc(11)

lzero(53)

�	
��� ��� Schematics of the circuit UNPACK

The data inputs are F2�63 : 0�. Single precision numbers are fed into the
unpacking circuit as the left subword of F2�63 : 0� (figure 8.1). Input data
are always interpreted as IEEE floating point numbers, i.e.,

�s�ein�n�1 : 0�� fin�1 : p�1��

�

�
�F2�63��F2�62:52��F2�51:0�� if dbs� 1
�F2�63��F2�62:55��F2�54:32�� if dbs� 0

We now explain the computation of the outputs. The flag

ein f � 1 
 ein � 1n

signals that the exponent is that of infinity or NaN. The signals ezdand
ezsindicate a denormal double or single precision input. The flag

ez� 1 
 ein � 0n

signals that the input is denormal.
If the (double or single precision) input is normal, then the correspond-

ing flag ezdor ezsis 0, the bits ein�n�1 : 0� are fed into an incrementer, and
the leading bit of the result is inverted. This converts the exponent from bi-
ased to two’s complement format. Sign extension produces a 11-bit two’s
complement number. For normal inputs we therefore have

�e�10 : 0�� � ��ein��bias�

#''
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For denormal inputs the last bit of ein is forced to 1, and the biased repre-
sentation of

emin � ��0n�11��

is fed into the incrementer. We conclude for denormal inputs

�e�10 : 0�� � emin�

The inverted flag h�0� � �ezsatisfies

h�0� �

�
1 for normal inputs
0 for denormal inputs�

Thus, h�0� is the hidden bit of the significand. Padding single precision
significands by 29 trailing zeros extends them to the length of double pre-
cision significands

h�1 : 52� �

�
F2�51 : 0� if dbs� 1
F2�54 : 32�029 if dbs� 0�

and we have
��h�1 : 52�� � �� fin�1 : p�1���

Hence, for normal or denormal inputs the binary fraction h�0��h�1 : 53�
represents the significand and

��s�ein� fin�� � ��1�s �2�e� � �h��

Let lz be the number of leading zeros of the string h�0 : 53�, then

lz � �lz�5 : 0���

In case of normal� 1 and a non-zero significand, the cyclic left shifter
CLS�53� produces a representation f �0�� f �1 : 53� of a normal significand
satisfying

�h� � � f � �2�lz�

For normal or denormal inputs we can summarize

��s�ein� fin�� �

�
��1�s �2�e��lz � � f � if normal� 1
��1�s �2�e� � � f � if normal� 0

Flag f z signals that fin�1 : p�1� consists of all zeros:

f z� 1 
 fin�1 : p�1� � 0p�1�

#'(
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Signal h�1� is used to distinguish the two varieties of NaN. We chose

h�1� � 0 for the signalingand h�1� � 1 for the quiet variety of NaN (sec-
tion 7.4.1). Inputs which are signaling NaNs produce an invalid operation
exception (INV).

The cost of circuit UNPACK can be expressed as

CUnpack � 2 �Czero�11��2 �Czero�8��Czero�52��Clz�53�

Cinc�11��Cinc�8��CCLS�53��22 �Cinv

Cmux�13��Cmux�53��Cmux�52��2 �Cor

With respect to the delay of circuit UNPACK, we distinguish two sets of
outputs. The outputs reg� �e� lz� f� are directly clocked into a register,
whereas the remaining outputs f lag� �s�ein f� f z�ez�h� are fed to circuits
SEPCUNP and NANSELECT:

DUnpack�reg� � Dzero�11��Dinv�Dmux�

max�Dinc�11��Dor� Dlz�53��DCLS�53��Dmux�

DUnpack� f lag� � Dmux�max�Dzero�11��Dinv� Dzero�52���

������� ���

From the flags ein f, h�1�, f z and ezone detects whether the input codes
zero, plus or minus infinity, a quiet or a signaling NaN in an obvious way:

ZERO � ez� f z

INF � ein f� f z

NAN � ein f�h�1�

SNAN � ein f� ��h�1��� f z� � ein f� �h�1� NOR f z��

This computation is performed by the circuit SPECUNP depicted in figure
8.5. This circuit has the following cost and delay:

CSpecUnp � 4 �Cand�Cnor

DSpecUnp � Dand�Dnor�

����-�� NANSELECT

This circuit determines the representation �snan� enan� fnan� of the output
NaN. According to the specifications of section 7.4, the output NaN pro-
vided by an arithmetic operation is of the quiet variety. Thus,

enan� 1n and fnan�1� � 1�

#'/
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einf

h[1]

fz

ez

ZERO INF NAN SNAN

�	
��� ��� Circuit SPECUNP

Quiet NaNs propagate through almost every arithmetic operation, i.e., if
one or two input NaNs are involved, none of them signaling, the delivered
result must be one of the input NaNs. If both operands are quiet NaNs, the
a operand is selected. However, in case of an invalid operation �INV �
1�, an arbitrary quiet NaN can be chosen. Thus, the circuit NANSELECT

determines the sign and significand of the output NaN as

�snan� fnan�1 : 52�� �

�
�sa� 1ha�2 : 52�� if NANa� 1
�sb� 1hb�2 : 52�� if NANa� 0�

This just requires a 53-bit multiplexer. Thus,

CNaNselect � Cmux�53�

DNaNselect � Dmux�

��� ��	 +���% �� ��� ��������
The floating point unpacker FPUNP of figure 8.3 has cost

CFPunp � 2 � �CUnpack�CSpecUnp�Cf f �75���CNaNselect�Cf f �53�

With f l �a and f l �b we denote the inputs of the registers buffering the flags f la
and f lb. These signals are forwarded to the converter CVT and to circuit
FCON; they have delay

AFPunp� f la�� f lb�� � DUnpack� f lag��DSpecUnp�

Assuming that all inputs of the FPU are provided by registers, the outputs
of the unpacker then have an accumulated delay of

AFPunp � max�DUnpack�reg��DFPunp� f la���DNaNselect��

#')
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�

)���� �		����� ��
������

Suppose we want to add the representable numbers a and b with IEEE-
normal factorings �sa�ea� fa� and �sb�eb� fb�. Without loss of generality we
can assume that

δ � ea�eb � 0;

otherwise we exchange a and b. The sum Scan then be written as

S � ��sa�ea� fa��� ��sb�eb� fb��

� ��1�sa �2ea � fa � ��1�sb �2eb � fb
� 2ea � ���1�sa � fa � ��1�sb �2�δ � fb��

This suggests a so called alignment shiftof significand fb by δ positions
to the right. As δ can become as large as emax�emin this would require
very large shifters. In this situation one replaces the possibly very long
aligned significand 2�δ � fb by its �p�1�-representative

f � � �2�δ � fb�p�1�

which can be represented as a binary fraction with only p� 2 bits behind
the binary point. Thus, the length of significand fb is increased by only 3
extra bits. The following theorem implies, that the rounded result of the
addition is not affected by this:

For a non-zero sum S�� 0 let η̂�S� � �s� ê� f̂ �, then � ������ (�	

S �p�ê 2ea � ���1�sa � fa���1�sb � f ���

If δ� 3, then �����
f � � 2�δ � fb�

and there is nothing to prove. If δ� 2 then

2�δ � fb � 2�2 �2 � 1�2�

Since �sa�ea� fa� and �sb�eb� fb� are IEEE factorings, neither exponent can
be less than emin,

ea � emin and eb � emin�

and a denormal significand implies that the exponent equals emin. Due to
the assumption that ea � eb, we have

ea � eb�δ � emin�δ�
#'*
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Thus, for δ� 2, the fa and the factoring �sa�ea� fa� are normal, and hence,

���1�sa � fa���1�sb �2�δ � fb� � 1�1�2 � 1�2�

It follows that

ê � ea�1 � emin and p� ê � p�1�ea�

Since
f � �p�1 2�δ � fb

and fa is a multiple of 2��p�1�, one concludes

��1�sa � fa���1�sb �2�δ � fb �p�1 ��1�sa � fa���1�sb � f �

S �p�1�ea 2ea � ���1�sa � fa���1�sb � f ���

The theorem follows because p�1�ea � p� ê.���

�-��������� ��
������

Let a, b and b� be three representable numbers with factorings �sa�ea� fa�,
�sb�eb� fb� and �sb�eb� fb�. The subtraction of the two numbers a and b can
then be reduced to the addition of the numbers a and b�:

a�b � a� ��1�sb �2eb � fb
� a���1��sb �2eb � fb � a�b��

)���� �		�� ����-���%

Figure 8.6 depicts an add/subtract unit which is divided into two pipeline
stages. The essential inputs are the following

� the factorings of two operands

a � ��sa�ea� fa��� b � ��sb�eb� fb��

where for �n� p� � �11�53� the exponents are given as n-bit two’s
complement numbers

ea � �ea�n�1 : 0��� eb � �eb�n�1 : 0���

and the significands are given as binary fractions

fa � � fa�0�� fa�1 : p�1��� fb � � fb�0�� fb�1 : p�1���

#(�
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fa[0:52]

sa
fb[0:52]
eb[10:0]

ea[10:0]

sb
sub Si

gn
 S

el
ec

t

Sp
ec

A
S

Si
gA

dd

[0:55]

[0:52]

[10:0]

sb’

fls

fszero

ss

Z
E

R
O

ssa
sb

ss1

es[10:0]

fs[-1:55]

sa2

sx

es

fa2

fb3

sb2

sb’

sb
sa

A
lig

nS
hi

ft

INV
INFs

NANs
nan

fla, flb

sa
nan RM[1:0]

�	
��� ��� Top level schematics of the add/subtract unit

� the flags f la and f lb of the two operands,

� the rounding mode RM, which is needed for the sign computation,
and

� the flag subwhich indicates that a subtraction is to be performed.

In case of a subtraction sub� 1, the second operand is multiplied by �1,
i.e., its sign bit gets inverted. Thus, the operand

b� � ��1�sub�b

has the following factoring

�s�b�eb� fb� � �sb	sub� eb� fb��

The unit produces a factoring �ss�es� fs� which, in general, is not a rep-
resentation of the exact sum

S� a�b��

but if η̂�S� � �s� ê� f̂ �, the output of the unit satisfies

S �p�ê ��1�ss �2es � fs�

Thus, the output is be rounded to the same result as S. If S is zero, infinite
or a NaN, the result of the add/subtract unit is of course exact.
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In the first stage special cases are handled, the operands are possibly ex-
changed such that the a-operand has the larger exponent, and an alignment
shift with bounded shift distance is performed. Let

δ� �ea�eb��

The first stage outputs sign bits sa2, sb2, an exponent es, and significands
fa2, fb3 satisfying

es � max�ea�eb�

S �p�ê 2es � ���1�sa2 � fa2 � ��1�sb2 � fb3��

The second stage adds the significands and performs the sign computation.
This produces the sign bit ss and the significand fs.

��� ��	 +���%
Let the rounding mode RM be provided with delay ARM. Let the circuit
SIGADD delay the significand fs by DSigAdd� f s� and the flags f szeroand
ss1 by DSigAdd� f lag�. The cost and cycle time of the add/subtract circuit
and the accumulated delay AAddSubof its outputs can then be expressed as

CAddSub � CSpecAS�CAlignShi f t�Cxor�Cf f �182�

�CSigAdd�CSignSelect

TAddSub � Dxor�max�DSpecAS�DAlignShi f t��∆
AAddSub � max�DSigAdd� f s�� DSigAdd� f lag��DSignSelect�

ARM�DSignSelect��

���
����� �����
The circuit ALIGNSHIFT depicted in figure 8.7 is somewhat tricky. Subcir-
cuit EXPSUB depicted in figure 8.8 performs a straightforward subtraction
of n-bit two’s complement numbers. It delivers an �n� 1�-bit two’s com-
plement number as�n : 0�. We abbreviate

as� �as�n : 0���

then

as � ea�eb

ea � eb 
 as� 0 
 as�n� � 1�

This justifies the use of result bit as�n� as the signal ‘eb gt ea’ (eb greater
than ea), and we have

es � max�ea�eb��

#(�
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fa[0:52]

sa

sb’

fb[0:52]

Swap

LRS(55)

Sticky

eb[10:0]

ea[10:0]

ExpSub

as[12:0]

Limit
as2[5:0]

fb2[0:54]

eb_gt_ea

0

1
eb_gt_ea

fb3[55]
(sticky)

fa2[0:52]

sa2

sb2

sx

fb3[0:54]

es[10:0]

�	
��� ��� Circuit ALIGNSHIFT; circuit LRS is a logical right shifter.

add(12)

1

eb[10, 9:0]ea[10, 9:0]

as[10:0]

as[11]

eb_gt_ea

10

�	
��� ��� Circuit EXPSUB

Ortree

1

0 6

7

eb_gt_ea

as1[10:0] [5:0]

[10:6]
as[10:0] as2[5:0]

�	
��� ��� Circuit LIMIT which approximates and limits the shift distance
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Cost and delay of circuit EXPSUB run at

CExpSub � Cinv�11��Cadd�12�

DExpSub � Dinv�Dadd�12���

������������
 ��� ����� +������

The shift distance of an unlimited alignment shift would be

δ� �as��

The obvious way to compute this distance is to complement and then in-
crement as�n : 0� in case as is negative. Because this computation lies on
the critical path of this stage, it makes sense to spend some effort in order
to save the incrementer.

Therefore, circuit LIMIT depicted in figure 8.9 first computes an approx-
imation�as1�n�1 : 0�� of this distance by

as1�n�1 : 0� �

�
as�n�1 : 0� if as� 0

as�n�1 : 0� if as� 0

If as� 0, then as�n� � 0 and

�as1� � �as�10 : 0�� � δ�

i.e., no error is made. If as��1, then

δ�1 � ��as�n : 0���1 � �as�n : 0���

Since
0 � δ�1 � 2n�1�

we have
�as1�n�1 : 0�� � �as�n : 0�� � δ�1�

Thus,

�as1� �

�
δ if ea � eb

δ�1 if ea � eb�

Circuit LIMIT of figure 8.9 has the following cost and delay

CLimit � Cinv�11��Cmux�11��Cor�6��CORtree�7�

DLimit � Dinv�Dmux�Dor �DORtree�7��
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0 10 1

sa, fa[0:52] sb’, fb[0:52]

eb_gt_ea

sb’ fb[0:52] 0

sb2, fb2[0:54]

0sa fa[0:52]

sa2, fa2[0:52]

0

�	
��� ���� Circuit SWAP which swaps the two operands in case of ea� eb

�������
 ������	
Circuit SWAP in figure 8.10 swaps the two operands in case ea � eb. In this
case, the representation of significand fa will be shifted in the alignment
shifter by a shift distance δ�1 which is smaller by 1 than it should be. In
this situation, the left mux in figure 8.10 preshifts the representation of fa
by 1 position to the right. Hence,

� fa2� fb2� �

�
� fa� fb� if ea � eb

� fb� fa�2� if ea � eb�

It follows that

2��as1� � fb2 �

�
2�δ � fb if ea � eb

2�δ � fa if ea � eb�

Note that operand fb2 is padded by a trailing zero and now has 54 bits after
the binary point. The swapping of the operands is done at the following
cost and delay

CSwap � Cmux�54��Cmux�55�

DSwap � Dmux�

3������
 ��� ����� +������
The right part of circuit LIMIT limits the shift distance of the alignment
shift. Motivated by theorem 8.1 (page 359), we replace significand 2��as1� �
fb2 by its possibly much shorter �p�1�–representative

fb3 � �2��as1� � fb2�p�1�

By lemma 7.2, a �p�1�–representative is computed by a sticky bit which
ORs together all bits starting at position p� 2 behind the binary point.
However, once we have shifted fb2 by p� 2 bits to the right, all nonzero
bits of fb2 already contribute to the sticky bit computation and further shift-
ing changes nothing. Hence, the shift distance can be limited to p�2� 55.
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as2[5:0]

hd
ec

(6
)

9

fb2[0]

fb2[54]

[0]

[54]

ORtree(55)
sticky

�	
��� ���� Circuit STICKY which performs the sticky bit computation

We limit instead the distance to a power of two minus 1. Thus, let

b � log�p�3�� � 6

and
B � 2b�1 � �1b� � p�2�

then

�as1� � B 

n�1�

i�b

� 1

and

�as2� �

�
B if �as1� � B
�as1� otherwise�

The alignment shift computation is completed by a 55-bit logical left
shifter and the sticky bit computation depicted in figure 8.11.

�����%  �� ����-������
Consider figure 8.12. If fb2�0 : p� 1� is shifted by �as2� bits to the right,
then for each position i bit fb2�i� is moved to position i � �as2�. The sticky
bit computation must OR together all bits of the shifted operand starting at
position p�2. The position i such that bit fb2�i� is moved to position p�2
is the solution of the equation

i � �as2�� p�2� i.e., i � p�2��as2��

The sticky bit then equals

sticky�
p�1�

j�p�2��as2�

fb2� j��
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0x

x p+2x+j

fb2

j

fb2

0 p+1

[0] [j] [i]

i

�	
��� ���� Shifting operand fb2�0 : p�1� x bits to the right

This means, that the last �as2� bits of fb2�0 : p�1� must be ORed together.
The last p�2 outputs of the half decoder in figure 8.11 produce the mask

0p�2��as2� 1�as2��

ANDing the mask bitwise with fb2 and ORing the results together produces
the desired sticky bit. Cost and delay of circuit STICKY run at

CSticky � Chdec�6��55 �Cand�CORtree�55�

DSticky � Dhdec�6��Dand�DORtree�55��

���������
The correctness of the first stage now follows from the theorem 8.1 because

S�p�ê

�
2ea � ���1�sa � fa � ��1�s�b � �2�δ � fb�p�1� if ea � eb

2eb � ���1�s�b � fb � ��1�sa � �2�δ � fa�p�1� if ea � eb

� 2es � ���1�sa2 � fa2 � ��1�sb2 � �2�δ � fb2�p�1�

� 2es � ���1�sa2 � fa2 � ��1�sb2 � fb3��
(8.1)

��� ��	 +���% �� ��� ���
����� �������
Figure 8.7 depicts the circuit ALIGNSHIFT of the alignment shifter. Since
circuit LIMIT has a much longer delay than circuit SWAP, the cost and the
delay of the alignment shifter can be expressed as

CAlignShi f t � CExpSub�CLimit �CSwap�CSticky

�CLRS�55��Cxor�Cmux�11�

DAlignShi f t � DExpSub�DLimit �max�CSticky�CLRS�55���

��
��4���	 �		
Figure 8.13 depicts the addition/subtraction of the significands fa2 and fb3.
Let

sx � sa	s�b �

�
0 if sa � s�b
1 if sa �� s�b�
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zero(58)Abs(58)

fszeross1 fs[-1:55]

Signsa2, sb2

ovf neg sum[-2:55]

3532

fa2[0:52] fb3[0:55]00 000 00 sx

add(58)

�	
��� ��� Circuit SIGADD which depending on the flag sx adds or subtracts the
significands fa2 and fb3

the circuit computes

sum� fa2 ���1�sx � fb3�

The absolute value of the result is bounded by

�sum� � fa2 � fb3 � 2�2��p�1��2�2��p�2� � 4�

Therefore, both the sum and its absolute value can be represented by a
two’s complement fraction with 3 bits before and p� 2 bits behind the
binary point.

Converting binary fractions to two’s complement fractions and extend-
ing signs, the circuit SIGADD computes

sum � fa2 ���1�sx � fb3

� � fa2�0�� fa2�1 : p�1�� � ��1�sx � � fb3�0�� fb3�1 : p�2��

� �0 fa2�0�� fa2�1 : p�1�03�

� �sx � fb3�0�	sx��� fb3�1 : p�2�	sx�� � sx �2
��p�2�

� �02 fa2�0�� fa2�1 : p�1�03�

� �s2
x � fb3�0�	sx��� fb3�1 : p�2�	sx�� � sx �2

��p�2�

� �sum��2 : 0��sum�1 : p�2��

Figure 8.14 depicts a straightforward computation of

�sum� � fs � � fs��1 : 0�� fs�1 : p�1���
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inc(n-1)

10

x[n-2:0]

abs[n-2:0]

x[n-1]

�	
��� ���� Circuit ABS computes the absolute value of an n-bit two’s comple-
ment number

A zero significand can be detected as

f szero� 1 
 fs��1 : p�1� � 0 
 sum��2 : p�1� � 0�

Let
neg � sum��2�

be the sign bit of the two’s complement fraction sum��2 : 0��sum�1 : p�
1�. Table 8.2 lists for the six possible combinations of sa, s�b and neg the
resulting sign bit ss1 such that

��1�ss1 � fs � ��1�sa � fa2 ���1�s�b � fb3 (8.2)

holds. In a brute force way, the sign bit ss1 can be expressed as

ss1 � �sa�s�b�neg� � �sa�s�b�neg� � �sa�s�b�neg�

� �s�b�neg� � �sa � �s�b NAND neg���

For the factoring �ss1�es� fs� it then follows from the Equations 8.1 and 8.2
that

S � ��sa�ea� fa��� ��s�b�eb� fb��

�p�ê 2es � ���1�sa2 � fa2 � ��1�sb2 � fb3�

� 2es � ��1�ss1 � fs�

��� ��	 +���%

Circuit SIGN generates the sign bit ss1 in a straightforward manner at the
following cost and delay:

CSign � 2 �Cand�Cor �Cnand

DSign � Dand�Dor �Dnand�
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����� ��� Possible combinations of the four sign bits sa, s�b, negand ss1

result sa s�b neg ss1

fa2 � fb3 0 0 0 0
impossible 0 0 1 *
fa2� fb3 0 1 0 0
fa2� fb3 0 1 1 1
� fa2 � fb3 1 0 0 1
� fa2 � fb3 1 0 1 0
impossible 1 1 0 *
� fa2� fb3 1 1 1 1

Circuit ABS of figure 8.14 computes the absolute value of an n-bit two’s
complement number. It has cost and delay

CAbs�n� � Cinv�n�1��Cinc�n�1��Cmux�n�1�

DAbs�n� � Dinv�Dinc�n�1��Dmux�

For the delay of the significand add circuit SIGADD, we distinguish be-
tween the flags and the significand fs. Thus,

CSigAdd � Cxor�58��Cadd�58��Czero�58��CAbs�58��CSign

DSigAdd� f lag� � Dxor�Dadd�58��max�Dzero�58��DSign�

DSigAdd� f s� � Dxor�Dadd�58��DAbs�58��

������� ���
The circuit SPECAS checks whether the operation involves special num-
bers, and checks for an invalid operation. Further floating point exceptions
– overflow, underflow and inexact result – will be detected in the rounder.
Circuit SPECAS generates the following three flags

� INFs signals an infinite result,

� NANs signals that the result is a quiet NaN, and

� INV signals an invalid addition or subtraction.

The circuit gets 8 input flags, four for either operand. For operand a the
inputs comprise the sign bit sa, the flag INFa indicating that a���∞��∞�,
and the flags NANa and SNANa. The latter two flags indicate that a is a
quiet NAN or a signaling NaN, respectively. The flags s�b, INFb, NANb,
and SNANb belong to the operand b and have a similar meaning.
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According to the specifications of section 7.4.2, an invalid operation
must be signaled in one of two cases: if an operand is a signaling NaN,
or when adding two infinite values with opposite signs. Thus,

INV � �SNANa� SNANb� � �INFa � INFb � �sa	s�b��

The result is a quiet NaN whenever one of the operands is a NaN, and in
case of an invalid operation:

NANs � INV � �NANa� NANb�

According to table 7.3 (page 343), an infinite result implies that at least
one of the operands is infinite; and in case of an infinite operand, the result
is either infinite or a NaN. Thus, an infinite result can be detected as

INFs � �INFa � INFb� � NANs�

Circuit SPECAS generates the three flags along these lines at

CSpecAS � 5 �Cor �3 �Cand�Cxor�Cinv

DSpecAS � Dxor�2 �Dor �2 �Dand�Dinv�

��
� ����-������
If the result is a finite non-zero number, circuit SIGADD already provides
the correct sign ss1. However, in case of a zero or infinite result, special
rules must be applied (section 7.4.2). For NaNs, the sign does not matter.

In case of an infinite result, at least one operand is infinite, and the result
retains the same sign. If both operands are infinite, their signs must be
alike. Thus, an infinite result has the following sign

ss3 �

�
sa if INFa
s�b if INFb� INFa�

In case of an effective subtraction �sx � sa	 s�b � 1�, a zero result is
always positive, except for the rounding mode rd (round down) which is
coded by RM�1 : 0� � 11. In case of sx � 0, the result retains the same sign
as the a operand. Thus, the sign of a zero result equals

ss2 �

��
�

0 if sx � �RM�1� NOR RM�0��
1 if sx � �RM�1��RM�0��
sa if sx�

Depending on the type of the result, its sign ss can be expressed as

ss �

��
�

ss3 if INFs
ss2 if �INFs � � fs � 0�
ss1 if �INFs � � fs �� 0��
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01

0 1INFs

ss

0 1

0 1
RM[1]
RM0]

sx

sa

INFa

ss1 ss2

ss3INFs
NANs

ZEROs

sb’sa

fszero

�	
��� ���� Circuit SIGNSELECT selects the appropriate sign ss3

The circuit SIGNSELECT of figure 8.15 implements this selection in a
straightforward manner. It also provides a flag ZEROswhich indicates
that the sum is zero. This is the case, if the result is neither infinite nor a
NaN, and if its significand is zero ( f szero� 1). Thus,

ZEROs� f szero� �INFs NOR NANs��

The cost and the maximal delay of circuit SIGNSELECT can be ex-
pressed as

CSignSelect � 4 �Cmux�2 �Cand�Cnor

DSignSelect � Dand�max�3 �Dmux�Dnor��

$�� 	����������
� ��� *�)���
�

�
HE UNPACKER delivers unpacked normalized floating point numbers
to the multiply/divide unit. The multiplication of normalized numbers

is straightforward. Specifying and explaining the corresponding circuits
will take very little effort.

Division is more complicated. Let a and b be finite, non-zero, repre-
sentable floating point numbers with normalfactorings

η̂�a� � �sa�ea� lza� fa�

η̂�b� � �sb�eb� lzb� fb��

Thus, fa� fb � �1�2�. We will compute the rounded quotient r�a�b� in the
following way:
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1. Let sq, eq and q be defined as

sq � sa	sb

eq � ea�eb

q � fa� fb � �1�2�2��

then
a�b � ��sq�eq�q��

and the exponent e� of the rounded result satisfies

e� � eq�1�

For fd � �q�p�1, we then have

2eq � fd �p�1�eq 2eq �q�

and hence
2eq � fd �p�e� 2eq �q�

Thus, it suffices to determine fd and then feed �sq�eq� fd� into the
rounding unit.

2. In a lookup table, an initial approximation x0 of �1� fb� is deter-
mined.

3. With an appropriate number i of iterations of the Newton-Raphson
method a much better approximation xi of �1� fb� is computed. The
analysis will have to take into account that computations can only be
performed with finite precision.

4. The value q� � fa �xi is an approximation of the quotient fa� fb. The
correct representative fd is determined by comparing the product
q� � fb with fa in a slightly nontrivial way.

)�#�� !�����78����� .��������

Newton-Raphson iteration is a numerical method for determining a zero of
a real valued function f �x�. Consider figure 8.16. One starts with an initial
approximation x0 and then determines iteratively for each i � 0 from xi a
(hopefully) better approximation xi�1. This is repeated until the desired
accuracy is obtained.

In the approximation step of the Newton-Raphson method, one con-
structs the tangent to f �x� through the point �xi � f �xi�� and one defines
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x0 x1 x2

0 0, f(x ))(x

x

f(x)

�	
��� ���� Newton iteration for finding the Zero x̄ of the mapping f �x�, i.e.,
f �x̄� � 0. The figure plots the curve of f �x� and its tangents at f �xi� for i � 0�1�2.

xi�1 as the zero of the tangent. From figure 8.16 it immediately follows
that

f ��xi� �
f �xi��0
xi �xi�1

Solving this for xi�1 gives

xi�1 � xi � f �xi�� f ��xi�

Determining the inverse of a real number fb is obviously equivalent to
finding the zero of the function

f �x� � 1�x� fb�

The iteration step then translates into

xi�1 � xi ��1�xi � fb� �x
2
i

� xi�2� fb �xi�

Let δi � 1� fb�xi be the approximation error after iteration i, then

δi�1 � 1� fb�xi�1

� 1� fb�2xi � fb �x
2
i

� fb � �1� fb�xi�
2

� fb �δ2
i � 2 �δ2

i �

Observe that δi � 0 for i � 1.
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For later use we summarize the classical argument above in a somewhat
peculiar form:

Let � ����� (��

xi�1 � xi � �2� fb �xi��

δi � 1� fb�xi and

δi�1 � 1� fb�xi�1�

the approximation error is then bounded by

δi�1 � 2 �δ2
i �

)�#�� .������ �������������

The unpacker delivers a representation 1� fb�1 : p�1� of fb satisfying

fb � �1� fb�1 : p�1�� � �1�2��

The interval �1�2� is partitioned into 2γ half open intervals of the form

�1�t �2�γ� 1��t �1� �2�γ��

The midpoint of the interval containing fb is f �b � �1� fb�1 : γ�1�. Let x� �
1� f �b be the exact inverse of f �b. The initial approximation x0 of 1� fb is
determined by rounding x� to the nearest multiple of 2�γ�1. In case two
multiples are equally near, one rounds up.

Lemma 8.3 below implies, that x0 lies in the interval �1�2�1�. Hence x0

can be represented in the form

x0 � �0�x0�1 : γ�1��

and the initial approximation can be stored in a 2γ� γ-ROM. The crucial
properties of the initial approximation are summarized in the following
lemma:

The approximation errorδ0 � 1� fb�x0 of the initial approximation obeys� ����� (�


0 � �δ0� � �1� fb�x0� � 1�5 �2�γ�1�

We first show the upper bound. Consider the mapping f �x� � 1�x as de- �����
picted in figure 8.17. Let u�v� �1�2� and let u� v, then

� f �u�� f �v�� � �v�u� � � f ��u�� � �v�u��
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f(x) = 1/x

g

(2, 1/2)

(1, 1)

1.0 u v 2.0

f(v)
g(v)

f(u)

1.0

�	
��� ���� The mapping g�x� � f �u�� f ��u� ��x�u� is the tangent to f �x� � 1�x
at x� u.

Since � fb� f �b� � 2�γ�1, we immediately conclude �1� fb� x�� � 2�γ�1.
Rounding changes x� by at most 2�γ�2 and the upper bound follows.

For the lower bound we first show that the product of two representable
numbers u and v cannot be 1 unless both numbers are powers of 2. Let ui
and vj be the least significant nonzero bits of (the representations of) u and
v. The product of u and v then has the form

u �v � 2��i� j��A �2��i� j��1

for some integer A. Thus, the product can only be 1 if A� 0, in which case
the representations of u and v have both an 1 in the single position i or j ,
respectively.

Thus, for representable fb �� 1 any finite precision approximation of 1� fb
is inexact, and the lower bound follows for all fb �� 1.

For fb � 1 we have f �b � 1 � 2�γ�1. Consider again figure 8.17. The
mapping f �x� � 1�x is convex and lies in the interval (1,2) entirely under
the line through the points (1,1) and (2,1/2). The line has slope �1�2.
Thus,

1
1� t

� f �1� t�� 1� t�2

for all t � �0�1�. For t � 2�γ�1 we get

x� � f � f �b�� 1�2�γ�2�

Thus, x� cannot be rounded to a number x0 bigger than 1�2�γ�2.���
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We establish some notation for arguments about finite precision calcula-
tions where rounding is done by chopping all bits after position σ. For real
numbers f and nonnegative integers σ we define

� f �σ � � f �2σ� �2σ�

then
� f �0 � � f ��

Moreover, if f � � f ��i : 0�� f �1 : s��� and s� σ, then

� f �σ � � f ��i : 0� f �1 : σ���

Newton-Raphson iteration with precision σ can then be formulated by
the formula

xi�1 � �xi � �2� fb �xi�σ�σ�

Let
z� fb �xi �

Assume z� �1�2� and let z�0��z�1 : s� be a representation of z, i.e.,

z� �z�0��z�1 : s���

The subtraction of z would require the complementation of z and an
increment in the last position. As computations are imprecise anyway one
would hope that little harm is done – and time is saved – if the increment
is omitted. This is confirmed in

Let z� �0�2�, then � ����� (��

0 � 2�z � �z�0��z�1 : σ���2σ�

�����

2�z � �10�0s���0z�0��z�1 : s��

� �10�0s�� �1z�0��z�1 : s���2�s mod 4�

� �z�0��z�1 : s���2�s

� �z�0��z�1 : σ���
s

∑
i�σ�1

z�i� �2�i �2�s

� �z�0��z�1 : σ���2�σ�

���
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The simplified finite precision Newton-Raphson iteration is summarized
as

zi � fb �xi

Ai � �zi �0 : σ��
xi�1 � �xi �Ai�σ

δi � 1� fb�xi�

For later use we introduce the notation

Ai � appr�2� fb �xi��

The convergence of this method is analyzed in a technical lemma:

Let σ� 4, let x0 � �1�2�1� and let0 � �δ0�� 1�8. Then����� (�� �

xi�1 � �0�1� and

0 � δi�1 � 2 �δ2
i �2�σ�1 � 1�4�

for all i � 0.

�����
δi�1 � ∆1 �∆2 �∆3

where

∆1 � 1� fb�xi � �2�zi�

∆2 � xi � �2�zi��xi �Ai

∆3 � xi �Ai ��xi �Ai�σ

By the classical analysis in lemma 8.2 we have

0 � ∆1 � 2 �δ2
i �

Because xi lies in the interval �0�1�, we have

0 � zi � fb �xi � 2�

Lemma 8.4 implies

0 � ∆2 � xi � �2�zi �Ai�

� xi �2
σ � 2�σ�

Obviously, we have
0 � ∆3 � 2�σ
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and the first two inequalities of the lemma follow. By induction we get

δi�1 � 2 �δ2
i �2�σ�1

� 1�8�1�8 � 1�4

Finally 0 � δi�1 � 1� fb�xi�1 � 1�4 implies

1�4 � 1� fb�1�4 � xi � 1� fb � 1�

���

)�#�& ����� ��:� ���- !-���� �� .��������

The following lemma bounds the number of iterations necessary to reach
p�2 bits of precision if we truncate intermediate results after σ � 57 bits
and if we start with a table, where γ� 8.

Let σ � 57, let γ� 8 and let � ����� (��

i �

�
2 if p � 24
3 if p � 53

� then δi � 2��p�2��

By the lemmas 8.3 and 8.5 we have �����

δ0 � 1�5 �2�9

δ1 � 2 � �1�5�2 �2�18 �2�56 � 4�6 �2�18

δ2 � 42�32 �2�36 �2�56 � 42�33 �2�36 � 2�30�

Thus, i � 2 iterations suffice for single precision.

δ3 � 3583�7 �2�72 �2�55

� 3�5 �2�62 �2�56 � 2�55

Thus, i � 3 iterations suffice for double precision. ���

By similar arguments one shows that one iteration less suffices, if one
starts with γ� 15, and one iteration more is needed if one starts with γ� 5
(exercise 8.2). The number of iterations and the corresponding table size
and cost are summarized in table 8.3 We will later use γ� 8.
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����� �� Size and cost of the 2γ� γ lookup ROM depending on the number of
iterations i, assuming that the cost of a ROM is one eighth the cost of an equally
sized RAM.

lookup ROM
i γ

size [K bit] gate count

1 15 480 139277
2 8 2 647
3 5 0.16 61

)�#�' ����-���
 ��� 8������������ �� ��� ?-������

By lemma 8.6 we have

0 � 1� fb�xi � 2��p�2�

xi � 1� fb � xi �2��p�2�

fa �xi � fa� fb � q � fa �xi �2��p�1��

Thus,

� fa �xi�p�1 � fa �xi � q

� fa �xi �2��p�1� � � fa �xi�p�1 �2�p�

In other words,
E � � fa �xi�p�1

is an approximation of q, and the exact quotient lies in the open interval
�E�E�2�p�. Moreover, we have

�a�b�p�1 �

��
�

E�2��p�2� if fa� fb � E�2��p�1�

E�2��p�1� if fa� fb � E�2��p�1�

E�3 �2��p�2� if fa� fb � E�2��p�1�

In the first case one appends 1 to the representation of E, in the second
case one increments E, and in the third case one increments and appends
1.

For any relation Æ � ������� we have

fa� fb Æ E�2��p�1� 
 fa Æ fb � �E�2��p�1���

Thus, comparison of fa with the product

G� fb � �E�2��p�1��

determines which one of the three cases applies, and whether the result is
exact.
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sb
eb[10:0]

lzb[5:0]

sq,  eq[12:0]

fla flbnan

fq[-1:55]

fa[0:52] fb[0:52]

(with register stage)

sa
ea[10:0]

lza[5:0]

Sign/ExpMD SpecMDSigfMD

53

flq

nan, ZEROq, INFq, NANq, INV, DBZ

�	
��� ���� Top level schematics of the multiply/divide unit

)�#�( 5-�������� ��	 +���	�� ����-��

The multiply/divide unit depicted in figure 8.18 is partitioned in a natural
way into units

1. SIGN/EXPMD producing the sign sq and the exponent eq,

2. SIGFMD producing the significand fq and

3. SPECMD handling special cases.

The essential inputs for the unit are the sign bit, the exponent, the signif-
icand, and the number of leading zeros for two operands a and b satisfying

a � ��1�sa �2ea�lza � fa� b � ��1�sb �2eb�lzb � fb�

where for �n� p� � �11�53� the exponents are given as n–bit two’s comple-
ment numbers

ea � �ea�n�1 : 0��� eb � �eb�n�1 : 0���

the significands are given as binary fractions

fa � � fa�0�� fa�1 : p�1��� fb � � fb�0�� fb�1 : p�1��

and for
r � log p�

the numbers of leading zeros are given as r–bit binary numbers

lza � �lza�r�1 : 0��� lzb � �lzb�r�1 : 0���

In the absence of special cases the factorings are normalized, and thus

fa� fb � �1�2��
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For operations Æ � �����, let

x � aÆb

be the exact result of the operation performed, and let

η̂�x� � �s� ê� f̂ ��

In the absence of special cases, the unit has to produce a factoring �sq� eq,
fq� satisfying

��sq�eq� fq�� �p�ê aÆb�

��� ��	 +���%
Circuit SIGFMD which produces the significand fq has an internal register
stage. Thus, the cost and the cycle time of the multiply/divide circuit and
the accumulated delay AMulDiv of its outputs can be expressed as

CMulDiv � CSig f MD�CSignExpMD�CSpecMD�Cf f �72�

TMulDiv � max�DSpecMD�∆�DSignExpMD�∆�TSig f MD�

AMulDiv � ASig f MD�

��
� ��	 1������� ����-������
Figure 8.19 depicts the circuit SIGN/EXPMD for the computation of the
sign and the exponent. The computation of the sign

sq � sa	sb

is trivial. The computation of the exponent is controlled by signal f div
which distinguishes between multiplications and divisions. The exponent
is computed as

eq �

�
ea� lza��eb� lzb� if � f div (multiply)
ea� lza� �eb� lzb� if f div (divide).

We can estimate eq by

2n�2 � 2 �emax � eq � �2 �emin� p � �2n�1�

Therefore, the computation is performed with �n� 2�–bit two’s comple-
ment numbers. Circuit SIGN/EXPMD has the following cost and delay:

CSignExpMD � Cxor�23 �Cinv�Cmux�11��Cmux�13�

�C4�2add�13��Cadd�13�

DSignExpMD � Dinv�Dmux�D4�2add�13��Dadd�13��
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17

4/2 adder(13)

07 71

ea[10, 9:0] lza[5:0] lzb[5:0]eb[10:0]

10

1

1

sa sb

sq eq[12:0]

add(13)

01fdiv 01fdiv

�	
��� ���� Circuit SIGN/EXPMD

��
��4���	 5-������������
Let a and b be the two operands of the floating point multiplication. In
case that the operand a is a finite non-zero number, its significand fa is
normalized. The same holds for the significand fb of operand b. Hence

fa � fb � �1�4��

Let
x � a �b and η̂�x� � �sq� ê� f̂ ��

then
ê � ea� lza�eb� lzb � eq�

Unit SIGFMD depicted in figure 8.20 performs the significand computa-
tion of the multiply/divide unit. The multiplication algorithm shares with
the division algorithm a 58-bit multiplier. Therefore, the significands are
extended by 5 trailing zeros to length 58. Wallace tree, adder and sticky
bit computation produce for a 54-representative fm of the product:

� fm��1 : 55�� � �� fa�0�� fa�1 : 52�05� � � fb�0�� fb�1 : 52�05��54�

Hence

��sq�eq� fm�� � ��1�sq �2eq � � fa � fb�54

�54�eq ��1�sq �2eq � � fa � fb�

�54�ê ��1�sq �2eq � � fa � fb��

For both single and double precision computations we have p � 54 and
therefore

��sq�eq� fm�� �p�ê ��1�sq �2eq � � fa � fb��
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Select fd

Ortree

Eb EbceDa  Db

1 0

c s

adder (116)

A

[0:57]

Ace

8
048

256 x 8
lookup
table

xxce

1 0

�
�
�
�

01

[1:8]

58

tlu

xa
do

e xb
do

e

E
ad

oe

A
ad

oe

Ece E

03

opb[0:57]

opa[0:57]

fa[0:52] 05 fb[0:52] 05

faadoe fbbdoe

fm[-1:114]

60

fd[-1:55] fm[-1:55]

fdiv

fq[-1:55]

[-1:54]

Dce

cce sce
116 116

4/2mulTree(58, 58)

[0:25] [26:54]

29db

�	
��� ���� Circuit SIGFMD performing the division and multiplication of the
significands

��
��4���	 +������
Significand division is performed by unit SIGFMD (figure 8.20) under the
control of the counter Dcnt depicted in figure 8.21 and the FSD of figure
8.22. The corresponding RTL instructions in table 8.4 summarize the
steps of the iterative division as it was outlined above. A Newton-Raphson
iteration step comprises two multiplications, each of which takes two cy-
cles. Thus, a single iteration takes four cycles; the corresponding states are
denoted by 5�'&% 	 to 5�'&% �. The counter Dcnt counts the number
of iterations. During the table lookup, the counter is set to the number of
iterations required (i.e., 2 for single and 3 for double precision), and during
each iteration, Dcnt is counted down. After state �6$� we have

x� x0 and Dcnt� dcnt0 � �db?3 : 2��

After the ith execution of state 5�'&% � we have

A � Ai�1

x � xi

Dcnt � dcnt0� i�

The loop is left after i � dcnt0 iterations. For this i, we have after state
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zero? decrement

dcnt0
0 1

0 1

Dcntzero

Dcnt Dcntce

2 10 11

tlu

db

�	
��� ���� Iteration Counter Dcnt

Newton 1

Newton 2

Newton 3

Newton 4

lookupunpack

round 1 round 2

Dcnt > 0 Dcnt = 0

select fd

quotient 1

quotient 2

quotient 3

quotient 4

�	
��� ���� FSD underlying the iterative division. The states ������ � to������
� represent one Newton-Raphson iteration. Dcnt counts the number of iterations;
it is counted down.

�$&��%& �

E � � fa �xi�p�1

Eb � E � fb

After state �$&��%& � we already have

fa � Da and fb � Db�

Note that for single precision, E is truncated after position p�1 � 25.

����-�� SELECT FD

Figure 8.23 depicts the circuit selecting the �p�1�-representative fd of the
quotient q according to the RTL instructions of state �����& , . Since

E� � E�2��p�1��
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����� ��� RTL instructions of the iterative division (significand only). A multi-
plication always takes two cycles.

state RTL instruction control signals

unpack normalize FA, FB
lookup x� table� fb� xce, tlu, fbbdoe

Dcnt� �db?3 : 2� Dcntce,
Newton 1/2 Dcnt� Dcnt�1 Dcntce, xadoe, fbbdoe

A� appr�2�x �b� 57� Ace
Newton 3/4 x� �A �x�57 Aadoe, xbdoe, sce, cce

xce
quotient 1/2 E � �a �x�p�1 faadoe, xbdoe, sce, cce

Da � fa� Db � fb faadoe, fbbdoe, Dce, Ece
quotient 3/4 Eb � E � fb Eadoe, fbbdoe, sce, cce

Ebce
select fd E� � E�2��p�1�,

β � fa�Eb�2��p�1� � fb

fd �

��
�

E�2��p�2� ; if β� 0
E� ; if β � 0
E��2��p�2� ; if β� 0

Round 1/2 round �sq�eq� fq�

126

neg
adder (117)

zero(117)

3/2 adder(116)

�
�
�
�

��
��
��
��

��

01

029 029

129
Eb[0:114]

11
13

1

beta
r[-1:54]

fd[55]fd[27:54]fd[-1:25] fd[26]

db

01 db

sfb[25:111]

56Da[0:57] 0 Db[0:57]

0

E[26:54]E[0:25]

inc(55)

0
56

E’[-1:54]

db

127 28

1 0

1 0 db

�	
��� ��� Circuit SELECT FD which selects the representative of the exact q
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its computation depends on the precision. For double precision (p � 53)
holds

�E��0��E��1 : 54�� � �E�0��E�1 : 54���2�54�

For single precision (p � 24), E was truncated after position p� 1 � 25.
Thus,

�E��0��E��1 : 25�� � �E�0��E�1 : 25���2�25

� �E�0��E�1 : 25���
54

∑
i�26

2�i �2�54

� �E�0��E�1 : 25�129��2�54�

The computation of value β also depends on the precision p. Operand
fb, which is taken from register Db, is first shifted p� 1 positions to the
right:

�0�024 fsb�25 : 111�� �

�
�0�024 029 Db�0 : 57�� ; if db
�0�024 Db�0 : 57�029� ; if �db

� 2��p�1� � f b�

Now β can be computed as

β � fa�Eb�2��p�1� � fb
� �0Da�0��Da�1 : 57�057�� �0Eb�0��Eb�1 : 114��

��00�024 fsb�25 : 111�03�

� �0Da�0��Da�1 : 57�056 1�� �1Eb�0��Eb�1 : 114��

��11�124 fsb�25 : 111�13��2�114

The output significand fd is computed in the following way: let

r �

�
E if β� 0
E� if β� 0�

then

fd �

�
r if β � 0
r �2��p�2� if β �� 0�

Thus, in case β �� 0 one has to force bit fd�p�2� to 1.

��� ��	 +���%

Figure 8.23 depicts circuit SELECT FD which selects the representative of
the quotient. The cost and the delay of this circuit run at
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CSelectFd � Cinc�55��Cmux�29��Cmux�56��Cmux

�Cmux�87��C3�2add�116��Cadd�117�

�Czero�117��203 �Cinv�Cand

DSelectFd � 2 �Dmux�max�Dinc�55��Dmux�

�2 �Dinv�D3�2add�116��Dadd�117��Dzero�117���

Circuit SELECT FD is part of the circuit which performs the division and
multiplication of the significands. The data paths of circuit SIGFMD have
the following cost

CSig f MD � 6 �Cdriv�58��5 �Cf f �58��3 �Cf f �116��CROM�256�8�

�Cmux�58��C4�2mulTree�58�58��Cadd�116��Cinv�58�

�Cand�29��CORtree�60��Cmux�57��CSelectFd�

The counter Dcnt and the control automaton modeled by figure 8.22 have
been ignored. The accumulated delay of output fq and the cycle time of
circuit SIGFMD can be expressed as:

ASig f MD � max�DSelectFd� Dadd�116��DORtree�60���Dmux

TSig f MD � max�Ddriv �DROM�256�8��Dmux�

Ddriv �D4�2mulTree�58�58�� Dadd�116��Dmux��∆�

1�������� ��	 ������� ���

The circuit SPECMD checks whether special operands are involved, i.e.,
whether an operand is zero, infinite or a NaN. In such a case, the result
cannot be a finite, non-zero number. The circuit signals the type of such a
special result by the three flags ZEROq, INFq and NANq according to the
tables 7.4 and 7.5.

The circuit also detects an invalid operation (INV) and a division by zero
(DBZ). These two IEEE floating point exceptions can only occur when
special operands are involved, whereas for the remaining floating point
exceptions – overflow, underflow and inexact result – both operands must
be finite, non-zero numbers. Thus, OVF, UNF and INX will be detected
by a different circuit during rounding (section 8.4).

For each of the two operands, the circuit SPECMD gets four input flags
which indicate its type (ZERO, INF, NAN, and SNAN). Most of the output
flags are generated in two steps. First, two sets of flags are generated,
one for the multiplication and one for the division. The final set of flags is
then selected based on the control signal f div which distinguishes between
multiplication and division.
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According to section 7.4, the flag DBZ (division by zero) is only activated
when a finite, non-zero number is divided by zero. Thus,

DBZ � f div�ZEROb� �ZEROa� INFa�NANa�SNANa��

The flag INVm signals an invalid multiplication. According to the spec-
ification of section 7.4.3, it is raised when an operand is a signaling NaN
or when multiplying a zero with an infinite number:

INVm � �INFa�ZEROb� � �ZEROa� INFb� � �SNANa�SNANb��

The flag INVd which indicates an invalid division is signaled in the fol-
lowing three cases (section 7.4.4): when an operand is a signaling NaN,
when both operands are zero, or when both operands are infinite. Thus,

INVd � �ZEROa�ZEROb� � �INFa� INFb� � �SNANa�SNANb��

The IEEE exception flag INV is selected based on the type of the operation

INV �

�
INVm if f div
INVd if f div�

������� 8�-��
The flags NANq, INFq and ZEROq which indicate the type of a special
result are generated according to the tables 7.4 and 7.5.

The result is a quiet NaN whenever one of the operands is a NaN, and
in case of an invalid operation; this is the same for multiplications and di-
visions. Since signaling NaNs are already covered by INV, the flag NANq
can be generated as

NANq � INV � �NANa� NANb�

The result of a multiplication can only be infinite if at least one of the
operands is infinite. However, if the other operand is a zero or a NaN, the
result is a NaN. Thus, the flag INFm signaling an infinite product can be
computes as

INFm � �INFa � INFb� � NANq�

The result of a division can only be infinite, when an infinite numerator
or a zero denominator is involved. In case of DBZ, the result is always
infinite, whereas in case of an infinite numerator, the result can also be a
NaN. Thus,

INFd � �INFa � NANq� � DBZ�
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The flag INFq is then selected as

INFq �

�
INFm if f div
INFd if f div�

The flags ZEROm and ZEROd which indicate a zero product or quotient
are derived from the tables 7.4 and 7.5 along the same lines. In case of a
zero product, at least one of the operands must be zero. A zero quotient
requires a zero numerator or an infinite denominator. Thus,

ZEROm � �ZEROa� ZEROb� � NANq

ZEROd � �ZEROa� INFb� � NANq

ZEROq �

�
ZEROm if f div
ZEROd if f div�

The circuit SPECMD generates all these flags along these lines. It has
the following cost and delay:

CSpecMD � 10 �Cand�12 �Cor �Cnor�Cinv�3 �Cmux

DSpecMD � 2 �Dand�4 �Dor �Dinv�2 �Dmux�

$�� "�
����# +
��� �
����

�
HE FLOATING point rounder FPRND of figure 8.24 implements ‘tiny
before rounding’ and the ‘type b’ loss of accuracy (i.e., inexact result).

The rounder FPrnd consists of two parts

� circuit RND which performs the rounding of a finite, non-zero result
x specified by the input factoring �s�er � fr�, and

� circuit SPECRND which handles the special inputs zero, infinity,
and NaN. Such an input is signaled by the flags f lr . This circuit also
checks for IEEE floating point exceptions.

��� ��	 +���%
All the inputs of the floating point rounder have zero delay since they are
taken from registers. Thus, the cost and cycle time of the rounder FPRND

and the accumulated delay AFPrnd of its outputs run at

CFPrnd � CNormShi f t�CREPp�Cf f �140��CSigRnd

�CPostNorm�CAd justExp�CExpRnd�CSpecFPrnd

TFPrnd � ANormShi f t�DREPp�∆
AFPrnd � ASigRnd�DPostNorm�DAd justExp�DExpRnd�DSpecFPrnd�
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PostNorm

SigRnd

REPpNormShift

ExpRnd

f2

SIGovf e2
f3

OVF

SIGinxeout, fout
SpecFPrnd

RND

Fp[63:0]IEEEp

fn

AdjustExp

e3

11

58

RM

UNF/OVFen TINY OVF1 en  eni fl[0:54] flrs

UNF/OVFen fr er flrs

�	
��� ���� Schematics of the floating point rounder FPRND

)�&�� �����4������ ��	 ��������

Let x� �2 ��0� be the exact, finite result of an operation, and let

y �

��
�

2�α �x ; if OVF�OVFen
2αx� ; if UNF�UNFen
x ; otherwise

η̂�x� � �s� ê� f̂ �
η�y� � �s�e� f ��

(8.3)

The purpose of circuit RND (figure 8.24) is to compute the normalized,
packed output factoring �s�eout� fout� such that ��s�eout� fout�� � r�y�, i.e.,

�s�eout� fout� � �s� exprd�s� post�e�sigrd�s� f ����� (8.4)

Moreover the circuit produces the flags TINY, OVF and SIGinx. The ex-
ponent in the output factoring is in biasedformat. The inputs to the circuit
are

� the mask bits UNFen and OVFen (underflow / overflow enable)
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� the rounding mode RM�1 : 0�

� the signal dbr (double precision result) which defines

�n� p� �

�
�11�53� ; if dbr � 1
�8�24� ; otherwise

� the factoring s�er � fr , where er �12 : 0� is a 13-bit two’s complement
number and fr ��1 : 55� has two bits left of the binary point.

The input factoring has only to satisfy the following two conditions:

� the input factoring approximates x well enough, i.e.,

��s�er � fr �� �p�ê x� (8.5)

� fr ��1 : 0� � 00 implies OVF� 0. Thus, if �x� is large then fr � �1�4�.

By far the most tricky part of the rounding unit is the normalization
shifter NORMSHIFT. It produces an approximatedoverflow signal

OVF1 � 2er fr � 2emax�1

which can be computed before significand rounding takes place. The re-
sulting error is characterized by

Let OVF2 �OVF��OVF1, then OVF2 implies����� (�� �

ê � emax and sigrd�s� f̂ � � 2�

By definition (section 7.3.1), a result x causes an overflow if�����

�r̂�x�� � Xmax�

According to equation 7.8, such an overflow can be classified as an over-
flow beforeor after rounding:

OVF�x� 
 �ê� emax� or �ê� emax and sigrd�s� f̂ � � 2��

Since �OV F1 implies

�x� �p�ê 2er � fr � 2emax�1�

we have ê� emax, and the lemma follows.���
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Thus, the flag OVF1 signals an overflow before rounding, whereas the
flag OVF2 signals an overflow after rounding.

The outputs of the normalization shifter NORMSHIFT will satisfy

en �

�
e�α ; if OVF2�OVFen

e ; otherwise

fn �p f �

(8.6)

The normalization shifter also produces output eni � en � 1. Both expo-
nents will be in biased format.

The effect of the circuits REPP, SIGRND and POSTNORM is specified
by the equations:

f1 � � fn�p
f2 � sigrd�s� f1�
�e2� f3� � post�en� f2��

(8.7)

Circuit SIGRND also provides the flag SIGinx indicating that the rounded
significand f2 is not exact:

SIGinx � 1 
 f2 �� f1�

After post normalization, the correct overflow signal is known and the error
produced by the approximated overflow signal OVF1 can be corrected in
circuit ADJUSTEXP. Finally, the exponent is rounded in circuit EXPRND.

�e3� f3� �

�
�emax�1�α�1� ; if OVF2�OVFen

�e2� f3� ; otherwise

�eout� fout� � exprd�s�e3� f3�

(8.8)

In addition, circuit EXPRND converts the result into the packed IEEE for-
mat, i.e., bit fout�0� is hidden, and emin is represented by 0n in case of a
denormal result.

With the above specifications of the subcircuits in place, we can show in
a straightforward way:

If the subcircuits satisfy the above specifications, then equation (8.4) holds,� ������ (�(
i.e., the rounderRND works correctly for a finite, non-zero x.

By equations (8.6) we have �����

en �

�
e�α ; if OVF2�OVFen

e ; otherwise

fn �p f �
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Equations (8.7) then imply

f1 � � f �p
f2 � sigrd�s� f �

�e2� f3� �

�
post�e�α�sigrd�s� f �� ; if OVF2�OVFen

post�e�sigrd�s� f �� ; otherwise

and equations (8.8) finally yield

�e3� f3� � post�e�sigrd�s� f ��

�s�eout� fout� � �s� exprd�s� post�e�sigrd�s� f ����

���

)�&�� !������:����� �����

��������
Let lz be the number of leading zeros of fr ��1 : 55�. In general, the nor-
malization shifter has to shift the first 1 in fr to the left of the binary point
and to compensate for this in the exponent. If the final result is a denormal
number, then �x� must be represented as

2er fr � 2emin �2er�emin � fr �

This requires a left shift by er �emin which in many cases will be a right
shift by emin�er (see exercise 8.3). Finally, for a wrapped exponent one
might have to add or subtract α in the exponent. The normalization shifter
in figure 8.25 works along these lines.

First in circuit FLAGS the signals TINY, OVF1 and the binary represen-
tation lz�5 : 0� of the number lz are computed. Then, the exponent en and
the (left) shift distance σ are computed in circuits EXPNORM and SHIFT-
DIST.

We derive formulae for en and σ such that equations (8.6) hold. From
equations (8.3) and

UNF�UNFen� TINY�UNFen

we conclude

y �

��
�

��1�s �2ê�α � f̂ ; if OVF�OVFen
��1�s �2ê�α � f̂ ; if TINY�UNFen
��1�s �2ê � f̂ ; otherwise

η̂�y� �

��
�

�s� ê�α� f̂ � ; if OVF�OVFen
�s� ê�α� f̂ � ; if TINY�UNFen
�s� ê� f̂ � ; otherwise.
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FLAGS

SigNormShift

ExpNorm

er[12:0]
fr[-1:55]

OVFen, UNFen

fn[0:127] eni[10:0] en[10:0]OVF1TINY

lz[5:0]

ShiftDist

sh[12:0]

�	
��� ���� Circuit NORMSHIFT of the normalization shift

The two factorings η̂�y� and η�y� are the same except if y is denormal, i.e.,
if �TINY��UNFen�. In this case,

x � ��1�s �2ê � f̂ � ��1�s �2emin2ê�emin � f̂ �

and

η�y� �

��
�

�s� ê�α� f̂ � ; if OVF�OVFen
�s� ê�α� f̂ � ; if TINY�UNFen
�s�emin�2ê�emin � f̂ � ; if TINY��UNFen
�s� ê� f̂ � ; otherwise

and therefore,

e �

��
�

ê�α ; if OVF�OVFen
ê�α ; if TINY�UNFen
emin ; if TINY��UNFen
ê ; otherwise

f �

�
2ê�emin � f̂ ; if TINY��UNFen
f̂ ; otherwise.

(8.9)

Let f � � fr�2. Thus

f ��0 : 56� � fr ��1 : 55��

i.e., the representation f ��0 : 56� is simply obtained by shifting the binary
point in representation fr ��1 : 55� one bit to the right. In the following we
will compute shift distances for f��0 : 56�.
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Let lz be the number of leading zeros in fr ��1 : 55� or in f ��0 : 56�,
respectively. Finally, let

β � er � lz�1�

From equation (8.5), we conclude

2ê � f̂ � �x� �p�ê 2er � fr � 2er�1 � f � � 2β �2lz � f ��

Since 2lz � f � � �1�2�, it follows that

β � ê and 2lz � f � �p f̂ �

This immediately gives

e �

��
�

β�α ; if OVF�OVFen
β�α ; if TINY�UNFen
emin ; if TINY��UNFen
β ; otherwise

and
σ � lz ; unless TINY��UNFen�

If �TINY��UNFen� holds, then x� y and ê� emin. From equations (8.9)
and (8.5) we know

f � 2ê�emin � f̂

2ê � f̂ �p�ê 2er � fr �

Multiplying the second equation by 2�emin implies that

2ê�emin � f̂ �p�ê�emin 2er�emin � fr

f �p�ê�emin 2er�emin � fr � 2er�emin�1 � f ��

Since ê� emin, it also holds that

f �p 2er�emin�1 � f ��

Thus, we have

σ � er �emin�1 ; if TINY��UNFen�

Up to issues of number format the outputs of circuits SHIFTDIST and
EXPNORM are specified by the above calculations. Circuit SIGNORM-
SHIFT will not produce a representation of f� � 2σ, because in the case of
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right shifts such a representation might be very long (exercise 8.4). Instead,
it will produce a representation fn�0 : 63� such that

�� fn�0 : 63��� � fn �p f � �2σ

holds.
With the above specifications of the subcircuits of the normalization

shifter in place (up to issues of number format), we can immediately con-
clude

Let � ����� (�)

en �

��
�

β�α ; if OVF1�OVFen
β�α ; if T INY�UNFen
emin ; if T INY��UNFen
β ; otherwise

σ �

�
er �emin�1 ; if T INY ��UNFen
lz ; otherwise

fn �p f � �2σ�

(8.10)

Then equations (8.4) hold, i.e., the normalization shifter works correctly.

,��


Figure 8.26 depicts circuit FLAGS which determines the number lz of lead-
ing zeros and the flags TINY and OVF1. The computation of lz�5 : 0� is
completely straightforward. Because no overflow occurs if fr ��1 : 0� � 00,
we have

OVF1 
 �er � emax� � ��er � emax�� fr ��1���

Now recall that bias� emax� 2n�1 � 1 � �1n�1� and that n either equals
11 or 8. For the two’s complement number er we have

�er �12 : 0��� �1n�1� 
 �er �12� �
11�

i�n�1

er �i��

This explains the computation of the OVF1 flag.
Since f � � fr�2, we have to consider two cases for the TINY flag.

TINY 


�
er �1 � emin if f � � �1�2�
er �1� lz� emin if f � � �0�1�


 er �1� lz�emin� 0�

#*/



������� )

FLOATING POINT

ALGORITHMS AND

DATA PATHS 13
0 dbr3 31

lzero(64)

add(13)

1
64-57

lz[5:0] TINY OVF1

er[12:0]

6

lz[6]

fr[-1:55]

0

12

dbr
er[9:7]

er[11:10]

fr[-1]

equal(13)

er[12:0]emax

er[12]

�	
��� ���� Circuit FLAGS. Depending on the precision, the exponent emax
equals �03 dbr3 17�.

because lz� 0 for an f � in the interval �1�2�. Thus, the TINY flag can be
computed as the sign bit of the sum of the above 4 operands. Recall that
emin � 1�bias. Thus

�emin�1 � bias�1�1 � �1n�1��

bias� lz � �1n�1��1��1 lz�5 : 0�� � �10n�1���17 lz�5 : 0��

�

�
�061 lz�5 : 0�� ; if n� 8
�0314 lz�5 : 0�� ; if n� 11

This explains the computation of the TINY flag.
Circuit FLAGS gets its inputs directly from registers. Thus, its cost and

the accumulated delay of its outputs run at

CFLAGS � Clz�64��Cadd�13��CEQ�13��8 �Cinv�5 �Cor �3 �Cand

AFLAGS � max�Dlz�64��Dinv�Dadd�13��DEQ�13��Dand�Dor�

4 �Dor �2 �Cand��

1������� !������:�����

The circuit in figure 8.27 implements the exponent en of the equations
(8.10) in a fairly straightforward way. Along the way it also converts from
two’s complement to biased representation.

The case �TINY� �UNFen� is handled by two multiplexers which can
force the outputs directly to the biased representations 0101 and 0910 of
emin or emin�1, respectively. For the remaining three cases, the top portion
of the circuit computes biased representations of en and en�1, or equiva-
lently, the two’s complement representations of en�biasand en�1�bias.
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In particular, let

γ�

��
�

�α ; if OVF1�OVFen
α ; if TINY�UNFen
0 ; otherwise,

then the circuit computes the following sums sumand sum�1:

sum � er � lz�1�γ�bias

� er �1��1 lz�5 : 0���1�γ�bias

� er �1��1 lz�5 : 0���δ�

where

δ�

��
�

bias�α �1 ; if OVF�OVFen
bias�α �1 ; if TINY�UNFen
bias�1 ; otherwise .

Recall that α � 3 �2n�2 � �110n�2� and bias� 2n�1�1 � �1n�1�. Hence

bias�1 � �10n�1� � �00100n�2��

bias�α �1 � �110n�2�� �100n�2�

� �1010n�2� � �01010n�2��

�α � �1001n�2��1 � �1010n�2��

bias�1�α � �1110n�2� � �11110n�2��

In single precision we have n � 8 and the above equations define two’s
complement numbers with only 10 bits. By sign extension they are ex-
tended to 13 bits at the last multiplexer above the 3/2–adder. Like in the
computation of flag TINY, the value �lz�5 : 0�� can be included in the con-
stant δ�, and then, the 3/2-adder in the circuit of figure 8.27 can be dropped
(see exercise 8.5).

Without this optimization, circuit EXPNORM provides the two expo-
nents enand eni at the following cost and accumulated delay

CExpNorm � C3�2add�11��Cadd2�11��2 �Cmux�2��Cmux�5�

�Cinv�6��2 �Cmux�11��3 �Cand�Cinv

AExpNorm � max�AFlags� AUNF�OVFen��Dand

�4 �Dmux�D3�2add�11��Dadd2�11��
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60

01
UNFen
TINY

OVF1

OVFen
01

01

bias-a+1 bias+1

11 10

bias+a+1

0303

1111

dbr

er[10:0] lz[5:0]

15

1

3/2add(11)

add2(11)

10

10

eni[10:0] en[10:0]

TINY

UNFen

10

emin+1 emin

δ

�	
��� ���� Circuit EXPNORM of the exponent normalization shift; the exponents
emin and emin�1 are represented as 0101 and 0910. In case of a single precision,
only the bits [7:0] of the two exponents enand eniare used.

add(13)07

1313

1-eminer[12:0]lz[5:0] TINY UNFen

sh[12:0]

10

�	
��� ���� Circuit SHIFTDIST provides the shift distance of the normalization
shift. Depending on the precision, constant 1�emin equals 03 dbr3 17.
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The circuit in figure 8.28 implements the shift distance σ of the equations
(8.10) in a straightforward way. Recall that emin � 1�bias��2n�1 � 2.
Thus

1�emin � 1�2n�1�2 � 2n�1�1 � �1n�1��

It follows that
�sh�12 : 0�� � σ�

The shift is a right shift if sh�12� � 1.
Circuit SHIFTDIST generates the shift distance sh in the obvious way.

Since the inputs of the adder have zero delay, the cost and the accumulated
delay of the shift distance can be expressed as

CShi f tDist � Cadd�13��Cmux�13��Cand�Cinv

AShi f tDist � max�Dadd�13�� AFLAGS�Dand�

AUNFen�Dinv�Dand��Dmux�

��
��4���	 !������:����� �����
This is slightly more tricky. As shown in figure 8.29 the circuit which
performs the normalization shift of the significand has three parts:

1. A cyclic 64 bit left shifter whose shift distance is controlled by the 6
low order bits of sh. This takes the computation of the shift limita-
tion in the MASK circuit off the critical path.

2. A mask circuit producing a 128 bit mask v�0 : 63�w�0 : 63�

3. Let f s�0 : 63� be the output of the cyclic left shifter. Then fn is
computed by the bitwise AND of f s�� f s�� and v��w��.

We begin with the discussion of the cyclic left shifter. For strings f �
�0�1�N and non-negative shift distances d, we denote by cls� f �d� the
string obtained by shifting f by d bits cyclically to the left. Similarly,
we denote by crs� f �d� the result of shifting f by d bits to the right. Then
obviously

crs� f �d� � cls� f �N�d mod N�

� cls� f ��d mod N��

Let σ� � σ mod 64. For both, positive and negative, shift distances we
then have

�sh� � �sh�12� �212 � �sh�11 : 0��

� �sh�5 : 0�� mod 64 � σ��

We now can show
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and(64) and(64)

fn[0:63] fn[64:127]

sh[5:0]fr[-1:55] 0 sh[12:0]

fs[0:63] w[0:63]

CLS(64) MASK

v[0:63]

7

�	
��� ���� Circuit SIGNORMSHIFT

Let f� � fr�2. The output f s of the cyclic left shifter satisfies.���� (�	* �

f s �

�
cls� f ��σ�� ; if σ� 0
crs� f �� �σ�� ; otherwise.

For non-negative shift distances the claim follows immediately. For nega-�����
tive shift distance σ it follows that

crs� f �� �σ�� � cls� f ��σ mod 64� � cls� f ���sh�5 : 0���

���

We proceed to explain the generation of the masks as depicted in figure
8.30. We obviously have

�t� �

�
σ ; if σ� 0
�σ��1 ; otherwise�

Next, the distance in the mask circuit is limited to 63: the output of the
OR-tree equals 1 iff �t� � �16�� 63, hence

�sh�� �

�
�t� ; if �t� � 63
63 ; otherwise

�

��
�

σ ; if 0 � σ� 63
�σ��1 ; if �63 � σ��1
63 ; otherwise

We show that

The distance of the left shift in the significand normalization shift is boun-.���� (�		 �

ded by 56, i.e.,σ� 56.
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1 0

16

10

u[0:63]

sh[12]

v[0:63] w[0:63]

and(64)

1 0

1

sh’[5:0]

h[63:0]

1

hdec(6)

6

Ortree

flip

sh[11:0]

sh[11]

t[11:0]6

�	
��� ��� The MASK for the significand normalization shift

Left shifts have distance lz� 56 or er �emin� 1. The second case only �����
occurs if �TINY��UNFen�. In this case we have e� emin and fr �� 0.

Assume er � emin�55. Since

�x� �p�ê 2er � fr

and since ê� emin, it follows that

�x� �p�emin 2er � fr � 2emin�55 �2�55 � 2emin�

This contradicts the tininess of x. ���

The half decoder produces from sh� the masks

h�63 : 0� � 064��sh��1�sh���

In case the shift distance is negative a 1 is appended at the right end and
the string is flipped. Thus, for mask u we have

u�0 : 63� �

��
�

064�σ 1σ ; if 0 � σ
1�σ� 064��σ� ; if �63 � σ��1
164 ; if σ��64
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63 00 63

63 00 63

63 00 63c)

b)

a)

* , σ’ )

* *

σ

1 ... 1 0 ... 0

**

|σ| |σ|

1 ... 1 0 ... 00 ... 0

1 ... 10 ... 0

fs[] fs[]

fs[] fs[]

fs[] fs[]

v[] w[]

v[] w[]

v[] w[]

f’

f’[0:56] 07

cls( f’[0:56] 07

[σ:56] 07

�	
��� ��� Relation between the strings f s f sand the masks vw in the three cases
a) 0 � σ, b) �63 � σ ��1, and c) σ ��64.

For the masks v��w�� it follows that

v�0 : 63�w�0 : 63� �

��
�

164�σ 064�σ ; if 0 � σ
0�σ� 164 064��σ� ; if �63 � σ��1
064 164 ; if σ��64�

The relation between the string f s�� f s�� and the masks v��w�� is illus-
trated in figure 8.31. Let fl be the result of shifting f� logically by σ bits
to the left. From figure 8.31 we immediately read off

fn��1 : 126� �

��
�

fl 064 ; if 0 � σ
fl 064�σ ; if �63 � σ��1
064 cls� f ��σ�� ; if σ��64

In all cases we obviously have

fn �p fl �

Circuit MASK depicted in figure 8.30 generates the masks v and w at the
following cost and delay.

CMASK � Cinv�12��Cmux�12��CORtree�6��Cmux�6�

Chdec�6��Cmux�64��Cinv�64��Cand�64�

DMASK � Dinv�3 �Dmux�DORtree�6��Dhdec�6��Dand�
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01 dbr

029

fn[54:127]fn[25:53]fn[0:24]

Ortree Ortree

sta

74

st_db

st_sg
st_db

f1[0:24] f1[25:54]

29

�	
��� ��� Circuit REPP computes the p-representative of f n. The Flag stdb

(stsg) denotes the sticky bit in case of a double (single) precision result.

Cost and delay of the significand normalization shifter SIGNORMSHIFT

run at

CSigNormShi f t � CCLS�64��CMASK�2 �Cand�64�

DSigNormShi f t � max�DCLS�64��DMASK��Dand�

and the whole normalization shifter NORMSHIFT has cost and delay

CNormShi f t � CFlags�CExpNorm�CShi f tDist�CSigNormShi f t

ANormShi f t � max�AExpNorm� AShi f tDist�DSigNormShi f t��

)�&�# ��������� �� ��� 8������������

This is a straightforward sticky bit computation of the form

st�
�

i�p�1

fn�i�

where p depends on the precision and is either 24 or 53. Circuit REPP of
figure 8.32 selects the p-representative of fn as

f1��1 : p�1� � � fn��1 : p��st��

This circuit has the following cost and delay

CREPp � CORtree�29��CORtree�74��Cor �Cmux�30�

DREPp � DORtree�74��Dor �Dmux�
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f1[0:23] 129

10
10

10

s

f1[0:52]

f1[0:52] RM[1:0]

dbr

f1[23:25] f1[52:54]

dbr

0

inc(53)
Rounding Decision

l, r, st

inc
54

f2[-1:52] SIGinx

�	
��� �� Circuit SIGRND

)�&�& ��
��4���	 8�-�	��


In figure 8.33, the least significand bit l , round bit r and sticky bit st are
selected depending on the precision and fed into circuit ROUNDINGDECI-
SION. The rounded significand is exact iff the bits r and st are both zero:

SIGinx � r � st�

Depending on the rounding decision, f1�0 : p� 1� is chopped or incre-
mented at position p�1. More formally

f2 �

�
� f1�0 : p�1�� ; if inc� 0 (chop)
� f1�0 : p�1���2��p�1� ; if inc� 1 (increment).

The rounding decision is made according to table 8.5 which were con-
structed such that

f2 � sigrd�s� f1�

holds for every rounding mode.
Note that in mode rne (nearest even), the rounding decision depends on

bits l � r and st but not on the sign bit s. In modes ru, rd, the decision depends
on bits r� st and the sign bit s but not on l . In mode rz, the significand is
always chopped, i.e., inc� 0. From table 8.5, one reads off

inc �

��
�

r � �l �st� if rne

s � �r �st� if ru

s � �r �st� if rd�

With the coding of the rounding modes from table 8.1, this is implemented
in a straightforward way by the circuit of figure 8.34.
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����� ��� Rounding decision of the significand rounding. The tables list the value
of the flag inc which indicates that the significand needs to be incremented. On
round to zero (rz), the flag equals 0.

l r st rne

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

s r st ru rd

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 0 0
1 0 1 0 1
1 1 0 0 1
1 1 1 0 1

rstl st sRM[0] RM[0]

0 1

inc

RM[1]

�	
��� ��� Circuit of the rounding decision

The cost and delay of circuit SIGRND which performs the significand
rounding can be estimated as

CSigRnd � Cmux�53��Cmux�54��Cinc�53��Cor �Cmux�3�

�3 �Cand�2 �Cor �Cxor�Cmux

ASigRnd � 2 �Dmux�max�Dinc�53�� max�ARM� Dmux��Dxor�Dand��

)�&�' "�� !������:�����

The rounded significand f2 lies in the interval �1�2�. In case of f2 � 2,
circuit POSTNORM (figure 8.35) normalizes the factoring and signals an
overflow of the significand by SIGov f� 1. This overflow flag is generated
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0 1

f3[0:52]SIGovfe2[10:0]

en[10:0] eni[10:0] f2[-1:0] f2[1:52]

�	
��� ��� Post normalization circuit POSTNORM

as
SIGov f � f2��1��

In addition, circuit POSTNORM has to compute

�e2� f3� �

�
�en�1�1� ; if f2 � 2
�en� f2� ; otherwise

Since the normalization shifter NORMSHIFT provides en and eni � en�1,
the exponent e2 can just be selected based on the flag SIGovf. With a single
OR gate, one computes

f3�0�� f3�1 : 52� � � f2�1�� f2�0��� f3�0 : 52� �

�
1�052 ; if f2 � 2
f2�0 : 52� ; otherwise�

Thus, the cost and the delay of the post normalization circuit POSTNORM

are

CPostNorm � Cor �Cmux�11�

DPostNorm � max�Dor�Dmux��

)�&�( 1������� �	D-�����

The circuit shown in figure 8.36 corrects the error produced by the OVF1
signal in the most obvious way. The error situation OVF2 is recognized
by an active SIGov f signal and e2 � ��e2�10 : 0���bias � emax� 1. Since
��x��bias� �x��bias, we have

emax � �1n�1��bias

emax�1�bias � �1n�

emax�1 � ��1n��bias�

Thus, the test whether e2 � emax�1 holds is simply performed by an AND-
tree. If OVF2�OVFenholds, exponent e2 is replaced by the wrapped
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31

0 1

0 1

OVF2 e3[10:0]

e2[10:0]

emax+1-alpha

OVFen

SIGovf

SIGovf

e2[7:0]

e2[10:8]

dbr

Andtree

�	
��� ��� Circuit ADJUSTEXP which adjusts the exponent. Depending on the
precision, the constant emax�1�α equals 02 dbr3 13.

exponent emax�1�α in biased format. Note that

emax�1�bias �� 1n � and α �� 110n�2 �

imply

emax�1�α �bias � � 001n�2 �

emax�1�α � ��001n�2��bias�

Circuit ADJUSTEXP of figure 8.36 adjusts the exponent at the following
cost and delay

CAd justExp � Cmux�11��Cmux�3��CANDtree�11��3 �Cand�Cinv

DAd justExp � 2 �Dmux�DANDtree�11��Dand�

)�&�/ 1������� 8�-�	��


The circuit EXPRND in figure 8.37 computes the function exprd. More-
over, it converts the result into packed IEEE format. This involves

� hiding bit fout�0� and

� representing emin by 0n in case of a denormal result.

In the case OVF� �OVFen, the absolute value of the result is rounded to
Xmaxor ∞ depending on signal in f . The decision is made according to table
8.6. Circuit Infinity Decisionimplements this in a straightforward way as

in f �

�
RM�0� if RM�1� � 0
RM�0� XNOR s if RM�1� � 1�
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f3[0]11

63

e3
f3[1:52]

0 1

0 1

inf

infinity RM[1:0]

Infinity Decision

sXmax

fout[1:52]

OVF

OVFen

eout[10:0]

63

�	
��� ��� Circuit EXPRND. Depending on the precision, the constant Xmax

can be expressed as �dbr3 17 0� 123 dbr29� and infinity can be expressed as
�dbr3 18� 052�.

����� ��� Infinity decision of the exponent rounding. The tables list the value of
the flag in f which indicates that the exponent must be set to infinity.

RM[1:0] mode s� 0 s� 1

00 rz 0 0
01 rne 1 1
10 ru 1 0
11 rd 0 1

Denormal significands can only occur in the case TINY� �UNFen. In
that case, we have e� emin and the result is denormal iff f3�0� � 0, i.e., if
the significand f3 is denormal.

Circuit EXPRND which performs the exponent rounding has the follow-
ing cost and delay

CExpRnd � 2 �Cmux�63��2 �Cand�Cinv�Cmux�Cxnor

DExpRnd � 3 �Dmux�Dxnor�

)�&�) ����-�� SPECFPRND

This circuit (figure 8.38) covers the special cases and detects the IEEE
floating point exceptions overflow, underflow and inexact result. In case a
is a finite, non-zero number,

x � ��s�er � fr �� �p�ê a
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OVF

SIGinx

Precision

IEEEpFp[63:0]

INFr

NANr
ZEROr

RndExceptionsspec

UNPpOVFp INXp

INV DBZ

ZEROr NANrnans fouteout

SpecSelect

sp ep[10:0] fp[1:52]

dbr

�	
��� ��� Circuit SPECFPRND

and circuit RND already provides the packed IEEE factoring of x

�s�eout� fout� � rd�s�er � fr��

In case of a special operand a (zero, infinity or NaN) the flags f lr �
�ZEROr, NANr, INFr, nan, DBZ, INV) code the type of the operand and
provide the coding of the NaN

nan � �snan� fnan�1 : 52���

Thus, circuit SPECSELECT of figure 8.39 computes

�sP�eP� fp� �

��
�

�snan�111� fnan�1 : 52�� if NANr� 1
�s�111�052� if INFr � 1
�s�011�052� if ZEROr� 1
�s�eout� fout� if spec� 0�

where signal specindicates a special operand:

spec� NANr � INFr � ZEROr�

Depending on the flag dbr, the output factoring is either in single or double
precision. The single precision result is embedded in the 64-bit word F p
according to figure 8.1. Thus,

F p�63:0� �

�
�sP�eP�11 : 0�� fP�1 : 52�� if dbr
�sP�eP�7 : 0�� fP�1 : 23��sP�eP�7 : 0�� fP�1 : 23�� if �dbr�

The circuit PRECISION implements this selection in the obvious way with
a single 64-bit multiplexer.

In addition, circuit SPECFPRND detects the floating point exceptions
OVF, UNF and INX according to the specifications of section 7.3. These
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eout
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sp fp[1:52]ep[10:0]

NANr

fnan

s

ZEROr

fout

�	
��� ��� Circuit SPECSELECT

exceptions can only occur if a is a finite, non-zero number, i.e., if spec� 0.
Since the rounder design implements LOSSb, the loss of accuracy equals
INX. Thus,

OVFP � spec� OVF

UNFP � spec� TINY � �UNFen� LOSSb�

� spec� TINY � �UNFen� INX�

INXP � spec� INX�

Since an overflow and an underflow never occur together, signal INX can
be expressed as

INX �

�
SIGinx if �OVF�OVFen� � �UNF�UNFen�
SIGinx� OVF otherwise

� SIGinx� �OVF � OVFen��

Circuit RNDEXCEPTIONS generates the exception flags along these equa-
tions. In also generates the flag specindicating a special operand a.

The whole circuit SPECFPRND dealing with special cases and exception
flags has the following cost and delay

CSpecFPrnd � 2 �Cmux�52��Cmux�11��Cmux�Cinv

�Cmux�64��5 �Cand�4 �Cor �2 �Cinv

DSpecFPrnd � max�3 �Dmux� 2 � �Dmux�Dor�� Dinv�3 �Dand�Dor��

$�� ������ "�
�

�
IGURE 8.40 depicts the schematics of circuit FCON. The left subcir-
cuit compares the two operands FA2 and FB2, whereas the right sub-

circuit either computes the absolute value of operand FA2 or reverses its
sign. Thus, circuit FCON provides the following outputs:
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CIRCUIT FCON

add(64)

invfcc
FP test

04

ftest

IEEEf

INV

fcc

sa sb

EQ(64)

FA2[63:0] FB2[63:0]

e

FCON[3:0]

FA2[63, 62:0]

FC[63:0]

abs

FB2[62:0]

1

neg

0, FA2[62:0]

sign s

1

 fla  flb

FB2[63]FA2[63]

�	
��� ���� Circuit FCON; the left subcircuit performs the condition test, whereas
the right subcircuit implements the absolute value and negate operations.

� the condition flag f cc,

� the packed floating point result FC[63:0], and

� the floating point exception flags

IEEE f�4 : 0� � �INX�UNF� OVF� DBZ� INV��

Its data inputs are the two packed IEEE floating point operands

a � ��sa�eA�n�1 : 0�� fA�1 : p�1���

b � ��sb�eB�n�1 : 0�� fB�1 : p�1���

and the flags f l �a and f l �b which signal that the corresponding operand has
a special value. The circuit is controlled by

� flag f testwhich request a floating point condition test,

� the coding Fcon�3 : 0� of the predicate to be tested, and

� flag abs which distinguishes between the absolute value operation
and the sign negation operation.

Except for the flags f l�a and f l �b which are provided by the unpacker
FPUNP, all inputs have zero delay. Thus, the cost of circuit FCON and the
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����� ��� Coding of the floating point test condition

predicate coding less equal unordered INV if
true false Fcon[3:0] � � ? unordered

F T 0000 0 0 0
UN OR 0001 0 0 1
EQ NEQ 0010 0 1 0
UEQ OGL 0011 0 1 1
OLT UGE 0100 1 0 0

No

ULT OGE 0101 1 0 1
OLE UGT 0110 1 1 0
ULE OGT 0111 1 1 1
SF ST 1000 0 0 0
NGLE GLE 1001 0 0 1
SEQ SNE 1010 0 1 0
NGL GL 1011 0 1 1
LT NLT 1100 1 0 0

Yes

NGE GE 1101 1 0 1
LE NLE 1110 1 1 0
NGT GT 1111 1 1 1

accumulated delay of its outputs can be expressed as

CFCon � CEQ�64��Cadd�64��Cinv�63��CFPtest�Cand�Cnor

AFCon � max�DEQ�64�� Dinv�Dadd�64�� AFPunp� f la�� f lb���

�DFPtest�Dand�

)�'�� ,������
 "���� ���	����� ���

Table 8.7 lists the coding of the predicates to be tested. The implementa-
tion proceeds in two steps. First, the basic predicates unordered, equaland
less thanare generated according to the specifications of section 7.4.5, and
then the condition flag f ccand the invalid operation flag inv are derived as

f cc � Fcon�0��unordered� Fcon�1��equal � Fcon�2�� less

inv � Fcon�3��unordered�
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"��	����� ����	���	

The operands a and b compare unordered if and only if at least one of them
is a NaN. It does not matter whether the NaNs are signaling or not. Thus,
the value of the predicate unorderedequals:

unordered� NANa�NANb� SNANa�SNANb�

"��	����� 12-��

The flag e indicates that the packed representations of the numbers a and b
are identical, i.e.,

e� 1 
 FA2�63 : 0� � FB2�63 : 0��

Note that for the condition test the sign of zero is ignored (i.e., �0 ��0),
and that NaNs nevercompare equal. Thus, the result of the predicate equal
can be expressed as

equal �

��
�

1 if a�b� ��0��0�
0 if a� �NaN�sNaN�
0 if b� �NaN�sNaN�
e otherwise

� �ZEROa�ZEROb� � e�unordered

"��	����� 3�

According to section 7.4.5, the relation �I is a true subset of the R 2
∞. Thus,

the value of the predicate lesscan be expressed as

less� l �unordered�

where for any two numbers a�b� R ∞ the auxiliary flag l indicates that

l � 1 
 a� b�

The following lemma reduces the comparison of packed floating point
numbers to the comparison of binary numbers:
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����� ��� Reducing the test a� b to �a�� �b�

sa sb range a� b if

0 0 0 � a�b �s�� 0 
 sign� 1
0 1 b� 0 � a never
1 0 a� 0 � b except for a��0 � b��0
1 1 a�b� 0 �s�� 0 
 �sign� 0� � �a �� b�

For any two numbers a�b�R ∞ with the packed representations�sA�eA� fA������ (�	� �

and�sB�eB� fB� holds

�a�� �b� 
 �eA fA�� �eB fB��

Thus, let sign� s�n� p� denote the sign bit of the difference

�s�n� p : 0�� � �0eA�n�1 : 0� fA�1 : p�1��� �0eB�n�1 : 0� fB�1 : p�1���

we then have

�a� � �b� 
 �s�n� p : 0��� 0 
 sign� 1�

and according to table 8.8, the auxiliary flag l can be generated as

l � sa�sb�sign

� sa�sb� �ZEROaNAND ZEROb�

� sa�sb� �sign NOR e��

Proof of Lemma 8.12�����
The numbers a and b can be finite normal numbers, finite denormal num-
bers or infinity. If a is a finite normal number, we have

�a� � ��0�eA� fA�� � 2�eA��bias� � fA�

with � fA� � �1�2� and 0 � �eA�� 2n, whereas in case of a denormal signif-
icand we have

�a� � ��0�eA� fA�� � 2�eA��1�bias� � fA�

with � fA� � �0�1� and �eA�� 0.
If both numbers a and b have normal (denormal) significands, the claim

can easily be verified. Thus, let a be a denormal number and b be a normal
number, then

�a� � 2emin � �b��

&�(
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CIRCUIT FCON
and the claim follows because

�eA fA� � �0n 1p�1� � 2p�1

� �eB� �2
p�1 � �eB 0p�1� � �eB fB��

Let a be a finite number and let b � ∞, then eB � 1n and fB � 0p�1.
Since �a�� ∞ and

�eA fA� � �1n�101p�1� � �1n�110p�1� � �eB fB��

the claim also holds for the pairs �a�∞�. ���

8����:����� �� ��� ���	����� ���

In circuit FCON of figure 8.40, a 64-bit equality tester provides the auxil-
iary flag e, and the output negof a 64-bit adder provides the bit sign� s�64�.
These bits are fed into circuit FPTEST which then generates the outputs
f cc and inv and the flags of the three basic predicates as described above.

The cost and delay of circuit FPTEST can be expressed as

CFPtest � 13 �Cand�8 �Cor �3 �Cinv�Cnor�Cnand

DFPtest � 3 �Dand�3 �Dor �max�Dinv�Dand� Dnor� Dnand��

)�'�� ����-�� >��-� ��	 !�
�����

For the packed floating point operand a � R∞ with a � ��sA�eA� fA��, the
absolute value �a� satisfies

�a� � ��0�eA� fA���

Thus, the packed representation of the value �a� can simply be obtained by
clearing the sign bit of operand FA2. The value �a satisfies

�a � ��sA�eA� fA��

and just requires the negation of the sign bit.
Thus, both operations only modify the sign bit. Unlike any other arith-

metic operation, this modification of the sign bit is also performed for any
type of NaN. However, the exponent and the significand of the NaN still
pass the unit unchanged. Since

sC � sA NOR abs �

�
0 if abs� 1 (absolute value)

sA if abs� 0 (reversed sign)
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the subcircuit at the right hand side of figure 8.40 therefore generates the
packed representation of the the value

c � ��sC�eC� fC�� �

�
�a� if abs� 1
�a if abs� 0�

Depending on the flag abs, it either implements the absolute value or re-
versed sign operation.

)�'�# .111 ,������
 "���� 1��������

In the IEEE floating point standard, the two operations absolute value and
sign reverse are considered to be special copy operations, and therefore,
they never signal a floating point exception.

The floating point condition test is always exact and never overflows
nor underflows. Thus, it only signals an invalid operation; the remaining
exception flags are always inactive.

Depending on the control signal f test which requests a floating point
condition test circuit FCON selects the appropriate set of exception flags:

INV � inv � f test �

�
inv if f test� 1
0 if f test� 0

�INX�UNF�OVF�DBZ� � �0�0�0�0��

$�� "
���� �
�)����
�



ONVERSIONS HAVE to be possible between the two packed floating
point formats (i.e., single and double precision) and the integer for-

mat. For each of the six conversions, the four IEEE rounding modes must
be supported.

Integers are represented as 32-bit two’s complement number x�31 : 0�
and lie in the set T32:

x � �x�31 : 0�� � T32 � ��231� � � � �231�1��

A floating point number y is represented by a sign bit s, an n-bit exponent
e and an p-bit significand. The parameters �n� p� are �8�24� for single
precision and �11�53� for double precision. The exponent is represented
in biased integer format

e � ��e�n�1 : 0���bias � �e�n�1 : 0���biasn
� �e�n�1 : 0��� �2n�1�1�
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and the significand is given as binary fraction

f � � f �0�� f �1 : p�1���

In the packed format, bit f �0� is hidden, i.e., it must be extracted from the
exponent. Thus,

y � ��s�e�n�1 : 0�� f �1 : p�1��� � ��1�s �2e � f �

Each type of conversion is easy but none is completely trivial. In the
following, we specify the six conversions in detail. Section 8.6.2 then
describes the implementation of the conversions.

)�(�� �����4������ �� ��� ���������

The two parameter sets �n� p� � �11�53� and �n�� p�� � �8�24� denote the
width of the exponent and significand for double and single precision, re-
spectively. As we are dealing with two floating point precisions, we also
have to deal with two rounding functions, one for single and one for double
precision. The same is true for functions like the IEEE normalization shift
η and the overflow check OVF. If necessary, the indices ‘s’ and ‘d’ are
used to distinguish between the two versions (e.g., rds denotes the single
precision rounding function). Since the rounding functions are only de-
fined for a finite, representable operand, the special operands NaN, infinity
and zero have to be considered separately.

+�-��� �� ���
�� "������� ���������

Converting a packed, double precision floating point number a with repre-
sentation

ηd�a� � �sA� eA�n�1 : 0�� fA�1 : p�1��

to single precision gives a packed representation �sP�eP�n�� 1 : 0�� fP�1 :
p��1�� which satisfies the following conditions:

� If a is a finite, non-zero number, then

�sP�eP�n
��1 : 0�� fP�1 : p��1�� � rds�x��

where

x�

��
�

a �2�α if OVFs�a��OVFen
a �2α if UNFs�a��UNFen
a otherwise�

&�*
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� If a is a zero, infinity or NaN, then

�sP�eP� fP� �

��
�

�sA�0n� �0p��1� if a� ��1�sA �0
�sA�1n� �0p��1� if a� ��1�sA �∞
�sA�1n� �10p��2� if a� NaN

According to section 7.4.6, the conversion signals an invalid operation ex-
ception INV � 1 iff a is a signaling NaN.

���
�� �� +�-��� ���������

Converting a packed, single precision floating point number a with repre-
sentation

ηs�a� � �sA� eA�n
��1 : 0�� fA�1 : p��1��

to double precision gives a representation �sP�eP�n� 1 : 0�� fP�1 : p� 1��
which satisfies the following conditions

� If a is a finite, non-zero number, then

�sP�eP�n�1 : 0�� fP�1 : p�1�� � ηd�rdd�a���

Due to the larger range of representable numbers, a never overflows
nor underflows, i.e., OVFd�a� � 0 and UNFd�a� � 0. In addition,
the rounded result is always exact (INX � 0).

� If x is a zero, infinity or NaN, then

�sP�eP� fP� �

��
�

�sA�0n�0p�1� if x� ��1�sA �0
�sA�1n�0p�1� if x� ��1�sA �∞
�sA�1n�10p�2� if x� NaN

Although each single precision number is representable in double preci-
sion, rounding cannot be avoided because all denormal single precision
numbers are normal in double precision. An invalid operation exception
INV � 1 is signaled iff a is a signaling NaN.

.���
�� �� ,������
 "���� ���������

Let x� T32 be an non-zero integer coded as 32-bit two’s complement num-
ber x�31 : 0�. Its absolute value �x�, which lies in the set �1� � � � 231�, can
be represented as 32-bit binary number y�31 : 0� which usually has some
leading zeros:

�x� � �y�31 : 0�� � �0�y�31 : 0�� �232 � � f �0�� f �1 : 32�� �232

&��
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with f �0 : 31� � 0y�31 : 0�. The value of the binary fraction f lies in the in-
terval �0�1�. Rounding the factoring �x�31��32� f � gives the desired result.
The exceptions overflow, underflow and inexact result cannot occur.

Thus, in case of single precision, the conversion delivers

�sP�eP� fP� �

�
ηs�rds���x�31��32� f �0 : 32����� if x �� 0
�0�0n� �0p��1� if x� 0�

In case of a double precision result, the rounding can be omitted due to the
p � 53 bit significand. However, a normalization is still required. Thus,
converting a two’s complement integer x into a double precision floating
point number provides the packed factoring

�sP�eP� fP� �

�
ηd���x�31��32� f �1 : 32���� if x �� 0
�0�0n�0p�1� if x� 0�

,������
 "���� �� .���
�� ���������

Let �n� p� � ��8�23���11�53�� be the length of the exponent and signifi-
cand in single or double precision format, respectively. When converting
a representable number a� ��s�e� f �� into an integer one has to perform the
following three steps:

1. The value a is rounded to an integer value x � ��1�s � y; every one
of the four rounding modes is possible.

2. It is checked whether the value x lies in the representable range T32 of
integers. In the comparison we have to consider the sign bit, because
the set T32 is not symmetric around zero.

3. If x is representable, its representation is converted from sign mag-
nitude to two’s complement, and otherwise, an invalid operation is
signaled.

Rounding Let F be the set of all binary numbers representable with at
most emax�1 bits:

F � ��y�emax : 0�� � y�i� � �0�1�� for all i��

For every representable a, there exists an integer z� F with

z � max�y� F � y� �a�� and z� �a�� z�1�

The rounding of the floating point number a to an integer x is then defined
in complete analogy to the significand rounding of a floating point number.
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For round to nearest-even, for example, one obtains the rule

rdint�a� �

��
�

�s�bin�z�� if �a�� z�0�5
or �a�� z�0�5 � z�0� � 0

�s�bin�z�1�� if �a�� z�0�5
or �a�� z�0�5 � z�0� � 1

Of course, one can obtain this rule by substituting in equation 7.2 (page
332) the number a for f and setting p� 1. It follows that

rdint�a� � rdint��a�1� and rdint�a� � a 
 rdint��a�1� � a�

The same argument can be made for all four rounding modes.

Range Check Let x � ��1�s � y be an integer obtained by rounding a
floating point number as described above. Its absolute value �x�� y can be
as large as

2 �2emax � 2 �2210�1 � 2210

and thus, an implementation of function rdint would have to provide an
1025-bit binary number y. However,

�a� � 232 � y� 232 � x �� T32�

and in this case, the conversion only needs to signal an invalid operation,
but the rounding itself can be omitted. Such an overflow is signaled by
Iov f1.

In case of Iov f1 � 0, the absolute value y is at most 232. Thus, y can
be represented as 33-bit binary number y�32 : 0� and �y as 33-bit two’s
complement number

�y � �z�32 : 0�� � �y�32 : 0���1�

Let

�x�32 : 0�� �

�
�y�32 : 0�� if s� 0
�z�32 : 0�� if s� 1

� �y�32 : 0�	s��s�

if the integer x lies in the set T32 it then has the two’s complement repre-
sentation x�31 : 0�:

x � ��1�s �y � �x�31 : 0���

The conversion overflows if x cannot be represented as a 32-bit two’s
complement number, i.e.,

Iov f � Iov f1 � Iov f2 � 1
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where due to sign extension

Iov f2 � 1 
 �x�32 : 0�� �� T32 
 �x�32� �� x�31���

An invalid operation exception INV is signaled if a is not a finite number
or if Iov f � 1:

INV � 1 
 a� �NaN��∞��∞� � Iov f � 1�

)�(�� .������������� �� ��� ���������

One could provide a separate circuit for each type of conversion. However,
the arithmetic operations already require a general floating point unpacker
and a floating point rounder which convert from a packed floating format to
an internal floating format and vice versa. In order to reuse this hardware,
every conversion is performed in two steps:

� An unpacker converts the input FA2[63:0] into an internal floating
point format. Depending on the type of the conversion, the input
FA2 is interpreted as 32-bit two’s complement integer

x � �x�31 : 0�� with x�31 : 0� � FA2�63 : 32��

or as single of double precision floating point number with packed
factoring

�sA�eA� fA� �

�
�FA2�63��FA2�62 : 52��FA2�51 : 0� if dbs� 1
�FA2�63��FA2�62 : 55��FA2�54 : 32� if dbs� 0�

� A rounder then converts the number �sr �er � fr � f lr� represented in an
internal floating point format into a 32-bit two’s complement integer
Fx[31:0] or into a packed floating point representation �sP�eP� fP�.
In case of double precision �dbr � 1�, the floating point output is
obtained as

F p�63 : 0� � �sP�eP�10 : 0�� fP�1 : 53���

whereas for single precision �dbr � 0�, output Fp is obtained as

F p�63 : 32� � F p�31 : 0� � �sP�eP�7 : 0�� fP�1 : 24���

In addition to the unpacker FPUNP and the rounder FPRND, the conver-
sions then require a fixed point unpacker FXUNP, a fixed point rounder
FXRND, and a circuit CVT which adapts the output of FPUNP to the input
format of FPRND (figure 8.2).
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The conversion is controlled by the following signals:

� signals dbsand dbr indicate a double precision floating point source
operand and result,

� signal normal which is only active in case of a floating point to in-
teger conversion requests the normalization of the source operand,
and

� the two enable signals which select between the results of the circuits
CVT and FXUNP.

,������
 "���� ,����� ���������

Unpacking The floating point unpacker FPUNP (section 8.1) gets the
operand FA2 and provides as output a factoring �sa�ea�10 : 0�� fa�0 : 52��
and the flags f la. The exponent ea is a two’s complement number. The
flags f la comprising the bits ZEROa, INFa, NANa and SNANa signal that
FA2 is a special operand.

For a non-zero, finite operand a, the output factoring satisfies

a � ��sA�eA� fA�� � ��1�sa �2�ea�10:0�� � � fa�0�� fa�1 : 52���

Since normal� 0, the output factoring is IEEE-normal, i.e., fa�0� � 0 im-
plies �a�� 2emin.

Circuit CVT Circuit CVT gets the factoring �sa�ea� fa� and the flags f la
from the unpacker. It checks for an invalid conversion operation and ex-
tends the exponent and significand by some bits:

�sv�ev�12 : 0�� fv��1 : 55�� � �sa�ea�10�3ea�9 : 0��0 fa�1 : 52�03�

�ZERO� INF�NAN� � �ZEROa� INFa�NANa�SNANa�

�INV�DBZ� � �SNANa�0�

nan � �snan� fnan�1 : 52�� � �sa�1051��

For a finite, non-zero operand a, we obviously have

a � ��1�sa �2�ea�10:0�� � � fa�0�� fa�1 : 52��
� ��1�sv �2�ev�12:0�� � � fv��1 : 0�� fv�1 : 55���

(8.11)

and the factoring is still IEEE-normal. The implementation of CVT is
straightforward and just requires a single OR gate:

CCvt � Cor� DCvt � Dor�
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Rounding The output �sv�ev� fv� f lv� of circuit CVT is fed to the floating
point rounder FPRND. In order to meet the input specification of FPRND,
fv � �0�1� must imply that OVF � 0. Since the factoring is IEEE-normal,
that is obviously the case:

fv��1 : 0� � 00 
 fa�0� � 0 
 �a�� 2emin�

Let

y�

��
�

a �2�α if OVF�a��OVFen
a �2α if UNF�a��UNFen
a otherwise�

Depending on the flags f lv, circuit FPRND (section 8.4) then provides the
packed factoring

�sP�eP� fP� �

��
�

�sv�0n�0p�1� if ZEROv

�sv�1n�0p�1� if INFv

�snan�1n� fnan�1 : p�1�� if a� NaNv

η�rd�y�� otherwise�

In case of dbr� 1, the factoring is given in double precision and otherwise,
it is given in single precision. The correctness of the conversion follows
immediately from the definition of the flags f lv.

.���
�� �� ,������
 "���� ���������

These conversions are also performed in two steps. First, the fixed point
unpacker FXUNP converts the two’s complement integer x�31 : 0� into the
internal floating point format. The floating point rounder FPRND then con-
verts this factoring �su�eu� fu� f lu� into the packed floating point format.
Depending on the control signal dbr, the output factoring �sP�eP� fP� has
either single or double precision.

Unpacking The unpacker FXUNP converts the two’s complement inte-
ger x�31 : 0� into the internal floating point format. This representation
consists of the flags f lu and the factoring �su�eu�13 : 0�� fu��1 : 55�� which
is determined according to the specification from page 420.

The flags f lu indicate a special operand (i.e., zero, infinity and NaN) and
signal the exceptions INV and DBZ. Since the two’s complement integer
x�31 : 0� is always a finite number, a zero input is the only possible special
case:

ZEROu� 1 
 �x�31 : 0�� � 0 
 x�31 : 0� � 032�
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zero(32)

04

071 05
01

00

1

x[31]

inc(32)
y

ZEROu

nan

flags

x[31:0]

flu

5101 0

fu[33:55]fu[1:32]

023

eu[12:0] fu[-1:0]su

x[31]

�	
��� ���� Circuit FXUNP converting a 32-bit integer x�31 : 0� into the internal
floating point format; f lagsdenotes the bits INFu, NANu, INV, and DBZ.

The remaining flags are inactive and nancan be chosen arbitrarily:

INV � DBZ � INF � NAN � 0

nan � �snan� fnan�1 : 52�� � �0� 1051��

Since �x� � �0� � � � �231�, the absolute value of x can be represented as
32-bit binary number y�31 : 0�:

�x� � �y�31 : 0�� �

�
�x�31 : 0�� if x�31� � 0

�x�31 : 0���1 mod 232 if x�31� � 1�

Thus, the factoring

su � x�31� �

�
1 if x� 0
0 if x� 0

eu�13 : 0� � 07 105

fu��1 : 55� � 02 y�31 : 0�023�

with a 13-bit two’s complement exponent satisfies

x � ��1�su �232 � �0�y�31 : 0��

� ��1�su �2�eu�13:0�� � � fu��1 : 0�� fu�1 : 55���

The circuit of figure 8.41 implements the fixed point unpacker FXUNP in
a straightforward manner at the following cost and delay:

CFXunp � Cinv�32��Cinc�32��Czero�32��Cmux�32�

DFXunp � max�Dinv�Dinc�32��Dmux�32��Dzero�32���
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Rounding Since an integer to floating point conversion never overflows,
the representation �su�eu� fu� f lu� meets the requirements of the rounder
FPRND. Thus, the correctness of the floating point rounder FPRND implies
the correctness of this integer to floating point converter.

,������
 "���� �� .���
�� ���������
Like any other conversion, this conversion is split into an unpacking and
rounding step. The unpacking is performed by the floating point unpacker
FPUNP which delivers the flags f la indicating a special operand. In case
that a is a non-zero, finite number, circuit FPUNP also provides a factoring
�sa�ea� fa� of a:

a � ��1�sa �2�ea�10:0����lza�5:0�� � � fa�0�� fa�1 : 52�� � ��1�sa �2e�a � fa

Due to normal� 1, the significand fa is normal, and for any �a� � 2emin,
the number lza is zero.

This representation is provided to the fixed point rounder FXRND which
generates the data Fx�63 : 32� � Fx�31 : 0� and the floating point exception
flag INV. For a finite number a, let rdint�a� � �sa�y� and

x � ��1�sa �y � ��1�sa �20 �y�

For x� T32, the conversion is valid (INV � 0) and x has the two’s comple-
ment representation Fx[31:0]. If a is not finite or if x �� T32, the conversion
is invalid, i.e., INV � 1, and Fx[31:0] is chosen arbitrarily.

,���	 "���� 8�-�	�� FXRD

In section 8.4, the floating point rounder FPRND is described in detail.
Instead of developing the fixed point rounder FXRND from scratch, we
rather derive it from circuit FPRND.

Implementation Concept Note that the result of rounder FXRND al-
ways has a fixed exponent. For the floating point rounder, that is only the
case if the result is denormal. Let �s�er � fr� be a denormal floating point
operand, the floating point rounder FPRND then provides the output fac-
toring �s�eout� fout� such that

�s�eout� fout� � η�rd�s�er � fr�� � �s� exprd�s� post�er �sigrd�s� fr �����

If the result is denormal, the post-normalization and the exponent rounding
can be omitted:

�s�eout� fout� � η�rd�s�er � fr�� � �s� er �sigrd�s� fr ���
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The major differences between this denormal floating point rounding
rddn and the rounding rdint is the rounding position and the width of the
significand. In case of rddn, the rounding position is p bits to the right of
the binary point, whereas in case of rdint , the significand is rounded at the
binary point �p� 1�. However, this is not a problem; let e�a � ea� lza,

a � ��1�sa �2e�a � fa
� ��1�sa �2�p�1� � �2e�a��p�1� � fa� � ��1�sa �2�p�1� � fr �

The equation suggests to make the exponent 1 and shift the significand
e�a positions left, then shift p� 1 positions right; this moves the bit with
weight 1 into the position p�1 right of the binary point.

The significand fout provided by rddn has at most two bits to the left of
the binary point, whereas y has up to 32 bits to the left of the binary point.
However, the rounding rdint is only applied if fa � �0�2� and e�a � 231. For
p� 32 it then follows that

fr � 2e�a��p�1� � fa � 231�31 � fa � 2�

Thus, the significand sigrnd�sa� fr� has at most 2 bits to the left to the
binary point. The significand y can then be obtained by shifting the output
significand fout emin positions to the left:

y�32 : 0� � y�p : 0� � fout��1 : p�1��

Circuit FXRND Figure 8.42 depicts the top level schematics of the fixed
point rounder FXRND. Circuits NORMSHIFTX, REPPX, and SIGRNDX
from the floating point rounder are adapted as follows:

� only denormal results are considered (i.e., UNF��UNFen),

� only one precision p� 32 is supported,

� and emin is set to ��p�1� ��31.

Circuit SPECFX is new, it performs the range check, signals exceptions
and implements the special case a� 0. All the inputs of the rounders have
zero delay, thus

CFXrnd � CNormShi f tX�CREPpX�Cf f �40��CSigRndX�CSpecFX

TFXrnd � DNormShi f tX�DREPpX�∆
AFXrnd � ASigRndX�DSpecFX�
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f1[0:33] s RMIovf1fla

IEEEx Fx[63:0]

SIGinx

f3[-1:31]

saea[10:0] lza[5:0]fla fa[0:52]

NormShiftX

SpecFX SigRndX

4
fn

�	
��� ���� Schematics of the fixed point rounder FXRND; IEEEx denote the
floating point exceptions flags.

Shift Dist FX FXflags

SigNormShift

sh[12:0]

fn[0:127] Iovf1

ea[10:0], lza[5:0]fa[0:52]

�	
��� ��� Normalization shifter NORMSHIFTX

Circuit NORMSHIFTX The circuit depicted in figure 8.43 performs the
normalization shift. In analogy to the floating point rounder, its outputs
satisfy

Iov f1 � 2e�a � fa � 232

en � emin � �31

fn �p f � 2e�a�emin � fa�

Circuit SIGNORMSHIFT which performs the normalization shift is iden-
tical to that of the floating point rounder. Since the significand fa is normal,
and since for large operands lza � 0, we have

2e�a � fa � 232 
 e�a � ea� lza � 32 
 �ea�10 : 0��� 32�

Thus, circuit FXFLAGS signals the overflow Iov f1 by

Iov f1 � ea�10� �
�

i�5�����9

ea�i��
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add(13)

7 1 050
17

3/2add(13)

sh[12:0]

01313

ea[10, 9:0] lza[5:0]

�	
��� ���� Circuit SHIFTDISTFX of the fixed point rounder

Circuit SHIFTDISTFX (figure 8.44) provides the distance σ of the nor-
malization shift as 13-bit two’s complement number. Since f is defined as
2e�a�emin � fa, the shift distance equals

σ � �sh�12 : 0�� � e�a�emin

� �ea�10 : 0����lza�5 : 0��� ��31�

� �ea�10�3 ea�9 : 0��� �17 lza�5 : 0���32 mod 213�

The cost and delay of the normalization shifter NORMSHIFTX and of its
modified subcircuits can be expressed as

CNormShi f tX � CFX f lags�CShi f tDistX�CSigNormShi f t

CFX f lags � CORtree�5��Cand�Cinv

CShi f tDistX � Cinv�6��C3�2add�13��Cadd�13�

DNormShi f tX � max�DFX f lags� DShi f tDistX�DSigNormShi f t�

DFX f lags � DORtree�5��Dand

DShi f tDistX � Dinv�D3�2add�13��Dadd�13��

Circuit REPPX The circuit of figure 8.45 performs the sticky bit com-
putation in order to provide a p-representative of fn:

f1 � � fn�p � f1�0 : 33� � fn�0 : 32�st � st �
�

i�p

fn�i�

Since we now have only a single precision, this circuit becomes almost
trivial:

CREPpX � CORtree�95�� DREPpX � DORtree�95��
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f1[0:32] f1[33]

fn[0:32] fn[33:127]

st

�	
��� ���� Circuit REPPX

10

l, r, st

sa

f3[-1:31]

33

Rounding Decision

SIGinx

inc

f1[31:33]RM[1:0]sasa 0, f1[0:31]

incf(33)

�	
��� ���� Circuit SIGRNDX of the fixed point rounder

Circuit SIGRNDX Circuit SIGRNDX (figure 8.46) performs the signifi-
cand rounding and converts the rounded significand f2��1 : 31� into a two’s
complement fraction f3��1 : 31�. Given that the range is not exceeded, we
have

f2��1 : 31� � sigrnd�sa� f1�0 : 33��

� f3��1 : 0�� f3�1 : 31�� � ��1�sa � � f2��1 : 0�� f2�1 : 31���

As in the rounder FPRND, the binary fraction f1 is either chopped or in-
cremented at position p�1, depending on the rounding decision:

f2 � � f1�0�� f1�1 : p�1��� inc �2��p�1�

� f2 � �1 f1�0�� f1�1 : p�1��� �1� inc� �2��p�1�

f3 � �sa � f1�0�� f1�1 : p�1��	sa�� �inc	sa� �2
��p�1��

The rounded significand is inexact (SIGinx� 1) iff f1�32 : 33� �� 00.
Like in the floating point rounder, the rounding decision flag inc is gen-

erated by the circuit of figure 8.34. Circuit SIGRNDX therefore has cost
and delay

CSigRndX � Cmux�33��Cinc�33��Cor �2 �Cxor
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�Cmux�3 �Cand�2 �Cor �Cxor

ASigRndX � max�Dinc�33�� ARM�Dxor�Dand�Dmux�

�Dmux�Dxor�

Circuit SPECFX This circuit supports the special cases and signals float-
ing point exceptions. If the rounded result x is representable as a 32-bit
two’s complement number, we have

x � 2�31� f3��1 : 0�� f3�1 : 31�� and x�32 : 0� � f3��1 : 31��

In case of a zero operand a� 0, which is signaled by the flag ZEROr, the
result Fx must be pulled to zero. Thus:

Fx�31 : 0� �

�
032 if ZEROr� 1
x�31 : 0� if ZEROr� 0

� x�31 : 0�	ZEROr

Fx�63 : 32� � Fx�31 : 0��

According to the specifications from page 422, the overflow of the conver-
sion and the invalid operation exception can be detected as

Iov f � Iov f1 � x�32�	sa � x�31�	sa

INV � Iov f � NANr � INFr�

The conversion is inexact, if the rounded significand is inexact SIGinx� 1
and if a is a finite non-zero number:

INX � SIGinx� NANr � INFr � ZEROr�

Further floating point exceptions cannot occur. Circuit SPECFX imple-
ments this in a straightforward way at

CSpecFX � Cxor�32��2 �Cxor�Cand�Cnor�5 �Cor

DSpecFX � max�Dxor�Dor� Dand�Dor��Dor�

$�� %)�����
� 
! ��� "+3 *���#�

�
N THE previous subsections, we have designed an IEEE-compliant float-
ing point unit. We now analyze the cost and the delay of the FPU and

the accumulated delay of its outputs. We assume that the rounding mode
RM and the flags UNFenand OVFenhave zero delay.
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����� ��� Accumulated delay of the units feeding bus FR and cycle time of the
FPU and of its units

accumulated delay
bus FR ADD/SUB MUL/DIV FXUNP FPUNP/CVT

93 91 64 35 45

cycle time
FPU Bus FR ADD/SUB MUL/DIV FPRND FXRND

98 98 63 69 98 76

�%��� ���� �� ��� ,"�

In the top level schematics of the FPU (figure 8.2), there are two register
stages: The output of the unpacker FPUNP and the intermediate result on
bus FR are clocked into registers. Result FR is provided by the unpacker
FXUNP, the converter CVT, the add/subtract unit or by the multiply/divide
unit, thus,

AFPU�Fr� � max�AFPunp�DCvt�AFXunp�AMulDiv�AAddSub��Ddriv

TFPU�Fr� � AFPU�Fr��∆�

According to table 8.9, these results have an accumulated delay of at most
93, and therefore require a minimal cycle time of 98 gate delays. This time
is dominated by the add/subtract unit.

In addition, some units of the FPU have an internal register stage and
therefore impose a bound on the cycle time of the FPU, as well. These
units are the two rounders FPRND and FXRND, the add/subtract unit, and
the multiply/divide unit:

TFPU � max�TMulDiv�TAddSub�TFPrnd�TFXrnd� TFPU�Fr���

These units require a minimal cycle time of 98 gate delays like the update
of register FR. The floating point rounder FPRND is 30% slower than the
other three units.

���-�-����	 +���% �� ��� �-��-�

The outputs of the floating point unit are provided by the two rounders
FPRND and FXRND and by unit FCON:

AFPU � max�AFCon� AFXrnd� AFPrnd��
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����� ���� Accumulated delay of the outputs of the FPU. Circuit SIGRND of
rounder FPRND uses a standard incrementer (1) or a fast CSI incrementer (2).

version FPU FCON FXRND FPRND SIGRND

(1) 91 50 44 91 58
(2) 50 50 44 49 16

According to table 8.10, they have an accumulated delay of 91. Compared
to the cycle time of the FPU, a delay of 91 just leaves enough time to
select the result and to clock it into a register. However, in a pipelined
design (chapter 9), the outputs of the FPU become time critical due to
result forwarding.

The floating point rounder FPRND is about 50% slower than the other
two units. Its delay is largely due to the 53-bit incrementer of the signif-
icand round circuit SIGRND. The delay of a standard n-bit incrementer
is linear in n. However, when applying the conditional sum principle re-
cursively, its delay becomes logarithmic in n (see exercise 2.1 of chapter
2). Using such a CSI incrementer speeds up the rounder significantly. The
outputs of the FPU then have an accumulated delay of 50 gate delays. That
now leaves plenty of time for result forwarding.

The FPU receives the underflow enable bit UNFen, the overflow enable
bit OVFenand the rounding mode at an accumulated delay of AUNF�OVFen.
The FPU design can tolerate an accumulated delay of AUNF�OVFen� 40
before the input signal UNFenand OVFendominate the cycle time TFPU .

The accumulated delay of the rounding mode RM is more time critical.
Already for ARM � 9, the rounding mode dominates the delay AFPU , i.e., it
slows down the computation of the FPU outputs.

��� �� ��� ,"�

Table 8.11 lists the cost of the floating point unit FPU and of its major com-
ponents. Circuit SIGRND of the floating point rounder FPRND either uses
a standard 53-bit incrementer or a fast 53-bit CSI incrementer. Switching
to the fast incrementer increases the cost of the rounder FPRND by 3%,
but it has virtually no impact on the total cost (0.2%). On the other hand,
the CSI incrementer improves the accumulated delay of the FPU consid-
erably. Therefore, we later on only use the FPU design version with CSI
incrementer.

The multiply/divide unit is by far the most expensive part of the float-
ing point unit, it accounts for 70% of the total cost. According to table
8.12, the cost of the multiply/divide unit are almost solely caused by cir-
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����� ���� Cost of the FPU and its sub-units. Circuit SIGRND of rounder FPRND

either uses a standard incrementer or a fast CSI incrementer.

ADD/SUB 5975
MUL/DIV 73303
FCON 1982
FPUNP 6411
FXUNP 420
FPRND 7224 / 7422
FXRND 3605
CVT 2
rest 4902

total: FPU 103824 / 104022

����� ���� Cost of the significand multiply/divide circuit SIGFMD with a 256�8
lookup ROM. The last column lists the cost relative to the cost of the multi-
ply/divide unit MUL/DIV.

SIGFMD SELECTFD 4/2mulTree ROM CLA(116) rest

71941 5712 55448 647 2711 8785
98% 7.8% 75.6% 0.9% 3.7% 12%

cuit SIGFMD which processes the significands. Its 58� 58-bit multiplier
tree accounts for 76% of the cost of the multiply/divide unit and for 53%
of the cost of the whole FPU. The table lookup ROM has only a minor
impact on the cost.

$�$  ������� ��!������� ��� "����� ������#

�
ORE OR less complete designs of floating point units can be found
in [AEGP67] and [WF82]. The designs presented here are based on

constructions from [Spa91, EP97, Lei99, Sei00]. Our analysis of the divi-
sion algorithm uses techniques from [FS89]. A formal correctness proof
of IEEE-compliant algorithms for multiplication, division and square root
with normal operands and a normal result can be found in [Rus].
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�������� (�	 A trivial �n� i�-right shifter is a circuit with n inputs a�n�1 :
0�, select input s� �0�1� and n� i outputs r�n�1 : �i� satisfying

r �

�
0ia if s�1
a0i otherwise�

Thus, in trivial �n� i�-right shifters, the i bits which are shifted out are the
last i bits of the result.

One can realize the alignment shift and sticky bit computation of the float-
ing point adder by a stack of trivial shifters. The sticky bit is computed by
simply ORing together bits, which are shifted out.

1. Determine the cost and the delay of this construction.

2. In the stack of trivial shifters, perform large shifts first. Then care-
fully arrange the OR-tree which computes the sticky bit. How much
does this improve the delay?

�������� (�� In section 8.3, we have designed a multiply/divide unit which
performs a division based on the the Newton-Raphson method. The iter-
ation starts out with an initial approximation x0 which is obtained from a
2γ� γ lookup table. The intermediate results are truncated after σ � 57
bits. The number i of iterations necessary to reach p� 2 bits of precision
(i.e., δi � 2�p�2) is then bounded by

i �

��
�

1 if p� 24 � γ� 16
2 if p� 24 � γ� 8 or p� 53 � γ� 16
3 if p� 24 � γ� 5 or p� 53 � γ� 8
4 if p� 53 � γ� 5

For γ� 8, this bound was already shown in section 8.3.4. Repeat the argu-
ments for the remaining cases.

Determine the cost of the FPU for γ� 16 and γ� 5.

�������� (�
 The next three exercises deal with the normalization shifter
NORMSHIFT used by the floating point rounder FPRND. The functionality
of the shifter is specified by Equation 8.6 (page 393); its implementation
is described in section 8.4.2.

The shifter NORMSHIFT gets as input a factoring �s�er � fr�; the significand
fr ��1 : 55� has two bits to the right of the binary point. The final rounded
result may be a normal or denormal number, and fr may have leading zeros
or not.
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� Determine the maximal shift distance �σ� for each of these four cases.

� Which of these cases require a right shift?

�������� (�� The normalization shifter NORMSHIFT (figure 8.25, page
395) computes a shift distance σ, and its subcircuit SIGNORMSHIFT then
shifts the significand f �. However, in case of a right shift, the represen-
tation of f � � 2σ can be very long. Circuit SIGNORMSHIFT therefore only
provides a p-representative fn:

�� fn�0 : 63��� � fn �p f � �2σ�

� Determine the maximal length of the representation of f� �2σ.

� Give an example (i.e., f � and σ) for which fn �� f � �2σ.

�������� (�� The exponent normalization circuit EXPNORM of the float-
ing point rounder FPRND computes the following sums sumand sum�1

sum � er �1��1 lz�5 : 0���δ

where δ is a constant.

The implementation of EXPNORM depicted in figure 8.27 (page 400) uses
a 3/2-adder and a compound adder ADD2 to perform this task. Like in the
computation of flag TINY, the value �lz�5 : 0�� can be included in the con-
stant δ�, and then, the 3/2-adder in the circuit EXPNORM can be dropped.

� Derive the new constant δ�.
� How does this modification impact the cost and the delay of the float-

ing point rounder?

&#/





Chapter

9
Pipelined DLX Machine with
Floating Point Core

�
N THIS chapter, the floating point unit from the previous chapter is in-
tegrated into the pipelined DLX machine with precise interrupts con-

structed in chapter 5. Obviously, the existing design has to be modified in
several places, but most of the changes are quite straightforward.

In section 9.1, the instruction set is extended by floating point instruc-
tions. For the greatest part the extension is straightforward, but two new
concepts are introduced.

1. The floating point register file consists of 32 registers for single pre-
cision numbers, which can also be addressed as 16 registers for dou-
ble precision floating point numbers. This aliasing of addressing will
mildly complicate both the address computation and the forwarding
engine.

2. The IEEE standard requires interrupt event signals to be accumu-
lated in a special purpose register. This will lead to a simple extra
construction in the special purpose register environment.

In section 9.2 we construct the data path of a (prepared sequential or
pipelined) DLX machine with a floating point unit integrated into the ex-
ecute environment and a floating point register file integrated into the reg-
ister file environment. This has some completely obvious and simple con-
sequences: e.g., some parts of the data paths are now 64 bits wide and
addresses for the floating point register file must now be buffered as well.
There are two more notable consequences:



������� *

PIPELINED DLX
MACHINE WITH

FLOATING POINT

CORE

����� ��� Latency of the IEEE floating point instructions; fc denotes a compare
and cvt a format conversion.

precision fneg fabs fc cvt fadd fmul fdiv

single 1 1 1 3 5 5 17
double 1 1 1 3 5 5 21

1. We have to obey throughout the machine an embedding convention
which regulates how 32-bit data share 64-bit data paths.

2. Except during divisions, the execute stage can be fully pipelined, but
it has variable latency (table 9.1). This makes the use of so called re-
sult shift registersin the CA-pipe and in the buffers-pipe necessary.

In section 9.3, we construct the control of a prepared sequential machine
FDLXΣ. The difficulties arise obviously in the execute stage:

1. For instructions which can be fully pipelined, i.e., for all instruc-
tions except divisions, two result shift registers in the precomputed
control and in the stall engine take care of the variable latencies of
instructions.

2. In section 8.3.6, we controlled the 17 or 21 cycles of divisions by a
finite state diagram. This FSD has to be combined with the precom-
puted control. We extend the result shift register of the stall engine
(and only this result shift register) to length 21. The full bits of this
result shift register then code the state of the FSD.

For the prepared machine FDLXΣ constructed in this way we are able to
prove the counter part of the (dateline) lemma 5.9.

In section 9.4, the machine is finally pipelined. As in previous construc-
tions, pipelining is achieved by the introduction of a forwarding engine
and by modification of the stall engine alone. Because single precision
values are embedded in double precision data paths, one has to forward
the 32 low order bits and the 32 high order bits separately. Stalls have to
be introduced in two new situations:

1. if an instruction with short latency threatens to overtake an instruc-
tion with long latency in the pipeline (see table 9.2); and

2. if pipelining of the execute stage is impossible because a division is
in one of its first 13 or 17 cycles, respectively.

&&�
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����� ��� Scheduling of the two data independent instructions ��  and �!�. In
the first case, �!� overtakes ��  ; the second case depicts an in-order execution.

instruction cycles of the execution

,�  F1 D1 E1 E1 E1 E1 E1 M1 W1

�+& F2 D2 E2 E2 E2 M2 W2

,�  F1 D1 E1 E1 E1 E1 E1 M1 W1

�+& F2 D2 stall E2 E2 E2 M2 W2

A simple lemma will show for this FDLXΠ design, that the execution of
instructions stays in order, and that no two instructions are ever simultane-
ously in the same substage of the execute stage.

0�� %&������ '�������
�  �� �����������

�
EFORE GOING into the details of the implementation, we first describe
the extension of the DLX instruction set architecture. That includes

the register set, the exception causes, the instruction format and the in-
struction set.

*���� ,"� 8�
���� ���

The FPU provides 32 floating point general purpose registers FPRs, each
of which is 32 bits wide. In order to store double precision values, the reg-
isters can be addressed as 64-bit floating point registers FDRs. Each of the
16 FDRs is formed by concatenating two adjacent FPRs (table 9.3). Only
even numbers �0�2� � � � �30� are used to address the floating point registers
FPR; the least significant address bit is ignored.

1���		��
 ����������

In the design, it is sometimes necessary to store a single precision value x�s
in a 64-bit register, i.e., the 32-bit representation must be extended to 64
bits. This embedding will be done according to the convention illustrated
in figure 9.1, i.e., the data is duplicated.

,"� ������� 8�
����

In addition, the FPU core also provides some special purpose registers. The
floating point control registers FCRcomprise the registers FCC, RM, and

&&�
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����� �� Register map of the general purpose floating point registers

floating point
general purpose registers

floating point registers

single precision (32-bit) double precision (64-bit)

FPR31�31 : 0�
FPR30�31 : 0�

FDR30�63 : 32�
FDR30�31 : 0�

�
FDR30�63 : 0�

: :
FPR3�31 : 0�
FPR2�31 : 0�

FDR2�63 : 32�
FDR2�31 : 0�

�
FDR2�63 : 0�

FPR1�31 : 0�
FPR0�31 : 0�

FDR0�63 : 32�
FDR0�31 : 0�

�
FDR0�63 : 0�

x.sx.s
31 063 32

�	
��� ��� Embedding convention of single precision floating point data

IEEEf. The registers can be read and written by special move instructions.
Register FCC is one bit wide and holds the floating point condition code.
FCC is set on a floating point comparison, and it is tested on a floating
point branch instruction. Register RM specifies which of the four IEEE
rounding modes is used (table 9.4).

Register IEEEf(table 9.5) holds the IEEE interrupt flags, which are over-
flow OVF, underflow UNF, inexact result INX, division by zero DBZ, and
invalid operation INV. These flags are sticky, i.e., they can only be reset at
the user’s request. Such a flag is set whenever the corresponding exception
is triggered.The IEEE floating point standard 754 only requires that such
an interrupt flag is set whenever the corresponding exception is triggered

����� ��� Coding of the rounding mode RM

RM[1:0] rounding mode

00 rz round to zero
01 rne round to next even
10 ru round up
11 rd round down

&&�
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����� ��� Coding of the interrupt flags IEEEf

symbol meaning

IEEEf[0] OVF overflow
IEEEf[1] UNF underflow
IEEEf[2] INX inexact result
IEEEf[3] DBZ division by zero
IEEEf[4] INV invalid operation

����� ��� Coding of the special purpose registers SPR

fxSPR FCR
SR ESR ECA EPC EDPC Edata RM EEEf FCC

Sad 0 1 2 3 4 5 6 7 8

while being masked (disabled). If the exception is enabled (not masked),
the value of the corresponding IEEE interrupt flag is left to the implemen-
tation/interrupt handler.

The special purpose registers SPR now comprise the original six spe-
cial purpose registers fxSPRof the fixed point core and the FPU control
registers FCR. Table 9.6 lists the coding of the registers SPR.

*���� .�����-�� ��-�

The FPU adds six internal interrupts, namely the five interrupts requested
by the IEEE Standard 754 plus the unimplemented floating point operation
interrupt uFOP (table 9.7). In case that the FPU only implements a sub-
set of the DLX floating point operations in hardware, the uFOP interrupt
causes the software emulation of an unimplemented floating point opera-
tion. The uFOP interrupt is non-maskable and of type continue.

The IEEE Standard 754 strongly recommends that users are allowed to
specify an interrupt handler for any of the five standard floating point ex-
ceptions overflow, underflow, inexact result, division by zero, and invalid
operation. Such a handler can generate a substitute for the result of the
exceptional floating point instruction. Thus, the IEEE floating point inter-
rupts are maskable and of type continue. However, in the absence of such
an user specific interrupt handler, the execution is usually aborting.

&&#
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����� ��� Interrupts handled by the DLX architecture with FPU

interrupt symbol priority resume mask external

reset reset 0 abort no yes
illegal instruction ill 1 abort no no
misaligned access mal 2
page fault IM Ipf 3 repeat
page fault DM Dpf 4
trap trap 5 continue
FXU overflow ovf 6 abort yes
FPU overflow fOVF 7 abort/
FPU underflow fUNF 8 continue
FPU inexact result fINX 9
FPU division by zero fDBZ 10
FPU invalid operation fINV 11
FPU unimplemented uFOP 12 continue no
external I/O exj 12� j continue yes yes

Rx FDOpcode ImmediateFI-type

FR-type

5 556 6

6 5 5 16

3

Fmt00Opcode FD FunctionFS1 FS2 / Rx

�	
��� ��� Floating point instruction formats of the DLX. Depending on the pre-
cision, �"�# �"� and �$ specify 32-bit or 64-bit floating point registers. %&

specifies a general purpose register of the FXU. �����	�� is an additional 6-bit
opcode. ��� specifies a number format.

*���# ,"� .���-����� ���

The DLX machine uses two formats (figure 9.2) for the floating point in-
structions; one corresponds to the I-type and the other to the R-type of the
fixed point core FXU.

The FI-format is used for moving data between the FPU and the memory.
Register �� of the FXU together with the 16-bit immediate specify the
memory address. This format is also used for conditional branches on the
condition code flag FCC of the FPU. The immediate then specifies the
branch distance. The coding of these instructions is given in table 9.8.

&&&
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����� ��� FI-type instruction layout. All instructions except the branches also
increment the PC by four. The effective address of memory accesses equals ea�
�GPR�Rx��� �sxt�imm��, where sxt�imm� denotes the sign extended version of
the 16-bit immediate imm. The width of the memory access in bytes is indicated
by d. Thus, the memory operand equals m� M�ea�d�1�� � � � �M�ea�.

IR�31 : 26� mnemonic d effect

Load, Store
hx31 load.s 4 FD�31 : 0� = m
hx35 load.d 8 FD�63 : 0� = m
hx39 store.s 4 m = FD�31 : 0�
hx3d store.d 8 m = FD�63 : 0�

Control Operation
hx06 fbeqz PC = PC + 4 + (FCC � 0 ? imm: 0)
hx07 fbnez PC = PC + 4 + (FCC �� 0 ? imm: 0)

The FR-format is used for the remaining FPU instructions (table 9.9). It
specifies a primary and a secondary opcode (��� �# �$%�&�%), a number
format ��&, and up to three floating point registers. For instructions which
move data between the FPU and the fixed point unit FXU, the field �/�7��
specifies the address of a general purpose register �� in the FXU.

Since the FPU of the DLX machine can handle floating point numbers
with single or double precision, all floating point operations come in two
version; the field ��& in the instruction word specifies the precision used
(table 9.10). In the mnemonics, we identify the precision by adding the
corresponding suffix, e.g., suffix ‘.s’ indicates a single precision floating
point number.

0�� *��� +���� ����
� "
�������#

�
N THIS section we extend the pipelined data paths of the DLX machine
by an IEEE floating point unit. The extensions mainly occur within

the environments. The top level schematics of the data paths (figure 9.3)
remain virtually the same, except for some additional staging registers and
the environment FPembwhich aligns the floating point operands.

The register file environment RFenv now also provides two 64-bit float-
ing point operands FA and FB, and it gets a 64-bit result FC and three
additional addresses. The registers Ffl.3 and Ffl.4 buffer the five IEEE ex-

&&'
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����� ��� FR-type instruction layout. All instructions also increment the PC by
four. The functions sqrt(), abs() and rem() denote the square root, the absolute
value and the remainder of a division according to the IEEE 754 standard. The
opcode bits c�3 : 0� specify the floating point test condition conaccording to table
8.7. Function cvt() converts from one format into another. In our implementation,
instructions ��'� and ���� are only supported in software.

IR[31:26] IR[5:0] Fmt mnemonic effect

Arithmetic and compare operations
hx11 hx00 fadd [.s, .d] FD = FS1 + FS2
hx11 hx01 fsub [.s, .d] FD = FS1 - FS2
hx11 hx02 fmul [.s, .d] FD = FS1 * FS2
hx11 hx03 fdiv [.s, .d] FD = FS1 / FS2
hx11 hx04 fneg [.s, .d] FD = - FS1
hx11 hx05 fabs [.s, .d] FD = abs(FS1)
hx11 hx06 fsqt [.s, .d] FD = sqrt(FS1)
hx11 hx07 frem [.s, .d] FD = rem(FS1, FS2)
hx11 11c�3:0� fc.con [.s, .d] FCC = (FS1 conFS2)

Data transfer
hx11 hx08 000 fmov.s FD[31:0] = FS1[31:0]
hx11 hx08 001 fmov.d FD[63:0] = FS1[63:0]
hx11 hx09 mf2i Rx = FS1[31:0]
hx11 hx0a mi2f FD[31:0] = Rx

Format conversion
hx11 hx20 001 cvt.s.d FD = cvt(FS1, s, d)
hx11 hx20 100 cvt.s.i FD = cvt(FS1, s, i)
hx11 hx21 000 cvt.d.s FD = cvt(FS1, d, s)
hx11 hx21 100 cvt.d.i FD = cvt(FS1, d, i)
hx11 hx24 000 cvt.i.s FD = cvt(FS1, i, s)
hx11 hx24 001 cvt.i.d FD = cvt(FS1, i, d)

����� ���� Coding of the number format Fmt.

Fmt[2:0] suffix number format

000 .s single precision floating point
001 .d double precision floating point
100 .i 32-bit fixed point

&&(
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Ffl’ FC’C’

RFenv

EXenv R

�	
��� �� Data paths of the DLX design with a floating point core

ception flags. In order to support double precision loads and stores, the
data registers MDRw and MDRr associated with the data memory are now
64 bits wide. Thus, the cost of the enhanced DLX data paths can be ex-
pressed as

CDP � CIMenv�CPCenv�CIRenv�CDaddr�CFPemb�CEXenv

�CDMenv�CSH4Lenv�CRFenv�CCAenv�Cbu f f er

�6 �Cf f �32��5 �Cf f �64��2 �Cf f �5��

The extended instruction set architecture has no impact on the instruc-
tion fetch. Thus, the instruction memory environment IMenv remains
the same. The other four pipeline stages undergo more or less extensive
changes which are now described stage by stage.
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The data paths of the decode stage ID comprise the environments IRenv,
PCenv, and FPemb and the circuit Daddr which selects the address of the
destination register.

1���������� .8���
So far, the environment IRenv of the instruction register selects the im-
mediate operand imm being passed to the PC environment and the 32-bit
immediate operand co. In addition, IRenv provides the addresses of the
register operands and two opcodes.

The extension of the instruction set has no impact on the immediate
operands or on the source addresses of the register file GPR. However, en-
vironment IRenv now also has to provide the addresses of the two floating
point operands FA and FB. These source addresses FS1 and FS2 can di-
rectly be read off the instruction word and equal the source addresses Aad
and Bad of the fixed point register file GPR:

FS1 � Aad � IR�25 : 21�
FS2 � Bad � IR�20 : 17��

Thus, the cost and delay of environment IRenv remain unchanged.

����-�� +�		�
Circuit Daddrgenerates the destination addresses Cadand Fad of the gen-
eral purpose register files GPR and FPR. In addition, it provides the source
address Sasand the destination address Sadof the special purpose register
file SPR.

Address Cadof the fixed point destination is generated by circuit Caddr
as before. The selection of the floating destination Fad is controlled by a
signal FRtypewhich indicates an FR-type instruction:

Fad�4 : 0� �

�
IR�15 : 11� if FRtype� 1
IR�20 : 16� if FRtype� 0�

The SPR source address Sasis generated as in the DLX design. It is
usually specified by the bits SA� IR�10 : 6�, but on an RFE instruction
it equals the address of register ESR. Except for an RFE instruction or a
floating point condition test ( f c � 1), the SPR destination address Sad is
specified by SA. On RFE, ESR is copied into the status register SPR[0],
and on f c� 1, the condition flag f cc is saved into register SPR[8]. Thus,

Sas�

�
SA if r f e�1 � 0
00001 if r f e�1 � 1

Sad �

��
�

00000 if r f e�1 � 1
01000 if f c�1 � 1
SA otherwise�
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Cad

IR[20:11]

0 1

0 1

0 10 1Caddr fc.1

Sas

IR[10:6]

rfe.1

Sad

00000

01000 00001rfe.1

Rtype

Jlink

IR[10:6]

FRtype

Fad

IR[20:16]

IR[15:11]

�	
��� ��� Circuit Daddr which selects the destination addresses

The circuit of figure 9.4 provides these four addresses at the following
cost and delay:

CDaddr � CCaddr�4 �Cmux�5�

DDaddr � max�DCaddr�2 �Dmux�5���

"� 1����������
Due to the extended ISA, the PC environment has to support two additional
control instructions, namely the floating point branches ,���� and ,�%��.
However, except for the value PC�u

i , the environment PCenv still has the
functionality described in chapter 5.

Let signal b jtaken, as before, indicate a jump or taken branch. On in-
struction Ii , the PC environment now computes the value

PC�u
i �

��
�

EPCi�1 if Ii � �,�
PC�

i�1 � immi if b jtakeni � Ii � �������%��� "� "���
PC�

i�1 � immi if b jtakeni � Ii � �,����� ,�%���
RS1i�1 if b jtakeni � Ii � �"�� "����
PC�

i�1 �4 otherwise

This extension has a direct impact on the glue logic PCglue, which gen-
erates signal b jtaken, but the data paths of PCenv including circuit nextPC
remain unchanged.

Signal b jtakenmust now also be activated in case of a taken floating
point branch. Let the additional control signal f branchdenote a floating
point branch. According to table 9.11, signal b jtakenis now generated as

b jtaken � branch� �bzero XNOR AEQZ�

� f branch� �bzero XOR FCC�

� jump

This increases the cost of the glue logic by an OR, AND, and XOR gate:

CPCglue � 2 �Cor �Cand�Cxnor�Czero�32�

�Cor �Cand�Cxor�
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����� ���� Value of signal b jtakenfor the different branch instructions

instruction bzero AEQZ FCC bjtaken

0 0
beqz 1

1
*

1
0 1

bnez 0
1

*
0

1 0
fbeqz 1 *

0 1
1 0

fbnez 0 *
0 1

Both operands A’ and FCC are provided by the register file environment,
but A’ is passed through a zero tester in order to obtain signal AEQZ. Thus,
FCC has a much shorter delay than AEQZ, and the delay of signal b jtaken
remains unchanged.

1���������� ,"���
Environment FPemb of figure 9.5 selects the two floating point source
operands and implements the embedding convention of figure 9.1. It is
controlled by three signals,

� the flag dbs�1 requesting double precision source operands,

� the least significant address bit FS1�0� of operand FA, and

� the least significant address bit FS2�0� of operand FB.

Circuit FPemb reads the two double words f A�63 : 0� and f B�63 : 0� and
provides the two operands FA1 and FB1, each of which is 64 bits wide.

Since the selection and data extension of the two source operands go
along the same lines, we just focus on operand FA1. Let the high order
word and the low order word of input f A be denoted by

f Ah� f A�63 : 32� and f Al � f A�31 : 0��

On a double precision access (dbs�1 � 1), the high and the low order word
are just concatenated, i.e., FA1 � f Ah� f Al. On a single precision access,
one of the two words is selected and duplicated; the word fAl is chosen on
an even address and the word fAh on an odd address. Thus,

FA1�63 : 0� �

��
�

f Ah� f Al if dbs�1 � 1
f Ah� f Ah if dbs�1 � 0 � FS1�0� � 1
f Al� f Al if dbs�1 � 0 � FS1�0� � 0�
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dba fh, fl fh, fl adb

Fsel

FA1[63:0] FB1[63:0]

dbs.1fAFS1[0] FS2[0]fB

Fsel

64 64

a)

0 11 0

a dbfh fl fh fla db

[31:0][63:32]

b)

�	
��� ��� Schematics of environment FPemb(a) and of circuit Fsel (b).

Circuit FSel (figure 9.5) implements this selection in a straightforward
manner. Environment FPemb comprises two of these circuits. Since the
data inputs have a much longer delay than the three control signals, the
cost and delay of environment FPemb can be expressed as

CFPemb � 2 �CFsel � 2 � �2 �Cor �Cinv�2 �Cmux�32��

DFPemb � Dmux�32��

*���� 5����% ���
�

In every cycle, the memory stage passes the address MAR, the 64-bit data
MDRw and the floating point flags Ffl.3 to the write back stage:

C�4 :� MAR

FC�4 :� MDRw

F f l �4 :� F f l �3�

In case of a load or store instruction, the environment DMenv of the data
memory and the memory control perform the data memory access. In order
to load and store double precision floating point numbers, the memory
access can now be up to 64 bits wide.

5����% ��
���:�����

As before, the data memory DM is byte addressable, but in addition to byte,
half word and word accesses, it now also supports double word accesses.
Therefore, the data memory is organized in 8 memory banks.

In the memory DM, 8-bit, 16-bit and 32-bit data are alignedin the same
way as before (section 3.1.3). Whereas 64-bit data are aligned at double
word boundaries, i.e., their byte addresses are divisible by eight. For a
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double word boundary e we define the memory double wordof memory
DM with address e as

DMdword�e� � DM�e�7 : e��

The bytes within the double word w�63 : 0� are numbered in little endian
order:

bytej �w� � w�8 j �7 : 8 j�

byte�i: j ��w� � bytei�w� � � �bytej �w�

On a read access with address a�31 : 0�, the data memory DM pro-
vides the requested double word, assuming that the memory is not busy
and that the access causes no page fault. In any other case, the mem-
ory DM provides a default value. Thus, for the double word boundary
e� �a�31 : 3�000�, we get

DMout�63 : 0� �

�
DMdword�e� if Dmr�3 � �dbusy� �dp f
DMde f ault otherwise.

A write access only updates the data memory, if the access is perfectly
aligned (dmal� 0), and if the access causes no page fault (dp f � 0). On
such an d-byte write access with byte address a � �a�31 : 0�� and offset
o� �a�2 : 0��, the data memory performs the update

DM�a�d�1 : a� :� byte�o�d�1:o��MDin�63 : 0���

5����% 1���������� +5���

Figure 9.6 depicts the new data memory environment DMenv. Like in the
pipelined DLX design of section 6.5, the core of DMenv is the data cache
interface D$i f with a sectored cache. A cache sector is still S� 8 bytes
wide.

The cache is connected to the data paths through a 32-bit address port
a and the two 64-bit data ports MDin and DMout. The memory interface
Mi f connects the data cache to the off-chip memory. Even without FPU,
the cache and the off-chip memory already operate on 8-byte data. Thus,
the interface Mif and D$if remain unchanged.

Without the FPU, the 64-bit data ports of the cache and memory inter-
face had to be patched to the 32-bit ports of the data paths. On the input
port MDin, the 32-bit data MDRw was duplicated. On the output port, a
multiplexer selected the requested word within the double word.

Since the registers MDRw and MDRr are now 64 bits wide, the patches
become obsolete. That saves a 32-bit multiplexer and reduces the cache
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�	
��� ��� Data memory environment of the DLX design with FPU

read time T$read by the delay Dmux and possibly the burst read time TMrburst

as well. However, these two cycle times were not time critical.

T$read � A$i f �Dout��Df f

TMrburst � Ddriv �dbus�δ
�max�D$i f �MDat;$i f �� D$i f �MDat;Dout��Df f�

CDMenv � CD$i f �Cmux�32��

+��� 5����% �������
As in the pipelined design of section 6.5, the date cache interface D$if
and the interface Mif to the off-chip memory are governed by the mem-
ory interface control Mi fC. Even without FPU, the interfaces D$if and
Mif already supported 8-byte accesses. Thus, the new floating point load
instructions (��# � # ��# � ) have no impact on the control MifC.

In addition to control MifC, the data memory environment DMenv is
governed by the data memory control DMC. As before, circuit DMC gen-
erates the bank write signals DMbw[7:0], which on a cache read access
D$rd � 1 are clocked into register DMBw. Circuit DMC also checks for a
misaligned access, signaled by dmal� 1, and masks the memory read and
write signal with the flag dmal. Since the bank write signals and flag dmal
depend on the width of the access, circuit DMC must also account for the
new load and store instructions.

The bank write signals DMbw[7:0] are generated along the same lines
as before (pages 81 and 201): Feeding address MAR�2 : 0� into a 3-decoder
gives 8 signals B�7 : 0� satisfying for all j

B� j� � 1 
 �MAR�2 : 0�� � j�

From the the primary opcode IR�3, the width of the current access is de-
coded according to table 9.12 by

B � �IR�3�30� NOR IR�3�27��� IR�3�26�
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����� ���� Coding the width of a data memory access

width d IR.3[30,28:26] instructions

byte B 1 0*00 lb, lbu, sb
half word H 2 0*01 lh, lhu, sh
word W 4 0*11 lw, sw

1001 load.s, store.s
double word D 8 1101 load.d, store.d

H � �IR�3�30� NOR IR�3�27��� IR�3�26�

W � IR�3�30�� �IR�3�27�� IR�3�26�� � IR�3�30�� IR�3�28�

D � IR�3�30�� IR�3�28��

According to table 9.13, the bank write signals are then generated in a
brute force way by

DMbw�0� � Dmw�3�B�0�

DMbw�1� � Dmw�3� ��D�B�0� � W�B�0�� � �H �B�0� � B�B�1���

DMbw�2� � Dmw�3� ��D�B�0� � W�B�0�� � �H �B�2� � B�B�2���

DMbw�3� � Dmw�3� ��D�B�0� � W�B�0�� � �H �B�2� � B�B�3���

DMbw�4� � Dmw�3� ��D�B�0� � W�B�4�� � �H �B�4� � B�B�4���

DMbw�5� � Dmw�3� ��D�B�0� � W�B�4�� � �H �B�4� � B�B�5���

DMbw�6� � Dmw�3� ��D�B�0� � W�B�4�� � �H �B�6� � B�B�6���

DMbw�7� � Dmw�3� ��D�B�0� � W�B�4�� � �H �B�6� � B�B�7���

The memory control DMC also checks for a misaligned access. A byte
access is always properly aligned. A double word access is only aligned
if it starts at byte 0, i.e., if B�0� � 1. A word access is aligned if it starts
at byte 0 or 4, and a half word access is aligned if it starts at an even byte.
Thus, the misalignment can be detected by

malAc � D�B�0� � W� �B�0� NOR B�4�� � H�MAR�0��

Circuit DMC checks for a misaligned access (signaled by dmal) on every
load and store instruction. In order to protect the data memory, it masks
the memory read and write signal Dmr and Dmwwith flag dmal. Thus

dmal � �Dmr�3�Dmw�3� � malAc

Dmra � Dmr�3�malAc � Dmr�3 NOR malAc

Dmwa � Dmw�3�malAc � Dmw�3 NOR malAc�
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����� ��� Memory bank write signal DMbw�7 : 0� as a function of the address
MAR[2:0] and the width (B, H, W, D) of the access

address width of the access
MAR[2:0] D W H B

000 1111 1111 0000 1111 0000 0011 0000 0001
001 0000 0000 0000 0000 0000 0000 0000 0010
010 0000 0000 0000 0000 0000 1100 0000 0100
011 0000 0000 0000 0000 0000 0000 0000 1000
100 0000 0000 1111 0000 0011 0000 0001 0000
101 0000 0000 0000 0000 0000 0000 0010 0000
110 0000 0000 0000 0000 1100 0000 0100 0000
111 0000 0000 0000 0000 0000 0000 1000 0000

When reusing common subexpressions, the memory control DMC has
the cost

CDMC � Cdec�3��6 �Cinv�32 �Cand�20 �Cor �4 �Cnor�Cf f �8��

This includes the 8-bit register DMBw which buffers the bank write sig-
nals. Signals DMBw are still provided at zero delay. The accumulated
delay ADMC of the remaining outputs and the cycle time of circuit DMC
run at

ADMC � max�ACON�Dmr�Dmw��Dor �Dand�

max�Ddec�3�� Dor �2 �Dand��2 �Dand�2 �Dor�

TDMC � ADMC�∆�

*���# ;����  ��� ���
�

The DLX architecture now comprises three register files, one for the fixed
point registers GPR, one for the special purpose registers SPR, and one for
the floating point registers FPR. These three register files form the envi-
ronment RFenv

CRFenv � CGPRenv�CSPRenv�CFPRenv�

The data paths of the write back stage consist of the environment RFenv
and of the shifter environment SH4Lenv. Environment GPRenv is the only
environment which remains unchanged.
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�	
��� ��� Shift for load environment SH4Lenv

1���������� ��&3���
In addition to the fixed point result C�, the environment SH4Lenv now also
provides a 64-bit floating point result FC�. The environment is controlled
by two signals,

� signal load�4 indicating a load instructions and

� signal dbr�4 indicating a double precision result.

The fixed point result C� is almost computed as before, but the memory
now provides a double word MDRr. The shifter SH4L still requires a 32-bit
input data MDs. Depending on the address bit C�4�2�, MDs either equals
the high or low order word of MDRr:

MDs �

�
MDRr�63 : 32� if C�4�2� � 1 (high order word)
MDRr�31 : 0� if C�4�2� � 0 (low order word)

Let sh4l�a�dist� denote the function computed by the shifter SH4L. The
fixed point result C� is then selected as

C� �

�
sh4l�MDs�C�4�1 : 0�000� if load�4 � 1
C�4 if load�4 � 0�

Depending on the type of the instruction, the output FC’ is selected
among the two 64-bit inputs FC.4 and MDRr and the 32-bit word MDs
which is extended according to the embedding convention. On a load in-
struction, the environment passes the memory operand, which in case of
double precision equals MDRr and MDs, otherwise. On any other instruc-
tion, the environment forwards the FPU result FC.4 to the output FC’.
Thus,

FC��63 : 0� �

��
�

MDRr if load�4 � 1 � dbr�4 � 1
�MDs� MDs� if load�4 � 1 � dbr�4 � 0
FC�4 otherwise
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�	
��� ��� Environment SPRenv of the special purpose register file

The circuit of figure 9.7 implements environment SH4Lenv in the obvi-
ous way. Its cost and delay can be expressed as

CSH4Lenv � CSH4L �2 �Cmux�32��2 �Cmux�64�

DSH4Lenv � max�DSH4L� Dmux��2 �Dmux�

1���������� �� ��� ������� "-���� 8�
����

Figure 9.8 depicts the environment SPRenv of the special purpose register
file. Due to the FPU, the register file SPR comprises the original six spe-
cial purpose registers fxSPRof the fixed point core and the FPU control
registers FCR(table 9.6).

The core of SPRenv is a special register file of size 9� 32. The cir-
cuits f xSPRseland FCRselprovide the inputs Di�s� of the distinct write
ports. As before, circuit SPRcongenerates the write signals SPRw�8 : 0�
and signal sel which is used by f xSPRsel. The environment is controlled
by

� the interrupt signals JISRand repeat,

� the write signal SPRw, and

� signal f op�4 denoting an arithmetic floating point instruction, a con-
version �+&, or a test ,�.

As before, the special purpose registers are held in a register file with an
extended access mode. Any register SPR�s� can be accessed through the
regular read/write port and through a distinct read port and a distinct write
port. In case of a conflict, a special write takes precedence over the write
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access specified by address Sad. Thus, for any s� 0� � � � �8, register SPR�s�
is updated as

SPR�s� :�

�
Di�s� if SPRw�s� � 1
C�4 if SPRw�s� � 0 � SPRw� 1 � s� Sad�

The distinct read port of register SPR�s� provides the data

Do�s� � SPR�s��

and the standard data output of the register file equals

Sout � SPR�Sas��

Registers fxSPR The registers fxSPR still have the original functional-
ity. The write signals of their distinct write ports and signal sel are gener-
ated as before:

sel � repeat� SPRw� ��Sad�4� � 0�

SPRw�s� � JISR�

Circuit f xSPRselwhich selects the inputs Di�s� of these write ports can be
taken from the DLX design of section 5 (figure 5.6).

Registers FCR Although the rounding mode RM, the IEEE flags and the
condition flag FCC only require a few bits, they are held in 32-bit registers.
The data are padded with leading zeros.

The condition flag FCC can be updated by a special move �+��� or by
a floating point condition test. Since in either case, the result is provided
by register C�4, the distinct write port of register FCC is not used. Thus,

Di�8� � 0 and SPRw�8� � 0�

The rounding mode RM can only be updated by a �+��� instruction.
Thus,

Di�6� � 0 and SPRw�6� � 0�

Except for the data transfers, any floating point instruction provides flags
which signal the five floating point exceptions (overflow, underflow, inex-
act result, division by zero, and invalid operation). The IEEE standard
requires that these exception flags are accumulated, i.e., that the new flags
F f l �4 are ORed to the corresponding bits of register IEEEf:

Di�7� � 027 �Ff l �4�4 : 0� � IEEE f�4 : 0�� and SPRw�7� � f op�4�
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Cost and Delay The new select circuit FCRsel just requires a 5-bit OR

gate. Due to the 4-bit address Sad, circuit SPRcon now uses a 4-bit zero
tester; SPRcon can provide the additional write signals SPRw�8 : 6� at no
cost. Thus, the cost of the extended environment SPRenv run at

CSPRenv � CSF�9�32��Cf xSPRsel�CFCRsel�CSPRcon

CSPRcon � 2 �Cand�Cinv�Czero�4�

CFCRsel � 5 �Cor�

Except for the width of address Sad, the formulae which express the de-
lay of the outputs and the cycle time of environment SPRenv remain un-
changed.

1���������� �� ��� ,������
 "���� 8�
���� ,���
The extended DLX instruction set requires 32 single precision floating
point registers and 16 double precision registers. These two sets of floating
point registers have to be mapped into the same register file FPR (section
9.1). In each cycle, the environment FPRenv of the floating point register
file performs two double precision read accesses and one write access.

Read Access The register file environment FPRenv provides the two
source operands f A and f B. Since both operands have double precision,
they can be specified by 4-bit addresses FS1�4 : 1� and FS2�4 : 1�:

f A�63 : 0� � �FPR�FS1�4 : 1�� 1�� FPR�FS1�4 : 1�� 0��

f B�63 : 0� � �FPR�FS2�4 : 1�� 1�� FPR�FS2�4 : 1�� 0���

For the high order word the least significant address bit is set to 1 and for
the low order word it is set to 0.

Write Access The 64-bit input FC� or its low order word FC��31 : 0� is
written into the register file. The write access is governed by the write
signal FPRwand the flag dbr�4 which specifies the width of the access.

In case of single precision, the single precision result is kept in the high
and the low order word of FC�, due to the embedding convention. Thus,
on FPRw� 1 and dbr�4 � 0, the register with address Fad4 is updated to

FPR�Fad4�4 : 0�� :� FC��63 : 32� � FC��31 : 0��

On FPRw� 1 and dbr�4 � 1, the environment FPRenv performs a double
precision write access updating two consecutive registers:

FPR�Fad4�4 : 1�1� :� FC��63 : 32�

FPR�Fad4�4 : 0�0� :� FC��31 : 0��
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�	
��� ��� Environment FPRenv of the floating point register file

Implementation In order to support single as well as double precision
accesses, the floating point register file is split in two banks, each of which
provides 16 single precision registers (figure 9.9). One bank holds the
registers with even addresses, the other bank holds the registers with odd
addresses.

The high order word of a double precision result is written into the odd
bank of the register file and its low order word is written into the even
bank. In case of single precision, the high and low order word of input FC�

are identical. Thus, FC’[63:32] always serves as the input Dod of the odd
bank, and FC’[31:0] always serves as the input Dev of the even bank (table
9.14).

Each bank of the register file FPR is implemented as a 3-port RAM of
size �16� 32� addressed by FS1[4:1], FS2[4:1] and Fad4[4:1]. Including
circuit FPRcon which generates the two bank write signals wev and wod,
the cost and delay of the register file environment FPRenv run at

CFPRenv � 2 �Cram3�16�32��CFPRcon

DFPR�read � Dram3�16�32�

DFPR�write � DFPRcon�Dram3�16�32��

In case of a double precision write access (dbr�4 � 1), both banks of the
register file are updated. Whereas on a single precision access, only one
of the banks is updated, namely the one specified by the least significant
address bit Fad4[0] (table 9.14). Of course, the register file FPR is only
updated if requested by an active write signal FPRw� 1. Thus, the two
bank write signals are

wod � FPRw� �dbr�4 � Fad4�0��

wev � FPRw� �dbr�4 � �Fad4�0��
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����� ���� The input data Dev and Dod of the two FPR banks and their write
signals wev and wod.

FPRw dbr.4 Fad4[0] wod wev Dod Dev

1 0 0 0 1 * FC’[31:0]
1 0 1 1 0 FC’[63:32] *
1 1 * 1 1 FC’[63:32] FC’[31:0]
0 * * 0 0 * *

The control FPRcon of the FPR register file can generate these two write
signals at the following cost and delay:

CFPRcon � 2 �Cand�2 �Cor �Cinv

DFPRcon � Dinv�Dor �Dand�

*���& 1���-�� ���
�

The execute environment EXenv is the core of the execute stage (figure
9.10). Parts of the buffer environment and of the cause environment CAenv
also belong to the execute stage. The buffers pass the PCs, the destination
addresses and the instruction opcodes down the pipeline. Environment
CAenv collects the interrupt causes and then processes them in the memory
stage.

1���-�� 1����������

Environment EXenv comprises the 32-bit fixed point unit FXU, the 64-bit
floating point unit FPU of chapter 8, and the exchange unit FPXtr. It gets
the same fixed point operands as before (A, B, S, co, link) and the two
floating point operands FA2 and FB2.

Fixed Point Unit FXU The FXU equals the execute environment of the
DLX architecture from section 5.5.4. The functionality, the cost and delay
of this environment remain unchanged. The FXU still provides the two
fixed point results D and shand is controlled by the same signals:

� bmuxseland a�muxselwhich select the operands,

� AluDdoe, SHDdoe, linkDdoe, ADdoe, SDdoe, and coDdoewhich
select output D,
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05

tfp[68:64]

���� ���� fstore.2

FB[63:0]B[31:0]FA[63:0]

[31:0]

sh[31:0]

tfx[31:0]

store.2

tfp[63:0]

fmov.21 0

�	
��� ���� Exchange unit FPXtr

� Rtype, add and testwhich govern the ALU, and

� shi f t4s which governs the shifter SH.

Exchange Unit FPXtr The FPXtr unit transfers data between the fixed
point and the floating point core or within the floating point core. It is
controlled by

� signal store�2 indicating any store instruction,

� signal f store�2 indicating a floating point store instruction, and

� signal f mov�2 indicating a floating point move ,�+.

The operands B[31:0], FA[63:0] and FB[63:0] are directly taken from reg-
isters, operand sh�31 : 0� is provided by the shifter of the fixed point unit.
Circuit FPXtr selects a 69-bit result t f p and a 32-bit result t f x. The bits
tfp[63:0] either code a floating point or fixed point value, whereas the bits
tfp[68:64] hold the floating point exception flags.

According to the IEEE floating point standard [Ins85], data move in-
structions never cause a floating point exception. This applies to stores
and the special moves �,�� and ���,. Thus, the exchange unit selects the
results as

t f x�31 : 0� � FA�31 : 0�

t f p�63 : 0� �

��
�

FB�63 : 0� if f store�2
sh�31 : 0�sh�31 : 0� if store�2 � � f store�2
FA�63 : 0� if f mov�2
B�31 : 0�B�31 : 0� otherwise

t f p�68 : 64� � 00000�

The circuit of figure 9.11 implements the exchange unit in the obvious
way. Assuming that the control signals of the execute stage are precom-
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puted, cost and accumulated delay of environment FPXtr run at

CFPXtr � 3 �Cmux�64�

AFPXtr � AFXU�sh��2 �Dmux�64��

Functionality of EXenv Environment EXenv generates two results, the
fixed point value D� and the 69-bit result R. R[63:0] is either a fixed point or
a floating point value; the bits R[68:64] provide the floating point exception
flags. Circuit EXenv selects output D� among the result D of the FXU, the
result t f x of the exchange unit, and the condition flag f ccof the FPU. This
selection is governed by the signals m f2i and f c which denote a special
move instruction �,�� or a floating point compare instruction, respectively:

D��31 : 0� �

��
�

D�31 : 0� if m f2i � 0 � f c� 0
t f x�31 : 0� if m f2i � 1 � f c� 0
031 f cc if m f2i � 0 � f c� 1�

The selection of result R is controlled by the four enable signals FcRdoe,
F pRdoe, FxRdoeand t f pRdoe. At most one of these signals is active at a
time. Thus,

R�68 : 0� �

��
�

Fc�68 : 0� if FcRdoe� 1
F p�68 : 0� if F pRdoe� 1
Fx�68 : 0� if FxRdoe� 1
t f p�68 : 0� if t f pRdoe� 1�

Cost and Cycle Time Adding an FPU has no impact on the accumu-
lated delay AFXU of the results of the fixed point core FXU. The FPU itself
comprises five pipeline stages. Its cycle time is modeled by TFPU and the
accumulated delay of its outputs is modeled by AFPU (chapter 8). Thus,
cost and cycle time of the whole execute environment EXenv can be esti-
mated as

CEXenv � CFXU �CFPU �CFPXtr�2 �Cdriv�32��4 �Cdriv�69�

AEXenv � max�AFXU� max�AFPXtr�AFPU��Ddriv�

TEXenv � max�TFPU� AEXenv�∆��

����	-���
 �� ��� 1���-�� ���
�
In the previous designs, the execute stage always had a single cycle latency,
but now, its latency is not even fixed. The FXU and the exchange unit still
generate their results within a single cycle. However, the latency of the
FPU depends on the operation and precision (table 9.1); it varies between
1 to 21 cycles.
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����� ���� Cycles required for the actual execution depending on the type of the
instruction (i.e., stages EX and M)

fc fmov
stage fdiv.d fdiv.s fmul

fadd
cvt fabs mi2f rest

fsub
fneg mf2i

2.0 unpack FCon FPXtr FXU
2.0.1 lookup
2.0.2 newton1
2.0.3 newton2
2.0.4 newton3
2.0.5 newton4 lookup
2.0.6 newton1
2.0.7 newton2
2.0.8 newton3
2.0.9 newton4
2.0.10 newton1
2.0.11 newton2
2.0.12 newton3
2.0.13 newton4
2.0.14 quotient1
2.0.15 quotient2
2.0.16 quotient3
2.1 quotient4 mul1 add1
2.2 select fd mul2 add2
2.3 round 1
2.4 round 2
3 stage M

Due to the iterative nature of the Newton-Raphson algorithm, a division
passes the multiply/divide unit of the FPU several times. All the other
instructions pass the units of the execute stage just once. Since divisions
complicate the scheduling of the execute stage considerably, they are han-
dled separately.

1���-���� ������

Except on divisions, the execute stage has a latency of 1 to 5 cycles. Thus,
the data paths of environment EXenv are divided into 5 substages, num-
bered by 2.0 to 2.4. The DLX instructions have different latencies and use
these stages as indicated in table 9.15.
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Every instruction starts its execution in stage 2.0. Except for divisions,
the instructions leave stage 2.0 after a single cycle. They may bypass some
of the substages:

� Floating point additions, subtractions and multiplications continue
in stage 2.1 and are then processed in stages 2.2 to 3.

� Format conversions �+& continue in stages 2.3, 2.4 and 3.

� All the remaining instructions leave the execute after substage 2.0
and continue in the memory stage 3.

After the unpacking, a division is kept in stage 2.0 for another 12 or 16
cycles, depending on the precision. During these cycles, it is processed
in the multiply/divide unit, which is assigned to stages 2.1 and 2.2. Once
the division left stage 2.0, it passes through stages 2.1 to 4 almost like a
multiplication.

An instruction and its precomputed data must pass through the pipeline
stages at the same speed. Thus, a mechanism is needed which lets the
interrupt causes, the buffered data and the precomputed control signals fall
through some stages, as well. The Result Shift Register RSRis such a
mechanism.

8�-�� ����� 8�
����
An n-bit shift register RSRis a kind of queue with f entries R1� � � �Rf , each
of which is n bits wide. In order to account for the different latency, the
RSR can be entered at any stage, not just at the first stage. The RSR (figure
9.12) is controlled by

� a distinct clock signal cei for each of the f registers Ri ,

� a common clear signal clr , and

� a distinct write signal wi for each of the f registers Ri .

The whole RSR is cleared on an active clear signal. Let T and T � 1
denote successive clock cycles. For any 1� i � f , an active signal clrT � 1
implies

RT�1
i � 0�

On an inactive clear signal clrT � 0, the entries of the RSR are shifted
one stage ahead, and the input Din is written into the stage i with wT

i � 1,
provided the corresponding register is clocked:

RSRT�1
i �

��
�

Din if ceT
i � 1 � wT

i � 1
RSRT

i�1 if ceT
i � 1 � wT

i � 0 � i � 1
0n if ceT

i � 1 � wT
i � 0 � i � 1�
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Rf

n

n

w1

wf

clr
ce[1:f]

Din
n

...

R1

�	
��� ���� Schematics of an n-bit result shift register RSR with f entries

1

0

1

0

ce[1] clr

0n
1

0

w[f]

Rf

clrce[f]

rf...

clr

w[1] w[2]

R1 R2

clrce[2]

r1 r2

Din

�	
��� ��� Realization of an n-bit result shift register RSR with f entries

The following lemma states that data Din which are clocked into stage i in
cycle T are passed down the RSR, provided the clear signal stays inactive,
the corresponding registers are clocked at the right time and they are not
overwritten.

Let Din enter register Ri at cycle T, i.e., wTi � 1, ceT
i � 1 and clrT � 0. � ����� )�	

For all t � �1� � � � f � i� let

wT�t
i � ceT�t

i � 1 and clrT�t � 0�

then
DinT � RT�1

i � RT�t�1
i�t � RT� f�i�1

f �

The result shift register can be operated in a particularly simple way, if
all clock enable signals cei are tied to a common clock enable signal ce. If
the RSRis operated in this way, and if ce-cycles T are considered, then the
hypothesis ceT�t

i � 1 is automatically fulfilled.
Figure 9.13 depicts an obvious realization of an n-bit RSR with f entries.

Its cost can be expressed as

CRSR� f �n� � f � �Cf f �n��Cand�n��Cmux�n��Cor��Cinv�
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DDPC.4DPC.4IR.4 Cad.4 Fad.4 Sad.4 PC.4

IR.2 Cad.2ue.1 Fad.2 Sad.2 PC DPC DDPC

w[1:5]

Din
buf.2.0

96

ue.3

27

buf.2.1
buf.2.2
buf.2.3
buf.2.4
buf.3

ue.2.[0:4]

RSR

clrreset

RSRw

ce[1:5]

IR.1[31:26, 5:0] Cad.1 Fad.1 Sad.1

�	
��� ���� Buffer environment of the design with FPU

The outputs R of the RSR have zero delay; the inputs r of its registers are
delayed by a multiplexer and an AND gate:

DRSR�r� � Dand�Dmux

DRSR�R� � 0�

���  -A�� 1����������

The buffer environment (figure 9.14) buffers the opcodes, the PCs, and the
destination addresses of the instructions processed in the stages 2.0 to 4.

Due to the FPU, the environment now buffers an additional destination
address, namely the address Fad for the floating point register file. In order
to account for the different latencies of the FPU, a 5-stage RSR is added
between the execute substage 2.0 and the write back stage in the obvious
way. The RSR is cleared on reset and clocked with the update enable
signals ue�2��0 : 4� provided by the stall engine.

The buffer environment still provides its outputs at zero delay. The cost
and cycle time now run at

Cbu f f ers � CRSR�5�123��Cf f �123��Cf f �27�

Tbu f f ers � max�ADaddr� ACON�ue�RSRw��DRSR�r���∆�

��� ��-� 1����������

As described in section 5.5.5, the cause environment of figure 9.15 consists
of two subcircuits. Circuit CAcolcollects the interrupt causes, and circuit
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CA.2.4
CA.3

CA.2.1
:

resetdpf

cause processing CApro

MCA, jisr.4, repeat

CA.1ue.0

ue.1 CA.2

DinRSR

clrreset

ue.2.[0:4] ce

fop?

R[68:64] ovf
ovf?

ue.2

trap, ill

CA.4

CAcol

dmalev[31:7]

ue.3

[4] [0][2]

CA.3[11:5, 3]

[12]

ipf, imal[3, 2]

�	
��� ���� Schematics of the cause environment CAenv

CAproprocesses them. Adding an FPU impacts the cause environment in
two ways:

� Due to the different latencies of the execute environment, a 5-stage
RSR is added in the collection circuit.

� The floating point unit adds 6 new internal interrupts, which are as-
signed to the interrupt levels 7 to 12 (table 9.7).

Cause Collection The interrupt events of the fetch and decode stage are
collected in the registers CA.1 and CA.2, as before. These data are then
passed through a 5-stage RSR.

An illegal instruction, a trap and a fixed point overflow are still detected
in the execute stage and clocked into register CA.3. Since these events
cannot be triggered by a legal floating point instruction, the corresponding
instruction always passes from stage 2.0 directly to stage 3.

The floating point exceptions are also detected in the execute stage.
These events can only be triggered by a floating point instruction which
is signaled by f op? � 1. Circuit CAcol therefore masks the events with
flag f op?. The ‘unimplemented floating point operation’ interrupt uFOP
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is signaled by the control in stage ID. The remaining floating point events
correspond to the IEEE flags provided by the FPU. Environment CAcol
gets these flags from the result bus R�68 : 64�.

Let T �
CAcol denote the cycle time of circuit CAcol used in the design

without FPU. Cost and cycle time of the extended cause collection circuit
can then be expressed as

CCAcol � 6 �Cand�Cor �13 �Cf f �CRSR�5�3�

TCAcol � max�T �
CAcol� ACON�uFOP��∆� AFPU �Ddriv �∆��

Cause Processing Without FPU, the interrupt levels 7 to 12 are assigned
to external interrupts which are maskable. Now, these interrupt levels are
used for the FPU interrupts. Except for the interrupt uFOP, which is as-
signed to level 12, these interrupts are maskable. Compared to the origi-
nal circuit of figure 5.10, one just saves the AND gate for masking event
CA.4[12]. Thus,

CCApro � Cand�25��Ctree�32� �Cor �Cf f �34��CCAtype�

0�� �
���
� 
! ��� +�������  �,������ *���#�

�
IKE IN previous DLX designs (chapters 4 and 5), the control of the
prepared sequential data paths is derived in two steps. We start out

with a sequential control automaton which is then turned into precomputed
control.

Figures 9.16 to 9.18 depict the FSD underlying the sequential control
automaton. To a large extent, specifying the RTL instructions and active
control signals for each state of the FSD is routine. The complete specifi-
cation can be found in appendix B.

The portion of the FSD modeling the execution of the fixed point in-
structions remains the same. Thus, it can be copied from the design of
chapter 5 (figure 5.12). In section 8.3.6, we have specified an automaton
which controls the multiply/divide unit. Depending on the precision, the
underlying FSD is unrolled two to three times and is then integrated in the
FSD of the sequential DLX control automaton.

Beyond the decode stage, the FSD has an outdegree of one. Thus, the
control signals of the execute, memory and write back stage can be pre-
computed. However, the nonuniform latency of the floating point instruc-
tions complicates the precomputed control in two respects:

� The execute stage consists of 5 substages. Fast instructions bypass
some of these substages.
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fadd..d fsub.d cvt.i.d cvt.s.d

quotient2.d

newton4.d

newton3.d

newton2.d

netwon1.d

quotient4.d

newton4.d

newton3.d

newton2.d

netwon1.d

newton4.d

newton3.d

newton2.d

netwon1.d

lookup.d

quotient1.d

quotient3.d

fmul.d

Mul1.d

Mul2.d SigAdd.d

Add1.d Sub1.d

rd2.d

rd1.d

select fd.d

fdiv.d

�	
��� ���� FSD modeling the execution of arithmetical floating point operations
with double precision results
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netwon1.s

lookup.s

newton2.s

newton3.s

newton4.s

netwon1.s

newton2.s

newton3.s

newton4.s

quotient2.s

quotient3.s

quotient1.s

quotient4.s

fdiv.s fadd.s fsub.s cvt.i.s cvt.d.sfmul.s

Mul1.s

Mul2.s

rd1.s

rd2.s

SigAdd.s

Add1.s Sub1.s

select fd.s

cvt.s.i cvt.d.i

rd1.i

rd2.i

�	
��� ���� FSD modeling the execution of arithmetical floating point operations
with single precision results
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x.3

y

x.4

x.2

x.1

z

x.0

Con.2.1

Con.2.2

Con.2.3

Con.2.4

Con.3

Con.4

Con.2.0

RSRw

RSR

w
5

ce

clrreset
ue.2.[0:4]

�	
��� ���� Precomputed control of the FDLX design without divider

� Due to the iterative nature of the division algorithm, the execution of
divisions is not fully pipelined. A division passes the multiply/divide
unit several times. That requires a patch of the precomputed control
(section 9.3.2).

Thus, we first construct a precomputed control ignoring divisions.

*�#�� "������-��	 ������� �����-� +������

Like in previous designs (e.g., chapter 4), the control signals for the ex-
ecute, memory and write back stages are precomputed during ID. The
signals are then passed down the pipeline together with the instruction.
However, fast instructions bypass some of the execute stages. In order to
keep up with the instruction, the precomputed control signals are, like the
interrupt causes, passed through a 5-stage RSR (figure 9.19).

����������
 ��� 8�8

Depending on the type of the instruction, the latency of the execute stage
varies between 1 and 5 cycles. However, the latency is already known in
the states of stage 2.0:

� Floating point multiplication, addition and subtraction all have a 5-
cycle latency. This is signaled by an active flag lat5 � 1. The cor-
responding states of stage 2.0 are ,�$�� # ,�$���# ,�  � # ,�  ��#
,�$�� and ,�$���.
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����� ���� Classification of the precomputed control signals

type x.0 x.1 x.2 x.3 x.4 y z
number 31 7 3 0 3 3 6

� Format conversions have a 3-cycle latency (lat3 � 1). Their execu-
tion starts in the states �+&��� # �+&��� # �+&����# �+&� ��# �+&���� and
�+&� ��.

� The remaining instructions have a single cycle latency, signaled by
lat1 � 1.

When leaving stage 2.0, an instruction with single cycle latency contin-
ues in stage 3. Instructions with a latency of 3 or 5 cycles continue in stage
2.3 or 2.1, respectively. The write signals of the RSRs can therefore be
generated as

RSRw�1 : 5� �

��
�

10000 if lat5 � 1
00100 if lat3 � 1
00001 if lat1 � 1

� �lat5� 0� lat3� 0� lat1��

(9.1)

���-��-�� �� ��� 8�8

Without an FPU, there are three types of precomputed control signals:

� type x signals just control the stage EX,

� type y signals control stages EX and M, and

� type z signals control the stages EX, M and WB.

The execute stage now consists of five substages. Thus, the signals of type
x are split into five groups x�0� � � � �x�4 with the obvious meaning.

Tables B.12 and B.14 (appendix B) list all the precomputed control sig-
nals sorted according to their type. The signals x�0 comprise all the x-type
signals of the DLX design without FPU. In addition, this type includes the
signals specifying the latency of the instruction and the signals controlling
the exchange unit FPXtr and the first stage of the FPU.

The stages 2.1 up to 4 are governed by 22 control signals (table 9.16).
These signals could be passed through a standard 5-stage RSR which is 22
bits wide. However, signals for type x�i are only needed up to stage 2�i.
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We therefore reduce the width of the RSR registers accordingly. The cost
of the RSR and of the precomputed control can then be estimated as

CConRSR � Cinv�5�Cor ��22�15�2 �12�9� � �Cand�Cmux�Cf f �

CpreCon � CConRSR�Cf f �53��Cf f �6��

Thus, the RSR only buffers a total of 70 bits instead of 110 bits. Compared
to a standard 22-bit RSR, that cuts the cost by one third.

����� 1�
���
The stages k of the pipeline are ordered lexicographically, i.e.,

1 � 2�0 � 2�1 � 2�2 � 2�3 � 2�4 � 3�

Except for the execute stage, the scheduling functions of the designs DLXΣ
and FDLXΣ are alike. One cycle after reset, the execution starts in the write
back stage with a jump to the ISR. For k � �0�1�3�, instruction Ii passes
from stage k to k�1:

IΣ�k�T� � i � IΣ�k�1�T �1� � i�

Once Ii reaches stage k � 4, the execution continues in stage 0 with the
next instruction:

IΣ�4�T� � i � IΣ�0�T �1� � i �1�

In the FDLXΣ design, the execute stage comprises 5 substages. Fast in-
structions bypass some of these substages, that complicates the scheduling.
For any execute stage 2�k with k � 0, the instruction is just passed to the
next stage, thus

IΣ�2�k�T� � i � i �

�
IΣ�3�T �1� if k� 4
IΣ�2��k�1��T �1� if k� 3�

Whereas in case of stage k � 2�0, it depends on the latency of instruction
Ii whether the execution continues in stage 2.1, 2.3 or 3:

IΣ�2�0�T� � i � i �

��
�

IΣ�3�T �1� if lat1 � 1
IΣ�2�3�T �1� if lat3 � 1
IΣ�2�1�T �1� if lat5 � 1�

The stall engine of figure 9.20 implements the new schedule in an obvi-
ous way. As in the sequential design of section 5.5.6, there is one central
clock CE for the whole FDLXΣ design. During reset, all the update enable
flags ue�k are inactive, and the full vector is initialized. In order to let an
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ue.2.3

ue.2.4

�	
��� ���� Stall engine of the FDLXΣ design without support for divisions

instruction bypass some execute stages, the full flags of stages 2.1 to 2.4
and of the memory stage 3 are held in an RSR. This RSR is, like any other
RSR of the sequential DLX design, controlled by the write signals RSRw
of equation 9.1. The RSRof the stall engine is operated in a particularly
simple way, because all its clock enable signals are all tied to the common
clock enable CE.

Figure 9.21 illustrates how the precomputed control, the stall engine and
the data paths of the execute environment fit together. As before, the pre-
computed control provides the clock request signals RCewhich are com-
bined (AND) with the appropriate update enable flags to obtain to the actual
clock signal RCe�.

However, special attention must be payed to the clock signals of the
registers MDRw and Ffl.3. According to the specification in appendix B,
these two registers are clocked simultaneously. They either get their data
input from stage 2.0 or from stage 2.4, depending on the latency of the
instruction. Thus, the clock signal is obtained as

MDRwce� � ue�2�4 � �MDRwce�2�0� lat1�2�0 � MDRwce�2�4��
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The remaining registers of the FDLX data paths receive their data inputs
just from one stage. Register MAR, for example, is only updated by in-
structions with an 1-cycle execute latency; therefore

MARce� � ue�2�4 � MARce�2�0�

��������� �� ��� +��
�
Along the lines of section 3.4 it can be shown that this FDLXΣ design
interprets the extended DLX instruction set of section 9.1 with delayed PC
semantics but without floating point divisions. The crucial part is to show
that the instruction and its data pass through the pipeline stages at the same
speed. More formally:

Let IΣ�2�0�T� � i, and let X be a register whose content is passed through� ����� )��
one of the RSRs, i.e., X� �IR�Cad�Fad�Sad�PC�DPC�CA�3 : 2��. For any
stage k� �2�1� � � � �3� with IΣ�k�T �� � i, we have

X�2�0T � X�kT �

and f ull�kT �

� 1�

This follows from the definition of the write signals RSRw(equation 9.1)
and from lemma 9.1. Observe that the hypothesis of lemma 9.1 about the
clock enable signals is trivially fulfilled for the RSRin the stall engine. The
construction of the stall engine ensures, that the hypothesis about the clock
enable signals is also fulfilled for the remaining RSRs in the data paths and
in the control.

Outside the stall engine we update the registers of result shift registers
with separate update enable signals. Thus, during the sequential execution
of a single instruction it is still the case, that no stage k � �0�1�3�4� or
substage 2� j is clocked twice. Not all instructions enter all substages, but
the dateline lemma 5.9 stays literally the same.

*�#�� �-�������
 +������

The execution of a division takes 17 or 21 cycles, depending on the pre-
cision. During the unpacking and the four final cycles, a division is pro-
cessed like any other arithmetical floating point operation. However, in
the remaining 12 to 16 cycles, it iterates in circuit SIGFMD of the mul-
tiply/divide unit. These steps are numbered with 2�0�1� � � � �2�0�16 (table
9.15). We use the following strategy for handling divisions:

� In the first cycle (stage 2.0), the operands of the division are un-
packed. This is governed by the standard precomputed control.
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�	
��� ���� Main control for the stages 2.0 to 3 of the full FDLXΣ design

� During the steps �6$� to �$&��%&
, the division iterates in the
multiply/divide unit. The execution is controlled by the FSD spec-
ified in section 8.3.6 (figure 8.22). The data, the cause bits and the
precomputed control signals of the division are frozen in the RSRs
of stage 2.0.

� In the final four steps (�$&��%&�# �����& , # �$% 	# �$% �), the di-
vision passes through the stages 2�1� � � � �2�4. This is again controlled
by the precomputed control.

Thus, the main control (figure 9.22) of the floating point DLX design con-
sists of the stall engine, the precomputed control with its 5-stage RSR, and
the ‘division automaton’. Except for circuit SIGFMD, the data paths are
governed by the precomputed control, whereas the stall engine controls the
update of the registers and RAMs.

"������-��	 �������

The precomputed control of section 9.3.1 is just extended by two signals
lat21 and lat17 of type x�0. These signals indicate that the instruction has
a latency of 21 or 17 cycles, respectively. They correspond to the states
, �+� and , �+�� of the FSD of figure 9.16.
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In order to account for a double precision division, which has a 21-cycle
execute latency, the RSR of the stall engine is extended to length 21. Ex-
cept for the longer RSR, the stall engine remains unchanged. The RSR
provides the full flags f ull �k and the update enable flags ue�k for the stages
k � �2�0�1� � � � �2�0�16�2�1� � � � �2�4�3�. These 21 full bits code the state of
the division FSD in unary as specified in table 9.15.

An instruction, depending on its execute latency, enters the RSR of the
stall engine either in stage 2.0.1, 2.0.5, 2.1, 2.3 or 3. The write signals of
the RSR are therefore generated as

Stallw�1 : 21� � �lat21� 03� lat17� 011� lat5� 0� lat3� 0� lat1�� (9.2)

For the scheduling function IΣ, this implies

IΣ�2�0�T� � i � i �

��
�

IΣ�3�T �1� if lat1 � 1
IΣ�2�3�T �1� if lat3 � 1
IΣ�2�1�T �1� if lat5 � 1
IΣ�2�0�5�T �1� if lat17 � 1
IΣ�2�0�1�T �1� if lat21 � 1�

and for every substage 2�0� j with j � 1 we have

IΣ�2�0� j�T� � i � i �

�
IΣ�2�0�� j �1��T �1� if 0 � j � 16
IΣ�2�1�T �1� if j � 16�

In the remaining pipeline stages, the division is processed like any instruc-
tion with a 5-cycle execute latency. Thus, the scheduling function requires
no further modification.

Unlike the stall engine, the cause environment, the buffer environment
and the precomputed control still use a 5-stage RSR. Up to step 2.0.16, a
division is frozen in stage 2.0 and then enters the first stage of these RSRs.
Thus, the write signals RSRw�1 : 5� of the RSRs in the data paths and in the
precomputed control are generated as

RSRw�1� � lat5 � � f ull �2�0�16 � f div�2�0�

RSRw�3� � lat3

RSRw�5� � lat1

RSRw�2� � RSRw�4� � 0�

����������
 ����-�� SIGFMD
Clock Request Signals The registers A, E, Eb, Da, Db and x of circuit
SIGFMD (figure 8.20) are only used by divisions. Thus, they are updated
solely under the control of the division automaton.
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����� ���� Clock request signals of the multiply/divide unit

clocks stages of the stall engine

xce 2.0.1, 2.0.5, 2.0.9, 2.0.13
sce, cce 2.0.2, 2.0.4, 2.0.6, 2.0.8, 2.0.10, 2.0.12, 2.0.14, 2.0.16, 2.1
Ace 2.0.3, 2.0.7, 2.0.11
Dce, Ece 2.0.15
Ebce 2.1

The output registers s and c of the multiplication tree are also used by
multiplications (stage 2.1). A division uses these registers up to stage 2.1.
Thus, the registers s and c can be updated at the end of step 2.1 without
any harm, even in case of a division.

Table 9.17 lists for each register the stages in which its clock signal must
be active. A particular clock request signal is then obtained by ORing the
update enable flags of the listed stages, e.g.:

cce � ue�2�0�2 � ue�2�0�4 � ue�2�0�6 � ue�2�0�8 � ue�2�0�10

� ue�2�0�12 � ue�2�0�14 � ue�2�0�16 � ue�2�1�

Control Signals The multiply/divide unit is governed by the following
signals

� flag db which signals a double precision operation,

� flag f div which distinguishes between division and multiplication

� flag tlu which activates a table lookup, and

� the enable signals for the operand busses opaand opb

opaoe�3 : 0� � � f aadoe�Eadoe�Aadoe�xadoe�

opboe�1 : 0� � � f bbdoe�xbdoe��

The signals f div and dbare fixed for the whole execution of an instruction.
Therefore, they can directly be taken from the RSR of the precomputed
control.

The flag tlu selects the input of register x. Since this register is only used
by divisions, the flag tlu has no impact on a multiplication or addition.
Thus, flag tlu is directly provided by the division automaton.
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The operand busses opa and opb are controlled by both, the precom-
puted control and the division automaton. Both control units precompute
their control signals. The flag divhazselects between the two sets of con-
trol signals before they are clocked into the register Con�2�1. Let opaoe�

and opboe� denote the set of enable signals generated by the division au-
tomaton; this set is selected on divhaz� 1. The operand busses are then
controlled by

�opaoe�opboe� :�

�
�opaoe�2�0� opboe�2�0� if divhaz� 0
�opaoe�� opboe�� if divhaz� 1�

An active signal divhazgrants the division automaton access to the operand
busses during stages 2�0�1 to 2�0�16. Since the enable signals are precom-
puted, signal divhazmust also be given one cycle ahead:

divhaz�
15�

k�1

f ull �2�0�k � � f ull �2�0 � f div�2�0��

The Division Automaton controls the multiply/divide unit according to
the FSD of figure 8.22. The full bits provided by the RSR of the stall
engine codes the states of the division FSD in unary. Based on these flags,
the automaton precomputes the signal tlu and the enable signals for the
operand busses opa and opb. For each of these signals, table 9.18 lists
the states in which the signal is active and the index of the preceding state.
Like in a standard Moore automaton (section 2.6), each control signal is
generated by an OR tree which combines the corresponding full flags, e.g.:

xbdoe� �
�

k�3�7�11�13�

f ull �2�0�k

The 5 clock request signals and the 7 enable signals together have an
accumulated frequency of νsum� 30 and a maximal frequency of νmax� 9.
Thus, the control for circuit SIGFMD requires the following cost and cycle
time:

CDivCon � Cf f �7��Cmux�6��Cand�CORtree�16��Cor � �νsum�11�

TDivCon � Dand�DORtree�16��Dmux�∆�

The division automaton delays the clock signals of circuit SIGFMD by the
following amount

DDivCon�ce� � DORtree�νmax��
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����� ���� Control signals for the steps 2.0.1 to 2.0.16 of a division.

FSD stall engine
state previous stage

active signals

lookup 2.0.0 tlu, fbbdoe
newton1 2.0.1, 2.0.5, 2.0.9 xadoe, fbbdoe
newton3 2.0.3, 2.0.7, 2.0.11 Aadoe, xbdoe
quotient1 2.0.13 faadoe, xbdoe
quotient2 2.0.14 faadoe, fbbdoe
quotient3 2.0.15 Eadoe, fbbdoe

+������� 3����

With respect to the dateline lemma we are facing two additional problems:

� Some registers are updated by more than one stage. Registers c and
s of the circuit /�!,1� for instance are updated after stage 2.0.16
during divisions and after stage 2.1 during multiplications. Thus,
classifying the registers by the stage, which updates them, is not
possible any more.

� During the iterations of the division algorithm, some registers are
clocked several times. Thus, the dateline lemma cannot possibly
hold while the registers have intermediate values.

We coarsely classy the stages into two classes. The class of stages PP
which are operated in a pipelined fashion and the class of stages SQwhich
are operated in a sequential manner:

PP � �0� 1� 2�0� 2�1� � � � � 2�4� 3� 4�

SQ � �2�0�x � 1 � x� 16�

Different stages in PPupdate different registers. Thus, for every register
R we have R� out�t� for at most one t � PP, and every stage in PP is
updated at most once during the sequential execution of an instruction.
The dateline lemma still holds while instructions are in stages PP and for
registers Rwhich are output registers of stages PP.

Let k� t � PP and let IΣ�k�T� � i. For every register and memory cell R������ )�
 �

out�t� the statements of lemma 5.9 apply.
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The value of the output registers of stage 2.0.16 at the end of the it-
erations for a division operation depend only on the value of the output
registers of stage 2.0 before the iterations:

Let Ii be a division operation, let � ����� )��

IΣ�2�0�U
�� � IΣ�2�1�T

�� � i�

and let V be an output register of stage 2.0.16. Then VT �

depends only on
the values QU

��1 of the output registers Q of stage 2.0 which were updated
after cycle U�.

0�� +�������� *(1 *���#� ���� "+3

�
S BEFORE, transforming the prepared sequential design into a pipe-
lined design requires extensive forwarding and interlock hardware

and modifications in the PC environment and in the stall engine. Figure
9.23 depicts the data paths of the pipelined design FDLXΠ. Compared to
the sequential data paths, its top level schematics just got extended by the
forwarding hardware:

CDP � CIMenv�CPCenv�CIRenv�CDaddr�CFPemb�CEXenv

�CDMenv�CSH4Lenv�CRFenv�CCAenv�Cbu f f er

�5 �Cf f �32��5 �Cf f �64��2 �Cf f �5��CFORW�

*�&�� "� 1����������

According to section 5.6.1, switching from the prepared sequential design
to the pipelined design has only a minor impact on the PC environment.
The instruction memory IM is addressed by the input dpcof register DPC
and not by its output. The circuit nextPCwhich computes the new values
of the program counters however remains unchanged.

On the other hand, adding support for floating point impacts the glue
logic PCglue but not the data paths of environment PCenv. Thus, the
FDLXΠ design uses the PC environment of the pipelined DLXΠ design
(figure 5.13) but with the glue logic of the sequential FDLXΣ design.
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�	
��� ��� Data paths of the pipelined FDLX design with result forwarding

*�&�� ,�����	��
 ��	 .����������


Like in the pipelined designs DLXπ and DLXΠ, the register files GPR, SPR
and FPR are updated in the write back stage. Since they are read by ear-
lier stages, the pipelined floating point design FDLXΠ also requires result
forwarding and interlocking. For the largest part, the extension of the for-
warding and interlock engine is straightforward, but there are two notable
complications:

� The execute stage has a variable depth, which depending on the in-
struction varies between one and five stages. Thus, the forwarding
and interlock engine has to inspect up to four additional stages.

� Since the floating point operands and results have single or double
precision, a 64-bit register of the FPR register file either serves as
one double precision register or as two single precision registers.
The forwarding hardware has to account for this address aliasing.
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The move instruction �,�� is the only floating point instruction which up-
dates the fixed point register file GPR. The move �,�� is processed in the
exchange unit FPXtr, which has a single cycle latency like the fixed point
unit.

Thus, any instruction which updates the GPR enters the execute stage
in stage 2.0 and then directly proceeds to the memory stage 3. Since the
additional stages 2.1 to 2.4 never provide a fixed point result, the operands
A and B can still be forwarded by circuit Forw�3� of figure 4.16. However,
the extended instruction set has an impact on the computation of the valid
flags v�4 : 2� and of the data hazard flag.

Valid Flags The flag v� j� indicates that the result to be written into the
GPR register file is already available in the circuitry of stage j , given that
the instruction updates the GPR at all. The result of the new move in-
struction �,�� is already valid after stage 2.0 and can always be forwarded.
Thus, the valid flags of instruction Ii are generated as before:

v�4� � 1; v�3� � v�2� � �Dmr�

Data Hazard Detection The flags dhazAand dhazBsignal that the oper-
and specified by the instruction bits RS1 and RS2 cause a data hazard, i.e.,
that the forwarding engine cannot deliver the requested operands on time.
These flags are generated as before.

In the fixed point DLX design, every instruction I is checked for a data
hazard even if I requires no fixed point operands:

dhazFX � dhazA� dhazB

This can cause unnecessary stalls. However, since in the fixed point de-
sign almost every instruction requires at least one register operand, there is
virtually no performance degradation.

In the FDLX design, this is no longer the case. Except for the move ���,,
the floating point instructions have no fixed point operands and should not
signal a fixed point data hazard dhazFX. The flags opAand opBtherefore
indicate whether an instruction requires the fixed point operands A and B.
The FDLX design uses these flags to enable the data hazard check

dhazFX � �dhazA� opA� � �dhazB� opB��

The data hazard signals dhazAand dhazBare generated along the same
lines. Thus, the cost and delay of signal dhazFXcan be expressed as

CdhazFX � 2 �CdhazA�2 �Cand�Cor

AdhazFX � AdhazA�Dand�Dor�
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Due to the FPU, the special purpose registers SPR are updated in five situ-
ations:

1. All special purpose registers are updated by JISR. As in the DLXΠ
design, there is no need to forward these values. All instructions
which could use forwarded versions of values forced into SPR by
JISRget evicted from the pipe by the very same occurrence of JISR.

2. On a �+��� instruction, value C�4 is written into register SPR�Sad�.

3. Register SRis updated by �,�. In stages 2 to 4, this update is imple-
mented like a regular write into SPR with address Sad� 0.

4. Register FCC is updated by ,�. In stages 2 to 4, this update is imple-
mented like a regular write into SPR with address Sad� 8.

5. On an arithmetical floating point instruction, which is signaled by
f op� 1, the floating point exception flags Ffl.4 are ORed into the
Register IEEE f.

In case 5, which only applies to register IEEEf, the result is passed down
the pipeline in the Ffl.k registers. During write back, the flags Ffl.4 are
then ORed to the old value of IEEEf. In the uninterrupted execution of Ii ,
we have

IEEE fi � IEEE fi�1 � F f li �

That complicates the result forwarding considerably (see exercise 9.9.1).
In order to keep the design simple, we omit the forwarding of the flags
Ffl. Instead, we generate in appropriate situations a data hazard signal
dhaz�IEEE f� and stall the instruction decode until the hazard is resolved.

In case 1, the forwarding does not matter. In the remaining cases 2 to 4,
the instruction has a 1-cycle latency. Thus, one only needs to forward data
from the stages 2.0, 3 and 4, and the result is already available in stage 2.0.
With respect to the update of the SPR register file, the instructions �+���#
�,� and ,� are treated alike. Thus, the SPR operands can be forwarded
by the standard SFor circuit used in the DLXΠ design, and except for an
operand IEEEf, no additional data hazard is introduced.

In the FDLX design, data from the SPR registers are used in the follow-
ing seven places, each of which is treated separately:

1. on a �+��� instruction, register SPR�Sas� is read into S during de-
code,

2. on an �,� instruction, the two exception PCs are read during decode,
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3. the cause environment reads the interrupt masks SR in the memory
stage,

4. the rounders of the FPU read SR in the execute stage 2.3,

5. the rounding mode RM is read in stage 2.2 by the floating point
adder and in stage 2.3 by the two rounders,

6. on a floating point branch, the condition flag FCC is read during
decode,

7. and on an arithmetical floating point operation ( f op� 1), the IEEE
exception flags IEEEf are read during write back.

Forwarding of the Exception PCs Since the new floating point instruc-
tions do not access the two exceptions PCs, the forwarding hardware of
EPC and EDPC remains unchanged. EPC is forwarded by the circuit
SFor�3� depicted in figure 5.17. The forwarding of EDPC is still omit-
ted, and the data hazard signal dhaz�EDPC� is generated as before.

Forwarding of Operand S On a special move instruction �+���, the
operand Sis fetched during decode. Like in the DLXΠ design, operand Sis
forwarded by the circuit SFor�3� depicted in figure 5.15. However, in case
of an operand IEEEf, one has to check for a data hazard due to the update
of an arithmetical floating point instruction (case 5). Such a hazard occurs
if

� the decode stage processes a �+��� instruction (ms2i�1 � 1),

� the source address Sas�1 equals 7,

� a stage k� 2�0 processes an arithmetical FPU instruction (i.e., f ull �k
� f op�k � 1), and

� no stage j between 1 and k processes a �+��� which updates IEEEf
(i.e., hit� j � 0).

If a special move is in stage 2.0, the remaining execute stages must be
empty, due to its single cycle execute latency. Thus,

dhaz�IEEE f� � ms2i�1 � ��Sas�1� � 7� �� �

2�0�k�2�4

� f op�k� f ull �k� � �hit�2� f op�3� f ull �3�

� ��hit�2 NOR hit�3� � f op�4 � f ull �4�
�
�
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5-AND

dhaz(IEEEf)

ms2i.1

equal

full.2.[0:4]fop.2.[0:4] hit.3hit.2hit.2 full.4fop.4 full.4fop.4

�	
��� ���� Computation of data hazard signal dhaz�IEEE f�.

The circuit of figure 9.24 generates the flag in the obvious way. The hit
signals are provided by circuit SFor�3�. Thus,

Cdhaz�IEEE f� � CEQ�4��CORtree�5��11 �Cand�2 �Cor �Cnor�Cinv

Ddhaz�IEEE f� � max�DEQ�4�� Dor �DORtree�5��

DS f or�hit��2 �Cor �Cnor��2 �Dand�

Forwarding of Register IEEEf The arithmetical floating point instruc-
tions generate IEEE exception flags F f l which are accumulated in register
IEEEf. Such an instruction Ii updates register IEEEf by a read-modify-
write access; these special read and write accesses are performed during
write. For the uninterrupted execution of Ii with IΠ�4�T� � i we have

IEEE fT�1
Π � IEEE fi�1 � F f l �4T

Π �

Since the instructions are processed in program order,

IEEE fT � IEEE fi�1�

and no result forwarding is required.

Forwarding of Register FCC On a floating point branch, the condition
flag FCC is requested by the PC environment during decode. The flag FCC
is updated by a special move �+��� and by a floating point compare in-
struction. Both instructions have a single cycle execute latency and bypass
the substages 2.1 to 2.4. Thus, the value of FCC can be forwarded by the
3-stage forwarding circuit SFor of figure 5.16 with Din � SPR�8� � FCC
and ad� 1000.

The special move and the test instruction update register FCC via the
standard write port. Since there result is already available in stage 2.0, the
forwarding is always possible and register FCC never causes a data hazard.
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Forwarding of Register RM The rounding mode RM is needed in stage
2.2 by the floating point adder and in stage 2.4 by the rounders FPRND

and FXRND. Register RM can only be updated by a special move �+���
which has a single cycle execute latency. Since the result of the special
move is already valid in stage 2.0, forwarding is always possible; no data
hazard is introduced.

A standard 2-stage forwarding circuit SFor�2� can forward RM from
stages 3 and 4 to the execute stages. However, the following lemma states
that the forwarding of register RM can be omitted if the instructions always
remain in program order. The scheduler of the pipelined design FDLXΠ
ensures such an in-order execution (section 9.4.3). Thus, the SPR regis-
ter file can directly provide the rounding mode RM to the adder and the
rounders at zero delay.

Let instruction Ii read the rounding mode RM in stage 2.2 or 2.4. Fur-� ����� )��
thermore, let Ij be an instruction preceding Ii which updates register RM.
Assuming that the instructions pass the pipeline stages strictly in program
order, Ij updates register RM before Ii reads RM.

Let the execution of instruction Ii be started in cycle T, �����

IΠ�2�0�T� � i�

1) Any instruction which passes the rounder FPRND or FXRND has an ex-
ecute latency of at least 3 cycles. Thus, the rounder of stage 2.4 processes
Ii in cycle T �2, at the earliest:

IΠ�2�4�T
�� � i with T � � T �2�

2) If Ii is a floating point addition or subtraction, it already reads the round-
ing mode RM in stage 2.2. Instruction Ii has a 5-cycle execute latency, thus

i � IΠ�2�1�T �1� � IΠ�2�2�T �2��

In either case, Ii reads the rounding mode in cycle T �2 at the earliest.
The rounding mode RM is only updated by special moves �+��� which

have a single cycle execute latency. For such a move instruction Ij this
implies

j � IΠ�2�0� t� � IΠ�3� t �1� � IΠ�4� t �2��

Since the instructions remain in program order, Ij must pass stage 2.0 be-
fore instruction Ii . Thus,

t � T 
 t �2 � T �2�

and I j updates register RM at least one cycle before Ii reads RM. ���
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Forwarding of Register SR The status register SRis updated by special
moves and by �,� instructions. In either case, register SR is updated by a
regular write to SPR with address 0. Since the result is already available in
stage 2.0, the forwarding of SR is always feasible.

The cause environment CAenv uses SR for masking the interrupt events
in stage 3. As before, a 1-stage forwarding circuit SFor�1� provides the
masks SR to the cause environment.

In the FDLX design, register SR also holds the masks for the IEEE float-
ing point exceptions. The rounders FPRND and FXRND require these mask
bits during stage 2.3. In analogy to lemma 9.5, one shows

Let the instructions pass the pipeline of the FDLXΠ design strictly in pro-����� )�� �

gram order. Let instruction Ii read the status register SR in stage 2.3 during
cycle T. Any preceding�,� or �+��� instruction Ij then updates register
SR in cycle T or earlier.

Thus, it suffices to forward the masks SR from the write back stage to the
rounders. This forwarding can be performed by the circuit SFor�1� which
already provides SR to the cause environment. Like in the DLX design,
the masks SR never cause a data hazard.

Forwarding Circuit SFOR Altogether, the forwarding of the SPR oper-
ands can be performed by one circuit SFor�1� for operand SRand by three
circuits SFor�3� for the operands EPC, Sand FCC. Thus, the forwarding
engine SFORhas the cost

CSFOR � 3 �CSFor�3��CSFor�1��

The operands S, EPCand SRstill have the same accumulated delay as in
the DLXΠ design. The accumulated delay of the FCC flag equals that of
the Soperand

ASFOR�FCC� � ASFOR�S��

The remaining SPR operands are provided at zero delay.
The flag dhazSsignals that a special purpose register causes a data haz-

ard. EDPC and IEEEf are the only SPR register which can cause such a
data hazard. Thus, signal dhazScan be obtained as

dhazS� dhaz�IEEE f� � dhaz�EDPC��

The selection of the source address Sasand the forwarding are both gov-
erned by control signals of stage ID, therefore

CdhazS � Cdhaz�IEEE f��Cdhaz�EDPC��Cor

AdhazS � ACON�csID��DDaddr

�max�Ddhaz�IEEE f�� Ddhaz�EDPC���Dor�
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While an instruction (division) is processed in the stages 2.0.0 to 2.0.15,
the signal divhazis active. Since the fetch and decode stage are stalled on
divhaz� 1, it suffices to forward the floating point results from the stages
k� PPwith k� 2�0. In the following, stage 2.0 is considered to be full, if
one of its 17 substages 2.0.0 to 2.0.16 is full, i.e.,

f ull �2�0 �
�

0� j�16

f ull �2�0� j�

Depending on the flag dbs, the floating point operands either have single
or double precision. Nevertheless, the floating point register file always
delivers 64-bit values f a and f b. Circuit FPembof stage ID then selects
the requested data and aligns them according to the embedding convention.
However, the forwarding engine, which now feeds circuit FPemb, takes the
width of the operands into account. That avoids unnecessary interlocks.

The floating point forwarding hardware FFOR(figure 9.25) consists of
two circuits F f or. One forwards operand FA, the other operand FB. In ad-
dition, circuit F f or signals by f haz� 1 that the requested operand cannot
be provided in the current cycle. Circuit F f or gets the following inputs

� the source address ad and the precision dbs,

� the 64-bit data Din from a data port of register file FPR, and

� for each stage k�PPwith k� 2�0 the destination address Fad�k, the
precision dbr, the write signal FPRw�k and an appropriately defined
intermediate result FC��k.

Like in the fixed point core, the forwarding is controlled by valid flags
f v which indicate whether a floating point result is already available in one
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of the stages 2.0, 2.1 to 4. After defining the valid flags f v, we specify the
forwarding circuit F f or and give a simple realization.

The flags opFA and opFB indicate whether an instruction requires the
floating point operands FA and FB. These flags are used to enable the
check for a floating point data hazard:

dhazFP� � f hazA� opFA� � � f hazB� opFB��

Forwarding engine FFORprovides this flag at the following cost and delay

CFFOR � 2 �CF f or

CdhazFP � 2 �Cand�Cor

AdhazFP � ACON�csID��DF f or� f haz��Dand�Dor�

Valid Flags Like for the results of the GPR and SPR register files, we
introduce valid flags f v for the floating point result FC. Flag f v�k� in-
dicates that the result FC is already available in the circuitry of stage k.
The control precomputes these valid flags for the five execute substages
2�0�2�1� � � � �2�4 and for the stages 3 and 4.

In case of a load instruction (Dmr � 1), the result only becomes avail-
able during write back. For any other floating point operation with 1-cycle
execute latency, the result is already available in stage 2.0. For the re-
maining floating point operations, the result becomes available in stage 2.4
independent of their latency. The floating point valid flags therefore equal

f v�2�0� � lat1 � �Dmr

f v�2�1� � f v�2�2� � f v�2�3� � 0

f v�2�4� � f v�3� � �Dmr

f v�4� � 1

Since the flags f v�k� for stage k� �2�1� � � � �2�3�4� have a fixed value, there
is no need to buffer them. The remaining three valid flags are passed
through the RSR of the precomputed control together with the write signal
FPRw.

In any stage k� 2�0, the write signal FPRw�k, the valid flag f v�k��k and
the floating point destination address Fad�k are available. For some of
these stages, the result FC��k is available as well:

� FC��4 is the result to be written into register file FPR,

� FC��3 is the input of the staging register FC.4, and

� FC��2 is the result R to be written into register MDRw. Depending
on the latency, R is either provided by stage 2.0 or by stage 2.4.
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Lemma 4.8, which deals with the forwarding of the fixed point result,
can also be applied to the floating point result. However, some modifica-
tions are necessary since the result either has single or double precision.
Note that in case of single precision, the high and low order word of the
results FC��k are identical, due to the embedding convention (figure 9.1).
Thus, we have:

For any instruction Ii , address r� �r�4 : 0��, stage k� PP with k� 2�0, � ����� )��
and for any cycle T with IΣ�k�T� � i we have:

1. Ii writes the register FPR[r] iff after the sequential execution of Ii ,
the address r[4:1] is kept in the register Fad.k[4:1] and the write
signal FPRw.k is turned on. In case of a single precision access, the
bit Fad.k[0] must equal r[0]. Thus, Ii writes register FPR[r] iff

FPRw�ki � 1 � Fad�ki �4 : 1� � r�4 : 1� � �Fad�ki �0� � r�0� � dbr�ki � 1�

2. If Ii writes a register, and if after its sequential execution the valid
flag f v�k� is turned on, then the value of signal FC��k during cycle T
equals the value written by Ii. Thus, Ii writes FPR[r] and f v�k�i � 1
imply

FPR�r�i �

�
FC��kT �31 : 0� if r �0�i � 0
FC��kT �63 : 32� if r �0�i � 1�

Floating Point Forwarding Circuit Ffor Circuit Ffor forwards 64-bit
floating point data. In order to account for 32-bit operands and results, the
high order word Do�63 : 32� and the low order word Do�31 : 0� are handled
separately.

For any stage k � 2�0, circuit Ffor provides two hit signals hitH�k and
hitL�k and an auxiliary flag match�k. Flag hitH�k indicates that the instruc-
tion I of stage 1 requests the high order word, and that the instruction of
stage k is going to update that data. Flag hitL�k corresponds to the low
order word and has a similar meaning. The auxiliary flag match�k signals
that the instruction of stage k generates a floating point result, and that its
destination address matches the source address ad possibly except for bit
0:

match�k � f ull �k � FPRw�k � �Fad�k�4 : 1� � ad�4 : 1���

Lemma 9.7 implies that instruction I requests the high (low) order word
if the operand has double precision or an odd (even) address. Due to the
embedding convention (figure 9.1), a single precision result is always du-
plicated, i.e., the high and low order word of a result FC��k are the same.
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����� ���� Floating point hit signals for stage k� �2�0� � � � �3�, assuming that the
instruction in stage k produces a floating point result (FPRw� f ull �k � 1) and
that the high order address bits match, Fad�k�4 : 1� � ad�4 : 1�.

destination source
dbr.k Fad.k[0] dbs.1 ad[0]

hitH.k hitL.k

0 0 0 1
0 0 0 1 0 0

1 * 0 1
0 0 0 0

0 1 0 1 1 0
1 * 1 0
0 0 0 1

1 * 0 1 1 0
1 * 1 1

The two hit signals of stage k therefore have the values listed in table 9.19;
they can be expressed as

hitH�k � match�k � �dbr�k � Fad�k�0�� � �dbs�1 � ad�0��

hitL�k � match�k � �dbr�k � �Fad�k�0�� � �dbs�1 � �ad�0��

Moreover, flag topH�k signals for the high order word that there occurs
a hit in stage k but not in the stages above:

topH�k � hitH�k �
�

2�0�x�k�x�PP

�hitH�x�

The flags topL�k of the low order word have a similar meaning. In case
of topH�k � 1 and topL� j � 1, the instructions in stages k and j generate
data to be forwarded to output Do. If these data are not valid, a data hazard
f hazis signaled. Since f v�4 � 1, we have

f haz �
�

k�2�0�2�1�����3�

�topH�k � topL�k� � � f v�k

While an instruction is in the stages 2.1 to 2.3 its result is not valid
yet. Furthermore, the execute stages 2.0 and 2.4 share the result bus R
which provides value FC��2. Thus, circuit F f or only has to consider three
results for forwarding. The high order word of output Do, for example,
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�	
��� ���� A realization of the selection circuit F f orSel

can therefore be selected as

Do�63 : 32� �

��
�

FC��2 if topH�2�0 � topH�2�4
FC��3 if topH�3
FC��4 if topH�4
Din otherwise

Realization of Circuit Ffor Circuit F f or consists of two subcircuits:
F f orC controls the forwarding and F f orSelselects operand Do.

In the circuit F f orSel of figure 9.26, the high and low order word of
the operand Do require three multiplexers each. Like in the fixed point
forwarding circuit Forw, the multiplexers are controlled by the hit signals.
Since the stages 2.0 and 2.4 share the result FC��2, the hit signals of the
two stages are combined by an OR gate. Thus,

CF f orSel � 2 � �3 �Cmux�32��Cor�

DF f orSel � 3 �Dmux

The control circuit F f orC generates the 14 hit and top signals as outlined
above and checks for a data hazard f haz. The hit signals can be generated
at the following cost and delay:

CF f orHit � 2 �Cor �Cinv�7 � �CEQ�4��6 �Cand�2 �Cor �Cinv�

DF f orHit � max�DEQ�4�� Dinv�Dor��2 �Dand

After inverting the hit signals, the signals topH�k and topL�k can be ob-
tained by two parallel prefix AND circuits and some additional AND gates.
These signals are then combined using an OR tree. Thus,

CF f orC � CF f orHit �2 � �7 �Cand�6 �Cinv�CPP�6� �Cand�

�6 � �Cor �Cinv�Cand��CORtree�6�

CF f or � CF f orSel�CF f orC�
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The forwarding circuit F f or provides the output Do and the flag f hazat
the following delays

DF f or�Do� � DF f orHit �DF f orSel

DF f or� f haz� � DF f orHit �Dinv��DPP�6��2� �Dand

�Dor �DORtree�6�

The delay of Do is largely due to the address check. The actual data Din
and FC�� j are delayed by no more than

DF f or�Data� � DF f orSel�

The data to be forwarded by circuit FFor have the following accumulated
delay

A�FC��Din� � max�AEXenv� ASH4Lenv� DFPR�read��

All the address and control inputs of circuit FFOR are directly taken from
registers. FFOR therefore provides the operands FA1 and FB1 with an
accumulated delay of

AFFOR�FA1�FB1� � max�A�FC��Din��DF f or�Data�� DF f or�Do���

Before the operands are clocked into the registers FA and FB, circuit
FPembaligns them according to the embedding convention. Thus, fetch-
ing the two floating point operands requires a minimal cycle time of

TFread � AFFOR�FA1�FB1��DFPemb�∆�

*�&�# ����� 1�
���

Since the divider is only partially pipelined, the division complicates the
scheduling considerably. Like for the sequential design, we therefore first
ignore divisions. In a second step, we then extend the simplified scheduler
in order to support divisions.

������4�	 ����	-���

The execute stage still has a nonuniform latency which varies between 1
and 5 cycles. The intermediate results, the precomputed control signals
and the full flags must keep up with the instruction. Like in the sequential
FDLXΣ design, these data are therefore passed through 5-stage RSRs.

In the pipelined design FDLXΠ, several instructions are processed at a
time. The nonuniform latency cause two additional problems, which are
illustrated in table 9.20. When processed at full speed,
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����� ���� Pipelined schedule for instruction sequence I 1� I2� I3, ignoring struc-
tural and data hazards

instruction cycles of the execution

I1: ,�  IF ID EX.0 EX.1 EX.2 EX.3 EX.4 M WB
I2: �� IF ID EX.0 M WB
I3: �+& IF ID EX.0 EX.3 EX.4 M WB

1. several instructions can reach a stage k at the same time like the
instructions I1 and I3 do, and

2. instructions can pass one another like the instructions I1 and I2.

Every pipeline stage of the FDLXΠ design is only capable of processing
one instruction at a time. Thus, in the scenario of case 1 the instructions
compete for the hardware resources. The scheduler must avoid such a
structural hazard, i.e., for any stage k and cycle T it must be guaranteed
that

IΠ�k�T� � i and IΠ�k�T� � i� � i � i�� (9.3)

Hardware schedulers like the Tomasulo scheduler [Tom67, KMP99b]
and the Scoreboard [Tho70, MP96] allow instructions to overtake one an-
other, but such an out-of-orderexecution complicates the precise process-
ing of interrupts [Lei99, SP88]. In the pipelined execution, instructions are
therefore processed strictly in program order (in-order execution). Thus,
for any two instructions Ii and Ii� with i � i� and any stage k which is re-
quested by both instructions, the scheduler must ensure that Ii is processed
after Ii� :

i � i� and IΠ�k�T� � i and IΠ�k�T
�� � i� � T � T �� (9.4)

Notation So far, the registers of the RSR are numbered like the pipeline
stages, e.g., for entry R we have R�2�0� � � � �R�2�4�R�3. The execute latency
l of an instruction specifies how long the instruction remains in the RSR.
Therefore, it is useful to number the entries also according to their height,
i.e., according to their distance from the write back stage (table 9.21). An
instruction with latency l then enters the RSR at height l .

In the following, we denote by f ull��d� the full flag of the stage with
height d, e.g.:

f ull �2�1 � f ull ��5� f ull �2�3 � f ull ��3� f ull �3 � f ull ��1��
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����� ���� Height of the pipeline stages

stage 2.0 2.1 2.2 2.3 2.4 3 4
height 6 5 4 3 2 1 0

Structural Hazards According to lemma 9.1, the entries of the RSR are
passed down the pipeline one stage per cycle, if the RSR is not cleared
and if the data are not overwritten. Thus, for any stage with height d �
�2� � � � �5� we have,

f ull ��d�T � 1 � f ull ��d�1�T�1 � 1�

This means that an instruction once it has entered the RSR proceeds at full
speed. On the other hand, let instruction Ii with latency li be processed in
stage 2.0 during cycle T . The scheduler then tries to assign Ii to height
li for cycle T � 1. However, this would cause a structural hazard, if the
stage with height li �1 is occupied during cycle T. In such a situation, the
scheduler signals an RSR structural hazard

RSRstrT � f ull ��li �1�T � 1�

and it stalls instruction Ii in stage 2.0. Thus, structural hazards within the
RSR are resolved.

In-order Execution Let instruction Ii and cycle T be chosen as in the
previous case. The instructions which in cycle T are processed in the stages
2.1 to 4 precede Ii . This especially holds for an instruction Ij processed
during cycle T at height d � li � 1. Since structural hazards are resolved,
lemma 9.1 implies that I j reaches height li in cycle T �d� li with

T �d� li � T �1�

Since j � i, the instructions would be not executed in-order (i.e., the con-
dition of equation 9.4 is violated), if Ii leaves stage 2.0 at the end of cycle
T.

For d � li , we have T �d� li � T, i.e., instruction I j reaches height li
before instruction Ii . Thus, in order to ensure in-order execution, Ii must
be stalled in stage 2.0 if

RSRorderT �
5�

d�li�2

f ull ��d�T � 1�
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The flag RSRhazsignals a structural hazard or a potential out-of-order
execution:

RSRhaz� RSRstr� RSRorder�
5�

d�li�1

f ull ��d�T �

Note that an instruction with a latency of l � 5 never causes an RSR hazard.
Thus, depending on the latency of the instruction, the structural hazard
RSRhazcan be detected as

RSRhaz � �lat1�2�0 �
4�

j�1

f ull �2� j� � �lat3�2�0 �
2�

j�1

f ull �2� j��

at the following cost and delay

CRSRhaz � 2 �Cand�4 �Cor

ARSRhaz � Dand�3 �Dor�

The stall engine of the FDLXΠ design stalls the instruction in stage 2.0 if
RSRhaz� 1. Of course, the preceding stages 0 and 1 are stalled as well.

Hardware Realization Figure 9.27 depicts the stall engine of the design
FDLXΠ. It is an obvious extension of the stall engine from the DLXΠ
design (figure 5.19). Like in the sequential design with FPU, the full flags
of the stages 2.0 to 3 are kept in a 5-stage RSR.

A more notable modification is the fact that we now use 3 instead of 2
clocks. This is due to the RSR hazards. As before, clock CE1 controls the
stages fetch and decode. The new clock CE2 just controls stage 2.0. Clock
CE3 controls the remaining stages; it is still generated as

CE3 � �busy� ��JISR NOR Ibusy� � reset�

Clock CE2 is the same as clock CE3 except that it is also disabled on an
RSR hazard:

CE2 � ��RSRhaz��busy� � ��JISR NOR Ibusy� � reset�

Clock CE1 is generated as before, except that it is now disabled in three
situations, namely if the memories are busy, on a data hazard and on an
RSR hazard:

CE1 � ��RSRhaz��busy��dhaz� � ��JISR NOR Ibusy��
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�	
��� ���� Stall engine of the FDLXΠ design without support for divisions

Scheduling Function Except for the execute stages, the FPU has no im-
pact on the scheduling function of the pipelined DLX design. The instruc-
tions are still fetched in program order and pass the stages 0 and 1 in lock
step mode:

IΠ�0�T� � i � IΠ�0�T �1� �

�
i if ue�0T � 0
i �1 if ue�0T � 1

IΠ�1�T� � i � IΠ�0�T� � i �1

Except for stage 2�0, an instruction makes a progress of at most one stage
per cycle, given that no jump to the ISR occurs. Thus, IΠ�k�T� � i with
k �� 2�0 and JISRT � 0 implies

i �

��
�

IΠ�k�T �1� if ue�kT � 0
IΠ�k�1�T �1� if ue�kT � 1 � k� �0� 1� 3�
IΠ�2�� j �1��T �1� if ue�kT � 1 � k� 2� j � �2�1� 2�2� 2�3�
IΠ�3�T �1� if ue�kT � 1 � k� 2�4�

With respect to stage 2.0, the pipelined and the sequential scheduling func-
tion are alike, except that the instruction remains in stage 2.0 in case of an
RSR hazard. In case of JISR� 0, an active flag RSRhazdisables the up-
date of stage 2.0, i.e., signal ue�2�0 is inactive. Thus, for IΠ�2�0�T� � i and
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JISRT � 0, we have

i �

��
�

IΠ�2�0�T �1� if ue�2�0T � 0
IΠ�2�1�T �1� if ue�2�0T � 1 � li � 5
IΠ�2�3�T �1� if ue�2�0T � 1 � li � 3
IΠ�3�T �1� if ue�2�0T � 1 � li � 1�

.���
������ �� +������
The division is integrated in the same way as in the FDLXΣ design (section
9.3.2). The RSR of the stall engine is extended to length 21. While a
division Ii passes the stages 2.0.1 to 2.0.16 of the stall engine, the data of
Ii held in the remaining RSRs are locked in stage 2.0.

During such a division hazard, stage 2.0 is controlled by the division
automaton, and otherwise it is controlled by the precomputed control. The
division hazard is signaled by flag divhazone cycle ahead of time. While
divhaz� 1, the stages 0 and 1 are stalled, whereas the instructions in the
stages k � 2�2 do proceed. Thus, only the clock CE1 of stages 0 and 1
must be modified to

CE1 � ��divhaz��RSRhaz��busy��dhaz� � ��JISR NOR Ibusy��

Like in the sequential design, the support for divisions only impacts
the scheduling function of the execute substages. For IΠ�2�0�T� � i and
JISRT � 0, we have

i �

��
�

IΠ�2�0�T �1� if ue�2�0T � 0
IΠ�2�0�1�T �1� if ue�2�0T � 1 � li � 21
IΠ�2�0�5�T �1� if ue�2�0T � 1 � li � 17
IΠ�2�1�T �1� if ue�2�0T � 1 � li � 5
IΠ�2�3�T �1� if ue�2�0T � 1 � li � 3
IΠ�3�T �1� if ue�2�0T � 1 � li � 1�

and for every substage 2�0� j , IΠ�2�0� j�T� � i and JISRT � 0 imply

i �

�
IΠ�2�0�� j �1��T �1� if ue�2� jT � 1 � 1 � j � 16
IΠ�2�1�T �1� if ue�2� jT � 1 � j � 16�

*�&�& ��� ��	 +���% �� ��� �������

Like in the pipelined design without FPU, the control comprises the mem-
ory controllers IMC and DMC, the memory interface control MifC, a cir-
cuit CE which generates the global clock signals, the stall engine, the pre-
computed control, a Mealy automaton for stage ID, and a Moore automa-
ton for the stages EX to WB. The parameters of these two automata are
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����� ���� Classification of the precomputed control signals

type x.0 x.1 x.2 x.3 x.4 y z

control signals 31 7 3 0 3 3 6
valid flags 2 2 2

listed in table B.16. Thus, the cost of the whole FDLX control can be
expressed as

CCON � CIMC �CDMC�CMi fC�CCE�Cstall

�CpreCon�CCON�mealy��CCON�moore��

"������-��	 �������

The control signals which govern the stages 2.0 to 4 are precomupted in
stage ID. Like in the sequential design FDLXΣ, they are then passed down
the pipeline using a five stage RSR and some registers (figure 9.19). In
addition, the control of the pipelined design FDLXΠ also buffers some
valid flags namely

� the flags v�4 : 2� for the fixed point result and

� the flags f v�2�0�, f v�2�4� and f v�3� for the floating point result.

The valid flags increase the signals of type x�0, y and z by two signals
each (table 9.22). The RSR of the precomputed control now starts with
26 signals in stage 2.1 and ends with 13 signals in stage 3. The control
signals are precomputed by a Moore automaton which already provides
the buffering for stage 2.0. This does not include the valid flags; they
require 6 buffers in stage 2.0. In addition, an inverter and an AND gate are
used to generate the valid flags.

Since divisions iterate in the multiply divide circuit SIGFMD, the pre-
computed control is extended by circuit DivCon, like in the sequential de-
sign (figure 9.22). The cost and delay of control DivConremain the same.

Without the automaton, the cost of the RSR and of the (extended) pre-
computed control can then be expressed as

CConRSR � Cinv�5 �Cor ��26�19�2 �16�13� � �Cand�Cmux�Cf f �

CpreCon � CConRSR�Cf f �8��Cf f �6��Cinv�Cand�CDivCon�
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The pipelined FDLX design uses three clock signals CE1 to CE3. These
clocks depend on flags �JISR, on the hazard flags �dhazand RSRhaz, and
on the busy flags �busyand Ibusy.

CE1 � ��RSRhaz��busy��dhaz� � ��JISR NOR Ibusy�

CE2 � ��RSRhaz��busy� � ��JISR NOR Ibusy� � reset

CE3 � �busy� ��JISR NOR Ibusy� � reset�

The forwarding circuitry provides three data hazard flags: flag dhazFX
for the GPR operands, flag dhazSfor the SPR operands and flag dhazFP
for the FPR operands. A data hazard occurs if at least one of these hazard
flags is active, thus

�dhaz� �dhazFX� dhazS� NOR dhazFP�

Flag �dhazcan be obtained at the following cost and accumulated delay:

Cdhaz � CdhazFX�CdhazS�CdhazFP�Cor �Cnor

Adhaz � max�AdhazFX� AdhazS� AdhazFP��Dor �Dnor�

The FPU has no impact on the busy flags. They are generated like in the
pipelined design DLXΠ, at cost Cbusyand with delay Abusy. The JISR flags
are obtained as

JISR� jisr�4 � f ull �4 �JISR� jisr�4 NAND f ull �4�

The three clock signals are then generated at the following cost and delay

CCE � Cdhaz�CRSRhaz�Cbusy

�4 �Cor �Cnor�Cinv�Cnand�3 �Cand

ACE � max�Adhaz� ARSRhaz� Abusy��Dinv�2 �Dand�Dor�

����� 1�
���
The core of the stall engine is the circuit depicted in figure 9.27 but with
an 21-stage RSR. In addition, the stall engine enables the update of the
registers and memories based on the update enable vector ue.

According to equation 9.2, the write signals Stallwof the 21-stage RSR
are directly taken from the precomputed control of stage 2.0. The core of
the stall engine therefore provides the update enable flags at the following
cost and delay

Cstall�core� � CRSR�21�1���21�4� �Cand�Cor �2 �Cf f

Astall�ue� � ACE�DRSR�r��Dand�

'�'
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The write signals of the register files are generated as before, except that
there is now one additional register file.

GPRw� � GPRw� ue�4 � �JISR NAND repeat�

FPRw� � FPRw� ue�4 � �JISR NAND repeat�

SPRw� � SPRw� ue�4 � �JISR NAND repeat�

SPRw��5 : 0� � SPRw�5 : 0� � ue�4�

The read and write signals of the data memory also remain unchanged. In
stage 2.0, the write request signal is disabled in case of page fault during
instruction fetch.

Dmw�3 :� Dmw�2 � CA�2�2�

Dmw��3 � Dmw�3 � f ull �3 � �JISR NOR reset�

Dmr��3 � Dmr�3 � f ull �3�

The same is true for the clock signals of stage ID and of the cause environ-
ment.

CA4ce � ue�3 � reset

DPCce� � PCce� � ue�1 � JISR�

However, the output registers of the stages EX and M of the data paths are
clocked differently. In the design without FPU, all these registers have a
trivial clock request signal which equals one. That is no longer the case.
For the registers R� �MDRr�C4�FC4� and for register MAR, the clocks
are now obtained as

Rce� � ue�3 � Rce�3

MARce� � ue�2�4 � MARce�2�0�

For register MDRw the clocking is a bit more complicated. As already
mentioned earlier, MDRw either gets its data from stage 2.0 or from stage
2.4, depending on the latency of the instruction. Thus,

MDRwce� � ue�2�4 � �MDRwce�2�0� lat1�2�0 � MDRwce�2�4��

The write signals of the RSRs of the data paths are directly taken from the
precomputed control CON2�0 except for the write signal of the first entry

RSRw�1� � lat5�2�0 � � f ull �2�0�16 � f div�2�0��

The cost and cycle time of the stall engine can then be expressed as

Cstall � Cstall�core��14 �Cand�4 �Cor �Cinv�Cnand�Cnor

Tstall � max�DRSR�r��Dand�Dor �∆� Astall�ue��δ�2 �Dand

�max�Dram3�32�32�� DSF�w�ce;9�32��Df f � DFPR�write��
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It suffices to show the simulation theorem for cycles, when instructions are
in stages k� PP.

Like theorem 5.11 but with hypothesis � ������ )�(

IΠ�k�T� � IΣ�k�T
�� � i and ue�kT

i � 1

for k � PP and statements 1 (a) and (b) for signals S and output registers
R of stages k� PP.

The arguments from the induction step of theorems 4.5, 4.7 and 4.11 have �����
to be extended for the execute environment. Two new situations must be
treated:

1. jumping over substages by means of the result shift registers and

2. inputs to stage 2.1 produced by the sequential portion of the division
algorithm.

For the first case, let Ii be an instruction which jumps from stage 2�0 to
stage x with x� �2�1� � � � �2�4�3�, and let

i � IΠ�x�T� � IΣ�x�T ��
� IΠ�2�0�T�1� � IΣ�2�0�T ��1��

Let Q � out�2�0� be an output register of stage 2.0 which was updated
during cycle T�1. The induction hypothesis and the dateline lemma imply

QT
Π � Qi � QT �

Σ �

Let Sbe a signal in stage x, which is an input to an output register of stage
x which is updated at the end of cycle T. By construction of the machine,
the value ST �

Σ then depends only on

� the values QT �

Σ of registers Q considered above and

� the values of the special purpose registers RMi�1 and SRi�1.

As in the proof of theorem 4.7, one argues that values RMi�1 and SRi�1 are
forwarded to stage x of machine DLXΠ in cycle T. It follows that

ST
Π � ST �

Σ �

'�/
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For the second case, let Ii be a division instruction and let

i � IΠ�2�1�T� � IΣ�2�1�T ��
� IΠ�2�0�16�T �1� � IΣ�2�0�16�T ��1�
� IΠ�2�0�U� � IΣ�2�0�U ���

By induction hypothesis we have for all output registers Q of stage 2.0,
which were updated after cycle U :

QU�1
Π � QU ��1

Σ �

During the cycles U��1� � � � �T ��1 of machine DLXΣ and during the cycles
U �1� � � � �T�1 of machine DLXΠ both machines work sequentially. The
outputs clocked into the output registers of stage 2.0.16 after cycles T��1
and T � 1, respectively, depend by lemma 9.4 only on the values of the
registers Q considered above. For output registers V of stage 2.0.16 it
follows that

VT
Π � VT

Σ � Vi �

From this one concludes for all inputs S of output registers of stage 2.1
which are clocked after cycle T:

ST
Π � ST �

Σ

exactly as in the first case.���

0�� %)�����
�

�
N THIS section, we analyze the impact of the floating point unit on the
cost and the performance of the pipelined DLX design. We also analyze

how the FPU impacts the optimal cache size (section 9.5.2).

*�'�� ���	���� ��� ��	 �%��� ����

In the following, we compare the cost and the cycle time of the designs
DLXΠ and FDLXΠ. Both designs use a split 4KB cache. The Icache and
the Dcache are of equal size, i.e., 2KB each. They are two way set as-
sociative with LRU replacement and implement the write allocate, write
through policy. With respect to the timing, we assume that the memory
interface has a bus delay of dbus� 15 and a handshake delay of dMhsh� 10
gate delays.

'�)
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EVALUATION����� ��� Cost of the pipelined DLX data paths. DP�M denotes the data paths
without the memory environments.

environment IR PC DAddr EX SH4L RF

DLXΠ 301 2610 60 3795 380 7257
FDLXΠ 301 2618 90 110093 860 11532

increase 0.3% 50% 2800% 126% 59%

environment CA buffer FORW IM, DM DP�M DP

DLXΠ 471 2064 1624 96088 20610 116698
FDLXΠ 717 9206 3904 95992 143635 239627

increase 52% 346% 140% -0.1% 597% 105%

��� �� ��� +��� "���

Except for the environments IRenv and IMenv, all parts of the data paths
and of the control had to be adapted to the floating point instruction set.
Significant changes occurred in the execute stage, in the register file envi-
ronment, in the forwarding hardware, and in the control (table 9.23).

The floating point unit itself is very expensive, its cost run at 104 kilo
gates (section 8.7). Compared to the FPU, the FXU is fairly inexpensive.
Thus, in the FDLX design, the execute environment is 28 times more ex-
pensive than in the DLX design. The FPU accounts for about 95% of the
cost of EXenv.

There is also a significant cost increase in the forwarding hardware, in
the buffers and in the register file environment. This increase is due to
the deeper pipeline and due to the additional floating point operands. The
remaining environments contribute at most 1kG (kilo gate) to the cost in-
crease. The memory environments become even slightly cheaper, due to
the simpler data memory interface. The data ports of the Dcache and of
environment DMenv have now the same width (64 bits); the patch of the
data ports therefore becomes obsolete.

In the DLXΠ design, the 4KB split cache is by far the single most expen-
sive unit; it accounts for 82% of cost. The FPU is about 9% more expensive
than the 4KB cache. Thus, in the FDLXΠ design, the 4KB cache only con-
tributes 40% to the cost of the data paths; environment EXenv contributes
another 46%. Adding the FPU roughly doubles the cost of the pipelined
data paths (factor 2.05). Without the caches, the FPU has even a stronger
cost impact, it increases the cost of the data paths roughly by a factor of 6.

'�*
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����� ���� Cost of the control of the pipelined DLX designs and with FPU.

MifC stall, CE preCon automata CON DLX

DLXΠ 943 165 202 952 2262 118960
FDLXΠ 1106 623 1440 2829 5898 245514

increase 6.7% 278% 613% 197% 161% 106%

��� �� ��� �������

Table 9.24 lists the cost of the different control environments and of the
whole DLX designs. Adding the FPU increases the cost of the control
by 160%. The cost of the memory interface control remains virtually the
same. Due to the deeper pipeline, the stall engine becomes about 4 times
as expensive.

The control automata become about three times as expensive. This is
largely due to the Moore automaton which precomputes the control signals
of the stages EX to WB. It now requires 44 instead of 17 states, and it
generates 48 instead of 16 control signals. The Moore control signals have
a 7 times higher accumulated frequency νsum(342 instead of 48).

The larger number of control signals also impacts the cost of the pre-
computed control, which passes these signals down the pipeline. Since
the pipeline is also much deeper, the precomputed control is 7 times as
expensive as before.

�%��� ����
Table 9.25 lists the cycle time for each stage of the data paths. The cycle
time of the write back stage remains the same, despite of the additional
register file. The FPR register file consists of two RAM banks, each of
which only has half the size of the RAM used in the GPR register file.
Thus, time TWB is still dominated by the delay of the shifter SH4L and the
GPR register file.

Due to the aliasing of single and double precision registers, each word
of a floating point operand must be forwarded separately. Since all the
operands are fetched and forwarded in parallel, the floating point extension
has only a minor impact on the operand fetch time. The cycle time of stage
ID is still dominated by the PC environment.

The FPU is much more complex than the FXU. Thus, the cycle time of
the execute stage is increased by about 50%; the execute stage becomes
time critical. The cycle time of the control is also increased significantly
(16%). This is due to the non-uniform latency of the execute stage, which
requires the use of an RSR.

'��
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EVALUATION����� ���� Cycle times of the data paths of the designs DLXΠ and FDLXΠ with
2KB, 2-way Icache and Dcache.

ID CON / stall
operands PC

EX WB DP
max( , )

DLXΠ 72 89 66 33 89 79 46�dbus

FDLXΠ 74 89 98 33 98 92 48�dbus

����� ���� Memory cycle times of the DLX designs with 2KB, 2-way Icache and
Dcache, assuming a bus and handshake delay of dbus� 15 and dMhsh� 10.

Maccess
$read $if Mreq Mrburst

α � 4 α � 8

DLXΠ 55 47 42 51 379 707
FDLXΠ 53 47 42 51 379 707

The memory system remains virtually the same, except for one multi-
plexer which is saved in the Dcache interface and a modification of the
bank write signals. The latter has no impact on the delay of the memory
control. Thus, except for the cache read time T$read, the two DLX designs
with and without FPU have identical memory cycle times (table 9.26).

*�'�� >�������� �� ��� ����� ��:�

Like in sections 6.4.2 and 6.5.3, we now optimize the cache size of the
FDLXΠ design for performance and for a good performance cost ratio.
The optimization is based on a floating point workload.

��� ��	 +���%

Table 9.27 lists the cost, the cycle time TFDLX of the CPU, and the memory
access times for the pipelined FDLX design. The total cache size varies
between 0KB and 32KB. The 64MB main memory uses DRAMs which
are 4 (8) times slower and denser than SRAM.

As before, doubling the cache size roughly doubles the cost of the mem-
ory environment. However, due to the expensive floating point unit, a
cache system of 1KB to 4KB only causes a moderate (25 - 65%) increase
of the total hardware cost. In combination with small caches, the FPU
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����� ���� Cost, CPU cycle time and memory access time of the FDLXΠ design

total CM CFDLX

cache [kG] [kG] [%]
TFDLX TM�4� TM�8�

0KB 0 149 100 98 355 683
1KB 30 179 120 98 359 687
2KB 52 201 135 98 367 695
4KB 96 246 165 98 379 707
8KB 184 334 224 98 382 710

16KB 360 510 342 104 385 713
32KB 711 861 578 107 388 716

dominates the CPU cycle time. Beyond a total cache size of 16KB, the
detection of a cache hit becomes time critical.

The memory access time grows with the cache size; it is significantly
larger than the CPU cycle time. As before, the actual memory access is
therefore performed in W cycles with a cycle time of

τM � TM�W� �

The cycle time of the FDLX design then equals

τ � max�τM � TFDLX��

Up to W � TM�TFDLX , increasing the number W of memory cycles re-
duces the cycle time τ, but it also increases the cycle count. Thus, there is
a trade-off between cycle time and cycle count. The optimal parameter W
strongly depends on the memory system and on the workload.

"����������
In addition to the integer benchmarks of table 4.20, the SPEC92 suite also
comprises 14 floating point benchmarks (for details see [Sta, HP96]). On
average, this floating point workload SPECfp92 uses the instruction mix
listed in table 9.28; this table is derived from [Del97].

The non-uniform latency of the execute stage makes it very difficult (or
even impossible) to derive the CPI ratio of the pipelined FDLX design
in an analytic manner. In [Del97], the CPI ratio is therefore determined
by a trace based simulation. Assuming an ideal memory which performs
every access in a single cycle, the FDLX design achieves on the SPECfp92
workload a CPI ratio of

CPIideal� f p� � 1�759�

'��



������� *�'

EVALUATION����� ���� Instruction mix of the average SPECfp92 floating point workload

instruction FXU load store jump branch
frequency [%] 39.12 20.88 10.22 2.32 10.42

instruction fadd fmul fdiv cvt 1 cycle
frequency [%] 5.24 5.78 1.17 2.13 2.72

����� ���� Memory access time of the FDLX design with cache memory (given
in CPU cycles)

read hit read miss write hit write miss
1 1�S�W 2�W 2�W�S�W

The split cache system of the FDLX design has a non-uniform access
time which depends on the type of the access (table 9.29). Thus, a read
miss takes 1�S�W cycles. In the FDLX design each cache line has S� 4
sectors. The parameter W depends on the speed of the memory system; in
this framework, it varies between 3 and 16 cycles.

The whole pipeline is stalled in case of a slow data memory access.
On an instruction fetch miss, only the fetch and decode stage are stalled,
the remaining stages still proceed. However, these stages get eventually
drained since the decode stage provides no new instructions. Thus, an
instruction fetch miss will also cause a CPI penalty.

In order to keep the performance model simple, we assume that the
whole pipeline is stalled on every slow memory access. That gives us a
lower bound for the performance of the pipelined FDLX design. In anal-
ogy to equation 6.5 (page 312), the CPI ratio of the FDLXΠ design with
cache memory can then be modeled as

CPI� f p� � CPIideal� f p��νstore� �1�W�

��ν f etch� pIm�νload�store� pDm� �W �S

� 1�861�0�102 �W��pIm�0�311 � pDm� �W �S�

where pIm and pDm denote the miss ratios of the instruction cache and data
cache, respectively. Table 9.30 lists the miss ratios of the instruction and
data cache. In addition, it lists the optimal cycle time, CPI and TPI (time
per instruction) ratio for the different memory systems.

Doubling the total cache size cuts the miss ratio of the Icache roughly
by half, whereas up to 16KB, the miss ratio of the Dcache is only reduced

'�#
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����� ��� Miss ratio, cycle time CPI and TPI ratio of the FDLXΠ design. For
α � 4 (8), a memory access is performed in W � 4 (7) cycles.

total miss ratio [%] DRAM α � 4 DRAM α � 4
cache I$ D$ τ CPI TPI τ CPI TPI

1KB 5.40 10.7 98 2.97 290.8 99 3.54 350.1
2KB 1.98 7.69 98 2.62 256.7 100 3.06 305.6
4KB 1.04 6.08 98 2.50 245.3 101 2.90 292.6
8KB 0.70 5.31 98 2.46 240.8 102 2.83 289.1

16KB 0.46 4.56 104 2.42 251.6 104 2.78 289.3
32KB 0.23 2.33 107 2.35 250.9 107 2.68 286.7

by about 30%. This suggests that the data accesses require a larger work-
ing set than the instruction fetches, and that the instruction fetches have a
better locality. A larger cache improves the CPI ratio but with diminishing
returns. Since a larger cache also increases the cycle time, the 16KB cache
system even yields a worse performance than the 8KB system. Thus, with
respect to performance, a total of 8KB cache is optimal.

Without caches, every memory access takes 1�W cycles, and the pipe-
lined FDLX design then has a CPI ratio of

CPIno$ � 1�759�W �1�311�

In combination with fast DRAM (α � 4), the design runs with W � 3 at a
cycle time of τ � 119 and achieves a TPI ratio of 677.4. According to table
9.31, the split cache gains a speedup of 2.3 to 2.8 over the design without
caches. In combination with slower DRAM (α � 8), the FDLX design
without caches run with W � 7 at τ � 98 and has a TPI ratio of 1071.7.
The split cache system then causes even a speedup of 3.1 to 3.7.

Even for the 8KB cache system, the speedup is in either case signifi-
cantly larger than the cost increase. Thus, the cache is definitely worth-
while.

The diagrams of figure 9.28 depict the quality ratio of the FDLX de-
signs with split cache over that without cache. Note that the quality is the
weighted geometric mean of the cost and the TPI ratio: Q�C�q �TPIq�1.
For a realistic quality measure, the parameter q lies in the range [0.2, 0.5].
Within this range, the design with a total cache size of 4KB is best. The
8KB system only wins, if much more emphasis is put on the performance
than on the cost.
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EVALUATION����� ��� Speedup and cost increase of the FDLXΠ with a split 2-way cache
over the design without cache

total cache size 1KB 2KB 4KB 8KB

speedup: α � 4 2.33 2.64 2.76 2.81
α � 8 3.06 3.51 3.66 3.71

cost increase factor 1.24 1.39 1.71 2.32
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�������� )�	 An arithmetical FPU instruction Ii updates the SPR register
IEEEf by a read-modify-write access:

IEEE fi � IEEE fi�1 � F f li �

Unlike any other instruction updating the SPR register file, the input of
this write access is provided via the special write port Di�6� and not via
the standard write port Din. That complicates the forwarding of the SPR
operand S. In order to keep the engine forwarding engine (section 9.4.2)
lean, the forwarding of the IEEEf flags generated by an arithmetical FPU
operation was omitted.

1. The result to be written onto register IEEEf is always available in
the circuitry of stage WB. Extend the forwarding engine (and the
interlock engine) such that IEEEf is forwarded from stage WB even
in case of an arithmetical FPU instruction.

2. Flags F f l provided by the FPU become available in stage 2.4. When
combined with the forwarded IEEEf value from stages 3 and 4, reg-
ister IEEEf can also be forwarded from the stages 2.4, 3 and 4. Con-
struct a forwarding engine which supports this type of forwarding.

3. How do the modifications of 1) and 2) impact the cost and cycle time?

�������� )�� Construct a sequence of k instructions, such that data from
the first k� 1 instructions have to be forwarded to the k’th instruction.
How large can k be?

�������� )�
 In many contemporary machines (year 2000) a change of the
rounding mode slows programs down much more than an additional float-
ing point instruction (This make interval arithmetic extremely slow). What
part of the hardware of the machine constructed here has to be deleted in
order to produce this behavior?

�������� )�� Suppose in the division algorithm we use an initial lookup
table with γ� 5 or γ� 16?.

1. Which parts of the machine have to be changed? Specify the changes.

2. How is the cost of the machine affected?

�������� )�� Sketch the changes of the design required if we want to make
division fully pipelined (Conceptually, this makes the machine much sim-
pler). Estimate the extra cost.
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EXERCISES
�������� )�� Evaluate the quality of the machines from exercises 9.4 and
9.5. Assume, that the cycle time is not affected. For the machine from
exercise 9.5 use your estimate for the cost. Compare with the machine
constructed in the text.
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Appendix

A
DLX Instruction Set
Architecture

�
HE DLX is a 32-bit RISC architecture which manages with only three
instruction formats. The core of the architecture is the fixed point unit

FXU, but there also exists a floating point extension.

��� *(1 "�&��4+
��� �
��5 "13

�
HE DLX fixed point unit uses 32 general purpose registers R0 to R31,
each of which is 32 bits wide. Register R0 always has the value

0. The FXU also has a few 32-bit special purpose registers mainly used
for handling interrupts. Table A.1 lists these registers as well as a brief
description of their usage. For more details see chapter 5. Special move
instructions transfer data between general and special purpose registers.

Load and store operations move data between the general purpose reg-
isters and the memory. There is a single addressing mode: the effective
memory address ea is the sum of a register and an immediate constant.
Except for shifts, immediate constants are alwayssign-extended to 32-bits.

The memory is byte addressable and performs byte, half-word or word
accesses. All instructions are coded in four bytes. In memory, data and
instructions must be aligned in the following way: Half words must start
at even byte addresses. Words and instructions must start at addresses
divisible by 4. These addresses are called word boundaries.
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SET
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����� (�� Special purpose registers of the DLX fixed point core

register usage

PC program counter points to the next instruction
SR status register holds interrupt masks (among others)
CA cause register records pending interrupts
EPC,
ESR,
ECA,
EMAR

exception registers on a jump to the interrupt service rou-
tine they backup the current value of
PC, SR, CA respectively the current
memory address

RS1 RS2 RD SA

RS1

5

RD

5

opcode

opcode

opcode PC offset

function

immediateI-type

R-type

J-type

5 556 5 6

6

6 26

16

�	
��� (�� The three instruction formats of the DLX design. The fields RS1 and
RS2 specify the source registers, and the field RD specifies the destination regis-
ter. Field SA specifies a special purpose register or an immediate shift amount.
Function field is an additional 6-bit opcode.

����� .���-����� ,�����

All three instruction formats (figure A.1) have a 6-bit primary opcode and
specify up to three explicit operands. The I-type (Immediate) format spec-
ifies two registers and a 16-bit constant. That is the standard layout for
instructions with an immediate operand. The J-type (Jump) format is used
for control instructions. They require no explicit register operand and profit
from the larger 26-bit immediate operand. The third format, R-type (Regis-
ter) format, provides an additional 6-bit opcode (function). The remaining
20 bits specify three general purpose registers and a field SAwhich spec-
ifies a 5-bit constant or a special purpose register. A 5-bit constant, for
example, is sufficient as shift amount.

'��
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FLOATING-POINT

EXTENSION

����� (�� J-type instruction layout; sxt(imm)is the sign-extended version of the
26-bit immediate called PC Offset.

IR[31:26] mnemonic effect

Control Operation
hx02 j PC = PC + 4 + sxt(imm)
hx03 jal R31 = PC + 4; PC = PC + 4 + sxt(imm)
hx3e trap trap = 1; Edata = sxt(imm)
hx3f rfe SR = ESR; PC = EPC; DPC = EDPC

����� .���-����� ��� ��	��


Since the DLX description in [HP90] does not specify the coding of the
instruction set, we adapt the coding of the MIPS R2000 machine ([PH94,
KH92]) to the DLX instruction set. Tables A.2 through A.4 specify the
instruction set and list the coding; the prefix “hx” indicates that the number
is represented as hexadecimal. The effects of the instructions are specified
in a register transfer language.

��� "�
����#4+
��� %&�����
�

�
ESIDES THE fixed point unit, the DLX architecture also comprises a
floating point unit FPU, which can handle floating point numbers in

single precision (32-bits) or in double precision (64-bits). For both preci-
sions, the FPU fully conforms the requirements of the ANSI/IEEE standard
754 [Ins85].

����� ,"� 8�
���� ���

The FPU provides 32 floating point general purpose registers FPRs, each
of which is 32 bits wide. In order to store double precision values, the
registers can be addressed as 64-bit floating point registers FDRs. Each of
the 16 FDRs is formed by concatenating two adjacent FPRs (table A.5).
Only even numbers �0�2� � � � �30� are used to address the floating point reg-
isters FPR; the least significant address bit is ignored. In addition, the FPU
provides three floating point control registers: a 1-bit register FCC for the
floating point condition code, a 5-bit register IEEEf for the IEEE exception
flagsand a 2-bit register RM specifying the IEEE rounding mode.

'��
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DLX INSTRUCTION

SET

ARCHITECTURE

����� (� R-type instruction layout. All instructions increment the PC by four.
SA is a shorthand for the special purpose register SPR�SA�; sa denotes the 5-bit
immediate shift amount specified by the bits IR[10:6].

IR[31:26] IR[5:0] mnemonic effect

Shift Operation
hx00 hx00 slli RD = sll(RS1, sa)
hx00 hx02 srli RD = srl(RS1, sa)
hx00 hx03 srai RD = sra(RS1, sa)
hx00 hx04 sll RD = sll(RS1, RS2[4:0])
hx00 hx06 srl RD = srl(RS1, RS2[4:0])
hx00 hx07 sra RD = sra(RS1, RS2[4:0])

Arithmetic, Logical Operation
hx00 hx20 addo RD = RS1 + RS2; ov f signaled
hx00 hx21 add RD = RS1 + RS2; no ov f signaled
hx00 hx22 subo RD = RS1 - RS2; ov f signaled
hx00 hx23 sub RD = RS1 - RS2; no ov f signaled
hx00 hx24 and RD = RS1 � RS2
hx00 hx25 or RD = RS1 � RS2
hx00 hx26 xor RD = RS1 	 RS2
hx00 hx27 lhg RD = RS2[15:0] 016

Test Set Operation
hx00 hx28 clr RD = ( false ? 1 : 0);
hx00 hx29 sgr RD = (RS1 � RS2 ? 1 : 0);
hx00 hx2a seq RD = (RS1 � RS2 ? 1 : 0);
hx00 hx2b sge RD = (RS1 � RS2 ? 1 : 0);
hx00 hx2c sls RD = (RS1 � RS2 ? 1 : 0);
hx00 hx2d sne RD = (RS1 �� RS2 ? 1 : 0);
hx00 hx2e sle RD = (RS1 � RS2 ? 1 : 0);
hx00 hx2f set RD = ( true ? 1 : 0);

Special Move Instructions
hx00 hx10 movs2i RD = SA
hx00 hx11 movi2s SA = RS1

����� ,"� .���-����� ���

The DLX machine uses two formats (figure A.2) for the floating point
instructions; one corresponds to the I-type and the other to the R-type of
the fixed point core. The FI-format is used for loading data from memory

'��
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FLOATING-POINT

EXTENSION
����� (�� I-type instruction layout. All instructions except the control instruc-
tions also increment the PC by four; sxt�a� is the sign-extended version of a.
The effective address of memory accesses equals ea� �GPR�RS1��� �sxt�imm��,
where immis the 16-bit intermediate. The width of the memory access in bytes is
indicated by d. Thus, the memory operand equals m� M�ea�d�1�� � � � �M�ea�.

IR[31:26] mnemonic d effect

Data Transfer
hx20 lb 1 RD = sxt(m)
hx21 lh 2 RD = sxt(m)
hx23 lw 4 RD = m
hx24 lbu 1 RD = 024m
hx25 lhu 2 RD = 016m
hx28 sb 1 m = RD[7:0]
hx29 sh 2 m = RD[15:0]
hx2b sw 4 m = RD

Arithmetic, Logical Operation
hx08 addio RD = RS1 + imm; ov f signaled
hx09 addi RD = RS1 + imm; no ov f signaled
hx0a subio RD = RS1 - imm; ov f signaled
hx0b subi RD = RS1 - imm; no ov f signaled
hx0c andi RD = RS1 � sxt(imm)
hx0d ori RD = RS1 � sxt(imm)
hx0e xori RD = RS1 	 sxt(imm)
hx0f lhgi RD = imm 016

Test Set Operation
hx18 clri RD = ( false ? 1 : 0);
hx19 sgri RD = (RS1 � imm ? 1 : 0);
hx1a seqi RD = (RS1 � imm ? 1 : 0);
hx1b sgei RD = (RS1 � imm ? 1 : 0);
hx1c slsi RD = (RS1 � imm ? 1 : 0);
hx1d snei RD = (RS1 �� imm ? 1 : 0);
hx1e slei RD = (RS1 � imm ? 1 : 0);
hx1f seti RD = ( true ? 1 : 0);

Control Operation
hx04 beqz PC = PC + 4 + (RS1 � 0 ? imm: 0)
hx05 bnez PC = PC + 4 + (RS1 �� 0 ? imm: 0)
hx16 jr PC = RS1
hx17 jalr R31 = PC + 4; PC = RS1

'�#
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ARCHITECTURE

����� (�� Register map of the general purpose floating point registers

floating point
general purpose registers

floating point registers

single precision (32-bit) double precision (64-bit)

FPR31�31 : 0�
FPR30�31 : 0�

FDR30�63 : 32�
FDR30�31 : 0�

�
FDR30�63 : 0�

: :
FPR3�31 : 0�
FPR2�31 : 0�

FDR2�63 : 32�
FDR2�31 : 0�

�
FDR2�63 : 0�

FPR1�31 : 0�
FPR0�31 : 0�

FDR0�63 : 32�
FDR0�31 : 0�

�
FDR0�63 : 0�

Rx FDOpcode ImmediateFI-type

FR-type

5 556 6

6 5 5 16

3

Fmt00Opcode FD FunctionFS1 FS2 / Rx

�	
��� (�� Floating point instruction formats of the DLX. Depending on the pre-
cision, FS1, FS2 and FD specify 32-bit or 64-bit floating point registers. RS
specifies a general purpose register of the FXU. Function is an additional 6-bit
opcode. Fmt specifies a number format.

into the FPU respectively for storing data from the FPU into memory. This
format is also used for conditional branches on the condition code flag
FCC of the FPU. The coding of those instructions is given in table A.6.

The FR-format is used for the remaining FPU instructions (table A.8). It
specifies a primary and a secondary opcode (Opcode, Function), a number
format Fmt, and up to three floating point (general purpose) registers. For
instructions which move data between the floating point unit FPU and the
fixed point unit FXU, field FS2 specifies the address of a general purpose
register RS in the FXU.

Since the FPU of the DLX machine can handle floating point numbers
with single or double precision, all floating point operations come in two
version; the field Fmt in the instruction word specifies the precision used.
In the mnemonics, we identify the precision by adding the suffix ‘.s’ (sin-
gle) or ‘.d’ (double).

'�&
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FLOATING-POINT

EXTENSION

����� (�� FI-type instruction layout. All instructions except the branches also
increment the PC, PC += 4; sxt(a)is the sign extended version of a. The effective
address of memory accesses equals ea = RS + sxt(imm), where imm is the 16-bit
offset. The width of the memory access in bytes is indicated by d. Thus, the
memory operand equals m� M�ea�d�1�� � � � �M�ea�.

IR[31:26] mnemonic d effect

Load, Store
hx31 load.s 4 FD[31:0] = m
hx35 load.d 8 FD[63:0] = m
hx39 store.s 4 m = FD[31:0]
hx3d store.d 8 m = FD[63:0]

Control Operation
hx06 fbeqz PC = PC + 4 + (FCC � 0 ? sxt(imm): 0)
hx07 fbnez PC = PC + 4 + (FCC �� 0 ? sxt(imm): 0)

����� (�� Floating-Point Relational Operators. The value 1 (0) denotes that the
relation is true (false).

condition relations invalid
mnemonic greater less equal unordered if

code
true false � � � ? unordered

0 F T 0 0 0 0
1 UN OR 0 0 0 1
2 EQ NEQ 0 0 1 0
3 UEQ OGL 0 0 1 1
4 OLT UGE 0 1 0 0

no

5 ULT OGE 0 1 0 1
6 OLE UGT 0 1 1 0
7 ULE OGT 0 1 1 1
8 SF ST 0 0 0 0
9 NGLE GLE 0 0 0 1

10 SEQ SNE 0 0 1 0
11 NGL GL 0 0 1 1
12 LT NLT 0 1 0 0

yes

13 NGE GE 0 1 0 1
14 LE NLE 0 1 1 0
15 NGT GT 0 1 1 1

'�'
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DLX INSTRUCTION

SET

ARCHITECTURE ����� (�� FR-type instruction layout. All instructions execute PC += 4. The for-
mat bits Fmt = IR[8:6] specify the number format used. Fmt = 000 denotes single
precision and corresponds to the suffix ‘.s’ in the mnemonics; Fmt = 001 denotes
double precision and corresponds to the suffix ‘.d’. FCC denotes the 1-bit register
for the floating point condition code. The functions sqrt(), abs() and rem() denote
the square root, the absolute value and the remainder of a division according to
the IEEE 754 standard. Instructions marked with  will not be implemented in
our FPU design. The opcode bits c�3 : 0� specify a relation “con” according to
table A.7. Function cvt() converts the value of a register from one format into
another. For that purpose, FMT = 100 (i) denotes fixed point format (integer) and
corresponds to suffix ‘.i’ .

IR[31:26] IR[8:0] Fmt mnemonic effect

Arithmetic and Compare Operations
hx11 hx00 fadd [.s, .d] FD = FS1 + FS2
hx11 hx01 fsub [.s, .d] FD = FS1 - FS2
hx11 hx02 fmul [.s, .d] FD = FS1 * FS2
hx11 hx03 fdiv [.s, .d] FD = FS1 / FS2
hx11 hx04 fneg [.s, .d] FD = - FS1
hx11 hx05 fabs [.s, .d] FD = abs(FS1)
hx11 hx06 fsqt [.s, .d]
 FD = sqrt(FS1)
hx11 hx07 frem [.s, .d]
 FD = rem(FS1, FS2)
hx11 11c�3 : 0� fc.con [.s, .d] FCC = (FS1 conFS2)

Data Transfer
hx11 hx08 000 fmov.s FD[31:0] = FS1[31:0]
hx11 hx08 001 fmov.d FD[63:0] = FS1[63:0]
hx11 hx09 mf2i RS = FS1[31:0]
hx11 hx0a mi2f FD[31:0] = RS

Conversion
hx11 hx20 001 cvt.s.d FD = cvt(FS1, s, d)
hx11 hx20 100 cvt.s.i FD = cvt(FS1, s, i)
hx11 hx21 000 cvt.d.s FD = cvt(FS1, d, s)
hx11 hx21 100 cvt.d.i FD = cvt(FS1, d, i)
hx11 hx24 000 cvt.i.s FD = cvt(FS1, i, s)
hx11 hx24 001 cvt.i.d FD = cvt(FS1, i, d)

'�(



Appendix

B
Specification of the FDLX
Design

�
IGURES 9.16, 9.17 and 9.18 depict the FSD of the FDLX design. In
section B.1, we specify for each state of the FSD the RTL instructions

and their active control signals. In section B.2 we then specify the control
automata of the FDLX design.

��� �.( '�������
�� 
! ��� "*(1

 ���� ���
� .,

In stage IF, the FDLX design fetches the next instruction I into the instruc-
tion register (table B.1). This is done under the control of flag f etchand
of clock request signal IRce. Both signals are always active.

 ���� ���
� .+

The actions which the FDLX design performs during instruction decode
depend on the instruction I held in register IR (table B.2). As for stage IF,
the clock request signals are active in every clock cycle. The remaining
control signals of stage ID are generated by a Mealy control automaton.
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SPECIFICATION OF

THE FDLX DESIGN ����� )�� RTL instructions of the stage IF

RTL instruction control signals

IR�1 � IM�DPC� fetch, IRce

����� )�� RTL instructions of stage ID; ���	�*� denotes any arithmetical floating
point instruction with double precision.

RTL instruction type of I control signals

A� A� � RS1� AEQZ� zero�A��� Ace,
B� RS2� PC� � �reset? 4 : pc��� Bce, PC’ce,
DPC� �reset? 0 : dpc�� DPCce,
link � PC��4� DDPC� DPC� PCce
IR�2 � IR�1� Sad�2 � Sad
�FA�FB� � FPemb� f a� f b� ,���&�� # ,�� # dbs.1

�+&� # �� � 
otherwise

co� constant�IR�1� "# "��# &��� Jimm
����# ����# ���� shiftI
otherwise

�pc��dpc� � �,� rfe.1
nextPC�PC��A��co�EPCs� "�# "��� jumpR, jump

���� branch, bzero
�%�� branch
,���� fbranch, bzero
,�%�� fbranch
otherwise

Cad�CAddr�IR�1� "���# "�� Jlink
R-type Rtype
otherwise

�Sas�Sad�Fad� � DAddr�IR�1� �,� rfe.1
,� fc.1, FRtype
FR-type (no ,�) FRtype
otherwise

CA�2�12� � 1 ,��&# ,��� uFOP
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The execute stage has a non-uniform latency which varies between 1 and
21 cycles. The execute stage consists of the five substages 2.0, 2.1 to 2.4.
For the iterative execution of divisions stage 2.0 itself consists of 17 sub-
stages 2.0.0 to 2.0.16. In the following, we describe the RTL instructions
for each substage of the execute stage.

��	��� �� ���  -A��

In stage 2.0, the update of the buffers depends on the latency of the instruc-
tion I . Let

k �

��
�

3 if I has latency of l � 1
2�3 if I has latency of l � 3
2�1 if I has latency of l � 5�

stage 2.0 then updates the buffers as

�IR�k�Cad�k� Sad�k� Fad�k� :� �IR�2�Cad�2� Sad�2� Fad�2�

�PC�k� DPC�k� DDPC�k� :� �PC�� DPC� DDPC��

If I is a division, this update is postponed to stage 2.0.16.
For any stage k� �2�1� � � � �2�4�, let k� be defined as

k� �

�
3 if k� 2�4
2�� j �1� if k� 2� j � 2�4�

In stage k the buffers are then updated as

�IR�k��Cad�k�� Sad�k�� Fad�k�� :� �IR�k�Cad�k� Sad�k� Fad�k�

�PC�k�� DPC�k�� DDPC�k�� :� �PC�k� DPC�k� DDPC�k��

�-���
� ���

Tables B.3 and B.4 list the RTL instructions for the fixed point instructions
and for the floating point instructions with 1-cycle execute latency. From
stage 2.0, these instructions directly proceed to stage 3.

The operand FB is only needed in case of a floating point test operation
,�. By f ccand Fc we denote the results of the floating point condition test
circuit FCON as defined in section 8.5

� f cc� Fc�68 : 0�� � FCon�FA� FB�

Tables B.5 and B.6 list the RTL instructions which stage 2.0 performs
for instructions with an execute latency of more than one cycle.

'�*
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����� )� RTL instructions of the execute stages for the fixed point instructions.

state RTL instruction control signals

alu MAR� A op B ALUDdoe, Rtype, bmuxsel
opA, opB, MARce, lat1

aluo MAR� A op B, overflow? like alu, ovf?
aluI MAR� A op co ALUDdoe, opA, MARce, lat1
aluIo MAR� A op co� overflow? like aluI, ovf?
testI MAR� �A rel co?1 : 0� ALUDdoe, test, opA, MARce,

lat1
test MAR� �A rel B?1 : 0� like testI, Rtype, bmuxsel, opB
shiftI MAR� shift�A�co�4:0�� SHDdoe, shiftI, Rtype,

opA, MARce, lat1
shift MAR� shift�A�B�4:0�� like shiftI, bmuxsel, opB
savePC MAR� link linkDdoe, MARce, lat1
trap MAR� co� trap� 1 coDdoe, trap, MARce, lat1
Ill MAR� A� ill � 1 ADdoe, ill, opA, MARce, lat1
ms2i MAR� S SDdoe, MARce, lat1
rfe
mi2s MAR� A ADdoe, opA, MARce, lat1
noEX
addrL MAR� A�co ALUDdoe, add, opA, MARce,

lat1
addrS MAR� A�co� F f l �3 � 0� ALUDdoe, add, amuxsel, opA,

MDRw� opB, store.2, MARce, MDRce,
cls�B�MAR�1:0�000� Ffl3ce, lat1, tfpRdoe

�-���
� ��� ��	 ���

The execute substages 2.1 and 2.2 are only used by the arithmetic instruc-
tions ,�  # ,�$�# ,�$� and , �+. The RTL instructions for the divisions are
listed in table B.6 and for the other three types of operations they are listed
in table B.7.

�-���
� ��# ��	 ��&

In these two stages the FPU performs the rounding and packing of the
result (table B.8). In order to keep the description simple, we introduce
the following abbreviations: By FPrdR and FXrdR, we denote the out-
put registers of the first stage of the rounders FPRD and FXRD, respec-
tively. The two stages of the floating point rounder FPRD compute the

'#�
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����� )�� RTL instructions of the execute stages for floating point instructions
with a single cycle latency.

state RTL instruction control signals

addrL.s MAR� A�co� ALUDdoe, add, opA, MARce, lat1
addrL.d
addrSf MAR� A�co� ALUDdoe, add, opA, MARce,

MDRw� FB� store.2, fstore.2, tfpRdoe,
Ff l �3 � 0 MDRwce, Ffl3ce, lat1, (amuxsel)

mf2i MAR� FA�31 : 0� opFA, tfxDdoe, MARce, lat1
mi2f MDRw� �B�B�� opB, tfpRdoe, MDRwce,

Ff l �3 � 0 Ffl3ce, lat1
fmov.s MDRw� FA� opFA, fmov, tfpRdoe,
fmov.d Ff l �3 � 0 MDRwce, Ffl3ce, lat1
fneg.s MDRw� Fc�63 : 0�� opFA, FcRdoe, MDRwce,
fneg.d Ff l �3 � Fc�68 : 64� Ffl3ce, lat1
fabs.s MDRw� Fc�63 : 0�� opFA, FcRdoe, MDRwce, abs
fabs.d Ff l �3 � Fc�68 : 64� Ffl3ce, lat1
fc.s, MAR� 031 f cc� opFA, opFB, ftest, fccDdoe, MARce
fc.d �Ff l �3� MDRw� � Fc FcRdoe, MDRwce, Ffl3ce, lat1

����� )�� RTL instructions of the execute substage 2.0 for instructions with a
latency of at least 3 cycles.

state RTL instruction control signals

fdiv.s �Fa2�1�Fb2�1�nan2�1� lat17, normal
fdiv.d � FPunp�FA�FB� lat21, normal, dbs
fmul.s lat5, normal
fmul.d lat5, normal, dbs
fadd.s lat5
fadd.d lat5, dbs
fsub.s lat5, sub
fsub.d lat5, sub, dbs
cvt.s.d Fr � lat3, FvFrdoe, Frce
cvt.s.i Cvt�FPunp�FA�FB�� lat3, FvFrdoe, Frce, normal
cvt.d.s lat3, FvFrdoe, Frce, dbs
cvt.d.i lat3, FvFrdoe, Frce, dbs, normal
cvt.i.s Fr � FXunp�FA�FB� lat3, FuFrdoe, Frce
cvt.i.d lat3, FuFrdoe, Frce

'#�
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����� )�� RTL instructions of the iterative division for stages 2.0.1 to 2.2 (single
precision). In case of double precision (suffix ‘.d’), an additional control signal
dbr is required in each state. A multiplication always takes two cycles. Since the
intermediate result is always held in registers sand c, we only list the effect of the
multiplication as a whole.

state RTL instruction control signals

lookup x� table� fb� xce, tlu, fbbdoe
newton1.s A� appr�2�x �b� 57� xadoe, fbbdoe
newton2.s Ace
newton3.s x� �A �x�57 Aadoe, xbdoe,

sce, cce
newton4.s xce
quotient1.s E � �a �x�p�1 faadoe, xbdoe,

sce, cce
quotient2.s Da � fa� Db � fb Dce, faadoe,

fbbdoe, Ece
quotient3.s Eb � E � fb Eadoe, fbbdoe,

sce, cce
quotient4.s �sq�eq� � SigExpMD�Fa2�1�Fb2�1�� sqce, eqce,

f lq � SpecMD�Fa2�1�Fb2�1�nan2�1� ebce, flqce
select fd.s E� � E�2��p�1�,

β � fa�Eb�2��p�1� � fb

fd �

��
�

E�2��p�2� ; if β� 0
E� ; if β � 0
E��2��p�2� ; if β� 0

fdiv,

Fr � � f lq�sq�eq� fd� FqFrdoe, Frce

functions FPrd1�� and FPrd2�� as specified in section 8.4. The the fixed
point rounder FXRD (page 427) also consists of two stages. They compute
the functions denoted by FXrd1�� and FXrd2��.

 ���& ���
� 5

Table B.9 lists the RTL instructions which the FDLX design performs in
stage M. In addition, stage M updates the buffers as follows:

�IR�4�Cad�4� Sad�4� Fad�4� :� �IR�3�Cad�3� Sad�3� Fad�3�

�PC�4� DPC�4� DDPC�4� :� �PC�3� DPC�3� DDPC�3�

'#�
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����� )�� RTL instructions of the substages 2.1 and 2.2, except for the divisions.

state RTL instruction control signals

Mul1.s �sq�eq� � SigExpMD�Fa2�1�Fb2�1�� sqce, eqce,
Mul1.d f lq � SpecMD�Fa2�1�Fb2�1�nan2�1�� flqce, sce, cce,

�s�c� � mul1�Fa2�1�Fb2�1� faadoe, fbbdoe
Add1.s ASr� AS1�Fa2�1�Fb2�1�nan2�1� ASrce
Add1.d
Sub1.s ASr� AS1�Fa2�1�Fb2�1�nan2�1� ASrce, sub
Sub1.d

Mul2.s f q� mul2�s�c��
Mul2.d Fr � � f lq�sq�eq� f q� FqFrdoe, Frce
SigAdd.s Fr � AS2�ASr� FsFrdoe, Frce
SigAdd.d

����� )�� RTL instructions of the substages 2.3 and 2.4

state RTL instruction control signals

rd1.s FPrdR� FPrd1�Fr� FPrdRce
rd1.d FPrdRce, dbr
rd1.i FXrdR� FXrd1�Fr� FXrdRce

rd2.s �F f l �3� MDRw� � FRrd2�FPrdR� FpRdoe, MDRwce, Ffl3ce
rd2.d like rd2.s, dbr
rd2.i �F f l �3� MDRw� � FXrd2�FXrdR� FxRdoe, MDRwce, Ffl3ce

����� )�� RTL instructions of the memory stage M.

state RTL instruction control signals

load, load.s MDRr� DMdword��MAR�31:3�000�� Dmr, DMRrce
load.d C�4 � MAR C4ce
store m� bytes�MDRw��C�4 � MAR Dmw, C4ce
ms2iM, noM, C�4 � MAR C4ce
mi2iM, passC
Marith.[s, d], FC�4 � MDRw FC4ce,
Mmv.[s, d] F f l �4 � F f l �3 Ffl4ce
fcM FC�4 � MDRw�C�4 � MAR FC4ce, C4ce,

F f l �4 � F f l �3 Ffl4ce

'##



�����	��  

SPECIFICATION OF

THE FDLX DESIGN

����� )��� RTL instructions of the write back stage WB

state RTL instruction control signals

sh4l GPR�Cad�4� � GPRw, load.4
sh4l�MDs�MAR�1:0�000�

sh4l.s FPR�Fad�4� � MDs FPRw, load.4
sh4l.d FDR�Fad�4� � MDRr FPRw, load.4, dbr.4
wb GPR�Cad�4� �C�4 GPRw
mi2sW SPR�Sad�4� �C�4 SPRw
fcWB like mi2sW, SPRw,

IEEE f � IEEE f�F f l �4 fop.4
WBs FPR�Fad�4� � FC��31 : 0� FPRw
flagWBs like WBs, FPRw,

IEEE f � IEEE f�F f l �4 fop.4
WBd FDR�Fad�4� � FC� FPRw, dbr.4
flagWBd like WBd, FPRw,

IEEE f � IEEE f�F f l �4 fop.4
noWB (no update)

 ���' ���
� ; 

Table B.10 lists the RTL instructions which the FDLX design processes in
stage WB, given that no unmasked interrupt occurred. In case of a JISR,
the FDLX design performs the same actions as the the DLXΠ design (chap-
ter 5).

��� �
���
� ��
���� 
! ��� "*(1 *���#�

�
HE CONTROL automaton is constructed as in the fixed point DLX de-
signs. The control is modeled by an FSD which is then turned into

precomputed control.

� The control signals of stage IF are always active.

� The control signals of stage ID are generated in every cycle, they
only depend on the current instruction word.

� The control signals of the remaining stages are precomputed during
ID by a Moore automaton.
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����� )��� Disjunctive normal forms of the Mealy automaton of stage ID

signal IR�31 : 26� IR�5 : 0� Fmt length comment

Rtype 000000 ****** *** 6
shiftI 000000 0000*0 *** 11

000000 00001* *** 11
Jlink 010111 ****** *** 6

000011 ****** *** 6
jumpR 01011* ****** *** 5
jump 00001* ****** *** 5

01011* ****** *** 5
rfe.1 111111 ****** *** 6
Jimm 00001* ****** *** 5

111110 ****** *** 6

branch 00010* ****** *** 5
bzero *****0 ****** *** 1
fbranch 00011* ****** *** 5
fc 010001 11**** *** 8
FRtype 010001 11**** 001 11 fc.d

010001 000*** 001 12 farith.d
010001 001000 001 15 fmov.d
010001 100001 *** 12 cvt.d
111101 ****** *** 6 store.d

uFOP 010001 00011* *** 11 fsqt, frem
accumulated length of the monomials 147

 ���� �-������� ����������
 ���
� .+

According to table B.2, the clock request signals of stage ID are indepen-
dent of the instruction. Like in stage IF, they are always active. Thus,
the control automaton of stage ID only needs to generate the remaining
13 control signals. Since they depend on the current instruction word, a
Mealy automaton is used.

Table B.11 lists the disjunctive normal form for each of these signals.
The parameters of the ID control automaton are listed in table B.16 on
page 539.
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����� )��� Type x�0 control signals to be precomputed during stage ID (part 1)

signals states of stage 2.0

lat1 alu, aluo, aluI, aluIo, test, testI, shift, shiftI, savePC,
trap, mi2s, noEX, ill, ms2i, rfe, addrL, addrS, addrL.s,
addrL.d, addrSf, mf2i, mi2f, fmov.s, fmov.d, fneg.s,
fneg.d, fabs.s, fabs.d, fc.s, fc.d

lat3 cvt.s.d, cvt.s.i, cvt.d.s, cvt.d.i, cvt.i.s, cvt.i.d
lat5 fmul.s, fmul.d, fadd.s, fadd.d, fsub.s, fsub.d
lat17 fdiv.s
lat21 fdiv.d

opA alu, aluo, aluI, aluIo, test, testI, shift, shiftI, mi2s,
noEX, ill, addrL, addrS, addrL.s, addrL.d, addrSf

opB alu, aluo, test, shift, addrS, mi2f
opFA fmov.s, fmov.d, fneg.s, fneg.d, fabs.s, fabs.d, fc.s,

fc.d, cvt.s.d, cvt.s.i, cvt.d.s, cvt.d.i, cvt.i.s, cvt.i.d,
fmul.s, fmul.d, fadd.s, fadd.d, fsub.s, fsub.d, fdiv.s,
fdiv.d

opFB addrSf, fc.s, fc.d, fmul.s, fmul.d, fadd.s, fadd.d,
fsub.s, fsub.d, fdiv.s, fdiv.d

 ���� "������-��	 �������

As in the previous designs, only state  �� � has an outdegree greater
than one. Thus, the control signals of all the stages that follow can be
precomputed during decode using a Moore control automaton. The signals
are then buffered in an RSR; the RSR passes the signals down the pipeline
together with the instruction. Each stage consumes some of these control
signals. Therefore, the signals are classified according to the last stage in
which they are used. A signal of type x�3, for example, is only used up to
stage 2.3, whereas a signal of type z is needed up to stage 4.

The tables B.12 to B.14 list for each control signal the states of stage
2.0 in which the signal must be active. There are some signals which are
always activated together, e.g., the signals Dmw, amuxseland store. The
automaton only needs to generate one signal for each such group of signals.
According to table B.15, the majority of the precomputed control signals
is of type x�0.

In circuit SIGFMD of the multiply divide unit, there is a total of six
tristate drivers connected to the operand busses opa and opb. The access
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����� )�� Type x�0 control signals to be precomputed during stage ID (part 2)

signals states of stage 2.0

ALUDdoe alu, aluo, aluI, aluIo, test, testI, addrL, addrS, addrL.s,
addrL.d, addrSf

ADdoe mi2s, noEX, ill
SDdoe ms2i, rfe
SHDdoe shift, shiftI
linkDdoe savePC
coDdoe, trap trap
ftest, fccDdoe fc.s, c.d
tfxDdoe mf2i

FcRdoe fabs.s, fabs.d, fneg.s, fneg.d, fc.s, fc.d
FuFrdoe cvt.s.i, cvt.s.d, cvt.d.s, cvt.s.i
FvFrdoe cvt.i.s, cvt.i.d

test test, testI
ovf? aluo, aluIo
add addrL, addrS, addrL.s, addrL.d, addrSf
bmuxsel alu, aluo, test, shift
Rtype alu, aluo, test, shift, shiftI
Ill ill
fstore addrSf
fmov fmov.s, fmov.d
abs fabs.s, fabs.d
normal fmul.s, fmul.d, fdiv.s, fdiv.d, cvt.s.i, cvt.d.i
dbs fmov.d, fneg.d, fabs.d, fc.d, cvt.d.s, cvt.d.i, fmul.d,

fadd.d, fsub.d, fdiv.d

to these busses is granted by the control signals

opaoe�3 : 0� � � f aadoe� Eadoe� Aadoe� xadoe�

opboe�1 : 0� � � f bbdoe� xbdoe��

Although multiplications only use two of these tristate drivers, the precom-
puted control provides six enable signals

f aadoe� f bbdoe �

�
1 if I � � ,�$���# ,�$�� �
0 otherwise

Eadoe� Aadoe � xadoe� xbdoe� 0�
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����� )��� Control signals of type x�1 to z to be precomputed during stage ID

signals states of stage 2.0

x.1 sub fsub.s, fsub.d
faadoe,
fbbdoe

fmul.s, fmul.d

x.2 fdiv fdiv.s, fdiv.d
FqFrdoe fmul.s, fmul.d, fdiv.s, fdiv.d
FsFrdoe fadd.s, fadd.d, fsub.s, fsub.d

x.4 Ffl3ce,
MDRwce

addrS, addrSf, mi2f, fmov.s, fmov.d, fneg.s, fneg.d,
fabs.s, fabs.d, fc.s, fc.d, cvt.s.d, cvt.s.i, cvt.d.s,
cvt.d.i, cvt.i.s, cvt.i.d, fmul.s, fmul.d, fadd.s, fadd.d,
fsub.s, fsub.d, fdiv.s, fdiv.d

FpRdoe cvt.d.s, cvt.i.s, cvt.s.d, cvt.i.d, fadd.s, fadd.d, fsub.s,
fsub.d, fmul.s, fmul.d, fdiv.s, fdiv.d

FxRdoe cvt.s.i, cvt.d.i

y amuxsel,
Dmw,
store

addrS, addrSf

MARce,
C4ce

alu, aluo, aluI, aluIo, test, testI, shift, shiftI, savePC,
trap, mi2s, noEX, ill, ms2i, rfe, addrL, addrS, ad-
drL.s, addrL.d, addrSf, mf2i

FC4ce,
Ffl4ce

mi2f, fmov.s, fmov.d, fneg.s, fneg.d, fabs.s, fabs.d,
fc.s, fc.d, cvt.s.d, cvt.s.i, cvt.d.s, cvt.d.i, cvt.i.s,
cvt.i.d, fmul.s, fmul.d, fadd.s, fadd.d, fsub.s, fsub.d,
fdiv.s, fdiv.d

z DMRrce,
Dmr, load

addrL, addrL.s, addrL.d

fop fc.s, fc.d, cvt.s.d, cvt.s.i, cvt.d.s, cvt.d.i, cvt.i.s,
cvt.i.d, fmul.s, fmul.d, fadd.s, fadd.d, fsub.s, fsub.d,
fdiv.s, fdiv.d

dbr fmov.d, fneg.d, fabs.d, cvt.s.d, cvt.i.d, fmul.d,
fadd.d, fsub.d, fdiv.d

SPRw mi2s, rfe, fc.s, fc.d
GPRw alu, aluo, aluI, aluIo, test, testI, shift, shiftI, savePC,

ms2i, addrL, addrL.s, addrL.d, mf2i
FPRw addrL.s, addrL.d, mi2f, fmov.s, fmov.d, fneg.s,

fneg.d, fabs.s, fabs.d, cvt.s.d, cvt.s.i, cvt.d.s, cvt.d.i,
cvt.i.s, cvt.i.d, fmul.s, fmul.d, fadd.s, fadd.d, fsub.s,
fsub.d, fdiv.s, fdiv.d
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����� )��� Types of the precomputed control signals

type x.0 x.1 x.2 x.3 x.4 y z
number 31 7 3 0 3 3 6

����� )��� Parameters of the two control automata which govern the FDLXΠ

design. Automaton id generates the Mealy signals for stage ID; automaton ex
precomputes the Moore signals of the stages EX to WB.

# states # inputs # and frequency of outputs
k σ γ νsum νmax

id 1 15 13 21 5
ex 44 15 48 342 30

fanin of the states # and length of monomials
fansum fanmax #M lsum lmax

id – – 21 147 15
ex 53 3 53 374 15

Except on divisions, the busses opa and opb are only used in stage 2.1.
Thus, together with signal sub(floating point subtraction), the FDLX de-
sign requires 7 type x�1 control signals.

Tables B.17 and B.18 lists the disjunctive normal forms for the automa-
ton which controls the stages EX to WB. The parameters of this Moore
automaton are summarized in table B.16.
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����� )��� Disjunctive normal forms of the precomputed control which governs
stages EX to WB (part 1)

state IR�31 : 26� IR�5 : 0� Fmt length

alu 000000 1001** *** 10
000000 100**1 *** 10

aluo 000000 1000*0 *** 11
aluI 0011** ****** *** 4

001**1 ****** *** 4
aluIo 0010*0 ****** *** 5
shift 000000 0001*0 *** 11

000000 00011* *** 11
shiftI 000000 0000*0 *** 11

000000 00001* *** 11
test 000000 101*** *** 9
testI 011*** ****** *** 3
savePC 010111 ****** *** 6

000011 ****** *** 6
addrS 10100* ****** *** 5

1010*1 ****** *** 5
addrL 100*0* ****** *** 4

1000*1 ****** *** 5
10000* ****** *** 5

mi2s 000000 010001 *** 12
ms2i 000000 010000 *** 12
trap 111110 ****** *** 6
rfe 111111 ****** *** 6
noEX 0001** ****** *** 4

000010 ****** *** 6
010110 ****** *** 6

accumulated length of the monomials 178
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����� )��� Disjunctive normal forms used by the precomputed control (part 2)

state IR�31 : 26� IR�5 : 0� Fmt length

addrL.s 110001 ****** *** 6
addrL.d 110101 ****** *** 6
addrSf 111*01 ****** *** 5
fc.s 010001 11**** 000 11
fc.d 010001 11**** 001 11
mf2i 010001 001001 *** 12
mi2f 010001 001010 *** 12
fmov.s 010001 001000 000 15
fmov.d 010001 001000 001 15
fadd.s 010001 000000 000 15
fadd.d 010001 000000 001 15
fsub.s 010001 000001 000 15
fsub.d 010001 000001 001 15
fmul.s 010001 000010 000 15
fmul.d 010001 000010 001 15
fdiv.s 010001 000011 000 15
fdiv.d 010001 000011 001 15
fneg.s 010001 000100 000 15
fneg.d 010001 000100 001 15
fabs.s 010001 000101 000 15
fabs.d 010001 000101 001 15
cvt.s.d 010001 010000 001 15
cvt.s.i 010001 010000 100 15
cvt.d.s 010001 010001 000 15
cvt.d.i 010001 010001 100 15
cvt.i.s 010001 010100 000 15
cvt.i.d 010001 010100 001 15

accumulated length of the monomials 196
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carry lookahead, 28
carry save, 35
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conditional sum, 24
floating point, 360–372
full adder, 9, 22
half adder, 23

addition
binary, 13
floating point, 343, 359
two’s complement, 16

addition tree, 36, 62
4/2-tree, 37–42

addressing mode, 63
alignment shift, 359, 362
ALU, 75, 77
arithmetic unit, 30
automaton, 50–60

frequency, 52, 57
Mealy, 50, 56
Moore, 50, 54
next state, 52
outputs, 51
parameter, 54, 61, 95–97, 127,

213, 249, 285, 307, 539

precomputed output, 55
state, 51
transition function, 50

bank
cache, 265, 267, 277
memory, 69, 80, 117, 240, 451
register file, 460, 461
write signal, 80, 81, 117, 245,

265, 267, 276–278, 282,
304, 453, 454, 461

bias, 319
binary fraction, 317
binary number, 12
Booth

decoder, 47
digit, 43, 44
multiplier, 43
recoding, 42

boundary
memory double word, 451
memory word, 68

bracket structure, 181
burst transfer, 242
bus, 241–245

arbitration, 299, 308
back to back, 244
burst, 242
convention, 242
handshake, 241
protocol, 241
status flag, 241
word, 242

byte addressable, 68
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cache, 253, 511

block, 255
direct mapped, 256, 266
directory, 256
effective miss ratio, 312
fully associative, 259
history, 261, 271
hit, 253
interface, 276, 281, 452
line, 255
line fill, 264
line invalidation, 263
miss, 254
miss ratio, 288, 513
sector, 257
set, 256
set associative, 258, 268, 293
split, 299
tag, 256
unified, 299
way, 258

cache policy
allocation, 254, 261
placement, 254
read allocation, 261
replacement, 254, 260
write, 254, 262
write allocation, 261
write back, 262, 314
write invalidation, 261
write through, 262

canceled instruction, 227
cause register, 175
clock

enable signal, 17, 58, 70, 98, 113,
477, 506

request signal, 98, 114, 477, 481,
506

signal, 60, 139, 151, 153, 205,
221, 501, 505

comparator, 76
floating point, 412

comparison
floating point, 345

configuration, 229
control

automaton, 50–60, 534–539
division, 479
DLX, 88–99, 120, 122, 204, 470
interface, 58
operation, 108

precomputed, 122, 207, 474, 480,
504

control signal
admissible, 59
frequency, 52, 57
precomputed, 55

CPI, 161–166, 251, 252, 287, 288, 292,
296, 297, 311, 512–514

cycle count, 161
cycle time, 9, 11, 100, 141, 160, 226,

249, 510
FPU, 433

data paths
DLX, 69, 70, 113, 114, 147, 191,

215, 300, 445, 447, 486
interface, 281

dateline lemma, 129, 213, 479, 484
deadlock free, 156
decoder, 19
delay

accumulated, 10
formula, 10
slot, 108, 162

delayed branch, 107, 108
delayed PC, 107, 109
denormalization loss, 337
disjunctive normal form, 52
divider, 381–390
division, 344, 372

automaton, 384, 483
lookup table, 379

DNF, seedisjunctive normal form
DRAM, 239, 253
dummy instruction, 152

embedding convention, 440–442, 450,
459

environment, 69, 71–87
ALU, 75, 77, 120
buffering, 199, 468
CAenv, 202, 468
EXenv, 119, 199, 461, 464
FPemb, 450
FPR register file, 459
GPR register file, 71, 115
IRenv, 73, 114, 448
memory, 78, 116, 200, 281, 300,

452
PCenv, 74, 117, 131, 191, 214,

449, 485
RFenv, 194, 455
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shift for load, 85, 456
shifter, 81–87, 120
SPR register file, 196, 457

equality tester, 19
equivalence class, 327
event signal, seeinterrupt
exception, seeinterrupt

division by zero, 345, 388, 389
floating point, 335–347, 418, 442,

458
handler, 171
inexact result, 341, 411
invalid address, 236
invalid operation, 342–344, 347,

348, 357, 370, 388, 389,
414, 418, 420, 421, 432

misaligned access, 453, 454
overflow, 336, 411
underflow, 336, 411

exception handling register, 178
execution scheme, 465
exponent

adjustment, 408
normalization, 398
rounding, 409
wrapping, 339

factoring, 325
denormal, 326
exponent, 326
IEEE-normal, 326
normal, 326
sign bit, 325
significand, 326
special, 326
value, 326

finite state diagram
division, 384, 385
DLX, 88, 90, 106, 120, 121, 209,

470–473
memory control, 247, 263, 284,

306
finite state transducer, 50
fixed point unit, 461
flipflop, 7
floating point, 317–349, 351–437,

439–517
addition, 343, 359
comparison, 345
division, 344, 372
embedding convention, 351, 352

exception, seeexception
factoring, seefactoring
format conversion, 347, 418–432
inexact result, 337, 341
loss of accuracy, 337
multiplication, 344, 372
precision, 320, 351
result, 338
rounder, 390–412
special cases, 341–347, 370
subtraction, 360
tininess, 337
unit, seeFPU
wrapped exponent, 338

floating point number
denormal, 320
even, 322
exponent, 320
gradual underflow, 322
hidden bit, 320
normal, 320
odd, 322
properties, 322
representable, 321
sign bit, 320
significand, 320
unordered, 346, 415

flushing, 300
format conversion, 347, 418–432
forwarding, 143, 145, 216, 486

engine, 146
floating point register, 490

FPU, 351–437, 439
fraction

binary, 317
two’s complement, 318

frequency, 52, 57
FSD, seefinite state diagram
full flag, 123, 152, 205, 220

gate, 7
gradual underflow, 322

half decoder, 20
hardware cost, 99, 140, 159, 225, 509

FPU, 434
memory system, 248

hardware interlock, 151, 164, 216, 486
hardware model, 7–12
hazard

data, 151, 487, 492, 494
structural, 105, 500
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IEEE standard

floating point, 317–349
in-order execution, 500
incrementer, 24

carry chain, 24
conditional sum, 26, 61

inexact result, 337
instruction format, 64, 444, 520, 524
instruction set architecture, seeISA
interrupt, 171–237, 439

admissible ISR, 180
completeness, 189
convention, 174
event signal, 171, 443
external, 172, 227
hardware, 190, 214, 468
internal, 172
level, 176
mask, 175
maskable, 172
nested, 177, 183
priority, 172
properties, 182
receive service, 174
service routine, 173
stack, 177

ISA, 63–68, 174, 441–445, 519–524
ISR, seeinterrupt service routine

JISR, 176
jump-and-link, 109

leading zero counter, 21
little endian, 69, 452
locality of reference, 254, 290

spatial, 255
temporal, 255

lookup table, 379
loss of accuracy, 337
LRU replacement, 261, 269

memory
alignment, 68, 451
consistency, 261, 300
control, 80, 201, 247, 282, 304,

453
double word, 451
hierarchy, 253
interface, 246, 281, 303, 452
monolithic, 239
multi-cycle access, 98
off-chip, 245, 246

on-chip, 240
organization, 68, 451
system design, 239–315
timing, 249, 283, 309
transaction, 263–265
word, 68

multiplication, seemultiplier
array, 36
floating point, 344, 372

multiplier, 34–49, 62
Booth, 42–49
floating point, 381–390
school method, 34

naming convention, 70
NaN, 320, 342, 354, 370

quiet, 342
signaling, 342

Newton-Raphson iteration, 373, 377
normalization shift, 326, 394

IEEE, 326
unbounded, 326

number format, 12–17, 317–323
carry save, 35
biased integer, 318
binary, 12
binary fraction, 317
floating point, 320
two’s complement, 14
two’s complement fraction, 318

overflow, 31, 336, 392

parallel prefix, 27
performance model, 160
pipeline, 105–170

basic, 105
stage, 105, 106, 465

post normalization, 331, 407
precision, 411, 445, 470
precomputed control, 122
prepared sequential machine, 111, 112
protected mode, 236

quality
DLX, 167, 287, 311, 515
metric, 167, 290
parameter, 167, 290

RAM, 7
multi-port, 9

random replacement, 261
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register

FPU control, 441, 458
general purpose, 63
invisible, 132
special purpose, 64, 443
visible, 132

register file
aliasing, 439
special RF, 194

register transfer language, seeRTL
representative, 327, 405
restore status, 179
result forwarding, seeforwarding
result shift register, seeRSR
ROM, 7
rounder

fixed point, 427–432
floating point, 390–412

rounding, 323
algebra, 326–335
algorithm, 335
decomposition, 330
exponent round, 331
mode, 323
normalization shift, 331
post normalization, 331
significand round, 331

RSR, 440, 466, 467
control, 474

RTL, 88

save status, 178
scheduling function, 106, 129, 154,

223, 498, 502
shift

alignment, 362
normalization, 326, 394

shifter, 31–33, 83
correction, 83
cyclic left, 31
cyclic right, 33
distance, 82, 83
fill bit, 82, 84
logic right, 33
mask, 85

sign extension, 14
significand

normalization, 401
rounding, 406

simulation theorem, 134, 143, 157, 229,
234, 507

SISR, 173
SPEC benchmark suite, 159, 163, 512
special purpose register, 175
SRAM, 239, 253
stall engine, 97, 123, 131, 139, 153,

205, 220, 221, 476, 477,
481, 498, 502, 505

hardware interlock, 151, 164, 216,
486

stalling, seestall engine
status register, 175
sticky bit, 329, 365, 366, 405
subtraction, 15, seeaddition

thrashing, 293
tininess, 337
TPI, 252, 287, 297, 514
transition function, 50
tree, 17
tristate driver, 7
two’s complement

fraction, 318
number, 14
properties, 14

underflow, 336
unordered, 346
unpacker

fixed point, 425
floating point, 351, 354

update enable signal, 97, 99, 113, 123,
132, 139, 205, 220

valid flag, 144
variable latency, 440

word boundary, 68
wrapped exponent, 339
write enable signal, 7, 58, 98, 506
write request signal, 98, 506

zero counter, 21
zero tester, 19, 170
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