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Preface and Acknowledgments
from the First Edition

Preface

Although they play a fundamental role in nearly all branches of math-
ematics, inequalities are usually obtained by ad hoc methods rather
than as consequences of some underlying “theory of inequalities.” For
certain kinds of inequalities, the notion of majorization leads to such
a theory that is sometimes extremely useful and powerful for deriv-
ing inequalities. Moreover, the derivation of an inequality by methods
of majorization is often very helpful both for providing a deeper
understanding and for suggesting natural generalizations.

As the 1960s progressed, we became more and more aware of these
facts. Our awareness was reinforced by a series of seminars we gave
while visiting the University of Cambridge in 1967–1968. Because the
ideas associated with majorization deserve to be better known, we
decided by 1970 to write a little monograph on the subject—one that
might have as many as 100 pages—and that was the genesis of this
book.

The idea of majorization is a special case of several more general no-
tions, but these generalizations are mentioned in this book only for the
perspective they provide. We have limited ourselves to various aspects
of majorization partly because we want to emphasize its importance
and partly because its simplicity appeals to us. However, to make the
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viii Preface and Acknowledgments from the First Edition

book reasonably self-contained, five chapters at the end of the book
are included which contain complementary material.

Because the basic ideas of majorization are elementary, we originally
intended to write a book accessible at least to advanced undergradu-
ate or beginning graduate students. Perhaps to some degree we have
succeeded in this aim with the first 10 chapters of the book. Most of
the second 10 chapters involve more sophistication, and there the level
and required background are quite uneven. However, anyone wishing to
employ majorization as a tool in applications can make use of the theo-
rems without studying their proofs; for the most part, their statements
are easily understood.

The book is organized so that it can be used in a variety of ways for
a variety of purposes. Sequential reading is not necessary. Extensive
cross referencing has been attempted so that related material can easily
be found; we hope this will enhance the book’s value as a reference.
For the same purpose, a detailed table of contents and an extensive
index are also provided.

Basic background of interest to all readers is found in Chapters 1
and 4, with Chapter 5 as a reference. See also the Basic Notation and
Terminology immediately following the Acknowledgments.

Technical details concerning majorization are given in Chapters 2
and 3 (especially important are Sections 2.A, 2.B, and 3.A). Added
perspective is given in Chapters 14 and 15.

Analytic inequalities are discussed in Chapter 3 and in Sections
16.A–16.D, with Chapter 6 also of some relevance.

Elementary geometric inequalities are found in Chapter 8.
Combinatorics are discussed primarily in Chapter 7, but Chapters 2,

6, and Section 5.D are also pertinent.
Matrix theory is found especially in Chapters 9 and 10, but also in

Chapters 2, 19, 20, and Sections 16.E and 16.F.
Numerical analysis is found in Chapter 10; Chapters 2 and 9 and

Sections 16.E and 16.F may also be of interest.
Probability and statistics are discussed primarily in Chapters 11–13,

and also in Chapters 15, 17, and 18.
Partly for historical interest, we have tried to give credit to original

authors and to cite their original writings. This policy resulted in a
bibliography of approximately 450 items. Nevertheless, it is surely far
from being complete. As Hardy, Littlewood, and Pólya (1934, 1952)
say in the preface to the first edition of their book on inequalities:

Historical and bibliographical questions are particularly
troublesome in a subject like this, which has application in
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every part of mathematics but has never been developed
systematically.

It is often really difficult to trace the origin of a familiar
inequality. It is quite likely to occur first as an auxiliary
proposition, often without explicit statement, in a memoir
on geometry or astronomy; it may have been rediscovered,
many years later, by half a dozen different authors, . . .

We apologize for the inevitable errors of omission or commission that
have been made in giving credits for various results.

Occasionally the proofs provided by original authors have been re-
produced. More often, new proofs are given that follow the central
theme of majorization and build upon earlier results in the book.

Acknowledgments

The photographs in this book were collected only through the gen-
erosity of a number of people. G. Pólya provided the photos of himself
and of I. Schur. A. Gillespie was instrumental in tracing members of
the family of R. F. Muirhead; photos of him were loaned to us by
W. A. Henderson, and they were expertly restored by John Coury.
Trinity College provided a photo of J. E. Littlewood and a photo of
G. H. Hardy and J. E. Littlewood together. The photos of G. H. Hardy
and H. Dalton were obtained from the Radio Times Hulton Picture
Library, London.

We have been heavily influenced by the books of Hardy, Littlewood,
and Pólya (1934, 1952), Beckenbach and Bellman (1961), and Mitri-
nović (1970); to these authors we owe a debt of gratitude. We are also
indebted to numerous colleagues for comments on various versions of
the manuscript. In addition to many errors that were called to our at-
tention, very significant substantive comments were made, enabling us
to considerably improve the manuscript. In particular, we acknowledge
such help from Kumar Jogdeo, Frank Proschan, Robert C. Thompson,
Yung Liang Tong, and Robert A. Wijsman. Koon-Wing Cheng was es-
pecially helpful with Chapters 2 and 3, and Michael D. Perlman gave
us insightful comments about Chapters 11 and 12. Moshe Shaked read
a number of drafts and contributed both critical comments and bibli-
ographic material over a period of several years. Perceptive comments
about several chapters were made by Tom Snijders; in particular,
Chapter 17 would not have been written in its present form without
his comments. Friedrich Pukelsheim read nearly all of the manuscript;
his meticulously detailed comments were invaluable to us.
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The National Science Foundation has contributed essential financial
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of Canada.
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our many revisions and corrections. The dependability, enduring pa-
tience, and accurate and efficient services of Carolyn Knutsen and
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History

Preparation of the first edition of this book, published in 1979, began in
1967–1968 while AWM and IO were visiting the Statistical Laboratory
in Cambridge, England. From 1968 to 1979, we were fortunate to have
many opportunities to visit each other: the summer of 1977 at Imperial
College, London; three months at ETH in Zurich; and a number of
times at Stanford University. With this background of commitment for
the first edition, it was clear to both of us that an appropriate revision
would be a major commitment that we were reluctant to consider
undertaking alone. Fortunately, we had the wisdom to invite Barry
Arnold to join us. Without his diligence, knowledge, and sustained
efforts, this revision would not exist. We suspect that he was duped
(probably by us) into thinking that the revision would move along
quickly. This has not been the case, and we can only thank him for
persevering until the end.

Albert W. Marshall
Ingram Olkin
December 2009
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Preface

The large number of appearances of majorization in so many different
fields of application over the last 25 years has been a pleasant surprise.
One of the early origins of majorization is in comparisons of income
inequality. Because inequality appears in many guises in physics, chem-
istry, political science, engineering, economics and so on, perhaps the
plethora of applications should not be surprising. In any case, since
1979 when the first edition appeared, many new applications of the
majorization ordering have appeared. This revision attempts to bring
these uses to the fore so that the reader can see the extent and vari-
ation in its use, thereby perhaps finding it helpful in his or her own
research.

A key feature of the first edition was the use of majorization to
obtain new proofs and generalizations of known results. Since the ap-
pearance of the first edition, many new results have been obtained
that already use a majorization argument. In general, such results are
included in this edition without proof. Consequently, the reader may
need to check the referenced sources for proofs.

The chapters of the original version remain intact; additions ap-
pear within the text and as supplements at the end of chapters. The
bibliography has increased by over 50%. A new, large addition is the
discussion of Lorenz curves.

The authors are grateful to numerous readers of the first edition for
their concern and help in uncovering and correcting errors. Readers
are urged to bring to our attention any errors found in the current
version.

We are especially grateful to James Bondar (1994) for his article
“Comments and complements to Inequalities”. This paper, written
15 years after the appearance of the first edition, provides a ret-
rospective view of majorization, and a clarification of some of the
concepts. His section on complements adds some new material. An Er-
rata Appendix helped the authors to prepare this new edition. Finally,
we thank him for his help in the discussion of converse theorems in
Section 9.G.

To enhance the usefulness of the book, we have taken special care to
make it easy to find particular results. Definitions have been provided.
Numerous headings have been included, as well as a detailed table of
contents and listing of the basic notation used. The subject index is
expanded with permuted entries, which should help in a search. At
times the author index can also help in locating facts.
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We are indebted to Slobodanka Jankowić for supplying the photo-
graph of Jovan Karamata, and to Martin Jacobsen for uncovering a
photo of J. W. V. Jensen. Thanks to Bo Lindgren for his help with
the biography of Jensen.

We thank Peggy Franklin for her heroic transcription of some noto-
riously illegible handwriting into a clear typescript, and for patiently
dealing with a semi-infinite number of revisions. Thanks to Carole
Arnold for editorial advice and assistance, especially with many of
the references. Thanks to Linda Yamamota for her library help, in
particular with the many searches.

We thank the anonymous reviewers who made helpful comments
and helped us correct errors in the final drafts of this second edition.
Pietro Cerone also provided helpful suggestions for improvement.

A special thanks to our Springer editor, John Kimmel, who has gone
to great lengths to help this revision come to fruition.

Barry C. Arnold
Albert W. Marshall
Ingram Olkin
December 2009



Overview and Roadmap

There are several ways to characterize the ordering of majorization,
each one of which leads to a variety of results. Inevitably, there are
loops or repetitions in this monograph; the material does not lend itself
naturally to the linear organization forced upon it by the structure of
a book. There are several ways that the material could be organized,
and there are several routes to a study of the subject.

Chapter 1 offers an overview of basic results. Chapter 2 discusses
the connection with doubly stochastic matrices and offers important
insight into the geometry of majorization. Chapter 3 discusses Schur-
convex functions; these are the functions that preserve the ordering of
majorization, and it is through them that many inequalities emerge.
Chapters 4, 5, and 6 offer equivalent conditions for majorization
and show some ways that the ordering can arise. These six chapters
constitute Part I of the book.

Beyond Part I, the reader should feel free to jump in almost any-
where. We have taken care to include references to various parts of the
book that may be relevant to a specific topic; these references may ask
the reader to jump ahead as well as back in the book.

George Pólya, who was not only a great mathematician, but also a
great expositor, made the point that one who only can generalize is
like a monkey who can only climb up a tree, and one who can only

xv



xvi Overview and Roadmap

specialize is like a monkey who can only climb down. Pólya urged
mathematicians to look for generality behind the particular case, to
look for significant particular cases in the general statement. With
this in mind and the recognition that different fields of application
need different special cases and different generalizations, this book
contains what one reviewer called a “blizzard of results”. (It was not a
tsunami, but only a blizzard.) The inclusion of so many special cases
was by design to help the researcher find both particular results and
generalizations.

The application chapters of Part II relate to mathematics
(Combinatorial Analysis, Geometric Inequalities, Matrix Theory, and
Numerical Analysis). Stochastic applications are given in Part III.
Various generalizations of majorization are discussed in Part IV
(Chapters 14 and 15).

To make the book as complete as possible and to avoid sending the
reader to other sources, the complementary topics of convex functions
and classical inequalities (Chapter 16), stochastic ordering (Chapter
17), total positivity (Chapter 18), matrix factorization, compounds,
direct products and M-matrices (Chapter 19), and extremal represen-
tations of matrix functions (Chapter 20) together are included. These
together constitute Part V of the book.
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Basic Notation and Terminology

Interchapter cross references include the chapter number as a prefix.
Cross references within a chapter do not have this prefix.

The following notation is used throughout this book. It is given here
in tabular form for easy reference.

R = (−∞,∞),
R+ = [0,∞),

R++ = (0,∞),

Rn = {(x1, . . . , xn) : xi ∈ R for all i},
Rn

+ = {(x1, . . . , xn) : xi ≥ 0 for all i},
Rn

++ = {(x1, . . . , xn) : xi > 0 for all i},

D = {(x1, . . . , xn) : xi ≥ · · · ≥ xn},
D+ = {(x1, . . . , xn) : xi ≥ · · · ≥ xn ≥ 0},

D++ = {(x1, . . . , xn) : xi ≥ · · · ≥ xn > 0}.

u+ = max(u, 0).
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xxvi Basic Notation and Terminology

Throughout this book, increasing means nondecreasing and decreas-
ing means nonincreasing. Thus if f :R → R, f is

increasing if x ≤ y ⇒ f(x) ≤ f(y),
strictly increasing if x < y ⇒ f(x) < f(y),

decreasing if x ≤ y ⇒ f(x) ≥ f(y),
strictly decreasing if x < y ⇒ f(x) > f(y).

For typographic simplicity, any vector x is a row vector, and x′ is
its transpose.

For any x = (x1, . . . , xn) ∈ Rn, let

x[1] ≥ · · · ≥ x[n]

denote the components of x in decreasing order, and let

x↓ = (x[1], . . . , x[n])

denote the decreasing rearrangement of x.

Similarly, let

x(1) ≤ · · · ≤ x(n)

denote the components of x in increasing order, and let

x↑ = (x(1), . . . , x(n))

denote the increasing rearrangement of x.

The vector with ith component 1 and all other components 0 is
denoted by ei, and the vector with all components 1 is denoted by e.

The elementwise vector ordering xi ≤ yi, i = 1, . . . , n, is denoted by

x ≤ y.

For matrices A and B, the direct sum is denoted by

A⊕B =
[
A 0
0 B

]
.

For matrices A and B conformable for multiplication, write

〈A,B〉 = Σaijbij = trAB′.
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A > 0 (A ≥ 0) denotes that A is positive definite (semidefinite).

A > B (A ≥ B) means that A−B > 0 (A−B ≥ 0).

For A = (aij), B = (bij), A ◦B = (aijbij).

Eigenvalues are generally denoted by λ, and are ordered
λ1 ≥ · · · ≥ λn, unless otherwise noted.



Behind every theorem lies an inequality.

Attributed to A.N. Kolmogorov

Inequalities play a role in most branches of mathematics
and have widely different applications.

George Pólya



Part I

Theory of Majorization



1
Introduction

A Motivation and Basic Definitions

There is a certain intuitive appeal to the vague notion that the
components of a vector x are “less spread out” or “more nearly equal”
than are the components of a vector y. Not surprisingly, the notion
arises in a variety of contexts, and it can be made precise in a number
of ways. But in remarkably many cases, the appropriate precise state-
ment is that “x is majorized by y” (written x ≺ y and defined ahead
in Definition A.1). Some of these cases are reviewed here.

This chapter provides some historical origins of majorization. The
key contributors are Muirhead (1903), Lorenz (1905), Dalton (1920),
Schur (1923), and Hardy, Littlewood, and Pólya (1929). Many im-
portant contributions were made by other authors. In particular, the
comprehensive survey by Ando (1989) provides alternative deriva-
tions, generalizations, and a different viewpoint. For an elementary
discussion of majorization, see Marshall and Olkin (1983).

Extension of Inequalities

Many well-known elementary inequalities can be put in the form

φ(y, . . . , y) ≤ φ(y1, . . . , yn),

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 3
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 1,
c© Springer Science+Business Media, LLC 2011
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where y = (1/n)
∑
yi and y1, . . . , yn lie in a specified set. Such

inequalities suggest the possibility of more general comparisons

φ(x1, . . . , xn) ≤ φ(y1, . . . , yn),

where x1, . . . , xn need not be all equal, but only “less spread out” than
y1, . . . , yn.

For example, the inequality
n∑
1

g(y) ≤
n∑
1

g(yi)

holds for all convex functions g: R → R. So it is natural to ask for
conditions on x1, . . . , xn and y1, . . . , yn in order that

n∑
1

g(xi) ≤
n∑
1

g(yi) (1)

for all convex functions g. This question was posed by Hardy, Little-
wood, and Pólya (1929), and they provided this answer: A necessary
and sufficient condition for (1) to hold for all convex functions g is that
x be majorized by y.

Mathematical Origins

A second origin of majorization is illustrated by the work of Schur
(1923) on Hadamard’s determinant inequality. As a preliminary to
proving this inequality, Schur proved that the diagonal elements
a1, . . . , an of a positive semidefinite Hermitian matrix are majorized
by the eigenvalues λ1, . . . , λn, i.e.,

(a1, . . . , an) ≺ (λ1, . . . , λn). (2)

Later, Horn (1954a) showed that (2) actually characterizes those num-
bers a1, . . . , an and λ1, . . . , λn that can arise together as, respectively,
the diagonal elements and eigenvalues of the same Hermitian matrix.

By identifying all functions φ that satisfy

x ≺ y implies φ(x) ≤ φ(y)

whenever x, y ∈ R n
+ , Schur in essence identified all possible inequalities

which, for a positive semidefinite Hermitian matrix, compare a func-
tion of the diagonal elements with the same function of the eigenvalues.
Hadamard’s determinant inequality is but one example.

Several other mathematical characterization problems are known to
have solutions that involve majorization. In each case, Schur’s results
or minor extensions lead to a variety of inequalities.
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Measurement of Income Inequality

Early in the 20th century, economists became interested in measur-
ing inequality of incomes or of wealth. In order to evaluate proposed
measures, it became desirable to determine how income or wealth
distributions might be compared in order to say that one distribu-
tion was “more equal” than another. The first discussion of this kind
of which we are aware was provided by Lorenz (1905) in introducing
what has become known as the Lorenz curve. Later, Dalton (1920)
took a different viewpoint, leading to his principle of transfers. Both
ideas are of considerable interest.

The Lorenz Curve

Consider a population of n individuals, and let xi be the wealth of indi-
vidual i, i = 1, . . . , n. Order the individuals from poorest to richest to
obtain x(1), . . . , x(n). Now plot the points (k/n, Sk/Sn), k = 0, . . . , n,
where S0 = 0 and Sk =

∑k
i=1 x(i) is the total wealth of the poorest

k individuals in the population. Join these points by line segments to
obtain a curve connecting the origin with the point (1, 1). [Actually,
Lorenz (1905) used a continuous approximation, so this last step was
unnecessary.] Notice that if total wealth is uniformly distributed in the
population, then the Lorenz curve is a straight line (Fig. 1, curve A).
Otherwise, the curve is convex and lies under this straight line. Lorenz
(1905, p. 217) writes that “With an unequal distribution, the curves
will always begin and end in the same points as with an equal distribu-
tion, but they will be bent in the middle; and the rule of interpretation
will be, as the bow is bent, concentration increases.” Thus curve B of
Fig. 1 represents a more even distribution of wealth than does C.

Let x1, . . . , xn represent the wealth of individuals for the distribution
of total wealth T that leads to curve B of Fig. 1. Similarly, let y1, . . . , yn
lead to curve C. Then, according to the idea of Lorenz, (x1, . . . , xn)
represents a more even distribution of wealth than does (y1, . . . , yn) if
and only if

k∑
1

x(i) ≥
k∑
1

y(i), k = 1, . . . , n− 1. (3)

Of course,
n∑
1

x(i) =
n∑
1

y(i) = T. (4)

The relations (3) and (4) are a way of saying that x is majorized by y.
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Figure 1. Lorenz curves.

The Principle of Transfers

The “principle of transfers” was already hinted at by Pigou (1912,
p. 24), but in the context of income distribution, it was first clearly
described by Dalton (1920, p. 351) as follows:

If there are only two income-receivers and a transfer of
income takes place from the richer to the poorer, inequality
is diminished. There is, indeed, an obvious limiting condi-
tion. The transfer must not be so large as to more than
reverse the relative positions of the two income receivers,
and it will produce its maximum result, that is to say, cre-
ate equality, when it is equal to half the difference between
the two incomes. And, we may safely go further and say
that, however great the number of income receivers and
whatever the amount of their incomes, any transfer be-
tween any two of them, or, in general, any series of such
transfers, subject to the above condition, will diminish in-
equality. It is possible that, in comparing two distributions,
in which both the total income and the number of income-
receivers are the same, we may see that one might be
able to be evolved from the other by means of a series of
transfers of this kind. In such a case we could say with cer-
tainty that the inequality of one was less than that of the
other.
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If yk is the income of individual k, k = 1, . . . , n, if yi < yj, and
if an amount Δ of income is transferred from individual j to i, then
Dalton’s observation is that income inequality is diminished provided
Δ < yj − yi:

yi yi + Δ yj − Δ yj

or
yi yj − Δ yi + Δ yj

Note that if the amount Δ transferred is less than (yj−yi)/2, then the
relative order of individuals i and j is unchanged and the left-hand
figure illustrates this case. If Δ is larger than (yj − yi)/2, then the
relative order of individuals i and j is reversed by the transfer and
the right-hand figure is descriptive of the situation. Note that in both
diagrams the difference between the incomes of the two individuals
has been reduced by the transfer and inequality in the population has
been lessened.

Such an operation, involving the shifting of some income or wealth
from one individual to a relatively poorer individual, may be evoca-
tively labeled as a Robin Hood transfer (Arnold, 1987) since it mirrors
precisely an operation by that “worthy” outlaw in Sherwood Forest.
That Robin Hood’s activities tend to reduce inequality seems to be
very generally accepted, and perhaps for this reason, Dalton’s princi-
ple has received considerable support. Such a transfer has also been
called a pinch.

In a paper generalizing the arithmetic–geometric mean inequality,
Muirhead (1903) had already discussed what Dalton calls a transfer.
Muirhead proved that if the components of x and y are nonnegative
integers, then the following conditions are equivalent:

(i) x can be derived from y by a finite number of transfers (each
satisfying Dalton’s restriction);

(ii) the sum of the k largest components of x is less than or equal to
the sum of the k largest components of y, k = 1, 2, . . . , n, with equality
when k = n;

(iii)
∑

π α
x1

π(1)α
x2

π(2) · · ·αxn

π(n) ≤
∑

π α
y1
π(1)α

y2
π(2) · · ·αyn

π(n) whenever each
αi > 0. Here

∑
π denotes summation over all permutations.

Condition (ii) is easily seen to be equivalent to conditions (3) and (4)
of Lorenz (1905); it is particularly useful as a definition because it is
easy to check.
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A.1. Definition. For x, y ∈ R n,

x ≺ y if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k∑
i=1

x[i] ≤
k∑
i=1

y[i], k = 1, . . . , n− 1,

n∑
i=1

x[i] =
n∑
i=1

y[i].

(5)

When x ≺ y, x is said to be majorized by y (y majorizes x). This
notation and terminology was introduced by Hardy, Littlewood, and
Pólya (1934, 1952).

Note that the conditions (5) are equivalent to the conditions

k∑
1

x(i) ≥
k∑
1

y(i), k = 1, . . . , n − 1,

n∑
1

x(i) =
n∑
1

y(i).

(5a)

The term strict majorization is used when
∑k

1 x[i] <
∑k

1 y[i], for
k = 1, . . . , n− 1.

A.1.a. Definition. For a set A ⊂ R n,

x ≺ y on A

means x, y ∈ A and x ≺ y.

A.1.b. Remark. In order to verify that x ≺ y, it is sometimes
convenient to use the fact that x ≺ y if and only if, for some m ∈
{1, 2, . . . , n},

k∑
i=1

x[i] ≤
k∑
i=1

y[i], k = 1, . . . ,m,

k∑
i=1

x(i) ≤
k∑
i=1

y(i), k = 1, . . . , n−m,

and
n∑
i=1

xi =
n∑
i=1

yi.
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In particular, when m = 0, the sums in the first inequality are empty
and the conditions for majorization reduce to (5a).

A.1.c. Remark (Malamud, 2005). The convex hull of a set A of real
numbers (denoted by convA) is the line segment joining the minimal
and maximal elements of A. With this in mind, along with (5) and
(5a), it can be seen that x ≺ y if and only if, for j = 1, . . . , n,

conv {xi1 + · · · + xij : 1 ≤ i1 ≤ · · · ≤ ij ≤ n}

⊂ conv {yi1 + · · · + yij : 1 ≤ i1 ≤ · · · ≤ ij ≤ n}.
(5b)

Some Basic Examples

The following are important though trivial examples of majorization.
Further examples are given in Chapter 5.(

1
n
, . . . ,

1
n

)
≺
(

1
n− 1

, . . . ,
1

n− 1
, 0
)

≺ · · ·

≺ (1
2 ,

1
2 , 0, . . . , 0) ≺ (1, 0, . . . , 0). (6)

More generally, if m ≥ l and lc = mαc (i.e., α = l/m ≤ 1), then

(αc, . . . , αc︸ ︷︷ ︸
m

, 0, . . . , 0) ≺ (c, . . . , c︸ ︷︷ ︸
l

, 0, . . . , 0), (7)

(
1
n
, . . . ,

1
n

)
≺ (a1, . . . , an) ≺ (1, 0, . . . , 0) (8)

whenever ai ≥ 0,
∑
ai = 1.

(x1 + c, . . . , xn + c)/(
∑
xi + nc) ≺ x/(

∑
xi), c ≥ 0, (9)

provided that xi > 0.
Notice that in the above discussion of incomes, if Δ ≤ yj − yi,

the replacement of yi and yj by yi + Δ and yj − Δ amounts to the
replacement of yi and yj by averages. If 0 ≤ α = Δ/(yj − yi) ≤ 1 and
α = 1 − α, then

yi + Δ = αyi + αyj and yj − Δ = αyi + αyj.

In many respects, averages like this are more convenient to work with
than are transfers.

According to Lemma 2.B.1 of Hardy, Littlewood, and Pólya (1934,
1952), repeated averages of two incomes at a time can produce the
same result as the replacement of yj by an arbitrary average of the form
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xj = y1p1j + · · · + ynpnj, j = 1, . . . , n,

where pij ≥ 0 for all i, j,

n∑
i=1

pij = 1 for all j, and
n∑
j=1

pij = 1 for all i.

Of course
∑n

i=1 pij = 1 as a consequence of xj being an average of
y1, . . . , yn. Notice that the equality

∑n
j=1 pij = 1 is just a reflection

of the fact that all of the original income yi of individual i is ei-
ther retained by i or transferred to some other individual. The above
properties mean that (5) holds if and only if

x = yP, (10)

where the matrix P = (pij) is doubly stochastic (i.e., P has nonnegative
entries and each row and each column sums to unity). This characteri-
zation of majorization is not surprising; indeed, the fact that averaging
is a smoothing operation has been recognized for a long time.

The relationship (10) was apparently first discussed by Schur (1923),
who encountered it in his work on Hadamard’s inequality.

Geometry of Majorization

Some geometrical insight into majorization can be obtained from (10)
with the aid of Birkhoff’s Theorem 2.A.2. This theorem says that the
doubly stochastic matrices constitute the convex hull of the permuta-
tion matrices. Consequently, if x ≺ y, so that x = yP for some doubly
stochastic matrix P , then there exist constants ai ≥ 0,

∑
ai = 1, such

that

x = y(
∑
aiΠi) =

∑
ai(yΠi),

where the Πi are permutation matrices. This means, as was noted by
Rado (1952), that x lies in the convex hull of the orbit of y under the
group of permutation matrices (see Figs. 2 and 3).

Weak Majorization

As already noted, in the presence of
∑n

i=1 xi =
∑n

i=1 yi, the
inequalities

k∑
i=1

x[i] ≤
k∑
i=1

y[i]
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0

u2

u1

(y2, y1)

y = (y1, y2)

{x: x     y}

0

u2

u1

(y2, y1)

(y1, y2)

{z: y     z}

Figure 2. Orbits of y under permutations and the sets {x : x ≺ y},
{z : y ≺ z} for the case n = 2.

{x: x     y}

y = (y1, y2, y3)

O

u1 u2

u3u3

{z: y     z}

y

O

u1 u2

Figure 3. Orbits of y under permutations and the sets {x : x ≺ y},
{z : y ≺ z} for the case n = 3.

and

n∑
i=k+1

x[i] =
n−k∑
i=1

x(i) ≥
n−k∑
i=1

y(i) =
n∑

i=k+1

y[i]

are equivalent. Thus condition (5) for majorization can be rewritten
as (3) and (4), i.e.,

k∑
i=1

x(i) ≥
k∑
i=1

y(i), k = 1, . . . , n− 1,

n∑
i=1

x(i) =
n∑
i=1

y(i).
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Replacement of the equality in (4) or (5) by a corresponding inequality
leads to the concept of “weak” majorization.

A.2. Definition. For x, y ∈ R n,

x ≺w y if
k∑
1

x[i] ≤
k∑
1

y[i], k = 1, . . . , n, (11)

and

x ≺w y if
k∑
1

x(i) ≥
k∑
1

y(i), k = 1, . . . , n. (12)

In either case, x is said to be weakly majorized by y (y weakly
majorizes x). More specifically, x is said to be weakly submajorized
by y if x ≺w y and x is said to be weakly supermajorized by y if
x ≺w y. Alternatively, we say weakly majorized from below or weakly
majorized from above, respectively.

A.2.a. Definition. x ≺w y (x ≺w y) on A means x, y ∈ A and
x ≺w y (x ≺w y). Equivalently, we write y �w x (y �w x).

The origins of the terms “submajorized” and “supermajorized” lie in
the following limited characterizations of weak majorization in terms
of linear transformations:
x ≺w y on R n

+ if and only if x = yP for some doubly substochastic
matrix P ,

i.e., for some nonnegative matrix P = (pij) for which there exists a
doubly stochastic matrix D = (dij) satisfying pij ≤ dij for all i, j (see
2.C.1). Similarly,

x ≺w y on R n
+ if and only if x = yP for some doubly

superstochastic matrix P ,

i.e., for some matrix P = (pij) for which there exists a doubly
stochastic matrix D = (dij) satisfying pij ≥ dij for all i, j (see 2.D.1).

Although these characterizations are limited to weak majorization
on R n

+ , no such positivity restriction is necessary for characterizations
in terms of convex functions:

x ≺w y if and only if
∑
g(xi) ≤

∑
g(yi) for all continuous

increasing convex functions g: R → R

(see 3.C.1.b and 4.B.2);
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x ≺w y if and only if
∑
g(xi) ≤

∑
g(yi) for all continuous

decreasing convex functions g: R → R

(see 3.C.1.b and 4.B.2).

More general notions of weak majorization can be defined by writing
conditions (5) in the form

k∑
i=1

x[i] ≤
k∑
i=1

y[i], k ∈ S ⊂ {1, . . . , n},

n−k∑
i=1

x(i) ≥
n−k∑
i=1

y(i), k ∈ {1, . . . , n} − S,

n∑
i=1

xi =
n∑
i=1

yi,

(5′)

and by then dropping the equality constraint. Such weak majorizations
are not discussed in this book.

Some Consequences of the Definitions

The following results are often useful:

x ≺ y ⇔ −x ≺ −y, (13a)

x ≺w y ⇔ −x ≺w −y, (13b)

x ≺w y and x ≺w y ⇔ x ≺ y, (14)

x ≤ y (that is, xi ≤ yi, i = 1, . . . , n) ⇒ x ≺w y and x ≺w y, (15a)

x ≤ y and Σxi = Σyi ⇒ x = y, (15b)

x ≺ y ⇒ (x[1], . . . , x[n−1]) ≺w (y[1], . . . , y[n−1]), (16a)

and

x ≺ y ⇒ (x[2], . . . , x[n]) ≺w (y[2], . . . , y[n]). (16b)
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It is not quite so easy to show also that

x ≺w y ⇐⇒ for some u, x ≤ u and u ≺ y (see 5.A.9), (17)

x ≺w y ⇐⇒ for some v, x ≺ v and v ≥ y (see 5.A.9.a). (18)

Summary of Some Majorization Equivalents

A.3. Majorization. The following conditions are equivalent:

(i) x ≺ y, that is,

k∑
1

x[i] ≤
k∑
1

y[i], k = 1, . . . , n,
n∑
1

x[i] =
n∑
1

y[i];

(ii) x = yP for some doubly stochastic matrix P (see 2.B.2);

(iii) x can be derived from y by successive applications of a finite
number of T -transforms (see 2.B.1).

(iv)
∑
φ(xi) ≤ ∑

φ(yi) for all continuous convex functions φ (see
4.B.1);

(v)
∑
xi =

∑
yi and

∑
(xi − a)+ ≤ ∑

(yi − a)+ for all a ∈ R (see
4.B.3);

(vi) Σ|xi − a| ≤ Σ|yi − a| for all a ∈ R (see 4.B.3.a);

(vii) x is in the convex hull of the n! permutations of y (see 4.C.1);

(viii)
∑

π α
x1

π(1) α
x2

π(2) · · · αxn

π(n) ≤ ∑
π α

y1
π(1) α

y2
π(2) · · · αyn

π(n) for all
α1, . . . , αn > 0 (see 4.B.5).

A.4. Weak submajorization. The following conditions are equiva-
lent:

(i) x ≺w y, i.e.,
∑k

1 x[i] ≤
∑k

1 y[i], k = 1, . . . , n;

(ii) x = yP for some doubly substochastic matrix P (in case;
x, y ∈ R n

+ ) (see 2.C.4);
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(iii)
∑
φ(xi) ≤ ∑

φ(yi) for all continuous increasing convex
functions φ (see 4.B.2);

(iv)
∑

(xi − z)+ ≤ ∑
(yi − z)+ for all z ∈ R (see 4.B.4);

(v) there exist a finite number T1, . . . , Tk of T -transforms such that

x ≤ yT1 · · · Tk

(see 2.C.6);

(vi) for x, y ∈ R n
+ , x can be derived from y by successive applica-

tions of a finite number of T -transforms followed by a finite number
of transformations of the form

T (z) = (z1, . . . , zi−1, αzi, zi+1, . . . , zn), 0 ≤ α ≤ 1

(see 2.C.6.a).

A.5. Weak supermajorization. The following conditions are
equivalent:

(i) x ≺w y, i.e.,
∑k

1 x(i) ≥
∑k

1 y(i), k = 1, . . . , n;

(ii) x = yP for some doubly superstochastic matrix P (in case
x, y ∈ R n

+ ) (see 2.D.2.b);

(iii)
∑
φ(xi) ≤ ∑

φ(yi) for all continuous decreasing convex
functions φ (see 4.B.2);

(iv)
∑

(z − xi)+ ≤ ∑
(z − yi)+ for all z ∈ R (see 4.B.4);

(v) there exist a finite number T1, . . . , Tk of T -transforms such that
x ≥ yT1 · · ·Tk (see 2.D.2);

(vi) for x, y ∈ R n
++,x can be derived from y by successive applica-

tion of a finite number of T -transforms followed by a finite number of
transformations of the form

T (z) = (z1, . . . , zi−1, αzi, zi+1, . . . , zn), α > 1

(see 2.D.2.a).
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Sufficient Conditions for Majorization

Pec̆arić and Zwick (1989) provide the following sufficient conditions for
x ≺ y which may sometimes be useful. Note that these sufficient condi-
tions for majorization are stated in terms of the unordered coordinates
of x and y.

A.6.Lemma. (Pec̆arić and Zwick, 1989). Let x, y ∈ R n. Then x ≺ y
if the following conditions hold:

(i)
∑n

i=1 xi =
∑n

i=1 yi;

(ii)
∑k

i=1 xi ≥
∑k

i=1 yi; k = 1, 2, . . . , n− 1;

(iii) xi ≥ yi−1, i = 2, 3, . . . , n.

Logarithmic Majorization

Majorization as defined in Definition A.1 is based on partial sums.
Motivated by matrix inequalities, Weyl (1949) defined a multiplicative
version.

A.7. Definition. For x, y ∈ R n
+ , x is said to be weakly log-majorized

by y, denoted by x≺w
log

y, if

k∏
1

x[i] ≤
k∏
1

x[i], k = 1, . . . , n; (19)

x is said to be log-majorized by y, denoted by x ≺
log
y, if (19) holds with

equality for k = n.

If x, y ∈ R n
++, then (19) is equivalent to log x ≺w log y.

The ordering introduced in A.7, called log-majorization, was studied
by Ando and Hiai (1994), who delved deeply into applications in matrix
theory. See also Chapter 9.

Note that weak log-majorization implies weak majorization. See
5.A.2.b.
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Notes on Terminology

A.8. Majorization in an economics context. Because majoriza-
tion arises in different contexts, terminology in the literature is not well
standardized. To better understand terminology, consider two individ-
uals, the first receiving the income a+Δ, and the second receiving the
income a. Income inequality is reduced if the first individual transfers
to the second any amount up to Δ. This kind of transfer is called a
Dalton transfer (see p. 6 for Dalton’s discussion). If the amount trans-
ferred is limited to Δ/2, the transfer is sometimes called an altruistic
transfer or an altruistic Dalton transfer. With an altruistic transfer,
the individual starting with the highest income does not end up with
less income than the individual receiving the transfer. The altruistic
transfer is said to be extreme if the two individuals end up sharing
their joint income equally.

Denote by Q a permutation matrix that interchanges two co-
ordinates. A transfer replaces the vector x of incomes by xT,
where

T = λI + (1 − λ)Q. (20)

For a Dalton transfer, 0≤ λ≤ 1; for an altruistic transfer, 1 / 2≤ λ≤ 1.

With the restriction 0 ≤ λ ≤ 1, matrices of the form (20) are called
T-transforms (2.B). The term “T -transform” is often used in the place
of “Dalton transfer.” A Dalton transfer is sometimes called a pinch, in
which case the matrix (20) is called a pinching matrix. Dalton transfers
are also called Robin Hood transfers.

Altruistic transfers are discussed by Kolm (1969, 1996). Regrettably,
they are called Dalton transfers in those publications.

Even more restrictive transfers are introduced by Hoffman (1969),
who allows only those transfers that leave the entire population
ordering unchanged. With this restriction, for example, the highest-
income individual cannot transfer so much income to the lowest-income
individual that he or she receives more income than the person with
the next-to-lowest income. Relatives of the majorization partial order
induced by these different transfer principles are discussed in Thon
and Wallace (2004).

A.9.Majorization in physics and chemistry: Mixing. Majoriza-
tion is also useful in certain physical science contexts. In chemistry
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and physics, the terms “x is more mixed than y,” “x is more chaotic
than y,” and “x is more disordered than y” are directly related to the
majorization and inequality ordering, x ≺ y. To clarify the term “mix-
ing,” consider several identical cylindrical beakers containing different
amounts of liquid. As some liquid from a beaker containing a large
amount of liquid is “mixed” with the liquid from a beaker contain-
ing a lesser amount, the result is that of majorization. The use of the
term “chaotic” stems from physical laws. Thus, one vector is said to
be more chaotic than another to mean that one vector majorizes the
other. This term has its origin in terms of entropy. In a similar vein,
one vector is said to be more random than another to mean that one
vector majorizes the other. See Section 3.K for further discussion of
this nexus.

A.10. Weak majorization in group theory. Weak majorization
arises naturally in a variety of contexts in group theory. In the repre-
sentation theory of the symmetric groups, James (1978, p. 8) uses the
term dominance for weak majorization. Hazewinkel and Martin (1983)
note that the natural order and Snapper order have also been used to
mean weak majorization. Further discussion is contained in 5.D.

B Majorization as a Partial Ordering

Because x1, . . . , xn and y1, . . . , yn are reordered decreasingly in the
definition of majorization, their original order plays no role. Thus,
the fact that these numbers are viewed as components of vectors is
not important to the concept of majorization. But it is convenient to
regard x = (x1, . . . , xn) and y = (y1, . . . , yn) as vectors so that the
relationship x = yP can be written with standard notation.

With x viewed as a vector, it is easy to see that

x ≺ xΠ for all permutation matrices Π. (1)

A kind of converse is also true:
x ≺ y and y ≺ x together imply that x = yΠ for some

permutation matrix Π; (2)

this follows from the fact that the partial sum conditions (5) of
Section A imply x↓ = y↓ when x ≺ y and y ≺ x. The same statements
can be made with ≺w or ≺w in place of ≺.

A preordering of a set A is a binary relation ≤ on A satisfying

x ≤ x for all x ∈ A ; (3)
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x ≤ y and y ≤ z implies x ≤ z when x, y, z ∈ A . (4)

If also

x ≤ y and y ≤ x implies x = y, (5)

then ≤ is called a partial ordering. Because conditions (3) and (4) are
easily verified from the definitions, it follows that the orderings ≺, ≺w,
and ≺w defined on R n are all preorderings. But, strictly speaking, they
are not partial orderings because, in place of (5), only the weaker con-
dition (2) holds. Restricted to D = {z : z1 ≥ · · · ≥ zn}, the orderings
are proper partial orderings. They are also proper partial orderings if
they are regarded as orderings of sets of numbers rather than as or-
derings of vectors. In fact, D is a complete lattice (a partially ordered
set in which all subsets have both an infimum and a supremum) under
these weak orderings [see Bapat (1991) for details].

For a given x ∈ R n, the set of all antecedents of x in the
majorization preordering is denoted by γ(x). Thus

γ(x) = {y : y ≺ x} (6)

is the convex hull of the set of permutations of x (2.B.3). Viewing γ as
a mapping from R n into the set of all subsets of R n, Nachman (2005)
observes that γ, called antecedent mapping, is a compact convex-
valued continuous correspondence. The transitivity of majorization
guarantees that if y ∈ γ(x), then γ(y) ⊂ γ(x).

For future reference (in 11.D.2), the graph of the relation γ will be
denoted by K. Thus

K = {(y, x) ∈ R n × R n : y ∈ γ(x)}. (7)

K is a closed set in R 2n.

C Order-Preserving Functions

A variety of inequalities is obtainable for any partial ordering once
the order-preserving functions are identified. If ≤ is a preordering or a
partial ordering defined on some set A ⊂ R n, a function φ: A → R
is said to be order-preserving or isotonic if

x ≤ y implies φ(x) ≤ φ(y), x, y ∈ A .

For the ordering of majorization, the theorem of Muirhead (1903)
(see 3.G.2.e) identifies a class of order-preserving functions. Additional
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such functions were identified by Dalton (1920). Dalton’s motiva-
tion was to evaluate certain proposed measures of income inequality,
including

φ(1)(x) =
n∑
1

|xi − x|,

where

x = (1/n)
n∑
1

xi,

φ(2)(x) = [(1/n)
∑

(xi − x)2]1/2,

and

φ(3)(x) =
∑
i,j

|xi − xj|.

Dalton also noted that φ(2) and φ(3) satisfy the strict inequality
property

x ≺ y and x �� y implies φ(x) < φ(y).

The first comprehensive study of the functions preserving the or-
dering of majorization was made by Schur (1923). Schur confined
himself to majorization on R n

+ , and he showed that if φ: R n
+ → R

has continuous first partial derivatives φ(i) = ∂φ/∂xi, then

x ≺ y on R n
+ implies φ(x) ≤ φ(y)

if and only if

(i) φ is permutation symmetric [i.e., φ(x) = φ(xΠ) for all x ∈ R n
+

and all permutations Π], and

(ii) (x1 − x2)[φ(1)(x) − φ(2)(x)] ≥ 0 for all x ∈ R n
+ .

Schur called such functions “convex” as opposed to “convex in the
sense of Jensen.” In modern terminology, “convex in the sense of
Jensen” is simply “convex.” Consequently, when Ostrowski (1952)
showed that Schur’s conditions (i) and (ii) are also appropriate for
identifying the order-preserving functions for majorization on R n (as
opposed to R n

+ ), he called the order-preserving functions “convex in
the sense of Schur.” Subsequent writers have adopted this terminology
or modifications of it. We feel that it would be more appropriate to call
these functions “Schur-increasing,” but we adhere to the historically
accepted term “Schur-convex.”
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Because (y, . . . , y) ≺ (y1, . . . , yn), where y = (1/n)
∑n

1 yi, it follows
that for any Schur-convex function φ,

φ(y, . . . , y) ≤ φ(y1, . . . , yn) for all y ∈ R n.

The fact that the minimum is achieved if y1 = · · · = yn is suggested by
the symmetry in y1, . . . , yn of φ(y1, . . . , yn). Indeed, this is an example
of what Pólya (1967), following Leibniz, calls the “principle of nonsuf-
ficient reason.” Briefly, Leibniz’s principle can be stated as: “Where
there is no sufficient reason to distinguish, there can be no distinction.”

D Various Generalizations of Majorization

Majorization can be characterized in various ways, each of which may
suggest generalizations. Here, several such generalizations are men-
tioned. Except as noted, they are not further discussed in this book.

Partial Orderings Induced by Convex Cones

A subset C of a real linear space (for us, R n) is a convex cone if

x, y ∈ C implies λ1x+ λ2y ∈ C for all λ1, λ2 ≥ 0.

The cone ordering (or vector ordering) on a set A ⊂ R n induced by
the convex cone C is the relation ≤ on A defined by

x ≤ y if and only if y − x ∈ C .

On D , majorization ≺ and the weak majorizations ≺w, ≺w are all
cone orderings. Some results for the orderings ≺, ≺w, and ≺w can be
generalized to cone orderings, which are discussed in Section 14.D.

Partial Orderings Generated by Groups of Transformations

As noted in discussing the geometry of majorization in Section A,
x ≺ y if and only if x lies in the convex hull of the orbit of y
under the group of permutation matrices. It is possible to general-
ize the idea of majorization by replacing the group of permutations
by an arbitrary group of linear transformations. Such extensions are
discussed in Section 14.C.
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Continuous Majorization

Suppose that f and g are integrable functions defined in [0, 1] with the
property that ∫ 1

0
φ(f(u)) du ≤

∫ 1

0
φ(g(u)) du (1)

for all continuous convex functions φ. Because∑
φ(xi) ≤

∑
φ(yi) for all continuous convex functions φ

is equivalent to x ≺ y, it is natural to write f ≺ g when (1) holds.
Ruch, Schranner, and Seligman (1978) note that (1) holds if it holds
for a certain subclass of the convex functions.

There is an analog of the partial sums definition that is equivalent
to f ≺ g, but this requires the notion of a decreasing rearrangement
of a function. This notion has been discussed by various authors [see,
e.g., Hardy, Littlewood, and Pólya (1929, 1934, 1952, Chapter X), Ryff
(1963), Burkill (1964)].

D.1. Definition. For an integrable function f defined on the interval
[0, 1], let m(y) = λ{u : f(u) > y}, where λ is Lebesgue measure. The
function

f↓(x) = sup{y :m(y) > x}, 0 ≤ x ≤ 1,

is called the (right continuous) decreasing rearrangement of f .

D.2. Theorem (Hardy, Littlewood, and Pólya, 1929). Let f and g be
integrable functions defined on [0, 1]. Then (1) holds for all continuous
convex functions φ if and only if∫ x

0
f↓(u) du ≤

∫ x

0
g↓(u) du, 0 ≤ x ≤ 1, (2)

∫ 1

0
f↓(u) du =

∫ 1

0
g↓(u) du. (3)

The proof of this theorem is essentially the same as the proof of
Proposition 17.E.4.

Because x ≺ y if and only if x = yP for some doubly stochastic
matrix P , it is natural to ask for a characterization of the linear trans-
formations T such that Tf ≺ f . Such a characterization is given by
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Ryff (1963). Ryff shows that f ≺ g if and only if f = Tg for some such
operator [see also Ryff (1965, 1967)].

D.3. Example. If X and Y are random variables such that

Eφ(X) ≤ Eφ(Y )

for all convex functions φ such that the expectations exist, then X is
said to be less than Y in the convex order written X ≤cx Y (Definition
17.B.15). Suppose that the respective distributions F and G of X and
Y are continuous and strictly increasing, so that they have well-defined
inverses F−1 and G−1. Then

Eφ(X) =
∫ ∞

−∞
φ(x)dF (x) =

∫ 1

0
φ(F−1(z))dz

and

Eφ(Y ) =
∫ 1

0
φ(G−1(z))dz.

Thus

F−1 ≺ G−1 if and only if X ≤cx Y.

These inverse distributions are increasing; their decreasing rearrange-
ments are defined by F−1(1− z) = F

−1(z) and G−1(1− z) = G
−1(z),

where F = 1 − F and G = 1 −G.

The conditions of continuity and monotonicity can be dispensed with
if a more general definition of F−1 is used [see 17.C.1 and Marshall
and Olkin (2007, p. 639)].

Continuous majorization has also been called a generalized averaging
operation. In the context of densities, g ≺ f has been referred to as
“g has at least as much randomness as f” (14.H).

Generalized Continuous Majorization

It is natural to extend (1) to allow consideration of functions defined on
a quite arbitrary measure space instead of the interval [0, 1] [see, e.g.,
Joe (1992)]. Further discussion of this concept is given in Section 14.H.
Order-preserving functionals are characterized by Chan, Proschan, and
Sethuraman (1987) and by Ruch, Schranner, and Seligman (1978).
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Majorization for Vectors of Unequal Length

When vectors are of unequal length, the usual definitions of ma-
jorization do not apply. However, an indirect definition permits a
majorization comparison.

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be vectors such that
Σxi/n = Σyi/m. Consider the following two conditions:

Condition 1. For all convex φ : R → R,

1
n

n∑
1

φ(xi) ≤ 1
m

m∑
1

φ(yi).

Condition 2. Lx(u) ≥ Ly(u), 0 ≤ u ≤ 1,

where Lx(u) is the Lorenz curve generated by the vector x.

D.4. Proposition. Conditions 1 and 2 are equivalent.

Proof. For x = (x1, . . . , xn) and y = (y1, . . . , ym), define the mn-
dimensional vectors

x̃ = (x, . . . , x︸ ︷︷ ︸
m

), ỹ = (y, . . . , y︸ ︷︷ ︸
n

).

Condition 1 holds if and only if x̃ ≺ ỹ. Condition 2 (with Σn
1xi/n =

Σm
1 yi/m) holds if and only if x̃ ≺ ỹ, because Lx(u) = Lx̃(u) ≥ Lỹ(u) =

Ly(u). ||
Remark. When n = m, x̃ ≺ ỹ is equivalent to x ≺ y, as can be
shown by using the partial sum Definition A.1.

Note. To show that Lx̃ = Lx, for x ∈ R n, write Lx(k/n) =
Sk/Sn, k = 1, . . . , n, where Sk = Σk

1x(i). For u ∈ ((k − 1)/n, k/n),
Lx(u) is a straight-line segment with slope

(Sk/Sn) − (Sk−1/Sn)
1/n

=
nx(k)

Sn
,

where S0 = 0. Thus if x(k+1) = x(k), then the slope of Lx(u) is constant
on the interval ((k− 1)/n, (k+ 1)/n). Now apply this argument to the
vector

x̃ = (x1, . . . , x1︸ ︷︷ ︸
m

, . . . , xn, . . . , xn︸ ︷︷ ︸
m

).
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The slope of Lx̃ between the points

k − 1
n

=
(k − 1)m
mn

and
k

n
=
km

mn

does not change. Moreover,

Lx̃(k/n) =
mSk
mSn

= Lx(k/n), k = 0, 1, . . . , n.

Thus Lx̃(u) = Lx(u), 0 ≤ u ≤ 1.

Majorization for Infinite Sequences

The extension of majorization to infinite sequences x = (x1, x2, . . .)
and y = (y1, y2, . . .) has been discussed by various authors [see
particularly Markus (1964)].

Here appropriate definitions are

x ≺w y if sup
π

k∑
i=1

xπj
≤ sup

π

k∑
j=1

yπj
, k = 1, 2, . . . ,

x ≺w y if − x ≺w − y.

If
∑∞

1 |xi| ≤ ∞ and
∑∞

1 |yi| <∞, then

x ≺ y if x ≺w y, x ≺w y, and
∞∑
1

xi =
∞∑
1

yi.

Now suppose x1 ≥ x2 ≥ · · · ≥ 0 and y1 ≥ y2 ≥ · · · ≥ 0. Then
Lemma 3.1 of Markus (1964) states that x ≺w y if and only if there
exist numbers pij ≥ 0, i, j = 1, 2, . . . , such that

∞∑
j=1

pij ≤ 1 for all i, (4)

∞∑
i=1

pij ≤ 1 for all j, (5)

and xi =
∑∞

j=1 pijyj. From this lemma it is not difficult to conclude
that x ≺ y if and only if there exist numbers pij ≥ 0 as above with
equality in (4) and (5).

The extreme points of the class of infinite doubly stochastic ma-
trices must be permutation matrices, as has been proved by Kendall
and Kiefer [see Kendall (1960)]. For an alternative proof see Mauldon
(1969). Various other results for infinite sequences that parallel results
in the finite-dimensional case are known, but they are not further
discussed here.
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Majorization for Matrices

Instead of discussing a partial order on vectors in R n, it is natural to
consider ordering matrices. Majorization in its usual sense applies to
vectors with fixed element totals. For m× n matrices, several avenues
of generalization are open. Two matrices can be considered as be-
ing ordered if one is obtainable from the other by postmultiplication
by a doubly stochastic matrix [a natural generalizations of (10) in
Section A]. This relates m × n matrices with fixed row totals. There
are, however, several variations on this approach that merit attention.
There is also the possibility [suggested by Joe (1985)] of relating ma-
trices with fixed row and column totals. Discussion of various matrix
partial orders is found in Chapter 15, Multivariate Majorization.

Lorenz Ordering

The Lorenz curve (see Fig. 1 in Section A) was introduced as a graph-
ical summary of the inequality displayed by a set of n non-negative
numbers (described as wealths of individuals). The curve can also be
viewed as being related to a discrete random variable representing a
randomly chosen individual in the population of n individuals. In or-
der to compare inequality in populations of different sizes, an extended
definition of the Lorenz curve proves to be convenient. A Lorenz curve
can be associated with any nonnegative random variable with finite
expectation in a manner consistent with the association of Lorenz’s
original curve with the random variable corresponding to the random
selection of an individual in a finite population. This more general
Lorenz curve is simply a scaled partial integral of the quantile function
(or inverse distribution function) of the random variable in question.
Further discussion of this more general Lorenz ordering is found in
Chapter 17.

Majorization and Dilations

Let μ and ν be probability measures on a locally convex topological
vector space X . If ∫

φdμ ≤
∫
φdν

for all continuous convex functions φ defined on X , then ν is said
to be a dilation (or dilatation) of μ. Notice that if X = R, μ is the
measure with mass 1/n at xi and ν is the measure with mass 1/n at
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yi, i = 1, . . . , n, then ν is a dilation of μ if and only if x ≺ y. This
follows because

(1/n)
∑

φ(xi) =
∫
φdμ ≤

∫
φdν = (1/n)

∑
φ(yi)

for all continuous convex φ is equivalent to x ≺ y (see 4.B.1).
The notion of a dilation is a generalization of majorization that has

been studied or used by a number of authors. But it is beyond the
scope of this book. See Phelps (1966) or Meyer (1966) for basic results
and additional references.

It should be noted that there are a number of other possible general-
izations of majorization that are defined similarly to dilations. Suppose
C is a class of real functions on R n with the property that

φ(x) ≤ φ(y) for all φ ∈ C if and only if x ≺ y.

For probability measures μ and ν on R n, write μ ≺C ν if∫
φdμ ≤

∫
φdν for all φ ∈ C .

This condition generalizes majorization because if μ is degenerate at
x and ν is degenerate at y, then μ ≺C ν if and only if x ≺ y. This
kind of extension of majorization is discussed in Chapter 11. See in
particular 11.F.2.

Complex Majorization

It is intriguing to speculate on the possibility of extending the ma-
jorization partial order to deal with complex rather than real vectors.
Any definition of majorization which requires ordering the elements of
the vectors (as does the basic definition A.1) serves poorly in the com-
plex setting because it requires a selection of an ordering of the complex
numbers. However, the definition, alluded to in Equation A(10), in-
volving multiplication by a doubly stochastic matrix P continues to
make sense in the complex setting. Goldberg and Straus (1977/1978)
introduce this partial order in C n in their discussion of generalized
numerical ranges of matrices. For two vectors z(1) and z(2) in C n,
write z(1) ≺ z(2) if there exists a doubly stochastic matrix P such that
z(1) = z(2)P . It is plausible to call this ordering majorization because,
when restricted to R n, it coincides with a version of the usual def-
inition of majorization. In R n, it is possible (see Lemma 2.B.1) to
characterize majorization in terms of successive applications of a finite
number of matrices of the form λI + (1 − λ)Q, where 0 ≤ λ ≤ 1,
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and Q is a permutation matrix which interchanges two coordinates.
Goldberg and Straus say that z(1) is obtained from z(2) by pinching
if z(1) = z(2)(λI + (1 − λ)Q). If z(1) can be obtained from z(2) by a
finite number of pinchings, write z(1) ≺≺ z(2). In R n, the two partial
orders ≺ and ≺≺ coincide. In C n, Goldberg and Straus (1977/1978)
show that z(1) ≺≺ z(2) implies z(1) ≺ z(2) but not conversely. They
give the example P1 of 2.G.1 to show that the orderings ≺ and ≺≺
are distinct.

Complex majorization can be viewed as a special form of matrix
majorization, as discussed in 15.A.4.



2
Doubly Stochastic Matrices

An important tool in the study of majorization is a theorem due to
Hardy, Littlewood, and Pólya (1929) which states that for x, y ∈ R n,
x ≺ y if and only if

x = yP for some doubly stochastic matrix P . (∗)
For many purposes, the condition (∗) is more convenient than the

partial sums conditions defining majorization. In fact, (∗) is used by
Schur (1923) as a definition. The theorem of Hardy, Littlewood, and
Pólya and some related results are discussed in this chapter after a
review of some important properties of doubly stochastic matrices.

Much of the material in this chapter can be found in an excellent pa-
per by Mirsky (1962/1963). For further discussion of doubly stochastic
matrices, see Ando (1989), Bhatia (1997) and Seneta (2006).

A Doubly Stochastic Matrices
and Permutation Matrices

A square matrix P is said to be stochastic if its elements are all non-
negative and all row sums are one. If, in addition to being stochastic,
all column sums are one, the matrix is said to be doubly stochastic.
This definition can be stated formally as follows:

A.1. Definition. An n× n matrix P = (pij) is doubly stochastic if
pij ≥ 0 for i, j = 1, . . . , n, (1)

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 29
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 2,
c© Springer Science+Business Media, LLC 2011



30 2. Doubly Stochastic Matrices

and ∑
i

pij = 1, j = 1, . . . , n;
∑
j

pij = 1, i = 1, . . . , n. (2)

In terms of the vector e = (1, . . . , 1), conditions (2) have the more
compact form

eP = e; Pe′ = e′. (3)

Thus, 1 is a eigenvalue of P corresponding to the eigenvector e.
The term “stochastic matrix” goes back at least to Romanovsky

(1931, p. 267), in which he writes: “Matrices with these properties
play a large role in the theory of discrete Markov chains. That is why
we call these matrices stochastic.” Shortly thereafter, Romanovsky
(1935) provided a detailed discussion of stochastic matrices. Doubly
stochastic matrices are also called Schur transformations (Beckenbach
and Bellman, 1965, p. 31), or they are said to be bistochastic (Berge,
1963, p. 180). The term “doubly stochastic” appears to have been first
introduced by Feller (1950, 1968).

An obvious example of a doubly stochastic matrix is the n×nmatrix
in which each entry is 1/n. This is the unique irreducible (idempo-
tent) n×n doubly stochastic matrix (Schwarz, 1967). See Section I for
further discussion of idempotent doubly stochastic matrices.

Particularly interesting examples are provided by the permutation
matrices. A square matrix Π is said to be a permutation matrix if each
row and column has a single unit entry, and all other entries are zero.
There are n! such matrices of size n× n, each of which is obtained by
interchanging rows (or columns) of the identity matrix.

It is straightforward to verify that the set of n×n doubly stochastic
matrices is convex. It can also be verified that the permutation ma-
trices are extreme points of this set. A striking and useful fact is that
the convex hull of the permutation matrices coincides with the set of
doubly stochastic matrices.

A.2. Theorem (Birkhoff, 1946). The permutation matrices con-
stitute the extreme points of the set of doubly stochastic matrices.
Moreover, the set of doubly stochastic matrices is the convex hull of
the permutation matrices.

A proof of this theorem and various refinements of it are given in
Section F.

Much has been written about the Birkhoff theorem. For a general
discussion including its historical origins, see Ando (1989) and Bapat
and Raghavan (1997).
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A.3. If P1 and P2 are doubly stochastic, then the product P = P1P2

is doubly stochastic.

Proof . Because P1 and P2 have nonnegative elements, one sees
directly from the definition of a matrix product that P also has
nonnegative elements. Also,

eP = eP1P2 = eP2 = e, Pe′ = P1P2e
′ = P1e

′ = e′. ||

Characterization of Doubly Stochastic Matrices
via Majorization

A.4. Theorem. An n × n matrix P = (pij) is doubly stochastic if
and only if yP ≺ y for all y ∈ R n.

Proof. Suppose first that yP ≺ y for all y ∈ R n. In particular,
eP ≺ e, where e ≡ (1, . . . , 1). But if for some vector z, z ≺ e, then
z = e, hence eP = e. Next, take y = ei (i.e., yi = 1, yj = 0 if j �= i),
to obtain eiP = (pi1, pi2, . . . , pin) ≺ ei. This means that

∑
j pij = 1,

i.e., Pe′ = e′; it also means that pij ≥ 0, because a ≺ b implies
mini ai ≥ mini bi. Consequently, P is doubly stochastic.

Now, suppose P is doubly stochastic. Also, suppose that x = yP and
that x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn (otherwise replace P by Q−1PR, y
by yQ, and x by xR, where Q and R are permutation matrices chosen
so that yQ and xR have decreasing components). Then

k∑
j=1

xj =
k∑
j=1

n∑
i=1

yipij =
n∑
i=1

yiti,

where

0 ≤ ti =
k∑
j=1

pij ≤ 1 and
n∑
i=1

ti = k.

Thus
k∑
j=1

xj −
k∑
j=1

yj =
n∑
i=1

yiti −
k∑
i=1

yi =
n∑
i=1

yiti −
k∑
i=1

yi + yk

(
k −

n∑
i=1

ti

)

=
k∑
i=1

(yi − yk)(ti − 1) +
n∑

i=k+1

ti(yi − yk) ≤ 0.

Clearly,
∑n

i=1 xi = yPe′ = ye′ =
∑n

i=1 yi. ||
The second half of the above proof follows Ostrowski (1952). In view

of the fact that the convex hull of the permutation matrices is just the
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class of doubly stochastic matrices, this part of the theorem can also
be obtained as a special case of Proposition 6.A.1.

Notice that since the ordering of majorization is transitive, A.3 is
an easy consequence of A.4.

A.4.a. Remark If yP ≺ y for y = ei, i = 1, . . . , n, then P is doubly
stochastic.

B Characterization of Majorization Using
Doubly Stochastic Matrices

We turn here to the theorem of Hardy, Littlewood, and Pólya (1929)
which introduced this chapter, namely, that x ≺ y if and only if x = yP
for some doubly stochastic matrix P . (In general, the matrix P is not
unique, and this fact leads to some interesting related theorems.) To
this end, a preliminary lemma is proved that is perhaps of greater im-
portance than the theorem. This lemma shows that it is often sufficient
to consider only the case n = 2 in proving theorems about majorization
on R n.

The lemma involves a special kind of linear transformation called
a T -transformation, or more briefly a T -transform. The matrix of a
T -transform has the form

T = λI + (1 − λ)Q,
where 0 ≤ λ ≤ 1 and Q is a permutation matrix that just interchanges
two coordinates. Thus xT has the form

xT = (x1, . . . , xj−1, λxj + (1 − λ)xk, xj+1, . . . , xk−1,

λxk + (1 − λ)xj , xk+1, . . . , xn).

B.1. Lemma (Muirhead, 1903; Hardy, Littlewood, and Pólya, 1934,
1952, p. 47). If x ≺ y, then x can be derived from y by successive
applications of a finite number of T -transforms.

Proof. Because permutation matrices Q that just interchange two
coordinates are T -transforms, and because any permutation matrix is
the product of such simple permutation matrices, we assume that x
is not obtainable from y by permuting arguments. Moreover, assume
without loss of generality that x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn.

Let j be the largest index such that xj < yj, and let k be the smallest
index greater than j such that xk > yk. Such a pair j, k must exist,
because the largest index i for which xi �= yi must satisfy xi > yi. By
the choice of j and k,

yj > xj ≥ xk > yk. (1)
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Let δ = min(yj − xj, xk − yk), 1 − λ = δ/(yj − yk), and

y∗ = (y1, . . . , yj−1, yj − δ, yj+1, . . . , yk−1, yk + δ, yk+1, . . . , yn).

It follows from (1) that 0 < λ < 1, and it is easy to verify that

y∗ = λy + (1 − λ)(y1, . . . , yj−1, yk, yj+1, . . . , yk−1, yj, yk+1, . . . , yn).

Thus, y∗ = yT for T = λI+(1−λ)Q, where Q interchanges the jth and
kth coordinates. Consequently, y∗ ≺ y; this can also be seen directly.
It is also true that x ≺ y∗. To see this, note that

ν∑
1

y∗i =
ν∑
1

yi ≥
ν∑
1

xi, ν = 1, . . . , j − 1,

y∗j ≥ xj, y∗i = yi, i = j + 1, . . . , k − 1,
ν∑
1

y∗i =
ν∑
1

yi ≥
ν∑
1

xi, ν = k + 1, . . . , n,

n∑
1

y∗i =
n∑
1

yi =
n∑
1

xi.

For any two vectors u, v let d(u, v) be the number of nonzero differ-
ences ui−vi. Because y∗j = xj if δ = yj−xj and y∗k = xk if δ = xk−yk,
it follows that d(x, y∗) ≤ d(x, y) − 1. Hence, y can be derived from x
by a finite number of T -transformations. ||

Muirhead (1903) obtained B.1 for the case that x and y have in-
teger components; the result was given in the above form by Hardy,
Littlewood, and Pólya (1934, 1952).

B.1.a. If x ≺ y, then x can be derived from y by successive applica-
tions of at most n−1 T -transforms. This follows from the above proof
because d(u, v) ≤ n and d(u, v) �= 1 (otherwise,

∑
ui �=

∑
vi).

B.2. Theorem (Hardy, Littlewood, and Pólya, 1929). A necessary
and sufficient condition that x ≺ y is that there exist a doubly
stochastic matrix P such that x = yP .

Proof . Suppose first that for some doubly stochastic matrix P ,
x = yP . Then by A.4, x ≺ y. Next, suppose x ≺ y. Because T -
transforms are doubly stochastic, the product of T -transformations is
doubly stochastic. Thus, the existence of a doubly stochastic matrix
such that x = yP follows from B.1. ||
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As noted by Horn (1954a), B.2 can be combined with Birkhoff’s
theorem A.2 to yield an important corollary on the geometry of
majorization (see also 4.C.1).

B.3. Corollary (Rado, 1952). The set {x : x ≺ y} is the convex hull
of points obtained by permuting the components of y.

Corollary B.3 was obtained by Rado (1952) as a direct consequence
of the fact that u ∈ R n lies in the convex hull of vectors u(1), . . . , u(m)

if and only if

ua′ ≤ max
1≤i≤m

u(i)a′ for all a ∈ R n.

Mirsky (1958a) has made use of B.3 to obtain a simple proof of B.2.
A proof and historical remarks are also given by Markus (1964).

If x ≺ y, then according to B.2, x = yP for some doubly stochastic
matrix P . The matrix P is not necessarily unique, as seen from the
following example.

B.4. Example. If x = (4, 3, 2) and y = (5, 3, 1), then P can be either

P1 =

⎡
⎢⎢⎣

1
2

1
2 0

1
2 0 1

2

0 1
2

1
2

⎤
⎥⎥⎦ , P2 =

⎡
⎢⎢⎣

3
4 0 1

4

0 1 0
1
4 0 3

4

⎤
⎥⎥⎦ ,

or any convex combination of P1 and P2. The matrix P2 is a T -
transform, but P1 is not; in fact, P1 is not even a product of
T -transforms (or any other pair of doubly stochastic matrices, apart
from permutation matrices). The class of doubly stochastic matrices
that maps y = (5, 3, 1) to x = (4, 3, 2) is discussed more thoroughly in
Example G.2.

When x ≺ y, then according to B.1, it is possible to choose P to be
a product of T -transforms. It is also possible to choose P from certain
other subclasses of doubly stochastic matrices. To state these results,
some definitions are required.

B.5. Definitions. A matrix Q = (qij) is said to be orthostochastic if
there exists an orthogonal matrix Γ = (γij) such that qij = γ2

ij . A ma-
trix Q = (qij) is said to be unitary-stochastic if there exists a unitary
matrix U = (uij) such that qij = |uij |2. (Of course, orthostochas-
tic matrices are unitary-stochastic and unitary-stochastic matrices are
doubly stochastic.) A doubly stochastic matrix R = (rij) is said to be
uniformly tapered if

r11 ≥ r12 ≥ · · · ≥ r1n, (2)
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rnn ≥ rn−1,n ≥ · · · ≥ r1n, (3)

rij + ri−1,j+1 ≥ ri−1,j + ri,j+1 if 2 ≤ i ≤ j ≤ n− 1. (4)

Some explicit examples are given G.1. There, P5, P6, P7, and P9 are
orthostochastic; P4, P6, P8, and P9 are uniformly tapered.

B.6. Theorem. If x, y ∈ R n, the following conditions are
equivalent:

(i) x ≺ y;

(ii) x = yP for some doubly stochastic matrix P ;

(iii) x = yP, where P is a product of at most n−1 T -transformations;

(iv) x = yQ for some orthostochastic matrix Q;

(v) x = yΠ1RΠ2 for some uniformly tapered matrix R and
permutation matrices Π1, Π2.

Because (ii) implies (i) as shown in A.4 or B.2, it is also true that (iii),
(iv), and (v) each implies (i). That (i) implies (ii) is given in B.2. That
(i) implies (iii) is the content of B.1.a. A proof that (i) implies (iv) is
not given in this book. That (i) implies (v) is proved in G.3.

An alternative proof of B.2 that (i) and (ii) are equivalent is given
by Levow (1972); his proof is similar to the proof of Hardy, Littlewood,
and Pólya and also yields B.1. Various proofs that (i) implies (ii) have
been given by Fan (1957, 1966, 1975) and by Ryff (1965). A particularly
simple proof that (i) implies (ii) is given by Smiley (1966); this proof
also yields B.1. The fact that (i) implies (iv) is due to Horn (1954a)
and is also proved by Mirsky (1958a). That (i) implies (v) is due to
Hoffman (1969).

Hessenberg matrices constitute another important class of doubly
stochastic matrices. These and other classes of matrices are discussed
in Section G.

Remark. If x ≺ y, then necessarily there exists a doubly stochas-
tic matrix P such that x = yP . Even though x can be obtained
from y by applications of successive T -transforms, not every choice
of P satisfying x = yP can be written as a product (finite or infi-
nite) of T -transforms. Refer back to the matrix P1 in Example B.4. In
fact, Marcus, Kidman, and Sandy (1984) showed that any n× n dou-
bly stochastic matrix, n ≥ 3, with a single diagonal of zeros and all
n2 − n other entries strictly positive cannot be written as a product
of T -transforms. This is particularly easy to verify in the case n = 3.
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They also prove that for n ≥ 4, there exists an n × n orthostochastic
matrix which cannot be written as a product (finite or infinite) of T -
transforms. The following 3×3 doubly stochastic matrix, in which the
notation x = 1 − x is used, provides an example of this phenomenon:

⎛
⎝ 0 a a

a 0 a
a a 0

⎞
⎠ ,

where 0 < a < 1. The equation
⎛
⎝ 0 a a

a 0 a
a a 0

⎞
⎠ =

⎛
⎝ u u 0

u u 0
0 0 1

⎞
⎠
⎛
⎝ v 0 v

0 1 0
v 0 v

⎞
⎠
⎛
⎝ 1 0 0

0 w w
0 w w

⎞
⎠

has no solution for u, v, w for any permutation of the three matrices
on the right-hand side of the equation.

C Doubly Substochastic Matrices
and Weak Majorization

In the study of the ordering ≺w of lower weak majorization, doubly
substochastic matrices play much the same role that doubly stochastic
matrices play with respect to majorization.

A square matrix P is said to be doubly substochastic if its elements
are all nonnegative and if all row and column sums are at most one.
Thus the n× n matrix P = (pij) is doubly substochastic if

pij ≥ 0 for i, j = 1, . . . , n, (1)∑
i

pij ≤ 1, j = 1, . . . , n,
∑
j

pij ≤ 1, i = 1, . . . , n. (2)

With the notation (x1, . . . , xn) ≤ (y1, . . . , yn) to mean xi ≤ yi, i =
1, . . . , n, (2) can be rewritten as

eP ≤ e, Pe′ ≤ e′. (3)

Such matrices P are sometimes called sub-Markovian matrices.
It is clear that the n×n doubly substochastic matrices form a convex

set and that they can be viewed as points of a convex polytope in R n2
.
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If each entry in a doubly stochastic matrix is diminished (while main-
taining nonnegativity), then a doubly substochastic matrix is obtained.
There is a converse to this:

C.1. Theorem (von Neumann, 1953). If P = (pij) is doubly sub-
stochastic, then there exists a doubly stochastic matrix D = (dij) such
that

pij ≤ dij for all i, j.

Proof. If P is an n × n doubly substochastic matrix that is not
doubly stochastic, then some row or column sum is less than one. If a
row sum is less than one, then the sum of all elements of P is less than
n, so some column sum is less than one. Similarly, if a column sum is
less than one, then also a row sum is less than one. Thus

∑
k pkj < 1 for

some j and
∑

m pim < 1 for some i. Let ε = 1−max(
∑

k pkj,
∑

m pim).
Then obtain P1 from P by adding ε to the element in the (i, j)th
position and keeping the remaining elements fixed. This reduces by
at least 1 the number of row sums plus the number of column sums
that are strictly less than one. Clearly, a continuation of this process
leads to a doubly stochastic matrix D satisfying the conditions of the
lemma. ||

Augmentation of Doubly Substochastic Matrices

If an equal number of rows and columns in a doubly stochastic matrix
are deleted, a doubly substochastic matrix is obtained. Conversely,
a doubly substochastic matrix can be augmented to yield a doubly
stochastic matrix. Thus, if P is an n× n doubly substochastic matrix
and has row sums r1, . . . , rn and column sums c1, . . . , cn, then the
matrix

P̃ =
[

P I −Dr

I −Dc P ′

]
, (4)

where Dr = diag(r1, . . . , rn), Dc = diag(c1, . . . , cn), is doubly
stochastic. It is not necessarily possible to augment P to obtain a
doubly stochastic matrix of size less than 2n × 2n, as can be seen by
taking P = (pij), where pij = 0 for all i, j. Here the matrix must be
augmented with additional rows to make the n column sums each 1,
and it must be augmented with additional columns to make the n row
sums each 1. This means that the augmented matrix must have entries
adding to at least 2n. Because it is to be doubly stochastic, it must
therefore be at least 2n× 2n.
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A nonsquare matrix with nonnegative entries and with row and col-
umn sums less than or equal to 1 can also be augmented to yield
doubly stochastic matrices (first, augment with zeros so the matrix is
square). A particularly interesting case is an n× k matrix P1, k < n,
with column sums 1. The addition of n− k columns of zeros yields the
doubly substochastic matrix P = (P1, 0). A doubly stochastic matrix
D = dij satisfying dij > pij must be of the form (P1, P2) because the
column sums of P1 are already 1.

There is a counterpart to Birkhoff’s theorem for doubly substochas-
tic matrices that can be obtained using augmentation.

C.2. Theorem (Mirsky, 1959a). The set of n×n doubly substochas-
tic matrices is the convex hull of the set of n × n matrices that have
at most one unit in each row and each column, and all other entries
are zero.

Proof. Let P be a doubly substochastic matrix, and let P̃ be defined
as in (4). Then by A.2, P̃ =

∑k
i=1 αiP̃i, where the P̃i are 2n × 2n

permutation matrices and αi ≥ 0, i = 1, 2, . . . , k,
∑

i αi = 1. Let Pi
be obtained from P̃i by deleting the last n rows and columns. Then
P =

∑k
i=1 αiPi; each Pi has at most one unit in each row and each

column, and all other entries are zero. ||
A more direct proof of C.2 can be obtained by modifying the first

proof of A.2 given in Section F.
Notice that C.1 can be proved easily with the aid of C.2. For sup-

pose P = (pij) is a convex combination of matrices, each of which is
obtainable by possibly decreasing entries in some permutation matrix.
Then in this convex combination, the replacement of each matrix by
the permutation matrix from which it was obtained yields a doubly
stochastic matrix D = (dij) such that dij ≥ pij for all i, j.

By Carathéodory’s theorem [see, e.g., Rockafellar (1970, p. 153) or
Roberts and Varberg (1973, p. 76)], one can represent the n×n doubly
substochastic matrices as a convex combination of at most n2+1 zero–
one doubly substochastic matrices. This is a much better estimate than
(n− 1)2 + 1 obtainable via F.2 and the above proof.

Consider now the possibility of obtaining results analogous to A.4
and B.2 with the ordering ≺ of majorization replaced by the ordering
≺w of weak majorization.

Theorem A.4 characterizes the doubly stochastic matrices as those
matrices P for which yP ≺ y for all y ∈ R n. If we try to obtain
a similar result for weak majorization, we are confronted with the
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fact that if yP ≺w y for all y ∈ R n, then also (−y)P ≺w (−y).
Consequently, yP ≺ y, and no interesting new results are obtainable.
On the other hand, a requirement that y and yP have nonnegative
components presents a framework in which results analogous to A.4
and B.2 are obtainable.

C.3. An n × n matrix P = (pij) is doubly substochastic if and only
if y ∈ R n

+ implies yP ∈ R n
+ and yP ≺w y.

Proof. Suppose first that P satisfies yP ≺w y for all y ∈ R n
+ . With

y = e, it follows that(
n∑
i=1

pi1,
n∑
i=1

pi2, . . . ,
n∑
i=1

pin

)
≺w (1, 1, . . . , 1).

This means that maxj
∑n

i=1 pij ≤ 1, and hence eP ≤ e. With y = ei,
where ei has its ith component equal to 1, and all other components
equal to 0, it follows that

(pi1, pi2, . . . , pin) ≺w ei,

so that
∑n

j=1 pij ≤ 1, i = 1, . . . , n; i.e., Pe′ ≤ e′. The choice y = ei in
the condition yP ∈ R n

+ yields pij ≥ 0.
Next, suppose that P is doubly substochastic, and let x = yP .

Clearly, x ∈ R n
+ . As in the proof of A.4, the orderings y1 ≥ · · · ≥ yn

and x1 ≥ · · · ≥ xn can be achieved through the use of permutation
matrices. Then

k∑
j=1

xj =
k∑
j=1

n∑
i=1

yipij =
n∑
i=1

yiti,

where

0 ≤ ti =
k∑
j=1

pij ≤ 1 and
n∑
i=1

ti ≤ k.

Thus

k∑
j=1

xj −
k∑
j=1

yj =
n∑
i=1

yiti −
k∑
i=1

yi ≤
n∑
i=1

yiti −
k∑
i=1

yi + yk

(
k −

n∑
i=1

ti

)

=
k∑
i=1

(yi − yk)(ti − 1) +
n∑

i=k+1

ti(yi − yk) ≤ 0. ||
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Theorem C.3 characterizes doubly substochastic matrices in terms of
the weak majorization ≺w on R n

+ . In a manner analogous to B.2, weak
majorization can also be characterized in terms of doubly substochastic
matrices.

C.4. Theorem. A necessary and sufficient condition that x ≺w y
on R n

+ is that there exists a doubly substochastic matrix P such that
x = yP .

Proof. Suppose first that x ≺w y; then δ =
∑n

1 yi −
∑n

1 xi ≥ 0.
If δ = 0, then x ≺ y and the result follows from B.6. Next consider
the case that δ > 0. If x = 0, take P to have all components zero. If
x �= 0, suppose that x[m] (m ≤ n) is the smallest nonzero component
of x, and let 
 be the smallest integer such that 
x[m] ≥ δ. Then
if x̃ = (x1, . . . , xn, δ/
, . . . , δ/
) and ỹ = (y1, . . . , yn, 0, . . . , 0) have 

more components than x and y, it follows that x̃ ≺ ỹ (note that,
because δ/
 ≤ x[m], the δ/
’s are the smallest nonzero elements of x̃).
Consequently, by B.2 there exists a doubly stochastic matrix P̃ such
that x̃ = ỹP̃ . But then x = yP , where P is the upper left n × n
submatrix of P̃ . Clearly, P is doubly substochastic.

Finally, suppose that x = yP , where P is doubly substochastic.
Then x ≺w y by C.1. ||

Theorems C.2 and C.4 together yield the following analog of Rado’s
theorem (B.3):

C.5. Corollary (Mirsky, 1959a). For y ∈ R n
+ , the set {x : x ∈ R n

+

and x ≺w y} is the convex hull of points of the form (η1yπ1 , . . . , ηnyπn
),

where π is a permutation and each ηi is 0 or 1.
Although the above proof of C.4 depends upon B.2, C.4 also follows

from a weak majorization analog of B.1.

For any vector z ∈ R n, let |z| = (|z1|, . . . , |zn|).
C.5.a. Corollary (Markus, 1964). For y ∈ R n, the set {x : |x| ≺ |y|}
is the convex hull of points of the form (ε1yπ1 , . . . , εnyπn

), where π is
a permutation and each εi is −1 or 1.

Proof . Let C denote the convex hull of points of the form
(η1yπ1 , . . . , ηnyπn

), where π is a permutation and each ηi is 0 or
1. Similarly, let C̃ denote the convex hull of points of the form
(ε1yπ1, . . . , εnyπn

), where each εi is −1 or 1. Then C.5.a follows from
C.5 because C̃ = {x : |x| ∈ C }. ||
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Another proof of C.5.a is given by Mitjagin (1964). A related result
is given by Thompson and Ishaq (1977/1978).

C.6. Proposition (Mirsky, 1959a; Chong, 1976a). For x, y ∈ R n
+ ,

x ≺w y if and only if there exist a finite number T1, . . . , Tk of T -
transforms such that

x ≤ yT1 · · ·Tk.
The proof of this result is not given here, but it easily follows from B.1
and 5.A.9. Notice that C.6 does not require x, y ∈ R n

+ .
Mirsky (1959a) proves only that x ≤ yD for some doubly stochastic

matrix D; this result must be combined with B.1 to obtain C.6. Chong
(1976a) obtains the above form of C.6.

C.6.a. For x, y ∈ R n
+ , x ≺w y if and only if x can be derived from y

by successive applications of a finite number of T -transforms followed
by a finite number of transformations of the form

T (z) = (z1, . . . , zi−1, αzi, zi+1, . . . , zn), 0 ≤ α ≤ 1.

This result follows from C.6 and the definition of weak majorization.

Weak Majorization and Complex Vectors

For any vector z = (z1, . . . , zn) of complex numbers, let |z| =
(|z1|, . . . , |zn|).
C.7. Theorem (Thompson, 1977). Let x and y be complex vectors.
Then |x| ≺w |y| if and only if there exists a square complex matrix
W = (wij) such that x = yW and (|wij |) is doubly substochastic.

Proof. Suppose first that x = yW , where (|wij |) is doubly sub-
stochastic. Assume |x1| ≥ · · · ≥ |xn|, |y1| ≥ · · · ≥ |yn| (or
make use of permutation matrices to achieve this). Then |xj | =
|∑n

i=1 yiwij | ≤ ∑
i |yi||wij | and

∑k
j=1 |xj | ≤ ∑k

j=1

∑n
i=1 |yi||wij | =∑n

i=1 |yi|
∑k

j=1 |wij | =
∑n

i=1 |yi|ti, where ti =
∑k

j=1 |wij |. As in the
proof of C.3, 0 ≤ ti ≤ 1 and

∑n
i=1 ti ≤ k, so by the argument used

there,
∑k

1 |xj | −
∑k

1 |yj| ≤ 0, k = 1, . . . , n.
Next, suppose |x| ≺w |y|. Then by C.4, |x| = |y|P , where P is

doubly substochastic. Let D1 = diag(a1, . . . , an), where arg ai = arg xi
and |ai| = 1, i = 1, . . . , n. Similarly, let D2 = diag(b1, . . . , bn), where
arg bi = arg yi and |bi| = 1, i = 1, . . . , n. Then |x| = xD1, |y| = yD2, so
x = yD2PD

−1
1 . Clearly,W = D2PD

−1
1 has the required properties. ||
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The following is an analog of Birkhoff’s theorem A.2 or, more prop-
erly, of Mirsky’s theorem C.2 concerning the extreme points of the set
of complex matrices W such that (|wij |) is doubly substochastic.

C.8. Theorem (Thompson, 1977). The set W of complex n × n
matrices W such that (|wij |) is doubly substochastic is the convex
hull of the matrices with a single nonzero entry in each row and each
column, the nonzero entries being complex numbers of modulus 1.

The proof of this result is not given here.

D Doubly Superstochastic Matrices
and Weak Majorization

In Section C the role played by the doubly substochastic matri-
ces with respect to the ordering ≺w of lower weak majorization is
studied. A similar role is played by doubly superstochastic matrices
with respect to the ordering ≺w of upper weak majorization. Although
there are some analogies, there are surprisingly many differences, and
the theory is not yet complete.

For a nonnegative square matrix P = (pij), it is easy to see with the
aid of C.1 that the following conditions are equivalent:

(i) all row and column sums are at most one;

(ii) there exists a doubly stochastic matrix D = (dij) such that
pij ≤ dij for all i, j.

Either of the conditions (i) or (ii) can be used to define “doubly
substochastic.” But consider the companion conditions:

(iii) all row and all column sums are at least one;

(iv) there exists a doubly stochastic matrix D = (dij) such that
pij ≥ dij for all i, j.

If (iv) holds, then eP ≥ eD = e and Pe′ ≥ De′ = e′, so that (iii) holds.
On the other hand, ⎡

⎢⎢⎣
0 3

4
3
4

3
4

1
4 0

3
4 0 1

4

⎤
⎥⎥⎦

satisfies (iii) but not (iv).
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Because (iii) and (iv) are not equivalent, care must be taken in
defining “doubly superstochastic.”

D.1. Definition. A square matrix P = (pij) is said to be doubly
superstochastic if there exists a doubly stochastic matrix D such that
pij ≥ dij for all i, j.

The class of all doubly superstochastic matrices is convex. How-
ever, the only extreme points are permutation matrices, so the class is
not the convex hull of its extreme points. It can be shown, however,
that the class of doubly superstochastic matrices is the convex hull
of its extreme points and extreme rays (Rockafellar, 1970, Theorem
18.5).

D.2. Proposition. x ≺w y if and only if there exist a finite number
T1, . . . , Tk of T -transforms such that x ≥ yT1 · · ·Tk.

Proof. According to 5.A.9.a, x ≺w y implies that there exists u ∈
R n such that x ≥ u and u ≺ y. By B.1, u can be written in the form
u = yT1 · · · Tk. Conversely, if x ≥ yT1 · · ·Tk, then it is easily seen that
x ≺w y. ||
D.2.a. Proposition. Let x, y ∈ R n

++. Then, x ≺w y if and only if
x can be derived from y by successive application of a finite number
of T -transforms followed by a finite number of transformations of the
form

T (z) = (z1, . . . , zi−1, αzi, zi+1, . . . , zn), α > 1. (1)

Proof. This result is just a restatement of D.2. Here, R n
++ cannot

be replaced by R n
+ , as can be seen by taking y = (0, . . . , 0). ||

D.2.b. Proposition. Let x, y ∈ R n
++. Then x ≺w y if and only if

there exists a doubly superstochastic matrix P such that x = yP .

Proof. Suppose first that x = yP and P = D + Q, where D is
doubly stochastic and Q has nonnegative entries. If z = yD, then
z ≺ y and

k∑
1

x[n−i+1] ≥
k∑
1

z[n−i+1] ≥
k∑
1

y[n−i+1], k = 1, . . . , n,

so x ≺w y.
Next, suppose that x ≺w y. Then by D.2.a, x = yP where P is

a product of T -transforms and transformations of the form (1).
Because products of doubly superstochastic matrices are doubly
superstochastic, P is doubly superstochastic. ||
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D.3. Proposition. If P is a doubly superstochastic matrix, then for
k, l = 1, . . . , n,

(the sum of elements in any k columns) − k

≥ (the sum of elements in the intersection of the k columns
and any l rows) − l;

(2)

(the sum of elements in any l rows) − l

≥ (the sum of elements in the intersection of the l rows
and any k columns) − k.

(3)

Proof. Let P = D + Q, where D is doubly stochastic and Q is
nonnegative. To verify (2) for the first k columns and first l rows, let
δj = (1, . . . , 1, 0, . . . , 0) be the vector with first j components 1 and
remaining components 0, j = 1, . . . , n. Then

ePδ′k − k = eQδ′k ≥ δlQδ
′
k ≥ δlQδ

′
k + δlDδ

′
k − l = δlPδ

′
k − l.

The remaining conditions of (2) can be obtained by suitable inter-
changes of rows and columns of P and repeating the above argument.
Similarly, (3) follows by applying (2) to P ′. ||

To describe necessary and sufficient conditions for a matrix P to
be doubly superstochastic, it is convenient to introduce the following
notation.

For any subsets I and J of the set of integers {1, 2, . . . , n}, write

P (I, J) =
∑
i∈I

∑
j∈J

pij.

In addition, write |I| to indicate the cardinality of I.

D.4. Theorem (Ando, 1989). The following conditions for an n×n
matrix P are equivalent:

(i) P is doubly superstochastic;

(ii) yP ≺w y for all y ∈ R n
+ ;

(iii) P (I, J) ≥ (|I| + |J | − n)+ for every I and J .

Bhandari and Das Gupta (1985) independently proved the equiva-
lence of conditions (i) and (ii) in Theorem D.4.

The proof of D.4 provided by Ando uses the following “interpola-
tion” result. It can be used to characterize both doubly superstochastic
and doubly substochastic matrices.
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D.5. Theorem (Ando, 1989). If two n × n matrices B = (bij) and
C = (cij) satisfy bij ≥ cij ≥ 0 for all i and j, then there exists a doubly
stochastic matrix A = (aij) such that

bij ≥ aij ≥ cij ≥ 0 for all i and j

if and only if

B(I, J) ≥ C(Ic, Jc) + |I| + |J | − n for all I and J,

where Ic = {1, 2, . . . , n} − I.

Observe that having row and column sums of P at least 1 does not
guarantee that P is superstochastic nor that yP ≺w P for all y ∈ R n

+ .
For example,

(15
4 ,

5
4 ,

6
4 ) = (1, 2, 3)

⎡
⎢⎢⎣

0 3
4

3
4

3
4

1
4 0

3
4 0 1

4

⎤
⎥⎥⎦ ,

but (15
4 ,

5
4 ,

6
4) �≺w (1, 2, 3).

E Orderings on D

To obtain results analogous to those of preceding sections for order-
ings of vectors in D = {x : x1 ≥ x2 ≥ · · · ≥ xn}, use can be made
of the fact that D is a convex cone with a very simple structure.
Let δk = (1, . . . , 1, 0, . . . , 0) have its first k components equal to 1,
and remaining components 0, k = 1, . . . , n. For each k, δk ∈ D , and
also −δn = −e ∈ D . Moreover, D is a finitely generated convex cone
(Rockafellar, 1970, p. 170) spanned positively by

T = {δ1, δ2, . . . , δn,−δn}
in the sense that if x ∈ D , then x can be written in the form x =∑
αiδi + β(−δn), where αi ≥ 0, i = 1, . . . , n, β ≥ 0.
As a preliminary result, conditions are obtained on matrices P that

ensure that y ∈ D implies yP ∈ D .

E.1. Proposition. yP ∈ D for all y ∈ D if and only if

k∑
i=1

pij is decreasing in j, k = 1, . . . , n − 1, (1)
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and
n∑
i=1

pi1 = · · · =
n∑
i=1

pin. (2)

Proof. Notice that yP ∈ D for all y ∈ D if and only if tP ∈ D for
all t ∈ T . But (1) is equivalent to δkP ∈ D , k = 1, . . . , n− 1, and (2)
is equivalent to δnP and −δnP ∈ D . ||

Observe that even though conditions (1) and (2) of E.1 look very
much like p(1) � p(2) � · · · � p(n), where p(i) is the ith column of P ,
condition (1) does not require that the components of p(i) be ordered
decreasingly.

E.2. Proposition. An n× n matrix P satisfies

yP ∈ D and yP ≺w y for all y ∈ D

if and only if

1 ≥
k∑
i=1

pi1 ≥
k∑
i=1

pi2 ≥ · · · ≥
k∑
i=1

pin, k = 1, . . . , n− 1, (3)

n∑
i=1

pij = 1, j = 1, . . . , n, (4)

and

k ≥
l∑

j=1

k∑
i=1

pij for all k < l, l = 2, . . . , n. (5)

Proof. Suppose first that yP ∈ D and yP ≺w y whenever y ∈ D .
Then (1) and (2) follow by E.1. Because δkP ≺w δk, k = 1, . . . , n− 1,

(i)
∑l

j=1

∑k
i=1 pij ≤ min(k, l) whenever 1 ≤ k ≤ n−1 and 1 ≤ l ≤ n.

Because δnP ≺w δn and −δnP ≺w −δn,
(ii)

∑l
j=1

∑n
i=1 pij = l, l = 1, . . . , n.

Condition (3) follows from (1) and (i) with l = 1. Condition (4) follows
from (ii) upon taking differences with adjacent values of l, and (5) is
a special case of (i).

Next, suppose that (3), (4), and (5) hold. Then (3) implies (1), and
(4) implies (2) so that yP ∈ D for all y ∈ D . From (3) it follows that

l∑
j=1

k∑
i=1

pij ≤ l,
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which combines with (5) to yield (i). From (4), it follows that (ii) holds.
Consequently, yP ≺w y for all y ∈ D , and this implies yP ≺w y for all
y ∈ D . ||
E.3. Proposition. An n× n matrix P satisfies

yP ∈ D and yP ≺w y for all y ∈ D

if and only if
k∑
i=1

pi1 ≥
k∑
i=1

pi2 ≥ · · · ≥
k∑
i=1

pin ≥ 0, k = 1, . . . , n− 1, (3′)

n∑
i=1

pij = 1, j = 1, . . . , n, (4)

n∑
j=l

k∑
i=1

pij ≥ k − l + 1 for all l ≤ k, l = 2, . . . , n. (5′)

The proof of this result follows that of E.2 and is omitted.

E.4. Proposition. An n× n matrix P satisfies

yP ∈ D and yP ≺ y for all y ∈ D

if and only if (3), (4), and (5) hold and
n∑
j=1

pij = 1, i = 1, . . . , n. (6)

Proof. Suppose that yP ∈ D and yP ≺ y for all y ∈ D . Then by
E.2, (3), (4), and (5) hold. With y = ek, the condition yPe′ = ye′

becomes
∑k

i=1

∑n
j=1 pij = k, k = 1, . . . , n, which is equivalent to (6).

This result can also be obtained by combining (5) with l = n and (5′)
with l = 1.

Conversely, if (3), (4), (5), and (6) hold, then by E.2, yP ≺w y for
all y ∈ D . But (6) also yields yPe′ = ye′, so that yP ≺ y. ||

F Proofs of Birkhoff’s Theorem
and Refinements

A number of proofs of Birkhoff’s theorem (Theorem A.2) have been
offered; see, e.g., Berge (1958, 1959, 1971), Dulmage and Halperin
(1955), Hammersley and Mauldon (1956), Hoffman and Wielandt
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(1953), von Neumann (1953), Mirsky (1958c), Révész (1962), Ryser
(1963), and Vogel (1963). Dantzig (1951) gives an algorithm for solv-
ing a transportation problem, the solution of which leads to Birkhoff’s
theorem. Most of these proofs either have a combinatorial nature or
are geometrically oriented. Here one proof of each kind is given. The
geometric proof makes use of some elementary properties of convex
sets. General discussions of doubly stochastic matrices and Birkhoff’s
theorem are given by Ando (1989) and Seneta (2006).

Geometric Preliminaries

The convex hull of a finite nonempty set of points in R k is called
a convex polytope. Every bounded nonempty intersection of a finite
number of closed half-spaces (i.e., sets of the form {x : ax′ ≤ q}, where
a ∈ R k and q ∈ R) is a convex polytope (Grünbaum, 1967, p. 32).

The n × n doubly stochastic matrices can be viewed as a convex
polytope in R k with k = n2. To see this, rewrite conditions (1) and (2)
of Section A as

pij ≥ 0, i, j = 1, . . . , n, (1)∑
i

pij ≤ 1,
∑
i

pij ≥ 1, j = 1, . . . , n,

(2)∑
j

pij ≤ 1,
∑
j

pij ≥ 1, i = 1, . . . , n− 1.

Here the index i is allowed to run only up to n − 1 to eliminate an
obvious redundancy in the conditions. Each of the n2 + 4n− 2 condi-
tions of (1) and (2) defines a closed half-space in R n2

, and the doubly
stochastic matrices constitute their intersection. By exhibiting exam-
ples it is easy to see that the intersection is not empty. It is also clear
that the intersection is bounded because it lies in the positive orthant
and on the hyperplane

∑
i,j pij = n.

Each extreme point of the convex polytope

N⋂
l=1

{x : a(l)x′ ≤ ql} ⊂ R k

must lie on at least k distinct hyperplanes {x : a(l)x′ = ql}, where a(l) =
(a(l)

1 , . . . , a
(l)
k ). This is just a consequence of the familiar algebraic fact

that a point in R k is not determined by less than k linear equations.
For the convex polytope in R n2

that is formed by the doubly
stochastic matrices, an extreme point must satisfy pij = 0 for at least
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n2 − (2n − 1) = (n − 1)2 pairs (i, j) because there are at most 2n − 1
distinct hyperplanes among the faces of the half-spaces (2).

First proof of A.2. Suppose that P = (pij) is an extreme point in
the convex set of doubly stochastic n× n matrices. Then, as was just
observed, it must be that pij = 0 for at least (n−1)2 pairs (i, j). At least
one row must have n− 1 zero entries and the remaining entry one [by
putting only n−2 zero entries in each row, only n(n−2) = (n−1)2−1
zeros would be distributed]. In the column containing this unit entry,
all other entries must be zero. If this row and column are deleted from
P , then an (n− 1) × (n− 1) doubly stochastic matrix P ∗ is obtained.

To see that P ∗ must be an extreme point in the set of (n−1)×(n−1)
doubly stochastic matrices, suppose for notational convenience that P ∗
is obtained from P by deleting the last row and column. Then if P ∗ has
a representation as λP ∗

1 + (1− λ)P ∗
2 , 0 < λ < 1, where P ∗

1 and P ∗
2 are

doubly stochastic, it follows that

P = λ

[
P ∗

1 0

0 1

]
+ (1 − λ)

[
P ∗

2 0

0 1

]
.

But this shows that P ∗
1 = P ∗

2 (because P is extreme); hence, P ∗ is
extreme.

A repetition of the preceding argument shows that P ∗ must have at
least one row with a unit entry and all other entries zero. By using an
induction on n, it follows that P is a permutation matrix.

To show that each n × n permutation matrix is extreme, suppose
that P is a permutation matrix and P = λP1 + (1 − λ)P2, 0 < λ < 1,
where P1 and P2 are doubly stochastic. Because P1 and P2 have entries
in the interval [0, 1], P cannot have entries consisting of zeros and units
unless P1 = P2.

To complete the proof, it must be shown that the class of doubly
stochastic matrices is the convex hull of its extreme points. This follows
from the fact that the class of doubly stochastic matrices is closed and
bounded (Rockafellar, 1970, Corollary 18.5.1). ||

The theorem of Philip Hall on systems of distinct representatives or
the equivalent theorem of Dénes König [see, e.g., Mirsky (1971, pp. 27
and 188), or Brualdi and Ryser (1991)] can be used to provide com-
binatorial proofs of A.2 (Berge, 1962, p. 106; Birkhoff, 1946; Dulmage
and Halperin, 1955; Hall, 1967, p. 52; Mirsky, 1971, p. 192). One way
of doing this is to use the Hall–König result to first prove the following
lemma.
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F.1. Lemma. If the n × n matrix P = (pij) is doubly stochastic,
then for some permutation (i1, . . . , in) of (1, 2, . . . , n),

p1i1p2i2 · · · pnin > 0.
Proofs of F.1 are given by Mirsky (1971, p. 185) and Berge (1962,

p. 105).
Before applying the lemma to prove Birkhoff’s theorem, notice that

it is equivalent to the fact that the permanent of a doubly stochastic
matrix is strictly positive. The permanent, per P , of the n× n matrix
P = (pij) is given by

per P =
∑
π

p1π(1)p2π(2) · · · pnπ(n),

where the summation extends over all n! permutations π of (1, . . . , n).
Detailed discussions of permanents are given by Minc (1978) and
Brualdi and Ryser (1991).

Remark . A much stronger claim was made by the conjecture of
van der Waerden (1926) which says that if P is doubly stochastic
and n × n, then the permanent per (P ) ≥ n!/nn. The lower bound
here is just the permanent of the matrix with all entries equal to 1/n.
This conjecture received considerable attention and spawned a spec-
trum of generalizations, variations, and partial resolutions. By 1969,
the conjecture had been proved for n ≤ 5. In 1981, two independent
proofs of the conjecture for every n were announced [Egorychev (1981)
and Falikman (1981)]. A third proof was provided by Gyires (1980).
The result is now associated with the name Egorychev, or sometimes
Egorychev–Falikman. To obtain some insight into the priority con-
flict, and more importantly into the methods of proof used by these
researchers, the reader will profit by perusing Egorychev (1996) and
Gyires (1996). See also Gyires (2001), which suggests that key ideas
for the proof were already available in 1977. An excellent brief survey
of the life and times of the van der Waerden conjecture can be found
in Minc’s (1982) review of a 1980 preprint of Egorychev’s proof. A
self-contained discussion of Egorychev’s method can also be found in
the excellent survey article by Ando (1989). See also Minc (1978).

Second proof of A.2. The idea of the following proof seems to have
originated with Dulmage and Halperin (1955).

Let (i1, . . . , in) be a permutation of (1, 2, . . . , n) such that the prod-
uct p1i1p2i2 · · · pnin �= 0, the existence of which is ensured by F.1.
Denote the permutation matrix corresponding to (i1, . . . , in) by P1;
let c1 = min{p1i1 , . . . , pnin}, and define R by

P = c1P1 +R.



F. Proofs of Birkhoff’s Theorem and Refinements 51

Because c1P1 has element c1 in positions 1i1, 2i2, . . . , nin and P has
elements p1i1 , . . . , pnin in the corresponding positions, the choice of
c1 ensures pkik − c1 ≥ 0 with equality for some k. Consequently, R
has nonnegative elements and contains at least one more zero element
than P . Now observe that

e = eP = ec1P1 + eR = c1e+ eR,

e′ = Pe′ = c1P1e
′ +Re′ = c1e

′ +Re′.
(3)

If c1 = 1, then R = 0 and P is already a permutation matrix so the
desired decomposition is trivial. Otherwise, c1 < 1 and from (3) it
follows that R/(1 − c1) is doubly stochastic. In this case, R can be
decomposed so as to reduce again the number of nonzero entries in
the remainder. Consequently, for some k,

P = c1P1 + · · · + ckPk,

where each Pi is a permutation matrix.
It remains to observe that

e = eP = c1eP1 + · · · + ckePk = (c1 + · · · + ck)e,
so that

∑
ci = 1. ||

Note. Zhu (2004) provides a variational proof of Birkhoff’s theorem
A.2 that the extreme points of the convex set of doubly stochastic
matrices are the permutation matrices.

Refinements of Birkhoff’s Theorem

In giving the second proof of A.2 above, Dulmage and Halperin
(1955) show that after at most n2 −n steps of the decomposition, one
arrives at a matrix of nonnegative elements with exactly n positive
elements. Consequently, they conclude that every doubly stochastic
matrix can be written as a convex combination of at most n2 − n+ 1
permutation matrices.

This result was improved independently by Marcus and Ree (1959)
and by Farahat and Mirsky (1960), who show that the bound n2−n+1
can be reduced to n2−2n+2. Additionally, Farahat and Mirsky (1960)
show that n2 − 2n + 2 is the best possible bound. These results are
stated formally in the following theorem.

F.2. Theorem. Every n×n doubly stochastic matrix can be repre-
sented as a convex combination of at most n2−2n+2 permutation ma-
trices. The number n2−2n+2 cannot be replaced by a smaller number.

Farahat and Mirsky (1960) obtain that the bound n2−2n+2 cannot
be improved via a series of lemmas, and the proof of this result is
omitted. We give the geometric proof of Marcus and Ree (1959) that
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shows that representation in terms of n2−2n+2 permutation matrices
is possible. A similar proof was given by Hammersley (1961).

Proof. Because an n×n doubly stochastic matrix is determined by
the elements in its first n− 1 rows and columns, the class of all n× n
doubly stochastic matrices can be regarded as a convex polytope in
(n−1)2 dimensions. Now we apply the basic theorem of Carathéodory
[see, e.g., Grünbaum (1967)] which says that if A is a convex subset
of R d, then each point in A is expressible as a convex combination of
at most d + 1 extreme points. In our case, d = (n − 1)2, so d + 1 =
(n− 1)2 + 1 = n2 − 2n+ 2. ||

A refinement of the bound n2−2n+2 based on additional conditions
has been obtained by Johnson, Dulmage, and Mendelsohn (1960). See
G.8 for another bound.

Extensions of Birkhoff’s theorem

Caron, Li, Mikusiński, Sherwood, and Taylor (1996) discuss the
problem of characterizing the extreme points of the set of all n × m
matrices with unit row averages and unit column averages (i.e., ma-
trices P such that pij ≥ 0 and

∑m
i=1 pij = m, j = 1, 2, . . . , n, and∑n

j=1 pij = n, i = 1, 2, . . . ,m). (In their paper, they call such ma-
trices n×m doubly stochastic matrices. Some potential for confusion
exists because the definition does not reduce to the usual definition of
a doubly stochastic matrix when m = n.)

Li, Mikusiński, Sherwood, and Taylor (1996) discuss the extreme
points of the convex polygon of all nonnegative functions on the prod-
uct {1, 2, . . . ,m1} × · · · × {1, 2, . . . ,mk} with fixed marginals, which
can be viewed as an extension of doubly stochastic matrices to the
k-dimensional case. A complete characterization is provided in the
3 × 3 × 3 case.

G Classes of Doubly Stochastic Matrices

Three special classes of n×n doubly stochastic matrices are introduced
in Section B: products of a finite number (or at most n − 1) T -
transforms; orthostochastic matrices; and uniformly tapered matrices.
If x ≺ y, then according to B.6, x is the image of y under at least one
doubly stochastic matrix from each of these classes. In this section,
some additional properties of these classes are obtained.
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All 2×2 doubly stochastic matrices are orthostochastic. They are all
T -transforms and they can all be written as a product of a uniformly
tapered matrix and a permutation matrix. But in higher dimensions,
these classes of matrices are distinct.

G.1. Examples. Let

P1 =
1
2

⎡
⎣1 1 0

1 0 1
0 1 1

⎤
⎦ , P2 =

1
6

⎡
⎣0 3 3
3 1 2
3 2 1

⎤
⎦ ,

P3 =

⎡
⎢⎣
1 0 0

0 1
4

3
4

0 3
4

1
4

⎤
⎥⎦
⎡
⎢⎣

1
2 0 1

2

0 1 0
1
2 0 1

2

⎤
⎥⎦
⎡
⎢⎣

1
2

1
2 0

1
2

1
2 0

0 0 1

⎤
⎥⎦ =

1
16

⎡
⎢⎣

4 4 8

5 5 6

7 7 2

⎤
⎥⎦ ,

P4 =
1
4

⎡
⎣3 1 0

1 2 1
0 1 3

⎤
⎦ , P5 =

1
16

⎡
⎣9 6 1

6 4 6
1 6 9

⎤
⎦ ,

P6 =
1
64

⎡
⎣49 14 1
14 36 14
1 14 49

⎤
⎦ , P7 =

⎡
⎢⎣

1 0 0

0 1
4

3
4

0 3
4

1
4

⎤
⎥⎦
⎡
⎢⎣

1
2 0 1

2

0 1 0
1
2 0 1

2

⎤
⎥⎦ =

⎡
⎢⎣

1
2 0 1

2

3
8

1
4

3
8

1
8

3
4

1
8

⎤
⎥⎦ ,

P8 =

⎡
⎢⎣
1 0 0

0 1
2

1
2

0 1
2

1
2

⎤
⎥⎦
⎡
⎢⎣

1
2 0 1

2

0 1 0
1
2 0 1

2

⎤
⎥⎦
⎡
⎢⎣

1 0 0

0 1
2

1
2

0 1
2

1
2

⎤
⎥⎦ =

⎡
⎢⎣

1
2

1
4

1
4

1
4

3
8

3
8

1
4

3
8

3
8

⎤
⎥⎦ ,

P9 =

⎡
⎢⎣
1 0 0

0 1
2

1
2

0 1
2

1
2

⎤
⎥⎦ .

The properties of these matrices are exhibited in Table 1.

TABLE 1

P1 P2 P3 P4 P5 P6 P7 P8 P9

Product of T -transforms No (No) Yes No (No) (No) Yes Yes Yes
Permuted uniformly tapered No No No Yes No Yes No Yes Yes
Orthostochastic No No No No Yes Yes Yes No Yes
Hessenberg Yes No No Yes No No No No Yes
Positive Semiddefinite No No No Yes No Yes No Yes Yes
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Explanation of Table 1

In Table 1, the entries (No) indicate that the corresponding matrices
are not products of at most n−1 = 2 T -transforms; whether or not they
are products of more than 2 T -transforms has not been determined.
In the labeling of the first row, “Product of T -transforms” means a
product of finitely many T -transforms. “Permuted uniformly tapered”
means that the matrix is of the form Π1RΠ2, where Π1 and Π2 are
permutation matrices and R is uniformly tapered.

Example P1 was given by Alan Hoffman (Horn, 1954a) to show that
there are doubly stochastic matrices that are not orthostochastic, and
P2 was given by Schur (1923) for the same purpose.

Most of the entries in Table 1 are easily verified. That P1 and P4 are
not products of T -transforms follows from the fact that, in the 3 × 3
case, finite products of T -transforms can never have 2 or 3 zero entries
(only 6, 4, 1, or 0). The orthostochastic matrices P5 and P6 derive
from the orthogonal matrices Γ5 and Γ6, where

Γ5 =
1
4

⎡
⎢⎣

3
√

6 1

−√
6 2

√
6

1 −√
6 3

⎤
⎥⎦ , Γ6 =

1
8

⎡
⎢⎣

7
√

14 1

−√
14 6

√
14

1
√

14 7

⎤
⎥⎦ .

The example P3 is a product of three T -transforms that is not or-
thostochastic. But products of two T -transforms, like P7, are always
orthostochastic. To see this, it is sufficient to consider the product of
two 3 × 3 T -transforms:⎡

⎣α α 0
α α 0
0 0 1

⎤
⎦
⎡
⎢⎣
β 0 β

0 1 0
β 0 β

⎤
⎥⎦ =

⎡
⎢⎣
αβ α αβ

αβ α αβ

β 0 β

⎤
⎥⎦ ,

where 0 ≤ α ≤ 1, α = 1−α, 0 ≤ β ≤ 1, β = 1− β. Then the choice of
signs as in ⎡

⎢⎢⎣
−√

αβ +
√
α −

√
αβ

+
√
αβ +

√
α +

√
αβ

+
√
β 0 −√

β

⎤
⎥⎥⎦

yields an orthogonal matrix.

The Doubly Stochastic Matrices of a Given Majorization

For given vectors x and y such that x ≺ y, the set of doubly stochastic
matrices P such that x = yP is clearly convex. Very little is known
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about this set beyond the fact that it includes a product of at most
n− 1 T -transforms, an orthostochastic matrix, and a product Π1RΠ2

of a uniformly tapered matrix R and permutation matrices Π1, Π2.
The set of all doubly stochastic matrices P such that x = yP can

contain but one matrix, as is the case, e.g., when y has distinct com-
ponents and P is a permutation. Lemma G.6 provides necessary and
sufficient conditions for uniqueness. The following example may be of
interest.

G.2. Example. If x = (4, 3, 2) and y = (5, 3, 1), then x ≺ y. For any
doubly stochastic matrix P = (pij) such that x = yP ,

xj =
3∑
i=1

yipij, j = 1, 2, 3.

It follows from the first two equations (the third is redundant) and
the fact that the columns add to 1 that

3 = 4p11 + 2p21,

2 = 4p12 + 2p22.

If u = p12 and v = p21, then P = P (u, v) has the form

P (u, v) =

⎡
⎢⎢⎢⎢⎣

3 − 2v
4

u
1
4

+
v

2
− u

v 1 − 2u 2u− v

1 − 2v
4

u
3
4

+
v

2
− u

⎤
⎥⎥⎥⎥⎦ .

Since all the elements are nonnegative, the feasible region for u and v
is shaded in Fig. 1. The extreme points are the matrices P (u, v):

P (0, 0) =

⎡
⎢⎢⎣

3
4 0 1

4

0 1 0
1
4 0 3

4

⎤
⎥⎥⎦ , P (1

2 ,
1
2 ) =

⎡
⎢⎢⎣

1
2

1
2 0

1
2 0 1

2

0 1
2

1
2

⎤
⎥⎥⎦ ,

P (1
4 , 0) =

⎡
⎢⎢⎣

3
4

1
4 0

0 1
2

1
2

1
4

1
4

1
2

⎤
⎥⎥⎦ , P (1

4 ,
1
2 ) =

⎡
⎢⎢⎣

1
2

1
4

1
4

1
2

1
2 0

0 1
4

3
4

⎤
⎥⎥⎦ .

T -Transform

The matrix P (0, 0) is itself a T -transform and satisfies x = yP .
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v

u
0

0

1

11
4

1
4

1
2

3
4

1
2

3
4

Figure 1. Feasible regions for (u, v).

Uniformly Tapered

The conditions for P (u, v) to be uniformly tapered require symmetry,
so that u = v. This yields

P (u, u) =

⎡
⎢⎢⎢⎢⎣

3
4
− u

2
u

1
4
− u

2
u 1 − 2u u

1
4
− u

2
u

3
4
− u

2

⎤
⎥⎥⎥⎥⎦ ,

and the condition that P (u, u) be uniformly tapered imposes the
constraint 1

6 ≤ u ≤ 1
3 .

Symmetric Orthostochastic

The conditions of orthogonality require

ε1

√(
3
4
− u

2

)
u+ ε2

√
u(1 − 2u) + ε3

√(
1
4
− u

2

)
(4) = 0,

δ1

√(
3 − 2u

4

)(
1 − 2u

4

)
+ δ2u+ δ3

√(
3 − 2u

4

)(
1 − 2u

4

)
= 0,

where the εi and δi are ±1. The choice δ1 = −δ3 yields u = 0 and the
condition δ1 = δ3 yields u = 3

8 . Consequently,

P (3
8 ,

3
8) =

⎡
⎢⎢⎣

9
16

3
8

1
16

3
8

2
8

3
8

1
16

3
8

9
16

⎤
⎥⎥⎦
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is symmetric orthostochastic, and the orthogonal matrix generating
this matrix is ⎡

⎢⎢⎢⎢⎢⎣

+
√

9
16 +

√
3
8 +

√
1
16

−
√

3
8 +

√
2
8 +

√
3
8

+
√

1
16 −

√
3
8 +

√
9
16

⎤
⎥⎥⎥⎥⎥⎦
.

In the above example, the set of doubly stochastic matrices P such
that x = yP has four extreme points. Even in the case n = 3, the
number of extreme points is not known.

Uniformly Tapered Matrices

G.3. Proposition (Hoffman, 1969). x ≺ y if and only if there exists
a uniformly tapered matrix R such that x↓ = y↓R.

Of course, x↓ = y↓R means that there exist permutation matrices
Π1, Π2 such that x = yΠ1RΠ2.

Hoffman (1969) gives three proofs of this result. A proof due to
Dragomir Djoković is the simplest of the three, though perhaps the
least illuminating.

Proof. For notational convenience, assume that x, y ∈ D ; that is,
x = x↓, y = y↓.

The result is trivial for n = 1. For n > 1, two cases are considered.

Case 1. Suppose there is a coincidence at k; i.e.,
∑k

1 xi =
∑k

1 yi

for some k < n. Write x = (
•
x,

••
x), y = (

•
y,

••
y ), with

•
x : 1 × k,

•
y : 1 × k,

•
x ≺ •

y,
••
x ≺ ••

y so that, by induction, there exist uniformly tapered
matrices R(1) and R(2) such that

•
x =

•
yR(1),

••
x =

••
yR(2).

But then

(
•
x,

••
x) = (

•
y,

••
y )

[
R(1) 0

0 R(2)

]
.

The proof for this case will be completed by showing that R =
diag(R(1), R(2)) is uniformly tapered. The first row and last column
of R are r(1)11 , . . . , r

(1)
1k , 0, . . . , 0 and r

(2)
nn , . . . , r

(2)
n,n−k+1, 0, . . . , 0, which

satisfy (2) and (3) of B.5, respectively. Condition (4) of B.5 is satisfied
if 2 ≤ i ≤ j ≤ k− 1 or k+ 2 ≤ i ≤ j ≤ n− 1. Thus it is necessary only
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to check the case that i ≤ k and j ≥ k. The only nontrivial choice of
i and j is when i ≤ k and j = k. But then

[
ri−1,k ri−1,k+1

ri,k ri,k+1

]
=

⎡
⎣r

(1)
i−1,k 0

r
(1)
i,k 0

⎤
⎦ ,

in which case condition (4) of B.5 reduces to r(1)i,k ≥ r
(1)
i−1,k, which was

guaranteed by the hypothesis.

Case 2. Suppose that for all k = 1, . . . , n − 1,
∑k

1 xi <
∑k

1 yi. By
5.A.7.b there exists a unique α, 0 < α ≤ 1, such that x ≺ α(y, . . . , y)+
(1−α)y ≡ z has a coincidence for at least one point k. By case 1, there
exists a doubly stochastic uniformly tapered matrix R such that

x = zR = [α(y, . . . , y) + (1 − α)y]R.

Note that (y, . . . , y) = ye′e/n ≡ yR0, where R0 is uniformly tapered.
Consequently,

x = [αyR0 + (1 − α)y]R = y[αR0 + (1 − α)R].

But the set of uniformly tapered matrices is convex, which completes
the proof. ||

We have used the fact that the set of doubly stochastic uniformly
tapered matrices is convex, and it is of interest to identify the extreme
points.

G.3.a. Proposition (Hoffman, 1969). The extreme points of the set
of uniformly tapered matrices have the form

R = Er1 ⊕ · · · ⊕Erk
, (1)

where Er = (1/r)e′e is the r × r matrix with all entries equal to 1/r.

Of course, the set of uniformly tapered matrices is the convex hull of
these extreme points, because the class of uniformly tapered matrices
is closed and bounded (Rockafellar, 1970, Corollary 18.5.1).

For further discussion of uniformly tapered matrices and a general-
ization, see Kästner and Zylka (1993).

Nonsingular Doubly Stochastic Matrices

Doubly stochastic matrices may or may not be singular. For what pairs
of vectors x, y such that x ≺ y does there exist a nonsingular doubly
stochastic matrix P such that x = yP?

The answer to this question involves the notion of a coincidence. If
x, y ∈ D and

∑k
1 xi =

∑k
1 yi for some k < n, then we say there is a

coincidence at k.
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G.4. Lemma (Levow, 1972). If n > 1, x ≺ y on D , x1 > xn, and
there are no coincidences, then there is a nonsingular doubly stochastic
matrix P such that x = yP .

The proof of this result is not given here.

G.4.a. Suppose that x ≺ y on D and coincidences occur only at
k1 < k2 < · · · < kl+1 = n. If x1 > xk1 and xki+1, i = 1, . . . , l, then
there is a nonsingular doubly stochastic matrix P such that x = yP .

To prove this result, it is necessary to observe only that P can be
obtained as a direct sum of nonsingular doubly stochastic matrices
obtained from G.4.

Positive Doubly Stochastic Matrices

For what pairs of vectors x, y such that x ≺ y does there exist a strictly
positive doubly stochastic matrix P (i.e., with pij > 0 for every i, j)
such that x = yP?

G.5. Lemma (Brualdi, 1984). If x, y ∈ D are such that x ≺ y, then
there exists a doubly stochastic matrix P with all elements strictly
positive such that x = yP if and only if one of the following holds:

(i) x = c(1, . . . , 1), for some c ∈ R;

(ii) there are no coincidences between x and y.

Uniqueness of the Doubly Stochastic Matrix
of a Given Majorization

Brualdi (1984) identifies a simple necessary and sufficient condition
to ensure that a unique doubly stochastic matrix is associated with a
given majorization.

G.6. Lemma (Brualdi, 1984). Let x, y ∈ D be such that x ≺ y.
There exists a unique doubly stochastic matrix P with x = yP if and
only if the following two conditions hold:

(i) y has distinct components;

(ii) for some integer q ≤ n, x and y have coincidences at positions
1 ≤ k1 < k2 < . . . < kq−1 ≤ n − 1, where kj − kj−1 ≤ 2 for each
j = 1, 2, . . . , q − 2.

Dahl (2004) provides a characterization of situations in which the
unique doubly stochastic matrix in G.6 is of tridiagonal form.
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Hessenberg Matrices

Instead of characterizing majorization in terms of uniformly tapered
matrices, Brualdi and Hwang (1996) provide an alternative description
in terms of Hessenberg matrices.

An n × n matrix H = (hij) is called a lower Hessenberg matrix or,
more simply, a Hessenberg matrix if it is of the form

H =

⎡
⎢⎢⎢⎢⎣

h11 h12 0 · · · 0
h21 h22 h23 0 · · ·

...

...
hn1 hn2 · · · hnn

⎤
⎥⎥⎥⎥⎦ ;

that is, hij = 0 for j > i+1. The transpose of a Hessenberg matrix is an
upper Hessenberg matrix with elements satisfying hij = 0 if j < i− 1.
Note that identity matrices and lower triangular matrices are simple
examples of Hessenberg matrices.

A suitable doubly stochastic matrix for the majorization x ≺ y can
be constructed using Hessenberg matrices as follows.

G.7. Proposition (Brualdi and Hwang, 1996). A necessary and suf-
ficient condition for x ≺ y is that for some r ≤ n there exist doubly
stochastic Hessenberg matrices Hi, i = 1, 2, . . . , r, such that

x↓ = y↓(H1 ⊕H2 ⊕ . . . ⊕Hr)′,

where the sum of the orders of the Hi is n.

G.7.a. Proposition (Brualdi and Hwang, 1996). If x ≺ y, then
x↓ = y↓PHQ, where P and Q are permutation matrices and H is a
doubly stochastic Hessenberg matrix.

Note. Proposition G.7 contains both necessary and sufficient
conditions, whereas the result G.7.a is only in one direction.

Proposition G.7 is used in the proof of the following:

G.8. Corollary (Brualdi and Hwang, 1996). The majorization x ≺ y
holds if and only if x is expressible as a convex combination of at most
(n2 − n+ 2)/2 permutations of y.

Notes. Hwang (1999) supplies an alternative proof of G.8 using
a more complicated version of Hessenberg matrices. A significant
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improvement of the bound in G.8 is obtained by Zhan (2003) by
reducing the bound from (n2 − n+ 2)/2 to n.

G.9. Proposition (Chao and Wong, 1992). For x, y ∈ R n, x ≺ y if
and only if x↓ = y↓A for some positive semidefinite doubly stochastic
matrix A.

The proof provided by Chao and Wong (1992) uses the theory of
M -matrices (see 9.I) and is too detailed to reproduce here.

H More Examples of Doubly
Stochastic and Doubly
Substochastic Matrices

In the following, some general examples of doubly stochastic matrices
are generated.

H.1. Example. A Latin square of order n is an n×nmatrix in which
for some a1, . . . , an, every row and every column is a permutation of
{a1, a2, . . . , an}. Examples of Latin squares of order 3, 4, and 5 are

⎡
⎣1 2 3
3 1 2
2 3 1

⎤
⎦ ,

⎡
⎢⎢⎢⎣
1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

5 1 4 2 3
1 2 5 3 4
4 5 3 1 2
2 3 1 4 5
3 4 2 5 1

⎤
⎥⎥⎥⎥⎥⎦
.

Define an n× n matrix A = (aij) by

aij =
{

(−1)i
[
i

2

]
+ (−1)j

[
j

2

]}
(mod n),

where [x] is the least integer ≥ x. The matrix of order 5 above is of this
form. Such a matrix has the property that each integer 1, 2, . . . , n ap-
pears exactly once in every row and every column and is consequently
a Latin square. This class of matrices and its relation to graphs is dis-
cussed by Beineke and Harary (1965) and Brualdi and Ryser (1991). By
making the correspondence i with pi, where pi ≥ 0,

∑
pi = 1, a doubly

stochastic matrix is obtained. Because some doubly stochastic matri-
ces have rows (or columns) that are not permutations of each other, it
is clear that not all doubly stochastic matrices arise in this way.
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Circulant Matrices

H.2. Example. A matrix of the form

C =

⎡
⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3
...

...
...

...
...

a1 a2 a3 · · · a0

⎤
⎥⎥⎥⎥⎥⎦

is called a circular matrix, or a circulant. (The literature is unclear
on this name; in some instances the term “circulant” refers to the
determinant of such a matrix.) Note that the matrix C is also a Latin
square; not every Latin square can be permuted to become a circulant.
For a more detailed discussion of circulant matrices beyond that given
here, see Davis (1979).

Because the first row of C determines all the elements of the matrix,
the notation C(a0, a1, . . . , an−1) or C(a), where a = (a0, a1, . . . , an−1),
provides a convenient representation of the matrix.

The particular matrix Q = C(0, 1, 0, . . . , 0) plays a singular role
because

Qk = C(0, , . . . , 0, 1, 0, . . . , 0),

where the 1 is in the (k + 1)st position. Consequently,

C(a) = a0I + a1Q+ a2Q
2 + · · · + an−1Q

n−1. (1)

Note that Q0 = Qn = I.

If C(a) is nonsingular, then its inverse is a circulant:

C−1(a) = C(b) = b0I + b1Q+ b2Q
2 + · · · + bn−1Q

n−1.

In general, there is no simple formula for the inverse, but the
coefficients b0, b1, . . . , bn−1 can be obtained by solving

C(a)C(b) = Σn−1
i,j=0aibjQ

i+j = I,

where i+ j is taken (mod n).
If each ai ≥ 0 and

∑n−1
0 ai = 1, then C(a) is doubly stochastic. An

important example is that of a circular moving average.

Circular Moving Average

H.3. Definition. The vector of kth order circular moving averages
of a set of elements x1, x2, . . . , xn is x(k) = (x(k)

1 , . . . , x
(k)
n ), in which

x
(k)
i = (xi + xi+1 + · · · + xi+k−1)/k, (2)
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where i+ k − 1 is taken (mod n).

Equivalently, for k = 1, . . . , n,
x(k) = (x1, x2, . . . , xn)C(1/k, 0, . . . , 0, 1/k, . . . , 1/k︸ ︷︷ ︸). (3)

For example, for n = 4, k = 3,

x(3) =
(
x1 + x2 + x3

3
,
x2 + x3 + x4

3
,
x3 + x4 + x1

3
,
x4 + x1 + x2

3

)
.

Clearly, a vector of moving averages has elements that are “more
equal” than the elements of the original vector. In statistical time
series analysis, moving averages are used to smooth data.

H.3.a. Proposition For all k = 1, . . . , n, x � x(k).

Proof. This follows from (3) and the fact that
C(1/k, 0, . . . , 0, 1/k, . . . , 1/k︸ ︷︷ ︸) is doubly stochastic. ||

H.3.b. Remark. It seems intuitive that x(k) � x(k+1), because at
each stage the vector of elements becomes more equal until ultimately
x(n) = (x, . . . , x), where x = Σxi/n. However, a proof that x(k) �
x(k+1) remains elusive. Note that the assumption that x1 ≥ · · · ≥
xn is necessary, as can be seen from the example x = (6, 0, 6, 0), in
which case x(2) = (3, 3, 3, 3) and x(3) = (4, 2, 4, 2), so that x(3) � x(2).
But if the same elements of x are arranged in decreasing order as
x = (6, 6, 0, 0), then x(2) = (6, 3, 0, 3) and x(3) = (4, 2, 2, 4), so that
x(2) � x(3).

Other Patterned Matrices

H.4. g-Circulants. The classical circulant, as above, shifts by one
column. When the shift is by g columns, the matrix is called a
g-circulant. From the fact that if A is a g-circulant and B is an
h-circulant, then AB is a gh-circulant, a variety of doubly stochastic
matrices can be generated from a single doubly stochastic matrix.

H.4.a. The following is an (n− 1)-circulant

C̃ =

⎡
⎢⎢⎢⎢⎢⎣

a0 a1 · · · an−2 an−1

a1 a2 · · · an−1 a0

a2 a3 · · · a0 a1
...

...
...

...
an−1 a0 · · · an−2

⎤
⎥⎥⎥⎥⎥⎦
,
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which is doubly stochastic whenever each ai ≥ 0 and
∑n−1

0 ai = 1.
Here,

C̃ = W2C = CW2,

where W2 is equal to C̃ in which a0 = 1 and aj = 0 for j �= 0.

Particularly simple special cases of C and C̃ arise when ai = b if
i �= k and ak = 1 − (n − 1)b ≡ a, k = 0, 1, . . . , n − 1. In order that C
and C̃ have nonnegative entries, b is restricted to 0 ≤ b ≤ 1/(n − 1).
Define W1 equal to C̃ in which a1 = 1 and aj = 0 for j �= 1. It can be
verified that

C−1 = W n−1
1

⎛
⎝ 1 − b

1 − nb
I − b

1 − nb

n∑
j=1

W j
1

⎞
⎠ , C̃−1 = W2C

−1.

In case k = 0,

C =

⎡
⎢⎢⎢⎣
a b b · · · b

b a b · · · b
...

...
...

...
b b b · · · a

⎤
⎥⎥⎥⎦ , C̃ =

⎡
⎢⎢⎢⎣
b b · · · b b a

b b · · · b a b
...

...
...

...
...

a b · · · b b b

⎤
⎥⎥⎥⎦ ,

and

C−1 =
1

1 − nb

⎡
⎢⎢⎢⎣
1 − b −b −b · · · −b
−b 1 − b −b · · · −b
...

...
...

...
−b −b −b · · · 1 − b

⎤
⎥⎥⎥⎦ ,

C̃−1 =
1

1 − nb

⎡
⎢⎢⎢⎣

−b −b · · · −b −b 1 − b

−b −b · · · −b 1 − b −b
...

...
...

...
...

1 − b −b · · · −b −b −b

⎤
⎥⎥⎥⎦ .

H.5. Symmetric tridiagonal matrix. For 0 < αi, i = 1, . . . ,
n− 1, αi + αi+1 = 1, i = 1, . . . , n− 2, the matrix Aα =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − α1 α1 0 0 · · · 0

α1 1 − α1 − α2 α2 0 · · · 0

0 α2 1 − α2 − α3 α3 · · · 0

...
...

...
...

...

0 0 · · · αn−2 1 − αn−2 − αn−1 αn−1

0 0 · · · · · · αn−1 1 − αn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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is a doubly stochastic symmetric tridiagonal matrix. If αi + αi+1 < 1
for some i, then Aα is doubly substochastic.

H.6. Examples. The following are examples of orthogonal matrices
having e/

√
n as a first row, and which yield orthostochastic matrices

with first row e/n.

H.6.a. Γ = (γij), where

γij =
1√
n

[
sin

2π(i− 1)(j − 1)
n

+ cos
2π(i− 1)(j − 1)

n

]
.

This matrix is symmetric. The case n = 3 yields
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
3

1√
3

1√
3

1√
3

√
3 − 1
2
√

3

√
3 − 1
2
√

3

1√
3

√
3 − 1
2
√

3
+
√

3 − 1
2
√

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
3

1
3

1
3

4 − 2
√

3
12

4 + 2
√

3
12

1
3

4 + 2
√

3
12

4 − 2
√

3
12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

as the orthogonal matrix and the orthostochastic matrix generated
from it.

H.6.b. To obtain the generalized Helmert matrix, let w1, . . . , wn be
positive with

∑
w2
i = 1, and define sj = (w2

1 + · · · + w2
j )

1/2. Then

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 w2 w3 w4 · · · wn

w1w2

s1s2
−s1
s2

0 0 · · · 0

w1w3

s1s3

w2w3

s2s3
−s2
s3

0 · · · 0

...
...

...
...

...
w1wn
s1sn

w2wn
s2sn

w3wn
s3sn

· · · −sn−1

sn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is orthogonal. The case wi = 1/n is a well-known special Helmert
matrix.

H.7. If P = (pij) and Q = (qij) are doubly substochastic, then the
Hadamard – Schur product (see 9.J)

R = P ◦Q = (pijqij)
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is doubly substochastic. This result follows from the observations that
each pijqij ≥ 0 and∑

i

pijqij ≤
∑
i

qij ≤ 1,
∑
j

pijqij ≤
∑
j

qij ≤ 1.

H.7.a. If U and V are unitary matrices, then the matrices

(|uijvij |), (|R (uij)|), (|R (uijvij)|)
are all doubly substochastic, where R (uij) denotes the real part of uij.

These observations follow from the facts that the matrices (|uij |)
and (|vij |) are doubly stochastic and |R (uij)| ≤ |uij |.
H.7.b. Proposition. If P and Q arem×m and n×n doubly stochas-
tic matrices, respectively, then the Kronecker product (see 19.G) P⊗Q
is an mn×mn doubly stochastic matrix.

If either P orQ is doubly substochastic (superstochastic), then P⊗Q
is doubly substochastic (superstochastic),

Proof. From 19.G.1,

(e⊗ e)(P ⊗Q) = (eP ⊗ eQ) = (e⊗ e),

with a similar argument for columns. The proofs for substochastic and
superstochastic cases are similar. ||
H.7.c. Proposition. If P and Q are m×m and n×n doubly stochas-
tic matrices, respectively, then the Kronecker sum (see 19.G) P ⊕Q is
an mn×mn doubly stochastic matrix.

If either P or Q is doubly substochastic (superstochastic), then
P ⊕Q is doubly substochastic (superstochastic).

Proof. From the definition in 19.G,

e(P ⊕Q) = ((p11 + · · · + pn1) eQ, . . . , (p1n + · · · + pnn) eQ)
= (e, . . . , e) = e. ||

H.8. Proposition (Martignon, 1984). Let 1 = λ1 ≥ λj ≥ . . . ≥
λn ≥ 0. There exists an n × n doubly stochastic matrix P whose
eigenvalues are {λ1, . . . , λn}, with elements

pii =
i∑

k=1

αk
n− k + 1

+
n∑

k=i+1

αk, i = 1, 2, . . . , n,

and

pij = pji =
α1

n
+

α2

n− 1
+ · · · + αi

n− i+ 1
, 1 ≤ i < j ≤ n,

where αj = λj − λj+1, j = 2, . . . , n, and λn+1 = 0.
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Proof . A direct argument shows that
∑n

j=1 pij =
∑n

1 αj = λ1,
so that P is stochastic. But P is a symmetric matrix, so it is dou-
bly stochastic. The determination of the eigenvalues is obtained by
showing that det(P − λjI) = 0, j = 1, ..., n. ||

I Properties of Doubly Stochastic Matrices

Properties of doubly stochastic matrices are considered here that deal
with inverses, idempotents, products, square roots, and some special
classes of matrices.

Inverse of a Doubly Stochastic Matrix

I.1. If P is doubly stochastic and nonsingular, then Q = P−1 satisfies

eQ = e and Qe′ = e′.

Proof . The result follows immediately by noting that eP = e
implies e = eP−1 = eQ, and Pe′ = e′ implies e′ = P−1e′ = Qe′. ||

Note that Q need not have nonnegative elements, so that Q need
not be doubly stochastic. However, if P is a permutation matrix, then
P−1 = P ′ so Q is doubly stochastic.

I.1.a. If P and P−1 = Q are both doubly stochastic, then P is a
permutation matrix.

Proof (Snijders, 1976). Because P is doubly stochastic, xP ≺ x
for all x ∈ R n. Because P−1 is doubly stochastic and x = (xP )P−1,
x ≺ xP for all x ∈ R n. But x ≺ xP ≺ x for all x implies that P is a
permutation matrix. ||

A simple elementary proof of I.1.a is given by Berge (1963) which
makes use of the Cauchy–Schwarz inequality. Farahat (1965/1966)
gives a proof based on the fact that the eigenvalues of a doubly
stochastic matrix lie in the closed unit disk.

I.1.b. If P is a doubly stochastic matrix such that P−1 = P ′, then
P is a permutation matrix.

This is an immediate consequence of I.1.a.

The Moore–Penrose inverse AG is the unique matrix satisfying A =
AAGA, AG = AGAAG, (AAG) and (AGA) Hermitian. Plemmons and
Cline (1972) show that A and AG are both doubly stochastic if and
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only if A = AXA has a solution, X, that is doubly stochastic. In this
case, AG = A′.

Because a doubly stochastic matrix can be singular, one might ask,
if P and PG are both doubly stochastic, does this imply that P is a
permutation matrix? That this is not the case may be seen by choosing
P = (1/n)e′e, in which case PG = (1/n)e′e. A more general discussion
of such questions is considered by Montague and Plemmons (1973).
They define a doubly stochastic matrix P to be regular provided the
matrix equation PXP = P has a solution X that is doubly stochastic,
and prove the result: Every regular doubly stochastic matrix is ortho-
stochastic. The converse of this result is not true, as can be seen from
the example

A =
1
3

[
1 2
2 1

]
,

which is orthostochastic, but not regular.

Idempotent Doubly Stochastic Matrices

Note that the doubly stochastic matrices E = (1/m)e′e are idempotent
of rank 1. Doob (1942, Theorem 2) characterized the class of stochastic
idempotent matrices. His result, when applied to doubly stochastic
matrices, yields the following simple theorem.

I.2. Theorem (Doob, 1942). An n × n doubly stochastic matrix E
of rank k is idempotent if and only if

E = P RP ′,

where P is a permutation matrix and R has the form (1) of G.3.a with
r1 ≥ · · · ≥ rk ≥ 1.

For example, the idempotents of order 4 are

(i) one idempotent of rank 1:
⎡
⎢⎢⎢⎢⎢⎣

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎤
⎥⎥⎥⎥⎥⎦

;
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(ii) six idempotents of rank 2, which are permutations of
⎡
⎢⎢⎢⎢⎢⎣

1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2

⎤
⎥⎥⎥⎥⎥⎦

;

and four additional idempotents of rank 2 which are permutations of
⎡
⎢⎢⎢⎢⎣

1
3

1
3

1
3 0

1
3

1
3

1
3 0

1
3

1
3

1
3 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ;

(iii) one idempotent of rank 4:
⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ .

Alternative proofs of I.2 and more detailed discussions of idempo-
tents are given by Farahat (1965/1966) and Schwarz (1967). Achilles
and Sinkhorn (1995) characterize all doubly stochastic matrices whose
squares are idempotent.

Positive Semidefinite Doubly Stochastic Matrices

For what positive semidefinite doubly stochastic matrices are the pos-
itive semidefinite square roots doubly stochastic? This question is
considered by Marcus and Minc (1962).

I.3. Theorem. If P is positive semidefinite and doubly stochastic
and if pii ≤ 1/(n− 1), then the positive semidefinite square root P 1/2

is doubly stochastic.

Proof. We can write P = ΓDλΓ′, where Γ is orthogonal and Dλ =
diag(λ1, . . . , λn), and the eigenvalues λ ≡ λ(P ) are nonnegative. Then,
by hypothesis,

eP = eΓDλΓ′ = e,
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so that eΓDλ = eΓ. Let x = eΓ, so that xiλi = xi. Then xi = 0 or
λi = 1. But in either case, xiλ

1/2
i = xi, so that eΓD1/2

λ = eΓ. But then
e(ΓD1/2

λ Γ′) ≡ eP 1/2 = e. Thus, the row (and column) sums are one.
Now suppose that some element, say t1n, of P 1/2 ≡ T is negative.

Because t11 + t12 + · · ·+ t1n = 1, it follows that t11 + t12 + · · ·+ t1,n−1 =
1 − t1n > 1. By the Cauchy–Schwarz inequality,

1 < (t11 + · · · + t1,n−1)2

≤ (t211 + · · · + t21,n−1)(n− 1)

≤ (t211 + · · · + t21n)(n− 1) = p11(n− 1),

which contradicts the hypothesis. ||
The example

P =

⎡
⎢⎢⎣

3
4 0 1

4

0 3
4

1
4

1
4

1
4

1
2

⎤
⎥⎥⎦ , P 1/2 =

1
12

⎡
⎢⎣

5 + 3
√

3 5 − 3
√

3 2

5 − 3
√

3 5 + 3
√

3 2
2 2 8

⎤
⎥⎦

shows that the condition pii ≤ 1/(n−1) cannot be dropped. Note that
the rows (and columns) of P 1/2 sum to one.

I.3.a. If A > 0, then the Hadamard–Schur product A◦A−1 is doubly
stochastic and is positive definite.

Ordering Doubly Stochastic Matrices

Sherman (1952) has introduced a partial ordering of the n× n doubly
stochastic matrices by defining

P1 � P2

to mean that there exists a doubly stochastic matrix P3 such that

P1 = P2P3.

By A.3, we conclude that

P1 � P2 implies yP1 ≺ yP2

for all y ∈ R n. Shizuo Kakutani posed the conjecture that the con-
verse is true: If yP1 ≺ yP2 for all y ∈ R n, then P1 � P2. However,
a counterexample to this conjecture was provided by Alfred Horn
(see Sherman, 1954). To find a counterexample, one must go as high



I. Properties of Doubly Stochastic Matrices 71

as n = 4 dimensions. It has been shown by Schreiber (1958) that
Kakutani’s conjecture is true if P2 is nonsingular.

Convergence of Deterministic and Random Sequences
Ordered by Majorization

Let D1,D2, . . . be a sequence of n×n doubly stochastic matrices. With
an initial vector x(0) = (x1, x2, . . . , xn), the equations

x(j) = x(j−1)Dj = x(0)D1D2 · · ·Dj, j = 1, 2, . . . , (1)

define a sequence of vectors ordered by majorization. That is,

x(0) � x(1) � x(2) � · · · .
Each term in this sequence majorizes xe, where x = 1

n

∑n
1 xi and

e = (1, . . . , 1). The corresponding sequence of ordered vectors {x(j)
↓ }∞j=0

must converge. Some questions about the convergence of the sequence
{x(j)}∞j=0 are considered in this section. Cases where the Dj are all
equal are readily dealt with. In some respects, cases where the Dj are
not necessarily equal and where they are allowed to be random are
more interesting.

Note that when x(0) is a probability vector, i.e., xi ≥ 0, i =
1, 2, . . . , n, and

∑
xi = 1, then x(j) can be thought of as the state

probabilities in a Markov chain with n states. In this context with Dj

independent of j, issues of convergence in stationary Markov chains
are well understood. If the Dj are not all the same, there are results
available for convergence in such nonstationary Markov chains, usually
involving consideration of ergodic coefficients.

I.4. Example. The matrix

D =

⎡
⎢⎢⎣

0 1
2 0 1

2
1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0

⎤
⎥⎥⎦

is periodic;

D2 =

⎡
⎢⎢⎣

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

⎤
⎥⎥⎦
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and D3 = D. So, in general, D2k+1 = D and D2k = D2, k = 1, 2, . . . .
Consequently, if Dj = D, j = 1, 2, . . . , in (1), then

x(2k+1) = x(1) =
(
x2 + x4

2
,
x1 + x3

2
,
x2 + x4

2
,
x1 + x3

2

)
,

and

x(2k) = x(2) =
(
x1 + x3

2
,
x2 + x4

2
,
x1 + x3

2
,
x2 + x4

2

)
.

Thus the sequence {x(j)}∞j=0 does not converge, but alternates between

two orderings of x(1)
↓ . However, {x(j)

↓ }∞j=0 does converge (rapidly) to
(y1, y1, y2, y2), where

y1 = max
{
x1 + x3

2
,
x2 + x4

2

}
and y2 = min

{
x1 + x3

2
,
x2 + x4

2

}
.

Notice that in this example, D2 is idempotent. If in (1), Dj = D2,
j = 1, 2, . . . , then

x(j) =
(
x1 + x3

2
,
x2 + x4

2
,
x1 + x3

2
,
x2 + x4

2

)
,

so the sequence {x(j)}∞j=0 converges, but not to xe. The matrix D2

is said to be reducible; with D2 as the transition matrix of a Markov
chain, states 1 and 3 form a closed class, as do states 2 and 4. No
transitions occur between states in different closed classes.

In Example I.4, (1) holds with all matrices Dj equal. When Dj is
allowed to vary with j, the sequence {x(j)}∞j=0 can converge to a variety
of limits.

I.5. Example. Suppose that n = 2 and x(0) = (x(0)
1 , x

(0)
2 ) � (y1, y2),

where x(0)
1 > x

(0)
2 , y1 ≥ y2, and x(0)

1 > y1. The aim of this example is
to define a sequence D1,D2, . . . of strictly positive doubly stochastic
matrices such that with x(j) defined by (1), limj→∞ x(j) = y.

Let

D1 =
[
α1 α1

α1 α1

]
, where α1 = 1 − α1 and α1 =

x
(0)
1 + y1 − 2x(0)

2

2(x(0)
1 − x

(0)
2 )

.
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Recursively define

Dj =
[
αj αj
αj αj

]
, where αj =

x
(j−1)
1 + y1 − 2x(j−1)

2

2(x(j−1)
1 − x

(j−1)
2 )

.

This sequence of matrices is chosen so that x(1)
1 moves half the way

from x
(0)
1 to y1, x

(2)
1 moves half the way from x

(1)
1 to y1, and the

process proceeds by always moving half of the remaining distance to
y1. In this process, x(j)

2 moves up half the remaining distance to y2.

Thus limj→∞ x(j) = y. This requires limj→∞αj = 1, and limj→∞Dj

is the 2 × 2 identity matrix.

I.6. Lemma. For x ∈ R n, let d(x) = maxi xi−mini xi = x[1] −x[n].
If D = (dij) is an n × n doubly stochastic matrix with all elements
≥ ε, then d(xD) ≤ (1 − 2ε) d(x).

Proof. Let y = xD, so that yj =
∑
xidij. Then

εx[1] + (1 − ε)x[n] ≤ yj ≤ (1 − ε)x[1] + εx[n], j = 1, 2, . . . , n.

If yi > yj , then

yi − yj ≤ (1 − ε)x[1] + εx[n] − [εx[1] + (1 − ε)x[n]]
= (1 − 2ε)x[1] − (1 − 2ε)x[n] = (1 − 2ε)d(x). ||

I.7. Proposition. Let Dj , j = 1, 2, . . . , be a sequence of doubly
stochastic matrices, let x(0) ∈ R n, and let x(1), x(2), . . . be defined by
(1). If

(i) all elements of every Dj are ≥ ε,

or more generally, if

(ii) there exists a pair of interlacing sequences {kj} and {
j}, for
which kj ≤ 
j < kj+1, j = 1, 2, . . . such that for each j,

∏�j

i=kj
Di has

all elements ≥ ε,

then

lim
j→∞

x(j) = xe. (2)

Proof. Suppose first that (i) holds. Then by Lemma I.6,

d(x(j)) ≤ (1 − 2ε) d(x(j−1)), j + 1, 2, . . . ,

and consequently d(x(j)) ≤ (1 − 2ε)j d(x0). Thus limj→∞ d(x(j)) = 0.
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Next suppose that (ii) holds. Then the subsequence {x(�j)} satisfies
(i), so limj→∞ d(x(�j)) = 0. Because all of the Dj are doubly stochastic,
d(x(j)) is decreasing in j, and (2) follows. ||

Remark. If the matrices Dj are random, but the conditions of
Proposition I.7 hold with probability 1, then the conclusion also holds
with probability 1.

Denote by Q(r, s) the permutation matrix that interchanges the
coordinates r and s. Recall from Section B that a matrix of the
form

T (r, s) = λI + (1 − λ)Q(r, s), 0 ≤ λ < 1, (3)

is called a T-transform.

I.8. Proposition (Proschan and Shaked, 1984). Let D1 be a
T -transform of the form (3) with r and s chosen at random from a dis-
tribution that places positive probability on all of the

(n
2

)
pairs. Assume

further that λ ∈ [0, 1) is chosen at random from a distribution with
no mass at 0. Repeat this process [using the same distribution for the
new pair (r, s) and the same distribution for λ] to obtain D2,D3, . . . .
If x(0) ∈ R n, and x(1), x(2), . . . are obtained from (1), then

lim
j→∞

x(j) = xe with probability 1.

Proof. This result follows from Proposition I.7 once it is verified
that a doubly stochastic matrix with positive elements can be obtained
as product of finitely many T -transforms. This is a consequence of
Lemma B.1. Such a product will arise infinitely often with probability 1
if theDj are chosen according to the process described in the statement
of this proposition. ||
I.9. Proposition. Let P be a doubly stochastic matrix that is not
a permutation matrix and let Qj, j = 1, 2, . . . , be a sequence of
independent identically distributed random permutations with a dis-
tribution that places positive probability on each of the n! permutation
matrices of order n. If x(0) ∈ R n and x(j) = x(j−1)PQj, j = 1, 2, . . . ,
then limj→∞ x(j) = xe with probability 1.

Proof . If P has all entries positive, this result follows from
Proposition I.7. Suppose that some elements of P are 0 and use
Theorem A.2 to write P in the form P =

∑k
1 αiΠi, where each Πi

is a permutation matrix, αi > 0, i = 1, 2, . . . , k, and
∑k

1 αi = 1.
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Assume that Π1 = I is the identity matrix; otherwise, replace Qj
by Π−1

1 Qj , j = 1, 2, . . . . This ensures that P has a positive main
diagonal so that P is not periodic.

If P is reducible, then {1, 2, . . . , n} can be written as a union of
disjoint closed classes C1, . . . , Cq. With probability 1 there will be
a finite value j such that the product R = PQ1PQ2 · · ·PQj in-
volves a permutation Qi that interchanges elements of Cr and Cs
for all pairs r, s. A basic theorem of Markov chain theory is that for
every irreducible aperiodic transition matrix R, there is an integer
m such that Rm has all positive elements (see Feller, 1950, 1968).
Because in the sequence PQ1PQ2PQ3 · · · there is positive probabil-
ity that R will appear m times consecutively, and in fact this will
occur infinitely often with probability 1, the proposition follows from
Proposition I.7. ||

Alternate proof of Proposition I.9. Using Theorem A.2, write P in
the form P =

∑k
1 αiΠi, and as in the first proof, assume that Π1 = I.

Let S = {I,Π2, . . . ,Πk} and define D by

D =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
1 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
.

Because
∑n

1 D
i has all elements equal to 1, D ∈ S implies that all

elements of Pn are positive. If D /∈ S, consider the product

PDP =
∑
i,j

αiαjΠiDΠj.

Because Π1 = I, this sum includes the term α2
1D and consequently

(PDP )n has all elements positive. Since the string PDPI will appear
n consecutive times in the sequence PQ!PQ2PQ3 · · · infinitely often
with probability 1, the result follows from Proposition I.7. ||

Note According to this proof, the distribution of the Qj does not
need to place positive probability on all the n! permutations. It is
necessary to put positive probability only on D and on Π−1

1 (so as to
get I ∈ S).
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J Diagonal Equivalence of Nonnegative
Matrices and Doubly Stochastic Matrices

Given an n × n matrix A = (aij) of nonnegative elements, when do
there exist diagonal matrices D1 and D2 with positive diagonals such
that D1AD2 is doubly stochastic? This problem has arisen in sev-
eral different contexts, and there is now a considerable literature on
the subject. Only a brief resume of results is given here. For a more
comprehensive discussion, see Brualdi and Ryser (1991).

The origins of these studies stem mainly from the statistical anal-
yses of contingency tables, from the scaling of matrices in numerical
analysis, and from the problem of estimating the transition matrix of
a Markov chain known to be doubly stochastic.

The first paper in this area appears to be that of Deming and
Stephan (1940). The problem considered was to estimate theoretical
cell probabilities pij(i = 1, . . . , r; j = 1, . . . , c), where the row and
column totals

c∑
j=1

pij ≡ pi.,
r∑
i=1

pij ≡ p.j

are known and fixed. The available data are cell frequencies nij
(assumed to be strictly positive). The criterion of fit is to

minimize
∑
j

∑
i

(nij − npij)2/nij

subject to the condition on row and column totals. Deming and
Stephan (1940) proposed a solution which has been called the iter-
ative proportional fitting procedure. One paper providing a proof of
convergence is that of Ireland and Kullback (1968). There are a num-
ber of papers extending the models and discussing convergence [for
further reference, see Fienberg (1970)].

Sinkhorn (1964) showed that if A is a positive square matrix, there
exist positive diagonal matrices D1 and D2 such that D1AD2 is doubly
stochastic. The method of proof is based on an iterative procedure of
alternately normalizing the rows and columns of A. Subsequently, us-
ing a similar iterative procedure, Sinkhorn (1967) extended this result
by showing that a positive rectangular matrix A is diagonally equiva-
lent to a positive matrix with prescribed row and column sums. The
iterative procedure of Sinkhorn is equivalent to that of Deming and
Stephan.
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The condition that A be strictly positive was later relaxed to the
condition that A be fully indecomposable. With this hypothesis, the re-
sult was proved by Brualdi, Parter, and Schneider (1966), by Sinkhorn
and Knopp (1967), and by Marshall and Olkin (1968). In the latter
paper, it is shown that the diagonal elements of D1 and D2 can be
obtained as a solution of the extremal problem:

min
x,y

xAy′ subject to
n∏
1

x
rj

j = 1,
m∏
1

y
cj

j = 1, xi > 0, yi > 0.

A variety of alternative proofs now exist; e.g., see Borobia and Cantó
(1998). Rothblum (1989) uses the above extremal model to obtain
scalings for a multidimensional matrix.

The connection with estimating the transition matrix of a Markov
chain that is known to be doubly stochastic is discussed by Hobby and
Pyke (1965). See also Seneta (2006). A connection with graph theory
is described in Brualdi and Ryser (1991). Bacharach (1970) finds use
for this material in the context of input–output analysis.

Another motivation for this area of study is its possible use in the
scaling of matrices, because the doubly stochastic matrix D1AD2 may
be more amenable to numerical computations than A itself. For a
discussion of matrix scaling, see, e.g., Householder (1964) or Seneta
(2006). A comprehensive exposition of matrix scaling that includes an
exhaustive set of references is provided by Bapat and Raghavan (1997).
See also Chapter 10.



3
Schur-Convex Functions

For any given partial ordering � of a set X , real-valued functions
φ defined on X which satisfy φ(x) ≤ φ(y) whenever x � y are vari-
ously referred to as “monotonic,” “isotonic,” or “order-preserving.” For
the ordering of majorization, the order-preserving functions were first
systematically studied by Schur (1923). In Schur’s honor, such func-
tions are said to be “convex in the sense of Schur,” “Schur-convex,”
or “S-convex.” The historical origin of these terms is described in
Section 1.C.

Specifically, Schur characterized the differentiable functions that
preserve the ordering ≺ on the positive orthant R n

++. Ostrowski (1952)
observed that the restriction to R n

++ is unnecessary.
The orderings ≺w and ≺w have received less attention, although

special cases of functions that preserve these orderings have been
exhibited by various authors; see, e.g., Fan (1951). General charac-
terizations of the functions that preserve the orderings ≺w or ≺w can
be obtained without difficulty from the characterizations of functions
preserving the ordering ≺.

The problem of identifying order-preserving functions for orderings
generated by a convex cone has been studied by Marshall, Walkup,
and Wets (1967). This work and its application to majorization are
discussed in Section 14.D.

Many of the inequalities that arise from a majorization can
be obtained simply by identifying an appropriate order-preserving

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 79
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 3,
c© Springer Science+Business Media, LLC 2011
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function. Historically, such inequalities have often been proved by
direct methods without an awareness that a majorization underlies the
validity of the inequality. The classic example of this is the Hadamard
determinant inequality, where the underlying majorization was discov-
ered by Schur (1923). Following Schur, our approach is to identify (in
this chapter) the functions that preserve the ordering of majorization.
Inequalities of the form φ(x) ≤ φ(y) can then be obtained using any
order-preserving function φ for any vectors x and y such that x ≺ y.

A Characterization of Schur-Convex
Functions

Functions that preserve the ordering of majorization are said to be
Schur-convex. Perhaps “Schur-increasing” would be more appropri-
ate, but the term “Schur-convex” is by now well entrenched in the
literature.

A.1. Definition. A real-valued function φ defined on a set A ⊂ R n

is said to be Schur-convex on A if

x ≺ y on A ⇒ φ(x) ≤ φ(y).

If, in addition, φ(x) < φ(y) whenever x ≺ y but x is not a permutation
of y, then φ is said to be strictly Schur-convex on A . If A = R n, then
φ is simply said to be Schur-convex or strictly Schur-convex. Similarly,
φ is said to be Schur-concave on A if

x ≺ y on A ⇒ φ(x) ≥ φ(y),

and φ is strictly Schur-concave on A if strict inequality φ(x) > φ(y)
holds when x is not a permutation of y.

Of course, φ is Schur-concave if and only if −φ is Schur-convex.

Remark . Because the ordering ≺ on R n has the property that
x ≺ xΠ ≺ x for all permutation matrices Π, it follows that if φ is
Schur-convex or Schur-concave on a symmetric set A (that is, a set A
such that x ∈ A implies xΠ ∈ A for every permutation Π), then φ is
symmetric on A [i.e., φ(x) = φ(xΠ) for every permutation Π]. Thus,
if φ is symmetric on a symmetric set A and Schur-convex on D ∩ A ,
where

D = {x : x1 ≥ · · · ≥ xn},
then φ is Schur-convex on A .



A. Characterization of Schur-Convex Functions 81

With the above remark in mind, consider first the characterization
of Schur-convex functions defined on D . There are several derivations,
but the simplest one is via a useful interplay between majorization and
componentwise ordering. With the change of variables

z̃k =
k∑
i=1

zi, k = 1, . . . , n,

it follows directly from the definition that on D , x ≺ y if and only if

x̃k ≤ ỹk, k = 1, . . . , n− 1, (1)

and

x̃n = ỹn. (2)

For the componentwise ordering u ≤ v, it is immediate that u ≤ v
implies ψ(u) ≤ ψ(v) if and only if ψ is increasing in each argument.
From this and from (1) and (2), it follows that x ≺ y on D implies
φ(x) ≤ φ(y) if and only if

φ(z1, . . . , zn) = φ(z̃1, z̃2 − z̃1, . . . , z̃n − z̃n−1) (3)

is increasing in z̃k, k = 1, . . . , n− 1, over the region where z ∈ D . This
leads to:

A.2. Lemma. Let φ be a continuous real-valued function defined
on D . Then

x ≺ y on D implies φ(x) ≤ φ(y) (4)

if and only if, for all z ∈ D and k = 1, . . . , n− 1,

φ(z1, . . . , zk−1, zk + ε, zk+1 − ε, zk+2, . . . , zn) (5)

is increasing in ε over the region

0 ≤ ε ≤ min[zk−1 − zk, zk+1 − zk+2], k = 1, . . . , n − 2,

0 ≤ ε ≤ zn−2 − zn−1, k = n− 1.

Note. Hwang and Rothblum (1993) pointed out the necessity of
assuming continuity in Lemma A.2. Consider with n = 3 the function

φ∗(x) = 1 if x = (2, 2, 2),
= 0 otherwise.

This discontinuous function satisfies condition (5), but clearly
(2, 2, 2)≺(1, 2, 3) and φ∗(2, 2, 2) > φ∗(1, 2, 3).
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To clarify this point, it is helpful to introduce the concept of an
elementary T -transform. Recall the definition of a T -transform given
in Section 2.B which involves a transfer of mass from one coordinate
of x to another coordinate. An elementary T -transform is of the form

T ∗ = λI + (1 − λ)Q∗,

where now Q∗ is a permutation matrix that interchanges two
neighboring coordinates. If an elementary T ∗-transform is applied
to a vector in D , it transfers money (in income terms) to an indi-
vidual from the person whose income is immediately above in the
income ranking. Lemma 2.B.1 assures us that if x ≺ y then x can be
obtained from y by the successive application of a finite number of T -
transforms. However, a countable number of elementary T -transforms
may be required in some cases [e.g., consider (2, 2, 2) and (1, 2, 3)].
Condition (5) effectively deals with monotonicity of φ under elemen-
tary T -transforms. This is not enough to guarantee monotonicity with
respect to T -transforms without continuity.

A.2.a. The arguments leading to A.2 also yield conditions for strict
inequality in (4). These arguments show that for φ continuous

φ(x) < φ(y) for all x ≺ y on D , x �= y

if and only if (5) is strictly increasing in ε over the indicated region.

With the aid of the remark following A.1, A.2 yields the following:

A.2.b. Let A be a set with the property

y ∈ A and x ≺ y implies x ∈ A .

A continuous function φ defined on A is Schur-convex on A if and
only if φ is symmetric and

φ(x1, s− x1, x3, . . . , xn) is increasing in x1 ≥ s/2

for each fixed s, x3, . . . , xn.

To see this, note that the monotonicity in ε of (5) can easily be
obtained from A.2.a using the symmetry of φ.

The conditions of A.2 can be expressed in terms of derivatives when
φ is differentiable. In this case, denote the partial derivative of φ with
respect to its kth argument by φ(k):

φ(k)(z) = ∂φ(z)/∂zk .
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A.3. Theorem. Let φ be a real-valued function, defined and
continuous on D and continuously differentiable on the interior of D .
Then

x ≺ y on D implies φ(x) ≤ φ(y) (6)

if and only if

φ(k)(z) is decreasing in k = 1, . . . , n,

i.e., the gradient ∇φ(z) ∈ D , for all z in the interior of D .

Proof. Because φ is continuous on the boundary of D , attention
can be confined to the interior of D . Thus, the condition of A.2 can
be replaced by the condition that for all z in the interior of D ,

φ(z1, . . . , zk−1, zk + ε, zk+1 − ε, zk+2, . . . , zn)

is increasing in ε when

0 < ε < min[zk−1 − zk, zk+1 − zk+2], k = 1, . . . , n − 2,

0 < ε < zn−2 − zn−1, k = n− 1.

Since φ is differentiable, this condition is equivalent to

d

dε
φ(z1, . . . , zk−1, zk + ε, zk+1 − ε, zk+2, . . . , zn) ≥ 0,

that is,

φ(k)(z1, . . . , zk−1, zk + ε, zk+1 − ε, zk+2, . . . , zn)

− φ(k+1)(z1, . . . , zk−1, zk + ε, zk+1 − ε, zk+2, . . . , zn) ≥ 0,

where (z1, . . . , zk+1, zk+ε, zk+1−ε, zk+2, . . . , zn) is in the interior of D .
This, together with A.2, completes the proof. ||

Let

φ(i,j)(z) =
∂2φ(z)
∂zi ∂zj

.

A.3.a. Theorem (Schur, 1923). Let φ be a real-valued function
defined on D and twice differentiable on the interior of D . Suppose
φ is Schur-convex on D . If φ(k)(z) = φ(k+1)(z) implies

φ(k,k)(z) − φ(k,k+1)(z) − φ(k+1,k)(z) + φ(k+1,k+1)(z) > 0, (7)

then

x ≺ y on D and x �= y implies φ(x) < φ(y).
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Proof. Suppose that f is a real-valued function defined on a closed
interval [a, b] ⊂ R and is twice differentiable on (a, b). If f ′(x) ≥ 0
for all x ∈ (a, b) and f ′′(x) > 0 for all x such that f ′(x) = 0, then f
is strictly increasing on [a, b]. Application of this to the function of ε
defined in (5) yields the theorem. ||

Further comments about strict inequality are given in A.4.b and
A.9.

The following very basic theorem follows from A.3 with the aid of
the remark following A.1.

A.4. Theorem (Schur, 1923; Ostrowski, 1952). Let I ⊂ R be an
open interval and let φ : In → R be continuously differentiable. Nec-
essary and sufficient conditions for φ to be Schur-convex on In are

φ is symmetric on In, (8)

and

φ(i)(z) is decreasing in i = 1, . . . , n for all z ∈ D ∩ In. (9)

Alternatively, φ is Schur-convex on In if and only if (8) holds and,
for all i �= j,

(zi − zj)[φ(i)(z) − φ(j)(z)] ≥ 0 for all z ∈ In. (10)

The above theorem can be reformulated; for Schur-concave functions
“decreasing” is replaced by “increasing” in (9) and inequality (10) is
reversed.

Schur (1923) obtained A.4 for the case I = (0,∞) and Ostrowski
(1952) obtained the result for an arbitrary open interval. Condition
(10) is often called Schur’s condition.

With the aid of (8), condition (10) can be replaced by the condition

(z1 − z2)[φ(1)(z) − φ(2)(z)] ≥ 0 for all z ∈ In. (10′)

This simplified condition is sometimes more convenient to verify.

Theorem A.4 is not sufficiently general for all applications because
the domain of φ may not be a Cartesian product.

A.4.a. Let A ⊂ R n be a set with the following properties:

(i) A is symmetric in the sense that x ∈ A ⇒ xΠ ∈ A for all
permutations Π;
(ii) A is convex and has a nonempty interior.
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If φ is continuously differentiable on the interior of A and continuous
on A , then In can be replaced by A in A.4.

It is difficult to overemphasize the usefulness of the conditions of
A.4 for determining whether or not a given function is Schur-convex
or Schur-concave. On the other hand, it is usually possible to find a
more elegant and simpler proof of special cases. The reader should not
be misled by the fact that the usefulness of A.4 is obscured in this
book, but should understand that many or even most of the theorems
giving Schur-convexity were first discovered by checking (8) and (9) or
(8) and (10).

A.4.b. Theorem. If φ: R n → R is twice differentiable, if conditions
(8) and (9) are satisfied, and if φ(k)(z) = φ(k+1)(z) implies (7), then φ
is strictly Schur-convex on R n.

This result follows from A.2.a and is essentially due to Schur (1923).

A.5. In proving that a function φ is Schur-convex, it is often helpful
to realize that, in effect, one can take n = 2 without loss of generality.
This fact is a consequence of 2.B.1, which says that if x ≺ y, then x can
be derived from y by a finite number of T -transforms. Consequently,
it is sufficient to prove that φ(x) ≤ φ(y) when x ≺ y and x differs
from y in only two components, so that all but two arguments of φ are
fixed. Because φ is necessarily symmetric, it is sufficient to prove that
φ(z1, z2,

•
zk) is Schur-convex in z1 and z2.

Weak Majorization

The argument leading to A.1 requires only slight modification for the
characterization of functions that preserve the orderings ≺w or ≺w.
With the notation z̃k =

∑k
1 zi and ˜̃zk =

∑n
k zi, k = 1, . . . , n, the

conditions for weak majorization on D can be rewritten as follows: If
x, y ∈ D , then

x ≺w y ⇔ x̃k ≤ ỹk, k = 1, . . . , n,

x ≺w y ⇔ ˜̃xk ≥ ˜̃yk, k = 1, . . . , n.

This means that for x, y ∈ D :

(i) x ≺w y ⇒ φ(x) ≤ φ(y) if and only if

φ(z1, . . . , zn) = φ(z̃1, z̃2 − z̃1, . . . , z̃n − z̃n−1)

is increasing in z̃i, i = 1, . . . , n, over the set z ∈ D ;
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(ii) x ≺w y ⇒ φ(x) ≤ φ(y) if and only if

φ(z1, . . . , zn) = φ(˜̃z1 − ˜̃z2, . . . , ˜̃zn−1 − z̃n, ˜̃zn)
is decreasing in ˜̃zi, i = 1, . . . , n.

These facts can be combined with A.1 and rewritten as follows.

A.6. Lemma. Let φ be continuous and real valued on D . Then

φ(x) ≤ φ(y) whenever x ≺w y on D

if and only if x ≺ y on D implies φ(x) ≤ φ(y), and in addition

φ(z1, . . . , zn−1, zn + ε)

is increasing in ε over the region 0 ≤ ε ≤ zn−1 − zn for all z ∈ D .
Similarly,

φ(x) ≤ φ(y) whenever x ≺w y on D

if and only if x ≺ y on D implies φ(x) ≤ φ(y), and in addition

φ(z1 + ε, z2, . . . , zn)

is decreasing in ε over the region 0 ≥ ε ≥ z2 − z1 for all z ∈ D .

A.6.a. The arguments leading to A.6 also show that

φ(x) < φ(y) for all x ≺w y on D , x �= y,

if and only if φ satisfies the conditions of A.2.a, and in addition
φ(z1, . . . , zn−1, zn + ε) is strictly increasing in ε, 0 ≤ ε ≤ zn−1 − zn, for
all z ∈ D . Similarly,

φ(x) < φ(y) for all x ≺w y on D , x �= y,

if and only if φ satisfies the conditions of A.2.a, and in addition

φ(z1 + ε, z2, . . . , zn)

is strictly decreasing in ε, 0 ≥ ε ≥ z2 − z1, for all z ∈ D .

The conditions of A.6 for a function to preserve the ordering of
weak majorization can be put into a more convenient form provided φ
is differentiable.

A.7. Theorem (Ostrowski, 1952). Let φ be a real-valued function,
defined and continuous on D , and continuously differentiable on the
interior of D . Then

φ(x) ≤ φ(y) whenever x ≺w y on D
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if and only if

φ(1)(z) ≥ φ(2)(z) ≥ · · · ≥ φ(n)(z) ≥ 0,

i.e., the gradient ∇φ(z) ∈ D+ for all z in the interior of D .
Similarly,

φ(x) ≤ φ(y) whenever x ≺w y on D

if and only if

0 ≥ φ(1)(z) ≥ φ(2)(z) ≥ · · · ≥ φ(n)(z)

for all z in the interior of D .

The proof of A.7 is similar to the proof of A.3.

A.8. Theorem. A real-valued function φ defined on a set A ⊂ R n

satisfies
x ≺w y on A ⇒ φ(x) ≤ φ(y)

if and only if φ is increasing and Schur-convex on A . Similarly, φ
satisfies

x ≺w y on A ⇒ φ(x) ≤ φ(y)

if and only if φ is decreasing and Schur-convex on A .

This theorem can be obtained by comparing A.2 and A.6 and by
observing that for all permutation matrices Π,

x ≺w xΠ ≺w x, x ≺w xΠ ≺w x.

A.8.a. Let φ be a real-valued function defined on the set A ⊂ R n.
Then

x ≺w y on A and x is not a permutation of y ⇒ φ(x) < φ(y)

if and only if φ is strictly increasing and strictly Schur-convex on A .
Similarly,

x ≺w y on A and x is not a permutation of y ⇒ φ(x) < φ(y)

if and only if φ is strictly decreasing and strictly Schur-convex on A .

A.8.b. (Chong, 1976c). Let A ⊂ R n have a Schur-concave indica-
tor function and let φ be a strictly increasing Schur-convex function
defined on A . If x ≺w y on A and φ(x) = φ(y), then x ≺ y. Similarly,
if φ is strictly decreasing and Schur-concave, x ≺w y and φ(x) = φ(y),
then x ≺ y.
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Proof. If x ≺w y, then by 5.A.9 there exists a vector u such that
x ≤ u ≺ y. Because A has a Schur-concave indicator function, u ∈ A
and φ(x) ≤ φ(u) ≤ φ(y). But φ(x) = φ(y); hence φ(x) = φ(u). Since
φ is strictly increasing, this means x = u. If x ≺w y, the proof makes
use of 5.A.9.a. ||
A.9. Condition for equality. One use of order-preserving functions
is in deriving inequalities. A common procedure is to fix x or y, say
x = x0 is fixed, to obtain an inequality of the form φ(x0) ≤ φ(y) for all
y in an appropriate set. Conditions for equality or for strict inequality
are often of considerable interest. It should be observed that the condi-
tions of A.2.a, A.3.a, A.4.b, and A.8.a provide sufficient conditions for
strict inequality, but the conditions may not be necessary. The reason
for this is that the requirement (i) φ(x0) < φ(y) for appropriate y is
weaker than the requirement (ii) for all x, φ(x) < φ(y) for appropri-
ate y. Fortunately, most functions φ of practical interest satisfy the
sufficient conditions and one knows equality holds if and only if y is a
permutation of x0.

B Compositions Involving Schur-Convex
Functions

There are a number of simple but useful facts relating to compositions
that involve Schur-convex or Schur-concave functions. Some of these
results have been given by Berge (1963, pp. 219–220) and by Ostrowski
(1952).

Since there are several closely related results, it may be helpful
to present them informally in tabular form rather than as formal
propositions.

B.1. Consider compositions of the form

ψ(x) = h(φ1(x), . . . , φk(x)),

where h is a real-valued function defined on R k, and the real functions
φ1, . . . , φk have common domain A ⊂ R n. Of course, this is then the
domain of ψ.

In Table 1 each φi is a symmetric function of x1, . . . , xn and is
defined on A . Each row of the table gives a separate result: If h and
each φi satisfy the indicated condition, then so does ψ. In the table,
“increasing” means increasing in each argument.
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Table 1
Composition of Functions of the Form
ψ(x1, . . . , xn) = h(φ1(x), . . . , φk(x))

h on R k Each φi on A h(φ1(x), . . . , φk(x)) on A

(i) Increasing Schur-convex Schur-convex
(ii) Decreasing Schur-convex Schur-concave
(iii) Increasing Schur-concave Schur-concave
(iv) Decreasing Schur-concave Schur-convex

(v) Increasing Increasing and Schur-convex Increasing and Schur-convex
(vi) Decreasing Increasing and Schur-convex Decreasing and Schur-concave
(vii) Increasing Decreasing and Schur-concave Decreasing and Schur-concave
(viii) Decreasing Decreasing and Schur-concave Increasing and Schur-convex

(ix) Increasing Decreasing and Schur-convex Decreasing and Schur-convex
(x) Decreasing Increasing and Schur-concave Decreasing and Schur-convex
(xi) Increasing Increasing and Schur-concave Increasing and Schur-concave
(xii) Decreasing Decreasing and Schur-convex Increasing and Schur-concave

All of the propositions summarized in Table 1 can be proved in a
straightforward way, and all have similar proofs. For example, consider
(i). If x ≺ y on D , then because each φi is Schur-convex, φi(x) ≤ φi(y),
i = 1, . . . , k. Combining this with the fact that h is increasing in each
argument yields

h(φ1(x), . . . , φk(x)) ≤ h(φ1(y), . . . , φk(y)).

The following are some special cases of interest.

B.1.a. The class of Schur-convex functions forms a convex cone. This
is a trivial consequence of the order-preserving property these functions
represent, but it also follows from (i) with h(z1, . . . , zk) =

∑k
i=1 aizi,

where a1 ≥ 0, . . . , ak ≥ 0.

B.1.b. An increasing function of a Schur-convex function is Schur-
convex. Again, this is immediate from the order-preserving viewpoint,
and it follows from (i) with k = 1. A case of particular interest is given
in B.1.e below.

B.1.c. If φ1, . . . , φk are Schur-convex, then

min(φ1, . . . , φk) and max(φ1, . . . , φk)

are Schur-convex.
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B.1.d. If φi is Schur-convex (concave), i = 1, . . . , k, and φi(x) ≥ 0
for all i and x, then

ψ(x) =
k∏
1

φi(x)

is Schur-convex (concave).

Proof. Because h(u) =
∏k

1 ui is increasing on R k
+ = {z : zi ≥ 0 for

all i}, the result follows from (i) and (iii) of Table 1. ||
B.1.e. If φ is Schur-convex on A ⊂ R n and for all x ∈ A ,

ψt(x) =

{
1 if φ(x) ≥ t,

0 otherwise,

then ψt is Schur-convex on A . Similarly, if φ is Schur-concave on A
and for all x ∈ A

ψt(x) =

{
1 if φ(x) ≥ t,

0 otherwise,

then ψt is Schur-concave on A .

This means that indicator (characteristic) functions of “level sets”

{x :φ(x) ≥ t}
are Schur-convex when φ is Schur-convex, and they are Schur-concave
when φ is Schur-concave. Of course, the same statements are true if
“≥” is replaced by “>” above.

B.2. Another class of compositions yielding Schur-convex functions
has the form

ψ(x) = φ(g(x1), . . . , g(xn)),

where φ : R n → R and g :R → R.

Results of this kind are tabulated in Table 2.

Proof of (i)–(vi) in Table 2. By A.5, it is sufficient to prove these
results for n = 2. First consider (i). If x ≺ y, then it follows from 2.B.2
that for some α, 0 ≤ α ≤ 1, α = 1 − α,

x1 = αy1 + αy2, x2 = αy1 + αy2.
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Table 2
Composition of Functions of the Form
ψ(x1, . . . , xn) = φ(g(x1), . . . , g(xn))

φ g ψ

(i) Increasing and Convex Schur-convex
Schur-convex

(ii) Decreasing and Concave Schur-convex
Schur-convex

(iii) Increasing and Increasing Increasing and
Schur-convex and convex Schur-convex

(iv) Decreasing and Decreasing Increasing and
Schur-convex and concave Schur-convex

(v) Increasing and Decreasing Decreasing and
Schur-convex and convex Schur-convex

(vi) Decreasing and Increasing Decreasing and
Schur-convex and concave Schur-convex

By using the convexity of g and monotonicity of φ, it follows that

φ(g(x1), g(x2)) = φ(g(αy1 + αy2), g(αy1 + αy2))

≤ φ(αg(y1) + αg(y2), αg(y1) + αg(y2))

= φ(α[g(y1), g(y2)] + α[g(y2), g(y1)]).

Because

(α[g(y1), g(y2)] + α[g(y2), g(y1)]) ≺ (g(y1), g(y2))

(again from 2.B.2) and because φ is Schur-convex,

φ(α[g(y1), g(y2)] + α[g(y2), g(y1)]) ≤ φ(g(y1), g(y2)).

By combining these inequalities, it follows that

x ≺ y ⇒ φ(g(x1), g(x2)) ≤ φ(g(y1), g(y2)).

The proof of (ii) is similar. It is easy to obtain (iii) and (v) from (i),
and to obtain (iv) and (vi) from (ii). ||

C Some General Classes
of Schur-Convex Functions

The classes of Schur-convex functions identified in this section are
illustrated with more specific examples in Sections D–I.
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Symmetric Convex Functions—Variables Separate

As a motivation for the definition of majorization it is suggested in
Chapter 1 that

∑
g(xi) ≤ ∑

g(yi) whenever x ≺ y and g is convex.
This is the content of the following proposition.

C.1. Proposition (Schur, 1923; Hardy, Littlewood, and Pólya, 1929).
If I ⊂ R is an interval and g : I → R is convex, then

φ(x) =
n∑
1

g(xi)

is Schur-convex on In. Consequently, x ≺ y on In implies φ(x) ≤ φ(y).

Proof. By A.5, it is sufficient to prove this result for n = 2. Then
if x ≺ y, x has the form x1 = αy1 + αy2, x2 = αy1 + αy2 for some
α ∈ [0, 1], α = 1 − α. Because g is convex,

g(x1) + g(x2) = g(αy1 + αy2) + g(αy1 + αy2)

≤ [αg(y1) + αg(y2)] + [αg(y1) + αg(y2)]

= g(y1) + g(y2). ||

Various other proofs can be given. In particular, if g is differentiable,
the conditions of A.4 can be verified. Notice also that C.1 follows from
(i) of Table 2 with φ(z) =

∑
zi.

C.1.a. Let I ⊂ R be an interval and let φ(x) =
∑n

1 g(xi), where
g : I → R.

(i) (Schur, 1923) If g is strictly convex on I, then φ is strictly Schur-
convex on In.

(ii) If φ is strictly Schur-convex on In, then g is strictly convex on I.

Proof. In the proof of C.1, if g is strictly convex, α ∈ (0, 1), and
y1 �= y2, then the inequality in that proof becomes strict, which proves
(i). The result (ii) follows from A.2.a. ||

C.1.b. (Tomić, 1949; Weyl, 1949). If g :R → R is convex and in-
creasing (decreasing), then φ(x) =

∑n
1 g(xi) is increasing (decreasing)

and Schur-convex. Consequently, x ≺w y(x ≺w y) implies φ(x) ≤ φ(y).
This result is an immediate consequence of C.1 and A.8.
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Historical Remarks

A result very close to C.1 was first proved by Schur. Schur did not
have the definition of majorization in terms of partial sums (Definition
1.A.1), but instead he proved that if x = yP for some doubly stochastic
matrix P , then

n∑
1

g(xi) ≤
n∑
1

g(yi) (1)

for all continuous convex functions g. Schur’s beautifully simple proof
is as follows: Since xj =

∑
yipij, where

∑
i pij = 1, it follows from

Jensen’s inequality or directly from the definition of convexity that

g(xj) ≤
n∑
i=1

pijg(yi).

Because
∑

j pij = 1,

n∑
j=1

g(xj) ≤
n∑
j=1

n∑
i=1

pijg(yi) =
n∑
i=1

n∑
j=1

pijg(yi) =
n∑
i=1

g(yi).

Although this proof holds quite generally, Schur’s paper is unclear as
to whether or not he had in mind the restriction xi ≥ 0, yi ≥ 0 for
all i.

Proposition C.1 together with its converse 4.B.1 were first given
by Hardy, Littlewood, and Pólya (1929), who explicitly prove only a
continuous analog.

Apparently quite independently, Karamata (1932) proved a substan-
tial generalization of C.1 and 4.B.1. Karamata begins by asking for
necessary and sufficient conditions on x1, . . . , xn, y1, . . . , yn ∈ (a, b) in
order that (1) holds for all functions g continuous and convex on (a, b).
By defining

x(t) = number of xi ≤ t, y(t) = number of yi ≤ t,

and noting that (1) can be rewritten in terms of Stieltjes integrals as
∫ b

a
g(t) dx(t) ≤

∫ b

a
g(t) dy(t), (2)

Karamata arrived at a more general question: What conditions are
necessary and sufficient in order that functions x and y, nondecreasing
on (a, b), satisfy (2) for all functions g convex on (a, b)? Karamata’s
elegant answer is discussed in 16.B.4.a.
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A quite different approach to C.1 was taken by Tomić (1949). Tomić
obtains C.1 from C.1.b with the aid of 5.A.11. He shows that for C.1.b
it is enough to prove the case x ≺w y because the case x ≺w y then
follows by a change of variables. To obtain C.1.b with x ≺w y, Tomić
argues as follows: Since x ≺w y, x[n] ≥ y[n] and because g is decreas-
ing, g(x[n]) ≤ g(y[n]). If x[n−1] ≥ y[n−1], a similar argument shows
that g(x[n]) + g(x[n−1]) ≤ g(y[n]) + g(y[n−1]). On the other hand, if
x[n−1] < y[n−1], then because of the ordering y[n] ≤ x[n] ≤ x[n−1] <
y[n−1] and because g is convex, the chord joining M1 = (y[n], g(y[n]))
with M2 = (y[n−1], g(y[n−1])) lies entirely above the chord joiningm1 =
(x[n], g(x[n])) with m2 = (x[n−1], g(x[n−2])). Because x[n] + x[n−1] ≥
y[n] + y[n−1], the point T1 = 1

2 [M1 + M2] lies to the left of the point
t1 = 1

2(m1 +m2). These facts and the fact that the chords have nega-
tive slope together imply that g(x[n]) + g(x[n−1]) ≤ g(y[n]) + g(y[n−1])
(see Fig. 1).

M1

m1

m2

t1
M2

T1

y[n] x[n] x[n–1] y[n–1]

Figure 1. A graphical explanation.

The argument now repeats with minor modifications. If x[n−2] ≥
y[n−2], then, because g is decreasing, it is easy to see from the foregoing
that

g(x[n]) + g(x[n−1]) + g(x[n−2]) ≤ g(y[n]) + g(y[n−1]) + g(y[n−2]). (3)

If x[n−2] < y[n−2], then the chord joining T1 withM3 = (y[n−2], g(y[n−2]))
lies above the chord joining t1 with m3 = (x[n−2], g(x[n−2]). Because
x[n] + x[n−1] + x[n−2] ≥ y[n] + y[n−1] + y[n−2], it follows that the point
T2 = (2T1 +M3)/3 lies to the left of the point t2 = (2t1 +m3)/3. These
facts, together with the fact that the chords have negative slope, imply
that (3) again holds (see Fig. 2). It is clear that the above ideas lead
to an inductive proof.
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M3m3

T1

T2

t2
t1

Figure 2. A graphical explanation.

Pólya (1950) shows that C.1.b is a consequence of C.1. His proof
makes use of 5.A.8.

Converses of C.1 and C.1.b are given in 4.B.1 and 4.B.2. Another
kind of converse is given here.

C.1.c. Let I ⊂ R be an interval, and let g be continuous on I. If
φ(x) =

∑
g(xi) is Schur-convex on In, then g is convex on I. If φ is

strictly Schur-convex on In, then g is strictly convex on I.

Proof. Take x1 = x2 = (y1 + y2)/2, xi = yi, i = 3, 4, . . . , n. Then
x ≺ y, so that

∑
g(xi) ≤

∑
g(yi); i.e.,

2g
(
y1 + y2

2

)
≤ g(y1) + g(y2).

In the same way, g is strictly convex when φ is strictly Schur-
convex. ||

Note: If the continuity condition is deleted from C.1.c, the conclusion
must be modified slightly. Ng (1987) proves the equivalence of the
following four conditions:

(i)
∑n

i=1 g(xi) is Schur-convex on In for some n ≥ 2;

(ii)
∑n

i=1 g(xi) is Schur-convex on In for every n ≥ 2;
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(iii) g satisfies the inequality

g(αx + (1 − α)y) + g(αy + (1 − α)x) ≤ g(x) + g(y)

for every x, y ∈ I and every α ∈ [0, 1];

(iv) g admits the representation

g(x) = c(x) + a(x),

where c(x) is convex on I and a(x) is additive [i.e., a(x+ y) = a(x) +
a(y), for every x, y ∈ I].

Condition (iv) confirms the suspicion that g(x) must be “almost”
convex to ensure the Schur-convexity of

∑n
i=1 g(xi). Condition (iii) is

slightly weaker than the analogous sufficient condition for convexity
found in 16.B.3 which reduces to condition (iii) when α = β.

C.1.d. Let I ⊂ R be an interval. If φ(x) =
∑
g(xi) is Schur-convex

and increasing (decreasing) on In, and if g is continuous on I, then g
is convex and increasing (decreasing) on I.

Proof. Convexity follows from C.1.c and monotonicity is trivial. ||
Various specific applications of C.1 are given in Sections D and E.

C.1.e. Technical remark. That g(z) = log[(1/z) − 1] is convex on
I = (0, 1

2 ], but not convex on [12 , 1) is easily checked. On the other hand,
the conditions of A.4 can be used to show that φ(x) = g(x1)+ g(x2) is
Schur-convex on {x : xi > 0, x2 > 0, x1 + x2 ≤ 1}, a somewhat larger
set than I2. The proof of C.1.c shows more than the convexity of g
on (0, 1

2 ], because it yields inequalities such as g(1
2 ) ≤ g(ε) + g(1 − ε),

0 < ε < 1, that involve the behavior of g outside the interval I = (0, 1
2 ].

But, of course, such comparisons stop short of showing that g is convex
on (0, 1).

C.1.f. Proposition (Guan and Shen, 2006). If g : I → R is convex,
and for k = 1, . . . , n, φk : In → R is defined by

φk(x) =
∑
S

g

⎛
⎝1
k

k∑
j=1

xij

⎞
⎠
/(

n

k

)
,

where S = {(i1, ..., ik) : 1 ≤ i1 < . . . < ik ≤ n}, then φk is Schur-
convex.

Proposition C.1 corresponds to the case k = 1. As a consequence of
C.1.f, Guan and Shen present several extensions of results presented
below in Sections D and E.
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Schur-convexity of φ1 ensures that φ1(x)≥ φn(x) = φ1(x, . . . , x),
where x = Σxi/n, a result that can be viewed as a version of Jensen’s
inequality (discussed further in Section 16.C). Pec̆arić and Svrtan
(1998) observe that a more general ordering result is true for the φk’s.
Specifically, they show that

φ1(x) ≥ φ2(x) ≥ · · · ≥ φn(x)

for every x ∈ In, which can be viewed as a further extension of Jensen’s
inequality.

Symmetric Convex Functions—General Case

The following proposition is a generalization of C.1 that was also es-
sentially proved by Schur (1923), but Schur restricted the domain of
φ to R n

++. [See also Berge (1955)].

C.2. Proposition. If φ is symmetric and convex, then φ is
Schur-convex. Consequently, x ≺ y implies φ(x) ≤ φ(y).

Proof. By A.5 it is sufficient to prove this for n = 2. Then if x ≺ y,
x has the form x1 = αy1 + αy2, x2 = αy1 + αy2 for some α ∈ [0, 1],
α = 1 − α. Because φ is convex,

φ(x1, x2) = φ(αy1 + αy2, αy1 + αy2) = φ(α(y1, y2) + α(y2, y1))

≤ αφ(y1, y2) + αφ(y2, y1) = φ(y1, y2). ||

C.2.a. If φ is symmetric and convex in each pair of arguments, the
other arguments being fixed, then φ is Schur-convex.

C.2.b. If φ is symmetric and if φ(x1, s − x1, x3, . . . , xn) is convex in
x1 for each fixed s, x3, . . . , xn, then φ is Schur-convex.

These two results successively weaken the hypothesis of C.2 on φ.
Careful examination of the proof of C.2 shows that C.2.b is actually
proved.

C.2.c. If φ is symmetric and strictly convex on sets of the form
{z :

∑
zi = c}, then φ is strictly Schur-convex.

Proof. If φ is strictly convex, α ∈ (0, 1), and y1 �= y2, then the
inequality in the proof of C.2 is strict. ||
C.2.d. If φ is symmetric, convex, and increasing (decreasing), then
φ is Schur-convex and increasing (decreasing). Consequently,
x ≺w y (x ≺w y) implies φ(x) ≤ φ(y).

This result is immediate from C.2.
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C.2.e. If φ is Schur-convex on A , then φ−(x) = φ(−x) defines a
Schur-convex function on −A .

This follows from 1.A(13a).

C.2.f. If φ is symmetric and log concave, then φ is Schur-concave.

Quasi-Convex Functions

In various contexts, especially in optimization theory, it has been found
that convexity can often be replaced by quasi-convexity or pseudo-
convexity.

A function φ : R n → R is said to be quasi-convex if

φ(αu + (1 − α)v) ≤ max[φ(u), φ(v)] (4)

for all α ∈ [0, 1] and u, v ∈ R n (or the domain of φ may be some other
convex set). A condition equivalent to (4) is that the “level sets”

La = {x :φ(x) ≤ a} (5)

be convex. Still another statement equivalent to (4) is that

φ(u) ≤ φ(v) and z = αu+(1−α)v(0 ≤ α ≤ 1) implies φ(z) ≤ φ(v).

In this form, condition (4) can be more easily compared with the
condition of pseudo-convexity: A function φ : R n → R is called
pseudo-convex if

φ(u) < φ(v) and z = αu+(1−α)v(0 < α < 1) implies φ(z) < φ(v).

Symmetric quasi-convex functions are Schur-convex (C.3), but
pseudo-convex functions need not be Schur-convex (C.3.a).

C.3. If φ is symmetric and quasi-convex, then φ is Schur-convex.

Proof. Denote by 〈Ky〉 the convex hull of the set Ky = {yP :P
is a permutation matrix}. By 2.B.3, 〈Ky〉 = {x : x ≺ y}. But
Lφ(y) = {z :φ(z) ≤ φ(y)} is convex. Moreover, Ky ⊂ Lφ(y) because
φ is symmetric. Consequently, 〈Ky〉 ⊂ Lφ(y); i.e., x ≺ y implies
φ(x) ≤ φ(y). ||

An alternate proof of C.3 can be obtained using A.2.b.
Now, consider some examples.

C.3.a. Example. Let φ be a real function defined on {x : x ∈ R 2

and |x1| + |x2| ≤ 2} by

φ(x) =

{
1 if |x1| = |x2| = 1,

0 otherwise.
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This function is symmetric and pseudo-convex, but not quasi-convex
or Schur-convex.

C.3.b. Example. Let φ : R 2 → R be defined by φ(x1, x2) = −x1x2.
It is easily verified that φ is Schur-convex.

Let x = (1, 1) and y = (−1
2 ,−1

2 ). Then φ(x) = −1 < −1
4 = φ(y). If

z = 1
3x+

2
3y = 0, then φ(z) = 0 > φ(y) = −1

4 so φ is not pseudo-convex.
Also, φ is not quasi-convex because φ(z) > max(φ(x), φ(y)).

C.3.c. Example. Let φ : R → R be defined by

φ(x) =
{

1 if x ≥ 0,
0 if x < 0.

Then φ is quasi-convex, but consideration of the points 1 and −1 shows
that φ is not pseudo-convex.

The Structure of the Class of Schur-Convex Functions

Because the class C of Schur-convex functions defined on a set A is a
class of order-preserving functions, it forms a convex cone that is closed
under pointwise convergence and contains the constant functions.
That is,

if φ1 ∈ C , φ2 ∈ C and a ≥ 0, b ≥ 0, then aφ1 + bφ2 ∈ C ; (6)

if φ1, φ2, . . . is a sequence of functions in C and

φ(x) = lim
n→∞φn(x) for all x ∈ A , then φ ∈ C ; (7)

if c ∈ R and φ(x) = c for all x ∈ A , then φ is Schur-convex. (8)

As a convex cone, the structure of the extreme rays is of inter-
est. Here, proper interpretation of the notion of an “extreme ray” is
complicated by the presence of (8), which essentially requires that
functions differing by a constant be regarded as equivalent. Otherwise,
the relationship

1
2 [φ(x) + c] + 1

2 [φ(x) − c] = φ(x)

would say that there are no extreme rays at all.
Now let φ be a Schur-convex function defined on A and let S ⊂ R.

Let

φ1(x) =

{
φ(x) if

∑
xi ∈ S ,

0 if
∑
xi /∈ S ,

φ2(x) =

{
φ(x) if

∑
xi /∈ S ,

0 if
∑
xi ∈ S .
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Then φ1 and φ2 are Schur-convex and φ1 +φ2 = φ. This means that if
φ lies on an extreme ray of the convex cone of Schur-convex functions,
then there exists a ∈ R such that

∑
xi �= a implies φ(x) = 0. If

Aa ⊂ R n is any set satisfying

(i) x ∈ Aa ⇒
∑
xi = a,

(ii) x ∈ Aa and x ≺ y ⇒ y ∈ Aa,

then the indicator function of the set Aa does in fact lie on an ex-
treme ray of the convex cone. Moreover, any function that lies on an
extreme ray must be of this form (apart from addition of a constant
or multiplication by a positive number).

C.4. Let {φa : −∞ < a < ∞} be a family of Schur-convex functions
and let

φ(x) = φa(x) if
∑

xi = a, −∞ < a <∞.

Then φ is Schur-convex.

Proof. The comparison φ(x) ≤ φ(y) whenever x ≺ y is equivalent
to the comparison φa(x) ≤ φa(y), where a =

∑
x =

∑
y. ||

Of course, φa need not be defined for all a ∈ (−∞,∞), but only on
{a :

∑
xi = a for some x in the domain of φ}.

A consequence of C.4 is that Schur-convex functions need not be
measurable; their behavior on the various hyperplanes

∑
xi = a can

be completely unrelated.

Integral Mixtures of Schur-Convex Functions

The following generalization of (6) is often useful.

C.5. Proposition. Suppose that φ(x, t) is Schur-convex in x ∈ R n

for all t ∈ T ; then ∫
T
φ(x, t) dμ(t)

is Schur-convex in x whenever the integral exists.

Proof . If x ≺ y, then φ(x, t) ≤ φ(y, t) for all t. Consequently,∫
T φ(x, t) dμ(t) ≤ ∫

T φ(y, t) dμ(t). ||
For a more general result, see Proposition 15.E.4.
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D Examples I. Sums of Convex Functions

According to C.1, φ(x) =
∑n

1 g(xi) is Schur-convex whenever g is
convex. Here some special cases are listed.

Entropy

D.1. If pi ≥ 0, i = 1, . . . , n, and
∑
pi = 1, the function

H(p1, . . . , pn) = −
∑

pi log pi

is called the entropy of p, or the Shannon information entropy of p.
(Here x log x = 0 for x = 0.) With g(x) = x log x in C.1.a, it follows
that H(p) is strictly Schur-concave. Consequently, H(p) ≥ H(q)
whenever p ≺ q, and in particular,

H(1, 0, . . . , 0) ≤ H(p) ≤ H(1/n, . . . , 1/n).

D.1.a. A more general entropy function, known as Kapur’s entropy
of order 1 and type t (Kapur, 1967) is defined for t > 0 by

Ht(p1, . . . , pn) = −
n∑
i=1

pti log p
t
i

/
n∑
i=1

pti.

When t = 1, this reduces to the usual entropy function.

Consider the inequality

Ht(p) ≤ log n for every probability vector p.

This inequality holds for t = 1 as remarked in D.1. It does not hold for
every t > 0. Stolarsky (1980) shows that it holds only for t ≥ t0(n),
where t0(n) is a constant depending on n. Subsequently, Clausing
(1983) verified that if n > 3 and t = t0(n), then equality holds in
(1) for a probability vector p �= ( 1

n , . . . ,
1
n). Thus for this value of t, Ht

is not strictly Schur-convex.

D.2. Let x = (1/n)
∑
xi. The function φ(x) = [(1/n)

∑
(xi − x)2]1/2

is called the standard deviation of numbers x1, . . . , xn. With g(x) =
(x − x)2 in C.1.a, it follows that

∑
(xi − x)2 is strictly Schur-convex

and consequently φ is strictly Schur-convex. As already mentioned in
Section 1.C, this fact was first proved by Dalton (1920), who considered
φ as a measure of income inequality.
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D.3. The function

φ(x) =
∑

(1/xi)

is strictly Schur-convex and decreasing on Rn
++. This is another

consequence of C.1.a.

A Kantorovich Inequality

D.3.a. (Schweitzer, 1914). If 0 < m ≤ ai ≤M , i = 1, . . . , n, then(
1
n

∑
ai

)(
1
n

∑ 1
ai

)
≤ (M +m)2

4mM
=
(
M +m

2

)(
M−1 +m−1

2

)
.

Proof. From 5.C.1, it follows that there exist unique integers s, t
such that

a ≺ (m, . . . ,m︸ ︷︷ ︸
s

, μ,M, . . . ,M︸ ︷︷ ︸
t

) = b,

where m ≤ μ < M . With φ(x) =
∑

(1/xi), this yields the inequality(∑
ai

)
φ(a) ≤

(∑
ai

)
φ(b),

which can be rewritten as
∑

ai
∑ 1

ai
≤ (sm+ μ+ tM)

(
s

m
+

1
μ

+
t

M

)
.

The right-hand side is a convex function of μ, so that the maximum
occurs at μ = m or M . Consequently, with an appropriate choice of
α = s/n or α = (s+ 1)/n and α = 1 − α, it follows that

1
n2

(sm+ μ+ tM)
(
s

m
+

1
μ

+
t

M

)
≤ (αm+ αM)

(
α

m
+

α

M

)

≤ (M +m)2

4mM
,

which yields D.3.a. ||
Inequality D.3.a has been called a Kantorovich-type inequality. Other

names are reversal or complementary inequalities. The name “reversal”
arises from the fact that

1 ≤
(

1
n

∑
ai

)(
1
n

∑ 1
ai

)
,
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but no upper bound exists without further assumptions. The assump-
tion that 0 < m ≤ ai ≤ M, i = 1, . . . , n, permits an upper bound.
Indeed, with such constraints, new bounds could be obtained for some
of the examples in this section. There are now many generalizations
and variations of Kantorovich-type inequalities. For an extensive bib-
liography, see Alpargu and Styan (1996, 2000). See also Mitrinović
(1970, p. 59) and Liu and Neudecker (1996).

D.3.b. Just and Schaumberger (1964) posed the following problem:
If xi > 0, i = 1, . . . , n, and s =

∑n
1 xi, show that

n∑
j=1

s− xj
xj

≥ n(n− 1). (1)

Inequality (1) can be written as
∑n

1 (1/xj) ≥ (n2/s). Because
x � (s, . . . , s)/n, the inequality immediately follows from D.3.

D.3.c. Walker (1971) posed the problem: If a, b, c are positive num-
bers and if x = b + c − a, y = c + a − b, z = a + b − c, then
abc(yz + zx + xy) ≥ xyz(bc + ca + ab). To see this, notice that
(a, b, c) = (x, y, z)P , where

P =

⎛
⎜⎜⎝

0 1
2

1
2

1
2 0 1

2

1
2

1
2 0

⎞
⎟⎟⎠

is doubly stochastic, so that (a, b, c) ≺ (x, y, z). Consequently, it follows
from D.3 that

1
a

+
1
b

+
1
c
≤ 1
x

+
1
y

+
1
z
,

which is the inequality of Walker.

D.4. For all a > 0, the function

φ(x) =
n∑
i=1

(
xi +

1
xi

)a

is strictly Schur-convex on (0, 1]n. This follows from C.1.a, because
g(z) = [z + (1/z)]a is strictly convex on (0, 1]. [For a ≥ 1, g is strictly
convex on (0,∞).]
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If xi > 0,
∑
xi = 1, then x � (1/n, . . . , 1/n) so that φ(x) ≥

φ(1/n, . . . , 1/n); that is,

n∑
i=1

(
xi +

1
xi

)a
≥ (n2 + 1)a

na−1
. (2)

Inequality (2) is given by Mitrinović (1970, p. 282).

D.5. The function

φ(x) =
∑

log xi

is strictly Schur-concave on R n
++. This is an immediate consequence

of C.1.a.

If yi ≥ 0, i = 1, . . . , n, y = (1/n)
∑n

1 yi, and ỹ = (
∏
yi)1/n, then it

follows from D.5 and the arithmetic–geometric mean inequality that∑
log(1 + yi) ≥ n log(1 + y) ≥ n log(1 + ỹ);

that is,
n∏
1

(1 + yi) ≥ (1 + ỹ)n =

[
1 +

n∏
1

y
1/n
i

]n
. (3)

Inequality (3) is given by Mitrinović (1970, p. 208).

D.6. The functions

φ1(x) =
x1

x2 · · · xn +
x2

x1x3 · · · xn + · · · + xn
x1 · · · xn−1

,

φ2(x) =
x1

x2 + · · · + xn
+

x2

x1 + x3 + · · · + xn
+ · · · + xn

x1 + · · · + xn−1

are strictly Schur-convex on R n
++.

Proof . Notice that φ1(x) = (
∑n

1 x
2
i )/(

∏n
1 xi). Because

∑n
1 x

2
i is

strictly Schur-convex (C.1.a) and because
∏n

1 xi is Schur-concave on
R n

+ (as is easily verified using A.4, but see F.1), it follows that φ1 is
strictly Schur-convex on R n

++.
Let s = x1+· · ·+xn. Because φ2(x) =

∑n
i=1[xi/(s−xi)] and because

g(z) = z/(s−z) is strictly convex in z, 0 ≤ z ≤ s, it follows from C.1.a
that φ2 is strictly Schur-convex. ||

If xi > 0 and
∑n

1 xi = 1, then x � (1/n, . . . , 1/n), so that because
φ1 and φ2 are strictly Schur-convex on R n

++,

n∑
1

xi∏
j �=i xj

≥ nn−1,
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n∑
1

xi
1 − xi

≥ n

n− 1
,

with equality only if xi = 1/n, i = 1, . . . , n. The first of these
inequalities is given by Mitrinović (1970, p. 209).

D.6.a. Bagdasar (2008) posed the following problem. For a positive
vector (x1, x2, . . . , xn) with sum s = x1 + . . . + xn, if yi = s − xi and
s′ = y1 + . . .+ yn, then

n∏
i=1

(
xi

s− xi

)
≤

n∏
i=1

(
yi

s′ − yi

)
. (4)

To see this, define zi = yi/(n − 1) so that z1 + z2 + . . . + zn = s.
Inequality (4) is equivalent to

n∏
i=1

(
xi

s− xi

)
≤

n∏
i=1

(
zi

s− zi

)
,

i.e., φ1(x) ≤ φ1(z), where φ1 is as defined in D.6. Because zi =∑
j �=i xj/(n−1), it can be verified that z = xP , where P is the doubly

stochastic matrix with pii = 0 and pij = 1/(n − 1), i �= j. Thus z ≺ x,
and the desired result is a consequence of the Schur-convexity of φ1

on R n
++.

E Examples II. Products of Logarithmically
Concave (Convex) Functions

Further discussion of logarithmically concave functions is given in
18.B.2.c and especially 16.D.

E.1. Proposition. Let g be a continuous nonnegative function
defined on an interval I ⊂ R. Then

φ(x) =
n∏
i=1

g(xi), x ∈ In,

is Schur-convex on In if and only if log g is convex on I. Moreover, φ is
strictly Schur-convex on In if and only if log g is strictly convex on I.

Proof. The function φ is Schur-convex if and only if log φ is Schur-
convex, that is,

∑
log g(xi) is Schur-convex. By C.1 and C.1.c, this

holds if and only if log g is convex. The strictness part follows using
C.1.a and C.1.c. ||



106 3. Schur-Convex Functions

Of course, it follows from E.1 that φ(x) =
∏n
i=1 g(xi) is Schur-

concave if and only if log g is concave. Interesting examples can be
found in both the concave and convex cases by the identification of
logarithmically convex or concave functions g.

E.1.a. Examples. The functions

φ1(x) =
n∏
i=1

1 + xi
xi

, φ2(x) =
n∏
i=1

1 − xi
xi

, φ3(x) =
n∏
i=1

1 + xi
1 − xi

are strictly Schur-convex on their domains R n
++, (0, 1/2)n, and (0, 1)n,

respectively.

Proof. A direct verification shows that log[(1+z)/z], log[(1−z)/z],
and log[(1 + z)/(1 − z)] are all strictly convex on their domains
R++, (0, 1/2), and (0, 1), respectively, so the result is immediate from
E.1. ||

With xi > 0,
∑
xi = 1, it follows that (1/n, . . . , 1/n) ≺ x. By

combining this with the strict Schur-convexity of φ1, φ2, and φ3, it
follows that:

If xi > 0, i = 1, . . . , n, and
∑
xi = 1, then

n∏
i=1

1 + xi
xi

≥ (n+ 1)n,
n∏
i=1

1 − xi
xi

≥ (n− 1)n,

and
n∏
i=1

1 + xi
1 − xi

≥
(
n+ 1
n− 1

)n
,

where equality holds if and only if xi = 1/n, i = 1, . . . , n. The first
two of these inequalities are due to Klamkin and Newman (1970), and
the third is due to Klamkin (1975).

Let F be a probability distribution function such that F (0) = 0, and
let F = 1−F . If logF is concave, then F is said to have an increasing
hazard rate (IHR). Similarly, if logF is convex on [0,∞), F is said
to have a decreasing hazard rate (DHR). Such distributions arise in
reliability theory. For further discussion of logarithmic concavity and
its application in reliability, see Marshall and Olkin (2007).

E.1.b. The function ΠF (xi) is Schur-concave (or Schur-convex) on
R n

+ ; consequently,

φ(x) = ΠF (xi) − F (Πxi)
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is Schur-concave or Schur-convex on R n
+ according to whether F is

IHR or DHR. In case F is IHR, φ(x) ≥ φ(
∑
xi, 0, . . . , 0) = 0 on R n

+ .
For the special case n = 2 and F (x) = (2/

√
π)
∫ x
0 e

−t2 dt, the inequality
φ(x) ≥ 0 was given as a problem by Mitrinović (1968). This choice of
F is IHR because it has a logarithmically concave density (18.B.2.b).

E.2. Proposition. If ν is a measure on [0,∞) such that g(x) =∫∞
0 zx dν(z) exists for all x in an interval I, then log g is convex on
I. Unless ν concentrates its mass on a set of the form {0, z0}, log g is
strictly convex on I.

When ν is a probability measure [g(0) = 1], then the notation g(x) ≡
μx is often used. With this notation, the logarithmic convexity of μ is
equivalent to Lyapunov’s inequality,

μr−ts ≤ μr−st μs−tr , r ≥ s ≥ t.

For a proof of E.2, see 16.D.1.d.

Just as the log convexity of g leads to Lyapunov’s inequality, log
convexity and log concavity for other functions lead to what might be
called Lyapunov-type inequalities. This kind of inequality is discussed
in Section 16.D.

E.3. (Tong, 1977). Let μr be the rth moment of a nonnegative ran-
dom variable, i.e., μr =

∫∞
0 xr dν(x) for some probability measure ν,

and suppose that μr exists for all r in the interval I ⊂ R. Then

φ(r) =
n∏
i=1

μri

is Schur-convex in r = (r1, . . . , rn) ∈ In. Unless ν concentrates its mass
on a set of the form {0, x0}, φ is strictly Schur-convex on In.

Proof. This is immediate from E.1 and E.2. ||
A generalization of E.3 is given in G.2.h.

E.3.a. If g is a Laplace transform, i.e., g(s) =
∫∞
0 e−sz dν(z), then

φ(x) = Πg(xi) is Schur-convex on R n
+ .

Proof. This follows from E.1 and E.2 with an obvious change of
variables. ||

Proposition E.1 has applications in probability theory and statis-
tics because many important probability densities are logarithmically
concave (18.B.2.c).
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A variant of Lyapunov’s inequality (and other extensions) is
obtained by Simić (2007).

E.3.b. Using the notation introduced following E.2, define

θt =
2(μt − μt1)
t(t− 1)

, t �= 1.

Then

θr−ts ≤ θr−st θs−tr , r ≥ s ≥ t ≥ 0, r, s, t �= 1.

A probability density f is completely monotone if it is a mixture of
exponential densities (18.B.5).

E.4. Proposition. Let f be a probability density with distribution
function F such that F (0) = 0. Let μr =

∫∞
0 xr dF (x), and let λr =

μr/Γ(r + 1) (these quantities are taken to be ∞ if the integral does
not converge). Then

f is completely monotone =⇒ log λr is convex in r > −1,

log f is concave on [0,∞) =⇒ log λr is concave in r ≥ 0,

log f is convex on [0,∞) =⇒ log λr is convex in r ≥ 0,

logF is concave on [0,∞) =⇒ log λr is concave in r ≥ 1,

logF is convex on [0,∞) =⇒ log λr is convex in r ≥ 1.

A proof of these results is given in 18.B.3, 18.B.4, and 18.B.6.

E.4.a. Remark. A statement that log λr is convex is stronger than
the statement that log μr is convex because

log λr = log μr − log Γ(r + 1),

and because log Γ(r + 1) is convex, r > −1 (E.6.a). However, the
convexity of log μr may hold for a broader range of r than the convexity
of log λr.

Examples Involving the Gamma Function

The gamma function appears in many contexts and is discussed in
great detail in Artin (1931, 1964). For a history and general discus-
sion, see Davis (1959) and Srinivasan (2007). A brief description that
suffices for general use is given by Marshall and Olkin (2007, Chapter
23). Many of the results in this section are given by Marshall and
Olkin (2007).
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Here Schur-convexity properties are obtained. As usual, let Γ denote
the gamma function. The key to proving Schur-convexity is to show
that each function arises as a moment of some distribution, and then
to invoke E.3.

E.5. The function

φ(x) =
n∏
1

Γ(xi)

is strictly Schur-convex on R n
++.

Proof. In E.3, take ν to be the probability measure with density
f(z) = e−z, 0 ≤ z <∞. Then μr = Γ(r + 1), r > −1. ||
See also 16.B.8.a.

By taking ν to be the probability measure with density f(z) =
e−z/(1 − e−x), 0 ≤ z ≤ x, the gamma function in E.5 is replaced by
an incomplete gamma function.

Mitrinović (1970, p. 285) has used the fact that log Γ(z) is convex
in z > 0 to obtain that

n∏
1

Γ(xi) ≥
[
Γ
(∑

xi/n
)]n

.

This inequality follows from Jensen’s inequality or from E.5 and the
fact that (

∑
xi/n)(1, . . . , 1) ≺ (x1, . . . , xn). But, of course, much more

general comparisons are obtainable from E.5.

It also follows from E.5 that the generalized beta function

B(x1, . . . , xn) =
n∏
1

Γ(xi)/Γ(Σxi), xi > 0,

is Schur-convex. The beta function B(x1, . . . , xn) is decreasing in each
argument with the others held fixed. This follows by taking derivatives
in the integral representation

B(x1, . . . , xn) =
∫

Ω
Πn

1 t
xi−1
i Πn

1dti,

where Ω = {t : ti ≥ 0, Σti = 1}.
See also Dedić, Matić, and Pečarić (2000).

E.6.a. Let ν be the gamma distribution with density

f(z|a) = za−1e−z/Γ(a)), 0 ≤ z <∞, a > 0.



110 3. Schur-Convex Functions

It follows from E.2 that

μr = Γ(r + a), r ≥ −a,
is logarithmically convex, and consequently (E.3) the function

φ(x) =
n∏
1

Γ(xi + a), a > 0,

is strictly Schur-convex in (−a,∞)n.

E.6.b. For 0 < a ≤ 1, the gamma density can be written in the form

f(z|a) =
∫ ∞

0
θe−θzg(θ|a)dθ, where g(θ|a) = θ−1(θ−1)−α/B(α, 1−α)

[see Marshall and Olkin (2007, p. 312)]. Consequently, f is completely
monotone for 0 < a < 1, and it follows from E.4 that

λr = Γ(r + a)/Γ(r + 1), r ≥ −a
is logarithmically convex in r ≥ −a when 0 < a ≤ 1. Thus

φ(x) =
n∏
i=1

Γ(xi + a)/Γ(xi + 1), xi > −a,

is Schur-convex for 0 < a ≤ 1. Because log λr = log μr − log Γ(r + 1)
and log Γ(r + 1) are convex in r > −1 (E.6.a), the convexity of log λr
implies the convexity of log μr, but only for 0 < a < 1.

It can be verified that the gamma density is log concave when a ≥ 1.
From this and E.4, it follows that log λr is concave in r ≥ 0. This means
that φ is Schur-concave on R n

+ when a ≥ 1.

E.7.a. If, in E.2, ν has the beta density

f(z|a, b) =
xa−1(1 − x)b−1

B(a, b)
, 0 ≤ x ≤ 1, a, b > 0,

then it follows that

μr = B(a+ r, b)/B(a, b), r > −a,
is strictly log convex. Because multiplicative constants do not affect
log convexity, it follows that

g(r) = Γ(r + a)/Γ(r + a+ b)

is strictly log convex in r > −a. From E.3 it follows that the function

φ(x) =
n∏
1

Γ(xi + a)
Γ(xi + a+ b)

, a, b > 0,

is strictly Schur-convex on (−a,∞)n.
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E.7.b. It can be verified that the density of the beta distribution is
log convex for a, b ≤ 1 and log concave for a, b ≥ 1. It follows from E.4
that log λr is convex in r ≥ 0 when a, b ≤ 1, and log λr is concave in
r ≥ 0 when a, b ≤ 1. This means that

g(r) =
Γ(r + a)

Γ(r + a+ b)Γ(r + 1)

is log convex in r ≥ 0 when a, b ≤ 1, and log concave in r ≥ 0 when
a, b ≥ 1. It follows that for x ∈ R n

+ , the function

φ(x) =
n∏
1

Γ(xi + a)
Γ(xi + a+ b)Γ(xi + 1)

is Schur-convex when a, b ≤ 1 and Schur-concave when a, b ≥ 1.

E.8.a. The function

g(x) =
n∏
i=1

xxi+1
i

Γ(xi + 1)

is Schur-concave on R n
++.

Proof. From the integral representation of the gamma function,

Γ(x+ 1)
xx+1

=
∫ ∞

0
(te−t)x dt =

∫ ∞

0
zx dν(z),

where

ν(−∞, z] =
∫
{te−t≤z,t≥0}

te−tdt.

It follows from E.2 that log[Γ(x + 1)/xx+1] is convex in x > 0; i.e.,
log[xx+1/Γ(x + 1)] is concave in x > 0. According to E.3, this means
that

φ(x) =
n∏
1

xxi+1
i

Γ(xi + 1)
, x ∈ R n,

is Schur-concave. ||
The fact that log[Γ(x+1)/xx+1] is convex in x > 0 is the content of

a problem posed by Eliezer (1971). This convexity can be written in
the form [

Γ(x+ 1)
xx+1

· Γ(y + 1)
yy+1

]1/2

≥ Γ[12(x+ y) + 1]

[12(x+ y)]
1
2
(x+y)+1

.
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An application of the arithmetic–geometric mean inequality yields

1
2

[
Γ(x+ 1)
xx+1

+
Γ(y + 1)
yy+1

]
≥ Γ[12(x+ y)] + 1

[12(x+ y)]
1
2
(x+y)+1

,

which is another inequality posed by Eliezer (1971).

E.8.b. The function

φ(x) =
n∏
i=1

[xxi

i /Γ(xi + 1)]

is Schur-convex on R n
+ .

Proof. Marshall, Olkin, and Proschan (1967) give a proof due to
Herman Rubin that for r > 0, μr = rr is the rth moment of a density
of the form

f(x) =
∫ ∞

0
eλxdν(λ).

Thus, f is completely monotone and the result follows from E.1 and
E.4. ||

This result is to be contrasted with E.8.a, which is obtained above
using an entirely different probability measure.

E.9. The function

φ(x) =
n∏
i=1

Γ(mxi + a)
Γk(xi + a)

, m = 1, 2, . . . , k = 1, . . . ,m,

is Schur-convex on (−a/m,∞)n, provided that a ≥ (m − 1)/(k − 1)
(for k > 1). The Schur-convexity is strict for m > 1.

Proof. The Gauss-Legendre multiplication formula 16.B.8.b per-
mits the expansion

Γ(mz + a) =
mmz+a−1/2

(2π)(m−1)/2

m∏
j=1

Γ
(
z +

a+ j − 1
m

)
.

Thus
n∏
i=1

Γ(mxi + a)
Γk(xi + a)

= c(m,a) m
∑
xi

m∏
j=1

φj(x),

where c(m,a) depends only on m and a, and

φj(x) =
n∏
i=1

Γ(xi + a+j−1
m )

Γ(xi + a)
for j = 1, . . . , k,
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φj(x) =
n∏
i=1

Γ
(
xi +

a+ j − 1
m

)
for j = k + 1, . . . ,m.

For j = 1, . . . , k, φj is strictly Schur-convex on (−a/m,∞)n by E.7.a.
For j = k + 1, . . . ,m, φj is strictly Schur-convex on (−a/m,∞)n

by E.6.a. Consequently, φ is a product of nonnegative Schur-convex
functions, all but one of which is strictly Schur-convex. Consequently,
φ is strictly Schur-convex. ||

The above result was obtained by Li, Zhao, and Chen (2006). For
m = 2, Merkle (1997) shows that g(x) = Γ(2x)/Γ2(x) is log-convex.
Further results are obtained by Chen (2005) and by Li, Zhao, and
Chen (2006).

If m1, . . . ,mn are nonnegative integers such that m1 + · · ·+mn = s,
then (m1, . . . ,mn, 0, . . . , 0) � (1, . . . , 1). It then follows from E.9 with
k = 1,m = 2, and a = 1 that

n∏
i=1

(2mi)!
mi!

=
n∏
1

Γ(2mi + 1)
Γ(mi + 1)

≥ 2s.

This inequality is due to Khintchine (1923); see also Mitrinović (1970,
p. 194).

E.9.a. The function

φ(x) =
(

n

x1, . . . , xk

)/(
mn

mx1, . . . ,mxk

)
, m = 2, 3, . . . ,

of multinomial coefficients is strictly Schur-convex in x1, . . . , xk, where
each xi is a nonnegative integer and

∑n
1 xi = n.

Proof. Because j! = Γ(j + 1) for nonnegative integers j,

φ(x) =
Γ(n+ 1)

Γ(mn+ 1)

n∏
i=1

Γ(mxi + 1)
Γ(xi + 1)

,

so the result follows from E.9 with a = 1. ||
E.10. If f is a twice-differentiable nonnegative increasing con-
cave function defined on R++, then g(z) = z log f(s− z) is concave
(i.e., [f(s− z)]z is log concave).

Proof . This result can be verified by computing the second
derivative of g. ||
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E.10.a. (Kwong, 2007). If f satisfies the conditions of E.10 and
s = x1 + . . .+ xn, then

max
x

n∏
i=1

[f(s− xi)]xi/s ≤ f

(
n− 1
n

s

)
.

Equality holds if the xi’s are equal.

Proof. By E.10 and E.1, the function
∏n
i=1[f(s− xi)]xi/s is Schur-

concave. The result follows from (x, . . . , x) ≺ (x1, . . . , xn). ||
E.10.b. Proposition. (Merkle, 1998). The function

φ(x, y) =
log Γ(x) − log Γ(y)

x− y
, x �= y,

= ψ(x) = Γ′(x)/Γ(x), x = y,

is strictly Schur-concave on x > 0, y > 0.

Proof . The condition for Schur-concavity is equivalent to the
condition

ψ(x) + ψ(y)
2

<
log Γ(y) − log Γ(x)

y − x
, 0 < x < y.

The mean-value theorem is then used to prove the inequality. ||
For x > 0, a > 0, a bound for the ratio Γ(x + a)/Γ(x) is obtained

from the majorization (x+ a, x) � (x+ a/2, x+ a/2):

exp
a[ψ(x+ a) + ψ(x)]

2
Γ(x+ a)

Γ(x)
< exp aψ(x+ a/2).

Other inequalities for the gamma function are obtained by Merkle
(1998). A generalization of E.10.b is given by Elezović and Pec̆arić
(2000).

F Examples III. Elementary Symmetric
Functions

Denote by Sk(x) the kth elementary symmetric function of x1, . . . , xn.
That is,

S0(x) ≡ 1, S1(x) =
∑n

i=1 xi, S2(x) =
∑

i<j xixj ,

S3(x) =
∑

i<j<k xixjxk, . . . , Sn(x) =
∏n

1 xi.
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F.1. Proposition (Schur, 1923). The function Sk is increasing and
Schur-concave on R n

+ . If k > 1, Sk is strictly Schur-concave on R n
++.

Proof. Let φ(x) = Sk(x) and verify (10) of A.4:

[φ(i)(x) − φ(j)(x)](xi − xj)

= [Sk−1(x1, . . . , xi−1, xi+1, . . . , xn)

− Sk−1(x1, . . . , xj−1, xj+1, . . . , xn)](xi − xj) ≤ 0.

Strict Schur-concavity on R n
++ follows from A.4.b. ||

Remark. S2 is actually Schur-concave on R n, not just on R n
+ . The

restriction to R n
+ is needed for Schur-convexity of Sk when k > 2.

F.1.a. If x, y ∈ R n
+ , then

x ≺ y ⇒
n∏
1

xi ≥
n∏
1

yi,

with strict inequality unless x is a permutation of y.

Proof. This follows from F.1 with k = n. ||

This result has numerous applications, and for many well-known
inequalities of the form

∏n
1 xi ≥ ∏n

1 yi, there is an underlying ma-
jorization. For example, if xi =

∑n
1 yi/n for each i in F.1.a, the

arithmetic–geometric mean inequality G.2.f is obtained.

F.1.b. Daykin (1969) posed the following problem: If yi > 0, i =
1, . . . , n, yn+j = yj, j = 1, . . . , n, and if xj = (yj+1 + · · · + yj+m)/m,
then

∏n
1 yi ≤ ∏n

1 xi, with equality if and only if y1 = · · · = yn or
m = 1. This result follows from F.1.a because x = yP , where P is
the doubly stochastic matrix C̃ of 2.H.4.a with a1 = · · · = am = 1/m,
a0 = am+1 = · · · = an = 0.
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F.1.c. (Oppenheim, 1965a, 1968; Mitrinović, 1970, p. 339). If
0 < min(a1, a2, a3) ≤ ck ≤ max(a1, a2, a3) for k = 1, 2, 3, and
c1 + c2 + c3 ≥ a1 + a2 + a3, then

c1c2c3 ≥ a1a2a3,

c2c3 + c3c1 + c1c2 ≥ a2a3 + a3a1 + a1a2.

Proof . For convenience, suppose that a1 ≥ a2 ≥ a3 and c1 ≥
c2 ≥ c3. Then the conditions give directly that c3 ≥ a3. Addition
of the inequalities c1 + c2 + c3 ≥ a1 + a2 + a3 and a1 ≥ c1 yields
c2 + c3 ≥ a2 + a3. Consequently, c ≺w a. Thus the above inequalities
follow from F.1 and A.8 with φ = −S2 and φ = −S3. ||
F.2. The function φ(x) = [Sk(x)]1/k is concave and increasing (in fact,
strictly concave if k �= 1) in x ∈ R n

+ ; hence, φ is Schur-concave (strictly
Schur-concave if k �= 1) and increasing, k = 1, . . . , n, in x ∈ R n

+ .

Proof . The concavity of S
1/k
k follows from F.1. It is also a

consequence of the inequality

[Sk(x+ y)]1/k ≥ [Sk(x)]1/k + [Sk(y)]1/k,

which is due to Marcus and Lopes (1957) and to Henri Frédéric
Bohnenblust as reported by Marcus and Lopes (1957). See also
Beckenbach and Bellman (1961, p. 35). ||
F.2.a. If x̃ = (1 − x1, 1 − x2, . . . , 1 − xn), then

[Sk(x)]1/k + [Sk(x̃)]1/k

is Schur-concave on {z : 0 ≤ zi ≤ 1 for all i}. In particular,
(∏

xi

)1/n
+
[∏

(1 − xi)
]1/n

is Schur-concave.

Proof. This follows directly from F.2. ||
One can very easily verify that [Sk(x)]1/k + [Sk(x̃)]1/k is Schur-

concave on {z : 0 ≤ zi ≤ 1 for all i} directly from the condition
of A.4.

F.3. (Schur, 1923; Marcus and Lopes, 1957). The ratio Sk/Sk−1 is
concave (in fact, strictly concave unless k = 1) in x ∈ R n

++; hence,
Sk/Sk−1 is Schur-concave, k = 1, . . . , n, in x ∈ R n

++.
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Proof. The concavity of Sk/Sk−1 is an immediate consequence of
the inequality

Sk(x+ y)
Sk−1(x+ y)

≥ Sk(x)
Sk−1(x)

+
Sk(y)
sk−1(y)

,

which is due to Marcus and Lopes (1957). See also Beckenbach and
Bellman (1961, p. 33) ||

That Sk/Sk−1 is Schur-concave was proved by Schur (1923).

F.3.a. (Bullen and Marcus, 1961). If 1 ≤ p ≤ k ≤ n, then

Fk, p(x) = [Sk(x)/Sk−p(x)]1/p

is a concave function of x ∈ R n
++. Hence, Fk, p is Schur-concave on

R n
++, 1 ≤ p ≤ k ≤ n.

Proof. The concavity of Fk, p is equivalent to the inequality

Fk, p(x+ y) ≥ Fk, p(x) + Fk, p(y), x, y ∈ R n
++,

which is proved by Bullen and Marcus (1961). ||

Notice that the case p = 1 in F.3.a is just F.3.

F.4. (Schur, 1923). If Sk(x) is the kth elementary symmetric function
of x1, . . . , xn, then

φ(x) = Sn−ν1 (x)Sν(x) − (n − 2)n−ν
(
n− 2
ν − 2

)
Sn(x)

is Schur-concave in x on R n
++, ν = 2, 3, . . . , n− 1.

Proof. Because of symmetry, it is sufficient to verify condition (10′)
of A.4. As in the proof of F.1,

∂Sk(x1, . . . , xn)
∂x1

− ∂Sk(x1, . . . , xn)
∂x2

= −(x1 − x2)Sk−2(x3, . . . , xn).
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Using this, it follows directly that

[φ(1)(x) − φ(2)(x)](x1 − x2)

= −(x1 − x2)2Sn−ν1 (x1, . . . , xn)Sν−2(x3, . . . , xn)

+ (n− 2)n−ν
(
n− 2
n− ν

)
(x1 − x2)2Sn−2(x3, . . . , xn)

≤ (x1 − x2)2
[
− Sn−ν1 (x3, . . . , xn)Sν−2(x3, . . . , xn)

+ (n− 2)n−ν
(
n− 2
n− ν

)
Sn−2(x3, . . . , xn)

]

= (x1 − x2)2
(
n− 2
n− ν

)
(n − 2)n−ν

{
Sn−2(x3, . . . , xn)

−
[
Sν−2(x3, . . . , xn)

/(
n− 2
ν − 2

)]

×
[
S1(x3, . . . , xn)

/(
n− 2

1

)]n−ν}
.

But this is nonpositive by virtue of the fact that[
Sk+1(x3, . . . , xn)

/(
n− 2

k + 1 − 2

)]/[
Sk(x3, . . . , xn)

/(
n− 2
k − 2

)]

is decreasing in k = 1, . . . , n− 1. ||
F.4.a. (Schur, 1923). If x, y ∈ R n

+ and x ≺ y, then

0 ≤
n∏
1

xi −
n∏
1

yi ≤ (
∑
xi)n−2

n− 2
(
∑
y2
i −

∑
x2
i )

2
. (1)

Proof. To obtain the right-hand inequality, for ν = 2 in F.4,

[S1(x)]n−2 S2(x) − (n− 2)n−2Sn(x)

≥ [S1(y)]n−2S2(y) − (n − 2)n−2Sn(y). (2)

Because S1(x) = S1(y),
n∏
1

xi −
n∏
1

yi = Sn(x) − Sn(y) ≤
(∑

xi
n− 2

)n−2

[S2(x) − S2(y)].

Inequality (1) follows by noting that

2[S2(x) − S2(y)] =
[(∑

xi

)2
−
(∑

x2
i

)]
−
[(∑

yi

)2
−
(∑

y2
i

)]

=
∑

y2
i −

∑
x2
i . ||
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Complete Symmetric Functions

The elementary symmetric function Sk can be defined by

Sk(x) =
∑

i1+···+in=k
ij=0 or 1

xi11 · · · xinn .

Corresponding to this is the complete symmetric function

Ck(x) =
∑

i1+···+in=k

ij≥0

xi11 · · · xinn .

As stated in F.2, [Sk(x)]1/k is a concave function of x ∈ R n
+ ; in contrast

to this, [Ck(x)]1/k is convex. These results are included as special cases
of the following:

F.5. Proposition (Whiteley, 1958). For l �= 0 and k = 1, . . . , n, let

T
(l)
k (x) =

∑
i1+···+in=k

ij≥0

λi1 · · ·λinxi11 · · · xinn ,

where λi =
(
l
i

)
if l > 0, λi = (−1)i

(
l
i

)
if l < 0.

If l < 0, then

[T (l)
k (x+ y)]1/k ≤ [T (l)

k (x)]1/k + [T (l)
k (y)]1/k. (3)

If l > 0 and k < l + 1, unless l is an integer, the inequality (3) is
reversed.

The proof of this result is not given here.
Because [T (l)

k (x)]1/k is homogeneous of degree 1 in x, inequality (3)
says that this function is convex and the reversal of (3) says this
function is concave. Because T (l)

k is symmetric, the functions φ1, φ2

defined by

φ1(x) = [T (l)
k (x)]1/k, φ2(x) = T

(l)
k (x)

are Schur-convex if l < 0, and are Schur-concave if l > 0 and k < l+1,
unless k is an integer.

The case of Sk is obtained with l = 1; the case of Ck is obtained
with l = −1.

The fact that Sk is Schur-concave and Ck is Schur-convex has been
generalized by Daykin (1971) and Baston (1976/1977, 1978). There
are misprints in these papers; some of the inequalities are reversed.
The Schur-convexity of Ck(x) and Ck(x)/Ck−1(x) for k = 1, . . . , n is
shown by Guan (2006).
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G Symmetrization of Convex
and Schur-Convex Functions:

Muirhead’s Theorem

According to C.2, a function φ is Schur-convex if it is symmetric and
convex. As was pointed out in the remark following A.1, all Schur-
convex functions are symmetric, so that the symmetry condition here
is essential. If φ is convex but not symmetric, then there are various
ways to symmetrize φ while preserving convexity so as to generate
a Schur-convex function. The early result of Muirhead (1903) can be
viewed in this way.

All of the propositions of this section that identify Schur-convex
functions can be easily modified to yield monotone Schur-convex func-
tions with trivial additions to the proofs. Because these modifications
are obvious, they are omitted in many cases.

Let Sn = {π1, . . . , πn!} be the group of all permutations of
{1, 2, . . . , n}, and let

πi(x) = (xπi(1), . . . , xπi(n)).

G.1. Proposition. If φ :R n → R is convex and h : R n! → R is
symmetric, increasing, and convex, then

ψ(x) = h(φ(π1x), . . . , φ(πn!x))

is symmetric and convex.

Proof. That ψ is symmetric is trivial. Convexity of ψ follows from
16.B.7. ||
G.1.a. If φ : R n → R is convex, h : R n! → R is symmetric,
increasing, and convex, and if t1, . . . , tn are real numbers, then

ψ(x) = h(φ(t1xπ1(1), . . . , tnxπ1(n)), . . . , φ(t1xπn!(1), . . . , tnxπn!(n)))

is a symmetric convex function. If φ is increasing (decreasing) as well
as convex, and if t1, . . . , tn are nonnegative, then ψ is symmetric,
increasing (decreasing), and convex.

Proof. If φ is convex, then

φ̃(x) = φ(t1x1, . . . , tnxn)

is convex. With φ̃ in place of φ, G.1 becomes G.1.a. ||
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Notation. The notation
∑

k,π φ(t1xπ(1), . . . , tnxπ(n)) denotes sum-
mation over the k largest values assumed by φ(t1xπ(1), . . . , tnxπ(n)) as
π ranges over the n! permutations of 1, . . . , n.

A specific choice of h in G.1.a yields G.1.b:

G.1.b. If φ :R n → R is convex and t1, . . . , tn are real numbers, then

ψk(x) =
∑
k,π

φ(t1xπ(1), . . . , tnxπ(n)), k = 1, . . . , n!,

is symmetric and convex.

With particular choices of k in G.1.b, both G.1.c and G.1.d are
obtained.

G.1.c. If φ : R n → R is convex and t1, . . . , tn are real numbers, then

ψ(x) =
∑
π

φ(t1xπ(1), . . . , tnxπ(n))

is symmetric and convex.

G.1.d. If φ :R n → R is convex and t1, . . . , tn are real numbers, then

ψ(x) = max
π

φ(t1xπ(1), . . . , tnxπ(n))

is symmetric and convex. If t1, . . . , tn ≥ 0 (t1, . . . , tn ≤ 0), then ψ is
also increasing (decreasing).

Another consequence of G.1.b is

G.1.e. If t1, . . . , tn are real numbers, then

ψk(x) =
∑
k,π

(t1xπ(1) + · · · + tnxπ(n))

is symmetric and convex, k = 1, 2, . . . , n!.

Note that in case k = n!,

ψn!(x) = (n− 1)!
(∑

ti

)(∑
xi

)

is a function of
∑
xi. If k = 1,

ψ1(x) = max
π

(t1xπ(1) + · · · + tnxπ(n))

is a special case of G.1.d. That ψ1 is Schur-convex is due to Mirsky
(1957a).
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G.1.f. If gj : R → R is convex, j = 1, . . . , n, and h : R n → R is
symmetric increasing and convex, then

ψ(x) = h

⎛
⎝ n∑
j=1

gj(xπ1(j)), . . . ,
n∑
j=1

gj(xπn!(j))

⎞
⎠

is symmetric and convex.

Proof. Because φ(x) =
∑n

j=1 gj(xj) is convex, this follows from
G.1. ||
G.1.g. If g :R → R is convex, then

ψk(x) =
∑
k,π

n∑
i=1

g(tixπ(i)), k = 1, . . . , n!,

is symmetric and convex.

G.1.h. If gj :R → (0,∞) and log gj is convex, j = 1, . . . , n, and if
h :R n! → R is symmetric, increasing, and convex, then

ψ(x) = h

⎛
⎝ n∏
j=1

gj(xπ1(j)), . . . ,
n∏
j=1

gj(xπn!(j))

⎞
⎠

is symmetric and convex.

Proof. Because
∑n

j=1 log gj(xj) = log
∏n
j=1 gj(xj) is convex in x, it

follows from 16.B.7.b that φ(x) =
∏n
j=1 gj(xj) is convex, so the result

follows from G.1. ||
G.1.i. If gj :R → (0,∞) and log gj is convex, j = 1, . . . , n, then

ψk(x) =
∑
k,π

n∏
j=1

gj(xπ(j))

is symmetric and convex, 1 ≤ k ≤ n!.

The choices k = 1 and k = n! in G.1.i yield the following:

G.1.j. If gj :R → (0,∞) and log gj is convex, j = 1, . . . , n, then

ψn!(x) =
∑
π

n∏
j=1

gj(xπ(j)) and ψ1(x) = max
π

n∏
j=1

gj(xπ(j))

are symmetric and convex.

That ψn! is symmetric and convex is due to Proschan and
Sethuraman (1973).
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G.1.k. If aj > 0, j = 1, . . . , n, the function

ψ(x) =
∑
π

n∏
j=1

x
−aj

π(j)

is symmetric and convex on R n
++.

G.1.l. If g : R → (0,∞) and log g is convex, and if h is symmetric,
increasing, and convex, then

h

(
n∏
1

g(tjxπ1(j)), . . . ,
n∏
1

g(tjxπn!(j))

)

is symmetric and convex.

G.1.m. If a > 0,

ψk(x) =
∑

i1<···<ik

k∏
j=1

(
1
xij

)a
, k = 1, . . . , n!, (1)

is symmetric decreasing and convex on

R++ = {z : zi > 0, i = 1, 2, . . . , n}.

Proof . In G.1.h take gj(x) = x−a, j = 1, . . . , k, gj(x) ≡ 1 for
j = k + 1, . . . , n, and h(z1, . . . , zn!) = [(n − k)!/(n!k!)]

∑n!
1 zi. Thus ψ

is symmetric and convex. The monotonicity is trivial. ||
If each xi > 0 and

∑n
1 xi ≤ 1, then from G.1.m and the fact that

x �w (1/n, . . . , 1/n), it follows that

∑
i1<···<ik

k∏
j=1

(
1
xij

)a
≥
(
n

k

)
nka. (2)

If xi < 1, i = 1, . . . , n, then xi can be replaced by 1 − xi in (1) to
obtain an increasing convex function. An argument similar to that for
(2) shows that if each xi ≤ 1 and

∑n
1 xi ≥ 1, then

∑
i1<···<ik

k∏
j=1

(
1

1 − xij

)a
≥
(
n

k

)(
n

n− 1

)ka
. (3)

G.1.n. The function

ψk(x) =
∏

i1<···<ik

k∑
j=1

xij , k = 1, . . . , n, (4)

is increasing and Schur-concave on R+.
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Proof. Since logψ is increasing concave and symmetric, logψ is
increasing and Schur-concave, and hence ψ is increasing and Schur-
concave. ||

With the fact that x �w (1/n, . . . , 1/n) when
∑n

1 xi ≤ 1, it follows
that if

∑n
1 xi ≤ 1 and xi ≥ 0, i = 1, . . . , n, then

∏
i1<···<ik

k∑
j=1

xij ≤
(
k

n

)(n

k)
. (5)

If xi ≤ 1, i = 1, . . . , n, then xi can be replaced by 1 − xi in (4) to
obtain a decreasing Schur-concave function. An argument similar to
that for (5) shows that if

∑n
1 xi ≥ 1 and xi ≤ 1, i = 1, . . . , n, then

∏
i1<···<ik

k∑
j=1

(1 − xij) ≤
(

(n− 1)k
n

)(n

k)
. (6)

Inequalities (2), (3), (5), and (6) have been given by Mitrinović (1970,
p. 343) for the case that

∑n
1 xi = 1.

G.1.o. The function

ψk(x) =

∏
1≤i1<···<in≤n

∑k
j=1(1 − xij)∏

1≤i1<···<in≤n
∑k

j=1(xij )
, k = 1, . . . , n,

is Schur-convex on (0, 1/2]n.

This inequality is one of many inequalities called Ky Fan-inequalities.
For other inequalities on similar symmetric functions, see Guan and
Shen (2006).

G.2. Proposition. If φ : R n → R is symmetric and convex,
h :R n! → R is symmetric, increasing, and convex, and if t1, . . . , tn
are real numbers, then

ψ(x) = h(φ(tπ1(1)x1, . . . , tπ1(n)xn), . . . , φ(tπn!(1)x1, . . . , tπn!(n)xn))

is a symmetric convex function.

Proof. This follows from G.1.a since for any permutation π,

φ(t1xπ(1), . . . , tnxπ(n)) = φ(tπ−1(1)x1, . . . , tπ−1(n)xn). ||

Of course, the symmetry of φ is essential here.
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Particular cases of G.2 are the following:

G.2.a. If φ is symmetric and convex and t1, . . . , tn are real numbers,

ψk(x) =
∑
k,π

φ(tπ(1)x1, . . . , tπ(n)xn)

is symmetric and convex, k = 1, . . . , n! (as follows from G.1.b). The
case k = n! was given by Marshall and Proschan (1965).

G.2.b. If t1, . . . , tn are real numbers,

ψk(x) =
∑
k,π

(tπ(1)x1 + · · · + tπ(n)xn), k = 1, . . . , n!,

is symmetric and convex. This is a restatement of G.1.e.

G.2.c. If g :R → R is convex, then

ψk(x) =
∑
k,π

n∑
i=1

g(tπ(i)xi), k = 1, . . . , n!,

is symmetric and convex. This special case of G.2.a is a restatement
of G.1.g.

G.2.d. If g :R → (0,∞) and log g is convex, then

ψk(x) =
∑
k,π

n∏
j=1

g(tπ(j)xj)

is symmetric and convex. This is a restatement of special cases of G.1.i
and G.1.l.

G.2.e. (Muirhead, 1903; Hardy, Littlewood, and Pólya, 1934, 1952,
p. 44). If yi > 0, i = 1, . . . , n, and a ≺ b, then∑

π

ya1

π(1)y
a2

π(2) · · · yan

π(n) ≤
∑
π

yb1π(1)y
b2
π(2) · · · ybn

π(n). (7)

Proof. In G.2.a take k = n!, φ(z) = exp(
∑
zi), ti = log yi. Or

alternatively, in G.2.d using ψn!, take g(x) = ex, ti = log yi. ||
A converse and a more direct proof of G.2.e are given in 4.B.5. A

generalization of Muirhead’s theorem involving partitions rather than
permutations in the context of inductive logic is provided by Paris and
Venkovská (2008).

G.2.f. Arithmetic–geometric mean inequality. If yi > 0 for
i = 1, . . . , n, then (∏

yi

)1/n

≤
∑

yi/n.
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Proof. In G.2.e, take a = (1/n, . . . , 1/n) and b = (1, 0, . . . , 0). ||
G.2.g. If yi ≥ 1, i = 1, . . . , n, then (7) holds whenever a ≺w b; if
0 < yi ≤ 1, i = 1, . . . , n, then (7) holds whenever a ≺w b.

Proof. It is easy to see that ψ(a) =
∑

π y
a1

π(1) · · · yan

π(n) is increasing
(decreasing) if yi ≥ 1, i = 1, . . . , n (0 < yi ≤ 1, i = 1, . . . , n). The
results follow from these observations and G.2.e. ||
G.2.h. (Proschan, private communication, 1965; Tong, 1977). If
X1, . . . ,Xn are exchangeable nonnegative random variables, then

φ(a1, . . . , an) = E

n∏
j=1

X
aj

j

is Schur-convex in a1, . . . , an over that region where the expectation
exists.

Proof. Because X1, . . . ,Xn are exchangeable random variables,

φ(a1, . . . , an) =
1
n!

∑
π

E

n∏
j=1

X
aj

π(j).

If a ≺ b, it follows from Muirhead’s theorem that with probability 1,

1
n!

∑
π

n∏
j=1

X
aj

π(j)
≤ 1
n!

∑
π

n∏
j=1

X
bj

π(j)
,

and, upon taking expectations, it follows that φ(a) ≤ φ(b). ||
Notice that ifX1, . . . ,Xn are independent and identically distributed,

then they are exchangeable. In this case, G.2.h reduces to E.3.

G.2.i. (Fink and Jodeit, 1990). Let μ be a nonnegative Borel measure
and

g(x) =
∫ x

0
(x− t)m dμ(t).

Denote the rth derivative of g by g(r), and let

φ(k1, . . . , kn) =
n∏
1

Γ(n− ki + 1)g(ki)(x).

Then φ is Schur-convex on the set of integers k1, . . . , kn satisfying
0 ≤ ki ≤ m, i = 1, . . . , n.
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Proof. Note that

φ(k1, . . . , kn)

=
[∏n

i=1
Γ(n+1)

Γ(n−ki+1)

] ∫ x
0 · · · ∫ x0 ∏n

i=1[(x− ti)m−ki dμ(ti)]

=
[∏n

i=1
Γ(n+1)

Γ(n−ki+1)

] ∫ x
0 · · · ∫ x0 1

n!

∑
π

[∏n
i=1(x− tπ(i))m−ki dμ(tπ(i))

]
.

The Schur-convexity is now immediate from Muirhead’s theorem after
noting that a ≺ b implies (p − a1, . . . , p − an) ≺ (p − b1, . . . , p − bn).
This follows directly from the definition of majorization, from 5.A.1.f,
or as a consequence of 6.A.1.b. ||

The restriction of the ki to integer values can be removed using
fractional derivatives [see; e.g., Courant (1936, p. 339)].

The same argument yields a similar result for

g(x) =
∫ ∞

x
(t− x)m dμ(t).

G.2.j. (Chong, 1974d). If yi > 0, i = 1, . . . , n and a ≺ b, then
∏
π

(1 + ya1

π(1)y
a2

π(2) · · · yan

π(n)) ≤
∏
π

(1 + yb1π(1)y
b2
π(2) · · · ybn

π(n)),

with equality if and only if a is a permutation of b or y1 = · · · = yn.

Proof. Let ti = log yi. It is equivalent to show that∑
π

log[1 + exp(a1tπ(1) + · · · + antπ(n))]

≤
∑
π

log[1 + exp(b1tπ(1) + · · · + bntπ(n))].

This inequality follows from G.2.a with k = n! once it is determined
that φ(x) = log[1 + exp(x1 + · · · + xn)] is symmetric and convex.
This convexity is a consequence of the easily verified fact that g(z) =
log(1 + ez) is convex. The condition y1 = · · · = yn for equality is just
the condition that ψ(x) =

∑
π log[1 + exp(

∑
xitπ(i))] is not strictly

convex on sets of the form {x :
∑
xi = c} (see C.2.c). ||

G.3. Proposition. Let A be a symmetric convex subset of R l and
let φ be a Schur-convex function defined on A with the property that
for each fixed x2, . . . , xl,

φ(z, x2, . . . , xl) is convex in z on {z: (z, x2, . . . , xl) ∈ A }.
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Then for any n > l,

ψ(x1, . . . , xn) =
∑
π

φ(xπ(1), . . . , xπ(l))

is Schur-convex on

B = {(x1, . . . , xn): (xπ(1), . . . , xπ(l)) ∈ A for all permutations π}.

In most applications, A has the form I l for some interval I ⊂ R
and in this case B = In. Notice that the convexity of φ in its first
argument also implies that φ is convex in each argument, the other
arguments being fixed, because φ is symmetric.

Proof of G.3. To verify condition (10) of A.4, denote by
∑

π(i,j) the
summation over all permutations π such that π(i) = 1, π(j) = 2.
Because φ is symmetric,

ψ(x1, . . . , xn)

=
∑
i,j≤l
i�=j

∑
π(i,j)

φ(x1, x2, xπ(1), . . . , xπ(i−1), xπ(i+1), . . . ,

xπ(j−1), xπ(j+1), . . . , xπ(l))

+
∑
i≤l<j

∑
π(i,j)

φ(x1, xπ(1), . . . , xπ(i−1), xπ(i+1), . . . , xπ(l))

+
∑
j≤l<i

∑
π(i,j)

φ(x2, xπ(1), . . . , xπ(j−1), xπ(j+1), . . . , xπ(l))

+
∑
l<i,j
i�=j

∑
π(i,j)

φ(xπ(1), . . . , xπ(l)).

Then(
∂ψ

∂x1
− ∂ψ

∂x2

)
(x1 − x2)

=
∑
i,j≤l
i�=j

∑
π(i,j)

(φ(1) − φ(2))(x1, x2, xπ(1), . . . , xπ(i−1), xπ(i+1), . . . ,

xπ(j−1), xπ(j+1), . . . , xπ(l)) (x1 − x2)

+
∑
i≤l<j

∑
π(i,j)

[φ(1)(x1, xπ(1), . . . , xπ(i−1), xπ(i+1), . . . , xπ(l))

− φ(1)(x2, xπ(1), . . . , xπ(i−1), xπ(i+1), . . . , xπ(l)] (x1 − x2).
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Here, (φ(1) − φ(2))(x1 − x2) ≥ 0 because φ is Schur-convex, and
[φ(1)(x1, z) − φ(1)(x2, z)](x1 − x2) ≥ 0 because φ is convex in its first
argument. ||
G.3.a. Notice that if

ψ̃(x) = ψ(x)/l!(n − l)!,

where ψ is the function defined in G.3, then

ψ̃(x1, . . . , xn) =
∑
C(n,l)

φ(x1, . . . , xl),

where (x1, . . . , xl) is generic notation for an arbitrary selection of l of
the variables x1, . . . , xn and

∑
C(n,l) denotes summation over all

(n
l

)
such selections. Of course, ψ̃ is Schur-convex whenever ψ is Schur-
convex.

Notice that G.3 is a generalization of F.1 which says that the lth
elementary symmetric function is Schur-concave on R n

+ . In fact, it is
easy to check that φ(z1, . . . , zn) = −∏l

j=1 zj satisfies the conditions of
G.3 and in this case, −ψ̃ is the lth symmetric function.

G.3.b. The function

ψ̃(x) =
∑
C(n,l)

x1 + · · · + xl
x1 · · · xl

is Schur-convex on R n
++.

This follows from G.3.a because φ(y) =
∑l

1 yi/
∏l

1 yi is Schur-convex
on R l

++ (
∏l

1 yi is Schur-concave on R l
++). If xi > 0, i = 1, . . . , n, and∑n

1 xi = 1, then x � (1/n, . . . , 1/n) and it follows that
∑
C(n,l)

x1 + · · · + xl
x1 · · · xl ≥ l

(n
l

)
nl−1.

This inequality is given by Mitrinović (1970, p. 209).

G.3.c. The function

ψ(x) =
∑
C(n,l)

x1 · · · xl
x1 + · · · + xl

is Schur-concave on R n
++.

This follows from G.3.a since on R 2
++, φ(y) =

∏l
1 yi/(

∑l
1 yi)

is Schur-concave and concave in each argument separately (F.1.a).
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If xi > 0, i = 1, . . . , n, and
∑n

1 xi = 1, then x � (1/n, . . . , 1/n)
and it follows that ∑

i�=j

xixj
xi + xj

≤ n− 1
2

.

This inequality is given by Mitrinović (1970, p. 209).
Because x � (x, . . . , x), where x = (1/n)

∑n
1 xi, it follows from G.3.a

that

l
∑
C(n,l)

x1 · · · xl
x1 + · · · + xl

≤
(
n

l

)
xl−1.

This inequality was posed as a problem by Klamkin (1976).

G.3.d. There are many variations of Schur-concave functions similar
to that in G.3.c, such as

ψ(x) =
n∑
1

(
xi∑
j �=i xj

)m

=
n∑
1

(
xi

T − xi

)
, T =

n∑
1

xi.

This function suggests further generalization. Define

π(x1, . . . , xl) = x1x2 · · · xl,

π(x1, . . . , xl) =

(
n∏
1

xi

)
/π(x1, . . . , xl),

and similarly,

s(x1, . . . , xl) = x1 + x2 + · · · + xl,

s(x1, . . . , xl) =

(
n∑
1

xi

)
− s(x1, . . . , xl).

This construction generates a variety of symmetric functions, such as
∑
C(n,l)

π(x1, . . . , xl)
s(x1, . . . , xl)

.

See Satnoianu and Zhou (2005).

G.3.e. If a > 0, the function

ψ(x) =
∑
C(n,l)

l∏
i=1

(
1 − xi
xi

)a
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is Schur-convex on B = {x : x ∈ R n
++ and xi + xj ≤ 1 for all i �= j},

and is Schur-concave on B̃ = {x : x ∈ R n
++ and xi + xj ≥ 1 for all

i �= j}.

Proof. It is easy to verify that φ(z) =
∏l
i=1[(1 − zi)/zi] is Schur-

convex on A = {z ∈ R l
++ : zi + zj ≤ 1 for all i �= j}, say by verifying

(10) of A.4 and using A.4.a. Consequently, [φ(z)]a is Schur-convex on
the same set for all a > 0. From G.3.a it follows that ψ is Schur-convex
on B. A similar argument shows that ψ is Schur-concave on B̃. ||

If xi > 0, i = 1, . . . , n, and x � (1/n, . . . , 1/n), it follows from G.3.e
that

∑
j1<···<jl

l∏
i=1

(
1 − xji

xji

)a
≥
(
n

l

)
(n− 1)la.

This inequality is given by Mitrinović (1970, p. 343).

G.3.f. (Bondar, 1994). For given a ∈ R n, the symmetrized
sum ψ(y) = Σπy

a1

π(1) · · · yan

π(n) is Schur-convex as a function of
(log y1, . . . , log yn), where (y1, . . . , yn) ∈ D++; i.e., if

x1 ≥ · · · ≥ xn > 0, y1 ≥ · · · ≥ yn > 0,

and

k∏
i=1

xi ≤
k∏
i=1

yi for k = 1, . . . , n, (8)

with equality for k = n, then ψ(x) ≤ ψ(y).

Proof. Let ui = log yi. Then

ψ(y) =
∑
π

n∏
i=1

exp{aiuπ(i)}

=
∑
π

(eaπ(1))u1 · · · (eaπ(n))un .

Now, by Muirhead’s theorem (G.2.e), this last expression is Schur-
convex as a function of (u1, . . . , un); hence,

∑k
1 log xi ≤

∑k
1 log yi

and
∑n

1 log xi =
∑n

1 log yi [which is equivalent to (8)] implies
ψ(x) ≤ ψ(y). ||
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H Schur-Convex Functions on D and Their
Extension to R n

If φ is defined on D and is Schur-convex, then φ can be easily extended
to R n in such a way as to preserve Schur-convexity.

H.1. Proposition. Let φ be a real function defined on D and
suppose that φ is Schur-convex. If

φ̃(x) = φ(x↓), x ∈ R n,

where x↓ = (x[1], . . . , x[n]) is obtained from x by writing the compo-
nents in decreasing order, then φ̃ is Schur-convex on R n. Moreover, φ̃
is the unique Schur-convex extension of φ to R n.

This proposition is a simple consequence of the fact that x ≺ xΠ ≺ x
for all permutations Π, or it follows from the fact that Schur-convex
functions on R n are necessarily symmetric (invariant under permuta-
tions of the arguments). However, H.1 is of some interest because the
extension of φ to φ̃ is not always the most obvious extension to R n.
Without the observation of H.1, a number of examples of Schur-convex
functions can be easily overlooked.

The following examples are mostly defined on D or D+, with the
understanding that they can be extended to R n or R n

+ using H.1.

H.2. Proposition. Let φ(x) =
∑
gi(xi), x ∈ D , where gi : R → R is

differentiable, i = 1, . . . , n. Then φ is Schur-convex on D if and only if

g′i(a) ≥ g′i+1(b) whenever a ≥ b, i = 1, . . . , n− 1. (1)

Proof . Since φ(i)(xi) = g′i(xi), this result follows directly from
A.3. ||
H.2.a. According to H.2, φ(x) ≤ φ(y) whenever x ≺ y on D and φ
satisfies the stated conditions. However, it is unnecessary that x ∈ D .

Proof. It is sufficient to show that

z ∈ D implies φ(zΠ) ≤ φ(z) for all permutations Π,

or, alternatively, that

ui ≥ ui+1 implies φ(u1, . . . , ui−1, ui+1, ui, ui+2, . . . , un) ≥ φ(u).

This inequality is equivalent to

gi(ui) − gi+1(ui) ≥ gi(ui+1) − gi+1(ui+1), ui ≥ ui+1,
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which follows from condition (1) that g′i(a) ≥ g′i+1(a) for all a. ||
H.2.b. Let φ(x) =

∑
uig(xi), where g is increasing (decreasing) and

convex. If u ∈ D+, then φ is Schur-convex (Schur-concave) on D . Thus

u ∈ D+ and x ≺ y on D ⇒
∑

uig(xi) ≤
∑

uig(yi).

This result follows from H.2 with gi(z) = uig(z) or directly from A.4.

H.2.c. If x ≺ y on D , then∑
xiui ≤

∑
yiui for all u ∈ D .

This is a consequence of H.2 or A.4. A converse is given in 4.B.7.

H.2.d. Fix a, b ∈ R n
+ and let Ak =

∑n
k aj , Bk =

∑n
k bj, k = 1, . . . , n.

Then

(i)
∑
akφ(k) ≤ ∑

bkφ(k) for all convex functions φ on {1, . . . , n} if
and only if

(ii) A1 = B1 and (A2, . . . , An) � (B2, . . . , Bn).

Proof. Suppose (ii) and rewrite (i) in the form

(iii) −A1φ(1) +
∑n

2 Ak[φ(k − 1) − φ(k)]

≥ −B1φ(1) +
∑n

2 Bk[φ(k − 1) − φ(k)].

Because a, b ∈ R n
+ , (A2, . . . , An), (B2, . . . , Bn) ∈ D . Because φ is

convex, u ≡ (φ(1) − φ(2), . . . , φ(n− 1) − φ(n)) ∈ D . Thus (iii) follows
from H.2.c. The converse follows from 4.B.6. ||

Remark. The restriction of H.2.d that ai ≥ 0, bi ≥ 0, i = 1, . . . , n,
guarantees (A2, . . . , An) and (B2, . . . , Bn) are in D so that the par-
tial sums conditions

∑k
2 Aj ≥

∑k
2 Bj, k = 2, . . . , n, can be written as

majorization. That the restriction is not essential can be seen by ob-
serving that (i) holds if and only if

∑
(ak +M)φ(k) ≤∑

(bk +M)φ(k)
for all convex functions φ and all M ∈ R. H.2.d has been given, for
example, by Karlin and Novikoff (1963). It is a special case of 16.B.4.a.

H.2.e. If x0, . . . , xn are positive numbers, then

φ(a) =
n∏
j=0

x
aj−aj+1

j (a0 = an+1 = 0)

is Schur-convex on D if and only if

x1/x0 ≥ x2/x1 ≥ · · · ≥ xn/xn−1. (2)
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Thus, if (2) is satisfied, a ≺ b on D , and a0 = an+1 = b0 = bn+1 = 0,
then

n∏
j=0

x
aj−aj+1

j ≤
n∏
j=0

x
bj−bj+1

j . (3a)

H.2.f. If xj = Sj/
(
n
j

)
, where Sj is the jth elementary symmetric

function of n positive numbers, then (2) is satisfied (Hardy, Littlewood,
and Pólya, 1952, p. 52). Since x0 = 1, (3a) can be written here as

n∏
j=1

x
aj−aj+1

j ≤
n∏
j=1

x
bj−bj+1

j . (3b)

This result is discussed by Hardy, Littlewood, and Pólya (1952, p. 64),
where the condition a ≺ b has been written in terms of the differences
α′
j = aj − aj+1, αj = bj − bj+1.

Recall the kth elementary symmetric function of z is denoted by
Sk(z) = Σzi1 · · · zik .
H.2.g. Corollary. With Ek = Sk(z)/

(n
k

)
, zi > 0, i = 1, . . . , n,

E2
k ≥ Ek−1Ek+1, 1 ≤ k ≤ n− 1; (3c)

more generally, if αk + αk′ is an integer, then

Eαk+αk′ ≥ EαkE
α
k′ , 0 ≤ α ≤ 1. (3d)

That Ek is a log concave function of k follows from (3c) or (3d).

Proof. To obtain (3c), choose a = (1, . . . , 1︸ ︷︷ ︸
k−1

, 1/2, 1/2, 0, . . . , 0) and

b = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0). For (3d) with k′ ≤ k, choose

a = (1, . . . , 1︸ ︷︷ ︸
k

, α, . . . , α︸ ︷︷ ︸
(k−k′)α

, 0, . . . , 0), b = (1, . . . , 1︸ ︷︷ ︸
αk+αk′

, 0, . . . , 0). ||

Inequalities (3c) and (3d) are obtained by Niculescu (2000), who
notes that inequality (3c) is due to Isaac Newton and also provides
some historical comments.

A probabilistic interpretation is also illuminating. Let Zk be a
random variable that takes values zi1 · · · zik with probability 1/

(
n
k

)
,

1 ≤ i1 < · · · < ik ≤ n. Then for zi > 0, i = 1, . . . , n,

EZtk =
∑

zti1 · · · ztik
/(

n

k

)
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is a moment. Hence, for fixed k, the Lyapunov inequality (16.D.1.d)
yields

(EZsk)
r−t ≤ (EZtk)

r−s(EZrk)
s−t, r ≥ s ≥ t.

H.2.h. If a, b ∈ D , then one easily verifies that

x ≡
∑
aj

|∑ aj |
(

1
n
, . . . ,

1
n

)
≺ 1

|∑ aj|(a1, . . . , an) ≡ y on D .

Since u = b/|∑ bj | ∈ D , H.2.c can be applied to obtain

1
n

∑
aj

|∑ aj| ·
∑
bj

|∑ bj | ≤
∑ ai

|∑ aj | ·
bi

|∑ bj | .

Thus (
1
n

∑
ai

)(
1
n

∑
bi

)
≤ 1
n

∑
aibi. (4)

Inequality (4) is usually attributed to Chebyshev [see; e.g., Hardy,
Littlewood, and Pólya, 1952, p. 43). A definitive history of the in-
equality is given by Mitrinović and Vasić (1974). Actually, much more
general versions of (4) are easily proved directly, but majorization can
lead to other forms by different choices of x and y.

H.2.i. If gi : R → R is differentiable, i = 1, . . . , n, then
∏
gi(xi) is

Schur-convex in (x1, . . . , xn) on D if and only if

g′i(a)
gi(a)

≥ g′i+1(b)
gi+1(b)

whenever a ≥ b, i = 1, . . . , n− 1.

Conditions for this in terms of total positivity are given implicitly
by Karlin (1968, p. 126, Lemma 5.2).

H.3. Let φ(x) =
∑
gi(xi), x ∈ D , where each gi : R → R is differ-

entiable. Then φ is increasing and Schur-convex on D if and only if

g′i(a) ≥ g′i+1(b) ≥ 0 whenever a ≥ b, i = 1, . . . , n− 1; (5)

φ is decreasing and Schur-convex on D if and only if

0 ≥ g′i(a) ≥ g′i+1(b) whenever a ≥ b, i = 1, . . . , n− 1. (6)

Proof. This amounts to little more than a restatement of H.2. ||
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H.3.a. If (5) is satisfied, then

x ≺w y on D implies
k∑
1

gi(xi) ≤
k∑
1

gi(yi), k = 1, . . . , n;

(7)
if (6), then

x ≺w y on D implies
n∑
k

gi(xi) ≤
n∑
k

gi(yi), k = 1, . . . , n.

(8)

Proof. In H.3, take gi(a) ≡ 0, i = k + 1, . . . , n. Then (5) is still
satisfied so (7) follows from H.3. The proof of (8) is similar. ||
H.3.b. If x ≺w y on D , then∑

xiui ≤
∑

yiui for all u ∈ D+.

This is a consequence of H.3.a or A.7. A converse is given in 4.B.7.

H.3.c. (Pledger and Proschan, 1971). If x ≺w y on D+ and a ≺w b
on D+, then on D+

(x1a1, . . . , xnan) ≺w (y1b1, . . . , ynbn).

Proof. In H.3.b, take u = (a1, . . . , ak, 0, . . . , 0) to obtain
∑k

1 xiai ≤∑k
1 yiai. Again apply H.3.b with u = (y1, . . . , yk, 0, . . . , 0) to obtain∑k
1 yiai ≤

∑k
1 yibi. Both (x1a1, . . . , xnan) and (y1b1, . . . , ynbn) ∈ D ,

which completes the proof. ||
H.4. Let A = (aij) be a real symmetric n× n matrix. Then

φ(x) = xAx′

is Schur-convex on D+ = {z : z1 ≥ · · · ≥ zn ≥ 0} if and only if

i∑
j=1

(ak,j − ak+1,j) ≥ 0, i = 1, . . . , n, k = 1, . . . , n− 1. (9)

Thus, if (9) is satisfied,

x ≺ y on D+ ⇒ xAx′ ≤ yAy′.

Proof. To verify this (with the use of A.3), assume that x ∈ D+

and compute

φ(k)(x) = 2(ak,1, . . . , ak,n)x′,
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so that

φ(k)(x) − φ(k+1)(x) = 2
n∑
j=1

(ak,j − ak+1,j)xj

= 2
n∑
i=1

(xi − xi+1)
i∑

j=1

(ak,j − ak+1,j).

It is now apparent that φ(k)(x)−φ(k+1)(x) ≥ 0 for all x in the interior
of D if and only if A satisfies (9). ||

A result closely related to H.4 is given in 4.B.9.

H.4.a. If c0 ≥ c1 ≥ · · · ≥ c2n−2, aij = ci+j−2, and A = (aij), then
the conditions of H.4 are satisfied. In particular, the conditions are
satisfied if cj = EXj is the jth moment of a random variable X for
which P{0 ≤ X ≤ 1} = 1.

H.4.b. Let A = (aij) be a real symmetric n×n matrix. Then φ(x) =
xAx′ is increasing (decreasing) and Schur-convex on D+ if and only if
(9) is satisfied and, in addition,

i∑
j=1

an,j ≥ 0

⎛
⎝ i∑
j=1

a1j ≤ 0

⎞
⎠ , i = 1, . . . , n. (10)

Thus, if (9) and (10) are satisfied,

x ≺w y on D+ ⇒ xAx′ ≤ yAy′.

Proof. By A.7, the conditions of H.4 need only be augmented by
the condition that φ(n)(x) ≥ 0(φ(1)(x) ≤ 0). ||

H.5. If φ(x, y) = xα −αxyα−1 + (α− 1)yα, then with A.3 it is easily
verified that φ is Schur-convex on D+ if α > 1 or α < 0, and φ is Schur-
concave on D+ if 0 ≤ α ≤ 1. Since (x, y) � (c, c), where c = (x+ y)/2,
and since φ(c, c) = 0, it follows that

xα − αxyα−1 + (α− 1)yα ≥ 0 if x ≥ y > 0 and α > 1 or α < 0,

xα − αxyα−1 + (α− 1)yα ≤ 0 if x ≥ y > 0 and 0 ≤ α ≤ 1.

These inequalities have been given, e.g., by Beckenbach and Bellman
(1961, p. 12), who discuss their utility. See also Tchakaloff (1963).
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I Miscellaneous Specific Examples

I.1. A function φ : R n → R is called a symmetric gauge function if

(i) φ(u) > 0 when u �= 0,

(ii) φ(γu) = |γ|φ(u) for all real γ,

(iii) φ(u+ v) ≤ φ(u) + φ(v),

(iv) φ(u1, . . . , un) = φ(ε1ui1 , . . . , εnuin) whenever each εi = ±1 and
(i1, . . . , in) is a permutation of (1, . . . , n).

If φ is a symmetric gauge function, then φ is symmetric and convex [see,
e.g., Rockafellar (1970) or Schatten (1950)]. Hence φ is Schur-convex.
As special cases, it follows that the following are Schur-convex:

φ(x) = max |xi|;
φ(x) = (

∑ |xi|r)1/r, r ≥ 1;

φ(x) = max
i1<i2<···<ik

(|xi1 | + · · · + |xik |).

I.1.a. (Fan, 1951). A symmetric gauge function is known to be in-
creasing on R n

+ = {x : x ∈ R n and xi ≥ 0 for all i} (Schatten, 1950,
p. 85). Consequently, it is Schur-convex and increasing on R n

+ .
By using (v) of Table 2 in Section B, with g(z) = z−1, it follows that

for any symmetric gauge function φ, φ(x−1
1 , . . . , x−1

n ) is decreasing and
Schur-convex in x ∈ R n

+ . This result was proved by Marshall and Olkin
(1965).

Bhatia (1997) includes considerable discussion of symmetric gauge
functions, including the fact that all such functions are continuous. See
also Horn and Johnson (1991) and Stewart and Sun (1990).

I.1.b. As indicated in the examples above, the power sums

φ(x) =
(∑

xri

)1/r
, x ∈ R n

++,

are Schur-convex in x if r ≥ 1. In fact, the Schur-convexity is strict if
r > 1. If r < 1, r �= 0, then φ is strictly Schur-concave.

To see this, note that g(z) = zr is convex in z ≥ 0 if r ≥ 1 or r ≤ 0
(strictly convex if r > 1 or r < 0), and g is strictly concave in z ≥ 0 if
0 < r < 1. It follows from C.1 and C.1.a that

ψ(x) =
∑

xri



I. Miscellaneous Specific Examples 139

is Schur-convex on R n
++ if r ≥ 1 or r ≤ 0 (strictly if r > 1 or r < 0), and

ψ is strictly Schur-concave on R n
+ if 0 < r < 1. Because h(z) = z1/r

is strictly increasing in z ≥ 0 for r > 0 and h is strictly decreasing in
z ≥ 0 for r < 0, it follows that φ(x) = h(ψ(x)) is Schur-convex for
r ≥ 1 (strictly, if r > 1) and strictly Schur-concave if r < 1.

Notice that also the power mean

φ̂(x) =
(

1
n

∑
xri

)1/r

is Schur-convex in x ∈ R n
++ for r ≥ 1 and Schur-concave for 0 < r ≤ 1.

Because ψ is Schur-convex on R n
++ for r ≥ 1 or r ≤ 0 (strictly Schur-

convex if r > 1 or r < 0), it follows that if y1, . . . , yn are nonnegative
numbers (not all zero), then y/

∑
yi � (1/n, . . . , 1/n) and

n∑
1

(
yi∑n
1 yj

)r
≥ 1
nr−1

, r ≥ 1 or r ≤ 0,

with equality if and only if y1 = · · · = yn in case r > 1 or r < 0. In case
z1, . . . , zn are complex numbers not all zero, this inequality together
with the triangle inequality gives

n∑
i=1

|zi|r ≥ 1
nr−1

(
n∑
i=1

|zi|
)r

≥ 1
nr−1

∣∣∣∣∣
n∑
i=1

zi

∣∣∣∣∣
r

, r ≥ 1 or r ≤ 0.

For n = 2 and r ≥ 1, this inequality is given by Mitrinović (1970,
p. 338).

I.1.c. An extremal problem (Melman, 2009). For x ∈ R n
+ with

Σn
1xi = 1, 0 < c < 1, p ≥ 1, and q ≥ 1,

n

(n1/r − c)q
≤

n∑
1

x
q/p
i

(1 − cx
1/p
i )q

≤ 1
(1 − c)q

with equality in the extreme cases in which x = (1/n, . . . , 1/n) and
x = ei for some i = 1, . . . , n. This result follows because the function
in between the two inequalities is Schur-concave.

I.2. (Fan, 1951). On the set {x : 0 < xi ≤ 1
2 , i = 1, . . . , n},

φ(x) =
[
∏n

1 (1 − xi)]1/n∑n
1 (1 − xi)

·
∑n

1 xi

(
∏n

1 xi)1/n

is symmetric and Schur-convex.
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Proof. The equivalent fact that ψ(x) = log φ(x) is Schur-convex
can be verified using A.4. Direct computation shows that

ψ(1)(x) − ψ(2)(x) =
1
n

{
1

x2(1 − x2)
− 1
x1(1 − x1)

}
≥ 0

because 1/[z(1 − z)] is decreasing in z ∈ [0, 1
2 ]. ||

From x � [(
∑
xi)/n](1, . . . , 1) ≡ y, it follows that φ(x) ≥ φ(y).

More explicitly,
∏n

1 xi
(
∑n

1 xi)n
≤

∏n
1 (1 − xi)

(
∑n

1 (1 − xi))n
whenever 0 < xi ≤ 1

2
, i = 1, . . . , n.

This is an inequality due to Ky Fan [see, e.g., Beckenbach and Bellman
(1961, p. 5) or Mitrinović (1970, p. 363)]. For extensions of this inequal-
ity see, e.g., Bullen (1998, p. 150) and Rooin (2008). A probabilistic
proof is given by Olkin and Shepp (2006).

I.3. Szegö (1950) shows that if a1 ≥ a2 ≥ · · · ≥ a2m−1 ≥ 0 and g is
convex on [0, a1], then

2m−1∑
1

(−1)j−1g(aj) ≥ g

(
2m−1∑

1

(−1)j−1aj

)
.

Bellman (1953b) shows that if a1 ≥ a2 ≥ · · · ≥ am > 0, if g is convex
on [0, a1], and if g(0) ≤ 0, then

m∑
1

(−1)j−1g(aj) ≥ g

(
m∑
1

(−1)j−1aj

)
.

Wright (1954) and Olkin (1959) observe that these results follow from
Proposition C.1 because of the majorizations

(a1, a3, . . . , a2m−1, 0) �
(

2m∑
1

(−1)j−1aj, a2, a4, . . . , a2m

)
,

(a1, a3, . . . , a2m−1) �
(

2m−1∑
1

(−1)j−1aj , a2, a4, . . . , a2m−2

)
.

Generalizations of the above inequalities and further references are
given by Barlow, Marshall, and Proschan (1969).
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Bounds for Means

A mean is a function M(x) = M(x1, . . . , xn) that maps R n
+ → R+ and

satisfies the conditions (a) M(1, . . . , 1) = 1, (b) M(λx1, . . . , λxn) =
λM(x1, . . . , xn) for all λ > 0, (c) M(Πx) = M(x) for all permutation
matrices Π, (d) xi ≤ yi, i = 1, . . . , n implies that M(x) ≤ M(y). It
follows that

min xi ≤M(x) ≤ max xi.

There are many classes of means, the most notable being the power
means (Σxri /n)1/r, sometimes called binomial means. A compendium
of means is given by Bullen (2003).

When M(x) is Schur-concave, as is the case for many choices of
means, then

M(Σxi, 0, . . . , 0) ≤M(x) ≤M(x, . . . , x),

where x = Σxi/n. The inequalities are reversed for Schur-convexity. In
the following, several classes of means are shown to be Schur-concave.
The listing is illustrative and not exhaustive.

Logarithmic Mean

I.4. Definition. For x, y ∈ R++, the logarithmic mean of x and y is

L(x, y) =

⎧⎨
⎩

x− y

log x− log y
if x �= y,

x if x = y.

The logarithmic mean was introduced by Ostle and Terwilliger
(1957), who noted that engineers use the arithmetic mean to approxi-
mate L(x, y). They proved that L(x, y) ≤ (x+ y)/2. A stronger result
by Carlson (1972) is

√
xy ≤ (xy)1/4

(√
x+

√
y

2

)
≤ L(x, y) ≤

(√
x+

√
y

2

)2

≤ x+ y

2
. (1)

I.4.a. Proposition. L(x, y) is Schur-concave in (x, y) ∈ R 2
++.

Proof. Condition (10′) of A.4 reduces to the inequality

g(z) = z − 1
z
− 2 log z ≥ 0, z ≥ 1,
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which follows from the fact g(1) = 0 and g is increasing in z > 0. ||
The Schur-convexity of L(x, y)/

√
xy can similarly be verified.

Condition (10′) of A.4 reduces to the inequality

h(z) = log z − z2 − 1
z2 + 1

≥ 0, z ≥ 1,

and this follows from the fact that h(z) is increasing in z and h(1) = 0.

As a consequence of the Schur-concavity (convexity),

L(x, y) ≤ L

(
x+ y

2
,
x+ y

2

)
=
x+ y

2
,

and
L(x, y)√

xy
≥ L

(
x+ y

2
,
x+ y

2

)/
x+ y

2
= 1.

Two integral representations of L(x, y) are

L(x, y) =
∫ 1

0
x1−tyt dt =

∫ 1/2

0
(x1−tyt + xty1−t)dt, (2a)

L−1(x, y) =
∫ ∞

0

dt

(t+ x)(t+ y)
. (2b)

An alternative proof of I.4.a can be obtained from the integral
representations (2a) or (2b) using C.5.

Stolarsky (1975) introduced the class of means

S(x, y|r) =

⎧⎪⎨
⎪⎩

[
(xr − yr)
r(x− y)

]1/(r−1)

, if x �= y, r �= 0, 1,

x, if x = y.

(3)

.

A corresponding integral representation is given by

S(x, y|r) =
[∫ 1

0
[tx+ (1 − t)y]rdt

]1/r

.

This class does not include L(x, y), but the following extension
rectifies this.
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I.4.b. Definition. For (x, y) ∈ R 2
++, the extended logarithmic mean

of x and y (x �= y) is

L(x, y|r, s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
(xs − ys)/s
(xr − yr)/r

)1/(s−r)
, if x �= y, r, s �= 0, r �= s,

(
(xr − yr)/r
log x− log y

)1/r

, if x �= y, s = 0, r �= 0,

x, if x = y.

The case r = 1, s = 0 is the logarithmic mean.

I.4.c. Proposition (Shi, Wu, and Qi, 2006). The function L(x, y|r, s)
is Schur-concave in (x, y) ∈ R 2

++ for fixed r and s.

Multivariate versions of L(x, y), S(x, y|r), or L(x, y|r, s) are not im-
mediate except with integral representations, and a variety of proposals
have appeared. One class of means similar to the extended logarithmic
means that has an immediate extension to any number of variables is

G(x, y|r, s) =
(

Σxsi
Σyri

)1/(s−r)
, r �= s. (4)

I.4.d. Proposition. The function G(x, y|r, s) is Schur-concave in
(x, y) ∈ R 2

++ for fixed r and s, r �= s.

Remark. Shi, Jiang, and Jiang (2009) study Schur-convexity prop-
erties of the Gini mean (Gini, 1938) defined for x, y > 0 and r �= s
by

G̃(x, y|r, s) =
(

(xs + ys)/s
(xr + yr)/r

)1/(s−r)
.

I.4.e. Proposition (Zheng, Zhang, and Zhang, 2007). For x ∈ R n
++,

the means

M(x|r) = (n− 1)!

[∫
Ωn

(
n∑
i=1

αixi)r
n−1∏

1

dαi

]1/r

, r �= 0,

M (x|r) = (n− 1)!

[∫
Ωn

(
n∑
i=1

αix
r
i )

1/r
n−1∏

1

dαi

]
, r �= 0,
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where

Ωn = {(α1, . . . , αn−1) : αi ≥ 0,
n−1∑
i=1

αi ≤ 1}

and

αn = 1 −
n−1∑

1

αi

are Schur-convex for r ≥ 1 and Schur-concave for r ≤ 1, r �= 0.

I.4.f. Remark That M(1, . . . , 1|r) = 1 and M (1, . . . , 1|r) follows
from the Dirichlet distribution 11.E.12. With xi = 1, i = 1, . . . , n, the
integrals in M(1, . . . , 1|r) = 1 and M (1, . . . , 1|r) become

∫
Ωn

n−1∏
1

dαi = [Γ(1)]n/Γ(n) = 1/(n − 1)!.

I.4.g. Proposition. For (x1, . . . , xn) ∈ R n
+ , the Heinz mean

H(x1, . . . , xn|α1, . . . , αn) =
∑
π

(xα1

π(1) · · · xαn

π(n))/n!,

where 0 ≤ αi ≤ 1/n, Σαi = 1, is Schur-concave in x ∈ R n
+ .

Note that

∏
x

1/n
i ≤ H(x) ≤

∑
xi/n.

I.4.h. Proposition. For (x, y) ∈ R 2
+ , the Heronian mean

H(x, y) = (x+
√
xy + y)/3

is Schur-concave.
Note that

√
xy ≤ H(x, y) ≤ (x+ y)/2.

I.5. Motivated by some inequalities for sides of triangles (discussed
in 8.B), consider the following functions on R n

++:

ψ
(k)
1 (x) =

⎛
⎝ ∏
i1<···<ik

k∑
j=1

xij

⎞
⎠
/(

n∑
i=1

xi

)(n
k )
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and

ψ
(k)
2 (x) =

⎛
⎝ ∏
i1<···<ik

k∑
j=1

xij

⎞
⎠
/(

n∑
i=1

x
(n
k )
i

)
.

The numerators in ψ
(k)
1 and ψ

(k)
2 are Schur-concave (G.1.n) and the

denominators are clearly Schur-convex. Thus ψ(k)
1 (x) and ψ

(k)
2 (x) are

Schur-concave; consequently,

0 < ψ
(k)
1 (x) ≤

(
k

n

)(n
k )

and

0 < ψ
(k)
2 (x) ≤

(
k(n

k )

n

)
.

I.6. In the context of multicarrier multiple-input multiple-output
channels, Palomar, Cioffi, and Lagunas (2003) use majorization to
obtain extrema of the objective functions

ϕ1(x) =
n∏
1

xwi

i ,

ϕ2(x) =
∑

wix
−1
i ,

ϕ3(x) = −
n∏
1

(x−1
i − 1)wi .

Here if x ∈ D and 0 < w1 ≤ w2 ≤ · · · ≤ wn, then ϕ1 and ϕ2 are Schur-
concave on D ; if, in addition, 0 < xi < 1/2, then ϕ3 is Schur-concave.

J Integral Transformations Preserving
Schur-Convexity

Let K be defined on R n × R n, let φ be defined on R n, and let

ψ(θ) =
∫
K(θ, x)φ(x) dμ(x).

What conditions must the function K and measure μ satisfy in order
that ψ be Schur-convex whenever φ is Schur-convex? The answer to
this question is unknown, but some sufficient conditions can be given.
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Consider first a convolution transform, in which K(θ, x) = g(θ−x).

J.1. Theorem (Marshall and Olkin, 1974). If φ and g are Schur-
concave functions defined on R n, then the function ψ defined on R n by

ψ(θ) =
∫

R n

g(θ − x)φ(x) dx

is Schur-concave (whenever the integral exists).

Proof. By virtue of A.5, it is sufficient to prove the theorem for
n = 2. Let θ ≺ ξ, and write

ψ(θ) − ψ(ξ)

=
∫∫

[g(x1, θ2 − ξ2 + x2) − g(x1 + ξ1 − θ1, x2)]

×φ(θ1 − x1, ξ2 − x2) dx1 dx2.

Notice that by first interchanging x1 and x2, and then using the
symmetry of g together with ξ1 − θ1 = θ2 − ξ2, it follows that∫∫
x1≤x2

[g(x1, θ2 − ξ2 + x2) − g(x1 + ξ1 − θ1, x2)]

×φ(θ1 − x1, ξ2 − x2) dx1 dx2

=
∫∫
x1≥x2

[g(x2, θ2 − ξ2 + x1) − g(x2 + ξ1 − θ1, x1)]

×φ(θ1 − x2, ξ2 − x1) dx1 dx2

=
∫∫
x1≥x2

[g(x1 + ξ1 − θ1, x2) − g(x1, x2 + θ2 − ξ2)]

×φ(θ1 − x2, ξ2 − x1) dx1 dx2.

Thus

ψ(θ) − ψ(ξ) =
∫∫
x1≥x2

[g(x1, ξ1 − θ1 + x2) − g(x1 + ξ1 − θ1, x2)]

× [φ(θ1 − x1, ξ2 − x2) − φ(θ1 − x2, ξ2 − x1)] dx1 dx2.

Since θ ≺ ξ, ξ1 ≥ θ1 ≥ θ2 ≥ ξ2; this together with x1 ≥ x2 implies

(x1, ξ1 − θ1 + x2) ≺ (x1 + ξ1 − θ1, x2)

and

(θ1 − x1, ξ2 − x2) ≺ (θ1 − x2, ξ2 − x1).
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Because g and φ are Schur-concave, the above integrand is nonnegative,
and hence ψ(θ) ≥ ψ(ξ). Thus ψ is Schur-concave. ||

The above proof is due to Frank Proschan (private communication);
essentially the same proof was also communicated to us privately by
Koon Wing Cheng. Theorem J.1 is also obtained in 6.F.12.a as a
consequence of 6.F.12.

Karlin and Rinott (1988) discuss a generalized Binet–Cauchy for-
mula and a corresponding concept of generalized total positivity with
respect to H , a subgroup of the symmetric group ζn. Schur-convexity
fits into this scheme as generalized total positivity with respect to the
subgroup of permutations involving only two elements and the ker-
nel k(x, y) = ϕ(x + y). Generalized total positivity of this kernel is
equivalent to Schur-convexity of ϕ(x). It is possible to view Theorem
J.1 as a special case of a more general theorem dealing with the
preservation of generalized total positivity under convolutions.

J.1.a. Corollary. If φ is a Schur-concave function defined on R n

and A ⊂ R n is a permutation-symmetric Lebesgue-measurable set
which satisfies

y ∈ A and x ≺ y ⇒ x ∈ A, (1)

then

ψ(θ) =
∫
A+θ

φ(x) dx

is a Schur-concave function of θ.

Proof. Condition (1) is a way of saying that the indicator function
IA of A is Schur-concave. This means that g(z) = IA(−z) is also Schur-
concave. From J.1, it follows that

∫
g(θ − x)φ(x) dx =

∫
IA(x− θ)φ(x) dx =

∫
A+θ

φ(x) dx

is Schur-concave. ||

Corollary J.1.a is closely related to Theorem 14.C.17, which general-
izes a theorem of Anderson (1955). The conclusion of J.1.a is obtained
as a special case of Theorems 14.C.16.a and 14.C.17 but with the
additional hypothesis that A is convex.
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A direct proof of J.1.a can be given and J.1 then follows. This was
the original approach of Marshall and Olkin (1974).

J.1.b. Corollary. If g and φ are Schur-concave on R n, φ is non-
negative, and g is increasing (decreasing), then the convolution ψ of φ
and g is increasing (decreasing) and Schur-concave.

This immediate consequence of J.1 can be useful for identifying
functions that preserve weak majorization.

Another important class of integral transforms that preserve Schur-
convexity was found by Proschan and Sethuraman (1977). This
transformation involves a function α that is totally positive of order 2
(see Definition 18.A.1).

J.2. Theorem (Proschan and Sethuraman, 1977). Suppose that

(i) X = R, Θ ⊂ R is an interval and μ is Lebesgue measure, or

(ii) X = {. . . ,−1, 0, 1, 2, . . .}, Θ is an interval (or an interval of
integers) and μ is counting measure.

If α is a function defined on Θ × X such that

α(θ, x) = 0 if x < 0, (2)

α is totally positive of order 2, (3)

α satisfies the following semigroup property: (4)

α(θ1 + θ2, y) =
∫

X
α(θ1, x)α(θ2, y − x) dν(x)

for some measure ν on X , then the function ψ defined for θi ∈ Θ,
i = 1, . . . , n, by

ψ(θ) =
∫ ∏

α(xi, θi)φ(x)
∏

dμ(xi)

is Schur-convex whenever φ is Schur-convex.
Similarly, if φ is Schur-concave, then ψ is Schur-concave.

Proof. We prove the theorem in the case that φ is Schur-convex.
To show that ψ(θ) ≤ ψ(ξ) when θ ≺ ξ it is sufficient (by A.5) to
consider only the case that θ and ξ differ in but two components,
say the first two. Then
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ψ(ξ) − ψ(θ)

=
∫ n∏

2

α(θi, xi)

×
{∫∫

[α(ξ1, x1)α(ξ2, x2) − α(θ1, x1)α(θ2, x2)]φ(x) dμ(x1) dμ(x2)
}

×
n∏
3

dμ(xi).

Consequently, it is sufficient to show that the inner integral is non-
negative and this amounts to proving the theorem in case n = 2. For
convenience suppose that θ1 ≥ θ2 and ξ1 ≥ ξ2. Then

ψ(ξ1, ξ2) − ψ(θ1, θ2)

=
∫∫

[α(ξ1, x1)α(ξ2, x2)−α(θ1, x1)α(θ2, x2)]φ(x1, x2) dμ(x1) dμ(x2).

Now, make use of the semigroup property and the fact ξ1−θ1 = θ2−ξ2
to write (with an interchange in order of integration)

ψ(ξ1, ξ2) − ψ(θ1, θ2)

=
∫
α(ξ1 − θ1, y)

∫∫
[α(θ1, x1 − y)α(ξ2, x2) − α(θ1, x1)α(ξ2, x2 − y)]

× φ(x1, x2) dμ(x1) dμ(x2) dν(y).

To show that the inner integral here is nonnegative when y ≥ 0, write∫∫
α(θ1, x1 − y)α(ξ2, x2)φ(x1, x2) dμ(x1) dμ(x2)

−
∫∫

α(θ1, x1)α(ξ2, x2 − y)φ(x1, x2) dμ(x1) dμ(x2)

=
∫∫

α(θ1, u1)α(ξ2, x2)φ(u1 + y, x2) dμ(u1) dμ(x2)

−
∫∫

α(θ1, x1)α(ξ2, u2)φ(x1, u2 + y) dμ(x1) dμ(u2)

=
∫∫

α(θ1, x1)α(ξ2, x2)[φ(x1 + y, x2) − φ(x1, x2 + y)] dμ(x1) dμ(x2)

=
∫∫
x1≥x2

[α(θ1, x1)α(ξ2, x2) − α(θ1, x2)α(ξ2, x1)]

× [φ(x1 + y, x2) − φ(x1, x2 + y)] dμ(x1) dμ(x2).
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The last equality here utilizes the symmetry φ(u, v) = φ(v, u) of φ.
Because φ is Schur-convex, [φ(x1+y, x2)−φ(x1, x2+y)] ≥ 0 whenever

x1 ≥ x2. Because α is totally positive of order 2 and θ1 ≥ ξ2, x1 ≥ x2,
α(θ1, x1)α(ξ2, x2) − α(θ1, x2)α(ξ2, x1) ≥ 0. Thus ψ(ξ) − ψ(θ) ≥ 0. ||
J.2.a. Corollary. If B is a nonnegative function of two real
variables, then under the conditions of J.2,

h(θ) =
∫
B
(∑

θi,
∑

xi

)∏
α(θi, xi)φ(x)

∏
dμ(xi)

is Schur-convex whenever φ is Schur-convex.

Proof. In any comparison ψ(ξ) − ψ(θ) where θ ≺ ξ, the equality
Σθi = Σξi must hold. But the Schur-convexity of φ implies the Schur-
convexity of B(Σθi,Σxi)φ(x) for each fixed Σθi, so the result follows
from J.2. ||

Some Examples

J.2.b. For 0 ≤ θ ≤ 1, let

α(θ, x) =

⎧⎨
⎩
θx

x!
, x = 0, 1, . . . ,

0, x = −1,−2, . . . .

Then α satisfies the conditions of J.2 with ν being counting measure.

Proof . The total positivity of α(θ, x) is well known and easily
checked directly from the definition. The semigroup property is a
consequence of the binomial theorem. ||
J.2.c. For M = 1, 2, . . . , and nonnegative integer x, let

α(M,x) =
(
M

x

)
.

Then α satisfies the conditions of J.2 with ν being counting measure.

Proof. The required total positivity of α can be checked directly
by verifying the conditions of the definition [see Karlin (1968, p. 137)].
The semigroup property

y∑
x=0

(
M

x

)(
K

y − x

)
=
(
M +K

y

)

is a well-known property of binomial coefficients [see Feller (1968,
p. 64)]. ||
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J.2.d. For θ > 0, let

α(θ, x) =

⎧⎨
⎩

Γ(θ + x)
x!Γ(θ)

x = 0, 1, . . . ,

0, otherwise.

Then α satisfies the conditions of J.2, with ν being counting measure.

Proof. The total positivity of α follows from the log convexity of Γ
(see 16.B.8.a). The semigroup property is obtained from the identity

B(θ1, θ2) =
y∑

x=0

(
y

x

)
B(θ1 + x, θ2 + y − x),

where B is the usual beta function. To verify this identity, note that
y∑
x=0

(
y

x

)
B(θ1+ x, θ2 + y − x)

=
y∑
x=0

(
y

x

)∫ 1

0
zθ1+x−1(1 − z)θ2+y−x−1 dz

=
∫ 1

0
zθ1−1(1 − z)θ2−1

∑(
y

x

)
zx(1 − z)y−x dz

=
∫ 1

0
zθ1−1(1 − z)θ2−1 dz = B(θ1, θ2). ||

J.2.e. For θ > 0, let

α(θ, x) =

⎧⎪⎨
⎪⎩
xθ−1

Γ(θ)
, x ≥ 0,

0, x < 0.

Then α satisfies the conditions of J.2 with ν being Lebesgue measure.

Proof. The total positivity here is essentially the same as in J.2.a.
The semigroup property is well known because it is equivalent to the
fact that the beta density on [0, y] integrates to 1. ||
J.3. Theorem (Cheng, 1977). Let X , Θ, and μ be as in J.2. Let
K : R 2n → R be a function of the form

K(θ, x) = B

(
n∑
1

θi,
n∑
1

xi

)
n∏
i=1

α(θi, xi),
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where α is a nonnegative function satisfying (2) and (4) of J.2 and B
is a nonnegative function on R n × R n satisfying the condition

B(θ, x) =
∫
B(λ+ θ, x+ y)α(λ, y) dμ(y) (5)

whenever θ, λ ∈ Θ and λ > 0. Then

ψ(θ) =
∫
φ(x)K(θ, x)

∏
dμ(xi)

is increasing in θ ∈ Θ whenever φ is increasing in x ∈ X .

Proof. To show that ψ is increasing in θk, let λ, θi ∈ Θ, λ > 0.
Then

ψ(θ1, . . . , θk−1, θk + λ, θk+1, . . . , θn)

=
∫
φ(x)B

(∑
θi + λ,

∑
xi

)∏
i�=k α(θi, xi)α(θk + λ, xk)

∏
dμ(xi)

=
∫
φ(x)B

(∑
θi + λ,

∑
xi

)∏
i�=k α(θi, xi)α(θk, xk − y)α(λ, y)

× ∏
dμ(xi) dν(y)

=
∫
φ(x1, . . . , xk−1, xk + y, xk+1, . . . , xn)B

(∑
θi + λ,

∑
xi + y

)

× ∏
α(θi, xi)α(λ, y)

∏
dμ(xi) dν(y)

≥ ∫
φ(x)B

(∑
θi + λ,

∑
xi + y

)∏
α(θi, xi)α(λ, y)

∏
dμ(xi) dν(y)

=
∫
φ(x)B

(∑
θi,

∑
xi

)∏
α(θi, xi)

∏
dμ(xi) = ψ(θ). ||

The condition (5) imposed on B has a simple interpretation when
K is a probability density in x for each θ. If K is the density of the
random variables X1, . . . ,Xn, then (5) says that a marginal density,
say of X1, . . . ,Xn−1, has the same form with n− 1 in place of n.

Theorem J.3 can be combined with J.2 to give conditions for preser-
vation of monotonicity and Schur-convexity; this preservation is of
interest in the context of weak majorization.



K. Physical Interpretations of Inequalities 153

K Physical Interpretations of Inequalities

Zylka and Vojta (1991), developing ideas suggested by Sommerfield
(1965), point out that some of the inequalities in this chapter can
be obtained using thermodynamic arguments. For example, consider a
closed thermodynamic system consisting of n subsystems characterized
by their temperatures T1, T2, . . . , Tn and equal heat capacities C. After
temperature equalization, the common temperature in the subsystem
is T = 1

n

∑n
i=1 Ti. Assuming that the subsystems are ideal gases, the

entropy change of the total system, ΔS, is given by

ΔS = C log(T/T1) + · · · + C log(T/Tn). (1)

However, ΔS ≥ 0, so it follows from (1) that

1
n

n∑
i=1

Ti ≥
n∏
i=1

T
1/n
i , (2)

thus providing a “physical” derivation of the arithmetic–geometric
mean inequality.

It is also possible to obtain (2) by considering, under suitable as-
sumptions, the entropy and internal energy of ideal gas systems. By
applying these ideas to other systems, such as ideal degenerate Bose
gases, black-body radiators, and spin-systems in high-temperature ap-
proximation, other inequalities are obtained with physical derivations.
Ideal degenerate Bose gas systems yield the inequality

n2

(
n∑
i=1

T
5/2
i

)3

≥
(

n∑
i=1

T
3/2
i

)5

. (3)

With xi = T
5/2
i , inequality (3) takes the form

(
1
n

n∑
i=1

xi

)3/5

≥ 1
n

n∑
i=1

x
3/5
i ,

which is a physical justification of a result that follows from I.1.b by
noting that the function (

∑
x

3/5
i )5/3 is Schur-concave on R n

+ . Alter-
natively, it can be obtained from the Lyapunov inequality (16.D.1.d).
Black-body radiator systems yield the inequality

n

(
n∑
i=1

T 4
i

)3

≥
(

n∑
i=1

T 3
i

)4

, (4)
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which is also obtainable using I.1.b, setting xi = T 4
i . Analogously, the

spin-system in high-temperature approximation provides a physical
justification of the inequality(

n∑
i=1

1
Ti

)2

≤ n

n∑
i=1

(
1
Ti

)2

, (5)

also obtainable from I.1.b by setting xi = 1/Ti. Note that (5) is valid
for Ti’s that can be positive or negative (which is appropriate for spin
systems). Of course, this is the well-known statement that the variance
of a discrete random variable is positive.



4
Equivalent Conditions

for Majorization

In order to verify that x is majorized by y, the conditions of the
definition might be directly checked, but it is sometimes more con-
venient to check alternative conditions. The purpose of this chapter is
to collect some such alternatives.

A Characterization by Linear
Transformations

The following results have already been established in Section 2.B:

A.1. Proposition (Hardy, Littlewood, and Pólya, 1929; 1934, 1952).
For x, y ∈ R n, the following conditions are equivalent:

(i) x ≺ y;

(ii) x = yP for some doubly stochastic matrix P ;

(iii) x can be derived from y by successive applications of a finite
number of T -transformations, that is, transformations T having for
some 1 ≤ i < j ≤ n and some α ∈ [0, 1], α = 1 − α, the form

T (z) = (z1, . . . , zi−1, αzi + αzj , zi+1, . . . , zj−1, αzi + αzj , zj+1, . . . , zn).

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 155
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 4,
c© Springer Science+Business Media, LLC 2011
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This result follows from 2.B.1, 2.B.2, and the fact that products of
matrices of T -transformations are doubly stochastic.

The equivalence of (i) and (iii) was essentially proved already by
Muirhead (1903) in the case that the components of x and y are
nonnegative integers.

A.2. Proposition. For x, y ∈ R n
+ , the following conditions are

equivalent:

(i) x ≺w y (x ≺w y);

(ii) x = yP for some doubly substochastic (superstochastic)
matrix P ;

(iii) x can be derived from y by successive applications of a finite
number of T -transformations, or transformations T of the form

T (z) = (z1, . . . , zi−1, αzi, zi+1, . . . , zn), where 0 ≤ α < 1(α > 1).

This result follows from 2.C.4, 2.C.6.a, 2.D.2.a, and 2.D.2.b.

B Characterization in Terms
of Order-Preserving Functions

It is easy to prove that if φ(x) ≤ φ(y) for all Schur-convex functions φ,
then x ≺ y. But it is not necessary to check φ(x) ≤ φ(y) for all Schur-
convex functions φ; certain subclasses of functions suffice. The purpose
of this section is to give some such examples.

For u ∈ R, let u+ = max(u, 0).

B.1. Proposition (Hardy, Littlewood, and Pólya, 1929; 1934, 1952).
The inequality ∑

g(xi) ≤
∑

g(yi) (1)

holds for all continuous convex functions g :R → R if and only if
x ≺ y.

Proof. If x ≺ y, then (1) holds by 3.C.1. Suppose then that (1)
holds. If for fixed k, g(z) = (z − y[k])+, then g is increasing so that

k∑
i=1

g(y[i]) =
k∑
i=1

y[i] − ky[k] and
n∑

i=k+1

g(y[i]) = 0.
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Addition of these equalities yields

n∑
i=1

g(y[i]) =
k∑
i=1

y[i] − ky[k].

Because g is continuous and convex,
∑n

1 g(y[i]) ≥
∑n

1 g(x[i]). Moreover,
g(z) ≥ 0 and g(z) ≥ z − y[k]. Successive use of these facts yields

k∑
i=1

y[i] − ky[k] ≥
n∑
1

g(x[i]) ≥
k∑
1

g(x[i]) ≥
k∑
1

x[i] − ky[k];

that is,
k∑
1

x[i] ≤
k∑
1

y[i].

This shows that x ≺w y. To complete the proof, take g(z) = −z in (1)
to obtain

∑n
1 xi ≥

∑n
1 yi. ||

Credit for Proposition B.1 has sometimes gone to Karamata (1932),
who discovered it independently.

B.2. Proposition (Tomić, 1949). The inequality∑
g(xi) ≤

∑
g(yi) (2)

holds for all continuous increasing convex functions g if and only
if x ≺w y. Similarly, (2) holds for all continuous decreasing convex
functions g if and only if x ≺w y.

Proof. If x ≺w y, then according to 3.C.1.b, (2) holds for all con-
tinuous increasing convex functions g. Likewise, if x ≺w y, then by
3.C.1.b, (2) holds for all continuous decreasing convex functions g.

Suppose that (2) holds for all continuous increasing convex func-
tions g. Since g(z) = max[z − y[k], 0] is continuous, increasing, and
convex, it follows as in the proof of B.1 that x ≺w y.

If (2) holds for all continuous decreasing convex functions g, it fol-
lows in a similar manner that x ≺w y. In this case, the argument makes
use of g(z) = max[−z + y(k), 0]. ||

That (2) holds when x ≺w y and g is increasing and convex was
also proved by Weyl (1949). Pólya (1950) showed that this fact can be
obtained from B.1.

Remark. Fink (1994) discusses the relation between x and y when
(2) holds for all g whose k-th derivative is increasing and convex.
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B.3. Proposition (Hardy, Littlewood, and Pólya, 1929; 1934, 1952).

∑
xi =

∑
yi and

∑
(xi − a)+ ≤

∑
(yi − a)+ for all a ∈ R

(3)
if and only if x ≺ y.

Proof. Suppose first that x ≺ y. Because g(z) = (z−a)+ is convex,
it follows from B.1 or 3.C.1 that (3) holds. Conversely, if (3) holds,
then the proof of B.1 shows x ≺ y. ||
B.3.a. Corollary (Ando, 1989). The inequality Σ|xi−a| ≤ Σ|yi−a|
holds for every a ∈ R if and only if x ≺ y.

Proof. The inequality is immediate from x ≺ y. To prove the con-
verse, consider large and small values of a in the inequality to conclude
that Σxi = Σyi. Next use the fact that xi + |xi| = 2x+

i to conclude
that (3) also holds. ||
B.4. Proposition.∑

(xi − a)+ ≤
∑

(yi − a)+ for all a ∈ R (4)

if and only if x ≺w y. Similarly,∑
(a− xi)+ ≤

∑
(a− yi)+ for all a ∈ R (5)

if and only if x ≺w y.

Proof. If x ≺w y or x ≺w y, then the corresponding inequality
follows from B.2 or from 3.C.1.b.

If (4) holds, then the proof of B.2 shows x ≺w y; if (5) holds, it
similarly follows that x ≺w y. ||

It is a triviality that if C and C̃ are classes of functions having the
property

(i) φ(x) ≤ φ(y) for all φ ∈ C ⇒ x ≺ y, and

(ii) C ⊂ C̃ ,

then

(iii) φ(x) ≤ φ(y) for all φ ∈ C̃ ⇒ x ≺ y.

From this and B.1 or B.3, it follows that

(iv) φ(x) ≤ φ(y) for all Schur-convex functions φ⇒ x ≺ y,
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(v) φ(x) ≤ φ(y) for all symmetric quasi-convex functions φ⇒ x ≺ y,

(vi) φ(x) ≤ φ(y) for all symmetric convex functions φ⇒ x ≺ y.

Note that (v) is a converse of 3.C.3 and (vi) is a converse of 3.C.2. By
imposing a monotonicity condition on φ, similar results hold for weak
majorization.

A number of other equivalences of majorization can be obtained
using various families of Schur-convex functions. Some of these are
given below.

B.5. Proposition (Muirhead, 1903; Hardy, Littlewood, and Pólya,
1934, 1952, p. 44).∑

π

αx1

π(1)α
x2

π(2) · · ·αxn

π(n) ≤
∑
π

αy1π(1)α
y2
π(2) · · ·αyn

π(n) (6)

for all α = (α1, . . . , αn) ∈ R n
++ if and only if x ≺ y. Similarly,

(6) holds for all α ∈ [1,∞]n if and only if x ≺w y,

(6) holds for all α ∈ (0, 1]n if and only if x ≺w y.

Proof. If x ≺ y, then (6) holds for all α ∈ R n
++ by 3.G.2.e. If x ≺w y

or x ≺w y, (6) holds for the indicated α by 3.G.2.g.
Suppose (6) holds for all α ∈ [1,∞)n. With α1 = · · · = αn > 1, it

follows that αΣxi

1 ≤ αΣyi

1 ; because α1 > 1, this means
∑
xi ≤

∑
yi.

Next denote by S the set of all subsets of {1, . . . , n} of size k and take
α1 = · · · = αk > 1, αk+1 = · · · = αn = 1. Then from (6) it follows that

∑
S∈S

αΣi∈Sxi

1 ≤
∑
S∈S

αΣi∈Syi

1 . (7)

If
∑k

1 x[i] >
∑k

1 y[i], this leads to a contradiction for large α1. Thus
x ≺w y.

If (6) holds for all x ∈ (0, 1]n, then similar arguments apply: If∑k
1 x(i) <

∑k
1 y(i), then (7) leads to a contradiction for α1 near zero.

Thus x ≺w y.
Finally, if (6) holds for all α ∈ R n

++, then x ≺w y and x ≺w y, so
x ≺ y. ||

Because of its historical importance, an alternative proof that x ≺ y
implies (6) for all α ∈ R n

++ is given. This proof is essentially the original
proof of Muirhead (1903); see also Hardy, Littlewood, and Pólya (1934,
1952, p. 46).

Alternative proof of (6). Suppose that x ≺ y and α ∈ R n
++. By

2.B.1, it is sufficient to prove (6) in case x and y differ in but two
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components, say xi = yi, i = 3, . . . , n. Possibly relabel so that x1 > x2,
y1 > y2. Then there exists δ, 0 < δ < y1 − y2, such that x1 = y1 − δ,
x2 = y2 + δ.∑
π

αy1π(1) · · ·αyn

π(n) −
∑
π

αx1

π(1) · · ·αxn

π(n)

=
1
2

∑
π

[αy1π(1)α
y2
π(2) − αy1−δπ(1) α

y2+δ
π(2) + αy1π(2)α

y2
π(1) − αy1−δπ(2) α

y2+δ
π(1) ]

n∏
3

αyi

π(i)

=
1
2

∑
π

(απ(1)απ(2))
y2(αy1−y2−δπ(1) − αy1−y2−δπ(2) )(αδπ(1) − αδπ(2))

n∏
3

αyi

π(i)

≥ 0. ||
B.6. Proposition (Fan, 1951; Mirsky, 1960a). If x, y ∈ R n

+ , then

Φ(x) ≤ Φ(y) (8)

for all symmetric gauge functions if and only if x ≺w y.

Proof. If x ≺w y on R n
+ , then (8) holds for all symmetric gauge

functions by 3.I.1.a. Conversely, if (8) holds for all symmetric gauge
functions, then x ≺w y because Φ(x) = |x[i]|+· · ·+|x[k]| is a symmetric
gauge function, k = 1, . . . , n. ||
B.7. Proposition. The inequality∑

xiui ≤
∑

yiui (9)

holds for all u ∈ D if and only if x ≺ y on D .
Similarly, (9) holds for all u ∈ D+ if and only if x ≺w y.

Proof . Suppose (9) holds for all u ∈ D+. Then the choice u =
(1, . . . , 1, 0, . . . , 0) yields

∑k
1 xi ≤ ∑k

1 yi. For x, y ∈ D , this shows
that x ≺w y. If (9) holds for all u ∈ D , then the particular choice
u = (−1, . . . ,−1) yields additionally

∑n
1 xi ≥

∑n
1 yi, so x ≺ y. The

remainder of the proposition follows from 3.H.2.c and 3.H.3.b. ||
B.8. Proposition.

max
π

∑
tixπ(i) ≤ max

π

∑
tiyπ(i) (10)

for all t ∈ R n if and only if x ≺ y. Similarly,

(10) holds for all t ∈ R n
+ if and only if x ≺w y,

(10) holds for all t such that −t ∈ R n
+ if and only if x ≺w y.
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Proof. If x ≺ y, then (10) holds by 3.G.1.d or 3.G.1.e. If x ≺w y
or x ≺w y, then (10) follows from 3.G.1.d. The converses follow with
t = (1, . . . , 1, 0, . . . , 0) or t = (−1, . . . ,−1, 0, . . . , 0). ||
B.8.a. Proposition.∑

tixi ≤ max
π

∑
tiyπ(i) for all t ∈ R n (10a)

if and only if x ≺ y.

Proof. If x ≺ y, then (10a) follows from (10). If (10a) holds, assume
without loss of generality that x1 ≥ x2 ≥ · · · ≥ xn, and then choose
t = (1, . . . , 1, 0, . . . , 0) to conclude that

∑k
1 xi ≤

∑k
1 y[i], k = 1, . . . , n.

Choose t = (−1, . . . ,−1) to obtain
∑n

1 xi ≥
∑n

1 yi. Thus x ≺ y. ||
B.9. Proposition. The inequality

xAx′ ≤ yAy′ (11)

holds for all real symmetric matrices A = (aij) satisfying

i∑
j=1

(ak,j − ak+1,j) ≥ 0, i = 1, . . . , n, k = 1, . . . , n− 1, (12)

if and only if x ≺ y on D+. Similarly,

(11) holds whenever (12) and
i∑

j=1

an,j ≥ 0, i = 1, . . . , n,

if and only if x ≺w y on D+,

(11) holds whenever (12) and
i∑

j=1

aij ≤ 0, i = 1, . . . , n,

if and only if x ≺w y on D+.

Proof. If x ≺ y, then (11) holds whenever A satisfies (12) by 3.H.4.
If x ≺w y or x ≺w y, then (11) holds when A satisfies the corresponding
conditions by 3.H.4.b.

By successively taking

A =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 · · · 0
1 1 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠
, . . . ,

⎛
⎜⎝

1 · · · 1
...

...
1 · · · 1

⎞
⎟⎠,
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it follows from (11) that (
∑k

i=1 xi)
2 ≤ (

∑k
i=1 yi)

2, k = 1, . . . , n, so that
if x, y ∈ D+, then x ≺w y.

By successively taking

A =

⎛
⎜⎜⎜⎝

0 · · · 0 0
...

...
...

0 · · · 0 0
0 · · · 0 −1

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0
...

...
...

...
0 · · · 0 0 0
0 · · · 0 −1 −1
0 · · · 0 −1 −1

⎞
⎟⎟⎟⎟⎟⎠
, . . . ,

⎛
⎜⎝
−1 · · · −1

...
...

−1 · · · −1

⎞
⎟⎠,

it follows that x ≺w y on D+. Of course, if x ≺w y and x ≺w y, then
x ≺ y. ||

C A Geometric Characterization

The following result relates to Chapter 1, Figs. 2 and 3.

C.1. Proposition (Rado, 1952). x ≺ y if and only if x lies in the
convex hull of the n! permutations of y.

Proof . Because the doubly stochastic matrices constitute the
convex hull of the permutation matrices (see Birkhoff’s theorem 2.A.2),
a matrix P is doubly stochastic if and only if it can be written in the
form

P =
n!∑
i=1

aiΠi,

where Π1, . . . ,Πn! are the permutation matrices, ai ≥ 0, i = 1, . . . , n!,
and

∑n!
1 ai = 1. Thus x = yP for some doubly stochastic matrix if

and only if

x =
n!∑
1

ai(yΠi),

i.e., if and only if x lies in the convex hull of the permutations of y.
By A.1, x = yP for some doubly stochastic matrix is equivalent to
x ≺ y. ||

It was noted by Horn (1954a) that C.1 is a direct consequence of
2.A.2. Rado’s proof is somewhat more complicated because it does not
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depend upon A.1 or upon Birkhoff’s theorem. Rather, it makes use of
a separating hyperplane theorem.

C.2. Proposition. For x, y ∈ R n
+ , x ≺w y if and only if x lies in

the convex hull of the set of all vectors z which have the form

z = (ε1yπ(1), . . . , εnyπ(n)),

where π is a permutation and each ε1, . . . , εn = 0 or 1.

Proof. The proof is similar to that of C.1 but uses the fact 2.C.2
that the doubly substochastic matrices constitute the convex hull of
the set of all matrices with at most one unit in each row and each
column and all other entries equal to zero. ||

There is no counterpart to C.1 for the weak majorization ≺w because
the doubly superstochastic matrices form an unbounded convex set
that is not the convex hull of its extreme points.

D A Characterization Involving
Top Wage Earners

When income inequality within a specific population is addressed,
figures such as “the top 1% of wage earners receive 21% of the total
income” are often quoted. To address this kind of inequality reporting,
suppose that x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 are the incomes of individuals in
a population of size n, and let T = Σn

1xi. For a specified proportion α of
T , define s = s(x;α) by the conditions Σs−1

1 xi < αT, Σs
1xi ≥ αT. Thus

individuals 1, 2, . . . , s receive at least 100α% of the total income T , but
all smaller groups receive a lesser proportion.

D.1. Proposition. For allocations x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 and
y1 ≥ y2 ≥ · · · ≥ yn ≥ 0 of the total income T ,

s(x;α) ≥ s(y;α) for all α ∈ (0, 1)

if and only if x ≺ y.

Proof . Suppose first that s(x;α) ≥ s(y;α) for all α ∈ (0, 1).
Choose α = Σk

1xi/T, so that s(x;α) = k. Because s(x;α) ≥ s(y;α),
it follows that k ≥ s(y;α), that is, Σk

1yi ≥ αT = Σk
1xi. Next, suppose

that x ≺ y. Then Σs−1
1 yi < αT implies Σs−1

1 xi < αT. But Σs
1yi ≥ αT

does not imply Σs
1xi ≥ αT, and consequently s(x;α) ≥ s(y;α). ||



5
Preservation and Generation

of Majorization

There are a number of conditions on vectors u and v that imply a
majorization of some kind. Many of these conditions involve the gen-
eration of u and v from other vectors where majorization is already
present. Such results are summarized in Section A. In other cases, u
and v are generated from vectors having various properties besides ma-
jorization, or v is derived from u in a specified manner. These kinds of
origins of majorization are summarized in Section B. In Section C, ex-
treme vectors (in the ordering of majorization) under constraints are
identified, and Section D gives some special results for vectors with
integer components.

Majorizations that arise from rearrangements can be found in
Chapter 6 and are not repeated here.

A Operations Preserving Majorization

A.1. Theorem. For all convex functions g,

x ≺ y ⇒ (g(x1), . . . , g(xn)) ≺w (g(y1), . . . , g(yn)); (1)

and for all concave functions g,

x ≺ y ⇒ (g(x1), . . . , g(xn)) ≺w (g(y1), . . . , g(yn)). (2)

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 165
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Proof. These results can be proved in various ways. For example,
if 3.G.1.g is applied with t1 = · · · = tn = 1, then (1) is immediate.
Because u ≺w v if and only if −u ≺w −v, (2) is equivalent to (1). ||
A.1.a.

x ≺ y ⇒ (|x1|, . . . , |xn|) ≺w (|y1|, . . . , |yn|).

A.1.b.

x ≺ y ⇒ (x2
1, . . . , x

2
n) ≺w (y2

1 , . . . , y
2
n).

A.1.c. For a ∈ R,

x ≺ y ⇒ (x1(a− x1), . . . , xn(a− xn)) ≺w (y1(a− y1), . . . , yn(a− yn)).

A.1.d.

x ≺ y on R n
++ ⇒ (log x1, . . . , log xn) ≺w (log y1, . . . , log yn);

that is,

x ≺ y on R n
++ ⇒

n∏
i=k

x[i] ≥
n∏
i=k

y[i], k = 1, . . . , n.

This conclusion with a weaker hypothesis is given in A.2.c.

A.1.e. Suppose that g :R → R is continuous at some point or
is bounded above by a measurable function on some set of positive
Lebesgue measure. Then

x ≺ y ⇒ (g(x1), . . . , g(xn)) ≺ (g(y1), . . . , g(yn))

if and only if g is linear.

Proof. The implied majorization is trivial when g is linear. To see
that linearity is essentially a necessary condition, note first that a ≺ b
is equivalent to a ≺w b and a ≺w b. Thus, from the proof of 3.C.1.c,
it follows that 2g((u + v)/2) = g(u) + g(v). This functional equation
together with the hypotheses on g implies that g is linear (Aczél, 1966,
p. 43 or Castillo and Ruiz-Cobo, 1992, p. 108). ||
A.1.f. If x ≺ y, then for any a, b ∈ R,

(ax1 + b, . . . , axn + b) ≺ (ay1 + b, . . . , ayn + b).

Proof. This is a direct consequence of A.1.e. Alternatively, one may
argue as follows. Because x ≺ y, there exists a doubly stochastic matrix
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P such that x = yP and ax = ayP . Because be = beP , it follows that
(ax+ be) = (ay + be)P ; thus,

(ax1 + b, . . . , axn + b) ≺ (ay1 + b, . . . , ayn + b). ||

A.1.g. For m = 1, 2, . . . ,

(x1, . . . , x1︸ ︷︷ ︸
m

, x2, . . . , x2︸ ︷︷ ︸
m

, . . . , xn, . . . , xn︸ ︷︷ ︸
m

)

≺ (y1, . . . , y1︸ ︷︷ ︸
m

, y2, . . . , y2︸ ︷︷ ︸
m

, . . . , yn, . . . , yn︸ ︷︷ ︸
m

)

if and only if (x1, . . . , xn) ≺ (y1, . . . , yn).

This result can be verified directly using Definition 1.A.1. Note that
in the first majorization, each xi and yi must be duplicated the same
number m of times.

As a consequence of A.1.g, if φ : Rmn → R is Schur-convex, then
ψ : R n → R is Schur-convex, where

ψ(x1, . . . , xn) = φ(x1, . . . , x1︸ ︷︷ ︸
m

, x2, . . . , x2︸ ︷︷ ︸
m

, . . . , xn, . . . , xn︸ ︷︷ ︸
m

).

A.2. Theorem. (i) For all increasing convex functions g,

x ≺w y ⇒ (g(x1), . . . , g(xn)) ≺w (g(y1), . . . , g(yn)).

(ii) For all increasing concave functions g,

x ≺w y ⇒ (g(x1), . . . , g(xn)) ≺w (g(y1), . . . , g(yn)).

(iii) For all decreasing convex functions g,

x ≺w y ⇒ (g(x1), . . . , g(xn)) ≺w (g(y1), . . . , g(yn)).

(iv) For all decreasing concave functions g,

x ≺w y ⇒ (g(x1), . . . , g(xn)) ≺w (g(y1), . . . , g(yn)).

Proof . First consider (i). If x ≺w y, then for k = 1, . . . , n,
(x[1], . . . , x[k]) ≺w (y[1], . . . , y[k]). Thus it follows from 3.C.1.b that∑k

1 g(x[i]) ≤ ∑k
1 g(y[i]), k = 1, . . . , n. On account of the fact

that g(x[1]) ≥ · · · ≥ g(x[n]), this is just the statement that
(g(x1), . . . , g(xn)) ≺w (g(y1), . . . , g(yn)). Upon replacing g by −g, (iv)
is obtained from (i). If x is replaced by −x and y is replaced by −y,
(iii) follows from (i) and (ii) follows from (iv). ||
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A.2.a. (Weyl, 1949). If x, y ∈ R n
++, and g(ez) is convex and

increasing, then

(log x1, . . . , log xn) ≺w (log y1, . . . , log yn)

⇒ (g(x1), . . . , g(xn)) ≺w (g(y1), . . . , g(yn)).

Proof. This result is essentially the same as (i) of A.2. ||
A.2.b. If x, y ∈ R n

++,

(log x1, . . . , log xn) ≺w (log y1, . . . , log yn) ⇒ x ≺w y.

This is the special case g(x) = x in A.2.a. It can be rewritten using a
continuity argument as follows: If x, y ∈ R+, then

k∏
1

x[i] ≤
k∏
1

y[i], k = 1, . . . , n⇒
k∑
1

x[i] ≤
k∑
1

y[i], k = 1, . . . , n.

A.2.c.

x ≺w y on R n
++ ⇒ (log x1, . . . , log xn) ≺w (log y1, . . . , log yn).

If x, y ∈ R++, this result, with the aid of a continuity argument, can
be rewritten as

n∑
k

x[i] ≥
n∑
k

y[i], k = 1, . . . , n ⇒
n∏
k

x[i] ≥
n∏
k

y[i], k = 1, . . . , n.

A.2.d.

x ≺w y ⇒ (x+
1 , . . . , x

+
n ) ≺w (y+

1 , . . . , y
+
n ), where α+ = max(α, 0).

A.2.e.

x ≺w y ⇒ (x̃1, . . . , x̃n) ≺w (ỹ1, . . . , ỹn), where α̃ = min(α, 1).

A.2.f.

x ≺w y ⇒ (1 − e−x1 , . . . , 1 − e−xn) ≺w (1 − e−y1 , . . . , 1 − e−yn).

A.2.g.

x ≺w y ⇒ (e−x1 , . . . , e−xn) ≺w (e−y1 , . . . , e−yn),

x ≺w y ⇒ (ex1 , . . . , exn) ≺w (ey1 , . . . , eyn).
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A.2.h.

x ≺w y on R n
++ ⇒ (xr1, . . . , x

r
n) ≺w (yr1, . . . , y

r
n), r < 0,

x ≺w y on R n
++ ⇒ (xr1, . . . , x

r
n) ≺w (yr1, . . . , y

r
n), 0 < r < 1,

x ≺w y on R n
++ ⇒ (xr1, . . . , x

r
n) ≺w (yr1, . . . , y

r
n), r > 1.

A.3. Theorem. Suppose that gi : R → R is differentiable for
i = 1, . . . , n. If g1, . . . , gn satisfy the conditions

g′i(a) ≥ g′i+1(b) ≥ 0 whenever a ≥ b, i = 1, . . . , n− 1, (3)

g1(z) ≥ g2(z) ≥ · · · ≥ gn(z) for all z, (4)

then

x ≺w y on D ⇒ (g1(x1), . . . , gn(xn)) ≺w (g1(y1), . . . , gn(yn)) on D .

If g1, . . . , gn satisfy the conditions

0 ≥ g′i(a) ≥ g′i+1(b) whenever a ≥ b, i = 1, . . . , n− 1, (5)

g1(z) ≤ · · · ≤ gn(z) for all z, (6)

then

x ≺w y on D ⇒ (gn(xn), . . . , g1(x1)) ≺w (gn(yn), . . . , g1(y1)) on D .

Proof . According to 3.H.3.a(3), together with the majorization
x ≺w y on D , implies that

k∑
1

gi(xi) ≤
k∑
1

gi(yi), k = 1, . . . , n.

Because of (4), g1(x1) ≥ · · · ≥ gn(xn) and g1(y1) ≥ · · · ≥ gn(yn). Thus
these inequalities are equivalent to

(g1(x1), . . . , gn(xn)) ≺w (g1(y1), . . . , gn(yn)).

The proof for the case x ≺w y on D is similar and makes use of
3.H.3.a (8). ||
A.4. Theorem. Let φ :Rm → R satisfy the conditions

(i) φ is increasing and convex in each argument, the other arguments
being fixed,
(ii) the derivative φ(i) of φ with respect to its ith argument satisfies
φ(i)(x1, . . . , xm) is increasing in xj for all j �= i, xi being fixed for
i = 1, . . . ,m.
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Then

x(i) ≺w y(i) on D , i = 1, . . . ,m,

⇒ (φ(x(1)
1 , . . . , x

(m)
1 ), . . . , φ(x(1)

n , . . . , x
(m)
n ))

≺w (φ(y(1)
1 , . . . , y

(m)
1 ), . . . , φ(y(1)

n , . . . , y
(m)
n )) on D .

Remark . Condition (ii) is encountered in Chapter 6, where it is
called L-superadditivity. See particularly Section 6.D. Theorem A.4 is
related to an inequality of Fan and Lorentz (1954), which appears as
6.E.2.

Proof of A.4. By showing that

(φ(x(1)
1 , . . . , x

(m)
1 ), . . . , φ(x(1)

n , . . . , x
(m)
n ))

≺w (φ(y(1)
1 , x

(2)
1 , . . . , x

(m)
1 ), . . . , φ(y(1)

n , x
(2)
n , . . . , x

(m)
n ))

and then continuing to successively substitute the y(i) for x(i) one
at a time, the theorem is proved. Because conditions (i) and (ii) are
symmetric in the arguments of φ, it is consequently sufficient to prove
the theorem with m = 2 and x(2) = y(2). To repeat in simplified
notation, it is necessary to prove that

(iii)
x ≺w y on D and a ∈ D

⇒ (φ(x1, a1), . . . , φ(xn, an)) ≺w (φ(y1, a1), . . . , φ(yn, an)).

Let φi(x) = φ(x, ai), i = 1, . . . , n. By 4.B.2, the conclusion of (iii)
holds provided that
n∑
i=1

g(φi(xi)) ≤
n∑
i=1

g(φi(yi)) for all increasing convex functions g.

With the supposition that each φi is differentiable, this holds (by 3.H.3)
provided only that the composed functions g ◦ φi satisfy

(g ◦ φi)′(u) ≥ (g ◦ φi+1)′(v) for all u ≥ v, i = 1, . . . , n− 1;

that is,

(iv) g′(φi(u))φ′i(u) ≥ g′(φi+1(v))φ′i+1(v), u ≥ v, i = 1, . . . , n− 1.

Because φ is increasing in each argument and a ∈ D , it follows that

φi(u) ≥ φi+1(u) ≥ φi+1(v), u ≥ v.
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But g is convex and increasing, so

(v) g′(φi(u)) ≥ g′(φi+1(v)) ≥ 0.

Because φ is convex in each argument separately, φ′i is increasing, so
φ′i(u) ≥ φ′i(v); by (ii) and a ∈ D , φ′i(v) ≥ φ′i+1(v). Putting these
together with the fact that φi+1 is increasing yields

(vi) φ′i(u) ≥ φ′i+1(v) ≥ 0.

Now, multiplication of (v) and (vi) yields (iv). ||
A.4.a. If φ satisfies conditions (i) and (ii) of A.4, if x(i) ≺w y(i),
i = 1, . . . ,m, and if the vectors y(1), . . . , y(m) are similarly ordered
[i.e., (y(k)

i − y
(k)
j )(y(l)

i − y
(l)
j ) ≥ 0 for all i, j, k, l], then

(φ(x(1)
1 , . . . , x

(m)
1 ), . . . , φ(x(1)

n , . . . , x
(m)
n ))

≺w (φ(y(1)
1 , . . . , y

(m)
1 ), . . . , φ(y(1)

n , . . . , y
(m)
n )).

The conclusion is weaker than that of A.4 in that here these vectors
need not be in D .

Proof. The proof is essentially the same as the proof of A.4, but
makes use of 3.H.3.a rather than 3.H.3. ||
A.4.b. (i) If x(i) ≺w y(i) on D , i = 1, . . . ,m, then

m∑
i=1

x(i) ≺w

m∑
i=1

y(i) on D .

(ii) If x(i) ≺w y(i), i = 1, . . . ,m, and the y(i)’s are similarly ordered
(see definition following 6.A.1.a), then

m∑
i=1

x(i) ≺w

m∑
i=1

y(i).

(iii) If x(i) ≺w y(i) on D , i = 1, . . . ,m, then
∑m

i=1 x
(i) ≺w

∑m
i=1 y

(i)

on D .
(iv) If x(i) ≺w y(i), i = 1, . . . ,m, and the y(i)’s are similarly ordered,

then
m∑
i=1

x(i) ≺w
m∑
i=1

y(i).

A generalization of A.4.b is given in A.12, A.12.a, and A.12.b.
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A.4.c. Let α+ = max(α, 0) and let S+
k (α1, . . . , αm) = Sk(α+

1 , . . . , α
+
m),

1 ≤ k ≤ m, where Sk is the kth elementary symmetric function. Then

x(i) ≺w y(i) on D , i = 1, . . . ,m,

⇒ (S+
k (x(1)

1 , . . . , x
(m)
1 ), . . . , S+

k (x(1)
n , . . . , x

(m)
n ))

≺w (S+
k (y(1)

1 , . . . , y
(m)
1 ), . . . , S+

k (y(1)
n , . . . , y

(m)
n )) on D+.

This can be obtained directly from A.4, but questions of differentia-
bility are avoided by using A.2.d and proving the result for x(i) and
y(i) in D+ with Sk in place of S+

k .

A.4.d. If x(i) ≺w y(i) on D+, i = 1, . . . ,m, then(
m∏
i=1

x
(i)
1 , . . . ,

m∏
i=1

x(i)
n

)
≺w

(
m∏
i=1

y
(i)
1 , . . . ,

m∏
i=1

y(i)
n

)

on D+. In particular, x ≺w y on D+ and a ∈ D+ implies

(a1x1, . . . , anxn) ≺w (a1y1, . . . , anyn).

This is a special case of A.4.c. For m = 2, it is due to Pledger
and Proschan (1971) and is given in 3.H.2.c. Of course, successive
reapplication of the result for m = 2 yields the result for arbitrary m.

A.4.e. If φ(u, v) = (u+ 1)v+1, then φ satisfies conditions (i) and (ii)
of A.4 with m = 2 provided that u, v ≥ 0. Thus

x ≺w y and a ≺w b on D+

⇒ ((x1 + 1)a1+1, . . . , (xn + 1)an+1)

≺w ((y1 + 1)b1+1, . . . , (yn + 1)bn+1).

A.4.f. If φ(u, v) = uv, then φ satisfies conditions (i) and (ii)
of A.4 with m = 2 provided that u, v ≥ 0. Thus, if x ≺w y
and a ≺w b on D+, then (x1a1, . . . xnan) ≺w (y1b1, . . . ynbn).

A.5. Theorem. Let φ :Rm → R satisfy the conditions:

(i) φ is concave and increasing in each argument, the other argu-
ments being fixed;

(ii) the derivative φi of φ with respect to its ith argument satisfies
φ(i)(x1, . . . , xn) is decreasing in xj for all j �= i, xi being fixed for
i = 1, 2, . . . ,m.
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Then

x(i) ≺w y(i) on D , i = 1, . . . ,m,

⇒ (φ(x(1)
1 , . . . , x

(m)
1 ), . . . , φ(x(1)

n , . . . , x
(m)
n ))

≺w (φ(y(1)
1 , . . . , y

(m)
1 ), . . . , φ(y(1)

n , . . . , y
(m)
n )) on D .

This result is equivalent to A.4.

A.6. If x(i) ≺ y(i), i = 1, . . . ,m, and y(1), . . . , y(m) are similarly
ordered, then ∑

x(i) ≺
∑

y(i).

In particular, if x(i) ≺ y(i) on D , i = 1, . . . ,m, then
∑
x(i) ≺ ∑

y(i).

Proof. This follows from 6.A.1.b. ||
Theorems A.3–A.6 involve generation of a majorization from several

given majorizations by taking functions of corresponding arguments.
Another way to combine majorizations is the following:

A.7. Proposition (Richard Rado; see Hardy, Littlewood, and Pólya,
1934, 1952, p. 63).

(i) x ≺ y on R n and a ≺ b on Rm ⇒ (x, a) ≺ (y, b) on R n+m;
(ii) x ≺w y on R n and a ≺w b on Rm ⇒ (x, a) ≺w (y, b) on R n+m;
(iii) x ≺w y on R n and a ≺w b on Rm ⇒ (x, a) ≺w (y, b) on R n+m.

Proof. For any convex function φ :R → R, it follows from 3.C.1
that

∑n
i=1 φ(xi) ≤ ∑n

i=1 φ(yi) and
∑m

i=1 φ(ai) ≤ ∑m
i=1 φ(bi). Add

these inequalities and apply 4.B.1 to obtain (i). Similarly, (ii) is ob-
tained using 3.C.1.b and 4.B.2. Of course, (ii) and (iii) are equivalent.
Alternatively, notice that if P1 and P2 are doubly stochastic (doubly
substochastic), then

P =
[
P1 0
0 P2

]

is doubly stochastic (doubly substochastic). So (i) follows from
2.B.2. ||
A.7.a. If xl = yl for all l �= j, k, then

(i) (xj, xk) ≺ (yj , yk) ⇒ x ≺ y,

(ii) (xj, xk) ≺w (yj , yk) ⇒ x ≺w y,

(iii) (xj, xk) ≺w (yj , yk) ⇒ x ≺w y.
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A.7.b. If x ≺ y and the components of y are not all equal, then there
exists a unique α0 ∈ [0, 1) such that

(i) x ≺ z = α0(y, . . . , y) + (1 − α0)y, where y =
∑
yi/n,

(ii) in the inequalities
∑k

1 x[i] ≤
∑k

1 z[i], k = 1, . . . , n − 1, there is
equality for at least one value of k,

(iii) for all α ∈ [0, α0],

x ≺ z = α(y, . . . , y) + (1 − α)y ≺ y.

Notice that if equality holds for k = l, then the majorization x ≺ z
“splits” into the two majorizations ẋ ≺ ż, ẍ ≺ z̈, where ẋ =
(x[1], . . . , x[l]), ẍ = (x[l+1], . . . , x[n]), and ż, z̈ are similarly ordered
(see definition following 6.A.1.a). By A.7, ẋ ≺ ż and ẍ ≺ z̈ imply
(ẋ, ẍ) ≺ (ż, z̈), i.e., x ≺ z.

Proof of A.7.b. For 1 ≤ k ≤ n, the functions

gk(α) =
k∑
1

z[i] −
k∑
1

x[i] = kαy + (1 − α)
k∑
1

y[i] −
k∑
1

x[i]

are continuous and decreasing in α ∈ [0, 1], and gk(0) ≥ 0, gk(1) ≤ 0.
Thus there exists α0 such that min1≤k≤n gk(α0) = 0. This α0 satisfies
the required conditions. Unless y = ce, the gk’s are strictly decreasing,
so that α0 is unique. ||
A.7.c. Under the conditions of A.7.b,

α0 = min
1≤k≤n−1

∑k
1 y[i] −

∑k
1 x[i]∑k

1(y[i] − y)

= min
1≤k≤n−1

∑k
1 x(i) −

∑k
1 y(i)∑k

1(y − y(i))
.

Proof. Suppose that x ≺ y and y �= ce, and suppose further that

x ≺ (1 − α)y + αye ≺ y.

Only the left-hand majorization is a concern; the right-hand majoriza-
tion holds for all α ∈ [0, 1]. From the left-hand majorization, it follows
that

k∑
1

y[i] −
k∑
1

x[i] ≥ α

[
k∑
1

y[i] − ky

]
, k = 1, . . . , n − 1.
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For k = n, both sides are zero. Note that
∑k

1 y[i] − ky > 0 for k < n,
and hence

α ≤ min
1≤k≤n−1

∑k
1 y[i] −

∑k
1 x[i]∑k

1(y[i] − y)
. ||

A.7.d. Remark. By 4.B.1,

x ≺ α0(y, . . . , y) + (1 − α0)y

is equivalent to the condition that∑
φ(xi) ≤

∑
φ(α0y + (1 − α0)yi) ≤

∑
φ(yi)

for all convex φ : R → R. Because φ is convex and because

nφ(y) ≤
∑

φ(yi),

it follows that∑
φ(xi) ≤

∑
φ(α0y + (1 − α0)yi)

≤ α0nφ(y) + (1 − α0)
∑

φ(yi) ≤
∑

φ(yi).

Recall from A.7.b that α0 is unique, but in the inequalities∑
φ(xi) ≤ αnφ(y) + (1 − α)

∑
φ(yi) ≤

∑
φ(yi),

α ∈ [0, α0] is not unique.

The following proposition singles out a specific choice of α in the
last set of inequalities.

A.7.e. Proposition (Cohen, Derriennic, and Zbăganu, 1993). Sup-
pose y ∈ R n

++ with Σyi = 1, and x = yA for some doubly stochastic
matrix A. Then for all convex functions φ : R → R,

n∑
1

φ(xi) ≤ α(A)nφ
(

1
n

)
+ (1 − α(A))

n∑
1

φ(yi) ≤
n∑
1

φ(yi),

where

α(A) = min
j,k

n∑
i=1

min(aji, aki),

= 1 − 1
2

max
j,k

n∑
i=1

|aji − aki|.
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A.7.f. Remark. The coefficient α(A) is called the coefficient of
ergodicity of A and satisfies

α(A) = 1 − sup
‖(u− v)A‖
‖u− v‖ ,

for u, v ∈ R n
++, ‖u‖ = ‖v‖, where ‖z‖ =

∑ |zi|. For further discussion
see Seneta (2006).

A.7.g. Remark. The development of A.7.b, A.7.d, and A.7.e raises
the question of the possible relation between α0 and the coefficient of
ergodicity α(A). Examples can be constructed in which α(A) < α0

and other examples in which α(A) > α0.
Let y = (1/20)(1, 3, 6, 10) and

A =
1
4

⎡
⎢⎢⎣

4 0 0 0
0 4 0 0
0 0 3 1
0 0 1 3

⎤
⎥⎥⎦ .

In this case, x = yA = (1/20)(1, 3, 7, 9), the ergodic coefficient of A is
α(A) = 1/2 and α0 = 0, so that α(A) > α0.

On the other hand, if y = (1/10)(1, 3, 6) and

A =
1
6

⎡
⎣3 2 1

1 3 2
2 1 3

⎤
⎦ ,

then x = yA = (0.300, 0.267, 0.433), α(A) = 4/6 whereas α0 = 0.714.
Consequently, in this case, α0 > α(A).

It is interesting to observe that, in this last example, if one retains
the same doubly stochastic matrix A but replaces y = (1/10)(1, 3, 6)
by ỹ = (1/10)(6, 3, 1), one finds α0 = 0.641 < α(A).

A.8. Proposition (Pólya, 1950). If x ≺w y, there exist xn+1, yn+1 ∈
R such that

(x, xn+1) ≺ (y, yn+1).

Proof . Let xn+1 = min(x1, . . . , xn, y1, . . . , yn) and let yn+1 =∑n+1
1 xi −

∑n
1 yi. Since

∑n
1 yi −

∑n
1 xi = xn+1 − yn+1 ≥ 0, it follows

that xi ≥ xn+1, yi ≥ yn+1, i = 1, . . . , n. ||
Pólya uses this result to deduce 3.C.1.b from 3.C.1.

A.8.a. If x ≺w y, there exist x0, y0 ∈ R such that

(x0, x) ≺ (y0, y).
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Proof. Let x0 = max(x1, . . . , xn, y1, . . . , yn), y0 =
∑n

0 xi −
∑n

1 yi.
Then, as in A.8, y0 ≥ x0, so x0 ≥ xi, y0 ≥ yi, i = 1, . . . , n. ||
A.8.b. If x ≺w y, where x ∈ R n

+ , y ∈ R, and δ =
∑n

i=1(yi−xi), then
for any integer k

(x,
δ

k
,
δ

k
, . . . ,

δ

k︸ ︷︷ ︸
k

) ≺ (y, 0, 0, . . . , 0︸ ︷︷ ︸
k

).

Shi (2006) includes this result for the case k = n.

A.9. If x ≺w y, then there exist vectors u and v such that

x ≤ u and u ≺ y, x ≺ v and v ≤ y.

Proof. To obtain v, it is necessary only to diminish y[n]. Consider
now the existence of u. For n = 1, the result is trivial. Suppose it is
true for vectors of any length up to n, and for notational convenience,
assume that x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn. Let α1 = min1≤k≤n(

∑k
1 yi−∑k

1 xi) and let x̃ = x + α1e1 (ei has a 1 in the ith place and zeros
elsewhere). Then x̃1 ≥ · · · ≥ x̃n, and for some k,

∑k
1 x̃i =

∑k
1 ỹi. Thus

(x̃1, . . . , x̃k) ≺ (ỹ1, . . . , ỹk) and (x̃k+1, . . . , x̃n) ≺w (yk+1, . . . , yn). Now
apply the induction hypothesis to (x̃k+1, . . . , x̃n) and (yk+1, . . . , yn)
to obtain (˜̃xk+1, . . . , ˜̃xn), satisfying (x̃k+1, . . . , x̃n) ≤ (˜̃xk+1, . . . , ˜̃xn) ≺
(yk+1, . . . , yn). Then by A.7(i), x ≤ (x̃1, . . . , x̃k, ˜̃xk+1, . . . , ˜̃xn) ≺ y. ||

The existence of the vector v was noted by Mirsky (1960a). The
existence of the vector u is due to Fan (1951); it is equivalent to 2.C.6,
which is due to Mirsky (1959a) and Chong (1976a).

A.9.a. If x ≺w y, then there exist vectors u and v such that

x ≥ u and u ≺ y, v ≥ y and x ≺ v.

The following results are two of several that involve interlaced
numbers (see B.4).

A.9.b. If u ≺w y and v ≺w y with ui ≤ vi, i = 1, . . . , n, then there
exists an x such that ui ≤ xi ≤ vi and x ≺ y.

A.10.a. Proposition (Mirsky, 1958a). If x ≺ y on D , there exist
c1, . . . , cn−1 such that y1 ≥ c1 ≥ y2 ≥ · · · ≥ cn−1 ≥ yn and

(x1, . . . , xn−1) ≺ (c1, . . . , cn−1).
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Proof. Because the result is trivial for n = 2, assume that n ≥ 3
and denote by Δ the bounded closed convex set of points z in R n−1

specified by the inequalities

y1 ≥ z1 ≥ y2 ≥ · · · ≥ zn−1 ≥ yn,

k∑
1

xi ≤
k∑
1

zi, k = 1, . . . , n− 2.

Let m∗ = maxΔ
∑n−1

1 zi, m∗ = minΔ
∑n−1

1 zi. Because Δ is convex
and because

m∗ = y1 + · · · + yn−1 ≥ x1 + · · · + xn−1,

it is sufficient to prove thatm∗ ≤ x1+· · ·+xn−1. Let (d1, . . . , dn−1) ∈ Δ
satisfy

∑n−1
1 di = m∗ and note that

dn−1 ≥ yn, dk ≥ yk+1, k = 1, . . . , n − 2, (7)

and

k∑
1

xi ≤
k∑
1

di, k = 1, . . . , n− 2. (8)

Case 1. If all the inequalities in (8) are strict, then dk = yk+1,
k = 1, . . . , n − 2, for otherwise some dk could be diminished,
contradicting

∑n
1 di = m∗. Thus, in this case,

m∗ =
n∑
2

yi ≤
n∑
2

xi ≤
n∑
1

xi,

as was to be proved.

Case 2. If equality holds in (8) for at least one value of k, denote
the largest such k by r. Then

∑r
1 xi =

∑r
1 di, but

∑k
1 xi <

∑k
1 di,

r < k < n − 2. Then by the reasoning used in Case 1, dk = yk+1,
k = r + 1, . . . , n− 2. Hence,

m∗ = (d1 + · · · + dr) + (dr+1 + · · · + dn−1)

= (x1 + · · · + xr) + yr+2 + · · · + yn

≤ x1 + · · · + xr + xr+2 + · · · + xn

≤ x1 + · · · + xn−1. ||
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Of course, x ≺ y on D implies (x1, . . . , xn−1) ≺w (y1, . . . , yn−1), so
that by A.9, there exists v ≤ (y1, . . . , yn−1) such that x ≺ v. But this
does not give the interlacing property obtained by Mirsky.

A.10.b. Proposition (Chong, 1976b). If x ≺ y on D , then there
exist a least integer k, 1 ≤ k ≤ n, and a vector

z = (y1, . . . , yk−2, yk−1 + yk − x1, x1, yk+1, . . . , yn)

such that

x ≺ z ≺ y.

A.11. Proposition (Tomić, 1949). Suppose that x ≺ y on D , a is a
fixed constant, and l, m are determined by

x1 ≥ · · · ≥ xl ≥ a > xl+1 ≥ · · · ≥ xn,

y1 ≥ · · · ≥ ym ≥ a > ym+1 ≥ · · · ≥ yn.

If l ≥ m, then

(x1, . . . , xl) ≺w (y1, . . . , ym, a, . . . , a︸ ︷︷ ︸
l−m

), (9)

(a, . . . , a,︸ ︷︷ ︸
l−m

xl+1, . . . , xn) ≺w (ym+1, . . . , yn). (10)

If l < m, then

(x1, . . . , xl, a, . . . , a︸ ︷︷ ︸
m−l

) ≺w (y1, . . . , ym), (11)

(xl+1, . . . , xn) ≺w (a, . . . , a,︸ ︷︷ ︸
m−l

ym+1, . . . , yn). (12)

Proof. To verify (9), note that because x ≺ y,
∑k

1 xi ≤ ∑k
1 yi,

k = 1, . . . ,m, and
∑k

1 xi ≤
∑k

1 yi ≤
∑m

1 yi+(k−m)a, k = m+1, . . . , l.
The proofs of (10), (11), and (12) are similar. ||

A.12. If x ≺ y on D and if 0 ≤ α ≤ β ≤ 1, then

βx+ (1 − β)y ≺ αx+ (1 − α)y.
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More generally, if x(1) ≺ x(2) ≺ · · · ≺ x(m) on D and if

(i)
∑k

1 αi ≤
∑k

1 βi, k = 1, . . . ,m− 1,

(ii)
∑m

1 αi =
∑m

1 βi,

then
m∑
i=1

βix
(i) ≺

m∑
i=1

αix
(i) on D .

Proof . For fixed k, 1 ≤ k ≤ n, let Si =
∑k

j=1 x
(i)
j . Then, the

required inequality

m∑
i=1

βi

k∑
j=1

x
(i)
j ≤

m∑
i=1

αi

k∑
j=1

x
(i)
j

can be written more compactly as

(iii)
∑m

i=1 βiSi ≤
∑m

i=1 αiSi.

Because of the assumed majorization, S1 ≤ · · · ≤ Sm, and thus one
can write Si =

∑i
l=1 tl, where tl ≥ 0, l > 1. The sufficiency of (i) and

(ii) can be seen clearly by making this substitution and interchanging
the order of summation. Alternatively, (i) and (ii) are sufficient for (iii)
by 16.A.2.a. ||
A.12.a. If x(1) ≺w x(2) ≺w · · · ≺w x(m) on D and if α and β satisfy
(i) and (ii) of A.12, then

m∑
i=1

βix
(i) ≺w

m∑
i=1

αix
(i) on D .

A.12.b. If x(1) ≺w x(2) ≺w · · · ≺w x(m) on D and if α and β satisfy
(i) and (ii) of A.12, then

m∑
i=1

βix
(i) ≺w

m∑
i=1

αix
(i) on D .

Remark. Note that conditions (i) and (ii) in A.12 do not say α ≺ β
because there is no prescribed ordering of the components of α and
β. On the other hand, there is a way to generate majorization from
vectors α and β that satisfy (i) and (ii).
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A.13. For any vector z ∈ R n, let

z∗i = max
k≥i

min
j≤i

k∑
l=j

zl/(k − j + 1).

If
∑k

1 xi ≤ ∑k
1 yi, k = 1, . . . , n − 1,

∑n
1 xi =

∑n
1 yi, then x∗ ≺ y∗

on D . If
∑k

1 xi ≤
∑k

1 yi, k = 1, . . . , n, then x∗ ≺w y∗ on D .

Proof. Let Si(z) =
∑i

l=1 zl, i = 1, . . . , n. Call a vector (u1, . . . , un)
concave if ui−ui−1 is decreasing in i = 2, . . . , n. Because z∗1 ≥ · · · ≥ z∗n,
the vector (S1(z∗), . . . , Sn(z∗)) is concave; in fact, it is the least concave
majorant of (S1(z), . . . , Sn(z)). Graphically one can think of placing
a pin at each of the points (i, S(zi)) in the plane and then placing a
taut string above these pins. Such a string will pass through the points
(i, S(z∗i )).

Because Sk(x) ≤ Sk(y), k = 1, . . . , n, it follows that Sk(x∗) ≤
Sk(y∗), k = 1, . . . , n. Moreover,

∑n
1 xi =

∑n
1 x

∗
i and

∑n
1 yi =

∑n
1 y

∗
i .

Because x∗ and y∗ ∈ D , the proof is complete. ||
The ideas touched upon in the above proof are discussed in detail

by Barlow, Bartholomew, Bremner, and Brunk (1972).

Vector Functions Preserving Majorization

Propositions A.1–A.6 are concerned with results which have the
general form

x(i) ≺ y(i), i = 1, . . . ,m⇒ (φ(x(1)
1 , . . . , x

(m)
1 ), . . . , φ(x(1)

n , . . . , x
(m)
n ))

≺ (φ(y(1)
1 , . . . , y

(m)
1 ), . . . , φ(y(1)

n , . . . , y
(m)
n )),

where the majorizations may be weak or strong. The arguments of φ all
consist of 1st components or . . . or nth components of the vectors x(i)

and y(i). The following proposition does not have this characteristic.

A.14. Proposition. (i) If φ1, . . . , φm are Schur-convex functions,
then

x ≺ y ⇒ (φ1(x), . . . , φm(x)) ≺w (φ1(y), . . . , φm(y)).

(ii) If φ1, . . . , φm are increasing Schur-convex functions, then

x ≺w y ⇒ (φ1(x), . . . , φm(x)) ≺w (φ1(y), . . . , φm(y)).

(iii) If φ1, . . . , φm are decreasing Schur-convex functions, then

x ≺w y ⇒ (φ1(x), . . . , φm(x)) ≺w (φ1(y), . . . , φm(y)).
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If in (i), (ii), and (iii) the φi are, respectively, Schur-concave, decreas-
ing and Schur-concave, or increasing and Schur-concave, then in the
conclusions ≺w is replaced by ≺w.

Proof . The results follow from (i), (v), and (ix) of Table 1 of
Section 3.B, taking h(z1, . . . , zm) to be the sum of the k largest of
z1, . . . , zm, k = 1, . . . ,m. ||

Parts (i) and (ii) of A.14 were obtained by Chong (1976c) under the
condition that each φi is symmetric and convex.

A.15. Let D be an n×m matrix. If x ≺ y on D ≡ Dn, then
xD ∈ D ≡ Dm, yD ∈ D ≡ Dm, and xD ≺ yD if and only if for
some real number α,

(a) e(n)D = nαe(m), where e(�) = (1, . . . , 1) ∈ R �,

(b) De′(m) = mαe′(n),

(c)
∑k

j=1 dij is decreasing in i = 1, . . . , n for k = 1, . . . ,m− 1,

(d)
∑k

i=1 dij is decreasing in j = 1, . . . ,m for k = 1, . . . , n− 1.

Proof. First, suppose (a)–(d) hold. By 2.E.1, it follows from (a)
and (d) that xD ∈ D and yD ∈ D . Thus xD ≺ yD if

σk(x) ≡
k∑
j=1

n∑
i=1

xidij ≤ σk(y), k = 1, . . . ,m− 1, (13)

and σm(x) = σm(y) whenever x ≺ y on D ≡ Dn. Since x, y ∈ D ≡ Dn,
(13) follows from (c) by 16.A.2.a.

From (b) and
∑
xi =

∑
yi, it follows that xDe′ = yDe′; that is,

σm(x) = σm(y). Alternatively, one can observe that (c) is the condition
that σk is Schur-convex on D and (b) is the condition that σm and
−σm are Schur-convex on D .

Next, suppose that xD ≺ yD on D ≡ Dm whenever x ≺ y on
D ≡ Dn. Then (a) and (d) hold by 2.E.1. Because the majoriza-
tion implies that σk, k = 1, . . . ,m, and −σm are Schur-convex on
D , (b) and (c) are obtained from 3.A.3 and 3.H.2. Of course, α in (a)
must be the same as in (b) because e(m)De

′
(n) = nmα is the sum of all

elements in D. ||
A.16. Let D be an n × m matrix. If x ≺w y on D ≡ Dn, then
xD ∈ D ≡ Dm, yD ∈ D ≡ Dm, and xD ≺w yD if and only if
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(a)
∑k

i=1 dij is decreasing in j = 1, . . . ,m for k = 1, . . . , n− 1,

(b)
∑n

i=1 dij is independent of j [that is, e(n)D = nαe(m), for some
α, where e(�) = (1, . . . , 1) ∈ R �],

(c)
∑k

j=1 dij is decreasing in i = 1, . . . , n for k = 1, . . . ,m,

(d)
∑k

j=1 dnj ≥ 0, k = 1, . . . ,m.

Proof. Suppose (a)–(d) hold. By 2.E.1, it follows from (a) and (b)
that xD ∈ Dm and yD ∈ Dm. Thus xD ≺w yD if

σk(x) ≡
k∑
j=1

n∑
i=1

xidij ≤ σk(y), k = 1, . . . ,m,

whenever x ≺w y on D . But this follows from 3.A.7 because, according
to 3.H.3, conditions (c) and (d) imply that σk is Schur-convex and
increasing.

Next, suppose that xD ≺w yD on D ≡ Dm whenever x ≺w y on
D ≡ Dn. Then (a) and (b) follow by 2.E.1. Because the majorization
implies that the σk are increasing and Schur-convex on D , it must be
that (c) and (d) hold. ||
A.17. Proposition (Chong, 1974d). Let D be an n×m matrix with
the property that for every n × n permutation matrix Π, there exists
an m ×m permutation matrix Π̃ such that ΠD = DΠ̃. If x, y ∈ R n

and x ≺ y, then xD ≺ yD (on Rm).

Proof. If x ≺ y, then by 2.A.2 and 2.B.2, x = y(
∑
αiΠi) where

αi ≥ 0,
∑
αi = 1, and the Πi are permutation matrices. Thus

xD = y(
∑

αiΠi)D = y(
∑

αiDΠ̃i) = yD(
∑

αiΠ̃i).

But
∑
αiΠ̃i is doubly stochastic, so by 2.B.2, xD ≺ yD. ||

Examples of matrices satisfying the condition of A.17 are easily
found with the aid of the following:

A.17.a. (Chong, 1974d). A matrix D satisfies the condition of A.17
if and only if all permutations of any column of D are also columns
of D.

With the aid of A.17.a, A.17 can also be proved using 3.G.2.b.



184 5. Preservation and Generation of Majorization

A.17.b. (Chong, 1974d). If D has nonnegative elements and satisfies
the condition of A.17, then

x ≺w y implies xD ≺w yD,

and

x ≺w y implies xD ≺w yD.

Proof. If x ≺w y, then by A.9 there exists a vector u such that x ≤
u ≺ y. Thus, by A.17 and because D is nonnegative, xD ≤ uD ≺ yD
and this means xD ≺w yD. The proof for ≺w follows similarly from
A.9.a or from the case ≺w using a ≺w b⇔ −a ≺w −b. ||

A.17 has been generalized by Ando (1989) to nonlinear functions
mapping R n → Rm.

A.18. Definition. Φ : R n → Rm is said to be increasing if

Φ(x) ≤ Φ(y) whenever xi ≤ yi, i = 1, . . . , n,

and Φ is said to be convex if

Φ(αx+ αy) ≤ αΦ(x) + αΦ(y), 0 ≤ α ≤ 1, α = 1 − α.

Here ≤ denotes componentwise ordering.

A.19. Proposition (Ando, 1989). If Φ : R n → Rm is convex and if
for any n×n permutation matrix Π there exists an m×m permutation
matrix Π∗ such that

Φ(x)Π∗ = Φ(xΠ) for all x,

then

x ≺ y implies Φ(x) ≺w Φ(y).

If, in addition, Φ is increasing, then

x ≺w y implies Φ(x) ≺w Φ(y).

A.20. Majorization for sums and products. A large class of
sum and product inequalities are of the following form: If

α1 ≥ · · · ≥ αn, β1 ≥ · · · ≥ βn, γ1 ≥ · · · ≥ γn,

then
k∑
s=1

γis+js−s ≤
k∑
s=1

αis +
k∑
s=1

βjs
, k = 1, . . . , n, (14)
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where 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j1 < · · · < jk ≤ n. The set of
inequalities (14) is stronger than the majorization γ ≺w α+ β. To see
this, choose js = s, in which case inequality (14) becomes

k∑
s=1

γis ≤
k∑
s=1

αis +
k∑
s=1

βs, k = 1, . . . , n,

which is equivalent to

(γ − α) ≺w β. (15)

From (14) with is = js = s, or from (15) with the aid of A.4.b, it
follows that

γ ≺w α+ β. (16)

The majorization in (15) is strong if equality holds in (14) for k = n.
Analogous to (14), multiplicative inequalities of the following form

sometimes arise: If αn ≥ 0, βn ≥ 0, γn ≥ 0,
k∏
s=1

γis+js−s ≤
k∏
s=1

αisβjs
, k = 1, . . . , n. (17)

In particular, (17) implies
k∏
1

γis ≤
k∏
1

αisβs, k = 1, . . . , n. (18)

If αn > 0, βn > 0, γn > 0, then (18) is equivalent to

(log γ − log α) ≺w log β. (19)

In turn, (17) or (19) implies that

(log γ) ≺w (log α+ log β). (20)

Several papers provide general surveys of results such as (14) and
(17). In particular, see Markus (1964) and Thompson (1974), who
discuss the relation between additive and multiplicative versions. For
a survey of some of the results in the following sections, see Mirsky
(1964). See also Chapter 9.

B Generation of Majorization

In this section, some conditions on pairs of vectors are given which
are stronger than majorization. These conditions are sometimes more
easily checked than the conditions of majorization. In addition, one of
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these conditions suggests an answer to the following question: What
functions ψ have the property that

(x1, . . . , xn)
/∑

xi ≺ (ψ(x1), . . . , ψ(xn))
/∑

ψ(xi)

for all vectors x?
Consider the following conditions:

(a) yi − xi is decreasing in i = 1, . . . , n;

(a′) xi > 0 for all i and yi/xi is decreasing in i = 1, . . . , n;

(b) for some k, 1 ≤ k < n, xi ≤ yi, i = 1, . . . , k, xi ≥ yi for
i = k + 1, . . . , n;

(b′) for some k, 1 ≤ k ≤ n, xi ≤ yi, i = 1, . . . , k, xi ≥ yi for
i = k + 1, . . . , n.

B.1. Proposition. If x ∈ D and
∑
xi =

∑
yi, then

(a) =⇒ (b) =⇒ x ≺ y.

If x ∈ D++ and
∑
xi =

∑
yi, then

(a′) =⇒ (b) =⇒ x ≺ y.

Proof. Suppose (a). Since
∑
xi =

∑
yi, i.e.,

∑
(yi − xi) = 0, and

because yi − xi is decreasing in i, there exists k, 1 ≤ k ≤ n, such that

yi − xi ≥ 0, i = 1, . . . , k, yi − xi ≤ 0, i = k + 1, . . . , n.

This is (b).
Suppose (b). Then

∑j
1 xi ≤

∑j
1 yi, j = 1, . . . , k, and

∑n
j xi ≥

∑n
j yi,

j = k + 1, . . . , n. Because
∑
xi =

∑
yi, these last n − k inequalities

can be rewritten as
∑j−1

1 xi ≤
∑j−1

1 yi, j = k+1, . . . , n. Thus for each
k, the sum of the k largest of the xi is dominated by

∑k
1 yi. Hence,

x ≺ y.
The proof that (a′) =⇒ (b) is essentially the same as the proof

that (a) =⇒ (b). ||

The fact that (a′) ⇒ x ≺ y when x ∈ D++ is due to Marshall,
Olkin, and Proschan (1967).
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For small values of n, some of the implications of Proposition B.1
reverse. Suppose that x ∈ D and x ≺ y.

For n = 2, (a) ⇐⇒ (b) ⇐⇒ x ≺ y;

for n = 3, (a) �⇐= (b) ⇐⇒ x ≺ y;

for n = 4, (a) �⇐= (b) �⇐= x ≺ y.

To verify this, note that for n = 2, x ≺ y implies y1 ≥ x1 and
y2 ≤ x2, so that (a) and (b) hold. For n = 3, y1−x1 ≥ 0 and y3−x3 ≤ 0,
so (b) holds regardless of the sign of y2 − x2. However, if x = (2, 1, 0)
and y = (3, 0, 0), then x ≺ y but y − x = (1,−1, 0), so (a) fails.
For n = 4, take x = (5, 4, 1, 1) and y = (6, 3, 2, 0); here, x ≺ y but
y − x = (1,−1, 1,−1), so (b) fails.

Note. Zheng (2007) defines utility gap dominance between x and y
as follows. For a strictly increasing function u, write x ≺u y if

u(yi) − u(xi) is decreasing in i = 1, 2, . . . , n.

Furthermore if x ≺u y and Σxi = Σyi, then condition (b) holds, and
hence x ≺ y. Observe that conditions (a) and (a′) correspond to the
choices u(x) = x and u(x) = log x, respectively.

Note that Zheng (2007) uses a definition of the Lorenz order that
is reversed from that of Definition 17.C.6; this is a possible source of
confusion.

B.1.a. If x ∈ D and
∑
xi ≤

∑
yi, then

(a) ⇒ (b′) ⇒ x ≺w y.

If x ∈ D++ and
∑
xi ≤

∑
yi, then

(a′) ⇒ (b′) ⇒ x ≺w y.

The proofs of these results parallel those of B.1.
Notice that in condition (a′), xi can be replaced by xi/c and yi can be

replaced by yi/d, provided that c > 0, d > 0. This leads to the following
version of B.1, which again avoids the condition

∑
xj =

∑
yj, and

which substitutes for (b) the condition

(b′′) for some k, 1 ≤ k < n, xi/Σxj ≤ yi/Σyj, i = 1, . . . , k,

xi∑
xj

≥ yi∑
yj
, i = k + 1, . . . , n.
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B.1.b. If x ∈ D++, and if Σn
j=1yj > 0, then

(a′) ⇒ (b′′) ⇒
(

x1∑
xj
, . . . ,

xn∑
xj

)
≺
(

y1∑
yj
, . . . ,

yn∑
yj

)
.

B.1.c. Proposition B.1 can be used to prove the following results.

(i) If a > 0, then using (a),

(0, . . . , 0) ≺ (a, ..., a︸ ︷︷ ︸
n−1

,−(n− 1)a).

(ii) If a > 1, then using (a′),

(1, . . . , 1) ≺ (a, ..., a︸ ︷︷ ︸
n−1

, n− (n− 1)a).

B.1.d. (Alberti and Uhlmann, 1982). Suppose that x, y ∈ D and (a)
holds. Then

(ex1 , . . . , exn)

/
n∑
j=1

exj ≺ (ey1 , . . . , eyn)

/
n∑
j=1

eyj . (1)

Proof. From (a), it follows that eyi−xi is decreasing in i = 1, . . . , n.
Consequently,

eyi /
∑n

1 e
yj

exi /
∑n

1 e
xj

is decreasing in i = 1, . . . , n. It follows from Proposition B.1 that (1)
holds. ||

For an application of B.1.d in physics, see, 12.P.

B.2. Proposition (Marshall, Olkin, and Proschan, 1967). If ψ is a
star-shaped function see 16.B defined on [0,∞), if xi > 0, i = 1, . . . ,
and if

∑n
j=1ψ(xj) > 0, then

(x1, . . . , xn)∑
xj

≺ (ψ(x1), . . . , ψ(xn))∑
ψ(xj)

.

Proof. Suppose for convenience that x1 ≥ · · · ≥ xn ≥ 0. Because
ψ(z)/z is increasing in z > 0, ψ(xi)/xi is decreasing in i = 1, . . . , n.
Thus the conclusion follows from B.1.b. ||
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B.2.a. If xi > 0, i = 1, . . . , n, then for all nonnegative constants c
satisfying 0 ≤ c < Σxi/n,

(x1, . . . , xn)∑
xj

≺ (x1 − c, . . . , xn − c)∑
(xj − c)

or, equivalently, for c ≥ 0,

(x1 + c, . . . , xn + c)∑
(xj + c)

≺ (x1, . . . , xn)∑
xj

.

This result follows from B.2 by using ψ(z) = max(z − c, 0).

B.2.b. Proposition (Marshall and Olkin, 1965). If xi > 0 for
i = 1, . . . , n, and 0 < r ≤ s, then

(xr1, . . . , x
r
n)∑

xri
≺ (xs1, . . . , x

s
n)∑

xsi
.

Proof. Let t = s/r and take ψ(z) = zt. Then apply B.2 with xi
replaced by xri . ||

Monotonicity of Ratio of Means

The results in this subsection have been given by Marshall, Olkin, and
Proschan (1967).

B.3. Proposition. Suppose that x, y satisfy (a′) and x ∈ D++; i.e.,
x ∈ D++ and yi/xi is decreasing in i = 1, . . . , n. Let

g(r) =

{
[
∑
xri /

∑
yri ]

1/r if r �= 0,∏
xi/

∏
yi if r = 0.

Then g(r) is decreasing in r.

Proof. If (a′) and x ∈ D++, it follows from B.1 that

(xr1, . . . , x
r
n)∑

xrj
≺ (yr1, . . . , y

r
n)∑

yrj

for all real r. Because φ(x) =
∑
xti is Schur-convex for t ≥ 1, it follows

that ∑
xrti(∑
xrj

)t ≤
∑
yrti(∑
yrj

)t , t ≥ 1. (2)
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Now fix r and s such that |s| ≥ |r| and rs > 0, and let t = s/r. It
follows from (2) that g(r) ≥ g(s) if s ≥ r > 0 and g(s) ≥ g(r) if
s ≤ r < 0. Because g is continuous at 0, this completes the proof. ||

The special comparison g(1) ≥ g(2) is used by Cleveland (1979) in
the analysis of weighted regression.

B.3.a. If x and y satisfy the conditions of B.3 and pi ≥ 0, i = 1, . . . , n,∑
pi = 1, then

gp(r) =

{
[
∑
pix

r
i/
∑
piy

r
i ]

1/r if r �= 0,∏
xpi

i /
∏
ypi

i if r = 0,

is increasing in r. This fact can be obtained for rational pi directly
from B.3. If pi = li/m, i = 1, . . . , n, then apply B.3 to the vectors
x∗ and y∗ ∈ Rm, where xi and yi appear li times, i = 1, . . . , n. The
general case follows by limiting arguments.

A still more general version of B.3 can be obtained with an additional
limiting argument. For any probability distribution function H such
that H(0) = 0, let H(x) = 1 −H(x) and let

H
−1(p) = inf{x ≥ 0 :H(x) ≤ p}.

B.3.b. If F and G are probability distribution functions such that
F (0) = 0 = G(0) and F−1(p)/G−1(p) is increasing in p, then

[∫
xr dG(x)

/∫
xr dF (x)

]1/r

is increasing in r.

Another type of ratio of means appears in an inequality due to Alzer
(1993).

B.3.c. For r > 0,

n

n+ 1
≤
[ ∑n

1 i
r/n∑n+1

1 ir/(n + 1)

]1/r

≤ (n!)1/n

((n + 1)!)1/(n+1)
.

The two bounds in B.3.c correspond to the cases r = 0 and r = ∞,
which suggests that the ratio is monotone in r. This monotonicity
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result and various extensions are discussed in Abramovich, Barić,
Matić, and Pec̆arić (2007).

Interlaced Numbers

The numbers b1 ≥ · · · ≥ bn−1 are said to interlace or separate the
numbers a1 ≥ · · · ≥ an if

a1 ≥ b1 ≥ a2 ≥ · · · ≥ bn−1 ≥ an.

See also A.10.a and Section 9.B.

B.4. If b1 ≥ · · · ≥ bn−1 interlace a1 ≥ · · · ≥ an, then

(a1, . . . , an−1) �w (b1, . . . , bn−1) �w (a2, . . . , an) (3)

and

(a1, . . . , an) � (b1, . . . , bn−1, b
∗), (4)

where b∗ =
∑n

1 ai −
∑n−1

1 bi.

Proof. Since (3) is trivial, consider only (4). By the definition of
b∗, a1 ≥ b∗ ≥ an. Consequently, there is an integer l, 1 ≤ l ≤ n − 1,
such that one of the following orderings holds:

(i) a1 ≥ b1 ≥ a2 ≥ · · · ≥ al ≥ b∗ ≥ bl ≥ al+1 ≥ · · · ≥ an;

(ii) a1 ≥ b1 ≥ a2 ≥ · · · ≥ al ≥ bl ≥ b∗ ≥ al+1 ≥ · · · ≥ an.

If (i), then from elementwise comparisons,

k∑
1

ai ≥
k∑
1

bi, k = 1, . . . , l − 1,

l∑
1

ai ≥
l−1∑
1

bi + b∗;
n∑
k

ai ≤
n−1∑
k−1

bi, k = l + 1, . . . , n.

These inequalities are precisely (4). If (ii), the proof is similar. ||

Notice that (3) together with Pólya’s theorem A.8 implies that
for some u, v, (a1, . . . , an−1, u) � (b1, . . . , bn−1, v), but the u and v
provided in the proof of A.8 are not the same as an and b∗.
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C Maximal and Minimal Vectors
Under Constraints

Let A ⊂ R n be a nonempty set with a Schur-concave indicator func-
tion. Then x ∈ A implies xΠ ∈ A for all permutation matrices Π and,
moreover, (

∑
xi, . . . ,

∑
xi)/n ∈ A. This means that if B = {x : x ∈ A

and
∑
xi = s} is not empty, then B contains the minimal element

u = (s, . . . , s)/n; i.e., x ∈ B implies u ≺ x. On the other hand, there
need not exist v ∈ B such that x ≺ v even if B is a closed set. Such a
maximal vector v does exist in important special cases.

C.1. Proposition (Kemperman, 1973). Suppose that m ≤ xi ≤M ,
i = 1, . . . , n. Then there exist a unique θ ∈ [m,M) and a unique integer
l ∈ [0, 1, . . . , n] such that∑

xi = (n− l − 1)m+ θ + lM.

With l and θ so determined,

x ≺ (M, . . . ,M︸ ︷︷ ︸
l

, θ,m, . . . ,m︸ ︷︷ ︸
n−l−1

) ≡ v. (1)

Proof. Because m ≤ xi ≤M , i = 1, . . . , n,
k∑
1

x[i] ≤
k∑
1

v[i] = kM, k = 1, . . . , l,

and
n∑
k+1

x[i] ≥
n∑
k+1

v[i] = (n− k)m, k = l + 1, . . . , n.

Since
∑n

k+1 x[i] ≥ ∑n
k+1 v[i] if and only if

∑k
1 x[i] ≤ ∑k

1 v[i], this
completes the proof. ||

Notice that because θ =
∑
xi − (n− l − 1)m− lM ∈ [m,M),∑

xi − nm

M −m
− 1 ≤ l <

∑
xi − nm

M −m
,

and this determines l.

C.1.a. If c ≥ 1 and x[1] ≥ cx[2], x[n] ≥ 0, then

x ≺ (x[1], x[1]/c, . . . , x[1]/c︸ ︷︷ ︸
l

, θ, 0, . . . , 0), (2)

where 0 ≤ θ < x[1]/c and
∑
xi = x[1] + l[x[1]/c] + θ.
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Proof. Because 0 ≤ x[i] ≤ x[1]/c, i = 2, . . . , n, it follows from C.1
that

(x[2], . . . , x[n]) ≺ (x[1]/c, . . . , x[1]/c︸ ︷︷ ︸
l

, θ, 0, . . . , 0︸ ︷︷ ︸
n−l−2

),

and (2) follows. ||
C.1.b. If b ≥ 0 and x[1] ≥ x[2] + b, x[n] ≥ 0, then

x ≺ (x[1], x[1] − b, . . . , x[1] − b︸ ︷︷ ︸
l

, θ, 0, . . . , 0︸ ︷︷ ︸
n−l−2

), (3)

where 0 ≤ θ < x[1] − b and
∑n

1 xi = x[1] + l(x[1] − b) + θ.

The proof of (3) is similar to the proof of C.1.a.

C.1.c. If b ≥ 0, c ≥ 1 and x[1] ≥ cx[2], x[1] ≥ x[2] + b, x[n] ≥ 0, then

x ≺ (x[1], z, . . . , z, θ, 0, . . . , 0),

where z = min(x[1]/c, x[1] − b) and 0 ≤ θ ≤ z.

This result follows from C.1.a and C.1.b.

C.2. Proposition (Parker and Ram, 1997). If 0 ≤ xi ≤ ci for
i = 1, . . . , n, c1 ≥ · · · ≥ cn, and Σxi = s, then

x ≺
(
c1, . . . , cr, s−

r∑
1

ci, 0, . . . , 0

)
,

where r ∈ {1, . . . , n − 1} is such that Σr
1ci < s and Σr+1

1 ci ≥ s. If no
such integer exists, then r = n.

C.2.a. If 0 ≤ ai ≤ xi, i = 1, . . . , n, a1 ≥ · · · ≥ an, and Σxi = s,
then

x �
(
a1, . . . , ar, s−

r∑
1

ai, 0, . . . , 0

)
,

where r ∈ {1, . . . , n − 1} is such that Σr
1ai < s and Σr+1

1 ai ≥ s. If no
such integer exists, then r = n.

C.2.b. If x[n] ≤ cx[n−1], then

x ≺ (x[n], x[n]/c, . . . , x[n]/c,M), (4)

where
∑
xi = x[n] + (n− 2)x[n]/c+M determines M .

C.2.c. If x[n] ≤ x[n−1] − d, then

x ≺ (x[n], x[n] + d, . . . , x[n] + d,M),



194 5. Preservation and Generation of Majorization

where
∑
xi = x[n] + (n− 2)(x[n] + d) +M determines M .

There is a variation of C.1 that admits an improved lower bound.

C.3. Suppose that m = mini xi, M = maxi xi. Then(
m,

∑
xi −m−M

n− 2
, . . . ,

∑
xi −m−M

n− 2
,M

)
≺ x.

This is a consequence of the fact that
∑n−1

2 x[i] =
∑n

1 xi −m−M, so
that

(x[2], . . . , x[n−1]) �
(∑

xi −m−M, . . . ,
∑

xi −m−M
)
/(n− 2).

C.4.a. For x ∈ D+, c > Σxi = 1,

(
c− x1

nc− 1
, . . . ,

c− xn
nc− 1

)
≺ (x1, . . . , xn).

C.4.b. For x ∈ D+, Σxi = 1, c ≥ 0,(
c+ x1

nc+ 1
, . . . ,

c+ xn
nc+ 1

)
≺ (x1, . . . , xn).

Proofs. The results in C.4.a and C.4.b follow from Definition
1.A.1. ||

D Majorization in Integers

There are several majorization results that apply only to vectors
with integer-valued components. Such results have applications, for
example, in combinatorics (Chapter 7).

Consider the basic Lemma 2.B.1, which states that if x ≺ y, then
x can be derived from y by successive applications of a finite num-
ber of “T -transforms.” Recall that a T -transform leaves all but two
components of a vector unchanged, and replaces these two compo-
nents by averages. If a1, . . . , an and b1, . . . , bn are integers and a ≺ b,
can a be derived from b by successive applications of a finite num-
ber of T -transforms in such a way that after the application of each
T -transform a vector with integer components is obtained? An af-
firmative answer was given by Muirhead (1903) and by Folkman and
Fulkerson (1969). Using the same term as Dalton (1920), Folkman and
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Fulkerson (1969) define an operation called a transfer. If b1 ≥ · · · ≥ bn
are integers and bi > bj , then the transformation

b′i = bi − 1,

b′j = bj + 1,

b′k = bk, k �= i, j,

is called a transfer from i to j. This transfer is a T -transform, because

b′i = αbi + (1 − α)bj , b′j = (1 − α)bi + αbj ,

where α = (bi − bj − 1)/(bi − bj).

D.1. Lemma (Muirhead, 1903). If a1, . . . , an, b1, . . . , bn are integers
and a ≺ b, then a can be derived from b by successive applications of
a finite number of transfers.

Proof . Suppose for convenience that a1 ≥ · · · ≥ an and
b1 ≥ · · · ≥ bn, and assume that a �= b. Let l be the largest integer for
which

l∑
1

ai <

l∑
1

bi.

Then al+1 > bl+1, and there is a largest integer k < l for which ak < bk.
Thus

bk > ak > al+1 > bl+1.

Let b′ be obtained from b by a transfer from k to l+1. Then a ≺ b′ ≺ b,
and repetition of this process a finite number of times brings us to the
vector a. ||

D.1.a. Definition. Suppose that a and b are vectors with nonnega-
tive integer components such that a ≺ b. The vector b is said to cover
the vector a if there does not exist a vector c with integer components
distinct from a and b such that a ≺ c ≺ b.

D.1.b. Proposition (Wan, 1984, 1986). Let a, b ∈ D be vectors of
nonnegative integers such that a ≺ b. Then b covers a if and only if
there exist indices i < j such that a = b− ei + ej and either j = i+ 1
or ai = ai+1 = · · · = aj−1 > aj .

See Fig. 1 (Section E) for illustrations of Proposition D.1.b, which
shows that when b covers a, then a is obtained from b by a simple
transfer.
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Note that with integer components, there are a finite number of
vectors a with a ≺ b. This means that there is a finite chain of vectors
with integer components ci, i = 1, . . . ,m, such that

a ≺ c1 ≺ c2 ≺ · · · ≺ cm ≺ b,

and b covers cm, ci+1 covers ci, i = 1, . . . ,m− 1, and c1 covers a. Thus
Lemma D.1 is a consequence of Proposition D.1.b. An algorithm for
constructing a maximal length chain c1, . . . , cm from a to b is provided
by Wan and Wootton (2000, Section 4.4).

The following striking lemma of Fulkerson and Ryser (1962) states
that under certain conditions a majorization a ≺ b is preserved if 1
is subtracted from a component of each vector. This subtraction may
alter the ordering of the components of the vectors, so the result is not
entirely trivial. The preservation of majorization need not hold without
the condition that the vectors involved have integer components.

D.2. Lemma (Fulkerson and Ryser, 1962). Let a1 ≥ · · · ≥ an and
b1 ≥ · · · ≥ bn be integers. If a ≺ b and i ≤ j, then

a− ei ≺ b− ej .

Proof. The vectors a− ei and b− ej may not have components in
decreasing magnitude, but if i′ ≥ i is chosen so that

ai = ai+1 = · · · = ai′ and either ai′ > ai′+1 or i′ = n, (1)

then a − ei′ has the components of a − ei reordered decreasingly.
Similarly, if j′ ≥ j satisfies

bj = bj+1 = · · · = bj′ and either bj′ > bj′+1 or j′ = n, (2)

then b−ej′ has the components of b−ej reordered decreasingly. Rather
than show a− ei ≺ b− ej , it is more convenient to show the equivalent
fact that

u ≡ a− ei′ ≺ b− ej′ ≡ v.

For k < min(i′, j′),
k∑
1

uα =
k∑
1

aα ≤
k∑
1

bα =
k∑
1

vα;

for k ≥ max(i′, j′),
k∑
1

uα =
k∑
1

aα − 1 ≤
k∑
1

bα − 1 =
k∑
1

vα;

and for k = n,
n∑
1

uα =
n∑
1

aα − 1 =
n∑
1

bα − 1 =
n∑
1

vα.
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If i′ ≤ j′, then immediately for i′ ≤ k < j′,
k∑
1

uα =
k∑
1

aα − 1 <
k∑
1

bα =
k∑
1

vα.

It remains to show, for the case that i′ > j′ and j′ ≤ k < i′, that∑k
1 uα ≤ ∑k

1 vα.
Notice that

∑k
1 uα ≤ ∑k

1 vα is equivalent to
∑k

1 aα <
∑k

1 bα. If
ak+1 > bk+1, then

∑k
1(bα−aα) >

∑k+1
1 (bα−aα) ≥ 0, the last inequal-

ity holding because a ≺ b. The remaining case is ak+1 ≤ bk+1. Because
i ≤ j ≤ j′ ≤ k < i′,

aj′ = · · · = ak+1 ≤ bk+1 ≤ bk ≤ · · · ≤ bj′+1 < bj ;
this yields

0 <
k∑
j′

(bα − aα) ≤
k∑
j′

(bα − aα) −
n∑
j′

(bα − aα) = −
n∑
k+1

(bα − aα)

=
k∑
1

(bα − aα). ||

The above proof is essentially due to Tom Snijders.
Repeated application of D.2 yields the following extension:

D.3. Lemma (Fulkerson and Ryser, 1962). Let a1 ≥ · · · ≥ an,
b1 ≥ · · · ≥ bn be integers. Let u be obtained from a by reducing com-
ponents in positions i1, i2, . . . , ik by 1. Similarly, let v be obtained from
b by reducing components in positions j1, j2, . . . , jk by 1. If i1 ≤ j1,
i2 ≤ j2, . . . , ik ≤ jk, and a ≺ b, then u ≺ v.

An important special case of D.3 was obtained by Gale (1957). This
is the case that il = jl = l, l = 1, 2, . . . , k. We make use of this special
case (as did Gale) to give a proof of the Gale–Ryser theorem discussed
in Section 7.C.

The final result of this section involves the notion of a conjugate
sequence: If a1, . . . , an are nonnegative integers and a∗j is the number of
these ai that are greater than or equal to j, then a∗1, a

∗
2, . . . is conjugate

to a1, . . . , an, 0, 0, . . . . Conjugate sequences are discussed in greater
detail in Section 7.B.

D.4. If x∗ = (x∗1, . . . , x∗max(yi)
) and y∗ = (y∗1, . . . , y∗max(yi)

), then

x ≺ y ⇒ x∗ � y∗.
This is a restatement of 7.B.5.

D.5. Example (Shi, 2006). For positive integers n < m, define

n∗ = n− 1
2
(m+ 1)(n + 1)(m− n).
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With this notation,

(n, . . . , n︸ ︷︷ ︸
n+1

, n+ 1, . . . , n+ 1︸ ︷︷ ︸
n+1

, n+ 2, . . . , n+ 2︸ ︷︷ ︸
n+1

, . . . , n+m, . . . , n +m︸ ︷︷ ︸
n+1

)

≺w (m,m, . . . ,m︸ ︷︷ ︸
m+1

,m+ 1, . . . ,m+ 1︸ ︷︷ ︸
m+1

, . . . ,m+ n, . . . ,m+ n︸ ︷︷ ︸
m+1

);

consequently,

(n, n, . . . , n︸ ︷︷ ︸
n+1

, n+ 1, . . . , n+ 1︸ ︷︷ ︸
n+1

, . . . , n +m, . . . , n+m︸ ︷︷ ︸
n+1

)

≺ (m, . . . ,m︸ ︷︷ ︸
m+1

,m+ 1, . . . ,m+ 1︸ ︷︷ ︸
m+1

, . . . ,m+ n, . . . ,m+ n︸ ︷︷ ︸
m+1

, n∗).

Note that each vector has 1 + (n+ 1)(m + 1) elements. Similarly,

(0, 0, . . . , 0︸ ︷︷ ︸
m+1

, 1, . . . , 1︸ ︷︷ ︸
m+1

, . . . , n, . . . , n︸ ︷︷ ︸
m+1

)

≺ (0, . . . , 0︸ ︷︷ ︸
n+1

, 1, . . . , 1︸ ︷︷ ︸
n+1

, . . . ,m, . . . ,m︸ ︷︷ ︸
n+1

, n∗).

Sequences of 0’s and 1’s

In computer science, majorization concepts are related to sequences
of 0’s and 1’s, i.e., for vectors x, y ∈ {0, 1}n. For ordering vectors
in {0, 1}n, four partial orders are of potential interest: majoriza-
tion, unordered majorization (14.E.6), submajorization, and unordered
submajorization.

The partial order of majorization on {0, 1}n is vacuous because for
x, y ∈ {0, 1}n, x ≺ y if and only if x = y. The submajorization ordering
on {0, 1}n is slightly more interesting: x ≺w y if and only if

∑n
1 xi ≤∑n

1 yi.
It is the unordered versions of majorization and submajorization

that are of potential interest in computer science. Knuth (2010,
Exercise 109) obtains some majorizations in this context. However,
note that the partial order that Knuth calls majorization denoted by
≺k is, in the nomenclature of this book, unordered submajorization.
It is defined by

x ≺k y if and only if
j∑
1

xi ≤
j∑
1

yi, j = 1, . . . , n.

Unordered majorization is discussed in 14.E.
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E Partitions

Majorization provides a natural partial order in the analysis of
partitions of a positive integer n into a sum of n integers. James
(1978) states that “The dominance order (i.e., majorization) is cer-
tainly the ‘correct’ order to use for partitions ... .” Figure 1 illustrates
the complete lattice of partitions of 7.

(7,0,0,0,0,0,0)

(5,2,0,0,0,0,0)

(4,2,1,0,0,0,0)

(3,2,1,1,0,0,0)

(2,2,1,1,1,0,0)

(2,1,1,1,1,1,0)

(1,1,1,1,1,1,1)

(4,3,0,0,0,0,0)

(3,3,1,0,0,0,0)

(3,2,2,0,0,0,0)

(2,2,2,1,0,0,0) (3,1,1,1,1,0,0)

(5,1,1,0,0,0,0)

(4,1,1,1,0,0,0)

(6,1,0,0,0,0,0)

Figure 1. Partitions of 7 as a lattice

A partition such as (3, 3, 1, 0, 0, 0, 0) can be symbolically dia-
grammed as

Such diagrams are known as Young diagrams. A lattice such as that
of Fig. 1 can compactly be represented using Young diagrams. In this
way, the lattice of partitions of n = 1, . . . , 8 are represented in Fig. 2.

For applications in computer science, see Knuth (2010, Exercises
54–58).
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n=2

n=1

n=7 n=8

n=3

n=4

n=5 n=6

Figure 2. Partitions of n = 1, . . . , 8 using Young diagrams.
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Majorization in Group Theory

As noted in Section 1.A, majorization arises in a variety of contexts in
group theory.

As already noted by Young (1901), there exists a one-to-one cor-
respondence between diagrams with n boxes and the irreducible
representation of the symmetric group on n letters. See, e.g., Ruch
(1975). An extensive discussion of group representations in probability
and statistics is provided by Diaconis (1988, pp. 40, 131). In particular,
if one partition (λ1, . . . , λn) of n majorizes (in integers) another parti-
tion (μ1, . . . , μn), then a certain function r(·) of the group characters
is Schur-convex, and hence r(λ) ≥ r(μ).

A discussion of other applications in group theory would take us far
afield, but see Hazewinkel and Martin (1983).

Partitions of n into k Parts

In various applications (e.g., chemistry and biology), partitions of n
into k < n parts are of interest. The lattice of such partitions is a
sublattice of the partitions of n into n parts that includes only those
vectors with no more than k nonzero entries. Such partitions can be
represented by vectors of length k.

(2000)

(1100)

(3000)

(2100)

(1110) (1111)

(4000)

(3100)

(2200)

(2110)

(5000)

(4100)

(3200)

(3110)

(2111)

(6000)

(5100)

(4200) (5200)

(5110) (4300)

(4210)

(2221)

(3311)

(4111) (3310)

(3220)

(3210)

(2211)

(4110) (3300)

(2220) (3111)

(7000)

(6100)

n 2 3 4 5 6 7

Figure 3. Partitions of n = 2, . . . , 7 into k = 4 parts.

DNA Sequences

Partitions into k = 4 parts arise in the study of DNA sequences and
are discussed in detail by Wan and Wootton (2000).
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F Linear Transformations That Preserve
Majorization

A linear transformation A : Rm → R n is said to preserve majorization
if xA ≺ yA whenever x ≺ y. Dean and Verducci (1990) characterize
such transformations. The following preliminary result is useful.

F.1. Lemma. The linear transformation A : Rm → R n preserves
majorization if and only if, for every m × m permutation matrix P
there is an n× n permutation matrix Q such that PA = AQ.

The structure of a matrix A that satisfies the condition of F.1 can
be explicitly described.

F.2. Theorem (Dean and Verducci, 1990). A linear transforma-
tion A : Rm → R n preserves majorization if and only if A can be
represented in the form

A = (A1, . . . , At)Q,

where Q is an n×n permutation matrix and for each i = 1, 2, . . . , t, Ai
is an m× ni matrix satisfying the following conditions:

If the first column of Ai contains the distinct elements d1, d2, . . . , dk
with multiplicities p1, p2, . . . , pk (

∑
pi = m), then the ni columns of

Ai consist of the ni = m!/
∏

(pj !) distinct permutations of the first
column of Ai.

Some simplification is possible when m = n.

F.3. Corollary. A nonsingular linear transformation A : R n → R n

preserves majorization if and only if it can be represented in the form

A = aQ+ bJ,

where Q is a permutation matrix, J = e′e is the n× n matrix with all
entries 1, and a, b ∈ R.

Dean and Verducci (1990) also show that if A is nonsingular and
preserves majorization, then A−1 preserves Schur-concavity in the
sense that if a random vector X has a Schur-concave density, then
Y = XA−1 has a Schur-concave density.



6
Rearrangements
and Majorization

Many inequalities are known that involve real vectors and vectors with
the components rearranged. Such inequalities are discussed in Chapter
X of Hardy, Littlewood, and Pólya (1934, 1952), but a number of new
results have been obtained since that book was written. Particularly
noteworthy is the early work of Lorentz (1953) and Day (1972).

The purpose of this chapter is to discuss some majorizations that
arise from rearrangements and to show how these majorizations yield
various inequalities. Consequently, inequalities involving rearrange-
ments of functions are not discussed here; for such inequalities, see
Lorentz (1953), Ryff (1965), Day (1972, 1973), and Chong (1974a,b,c).
Most of the basic results in Sections A and C are given by Day (1972)
but from a different approach. Day proves a general theorem from
which all his results follow as special cases. Here, simple initial results
are used to simplify the proofs of more general results. Unlike Day, we
confine our considerations to vectors with real components.

Rearrangement inequalities typically compare the value of a function
of vector arguments with the value of the same function after the
components of the vectors have been similarly ordered, or, if there are
only two vectors, after the components have been oppositely ordered.
For functions of two vector arguments, such inequalities are extended
in Section F using an ordering of pairs of vectors implicit in the work
of Hollander, Proschan, and Sethuraman (1977) and of Tchen (1980).

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 203
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 6,
c© Springer Science+Business Media, LLC 2011
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The partial ordering allows many additional comparisons and provides
significant clarifications of the theory.

Recall that a↓ = (a[1], . . . , a[n]) is the decreasing rearrangement of
(a1, . . . , an) and a↑ = (a(1), . . . , a(n)) is the increasing rearrangement
of (a1, . . . , an).

A Majorizations from Additions of Vectors

Let x(i) = (x(i)
1 , . . . , x

(i)
n ), i = 1, . . . ,m, bem real n-dimensional vectors

and let

sj =
m∑
i=1

x
(i)
j , σj =

m∑
i=1

x
(i)
[j] ,

j = 1, . . . , n. To obtain s[1], s[2], . . . , s[n], the vectors x(i) are added
and then the components of the sum are reordered decreasingly. To
obtain σ[1], σ[2], . . . , σ[n], the vectors x(i) are first reordered to have
decreasing components and then the reordered vectors are added. Of
course, σ1 = σ[1], σ2 = σ[2], . . . , σn = σ[n].

A.1. Proposition (Day, 1972). (s1, . . . , sn) ≺ (σ1, . . . , σn); that is,∑m
1 x(i) ≺∑m

1 x
(i)
↓ .

Proof. Let π be a permutation for which s[j] = sπ(j), j = 1, . . . , n.
If 1 ≤ k ≤ n,

k∑
j=1

s[j] =
k∑
j=1

m∑
i=1

x
(i)
π(j) ≤

k∑
j=1

m∑
i=1

x
(i)
[j] =

k∑
j=1

σ[j].

Furthermore,
∑n

j=1 s[j] =
∑m

i=1

∑n
j=1 x

(i)
j =

∑n
j=1 σ[j]. ||

Alternatively, A.1 may be viewed as a special case of a result
obtained earlier by Fan (1949) in a matrix context. See 9.G.1 in the
case in which the matrices involved are diagonal.

Proposition A.1 involves sums of a finite number of vectors, but the
same result holds for weighted sums of an arbitrary number of vectors.

A.1.a. Proposition. Let (X , A , μ) be a measure space and let
x(α), α ∈ X , be a vector-valued μ-integrable function of α. Then∫

X
x(α)μ(dα) ≺

∫
X
x

(α)
↓ μ(dα),

provided all integrals are finite.
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Proof . Let π be a permutation-valued function of α (to avoid
complex formulae, write this as π and not πα) such that for each
α, x

(α)
π(j) is decreasing in j = 1, . . . , n. Then

k∑
j=1

∫
X
x

(α)
π(j) μ(dα) ≤

k∑
j=1

∫
X
x

(α)
[j] μ(dα) =

k∑
j=1

σj .

Furthermore, equality holds when k = n. ||
Because the majorization s ≺ σ does not depend upon the compo-

nents of σ being in a particular order, the truth of A.1 and A.1.a. does
not depend upon the fact that σ = x

(1)
↓ + · · ·+x

(m)
↓ : It is essential only

that the vectors x(i) be reordered similarly before adding. Vectors x
and y are said to be similarly ordered if there is a permutation π such
that x[i] = xπ(i), y[i] = yπ(i), i = 1, . . . , n. Equivalently, x and y are
similarly ordered if (xi − xj)(yi − yj) ≥ 0 for all i, j.

There is a useful consequence of A.1 that involves similar ordering.

A.1.b. Proposition. If a ≺ b, u ≺ v and if b and v are similarly
ordered, then a+ u ≺ b+ v.

Proof. Clearly,
∑n

i=1(b+ v)i =
∑n

i=1(a+ u)i. Moreover,

k∑
i=1

(b+ v)[i] =
k∑
i=1

(b[i] + v[i]) ≥
k∑
i=1

(a[i] + u[i]) ≥
k∑
i=1

(a+ u)[i],

k = 1, . . . , n − 1. The equality holds because b and v are similarly
ordered. The first inequality is a consequence of b � a, v � u. The last
inequality is an application of A.1 with m = 2. ||

It is possible to give a simple proof of A.1 using induction on m,
and using A.1.b.

An extension of A.1.b is given in 5.A.6.

A.1.c. Proposition. For x, y ∈ R n,

x+ y ≺ x↓ + y↓, x− y ≺ x↓ − y↑.

Proof. In Proposition A.1.b, take a = x, b = x↓, u = y, v = y↓.
This gives the first majorization. For the second majorization, replace
y by −y and note that (−y)↓ = −y↑. ||
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There is a converse to A.1 that says that all majorizations can be
obtained by means of rearrangements.

A.1.d. Proposition. Let σ and s be vectors in R n such that s ≺ σ.
Then there exist an m < ∞ and vectors x(1), . . . , x(m) such that sj =∑m

i=1 x
(i)
j , σ[j] =

∑m
i=1 x

(i)
[j] .

Proof . This proposition is an immediate consequence of 4.C.1,
which says that s ≺ σ implies s lies in the convex hull of points ob-
tained by permuting components of σ. (It is immediate that m can be
taken to be ≤ n!; in fact, it is possible to take m ≤ n2 − 2n + 2. See
2.F.2.) ||

Proposition A.1 involves the similar ordering of vectors x(1), . . . , x(m).
In case m = 2, it is possible to consider what happens when the vectors
are oppositely ordered.

A.2. Proposition (Day, 1972). x
(1)
↓ + x

(2)
↑ ≺ x(1) + x(2) on R n.

Proof. For notational convenience, suppose x(1)
1 ≥ · · · ≥ x

(1)
n and

suppose first that n = 2. Let s = x(1) + x(2) and let τ = x
(1)
↓ + x

(2)
↑ .

If x(2)
1 ≤ x

(2)
2 , then τ = s. If x(2)

1 > x
(2)
2 , then s = σ and the result

follows from A.1 with x(2) replaced by (x(2)
2 , x(2)

1 ).
Now consider the case that n > 2. If x(2)

1 ≤ · · · ≤ x
(2)
n , then τ = s.

Otherwise, there exist j and k, 1 ≤ j < k ≤ n, such that x(2)
j > x

(2)
k .

Interchange x(2)
j and x(2)

k before adding, to get s∗:

s∗i = si, i �= j, k; s∗j = x
(1)
j + x

(2)
k ; s∗k = x

(1)
k + x

(2)
j .

Then s∗i = si except for two values of i and it follows from the case
n = 2 that s∗ ≺ s. If s∗ = τ , the proof is complete. Otherwise, start
with s∗ in place of s and follow the above procedure to obtain s∗∗ ≺ s∗.
Since a finite number of steps leads to τ , it follows that τ ≺ s. ||
A.2.a. If a[1] ≥ . . . ≥ a[n], b[1] ≥ . . . ≥ b[n], then

(|b[1] − a[1]|, . . . , |b[n] − a[n]) ≺w (|b1 − a1|, . . . , |bn − an|).
Proof. This majorization follows from two steps. The first is that

(b[1] − a[1], . . . , b[n] − a[n]) ≺ (b1 − a1, . . . , bn − an),

which follows from A.2. Weak majorization in the absolute values then
follows from 5.A.1.a.
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Perhaps the best-known inequality for rearrangements is the
classical result of Hardy, Littlewood, and Pólya, which involves sums
of products:

A.3. Proposition (Hardy, Littlewood, and Pólya, 1934, 1952, p. 261).
If ai, bi, i = 1, . . . , n, are two sets of numbers, then

n∑
i=1

a[i]b[n−i+1] ≤
n∑
i=1

aibi ≤
n∑
i=1

a[i]b[i]. (1)

Hardy, Littlewood, and Pólya give the following intuitive interpre-
tation of A.3:

. . . interpret a as distances along a rod to hooks and the b as
weights to be suspended from the hooks. To get the maximum
statistical moment with respect to an end of the rod, we hang the
heaviest weights on the hooks farthest from that end.

For a similar interpretation, see Klamkin (1970).
A simple elementary proof of A.3 can be given [see Hardy, Little-

wood, and Pólya (1934, 1952, p. 262)]. The following proof makes use
of majorization, but requires ai > 0, bi > 0, i = 1, . . . , n.

Proof of A.3. Assume ai > 0, bi > 0, and in A.1 and A.2, let
x

(1)
i = log ai, x

(2)
i = log bi, i = 1, . . . , n. Because τ ≺ s ≺ σ, and

because
∑n

i=1 e
xi is a Schur-convex function (3.C.1), it follows that

n∑
i=1

exp(log a[i] + log b[n−i+1]) ≤
n∑
i=1

exp(log ai + log bi)

≤
n∑
i=1

exp(log a[i] + log b[i]).

But this is exactly the desired inequality. ||
A.3.a. If ai ≥ 0, bi ≥ 0, i = 1, . . . , n, then

(a1b1, . . . , anbn) ≺w (a[1]b[1], . . . , a[n]b[n]) (2a)

and

(a[1]b[n], a[2]b[n−1], . . . , a[n]b[1]) ≺w (a1b1, . . . , anbn). (2b)

Inequality (2a) follows directly from the partial sum definition of
majorization, because

∑k
1 aibi ≤

∑k
1 a[i]b[i] for k = 1, . . . , n. Inequality

(2b) follows from A.2 and A.1 with the translation x
(1)
i = log ai and

x
(2)
i = log bi, i = 1, . . . , n.
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The hypothesis can be weakened to permit some negative values, in
particular, the number of negative a’s and b’s must be equal, but the
result becomes more complex.

A.3.b. If ai > 0, bi > 0, i = 1, . . . , n, the majorizations of (2a) and
(2b) are equivalent to

(
b[n]

a[n]
,
b[n−1]

a[n−1]
, . . . ,

b[1]

a[1]

)
≺w

(
b1
a1
, . . . ,

bn
an

)
≺w

(
b[1]

a[n]
, . . . ,

b[n]

a[1]

)
.

From these majorizations and 3.C.1.b, it follows that for all increasing
convex functions g,

n∑
i=1

g

(
b[i]

a[i]

)
≤

n∑
i=1

g

(
bi
ai

)
≤

n∑
i=1

g

(
b[i]

a[n−i+1]

)
.

This result is due to London (1970), and by virtue of 4.B.2, it is
equivalent to A.3.b.

Proposition A.3 concerns sums of products; it is in fact true that
similar results can be obtained for products of sums.

A.4. Proposition. If ai > 0, bi > 0, i = 1, . . . , n, then

n∏
i=1

(a[i] + b[i]) ≤
n∏
i=1

(ai + bi) ≤
n∏
i=1

(a[i] + b[n−i+1]). (3)

Proof. In A.1 and A.2, let x(1)
i = ai, x

(2)
i = bi, i = 1, . . . , n. Then

τ ≺ s ≺ σ and by 5.A.1.d,
∏n

1 τi ≥
∏n

1 si ≥
∏n

1 σi. ||
The right side of (3) is a special case of a result of Ruderman (1952).

See A.5 below. The result as stated here was apparently first pub-
lished by Oppenheim (1954). It was obtained independently by Minc
[1970, 1971; see also London (1970)]. As noted by Minc (1971), A.4 is
equivalent to A.3.

Here, 5.A.1.d is much more than what is needed. In fact, if 5.A.1.d
is fully utilized, one obtains an analog of A.3.a:

A.4.a. Proposition (Day, 1972). If ai > 0, bi > 0, i = 1, . . . , n, then

(log(a[1] + b[n]), . . . , log(a[n] + b[1]))
≺w (log(a1 + b1), . . . , log(an + bn))
≺w (log(a[1] + b[1]), . . . , log(a[n] + b[n])). (4)
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A similar ordering is involved in the right-hand inequality of (1) and
the left-hand inequality of (3). By using A.1 for an arbitrary number
of vectors, extensions of (1) and (3) are immediate:

A.5. Proposition (Ruderman, 1952). If x(i), i = 1, . . . ,m, are
vectors with positive components, then

n∑
j=1

m∏
i=1

x
(i)
j ≤

n∑
j=1

m∏
i=1

x
(i)
[j] (5)

and
n∏
j=1

m∑
i=1

x
(i)
[j] ≤

n∏
j=1

m∑
i=1

x
(i)
j . (6)

The proof of these inequalities is essentially the same as the proofs
of A.3 and A.4, but here, A.1 is used with arbitrary m.

Inequalities (5) and (6) can be written more generally as(
m∏
i=1

x
(i)
1 , . . . ,

m∏
i=1

x(i)
n

)
≺w

(
m∏
i=1

x
(i)
[1] , . . . ,

m∏
i=1

x
(i)
[n]

)
, (7)

(
log

m∑
i=1

x
(i)
1 , . . . , log

m∑
i=1

x(i)
n

)
≺w

(
log

m∑
i=1

x
(i)
[1] , . . . , log

m∑
i=1

x
(i)
[n]

)
, (8)

and the proofs of these results are similar to the proofs of (2) and (4).

Somewhat more general inequalities are obtainable using A.1.a in
place of A.1. These results are as follows:

A.5.a. Let (X ,A , μ) be a measure space and let x(α), α ∈ X , be a
μ-integrable function of α taking values in R n. Then

n∑
j=1

exp
{∫

X
log x(α)

j μ(dα)
}

≤
n∑
j=1

exp
{∫

X
log x(α)

[j] μ(dα)
}
, (5′)

n∏
j=1

∫
X
x

(α)
[j] μ(dα) ≤

n∏
j=1

∫
X
x

(α)
j μ(dα), (6′)

(
exp

{∫
X

log x(α)
1 μ(dα)

}
, . . . , exp

{∫
X

log x(α)
n μ(dα)

})

≺w

(
exp

{∫
X

log x(α)
[1] μ(dα)

}
, . . . , exp

{∫
X

log x(α)
[n] μ(dα)

})
,

(7′)
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(
log

∫
X
x

(α)
1 μ(dα), . . . , log

∫
X
x(α)
n μ(dα)

)

≺w

(
log

∫
X
x

(α)
[1] μ(dα), . . . , log

∫
X
x

(α)
[n] μ(dα)

)
.

(8′)

Majorization from Matrix Sums and Products

It may be of some interest to note that Propositions A.1 and A.2 of Day
(1972) are very special cases of a much earlier result. It is somewhat
surprising that this seems to have gone unnoticed.

A.6. Proposition (Fan, 1949). If G and H are n × n Hermitian
matrices with ordered eigenvalues λ1 ≥ · · · ≥ λn, then

(λ1(G+H), . . . , λn(G+H)) ≺ (λ1(G) + λ1(H), . . . , λn(G) + λn(H)).

This majorization is discussed in some detail in 9.G.

From A.6, it is immediate that for Hermitian matrices G1, . . . , Gm
with eigenvalues λ1(Gi) ≥ · · · ≥ λn(Gi), i = 1, . . . ,m,(
λ1

(
m∑
1

Gi

)
, . . . , λn

(
m∑
1

Gi

))
≺
(

m∑
1

λ1(Gi), . . . ,
m∑
1

λn(Gi)

)
.

Now specialize this result to diagonal matrices:

(a) If Gi = diag(x(i)
1 , . . . , x

(i)
n ), i = 1, . . . ,m, then Proposition A.1

is obtained.

(b) If in A.6, G = diag(x[1], . . . , x[n]) and H = diag(x(1), . . . , x(n)),
then Proposition A.2 is obtained.

Other specializations of majorizations in matrix theory can be ob-
tained. For example, (2a) follows from 9.H.1(2a) and 5.A.2.b. Other
examples also can be given.

B Majorizations from Functions of Vectors

Propositions A.1 and A.2 both involve the addition of corresponding
components of vectors. Other ways to combine components may be of
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interest: For any real-valued function φ of m real variables, one can
form the vectors

u = (φ(x(1)
1 , . . . , x

(m)
1 ), . . . , φ(x(1)

n , . . . , x(m)
n )),

v = (φ(x(1)
[1] , . . . , x

(m)
[1] ), . . . , φ(x(1)

[n] , . . . , x
(m)
[n] )),

and ask for conditions on φ to ensure that u ≺ v.

B.1. Proposition. u ≺ v for all n ≥ 2 and all n-vectors
x(1), . . . , x(m) if and only if φ has the form

φ(a1, . . . , am) =
m∑
i=1

fi(ai),

where f1, . . . , fm are all monotone in the same direction.

Proof. Suppose first that φ has the required special form. Let

x̃(i) = (fi(x
(i)
1 ), . . . , fi(x(i)

n )), i = 1, . . . ,m.

If the fi are increasing, then

x̃
(i)
[j] = fi(x

(i)
[j]), i = 1, . . . ,m, j = 1, . . . , n,

so u ≺ v by A.1.
If the fi are decreasing, then

x̃
(i)
[j] = fi(x

(i)
[n−j+1]), i = 1, . . . ,m, j = 1, . . . , n.

Because a ≺ b if and only if (an, . . . , a1) ≺ (bn, . . . , b1), it again follows
from A.1 that u ≺ v.

Now, suppose that u ≺ v for all vectors x(1), . . . , x(m). To show that
φ(a1, . . . , am) has the form

∑m
i=1 fi(ai), suppose first thatm = 2. With

n = 2 and using
∑
ui =

∑
vi it follows that for any δ1 ≥ 0, δ2 ≥ 0,

φ(α1 +δ1, α2 + δ2) + φ(α1 − δ1, α2 − δ2)

= φ(α1 + δ1, α2 − δ2) + φ(α1 − δ1, α2 + δ2).

With δ1 = |α1| and δ2 = |α2|, this equation reduces (independently of
the signs of α1 and α2) to

φ(2α1, 2α2) + φ(0, 0) = φ(2α1, 0) + φ(0, 2α2);

that is,

φ(r, s) = φ(r, 0) + φ(0, s) − φ(0, 0).

If, for example, f1(r) = φ(r, 0) and f2(s) = φ(0, s) − φ(0, 0), then φ
has the form φ(r, s) = f1(r) + f2(s).
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Because u ≺ v, it must also be true that either

φ(α1 + δ1, α2 + δ2) ≥ max[φ(α1 + δ1, α2 − δ2), φ(α1 − δ1, α2 + δ2)]

(φ is increasing in each argument), or

φ(α1 − δ1, α2 − δ2) ≥ max[φ(α1 + δ1, α2 − δ2), φ(α1 − δ1, α2 − δ2)]

(φ is decreasing in each argument). Thus f1 and f2 must be monotone
in the same direction. This shows that φ must have the required form
when n = 2. Suppose it is true that φ must have the required form
when it hasm−1 arguments (there arem−1 vectors). Again with n = 2
and using

∑
ui =

∑
vi, it follows that for any δi ≥ 0, i = 1, . . . ,m,

φ(α1 +δ1, . . . , αm + δm) + φ(α1 − δ1, . . . , αm − δm)

= φ(α1 + ε1, δ1, . . . , αm + εmδm) + φ(α1 − ε1δ1, . . . , αm − εmδm)

for any choice of signs ε1, ε2, . . . , εm. This means that

φ(α1 +η1δ1, . . . , αm + ηmδm) + φ(α1 − η1δ1, . . . , αm − ηmδm)

= φ(α1 + ε1δ1, . . . , αm + εmδm) + φ(α1 − ε1δ1, . . . , αm − εmδm)

for any choice of signs ε1, . . . , εm, η1, . . . , nm. Take δi = |αi|, ηi = sign
αi, i = 1, 2, . . . ,m, and take ε1 = sign α1, εj = −sign αj, j = 2, . . . ,m.
Then this equation reduces to

φ(2α1, . . . , 2αm) = φ(2α1, 0, . . . , 0) + φ(0, 2α2, . . . , 2αm);

that is,

φ(r1, . . . , rm) = φ(r1, 0, . . . , 0) + φ(0, r2, . . . , rm).

The induction hypothesis can be applied to the function φ(0, r2, . . . , rm)
to conclude that

φ(r1, . . . , rm) =
m∑
i=1

fi(ri).

By keeping all but two arguments of φ fixed, it follows from the
case of m = 2 that each fi must be increasing or each fi must be
decreasing. ||

The case of oppositely ordered vectors can again be considered when
m = 2. Let φ be a real-valued function of two real variables and
consider the vectors

u = (φ(x(1)
1 , x

(2)
1 ), . . . , φ(x(1)

n , x(2)
n )),

w = (φ(x(1)
[1] , x

(2)
[n] ), φ(x(1)

[2] , x
(2)
[n−1]), . . . , φ(x(1)

[n] , x
(2)
[1] )).
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B.2. Proposition. The majorization w ≺ u for all n ≥ 2 and all
n-vectors x(1), x(2) if and only if φ(a1, a2) = f1(a1) + f2(a2), where f1

and f2 are monotone in the same direction.

The proof of this is virtually identical to the proof of B.1 with m = 2.

C Weak Majorizations from Rearrangements

The questions considered in the previous section for strong majoriza-
tion can also be asked for weak majorization. However, much more
general conditions will lead to weak majorization. The results of this
section are more interesting than those of the preceding section and
they are more useful in proving inequalities.

As before, let x(1), x(2), . . . , x(m) be vectors of n components, let φ
be a real function of m real variables, and let

u = (φ(x(1)
1 , . . . , x

(m)
1 ), . . . , φ(x(1)

n , . . . , x(m)
n )),

v = (φ(x(1)
[1] , . . . , x

(m)
[1] ), . . . , φ(x(1)

[n] , . . . , x
(m)
[n] )).

C.1. Proposition (Day, 1972). If m = 2, then u ≺w v for all n ≥ 2
and all vectors x(1), x(2) in R n if and only if

φ(α1 + δ1, α2 + δ2) + φ(α1 − δ1, α2 − δ2)

≥ φ(α1 + δ1, α2 − δ2) + φ(α1 − δ1, α2 + δ2)
(1)

whenever δ1, δ2 ≥ 0, and

either φ is increasing in each argument or φ is decreasing
in each argument. (2)

A proof of C.1 is given ahead. But first note that property (1) is
sufficiently important to be given a name.

C.2. Definition. A real-valued function φ defined on R 2 is
said to be L-superadditive (lattice-superadditive) if it satisfies (1).
More generally, a real-valued function φ defined on Rm is called
L-superadditive if

φ satisfies (1) in any pair of arguments, the others being fixed. (3)

In the literature such functions are sometimes said to be supermodular.
If, in addition,

φ is either increasing in each argument or decreasing in
each argument, (4)

then φ is said to be a monotone L-superadditive function.



214 6. Rearrangements and Majorization

L-superadditive functions are discussed in Section D, where examples
are given, and the name is explained.

Proof of C.1. Suppose first that for all n ≥ 2 and all x(1), x(2) ∈ R n,
u ≺w v. With n = 2, x(1)

1 = α1 + δ1, x
(1)
2 = α1 − δ1, x

(2)
1 = α2 − δ2,

x
(2)
2 = α2 +δ2(δ1, δ2 ≥ 0), the requirement that u1+u2 ≤ v1 +v2 yields

(1). Because also max(u1, u2) ≤ max(v1, v2), it follows that either

(i) φ(α1 + δ1, α2 + δ2) ≥ φ(α1 − δ1, α2 + δ2), and
φ(α1 + δ1, α2 + δ2) ≥ φ(α1 + δ1, α2 − δ2)

or
(ii) φ(α1 − δ1, α2 − δ2) ≥ φ(α1 − δ1, α2 + δ2), and

φ(α1 − δ1, α2 − δ2) ≥ φ(α1 + δ1, α2 − δ2).

But (i) says φ is increasing in both arguments and (ii) says φ is
decreasing in both arguments. Consequently, conditions (1) and (2)
are necessary for u ≺w v.

Next, suppose that (1) and (2) hold. For notational convenience,
suppose that x(1)

1 ≥ · · · ≥ x
(1)
n . If also x(2)

1 ≥ · · · ≥ x
(2)
n , then u = v.

Otherwise, there exists i < j such that x(2)
i < x

(2)
j . Let

ũ = (u1, . . , ui−1, φ(x(1)
i , x

(2)
j ), ui+1, . . , uj−1, φ(x(1)

j , x
(2)
i ), uj+1, . . , un).

Then, as a direct consequence of (1) and (2),

(φ(x(1)
i , x

(2)
i ), φ(x(1)

j , x
(2)
j )) ≺w (φ(x(1)

i , x
(2)
j ), φ(x(1)

j , x
(2)
i )).

It follows from 5.A.7 that u ≺w ũ. Repeat this argument with ũ in
place of u. After a finite number of steps, a ũ = v is obtained. Thus

u ≺w ũ ≺w
˜̃u ≺w · · · ≺w v. ||

C.3. Proposition (Day, 1972). u ≺w v for all n ≥ 2 and all
x(1), . . . , x(m) in R n if and only if ϕ is a monotone L-superadditive
function.

Proof. Suppose first that u ≺w v for all n ≥ 2 and all x(1), . . . ,

x(m) ∈ R n. In particular, let n = 2 and for fixed i, j, let x(l)
1 = x

(l)
2

for all l �= i, l �= j. Then u1 + u2 ≤ v1 + v2 implies that φ is
L-superadditive. In addition, max(u1, u2) ≤ max(v1, v2) implies that
either φ is increasing in the ith and jth arguments or decreasing in
these arguments. By keeping i fixed and letting j assume all values
�= i, (4) is obtained.

Next suppose that φ is monotone and L-superadditive. If m = 2, it
follows from C.1 that u ≺w v; with n = 2, suppose that u ≺w v for
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any number less than m of vectors x(i). Assume also, without loss of
generality, that for some integer l, 0 ≤ l ≤ m,

x(i) = (αi + δi, αi − δi), i = 1, . . . , l,

x(i) = (αi − δi, αi + δi), i = l + 1, . . . ,m,

where δi ≥ 0, i = 1, . . . ,m. It is convenient now to consider separately
the cases l = m, 0 ≤ l ≤ m− 2, and l = m− 1.

Case 1. l = m. In this case, u = v and there is nothing to prove.

Case 2. 0 ≤ l ≤ m− 2. By the induction hypothesis applied to the
function φ∗(x1, . . . , xm−1) = φ(x1, . . . , xm−1, αm + δm), i.e., with the
mth argument fixed,

φ(α1 + δ1, . . . , αm−1 + δm−1, αm + δm)

+ φ(α1 − δ1, . . . , αm−1 − δm−1, αm + δm)

≥ φ(α1 + δ1, . . . , αl + δl, αl+1 − δl+1, . . . , αm−1 − δm−1, αm + δm)

+ φ(α1 − δ1, . . . , αl − δl, αl+1 + δl+1, . . . , αm−1 + δm−1, αm + δm). (5)

Similarly, with the (l+1)th through the (m− 1)th arguments fixed,
the induction hypothesis applied with l + 1 vectors yields

φ(α1 + δ1, . . . , αl + δl, αl+1 − δl+1, . . . , αm−1 − δm−1, αm + δm)

+ φ(α1 − δ1, . . . , αl − δl, αl+1 − δl+1, . . . , αm−1 − δm−1, αm − δm)

≥ φ(α1 + δ1, . . . , αl + δl, αl+1 − δl+1, . . . , αm−1 − δm−1, αm − δm)

+ φ(α1 − δ1, . . . , αl − δl,−δl+1, . . . , αm−1 − δm−1, αm + δm). (6)

Now, add (5) and (6) to obtain

φ(α1+ δ1, . . . , αm + δm) + φ(α1 − δ1, . . . , αm − δm)

≥ φ(α1 + δ1, . . . , αl + δl, αl+1 − δl+1, . . . , αm − δm)

+ φ(α1 − δ1, . . . , αl − δl, αl+1 + δl+1, . . . , αm + δm),

that is, u1 + u2 ≥ v1 + v2. If follows from monotonicity that
max(u1, u2) ≤ max(v1, v2), so u ≺w v.
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Case 3. l = k − 1. Here a similar argument can be used: With the
induction hypothesis and first argument fixed,

φ(α1+ δ1, α2 + δ2, . . . , αm + δm) + φ(α1 + δ1, α2 − δ2, . . . , αm − δm)

≥ φ(α1 + δ1, α2 + δ2, . . . , αm−1 + δm−1, αm − δm)

+ φ(α1 + δ1, α2 − δ2, . . . , αm−1 − δm−1, αm + δm).

With all but the first and last arguments fixed,

φ(α1+ δ1, α2 − δ2, . . . , αm−1 − δm−1, αm + δm)

+ φ(α1 − δ1, α2 − δ2, . . . , αm−1 − δm−1, αm − δm)

≥ φ(α1 − δ1, α2 − δ2, . . . , αm−1 − δm−1, αm + δm)

+ φ(α1 + δ1, α2 − δ2, . . . , αm−1 − δm−1, αm − δm).

Addition of these two inequalities gives u1 + u2 ≤ v1 + v2. This shows
that if φ is a monotone L-superadditive function, then u ≺w v when
m ≥ 2 is an integer and n = 2.

For an arbitrary dimension n, it is convenient to suppose (without
loss of generality) that x(1)

1 ≥ · · · ≥ x
(l)
n . If x(l)

1 ≥ · · · ≥ x
(l)
n for

l = 2, . . . ,m, then u = v and there is nothing to prove. Otherwise,
there are a pair i, j(i < j) and a nonempty set L ⊂ {2, . . . ,m} such
that x(l)

i < x
(l)
j for all l ∈ L, x(l)

i ≥ x
(l)
j for all l �∈ L. For all l ∈ L,

interchange x(l)
i and x

(l)
j to obtain x̃(1), . . . , x̃(m). From these vectors,

form ũ. Note that ũk = uk if k �= i and k �= j. Apply 5.A.7 together
with the above results for n = 2 to obtain that u ≺w ũ. Continuing
in this manner, v is reached after a finite number of steps. Moreover,
u ≺w ũ ≺w

˜̃u ≺w · · · ≺w v. ||
As in Section B, it is possible with m = 2 to consider comparisons of

u = (φ(x(1)
1 , x

(2)
1 ), . . . , φ(x(1)

n , x(2)
n ))

and

w = (φ(x(1)
[1] , x

(2)
[n] ), . . . , φ(x(1)

[n] , x
(2)
[1] )).

C.4. Proposition (Day, 1972). w ≺w u for all n ≥ 2 and all x(1), x(2)

in R n if and only if φ is monotone and L-superadditive.

Proof. As in B.1, it is easy to see that with n = 2, w ≺w u implies
that φ is monotone and L-superadditive.

Suppose that φ is monotone and L-superadditive, and for notational
convenience, suppose x(1)

1 ≥ · · · ≥ x
(1)
n . If x(2)

1 ≤ · · · ≤ x
(2)
n , then w = u.
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Otherwise, there exists i < j such that x(2)
i > x

(2)
j . Let

u(1) = (u1, .., ui−1, φ(x(1)
i , x

(2)
j ), ui+1, .., uj−1, φ(x(1)

j , x
(2)
i ), uj+1, .., un),

or, if j = i+ 1,

u(1) = (u1, . . . , ui−1, φ(x(1)
i , x

(2)
j ), φ(x(1)

j , x
(2)
i ), uj+1, . . . , un).

Then

(φ(x(1)
i , x

(2)
j ), φ(x(1)

j , x
(2)
i )) ≺w (φ(x(1)

i , x
(2)
i ), φ(x(1)

j , x
(2)
j )),

so that by 5.A.7, u �w u(1). Repeat this argument with u(1) in
place of u. After a finite number of such repetitions, the vector w
is obtained. Thus

u �w u(1) �w u(2) �w · · · �w w. ||

C.4.a. Proposition. Let u = (φ(x(1)
1 , x

(2)
1 ), . . . , φ(x(1)

n , x
(2)
n )) and v =

(φ(x(1)
[1] , x

(2)
[1] ), . . . , φ(x(1)

[n] , x
(2)
[n] )). Then u ≺w v for all n ≥ 2 and all

x(1), x(2) in R n if and only if φ is monotone and L-superadditive.

The questions discussed in this section concerning the weak ma-
jorization x ≺w y can also be asked about the alternative weak
majorization x ≺w y.

C.5. Proposition. u ≺w v for all n ≥ 2 and all x(1), . . . , x(m) in R n

if and only if −φ is monotone and L-superadditive. For m = 2, w ≺w u
for all n ≥ 2 and all x(1), x(2) in R n if and only if −φ is monotone
and L-superadditive.

Proof. These results follow from C.3 and C.4 because x ≺w y is
equivalent to −x ≺w −y. ||

D L-Superadditive Functions—Properties
and Examples

Condition (1) of Section C can be put into various forms that are
sometimes useful in verifying L-superadditivity. In particular, the
condition

φ(α1 +δ1, α2 + δ2) + φ(α1 − δ1, α2 − δ2)

≥ φ(α1 + δ1, α2 − δ2) + φ(α1 − δ1, α2 + δ2) (1)
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whenever δ1, δ2 ≥ 0 can be rewritten as

φ(r + η, s) − φ(r, s) is increasing in s for all r and all η > 0, (1a)

or as

φ(r, s + η) − φ(r, s) is increasing in r for all s and all η > 0. (1b)

If φ has second partial derivatives, notice that the partial derivative
of φ(r + η, s) − φ(r, s) with respect to s is nonnegative if and only if
∂φ(r, s)/∂s is increasing in r. Consequently, (1) is also equivalent to

∂2

∂r∂s
φ(r, s) ≥ 0. (1c)

This equivalence was noted by Lorentz (1953). See also Day (1972)
and Chong (1974b).

In other contexts, L-superadditivity has been encountered by Topkis
(1968), Tchen (1975, 1980), Whitt (1976), and Cambanis, Simons, and
Stout (1976).

Some Background

The term “superadditive” as used here was apparently first used by
Arthur F. Veinott, Jr., in unpublished work as a natural counterpart
to “subadditivity” in the sense of Fan (1967). According to Fan’s
definition, a real-valued function φ defined on a lattice L is called
subadditive if

φ(x) + φ(y) ≥ (φ(x ∧ y) + φ(x ∨ y) for all x, y ∈ L.

Here, of course, x∧y is the greatest lower bound of x and y and x∨y is
the least upper bound of x and y. For this notion, we prefer the term
“lattice subadditive” or “L-subadditive” to avoid confusion with the
more standard notion of subadditivity, namely,

φ(x+ y) ≤ φ(x) + φ(y).

The term “subadditive” is also used by Meyer (1966) in the sense of
Fan, where L is a lattice of sets.

If the lattice L is Rm with componentwise ordering, then φ is sub-
additive in Fan’s sense if and only if −φ is L-superadditive in the sense
of Definition C.2. The fact that it is sufficient to consider the argu-
ments of φ only in pairs, as in Definition C.2, is due to Lorentz (1953).
See also Chong (1974b).

When m = 2, the condition of L-superadditivity is just the condition
that distribution functions must satisfy to correspond to a nonnegative



D. L-Superadditive Functions—Properties and Examples 219

Lebesgue–Stieltjes measure defined on appropriate subsets of R 2. For
m �= 2, the property of distribution functions is not the same as
L-superadditivity. For this reason, the term “positive set function,”
sometimes used in place of L-superadditive, seems inappropriate.

Compositions and L-Superadditivity

D.1. If φ is L-superadditive (monotone and L-superadditive) and
if gi :R → R, i = 1, . . . ,m, are monotone in the same direction,
then the composition φ(g1, . . . , gm) is L-superadditive (monotone and
L-superadditive).

This result is particularly easy to see from (1a) or (1b).

D.2. (Topkis, 1968; Day, 1972). If φ is a monotone L-superadditive
function and f : R → R is convex and increasing, then the composition
f ◦ φ is monotone and L-superadditive.

This result is easy to verify if differentiability is assumed and (1c)
is used.

Some Examples

D.3. Let g and h be real-valued functions defined on R 2 such that
for each fixed θ, g(x, θ) is increasing in x and h(θ, y) is increasing in
y (alternatively, both functions are decreasing). If μ is a nonnegative
measure, then

φ(x, y) =
∫
g(x, θ)h(θ, y)μ(dθ)

is monotone and L-superadditive provided the integral exists.

Proof . Because the monotone L-superadditive functions form a
convex cone, it is sufficient to prove that for each fixed θ, g(x, θ)h(θ, y)
is monotone and L-superadditive. But this is trivial. ||

D.3 is reminiscent of a standard way to construct bivariate
probability distributions as mixtures of bivariate distributions with
independent marginals.

D.3.a. If Sk is the kth elementary symmetric function of m variables,
then Sk is L-superadditive on Rm

+.
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D.4. If φ(z1, . . . , zn) = ψ(z1 + · · · + zn), then φ is L-superadditive if
and only if ψ is convex (Lorentz, 1953). Also, φ is monotone if ψ is
monotone. If ψ is monotone and convex, it follows that(

ψ

(
m∑
1

x
(i)
1

)
, . . . , ψ

(
m∑
1

x
(i)
n

))
≺w

(
ψ

(
m∑
1

x
(i)
[1]

)
, . . . , ψ

(
m∑
1

x
(i)
[n]

))
, (2)

and

(ψ(x(1)
[1] + x

(2)
[n] , . . . , ψ(x(1)

[n] + x
(2)
[1] ))

≺w (ψ(x(1)
1 + x

(2)
1 ), . . . , ψ(x(1)

n + x(2)
n )). (3)

Of course, this means that for any monotone convex function,
n∑
j=1

ψ

(
m∑
i=1

x
(i)
j

)
≤

n∑
j=1

ψ

(
m∑
i=1

x
(i)
[j]

)
, (4)

and
n∑
j=1

ψ(x(1)
[j] + x

(2)
[n−j+1]) ≤

n∑
j=1

ψ(x(1)
j + x

(2)
j ). (5)

Inequalities (2), (3), (4), and (5) are also immediate consequences of
the majorizations of A.1 or A.2 and 5.A.2. Possible choices of ψ include
ψ1(z) = ez, ψ2(z) = max(0, z), ψ3(z) = 0 if z < 0, ψ3(z) = zα(α ≥ 1),
z ≥ 0. In case the vectors have nonnegative components, one can
use ψ4(z) = − log z or ψ5(z) = z−1e−z. Lorentz (1953) pointed out
that with ψ4, one can obtain the inequality (6) of A.5 that is due to
Ruderman (1952).

D.4.a. If ψ is monotone and concave, it follows from C.5 and D.3
that(

ψ

(
m∑
1

x
(i)
1

)
, . . . , ψ

(
m∑
1

x
(i)
n

))
≺w

(
ψ

(
m∑
1

x
(i)
[1]

)
, . . . , ψ

(
m∑
1

x
(i)
[n]

))
, (6)

and

(ψ(x(1)
[1] + x

(2)
[n] ), . . . , ψ(x(1)

[n] + x
(2)
[1] ))

≺w (ψ(x(1)
1 + x

(2)
1 ), . . . , ψ(x(1)

n + x(2)
n )).

(7)

Here, possible choices of ψ include ψ(z) = log z and ψ(z) = zα for
0 < α < 1, z ≥ 0.

For any vector z ∈ R n, let

Δz = (z2 − z1, . . . , zn − zn−1),

and let |Δz| = (|z2 − z1|, . . . , |zn − zn−1|).
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D.4.b. (Chong, 1975). For any vector a ∈ R n,

|Δa↓| ≺w |Δa|.
Proof . Write x ≈ y if x is a permutation of y. After possibly

interchanging summands in some components of |Δa| if necessary,

|Δa| ≈ (|ai1 − a[1]|, . . . , |ain−1 − a[n−1]|)
for some permutation (i1, . . . , in) of (1, . . . , n).

Suppose first that in = 1 so that

a[1] �∈ {ai1 , . . . , ain−1} and (ai1 , . . . , ain−1) ≈ (a[2], . . . , a[n]).

With x = (ai1 , . . . , ain−1), y = (−a[2], . . . ,−a[n]), and with the
L-superadditive function φ(r, s) = |r + s|, it follows from C.4 that

(φ(x[1], y[n−1]), . . . , φ(x[n−1], y[1]))

≺w (φ(x1, y[n−1]), . . . , φ(xn−1, y[1]));

that is, |Δa↓| ≺w |Δa|.
Next, suppose that in �= 1 so a[1] = aij for some j ≤ n− 1. Then

|Δa| ≈ (|ai1 − a[1]|, . . . , |aij − a[j]|, . . . , |ain−1 − a[n−1]|)
≥ (|ai1 − a[1]|, . . . , |aij−1 − a[j−1]|, |ain − a[j]|,

|aij+1 − a[j+1]|, . . . , |ain−1 − a[n−1]|)
�w (|a[2] − a[n]|, . . . , |a[n] − a[n−1]|).

Here the first inequality (componentwise ordering) follows because a
substitution is made for a[1], the largest component of a. The second
inequality (weak majorization) follows from C.4 as in the first case
above. ||
D.4.c. (Duff, 1967). If a ∈ R n and p ≥ 1, then

n−1∑
k=1

|Δa[k]|p ≤
n−1∑
k=1

|Δak|p.

More generally, φ(|Δa↓|) ≤ φ(|Δa|) for all increasing symmetric convex
functions φ : R n−1

+ → R. These results follow from D.4.b and 3.C.2.d.

D.5. If φ(z1, . . . , zn) = ψ(Πn
1 zi), zi ≥ 0, and if ψ is twice differ-

entiable, then φ is L-superadditive if ψ satisfies

ψ′(z) + zψ′′(z) ≥ 0.
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Essentially this result was found by Borell (1973). To obtain mono-
tonicity, the domain of φ can be restricted by the requirement that
each zi ≥ 0, in which case ψ must also be monotone. If ψ is monotone
and ψ′(z) + zψ′′(z) ≥ 0, and if x(i)

j ≥ 0 for all i and j,
(
ψ

(
m∏
1

x
(i)
1

)
, . . . , ψ

(
m∏
1

x(i)
n

))
≺w

(
ψ

(
m∏
1

x
(i)
[1]

)
, . . . , ψ

(
m∏
1

x
(i)
[n]

))

(8)
and

(ψ(x(1)
[1] x

(2)
[n] ), . . . , ψ(x(1)

[n]x
(2)
[1] )) ≺w (ψ(x(1)

1 x
(2)
1 ), . . . , ψ(x(1)

n x(2)
n )). (9)

As a consequence of (8), (9), and 3.C.1.b, it follows that for any
increasing convex function g,

n∑
j=1

g

(
ψ

(
m∏
i=1

x
(i)
j

))
≤

n∑
j=1

g

(
ψ

(
n∏
i=1

x
(i)
[j]

))
(10)

and
n∑
j=1

g(ψ(x(1)
[j] x

(2)
[n−j+1])) ≤

n∑
j=1

g(ψ(x(1)
j x

(2)
j )). (11)

The choice ψ(z) = z in (8) yields the inequality (5) of A.5 due to
Ruderman (1952). The choice ψ(z) = log(1 + z) in (8) and (9) yields

n∑
j=1

F (1 + x
(1)
[j] x

(2)
[n−j+1]) ≤

n∑
j=1

F (1 + x
(1)
j x

(2)
j ) ≤

n∑
j=1

F (1 + x
(1)
[j] x

(2)
[j] ),

where F (z) = g(log z) and g is increasing and convex. This result is
due to London (1970).

D.6. If φ(z1, . . . , zn) = ψ(mini(zi, c)), where ψ is increasing, then φ is
monotone and L-superadditive. This can be verified, e.g., by showing
that φ(r, s) = ψ(min(r, s, c̃)) satisfies (1a) when ψ is increasing.

For any increasing function ψ, it follows that

(ψ(min
i
x

(i)
1 ), . ., ψ(min

i
x(i)
n )) ≺w (ψ(min

i
x

(i)
[1]), . ., ψ(min

i
x

(i)
[n])) (12)

and

(ψ(min(x(1)
[1] , x

(2)
[n] )), . . . , ψ(min(x(1)

[n] , x
(2)
[1] )))

≺w (ψ(min(x(1)
1 , x

(2)
1 )), . . . , ψ(min(x(1)

n , x
(2)
n ))). (13)
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With these results it follows that for any increasing function ψ,
n∑
j=1

ψ(min
i
x

(i)
j ) ≤

n∑
j=1

ψ(min
i
x

(i)
[j]) (14)

and
n∑
j=1

ψ(min(x(1)
[j] , x

(2)
[n−j+1])) ≤

n∑
j=1

ψ(min(x(1)
j , x

(2)
j )). (15)

D.6.a. With ψ(z) = log z and the assumption that x(i)
j > 0 for all

i, j, it follows that
n∏
j=1

min
i
x

(i)
j ≤

n∏
j=1

min
i
x

(i)
[j] ;

with ψ(z) = z, it follows that
n∑
j=1

min
i
x

(i)
j ≤

n∑
j=1

min
i
x

(i)
[j] .

These inequalities are due to Minc (1971).

D.7. If φ(z1, . . . , zn) = ψ(maxi(zi, c)), where ψ is decreasing, then φ
is monotone and L-superadditive. This fact is closely related to D.6.
For any decreasing function ψ, it follows that (12), (13), (14), and (15)
hold with min replaced by max.

D.7.a. With ψ(z) = −z, and using the equivalence x ≺w y if and
only if −x ≺w −y, it follows that

(max
i

x
(i)
1 , . . . ,max

i
x(i)
n ) ≺w (max

i
x

(i)
[1] , . . . ,max

i
x

(i)
[n])

and

(max(x(1)
[1] , x

(2)
[n] ), . . . ,max(x(1)

[n] , x
(2)
[1] ))

≺w (max(x(1)
1 , x

(2)
1 ), . . . ,max(x(1)

n , x(2)
n )).

From the first of these inequalities, it follows that
n∑
j=1

max
i

x
(i)
j ≥

n∑
j=1

max
i

x
(i)
[j] .

This inequality is due to Minc (1971).
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D.7.b. With ψ(z) = − log z, it follows that if x(i)
j > 0 for all i, j,

(log max
i

x
(i)
1 , . . . , log max

i
x(i)
n ) ≺w (log max

i
xi[1], . . . , log max

i
x

(i)
[n]),

and of course there is a similar result if m = 2 and the vectors are
oppositely ordered. As a consequence, if x(i)

j > 0 for all i, j,

n∏
j=1

max
i

x
(i)
j ≥

n∏
j=1

max
i

x
(i)
[j] ,

a result due to Minc (1971).

Summary for Rearrangements

D.8.a. Rearrangements for majorization.

(i) x↓ + y↑ ≺ x+ y ≺ x↑ + y↑, x, y ∈ R n;

(ii) x↓y↑ ≺w xy ≺ x↑y↑, x, y ∈ R n
+ ,

where uν = (u1ν1, . . . , unνn);

(iii) min(x↑, y↓) ≺w min(x, y) ≺w (x↑, y↑), x, y ∈ R n,

where min(u, v) = (min(u1v1), . . . ,min(un, vn));

(iv) max(x↑, y↓) ≺w max(x, y) ≺w max(x↑, y↑), x, y ∈ R n.

D.8.b. Rearrangements for log majorization.
Recall the notation x[1] ≥ · · · ≥ x[n] and x(1) ≤ · · · ≤ x(n). For

x, y ∈ R n
++ and for k = 1, . . . , n,

(i)
∏k

1(x(i) + y[n−i+1] ≤
∏k

1(xi + yi) ≤
∏k

1(x[i] + y[i]);

(ii)
∏k

1(x[i]y(n−i+1)) ≤
∏k

1 xiyi ≤
∏k

1 x[i]y[i];

(iii)
∏k

1 min(x[i], y(i) ≤
∏k

1 min(xi, yi) ≤
∏k

1 min(x[i], y[i]);

(iv)
∏k

1 max(x(i), y[n−i+1]) ≤
∏k

1 max(xi, yi) ≤
∏k

1 max(x[i], y[i]).

Alternatively, (i)–(iv) can be written as majorizations:

(i) log(x↑ + y↓) ≺w log(x+ y) ≺w log(x↑ + y↑);

(ii) log(x↑ ◦ y↓) ≺w log(x ◦ y) ≺w log(x↑ ◦ y↑),
where x ◦ y = (x1y1, . . . , xnyn);
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(iii) log(x↑ ∧ y↓) ≺w log(x ∧ y) ≺w log(x↑ ∧ y↑),
where s ∧ t = min(s, t);

(iv) log(x↑ ∨ y↓) ≺w log(x ∨ y) ≺w log(x↑ ∨ y↑),
where s ∨ t = max(s, t).

E Inequalities Without Majorization

The known inequalities that occur as examples in Section D do not,
for the most part, take full advantage of the weak majorizations from
which they are obtained. In fact, a result x ≺w y is mostly used simply
to yield

∑
xi ≤

∑
yi. So there is a natural question: If u, v, and w are

defined as in Section B, i.e.,

u = (φ(x(1)
1 , . . . , x

(m)
1 ), . . . , φ(x(1)

n , . . . , x
(m)
n )),

v = (φ(x(1)
[1] , . . . , x

(m)
[1] ), . . . , φ(x(1)

[n] , . . . , x
(m)
[n] )),

w = (φ(x(1)
[1] , x

(2)
[n] ), . . . , φ(x(1)

[n] , x
(2)
[1] )),

then what conditions must φ satisfy in order that
∑
ui ≤

∑
vi and

(when m = 2)
∑
wi ≤

∑
ui? A continuous version of this question has

been answered by Lorentz (1953). Here, with some simplifications in
the problem considered, the condition of Lorentz is given in a discrete
setting.

E.1. Proposition (Lorentz, 1953). For all vectors x(1), . . . , x(m) in
R n and all n,

n∑
j=1

φ(x(1)
[j] , x

(2)
[n−j+1]) ≤

n∑
j=1

φ(x(1)
j , x

(2)
j ) (1)

and
n∑
j=1

φ(x(1)
j , . . . , x

(m)
j ) ≤

n∑
j=1

φ(x(1)
[j] , . . . , x

(m)
[j] ) (2)

if and only if φ is L-superadditive.

Notice that the difference between this result and C.1 and C.3 is
that here no monotonicity condition is imposed on φ.
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The proof of E.1 is similar to the preceding proofs. With m = 2, the
condition is shown to be necessary by taking n = 2. It is also easily
shown to be sufficient when n = 2. For general n, start with the pairs

(x(1)
[1] , x

(2)
1 ), . . . , (x(1)

[n] , x
(2)
n ).

Repeatedly interchange two of the x(2)
i to transform the pairs to

(x(1)
[1] , x

(2)
[1] ), . . . , (x

(1)
[n] , x

(2)
[n] ).

Then, at each interchange,
∑

j φ(x(1)
[j] , x

(2)
π(j)) increases because of the

inequality with n = 2. A similar argument proves the left-hand
inequality. However, Day (1972) and more explicitly Borell (1973) show
that (1) and (2) with m = 2 are equivalent. Borell also gives a proof of
E.1 and m = 2. Inequality (2) is proved by Derman, Lieberman, and
Ross (1972).

E.1.a. If ψ is convex, then
n∑
j=1

ψ(x(1)
[j] + x

(2)
[n−j+1]) ≤

n∑
j=1

ψ(x(1)
j + x

(2)
j ) ≤

n∑
j=1

ψ(x(1)
[j] + x

(2)
[j] ),

and the inequalities are reversed if ψ is concave.

This results from E.1 and D.4. With ψ(z) = log z, z ≥ 0, these
inequalities yield inequality (6) of A.5.

E.1.b. If ψ satisfies

ψ′(z) + zψ′′(z) ≥ 0 for all z,

then
n∑
j=1

ψ(x(1)
[j] x

(2)
[n−j+1]) ≤

n∑
j=1

ψ(x(1)
j x

(2)
j ) ≤

n∑
j=1

ψ(x(1)
[j] x

(2)
[j] ).

This follows directly from E.1 and D.5. With ψ(z) = z, inequality
(5) of A.5 is obtained.

An Inequality of Fan and Lorentz

Companion results to those of Lorentz (1953) were obtained by Fan
and Lorentz (1954). These important results can be stated in a discrete
setting similar to that of E.1.

E.2. Proposition (Fan and Lorentz, 1954). Let φ : Rm → R be an
L-superadditive function that is convex in each argument separately.
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If x(i) ≺ y(i) on D , i = 1, . . . ,m, then
n∑
j=1

φ(x(1)
j , . . . , x

(m)
j ) ≤

n∑
j=1

φ(y(1)
j , . . . , y

(m)
j ). (3)

With the additional assumption that φ is increasing in each
argument, a stronger conclusion than (3) is obtained in 5.A.4.

Proof of E.2. Exactly as in the proof of 5.A.4, it is sufficient to
prove the result for m = 2. The remainder of the proof given here is
due to Rinott (1973).

Let

Φ(u(1), u(2)) =

⎡
⎢⎣
φ(u(1)

1 , u
(2)
1 ) · · · φ(u(1)

1 , u
(2)
n )

...
...

φ(u(1)
n , u

(2)
1 ) · · · φ(u(1)

n , u
(2)
n )

⎤
⎥⎦ ,

and observe that (2) of E.1 can be written in the form

tr ΠΦ(u(1), u(2)) ≤ tr Φ(u(1)
↓ , u

(2)
↓ )

for all permutation matrices Π, where tr denotes trace. Because the
trace is a linear function, it follows with the aid of Birkhoff’s theorem
2.A.2 that for all doubly stochastic matrices P ,

trP Φ(u(1), u(2)) ≤ tr Φ(u(1)
↓ , u

(2)
↓ ). (4)

Because x(1) ≺ y(1) and x(2) ≺ y(2), it follows that there exist doubly
stochastic matrices Q and R such that

x(1) = y(2)Q, x(2) = y(2)R.

By first using the convexity of φ in each argument and then using (4),
it follows that

tr Φ(x(1), x(2)) = tr Φ(y(1)Q, y(2)R) ≤ trQR′Φ(y(1), y(2))

≤ tr Φ(y(1)
↓ , y

(2)
↓ ) = tr Φ(y(1), y(2)).

But this inequality is (3) with m = 2. ||
The various examples of Section D, modified by dropping mono-

tonicity, apply to provide examples here. Thus from D.4 one sees that
for any convex function ψ,

n∑
1

ψ(xi − yi) ≤
n∑
1

ψ(x[i] − y(i)). (5)
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Inequality (2) was given by Rinott (1973), who noted the interesting
special case

n∑
i=1

|xi − yi|p ≤
n∑
i=1

|x[i] − y(i)|p, p ≥ 1. (6)

A direct proof of (5) and (6) can be obtained using Proposition 3.C.1
[Σψ(zi) is Schur-convex when ψ is convex] together with the second
majorization of A.1.c.

Equations (5) and (6) remain valid if, instead of n, the upper limit
of the summations is any k ∈ {1, . . . , n}.
E.3. For any convex function ψ and x, y ∈ R n,

(ψ(x1−y1), . . . , ψ(xn−yn)) ≺w (ψ(x[1]−y(1)), . . . , ψ(x[n]−y(n))). (7)

Proof. Clearly, x ≺ x↓ and −y ≺ −(y↑). Because x↓ and −(y↑) are
similarly ordered, it follows from A.1.b that x− y ≺ x↓− y↑. Equation
(7) is then a consequence of 5.A.1. ||

F A Relative Arrangement Partial Order

Where only two vectors are involved, the rearrangement inequalities
of preceding sections have the form

φ(x↑, y↓) = φ(x↓, y↑) ≤ φ(x, y) ≤ φ(x↓, y↓) = φ(x↑, y↑).

To extend these inequalities, it is useful to define a partial ordering
≤a of pairs of vectors which relates only to their relative arrangement
and satisfies

(x↑, y↓) ≤a (x, y) ≤a (x↑, y↑).

Then the identification of the functions of two vector arguments that
preserve the ordering ≤a will lead to a variety of inequalities, and
will permit a variety of new comparisons. Such a partial ordering
≤a is implicit in the work of Hollander, Proschan, and Sethuraman
(1977). One way to define this ordering is to make use of a partic-
ular partial ordering of permutations, and for this, some notation is
convenient.

Following Mirsky (1955a, p. 256), the permutation π of λ1, . . . , λn
which replaces λj by μj, j = 1, . . . , n, is denoted by

π =
(
λ1, . . . , λn

μ1, . . . , μn

)
.
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Notice that (
λk1 , . . . , λkn

μk1 , . . . , μkn

)
=
(
λ1, . . . , λn

μ1, . . . , μn

)
.

In case λ1, . . . , λn are real numbers, it is consequently possible to
assume without loss of generality that λ1 ≤ · · · ≤ λn. This suggests
writing π more compactly as

π = π(λ1, . . . , λn) = (μ1, . . . , μn).

Of course, the permutation π corresponds to a permutation matrix
Π such that μ = λΠ. Both notations are useful and preference depends
upon the context.

For permutations π(1) = (μ(1)
1 , . . . , μ

(1)
n ) and π(2) = (μ(2)

1 , . . . , μ
(2)
n ),

write π(1) ≤b π(2) to mean that π(2) can be reached from π(1) by
successive interchanges, each of which corrects an inversion (of the
natural order). In this ordering, (μ1, . . . , μn) is said to immediately
precede (v1, . . . , vn), written μ <p v, if for some indices i and j where
1 ≤ i < j ≤ n,

vi < vj , vi = μj, vj = μi, μl = vl, l �= i, j.

Then π(1) ≤b π(2) if π(1) = π(2) or if there exists a finite chain
ψ(1), . . . , ψ(k) of permutations such that

π(1) <p ψ(1) <p · · · <p ψ(k) <p π(2).

The ordering ≤b was defined by Sobel (1954), by Savage (1957),
and by Lehmann (1966). Lehmann also considered another ordering
of permutations. Yet another ordering of permutations is considered
by Yanagimoto and Okamoto (1969), who impose the requirement
j = i + 1 in the above definition. In much of what follows, this more
restrictive ordering could replace the ordering ≤b.

As already indicated, the partial ordering ≤b of permutations
has been introduced above as a step toward defining the relative-
arrangement partial order ≤a of pairs of vectors. Because we are
interested in relative arrangement only, an appropriate definition must
satisfy

(xΠ, yΠ) a= (x, y)

in the sense that (x, y) ≤a (xΠ, yΠ) ≤a (x, y) for all permutation
matrices Π. Consequently, in defining (x, y) ≤a (u, v), we may as well
assume that x = x↑, u = u↑. For purposes of extending rearrangement
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inequalities, (x, y) ≤a (u, v) can be meaningful only if u is a permuta-
tion of x and v is a permutation of y. In this case and if x = x↑, u =
u↑ (= x↑), then (x, y) ≤a (u, v) if and only if y ≤b v. More precisely,

(x, y) ≤a (u, v)

if u is a permutation of x, v is a permutation of y, and if there exist
permutations π(1) and π(2) such that

π(1)(x) = x↑, π(2)(u) = u↑ (= x↑), and π(1)(y) ≤b π(2)(v).

In case the components of x (or u) are not unique, the permutations
π(1) and π(2) are not unique. Then, it is possible to have (x, y) a= (u, v)
even though, for a particular π(1) and π(2), π(1)(y) �= π(2)(v).

F.1. (x, y) a= (u, v), that is, (x, y) ≤a (u, v) and (x, y) ≥a (u, v), if
and only if there exists a permutation π such that x = π(u), y = π(v).
This observation is a direct consequence of the definition.

F.2. If (x, y) ≤a (u, v), then there exists a finite number of vectors
z(1), . . . , z(k) such that

(i) (x, y) a= (x↑, z(1)) ≤a · · · ≤a (x↑, z(k)) a= (u, v),

(ii) z(i−1) can be obtained from z(i) by an interchange of two
components of z(i), the first of which is less than the second.

This result follows from F.1 and is the genesis of the ordering ≤a in
the relation <p.

A function g of two vector arguments that preserves the ordering
≤a is called arrangement-increasing (AI). If the components of x and
y are fixed apart from order, g(x; y) takes on a maximum value when
x and y are similarly ordered and a minimum value when they are
oppositely ordered. It is by means of arrangement-increasing functions
that extensions of rearrangement inequalities are obtained.

Arrangement-increasing functions are said to be “decreasing in
transposition” by Hollander, Proschan, and Sethuraman (1977). We
have not used their terminology here because we prefer not to refer to
order-preserving functions as “decreasing.”

F.3. If g is arrangement-increasing, then g is permutation invariant
in the sense that

g(x; y) = g(xΠ; yΠ) for all permutations matrices Π. (1)
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Any natural domain Z ⊂ R n × R n for an AI function has the
property that

(x, y) ∈ Z implies (xΠ(1), yΠ(2)) ∈ Z

for all permutation matrices Π(1) and Π(2). (2)

In particular, g may be defined on R n×R n or it may be defined only
on a set of the form

A(x↓, y↓) = {(u, v) : u↓ = x↓, v↓ = y↓}.
F.4. Suppose that Z is a subset of R n × R n with property (2). If
for each (x↓, y↓) ∈ Z , gx↓,y↓ is an AI function defined on A(x↓, y↓),
then g, defined on Z by

g(x; y) = gx↓,y↓(x; y),

is an AI function defined on Z .
Because the condition of being AI involves no connections be-

tween behavior on different sets of the form A(x↓, y↓), it follows that
such functions can be badly behaved. For example, they need not be
measurable.

There are two basic results involving compositions that are useful
in the study of arrangement-increasing functions.

F.5. If g1, . . . , gk are AI functions on a set Z satisfying (2), and
if h : R k → R is increasing in each argument, then the composition
h(g1, . . . , gk) is an AI function on Z .

F.5.a. If g is an AI function defined on a set Z satisfying (2), then
the indicator function g̃(x, y) of the set

g̃(x; y) = I{(x,y):g(x,y)>t}(x; y)

is AI on Z .
This fact is obtainable from F.5 with k = 1, h(u) = 1, u > t,

h(u) = 0, u ≤ t.

F.6. If g is AI on R n × R n and if φ : R → R, ψ : R → R are
monotone in the same direction, then g∗ defined by

g∗(x; y) = g(φ(x1), . . . , φ(xn);ψ(y1), . . . , ψ(yn))

is AI on Z ∗ = {(u, v) : u = (φ(x1), . . . , φ(xn)), v = (ψ(y1), . . . , ψ(yn))
for some (x, y) ∈ Z }.
F.6.a. If the hypotheses of F.6 hold with the modification that φ and
ψ are monotone in opposite directions, then −g∗ is AI on Z ∗.
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Of course, analogs of F.5 and F.6 hold for order-preserving functions
whatever the partial ordering might be.

The Convex Cone of Arrangement-Increasing Functions

Let the set Z ∈ R n × R n satisfy (2). From particular cases of F.5
it follows that the class of arrangement-increasing functions defined
on Z is a convex cone. This convex cone has a reasonably sim-
ple structure that can be described by first supposing that the set
Z = A(1, 2, . . . , n; 1, 2, . . . , n) ≡ A. For (x, y) ∈ A, let

B(x, y) = {(u, v) : (x, y) ≤a (u, v)}.
The indicator function IB(x,y) of B(x, y) is clearly arrangement-
increasing. Moreover, for any subset C of A,

IC = max
(x,y)∈C

IB(x,y)

is arrangement-increasing. Functions of the form αIC , α > 0, constitute
the extreme rays of the convex cone of AI functions defined on A.
Because there are finitely many functions of the form IC , the cone
is finitely generated. It would be interesting to count the number of
distinct functions of the form IC for n = 2, 3, . . . .

For any (x, y), the AI functions defined on A(x; y) can be obtained
from those defined on A by means of F.6 using functions φ and ψ such
that φ(i) = x(i) and ψ(i) = y(i), i = 1, 2, . . . , n. The AI functions for
more general domains are then obtainable by using F.4.

Functions g that are arrangement-decreasing in the sense that −g
is AI also form a convex cone. The common boundary of these convex
cones consists of functions g having the property that

g(x; y) = g(xΠ1; yΠ2) for all permutation matrices Π1 and Π2.

Identification of Arrangement-Increasing Functions

The above characterizations are not particularly useful in checking
whether or not a given function is arrangement-increasing. Fortunately,
there is a way of doing this that is usually convenient.

F.7. Proposition. Let Z ⊂ R n × R n satisfy (2). A function g
defined on Z is AI if and only if

(i) g is permutation invariant in the sense of (1) (see F.3), and
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(ii) (x, y) ∈ Z , x1 < x2, y1 < y2 implies
g(x; y) ≥ g(x; y2, y1, y3, . . . , yn).

This characterization follows from F.1 and F.2 and is used by
Hollander, Proschan, and Sethuraman (1977).

Examples of Arrangement-Increasing Functions

The following examples of AI functions are all due to Hollander,
Proschan, and Sethuraman (1977).

F.8. If g has the form g(u; v) = φ(u+ v), u, v ∈ R n, then g is AI on
R n × R n if and only if φ is Schur-convex on R n.

Proof. By virtue of 2.B.1 and of F.7, it is sufficient to prove this
for n = 2. By A.1.c, x ≺ y on R 2 if and only if x↑ and y↑ have the
form

(x(1), x(2)) = (r2 + s1, r1 + s2), (y(1), y(2)) = (r1 + s1, r2 + s2),

where r1 < r2, s1 < s2.
If g is AI on R n × R n, it follows that

(i) g(r1, r2; s2, s1) = g(r2, r1; s1, s2)
≤ g(r1, r2; s1, s2) = g(r2, r1; s2, s1);

that is,

(ii) φ(r1 + s2, r2 + s1) = φ(r2 + s1, r1 + s2)
≤ φ(r1 + s1, r2 + s2) = φ(r2 + s2, r1 + s1).

Consequently, φ is Schur-convex on R 2. Conversely, if φ is Schur-
convex on R 2, then (ii) holds whenever r1 < r2, s1 < s2, i.e., (i) holds,
so g is AI on R 2. ||

Extensions of this result are discussed in Karlin and Rinott (1988).
Du and Hwang (1990) provide an alternative proof of F.8 (their
Theorem 2) and make use of it in the context of reliability.

F.8.a. If g has the form g(u; v) = φ(u− v) for all u, v ∈ R n, then g
is AI on R n × R n if and only if φ is Schur-concave on R n.

The proof of the result is similar to the proof of F.8. Alternatively,
F.8.a follows from F.8 with the aid of F.11 ahead.

F.9. If g has the form g(u; v) =
∑n

1 φ(ui, vi), then g is AI if and only
if φ is L-superadditive.
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This result is immediate upon writing out the condition that g is
AI.

F.9.a. If g has the form g(u; v) =
∏n

1 φ(ui, vi), then g is AI if and
only if φ is totally positive of order 2.

This result is also immediate upon writing out the condition that g
is AI. It is also obtainable from F.9 and F.5.

Additional Operations Preserving the Arrangement-
Increasing Property

Propositions F.5 and F.6 provide examples of operations on AI func-
tions that preserve the AI property. Several additional results of this
kind are known.

F.10. If g1 and g2 are positive AI functions defined on a set Z
satisfying (2), then the product g1g2 is AI on Z .

Proof. If g1 and g2 are AI, it follows from F.5 that log g1 +log g2 =
log g1g2 is AI, and again by F.5, this implies g1g2 is AI. ||
F.11. If g is an AI function, then the function h defined by

h(x; y) = −g(x;−y)
is AI.

Proof. This is a special case of F.6.a. ||
The following theorem says that the convolution of AI functions is

again AI.

F.12. Theorem (Hollander, Proschan, and Sethuraman, 1977). Let
μ be a measure defined on the Borel subsets on R n with the property
that for all Borel sets A ⊂ R n, and all permutation matrices Π, μ(A) =
μ(AΠ), where AΠ = {y : y = xΠ for some x ∈ A}. If gi is AI on
R n × R n, i = 1, 2, then the convolution g defined by

g(x; z) =
∫
g1(x; y)g2(y; z)μ(dy)

is AI on R n × R n, provided the integral exists.

Proof. First note that

g(xΠ; zΠ) =
∫
g1(xΠ; y) g2(y; zΠ) μ(dy)

=
∫
g1(xΠ; yΠ) g2(yΠ; zΠ) μ(dyΠ−1)
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=
∫
g1(x; y) g2(y; z) μ(dy)

= g(x; z)

because of the permutation invariance of μ and because g1 and g2
are AI.

Let Π0 be the permutation for which zΠ0 = (z2, z1, z3, . . . , zn) for
all z. By virtue of F.7, it is sufficient to show that

0 ≤ g(x; z)−g(x; zΠ0) =
∫ [

g1(x; y)g2(y; z)−g1(x; y)g2(y; zΠ0)
]
μ(dy).

Break the region of integration into the regions y1 < y2 and y1 ≥ y2

and make a change of variables in the second region to obtain

g(x; z) − g(x; zΠ0)

=
∫
y1<y2

[
g1(x; y) g2(y; z) − g1(x; y) g2(y; zΠ0)

+ g1(x; yΠ0) g2(yΠ0; z) − g1(x; yΠ0) g2(yΠ0; zΠ0)
]
μ(dy)

=
∫
y1<y2

[
g1(x; y) g2(y; z) − g1(x; y) g2(y; zΠ0)

+ g1(x; yΠ0) g2(y; zΠ0) − g1(x; yΠ0) g2(y; z)
]
μ(dy)

=
∫
y1<y2

[
g1(x; y) − g1(x; yΠ0)

] [
g2(y; z) − g2(y; zΠ0)

]
μ(dy).

Because g1 and g2 are AI, the integrand is nonnegative, so g is AI. ||
As noted by Hollander, Proschan, and Sethuraman (1977), 3.J.1 can

be obtained as a corollary to F.12:

F.12.a. Corollary. If φi is Schur-concave on R n, i = 1, 2, then the
convolution h defined by

h(x) =
∫
φ1(x− y)φ2(y) dy

is Schur-concave on R n, provided the integral exists.

Proof. This is immediate from F.12 and F.8.a. ||
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Application to Rank Order Statistics

The rank order corresponding to n distinct numbers x1, . . . , xn is the
vector r = (r1, . . . , rn), where ri is the number of xj ’s ≤ xi. When the
x’s are not distinct, the average rank is used. More precisely,

ri =
1
2

+
n∑
α=1

I(xi, xα),

where I(a, b) = 1 if a > b, I(a, b) = 1
2 if a = b, and I(a, b) = 0 if a < b.

For random variables X1, . . . ,Xn, the corresponding random rank
orders are denoted by R1, . . . , Rn.

F.12.b. Proposition (Hollander, Proschan, and Sethuraman, 1977).
IfX1, . . . ,Xn have an AI joint density function f(x1, . . . , xn;λ1, . . . , λn)
on R n × R n, and if R1, . . . , Rn are the rank orders, then

ψ(r, λ) = Pλ{R1 = r1, . . . , Rn = rn}
is AI on R n × R n.

Proof. This result follows directly from F.12 after noting that the
function

φ(x1, . . . , xn; r1, . . . , rn) =
{

1 if xi has rank ri, i = 1, . . . , n,
0 otherwise

is an AI function. ||
The special case that X1, . . . ,Xn are independent and Xi has a den-

sity gi(x, λi) that is totally positive of order 2 (TP2) in x and λi ∈ R
(Definition 18.A.1) is obtained by Savage (1957). He also obtains a
stronger result for the exponential class of densities

g(x, λi) = a(λi)h(x) exp(λix), i = 1, . . . , n.

This family is TP2, and hence is AI, so that F.12.b applies. Savage
(1957) shows that for λi = iλ, the weaker hypothesis

i∑
1

r′α ≥
i∑
1

rα, i = 1, . . . , n,

with strict inequality for some i, implies that

Pλ{R1 = r1, . . . , Rn = rn} > Pλ{R1 = r′1, . . . , Rn = r′n}.
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It is interesting to note that without characterizing the order-
preserving functions for the ordering ≤a, Savage (1957) provided a
catalog of some order-preserving functions used as test statistics in
nonparametric analysis. That these are AI functions on R n×R n can
be verified directly from F.7:

(i) T1(1, . . . , n; r1, . . . , rn) =
∑n

1 iri;

(ii) T2(1, . . . , n; r1, . . . , rn) =
∏n

1 (r1 + · · · + ri)−1;

(iii) T3(1, . . . , n; r1, . . . , rn) =
∑n

i,j=1 d(ri, rj),

where d(a, b) = 1 if a < b, d(a, b) = 0 if a ≥ b;

(iv) T4(1, . . . , n; r1, . . . , rn) =
∑2n

n+1 d(n, ri);

(v) T (E1, . . . , En; r1, . . . , rn) =
∑n

1 Eiri,

where Ei is the expected value of the ith smallest observation in a
sample of size n from a standard normal distribution.

Hollander, Proschan, and Sethuraman (1977) note that if B1, . . . , Bn
are real numbers ordered such that B1 ≤ · · · ≤ Bn, then

T (B1, . . . , Bn; r1, . . . , rn) =
m∑
1

Bri
, m = 1, . . . , n,

is AI. The choices Bj = j and Bj = Ej yield (i) and (v).

F.12.c (Savage, 1957; Hollander, Proschan, and Sethuraman, 1977).
If T (x, r) is AI and X1, . . . ,Xn have an AI joint density f(x, λ), then

ha(x;λ) = Pλ{T (x;R) ≥ a}
is an AI function.

This is another direct application of F.12. From F.12.c it follows that
if π ≤b π′, x1 ≤ · · · ≤ xn, and T (x; r) is AI, then T (x;R) is stochas-
tically larger when X1, . . . ,Xn has an AI distribution with parameter
λπ′(1), . . . , λπ′(n) than when the parameter is λπ(1), . . . , λπ(n).

Application to Rearrangement Inequalities

Notice that F.9 and E.1 can be combined as follows: For
functions g : R n × R n → R of the form g(x, y) = Σn

j=1φ(xj , yj),
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g(x, y) ≤ g(x↓, y↓) for all x, y, implies φ is L-superadditive. If φ is
L-superadditive, then g is AI.

Of course, F.9 leads to a variety of inequalities not obtainable from
E.1.

Although F.9 does not directly generalize C.1 or C.4, it is easy to
provide such a generalization using the ordering ≤a.

F.13. Theorem. Let φ be a monotone L-superadditive function. If
(x, y) ≤a (u, v), then

(φ(x1, y1), . . . , φ(xn, yn)) ≺w (φ(u1, v1), . . . φ(un, vn)).

Proof. Define Tk(x; y) to be the sum of the k largest of φ(xi, yi),
i = 1, . . . , n. To show that Tk is AI, it is sufficient to show that Tk
satisfies conditions (i) and (ii) of F.7. Condition (i) is trivial; to verify
(ii), suppose that x1 < x2, y1 < y2. Then,

(φ(x1, y1) + φ(x2, y2)) ≥ φ(x1, y2) + φ(x2, y1)

since φ is L-superadditive. Consequently, Tk satisfies (ii) of F.7. ||
There is a companion to F.13 which extends B.1 and B.2.

F.14. Theorem. Let φ(x1, x2) = f1(x1) + f2(x2), where f1 and f2

are monotone in the same direction. If (x, y) ≤a (u, v), then

(φ(x1, y1), . . . , φ(xn, yn)) ≺ (φ(u1, v1), . . . , φ(un, vn)).

Proof. By virtue of F.13, it is necessary only to show that
n∑
1

φ(xi, yi) =
n∑
1

φ(ui, vi).

But because u is a permutation of x and v is a permutation of y, this
is immediate. ||

Preservation of Schur-Convexity

In Section 3.J, two theorems are given concerning integral trans-
forms that preserve Schur-convexity. One of these, 3.J.1, is generalized
by F.12. Here a generalization of 3.J.2 is given after some required
definitions.

Let Λ and T be semigroups in R (with addition as the operation).
A σ-finite measure μ which assigns measure 0 to the complement of T
is said to be invariant if

μ(A ∩ T ) = μ((A+ x) ∩ T )
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for each Borel set A ⊂ R and each x ∈ T . A measurable function
φ :T n × Λn → R is said to have the semigroup property with respect
to μ if the integral∫

φ(x− y, λ(1))φ(y, λ(2)) dμ(y1) · · · dμ(yn)

over the region {(x, y) : y ∈ T n, x − y ∈ T n} exists and is equal to
φ(x, λ(1) + λ(2)).

F.15. Theorem (Hollander, Proschan, and Sethuraman, 1977). Let
φ :T n×Λn → R be an AI function having the semigroup property with
respect to the invariant measure μ. If f :T n → R is Schur-convex, then
the function

h(λ) =
∫
Tn

φ(x, λ)f(x) dμ(x1) · · · dμ(xn)

is Schur-convex on Λn.

Proof. Let T = {x, y : x ∈ T n, y ∈ T n, x− y ∈ T n}. Then

h(λ(1) + λ(2))

=
∫
Tn

φ(x, λ(1) + λ(2))f(x) dμ(x1) · · · dμ(xn)

=
∫

T
φ(x− y, λ(1))φ(y, λ(2))f(x)

n∏
1

dμ(yi)
n∏
1

dμ(xi).

Now let z = x− y, so that by the invariance of μ,

h(λ(1) + λ(2))

=
∫
Tn

φ(y, λ(2))

[∫
Tn

φ(z, λ(1))f(y + z)
n∏
1

dμ(zi)

]
n∏
1

dμ(yi).

Because φ(z, λ(1)) is AI in λ(1) and z, f(z + y) is AI in z and y (F.8),
the inner integral here is AI by F.12. By a second application of F.12,
h(λ(1) + λ(2)) is AI in λ(1) and λ(2). Consequently, h is Schur-convex
by F.8. ||

As remarked in Section 3.J, Karlin and Rinott (1988) provide further
extensions of results of this genre in the context of generalized total
positivity.
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Mathematical Applications



7
Combinatorial Analysis

Majorization arises in several related topics of a basically combinato-
rial nature, namely, in graph theory, the theory of network flows, and
the study of incidence matrices. As is to be expected, results can often
be stated equivalently in the language of each discipline. Some of this
language is reviewed in Section A. An excellent discussion of matrix
theory and graph theory is given by Brualdi (2006). In combinatorial
analysis, majorization is almost always in integers. See 5.D.

A Some Preliminaries on Graphs, Incidence
Matrices, and Networks

A directed graph G = (X,U) consists of a nonempty set X of points,
called vertices or nodes, and a set U of ordered pairs (x, y) where
x, y ∈ X. The pairs (x, y) are called arcs or edges of the graph. We
are concerned only with finite graphs, i.e., graphs with a finite number
of vertices, and we often refer to G as a “graph” rather than as a
“directed graph.”

Corresponding to each finite graph G = (X,U) is an associated
incidence matrix. An incidence matrix is a matrix in which each entry

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 243
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 7,
c© Springer Science+Business Media, LLC 2011
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is either 0 or 1. For a given ordering x1, x2, . . . , xn of the points in X,
the matrix A = (aij) with

aij =
{

1 if (xi, xj) ∈ U,
0 if (xi, xj) �∈ U

is called the associated incidence matrix. For example, if n = 4
and U = {(x1, x2), (x1, x4), (x4, x2), (x4, x3)} as in Fig. 1, then the
associated incidence matrix is given by

A =

⎡
⎢⎢⎣

0 1 0 1
0 0 0 0
0 0 0 0
0 1 1 0

⎤
⎥⎥⎦ .

Of course, U is completely determined by the matrix A.

X4

X2

X3X1

Figure 1. A directed graph of four points.

In network theory, one has a finite directed graph G = (X,U)
without loops [i.e., there are no arcs of the form (x, x)]. Associated
with each arc (x, y) is a nonnegative number c(x, y) called the capacity
of the arc. In this context, the graph itself is called a network.

A “flow” in the network is represented by a function f defined on
the arcs of G; f(x, y) is thought of as the flow from x to y along
the arc (x, y). In keeping with the directional nature of the graph, it
is required that f(x, y) ≥ 0. Additionally, the flow f(x, y) may not
exceed the capacity c(x, y) of the arc.

For a given flow, a vertex of the graph is classified as a “source,”
“intermediate vertex,” or “sink” depending on whether the total flow
issuing from the vertex is greater than, equal to, or less than the
flow into the vertex. Often, there is only one source, s, and only one
sink, t.

To make this more precise, let A(x) = {y : (x, y) ∈ U} be the set
of vertices at which arcs emanating from x terminate, and let B(x) =
{y : (y, x) ∈ U} be the set of vertices from which arcs issue to terminate
at x. A real-valued function f defined on U is called a flow from s to t if

0 ≤ f(x, y) ≤ c(x, y) for all (x, y) ∈ U,
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and

∑
y∈A(x)

f(x, y) −
∑

y∈B(x)

f(y, x) =

⎧⎨
⎩

v if x = s,
0 if x �= s, t,

−v if x = t.

The quantity v is called the value of the flow. The second condition
of the definition is concerned with the total flow emanating from a
vertex minus the total flow into the vertex, and reflects the properties
of source, intermediate vertex, and sink.

For further discussions of networks, see Ford and Fulkerson (1962)
or Berge (1958). See also Brualdi and Ryser (1991) for a discussion of
matrices and graphs.

B Conjugate Sequences

In the study of majorization in nonnegative integers, one often encoun-
ters a new sequence of integers generated from an old sequence in a
particular way. This new sequence is called the conjugate sequence.

For any finite set E, denote the number of distinct elements of E by
|E|.
B.1. Definition. Let a1, a2, . . . , an be nonnegative integers, and
define

a∗j = |{ai; ai ≥ j}|, j = 1, 2, . . . . (1)

The sequence a∗1, a
∗
2, a

∗
3, . . . is said to be conjugate to the sequence

a1, a2, . . . , an, 0, 0, . . . .

Note that a∗j is the number of integers ai which are greater than or
equal to j. For example,

if a = (2, 1, 1), then {a∗i } = (3, 1, 0, 0, . . .),
if a = (3, 2, 1), then {a∗i } = (3, 2, 1, 0, 0, . . .),
if a = (1, 0, 0), then {a∗i } = (1, 0, 0, . . .),
if a = (1, 1, 1), then {a∗i } = (3, 0, 0, . . .).

Of course, the sequence {a∗i } does not depend upon the order of
a1, a2, . . . , an; it is always a decreasing sequence, with a∗1 ≤ n and
a∗j = 0 for j > max(a1, a2, . . . , an).

The nonzero elements of the conjugate sequence can be obtained in
terms of the corresponding incidence matrix. This matrix is created
using a greedy algorithm as follows. Let

δi = (1, . . . , 1, 0, . . . , 0), i = 1, . . . , k,
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be the k-dimensional vector with first i components equal to 1 and
remaining k − i components equal to zero. Ordinarily, k is clear from
the context.

Given nonnegative integers a1 ≥ a2 ≥ · · · ≥ an, take k = a1 and let
A be the n× k matrix with ith row δai

. Then A has row sums ai; A is
sometimes called the maximal matrix with row sums a1, . . . , an. The
vector (a∗1, a∗2, . . . , a∗k) is just the vector of column sums of A.

Example. a = (3, 2, 2, 1, 1), a∗ = (5, 3, 1, 0, 0),

1 1 1 0 0 3
1 1 0 0 0 2
1 1 0 0 0 2
1 0 0 0 0 1
1 0 0 0 0 1

5 3 1 0 0

Alternatively, the vectors a and a∗ are often displayed by means of
what are called Ferreri–Sylvester diagrams.

B.2. Apart from their order, the ai’s can be retrieved from the
nonzero a∗j ’s, and Gale (1957) gave the following method for doing
this: Form the m × n maximal matrix A

∗ with row sums a∗1, . . . , a∗m,
where m is the largest index for which (a∗m > 0). Then the column
sums of A∗ are a∗∗1 , . . . , a∗∗n . To see that

a∗∗i = a[i], i = 1, . . . , n, (2)

observe that the transpose of A∗ is just the matrix A.

B.3. For later reference we record the fact that
n∑
1

ai =
a1∑
1

a∗i ,
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where a1 ≥ · · · ≥ an ≥ 0. This can be seen by observing that both∑n
1 ai and

∑a1
1 a∗i give the number of units in the maximal matrix A

with row sums a1, a2, . . . , an. More formally,
a1∑
j=1

a∗i =
∑

i≤j≤a1

∑
1≤i≤n, ai≥j

1 =
∑

1≤i≤n

∑
1≤j≤ai

1 =
n∑
1

ai.

B.4. For m = 1, 2, . . . ,
m∑
j=1

a∗j =
n∑
i=1

min(ai,m).

This relation is apparent from consideration of the maximal matrix A
and the fact that its column sums are the nonzero a∗j .

Often it is convenient to write

a∗ = (a∗1, a
∗
2, . . . , a

∗
k)

without explicitly indicating the value of k. However, we always take
k sufficiently large that a∗k+1 = 0.

B.5. It is an interesting observation that

x ≺ y implies x∗ � y∗

when x∗ and y∗ are of length at least max(yi).

To prove this, suppose for convenience that x1 ≥ · · · ≥ xn and
y1 ≥ · · · ≥ yn. From x ≺ y, it follows that

n∑
k+1

xi ≥
n∑
k+1

yi, k = 0, 1, . . . , n− 1.

Denote by l the largest index for which xl > m. Then from B.4 it
follows that

m∑
1

x∗i =
n∑
i=1

min(xi,m) = lm+
n∑
l+1

xi

≥ lm+
n∑
l+1

yi ≥
n∑
1

min(yi,m) =
m∑
1

y∗i .

By B.3,
∑n

1 xi =
∑y1

1 x∗i and
∑n

1 yi =
∑y1

i y∗i , so that
∑y1

1 x∗i =∑y1
1 y∗i , and this completes the proof. ||
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It is possible to give an alternative proof of B.5 by showing that
the maximal matrix Y can be transformed to X by moving units in Y
down and left.

The following lemma, implicit in the work of Vogel (1963), has been
given by Mirsky (1971, p. 207). It relates to weak majorization, a
condition that is encountered in the next section.

Recall that |E| denotes the number of distinct elements in the finite
set E.

B.6. Lemma (Mirsky, 1971). Let ai and bj, 1 ≤ i ≤ m, 1 ≤ j ≤ n,
be nonnegative integers. Then the inequality

|I||J | ≥
∑
i∈I

ai −
∑
j �∈J

bj (3)

holds for all I ⊂ {1, . . . ,m} and J ⊂ {1, . . . , n} if and only if

a ≺w b∗. (4)

Proof. Suppose that (3) holds and choose

I ⊂ {1, . . . ,m}, J = {j : 1 ≤ j ≤ n, bj ≥ |I|}.
Then from B.4 it follows that

∑
i∈I

ai ≤ |I||J | +
∑
j �∈J

bj =
∑
j∈J

I +
∑
j �∈J

bj =
n∑
j=1

min(bj , |I|) =
|I|∑
i=1

b∗i ;

this proves (4). If (4) holds, so that

∑
i∈I

ai ≤
|I|∑
i=1

b∗i

whenever I ⊂ {1, . . . ,m}, B.4 can be used again to obtain

∑
i∈I

ai ≤
|I|∑
i=1

b∗i =
n∑
j=1

min(bj , |I|)

=
∑
j∈J

min(bj , |I|) +
∑
j �∈J

min(bj , |I|)

≤
∑
j∈J

|I| +
∑
j �∈J

bj = |I||J | +
∑
j �∈J

bj. ||

Note that if
∑m

1 ai =
∑n

1 bi = S, say, then (3) can be written as

|I||J | ≥
∑
i∈I

ai +
∑
j∈J

bj − S,
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with a symmetry not always present in (3). By B.3,
∑m

1 ai =
∑n

1 bi also
means that

∑m
1 ai =

∑b1
1 b∗i , and (4) can be written (symmetrically,

by B.5) as

(a, 0) ≺ (b∗1, . . . , b
∗
l ),

where l = max(b1,m) and (a, 0) has length l.

C The Theorem of Gale and Ryser

We begin by expressing the theorem of Gale and Ryser in terms of
incidence matrices. This is the simplest way to state the result. But
later on, some equivalent formulations are mentioned that are oriented
toward applications.

Ryser (1957) has answered, in terms of majorization, the following
question: What are necessary and sufficient conditions in order that
the numbers r1, . . . , rm and c1, . . . , cn are the row sums and column
sums, respectively, of an m× n incidence matrix?

In the same year, Gale (1957) answered essentially the same ques-
tion: What are necessary and sufficient conditions for the existence of
an m× n incidence matrix with jth row sum greater than or equal to
bj and ith column sum less than or equal to ai for all i and j? In case∑
ai =

∑
bj , such a matrix must have row sums bj and column sums

ai, so that this question is exactly the question of Ryser.
A more general formulation has been considered by Fulkerson

(1959), who obtained necessary and sufficient conditions for the exis-
tence of an incidence matrix with row and column sums falling between
prescribed upper and lower bounds. This result is given later in C.1.
Various other related results have been discussed by Mirsky (1971). For
more details on matrices and graphs, see Brualdi and Ryser (1991).
Krause (1996) provides an alternative proof of Theorem C.1, and notes
that it arises in several other mathematical contexts. See also Brualdi
(2006).

C.1. Theorem (Gale, 1957; Ryser, 1957). Let r1, . . . , rm be non-
negative integers not exceeding n, and let c1, . . . , cn be nonnegative
integers. A necessary and sufficient condition for the existence of an
m × n incidence matrix with row sums r1, . . . , rm and column sums
c1, . . . , cn is that

c ≡ (c1, . . . , cn) ≺ (r∗1, . . . , r
∗
n) ≡ r∗. (1)

Proof. Suppose that A is an incidence matrix with row sums ri and
column sums cj . Form a new incidence matrix A (the maximal matrix
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with these row sums) with the same row sums but with 0’s and 1’s
distributed in each row so that all 1’s precede the first zero, as below.

Row
Sums⎡

⎢⎢⎣
1 1 1 · · · 1 1 · · · 1 0 · · · 0 r1
1 1 1 · · · 1 0 · · · 0 0 · · · 0 r2
...

...
...

...
...

1 1 0 · · · 0

⎤
⎥⎥⎦

rm
Column Sums r∗1 r∗2 · · · r∗n

In conjunction with the discussion of maximal matrices in Section B,
it has already been observed that the new column sums are r∗1, . . . , r∗n.
It is readily seen that

∑k
1 ci ≤

∑k
1 r

∗
i , k = 1, . . . , n − 1, and

∑n
1 ci =∑n

1 r
∗
i , so that c ≺ r∗.

The more difficult part of the theorem is that (1) guarantees the
existence of the incidence matrix. An explicit construction for the ma-
trix can be given using 5.D.3 to show that the construction can always
be carried out. To describe this construction, suppose without loss of
generality that r1 ≥ r2 ≥ · · · ≥ rm and c1 ≥ c2 ≥ · · · ≥ cn. Then,
starting with the first row and proceeding consecutively through the
remaining rows, distribute units in the matrix from left to right as
follows: With the ith row, place a unit in the first column if fewer than
c1 units have already been placed in the first column and ri ≥ 1; place
a unit in the second column if fewer than c2 units have already been
placed in the second column and fewer than ri units have been placed
in the ith row. In general, place a unit in the jth column if fewer than
cj units have been placed in the jth column and rows 1, . . . , i− 1, and
if fewer than ri units have been placed in the ith row and columns
1, . . . , j − 1.

For illustration, consider the example with r = (8, 8, 5, 5, 4) and c =
(5, 5, 4, 4, 4, 3, 2, 1, 1, 1), so that a 5 × 10 incidence matrix is required.
With the first row, no units have yet been distributed, so place 8 units,
followed by two zeros.

1 1 1 1 1 1 1 1 0 0 8
1 1 1 1 1 1 1 0 1 0 8
1 1 1 1 1 0 0 0 0 0 5
1 1 1 1 1 0 0 0 0 0 5
1 1 0 0 0 1 0 0 0 1 4

5 5 4 4 4 3 2 1 1 1
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With the second row, place units until reaching column 8, where the
required c8 = 1 has already been achieved. But place a unit in col-
umn 9, since no units have yet been placed there and since one more
unit is required to achieve r2 = 8. In the last row, the phenomenon
is again encountered that required column sums have already been
achieved (in columns 2, 3, 4 and 7, 8, 9). Consequently, place a unit
in the sixth column rather than the third, and in the eighth column
rather than the fourth.

To prove that this construction can always be carried out, use in-
duction on the number m of rows. Suppose that the construction can
always be carried out with m − 1 rows. Form the matrix with first
row (1, . . . , 1, 0, . . . , 0) consisting of r1 ones followed by n − r1 zeros.
To complete the construction, an m− 1× n incidence matrix must be
obtained with row sums r2, r3, . . . , rm and column sums

c1 − 1, c2 − 1, . . . , cr1 − 1, cr1+1, . . . , cn.

If use is to be made of the induction hypotheses, then it must be that

(c1 − 1, . . . , cr1 − 1, cr1+1, . . . , cn) ≺ (r̃2, r̃3, . . . , r̃n+1),

where r̃i, the number of the r2, r3, . . . , rm greater than or equal to i−1,
is the conjugate sequence of r2, . . . , rm. But

(r̃2, r̃3, . . . , r̃n+1) = (r∗1 − 1, . . . , r∗r1 − 1, r∗r1+1, . . . , r
∗
n),

and

(c1 − 1, . . . , cr1 − 1, cr1+1, . . . , cn) ≺ (r∗1 − 1, . . . , r∗r1 − 1, r∗r1+1, . . . , r
∗
n)

by 5.D.3. ||

Very similar constructions for an incidence matrix to achieve
specified row sums r1, . . . , rm and column sums c1, . . . , cn have been
given by Gale (1957) and Fulkerson and Ryser (1962). The construc-
tion of Fulkerson and Ryser is as follows: Select any column j and
insert 1’s in the positions corresponding to the cj largest row sums;
delete column j, reduce each of these cj row sums by 1, and repeat the
entire procedure on another column. Essentially, this same construc-
tion is given by Ryser (1963) to prove C.1. Another kind of proof is
given by Mirsky (1971, p. 76).
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The following theorem generalizes a result of Hoffman (1960) and
has been given by Kellerer (1961, 1964). Unfortunately, its proof would
carry us too far afield, so we simply quote the result, and refer to
Mirsky (1971, p. 205) for a proof.

C.2. Theorem. Let 0 ≤ ρ′i ≤ ρi, 0 ≤ σ′j ≤ σj, and aij ≥ 0 for
1 ≤ i ≤ m, 1 ≤ j ≤ n, be integers. Then there exists an m× n matrix
Q = (qij) of integral elements with row sums r1, . . . , rm and column
sums c1, . . . , cn such that

ρ′i ≤ ri ≤ ρi, 1 ≤ i ≤ m,

σ′j ≤ cj ≤ σj , 1 ≤ j ≤ n,

0 ≤ qij ≤ aij, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

if and only if, for all I ⊂ {1, . . . ,m}, J ⊂ {I, . . . , n},
∑
i∈I

j∈J

aij ≥ max

{∑
i∈I

ρ′i −
∑
j �∈J

σj ,
∑
j∈J

σ′j −
∑
i�∈I

ρi

}
.

C.3. Theorem (Fulkerson, 1959). There exists an m× n incidence
matrix Q with row sums r1, . . . , rm and column sums c1, . . . , cn such
that

ρ′i ≤ ri ≤ ρi, 1 ≤ i ≤ m,

σ′j ≤ cj ≤ σj, 1 ≤ j ≤ n,

if and only if

(ρ′1, . . . , ρ′m) ≺w (σ∗1 , . . . , σ∗m),
(σ′1, . . . , σ′n) ≺w (ρ∗1, . . . , ρ∗n).

Proof. In C.2, take aij = 1 for all i, j to obtain that the required
incidence matrix Q exists if and only if, for all I ⊂ {1, . . . ,m} and
J ⊂ {1, . . . , n},

|I||J | ≥
∑
i∈I

ρ′i −
∑
j �∈J

σj and |I||J | ≥
∑
j∈J

σ′j −
∑
i�∈I

ρi.

The theorem is now immediate from B.6. ||
C.4. Corollary (Gale, 1957). There exists an m×n incidence matrix
Q with row sums r1, . . . , rm and column sums c1, . . . , cn such that

ri ≤ ρi, 1 ≤ i ≤ m, and σ′j ≤ cj , 1 ≤ j ≤ n,

if and only if

(σ′1, . . . , σ
′
n) ≺w (ρ∗1, . . . , ρ

∗
n).
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Proof. In C.3, take ρ′i = 0, 1 ≤ i ≤ m, and σj = ∞, 1 ≤ j ≤ n. ||
Fulkerson (1960) considers a variant of the Gale–Ryser theorem by

asking this question: What are necessary and sufficient conditions for
the existence of a square incidence matrix with prescribed row and
column sums and zero trace? The answer to this question can be stated
in terms of a majorization when the prescribed row and column sums
are similarly ordered.

Instead of requiring that Q be an incidence matrix with entries that
are 0’s or 1’s, in the context of capacity–constrained supply–demand
networks, it is of interest to consider the existence of m × n matrices
with nonnegative entries that are uniformly bounded that have given
row and column sums.

C.5. Theorem (Brualdi and Ryser, 1991, Theorem 6.2.4). Let
r1, . . . , rm and c1, . . . , cn be nonnegative integers satisfying

∑m
i=1 ri =∑n

i=1 cj . In addition, assume that c1 ≥ c2 . . . ≥ cn and let b be a
positive integer. There exists an m × n nonnegative integral matrix
A = (aij) with row sums r1, . . . , rm and column sums c1, . . . , cn
satisfying aij ≤ b (1 ≤ i ≤ m, 1 ≤ j ≤ n) if and only if

k∑
j=1

cj ≤
m∑
i=1

min(ri, bk), k = 1, 2, . . . , n.

The case b = 1 in C.5. corresponds to the Gale-Ryser theorem, C.1.

Brualdi and Ryser (1991) also present results parallel to C.5 that
provide necessary and sufficient conditions for the existence of a ma-
trix A that is as described in C.5, but in addition is (i) symmetric and
(ii) symmetric with zero trace. Specialized to deal with incidence ma-
trices, these results can be stated in terms of majorizations involving
conjugate sequences.

C.6. Theorem (Brualdi and Ryser, 1991, Section 6.3). For integers
r1 ≥ · · · ≥ rn ≥ 0, the following are equivalent:

(i) There exists a symmetric incidence matrix with row sums
r1, . . . , rn.

(ii) (r1, . . . , rn) ≺ (r∗1 , . . . , r∗n).
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C.7. Theorem (Erdös and Gallai, 1960). Let r1 ≥ r2 ≥ . . . ≥ rn be
nonnegative integers whose sum is an even integer. The following are
equivalent:

(i) There exists a symmetric incidence matrix with zero trace with
row sums r1, . . . , rn.

(ii) (r1, . . . , rn) ≺ (r∗∗1 , . . . , r
∗∗
n ).

Proofs of C.6 and C.7 together with references for algorithms for con-
struction of the matrices described in C.5–C.7 are contained in Brualdi
and Ryser (1991, Chapter 6).

D Some Applications of the Gale–Ryser
Theorem

In this section, Theorem C.1 of Gale and Ryser is applied to obtain re-
sults in several areas. Most of these results are equivalent or essentially
equivalent to C.1; the principal difference is one of terminology.

Demidegrees of a Graph

For each fixed vertex x of a (directed) graph G = (X,U), the number

d+(x) = |{y : (x, y) ∈ U}|
of arcs emanating from x, and the number

d−(x) = |{z : (z, x) ∈ U}|
of arcs terminating at x, are called, respectively, the outward
demidegree and the inward demidegree of the vertex x.

Given integers r1, r2, . . . , rn, c1, c2, . . . , cn, under what conditions
does there exist a graph with vertices x1, x2, . . . , xn satisfying

d+(xk) = rk, d−(xk) = ck, k = 1, . . . , n?

To answer this question, notice that for any graph G = (X,U),
the associated incidence matrix A has kth row sum d+(xk) and kth
column sum d−(xk). Thus the question can be rephrased in terms
of the existence of an incidence matrix with prescribed row and col-
umn sums. Consequently, the following equivalent result is obtained
from C.1:
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D.1. Theorem. A necessary and sufficient condition for the integers
r1, . . . , rn and c1, . . . , cn to constitute, respectively, the outward and
inward demidegrees of a graph is that

(c1, . . . , cn) ≺ (r∗1 , . . . , r
∗
n).

Properties of Elements of a Set and a Majorization
of Probabilities

Here C.1 is related to the following result concerning properties of
elements of a finite set.

D.2. Theorem. Let S = {s1, . . . , sm} be a finite set, and let
N1, . . . , Nn, M1, . . . ,Mn be numbers. Then there exists a set of prop-
erties {Π1, . . . ,Πn} such that Ni is the number of elements in S having
property Πi, and Mi is the number of elements in S having i or more
of the properties Π1, . . . ,Πn, i = 1, . . . , n, if and only if

(N1, . . . , Nn) ≺ (M1, . . . ,Mn).

This theorem can be translated into slightly different language by
letting Ei be the set of all elements in S having property Πi for
i = 1, . . . , n. Then Ni = |Ei| and Mi is the number of elements
belonging to at least i of the sets E1, . . . , En.

To prove D.2, construct an m×n incidence matrix Q = (qij), where

qij =
{

1 if si ∈ Ej ,
0 if si �∈ Ej .

Conversely, an m× n incidence matrix will determine sets E1, . . . , En
and Πi can be defined as the property of belonging to the set Ei.
Clearly, the ith column sum ci of Q is the numberNi = |Ei| of elements
in Ei, and the ith row sum ri of Q is the number of subsets containing
the element si of S.

Recall that the conjugate sequence r∗i , . . . , r
∗
n can be obtained as

column sums of the maximal matrix Q derived from Q by “sliding
units left” so that each row takes the form (1, . . . , 1, 0, . . . , 0). The ith
row contributes a unit to the sum r∗j if and only if ri ≥ j. Consequently,
r∗j = Mj is the number of elements in S that have at least j of the
properties Π1, . . . ,Πn.

With the identifications ci = Ni and r∗j = Mj, it is apparent that
D.2 is equivalent to C.1.

Now suppose that an element is chosen at random from the set
S, with each element equally likely. Then cj/n is the probability of
the event Ej that the chosen element has property Πj , j = 1, . . . , n.
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Moreover, r∗j/n is the probability that j or more of the events
E1, . . . , En occur simultaneously. Theorem D.2 yields

(c1/n, . . . , cn/n) ≺ (r∗1/n, . . . , r
∗
n/n).

Of course, the probabilities here are all multiples of 1/n. However, the
same majorization is proved in Section 12.C without this restriction.
There, it is shown that if in some probability space, E1, . . . , En are
arbitrary events with respective probabilities p1, . . . , pn, and if

qj = P (at least j of the events Ei occur), j = 1, . . . , n,

then

(p1, . . . , pn) ≺ (q1, . . . , qn).

This result can be regarded as a generalization of D.2, which con-
cludes that the majorization must hold. However, the converse part
of the probability theorem, also proved in Proposition 12.C.1, is not
a generalization of the converse part of D.2 because the integral
character of D.2 is lacking in the probability result.

A Theorem on Partial Transversals

Let A = {Ai : i ∈ I} be an indexed family of subsets Ai ⊂ E. If for
all i ∈ I, one element xi can be selected from Ai in such a way that
the elements xi, i ∈ I, are distinct, then the set {xi : i ∈ I} is called a
transversal of A . Formally, a subset T of E is called a transversal of
A = {Ai : i ∈ I} if there exists a one-to-one map ψ :T → I such that
x ∈ Aψ(x) for all x ∈ T . A subset X of E is a partial transversal of A
if X is a transversal of a subfamily of A .

A system of distinct representatives for A is an indexed family
X = {xj : j ∈ J} of distinct elements of E for which there exists
a one-to-one mapping φ :J → I such that xj ∈ Aφ(j). A transversal
is a set, whereas a system of distinct representatives can be regarded
as a function mapping the index set J onto a transversal.

The following theorem is obtained by Mirsky (1971) as a corollary to
a theorem of Philip Higgins that extends Marshall Hall’s fundamental
theorem concerning systems of distinct representatives. Mirsky makes
use of D.3 below to prove C.1. But we already have C.1, and we follow
a reverse procedure by using it to obtain D.3.

D.3. Theorem (Mirsky, 1971). Let m ≥ 1 and n ≥ 1 be integers,
let r1 ≥ · · · ≥ rm be nonnegative integers not exceeding n, and let
A = (A1, . . . , An) be a family of pairwise disjoint sets containing
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s1 ≥ · · · ≥ sn elements, respectively. Then A possesses m pairwise
disjoint partial transversals of cardinality r1, . . . , rm ≤ n, respectively,
if and only if

(s1, . . . , sn) ≺w (r∗1, . . . , r
∗
n). (1)

Proof. Suppose first that A possesses m pairwise disjoint partial
transversals T1, . . . , Tm of cardinality r1, . . . , rm, respectively. Let Q =
(qij) be the m× n incidence matrix with

qij =
{

1 if Ti ∩Aj is not empty,
0 if Ti ∩Aj is empty.

Then Q has row sums r1, . . . , rm and column sums c1, . . . , cn satisfying

cj ≤ sj, j = 1, . . . , n;

hence, by C.1,

(c1, . . . , cn) ≺ (r∗1 , . . . , r
∗
n). (2)

Let (π1, . . . , πn) be a permutation of (1, . . . , n) such that

cπ1 ≥ cπ2 ≥ · · · ≥ cπn
.

Then from (2),
n∑
k

si ≥
n∑
k

ci ≥
n∑
k

cπi
≥

n∑
k

r∗i , k = 1, . . . , n,

which yields (1).
Next, suppose that (1) holds. Let

δ =
n∑
1

sj −
n∑
1

rj , s0 = max(s1, r1 − δ,m), r0 = s0 + δ.

Then s0 ≥ s1 ≥ · · · ≥ sn, r
∗
0 ≥ r∗1 ≥ · · · ≥ r∗n, and

(s0, s1, . . . , sn) ≺ (r∗0 , r
∗
1, . . . , r

∗
n).

Let r̃1, r̃2, . . . , r̃s0 be the first s0 elements of the sequence conjugate to
(r∗0, r

∗
1, . . . , r

∗
n). Then r̃1 ≤ n+ 1, and by C.1, an s0 × (n+ 1) incidence

matrix Q = (qij) can be constructed with row sums r̃1, r̃2, . . . , r̃s0 and
column sums s0, s1, . . . , sn. Form the set Ti by placing an element
from Aj in Ti if and only if qij = 1, i = 1, . . . ,m, j = 1, . . . , n. Then
r1 = r̃1 − 1, . . . , rm = r̃m − 1 are the cardinalities of the disjoint sets
T1, . . . , Tm, respectively. ||
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E s-Graphs and a Generalization
of the Gale–Ryser Theorem

The theorem of Gale and Ryser can be applied to obtain the result
of D.1 concerning the inward and outward demidegrees of a graph.
A generalization of this result for s-graphs is of interest.

An s-graph is a generalized graph in which there can be as many as s
arcs in a given direction joining the same pair of vertices. An s-graph
with n vertices x1, . . . , xn can be characterized by an n × n matrix
Q = (qij), where qij is the number of arcs from xi which terminate
at xj . Of course, the outward demidegree d+(xk) of the kth vertex
(number of arcs emanating from xk) is just the kth row sum, rk, of Q.
Similarly, the inward demidegree d−(xk) of the kth vertex (number of
arcs terminating at xk) is the kth column sum, ck, of Q.

In the context of the Gale–Ryser theorem, one can ask for necessary
and sufficient conditions on integers r1, . . . , rm, c1, . . . , cn in order that
they be, respectively, the row and column sums of a matrix Q with
elements taking the values 1, . . . , s. Such conditions can be obtained
from C.2. Here some conditions are given in terms of majorization.
These conditions require a generalization of the notion of a conjugate
sequence.

E.1. Definition. Given nonnegative integers a1, . . . , an, define

as
∗
j =

n∑
i=1

{min[ai, js] − min[ai, (j − 1)s]}, j = 1, 2, . . . . (1)

When s = 1, B.4 can be used to see that this becomes the conjugate
sequence defined in B.1. Of course,

m∑
j=1

as
∗
j =

n∑
i=1

min[ai,ms], m = 1, 2, . . . . (2)

With a1 ≥ a2 ≥ · · · ≥ an, take k to satisfy (k − 1)s < a1 ≤ ks, and
let As be the n×k matrix with ith row a(i) having the sum ai and the
form

a(i) = (s, s, . . . , s, t, 0, . . . , 0),

where 0 ≤ t < s, i = 1, . . . , n. [Note that a(i) is the largest vector
under the ordering of majorization with components in the interval
[0, s] that sum to ai—see 5.C.1.] Then (as

∗
1 , . . . , a

s∗
k ) is just the vector

of column sums of As and as
∗
i = 0 for i > k.
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Unlike the case that s = 1, the columns of As need not have the
same form as the rows. For example, if s = 2, the second column of

A2 =
[
2 1
2 1

]

does not have the indicated form. For this reason, the ai cannot in
general be retrieved from the as

∗
i , and for s > 1, it may be that

(as
∗
i )s

∗ �= a[i] in spite of B.2. However, the following observations of D.
Adema (private communication) can be made:

((as
∗
i )s

∗
)s

∗
= as

∗
i , i = 1, 2, . . . ; (3)

(a1, . . . , an, 0, . . . , 0) ≺ (as
∗

1 , . . . , a
s∗
m), (4)

where m = max(n, k) and k is as above,

s < t implies (as
∗

1 , . . . , a
s∗
k ) ≺ (at

∗
1 , . . . , a

t∗
k ). (5)

To obtain (3), form the maximal matrix As from As by “moving units
up” in each column so that column sums are undisturbed but the
columns have the maximal form (s, . . . , s, t, 0, . . . , 0), 0 ≤ t < s. Then
both the rows and columns of As have the maximal form and As has
the row sums (as

∗
i )s

∗
and column sums as

∗
i . One obtains (3) using an

argument similar to that of 7.B.2.
The majorization (4) is easily obtained by comparing the matrices

As and As. Similarly, (5) follows from the fact that At can be obtained
from As by “moving units left.” Formally, it is a trivial consequence
of (2).

An extension of B.5 is

x ≺ y implies xs
∗ � ys

∗
(6)

whenever xs
∗

and ys
∗

are of sufficient length to incorporate all nonzero
components xs

∗
i , ys

∗
i . The proof of this is a simple modification of the

proof of B.5 and is based upon (2).

E.2. Lemma. Let ai and bj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, be nonnegative
integers. The inequality

s|I||J | ≥
∑
i∈I

ai −
∑
j∈J

bj

holds for all I ⊂ {1, . . . ,m}, J ⊂ {1, . . . , n} if and only if

a ≺w bs
∗
.

The proof of this is analogous to the proof of B.6. The result was noted
by Marshall and Olkin (1973a) and by Mahmoodian (1975).
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E.3. Theorem. Let r1, . . . , rm be nonnegative integers not exceeding
sn and let c1, . . . , cn be nonnegative integers. A necessary and sufficient
condition for the existence of an m× n matrix with elements 0, 1, . . . ,
or s, row sums r1, . . . , rm, and column sums c1, . . . , cn is that

c ≡ (c1, . . . , cn) ≺ (rs
∗

1 , . . . , r
s∗
n ) ≡ rs

∗
.

This theorem can be proved quite analogously to the proof given
for C.1. Alternatively, it follows from E.2 and C.2 with ρ′i = ρi = ri,
σ′j = σj = cj , aij = s, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

In terms of s-graphs, the following result can be obtained from E.3.

E.4. Theorem (Berge, 1958). Consider n pairs of nonnegative
integers (r1, c1), . . . , (rn, cn) which have been indexed so that

c1 ≥ · · · ≥ cn.

Then r1, . . . , rn and c1, . . . , cn constitute, respectively, the outward and
inward demidegrees of an s-graph if and only if

(c1, . . . , cn) ≺ (rs
∗

1 , . . . , r
s∗
n ).

Various additional results concerning the existence of graphs
and directed graphs with given degrees are given by Chen (1971,
Chapter 6).

F Tournaments

A tournament is a finite graph G = (X,U) without loops [i.e., (x, x) �∈
U for all x ∈ X] such that for each pair of distinct vertices x, y, either
(x, y) ∈ U or (y, x) ∈ U , but not both. For example, the graph of Fig. 2
with 5 vertices represents a tournament.

Tournaments arise in round-robin competitions, in dominance re-
lations in groups of animals, and in preference relations or paired
comparisons. For general surveys, see Harary and Moser (1966), Moon
(1968), or Ryser (1964). Brualdi (2006) provides an excellent discussion
of the connection between tournaments and graphs.

X3

X2
X5

X4

X1

Figure 2. A graph representation of a tournament.
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The incidence matrix associated with the tournament of Fig. 2 is

Q =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
0 1 1 1 0

⎤
⎥⎥⎥⎥⎦ .

Here, the element qij in the (i, j)th position is 1 if and only if (xi, xj) ∈
U . The main diagonal elements qii = 0 because the graph has no
loops. When i �= j, (xi, xj) ∈ U or (xj , xi) ∈ U, but not both, so that
qij = 1 − qji. This means that the ith row determines the ith column
in a tournament matrix.

The score si of xi ∈ X is the number of distinct pairs (xi, xj) ∈ U ;
i.e., si is the outward demidegree of xi. In terms of the associated
incidence matrix, si is just the ith row sum. The score vector of G =
(X,U) is the vector (s1, . . . , sn) of scores. It is customary in the theory
of tournaments to index the points in X so that

s1 ≤ · · · ≤ sn.

For the example of Fig. 2, the row sums of Q are (1, 1, 2, 3, 3), and
this is the score vector. Because the ordering adopted for majorization
is decreasing, we write tj = sn−j+1, j = 1, . . . , n. Then

t1 ≥ · · · ≥ tn

are the components of the score vector in reverse order. For the
tournament of Fig. 2,

(t1, t2, t3, t4, t5) = (3, 3, 2, 1, 1).

A question first considered by Landau (1953) [see also Moon (1968),
Ryser (1964), and Brauer, Gentry, and Shaw (1968)] is the following:
When can a set of integers be the score vector of some tournament?

F.1. Theorem (Landau, 1953). Let s1 ≤ · · · ≤ sn be nonnegative
integers. A necessary and sufficient condition for (s1, . . . , sn) to be the
score vector of some tournament is that

(s1, . . . , sn) ≺ (n− 1, n − 2, . . . , 1, 0). (1)

Remark. From the fact that
(k
2

)
= 1 + 2 + · · · + (k − 1) so that

(
n

2

)
−
(
n− k

2

)
= (n− 1) + (n− 2) + · · · + (n− k),
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(1) can be written as
k∑
1

ti ≤
(
k

2

)
, k = 1, . . . , n− 1,

n∑
1

ti =
(
n

2

)
, (2)

where tj = sn−j+1, j = 1, . . . , n. This is a more common form for the
condition, but we prefer (1) so as not to mask the majorization that
is present.

Proof of (1) when (s1, . . . , sn) is a score vector. Note that
∑n

1 ti =(n
2

)
because the graph G = (X,U) of the tournament satisfies

(x, y) ∈ U or (y, x) ∈ U when x �= y, but not both. Consider a sub-
graph G′ = (X ′, U ′), where X ′ ⊂ X has k elements and (x, y) ∈ U ′ if
and only if x, y ∈ X ′ and (x, y) ∈ U . Then G′ is again a tournament
so that, as already argued,

∑k
1 t

′
i =

(k
2

)
. But t′i ≥ ti for all i, which

completes the proof. ||
For an alternative proof, consider the tournament with associated

n × n incidence matrix T = (tij), where tij = 1 if and only if i < j;
i.e.,

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 · · · 1 1
0 0 1 · · · 1 1
0 0 0 · · · 1 1
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Here, the row sums are n − 1, n − 2, . . . , 1, 0, and the column sums
are 0, 1, . . . , n − 1. To see that the row sums (which are components
of the score vector) of this tournament are maximal in the sense of
majorization, observe that any principal submatrix of a tournament
incidence matrix is again a tournament incidence matrix. Thus if T is
partitioned as

T =
[
T1 T2

0 T3

]
, T1 : k × k, T3 : l × l, k + l = n,

then T1 is a tournament matrix. But the total number of ones in a
k × k tournament matrix is

(k
2

)
. Since T2 consists of all ones, the first

k rows of any tournament matrix can have no more ones than do the
first k rows of T . ||

Proof that (1) implies (s1, . . . , sn) is a score vector. The fact that
(s1, . . . , sn) is a score vector under the conditions (1) can be proved by
explicitly constructing a tournament incidence matrix with row sums
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s1, . . . , sn. This construction is as follows: Begin by inserting t1 ones
in the last row starting at the left. This determines the last column.
Next, insert t2 ones in the next-to-last row, starting at the left, but
taking into account any ones in the last column. In general, if at the
(k − 1)th stage there are already l ones in row k, place tk−l ones in
row k starting at the left, and then complete the kth column.

This construction is illustrated by the example of Fig. 2, where
t = (3, 3, 2, 1, 1). The sequence of steps is exhibited in Fig. 3.

0 · · · 0 1
· 0 · · 0 1
· · 0 · 0 2
· · · 0 1 3
1 1 1 0 0 3

3 3 2 1 1

Step 1

0 · · 0 0 1
· 0 · 0 0 1
· · 0 1 0 2
1 1 0 0 1 3
1 1 1 0 0 3

3 3 2 1 1

Step 2

0 · 0 0 0 1
· 0 1 0 0 1
1 0 0 1 0 2
1 1 0 0 1 3
1 1 1 0 0 3

3 3 2 1 1

Step 3

0 1 0 0 0 1
0 0 1 0 0 1
1 0 0 1 0 2
1 1 0 0 1 3
1 1 1 0 0 3

3 3 2 1 1

Step 4

Figure 3. Steps in the construction of a tournament matrix with score
(3, 3, 2, 1, 1).

That this construction is always successful can be proved by in-
duction. Given nonnegative integers u1 ≥ · · · ≥ un−1 such that
(u1, . . . , un−1) ≺ (n − 2, n − 3, . . . , 1, 0), assume that there exists a
tournament with the score vector (un−1, . . . , u1). Now suppose that
t1 ≥ · · · ≥ tn are nonnegative integers satisfying the majorization
(t1, . . . , tn) ≺ (n − 1, n − 2, . . . , 1, 0), and consider the partitioned
incidence matrix as follows:

1 2 (n− 1) n

1 0 0

2 0
...

... 0

}
t1

... 1...
...

(n− 1) 1

}
n− t1

n 1, 1, ..........., 1,︸ ︷︷ ︸ 0, ..........., 0︸ ︷︷ ︸ 0
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In reverse order, the row sums (scores)

t ≡ (t2 − 1, t3 − 1, . . . , tn−t1 − 1︸ ︷︷ ︸
n−t1−1

, tn−t1+1, . . . , tn)︸ ︷︷ ︸
t1

are required from the (n − 1) × (n − 1) submatrix because there are
n− t1 − 1 ones in the nth column. If it can be shown that

t ≺ (n − 2, n− 3, . . . , 1, 0),

then, by the induction hypothesis, the construction can be completed.
But t ≺ (n− 2, n − 3, . . . , 1, 0) is equivalent to

(0, t2−1, t3−1, . . . , tn−t1−1, tn−t1+1, . . . , tn) ≺ (n−2, n−3, . . . , 1, 0, 0),

and this follows from 5.D.3 with k = n−1, i1 = · · · = it1 = 1, it1+1 = 2,
it1+2 = 3, . . . , in−1 = n− t1, and j1 = 1, j2 = 2, . . . , jn−1 = n− 1. ||

A Generalized Tournament

If all pairs of teams in a league are to play exactly one game, then
the collection of all games played is a tournament. If all pairs of teams
play exactly r games, then the collection of all games played might be
called an r-tournament. Here each team plays r(n − 1) games, where
n is the number of teams in the league.

Bloom (1966) proposed the following problem: Show that a =
(a1, . . . , an) is a possible score vector in an r-tournament if

(a1, . . . , an) ≺ r(n− 1, n − 2, . . . , 1, 0). (3)

This is an easy consequence of F.1. For think of an r-tournament as a
repetition r times of an ordinary tournament and let s(i) be the score
vector of the ith repetition, i = 1, . . . , r. If the vectors s(i) are similarly
ordered, say each s(i) ∈ D , then (a1, . . . , an) =

∑r
1 s

(i). Moreover, it
follows from F.1 (with the aid of 5.A.6) that

∑r
1 s

(i) ≺ r(n−1, . . . , 1, 0).
This argument shows that (3) is a sufficient condition for a to be
the score vector of an r-tournament. It would be of some interest to
determine necessary and sufficient conditions.

Nondirected Graphs

For a nondirected graph with n vertices, let d = (d1, . . . , dn) be the vec-
tor of degrees (a degree sequence). Because the graph is nondirected,
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each edge is counted twice, so Σdi must be even. The corrected
conjugate sequence d′ of d is defined by

d′j = |{i : i < j and di ≥ j − 1}| + |{i : i > j and di ≥ j}|.
The calculation of the d′ sequence is readily accomplished by a transla-
tion to the corresponding incidence matrix as follows. Let the elements
of d be row sums and create an incidence matrix using a greedy algo-
rithm but omitting the diagonal elements. The column sums are then
the elements of d′.

For example, if d = (3, 2, 2, 2, 1):

* 1 1 1 0 3
1 * 1 0 0 2
1 1 * 0 0 2
1 1 0 * 0 2
1 0 0 0 * 1

4 3 2 1 0

Thus d′ = (4, 3, 2, 1, 0).

F.2. Proposition. A sequence d = (d1, . . . , dn) with the order
n − 1 ≥ d1 ≥ · · · ≥ dn ≥ 0 is a degree sequence if and only if d ≺ d′,
with Σdi an even number.

For further discussion of material in this subsection, see Arikati and
Peled (1999).

G Edge Coloring in Graphs

Although edge-coloring problems for finite graphs are in general quite
difficult, some results have been obtained by Folkman and Fulkerson
(1969) for bipartite graphs. They have also obtained a result for general
graphs involving majorization.

An edge coloring of a graph G assigns colors to the edges of G in
such a way that any two edges with a common vertex have distinct
colors (e.g., see Fig. 4). A sequence p1, . . . , pl of positive integers is
said to be color-feasible in the graph G if there exists an edge coloring
of G in which precisely pi edges have color i, i = 1, . . . , l. For the edge
coloring of the graph of Fig. 4, 3 edges have the color red, 3 edges
have the color green, and 1 edge has the color blue. Thus the integers
(3, 3, 1) are color-feasible in the graph G.
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red
green

red green

green blue red

Figure 4. An edge coloring of a graph.

The notions of “circuit” and “chain” are useful. A circuit is a
sequence of edges (xi1 , xi2), (xi2 , xi3), . . . , (xin , xi1), with xi1 , . . . xin
all distinct vertices. A chain is a sequence of edges (xi1 , xi2), . . . ,
(xin−1 , xin), again with xi1 , . . . , xin all distinct.

G.1. Theorem (Folkman and Fulkerson, 1969). Let G = (X,U) be
an arbitrary graph and suppose that P = (p1, . . . , pn) is color-feasible
in G. If

P � Q = (q1, . . . , qn),

then Q is also color-feasible in G.

To exemplify G.1, note that (3, 3, 1) is color-feasible in the graph
of Fig. 4. Since (3, 3, 1) � (3, 2, 2), it follows from the theorem that
(3, 2, 2) is also color-feasible. An edge coloring corresponding to the
sequence (3, 2, 2) is given in Fig. 5.

red
green

red green

blue blue red

Figure 5. An edge coloring of a graph corresponding to the sequence (3, 2, 2).

Proof . By 5.D.1, it is sufficient to prove that if P ′ is obtained
from P by a transfer from i to j, then P ′ is color-feasible. Let the
graph U = U1 ∪ · · · ∪ Un, where Uk consists of the pk edges with color
k, k = 1, . . . , n. Then Gk = (X,Uk) consists of unconnected edges.
Suppose that pi > pj and consider Gi + Gj = (X,Ui ∪ Uj). Each
connected component of this subgraph must be an even circuit or a
chain with edges alternating in Ui and Uj . Since pi > pj, there must
be at least one such chain having its first and last edge in Ui. Let U ′

i



H. Some Graph Theory Settings 267

and U ′
j be obtained from Ui and Uj by interchanging the edges in this

chain. This produces a coloring of G in which p′i = pi − 1 edges have
color i and p′j = pj + 1 edges have color j. ||

H Some Graph Theory Settings in Which
Majorization Plays a Role

H1. Laplacian spectra of graphs (Grone and Merris, 1990, 1994;
Grone, Merris, and Sunder, 1990)

H2. Schur-convex functions on the spectra of graphs (Constantine,
1983)



8
Geometric Inequalities

Although the triangle has a limited number of parameters (sides,
angles, altitudes, etc.), the range of inequalities among these entities is
surprisingly large. Bottema, Djordjević, Janić, Mitrinović, and Vasić
(1969), in their book Geometric Inequalities, have collected approx-
imately 400 inequalities for the triangle. It is shown in this chapter
that majorization provides a unified approach to obtaining many
known geometric inequalities. This unification also has the advantage
of suggesting new inequalities.

Because of the repeated references made to it, the book Geometric
Inequalities, cited above, is referred to as GI. Other inequalities are
from the American Mathematical Monthly, which is a fertile source of
geometric inequalities; this journal is referred to more simply as the
Monthly.

Mitrinović, Pečarić, and Volenec (1989) provide a sequel to GI in
the book Recent Advances to Geometric Inequalities(RAGI). These
two books, GI and RAGI, constitute an encyclopedia of geometric
inequalities. References where the dates appear without paren-
theses are taken from GI or RAGI and are not repeated in
the bibliography of this book.

That majorization can play a role in generating inequalities for the
triangle was noted by Steinig (1965), who obtained majorizations be-
tween the sides of a triangle and the exradii, and between the sides of
a triangle and the medians. For the triangle, the sum of the angles is

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 269
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 8,
c© Springer Science+Business Media, LLC 2011
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fixed, and majorization arises quite naturally. Many inequalities for the
angles of a triangle are obtained as a direct application of a majoriza-
tion using a Schur-convex function. A paper by Oppenheim (1971),
published in 1978, also contains the idea of using majorization to ob-
tain inequalities for triangles. Mitrinović, Pečarić, and Volenec (1989,
Chapter VIII, Section F) discuss majorization in the context of geo-
metric inequalities. A perusal of the two books GI and RAGI should
suggest examples other than those discussed here that might have a
proof using majorization.

In presenting these geometric inequalities, the case of equality (when
it can be achieved) is often readily identified. The reason for this is
that if φ is strictly Schur-convex, then in an inequality of the form

φ(x) ≥ φ(a) for all x � a,

or of the form

φ(x) ≤ φ(a) for all x ≺ a,

equality holds only if x is a permutation of a. The Schur-convex
functions used in this chapter are strictly Schur-convex (mostly as
a consequence of 3.C.1.a).

Trigonometric inequalities for the triangle comprise Section A and
are organized according to whether they relate to the sines, cosines, or
tangents of the angles of a triangle. Other inequalities for the cotan-
gents, secants, and cosecants of the angles are obtainable, but are
omitted because they follow similar patterns and tend to be repetitive.

A second class of inequalities relates the sides and the semiperimeter
minus the sides, or equivalently, the altitudes and the exradii. These
are in Sections B, C, and D.

Two plane figures are called isoperimetric if their perimeters are
equal. Isoperimetric inequalities generally relate some characteristic of
two isoperimetric figures. One of the simplest such inequalities is that
the equilateral triangle has the maximum area among all isoperimetric
triangles. New proofs of some isoperimetric inequalities for plane fig-
ures are provided in Section E. A duality between triangle inequalities
and inequalities for positive numbers is the subject of Section F.

In all of these sections, the inequalities given as examples have been
chosen because they have already appeared in print or because they
extend inequalities in print. Other examples are readily obtainable
using other Schur-convex functions.
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A Inequalities for the Angles of a Triangle

If α1, α2, α3 are the angles of a plane triangle, then α1 +α2 +α3 = π,
and (π

3
,
π

3
,
π

3

)
≺ (α1, α2, α3) ≺ (π, 0, 0) for all triangles, (1)

(π
3
,
π

3
,
π

3

)
≺ (α1, α2, α3) ≺

(π
2
,
π

2
, 0
)

for acute triangles, (2)
(π

2
,
π

4
,
π

4

)
≺ (α1, α2, α3) ≺ (π, 0, 0) for obtuse triangles. (3)

Consequently, if φ :R 3 → R is a Schur-convex function, then from
3.C.1 and (1), (2), or (3), we obtain

φ
(π

3
,
π

3
,
π

3

)
≤ φ(α1, α2, α3) ≤ φ(π, 0, 0) for all triangles, (4)

φ
(π

3
,
π

3
,
π

3

)
≤ φ(α1, α2, α3) ≤ φ

(π
2
,
π

2
, 0
)

for acute triangles, (5)

φ
(π

2
,
π

4
,
π

4

)
≤ φ(α1, α2, α3) ≤ φ(π, 0, 0) for obtuse triangles. (6)

The bounds obtained usually will be the best possible. When only one
bound is given below, an additional assumption that the triangle is
acute or obtuse does not yield an improvement in the inequality. In a
statement of strict inequality, degenerate triangles are not allowed.

Most of the choices of Schur-convex functions φ are of the form∑
g(xi), where g is convex. Examples are given for the sine, cosine,

and tangent functions.

The Sine Function

A.1. The functions sinx,
√

sinx, and log sinx are strictly concave
on (0, π); the function sin2(x/2) is strictly convex, 0 ≤ x ≤ π/2; the
function sin(kx) is strictly concave, 0 ≤ x ≤ π/k. Consequently, it
follows from (4), (5), (6) with the aid of 3.C.1 that

0 < sinα1 + sinα2 + sinα3 ≤ 3
√

3/2 for all triangles,

2 < sinα1 + sinα2 + sinα3 ≤ 3
√

3/2 for acute triangles,

0 < sinα1 + sinα2 + sinα3 ≤ 1 +
√

2 for obtuse triangles.

These inequalities are GI 2.1 and 2.2 and are attributed to Padoa,
1925, Curry, 1963, Bottema, 1954/1955, and Kooistra, 1957/1958.

A.2.√
2 < sin(α1/2) + sin(α2/2) + sin(α3/2) ≤ 3

2 for acute triangles.
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The right-hand inequality is GI 2.9 and is attributed to Child, 1939,
and Kooistra, 1957/1958. See also Oppenheim (1971). The left-hand
inequality is an improvement over GI 2.9.

A.3.

0 <
√

sinα1 +
√

sinα2 +
√

sinα3 ≤ 3(3
4 )1/4 for all triangles,

2 <
√

sinα1 +
√

sinα2 +
√

sinα3 ≤ 3(3
4 )1/4 for acute triangles,

0 <
√

sinα1 +
√

sinα2 +
√

sinα3 ≤ 1 + 23/4 for obtuse triangles.

The first of these inequalities is GI 2.5 and is attributed to Albu, 1963.

A.4.

0 < sinα1 sinα2 sinα3 ≤ 3
√

3/8 for all triangles,

0 < sinα1 sinα2 sinα3 ≤ 1/2 for obtuse triangles.

The first inequality is GI 2.7 and 2.8 and is attributed to Wilkins,
1939, and Kooistra, 1957/1958. The second bound is an improvement
over GI 2.8, which gives the upper bound

√
3/3.

A.5.

0 < sin(1
2α1) sin(1

2α2) sin(1
2α3) ≤ 1

8 for acute triangles.

This inequality is GI 2.12.

A.6.
3
4 ≤ sin2(1

2α1) + sin2(1
2α2) + sin2(1

2α3) < 1 for all triangles.

This is inequality GI 2.14. This follows from a simple majorization
argument and is attributed to Kooistra, 1957/1958.

A.7.

0 < sin(1
2α1) sin(1

2α2) + sin(1
2α1) sin(1

2α3) + sin(1
2α2) sin(1

2α3) ≤ 3
4

for all triangles,
1
2 < sin(1

2α1) sin(1
2α2) + sin(1

2α1) sin(1
2α3) + sin(1

2α2) sin(1
2α3) ≤ 3

4

for acute triangles,

0 < sin(1
2α1) sin(1

2α2) + sin(1
2α1) sin(1

2α3) + sin(1
2α2) sin(1

2α3)

≤ (2 −√
2)/4 +

√
(2 −√

2)/2

for obtuse triangles.
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These inequalities follow from the fact that the second elemen-
tary function in (sin(α1/2), sin(α2/2), sin(α3/2)) is Schur-concave (see
3.F.1 and Table 2 in 3.B). The first inequality is GI 2.15 attributed to
Child, 1939.

A.8. Definition. The power means Mk(x, y, z) are defined as follows:

Mk(x, y, z) = [13(xk + yk + zk)]1/k for k �= 0, ±∞,

M−∞(x, y, z) = min(x, y, z),

M0(x, y, z) = (xyz)1/3,
M∞(x, y, z) = max(x, y, z).

A.8.a. If k �= 0, −∞, k ≤ 1, then

(i) 0 < Mk(sinα1, sinα2, sinα3) ≤
√

3/2 for all triangles,

(ii) (2
3)1/k < Mk(sinα1, sinα2, sinα3) ≤

√
3/2 for acute triangles,

(iii) 0 < Mk(sinα1, sinα2, sinα3) ≤ [(1 + 21−k/2)/3]1/k for obtuse
triangles.

If k = 0, the inequalities are essentially A.4. If k = −∞, the inequalities
become

(iv) 0 < min(sinα1, sinα2, sinα3) ≤
√

3/2 for all triangles,

(v) 0 < min(sinα1, sinα2, sinα3) ≤
√

2/2 for obtuse triangles.

These inequalities follow from the fact that sin x is concave, 0 ≤ x ≤ π,
Mk(x1, x2, x3) is concave and increasing (see 3.I.1.b), so that by Section
3.B.2, Table 2, Mk(sinx1, sin x2, sinx3) is Schur-concave. Inequality (i)
is GI 2.6.

Remark. For x, y, z ∈ (0, π), the following inequality is reported in
RAGI (p. 637, 6.6).

f(x, y, z) =
sin(x+y2 ) sin(x+z2 ) sin(y+z2 )

sinx sin y sin z
≥ 1

with equality if x = y = z. The natural question of whether this
function f(x, y, z) is Schur-convex remains open.
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The Cosine Function

The functions cos x, cos2(x/2) are strictly concave in (0, π/2); the
function log cos(kx) is strictly concave in (0, π/2k). The following
inequalities are consequences of (1), (2), (3) and 3.C.1.

A.9.

1 < cosα1 + cosα2 + cosα3 ≤ 3/2 for acute triangles.

This inequality is GI 2.16. It also follows from the identity∑3
1 cosαi = 1 + 4

∏3
1 sin(αi/2) and A.5.

A.10.

2 < cos(α1/2) + cos(α2/2) + cos(α3/2) ≤ 3
√

3/2 for all triangles.

This inequality is GI 2.27 and is attributed to Kooistra, 1957/1958.

A.11.

2 < cos2(α1/2) + cos2(α2/2) + cos2(α3/2) ≤ 9/4 for all triangles.

This inequality is GI 2.29 and is equivalent to A.6.

A.12.

(i) cosα1 cosα2 cosα3 ≤ 1/8,

(ii) 0 < cos(α1/2) cos(α2/2) cos(α3/2) ≤ 3
√

3/8 for all triangles,

(iii) 1/2 < cos(α1/2) cos(α2/2) cos(α3/2) ≤ 3
√

3/8 for acute
triangles,

(iv) 0 < cos(α1/2) cos(α2/2) cos(α3/2) ≤ (1 +
√

2)/4 for obtuse
triangles,

(v) cosα1 cosα2 + cosα1 cosα3 + cosα2 cosα3 ≤ 3/4.

Inequalities (i) to (iv) follow from the concavity of log cos(kx). In-
equality (v) is a consequence of the Schur-concavity of the elementary
symmetric functions (3.F.1 and Table 2 in 3.B). Inequality (i) is GI 2.23
and is attributed to Popovici, 1925, and Child, 1939. The inequalities
(ii) and (iii) are GI 2.28 and are attributed to Kooistra, 1957–1958.
Inequality (iv) is new and is sharper than that in GI 2.28. Inequality
(v) is GI 2.22 and is attributed to Child, 1939.
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A.13. Define

h(α1, α2, α3) ≡ (1 + cosα1 cosα2 cosα3)/(sinα1 sinα2 sinα3).

h(α1, α2, α3) ≥
{√

3 for all triangles,
2 for obtuse triangles.

These inequalities follow from the majorizations (1), (2), and (3) and
the Schur-convexity of h(α1, α2, α3). This can be verified directly using
3.A.4 to yield

∂h

∂α1
− ∂h

∂α2
=

sin(α1 − α2) sinα3[1 + cosα3 cos(α1 + α2)]∏3
1 sin2 αi

.

The first inequality is GI 2.59 and is due to Guggenheimer, 1967.

A.14. Open problem (Monthly, 2007, p. 114, 11176). For a nonde-
generate triangle with angles α1, α2, α3 is

φ(α1, α2, α3) =
Σ cos3 αi
Σ cosαi

Schur-convex in α1, α2, α3 ∈ (0, π)?

The Tangent Function

The functions (tan x)m, m ≥ 1, are strictly convex on (0, π/2); the
function log tan(kx) is strictly concave on (0, π/4k), k > 0. These
facts together with (4)–(6) imply the following inequalities.

A.15. For m ≥ 1,

(i) 3(m+2)/2 ≤ tanm α1 + tanm α2 + tanm α3 for acute triangles,

(ii) 3−(m−2)/2 ≤ tanm(α2/2) + tanm(α2/2) + tanm(α3/2),

(iii) 0 < tan(α1/2) tan(α2/2) tan(α3/2) ≤
√

3/9 for acute triangles.

Inequality (i) for m = 1 and m = 2 are GI 2.30 and 2.31 and are
attributed to Kooistra, 1957/1958 (see also GI 11.6). The bound of
3(m + 2)/2 given in GI 11.7 is weaker than (i). The case of general
m is GI 11.8 and is attributed to Kritikos, 1934. Inequality (i) holds
for m ≥ 0; however, the function

∑
tanm αi is not Schur-convex for

0 < m < 1.
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Inequality (ii) for m = 1 is GI 2.33 and is attributed to Karamata,
1948, and Kooistra, 1957/1958. The case m = 2 is GI 2.35 and is
attributed to Durell and Robson, 1948, and Kooistra, 1957/1958. For
m = 6, inequality (ii) is GI 2.36.

Inequality (iii) is GI 2.34 and is attributed to Kooistra, 1957/1958.

B Inequalities for the Sides of a Triangle

There are three key majorizations involving the sides a1, a2, a3 of a
triangle with semiperimeter s = 1

2 (a1 + a2 + a3) and average side
length a = 1

3(a1 + a2 + a3) = 2s/3,

(a, a, a) ≺ (a1, a2, a3) ≺ (s, s, 0) for all triangles; (1)

(a, a, a) ≺ (a1, a2, a3) ≺ (s, s/2, s/2) for isosceles triangles; (2)

s

1 +
√

2
(2,

√
2,
√

2) ≺ (a1, a2, a3) ≺ (s, s, 0) for obtuse triangles. (3)

The left hand majorizations in (1) and (2) hold for any numbers. The
remaining majorizations make use of properties of triangles.

It follows that if ϕ is a continuous Schur-convex function, then

ϕ(a, a, a) ≤ ϕ(a1, a2, a3) < ϕ(s, s, 0) for all triangles, (4)

ϕ(a, a, a) ≤ ϕ(a1, a2, a3) < ϕ(s, s/2, s/2) for isosceles triangles, (5)

ϕ

(
2s

1 +
√

2
,

√
2s

1 +
√

2
,

√
2s

1 +
√

2

)
< ϕ(a1, a2, a3) < ϕ(s, s, 0)

for obtuse triangles, (6)

and these inequalities are the best possible. For Schur-concave func-
tions, the inequalities are reversed. The corresponding majorization
for acute triangles is identical to (1), so specializing to acute trian-
gles gives the same inequality (4) as is obtained for all triangles. For
right triangles, the relevant majorizations are given by (3), yielding
inequalities identical to the ones for obtuse triangles, namely, (6).

If

s1 ≡ 2(s − a1) = −a1 + a2 + a3,

s2 ≡ 2(s − a2) = a1 − a2 + a3,

s3 ≡ 2(s − a3) = a1 + a2 − a3,
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then

a1 = 1
2(s2 + s3), a2 = 1

2(s1 + s3), a3 = 1
2(s1 + s2),

and

(a1, a2, a3) = (s1, s2, s3)

⎡
⎢⎢⎣

0 1
2

1
2

1
2 0 1

2

1
2

1
2 0

⎤
⎥⎥⎦ ,

so that by 2.B.2

(a1, a2, a3) ≺ (s1, s2, s3). (7)

A geometric interpretation of s1, s2, s3 is given in Fig. 1. Note that

2
3(s, s, s) ≺ (s1, s2, s3) ≺ (2s, 0, 0). (8)

A1

A2
A3

s – a1

s – a2

s – a3

Figure 1.

The majorizations in (8) hold for all triangles. Parallel results are
available for specialized classes of triangles as follows:

2
3
(s, s, s) ≺ (s1, s2, s3) ≺ (s, s, 0) for isosceles triangles, (9)

2s(
√

2 − 1)(1, 1,
√

2) ≺ (s1, s2, s3) ≺ (2s, 0, 0) (10)
for obtuse triangles.

Inequalities for the Sides (a1, a2, a3)

The following inequalities for the sides of a triangle are direct
applications of the majorizations (1), (2), and (3) to a Schur-
convex function. The inequalities relating the sides (a1, a2, a3) to the
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quantities (s1, s2, s3) make use of (1) and (7), and the inequalities
relating the sides (a1, a2, a3) to the angles (α1, α2, α3) require a further
majorization.

B.1. The inequalities

(i)
1
3
≤ a2

1 + a2
2 + a2

3

(a1 + a2 + a3)2
<

1
2

for all triangles,

(ii)
1
3
≤ a2

1 + a2
2 + a2

3

(a1 + a2 + a3)2
<

3
8

for isosceles triangles,

(iii) 0.343 ≈ 2
(1 +

√
2)2

≤ a2
1 + a2

2 + a2
3

(a1 + a2 + a3)2
<

1
2

for obtuse triangles

follow from the Schur-convexity of the middle term. Inequality (i) is
GI 1.19 and is attributed to Petrović, 1916.

In the remaining inequalities listed in this section, we provide only
the inequalities that hold for all triangles [obtained using (1) and (8)].
Analogous inequalities for isosceles and obtuse triangles are obtainable
using (2), (3), (9), and (10).

B.2. The inequalities

1
4
<
a1a2 + a1a3 + a2a3

(a1 + a2 + a3)2
≤ 1

3

follow from the Schur-concavity of the second elementary symmetric
function (3.F.1), are GI 1.1, and are attributed to Wood, 1938.

B.3. The inequalities

1
4
<

(a1 + a2)(a1 + a3)(a2 + a3)
(a1 + a2 + a3)3

≤ 8
27

(11)

are a consequence of the Schur-concavity of the middle term. Similarly,

1
2
<

(a1 + a2)(a1 + a3)(a2 + a3)
a3

1 + a3
2 + a3

3

≤ 8
3
≈ 0.296 (12)

because of the Schur-concavity of the numerator and Schur-convexity
of the denominator of the middle term in (12). The right-hand in-
equality of (12) is GI 1.5 and is attributed to Padoa, 1925. Extension
of these results involving more than three ai’s (and thus not being
interpretable in terms of sides of triangles) may be found in 3.I.5.
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B.4. For d ≥ 0,

4(9 − 2d)
27

s2 ≤ a2
1 + a2

2 + a2
3 − d

a1a2a3

s
< 2s2. (13)

Inequalities (13) follow from the Schur-convexity of the middle term.
With d = 36/35, the left-hand inequality is GI 1.2 and is attributed
to Darling and Moser, 1961.

B.5. For d ≥ 0,

3(3d + 2)
4

≤ ds+ a1

a2 + a3
+
ds+ a2

a1 + a3
+
ds+ a3

a1 + a2
<

5d+ 4
2

. (14)

Inequalities (14) follow from the Schur-convexity of the middle term.
The left-hand inequality with d = 0 is GI 1.16 and is attributed to
Nesbitt 1903, and to Petrović, 1932. For d = 1, the left-hand inequality
is GI 1.17.

B.6. The inequalities
√
s <

√
s− a1 +

√
s− a2 +

√
s− a3

≡
√
s1/2 +

√
s2/2 +

√
s3/2 ≤

√
3s

are consequences of the concavity of
√
x or

√
s− x.

B.6 is GI 1.20 and is attributed to Santaló, 1943, and Gotman, 1965.

B.7. The inequality√
a1(s− a1) +

√
a2(s− a2) +

√
a3(s− a3) ≤

√
2s

follows from the concavity of
√
x(s− x), 0 < x < s, and is stated in

GI 5.47 in terms of the sides and exradii. The upper bound of 3s/2
given there in place of

√
2s is not the best possible.

B.8. The inequality

9
s
≤ 1
s− a1

+
1

s− a2
+

1
s− a3

=
2
s1

+
2
s2

+
2
s3

follows from the convexity of (s−x)−1 for 0 < x < s, or x−1 for 0 < x,
and is GI 1.15.

B.9. The inequality

s2 ≥ 3
√

3Δ,
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where Δ is the area of the triangle, is GI 4.2 and is attributed to
Hadwiger, 1939, and Santaló, 1943. Because Δ2 = s

∏3
1(si/2), this

inequality is equivalent to

3∏
1

(si/2) =
3∏
1

(s− ai) ≤ (s/3)3,

which follows from the Schur-concavity of the product.

B.10. The inequality

a1a2a3 ≤ 1
8 (a1 + a2)(a1 + a3)(a2 + a3)

follows from a related majorization. Let

u1 = 1
2(a1 + a2), u2 = 1

2(a1 + a3), u3 = 1
2(a2 + a3);

then

(u1, u2, u3) ≺ (a1, a2, a3)

for the same reason that (7) holds.

The result then follows from the Schur-concavity of the product.
This inequality is GI 1.4 and is attributed to Cesàro, 1880.

Inequalities between (a1, a2, a3) and (s1, s2, s3)

The inequalities relating the sides (a1, a2, a3) and the quantities s1 =
2(s − a1), s2 = 2(s − a2), s3 = 2(s − a3) involve the elementary
symmetric functions Sk(x1, . . . , xn) on R 3

++.

B.11.

(i) s1s2s3 ≤ a1a2a3,

(ii)
s1s2s3

s1s2 + s1s3 + s2s3
≤ a1a2a3

a1a2 + a1a3 + a2a3
,

(iii) (s1s2s3)(s1s2 + s1s3 + s2s3) ≤ (a1a2a3)(a1a2 + a1a3 + a2a3).

Inequality (i) follows from the Schur-concavity of S3(x1, x2, x3)
(3.F.1); inequality (ii) follows from the Schur-concavity of the ratio
S3(x1, x2, x3)/S2(x1, x2, x3) (3.F.3); inequality (iii) similarly uses the
product S3(x1, x2, x3)S2(x1, x2, x3) (3.B.1.d) of the elementary sym-
metric functions on R 3

++.Inequality (i) is posed by Walker as Monthly
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Problem E2284 (1971); it is GI 1.3 and is attributed to Padoa, 1925.
It appeared earlier in a different form (see C.1) in Monthly Problem
E1675 (Makowski, 1964).

Inequalities for the Sides and Angles of a Triangle

If ai is the side opposite angle αi, and a1 ≥ a2 ≥ a3, then α1 ≥ α2 ≥ α3,
so that the sides and angles are similarly ordered. Define

τ1 = 1
2(α1 + α2), τ2 = 1

2(α1 + α3), τ3 = 1
2(α2 + α3).

Then

τ1 ≥ τ2 ≥ τ3,

and

(τ1, τ2, τ3) ≺ (α1, α2, α3)

for the same reason that (7) holds. This yields the inequalities

(i) a1α1 + a2α2 + a3α3 ≥ a1τ1 + a2τ2 + a3τ3 ≥ a1τ3 + a2τ2 + a3τ1,

which are consequences of 3.H.2.c and 6.A.3. The left-hand inequality
in (i) is new and is stronger than GI 3.2.

(ii)
π

3
≤ a1α1 + a2α2 + a3α3

a1 + a2 + a3
<
π

2
.

This inequality follows from 3.H.3.c and is GI 3.3.
Again by 3.H.3.c,

a1α1 + a2α2 + a3α3

a1 + a2 + a3
≤ 1

2
(α1 + α2) =

π − α3

2
,

which is GI 3.4.

An Inequality for the Sides of a Polygon

Inequality B.5 can be extended to the case of a polygon.

B.12. If a1, . . . , an are the sides of a polygon with perimeter p =
a1 + · · · + an and if ai ≤ t, i = 1, . . . , n, where for some integer l,
p/(l + 1) ≤ t ≤ p/l, then from 5.C.1,

(i)
1
n

(p, . . . , p) ≺ (a1, . . . , an) ≺ (t, . . . ,︸ ︷︷ ︸
l

t, p− lt︸ ︷︷ ︸
1

, 0, . . . ,︸ ︷︷ ︸
n−l−1

0).
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The function g(x) = (pd + x)/(p − x) is convex for 0 ≤ x < p, d ≥ 0,
so that

(ii)
n(nd+ 1)
n− 1

≤ pd+ a1

p− a1
+
pd+ a2

p− a2
+ · · · + pd+ an

p− an

≤ l(pd+ t)
p− t

+
pd+ p− lt

lt
+ d(n− l − 1).

Remark. The left-hand inequality of (ii) holds for all nonnegative
numbers as noted by Mitrinović (1964, paragraphs 7.31, 7.32). The
right-hand inequality holds for all polygons by virtue of (i).

C Inequalities for the Exradii and Altitudes

For a triangle with vertices A1, A2, A3, sides a1, a2, a3 (with ai op-
posite Ai), altitudes h1, h2, h3 (with hi from Ai), and exradii r1, r2,
r3 (with ri tangent to ai) as in Fig. 2, there is a fundamental duality
between the pairs (ai, si) and (hi, ri) that arises from the relations

2Δ = a1h1 = a2h2 = a3h3

= s1r1 = s2r2 = s3r3. (1)

(As before, Δ is the area of the triangle.)
It follows from (1) that

1
h1

=
1
2

(
1
r2

+
1
r3

)
,

1
h2

=
1
2

(
1
r1

+
1
r3

)
,

1
h3

=
1
2

(
1
r1

+
1
r2

)
. (2)

As in the proof of (7), Section B, this means that(
1
h1
,

1
h2
,

1
h3

)
≺
(

1
r1
,

1
r2
,

1
r3

)
. (3)

If r denotes the radius of the incircle, then

1
r

=
1
h1

+
1
h2

+
1
h3
, (4)

so that (
1
3r
,

1
3r
,

1
3r

)
≺
(

1
h1
,

1
h2
,

1
h3

)
. (5)

C.1. If d1, d2, d3 are nonnegative numbers, then∑
π

hd1

π(1)h
d2

π(2)h
d3

π(3) ≤
∑
π

rd1

π(1)r
d2

π(2)r
d3

π(3),
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or equivalently,∑
π

a−d1

π(1)a
−d2

π(2)a
−d3

π(3) ≤
∑
π

s−d1

π(1)s
−d2

π(2)s
−d3

π(3).

This inequality follows from the majorization (3) and the Schur-
convexity in x of∑

π

x−a1

π(1)x
−a2

π(2)x
−a3

π(3), ai > 0, xj > 0,

given in 3.G.1.k.
This inequality is posed by Nasser as Monthly Problem E1847

(1966). (Note that the inequality is reversed in the Monthly.)
The case d1 = d2 = 1, d3 = 0 yields

h1h2 + h1h3 + h2h3 ≤ r1r2 + r1r3 + r2r3,

which was posed by Makowski as Monthly Problem E1675 (1964). It
was noted by Oppenheim (1965b) to be equivalent to B.2.(i).

The case d2 = d3 = 0 is GI 6.19 and is attributed to Makowski,
1961. By a direct argument based on the convexity of x−d, x > 0 for
d > 0 or d < −1 and concavity for −1 < d < 0, we obtain∑

hdi ≤
∑
rdi , d > 0 or d < −1,∑

hdi ≥
∑
rdi , −1 < d < 0.

C.2. The inequalities

(i)
∏3

1 hi ≥ 27r3,

(ii)
∑3

1 hi ≥ 9r,

(iii)
∑3

1 1/(hi − 2r) ≥ 3/r,

(iv)
∑3

1(hi + r)/(hi − r) ≥ 6

follow immediately from (5) and the Schur-convexity of the respective
functions. Inequalities (i) and (ii) are GI 6.16 and GI 6.8, respectively,
and are attributed to Zetel’, 1948. Inequality (iii) is GI 6.21 and is
attributed to Bokov, 1966. Inequality (iv) is GI 6.22 and is attributed
to Cosnita and Turtoiu, 1965.

C.3. For m ≥ 1,

(r1/h1)m + (r2/h2)m + (r3/h3)m ≥ 3.
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For m = 1, this inequality was posed by Demir as Monthly Problem
E1779 (1965). The extension to general m is given by Guggenheimer
(1966) and is discussed in GI 6.28.

The inequality of C.3 follows directly from the convexity of g(x) =
xm, m ≥ 1, and the majorization

(r1/h1, r2/h2, r3/h3) �w (1, 1, 1). (6)

With the aid of (2), (6) can be written in terms of r1, r2, and r3
alone. Then by assuming an ordering, say r1 ≥ r2 ≥ r3, and by using
x+ (1/x) ≥ 2, x ≥ 0, (6) is not difficult to verify.

D Inequalities for the Sides, Exradii,
and Medians

Consider a triangle with vertices A1, A2, A3, opposite sides a1, a2,
a3, medians m1, m2, m3 (with mi from Ai), and exradii r1, r2, r3 as
in Fig. 2. Steinig (1965) proved two majorizations, one between the
sides and exradii, and one between the sides and medians. A number
of known inequalities may be obtained as a consequence. The present
development is essentially that of Steinig (1965).

A3A2

A1

c1

c2

c3

r3

r1 r2

Figure 2.

Sides and Exradii

D.1. For each t ≥ 1,

(
√

3/2)t(at1, a
t
2, a

t
3) ≺w (rt1, r

t
2, r

t
3). (1)
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Sketch of proof. The sides and exradii of a triangle are related by

a1 =
r1(r2 + r3)√

r1r2 + r1r3 + r3r3
, a2 =

r2(r1 + r3)√
r1r2 + r1r3 + r2r3

,

a3 =
r3(r1 + r2)√

r1r2 + r1r3 + r2r3
.

(2)

If a1 ≥ a2 ≥ a3, then (2) yields the ordering r1 ≥ r2 ≥ r3. It is
known that

(
√

3/2)a1 ≤ r1, (
√

3/2)a3 ≥ r3. (3)

Suppose that for some σ in (0, 1), the equality

(
√

3/2)σ(aσ1 + aσ2 + aσ3 ) = rσ1 + rσ2 + rσ3 (4)

holds. Then by virtue of (3) and (4),

(
√

3/2)σ(aσ1 , a
σ
2 , a

σ
3 ) ≺ (rσ1 , r

σ
2 , r

σ
3 ). (5)

The proof that such a σ exists is due to Leuenberger, 1961, who shows
that if

g(u) =

(∑3
1(
√

3ai/2)u

3

)1/u

−
(∑3

1 r
−u
i

3

)1/u

,

then g(0) > 0 > g(1). Consequently, there is a σ in (0, 1) such that
g(σ) = 0, which yields (4). For any t ≥ 1 (so that t > σ), (1) follows
from (5) and 5.A.1. ||
D.1.a. The inequality

(
√

3/2)t(at1 + at2 + at3) ≤ rt1 + rt2 + rt3, t ≥ 1,

follows from (1). The case t = 1 is GI 5.29 and is attributed to
Gerretsen, 1953, and Leuenberger, 1961.

D.1.b. For t ≥ 1,

(
√

3/2)Mk(at1, a
t
2, a

t
3) ≤Mk(rt1, r

t
2, r

t
3), k ≥ 1.

This follows from the fact that the power mean Mk is Schur-convex
and increasing for k ≥ 1 (see A.8 and 3.I.1.b).

D.1.c. The inequality

r1r2r3 ≤ (3
√

3/8)a1a2a3

follows from the Schur-concavity of
∏
xi, xi > 0, together with (1).

This inequality is GI 5.35 and is due to Leuenberger, 1961.
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Exradii and Medians

D.2. If a1 ≥ a2 ≥ a3, then as noted in D.1, r1 ≥ r2 ≥ r3. Also,
m1 ≤ m2 ≤ m3, as can be seen from the relations between the medians
and the sides:

m2
1 = 1

4 [2a2
2 + 2a2

3 − a2
1],

m2
2 = 1

4 [2a2
1 + 2a2

3 − a2
2],

m2
3 = 1

4 [2a2
1 + 2a2

2 − a2
3].

(6)

Substituting (2) in (6) yields relations between the medians and the
exradii:

m2
1 =

2r23(r1 + r2)2 + 2r22(r1 + r3)2 − r21(r2 + r3)2

4(r1r2 + r1r3 + r2r3)
,

m2
2 =

2r21(r2 + r3)2 + 2r23(r1 + r2)2 − r22(r1 + r3)2

4(r1r2 + r1r3 + r2r3)
,

m2
3 =

2r21(r2 + r3)2 + 2r22(r1 + r3)2 − r23(r1 + r2)2

4(r1r2 + r1r3 + r2r3)
.

By a direct, though tedious, calculation,

m1 ≥ r3, m3 ≤ r1. (7)

Following the same argument as in D.1, form the function

h(v) =
(∑

mv
i /n

)1/v
−
(∑

rvi /n
)1/v

.

It is shown by Leuenberger, 1961 that h(0) ≥ 0 ≥ h(1), and hence
there exists a τ ∈ [0, 1] such that h(τ) = 0. Consequently,

mτ
1 +mτ

2 +mτ
3 = rτ1 + rτ2 + rτ3 ,

which, with (7), implies that

(mτ
1 ,m

τ
2 ,m

τ
3) ≺ (rτ1 , r

τ
2 , r

τ
3 ). (8)

For any t ≥ τ (hence for any t ≥ 1), it follows from 5.A.1 that

(mt
1,m

t
2,m

t
3) ≺w (rt1, r

t
1, r

t
1).

D.2.a. For t ≥ 1,

Mk(mt
1,m

t
2,m

t
3) ≤Mk(rt1, r

t
2, r

t
3), k ≥ 1,

where Mk is defined in A.8.

This follows from the monotonicity and Schur-convexity of Mk for
k ≥ 1 or k ≤ 0 (3.I.1.b).
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E Isoperimetric-Type Inequalities
for Plane Figures

In the present section are described a number of inequalities, some
of which are isoperimetric in that they compare plane figures with a
fixed perimeter. In others the perimeter is not held constant, but the
inequalities closely resemble the format of isoperimetric inequalities.

The exposition owes much to the discussions given in Kazarinoff
(1961) and Guggenheimer (1967), who deal mainly with isoperimetric
inequalities for plane figures. A discussion of isoperimetric inequalities
in mathematical physics is provided in Pólya and Szegö (1951).

For a class C of plane figures, isoperimetric inequalities are often
stated in one of these two forms:

(i) Of all figures in C with perimeter p, the Figure F has the greatest
area.
(ii) Of all figures in C with area Δ, the Figure F has the least

perimeter.

These are dual theorems; a particularly simple proof of the
equivalence is given by Kazarinoff (1961, p. 43).

What is shown in this chapter is that for plane figures possessing cer-
tain properties, the area is a Schur-concave function of the parameters
(e.g., sides, angles) of the plane figure. Consequently, the area is max-
imized when these parameters are equal, from which the isoperimetric
result follows.

Inequalities for the Triangle and Quadrilateral

Two of the simplest isoperimetric inequalities relate to the triangle:

(a) Of all triangles with a common base and a fixed perimeter, the
isosceles triangle has the greatest area.
(b) Of all triangles with the same perimeter, the equilateral triangle

has the greatest area.

The majorizations that yield (a) and (b) are as follows.

E.1. Proposition. (i) The area of a triangle with one fixed side is
a Schur-concave function of the other sides.

(ii) The area of a triangle is a Schur-concave function of the sides.
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Proof. A result of Heron relates the area Δ of a triangle to the
sides a1, a2, a3:

Δ2 = s(s− a1)(s − a2)(s− a3), (1)

where s = 1
2(a1 + a2 + a3) is the semiperimeter.

By 3.A.4, Δ is Schur-concave in (a1, a2, a3). That (ii) implies (i)
follows immediately. ||

There is an isoperimetric inequality for the quadrilateral:

(i) Of all quadrilaterals with a given perimeter, the square has the
greatest area.

Two steps are required in the proof. The first is to show that the
quadrilateral with greatest area is one that can be inscribed in a circle.
There are a variety of proofs of this result. One most suitable to our
purposes is that of Kazarinoff (1961), who shows that the area Δ of
a quadrilateral is related to the sides a1, a2, a3, a4 and two opposite
angles α and β (included between sides a1 and a2 and between sides
a3 and a4, respectively) by

Δ2 = 1
16 [4a2

1a
2
2 +4a2

3a
2
4 − (a2

1 +a2
2 −a2

3 −a2
4)

2 − 2a1a2a3a4 cos(α+β)].
(2)

Consequently, Δ2 is maximized for α + β = π, i.e., when the
quadrilateral is inscribed in a circle.

E.2. Proposition. The area of a quadrilateral inscribed in a circle
is a Schur-concave function of the sides.

Proof. From (2) with cos(α + β) = −1, algebraic simplification
yields

Δ2 = (s− a1)(s− a2)(s− a3)(s− a4), (3)

where s =
∑
ai/2 is the semiperimeter. It is now immediate (see 3.F.1)

that Δ is a Schur-concave function of (a1, a2, a3, a4). ||
An isoperimetric theorem similar to E.1(ii) is: Of all triangles with a

given perimeter, the equilateral triangle has the smallest circumcircle;
i.e., the radius R of the circumcircle is smallest.

E.3. Proposition. The radius R of the circumcircle of a triangle is
a Schur-convex function of the sides.

Proof. The result follows from the representation

R =
1

4
√
s

a1a2a3√
(s− a1)(s − a2)(s − a3)

,

which by 3.A.4 is Schur-convex in (a1, a2, a3). ||
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E.4. The volume V and surface S of a box are Schur-concave
functions of the side lengths a1, a2, a3.

Proof. Because V = a1a2a3 and S = 2(a1a2 + a1a3 + a2a3), the
result follows from 3.F.1. ||

Polygons Inscribed in a Given Circle

It is shown above that the area of a triangle and that of a quadrilateral
inscribed in a circle are Schur-concave functions of the sides. This idea
is extended to the case of a polygon of n sides that can be inscribed
in a circle.

More precisely, let H be a polygon of n sides a1, . . . , an, with vertices
A1, . . . , An, inscribed in a circle of radius r and center O. Suppose that
O is contained in H, and let θ1, . . . , θn be the central angles subtended
by the arcs A1A2, A2A3, . . . , AnA1. Further, let h1, . . . , hn denote the
altitudes from O to the corresponding sides (see Fig. 3).

A1

A2h1

a1

a2
r

r

r
O

A3

An 1

2

Figure 3.

E.5. Proposition. Let H be a polygon inscribed in a circle of
radius r and containing the center O of the circle. The area of H is a
Schur-concave function of the angles θ1, . . . , θn, of the sides a1, . . . , an,
and of the altitudes h1, . . . , hn.

Proof. The area of triangle OA1A2 is 1
2a1h1 = r2 sin θ1. Conse-

quently, the area Δ of the polygon is

Δ = r2
n∑
1

sin θi, (4)

which by 3.C.1 is Schur-concave in (θ1, . . . , θn) for 0 < θi < π.
Alternatively, from r2 = h2

i + a2
i /4,

Δ = 1
2

∑
hiai = 1

2

∑
ai(r2 − a2

i /4)
1/2 =

∑
hi(r2 − h2

i )
1/2.
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Since x(c2 − x2)1/2 is concave in x for 0 < x < c, the area Δ is a
Schur-concave function in a1, . . . , an and in h1, . . . , hn. ||

As a consequence of E.5, the area of a polygon containing O is
maximized when the angles, or the sides, or the altitudes are equal,
i.e., when the polygon is regular.

To prove the isoperimetric theorem, it remains to show that the
polygon with the greatest area contains the center O of the circle.
If this is not the case, as in Fig. 4, then the area of such a polygon
is less than πr2/2, which is the area of a semicircle. But the area of
a regular polygon of n sides containing the center is r2n sin(2π/n).
From (sinx)/x > 2/π for x ∈ (−π/2, π/2), it follows that for n > 3,
the area is greater than πr2/2, and hence the n-gon with the largest
area contains the origin.

Figure 4.

Not only is Δ, the area of the polygon containing O, a Schur-concave
function (4) of (θ1, . . . , θn), but so also is P = 2r

∑n
1 sin(θi/2), the

perimeter of the polygon as a function of (θ1, . . . , θn). Using this ob-
servation, Klamkin (1980) provides a proof of the following result [for
earlier discussion, see Uspensky (1927)]. If P,Δ and P ′,Δ′ are the
perimeters and areas of two polygons containing O inscribed in the
same circle and if the greatest side of the second is less than or equal
to the smallest side of the first, then P ′ ≥ P and Δ′ ≥ Δ with equality
if and only if the polygons are congruent and regular. An analogous
result for circumscribed polygons is also presented.

Polygons with Given Perimeter Inscribed in a Circle

The previous proposition deals with the case of a fixed circle with
points A1, . . . , An that generate a polygon of n sides. The points are
movable; equal spacings yield the maximum area.
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When the perimeter is fixed, alteration of any two sides means that
the figure is no longer inscribed in the same circle. Consequently, a
more delicate argument is needed.

E.6. Proposition. The area of a polygon of n sides with fixed
perimeter inscribed in a circle is a Schur-concave function in the
lengths of the sides.

Proof. The proof is based on showing that the area increases by
averaging two sides. First note that the area is invariant upon a re-
ordering of the sides, so that we may reorder in ascending order. Now
consider three vertices A1, A2, B as in Fig. 5. Holding the points A1,
A2 fixed as pivots, the locus of points with a + b fixed is an ellipse.
Thus any averaging of a and b yields a triangle A1B

∗A2, where B∗ lies
on the portion BB′ of the ellipse. From E.1(i) the area of a triangle
with base A1A2 fixed is a Schur-concave function of the sides.

A2
A1

B

ba
B*

B ′

Figure 5.

The resulting polygon will no longer be inscribed in the original
circle. However, there is a polygon with the same side lengths that can
be inscribed in a circle; this inscribed polygon has a greater area than
the original polygon [see, e.g., Kazarinoff (1961, Chapter 2)]. ||

From the fact that for a vector of length n+ 1,
( p
n
, . . . ,

p

n
, 0
)
�
(

p

n+ 1
, . . . ,

p

n+ 1

)
,

it follows that with fixed perimeter p, the area of a polygon with n+1
sides is greater than the area of a polygon with n sides. Consequently,
the area increases as the number of sides increases. By a limiting
argument, for a fixed perimeter, the circle is the plane figure with
maximum area.

Zhang (1998) identifies some other interesting Schur-convex func-
tions of the lengths of the sides of polygons inscribed in a circle. He
considers positive solutions of the differential equation

f(θ)f ′′(θ) = a0 + a1f
′(θ) + a2[f ′(θ)]2.
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In certain cases, he verifies the Schur-concavity of the function

F (θ1, . . . , θn) =

[
n∑
i=1

f(θi)

]2

− f(θ)
f ′(θ)

n∑
i=1

f(θi)f ′(θi)

−
[
nf(θ) −

n∑
i=1

f(θi)

]2

,

where θ =
∑
θi/n.

Using this approach, he shows, for example, that the amount of
irregularity of a polygon inscribed in a circle can be expressed in terms
of a Schur-convex function.

A Probability Inequality for Polygons
Circumscribing a Circle

Let H be a polygon of n sides that circumscribes the unit circle with
points of tangency A1, . . . , An. These points generate n arc lengths
A1A2, A2A3, . . . , An−1An labeled c1, . . . , cn, and n subtended angles
θ1, . . . , θn (see Fig. 6).

1

2

n

A1

A2

c2

c1

A3

An

cn

Figure 6.

Write H(c1, . . . , cn) ≡ H(θ1, . . . , θn) to denote the polygon as a
function of the arc lengths or subtended angles. Note that∑

ci =
∑

θi = 2π.

Now consider probability measures μ that are circularly symmetric,
i.e., measures that are invariant under rotation about the origin. Write
μ(H) to denote the probability content of the polygon H.

Let H1 ≡ H(α1, . . . , αn) and H2 ≡ H(β1, . . . , βn) be two polygons
generated by the angles α1, . . . , αn and β1, . . . , βn, respectively.

E.7. Proposition (Wynn, 1977). A necessary and sufficient condi-
tion that

μ(H(α1, . . . , αn)) ≥ μ(H(β1, . . . , βn))
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for every circularly symmetric probability measure μ is that

(i) α � β.

The proof of this theorem makes use of the fact (4.B.3) that (i) is
equivalent to

(ii)
∑n

1 (αi − ψ)+ ≥∑n
1 (βi − ψ)+ for all ψ ∈ [0, π],

where x+ = x if x ≥ 0 and x+ = 0 otherwise.

S(r)
S(t)

V

H

x x

rr

 – 2x

Figure 7.

Proof. Let S(r) denote the circle of radius r with center at the
origin, and define h(r) to be the length of that part of the circle lying
within the polygon H. The key point in the proof is that for two poly-
gons H1 and H2, μ(H1) ≥ μ(H2) for all circularly symmetric measures
μ if and only if h1(r) ≥ h2(r) for all r ≥ 1.

For any vertex V lying outside the circle S(r), consider a subtended
angle θ and the corresponding angle x < θ/2 as indicated in Fig. 7.
Then cos x = 1/r and θ−2x = θ−2 cos−1(1/r). Let k1(r) and k2(r) be
the number of vertices of H1 and H2 that lie exterior to the circle S(r),
i.e., the number of angles αi and βi for which αi − 2 cos−1(1/r) > 0,
respectively. Then

h1(r) = r{∑∗ αi − 2k1(r) cos−1(1/r)},
h2(r) = r{∑∗ βj − 2k2(r) cos−1(1/r)},

where the sum
∑∗ is over those i and j counted in k1(r) and k2(r),

respectively. But now, h1(r) and h2(r) can be rewritten

(iii) h1(r) = r
∑n

1 (αi − ψ)+, h2(r) = r
∑n

1 (βj − ψ)+,

where ψ = 2cos−1(1/r). Recall that μ(H1) ≥ μ(H2) for all circularly
symmetric probability measures μ if and only if h1(r) ≥ h2(r). But
the representations (iii) show that this is equivalent to (ii). ||
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F Duality Between Triangle Inequalities
and Inequalities Involving

Positive Numbers

Mitrinović, Pečarić, and Volenec (1989) provide a useful link between
inequalities for sides of triangles and inequalities involving 3 posi-
tive numbers. If a triangle has sides a1, a2, a3 opposite the vertices
A1, A2, A3, it is possible to associate 3 positive numbers x1, x2, x3 with
the side lengths a by the relations

a1 = x2 + x3,

a2 = x1 + x3, (1)
a3 = x1 + x2.

Equations (1) imply the majorization (a1, a2, a3) ≺ (2x1, 2x2, 2x3).
Consequently, various inequalities follow by associating the a’s and x’s
to parameters of a triangle.

The conditions necessary for a1, a2, a3 to be the sides of a triangle are
equivalent to the condition that x1, x2, x3 > 0. By using Equations (1),
any inequality involving sides of triangles can be transformed into an
inequality involving 3 positive numbers, and vice versa. A geometric
interpretation of (1) is provided in Fig. 8.

A1

A2

A3

x1

x1

x2

x3

x3

x2

Figure 8. Duality between a and x.

In the figure, a circle is inscribed within an arbitrary triangle and
the relation (1) holds because two tangents from an external point to
a circle are equal in length.



G. Inequalities for Polygons and Simplexes 295

Of course, inequalities involving sides of triangles lead to inequalities
for any 3 positive numbers. Analogous inequalities for more than 3
numbers can often be anticipated, though they may need to be checked
on a case-by-case basis.

Observe that the vectors x = (x1, x2, x3) and a = (a1, a2, a3) are
related by

a = x(J3 − I3), (2)

x =
1
2
a(J3 − 2I3), (3)

where J3 is a 3 × 3 matrix with all elements equal to 1 and I3 is
the 3 × 3 identity matrix. Equation (1), extended to k dimensions,
becomes a = xCk, where Ck is a k × k circulant (see 2.H.2) with
first row (0, 1, 1, 0, . . . , 0). It can be thought of as defining the k-sided
polygon circumscribing a circle.

Observe that, because of 5.F.3, Ck preserves majorization if and only
if k = 3. If k is odd and greater than 3, Ck is non-singular, so that any
inequality involving k positive numbers can be transformed to yield
an inequality involving the sides of a k-sided polygon, and vice versa.
If k is even, Ck is singular and the transformation can consequently
only be made in one direction.

G Inequalities for Polygons
and Simplexes

Chapter XVIII of the book RAGI provides many inequalities for poly-
gons and simplexes. However, only several of these inequalities are
examples for which Schur-convexity provides a proof. The reader might
consider other examples as a challenge.

The following propositions hold for all numbers, but are applied to
polygons and simplexes.

G.1. Let f be a convex function on R++. Define xn+i = xi, 1 ≤ i ≤ n.
Then for m = 1, . . . , n,

m∑
1

f(xi + xi+1 + · · · + xi+k−1) ≤
m∑
1

f((n− k)(s− xi)). (1)
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Proof. Let zi = xi+xi+1 + · · ·+xi+k−1 and ui = (n−k)(s−xi), to
show that (z1, . . . , zn) = (u1, . . . , un)P, where P is a doubly stochastic
matrix. Consequently, z ≺ u and the result follows fron 5.A.1. ||

If (n − k)s is the perimeter of an n-gon with sides xi such that
xi < s, 1 ≤ i ≤ n, then (1) holds. This result, with m = n, is RAGI,
Chapter XV, 10.

G.2. If f : R n → R is convex, then for every k ∈ {1, 2, . . . , n+ 1},
∑

f

⎛
⎝ k∑
j=1

λij

⎞
⎠ ≥

(
n+ 1
k

)
f

(
k

n+ 1

)
, (2)

where the summation is over 1 ≤ i1 < . . . < ik ≤ n+1. The inequality
is reversed if f is concave.

Proof. The Schur-convexity of

∑
1≤i1<i2<...<ik≤n+1

f

⎛
⎝ k∑
j=1

λij

⎞
⎠

follows from 3.G.3.a and 3.G.3 upon setting 
 = k and φ(x1, . . . , xk) =∑k
i=1 f(xi). The result then follows as a consequence of the majoriza-

tion λ � (1/(n + 1), . . . , 1/(n + 1)). ||
If λ1, . . . , λn+1 are the barycentric coordinates of a point in a

simplex, so that Σλi = 1, then (2) holds. See RAGI, Chapter VIII, 2.1.
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The pioneering work of Issai Schur (1923) on majorization was
motivated by his discovery that the eigenvalues of a positive semidefi-
nite Hermitian matrix majorize the diagonal elements. This discovery
provided a new and fundamental understanding of Hadamard’s deter-
minant inequality that led Schur to a remarkable variety of related
inequalities. Since Schur’s discovery, a number of other majorizations
have been found in the context of matrix theory. These majorizations
primarily involve quantities such as the eigenvalues or singular val-
ues of matrix sums or products. An integral part of the development
of majorization in matrix theory is the extremal representations of
Chapter 20.

Subsequent to the publication of the first edition in 1979, there
appeared books and survey papers that include discussion of majoriza-
tion in matrix theory. Extensive treatments are given by Bhatia (1997,
Chapter 2), and Ando (1989, 1994), whose survey provides a short
course on this topic. Texts by Horn and Johnson (1985), Zhang (1999),
and Bernstein (2005) include material on matrix inequalities and ma-
jorization. Many of the results of this chapter have been extended
to compact operators in complex Hilbert space. Such results are not
discussed here.

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 297
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 9,
c© Springer Science+Business Media, LLC 2011
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A Notation and Preliminaries

A.1. Notation for the eigenvalues and singular values. The
vector of eigenvalues of an n× n matrix A is denoted by

λ(A) = (λ1(A), . . . , λn(A)).

When the eigenvalues are real, they are ordered

λ1(A) ≥ · · · ≥ λn(A);

otherwise, the real parts

Rλ1(A) ≥ · · · ≥ Rλn(A)

or the moduli

|λ1(A)| ≥ · · · ≥ |λn(A)|

are ordered. The following is a key fact about eigenvalues that is used
repeatedly in this chapter.

A.1.a. If A is an m × n matrix, and B is an n × m matrix where
m ≤ n, then the n eigenvalues of BA are the m eigenvalues of AB
together with n−m zeros; i.e.,

{λ1(AB), . . . , λm(AB), 0, . . . , 0︸ ︷︷ ︸
n−m

} = {λ1(BA), . . . , λn(BA)}.

In particular, the nonzero eigenvalues of AB are the nonzero
eigenvalues of BA (see, e.g., Mirsky, 1955a, p. 200)].

The singular values σ(B) of an m × n matrix B, arranged in
decreasing order and denoted by

σ(B) = (σ1(B), . . . , σm(B)),

are the nonnegative square roots of the eigenvalues of the positive
semidefinite matrix BB∗, or equivalently, they are the eigenvalues of
the positive semidefinite square root (BB∗)1/2, so that

σi(B) = [λi(BB∗)]1/2 = λi[(BB∗)1/2], i = 1, . . . ,m.

The singular values are real and nonnegative.
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Because B is an m × n rectangular matrix, σ(B) ∈ Rm, whereas
σ(B∗) ∈ R n. However, the nonzero elements of σ(B) and σ(B∗)
coincide. Because of this, it is often convenient to assume that m ≤ n.

If B =
(
B1

0

)
is an n×nmatrix and B1 is an m×n submatrix, then

σ(B) = (σ(B1), 0), where the zero vector has n−m zero components.
Consequently, results for square matrices can be modified to include
results for rectangular matrices.

Mirsky (1964) uses the term associated roots to denote the eigenval-
ues of 1

2(A+A∗). Amir-Moéz and Horn (1958) call these real singular
values, and use the term absolute singular values for singular values.
This conveys the fact that the roots of 1

2(A+A∗) are real and can be
positive or negative, whereas the roots of (AA∗)1/2 are nonnegative.
They call the eigenvalues of (A−A∗)/2i the imaginary singular values.

A.2. It was noted by Helmut Wielandt [see Fan and Hoffman (1955)]
that if A is an m×n complex matrix, then the nonzero eigenvalues of
the Hermitian matrix

Ã =
[
0 A

A∗ 0

]

are the nonzero singular values of A and their negatives. As a con-
sequence, results for Hermitian matrices can be related to results for
arbitrary matrices.

For an n×nHermitian matrixH, σi(H) = |λi(H)|, and for a positive
semidefinite Hermitian matrix H, σi(H) = λi(H), i = 1, . . . , n.

A.3. The notation

Dz ≡ diag(z1, . . . , zn)

is used to denote a diagonal matrix with diagonal elements z1, . . . , zn.
The elements zi can be square matrices of different dimensions.

A.4. For any matrix A, denote by

A

(
i1, i2, . . . , ik

j1, j2, . . . , jk

)
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the submatrix A consisting of rows i1, . . . , ik and columns j1, . . . , jk.
This notation is also used in the literature to denote the determinant
of the submatrix.

When no confusion can arise, we adopt the simpler notation

Ak ≡ A

(
1, 2, . . . , k
1, 2, . . . , k

)

to denote the submatrix consisting of rows and columns 1, . . . , k. This
notation is particularly useful for inductive proofs.

B Diagonal Elements and Eigenvalues
of a Hermitian Matrix

Historically, the first example of majorization arising in matrix theory
is the comparison between the diagonal elements and the eigenvalues
of a Hermitian matrix. In discovering this, Schur (1923) was motivated
by a desire to prove and extend Hadamard’s determinant inequality,
which states that for any n×n positive semidefinite Hermitian matrix
H = (hij),

∏n
1 λi(H) = detH ≤ ∏n

1 hii. Because this inequality is
generally not true for arbitrary matrices, Schur confined his attention
to the positive semidefinite case. However, the majorization holds more
generally for Hermitian matrices.

B.1. Theorem (Schur, 1923). If H is an n × n Hermitian matrix
with diagonal elements h1, . . . , hn and eigenvalues λ1, . . . , λn, then

h ≺ λ.

This result has aroused considerable interest and a variety of proofs
have been given. The first proof by Schur (1923) does not crucially
use his assumption that H is positive semidefinite. This proof and the
later one by Mirsky (1957a) relate the eigenvalues and the diagonal
elements via a doubly stochastic matrix. A second proof by Schneider
as reported by Mirsky (1957a) uses an interlacing theorem and induc-
tion. A third proof of Fan (1949) is based on an extremal property for
the sum of the k largest eigenvalues.

First proof (Schur, 1923; Mirsky, 1957a). By 19.A.4 there exists a
unitary matrix U such that H = UDλU

∗, where λ1, . . . , λn are the
roots of H. The diagonal elements h1, . . . , hn of H are

hi =
∑
j

uijuijλj ≡
∑
j

pijλj , i = 1, . . . , n,
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where pij = uijuij. Because U is unitary, by 2.B.5, the matrix P = (pij)
is doubly stochastic. Consequently,

(h1, . . . , hn) = (λ1, . . . , λn)P,

so that by 2.B.2, h ≺ λ. ||
Second proof (Hans Schneider, see Mirsky, 1957a). Assume that

h1 ≥ · · · ≥ hn; otherwise, permute the rows and corresponding
columns of H to achieve this (an operation that does not change the
eigenvalues λ1, . . . , λn). For k = 1, . . . , n, letHk = (hij), i, j = 1, . . . , k,
so that Hn ≡ H. Let λ(k)

1 ≥ · · · ≥ λ
(k)
k be the eigenvalues of Hk. By

a well-known interlacing theorem [e.g., see Browne (1930a), Bellman
(1972, p. 115), Householder (1964, p. 76), Bhatia (1997, p. 59), Horn
and Johnson (1985, p. 185)], the roots of Hk and Hk+1 satisfy the
following inequalities for k = 1, . . . , n− 1:

λ
(k+1)
1 ≥ λ

(k)
1 ≥ λ

(k+1)
2 ≥ · · · ≥ λ

(k)
k ≥ λ

(k+1)
k+1 .

Hence,

h1 + · · · + hk = λ
(k)
1 + · · · + λ

(k)
k

≤ λ
(k+1)
1 + · · · + λ

(k+1)
k

...

≤ λ
(n)
1 + · · · + λ

(n)
k ≡ λ1 + · · · + λk.

Equality clearly holds for k = n. ||

Remark. The abovementioned interlacing theorem has reappeared
in the literature a number of times. It was obtained by Cauchy in 1829;
sometimes the names Poincaré or Sturm are attached to it. Browne
(1930a) gives an explicit statement and proof.

A third proof of B.1 is based on the extremal representation of
20.A.2: If H is an n× n Hermitian matrix, then

max
UU∗=Ik

tr UHU∗ = λ1(H) + · · · + λk(H), (1)

where the maximum is taken over all k × n complex matrices U .

Third proof (Fan, 1949). With h1 ≥ · · · ≥ hn, an application of
(1) yields
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k∑
1

λi(H) = max
UU∗=Ik

tr UHU∗ ≥ tr (Ik0)H(Ik0)′ =
k∑
1

hi,

for k = 1, . . . , n− 1. Clearly, equality holds for k = n. ||
The significance of B.1 is considerably enhanced by the knowledge

that no stronger ordering between h and λ is generally true. This means
that majorization is somehow intrinsic in the comparison. That h and
λ cannot be compared by an ordering stronger than majorization is a
consequence of the following converse.

B.2. Theorem (Horn, 1954a; Mirsky, 1958a). If h1 ≥ · · · ≥ hn and
λ1 ≥ · · · ≥ λn are 2n numbers satisfying h ≺ λ on R n, then there
exists a real symmetric matrix H with diagonal elements h1, . . . , hn
and eigenvalues λ1, . . . , λn.

Discussion of B.2. Note that B.2 is stronger than the converse of
B.1 in that it guarantees the existence of a real symmetric matrix
rather than a Hermitian matrix.

Before proving B.2, we mention a rather curious application.
According to 2.B.6,

(i) x ≺ y on R n

implies

(iv) x = yQ for some orthostochastic matrix Q.

To see how this can be easily proved using B.2, suppose x ≺ y and
use B.2 to guarantee the existence of a real symmetric matrix H with
diagonal elements x1, . . . , xn and eigenvalues y1, . . . , yn. Then the rep-
resentation H = Γ′DyΓ, where Γ = (γij) is orthogonal, implies x = yQ
where qij = γ2

ij, so that Q is orthostochastic.
The argument of Horn (1954a) is in the opposite direction; he uses

the fact (i) implies (iv) of 2.B.6 to prove B.2 as follows. If h ≺ λ, then
by (iv), there exists an orthostochastic matrix Q such that h = λQ.
This means that hj =

∑
i λiqij =

∑
λiγ

2
ij, where Γ = (γij) is unitary.

Hence, Γ∗DλΓ has diagonal elements hj and Γ∗DλΓ is the desired real
symmetric matrix. The difficulty in Horn’s proof lies in proving (i)
implies (iv), which we did not do directly.

To avoid a circular argument in proving that (i) implies (iv) from
B.2, it is necessary to give an independent proof of B.2. Below is such
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a proof; it follows the development of Mirsky (1958a), and depends
upon the following lemma.

B.3. Lemma (Mirsky, 1958a). Given real numbers c1, . . . , cn−1 and
λ1, . . . , λn satisfying the interlacing property

λ1 ≥ c1 ≥ λ2 ≥ · · · ≥ cn−1 ≥ λn, (2)

there exists a real symmetric n× n matrix of the form

W =
[
Dc v′
v vn

]

with eigenvalues λ1, . . . , λn.

Proof. For square matrices A and C with A nonsingular,

det
[
A B′

B C

]
= det(A) det(C −BA−1B′).

Consequently, the eigenvalues of W are given by the solution of

det(λI −W ) = det(λI −Dc)[λ− vn − v(λI −Dc)−1v′]

=

[
n−1∏

1

(λ− ci)

](
λ− vn −

n−1∑
1

v2
j

λ− cj

)
= 0. (3)

Because c1, . . . , cn−1 and λ1, . . . , λn are given, the problem is to choose
v = (v1, . . . , vn−1) and vn judiciously so that λ1, . . . , λn are the roots
of (3). When λ1, . . . , λn are distinct, this can be accomplished as
follows. Let

f(λ) =
n∏
1

(λ− λi), g(λ) =
n−1∏

1

(λ− ci).

By a direct verification or by Lagrange’s interpolation formula
(Householder, 1953, Section 5.1),

f(λ)
g(λ)

= λ− (λ1 + · · · + λn − c1 − · · · − cn−1) +
n−1∑

1

f(ck)
g′(ck)

1
(λ− ck)

.

Because of the interlacing property (2),

f(ck) = (−1)k
n∏
i=1

|ck − λi|,

g′(ck) = (−1)k−1
n−1∏
i=1
i�=k

|ck − ci|,
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so that f(ck)/g′(ck) is nonpositive for k = 1, . . . , n−1. Thus the choice

v2
k = −f(ck)/g′(ck), k = 1, . . . , n − 1,

vn =
n∑
1

λi −
n−1∑

1

ci,
(4)

yields f(λ) = det(λI − w), so this provides the desired solution.
When the roots are not distinct, some modification of this proof is
required. ||

Proof of B.2. The proof is by induction. First observe that the
result clearly holds for n = 1; assume it holds for n− 1. Without loss
in generality, let

h1 ≥ · · · ≥ hn, λ1 ≥ · · · ≥ λn.

From h ≺ λ and by 5.A.10.a, there exist numbers c1, . . . , cn−1 such
that

λ1 ≥ c1 ≥ λ2 ≥ · · · ≥ cn−1 ≥ λn

and

(h1, . . . , hn−1) ≺ (c1, . . . , cn−1).

By the inductive hypothesis, there exists an n− 1× n− 1 real sym-
metric matrix S1 with diagonal elements h1, . . . , hn−1, and eigenvalues
c1, . . . , cn−1. Let Γ be an orthogonal matrix which transforms S1 to
diagonal form; that is,

Γ′S1Γ = Dc ≡ diag(c1, . . . , cn−1).

By B.3, there exists an n× n real symmetric matrix

W =
[
Dc v′

v vn

]
,

with eigenvalues λ1, . . . , λn. Now form the matrix
[
Γ 0
0 1

] [
Dc v′

v vn

] [
Γ′ 0
0 1

]
=

[
ΓDcΓ′ Γv′

vΓ′ vn

]
=

[
S1 Γv′

vΓ′ vn

]
≡ S.

Then S has eigenvalues λ1, . . . , λn and diagonal elements h1, . . . ,
hn−1, vn. But from (4), vn = hn, which completes the proof. ||
B.3.a. Remark. Theorem B.2 ensures the existence of a real sym-
metric matrix H that has given diagonal elements and eigenvalues.
Chu (1995) provides an algorithm to obtain the matrix H.
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B.3.b. Remark. Grone, Johnson, Marques de Sa, and Wolkowicz
(1984) study a class of optimization problems in which diago-
nal elements a11, . . . , ann are given. The problem is to find the
largest eigenvalue among all Hermitian matrices A with the given
diagonal elements, and satisfying the condition trA2 ≤ L (given).
Clearly, the eigenvalues λ1, . . . , λn need to satisfy the majorization

(a11, . . . , ann) ≺ (λ1, . . . , λn).

A Related Converse Connecting the Diagonal Elements
of a Matrix and the Characteristic Polynomial

The converse B.2 of Horn (1954a) shows that majorization is the
appropriate condition for the existence of a real symmetric matrix
with diagonal elements h1, . . . , hn and eigenvalues λ1, . . . , λn. Mirsky
(1960b) considers a related question, namely, what are the conditions
for the existence of a real symmetric matrix given the diagonal el-
ements and characteristic polynomial, rather than eigenvalues? He
proves the following.

B.4. Theorem (Mirsky, 1960b). Let a1, . . . , an be given real
numbers, and let

χ(x) = xn − c1x
n−1 + · · · + (−1)n−1cn−1x+ (−1)ncn

be a given polynomial with real coefficients. Necessary and sufficient
conditions for the existence of a real symmetric matrix A with diagonal
elements a1, . . . , an and characteristic polynomial χ(x) are (i) all the
zeros of χ(x) are real, (ii) a1 + · · · + an = c1, and (iii) χ[k](x + a[1] +
· · ·+a[k]) ∈ N , k = 1, . . . , n−1, where χ[k](x) is the monic polynomial
of degree

(
n
k

)
whose zeros are the numbers λi1 + · · ·+λik , for 1 ≤ i1 <

· · · < ik ≤ n, and a monic polynomial χ(x) ∈ N if either (a) the last
coefficient of χ(x) vanishes, or (b) some coefficient of χ(x) is negative,
or both (a) and (b) occur.

Implications of the Majorization Between
Eigenvalues and Diagonal Elements

From B.1, (h11, . . . , hnn) ≺ (λ1(H), . . . , λn(H)), where without loss of
generality, h11 ≥ · · · ≥ hnn. Hence

(h11, . . . , hkk) ≺w (λ1(H), . . . , λk(H)),

(hkk, . . . , hnn) ≺w (λk(H), . . . , λn(H)), k = 1, . . . , n.
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Consequently, for all Schur-convex functions φ on D ,

φ(h11, . . . , hnn) ≤ φ(λ1(H), . . . , λn(H)); (5a)

for all increasing Schur-convex functions φ on D ,

φ(h11, . . . , hkk) ≤ φ(λ1(H), . . . , λk(H)), k = 1, . . . , n; (5b)

for all decreasing Schur-convex functions φ on D ,

φ(hkk, . . . , hnn) ≤ φ(λk(H), . . . , λn(H)), k = 1, . . . , n. (5c)

B.5. If H is an n × n positive semidefinite Hermitian matrix such
that h11 ≥ · · · ≥ hnn, then

n∏
k

hii ≥
n∏
k

λi(H), k = 1, . . . , n. (6)

Proof. This special case of (5c) follows from 3.F.1.a. ||
With k = 1, (6) is called Hadamard’s inequality.
Another proof of this inequality due to Schur (1923) uses 3.C.1 with

g(x) = − log x.

B.5.a. If A is an m× n complex matrix, then

det(AA∗) ≤
m∏
i=1

n∑
j=1

|aij |2.

This is an alternate form of Hadamard’s inequality obtained from (6)
with k = 1 and H = AA∗.

The Hadamard inequality can be extended in terms of elementary
symmetric functions, Sk(x1, . . . , xn), k = 1, . . . , n.

B.5.b. Theorem (Schur, 1923). IfH is an n×n positive semidefinite
Hermitian matrix, then

Sk(λ1(H), . . . , λn(H)) ≤ Sk(h11, . . . , hnn), k = 1, . . . , n. (7)

Proof. The result follows from the majorization B.1 and the fact
3.F.1 that Sk is Schur-concave. ||
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The case k = n is equivalent to Hadamard’s inequality.

B.5.c. Theorem (Schur, 1923). If H is an n × n positive definite
Hermitian matrix, then

Sn(h11, . . . , hnn)
Sn(λ1(H), . . . , λn(H))

≥ Sn−1(h11, . . . , hnn)
Sn−1(λ1(H), . . . , λn(H))

≥ · · ·

≥ S1(h11, . . . , hnn)
S1(λ1(H), . . . , λn(H))

= 1.

Proof . This result follows from B.1 and the fact 3.F.3 that
Sk+1(x)/Sk(x) is Schur-concave on R n

++. ||
Another direction for refining the Hadamard inequality is to bound

the discrepancy:
∏n

1 λi(H) −∏n
1 hii.

B.5.d. Theorem (Schur, 1923). IfH is an n×n positive semidefinite
Hermitian matrix, then

0 ≤
n∏
1

hii −
n∏
1

λi(H) ≤ (
∑n

1 hii)
n−2

n− 2
·
∑n

1 λ
2
i −

∑n
1 h

2
ii

2
. (8)

Proof. To obtain the right-hand inequality, apply B.1 to 3.F.4 with
ν = 2 to obtain

[S1(h)]n−2S2(h) − (n− 2)n−2Sn(h)

≥ [S1(λ(H))]n−2S2(λ(H)) − (n− 2)n−2Sn(λ(H)), (9)

where Sk(h) ≡ Sk(h11, .. , hnn) and Sk(λ(H)) ≡ Sk(λ1(H), .. , λn(H)),
k = 1, . . . , n. Since S1(h) = S1(λ(H)) =

∑n
1 hii, (10) can be

rewritten as
n∏
1

hii −
n∏
1

λi(H) = Sn(h) − Sn(λ(H))

≤
(∑

hii
n− 2

)n−2

[S2(h) − S2(λ(H))].

Inequality (8) follows by noting that

2[S2(h) − S2(λ(H))] =
[(∑

hii

)2 −
∑

h2
ii

]
−
[(∑

λi

)2 −
∑

λ2
i

]

=
∑

λ2
i −

∑
h2
ii. ||
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Hermitian Matrices with Prescribed
Diagonal Elements and Spectrum

B.6. In statistics, multivariate models occasionally require the con-
struction of a correlation matrix (with diagonal elements equal to 1)
with prescribed eigenvalues.

In a more general context, Dhillon, Heath, Sustik, and Tropp (2005)
generate several numerical algorithms in which majorization plays a
central role.

Suppose A is a Hermitian matrix with ordered diagonal elements
a(1) ≤ · · · ≤ a(n) and corresponding eigenvalues λ1, . . . , λn. The prob-
lem is to construct a matrix B that has specified diagonal elements
b1, . . . , bn and eigenvalues λ1, . . . , λn. Because of Schur’s theorem, the
given vector b = (b1, . . . , bn) must satisfy b ≺ λ.

C Eigenvalues of a Hermitian Matrix
and Its Principal Submatrices

Majorization of the diagonal elements by the eigenvalues of a Hermi-
tian matrix can be viewed as the last step in an iterative comparison
between the eigenvalues of diagonal blocks of a Hermitian matrix
and the eigenvalues of the matrix. This section deals with such
comparisons.

C.1. Theorem (Fan, 1954). IfH andH are n×nHermitian matrices
of the form

H =
[
H11 H12

H21 H22

]
, H =

[
H11 0
0 H22

]
,

where H11 : l × l, H22 :m×m, l +m = n, then

(λ(H11), λ(H22)) = λ(H) ≺ λ(H). (1)

Proof. Let α1, . . . , αl and β1, . . . , βm be, respectively, the eigenval-
ues of H11 and H22. By 19.A.4, there exist an l× l unitary matrix U1

and an m×m unitary matrix U2 such that

U1H11U
∗
1 = Dα, U2H22U

∗
2 = Dβ.

Form the n× n matrix U = diag(U1, U2) and note that

UHU∗ =
[
Dα 0
0 Dβ

]
, UHU∗ =

[
Dα M

M∗ Dβ

]
,
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where M = U1H12U
∗
2 . Because U is unitary, λ(H) = λ(UHU∗) and

λ(H) = λ(UHU∗), so that by B.1,

λ(H) = λ(UHU∗) = (λ(H11), λ(H22)) ≺ λ(UHU∗) = λ(H). ||

C.1.a. Example. That the zeros cannot be placed in arbitrary
positions can be seen from the following example. If

H =

⎡
⎣1 a a

a 1 a

a a 1

⎤
⎦ and H =

⎡
⎣1 a 0
a 1 a

0 a 1

⎤
⎦ ,

where |a| < 1/
√

2, then

λ(H) = (1 − a, 1 − a, 1 + 2a), λ(H) = (1 − a
√

2, 1, 1 + a
√

2),

and it is readily verified that no majorization occurs.

C.1.b. If H is a Hermitian matrix partitioned as in C.1,

(λ1(H11), . . . , λl(H11), 0, . . . , 0) ≺w λ(H).

This follows trivially from the fact that (λ(H11), 0) ≺w (λ(H11),
λ(H22)) ≡ λ(H).

C.1.c. If H is a Hermitian matrix partitioned as in C.1 and

Hθ =
[
H11 θH12

θH21 H22

]
,

then

λ(Hθ1) ≺ λ(Hθ2), 0 ≤ θ1 < θ2 ≤ 1.

Proof. It is sufficient to prove the result with θ2 = 1, for this special
case applied to H = Hθ2 is the general case. Write Hθ = θH1 + θH0,
where θ = 1 − θ. From the convexity of

∑k
1 λi(H) (see 16.F.3) and

λ(H0) ≺ λ(H1),

λ(Hθ) = λ(θH1 + θH0) ≺ θλ(H1) + θλ(H0)
≺ θλ(H1) + θλ(H1) = λ(H1). ||

Of course, the case θ1 = 0, θ2 = 1 in C.1.c is just C.1.
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C.1.d. Theorem (Fischer, 1908). If H is an n × n positive
semidefinite Hermitian matrix, then

detH
(

1, . . . , n
1, . . . , n

)

≤ detH
(

1, . . . , k
1, . . . , k

)
detH

(
k + 1, . . . , n
k + 1, . . . , n

)
, k = 1, . . . , n− 1. (2)

Proof. Apply 3.F.1.a to the majorization (1). ||
Inequality (2) is also obtained by Fan (1955a), Krull (1958), and

Gantmacher (1959, p. 255).

C.2. (Fan, 1955a). If H is a positive semidefinite Hermitian matrix
partitioned as in C.1, then

m∏
1

λn−i+1(H) ≤
m∏
1

λl−i+1(H11), m = 1, . . . , l. (3)

Proof. From 5.A.1.d and C.1,
m∏
1

λn−i+1(H) ≤
m∏
1

λn−i+1(H). (4)

Further, from the interlacing property of the eigenvalues, the l smallest
eigenvalues ofH are, respectively, less than or equal to the l eigenvalues
of H11, so that

m∏
1

λn−i+1(H) ≤
m∏
1

λl−i+1(H11). || (5)

C.3. (Fan, 1955a). Let H be an n × n positive definite Hermitian
matrix partitioned as in C.1. Let

ηj = detH

(
j, l + 1, . . . , n

j, l + 1, . . . , n

)
, j = 1, . . . , l,

and suppose η1 ≥ · · · ≥ ηl. Then
k∏
1

ηl−i+1 ≥
k∏
1

λn−i+1(H), k = 1, . . . , l.

Note that the ordering η1 ≥ · · · ≥ ηl can be accomplished by per-
muting the rows and columns of H11 without altering the eigenvalues
of H.
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Additional Inequalities for a Partitioned
Hermitian Matrix

For a Hermitian matrix partitioned as in C.1, inequalities in addition
to those of C.1 are known that compare the eigenvalues of H and
ofH. Some such inequalities arise as a generalized interlacing property.
When H11 is (n−1)×(n−1), the n−1 eigenvalues of H11 interlace the
eigenvalues of H. More generally, if H11 and H22 are l× l and m×m,
respectively, then

λj(H) ≥ λj(H11), λl−j+1(H11) ≥ λn−j+1(H), j = 1, . . . , l,

λj(H) ≥ λj(H22), λm−j+1(H22) ≥ λn−j+1(H), j = 1, . . . ,m
(6)

[see, e.g., Householder (1964, p. 76)].
Other kinds of inequalities, obtained by Thompson and Therianos

(1972), can best be stated under the assumption l ≥ m in terms of the
2l × 2l augmented matrix

Ĥ =

⎡
⎣H11 H12 0
H21 H22 0
0 0 0

⎤
⎦ .

Here, H11 and diag(H22, 0) are l × l submatrices of Ĥ.

C.4. Theorem (Thompson and Therianos, 1972). If H is a
positive semidefinite Hermitian matrix, and the eigenvalues of H11,
diag(H22, 0), and Ĥ are ordered,

α1 ≥ · · · ≥ αm ≥ 0, β1 ≥ · · · ≥ βm ≥ 0, γ1 ≥ · · · ≥ γ2m ≥ 0,

respectively, then

k∑
s=1

γis+js−s +
k∑
s=1

γ2l−k+s ≤
k∑
s=1

αis +
k∑
s=1

βjs , k = 1, . . . , l, (7)

1 ≤ i1 < · · · < ik ≤ l, 1 ≤ j1 < · · · < jk ≤ l.
From (7) together with the ordering of α and β,

k∑
s=1

(γs + γ2l−k+s) ≤
k∑
1

αi +
k∑
1

βi, k = 1, . . . , l. (8)

The inequalities (8) closely resemble majorization, and yield majoriza-
tion if γ1 + γ2l ≥ γ2 + γ2l−1 ≥ · · · ≥ γl + γl+1.
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Eigenvalue Inequalities

The following inequalities are majorization generalizations of what
have been called Bloomfield–Watson–Knott inequalities. For an ex-
position and references, see Ando (2001).

Let A > 0 (i.e., A is positive definite) be an n × n matrix
partitioned as

A =
[
A11 A12

A21 A22

]
,

with A11 an m ×m matrix of rank m ≤ n −m. Further, let λ1(·) ≥
· · · ≥ λn(·) denote ordered eigenvalues, and let α1 ≥ · · · ≥ αn denote
the ordered eigenvalues of A.

C.5. Proposition (Ando, 2001). For k = 1, . . . ,m,

k∏
1

1

1 − λj(|A−1/2
22 A21A

−1/2
11 |)2

≤
k∏
1

(αj + αn−j+1)2

4αjαn−j+1
, (9)

k∑
1

λj(|A−1/2
22 A21A

−1/2
11 |)2 ≤

k∑
1

(αj − αn−j+1)2

4αjαn−j+1
, (10)

k∏
1

[1 + λj(|A21A
−1
11 |)2] ≤

k∏
1

(αj + αn−j+1)2

4αjαn−j+1
, (11)

k∑
1

λj(|A21A
−1
11 |)2 ≤

k∑
1

(αj − αn−j+1)2

4αjαn−j+1
, (12)

k∑
1

λj(|A21|) ≤
k∑
1

αj − αn−j+1

2
. (13)

Converse Theorems

C.6. Jacobi matrix. A symmetric tridiagonal matrix of the form

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

a0 b1 0 0 · · · 0 0
b1 a1 b2 0 · · · 0 0
0 b2 a2 b3 · · · 0 0

...

...
0 0 0 0 · · · bn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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where all ai, bi are real and bi > 0, is called a Jacobi matrix. Denote
by J(1) the truncated n × n matrix obtained by deleting the first row
and first column of J.

The ordered eigenvalues λ0 > λ1 > · · · > λn of J and the ordered
eigenvalues μ1 > μ2 > · · · > μn of J(1) are real, distinct, and interlace
in the form

λ0 > μ1 > λ1 > · · · > μn > λn. (14)

The inverse problem is to show how to construct a Jacobi matrix
given 2n+1 numbers satisfying (14). The choice of these numbers can-
not be arbitrary, but must be feasible in the sense that there exists a Ja-
cobi matrix with these 2n+1 associated eigenvalues. Hochstadt (1974)
then shows how to construct the unique corresponding Jacobi matrix.

C.7. Normal matrix. A matrix A is a normal matrix if AA∗ =
A∗A. This class includes Hermitian matrices. However, there are two
important differences; the eigenvalues need not be real, and principal
submatrices need not be normal. Malamud (2005) provides necessary
and sufficient conditions for two sequences λ1, . . . , λn and μ1, . . . , μn−1

to be the spectra of a normal matrix A and of its principal submatrix
obtained by deleting the last row and column of A (see 10.B.9).

D Diagonal Elements and Singular Values

As is proved in Section B, the diagonal elements aii and eigenvalues
λi(A), i = 1, . . . , n, of an n×n Hermitian matrix A are real and satisfy
(a11, . . . , ann) ≺ (λ1(A), . . . , λn(A)). For an arbitrary complex matrix
A, the roots and/or the diagonal elements can be complex, so that
similar comparisons require some modifications.

A possible comparison is between the real part of the diagonal
elements and that of the eigenvalues. Such a comparison would have
to be in the direction R(a11, . . . , ann) ≺ R(λ1(A), . . . , λn(A)) already
established in the Hermitian case. That no such majorization exists
can be seen from the example

A =
1
5

[
7 + 3i 1 + 4i

−4 + 4i 3 − 3i

]
=

1
5

[
2 1
1 −2

] [
1 + i 0

0 1 − i

] [
2 1
1 −2

]
.

Here, R(aii) = (7
5 ,

3
5), and R(λ) = (1, 1), so that (R(aii)) � (R(λ)).
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Another alternative is to compare absolute values. Note that∑ |aii| �= ∑ |λi(A)| for arbitrary matrices, so that at best weak
majorization can be expected. In the above example,

(|a11|, |a22|) = (58/25, 18/25), (|λ1|, |λ2|) = (2, 2),

and no majorization in either direction exists.
However, a comparison between the absolute values or the real part

of the diagonal elements and the singular values is possible.

D.1. Theorem (Fan, 1951). If A is an arbitrary n × n matrix with
diagonal elements a1, . . . , an, then

R(a) ≡ (R(a1), . . . ,R(an)) ≺w (|a1|, . . . , |an|)
≺w (σ1(A), . . . , σn(A)) ≡ σ(A) on R n. (1)

Proof. According to 19.B.1, there exist unitary matrices U and V
such that

A = UDσV
∗,

where σi ≡ σi(A), i = 1, . . . , n. Then

aj =
∑
l

(ujlvjl)σl (2)

and

|aj | ≤
∑
l

|ujlvjl|σl ≡
∑
l

pjlσl. (3)

By 2.H.7.a, P = (pij) is doubly substochastic. Let dj = |aj |/
∑

l pjlσl,
j = 1, . . . , n, and Dd = diag(d1, . . . , dn). Then from (3),

(|a1|, . . . , |an|) = (σ1, . . . , σn)PDd ≡ σQ.

Because 0 ≤ dj ≤ 1, j = 1, . . . , n, Dd is doubly substochastic, so that
Q = PDd is doubly substochastic, which proves the right-hand major-
ization in (1).

The left-hand majorization in (1) follows trivially from |aj| ≥ R(aj),
j = 1, . . . , n. ||

An alternative proof of R(a) ≺w σ(A) can be based on the extremal
representation of 20.B.1. Rearrange the rows and columns of A so that
a1 ≥ · · · ≥ an. Then



D. Diagonal Elements and Singular Values 315

k∑
1

σi(A) = maxR tr UAV ∗ ≥ R[tr(Ik, 0)A(Ik , 0)′] =
k∑
1

Rai,

where the maximum is over all k × n matrices U and V such that
UU∗ = V V ∗ = Ik.

Alternative proof of D.1. Thompson (1977) provides an interest-
ing proof that uses the interlacing property of the eigenvalues of a
Hermitian matrix and a principal submatrix (see B.1). Let Dε =
diag(ε1, . . . , εn) satisfy bii = εiai = |ai|, i = 1, . . . , n, and let B = DεA.
Then |εi| = 1, i = 1, . . . , n and σ(B) = σ(DεA) = σ(A). Further, let
Bk = (bij), i, j = 1, . . . , k. Then

k∑
1

|ai| =
k∑
1

bii = trBk = |trBk| = |
k∑
1

λi(Bk)| ≤
k∑
1

|λi(Bk)|.

By E.1.a,
∑k

1 |λi(Bk)| ≤
∑k

1 σi(Bk), and from the interlacing prop-
erty for submatrices of a Hermitian matrix, σi(Bk) ≤ σi(B) for
i = 1, . . . , k, so that

∑k
1 σi(Bk) ≤ ∑k

1 σi(B), k = 1, . . . , n, which
completes the proof. ||

Recall that there is no majorization between the diagonal elements
and the eigenvalues of an arbitrary matrix. However, these quantities
are loosely related, as indicated by the following theorem.

D.2. Theorem (Mirsky, 1958a). A necessary and sufficient condition
for the existence of a real (complex) matrix A with real (complex)
eigenvalues λ1, . . . , λn and diagonal elements a1, . . . , an is

a1 + · · · + an = λ1 + · · · + λn.

Proof. Necessity follows from the fact that if A has eigenvalues
λ1, . . . , λn and diagonal elements a1, . . . , an, then trA =

∑n
1 ai =∑n

1 λi.
The proof of sufficiency is by induction on n and is similar to

the proof of B.3. Let b1, . . . , bn−1 be distinct numbers satisfying∑n−1
1 ai =

∑n−1
1 bi. By the induction hypothesis, there exists an

(n − 1) × (n − 1) matrix A1 with diagonal elements a1, . . . , an−1 and
eigenvalues b1, . . . , bn−1. It remains to augment the matrix A1 to ob-
tain an n × n matrix A which has the desired diagonal elements and
eigenvalues.

Let Q be a nonsingular matrix for which

Q−1A1Q = Db ≡ diag(b1, . . . , bn−1),
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and form the matrix

A = A(u, v) =
[
Q 0
0 1

] [
Db u′
v an

] [
Q−1 0
0 1

]

=

[
QDbQ

−1 Qu′

vQ−1 an

]
=

[
A1 Qu′

vQ−1 an

]
.

First note that the diagonal elements of A are a1, . . . , an as desired.
The vectors u = (u1, . . . , un−1) and v = (v1, . . . , vn−1) are yet to be
chosen so that the eigenvalues of A are λ1, . . . , λn.

By using the partitioned form of A, it can be seen that the roots of
det(λI −A) = 0 are the roots of

det(λI −A1)[λ− an − vQ−1(λI −A1)−1Qu′]

=

[
n−1∏

1

(λ− bi)

](
λ− an −

n−1∑
1

vjuj
λ− bj

)
= 0. (4)

The choice of vj and uj can be made so that λ1, . . . , λn are the roots
of (4) as follows. Let

f(λ) =
n∏
1

(λ− λi), g(λ) =
n−1∏

1

(λ− bi).

As in the argument of B.3, Lagrange’s interpolation formula [see, e.g.,
Householder (1953, Section 5.1)] yields

f(λ)
g(λ)

= λ−
(

n∑
1

λi −
n−1∑

1

bi

)
+
n−1∑

1

f(bj)
g′(bj)

1
λ− bj

. (5)

Since an =
∑n

1 λi −
∑n−1

1 bi, upon comparing (4) and (5), it is seen
that the choice

ujvj = − f(bj)
g′(bj)

, j = 1, . . . , n− 1,

satisfies the requirements. ||
D.3. Theorem (Thompson, 1975). The conditions

(i) (|d1|, . . . , |dn|) ≺w (σ1, . . . , σn),

(ii)
∑n−1

1 |di| − |dn| ≤
∑n−1

1 σi − σn
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are necessary and sufficient for the existence of an n × n matrix with
(possibly complex) diagonal elements d1, . . . , dn with |d1| ≥ · · · ≥ |dn|
and singular values σ1, . . . , σn.

The necessity of (i) is given by D.1. The proof of the converse is
quite involved and is omitted.

E Absolute Value of Eigenvalues
and Singular Values

When A is Hermitian, |λ(A)| = λ1/2(AA∗) = σ(A), so that the
absolute values of the eigenvalues are the singular values. When A
is not Hermitian, what restrictions are placed on the eigenvalues λ(A)
by knowledge of the singular values σ(A)? An answer to this question is
provided by a key result of Weyl (1949) that has generated considerable
research. In particular, see Ando and Hiai (1994).

E.1. Theorem (Weyl, 1949). For any n×n complex matrix A with
eigenvalues ordered |λ1(A)| ≥ · · · ≥ |λn(A)|,

k∏
1

|λj(A)| ≤
k∏
1

σj(A), k = 1, . . . , n − 1,

n∏
1

|λj(A)| =
n∏
1

σj(A).

(1)

If |λn(A)| > 0, these conditions are equivalent to

(log |λ1(A)|, . . . , log |λn(A)|) ≺ (log σ1(A), . . . , log σn(A)). (2)

Further discussion of log-majorization is given in 1.A. Examples of
log-majorization occur throughout this book.

Alternative proofs of E.1 have been provided by Horn (1950) and by
Visser and Zaanen (1952). The following proof is essentially the same
as that of Marcus and Minc (1964).

Proof. The well-known inequality

|λ1(A)| ≤ σ1(A)

of Browne (1928) applied to the kth compound A(k) (refer to 19.F.1)
yields

|λ1(A(k))| ≤ σ1(A(k)). (3)



318 9. Matrix Theory

By 19.F.2.c, the eigenvalues of A(k) are products
∏k
j=1 λij(A) of the

eigenvalues of A, k at a time, so that

λ1(A(k)) = λ1(A) · · · λk(A), k = 1, . . . , n. (4)

As a consequence of the Binet–Cauchy theorem 19.F.2,

(AB)(k) = A(k)B(k).

Thus

[σ1(A(k))]2 = λ1(A(k)A∗(k)) = λ1((AA∗)(k))

=
k∏
1

λj(AA∗), k = 1, . . . , n. (5)

Using (4) and (5) in (3) yields (1) after noting that for k = n, equality
in (3) is achieved. ||
E.1.a. For any n× n nonsingular complex matrix A,

(|λ1(A)|, . . . , |λn(A)|) ≺w (σ1(A), . . . , σn(A)).

Proof. This is an application of 5.A.1 to (2). ||
E.1.b. For any nonsingular complex matrix A,

(|λ1(A)|2, . . . , |λn(A)|2) ≺w (σ2
1(A), . . . , σ2

n(A))
= (λ1(AA∗), . . . , λn(AA∗)).

Proof. This is a consequence of E.1.a and 5.A.2. ||
E.1.c. (Schur, 1909). For any nonsingular complex matrix A,

n∑
1

λi(AA∗) = trAA∗ =
∑
i,j

|aij|2 ≥
n∑
1

|λi(A)|2.

Proof. This is immediate from E.1.b. ||
In the inequality of E.1.c, the judicious choice

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
√
x1 0 · · · 0

0 0
√
x2 · · · 0

...
...

...
...

0 0 0 · · · √
xn−1√

xn 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, xi > 0,
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yields the inequality
n∑
1

xi ≥ n
n∏
1

x
1/n
i ,

which is the arithmetic-geometric mean inequality. The computation
is based on the fact that the eigenvalues of A are the nth roots of∏n

1

√
xi. This idea and proof are due to Gaines (1967).

N ote. E.1.c can be generalized. In fact, for any r ∈ [1, 2] we have∑
i,j |aij |r ≥ ∑n

i=1 |λi(A)|r. Ikramov (1994) proves this by using the
Weyl inequalities (E.1),

k∑
i=1

|λi(A)|r ≤
k∑
i=1

[σi(A)]r, 1 ≤ k ≤ n, 0 < r <∞,

and the fact that f(x) = xr/2 is strictly concave for x > 0 when
1 ≤ r < 2.

The inequality

k∏
1

(1 + r|λi(A)|) ≤
k∏
1

(1 + r|σi(A)|), 1 ≤ k ≤ n,

also holds for all complex matrices A and 0 < r <∞.
Note. E.1.a, E.1.b, and E.1.c hold even for any singular matrix

A. The nonsingularity condition is required for log-majorization. See
Kittaneh (1995) for further discussion.

E.2. (Fan, 1949). For any complex matrix A and positive integer s,

σ2(As) ≺w σ2s(A).

To prove this, Fan makes a transformation using the polar
decomposition 19.C.3, and then applies an extremal representation.

E.3. (Tung, 1964). If A is an n×n complex matrix, and U is unitary,
then

n∏
1

1 − σi(A)
1 + σi(A)

≤ det(I −AA∗)
det(I −AU∗)(I − UA∗)

≤
n∏
1

1 + σi(A)
1 − σi(A)

. (6)

Note that

det(I −AA∗) =
n∏
1

(1 − σ2
i (A)), det(I −AU∗) = det(I − UA∗);
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if 1 > σi, i = 1, . . . , n, then inequality (6) can be simplified to
n∏
1

(1 − σi(A)) ≤ |det(I −AU∗)| ≤
n∏
1

(1 + σi(A)). (7)

Marcus (1965) uses majorization to obtain an extension of (7):

E.3.a. Theorem (Marcus, 1965). Let A be an n×n complex matrix
with eigenvalues ordered |λ1| ≥ · · · ≥ |λn| such that I−AA∗ is positive
definite. If 1 ≥ c1 ≥ · · · ≥ cn > 0, then for k = 1, . . . , n,

k∏
1

[1 − ciσi(A)] ≤
k∏
1

[1 − ci|λi|] ≤
k∏
1

|1 − ciλi|

≤
k∏
1

[1 + ci|λi|] ≤
k∏
1

[1 + ciσi(A)].

(8a)

With the notation σ̃i = ciσi(A), λ̃i = ciλi, i = 1, . . . , n, (8a) can be
rewritten equivalently as

(i) log(1 − |λ̃|) ≺w log(1 − σ̃),

(ii) log(1 − |λ̃|) ≺w log |1 − λ̃| ≺w log(1 + |λ̃|),
(iii) log(1 + |λ̃|) ≺w log(1 + σ̃).

(8b)

Proof. Applying 3.H.3.c to (2) yields (log |λ̃|) ≺ (log σ̃), which to-
gether with 5.A.1(2) and 5.A.1(1) with the choices g(x) = log(1 − ex)
and g(x) = log(1 + ex), respectively, yields (i) and (iii). The remain-
ing majorizations (ii) follow trivially from a termwise argument after
noting that 1 − |x| ≤ |1 − x| ≤ 1 + |x|. ||
E.4. Theorem (Hua, 1955). If A and B are n×n complex matrices
such that I −A∗A and I −B∗B are positive semidefinite, then

|det(I −A∗B)|2 =
n∏
1

|λi(I −A∗B)|2 ≥
n∏
1

λi(I −A∗A)λi(I −B∗B)

= det(I −A∗A) det(I −B∗B).

With slightly stronger hypotheses, Hua’s inequality can be extended
to a majorization result.

E.4.a. Theorem (Marcus, 1958). If I−A∗A and I−B∗B are positive
definite and the eigenvalues of I − A∗B, I − A∗A, and I − B∗B are
ordered so that



E. Absolute Value of Eigenvalues and Singular Values 321

|λ1(I −A∗B)| ≥ · · · ≥ |λn(I −A∗B)|,
λ1(I −A∗A) ≥ · · · ≥ λn(I −A∗A),

λ1(I −B∗B) ≥ · · · ≥ λn(I −B∗B),

then, for k = 1, . . . , n,
n∏
k

|λi(I −A∗B)|2 ≥
n∏
k

λi(I −A∗A) λi(I −B∗B), (9a)

or equivalently,

[log |λ(I −A∗B)|2] ≺w [log λ(I −A∗A) + log λ(I −B∗B)]. (9b)

Proof. Write U ≤ V to mean that V − U is positive semidefinite.
Under the hypotheses of E.4.a,

I −A∗A ≤ (I −A∗B)(I −B∗B)−1(I −B∗A). (10)

[Inequality (10) is essentially posed by Redheffer (1964).] For simplicity
of notation, let L = (I −A∗B), G = (I −B∗B), H = (I −A∗A). Then
from (10) and 20.A.1.b, it follows that

λn(H) ≤ λn(LG−1L∗). (11)

By A.1.a and the inequality 20.A.1.a,

λn(LG−1L∗) = λn(G−1L∗L)
≤ λn(L∗L)λ1(G−1) = λn(LL∗)/λn(G). (12)

From (11) and (12), and by E.1,

λn(G)λn(H) ≤ λn(LL∗) ≤ |λn(L)|2. (13)

The proof is completed by using the kth compound with (13). ||
Open problem. Inequalities (9a) suggest the more general problem

of characterizing the class of matrix-valued functions F of matrices for
which

n∏
k

|λi(F (A∗B))|2 ≥
n∏
k

λi(F (A∗A)) λi(F (B∗B)), k = 1, . . . , n.

The choice F (X) = I −X then yields (9a).

E.4.b. (Xu, Xu, and Zhang, 2009). Let A and B be Hermitian ma-
trices with A > 0 and B ≥ 0, and with respective ordered eigenvalues
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α1 ≥ · · · ≥ αn and β1 ≥ · · · ≥ βn; let C be a complex matrix with
eigenvalues ordered in modulus |γ1| ≥ · · · ≥ |γn|. If C∗A−1C ≥ B,
then for k = 1, . . . , n,

k∏
j=1

|γn−j+1|2 ≥
k∏
j=1

αn−j+1βn−j+1.

Converse Theorems Connecting Eigenvalues
and Singular Values of a Matrix

The following basic result of Horn (1954b) shows that the relations (1)
provide a characterization of the absolute value of the eigenvalues and
the singular values of a complex matrix.

E.5. Theorem (Horn, 1954b). If x1 ≥ · · · ≥ xn ≥ 0, y1 ≥ · · · ≥ yn
≥ 0, and

k∏
1

yi ≤
k∏
1

xi, k = 1, . . . , n − 1,
n∏
1

yi =
n∏
1

xi, (14)

then there exists a matrix A such that yj = |λj(A)| and xj = σj(A),
j = 1, . . . , n.

Horn’s proof is inductive; he shows that (14) implies the existence
of a triangular matrix with eigenvalues y1, . . . , yn and singular values
x1, . . . , xn. For n = 2, (14) and x1 ≥ x2, y1 ≥ y2 imply x1 ≥ y1 ≥ y2 ≥
x2 ≥ 0 and also that x2

1 + x2
2 ≥ y2

1 + y2
2 . The matrix

[
y1 t

0 y2

]

has eigenvalues y1, y2; the choice t = (x2
1 + x2

2 − y2
1 − y2

2)
1/2 yields

singular values x1, x2. For n > 2, Horn treats the cases xn > 0, yn > 0
and xn = 0 or yn = 0 separately, and completes the induction by
making use of the unitary equivalence to a diagonal matrix.

Horn further shows that when xn > 0, yn > 0, E.5 is equivalent to
the following:

E.6. Theorem (Horn, 1954b). If (14) holds and x1 ≥ · · · ≥ xn > 0,
y1 ≥ · · · ≥ yn > 0, then there exists a positive definite symmetric
matrix H with eigenvalues xj = λj(H), j = 1, . . . , n, such that
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k∏
1

yj = detHk, k = 1, . . . , n, (15)

where Hk = (hij), i, j = 1, 2, . . . , k.

Indication of proof. Horn (1954b) shows that (14) implies the ex-
istence of a lower triangular matrix T with eigenvalues tii = y

1/2
i

and singular values x1/2
i . Consequently, if H = TT ∗, then detHk =

detTkT ∗
k =

∏k
1 yi, which is (15).

Conversely, suppose (15) holds. Because each yi > 0, detHk > 0,
k = 1, . . . , n, and hence, H is positive definite. Write H = TT ∗, where
T is lower triangular. Since detHk =

∏k
1 tiitii, and the yi are real,

the diagonal elements of T are the eigenvalues y1/2
1 , . . . , y

1/2
n . But now∏k

1 y
1/2
i ≤ ∏k

1 x
1/2
i , k = 1, . . . , n, so that (14) holds.

Alternative proof of E.6. Mirsky (1959c) gives an alternative
inductive proof that makes use of the interlacing property 5.A.10.a.

The result is clearly true for n = 1. Assume that it holds for n− 1.
Let x1 ≥ · · · ≥ xn > 0 and y1 · · · ≥ yn > 0 be given numbers satisfying

(log y1, . . . , log yn) ≺ (log x1, . . . , log xn).

From 5.A.10.a, there exist positive numbers c1, . . . , cn−1 that
interlace log x1, . . . , log xn and satisfy

(log y1, . . . , log yn−1) ≺ (c1, . . . , cn−1) ≡ (log q1, . . . , log qn−1). (16)

By the induction hypothesis applied to (16), there exists a real sym-
metric (n − 1) × (n − 1) matrix Q with eigenvalues q1, . . . , qn−1 and
such that

k∏
1

yi = detQk, k = 1, . . . , n− 1.

As in the proof of B.3, there exist a vector v = (v1, . . . , vn−1) and a
scalar w such that

S =
[
Q v′

v w

]

has eigenvalues x1, . . . , xn. ||
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Eigenvalues of a Matrix
and Its Unitary Part

From the polar decomposition 19.C.3, a complex matrix A can be
written A = HU , where H is the positive semidefinite square root of
AA∗ and U is an n × n unitary matrix. The matrix U is called the
unitary part of A. If A is nonsingular, then U is unique.

Earlier in this section the following question is discussed: Given the
eigenvalues of H (singular values of A), what restrictions does this
place on the eigenvalues of A? Horn and Steinberg (1959) answer a
similar question given the eigenvalues of U .

E.7. Theorem (Horn and Steinberg, 1959). If A = HU , where H is
a positive definite Hermitian matrix and U is a unitary matrix, then

(arg λ1(A), . . . , arg λn(A)) ≺ (arg λ1(U), . . . , arg λn(U)).

Furthermore, if (λ1, . . . , λn) ≺ (α1, . . . , αn), λi �= 0, |αi| = 1, for i =
1, . . . , n, then there exists a matrix A with λi = λi(A), αi = λi(U),
i = 1, . . . , n, where U is the unitary part of A.

F Eigenvalues and Singular Values

Eigenvalues of A and 1
2(A+A∗)

The real parts of the eigenvalues of a complex matrix A can be com-
pared with the eigenvalues of the symmetric version 1

2(A + A∗) as
a consequence of the extremal representation 20.A.2 or by using the
additive compound discussed in 19.F.3.

F.1. Theorem (Fan, 1950). For any n× n complex matrix A,

(Rλ1(A), . . . ,Rλn(A)) ≺
(
λ1

(
A+A∗

2

)
, . . . , λn

(
A+A∗

2

))
.

Proof. According to 19.A.3, A can be written in the form A =
ΔTΔ∗, where Δ is an n× n unitary matrix and T is lower triangular
with tii = λi(A), i = 1, . . . , n. With the eigenvalues labeled so that

λ1

(
A+A∗

2

)
≥ · · · ≥ λn

(
A+A∗

2

)
, Rλ1(A) ≥ · · · ≥ Rλn(A),
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it follows from the extremal representation 20.A.2 that
k∑
1

λi

(
A+A∗

2

)
= max

UU∗=Ik

R tr U
(
A+A∗

2

)
U∗

= max
UU∗=Ik

R tr UΔ
(
T + T ∗

2

)
Δ∗U∗

≥ R tr(Ik0)
(
T + T ∗

2

)(
Ik
0

)

=
k∑
1

Rλi(A), k = 1, . . . , n. ||

If in addition Rλi(A) > 0, λi(A+A∗) > 0, then from 5.A.1.d,
n∏
k

Rλi(A) ≥
n∏
k

λi

(
A+A∗

2

)
, k + 1, . . . , n.

F.1.a. (Bendixson, 1902; Hirsch, 1902). Under the hypotheses of F.1,

Rλ1(A) ≤ λ1

(
A+A∗

2

)
. (1)

This case (k = 1) of F.1 was obtained by Bendixson for real matrices
and by Hirsch for complex matrices. An alternative proof is given by
Browne (1930b).

That (1) implies F.1 is somewhat surprising. But using (1) with the
kth additive compound Δk (see 19.F) yields

Rλ1(Δk(A)) ≤ λ1

(
Δk(A) + (Δk(A))∗

2

)
.

The left-hand side is R
∑k

1 λi(A) =
∑k

1 Rλi(A). Because (Δk(A))∗ =
Δk(A∗) and because the additive compound is linear,

λ1

(
Δk

(
A+A∗

2

))
= λ1

(
Δk

(
A

2

)
+ Δk

(
A∗

2

))

=
k∑
1

λi

(
A+A∗

2

)
.

The following result provides a converse to F.1.

F.2. Theorem (Amir-Moéz and Horn, 1958; Mirsky, 1958a). If
ω1, . . . , ωn are complex numbers and α1, . . . , αn are real numbers
satisfying



326 9. Matrix Theory

(Rω1, . . . ,Rωn) ≺ (α1, . . . , αn), (2)

then there exists an n × n complex matrix A with ωi = λi(A) and
αi = λi(1

2 (A+A∗)), i = 1, . . . , n.

Proof. If the given 2n numbers α1, . . . , αn and ω1, . . . , ωn satisfy
(2), then by B.2 there exists a real symmetric matrix B with eigen-
values α1, . . . , αn and diagonal elements Rω1, . . . ,Rωn. By 19.A.3.b
there exists an orthogonal matrix Γ such that

Γ′BΓ = Dα = diag(α1, . . . , αn).

To construct the desired matrix A, first form the lower triangular ma-
trix L defined by lii = ωi, lij = 2bij(i > j), lij = 0(i < j). Then
ωi = λi(L) = λi(Γ′LΓ). Let A = Γ′LΓ. Then

A+A∗

2
= Γ′

(
L+ L∗

2

)
Γ = Γ′BΓ = Dα,

so that the matrix A fulfills the requirements. ||

Eigenvalues of A and (A−A∗)/(2i)

It was noted by Fan (1950) that a result similar to F.1 holds for the
imaginary singular values [i.e., the eigenvalues of (A−A∗)/(2i)]. This is
stated explicitly by Amir-Moéz and Horn (1958), who also note the
converse.

F.3. Theorem (Fan, 1950; Amir-Moéz and Horn, 1958). Let
θ1, . . . , θn and β1, . . . , βn be real numbers. A necessary and sufficient
condition for the existence of an n × n complex matrix A with imag-
inary singular values λj((A − A∗)/(2i)) = βj and with eigenvalues
having imaginary parts I λj(A) = θj, j = 1, . . . , n, is

(θ1, . . . , θn) ≺ (β1, . . . , βn). (3)

The proof parallels that of F.1 and F.2. Alternatively, the necessity of
(3) can be obtained using the kth additive compound in the following
result.

F.3.a. (Bromwich, 1906). If A is an n× n complex matrix with

λ1

(
A−A∗

2i

)
≥ · · · ≥ λn

(
A−A∗

2i

)
,

then

λn

(
A−A∗

2i

)
≤ I λj(A) ≤ λ1

(
A−A∗

2i

)
, j = 1, . . . , n. (4)
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Eigenvalues of (A+A∗)/2 and AA∗

Comparisons between the eigenvalues of 1
2(A + A∗) and the singular

values can be obtained as a consequence of F.4 below.

F.4. Theorem (Fan and Hoffman, 1955). Let A be an n×n complex
matrix. Label the eigenvalues of 1

2(A+A∗) so that

λ1((A+A∗)/2) ≥ · · · ≥ λn((A+A∗)/2),

and similarly order the singular values of A. Then

λi((A+A∗)/2) ≤ σi(A), i = 1, . . . , n. (5)

Alternative proofs of (5) are given by Fan (1974) and by Thompson
(1975, 1976).

Since σi(−A) = σi(A), λi((−A − A∗)/2) = −λi((A + A∗)/2),
i = 1, . . . , n, (5) implies that

|λi((A+A∗)/2)| ≤ σi(A), i = 1, . . . , n.

F.4.a. (Fan and Hoffman, 1955). For any n× n complex matrix A,(∣∣∣∣λ1

(
A+A∗

2

)∣∣∣∣ , . . . ,
∣∣∣∣λn

(
A+A∗

2

)∣∣∣∣
)

≺w (σ1(A), . . . , σn(A)). (6)

Note that the extremal representation 20.A.2 yields a result weaker
than (6); namely, for k = 1, . . . , n,

k∑
1

λi((A+A∗)/2) = max
UU∗=Ik

tr U((A +A∗)/2)U∗

≤ max
UU∗=Ik
V V ∗=Ik

R tr UAV ∗ =
k∑
1

σi(A),

(7a)

or equivalently,

(λ1((A +A∗)/2), . . . , λn((A+A∗)/2)) ≺w (σ1(A), . . . , σn(A)). (7b)

F.4.b. Theorem (R. C. Thompson, 1971). If A and B are n × n
complex matrices and γi = λi((AB + B∗A∗)/2) are ordered |γ1| ≥
· · · ≥ |γn|, then

(|γ1|, . . . , |γn|) ≺w (σ1(A)σ1(B), . . . , σn(A)σn(B)). (8)

Proof. Replacement of A by AB in (6), and application of H.1 (1a)
with 5.A.2.b, yields (8). ||
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Other results of R. C. Thompson (1971) are considerably stronger
than F.4.b.

Eigenvalues of the Real Part
of a Hermitian Matrix

F.5. If G and H are n× n Hermitian matrices, then

(Rλ1(G+ iH), . . . ,Rλn(G+ iH)) ≺ (λ1(G), . . . , λn(G)).

Proof. In F.1 let A = G+ iH, so that (A+A∗)/2 = G. ||
The following is a partial converse.

F.5.a. (Sherman and Thompson, 1972). If G is a given Hermitian
matrix with eigenvalues λ1 ≥ · · · ≥ λn, and α1 ≥ · · · ≥ αn are given
real numbers satisfying

(α1, . . . , αn) ≺ (λ1, . . . , λn),

then there exists a Hermitian matrix H such that

αj = Rλj(G+ iH), j = 1, . . . , n.

The proof of this result is a rather involved induction and is omitted.

Singular Values of A+B and A+ iB

For Hermitian matrices A and B, let α1, . . . , αn and β1, . . . , βn denote
the singular values of A+B and A+ iB respectively.

F.6. Proposition (Bhatia and Kittaneh, 2009).

(α1, . . . , αn) ≺w

√
2(β1, . . . , βn). (9)

If A ≥ 0, then

k∏
1

αi ≤ 2k/2
k∏
1

βi, k = 1, . . . , n.

If A,B ≥ 0, then

k∑
1

αi ≤
√

2
k∑
1

βi, k = 1, . . . , n.
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G Eigenvalues and Singular Values
of A, B, and A + B

In this section, comparisons between the eigenvalues and/or singular
values of matrices and sums of matrices are discussed. All eigenvalues
λ1, . . . , λn are in descending order; i.e., λ1 ≥ · · · ≥ λn.

The first comparison between the eigenvalues of a sum of matrices,
due to Ky Fan, is one of the earliest important results.

G.1. Theorem (Fan, 1949). If G and H are n × n Hermitian
matrices, then

(λ1(G+H), . . . , λn(G+H))

≺ (λ1(G) + λ1(H), . . . , λn(G) + λn(H)).
(1)

Proof. This result is a consequence of the extremal representation
20.A.2: If U is a k × n unitary matrix, then

max
UU∗=Ik

trU(G+H)U∗ ≤ max
UU∗=Ik

trUGU∗ + max
UU∗+Ik

trUHU∗,

which yields (1).
Equality holds for k = n, because the trace is linear. ||
As in the case of F.1.a, (1) somewhat surprisingly follows from the

better-known inequality

λ1(G+H) ≤ λ1(G) + λ1(H). (2)

Alternative proof of G.1. Use the kth additive compound in (2)
and the fact 19.F.4 that the k-additive compound is linear. Then

λ1(Δk(G+H)) = λ1(Δk(G)+Δk(H)) ≤ λ1(Δk(G))+λ1(Δk(H)). (3)

Since λ1(Δk(A)) =
∑k

1 λi(A), inequality (3) yields

k∑
1

λi(G+H) ≤
k∑
1

λi(G) +
k∑
1

λi(H), k = 1, . . . , n,

which is equivalent to (1). ||

G.1.a. Theorem (Wielandt, 1955). If G and H are n×n Hermitian
matrices and 1 ≤ i1 < · · · < ik ≤ n, then
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k∑
j=1

λij(G+H) ≤
k∑
j=1

λij(G) +
k∑
i=1

λi(H), k = 1, . . . , n; (4)

equality holds for k = n.

Thompson (1974) gives a general discussion of both additive and
multiplicative versions of inequalities such as (4), and Markus (1964)
provides a survey of results.

When G and H are positive semidefinite, then a “reversal”
majorization is possible.

G.1.b. Theorem (Rotfel’d, 1969; Thompson, 1977). If G and H are
n× n positive semidefinite Hermitian matrices, then

(λ(G), λ(H)) ≺ (λ(G+H), 0). (5)

Proof. Since G and H are positive semidefinite and Hermitian, they
can be written in the form G = XX∗, H = Y Y ∗, where X and Y are
n×n matrices. If A = (X,Y ), then G+H = AA∗. Further, the nonzero
eigenvalues of AA∗ coincide with the nonzero eigenvalues of

A∗A =
[
X∗X X∗Y
Y ∗X Y ∗Y

]
;

i.e., λ(A∗A) = (λ(AA∗), 0). It follows from C.1 that

(λ(G), λ(H)) = (λ(X∗X), λ(Y ∗Y )) ≺ λ(A∗A) = (λ(AA∗), 0)

= (λ(G+H), 0). ||

G.1.c. If A is an n× n Hermitian matrix and B is an n× r complex
matrix, n ≥ r, then

λ(A) ≺w λ(A+B∗B)
≺ (λ1(A) + λ1(B∗B), . . . , λr(A) + λr(B∗B), λr+1(A), . . . , λn(A)).

Proof. Because B∗B ≥ 0, it follows from 16.F.1 that λi(A+B∗B) ≥
λi(A), i = 1, . . . , n, thereby implying the left-hand majorization. The
right-hand majorization is a consequence of (1) because λi(B∗B) = 0
for i = r + 1, . . . , n. ||

The case that r = 1 occurs in various contexts and is the most
common case.

G.1.d. (Fan, 1951). If A and B are n× n complex matrices, then

σ(A+B) ≺w σ(A) + σ(B). (6)
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Proof. Apply G.1 to the symmetrized matrices Ã and B̃ defined in
A.2, to obtain

(σ(A+B),−σ(A+B)) ≺w (σ(A) + σ(B),−σ(A) − σ(B)).

The result then follows trivially. ||
Alternative proof. From the extremal representation 20.A.2,

k∑
1

σi(A+B) = max R tr U(A+B)V ∗

≤ max R tr UAV ∗ + maxR tr UBV ∗

=
k∑
1

σi(A) +
k∑
1

σi(B), k = 1, . . . , n,

where the maximization is over k × n complex matrices U and V
satisfying UU∗ = Ik, V V ∗ = Ik. ||

The majorization (6) is discussed by Rotfel’d (1967). It implies

σ1(A+B) ≤ σ1(A) + σ1(B),

which is attributed to Wittmeyer (1936); this inequality is extended
by Fan (1951) to

σr+s+1(A+B) ≤ σr+1(A) + σs+1(B),

r ≥ 0, s ≥ 0, r + s+ 1 ≤ n. When s = 0, i = r + 1,

σi(A+B) ≤ σi(A) + σ1(B).

The following result is an important generalization of G.1.

G.1.e. Proposition (Ando and Zhan, 1999). IfA ≥ 0, B ≥ 0, and φ a
convex matrix function defined on an interval I, then for k = 1, . . . , n,

k∑
1

λj(φ(A) + φ(B)) ≤
k∑
1

λj(φ(A+B)),

or equivalently,

λ(φ(A) + φ(B)) ≺w λ(φ(A+B)).

G.1.f. Proposition (Aujla and Silva, 2003). With A,B and φ as
defined in G.1.e,

λ(φ(αA + αB)) ≺w λ(αφ(A) + αφ(B)).
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G.1.g. Proposition (Ando and Zhan, 1999). For A,B ≥ 0,

λ(Ar +Br) ≺w λ((A +B)r), r ≥ 1;

the inequality is reversed for 0 ≤ r ≤ 1.

Proof. This result follows from G.1.e. ||
Averages of Matrices

For a Hermitian matrix A = (aij), define

Ai = DiADi, i = 1, . . . , 2n,

where the Di’s are distinct diagonal matrices of the form Di =
diag(ε1, . . . , εn), with εj = ±1, j = 1, . . . , n. Then

1
2n

2n∑
i=1

Ai =
1
2n

2n∑
i=1

DiADi = diag(a11, . . . , ann).

Consequently, by G.1,

(a11, . . . , ann) ≺ (λ1(A), . . . , λn(A)), (7)

which provides another proof of B.1.
This development by Marshall and Olkin (1982) can be extended in

a variety of ways.

G.1.h. If A is n×n Hermitian and Γ1 and Γ2 are orthogonal matrices,
then by using G.1, it follows that

λ

(
1
2
Γ1AΓ′

1 +
1
2
Γ2AΓ′

2

)
≺ λ

(
1
2
Γ1AΓ′

1

)
+ λ

(
1
2
Γ2AΓ′

2

)

=
1
2
λ(Γ1AΓ′

1) +
1
2
λ(Γ2AΓ′

2) = λ(A).

If Γ1 has the form (In1
0

0
−In2

), where n1 +n2 = n, and Γ2 = In, then
1
2Γ1AΓ′

1 + 1
2Γ2AΓ′

2 = (A11
0

0
A22

), where A = (A11
A21

A12
A22

). Consequently,
λ(A) � λ((A11

0
0
A22

)), which provides an alternative proof of C.1.

Repeated use of this argument yields λ(A) � (a11, a22, . . . , ann),
which is Schur’s theorem B.1.

G.1.i. If R = (rij) is an n×n correlation matrix, that is, rii = 1 and
R > 0, and R̃ = (r̃ij), where r̃ii = 1, and

r̃ij = r = Σi<jrij/(n(n− 1)/2), i �= j,



G. Eigenvalues and Singular Values of A, B, and A+B 333

then

λ(R) � λ(R̃).

Proof. If Γij denotes a permutation matrix that interchanges the
ith and jth rows and columns, then

R̃ =
∑
i<j

ΓijRΓ
′
ij/(n(n − 1)/2).

The result follows from G.1. ||

For other examples in which the matrices Γij are elements of a finite
group, see Andersson and Perlman (1988).

Matrices with Real Roots

G.2. If A and B are n× n complex matrices such that aA+ bB has
real eigenvalues for all a, b ∈ R, then

(λ1(A+B), . . . , λn(A+B)) ≺ (λ1(A)+λ1(B), . . . , λn(A)+λn(B)). (8)

Proof . From 16.F.7 with α = 1
2 , it follows that λ1(A + B) ≤

λ1(A) + λ1(B). Replace A and B in this inequality by their kth ad-
ditive compounds. By using the linearity 19.F.4 of the kth additive
compound, (7) is obtained. ||

G.2.a. If the hypotheses of G.2 are satisfied and λn(A)+λn(B) ≥ 0,
then

n∏
k

λi(A+B) ≥
n∏
k

[λi(A) + λi(B)], k = 1, . . . , n.

Proof. The result is an immediate application of (7) and 5.A.2.c. ||

The case k = 1 in G.2.a is

det(A+B) ≥
n∏
1

[λi(A) + λi(B)], (9)

which is obtained by Fiedler (1971) under the assumption that A and
B are Hermitian.
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Related Inequalities

G.3. (Fiedler, 1971). If G and H are n×n Hermitian matrices, then

det(G+H) =
n∏
1

λi(G+H) ≤
n∏
1

[λi(G) + λn−i+1(H)].

This “reversal” of (8) suggests an additive version of G.2.a.

G.3.a. If G and H are n× n Hermitian matrices, then

k∑
1

λi(G+H) ≥
k∑
1

λi(G) +
k∑
1

λn−i+1(H), k = 1, . . . , n. (10)

Proof. From the extremal representation 20.A.2,

k∑
1

λi(G+H) = max tr U(G+H)U∗

≥ max[ tr UGU∗ + min tr UHU∗]

= max

[
tr UGU∗ +

k∑
1

λn−i+1(H)

]

=
k∑
1

λi(G) +
k∑
1

λn−i+1(H), k = 1, . . . , n,

where the extrema are over k×n matrices U satisfying UU∗ = Ik. ||

Notice that (10) is not a majorization result because of the lack of
an ordering: The sum λi(G) + λn−i+1(H) is not monotone in i.

The following is an inequality similar to (10) which complements
G.1.a.

G.3.b. If A and B are n× n complex matrices, then

k∑
1

σi(A+B) ≥
k∑
1

σi(A) −
k∑
1

σn−i+1(B), k = 1, . . . , n. (11)
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Proof. The proof parallels that of (10):

k∑
1

σi(A+B) = maxR tr U(A+B)V ∗

≥ max[R tr UAV ∗ + min R tr UBV ∗]

=
k∑
1

σi(A) −
k∑
1

σn−i+1(B), k = 1, . . . , n,

where the extrema are over k×n matrices U and V satisfying UU∗ =
V V ∗ = Ik. ||

Mathias (1993) obtains perturbation bounds in terms of unitarily
invariant norms and weak majorization. See Chapter 10.

G.3.c. (Mathias, 1993). For complex matrices A and B,

k∑
1

[σn+1−i(A) − σi(B)] ≤
k∑
1

σn+1−i(A+B), k = 1, . . . , n.

G.4. (Zhan, 2000). For positive semidefinite matrices A and B with
ordered singular values σ1 ≥ · · · ≥ σn, and for any complex number z,
k∏
1

σi(A− |z|B) ≤
k∏
1

σi(A+ zB) ≤
k∏
1

σi(A+ |z|B), k = 1, . . . , n.

Converse Theorems Connecting Eigenvalues
of A, B, and A+B

Denote the eigenvalues of A, B, and A+B by

α1 ≥ · · · ≥ αn, β1 ≥ · · · ≥ βn, γ1 ≥ · · · ≥ γn,

respectively. Theorem G.1 states that
k∑
1

γi ≤
k∑
1

(αi + βi), k = 1, . . . , n, (12)

with equality for k = n. In a fundamental paper, Horn (1962) posed
the question, what relations must these three n-tuples of real numbers
satisfy in order to be eigenvalues of some Hermitian matrices A, B,
and A+B?
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The solution was obtained in steps, and was ultimately resolved in
papers by Klyachko (1998) and Knutson and Tao (1999). The listing
of the myriad of inequalities is based on a representation in terms
of honeycombs. This involves considerably deeper mathematics, and a
description is beyond the scope of this book. An excellent lucid survey
of the solution is provided by Bhatia (2001). See also Bhatia (1997).
The present discussion focuses only on a history of some of the basic
results, together with a statement of Horn’s conjecture.

Clearly, the majorization result (11) is necessary. Earlier Weyl (1912)
obtained the following additional necessary conditions:

γi+j−1 ≤ αi + βj , i+ j − 1 ≤ n. (13)

This result can be obtained from the Courant–Fischer minmax
Theorem 20.A.1.

For n = 2, majorization requires that

γ1 ≤ α1 + β1, γ1 + γ2 = α1 + α2 + β1 + β2,

whereas (12) contains the conditions

γ1 ≤ α1 + β1, γ2 ≤ α2 + β1, γ2 ≤ α1 + β2. (14)

The choice α = (10, 3), β = (1, 1), γ = (10, 5) for which γ ≺ α + β
has γ2 > α2 + β1, thus violating (13). Thus, majorization alone does
not guarantee the existence of the required matrices A and B.

The case n = 2 involves 3 valid inequalities (including the trace
equality as a trivial inequality). The case n = 3 requires 7 inequal-
ities; three from majorization, three from (12), plus one additional
inequality:

γ2 + γ3 ≤ α1 + α3 + β1 + β3. (15)

The number of inequalities spectacularly increases as n increases;
for n = 7, 2,062 inequalities are necessary. Listing these is not
straightforward.

Subsequent necessary inequalities in addition to (12) were obtained
by Lidskǐi (1950), Wielandt (1955), Amir-Moéz (1956), and Thompson
and Freede (1971). Examples are:

for 1 ≤ i1 < · · · < ik ≤ n,

k∑
s=1

γis ≤
k∑
s=1

αis +
k∑
s=1

βis , 1 ≤ k ≤ n; (16)
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for 1 ≤ j1 < · · · < jk ≤ n, with is + js − s ≤ n,

k∑
s=1

γis+js−s ≤
k∑
s=1

αis +
k∑
s=1

βjs , 1 ≤ k ≤ n. (17)

These inequalities can be stated in general terms as∑
i∈C

γi ≤
∑
i∈A

αi +
∑
i∈B

βi,

over certain sets of indices A , B, and C . A description of the sets
A , B, and C comprises the necessary conditions.

More specifically, Horn (1962) showed that a complete set of
necessary conditions is given by tr(A+B) = trA+ trB, i.e.,

n∑
1

γi =
n∑
1

αi +
n∑
1

βi,

together with a set of linear inequalities of the form
k∑
s=1

γms ≤
k∑
s=1

αis +
k∑
s=1

βjs , 1 ≤ k ≤ n,

for all triplets of indices

1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j1 < · · · < jk ≤ n,

1 ≤ m1 < · · · < mk ≤ n, 1 ≤ k ≤ n, (18)

in a certain finite set T (k, n).

The second part of the picture was to describe the set T (k, n).

G.5. Conjecture of Horn. The set T (k, n) is the set of triplets (17)
that satisfy

k∑
s=1

is +
k∑
s=1

js =
k∑
s=1

ms + k(k + 1)/2, 1 ≤ k ≤ n, (19)

k∑
s=1

ias +
k∑
s=1

jbs ≥
k∑
s=1

mcs + k(k + 1)/2, (20)

for all 1 ≤ s < k, 1 ≤ a1 < · · · < as ≤ k, 1 ≤ b1 < · · · < bs ≤ k,
1 ≤ c1 < · · · < cs ≤ k in T (s, k).

The following is a weaker converse of Theorem G.1; here the
eigenvalues of B are not fixed in advance.
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G.6. (Sherman and Thompson, 1972). Let A be an n×n Hermitian
matrix with eigenvalues αi = λi(A), i = 1, . . . , n. If c1 ≥ · · · ≥ cn are
given numbers such that

(α1, . . . , αn) � (c1, . . . , cn),

then there exists a Hermitian matrix B such that A + B has distinct
eigenvalues ci + λi(B) = λi(A+B), i = 1, . . . , n.

The inductive proof of Sherman and Thompson (1972) is lengthy
and is omitted.

H Eigenvalues and Singular Values
of A, B, and AB

One of the earliest comparisons is the well-known result connecting
the singular values of the product AB and the product of the singular
values of A and B.

H.1. Theorem (Horn, 1950; Visser and Zaanen, 1952; de Bruijn,
1956). If A and B are n× n complex matrices, then

k∏
1

σi(AB) ≤
k∏
1

σi(A)σi(B), k = 1, . . . , n− 1,

n∏
1

σi(AB) =
n∏
1

σi(A)σi(B).

(1a)

If σn(AB) > 0, (1a) is equivalent to

(log σ1(AB), . . . , log σn(AB))

≺ (log σ1(A)σ1(B), . . . , log σn(A)σn(B)).
(1b)

Because

σi(A) = λ
1/2
i (AA∗), σi(AB) = λ

1/2
i (ABB∗A∗) = λ

1/2
i (A∗ABB∗),

for i = 1, . . . , n, H.1 can be reformulated.

H.1.a. Theorem. If U and V are n × n positive semidefinite
Hermitian matrices, then
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k∏
1

λi(UV ) ≤
k∏
1

λi(U)λi(V ), k = 1, . . . , n − 1,

n∏
1

λi(UV ) =
n∏
1

λi(U)λi(V ).

(2a)

If λn(UV ) > 0, (2a) is equivalent to

(log λ1(UV ), . . . , log λn(UV ))

≺ (log λ1(U) + log λ1(V ), . . . , log λn(U) + log λn(V )). (2b)

Proof of H.1 and H.1.a (de Bruijn, 1956). It is well known (Browne,
1928) and easy to establish that for U and V positive semidefinite
Hermitian,

λ1(UV ) ≤ λ1(U)λ1(V ). (3)

By applying (3) to the kth compound and using the Binet–Cauchy
theorem 19.F.2, together with 19.F.2.c, it follows that

k∏
1

λi(UV ) = λ1((UV )(k)) = λ1(U (k)V (k))

≤ λ1(U (k))λ1(V (k)) =
k∏
1

λi(U)λi(V ). ||

H.1.b. If A1, . . . , Am are n× n complex matrices, then

k∏
1

σi(A1 · · ·Am) ≤
k∏
1

σi(A1) · · · σi(Am), k = 1, . . . , n− 1,

n∏
1

σi(A1 · · ·Am) =
n∏
1

σi(A) · · · σi(Am).

(4a)

If σn(A1 · · ·Am) > 0, then (4a) is equivalent to

(log σ1(A1 · · ·Am), . . . , log σn(A1 · · ·Am))

≺ (log σ1(A1) · · · σ1(Am), . . . , log σn(A1) · · · σn(Am)). (4b)

This result is an obvious extension of H.1.
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Extensions

The following two stronger versions of H.1 and H.1.a are stated here
without proof. They provide necessary conditions for connecting the
singular values of A, B, and AB.

H.1.c. Theorem (Gel’fand and Naimark, 1950). If A and B are
n× n complex matrices, then for k = 1, . . . , n,

k∏
1

σis(AB) ≤
k∏
1

σis(A)σs(B), 1 ≤ i1 < · · · < ik ≤ n, (5)

with equality for k = n.

H.1.d. Theorem (Lidskǐi, 1950). If U and V are n × n positive
semidefinite Hermitian matrices, then for k = 1, . . . , n,

k∏
1

λis(UV ) ≤
k∏
λis(U)λs(V ), 1 ≤ i1 < · · · < ik ≤ n, (6)

with equality for k = n.

Both H.1.c and H.1.d immediately imply majorizations that are
stronger than (1b) and (2b) (see 5.A.20).

H.1.e. If A and B are n × n complex matrices with σn(AB) > 0,
then

log σ(AB) − log σ(A) ≺ log σ(B).

H.1.f. If U and V are n×n positive semidefinite Hermitian matrices
with λn(UV ) > 0, then

log λ(UV ) − log λ(U) ≺ log λ(V ).

Additive Versions for Products

H.1.g. If U and V are n×n positive semidefinite Hermitian matrices,
then

trUV =
n∑
1

λi(UV ) ≤
n∑
1

λi(U)λi(V ). (7)

This result is a consequence of (2a) and 5.A.2.b. It is obtained by
Richter (1958), Mirsky (1959b), and Theobald (1975), and can be
obtained as a consequence of results of Marcus (1956).
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In fact, the hypothesis of positive semidefiniteness in (7) is actually
not needed, though the proof suggested above uses this hypothesis.
Mirsky (personal communication) notes that U and V can be replaced
by U + τI and V + τI, respectively, with τ sufficiently large. Because
(7) holds for any Hermitian matrix U and V, replace V by −V to
obtain the following results

H.1.h. (Ruhe, 1970). If U and V are n × n positive semidefinite
Hermitian matrices, then

tr UV =
n∑
1

λi(UV ) ≥
n∑
1

λi(U)λn−i+1(V ). (8)

In (8) also, the assumption of positive semidefiniteness is not needed.
Inequality (8) can be extended.

H.1.i. If U and V are n×n positive semidefinite Hermitian matrices,
then

k∑
1

λi(UV ) ≥
k∑
1

λi(U)λn−i+1(V ), k = 1, . . . , n. (9)

Proof. Without loss in generality, assume that U is diagonal; that
is, U = Du = diag(u1, . . . , un), ui = λi(U) ≥ 0, i = 1, . . . , n. Let
D̈u = diag(u1, . . . , uk, 0, . . . , 0). Then

k∑
1

λi(UV ) =
k∑
1

λi(D1/2
u V D1/2

u ) = max tr XD1/2
u V D1/2

u X∗

≥ tr (Ik 0)D1/2
u V D1/2

u

(
Ik
0

)

= tr D̈uV ≥
n∑
1

λi(D̈u)λn−i+1(V ) =
k∑
1

λi(U)λn−i+1(V ),

where the maximum is over all k × n matrices satisfying XX∗ = Ik.
The last inequality is an application of (8). ||
H.1.j. (Lieb and Thirring, 1976). If A ≥ 0, B ≥ 0, then

tr (AB)α ≤ tr (AαBα), α > 1;

the inequality is reversed for 0 < α ≤ 1.

This result has been strengthened to a majorization result.
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H.1.k. (Audenaert, 2009). If A ≥ 0, B ≥ 0, then

σ((AB)α) ≺w σ(AαBα), α ≥ 1;

the majorization is reversed for 0 < α ≤ 1.

H.2. If A and B are n× n complex matrices, then

k∑
1

σi(AB) ≤
k∑
1

1
2
[λi(AA∗) + λi(BB∗)], k = 1, . . . , n.

Proof . Use (1a), 5.A.2.b, and the arithmetic–geometric mean
inequality 16.C.1.a to obtain

k∑
1

σi(AB) ≤
k∑
1

σi(A)σi(B)

≤
k∑
1

1
2
[σ2
i (A) + σ2

i (B)], k = 1, . . . , n. ||

By using (4a), this result can be extended trivially to m matrices
A1, . . . , Am: For k = 1, . . . , n,

k∑
1

σi(A1 · · ·Am) ≤ ∑k
1 σi(A1) · · · σi(Am)

≤
k∑
1

1
m

[σmi (A1) + · · · + σmi (Am)]. ||
(10)

H.2.a. (Marcus, 1969). If A1, . . . , Am are n × n complex matrices,
and φ is a nondecreasing convex function, then

k∑
1

φ(σi(A1 · · ·Am)) ≤
k∑
1

1
m

[φ(σmi (A1)) + · · · + φ(σmi (Am))]. (11)

Proof. The result follows from (4a) and 5.A.2. ||
The motivation for H.2.a by Marcus is an inequality of Ault (1967),

namely,

tr
(
B +B∗

2

)
≤ 1
m

tr[(A1A
∗
1)
m/2 + · · · + (AmA∗

m)m/2], (12)
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where B = A1 · · ·Am. To obtain (12), take k = n and φ(x) ≡ x; then
H.2.a becomes

tr(BB∗)1/2 = tr[(A1 · · ·Am)(A1 · · ·Am)∗]1/2

≤ 1
m

tr[(A1A
∗
1)
m/2 + · · · + (AmA∗

m)m/2].

Then (12) is a consequence of

tr
(
B +B∗

2

)
≤ tr(BB∗)1/2,

which follows directly from F(4).

H.2.b. Proposition (Wang and Zhang, 1995). For A ≥ 0, B ≥ 0,
and 0 < α < β, then for k = 1, . . . , n,

k∏
1

[λj(AαBα)]1/α ≤
k∏
1

λj[(AβBβ)]1/β ;

and for |α| ≤ 1,

λ(AαBα) ≺w λα(AB).

Comparisons Involving Unitary Matrices

H.3. (Horn, 1950). If H is an n × n Hermitian matrix and U is an
m× n matrix satisfying UU∗ = Im, m < n, then for k = 1, . . . ,m,

k∏
1

λi(UHU∗) ≤
k∏
1

λi(H), (13a)

k∏
1

λm−i+1(UHU∗) ≥
k∏
1

λn−i+1(H). (13b)

Proof. In H.1 let A =
(
U
0

)
, where U is an m× n matrix satisfying

UU∗ = Im, and let H = BB∗. Then (1a) yields (13a). Similarly, the
choice A =

(0
U

)
yields (13b). ||

H.3.a. Theorem (Fan and Pall, 1957). Let ω1 ≥ · · · ≥ ωn and
α1 ≥ · · · ≥ αm, n ≥ m, be n+m real numbers. There exist an n × n
Hermitian matrix H with eigenvalues ω = λ(H) and an m×n complex
matrix U satisfying UU∗ = Im with eigenvalues α = λ(UHU∗) if and
only if

ωi ≥ αi, ωn−i+1 ≤ αm−i+1, i = 1, . . . ,m.
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Following the development of H.3, comparisons can be made between
the singular values of A and the eigenvalues of UAV ∗, where U and V
are k × n matrices satisfying UU∗ = V V ∗ = Im.

H.3.b. If A is an n × n complex matrix and U and V are m × n
complex matrices satisfying UU∗ = Im, V V ∗ = Im, then

k∏
1

|λi(UAV ∗)| ≤
k∏
1

σi(A), k = 1, . . . ,m.

Proof. From E.1,

k∏
1

|λi(AB)| ≤
k∏
1

σi(AB), k = 1, . . . , n, (14)

with equality for k = n. With B = V ∗U , (14) yields

k∏
1

|λi(AV ∗U)| =
k∏
1

|λi(UAV ∗)|

≤
k∏
1

σi(AV ∗U) =
k∏
1

λ
1/2
i (AV ∗V A∗)

=
k∏
1

λ
1/2
i (V A∗AV ∗) ≤

k∏
1

σi(A), k = 1, . . . ,m. ||

For simplicity of notation, write X̃ = (XX∗)1/2 to denote the
unique positive semidefinite square root of XX∗. Denote by specX
the collection of eigenvalues of X.

H.4. Theorem (C. J. Thompson, 1971). Let A and B be n × n
complex matrices. There exist unitary matrices U and V such that

spec (ÃUÃV ) = spec (B) (15)

if and only if

k∏
1

λ(Ã) ≥
k∏
1

λ(B̃), k = 1, . . . , n − 1, (16a)

with equality for k = n, or equivalently, if and only if

(log σ1(A), . . . , log σn(A)) � (log σ1(B), . . . , log σn(B)), (16b)

provided λ(Ã) > 0, λ(B̃) > 0.
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Moreover, the same conclusion holds if (15) is replaced by

spec (ÃU) = spec (B̃). (15a)

If (15) holds, then (15a) follows, which implies that σ(A) �w σ(B),
which in turn implies that ‖A‖ ≥ ‖B‖ for any unitarily invariant norm
(see 10.A.2).

Theorem H.4 is used by C. J. Thompson (1971) to prove the
following.

H.4.a. Theorem (Lenard, 1971; C. J. Thompson, 1971). If A and B
are n× n Hermitian matrices, then

(λ1(eA+B), . . . , λn(eA+B)) ≺w (λ1(eAeB), . . . , λn(eAeB)). (17)

H.4.b. (Golden, 1965). If A and B are n × n Hermitian matrices,
then

tr eAeB ≥ tr eA+B , (18)

with equality if and only if A and B commute.

Inequality (18) follows directly from the majorization (17). Thomp-
son (1965) and Lenard (1971) obtain inequalities of the form
g(eAeB) ≥ g(eA+B) for certain functions g.

Product of a Matrix and a Unitary Matrix

If U is a unitary matrix and if A and B = AU are positive definite
Hermitian matrices such that spec (AU) = spec (B), then from E.1
and H.1,

k∏
1

λi(B) =
k∏
1

|λi(AU)| ≤
k∏
1

σi(AU) ≤
k∏
1

σi(A) =
k∏
1

λi(A),

for k = 1, . . . , n, with equality for k = n. The following provides a
partial converse.
Note. λ1 ≥ · · · ≥ λn; |λ|1 ≥ · · · ≥ |λ|n; σ1 ≥ · · · ≥ σn.

H.5. Theorem (C. J. Thompson, 1971). If A and B are given n×n
positive definite Hermitian matrices satisfying
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k∏
1

λi(A) ≥
k∏
1

λi(B), k = 1, . . . , n− 1,

n∏
1

λi(A) =
n∏
1

λi(B),

then there exists a unitary matrix U such that spec (B) = spec (AU).

The inductive proof of Thompson is lengthy and is omitted. Theorem
H.5 can be extended to the case in which B is an arbitrary complex
matrix.

H.5.a. Theorem (Sherman and Thompson, 1972). Let A be an n×n
positive definite Hermitian matrix, and let B be an n × n complex
matrix with |λ1(B)| ≥ · · · ≥ |λn(B) > 0. If

k∏
1

λi(A) ≥
k∏
1

|λi(B)|, k = 1, . . . , n − 1,

n∏
1

λi(A) =
n∏
1

|λi(B)|,

then there exists a unitary matrix U such that

spec (B) = spec (AU).

Comparisons for ArBsAr

H.6.a. Proposition (Aujla and Bourin, 2007). For A ≥ 0, B ≥ 0,

k∏
1

λj(ABAB) ≤
k∏
1

λj(AB2A), k = 1, . . . , n.

H.6.b. Proposition (Aujla and Bourin, 2007). For A ≥ 0, B ≥ 0,
n∏
k

λj((AB2A)1/2) ≤
n∏
k

λj

(
A+B

2

)
, k = 1, . . . , n.

H.6.c. Proposition (Araki, 1990). For A ≥ 0, B ≥ 0, 0 < r ≤ s,

k∏
1

[λi(Ar/2BrAr/2)]1/r ≤
k∏
1

[λi(As/2BsAs/2)]1/s, k = 1, . . . , n.
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The following is a product extension of H.6.c. For a complex
matrix X, let |X| = (X∗X)1/2.

H.6.d. Proposition (Ando and Hiai, 1994). For A > 0, B > 0,
k∏
1

λi(|Aα1Bβ1 · · ·AαmBβm|) ≤
k∏
1

λi(|AB|), k = 1, . . . , n,

where
m∑
1

αi =
m∑
1

βi = 1, 0 ≤
k∑
1

βi −
k∑
1

αi ≤ 1
2
, k = 1, . . . n− 1,

and

0 ≤
k∑
1

αi −
k−1∑
1

βi ≤ 1
2
, k = 2, . . . n.

See also Ando, Hiai, and Okubo (2000) for extensions of H.6.d.

H.6.e. Proposition (Furuta, 1987; Zhan, 2002). If A ≥ B ≥ 0, then

(BrAsBr)1/q ≥ B(s+2r)/q ,

A(s+2r)/q ≥ (ArBsAr)1/q,

where r, s ≥ 0, q ≥ max(1, (s + 2r)/(1 + 2r)).

I Absolute Values of Eigenvalues, Row Sums,
and Variations of Hadamard’s Inequality

For a complex matrix A, an extended Hadamard’s inequality is
given by

n∏
k

|λi(A)| ≤
n∏
k

(
n∑
α=1

|aiα|2
)1/2

, k = 1, . . . , n. (1)

The case k = 1 includes the basic Hadamard inequality (B.5). A vari-
ety of complementary comparisons can be given involving the absolute
value of the eigenvalues and the row and column sums of absolute
values.

Write

Ri ≡ Ri(A) =
n∑
j=1

|aij |, Cj ≡ Cj(A) =
n∑
i=1

|aij |, i, j = 1, . . . , n.
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I.1. (Frobenius, 1908; see also Brauer, 1946). If A is an n×n complex
matrix, then

|λ1(A)| ≤ min(R[1], C[1]). (2)

With the assumption aij > 0 for all i, j, inequality (2) dates back
to Frobenius. An immediate consequence of (2) is

|λ1(A)| ≤
√
R[1]C[1].

A more delicate version is due to Farnell (1944); see also Ostrowski
(1951):

|λ1(A)| ≤ max
i

(RiCi)1/2.

These results can be extended to yield comparisons via majorization.

I.2. Theorem (Schneider, 1953; Shi and Wang, 1965). If A is an
n× n complex matrix, then

k∏
1

|λi(A)| ≤
k∏
1

R[i], k = 1, . . . , n. (3)

Proof. Using the kth compound in (2), we obtain

k∏
1

|λi(A)| = |λ1(A(k))| ≤ R[1](A
(k)).

The proof is completed by showing that

R[1](A
(k)) ≤

k∏
1

R[i](A).

The elements of A(k) are the kth order minors of the matrix A, so that
a typical element of A(k) is

detA
(
i1, i2, . . . , ik
j1, j2, . . . , jk

)
, 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j1 < · · · < jk ≤ n.

Since the elements of A(k) are arranged in lexicographical order, an
element of the first row of A(k) is

detA
(

1, 2, . . . , k
j1, j2, . . . , jk

)
, 1 ≤ j1 < · · · < jk ≤ n.
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The sum of the absolute values of the elements of the first row of A(k)

is bounded by
∑

1≤j1<···<jk≤n

∣∣∣∣detA
(

1, 2, . . . , k
j1, j2, . . . , jk

)∣∣∣∣ ≤
∑

1≤j1<···<jk≤n
|a1j1 ||a2j2 | · · · |akjk

|

≤
∑

j1,...,jk

|a1j1 ||a2j2 | · · · |akjk
| =

⎛
⎝ n∑
j1=1

|a1j1 |
⎞
⎠ · · ·

⎛
⎝ n∑
jk=1

|akjk
|
⎞
⎠ ,

which are kth order products of row sums of A. Thus, the largest row
sum of absolute values of elements of A(k), R(1)(A(k)) is less than or
equal to the largest kth order product

∏k
1 R(i)(A) of row sums of A,

which completes the proof. ||
I.2.a. Theorem (Schneider, 1953). If A is an n×n complex matrix,
w1, . . . , wn are positive numbers, and

R∗
i =

n∑
j=1

|aij|wj
wi
, i = 1, . . . , n,

then
k∏
1

|λi(A)| ≤
k∏
1

R∗
[i], k = 1, . . . , n. (4)

Although I.2.a appears to be more general than I.2, the two results
are equivalent. I.2.a implies I.2 by taking w1 = · · · = wn. To obtain
I.2.a from I.2, apply I.2 to DwAD

−1
w , where Dw = diag(w1, . . . , wn).

I.2.b. If A is an n× n complex matrix, then

k∏
1

|λi(A)| ≤ min

(
k∏
1

C[i],

k∏
1

R[i]

)
, k = 1, . . . , n.

I.2.c. Let A be an n × n complex matrix, 0 ≤ θ ≤ 1, θ = 1 − θ, and
Tj = RθjC

θ
j , j = 1, . . . , k. Then

k∏
1

|λi(A)| ≤
k∏
1

T[i], k = 1, . . . , n.

Proof. From (2), |λ1(A)| ≤ T[1], which, when applied to the kth
compound, yields the result. ||
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Recall the comparisons (1) and (3). Because (
∑ |aij |2)1/2 ≤ ∑ |aij |,

(3) with k = n does not yield an improvement of (1). However,
(1) holds only for the product of all n terms, whereas (3) holds for
the product of k terms. A modified version of (1) does lead to a
majorization result.

I.3. (Shi and Wang, 1965). If A is a nonsingular n×n complex matrix
and

Ei =

⎛
⎝ n∑
j=1

|aij |2
⎞
⎠

1/2

,

E [i] = E[i]

[(
n

i

)/(
n

i− 1

)]
= E[i]

n− i+ 1
i

, i = 1, . . . , n,

then
k∏
1

|λi(A)| ≤
(
n

k

) k∏
1

E[i] =
k∏
1

E[i], k = 1, . . . , n. (5)

Proof. Let A(k) = (a(k)
ij ) be the kth compound of A. By (1),

|a(k)
1α | =

∣∣∣∣detA
(

1, 2, . . . , k
j1, j2, . . . , jk

)∣∣∣∣

≤
⎛
⎝ n∑
j=1

|a1j |2 · · ·
n∑
j=1

|akj|2
⎞
⎠

1/2

≤ E[1] · · ·E[k].

There are
(n
k

)
elements in the first row of A(k), so that

R1(A(k)) =
(n

k)∑
α=1

|a(k)
1α | ≤

(
n

k

)
E[1] · · ·E[k], (6)

which together with (2) yields the inequality in (5). The equality in (5)
holds because the Ei and Ei, i = 1, . . . , n, are similarly ordered. ||

Further Remarks About Hadamard’s Inequality

I.4. If A is an n× n positive definite Hermitian matrix and

B =
[
B11 B12

B21 B22

]
= A−1 =

[
A11 A12

A21 A22

]−1

,
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where B11 and A11 are p× p matrices, then

inf det(Ip, Z)A(Ip, Z)∗ = detA/detA22, (7)

where Z ranges over p× (n − p) complex matrices.

Proof. With A11·2 = A11 −A12A
−1
22 A21,

(I, Z)A(I, Z)∗ = A11·2 + (Z +A12A
−1
22 )A22(Z +A12A

−1
22 )∗

= B−1
11 + (Z −B−1

11 B12)A22(Z −B−1
11 B12)∗

≥ B−1
11 ,

with equality when Z = B−1
11 B12. By 20.A.1.b,

λi((I, Z)A(I, Z)∗) ≥ λi(B−1
11 ), i = 1, . . . , p,

so that

det[(I, Z)A(I, Z)∗] ≥ detB−1
11 = detA/detA22. ||

The case p = 1 was obtained in a statistical context by Olkin and
Pratt (1958) and is discussed by Mirsky (1963). It is contained in the
work of Fan (1955b), who obtained a variety of consequences from it.

Alternative forms of I.4 when p = 1 can be given [see, e.g.,
Gantmacher (1959), pp. 248–250)]. In I.4 take p = 1, and let An−1 =
A
(1,2,...,n−1
1,2,...,n−1

)
to obtain

detA
detAn−1

= inf
xn=1

xAx′ ≤ (0, . . . , 0, 1)A(0, . . . , 0, 1)′

= ann, −∞ < xi <∞, i = 1, . . . , n− 1. (8)

Mirsky (1963) notes that this provides a proof of Hadamard’s
inequality.

In a similar manner, use of I.4 with X = (I, 0) yields the extended
Hadamard inequality

detA ≤ (detA11)(detA22) ≡ detA
(

1, 2, . . . , p
1, 2, . . . , p

)
detA

(
p+ 1, . . . , n
p+ 1, . . . , n

)
,

which is given in C.1.d.

I.4.a. (Mirsky, 1963). If A is an n × n positive definite Hermitian
matrix, then

detA
(1,...,n
1,...,n

)
detA

(2,...,n
2,...,n

) ≤
detA

(1,3,...,n
1,3,...,n

)
detA

(3,...,n
3,...,n

) ≤ · · · ≤
detA

(1,n
1,n

)
detA

(n
n

) ≤ detA
(
1
1

)
1

. (9)
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Proof. Inequality (9) follows by an iteration of

detA
(1,...,n
1,...,n

)
detA

(2,...,n
2,...,n

) = inf
x,y

(1, x, y)A(1, x, y)′ ≤ inf
x

(1, 0, x)A(1, 0, x)′

=
detA

(1,3,...,n
1,3,...,n

)
detA

(3,...,n
3,...,n

) , (10)

where the inf is over (n− 2)-dimensional vectors x and scalars y. ||
The first and last terms of (9) yield

detA
(

1, . . . , n
1, . . . , n

)
≤ A

(
1
1

)
detA

(
2, . . . , n
2, . . . , n

)
,

which implies Hadamard’s inequality.
Inequality (9) can be extended by substituting in (10) the more

general inequality

inf
X,Y

det(I,X, Y )A(I,X, Y )′ ≤ inf
X

det(I, 0,X)A(I, 0,X)′ .

For another proof of Hadamard’s inequality that makes use of
a monotonicity property of the product of principal minors of a
Hermitian matrix, see Mirsky (1957b).

J Schur or Hadamard Products of Matrices

The Hadamard or Schur product of two n× n matrices A = (aij) and
B = (bij) is defined as

A ◦B = (aijbij).

There is some question as to which name is the more appropriate; a
general history of this product is provided by Styan (1973). Hadamard
(1903) considered A◦B as the matrix of a quadratic form. Schur (1911)
proved that A ◦ B is positive semidefinite if A and B are positive
semidefinite.

Olkin (1985) observes that an elementary proof of this result can
be based on the fact that an n× n matrix A is positive semdefinite if
and only if it is the variance–covariance matrix of some random vector
X = (X1, . . . ,Xn). Take X to have zero mean and variance–covariance
matrix A and Y to have zero mean and variance–covariance matrix
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B, where X and Y are independent. Then define Z by Zi = XiYi,
i = 1, 2, . . . , n, and verify that its variance–covariance matrix is A ◦B.
This technique can also be used to verify that if A and B are positive
semidefinite, then so is their Kronecker product (cf. 19.G).

Schur also obtained some inequalities that are suggestive of
majorization.

J.1. Theorem (Schur, 1911). If A and B are n × n positive
semidefinite matrices, then

λn(A)min{b11, . . . , bnn} ≤ λj(A ◦B) ≤ λ1(A)max{b11, . . . , bnn}. (1)

A consequence of (1) is that

λn(A)λn(B) ≤ λn(A ◦B) ≤ λ1(A ◦B) ≤ λ1(A)λ1(B). (2)

J.1.a. (Oppenheim, 1930). If A and B are positive semidefinite
Hermitian matrices, then

(detA)(detB) ≤ det(A ◦B). (3)

Together, (2) and (3) imply
n∏
2

λi(A)λi(B) ≤
n∏
2

λi(A ◦B). (4)

J.2. Theorem (Bapat and Sunder, 1985). If A and B are n × n
positive semidefinite matrices and b = (b11, . . . , bnn) is the vector of
diagonal elements of B (arranged in decreasing order), then

λ(A ◦B) ≺w λ(A) ◦ b ≺w λ(A) ◦ λ(B) (5)

and
n∏
k

λi(A ◦B) ≥
n∏
k

λi(A)bi, 1 ≤ k ≤ n. (6)

J.2.a. Corollary. If B is a correlation matrix so that bii = 1 for
i = 1, . . . , n, then

λ(A ◦B) ≺ λ(A). (7)

Proof. From J.2, λ(A ◦B) ≺w λ(A). But tr (A ◦B) = trA implies
that Σλi(A ◦B) = Σλi(A). ||

Alternative proof (Bapat and Raghavan, 1997). Let G and H be
orthogonal matrices such that A ◦ B = G′DθG and A = H ′DαH,
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where Dθ = diag (θ1, . . . , θn), Dα = diag (α1, . . . , αn), θ = λ(A ◦ B),
and α = λ(A). Then

θi =
∑
k

∑
�

gikak�bk�gi� =
∑
k

∑
�

gikgi�bk�
∑
j

hjkαjhj�

=
∑
j

αj
∑
k

∑
�

(bk�gikgi�hjkhj�).

Let P = (pij), where

pij =
∑
k

∑
�

(bk�gikgi�hjkhj�).

But
∑

i gikgi� = δk�, the Kronecker delta. Consequently,∑
i

pij =
∑
k

∑
�

δk�hjkhj�bk� =
∑
i

h2
jkbii = 1,

and similarly
∑

j pij = 1, so that θ = αP and hence α � θ. The fact
that tr (A ◦B) = trA completes the proof. ||

Other extensions of J.2 are given by Bapat (1987).

J.3. Theorem (James Bondar, personal communication). Let
A = (aij) be a positive semidefinite n×n matrix, and let f be any ana-
lytic function whose Taylor series has nonnegative coefficients. Further,
let B = (bij), where bij = f(aij). Then

λ(B) ≺w λ(f(A)). (8)

As an example, if f is the exponential function, A is positive
semidefinite, and bij = exp (aij), then

λ(B) ≺w λ(eA).

There is a corresponding result for singular values.

J.4. (Ando, 1995; Visick, 1995, 1998). For A ≥ 0, B ≥ 0, 0 < r ≤ 1,
and k = 1, . . . , n,

n∏
k

λi(A ◦B) ≥
n∏
k

[λi(Ar ◦Br)]1/r

≥
n∏
k

[λi(ArBr)]1/r ≥
n∏
k

λi(AB).

The case k = n was obtained earlier by Oppenheim (1930).
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J.4.a. Remark. The proof of J.4 contains several interesting inter-
mediate steps, including:

(i) for A,B > 0,
n∑
k

λi(AB) ≤
n∑
k

[λi(AmBm)]1/m ≤
n∑
k

λi(A)λi(B),

where m is a positive integer and k = 1, . . . , n;

(ii) for A,B ≥ 0, 0 ≤ r ≤ 1,

(A ◦B)r ≥ (Ar ◦Br);

(iii) for A,B > 0, r > 0, and k = 1, . . . , n,
n∑
k

[λi(AB)]−r ≥
n∑
k

[λi(A ◦B)]−r;

(iv) for A,B > 0 and k = 1, . . . , n,
n∏
k

λi(A ◦B) >
n∏
k

λi(A#B) ≥
n∏
k

λi(AB),

where A#B = A1/2(A−1/2BA−1/2)1/2A1/2. If AB = BA, then A#B =
(AB)1/2 is also called the geometric mean. The matrix A#B arises as
the unique positive definite solution of XA−1X = B. It also arises in
a statistical context as the solution of max tr X such that the matrix(
A X
X B

)
≥ 0, where A > 0, B > 0 are n × n matrices. For further

discussion of the statistical origins, see Olkin and Pukelsheim (1982),
or Olkin and Rachev (1993).

See also Furuta (2007) for other inequalities involving A#B.

J.4.b. (Zhan, 2002). If A ≥ 0, B ≥ 0, then

(A ◦B)r ≥ (Ar ◦Br), 0 < r ≤ 1;

the inequality is reversed for 1 ≤ r ≤ 2, −1 ≤ r ≤ 0.

The following results and proofs can be found in Bernstein (2005,
Section 8.16).

J.4.c.

(i) For A ≥ 0, (I ◦A)2 ≤ 1
2 (I ◦ A2 +A ◦ A) ≤ I ◦A2.
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(ii) For A ≥ 0, A ◦ A ≤ I ◦A2.

(iii) For A =
(
A11 A12

A21 A22

)
, A > 0,

A ◦ A−1 ≥
(
A11 ◦ A−1

11 0
0 A22·1 ◦A−1

22·1

)
,

where A22·1 = A22 −A21A
−1
11 A12 is the Schur complement of A11, also

denoted by Ã11.

(iv) For A ≥ 0, B ≥ 0,

(Ak ◦Bk)1/k ≤ (A� ◦B�)1/�, 1 ≤ k ≤ 
.

(v) For A > 0, B complex,

A ◦B∗A−1B ≤ B ◦B∗ ≤ A ◦B∗A−1B.

J.5. Theorem (Ando, Horn, and Johnson, 1987). If A and B are
n× n matrices, then

σ(A ◦B) ≺w σ(A) ◦ σ(B). (9)

J.5.a. Proposition (Aujla and Silva, 2003). If U, V,A,B ≥ 0, and
λ(U) ≺w λ(V ), λ(A) ≺w λ(B), then

λ(U) ◦ λ(A) ≺w λ(V ) ◦ λ(B).

Proof. This result is an adaptation of 5.A.4.f. ||
Another class of matrices for which Schur–Hadamard products have

been considered is that of irreducible nonnegative matrices. A matrix
is said to be reducible if there exists a permutation matrix P such that

P ′AP =
(
B C
0 D

)
,

where B and D are square matrices.
A matrix is said to be irreducible if it is not reducible.

J.6. Proposition (Lynn, 1964). If A = (aij), B = (bij) are irre-
ducible n × n matrices with aij ≥ 0, bij ≥ 0, i, j = 1, . . . , n, then

|λ1(A ◦B)| ≤ |λ1(A)||λ1(B)|. (10)
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An application of (10) to the kth compound yields

|λ1(A(k) ◦B(k))| ≤ |λ1(A(k))| |λ1(B(k))|

=
k∏
1

|λi(A)| |λi(B)|, k = 1, . . . , n.

J.7. Proposition (Aujla and Bourin, 2007). For A ≥ 0, B ≥ 0, and
φ convex and submultiplicative [i.e., φ(st) ≤ φ(s)φ(t)] on [0,∞),

λ(φ(A ◦B)) ≺w λ(φ(A) ◦ φ(B)).

J.8. Proposition (Visick, 2000). For m×n complex matrices A and
B, and 0 < α < 1,

(AA∗ ◦BB∗) + (2α− 1)(AB∗ +BA∗) ≥ 2(A ◦B)(A ◦B)∗.

See also Zhang (2000).

K Diagonal Elements and Eigenvalues
of a Totally Positive Matrix

and of an M-Matrix

Just as Hadamard’s inequality B.5.a suggests a majorization between
the diagonal elements and eigenvalues of a Hermitian matrix, there
is a Hadamard-type inequality for totally nonnegative matrices which
is suggestive of a majorization. See Chapter 18 for an exposition of
totally positive matrices.

Totally Nonnegative Matrices

A real matrix A is totally nonnegative (positive) of order m (see
18.A.1) if for k = 1, . . . ,m,

A

(
i1, . . . , ik
j1, . . . , jk

)
≥ 0 (> 0), 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j1 < · · · < jk ≤ n.

For such a matrix, Gantmacher and Krein (1950) show that

detA ≤ detA
(

1, . . . , k
1, . . . , k

)
detA

(
k + 1, . . . , n
k + 1, . . . , n

)
, k < n, (1)
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which implies that
n∏
1

λi(A) ≤
n∏
1

aii (2)

[see also Gantmacher (1959, Vol. II, p. 100)].

A real n × n matrix A is called oscillatory if A is totally nonneg-
ative and if there exists an integer r such that Ar is totally positive.
Gantmacher and Krein (1950) prove that the eigenvalues λ1, . . . , λn of
an oscillatory matrix are real, distinct, and positive.

A result paralleling Schur’s theorem B.1 for Hermitian matrices is
available for oscillating matrices.

K.1. Theorem (Garloff, 1982). If A = (aij) is an n × n oscillatory
matrix with a11 ≥ · · · ≥ ann and eigenvalues λ1(A) > · · · > λn(A),
then for each k = 1, 2, . . . , n− 1,

k∑
1

aii <

k∑
1

λi(A) (3)

and consequently, because
∑n

i=1 aii =
∑n

i=1 λi(A),

(λ1(A), . . . , λn(A)) � (a11, . . . , ann). (4)

[Note that, in fact, from (3), this majorization is strict.]

Proof. The result is readily verified for n = 2 and an inductive
proof is described in detail in Garloff (1982). ||
K.2. Corollary. If A = (aij) is an n × n oscillatory matrix with
a11 ≥ · · · ≥ ann and λ1(A) > · · · > λn(A), then

a11 < λ1(A) (5)

and

ann > λn(A). (6)

K.3. Corollary (Garloff, 1982). If A and B are n × n oscillatory
matrices, then

tr (AB) >
n∑
1

λi(A)λn−i+1(B). (7)
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The proof parallels the proof of H.1.h using the strict majorization
(3). Note that in contrast to the weak inequality provided in H.1.h
for Hermitian matrices, a strict inequality is available for oscillatory
matrices.

K.4. Theorem. If A is a totally positive n× n matrix, then

(log λ1(A), . . . , log λn(A)) �w (log a11, . . . , log ann). (8)

Proof. If A is totally positive, then all principal minors are positive,
which implies that the kth compound A(k) = (a(k)

ij ) is oscillatory [see
Gantmacher (1959, Vol. II, p. 105)]. Consequently, (6) can be used
with the kth compound to yield

n∏
n−k+1

λi(A) = min
i
λi(A(k))

≤ min
i
a

(k)
ii = min

i1,...,ik
detA

(
i1, . . . , ik
i1, . . . , ik

)

≤ min
i1,...,ik

k∏
α=1

aiαiα =
n∏

n−k+1

aii. (9)

The first inequality is an application of (6); the second inequality is
an application of (2). ||

M-Matrices

An M -matrix can be defined in a number of ways (see 19.H for a listing
of equivalent definitions). For example, if A = (aij) is a real matrix
with aij ≤ 0 (i �= j) and all principal minors of A are positive, then
A is an M -matrix. Ostrowski (1937) shows that if A is an M -matrix,
then

n∏
1

λi(A) ≤
n∏
1

aii. (10)

Fan (1960) obtains the stronger result

detA ≤ detA
(

1, . . . , k
1, . . . , k

)
detA

(
k + 1, . . . , n
k + 1, . . . , n

)
, k < n, (11)

as well as a variety of other determinant inequalities.
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Given a matrix A = (aij), Lynn (1964) constructs the matrix Ã =
(ãij) by

ãii = |aii|, ãij = −|aij|, i �= j,

and then shows that if all the principal minors of Ã are positive, then
(11) holds. Lynn (1964) also proves that if C = A ◦B, and if Ã and B̃
have positive principal minors, then

n∏
1

λi(Ã)λi(B̃) ≤
n∏
1

λi(C̃).

L Loewner Ordering and Majorization

The Loewner order of two Hermitian matrices B ≥ A arises in several
different contexts. Details and discussion are given in 16.E, 16.F, and
20.A. An import of this order is that it implies a weak majorization of
the eigenvalues.

L.1. Proposition. For Hermitian matrices A and B, if B ≥ A, then
(λ1(B), . . . , λn(B)) �w (λ1(A), . . . , λn(A)).

Proof. If B ≥ A, then UBU∗ ≥ UAU∗ for all k × n matrices U.
Consequently, for UU∗ = Ik,

trUAU∗ ≤ trUBU∗ ≤ max
UU∗=Ik

trUBU∗ =
k∑
1

βi

(see 20.A.2). Maximization of the left-hand side yields the result. ||
L.2. Note. A stronger result is given in 16.F.1 and 20.A.1: If B ≥ A,
then λi(B) ≥ λi(A), i = 1, . . . , n. By 1.A(15a), λ(B) �w λ(A);
if λ(B) � λ(A), then (λ1(B), . . . , λn(B)) = (λ1(A), . . . , λn(A)) by
1.A(15b).

There are now many examples of matrices ordered by the Loewner
ordering. Some are stated as weak majorizations. The following are
several examples that arise in that way. For further discussion, see
Furuta (1987, 2001) and Fujii and Kamei (1992). See also Bernstein
(2005, p. 279). The following general weak majorization includes many
special cases of interest.
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L.3. Proposition (Zhan, 2002). If B ≥ A ≥ 0, and for r, s ≥ 0,
t ≥ 1, r + 2s ≤ (1 + 2s)t, then

A(r+2s)/t ≤ (AsBrAs)1/t, (1)

(BsArBs)1/t ≤ B(r+2s)/t. (2)

The special case r = 2, s = 1, t = 2 yields the more familiar
orderings

A2 ≤ (AB2A)1/2,

(BA2B)1/2 ≤ B2.

L.3.a. Under the conditions of L.3 with α1 ≥ · · · ≥ αn the ordered
eigenvalues of A, and θ1 ≥ · · · ≥ θn the ordered eigenvalues of AsBrAs,

α(r+2s)/t ≺w θ1/t.

L.4. Proposition (Yamazaki, 2000). If A ≥ 0, 0 < mI ≤ B ≤MI,
and A ≥ B, then

A2 +
(M −m)2

4
I ≥ B2.

See Fujii and Seo (2002) for extensions. Note that, in general, A ≥ B
does not imply A2 ≥ B2.

L.4.a. Proposition (Fujii, Nakamura, Pečarić, and Seo, 2006). For
0 < mI ≤ A ≤MI, 0 < mI ≤ B ≤MI,

(i) (A+B) − (A−1 +B−1)−1 ≤ 2(M +m−
√
mM)I,

(ii)
A+B

2
≤ (M +m)2

4mM

(
A−1 +B−1

2

)−1

.

See 16.E and 16.F for a discussion of the Loewner order in the
context of matrix monotone functions. See also 20.A.

M Nonnegative Matrix-Valued Functions

If a k × k matrix A has nonnegative elements, then its eigenvalue of
maximum modulus is real and nonnegative and is called the spectral
radius of A, denoted by ρ(A). Consider now a function ϕ(x) whose
domain D is a subset of R n, which takes on values in the class of
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all k × k matrices with nonnegative entries. Thus ϕ : D → R k2

+ . The
coordinate functions, ϕij(x), of this mapping are nonnegative real-
valued functions defined on D. Because ϕ(x) is a nonnegative k × k
matrix, its spectral radius ρ(ϕ(x)) is well defined and is a mapping from
D into R+. Kingman (1961) provides a useful lemma that identifies
properties of the ϕij(x)’s inherited by the spectral radius function
ρ(ϕ(x)).

M.1. Lemma (based on Kingman, 1961). Let S be a class of non-
negative real-valued functions defined on a domain D that is closed
under the operations of addition, multiplication, raising to any positive
power, and the taking of positive lim sup’s of countable subsequences.
If ϕ : D → R k2

+ is a matrix-valued function with coordinate functions
ϕij in S, then the spectral radius function ρ(ϕ(·)) is also in S.

Proof. Let fr(x) = {tr [ϕ(x)]r}1/r. Then, by hypothesis, fr ∈ S
for every r = 1, 2, . . . . But fr(x) is the 
r norm of λ(ϕ(x)), so that
ρ(ϕ(x)) = ||λ(ϕ(x))|| = limr→∞fr(x) is also in S. ||

In particular, S could be the class of all nonnegative Schur-convex
functions on D. This class satisfies the hypothesis of the lemma; con-
sequently, if each ϕij(x) is nonnegative and Schur-convex, then so is
ρ(ϕ(x)).

This result was brought to our attention by James Bondar.

N Zeros of Polynomials

For z real, let p(z) = zn+anzn−1+· · ·+a2z+a1 be a monic polynomial
of degree n ≥ 2 with complex coefficients, and let p′(z) be its derivative.
The following result compares the roots of p(z) and p′(z), in modulus.

N.1. Proposition (Cheung and Ng, 2006; Pereira, 2007). If z1, . . . , zn
are the roots of p(z) ordered so that |z1| ≥ . . . ≥ |zn| and w1, . . . , wn−1

are the roots of p′(z) ordered so that |w1| ≥ . . . ≥ |wn−1|, then

k∏
1

|wj | ≤
k∏
1

|zj |, k = 1, . . . , n− 1,

or equivalently, if |wn−1| > 0, |zn−1| > 0.

(log |w1|, . . . , log |wn−1|) ≺w (log |z1|, . . . , log |zn−1|).
The proof is based on first noting that if p(z) =

∏n
1 (z−zj), then the

roots of the matrix A = D(I − (e′e)/n) are the roots of zp′(z), where
D = diag (z1, . . . , zn). The result is based on the majorization E.1.
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Define the Frobenius companion matrix of p by

C(p) =

⎡
⎢⎢⎣

−an −an−1 . . . −a2 −a1

1 0 . . . 0 0
. . .

0 0 . . . 1 0

⎤
⎥⎥⎦ .

Remark. The zeros, z1, z2, . . . , zn, of p(z) = zn + anz
n−1 + · · · + a1

coincide with the eigenvalues of C(p), which are functions of a1, . . . , an.
See, e.g., Horn and Johnson (1985, p. 316).

N.2. Proposition (Kittaneh, 2007). With z1, . . . , zn the roots of
p(z) and a1, . . . , an the eigenvalues of C(p), let ξi = R(zi) be ordered
such that ξ1 ≥ . . . ≥ ξn, αi = R(ai), and βi = |ai|. Then

∑k
1 ξi ≤ A(a) +

∑k
1 cos iπ

n+1 , k = 1, . . . , n− 1,
∑n

1 ξi = −αn,
where

A(a) =
1
2

⎧⎨
⎩−αn +

√√√√α2
n +

n−1∑
1

β2
i

⎫⎬
⎭ .

Related results are given by Kittaneh (1995).

O Other Settings in Matrix Theory Where
Majorization Has Proved Useful

Majorization appears in a variety of contexts that involve concepts
that would take us too far afield. Without giving details, we mention
a sample of the matrix literature in which majorization played an
important role.

O.1. Eigenvalue clusters (Serra-Capizzano, Bertaccini, and Golub,
2005)

O.2. Wiener–Hopf factorizations (Amparan, Marcaida, and Zaballa,
2004)



364 9. Matrix Theory

O.3. Group majorization for correlation matrices (Giovagnoli and
Romanazzi, 1990)

O.4. Group-invariant orderings and experimental design (Giovagnoli,
Pukelsheim, and Wynn, 1987)

O.5. A majorization theorem for binary designs (Giovagnoli and
Wynn, 1980)

O.6. Points of continuity of the Kronecker canonical form (de Hoyos,
1990)

O.7. Invariant factors of a polynomial matrix (Zaballa, 1987, 1991)

O.8. A majorization bound for the eigenvalues of some graph
Laplacians (Stephen, 2007)

O.9. Graph algorithm for degree sequences in parallel (Arikati and
Maheshwari, 1996)

O.10. Determinant of the sum of a symmetric and a skew-symmetric
matrix (Bebiano, Li, and da Providência, 1997)

O.11. Linear systems with prescribed similarity structural invariants
(Baragaña, Fernández, and Zaballa, 2000)

O.12. Majorization inequalities related to von Neumann algebras
(Harada, 2008)

O.13. The construction of Huffman codes (Parker and Ram, 1999)
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O.14. Structural perturbation of a matrix (Baragaña, Asunción Beitia
and de Hoyos, 2009)

O.15. Matrix mean inequalities (Bhatia and Kittaneh, 2008)

O.16. Monotonicity of order-preserving functions (Furuta, 2008)



10
Numerical Analysis

Majorization has been used in two areas in numerical analysis:
(i) finding a matrix closest to a given matrix, and (ii) obtaining
bounds for the condition number and norm of a matrix. Both (i) and
(ii) depend on a relation between unitarily invariant norms and sym-
metric gauge functions (see 3.I.1) obtained by von Neumann (1937).
Majorization arises from the fact that symmetric gauge functions are
Schur-convex.

For a general discussion of gauge functions, see Schatten (1950),
Rockafellar (1970), Horn and Johnson (1991), Bhatia (1997), or
Bernstein (2005).

A unitarily invariant norm ‖ · ‖UI is a matrix norm satisfying
‖AU‖UI = ‖V A‖UI for all unitary matrices U and V and every complex
matrix A. The Euclidean norm is denoted by ‖A‖E.

A Unitarily Invariant Norms and Symmetric
Gauge Functions

A.1. Theorem (von Neumann, 1937). If Φ is a symmetric gauge
function, and A is an n × n complex matrix with singular values
ordered σ1(A) ≥ · · · ≥ σn(A), then the matrix function defined by
Φ(σ1(A), . . . , σn(A)) is a unitarily invariant norm. Conversely, every

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 367
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 10,
c© Springer Science+Business Media, LLC 2011
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unitarily invariant norm ‖ · ‖UI has a representation of the form
‖A‖UI = Φ(σ1(A), . . . , σn(A)), where Φ is a symmetric gauge function.

The proof of this result is omitted.

Remark . Because σ(A) = σ(A∗), it immediately follows that for
any unitarily invariant norm ‖ · ‖UI, ‖A‖UI = ‖A∗‖UI. If A and B are
n × n matrices, then σ(AB) = σ(BA), so that ‖AB‖UI = ‖BA‖UI.
These facts are used frequently in the proofs below.

Because every symmetric gauge function Φ is Schur-convex and
increasing on R n

+ (see 3.I.1), it follows that if

(α1, . . . , αn) ≺w (β1, . . . , βn) on R n
+ , (1)

then

Φ(α1, . . . , αn) ≤ Φ(β1, . . . , βn). (2)

The implication (1) ⇒ (2) is due to Fan (1951).

A.2. Let A and B be n× n complex matrices. Then

‖A‖UI ≤ ‖B‖UI (3)

for every unitarily invariant norm ‖ · ‖UI if and only if

(σ1(A), . . . , σn(A)) ≺w (σ1(B), . . . , σn(B)). (4)

Proof. If ‖A‖UI ≤ ‖B‖UI for every unitarily invariant norm ‖ · ‖UI,
then by A.1,

Φ(σ1(A), . . . , σn(A)) ≤ Φ(σ1(B), . . . ,Φn(B))

for all symmetric gauge functions Φ. By 4.B.6, this implies that
σ(A) ≺w σ(B).

If σ(A) ≺w σ(B), then Φ(σ1(A), . . . , σn(A)) ≤ Φ(σ1(B), . . . , σn(B))
for every symmetric gauge function Φ, so that by A.1, ‖A‖UI ≤ ‖B‖UI

for every unitarily invariant norm. ||

Unitarily Invariant Norm Inequalities

As noted in A.2, unitarily invariant norm inequalities can be trans-
lated to majorization inequalities. A number of new norm inequalities
have now appeared and are listed by Bernstein (2005, Section 9.9).
See also Ando (1994), Seo and Tominaga (2008), or Matsumoto and
Fujii (2009). The following are several examples, each of which can be
translated to a weak majorization on the singular values.
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A.3. Proposition (Bhatia and Davis, 1993). For A ≥ 0, B ≥ 0,
define the Heinz mean

Hα(A,B) =
1
2
(AαBα +AαBα), 0 ≤ α ≤ 1, α = 1 − α;

then

‖A1/2B1/2‖UI ≤ ‖Hα(A,B)‖UI ≤ ‖(A+B)/2‖UI.

Thus the Heinz mean lies between the geometric and arithmetic means.

A.4. Proposition (Ando and Zhan, 1999). If A,B ≥ 0, and φ is a
monotone nonnegative function on [0,∞), then

‖φ(A) + φ(B)‖UI ≥ ‖φ(A+B)‖UI; (5)

if ψ is a nonnegative increasing function on [0,∞), with ψ(0) = 0,
ψ(∞) = ∞, and whose inverse function is monotone, then

‖ψ(A) + ψ(B)‖UI ≤ ‖ψ(A +B)‖UI. (6)

A.5. Examples. For A,B ≥ 0,

‖Ar +Br‖UI ≥ ‖(A+B)r‖UI, 0 ≤ r ≤ 1, (7)

‖Ar +Br‖UI ≤ ‖(A +B)r‖UI, 1 ≤ r ≤ ∞. (8)

A.6. Examples. If A and B are n× n Hermitian matrices, then for
k ∈ N,

‖(A−B)2k+1‖UI ≤ 22k‖A2k+1 −B2k+1‖UI; (9)

for A ≥ 0, B ≥ 0,

‖ log(A+ I) + log(B + I)‖UI ≥ ‖ log(A+B + I)‖UI (10)

and

‖eA + eB‖UI ≤ ‖eA+B + I‖UI. (11)

A.7. Examples. For A,B complex,

‖A∗B‖UI ≤ 1
2
‖AA∗ +BB∗‖UI, (12)

‖(A∗A)1/2 − (B∗B)1/2‖UI ≤ (2‖A +B‖UI‖A−B‖UI)1/2. (13)



370 10. Numerical Analysis

B Matrices Closest to a Given Matrix

It is often of interest to know how much matrices in a given class can
deviate from a given matrix. More specifically, for a given class X of
matrices and a given matrix A, what are the upper or lower bounds
for ‖A−X‖ for X ∈ X ?

General discussions of this topic from different points of view are
given by Mirsky (1960a), Golub (1968), Halmos (1972), and Keller
(1975).

Hermitian Matrix Closest to an Arbitrary Matrix

B.1. Theorem (Fan and Hoffman, 1955). Let A be an n×n complex
matrix. Then for all Hermitian matrices H,∥∥∥∥A− A+A∗

2

∥∥∥∥
UI

≤ ‖A−H‖UI (1a)

for every unitarily invariant norm ‖ · ‖UI, or equivalently,

σ

(
A− A+A∗

2

)
≺w σ(A−H). (1b)

Proof. Because of the identity

A− A+A∗

2
=
A−H

2
− A∗ −H

2
=
A−H

2
− (A−H)∗

2
,

it follows that∥∥∥∥A− A+A∗

2

∥∥∥∥
UI

≤
∥∥∥∥A−H

2

∥∥∥∥
UI

+
∥∥∥∥(A−H)∗

2

∥∥∥∥
UI

= ‖A−H‖UI

for every unitarily invariant norm. Equivalently, by A.2,

σ

(
A− A+A∗

2

)
≺w σ(A−H). ||

Skew-Symmetric Matrix Closest to an Arbitrary Matrix

B.2. Theorem (Causey, 1964). Let A be an n× n complex matrix.
Then for all skew-symmetric matrices S,∥∥∥∥A− A−A∗

2

∥∥∥∥
UI

≤ ‖A− S‖UI (2a)
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for every unitarily invariant norm ‖ · ‖UI, or equivalently,

σ

(
A− A−A∗

2

)
≺w σ(A− S). (2b)

Proof. For any skew-symmetric matrix S,

A− A−A∗

2
=
A− S

2
+
A∗ + S

2
=
A− S

2
+

(A− S)∗

2
,

and hence∥∥∥∥A− A−A∗

2

∥∥∥∥
UI

≤
∥∥∥∥A− S

2

∥∥∥∥
UI

+
∥∥∥∥(A− S)∗

2

∥∥∥∥
UI

= ‖A− S‖UI,

for every unitarily invariant norm ‖ · ‖UI. Equivalently, by A.2,

σ

(
A− A−A∗

2

)
≺w σ(A− S). ||

Unitary Matrix Closest to a Positive Semidefinite
Hermitian Matrix

B.3. Theorem (Fan and Hoffman, 1955). Let H be an n×n positive
semidefinite Hermitian matrix. Then for all unitary matrices Γ,

‖H − I‖UI ≤ ‖H − Γ‖UI ≤ ‖H + I‖UI (3a)

for every unitarily invariant norm ‖ · ‖UI, or equivalently,

σ(H − I) ≺w σ(H − Γ) ≺w σ(H + I). (3b)

Proof. Consider first the right-hand inequality of (3b). By 9.G.1.d,
σi(H − Γ) ≤ σi(H) + σ1(−Γ), i = 1, . . . , n. Because H ≥ 0,
σi(H) = λi(H), i = 1, . . . , n. Also, σ1(−Γ) = [λ1(ΓΓ∗)]1/2 = 1, so
that

σi(H − Γ) ≤ σi(H) + σ1(−Γ) = λi(H) + 1 = λi(H + I)

= σi(H + I), i = 1, . . . , n,

which is stronger than the right-hand inequality.
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To prove the left-hand inequality, note that for k = 1, . . . , n,

k∑
1

σi(H − I) = max
1≤i1<···<ik≤n

k∑
s=1

|λis(H − I)|

= max
1≤i1<···<ik≤n

k∑
s=1

|λis(H) − 1|

= max
1≤i1<···<ik≤n

k∑
s=1

|σis(H) − 1|. (4)

We need to show that

max
1≤i1<···<ik≤n

k∑
s=1

|σis(H) − 1| ≤
k∑
s=1

σi(H − Γ), k = 1, . . . , n. (5)

To prove (5), define for any matrix M the symmetrized matrix

M̃ =
[
0 M

M∗ 0

]
.

The nonzero eigenvalues of M̃ are the nonzero singular values of M
and their negatives (see 9.A.2). From 9.G.1(3),

max
1≤i1<···<ik≤n

k∑
s=1

|λis(H̃)−λis(Γ̃)| ≤
k∑
i=1

λi(H̃ − Γ̃), k = 1, . . . , n. (6)

That (6) implies (5) follows from the fact that the eigenvalues of H̃,
Γ̃, and H̃ − Γ̃ are

λ(H̃) = (σ1(H), . . . , σn(H),−σn(H), . . . ,−σ1(H)),

λ(Γ̃) = (1, . . . , 1,−1, . . . ,−1),

λ(H̃ − Γ̃)=(σ1(H−Γ), . . . , σn(H − Γ),−σn(H − Γ), . . . ,−σ1(H − Γ)),

respectively. ||
Let A be an n×n complex matrix. Then by the polar decomposition

19.C.3, there exists a unitary matrix U and a positive semidefinite
Hermitian matrix H such that

A = UH. (7)

The following theorem is equivalent to B.3, although it appears to
be more general.
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B.4. Theorem (Fan and Hoffman, 1955). Let A be an n×n complex
matrix, and let U be a unitary matrix satisfying (7). Then for all
unitary matrices Γ,

‖A− U‖UI ≤ ‖A− Γ‖UI ≤ ‖A+ U‖UI (8a)

for every unitarily invariant norm ‖ · ‖UI, or equivalently,

σ(A− U) ≺w σ(A− Γ) ≺w σ(A+ U). (8b)

Proof. If A = H is a positive semidefinite Hermitian matrix, then
(8a) and (8b) follow from (3a) and (3b).

If U is a unitary matrix satisfying A = UH ≡ U(AA∗)1/2, and Γ is
a unitary matrix, then

σ(A± Γ) = σ(UH ± UU∗Γ) = σ(H ± U∗Γ). (9)

In particular, if Γ = U , then

σ(A± U) = σ(H ± I). (10)

The relations (9) and (10) with (3a) or (3b) yield (8a) or (8b). ||

Closest Matrix of a Given Rank

Let A be an m × n complex matrix of rank r. Then by the singular
value decomposition 19.B.1, there exist unitary matrices Γ and Δ such
that

A = ΓDαΔ, (11)

where Dα = diag(α1, . . . , αr, 0, . . . , 0) and α1 ≥ · · · ≥ αr are the
nonzero singular values of A.

B.5. Theorem (Eckart and Young, 1936; Mirsky, 1960a; Keller, 1962).
Let A be an m×n complex matrix of rank r. Then for allm×nmatrices
X of rank k ≤ r,

‖A−B‖UI ≤ ‖A−X‖UI for every unitarily invariant norm ‖ · ‖UI,

where

B = Γ diag(α1, . . . , αk, 0, . . . , 0)Δ;

Γ and Δ are unitary matrices satisfying (11), αi = σi(A), i = 1, . . . , r.

Remark. Note that ‖A−B‖UI = ‖diag(0, . . . , 0, αk+1, . . . , αr)‖UI.
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Theorem B.5 was proved by Eckart and Young (1936) for the
Euclidean norm ‖X‖E = (tr XX∗)1/2, and generalized to unitarily
invariant norms by Mirsky (1960a). The extension to operators is due
to Keller (1962).

Comment on the proof. The proof of Mirsky (1960a) is lengthy
and is omitted. An essential feature of the proof is the fact that if
A = (Ȧ, Ä), then

σ(A) �w (σ(Ȧ), 0).

This follows from 9.G.3.b with A replaced by (Ȧ, 0) and B replaced
by (0, Ä).

A Bound for the Difference Between
Two Hermitian Matrices

The Cayley transform U of an n×n Hermitian matrix G is defined by

U = (G− iI)(G + iI)−1 = I − 2i(G+ iI)−1.

B.6. Theorem (Fan and Hoffman, 1955). Let H and K be two n×n
Hermitian matrices with respective Cayley transforms U and V . Then

‖H −K‖UI ≥
∥∥∥∥U − V

2

∥∥∥∥
UI

(12a)

for every unitarily invariant norm ‖ · ‖UI, or equivalently,

σ(H −K) ≺w σ((U − V )/2). (12b)

Proof. A direct computation yields the identity

U − V

2i
= (K + iI)−1(H −K)(H + iI)−1.

It follows from 9.H.1 and 5.A.2.b that, for k = 1, . . . , n,

k∑
j=1

σj((U − V )/(2i)) ≤
k∑
j=1

[σj((K + iI)−1)σj(H −K)σj((H + iI)−1)].

But for any Hermitian matrix H, (H + iI)∗(H + iI) = H2 + I, so
that σj(H + iI) = [λj(H2 + I)]1/2 ≥ 1; hence, σj((H + iI)−1) ≤ 1,
j = 1, . . . , n. The proof is completed by noting that σ(iA) = σ(−iA) =
σ(A). ||
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Matrix That Minimizes the Residual

For any matrix A denote by A+ the unique matrix that satisfies

AA+A = A, A+AA+ = A+, (AA+)∗ = AA+, (A+A)∗ = A+A. (13)

The matrix A+ is called the pseudoinverse of A. See Penrose (1955).

B.7. Theorem. Let A, B be p × n complex matrices. Then for all
n× n matrices X,

‖A(A+B) −B‖UI ≤ ‖AX −B‖UI

for every unitarily invariant norm ‖ · ‖UI.

Proof. Let L = AX − B, P = AX − AA+B, Q = B − AA+B,
so that L = P − Q. From (13), it follows that A∗ = A∗AA+ and
AA+ = AA+AA+ = A+∗A∗AA+; a direct computation then yields
P ∗Q = 0. Hence, L∗L = P ∗P +Q∗Q.

By 20.A.1.b, λi(L∗L) ≥ λi(Q∗Q); and hence, σi(L∗) ≥ σi(Q∗), for
i = 1, . . . , n, so that σ(L∗) �w σ(Q∗). This implies that ‖L∗‖UI ≥
‖Q∗‖UI, which yields the result (see Remark following A.1). ||

Theorem B.7 was obtained by Penrose (1956) for Euclidean norms.

B.8. Theorem (Green, 1952; Keller, 1962; Schönemann, 1966). Let
A and B be arbitrary real n × n matrices; let U and V be unitary
matrices satisfying the singular value decomposition

B∗A = UDθV
∗,

where Dθ = diag(θ1, . . . , θn) and θ1, . . . , θn are the singular values of
B∗A.

Then for all unitary matrices Γ,

‖A−B(UV ∗)‖E ≤ ‖A−BΓ‖E.

A two-sided version of B.8 can be given.

B.8.a. (Kristof, 1970). Let A and B be arbitrary real n×n matrices
with singular value decompositions

A = U1DαV1, B = U2DβV2,

where U1, V1, U2, V2 are unitary, Dα = diag(α1, . . . , αn), Dβ =
diag(β1, . . . , βn), and α1,≥ α2 . . . ≥ αn and β1 ≥ β2 . . . ≥ βn are the
singular values of A and B, respectively. Then for all unitary matrices
Γ and Δ,

‖A− (V ∗
1 U

∗
2 )B(V ∗

2 U
∗
1 )‖E ≤ ‖A− ΓBΔ‖E.
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Remark . Mathias (1993) and Wang, Xi, and Zhang (1999) show
that B.8 is not true for arbitrary unitarily invariant norms; however,
B.8.a is true for such norms.

B.9. Definition. A matrix A is normal if AA∗ = A∗A.

The class of normal matrices includes symmetric, Hermitian,
orthogonal, and unitary matrices. A normal matrix is unitarily
diagonalizable. See 9.C.7.

B.10. Theorem (Hoffman and Wielandt, 1953). Suppose A and B
are n× n normal matrices with eigenvalues α1, . . . , αn and β1, . . . , βn,
respectively. Then for some permutation matrix P ,

min
V V ∗=I

‖Dα − V DβV
∗‖E = ‖Dα − PDβP

′‖E, (14)

where Dα = diag(α1, . . . , αn), Dβ = diag(β1, . . . , βn).

Remark . If A in B.10 is Hermitian with α1 ≥ · · · ≥ αn, and
R(β1) ≥ · · · ≥ R(βn), where R(β) denotes the real part of β, then
the minimum in (14) is achieved for P = I.

Remark . If the matrices A and B are Hermitian, then Theorem
B.10 holds for all unitarily invariant norms, but this is not true in
general (Zhang, 1999).

C Condition Numbers and Linear Equations

The term “condition number” is due to Turing (1948). These quantities
were introduced to measure the stability of the solution of a system
of equations when the coefficients of the system are subjected to a
small perturbation. When the solution is stable, the system is called
well-conditioned ; when the solution is unstable, the system is called
ill-conditioned.

The condition or condition number of a nonsingular matrix A is
usually defined as

cφ(A) = φ(A)φ(A−1),

where ordinarily φ is a norm. Occasionally a scaling factor is included.
Turing (1948) used φ(A) = maxi,j |aij | and φ(A) = (tr AA∗)1/2,

whereas von Neumann and Goldstine (1947) used φ(A) = maxi |λi(A)|.
General discussions of condition numbers are given in Faddeev and

Faddeeva (1963), Forsythe and Moler (1967, pp. 20–26), Todd (1968),
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Bhatia (1997, p. 232), and Horn and Johnson (1985, p. 335). In
Section E it is shown how the above definition of the condition of
a matrix arises naturally from several alternative points of view.

In solving the system xA = b, it may be advantageous to solve
instead the system xAB = bB ≡ c, where B is chosen to improve the
condition of the system; i.e., B is chosen so that cφ(AB) ≤ cφ(A).

An intuitively appealing candidate for B is B = A∗, since AA∗
is Hermitian, whereas A need not be. However, von Neumann and
Goldstine (1947) show that for the norm φ(A) = σ1(A), symmetrizing
in this form does not improve the condition number. Taussky-Todd
(1950) showed that the condition number is not improved for φ(A) =
|λ1(A)| and φ(A) = (tr AA∗)1/2.

The following theorem shows that if the norm φ is unitarily invariant,
then the condition of the matrix A is better than the condition of AA∗.

C.1. Theorem (Marshall and Olkin, 1965). Let A be an n × n
nonsingular matrix; then

cφ(A) ≤ cφ(AA∗); (1)

that is,

φ(A)φ(A−1) ≤ φ(AA∗)φ((AA∗)−1), (2)

for every unitarily invariant norm φ.

If φ is a unitarily invariant norm, then by A.1 there exists a
symmetric gauge function Φ such that

φ(A) = Φ(σ1(A), . . . , σn(A)) ≡ Φ(σ(A)).

Note that

σi(A−1) = [λi(A−1A−1∗)]1/2 = [λi((A∗A)−1)]1/2

= 1/[λi(A∗A)]1/2 = 1/σi(A),

σi(AA∗) = [λi((AA∗)2)]1/2 = λi(AA∗) = σ2
i (A), i = 1, . . . , n.

Write ai = σi(A). Then inequality (2) becomes

Φ(a1, . . . , an)Φ(a−1
1 , . . . , a−1

n ) ≤ Φ(a2
1, . . . , a

2
n)Φ(a−2

1 , . . . , a−2
n ). (3)

The following theorem provides a stronger result than (3), and hence
yields C.1.

C.1.a. Theorem (Marshall and Olkin, 1965). If Φ is a symmetric
gauge function, and ai > 0, i = 1, . . . , n, then

Φ(ar1, . . . , a
r
n)Φ(a−r1 , . . . , a−rn )
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is increasing in r > 0.

Proof. The following facts are needed:

(i) A symmetric gauge function Φ is Schur-convex (see 3.I.1).

(ii) Φ(x−1
1 , . . . , x−1

n ) is Schur-convex on R n
+ (see 3.I.1.a).

(iii) If a1 ≥ · · · ≥ an > 0 and, for i = 1, . . . , n and 0 < r < s,
ui = ari /

∑
arj , vi = asi/

∑
asj, then u ≺ v (see 5.B.2.b).

A consequence of (iii) together with the fact that Φ(x1, . . . , xn) and
Φ(x−1

1 , . . . , x−1
n ) are Schur-convex yields

Φ
(
ar1

Σari
, . . . ,

arn
Σari

)
≤ Φ

(
as1

Σasi
, . . . ,

asn
Σasi

)
, (4)

Φ
(

Σari
ar1

, . . . ,
Σari
arn

)
≤ Φ

(
Σasi
as1

, . . . ,
Σasi
asn

)
. (5)

For a scalar c, Φ(ca) = |c|Φ(a), so that multiplication of (4) and (5)
yields the result. ||

Remark . In some instances, a lower bound on cφ(A) can be ob-
tained to complement (1). If φ is a unitarily invariant norm with
φ(Eij) = 1, where Eij is the matrix with unity in the (i, j)th place
and zeros elsewhere, then

[cφ(AA∗)]1/2 ≤ cφ(A).

This result is obtained by Marshall and Olkin (1965).
The condition φ(Eij) = 1 holds for norms of the form

φ(A) =
[∑

σpi (A)
]1/p

, p > 0.

C.2. Theorem (Marshall, Olkin, and Proschan, 1967). Let H be a
positive definite Hermitian matrix, let

ψ(H) = u1H
v1 + · · · + umH

vm ,

where ui ≥ 0, i = 1, . . . ,m, 1 ≤ v1 ≤ · · · ≤ vm, m ≤ ∞, and let φ be a
unitarily invariant norm. Then

cφ(H) ≤ cφ(ψ(H)).

This result shows that the Hermitian matrix H is better conditioned
than a power of H greater than one, a polynomial or a power series
in H. For example, if H and I − H are positive definite Hermitian,
then

cφ(H) ≤ cφ(H(I −H)−1).
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Condition of a Perturbed Matrix and Ridge Regression

The result C.1 shows that the condition of AA∗ is larger than the
condition of A. We now compare the condition of A + B with the
condition of A when A is positive definite and B is “small” with respect
to A in the sense that its condition is smaller.

A norm φ is said to be monotone if φ(U) ≤ φ(V ) whenever V − U
is positive semidefinite. Unitarily invariant norms are monotone [see
Marshall and Olkin (1969)].

C.3. Theorem (Marshall and Olkin, 1969). Let A and B be positive
definite Hermitian matrices satisfying

cφ(B) ≤ cφ(A), (6)

where φ is a monotone norm. Then

cφ(A+B) ≤ cφ(A). (7)

The import of C.3 is as follows. Suppose that xA = b is to be solved
for x, where A is positive definite but ill-conditioned. Further suppose
C = A+B is better conditioned than A. It is preferable to solve x̃C = b
for x̃, provided the solution x can be retrieved. Since A = C −B,

A−1 = C−1 + C−1(B−1C) + C−1(B−1C)2 +C−1(B−1C)3 + · · · ,

so that

x = bA−1 = bC−1 + bC−1(B−1C) + bC−1(B−1C)2 + · · ·
= x̃+ x̃(B−1C) + x̃(B−1C)2 + · · · .

Thus, we would like to choose B so that C is well-conditioned and the
series for x converges rapidly.

Riley (1955) shows that B = kI, where k is a constant that depends
on the number of decimals carried, satisfies (6) for any positive definite
matrix A. Starting from the context of regression analysis, this is the
result of Hoerl and Kennard (1970a, b); this procedure is called ridge
regression.

Denote by A+ the pseudoinverse of a matrix A. Klinger (1968) shows
that if A is normal and nonsingular, then cφ(A + εA∗+) ≤ cφ(A) ;
Tewarson and Ramnath (1969) obtain the same result without the
normality assumption.
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D Condition Numbers of Submatrices
and Augmented Matrices

Comparisons can be made between the condition numbers of the
matrices

H =
[
H11 H12

H21 H22

]
, H =

[
H11 0
0 H22

]
, Ĥ =

[
H11 0
0 0

]
. (1)

Since Ĥ is singular, its condition number is defined by substituting
the pseudoinverse Ĥ+ for the inverse.

D.1. Let H be a positive definite Hermitian matrix partitioned as in
(1), and let φ be a unitarily invariant norm. Then

cφ(H) ≥ cφ(H) ≥ cφ(Ĥ). (2)

Proof. From 9.C.1 and 9.C.1.b, λ(H) � λ(H) �w λ(Ĥ), and be-
cause λ(H) ≥ 0, σ(H) � σ(H) �w σ(Ĥ). Consequently, it follows
from A.1 that for any symmetric gauge function Φ,

Φ(σ1(H), . . . , σn(H)) ≥ Φ(σ1(H), . . . , σn(H)) ≥ Φ(σ1(Ĥ), . . . , σn(Ĥ)).

By (ii) in the proof of C.1.a,

Φ([σ1(H)]−1, . . . , [σn(H)]−1) ≥ Φ([σ1(H)]−1, . . . , [σn(H)]−1)

≥ Φ(σ1(Ĥ+), . . . , σn(Ĥ+)).

By combining these results, (2) follows. ||
D.2. Theorem (Marshall and Olkin, 1973b). Let A be an m × n
matrix of rank k, and let φ be a unitarily invariant norm. Then for all
n× q matrices U satisfying U∗U = I and rank(A∗, U) = rank A∗,

cφ(AU) ≤ cφ(A).

E Condition Numbers and Norms

In this section we show how the condition of a matrix arises in the
context of linear equations, least squares, and eigenvalues.

E.1. Solution of linear equations. Consider a system of linear
equations

xA = b. (1)
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If b is perturbed by an amount Δb, then the solution is also perturbed;
i.e.,

(x+ Δx)A = b+ Δb. (2)

Let ‖ · ‖ be a vector norm and let

‖A‖ = sup
x

‖xA‖
‖x‖

be its subordinate matrix norm. Notice that ‖xA‖ ≤ ‖x‖‖A‖. [For a
discussion of subordinate norms, see Householder (1964, Section 2.2).]

From (1), ‖b‖ = ‖xA‖ ≤ ‖x‖‖A‖, and from (2),

‖Δx‖ = ‖Δb A−1‖ ≤ ‖Δb‖‖A−1‖,
so that

‖Δx‖
‖x‖ ≤ ‖A‖‖A−1‖‖Δb‖‖b‖ = c(A)

‖Δb‖
‖b‖ .

That is, the relative uncertainty in the solution vector x with respect
to the relative uncertainty in the data vector b is bounded by the
condition of A.

Suppose now that A is perturbed by an amount ΔA. Then the
solution of (1) is perturbed by Δx, where

(x+ Δx)(A+ ΔA) = b, (3)

i.e., Δx = −(x+Δx)(ΔA)A−1, so that ‖Δx‖ ≤ ‖A−1‖‖ΔA‖‖x+Δx‖.
Consequently,

‖Δx‖
‖x+ Δx‖ ≤ ‖A‖‖A−1‖‖ΔA‖‖A‖ .

That is, the uncertainty in x relative to x + Δx as compared to the
relative uncertainty in A is bounded by the condition of A.

E.2. A least-squares model. Consider a linear regression model
of a dependent variable y on p regression variables x1, . . . , xp. For a
sample of n observations, the model is

y ≡ (y1, . . . , yn) = (β1, . . . , βp)X + (v1, . . . , vn), (4)

where X is a p×n matrix of rank p ≤ n. The error vector v is random
with mean zero and covariance matrix Cov(v) = Σ. The vector β is
unknown and is to be estimated.

If Σ is known, then this information is taken into account by the
renormalization

ỹ ≡ yΣ1/2 = βXΣ1/2 + vΣ−1/2 ≡ βX̃ + ṽ.
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The least-squares estimate of β obtained by minimizing ‖ỹ − βX̃‖ is
given by

b̃ = ỹX̃ ′(X̃X̃ ′)−1 = yΣ−1X ′(XΣ−1X ′)−1.

On the other hand, the method of least squares applied to (4) yields
the estimator

b = yX ′(XX ′)−1.

The efficiency of b with respect to b̃ is a function of the covariance
matrices of the two estimates, namely,

Cov(̃b) = (XΣ−1X ′)−1,

Cov(b) = (XX ′)−1(XΣX ′)(XX ′)−1.

Comparisons can be made in a variety of ways. One such is to consider
the norm of the “ratio” of covariance matrices

‖(XΣ−1X ′)[(XX ′)−1XΣX ′(XX ′)−1]‖ = ‖(UΣ−1U ′)(UΣU ′)‖, (5)

where U = (XX ′)−1/2X is a p× n matrix satisfying UU ′ = I.
If this same model is used with various design matrices X (or, equiv-

alently, various matrices U), then it may be of interest to compute the
upper bound of (5) over all matrices X; i.e.,

sup
UU ′=Ip

‖(UΣ−1U ′)(UΣU ′)‖. (6)

The following theorem shows that for a unitarily invariant multiplica-
tive norm, i.e., a unitarily invariant norm satisfying ‖AB‖ ≤ ‖A‖‖B‖,
the upper bound of (6) is the condition number of Σ. This provides
a measure of the loss in efficiency for not knowing Σ. [For a gen-
eral discussion of the efficiency of least-squares estimates, see Watson
(1955).]

E.2.a. Let Σ be a positive definite Hermitian matrix, and let ‖ · ‖UIM

be a unitarily invariant multiplicative norm. Then for all p×n (p ≤ n)
matrices U satisfying UU∗ = I,

‖(UΣ−1U∗)(UΣU∗)‖UIM ≤ ‖Σ‖UIM‖Σ−1‖UIM. (7)

Proof. A p × n matrix U satisfying UU∗ = I can be written as
(Ik, 0)V , where V is an n× n unitary matrix. Let ψ = V ΣV ∗, so that
(7) becomes∥∥∥∥[I 0] ψ−1

[
I

0

]
[I 0] ψ

[
I

0

]∥∥∥∥
UIM

≤ ‖ψ‖UIM‖ψ−1‖UIM. (8)
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Starting with the left-hand side of (8), we obtain∥∥∥∥[I 0] ψ−1

[
I 0
0 0

]
ψ

[
I
0

]∥∥∥∥
UIM

=
∥∥∥∥ψ−1

[
I 0
0 0

]
ψ

[
I 0
0 0

]∥∥∥∥
UIM

≤ ‖ψ−1‖UIM

∥∥∥∥
[
ψ11 0
0 0

]∥∥∥∥
UIM

≤ ‖ψ−1‖UIM‖ψ‖UIM

= ‖Σ−1‖UIM‖Σ‖UIM.

The last inequality follows from D.1 and the last equality follows from
the unitary invariance of the norm. ||
E.3. Eigenvalues. If an n × n matrix A has distinct eigenvalues,
then by 19.A.2 there exists a matrix S such that

SAS−1 = diag(λ1(A), . . . , λn(A)).

If A is perturbed by a small matrix B, then it is of interest to mea-
sure how much any eigenvalue of A+B can deviate from the eigenvalues
of A. Let ‖x‖ denote the norm of a finite-dimensional vector x, and let
‖A‖ denote any matrix norm “consistent” with the vector norm, i.e.,
satisfying ‖xA‖ ≤ ‖A‖‖x‖. Then

min
1≤i≤n

|λj(A+B) − λi(A)|/‖B‖ ≤ c(S),

where λj(A+ B) is any eigenvalue of A+ B and c(S) = ‖S‖‖S−1‖ is
the condition number of S. For a proof of this result, see Bauer and
Fike (1960).
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Stochastic Applications



11
Stochastic Majorizations

A comparison between two random vectors X and Y might be called
a stochastic majorization if the comparison reduces to the ordinary
majorization x ≺ y in case X and Y are degenerate at x and y; i.e.,

P{X = x} = 1, P{Y = y} = 1.

Similarly, the comparison might be called a stochastic weak majoriza-
tion if it reduces to a weak majorization x ≺w y or x ≺w y for
degenerate random vectors. A number of such concepts of stochastic
majorization and stochastic weak majorization can be defined. Notable
published works on this subject may be found in the papers of Nevius,
Proschan, and Sethuraman (1977a, b), where one important notion of
stochastic majorization and stochastic weak majorization is studied.
The work of these authors appears particularly in Sections D and E.

A Introduction

Perhaps the most obvious notion of stochastic majorization is the
condition

P{(X1, . . . ,Xn) ≺ (Y1, . . . , Yn)} = 1. (1)

This is a very strong condition which involves not only the distributions
of X and Y but also the joint distribution. A modification of (1) that
eliminates this possible objection is given ahead in (4).

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 387
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 11,
c© Springer Science+Business Media, LLC 2011
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More useful concepts of stochastic majorization are suggested by
certain theorems which give conditions equivalent to majorization. In
particular, suppose C is some class of well-behaved functions defined
on R n with the property that

x ≺ y if and only if φ(x) ≤ φ(y) for all φ ∈ C . (2)

For example, C might consist of all continuous symmetric convex func-
tions defined on R n or it might consist of functions φ having the form
φ(x) =

∑
ψ(xi), where ψ : R → R is continuous and convex.

The notation X ≤st Y means that X is stochastically less than or
equal to Y (see 17.A).

For any class C satisfying (2), two kinds of stochastic majorization
conditions are suggested by 17.A.2:

PC : φ(X) ≤st φ(Y ) for all φ ∈ C ,

and

EC : Eφ(X) ≤ Eφ(Y ) for all φ ∈ C such that all the
expectations are defined.

Of course, PC ⇒ EC because stochastically ordered random vari-
ables have ordered expectations. If C and C̃ both satisfy (2) and if
C ⊂ C̃ , then it is immediate that

PC̃ ⇒ PC and EC̃ ⇒ EC .

Thus the conditions PC and EC are strongest when C is as large as
possible, i.e., when C consists of all Schur-convex functions φ suffi-
ciently well behaved that the expectations are defined. At the other
extreme, one might take

C =

{
φ :φ(x) =

k∑
1

x[i] for some k = 1, . . . , n, or φ(x) = −
n∑
1

xi

}
.

There are a number of intermediate possibilities for C , but most of the
resulting stochastic majorization conditions are not well understood. In
this book, more than passing attention is given to only two possibilities:

C1 = {φ :φ is a real-valued Borel-measurable Schur-convex function
defined on R n}

and

C2 = {φ : φ is a real-valued continuous, symmetric, and convex
function defined on R n}.
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These are cases for which useful methods are known for identifying
interesting examples. Below, we write Pi in place of PCi

and Ei in
place of ECi

, i = 1, 2.
For some possible choices of C , it is true that

φ ∈ C ⇒ I{Z:φ(Z)>t} ∈ C for all t. (3)

For example, (3) is satisfied if C = C1 or C consists of the
Borel-measurable symmetric quasi-convex functions (see 3.C.3). When
(3) holds, EC ⇒ PC because P{φ(X) > t} = EI{Z:φ(Z)>t}(X).
Property (3) fails for C = C2.

The above arguments establish the following relationships:

P1 ⇒ P2

� ⇓

E1 ⇒ E2.

It is shown in F.9.a and F.9.b that E2 �⇒ P2 and P2 �⇒ P1, so that
implications not obtainable from the diagram are false.

Although condition (1) is stronger than E1 (P1), there is an inter-
esting intimate connection between these conditions that was pointed
out to us by Tom Snijders. In fact, E1 (and P1) are equivalent to the
following modification of (1):

There exist random variables U and V such that

(i) U and X have the same distribution, as do V and Y ,

(ii) U and V satisfy (1).
(4)

The proof that E1 and (4) are equivalent is an application of 17.B.6.
Observe that every condition PC is equivalent to EC̃ in case C̃

consists of all indicator functions of sets A having the form

A = {z :φ(z) > t}
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for some φ ∈ C and some t ∈ R. On the other hand, it appears
unlikely that every EC condition is equivalent to PC ∗ for some class
C ∗ of functions.

Note. Rüschendorf (1981) shows that in the definition of the ordering
E1, the class C1 can be replaced by the subclass of C1 including its
nonnegative bounded continuous members.

Some Notation

When X and Y satisfy condition PC , we write

X ≺PC Y ;

similarly,

X ≺EC Y

means that X and Y satisfy condition EC .
For certain random variables X and Y , condition E2 is vacuous.

Even with n = 1, it may be that Eφ(X) and Eφ(Y ) are equal or
together undefined for all continuous convex functions φ. This happens,
for example, when X and Y have Cauchy distributions. In this case,
the expectations may be +∞, −∞, or undefined; they exist finitely
only if φ is a constant.

Random vectors to be compared by a stochastic majorization often
have distributions belonging to the same parametric family, where the
parameter space is a subset of R n. In these examples, random variables
X and Y having corresponding distributions Fθ and Fθ′ are ordered
by stochastic majorization if and only if the parameters θ and θ′ are
ordered by ordinary majorization. To be more specific, let A ⊂ R n

and let {Fθ, θ ∈ A} be a family of n-dimensional distribution functions
indexed by a vector-valued parameter θ. Let

Pθ{φ(X) > t} =
∫
{φ(x)>t}

dFθ(x)

denote the probability that φ(X) exceeds t when X has distribution
Fθ, and let

Eθφ(X) =
∫

R n

φ(x) dFθ(x)

denote the expectation of φ(X) when X has distribution Fθ.
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The above approach to stochastic majorization suggests the follow-
ing conditions:

P ∗
C : Pθ{φ(X) > t} is Schur-convex in θ for all φ ∈ C

and all t,

E∗
C : Eθφ(X) is Schur-convex in θ for all φ ∈ C such

that the expectations are defined.

If Xθ has distribution Fθ, then P ∗
C means Xθ ≺PC Xθ′ when θ ≺ θ′

and E∗
C means Xθ ≺EC Xθ′ when θ ≺ θ′. Below we write E∗

i and P ∗
i

in place of E∗
Ci

and P ∗
Ci

.
Stronger conditions might be imposed, namely, that Pθ{φ(X) > t}

or Eθφ(X) (as functions of θ) are themselves in C or in some other
subset of the Schur-convex functions. A particular case is of interest,
namely,

E∗∗
2 : Eθφ(X) is a continuous symmetric convex function of θ

for all continuous symmetric convex functions φ such
that the expectation exists.

Condition P ∗∗
2 is similarly defined. Notice that E∗∗

2 and P ∗∗
2 are con-

cerned with the preservation of symmetry and convexity, whereas E∗
1

and P ∗
1 are concerned with the preservation of Schur-convexity. In this

sense, these concepts are companions. Such preservation properties are
more useful in compounding than are properties like E∗

2 and P ∗
2 (see

Table 1).

Compounding Families of Distribution Functions

If {Fθ, θ ∈ A} is a family of distribution functions, then by treat-
ing θ as a random variable with distribution function Gλ, one comes
(with obvious measurability conditions) to the distribution function
Hλ defined by

Hλ(x) =
∫
Fθ(x) dGλ(θ).

The family {Hλ, λ ∈ B} of compound distributions is obtained from
{Fθ, θ ∈ A} by the compounding distributions {Gλ, λ ∈ B}.

Suppose that {Fθ, θ ∈ A} and {Gλ, λ ∈ B} both satisfy E∗
1 . If φ is

Schur-convex, then
∫
φ(x) dFθ(x) is a Schur-convex function of θ, so∫ ∫

φ(x) dFθ(x) dGλ(θ) =
∫
φ(x) dHλ(x)
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is a Schur-convex function of λ. Thus {Hλ, λ ∈ B} satisfies E∗
1 . Similar

arguments lead to a variety of such results, which are tabulated in
Table 1.

Table 1

Conditions inherited by Hλ in compounding Fθ and Gλ.

Assumptions on
{Fθ , θ ∈ A}
{Gλ, λ ∈ B}

E∗
1

E∗
1

E∗∗
2

E∗∗
2

E∗
2

E∗
1

P ∗∗
2

E∗∗
2

P ∗
2

E∗
1

Conclusions about {Hλ, λ ∈ B} E∗
1 E∗∗

2 E∗
2 P ∗∗

2 P ∗
2

Sometimes the easiest way to obtain one of these conditions for
a family of distributions is to observe that the distributions can be
represented as compound distributions.

B Convex Functions and Exchangeable
Random Variables

Suppose that Φ is a function of two vector arguments; that is,
Φ :R 2n → R. In this section, conditions on Φ and on the random
vector X = (X1, . . . ,Xn) are obtained that ensure

ψ(a) = EΦ(X; a)

is a symmetric convex function of a = (a1, . . . , an). A result of this
kind together with some of its implications was obtained by Marshall
and Proschan (1965). Such results have interest beyond the topic of
stochastic majorization. They are presented here because they provide
indispensable tools for demonstrating the property E∗∗

2 .
In all cases, it is assumed that X1, . . . ,Xn are exchangeable ran-

dom variables, i.e., that the distribution of Xπ(1), . . . ,Xπ(n) does not
depend upon the permutation π. This is just a way of saying that
the joint distribution of X1, . . . ,Xn is invariant under permutations of
its arguments. For example, independent and identically distributed
random variables are exchangeable. More generally, suppose that
{F (a), a ∈ A } is an indexed family of univariate probability distribu-
tions. With appropriate measure-theoretic requirements, suppose that
F is a distribution function of the form

F (x) =
∫

A

∏
i

F (a)(xi) dP (a) (1)
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for some probability measure P defined on subsets of A . Then F is the
distribution of exchangeable random variables, but the distribution of
exchangeable random variables need not have this special form [e.g.,
when F places mass 1

2 at each of the points (−1, 1) and (1,−1) in
R 2 or F is a bivariate normal distribution with equal means, equal
variances, and negative correlation]. Of course, if G is any distribution
function on R n, then

F (x) =
1
n!

∑
π

G(xπ(1), . . . , xπ(n))

is the distribution of exchangeable random variables. Distributions
having the form of (1) arise in Section 12.D, where they are called
positively dependent by mixture.

When X1, . . . ,Xn are exchangeable, there are two prime examples
for which ψ(a) = EΦ(X; a) is a symmetric convex function of a. These
examples are

Φ(x; a) = φ(a1x1, . . . , anxn),

where φ : R n → R is symmetric and convex, or

Φ(x; a) = φ(x1 − a1, . . . , xn − an),

where again φ : R n → R is symmetric and convex. In these cases, the
vector a can be thought of as a vector of scale parameters or as a
vector of location parameters.

B.1. Proposition. Let X1, . . . ,Xn be exchangeable random vari-
ables and suppose that Φ :R 2n → R satisfies

(i) Φ(x; a) is convex in a for each fixed x,
(ii) Φ(xΠ; aΠ) = Φ(x; a) for all permutations Π,
(iii) Φ(x; a) is Borel-measurable in x for each fixed a.

Then

ψ(a) = EΦ(X; a)

is symmetric and convex.

Proof. The convexity of ψ is immediate from (i). To show that ψ
is symmetric, it is necessary to use the exchangeability of X1, . . . ,Xn

and (ii);

ψ(aΠ) = EΦ(X, aΠ) = EΦ(XΠ, aΠ) = EΦ(X, a) = ψ(a). ||
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B.2. Proposition. IfX1, . . . ,Xn are exchangeable random variables
and φ :R n → R is a symmetric Borel-measurable convex function,
then the function ψ defined by

ψ(a1, . . . , an) = Eφ(a1X1, . . . , anXn)

is symmetric and convex. Thus, ψ is Schur-convex, so that ã ≺ a
implies ψ(ã) ≤ ψ(a).

Although a direct proof of this proposition is easy (by mimicking
the proof of B.1), it is also easy to verify the conditions of B.1 with
Φ(x; a) = φ(a1x1, . . . , anxn).

The fact that ψ, as defined in B.2, is Schur-convex is due to Marshall
and Proschan (1965). This fact has a simple direct proof that is analo-
gous to the proof of 3.C.2. By 3.A.5, it is sufficient to prove the result
for n = 2 with the other variables suppressed. In this case, a � b means
that for some α, 0 ≤ α ≤ 1, α = 1 − α,

b1 = αa1 + αa2, b2 = αa1 + αa2.

Thus
Eφ(b1X1, b2X2) = Eφ((αa1 + αa2)X1, (αa1 + αa2)X2)

= Eφ(α(a1X1, a2X2) + α(a2X1, a1X2))

≤ αEφ(a1X1, a2X2) + αEφ(a2X1, a1X2)

= Eφ(a1X1, a2X2).

A generalization of this result is given in 15.D.3.

There are several simple consequences of B.2.

B.2.a. Proposition. Suppose that numbers t1, . . . , tn exist such that

P{(X1, . . . ,Xn) = (tπ(1), . . . , tπ(n))} = 1/n!

for all permutations π. If φ is a symmetric Borel-measurable convex
function, then according to B.1,

ψ(a) =
1
n!

∑
π

φ(a1tπ(1), . . . , antπ(n))

is symmetric and convex.

Proof. This conclusion also follows from 3.G.2.a; it can be used to
provide an alternative proof of B.2. ||

Various consequences of 3.G.2.a can be obtained from B.2 using
the above distribution. In particular, Muirhead’s theorem 3.G.2.e is a
consequence of B.2.
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B.2.b. Proposition (Marshall and Proschan, 1965). If g : R → R is
continuous and convex, and if X1, X2, . . . is a sequence of independent,
identically distributed random variables with distribution function F ,
then

Eg

(
n∑
1

Xi

n

)
=
∫ ∞

−∞
g
(x
n

)
dF (n)(x)

is nonincreasing in n = 1, 2, . . . , where F (n) is the nth convolution
of F .

Proof. If a = ((n− 1)−1, . . . , (n − 1)−1, 0) and ã = (n−1, . . . , n−1),
then a � ã, so that the result follows from B.2 with φ(z1, . . . , zn) =∑
g(zi). ||
In case X1, X2, . . . are not independent but only exchangeable,

then the monotonicity of Eg(
∑n

1 Xi/n) is still present, although this
expectation can no longer be written simply in terms of a convolution.

B.2.c. If X1, . . . ,Xn are exchangeable and g is a continuous convex
function, then

ψ(a1, . . . , an) = Eg
(∑

aiXi

)

is symmetric and convex.

This generalization of B.2.b is a special case of B.2.

B.2.d. (Marshall and Proschan, 1965). If X1, X2, . . . is a sequence
of exchangeable random variables, then

n−1Emax[0,X1, . . . ,Xn] (2)

is nonincreasing in n = 1, 2, . . . .

Proof. This follows from B.2 with φ(z1, . . ., zn)= max(0, z1, . . ., zn),
using the same a and ã as in the proof of B.2.b. ||

It was pointed out to us by Tom Snijders that if P{X1 > 0} > 0,
then (2) is strictly decreasing in n = 1, 2, . . . .

B.3. Proposition. IfX1, . . . ,Xn are exchangeable random variables
and φ is a symmetric Borel-measurable convex function, then the
function ψ defined by

ψ(a1, . . . , an) = Eφ(X + a)

is symmetric and convex.
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Proof. Let Φ(x, a) = φ(x+a). Then the conditions of B.1 are clearly
satisfied. ||

Proposition B.3 is to be compared with E.5.

B.4. Proposition. Let X1, . . . ,Xn be exchangeable random vari-
ables. Let Φ(x; a) = φ(w(x1, a1), . . . , w(xn, an)), where φ is symmetric,
convex and increasing (decreasing), and w(z, α) is convex (concave) in
α for each fixed z. With the appropriate measurability,

ψ(a) = EΦ(X; a)

is symmetric and convex.

Proof. The result follows from B.1. Condition (i) is proved in 16.B.7
and 16.B.7.a; the permutation invariance condition (ii) is trivial. ||

In the study of weak majorization, it is of interest to know when ψ is
increasing or decreasing as well as symmetric and convex. The obvious
modification required in B.1 to get this monotonicity is that Φ(x; a)
must be increasing or decreasing in a for each fixed x. This leads to a
result similar to B.4.

B.5. Proposition. Let X1, . . . ,Xn be exchangeable random vari-
ables. If φ and w satisfy any of the conditions of Table 2, then
ψ(a) = Eφ(w(X1, a1), . . . , w(Xn, an)) satisfies the corresponding in-
dicated conditions (with measurability conditions required for the
expectation to be defined).

Table 2

ψ(a1, . . . , an) = Eφ(w(X1, a1), . . . , w(Xn, an)).

w(x, a) φ ψ

Convex and increasing Symmetric, convex, Symmetric, convex,
in a increasing increasing

Convex and decreasing Symmetric, convex, Symmetric, convex,
in a increasing decreasing

Concave and decreasing Symmetric, convex, Symmetric, convex,
in a decreasing increasing

Concave and increasing Symmetric, convex, Symmetric, convex,
in a decreasing decreasing
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B.5.a. Proposition. If X1, . . . ,Xn are nonnegative exchangeable
random variables and φ :R n → R is Borel-measurable, increasing
(decreasing), symmetric, and convex, then the function ψ defined by

ψ(a1, . . . , an) = Eφ(a1X1, . . . , anXn)

is Borel-measurable, increasing (decreasing), symmetric, and convex.

Proof. This is an application of B.5, where w(x, a) = ax is convex
and increasing in a for all x ≥ 0. ||

A result similar to B.5.a was obtained by Chong (1976a); he
concludes that ψ is increasing (decreasing) and Schur-convex.

B.5.b. Proposition. If X1, . . . ,Xn are exchangeable random vari-
ables and φ : R n → R is Borel-measurable, increasing (decreasing),
symmetric, and convex, then the function ψ defined by

ψ(a1, . . . , an) = Eφ(X1 + a1, . . . ,Xn + an)

is Borel-measurable, increasing (decreasing), symmetric, and convex.

Proof. This result follows directly from B.5. ||

Comments About Extensions

It was observed by Eaton and Olshen (1972) that the Schur-convexity
of ψ implied by B.2 holds when X1, . . . ,Xn are exchangeable ran-
dom vectors, and the proof of Marshall and Proschan (1965) requires
no change. A similar comment applies to B.1 with the domain of Φ
suitably altered. By the same token, X1, . . . ,Xn can be exchangeable
random matrices. Further generalizations of B.1 play an important
role in multivariate versions of majorization; these are discussed in
Section 15.D.

C Families of Distributions Parameterized
to Preserve Symmetry and Convexity

For A ⊂ R n, let {Fθ, θ ∈ A} be a family of distribution functions
defined on R n, and let

ψ(θ) = Eθφ(X) =
∫
φ(x) dFθ(x), θ ∈ A.

Under what circumstances is it true that ψ is symmetric and convex
whenever φ is symmetric and convex? This property depends not only
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on the family {Fθ, θ ∈ A} but also upon the way the family is pa-
rameterized. Of course, it is natural to expect A to be a convex set,
although this is not essential.

C.1. Definition. The family {Fθ, θ ∈ A ⊂ R n} of distribution func-
tions defined on R n is said to be parameterized to preserve symmetry
and convexity if ψ(θ) = Eθφ(X) is continuous, symmetric, and convex
whenever the expectations are defined and φ is continuous, symmetric,
and convex (or in other words, the family satisfies E∗∗

2 ).

The purpose of this section is to give a number of examples of
families parameterized to preserve symmetry and convexity.

Of course, if ψ is symmetric and convex, then ψ is Schur-convex.
Families that preserve Schur-convexity (ψ is Schur-convex whenever φ
is Schur-convex) are considered in Section E.

The following examples of families parameterized to preserve
symmetry and convexity can be obtained as consequences of B.1.

C.1.a. Suppose θ ∈ R n
++ is a scale parameter; i.e.,

Fθ(x) = Fe(x1/θ1, . . . , xn/θn), where e = (1, . . . , 1). (1)

If Fe is the distribution of exchangeable random variables, i.e.,

Fe(x) = Fe(xΠ) for all permutation matrices Π, (2)

then it follows from B.2 that the distributions Fθ form a family that
preserves symmetry and convexity, because

Eθφ(X) = E(1,...,1)φ(θ1X1, . . . , θnXn).

C.1.b. Similarly, if θ ∈ R n is a location parameter; i.e.,

Fθ(x) = F0(x− θ), where 0 = (0, . . . , 0), (3)

and if F0 is the distribution of exchangeable random variables, i.e.,

F0(x) = F0(xΠ) for all permutation matrices Π, (4)

then it follows from B.3 that the distributions Fθ form a family that
preserves symmetry and convexity, because

Eθφ(X) = E(0,...,0)φ(X − θ).

These facts are stated formally in the following proposition.

C.2. Proposition. Suppose that {Fθ, θ ∈ R n
++} is a family of distri-

bution functions satisfying (1) and (2), or alternatively suppose that
{Fθ, θ ∈ R n} is a family of distribution functions satisfying (3) and (4).
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Then ψ(θ) = Eθφ(X) is a continuous symmetric convex function of θ
whenever φ is continuous, symmetric, and convex.

Examples of Families That Preserve
Symmetry and Convexity

In the following examples, Proposition C.2 is applied to some familiar
families of distributions.

Exchangeable Normal Random Variables

C.2.a. Let Y1 = X1 − μ1, . . . , Yn = Xn − μn be exchangeable mul-
tivariate normal random variables with expectations 0, variances σ2,
and covariances σ2ρ. If φ is symmetric and convex, then

ψ(μ1, . . . , μn) = Eμφ(X1, . . . ,Xn)

is symmetric and convex in μ1, . . . , μn.

C.2.b. Let Y1 = X1/σ1, . . . , Yn = Xn/σn be exchangeable multivari-
ate normal random variables, with expectations μ, variances 1, and
covariances ρ. If φ is symmetric and convex, then

ψ(σ1, . . . , σn) = Eσφ(X1, . . . ,Xn)

is symmetric and convex in σ1, . . . , σn.

Independent Gamma Random Variables

C.2.c. If X1, . . . ,Xn are independent random variables such that for
some fixed r > 0, Xi has the gamma density

f(x; r, θi) =
θ−ri xr−1

Γ(r)
e−x/θi , x ≥ 0, θi > 0, i = 1, . . . , n,

and if φ is symmetric and convex, then

ψ(θ) = Eθφ(X1, . . . ,Xn)

is symmetric and convex in θ.
In particular, if X1, . . . ,Xn are independent and exponentially

distributed with expectations θ1, . . . , θn, then ψ is symmetric and
convex.
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This result is to be compared with E.8.a, where the scale parameter
θ is the same for each Xi, but the shape parameter is allowed to vary.
See also E.8.b.

Here the assumption of independence can be replaced by the as-
sumption of exchangeability. For example, the conclusion of C.2.c holds
if X1, . . . ,Xn have the Dirichlet density f2 of (9), Section E, with
r1 = · · · = rn.

Independent Uniform Random Variables

C.2.d. If X1, . . . ,Xn are independent random variables, Xi having
density

fθi
(x) =

1
θi
I(0,θi)(x), i = 1, . . . , n,

and if φ is symmetric and convex, then ψ(θ) = Eθφ(X) is symmetric
and convex.

C.2.e. If X1, . . . ,Xn are independent random variables, Xi having
density

fθi
(x) = I(θi,θi+1)(x), i = 1, . . . , n,

and if φ is symmetric and convex, then ψ(θ) = Eθφ(X) is symmetric
and convex.

Commentary on Discrete Random Variables

Examples of discrete distributions parameterized to preserve symmetry
and convexity can be obtained by restricting the components of θ to be
integer-valued (or to take values in some lattice) in C.2. But interesting
examples are not so easily obtained. In the first edition of this book,
putative examples involving Poisson, negative binomial, and multino-
mial distributions were presented. For example, it was proposed that
if X1,X2, . . . ,Xn were independent random variables with

P (Xi = x) =
e−λiλxi
x!

, x = 0, 1, 2, . . . ,

where λi > 0 for all i, and if φ is a symmetric convex function, then

ψ(λ) = Eλ(φ(X1, . . . ,Xn))

would be a symmetric convex function of λ.
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Rolski (1985) provides a counterexample to this claim. He verifies
that in the case n = 2, with φ(x1, x2) = max(x1, x2), the corresponding
function ψ(λ) is not convex.

A plausible argument for the false claim of convexity of ψ(λ) in
the Poisson case was based on a claim that, in a lattice situation,
the matrix of second differences of a convex function would be posi-
tive semidefinite. The Rolski example shows this to be incorrect. This
flawed argument was also used to claim convexity of Eθ(φ(X)) in
the negative binomial and multinomial cases. Counterexamples to the
claims for the negative binomial and the multinomial cases have not
been provided, but if they are correct, new proofs will be necessary.

D Some Consequences of the Stochastic
Majorization E1(P1)

Condition E1 is shown to be equivalent to P1 in Section A and again in
D.1 below. This condition is quite strong and has a number of impli-
cations, some of which are given in this section. Further implications
and properties can be found in Section F.

D.1. Proposition (Nevius, Proschan, and Sethuraman, 1977a). The
following conditions are equivalent:

(1) Eφ(X) ≤ Eφ(Y ) for all Schur-convex functions φ on R n such
that the expectations are defined.

(2) P{φ(X) > t} ≤ P{φ(Y ) > t} for all Borel-measurable Schur-
convex functions φ on R n.

(3) P{X ∈ B} ≤ P{Y ∈ B} for every Borel-measurable set B such
that x ∈ B, x ≺ y ⇒ y ∈ B.

Proof . (2) implies (1) because stochastically ordered random
variables have ordered expectations (see 17.A.2). (1) implies (3) because
P{X ∈ B}=EIB(X), where the indicator function IB is Schur-convex.
(3) implies (2) because one can take B= {x :φ(x) > t}. ||

D.1 is a special case of 17.B.10 and 17.B.10.a. The following results
are consequences of D.1.

D.1.a. Proposition. If X ≺E1 Y , then

P{r1 < Xi < r2, i = 1, . . . , n} ≥ P{r1 < Yi < r2, i = 1, . . . , n}
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and

P{r1 ≤ Xi ≤ r2, i = 1, . . . , n} ≥ P{r1 ≤ Yi ≤ r2, i = 1, . . . , n},
−∞ ≤ r1 < r2 ≤ ∞.

Proof. In (1), take −φ to be the indicator function of the Cartesian
product (r1, r2)n or [r1, r2]n. ||

This proposition was noted by Cheng (1977), but various authors
had previously given special cases.

D.1.b. Proposition (Nevius, Proschan, and Sethuraman, 1977a).
Suppose that X and Y are nonnegative random variables such that
X ≺E1 Y . Let ZX and ZY be the number of zero components of X
and Y , respectively. Then ZX ≤st ZY .

Proof. This follows from the fact that φ(x) =
∑n

i=1 I{z:zi=0}(x) is
Schur-convex on R n

+ . ||
Of course, D.1.b is of no interest when X and Y have zero compo-

nents with zero probability, but there are interesting applications to
discrete distributions (see E.11.b).

D.1.c. Proposition. If X ≺E1 Y , then

P
{
X
/∑

Xi � a
}
≤ P

{
Y
/∑

Yi � a
}

for all vectors a such that
∑
ai = 1.

Proof. This follows from the fact that φ(x) = I{z:z/Σzia}(x) is
Schur-convex; i.e., x/

∑
xi � a and y � x⇒ y/

∑
yi � a. ||

There is a variation of Proposition D.1.c due to Nevius, Proschan,
and Sethuraman (1977a) which says that P{X � a} ≤ P{Y � a},
under the hypothesis of D.1.c. This statement is more often vacuous
because in many cases P{X � a} = 0.

D.2. Note. Nachman (2005) provides some alternative equivalent
conditions for X ≺E1 Y . For example, X ≺E1 Y if there exists a
random vector (X̃, Ỹ ) with X and X̃ identically distributed, Y and Ỹ
identically distributed, and the support of the distribution of (X̃, Ỹ )
contained in K, the graph of the majorization antecedent function γ
defined in 1.B(7).
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E Families of Distributions Parameterized
to Preserve Schur-Convexity

Section C provides a discussion of families that preserve symmetry
and convexity. Such families also preserve Schur-convexity. However,
families that preserve Schur-convexity need not preserve symmetry
and convexity. The Poisson family is an example that preserves
Schur-convexity, but not symmetry and convexity. Other examples
in this section are open to study as to whether they satisfy the
stronger property of preserving symmetry and convexity. A more
formal discussion follows.

There are a number of families of multivariate distributions pa-
rameterized by a vector θ with the property that expectations of
Schur-convex functions lead to Schur-convex functions of θ. This idea
is formalized in the following definition.

E.1. Definition. The family {Fθ, θ ∈ A ⊂ R n} of distribution
functions defined on R n is said to be parameterized to preserve
Schur-convexity if

ψ(θ) = Eθφ(X) =
∫
φ(x) dFθ(x)

is Schur-convex in θ ∈ A for all Schur-convex functions φ of n
arguments such that the expectations are defined (i.e., the family
satisfies E∗

1).
Here, it is natural to expect the set A to have a Schur-concave

indicator function (i.e., θ ∈ A and θ′ ≺ θ ⇒ θ′ ∈ A), but this is not
essential. Note that this property is like that discussed in Section C
except that symmetry and convexity have been replaced by Schur-
convexity.

There are several conditions equivalent to the preservation of Schur-
convexity as defined in E.1; these equivalences can be obtained by
writing E1 in the form (4) of Section A, and are given by the following
proposition. It is interesting to note that none of these equivalences has
an analog for the preservation of symmetry and convexity as defined
in C.1. This negative result can be found in Section F.

E.2. Proposition (Nevius, Proschan, and Sethuraman, 1977a). The
following conditions are equivalent:

ψ(θ) = Eθφ(X) is Schur-convex in θ for all Schur-convex functions

φ on R n such that the expectations are defined; (1)
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Pθ{φ(X) > t} =
∫
{φ(x)>t}

dFθ(x) is Schur-convex in θ for every Borel

measurable Schur-convex function φ on R n; (2)

Pθ(B) =
∫
B
dFθ(x) is Schur-convex in θ for every Borel-measurable

set B such that x ∈ B, x ≺ y ⇒ y ∈ B. (3)

The following results are consequences of E.2. They also have simple
direct proofs and all follow from corresponding results in Section D.

E.2.a. Proposition. If {Fθ, θ ∈ A} is a family of distributions
parameterized to preserve Schur-convexity, then

Pθ{s < Xi < t, i = 1, . . . , n} and Pθ{s ≤ Xi ≤ t, i = 1, . . . , n}
are Schur-concave functions of θ, −∞ ≤ s, t ≤ ∞.

E.2.b. Proposition (Nevius, Proschan, and Sethuraman, 1977a).
Let {Fθ, θ ∈ A} be parameterized to preserve Schur-convexity and sup-
pose the corresponding random vectors Xθ are nonnegative. Let Zθ be
the number of zero components of Xθ. Then θ′ ≺ θ implies Zθ′ ≤st Zθ;
i.e., P{Zθ > t} is a Schur-convex function of θ, t = 0, 1, 2, . . . .

E.2.c. Proposition. If {Fθ, θ ∈ A} is parameterized to preserve
Schur-convexity, then for all a such that

∑
ai = 1,

Pθ {X /ΣXi � a}
is a Schur-convex function of θ and

Pθ {X /ΣXi ≺ a}
is a Schur-concave function of θ.

Theorem 3.J.2 is a basic tool for demonstrating that many commonly
encountered multivariate families are naturally parameterized to pre-
serve Schur-convexity. Theorem 3.J.1 also yields some examples. Some
special forms of these results are particularly useful for this purpose.
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E.3. Proposition (Proschan and Sethuraman, 1977). Suppose that
{Fθ, θ ∈ Θn} is a family of n-dimensional distribution functions having
discrete densities of the form

p(x1, . . . , xn; θ) = C (
∑
xi,

∑
θi)

n∏
i=1

α(θi, xi)

whenever x1, . . . , xn are nonnegative integers, and

p(x1, . . . , xn; θ) = 0 otherwise.

Here C(·, ·) is a normalizing constant.

If either

α(ξ, z) =
ξz

z!
, z = 0, 1, 2, . . . , ξ ∈ Θ = (0,∞), (4)

α(ξ, z) =
(
ξ

z

)
, z = 0, 1, 2, . . . , ξ ∈ Θ = {0, 1, 2, . . .}, (5)

or

α(ξ, z) =
Γ(z + ξ)
z!Γ(ξ)

, z = 0, 1, 2, . . . , ξ ∈ (0,∞), (6)

then {Fθ, θ ∈ Θn} is parameterized to preserve Schur-convexity.

Proof. Define α(ξ, z) = 0 if z < 0, so that α satisfies the conditions
of 3.J.2 as demonstrated in 3.J.2.b, 3.J.2.c, and 3.J.2.d. Let φ be a
Schur-convex function of n variables, and let

f∗(x) = C (
∑
xi,

∑
θi)φ(x).

Then for each fixed
∑
θi, f∗(x) is Schur-convex and by 3.J.2, Eθf∗(x)

is a Schur-convex function of θ. ||
A companion proposition for E.3 in the continuous case is

E.4. Proposition. Let {Fθ, θ ∈ R n
++} be a family of n-dimensional

distribution functions having densities with respect to Lebesgue
measure of the form

f(x1, . . . , xn; θ) =

⎧⎪⎨
⎪⎩
C(

∑
xi,

∑
θi)

n∏
i=1

xθi−1
i

Γ(θi)
if xi ≥ 0 for all i

0 otherwise.

Then the family {Fθ, θ ∈ R n
++} is parameterized to preserve Schur-

convexity. Here, “Lebesgue measure” may be Lebesgue measure on a
subspace of R n.



406 11. Stochastic Majorizations

Proof. The proof is essentially the same as the proof of E.3. ||
E.5. Proposition. If X1, . . . ,Xn are exchangeable random variables
with a joint density f that is Schur-concave, then ψ(θ) = Eφ(X + θ)
is Schur-convex in θ whenever φ is a Schur-convex function such that
the expectation exists.

Of course, this proposition says that under appropriate circum-
stances, families of distributions parameterized by a location parame-
ter preserve Schur-convexity.

Proof of E.5. To show that P{φ(X + θ) > c} is Schur-convex, let
A = {u :φ(u) ≤ c}. Then y ∈ A and x ≺ y imply x ∈ A. By 3.J.1.a,∫

A−θ
f(x) dx = P{(X1, . . . ,Xn) ∈ A− θ}

= P{X + θ ∈ A} = P{φ(X + θ) ≤ c}
is Schur-concave in θ; i.e., P{φ(X + θ) > c} is Schur-convex. ||

It is interesting to compare E.5 with its counterpart B.3, which holds
for a much larger class of exchangeable random variables.

E.5.a. Proposition (Marshall and Olkin, 1974). Suppose that
X1, . . . ,Xn are exchangeable random variables with a joint density
f that is Schur-concave. If A ⊂ R n is a Lebesgue measurable set
satisfying

y ∈ A and x ≺ y ⇒ x ∈ A,

then ∫
A+θ

f(x) dx = P{X ∈ A+ θ}

is a Schur-concave function of θ.

This is essentially a restatement of 3.J.1.a.

Examples of Schur-Concave Densities

E.5.b. If X1, . . . ,Xn are independent and identically distributed ran-
dom variables with common density g, then by 3.E.1, their joint density
is Schur-concave if and only if log g is concave. Common examples of
logarithmically concave densities are given in 18.B.2.c.
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E.5.c. If the density of X1, . . . ,Xn has the form

f(x) =
∫
A

∏
i

ga(xi) dP (a)

for some probability measure P and each density ga is logarithmically
concave, then f is Schur-concave.

A special case of interest follows.

Multivariate Chi-Square Density

Suppose that S = (sij) is the sample covariance matrix based on a
sample of size N ≥ n from an n-variate normal distribution with co-
variance matrix Σ = (σij), σii = σ2, σij = σ2ρ, i �= j. Then the
joint density of s11, . . . , snn has the form of a mixture of independent
noncentral chi-square densities which are log concave.

E.5.d. If the joint density f has the form

f(x) = h(xΛx′),

where h is a decreasing function and Λ = (λij) is positive definite with
λ11 = · · · = λnn and λij = λ, i �= j, then f is Schur-concave.

Proof. By 3.C.3 it is sufficient to show that f is quasi-concave; that
is, sets of the form {x : h(xΛx′) ≥ c} are convex. But this follows from
the monotonicity of h and the convexity of xΛx′ in x. See 16.B.3.d. ||

A special case of E.5 is given below.

Exchangeable Multivariate Normal Density,
and Multivariate “t” Density

If U1, . . . , Un are exchangeable and jointly normally distributed, and
if Z2 is a chi-square distributed (Z ≥ 0) random variable independent
of U1, . . . , Un, then

X1 = U1/Z, . . . ,Xn = Un/Z

have a joint density of the form f(x) = h(xΛx′), where h(w) is
proportional to (1 + w)−a, a > 0.
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With suitable transformations, it is possible to convert E.5 to a
statement concerning scale parameter families of distributions.

E.5.e. Proposition. If X1, . . . ,Xn are exchangeable nonnegative
random variables with joint density f such that

f̃(z) = f(ez1 , . . . , ezn)

defines a Schur-concave function, and if φ̃(z) = φ(ez1 , . . . , ezn) is Schur-
concave, then

ψ(α) = Eφ(e−α1X1, . . . , e
−αnXn)

is Schur-concave in α1, . . . , αn.

Proof. With the change of variables xi = eyi ,

ψ(α) =
∫
φ(e−α1x1, . . . , e

−αnxn)f(x1, . . . , xn)
∏

dxi

=
∫
φ(ey1−α1 , . . . , eyn−αn)f(ey1 , . . . , eyn)eΣyi

∏
dyi

=
∫
φ̃(y − α)f̃(y)eΣyi

∏
dyi.

But this is Schur-concave by E.5. ||
In case X1, . . . ,Xn are independent and each has density g, the

condition that f̃ is Schur-concave reduces to the condition that
u(d log g(u)/du) is decreasing in u.

Notice that if φ is decreasing and Schur-concave, then φ̃ is Schur-
concave because u ≺ v ⇒ (eu1 , . . . , eun) ≺w (ev1 , . . . , evn).

A special case of E.5.e is given by Mudholkar and Dalal (1977).

E.5.f. Proposition. Let X1, . . . ,Xn be exchangeable random
variables satisfying P{0 ≤ Xi ≤ 1} = 1, with joint density f such
that

f̃(z) = f(exp(−e−z1), . . . , exp(−e−zn)) exp
(
−
∑

e−zi

)

is Schur-concave. If φ̃(z) = φ(exp(−e−z1), . . . , exp(−e−zn)) is Schur-
concave, then

ψ(α) = Eφ(Xexp α1
1 , . . . ,Xexpαn

n )

is a Schur-concave function of α1, . . . , αn.
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Proof. With the change of variables xi = exp(−e−yi),

ψ(α) =
∫
φ(xexpα1

1 , . . . , xexpαn

n )f(x) dx

=
∫
φ(exp(−e−(y1−α1)), . . . , exp(−e−(yn−αn)))

× f(exp(−e−y1), . . . , exp(−e−yn)) exp(−∑
e−yi)e−

∑
yi
∏
dyi

=
∫
φ̃(y − α)f̃ (y)e−Σyi

∏
dyi.

This is Schur-concave by E.5. ||
The remainder of this section is devoted to examples of families of

joint distributions that preserve Schur-convexity.

Independent Poisson Random Variables

E.6. Proposition (Rinott, 1973; Nevius, Proschan, and Sethuraman,
1977a). If X1, . . . ,Xn are independent random variables such that

P{Xi = x} = e−λi(λxi /x!), x = 0, 1, . . . , λi > 0 for all i,

and if φ is a Schur-convex function, then

ψ(λ) = Eλφ(X1, . . . ,Xn)

is a Schur-convex function of λ = (λ1, . . . , λn).

Proof. This follows from E.3(4). ||
An alternative proof is given ahead in Remark E.11.a.

Independent Binomial Random Variables

E.7. Proposition (Nevius, Proschan, and Sethuraman, 1977a). If
X1, . . . ,Xn are independent random variables such that, for some fixed
p ∈ (0, 1),

P{Xi = xi} =
(
ki
x

)
px(1−p)ki−x, x = 0, 1, . . . , ki, ki ∈ {1, 2, . . . , },

and if φ is a Schur-convex function, then

ψ(k) = Ekφ(X1, . . . ,Xn)

is a Schur-convex function of k = (k1, . . . , kn).

Proof. This result follows from E.3(5). ||
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Independent Gamma Random Variables

E.8. Proposition (Nevius, Proschan, and Sethuraman, 1977a). If
X1, . . . ,Xn are independent random variables and if for some fixed
θ > 0, Xi has the gamma density

f(x; ri, θ) =
θrixri−1

Γ(ri)
e−θx, x ≥ 0, ri > 0, i = 1, . . . , n,

then

ψ(r) = Erφ(X1, . . . ,Xn)

is a Schur-convex function of r = (r1, . . . , rn) whenever φ is a Schur-
convex function such that the relevant expectations are defined.

Proof. This is a consequence of E.4. ||
E.8.a. Proposition. Let X1, . . . ,Xn be independent random vari-
ables such that for some fixed r > 0, Xi has the gamma density

f(x; r, θi) =
θri x

r−1

Γ(r)
e−θix, x ≥ 0, θi > 0, i = 1, . . . , n.

If θi = e−αi , i = 1, . . . , n, then

ψ(α) = Eαφ(X1, . . . ,Xn)

is a Schur-convex function of α = (α1, . . . , αn) whenever φ̃(z) =
φ(ez1 , . . . , ezn) is a Schur-convex function such that the relevant
expectations are defined.

Proof. This is a direct consequence of E.5.a. ||
The above result is to be compared with C.2.c.
The particular case r = 1

2 of E.8.a arises when Z1, . . . , Zn are
independent normal random variables (mean 0, variance 1), Yi = Z2

i ,
and Xi = e−αiYi, i = 1, . . . , n. With −φ the indicator function of the
set {u :

∑
ui ≤ c}, it follows that

P

{
n∑
1

e−αiYi ≤ c

}
(7)

is a Schur-concave function of α = (α1, . . . , αn). This in turn yields
the following:

E.8.b. Proposition (Okamoto, 1960). Let W1, . . . ,Wk be indepen-
dent random variables and suppose that Wi has a χ2 distribution with



E. Parameterization to Preserve Schur-Convexity 411

ni degrees of freedom, i = 1, . . . , k. If ai > 0, i = 1, . . . , k, then

P

{∑k

1
biWi ≤ c

}
≤ P{bW ≤ c},

where b = (
∏k

1 b
ni

i )1/n, n =
∑k

1 ni, and W has a χ2 distribution with
n degrees of freedom.

Proof. Let

α = (
n1︷ ︸︸ ︷

α1, . . . , α1,

n2︷ ︸︸ ︷
α2, . . . , α2, . . . ,

nk︷ ︸︸ ︷
αk, . . . , αk),

and let bi = e−αi , i = 1, . . . , k. The result follows from the Schur-
concavity in (7). ||

Exchangeable Normal Random Variables

E.9. If Y1 = X1 − μ1, . . . , Yn = Xn − μn are exchangeable multivari-
ate normal random variables with expectations 0, variances σ2, and
covariances σ2ρ, then

ψ(μ1, . . . , μn) = Eμφ(X1, . . . ,Xn)

is Schur-convex for all Schur-convex φ such that the relevant
expectations exist.

Proof. This is an application of E.5. ||

Independent Uniform Random Variables

E.10. If X1, . . . ,Xn are independent and Xi has density

fθi
(x) = I(θi,θi+1)(x), i = 1, . . . , n,

then ψ(θ) = Eθφ(X) is Schur-convex whenever φ is a Schur-convex
function such that the relevant expectations exist.

Proof. This is another application of E.5. ||
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Multinomial Distributions

E.11. Proposition (Rinott, 1973). Let X be a random variable
having the multinomial distribution

P{X = x} =
(

N

x1, . . . , xn

) n∏
i=1

θxi

i ,

where x = (x1, . . . , xn) ∈ {z : zi are nonnegative integers,
∑
zi = N}.

If φ is a Schur-convex function, then ψ(θ) = Eθφ(x) is a Schur-convex
function of θ.

Proof. This result follows from (4) with

C(
∑
xi,

∑
θi) =

{
N ! if

∑
xi = N,

0 otherwise.

Alternatively, Rinott proves this theorem by verifying the derivative
conditions of 3.A.4 for Schur-convexity in a straightforward way. ||

A number of consequences of E.11 are worth stating.

E.11.a. Remark. As pointed out by Rinott (1973), Proposition E.6
concerning independent Poisson random variables is a direct conse-
quence of E.11. To see this, observe that the conditional distribution of
independent Poisson random variables X1, . . . ,Xn given

∑n
1 Xi = N

is a multinomial distribution. Then use the fact that Schur-convex
functions form a convex cone.

Now suppose that an experiment with n possible outcomes is
repeated N times. The number K of distinct outcomes is a random
variable which, described in terms of a multinomial random vector X,
is the number of nonzero components.

E.11.b. Proposition (Wong and Yue, 1973). With K as defined
above, ψ(θ) = Pθ{K ≤ k} is a Schur-convex function of θ for all k.

Proof. In view of the above remarks, this is just an application of
E.2.b with Zθ = n−K. ||

Because Pθ{K > 1} = 1−Pθ{K = 1} is Schur-concave in θ1, . . . , θn,
and since (θ1, . . . , θn) � (1/n, . . . , 1/n), it follows that

∑(
N

x1, . . . , xn

)
θx1
1 · · · θxn

n ≤
∑(

N

x1, . . . , xn

)(
1
n

)N
,

where the summations are over the set {x : 0 ≤ xi ≤ N−1, Σxi = N}.
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This inequality reduces to
∑ θx1

1 · · · θxn
n

x1! · · · xn! ≤ Nn − n

N ! nN
,

which is a result given by Mitrinović (1970, p. 214).

Birthday Problem

Among the applications of E.11.b is a result concerning the “birthday
problem” which was pointed out by Persi Diaconis and David Sieg-
mund (private communication, 1977). In a collection of l people, what
is the probability P (l) that at least two people have the same birth-
day? This is an often-quoted representative of a large class of matching
problems; it is usually discussed under the assumption that birthdays
are equally likely to fall on any of the days 1, . . . , 365. If a birthday
falls on day i with probability θi, i = 1, . . . , 365, and the θi are not
necessarily equal, then because

P (l) = Pθ{K ≤ l − 1},
it follows from E.11.b that P (l) is a Schur-convex function of θ. Hence,
P (l) is a minimum when the θi are equal; this fact is obtained by Rust
(1976).

Karlin and Rinott (1984) show that this result holds even when the
individuals have different probabilities of having “birthdays” on partic-
ular days. Thus associated with individual j is a vector of probabilities
θ(j), where θ(j)

i is the probability that individual j’s “birthday” falls
on day i. Provided that the vectors θ(j), j = 1, 2, . . . , l, are similarly
ordered, it remains true that P (l) is a minimum when all θ(j)

i ’s are
equal.

As a second application of E.11.b, suppose there are n cells into
which balls are placed one by one, independently, with cell probabilities
θ1, . . . , θn. If Z is the number of balls placed at the first time there are
two balls in one cell, then for z = 1, 2, . . . , Pθ{Z > z} = Pθ{Kz ≥ z},
whereKz is the number of occupied cells after z balls have been placed.
It follows from E.11.b that Pθ{Z > z} is a Schur-concave function of
θ and so is a maximum when θ1 = · · · = θn.

If instead of waiting until one cell has two balls in it, the process is
continued until all cells are occupied, this can be identified with the
“coupon collector’s problem.” Let W denote the waiting time until
all cells are occupied. Toshio Nakata (personal communication, 2008)
showed that, for any integer w, Pθ{W > w} is a Schur-convex function
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of θ. To verify this, let Kw denote the number of occupied cells after
w balls have been placed. From E.11.b, Pθ{Kw ≤ n − 1} is a Schur-
convex function of θ. However, the event {Kw ≤ n − 1} occurs if and
only if {W > w}. So Pθ{W > w} is a Schur-convex function of θ, and
also EθW =

∑∞
w=0 Pθ{W > w} is Schur-convex. The expected waiting

time is thus minimized if the θi’s are equal. Note that this minimization
result holds even when the cell probability vectors change with each
drawing, provided they are similarly ordered, as discussed in Karlin
and Rinott (1984).

There is a generalization of E.11.b which was suggested by Frank
Proschan (private communication, 1971).

E.11.c. If X is a multinomial random variable and a ∈ XN , then
Pθ{X � a} is a Schur-convex function of θ and Pθ{X ≺ a} is a Schur-
concave function of θ.

Proof. This is a special case of E.2.c. ||
To obtain E.11.b from E.11.c, choose a to have exactly k nonzero

components which are as “nearly equal” as the constraint a ∈ XN

allows. Since a direct proof of E.11.b is given, the details are omitted.

E.11.d. Proposition. If X has a multinomial distribution with
parameter θ = (θ1, . . . , θn), then

Pθ{s ≤ Xi ≤ t, i = 1, . . . , n}
is a Schur-concave function of θ, −∞ ≤ s ≤ t ≤ ∞.

Proof. This is another application of E.2.a, or it can be obtained
from D.1.a. ||

For the case t = ∞, E.11.d was obtained by Olkin (1972); this
generalizes a still more special case due to Alam (1970).

The above proposition can be generalized in a way that is sometimes
useful.

E.11.e. Proposition. If X = (X1, . . . ,Xn) has a multinomial dis-
tribution with parameter θ and if θm+1, . . . , θn are fixed, then for any
set X ⊂ R n−m and any s, t, −∞ ≤ s ≤ t ≤ ∞,

Pθ1,...,θm
{s ≤ X1 ≤ t, . . . , s ≤ Xm ≤ t, (Xm+1, . . . ,Xn) ∈ X } (8)

is a Schur-concave function of θ1, . . . , θm.
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Proof. Let Ẍ = (Xm+1, . . . ,Xn) and note that

Pθ1,...,θm
{s ≤ X1 ≤ t, . . . , s ≤ Xm ≤ t, Ẍ ∈ X }

=
∑
Ẍ∈X

Pθ1,...,θm
{s ≤ X1 ≤ t, . . . , s ≤ Xm ≤ t|Ẍ = ẍ}P{Ẍ = ẍ}.

But Pθ1,...,θm
{s ≤ X1 ≤ t, . . . , s ≤ Xm ≤ t|Ẍ = ẍ} is Schur-concave by

E.11.d (with N replaced by N−∑n
m+1 ẍi and θ1, . . . , θm renormalized).

Because the Schur-concave functions form a convex cone, the proof is
complete. ||

With X = R n−m and t = ∞, (8) is due to Olkin (1972), but see
also Alam (1970).

Dirichlet Distributions

There are three distinct distributions to which the name “Dirichlet”
is usually attached. The first two have the following densities:

f1(x1, . . . , xn; r) = Γ
(
β +

∑
ri

) (1 −∑n
1 xi)

β−1

Γ(β)

n∏
1

xri−1
i

Γ(ri)
, (9)

where xi ≥ 0, i = 1, . . . , n,
∑n

1 x1 ≤ 1, 0 < ri < ∞, i = 1, . . . , n, and
0 < β <∞;

f2(x1, . . . , xn; r) =
Γ(β +

∑
ri)

Γ(β)(1 +
∑
xi)β+Σxi

n∏
1

xri−1
i

Γ(ri)
, (10)

where xi ≥ 0 and 0 < ri <∞, i = 1, . . . , n, 0 < β <∞.
The third Dirichlet distribution is a singular version which has

the density (with respect to Lebesgue measure on the hyperplane∑
xi = 1) given by

f3(x1, . . . , xn; r) = Γ

(
n∑
1

ri

)
n∏
1

xri−1
i

Γ(ri)
, xi ≥ 0,

∑
xi = 1, (11)

where 0 < ri <∞, i = 1, . . . , n.

E.12. Proposition. If X = (X1, . . . ,Xn) has the Dirichlet density
(9), (10), or (11), then

ψ(r) = Erφ(X)

is a Schur-convex function of r whenever φ is a Schur-convex function
such that the relevant expectations exist.
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Proof. This result follows from E.4. ||
There is a close connection between the multinomial and Dirichlet

distributions (Olkin and Sobel, 1965): If X1, . . . ,Xn have a multino-
mial distribution with parameters N and θ = (θ1, . . . , θn), as in E.10,
then

Pθ{X1 ≥ r1, . . . ,Xn ≥ rn} =
∫ θ1

0
...

∫ θn

0
f1(x1, . . . , xn; r)

∏
dxi, (12)

where f1(x1, . . . , xn; r) is the Dirichlet density given by (9) with β =
N + 1 −∑n

1 ri. Similarly, for m ≤ min(n− 1, N),

Pθ{X1 < r1, . . . ,Xm < rm}
=
∫ 1−Σm

2 θi

θ1

∫ 1−Σm
3 θi−x1

θ2
...
∫ 1−Σm−1

1 xi

θm
f1(x; r)

∏
dxi. (13)

The proof of E.11.d with s = −∞ given by Olkin (1972) makes use of
these integral representations and consists of verifying the conditions
of 3.A.4. These integral representations can also be used in conjunction
with E.12 to obtain yet another majorization result for the multinomial
distribution.

E.12.a. Proposition. If Y = (Y1, . . . , Yn) has the Dirichlet distri-
bution (9) and X = (X1, . . . ,Xn) has a multinomial distribution with
parameter (θ, θ, . . . , θ),

Pr{Y1 ≤ θ, . . . , Yn ≤ θ} = Pθ,...,θ(X1 ≥ r1, . . . ,Xn ≥ rn)

is a Schur-concave function of r = (r1, . . . , rn).

Proof . This follows from (12) and E.12 with φ the indicator
function of {z : z1 ≤ θ, . . . , zn ≤ θ}. ||

Liouville–Dirichlet Distributions

Liouville’s extension of an integral of Dirichlet is as follows. If g is
continuous on [a, b] and ri > 0, i = 1, . . . , n, then
∫
{0≤xi,a≤Σxi≤b}

∏
xri−1
i g

(
n∑
1

xi

)∏
dxi =

∏
Γ(ri)

Γ(
∑
ri)

∫ b

a
tΣri−1g(t) dt

in the sense that if either integral is finite, so is the other and they
are equal (see Edwards, 1922, p. 160). From this, it follows that if g is
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continuous and nonnegative on [a, b], then for xi ≥ 0, i = 1, . . . , n,

f(x1, . . . , xn; r) =
Γ(
∑
ri)g(

∑
xi)∫ b

a t
Σri−1g(t) dt

∏ xri−1
i

Γ(ri)
, a ≤

∑
xi ≤ b, (14)

is a probability density function.

E.13. Proposition. If X1, . . . ,Xn have a joint density of the form
(14), then ψ(r) = Erφ(X) is a Schur-convex function of r whenever φ
is a Schur-convex function such that the relevant expectations exist.

Proof. This is just an application of E.4. ||
Special cases of (14) include the following:

(a) Dirichlet distribution (9): a = 0, b = 1, g(t) = (1−t)β, 0 ≤ t ≤ 1;

(b) Dirichlet distribution (10): a = 0, b = ∞, g(t) = (1+ t)−β , t ≥ 0;

(c) independence gamma distributions: a = 0, b = ∞, g(t) = e−t;

(d) gamma marginals with correlation: If a = 0, b = ∞, g(t) = tδe−t,
then with xi ≥ 0, i = 1, . . . , n, (14) becomes

f(x1, . . . , xn; r) =
Γ(
∑
ri)

Γ(
∑
ri + δ)

(∑
xi

)δ∏ xri−1
i

Γ(ri)
e−rixi .

E.13.a. Remark. If X1, . . . ,Xn have joint density (14), then
X1, . . . ,Xn−1 have density (14) with n− 1 in place of n.

Multivariate Hypergeometric Distribution

If N balls are drawn without replacement from an urn containing
K > N balls, Mi being of color i, i = 1, . . . , n, and if Xi is the number
drawn of color i, then

P1(X1 = x1, . . . ,Xn = xn) =
n∏
i=1

(
Mi

xi

)/(
K

N

)
,

xi = 0, 1, . . . ,Mi, i = 1, . . . , n,
∑
xi = N.

Here all Mi, K, and N are nonnegative integers satisfying
n∑
i=1

Mi = N ≤ K = 1, 2, . . . .



418 11. Stochastic Majorizations

This distribution is called a multivariate hypergeometric distribution
with parameters M1, . . . ,Mn.

E.14. Proposition. If X1, . . . ,Xn have a multivariate hypergeomet-
ric distribution, then

ψ(M1, . . . ,Mn) = EM1,...,Mn
φ(X1, . . . ,Xn)

is a Schur-convex function of M1, . . . ,Mn whenever φ is a Schur-convex
function.

Proof. This follows directly from E.3(5). ||
There are several other families of distributions which can be param-

eterized to preserve Schur-convexity by making use of E.3 or E.4. These
families have also been listed by Nevius, Proschan, and Sethuraman
(1977a).

Negative Multinomial Distribution

E.15. Suppose X1, . . . ,Xn have the joint density

P{X1 = x1, . . . ,Xn = xn} =
Γ(k +

∑n
1 xi)

Γ(k)
(1 −∑

pi)k
∏ pxi

i

xi!
,

xi = 0, 1, . . . for i = 0, 1, . . . , n, 0 < k <∞, pi ≥ 0 for all i,
∑n

1 pi < 1.
Here k is fixed and the family preserving convexity is parameterized
by p1, p2, . . . , pn. With a reparameterization of the form

pi =
λi

1 + Σn
1λi

,

where the λi’s are positive, this distribution is also known as a
multivariate negative binomial distribution.

Multivariate Logarithmic Series Distribution

E.16. For λi > 0, xi = 0, 1, . . . , i = 1, . . . , n,
∑
xi ≥ 1,

P{X1 = x1, . . . ,Xn = xn} =
(
∑n

1 xi − 1)!
log(1 +

∑n
1 λi)

n∏
1

λxi

i

xi!
(1 +

∑n
1λi)

−Σn
1xi .

The family is parameterized by λ1, . . . , λn.
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Multivariate Modified Logarithmic Distribution

E.17. For 0 < δ < 1, λi > 0 for all i,

P{X1 = x1, . . . , Xn = xn} =
(1 − δ)(

∑n
1 xi − 1)!

log(1 +
∑n

1 λi)

n∏
1

λxi

i

xi!
(1+

∑n
1λi)

−Σn
1 xi

if xi = 0, 1, . . . and
∑

xi ≥ 1;

P{X1 = 0, . . . , Xn = 0} = δ.

The family is parameterized by λ1, . . . , λn and δ.

Multivariate Inverse Hypergeometric Distribution

E.18. For xi = 0, 1, . . . andNi = 0, 1, . . . , i = 1, . . . , n,
∑
Ni ≤M−k,

P{X1 = x1, . . . ,Xn = xn}

=
(

M

k +
∑
xi − 1

)−1(M −∑
Ni

k − 1

)
M −∑

Ni − k + 1
M −∑

xi − k + 1

n∏
1

(
Ni

xi

)
.

Here M and k are fixed, k < M . The family is parameterized by
N1, . . . , Nn.

Negative Multivariate Hypergeometric Distribution

E.19. For xi = 0, 1, . . . , N ,
∑
xi = N , λi > 0, i = 1, 2, . . . , n,

P{X1 = x1, . . . ,Xn = xn} =
N !Γ(

∑n
1 λi)

Γ(N +
∑n

1 λi)

n∏
1

Γ(xi + λi)
xi!Γ(λi)

.

The family is parameterized by λ1, . . . , λn for fixed N .

That this family preserves Schur-convexity follows from E.3(6).
Alternatively, the result follows from E.11, E.12.a, and the fact that
the negative multivariate hypergeometric is obtained from the multino-
mial distribution by treating the parameters as random variables with
a singular Dirichlet density (11). (See Section A on compounding.)
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Dirichlet Compound Negative Multinomial Distribution

E.20. For xi = 0, 1, . . . , i = 1, . . . , n, β > 0, and k = 1, 2, . . . ,

P{X1 = x1, . . . ,Xn = xn}

=
Γ(k +

∑
xi)Γ(β +

∑
ri)Γ(k + β)

Γ(k)Γ(β)Γ(k + β +
∑
ri +

∑
xi)

n∏
1

Γ(ri + xi)
xi!Γ(ri)

.

When parameterized by r1, . . . , rn with k and β fixed, this family
preserves Schur-convexity. This follows from E.3(6), or from the
fact that the distribution is a compounded negative multinomial
distribution E.13 with p1, . . . , pn having a Dirichlet distribution (9).

F Additional Stochastic Majorizations
and Properties

If C is any “nice” class of functions defined on R n with the property
that x ≺ y if and only if φ(x) ≤ φ(y) for all φ ∈ C , then, as indicated
in Section A, the two kinds of stochastic majorizations PC and EC can
be considered. In earlier sections, both C1 and C2 (defined in Section A)
have been prominent. Two additional classes are natural:

C3 = {φ :φ(x) =
∑

ψ(xi) for a continuous convex function ψ on R}
and

C4 =

{
φ :φ(x) =

k∑
1

x[i] or φ(x) = −
n∑
k

x[i] for some k = 1, . . . , n

}
.

Using the facts that C1 ⊃ C2 ⊃ C3 and C2 ⊃ C4, it follows from
arguments outlined in Section A that the following implications hold:

P1 ⇒ P2 ⇒ P3, P2 ⇒ P4, E1 ⇒ E2 ⇒ E3, E2 ⇒ E4,

Pi ⇒ Ei, i = 1, 2, 3, 4, and E1 ⇒ P1.

No additional implications are known, and counterexamples to most
possibilities are given later in this section.

Remark. Chang (1992) studies the additional classes

C5 = {φ : φ is symmetric, L-subadditive, convex in each argument xi}
and for i = 1, 2, . . . , 5,

Ci↑ = {φ : φ ∈ Ci and φ is increasing},
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Ci↓ = {φ : φ ∈ Ci and φ is decreasing}.
(L-superadditivity is defined in 6.C.2.)

Comments About the Conditions

F.1.An alternative for P4. Because C4 was motivated by the con-
dition that x ≺ y if and only if

∑k
1 x[i] ≤

∑k
1 y[i], k = 1, . . . , n, and∑n

1 xi =
∑n

1 yi, it might have been more natural to take

C ′
4 =

{
φ :φ(x) =

k∑
1

x[i] for some k = 1, . . . , n, or φ(x) = −
n∑
1

xi

}

in place of C4. This would yield a somewhat weaker version P ′
4 of P4,

but it would not change E4. The set C ′
4 lacks a certain symmetry, and

it is equally natural to consider

C ′′
4 =

{
φ :φ(x) = −

n∑
k

x[i] for some k = 1, . . . , n, or φ(x) =
n∑
1

xi

}
,

leading to P ′′
4 . It turns out that P ′

4 and P ′′
4 are distinct conditions,

both of which are implied by P4.

F.2. Condition E2 and dilations. Condition E2 is reminiscent
of the concept of a dilation. The probability measure PY associated
with Y is called a dilation of the probability measure PX associated
with X if

Eφ(X) ≤ Eφ(Y )

for all convex functions. This condition is often studied for X and Y
taking values in a locally convex linear space. But here X and Y are
required to take values in R n for some n, so φ has n arguments and
the additional condition that φ is symmetric makes sense. If X and Y
have exchangeable components, then E2 is equivalent to the condition
that PY is a dilation of PX . The reason for this is that if X1, . . . ,Xn

are exchangeable and φ is convex, then

Eφ(X) = E
1
n!

∑
Π

φ(XΠ)

and φ̃(x) = (1/n!)
∑

Π φ(xΠ) is a symmetric convex function.

F.3. Condition E1(P1) and stochastic ordering. Condition E1

is equivalent to condition P1 (Section A). These conditions can be
characterized in terms of stochastic orderings without reference to
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Schur-convex functions because Schur-convex functions are related
to functions with certain monotonicity properties. To see this, some
notation is useful. For any vector x ∈ R n, let

x̃ = (x[1], x[1] + x[2], . . . , x[1] + · · · + x[n]),

and let C ⊂ R n be the set of all such vectors x̃. The transformation
x → x̃ is not invertible, but x̃ does determine x↓ = (x[1], . . . , x[n]).
Thus, for any function g defined on C, there is a unique symmetric
function f such that

g(x̃) = f(x) for all x ∈ R n.

Let G be the set of all functions g :C → R which are increasing in the
first n − 1 arguments (the nth argument being fixed). Then g ∈ G if
and only if f is Schur-convex.

This proves the following result.

F.3.a. Proposition (Nevius, Proschan, and Sethuraman, 1977a).

X ≺E1 Y ⇔ g(X̃) ≤st g(Ỹ ) for all g ∈ G .

Of course, G ⊃ H where H is the set of all functions defined on C
increasing in each argument. Thus

X ≺E1 Y ⇒ X̃ ≤st Ỹ

in the sense that g(X̃) ≤st g(Ỹ ) for all g ∈ H .
The condition that g(X̃) ≤st g(Ỹ ) for all g ∈ G implies that

P
{(
X̃,−

∑
Xi

)
> t

}
≤ P

{(
Ỹ ,−

∑
Yi

)
> t

}
for all t ∈ R n+1.

This provides an interesting comparison between conditions P1 and
P4; P4 asks only that the corresponding components of the vec-
tors (X̃,−∑

Xi) and (Ỹ ,−∑
Yi) each individually be stochastically

ordered.

Additional Properties and Closure Theorems
for the Conditions

F.4. Distribution of the sum. Notice that the functions
∑
xi and

−∑
xi are both in the classes C1, . . . ,C4. This observation shows that

if X and Y satisfy Pj for some j, then
∑
Xi and

∑
Yi have the

same distribution. Similarly, if X and Y satisfy Ej for some j, then
E
∑
Xi = E

∑
Yi.
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F.5.The case of “equality.” Suppose X, Y and Y , X both satisfy
the same condition. Can one conclude that X = Y in some sense?

For condition E1 (P1), the answer to this question is at hand. In
this case, it follows from F.3 that X̃ ≤st Ỹ and Ỹ ≤st X̃, so X̃ and
Ỹ have the same distribution (17.A.1). Consequently, (X[1], . . . ,X[n])
and (Y[1], . . . , Y[n]) have the same distribution.

IfX, Y and Y ,X both satisfy P2 (or only P4), then one can conclude
that corresponding components of X̃ and Ỹ have the same distri-
bution. To see this, note that

∑k
1 x[1], k = 1, . . . , n, are symmetric

and convex. Thus P{X[1] + · · · +X[k] > t}=P{Y[1] + · · · +Y[k] >t},
k = 1, . . . , n. But this does not mean X[i] and Y[i] have the same
distribution for all i.

In Example F.9.c, X, Y and Y , X both satisfy P4, but X and Y
have quite different distributions.

F.6.Closure under convolutions. Suppose some condition Pi or Ei
holds for X(1), Y (1) and for X(2), Y (2). Under what circumstances does
this imply that the same condition holds for X(1) +X(2), Y (1) + Y (2)?
This question is first considered here under the assumptions that X(1)

and X(2) are independent, Y (1) and Y (2) are independent, and all four
of these random vectors have exchangeable components.

F.6.a. Proposition. Suppose X(1) and X(2) are independent, Y (1)

and Y (2) are independent, and these random vectors have exchangeable
components. If X(1) ≺Ei

Y (1) and X(2) ≺Ei
Y (2), then

X(1) +X(2) ≺Ei
Y (1) + Y (2), i = 2, 3.

Proof . Consider the case of E2. Note that if φ is symmetric
and convex, then for any fixed x ∈ R n, the summation φ̃(u) =∑

Π φ(u + xΠ) over all permutation matrices Π defines another sym-
metric convex function. To avoid notational complexities, suppose that
the distribution function F of X(2) is continuous. Then

Eφ(X(1) +X(2))

=
∫
R n Eφ(X(1) + x) dF (x) =

∑
Π

∫
D Eφ(X(1) + xΠ) dF (x)

=
∫
D E

[∑
Π φ(X(1) + xΠ)

]
dF (x)

≤ ∫
D E

[∑
Π φ(Y (1) + xΠ)

]
dF (x) = Eφ(Y (1) +X(2)).

Similarly, Eφ(Y (1) + X(2)) ≤ Eφ(Y (1) + Y (2)). The proof for E3 is
similar. ||
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F.6.b. In F.6.a, neither E1 (P1) nor P2 can take the place of E2.
To see this, take n = 2 and suppose that

P{X(1) = (1/2, 1/2)} = 1,

P{X(2) = (0, 1)} = P{X(2) = (1, 0)} = 1/2,

and suppose that Y (1) and Y (2) have the same distribution as X(2).
Then

P{X(1) +X(2) = (1/2, 3/2)} = P{X(1) +X(2) = (3/2, 1/2)} = 1/2,

P{Y (1) + Y (2) = (0, 2)} = P{Y (1) + Y (2) = (2, 0)} = 1/4,

P{Y (1) + Y (2) = (1, 1)} = 1/2.

To see that X(1) +X(2), Y (1) +Y (2) do not satisfy E1 or P2, observe
that X(1) +X(2), Y (1) + Y (2) do not even satisfy P4.

Next, consider the question of closure under convolution when the
vectors X(1), Y (1), X(2), Y (2) take on values in D with probability 1.
Equivalently, one might ask when (X(1)

[1] +X
(2)
[1] , . . . ,X

(1)
[n] +X

(2)
[n] ) and

(Y (1)
[1]

+ Y
(2)
[1]
, . . . , Y

(1)
[n]

+ Y
(2)
[n]

) satisfy the same stochastic majorization

as do X(1), Y (1) and X(2), Y (2).

F.6.c. Suppose that X(1) and X(2) are independent, Y (1) and Y (2)

are independent, and all of these random vectors take values in D . If
X(1) ≺Ei Y (1) and X(2) ≺Ei Y (2), then X(1) +X(2) ≺Ei Y (1) + Y (2),
i = 1, 2, 3, 4.

Proof. The proof is similar to the proof of F.6.a. For the case of
E1, this depends upon the fact that if u ≺ v on D and x ∈ D , then
u+ x ≺ v + x on D (5.A.6). This means that if φ is Schur-convex on
D , then φx(u) = φ(u+x) is also Schur-convex. If X(2) has distribution
function F ,

Eφ(X(1) +X(2)) =
∫

D
Eφ(X(1) + x) dF (x) ≤

∫
D
Eφ(Y (1) + x) dF (x)

= Eϕ(Y (1) +X(2)).

Similarly, Eφ(Y (1)+X(2)) ≤ Eφ(Y (1)+Y (2)). The proof for E2 and E3

is virtually identical and the case of E4 is a consequence of 5.A.6. ||
F.7. Preservation under mixtures. Suppose that for each fixed u
some condition holds relating Xu and Yu. Does that condition
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hold when u is replaced by a random variable U? If so, the condi-
tion is said to be preserved under mixtures. A conditioning argument
can be used to show that Ei and Pi, i = 1, 2, 3, 4, are all preserved
under mixtures. For example, consider Pi: For φ ∈ Ci,

P{φ(XU ) > t} =
∫
P{φ(Xu) > t| U = u} dP{U ≤ u}

≤
∫
P{φ(Yu) > t| U = u} dP{U ≤ u} = P{φ(YU ) > t}.

The inequality here follows from the definitions in Section A.
For the case of E1(P1), preservation under mixtures was observed

by Nevius, Proschan, and Sethuraman (1977a).

F.8. Closure under limits in distribution. If X(j) ≺ Pi Y (j),
j = 1, 2, . . . , and if {X(j)} converges in distribution to X and {Y (j)}
converges in distribution to Y , then X ≺ Pi Y , i = 1, 2, 3, 4. To
see this, note first that if {Fn} is a sequence of distributions converg-
ing to the distribution F , then limn→∞

∫
A dFn(x) =

∫
A dF (x) for all

sets A with boundary ∂A satisfying
∫
∂A dF (x) = 0 (Billingsley, 1968,

Theorem 2.1). With sets A of the form {x :φ(x) > t}, it follows that
since {X(j)} converges in distribution to X, {φ(X(j))} converges in
distribution to φ(X). Thus, if P{φ(X(j)) > t} ≤ P{φ(Y (j)) > t},
j = 1, 2, . . . , and if t is a continuity point of the distributions of φ(X)
and φ(Y ), then

P{φ(X) > t} = limj→∞P{φ(X(j)) > t}

≤ limj→∞P{φ(Y (j)) > t} = P{φ(Y ) > t}.
On the other hand, there is no guarantee that X ≺Ei Y even when

X(j) ≺Ei Y (j) and {X(j)} converges in distribution to X and {Y (j)}
converges in distribution to Y . Indeed, the relations X(j) ≺ Ei Y (j)

might all be satisfied vacuously, but this might be false for the limits
X and Y , i = 1, 2, 3, 4.

F.9. Relationships among the various conditions. All of the
implications in Fig. 1 are easy to prove. That E1 ⇒ P1 is a conse-
quence of D.1. As already observed in Section A, Pi ⇒ Ei, i = 1,
2, 3, 4, because stochastically ordered random variables have ordered
expectations. The remainder of the implications follow from the fact
that C1 ⊃ C2 ⊃ C3 and C2 ⊃ C4.
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P1

E1

P2

E2

P3

E3

P4

E4

Figure 1. Relations among conditions.

The possibility of further implications is not entirely settled by the
indicated counter-implications. In particular, it is not known that
P3 �⇒ E4, P3 �⇒ P4, or even that P3 �⇒ P2. However, the following
counterexamples show that most of the implications not given in the
above diagram are false.

F.9.a. E2 �⇒ P4 (hence Ei �⇒ Pj for all j, i > 1). Suppose that
P{X = (1

2 ,
1
2)} = 1, P{Y = (0, 0)} = P{Y = (1, 1)} = 1

2 . If φ is
symmetric and convex,

Eφ(Y ) − Eφ(X) = 1
2 [φ(0, 0) + φ(1, 1) − 2φ(1

2 ,
1
2 )] ≥ 0,

so X and Y satisfy E2. But X1 +X2 and Y1 +Y2 do not have the same
distribution, so P2, P3, and P4 all fail to hold.

F.9.b. P2 �⇒ P1 (hence E2 �⇒ E1). To see this, suppose that

P{X = (14, 8, 2)} = P{X = (8, 8, 8)} = 1
2 ,

P{Y = (16, 4, 4)} = P{Y = (12, 12, 0)} = 1
2 .

Suppose that φ is symmetric and convex. If φ(8, 8, 8) > t, then
φ(14, 8, 2) > t, φ(16, 4, 4) > t, and φ(12, 12, 0) > t, so in this case

P{φ(X) > t} = P{φ(Y ) > t} = 1.

Suppose φ(8, 8, 8) < t and φ(14, 8, 2) > t. Then because (14, 8, 2) =
1
2 [(16, 4, 4) + (12, 12, 0)], either φ(16, 4, 4) > t or φ(12, 12, 0) > t (or
both), so in this case

1
2 = P{φ(X) > t} ≤ P{φ(Y ) > t}.

This shows that X, Y satisfy P2.
To see that P1 fails, let S = {u : u ≺ (16, 5, 3) or u ≺ (13, 11, 0)}.

Notice that (16, 4, 4) ∈ S and (12, 12, 0) ∈ S so P{Y ∈ S} = 1, but
(14, 8, 2) /∈ S so P{X ∈ S} = 1

2 . If

φ(z) =
{

0 if z ∈ S,

1 otherwise,
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then φ is Schur-convex because u ≺ v and φ(v) = 0 ⇒ φ(u) = 0. On
the other hand, φ(X) >st φ(Y ), so P1 fails.

F.9.c. P4 �⇒ P3. Suppose that X takes on the values (9, 7), (9, 3),
(11, 5), (11, 1), (13, 7), (13, 3), (15, 5), and (15, 1) each with probabil-
ity 1

8 , and Y takes on the values (9, 7), (11, 1), (13, 3), and (15, 5) each
with probability 1

4 . Then X and Y have the same marginal distribu-
tions. Since X1 > X2, Y1 > Y2, this means X[1] and Y[1] have the
same distribution, as do X[2] and Y[2]. Moreover, X1 +X2 and Y1 +Y2

have the same distribution. Consequently, both X, Y and Y , X sat-
isfy P4. If ψ(z) = max(0, z − 7

8), then ψ is convex. In this case also,
P{ψ(X1) + ψ(X2) > 1

10} = 1
8 > 0 = P{ψ(Y1) + ψ(Y2) > 1

10}. Notice
that although P3 is violated here, E3 is in fact satisfied.

F.9.d. E4 �⇒ E3 and E3 �⇒ E4 (hence E3 �⇒ E2). To see this, let

P{X = (2, 2)} = P{X = (−2,−2)} = 1
2 ,

P{Y = (1,−1)} = P{Y = (−1, 1)} = 1
2 .

Here, EX[1] = EX[2] = 0, and EY[1] = 1, EY[2] = −1. Thus E4 is
satisfied. If ψ :R → R is convex, then

E[ψ(X1)+ψ(X2)] = ψ(2)+ψ(−2) ≥ ψ(1)+ψ(−1) = E[ψ(Y1)+ψ(Y2)]

with strict inequality if ψ is strictly convex. Thus, E3 fails. To see that
E3 �⇒ E4, interchange X and Y in this example.

G Weak Stochastic Majorizations

Many of the results of the preceding sections have analogs for the two
versions ≺w and ≺w of weak majorization. It is easy to see that all
of the notions of stochastic majorization which have been introduced
have weak versions. For consider the conditions

PC : φ(X) ≤st φ(Y ) for all φ ∈ C

and

EC : Eφ(X) ≤ Eφ(Y ) for all φ ∈ C such that the
expectations are defined.

Here, C has the property that

x ≺ y if and only if φ(x) ≤ φ(y) for all φ ∈ C .
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All of the classes C1, C2, C3 and C4 (see Section F) have the property
that

x ≺w y if and only if φ(x) ≤ φ(y) for all increasing φ ∈ C ,

x ≺w y if and only if φ(x) ≤ φ(y) for all decreasing φ ∈ C .

For any such class C , the stochastic majorizations PC and EC have
weak analogs. Some notation for this is convenient:

X ≺wPC Y if X and Y satisfy P ↑
C : φ(X) ≤st φ(Y )

for all increasing φ ∈ C ;

X ≺wEC Y if X and Y satisfy E↑
C : Eφ(X) ≤ Eφ(Y )

for all increasing φ ∈ C such that the expectations
are defined;

X ≺wPC Y if X and Y satisfy P ↓
C : φ(X) ≤st φ(Y )

for all decreasing φ ∈ C ;

X ≺wEC Y if X and Y satisfy E↓
C : Eφ(X) ≤ Eφ(Y )

for all decreasing φ ∈ C such that the expectations
are defined.

As for the case of strong stochastic majorization, consideration here
is primarily of

C1 = {φ :φ : R n → R is Borel-measurable and Schur-convex}
and

C2 = {φ :φ : R n → R is continuous, symmetric, and convex}.
With the same kind of arguments that were used for strong
majorization, the following implications can easily be established:

X ≺wP1 Y ⇒ X ≺wP2 Y X ≺wP1 Y ⇒ X ≺wP2 Y
� ⇓ � ⇓

X ≺wE1 Y ⇒ X ≺wE2 Y X ≺wE1 Y ⇒ X ≺wE2 Y.

It should be noted that the relationship

x ≺w y if and only if − x ≺w −y
has its counterpart for the stochastic versions considered here. To see
this, observe that

φ ∈ Ci if and only if φ̂(x) = φ(−x) ∈ Ci, i = 1, 2, 3, 4.
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Of course, φ̂ is decreasing if and only if φ is increasing, and

Eφ̂(X) ≤ Eφ̂(Y ) if and only if Eφ(−X) ≤ Eφ(−Y ),

φ̂(X) ≤st φ̂(Y ) if and only if φ(−X) ≤st φ(−Y ).

In spite of this duality, both versions of weak majorization are
discussed in most of what follows.

As in the case of strong majorization, the most interesting cases of
stochastic weak majorizations are found among random vectors with
distributions belonging to the same parametric family. In a number
of examples, it is shown that ψ(θ) = Eθφ(X) inherits as a function θ
the properties required of φ. In such cases it is convenient to speak of
the families as being parameterized to preserve the properties. On the
other hand, ψ may not inherit the properties of φ, but rather ψ may
be guaranteed to have certain other properties. For example, ψ may be
decreasing when φ is increasing unless an unnatural parameterization
of the distributions is used. Because of the multiplicity of possibly
interesting conditions, we do not define weak majorization analogs of
such conditions as P ∗

C , E∗
C , or E∗∗

2 .

Families of Distributions That Preserve Symmetry
and Convexity with Monotonicity

Most of the examples of Section C have analogs for weak majorization.
Several are based upon the following proposition.

G.1. Proposition. Suppose that {Fθ, θ ∈ R n
++} is a family of

distribution functions defined on R n
+ and satisfying

Fθ(x) = Fe(x1/θ1, . . . , xn/θn), where e = (1, . . . , 1), (1)

and

Fe(x) = Fe(xΠ) for all permutations Π. (2)

Alternatively, suppose {Fθ, θ ∈ R n} is a family of distribution
functions satisfying

Fθ(x) = F0(x+ θ), where 0 = (0, . . . , 0), (3)

and

F0(x) = F0(xΠ) for all permutations Π. (4)

Then ψ(θ) = Eθφ(X) is increasing (decreasing), symmetric, and con-
vex in θ whenever φ is a Borel-measurable, increasing (decreasing),
and convex function such that the expectations are defined.
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Proof. This follows directly from B.5.a and B.5.b. ||

G.2. Examples. If X1, . . . ,Xn have any of the following
distributions, then

ψ(θ) = Eθφ(X)

is increasing (decreasing), symmetric, and convex in θ whenever φ is
a function with the same properties such that the expectations are
defined.

(a) Exchangeable normal random variables. (X1 − θ1, . . . ,Xn− θn)
are exchangeable and normally distributed. Note that the result C.2.b
for normal random variables with scale parameter has no parallel
here because normal random variables are not nonnegative as required
by G.1.

(b) Independent gamma random variables. X1, . . . ,Xn are indepen-
dent, and for some fixed r > 0, Xi has the density

f(x; r, θi) =
θ−ri xr−1

Γ(r)
e−x/θt , x ≥ 0, θi > 0, i = 1, . . . , n.

See also G.3 ahead.

(c) Independent uniform random variables. X1, . . . ,Xn are inde-
pendent, and Xi has density

fθi
(x) =

1
θi
I(0,θi)(x), θi > 0, i = 1, . . . , n,

or Xi has density

fθi
(x) = I(θi,θi+1)(x), θi ≥ 0, i = 1, . . . , n.

(d) Independent Poisson random variables. X1, . . . ,Xn are inde-
pendent and

P{Xi = x} = e−θi(θxi /x!), x = 0, 1, . . . , θi > 0, i = 1, . . . , n.

In this case, the preservation of monotonicity follows from G.4(5)
ahead (or a direct proof is not difficult).
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(e) Multinomial (incomplete) random variables. X1, . . . ,Xn have a
distribution given by

P{X = x} =
(

N

x1, . . . , xn

)(
1 −

∑
θi

)N−Σxi
n∏
i

θxi

i ,

xi = 0, 1, 2, . . . ,
n∑
1

xi ≤ N, θi ≥ 0, i = 1, . . . , n,
n∑
1

θi ≤ 1.

Again, preservation of monotonicity follows from G.4(5).

G.2.a. Proposition. If X = (X1, . . . ,Xn) has a (complete)
multinomial distribution with parameter θ, then for m < n,

Pθ1,...,θm
{X1 ≥ s, . . . ,Xm ≥ s}

is an increasing Schur-convex function of θ1, . . . , θm, and

Pθ1,...,θm
{X1 ≤ t, . . . ,Xm ≤ t}

is a decreasing Schur-convex function of θ1, . . . , θm.

Proof. The Schur-convexity follows from E.11.e and the monotonic-
ity follows from G.4 below. ||
G.3. Corollary. Suppose that {Fθ, θ ∈ R n

++} is a family of distri-
bution functions defined on R n

+ and satisfying (1) and (2) of G.1.
Let ψ(θ) = Eθϕ(X), where ϕ is an increasing (decreasing) symmetric
convex function. If λi = 1/θi, i = 1, . . . , n, and

ψ̃(λ) = ψ(1/λ1, . . . , 1/λn),

then ψ̃ is a decreasing (increasing) symmetric convex function.

Proof. This follows from G.1 by using B.5 with w(x, a) = x/a. ||
Note the reversal of the direction of monotonicity here. From this

result, it follows that λ ≺w λ′ implies ψ̃(λ) ≤ ψ̃(λ′) whenever φ is
increasing, symmetric, and convex.

Families of Distributions That Preserve
Schur-Convexity and Monotonicity

In Section E, various families {Fθ, θ ∈ A ⊂ R n} of distributions are
identified that have the property

ψ(θ) = Eθφ(X) is Schur-convex in θ whenever φ is Schur-convex
such that the expectation is defined.
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These results are obtained using E.3, E.4, or E.5, which can be modified
so as to guarantee the preservation of both Schur-convexity and mono-
tonicity. The following proposition is given by Nevius, Proschan, and
Sethuraman (1977b) for the case that X1, . . . ,Xn are independent.

G.4. Proposition (Cheng, 1977). Let {Fθ, θ ∈ Θn} be a family of
n-dimensional discrete distributions such that

Pθ{X1 = x1, . . . ,Xn = xn} = C (
∑
xi,

∑
θi)

n∏
i=1

α(θi, xi)

whenever x1, . . . , xn are nonnegative integers, and equals 0 otherwise.
If C satisfies

C(u, ξ) =
∞∑
v=0

C(u+ v, ξ + η)α(η, v)

whenever η, ξ ∈ Θ, and if

α(ξ, z) =
ξz

z!
, z = 0, 1, 2, . . . , ξ ∈ Θ = (0,∞), (5)

α(ξ, z) =
(
ξ

z

)
, z = 0, 1, 2, . . . , ξ ∈ Θ = {0, 1, 2, . . .}, (6)

or

α(ξ, z) =
Γ(ξ + z)
z!Γ(ξ)

, z = 0, 1, 2, . . . , 0 < ξ <∞, (7)

then ψ(θ) =
∫
φ(x) dFθ(x) is Schur-convex and increasing (decreasing)

whenever φ has the same properties.

Proof. This follows from 3.J.3. ||
The following proposition was also given by Nevius, Proschan, and

Sethuraman (1977b) for the case that the function C is a constant.

G.5. Proposition (Cheng, 1977). Let {Fθ, θ ∈ R n
++} be a family of

n-dimensional distribution functions having densities of the form

f(x1, . . . , xn; θ) =

⎧⎪⎨
⎪⎩
C(

∑
xi,

∑
θi)

n∏
i=1

xθi−1
i

Γ(θi)
, if xi ≥ 0 for all i,

0 otherwise.

If C satisfies

C(u, ξ) =
∫ ∞

0
C(u+ v, ξ + η)

vη−1

Γ(η)
dv,
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then ψ(θ) =
∫
φ(x) dFθ(x) is Schur-convex and increasing (decreasing)

whenever φ is a Schur-convex increasing (decreasing) function such
that the expectations are defined.

Proof. This follows from 3.J.3. ||

As pointed out by Cheng (1977), the conditions on the function C
in G.4 and G.5 are natural ones here; they can be interpreted as saying
that if X1, . . . ,Xn have density (with respect to counting measure or
Lebesgue measure) of the form

f(x1, . . . , xn; θ) = C (
∑n

1xi,
∑n

1θi)
n∏
1

α(θi, xi),

then X1, . . . ,Xn−1 have density C(
∑n−1

1 xi,
∑n−1

1 θi)
∏n−1

1 α(θi, xi) of
the same form.

G.6. Proposition. If X1, . . . ,Xn are exchangeable and have a
Schur-concave density, then ψ(θ) = Eφ(X + θ) is an increasing Schur-
convex function of θ whenever φ is a function with the same properties
such that the expectations are defined.

Proof. This is a trivial consequence of E.5. ||

Propositions G.4, G.5, and G.6 can be used to show that most in-
teresting families of distributions which preserve Schur-convexity also
preserve monotonicity as well. In particular, this is true of the following
examples given in Section E:

Multivariate chi-square (E.5.d)
Exchangeable multivariate normal

and multivariate t (E.5.e, E.5.f)
Independent Poisson (E.6)
Independent binomial (E.7)
Independent gamma (E.8)
Exchangeable normal (E.9)
Independent uniform (E.10)
Dirichlet (E.12)
Liouville–Dirichlet (E.13)
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Multivariate hypergeometric (E.14)
Negative multinomial (E.15)
Multivariate logarithmic series (E.16)
Multivariate modified logarithmic (E.17)
Multivariate inverse hypergeometric (E.18)
Negative multivariate hypergeometric (E.19)
Dirichlet compound negative multinomial (E.20)

The cases of independent Poisson, binomial, gamma, and the mul-
tivariate negative binomial are examples due to Nevius, Proschan,
and Sethuraman (1977b). Most of the remaining examples are due
to Cheng (1977).

Some distributions are conspicuous by their absence from the above
list. In particular, the multinomial is not listed. The reason for this
is that the parameters of the distribution add to unity, and it is not
meaningful to talk about monotonicity in such parameters. However,
there is a nonsingular version of the distribution for which this is not
the case.

G.7. Additional examples. If X1, . . . ,Xn have any of the fol-
lowing distributions, then ψ(ξ) = Eξφ(X) is increasing (decreasing)
and Schur-convex whenever φ is a function with the same properties
such that the expectations are defined. In each case, the appropriate
parameter ξ is indicated.

(a) Incomplete multinomial distribution:

P{X = x} =
N !

(N −∑
xi)!

(
1 −

∑
θi

)N−Σxi
n∏
1

θxi

xi!
,

where the xi are nonnegative integers such that
∑
xi ≤ N , θi ≥ 0, i =

1, . . . , n,
∑n

1 θi ≤ 1. Here, ξ = (θ1, . . . , θn). Monotone Schur-convexity
follows from G.4(5).

(b) Multivariate hypergeometric distribution:

P{X = x} =
(
K

N

)−1(K −∑
Mi

N −∑
xi

) n∏
1

(
Mi

xi

)
,

x = 0, 1, . . . ,
∑

xi ≤ N,

Mi = 1, . . . ,
∑
Mi ≤ K. Here, ξ = (M1, . . . ,Mn). Monotone Schur-

convexity follows from G.4(6).
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(c) Negative multivariate hypergeometric distribution:

P{X = x} =
N !Γ(M)

Γ(N +M)
Γ(M +N −∑

xi −
∑
λi)

(N −∑
xi)!Γ(M −∑

λi)

n∏
1

Γ(xi + λi)
xi!Γ(λi)

,

xi = 0, 1, . . . ,
∑
xi ≤ N , λi > 0,

∑
λi < M . Here, ξ = (λ1, . . . , λn).

Monotone Schur-convexity follows from G.4(7).

H Additional Stochastic Weak Majorizations
and Properties

Following the ideas and notations of Section F, the stochastic weak
majorizations defined in terms of C1, C2, C3, and C4 are considered
here. As before, subscripts i are used in place of Ci to identify the
various stochastic weak majorizations defined in terms of Ci.

Arguments given in the introduction to this chapter can be used to
show that

P ↑
1 ⇒ P ↑

2 ⇒ P ↑
3 , P ↑

2 ⇒ P ↑
4 , E↑

1 ⇒ E↑
2 ⇒ E↑

3 , E↑
2 ⇒ E↑

4 ,

P ↑
i ⇒ E↑

i , i = 1, 2, 3, 4, and E↑
1 ⇒ P ↑

1 .

Similar implications hold when “↑” is replaced by “↓.”
In the remainder of this section, various properties and implications

are discussed.

Some Inequalities for Probabilities

H.1. Proposition (Nevius, Proschan, and Sethuraman, 1977b). If
X and Y satisfy E↑

1 and S ⊂ R n is a Borel-measurable set having an
increasing Schur-convex indicator function, then

P{X ∈ S} ≤ P{Y ∈ S}.
Similarly, if X and Y satisfy E↓

1 and the indicator function of S is
decreasing, the same result holds.

The proofs of these results follow immediately upon taking expec-
tations of the indicator function of S evaluated at X or Y . There is a
converse to this proposition:

H.1.a. (Nevius, Proschan, and Sethuraman, 1977b). If

P{X ∈ S} ≤ P{Y ∈ S}
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for all Borel-measurable sets S with increasing Schur-convex indicator
functions, then X ≺wE1 Y . With “decreasing” in place of “increasing,”
X ≺wE1 Y .

The proof of this involves the approximation of increasing Schur-
convex functions by linear combinations of increasing Schur-convex
indicator functions.

H.1.b. If X ≺wE1 Y , then for all a ∈ R n,

P{X �w a} ≤ P{Y �w a} and P{X ≺w a} ≥ P{Y ≺w a}.
Similarly, if X ≺wE1 Y ,

P{X �w a} ≤ P{Y �w a} and P{X ≺w a} ≥ P{Y ≺w a}.

Proof. To prove the results for E↑
1 , let

S = {x : x �w a}
or let

S = {x : x ≺w a}c.
A similar proof holds for E↓

1 . ||
As pointed out by Nevius, Proschan, and Sethuraman (1977b), the

condition

P{X �w a} ≤ P{Y �w a} for all vectors a

might be used as a definition of stochastic weak majorization because
y �w a implies x �w a for all a ∈ R n if and only if x �w y. However,
this definition is probably not very useful.

H.1.c. If X ≺wE1 Y , then

P{maxXi ≤ r} ≥ P{maxYi ≤ r},
or equivalently,

P{maxXi > r} ≤ P{maxYi > r}.
If X ≺wE1 Y , then

P{minXi > r} ≥ P{minYi > r},
or equivalently,

P{minXi ≤ r} ≤ P{minYi ≤ r}.
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Proof . Again the proof follows by taking expectations of the
obvious indicator functions which are Schur-convex and, respectively,
increasing and decreasing. ||
H.2. Suppose that both X and Y are nonnegative random vectors
and let ZU be the number of zero components of U . If X ≺wEi Y , then
ZX ≤st ZY .

Proof . On R n
+ , φ(x) =

∑n
i=1 I{z:zi=0}(x) is Schur-convex,

symmetric, and decreasing. ||
H.3.

If X ≺wP4 Y, then
∑
Xi ≤st

∑
Yi;

if X ≺wP4 Y, then
∑
Xi ≥st

∑
Yi;

if X ≺wE4 Y, then
∑
EXi ≤

∑
EYi;

if X ≺wE4 Y, then
∑
EXi ≥

∑
EYi.

Proof. These results follow because φ(x) =
∑
xi is in C4 and is

increasing; φ(x) = −∑
xi is in C4 and is decreasing. ||

Condition E↑
1(P ↑

1 ) and Stochastic Ordering

In accordance with the discussion of F.3, let C ⊂ R n be the set of all
vectors x̃ of the form

x̃ = (x[1], x[1] + x[2], . . . , x[1] + · · · + x[n]),

where x ∈ R n. For any function g defined on C, there is a unique
symmetric function f such that

g(x̃) = f(x) for all x ∈ R n.

Let G be the set of all functions g defined on C such that g is increasing
in each argument. Then g ∈ G if and only if f is increasing and Schur-
convex. This yields the following proposition.

H.4. Proposition (Nevius, Proschan, and Sethuraman, 1977b).

X ≺wE1 Y ⇔ X̃ ≤st Ỹ ,

where X̃ ≤st Ỹ means g(X̃) ≤st g(Ỹ ) for all g ∈ G .

The corresponding result for ≺wE1 requires some modifications: x̃ is
replaced by x̃∗ = (

∑n
1 x[i],

∑n
2 x[i], . . . , x[n]), C is replaced by the set

C∗ of such vectors, and G is replaced by the set G ∗ of all functions g
decreasing in each argument. Then

X ≺wE1 Y ⇔ X̃∗ ≥st Ỹ ∗.
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Results of Combining Conditions

The weak stochastic majorization conditions can be combined in
certain interesting ways that raise obvious questions.

It is easy to see that x ≺w y and x ≺w y implies x ≺ y. Is this impli-
cation true for the various stochastic analogs? For most such analogs,
the answer is not known. However, in two cases an affirmative answer
is easily obtained.

H.5. If X ≺wP4 Y and X ≺wP4 Y , then X ≺P4 Y . If X ≺wE4 Y and
X ≺wE4 Y , then X ≺E4 Y .

Proof. This is immediate because the functions in C4 are all either
increasing or decreasing. ||
H.5.a. If X ≺wP3 Y and X ≺wP3 Y , then X ≺P3 Y . The same result
holds with E3 in place of P3.

Proof. This results from the fact that convex functions ψ :R → R
can be written as a sum ψ = ψ1+ψ2, where ψ1 is convex and increasing,
ψ2 is convex and decreasing. ||

Another natural way to combine conditions is to keep the same
notion of stochastic weak majorization but interchange the two ran-
dom vectors. If X ≺wEi Y and Y ≺wEi X or if Pi replaces Ei, what
conclusions are possible?

As with the case of strong majorization, this question can be an-
swered for E1(P1). By H.4,X ≺wEi Y and Y ≺wEi X together imply X̃
and Ỹ have the same distribution, so (X[1], . . . ,X[n]) and (Y[1], . . . , Y[n])
also have the same distribution. The same result holds for ≺w.

If X ≺wP4 Y and Y ≺wP4 X, then it is easily verified that
∑k

1 Xi

and
∑k

1 Yi both have the same distribution, k = 1, . . . , n. Similarly,
X ≺w P4 Y and Y ≺w P4 X imply that

∑n
k Xi and

∑n
k Yi have the

same distribution. But this does not mean X[i] and Y[i] have the same
distribution for all i.

Closure Properties

Consider first the case of mixtures.

H.6. If, for each fixed u, Fu and Gu are distribution functions on R n

ordered by the same weak stochastic majorization ≺wEi, ≺wPi, ≺wEi,
or ≺wPi, i = 1, 2, 3, 4 (in the sense that the corresponding random
variables are so ordered), then mixtures

∫
Fu dH(u) and

∫
Gu dH(u)

are ordered in the same sense.
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For the case of ≺wE1, this result was obtained by Nevius, Proschan,
and Sethuraman (1977b). The proofs are all straightforward, being
essentially the same as for strong majorization F.7.

Next, consider the case of convolutions. Suppose X(j) ≺wEi Y (j),
j = 1, 2; is it true that (X(1)+X(2)) ≺wEi (Y (1)+Y (2)) for i = 1, 2, 3, 4?

H.7. Proposition. Suppose X(1) and X(2) are independent, Y (1)

and Y (2) are independent, and each of these random vectors has ex-
changeable components. If X(1) ≺wEi Y (1) and X(2) ≺wEi Y (2), then
(X(1) +X(2)) ≺wEi (Y (1) + Y (2)), i = 2, 3. The same result is true for
≺w in place of ≺w.

Proof. The proof follows that of F.6.a. For E2, it is only necessary
to observe that if φ is increasing (decreasing), symmetric, and convex,
then φ̃(u) =

∑
Π φ(u+xΠ) defines an increasing (decreasing), symmet-

ric, convex function. For E3, it is necessary to observe that if ψ :R →
R is increasing (decreasing) and convex, then

∑
Π

∑
i ψ[ui + (xΠ)i] is

increasing (decreasing) and convex. ||

For a counterexample to H.7 with P1, P2, or P3 in place of E2 or
E3, see F.6.b.

H.7.a. Proposition. Suppose that X(1) and X(2) are independent,
Y (1) and Y (2) are independent, and these random variables take values
in D . IfX(j) ≺wEi Y (j), j = 1, 2, then (X(1)+X(2)) ≺wEi (Y (1)+Y (2)),
i = 1, 2, 3, 4. The same result is true for ≺w in place of ≺w.

Proof. The proof is similar to the proof of H.7. For E1 and E4, see
F.6.b. ||

For E1, this result is due to Nevius, Proschan, and Sethuraman
(1977b).

Some Counterexamples

For stochastic versions of the weak majorization ≺w, implications
already established together with counterimplications demonstrated
below are indicated in Fig. 2. To establish the counterimplications,
note that

F.9.b shows P ↑
2 �⇒ P ↑

1 ,

F.9.d shows E↑
4 �⇒ E↑

3 and E↑
3 �⇒ E↑

4 .
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E1

P2P1

E2 E3

P3

E4

P4

Figure 2. Relations among conditions.

The following example shows that P ↑
4 �⇒ E↑

3 .

H.8. Example. Suppose that

P{X = (4, 0)} = P{X = (3, 3)} = 1
2 ,

P{Y = (4, 2)} = P{Y = (3, 1)} = 1
2 .

Here X[1] and Y[1] have the same distribution, as do X[1] + X[2] and
Y[1] + Y[2]. This means X ≺wP4 Y and Y ≺wP4 X. If ψ : R → R is
convex, then

E[ψ(X1)+ψ(X2)]−E[ψ(Y1)+ψ(Y2)] =
1
2
[ψ(0)+ψ(3)−ψ(1)−ψ(2)] ≥ 0

with strict inequality if ψ is strictly convex. Thus, X ≺wE3 Y fails.
In Fig. 2, “↑” can be replaced by “↓.” Counterexamples for the other

version ≺w of weak majorization can be obtained using the duality

X ≺w
Ei Y ⇔ (−X) ≺wEi (−Y ), X ≺w

Pi Y ⇔ (−X) ≺wPi (−Y ).

I Stochastic Schur-Convexity

Liyanage and Shanthikumar (1992) introduce a spectrum of concepts
of stochastic Schur-convexity. [See also Shaked, Shanthikumar, and
Tong (1995).] A family Z(θ) of random variables parameterized by θ
is said to be stochastically Schur-convex in the sense of a stochastic
ordering ≤∗ if θ ≺ θ′ implies Z(θ) ≤∗ Z(θ′). Here ≤∗ can be any one
of a variety of stochastic orderings (17.B.1). Indeed, the concept can
be broadened to allow ≤∗ to be any preorder on the space of random
variables.
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Probabilistic, Statistical, and

Other Applications

In this chapter are collected a variety of probabilistic results closely
related to those of Chapter 11, but which differ in various ways.

The relationships of Chapter 11 between pairs of random vectors
all reduce to ordinary majorization when the random vectors are de-
generate. There are additional conditions for random vectors which do
not have this qualification to be called “stochastic majorizations” but
which can still be put into the general form

PC : φ(X) ≤st φ(Y ) for all φ ∈ C ,

or

EC : Eφ(X) ≤ Eφ(Y ) for all φ ∈ C
such that the expectations are defined.

A number of results are known for the class C consisting of func-
tions φ having the form φ(x) = g(

∑
xi), where g is continuous and

convex. For example, Hoeffding (1963) shows that if X1, . . . ,Xn are
obtained by sampling without replacement from a finite population
and Y1, . . . , Yn are obtained by sampling with replacement from the
same population, then

Eg
(∑

Xi

)
≤ Eg

(∑
Yi

)

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 441
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 12,
c© Springer Science+Business Media, LLC 2011
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for all continuous convex g. This inequality and some others of the
same form can be obtained as special cases of more general results.
Generalizations of Hoeffding’s sampling theory inequality are given in
Section A.

One of the weakest conditions discussed in Section 11.F is E4. The
stochastic majorization X ≺E4 Y says only that

(EX[1], . . . , EX[n]) ≺ (EY[1], . . . , EY[n]).

Examples of this kind of majorization are given in Sections C, D, and E.
These examples are concerned, respectively, with the probability of re-
alizing k out of n events, with ordered random variables, and with
eigenvalues of random matrices. The basic results of these sections can
all be obtained using the same method, discussed in Section B, which
involves an extremal representation and an application of Jensen’s
inequality.

Another kind of result (encountered in Section J) relates to “peaked-
ness” of linear combinations. Birnbaum (1948) defined U to be “more
peaked about a” than V if

P{|U − a| > t} ≤ P{|V − a| > t}, t ≥ 0. (1)

If the distributions of U and V are symmetric about a, this is equivalent
to saying that

P{U ≤ x} ≤ P{V ≤ x}, x ≤ a,

P{U ≤ x} ≥ P{V ≤ x}, x ≥ a,
(2)

but of course (2) is stronger than (1) in general. Section J contains a
peakedness result for linear combinations of certain random variables
with symmetry.

There are cases when (2) fails but still one can say that

P{U ≤ x} ≤ P{V ≤ x}, x ≤ a,

P{U ≤ x} ≥ P{V ≤ x}, x ≥ b,

for some fixed a < b. Such results are discussed in Section K.

A Sampling from a Finite Population

Suppose that X1, . . . ,Xn are obtained by sampling without re-
placement from a finite population, and Y1, . . . , Yn are obtained by



A. Sampling from a Finite Population 443

sampling with replacement from the same population. According to
an inequality of Hoeffding (1963),

Eψ
(∑

Xi

)
≤ Eψ

(∑
Yi

)

whenever ψ is continuous and convex.
Hoeffding’s result has stimulated several authors to look for gener-

alizations. Such generalizations might compare other sampling plans
besides sampling with and without replacement, or the convex function
of the sum of observations might be replaced by more general functions.
These kinds of results are the subject of this section.

Suppose that members of a finite population of size N are indexed
by the numbers j = 1, . . . , N . To each index j ∈ {1, . . . , N} ≡ Ω
there corresponds an individual in the population with some particular
numerical characteristic yj that is of interest. A sample of size n from
the population consists of a set of ordered pairs (vi, yvi

), i = 1, . . . , n,
where each vi ∈ Ω.

A sample (vi, yvi
), i = 1, . . . , n, determines a vector k = (k1, . . . , kN ),

where kj is the number of times the pair (j, yj) occurs in the sample,
j = 1, . . . , N . Of course,

∑N
j=1 kj = n and each kj is a nonnegative

integer. Denote the set of all such vectors by K . Notice that given
k ∈ K and the numbers yj for which kj > 0, the original sample can
be recovered apart from order.

A probability distribution P on K is called a sampling plan. The
sampling plan is symmetric if P{k} = P{kΠ} for all permutations Π.
For any symmetric sampling plan P , let

Q(k) = tkP{k},

where tk is the number of distinct permutations of k. Since P is sym-
metric, it is determined by Q because all permutations of k are equally
likely.

The most familiar symmetric sampling plans are those of sampling
with and without replacement.

For sampling without replacement, N ≥ n and

P{k} =

⎧⎪⎨
⎪⎩

1
/(

N

n

)
if k is a permutation of ( 1, . . . , 1,︸ ︷︷ ︸

n

0, . . . , 0),

0 otherwise.
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Here,

Q(k) =

⎧⎨
⎩

1 if k is a permutation of ( 1, . . . , 1,︸ ︷︷ ︸
n

0, . . . , 0),

0 otherwise.

For sampling with replacement,

P{k} =
(

n

k1, . . . , kN

)(
1
N

)n
, k ∈ K .

Various symmetric generalizations of these sampling plans have been
studied. One kind consists of the so-called random replacement models.
In such a model, the ith individual to be sampled is replaced with
probability πi and is removed from the population with probability
1−πi, i = 1, . . . , n. At each step of the sampling, individuals remaining
in the population are equally likely to be selected.

For any a ∈ R, let

a〈i〉 = (a, . . . , a)

be a vector of length i having all components equal to a. Let K =
(K1, . . . ,KN ) be a random vector taking values in K according to the
distribution P , and let Y = (y〈K1〉

1 , . . . , y
〈KN 〉
n ). The possible values for

Y are ordinarily unknown, but it is assumed that y1, . . . , yN are known
to be in A ⊂ R, so Y ∈ A n, the Cartesian product of A with itself
n times. An observation of the random variable Y is just a reordering
of the sample values yv1 , . . . , yvn

.
This section is concerned with two kinds of expected values:

EPφ(K) =
∑
k∈K

P{k}φ(k)

and

EP ξ(Y ) =
∑
k∈K

P{k}ξ(y〈k1〉
1 , . . . , y

〈kN 〉
N ),

for certain symmetric functions φ and ξ defined, respectively, on K
and A n. Comparisons of such expected values are made for different
symmetric sampling plans.

The sampling plans for which comparisons are made are related by
a notion of “domination.” Let P and P ∗ be symmetric sampling plans.
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Say that P ∗ is an elementary dominant of P if for some l, m ∈ K
such that l ≺ m,

Q∗(m) > Q(m), Q∗(l) < Q(l),

Q∗(m) +Q∗(l) = Q(m) +Q(l),

Q∗(k) = Q(k) if k is not a permutation of l or m.

Say that P ∗ dominates P if there exists a finite sequence P = P0,
P1, . . . , Pr = P ∗ of symmetric sampling plans such that Pj is an
elementary dominant of Pj−1, j = 1, . . . , r.

A.1. Theorem. The symmetric sampling plan P ∗ dominates P if
and only if

EPφ(K) ≤ EP ∗φ(K)

for all Schur-convex functions φ defined on K .

Remark . The condition that EPφ(K) ≤ EP ∗φ(K) for all Schur-
convex functions φ defined on K is a stochastic ordering condition
in the sense of 17.B.1. There is a close connection between A.1 and
17.B.6. See also 11.A(4). The result of A.1 has been obtained in a more
general setting by Snijders (1976).

Proof. Suppose first that P ∗ dominates P . It is sufficient to prove
the inequality for the case of elementary domination with P and P ∗
differing only at permutations of l and m where l ≺ m. Then

EP ∗φ(K) − EPφ(K) = [Q∗(m) −Q(m)]φ(m) − [Q(l) −Q∗(l)]φ(l)

= α[φ(m) − φ(l)] ≥ 0,

where α = Q∗(m) −Q(m) = Q(l) −Q∗(l) ≥ 0.
Next, suppose that EPφ(K) ≤ EP ∗φ(K) for all Schur-convex func-

tions φ. Let D = {k :P ∗{k} > P{k}} and for k ∈ D, let d(k) =
P ∗{k} − P{k}. Similarly, let S = {k :P ∗{k} < P{k}} and for k ∈ S,
let s(k) = P{k}−P ∗{k}. Consider a transportation problem in which
points in S are thought of as “sources” (suppliers) and points in D are
thought of as “sinks” (consumers). For k ∈ S, s(k) is the supply at k,
and for k ∈ D, d(k) is the demand at k. The transportation problem
is constrained by the requirement that shipments can be made from
k0 ∈ S to k1 ∈ D if and only if k0 ≺ k1. To show that P ∗ dominates
P , it is sufficient to show that this transportation problem is feasible.

A transportation problem is feasible if for any subset D0 ⊂ D of
sinks, the total demand at these sinks is not greater than the sup-
ply available [Gale (1957); see also Ford and Fulkerson (1962, p. 38)].
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This means that with the notation I0 = {k : k ≺ l for some l ∈ D0},∑
k∈I0∩S

s(k) ≥
∑
k∈D0

d(k).

To show that this inequality holds, consider the Schur-convex function

φ(k) =
{−1 if k ∈ I0,

0 otherwise.

Rewrite the inequality EPφ(k) ≤ EP ∗φ(k) as∑
k∈I0

P{k} ≥
∑
k∈I0

P ∗{k};

that is,∑
k∈I0∩S

P{k} +
∑

k∈I0∩D
P{k} ≥

∑
k∈I0∩S

P ∗{k} +
∑

k∈I0∩D
P ∗{k},

or ∑
k∈I0∩S

[P{k} − P ∗{k}] ≥
∑

k∈I0∩D
[P ∗{k} − P{k}].

Because D0 ⊂ I0 ∩D, this means that∑
k∈I0∩S

s(k) ≥
∑

k∈I0∩D
d(k) ≥

∑
k∈D0

d(k). ||

For certain kinds of sampling plans and in case φ is symmetric and
convex, the inequality of Theorem A.1 is obtained by Karlin (1974)
using quite different methods.

Notice that Theorem A.1 says that K under distribution P ∗ stochas-
tically majorizes K under distribution P in the sense of E1 (see
Section 11.A); that is,

KP ≺E1 KP ∗.

This implies that KP ≺E2 KP ∗ , which is equivalent to saying that the
measure P ∗ dilates P . Particularly for the case of sampling with and
without replacement, this dilation has been studied by Kemperman
(1973).

A.1.a. Corollary. Let W be the number of nonzero components of
K; i.e., W is the number of distinct individuals represented in the
sample. If P ∗ dominates P , then

P{W > w} ≥ P ∗{W > w} for all w.



A. Sampling from a Finite Population 447

Proof. This follows from the fact that the set

{k : k has at least w nonzero components}
has a Schur-concave indicator function. ||

This corollary is essentially 11.D.1.b.

For each l ∈ K , let Pl be the symmetric sampling plan under which
each permutation of l is equally likely and Pl(m) = 0 if m is not
a permutation of l. That is, Pl is the symmetric sampling plan that
concentrates all probability on the permutations of l. In place of EPl

,
write El.

A.1.b. Proposition. Let P and P ∗ be symmetric sampling plans.
Then

EPφ(K) ≤ EP ∗φ(K) whenever P ∗ dominates P (1)

if and only if

φ̂(k) =
1
N !

∑
π

φ(kπ(1), . . . , kπ(N))

is Schur-convex.

Proof. Suppose first that φ̂ is Schur-convex. Because the sampling
plans P and P ∗ are symmetric,

Eφ(K) = Eφ(KΠ)

for all permutation matrices Π. This means

EPφ(K) =
1
N !
EP

∑
Π

φ(KΠ) = EP φ̂(K).

But EP φ̂(K) ≤ EP ∗φ̂(K) by A.1.
Next, suppose that (1) holds and that l ≺ m. With the choice P = Pl

and P ∗ = Pm, it follows that P ∗ dominates P, so that by (1),

φ̂(l) =
1
N !

∑
Π

φ(lΠ) = Elφ(K) ≤ Emφ(K) =
1
N !

∑
Π

φ(mΠ) = φ̂(m).

Hence, φ̂ is Schur-convex. ||
Although the characteristics y1, . . . , yN are unknown in general, they

are fixed in any population to be sampled. Consequently,

ξ(y〈k1〉
1 , . . . , y

〈kN 〉
N ) = φ(K1, . . . ,KN )
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establishes a relationship between functions φ defined on K and
symmetric functions ξ defined on {y1, . . . , yN}n. This relationship is
exploited in the following theorem.

A.2. Theorem. For a symmetric function ξ defined on {y1, . . . , yN}n,
let

φ(k1, . . . , kN ) = ξ(y〈k1〉
1 , . . . , y

〈kN 〉
N ),

φ̂(k1, . . . , kN ) =
1
N !

∑
Π

φ(kΠ).

Then

EP ξ(Y ) ≤ EP ∗ξ(Y ) whenever P ∗ dominates P (2)

if and only if φ̂ is Schur-convex.

Proof. Suppose first that φ̂ is Schur-convex and P ∗ dominates P,
so that by A.1,

1
N !
EP

∑
Π

φ(KΠ) ≤ 1
N !
EP ∗

∑
Π

φ(kΠ).

But
1
N !
EP

∑
Π

φ(KΠ) =
1
N !
EP

∑
π

ξ(y〈kπ(1)〉
1 , . . . , y

〈kπ(N)〉
N )

=
1
N !

∑
k

P{k}
∑
π

ξ(y〈kπ(1)〉
1 , . . . , y

〈kπ(N)〉
N )

=
1
N !

∑
π

∑
k

P{kπ(1), . . . , kπ(N)}ξ(y〈kπ(1)〉
1 , . . . , y

〈kπ(N)〉
n )

=
1
N !

∑
π

EP ξ(y
〈k1〉
1 , . . . , y

〈kN 〉
N )

= EP ξ(y
〈k1〉
1 , . . . , y

〈kN 〉
N ) = EP ξ(Y ).

Similarly,
1
N !
EP ∗

∑
Π

φ(KΠ) = EP ∗ξ(Y ).

Thus (2) holds.
Suppose next that (2) holds. Then the equality just demonstrated

can be used to rewrite (2) in the form

EP φ̂(K) ≤ EP ∗ φ̂(K) whenever P ∗ dominates P.

Consequently, φ̂ is Schur-convex by A.1.b. ||
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Ordinarily, the characteristics y1, . . . , yN are unknown. When it is
known only that yi ∈ A , i = 1, . . . , N , then A.2 can be appropriately
modified.

A.2.a. Let ξ be a symmetric function defined on A n, and for each
fixed a = (a1, . . . , aN ) ∈ A N , let

φa(k1, . . . , kN ) = ξ(a〈k1〉
1 , . . . , a

〈kN 〉
N ),

φ̂a(k1, . . . , kn) =
1
N !

∑
Π

φa(kΠ).

Then

EP ξ(Y ) ≤ EP ∗ξ(Y )

whenever P ∗ dominates P and whatever the values y1, . . . , yN ∈ A if
and only if φ̂a is Schur-convex for all a ∈ A N .

In proving a very special case of A.2, Karlin (1974) introduced a
class CA of functions ξ which satisfy the conditions of A.2 as follows:

ξ : A n → R is in CA if and only if

ξ is symmetric, (3)

and for all (a1, a2, ȧ) ∈ A n,

ξ(a1, a1, ȧ) + ξ(a2, a2, ȧ) ≥ 2ξ(a1, a2, ȧ). (4)

Usually, we write C in place of CA .

A.2.b. Corollary. If ξ ∈ C and P ∗ dominates P ,

EP ξ(Y ) ≤ EP ∗ξ(Y ).

Proof . Let φ(k1, . . . , kN ) = ξ(y〈k1〉
1 , . . . , y

〈kN 〉
N ), and let φ̂(k) =

(1/N !)
∑

Π φ(kΠ). Because of (4),

φ(k1 + 2, k2, . . . , kN ) + φ(k1, k2 + 2, k3, . . . , kN )

≥ 2φ(k1 + 1, k2 + 1, k3, . . . , kN );

that is, φ(k1, s − k1, k3, . . . , kN ) is convex in k1 for each fixed s,
k3, . . . , kN . This means that φ̂ has the same convexity property.
Because φ̂ is also symmetric, it follows (by 3.C.2.b) that φ̂ is
Schur-convex. ||

The condition ξ ∈ C is considerably weaker than the condition
that ξ is symmetric and L-superadditive (see Definition 6.C.2 and
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Section 6.D). This means that examples of symmetric L-superadditive
functions are examples of functions in C .

Closure properties of C are also useful in identifying examples.
Following Rosén (1967), Karlin (1974) also noted that

ξ1, ξ2 ∈ C implies max(ξ1, ξ2) ∈ C , (5)

ξ ∈ Cg(A ) implies ξ∗(a) = ξ(g(a1), . . . , g(an)) ∈ CA
for any function g :A → R, (6)

ξ ∈ C and ψ convex increasing implies ψ ◦ ξ ∈ C , (7)

C is a convex cone. (8)

Some specific examples of functions ξ ∈ C are

ξ(x) = ψ
(∑

xi

)
, where ψ is convex, (9)

ξ(x) =
n∏
i=1

|xi|α, α ∈ R, (10)

ξ(x) =

(
n∑
1

|xi|α
)1/γ

, α ∈ R, γ ≤ 1, (11)

ξ(x) = min(x1, . . . , xn), (12)

ξ(x) = x[k] + · · · + x[n], k = 1, . . . , n, (13)

ξ(x) = I{z:a≤zi≤b,i=1,...,n}(x), −∞ ≤ a < b ≤ ∞, (14)

ξ(x) = kth elementary symmetric function on R n
+ . (15)

Example (9) was identified by Lorentz (1953) as an L-superadditive
function. In the present context, it was first used by Hoeffding (1963).
Examples (10), (11), and (12) are due to Rosén (1967).

Through the correspondence

φ(k1, . . . , kN ) = ξ(x〈k1〉
1 , . . . , x

〈kN 〉
N ),

Schur-convex functions φ̂ identify functions ξ satisfying the conditions
of A.2. It is interesting to note that this idea is not very useful because
often quite complex functions φ are required to obtain very simple
functions ξ. Here are some examples:

(i) φ(k) =
∏
i a
ki

i , φ̂(k) = (1/N !)
∑

π a
ki

π(i) is Schur-convex (Muir-
head’s theorem 3.G.2.e). Here ξ(x) =

∏n
1 xi ∈ C .

(ii) φ(k) = ψ(
∑N

i=1 kiai), ξ(x) = ψ(
∑
xi), ψ convex.
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The class C does not exhaust the functions ξ which satisfy the
inequality (2) of A.2. For example, if N = 3 and

ξ(y1, y2, y3) =

{
(y1 + y2 + y3)/3 when y1, y2, y3 are distinct,

median (y1, y2, y3) otherwise,

then ξ satisfies (2) but ξ /∈ C . Nevertheless, the condition ξ ∈ C is
an important sufficient condition for (2) since it suffices to identify so
many interesting examples.

Recall that Pl is the symmetric sampling plan that concentrates all
probability on the permutations of l. Note that P(1,...,1,0,...,0) ≡ PW
corresponds to sampling without replacement.

A.2.c. Corollary (Karlin, 1974). For any symmetric sampling
plan P ,

E(1,...,1,0,...,0)ξ(Y ) ≤ EP ξ(Y ) ≤ E(n,0,...,0)ξ(Y ) for all ξ ∈ C .

Proof. This follows from the fact that k ∈ K implies

(1, . . . , 1, 0, . . . , 0) ≺ k ≺ (n, 0, . . . , 0).

Consequently, P dominates P(1,...,1,0,...,0) and P is dominated by
P(n,0,...,0). ||

Various special cases of Corollary A.2.c were obtained by Rosén
(1967).

Let PW = P(1,...,1,0,...,0) correspond to sampling without replacement
and let PR correspond to sampling with replacement.

A.2.d. Corollary. For any ξ ∈ C ,

EPW
ξ(Y ) ≤ EPR

ξ(Y ).

Proof. This is an immediate consequence of A.2.c. ||
A.2.e. Corollary (Hoeffding, 1963). If ψ :R → R is convex,

EPW
ψ
(∑

Yi

)
≤ EPR

ψ
(∑

Yi

)
.

Proof. This follows from A.2.d using ξ(x) = ψ(
∑
xi). ||

A.2.f. Corollary (Karlin, 1974). If l ≺ k, then

Elξ(Y ) ≤ Ekξ(Y ) for all ξ ∈ C .

Proof. This is an immediate consequence of A.2. ||
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Although A.2.f follows easily from A.2, the reverse is also true: It
is easy to see from A.2.f that EP ξ(Y ) ≤ EP ∗ξ(Y ) when P ∗ is an
elementary dominant of P , and from this A.2 follows.

Corollary A.2.f plays a key role in the approach taken by Kar-
lin (1974) to the subject of this section. Because his direct proof is
long and involved, an alternative direct proof is offered here. This
alternative proof is divided into two parts.

A.3.a. If ξ ∈ C and u1, u2 ∈ A, then

ξ(u〈n−1〉
1 , u2) + ξ(u〈n−1〉

2 , u1) ≤ ξ(u〈n〉1 ) + ξ(u〈n〉2 ).

Proof. Because ξ ∈ C ,

2ξ(u〈n−1−j〉
1 , u

〈j−1〉
2 ) ≤ ξ(u〈n−j〉1 , u

〈j〉
2 ) + ξ(u〈n−2−j〉

1 , u
〈j+2〉
2 )

for j = 0, 1, . . . , n − 2. Summation on j yields
n−2∑
j=0

ξ(u〈n−j〉1 , u
〈j〉
2 ) −

n−2∑
j=0

ξ(u〈n−1−j〉
1 , u

〈j+1〉
2 )

+
n−2∑
j=0

ξ(u〈n−2−j〉
1 , u

〈j+2〉
2 ) −

n∑
j=0

ξ(u〈n−1−j〉
1 , u

〈j+1〉
2 ) ≥ 0.

With cancellation, this reduces to the desired inequality. ||
A.3.b. Let k and l be vectors of length N having integer components
such that

∑N
1 ki =

∑N
1 li = n. If l ≺ k, u1, . . . , uN ∈ A and ξ ∈ C ,

then ∑
Π

ξ(u〈l1〉Π(1), . . . , u
〈lN 〉
Π(N)) ≤

∑
Π

ξ(u〈k1〉
Π(1), . . . , u

〈kN 〉
Π(N)).

Proof. Because of 5.D.1, it is sufficient to prove this proposition for
the case that k1 − 1 = l1 ≥ k2 + 1 = l2 and kj = lj , j = 3, . . . , N . This
also means that it is sufficient to take N = 2. Then the proposition
reduces to

ξ(u〈k1−1〉
1 , u

〈k2+1〉
2 )+ ξ(u〈k1−1〉

2 , u
〈k2+1〉
1 ) ≤ ξ(u〈k1〉

1 , u
〈k2〉
2 )+ ξ(u〈k1〉

2 , u
〈k2〉
1 ).

Because ξ is symmetric, this can be rewritten as

ξ(u〈k1−k2−1〉
1 , u2, u

〈k2〉
1 , u

〈k2〉
2 ) + ξ(u〈k1−k2−1〉

2 , u1, u
〈k2〉
1 , u

〈k2〉
2 )

≤ ξ(u〈k1−k2〉
1 , u

〈k2〉
1 , u

〈k2〉
2 ) + ξ(u〈k1−k2〉

2 , u
〈k2〉
1 , u

〈k2〉
2 ).

Suppress the common arguments here and take n = k1 − k2 in A.3.a
to see that this inequality holds. ||
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Alternative proof of A.2.f. Notice that upon dividing the inequality
of A.3.b by n!, a restatement of A.2.f is obtained. ||

Random Replacement Sampling Plans

Let Pπ1,...,πn−1 denote the random sampling plan in which the ith ob-
servation is replaced with probability πi, i = 1, . . . , n−1. At each step
of the sampling, individuals not previously removed from the popula-
tion are equally likely to be selected. In place of EPπ1 ,...,πn−1

write Eπ.
Karlin (1974) conjectured that

Eπξ(Y1, . . . , Yn) ≥ Eπ′ξ(Y1, . . . , Yn) (16)

for all (y1, . . . , yN ) ∈ A N and all φ ∈ CA if and only if

πi ≥ π′i, i = 1, . . . , n− 1. (17)

This conjecture remains unsettled, though some progress is reported
by Karlin and Rinott (1984).

Removal of Duplicate Observations

It was pointed out by Basu (1958) that for certain purposes, repeated
observations of the same individual in a sample should be ignored.
Results of this kind have been obtained by Lanke (1974).

Let W be the number of nonzero components of K (number of
distinct individuals sampled) and let Ỹ = (Ỹ1, . . . , ỸW ) be the charac-
teristics of these individuals. Of course, Ỹ is a subvector of Y obtained
by eliminating repetitions which result from the same individual being
sampled more than once. The components of Ỹ need not be dis-
tinct because different individuals in a population can share the same
character.

A.4. Proposition. If ψ : R → R is continuous and convex and P is
a symmetric sampling plan,

EP

[
ψ

(∑W

1
θiỸi

)∣∣∣∣W = w

]

is a Schur-convex function of θ.

Proof. This is a consequence of 11.B.2; Ỹ1, . . . , Ỹw are exchangeable
because P is symmetric. ||
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A.4.a. Proposition (Lanke, 1974). If ψ :R → R is continuous and
convex and P is a symmetric sampling plan,

EPψ

(∑W
1 Ỹi
W

)
≤ EPψ

(∑n
1 Yi
n

)
.

Proof. If
∑W

1 θi = 1, it follows from A.4 that

EP

[
ψ

(∑W
1 Ỹi
W

)∣∣∣∣∣W = w

]
≤ EP

[
ψ

(
W∑
1

θiỸi

)∣∣∣∣∣W = w

]
.

Choose θi = Ki/n so that
∑W

1 θiỸi = (1/n)
∑n

1 Yi, and then take
expectations of both sides to get unconditional expectations. ||
A.4.b. Proposition. If ψ : R → R is continuous and convex, and if
P ∗ dominates P , where both P and P ∗ are symmetric sampling plans,
then

EPψ

(∑W
1 Ỹi
W

)
≤ EP ∗ψ

(∑W
1 Ỹi
W

)
.

Proof. Define

g(w) = EP

[
ψ

(∑W
1 Ỹi
W

)∣∣∣∣∣W = w

]
. (18)

Observe that

g(w − 1) = EP

[
ψ

(∑W
1 Ỹi
W

)∣∣∣∣∣W = w − 1

]

= EP

[
ψ

(∑W−1
1 Ỹi
W − 1

)∣∣∣∣∣W = w − 1

]

= EP

[
ψ

(∑W−1
1 Ỹi
W − 1

)∣∣∣∣∣W = w

]

≥ EP

[
ψ

(∑W
1 Ỹi
W

)∣∣∣∣∣W = w

]
= g(w). (19)

The inequality in (19) follows from A.4 since(
1

w − 1
, . . . ,

1
w − 1

, 0
)

�
(

1
w
, . . . ,

1
w

)
.
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Moreover, note that these expectations are independent of the sym-
metric sampling plan P . Now recall from A.1.b that under P , W is
stochastically larger than it is under P ∗. Using this stochastic order-
ing and the fact that g of (18) is a decreasing function which does not
depend upon P , it follows from 17.A.2 that EP ∗g(W ) ≥ EP g(W ). ||

For sampling without replacement, A.4.b is due to Lanke (1974).

Comparisons for Different Populations

Consider two populations of size N , both indexed by j = 1, . . . , N .
Suppose that the respective characteristics of the individuals in these
populations are x1, . . . , xN and y1, . . . , yN . Following notation already
introduced, let

X = (x〈K1〉
1 , . . . , x

〈KN 〉
N ), Y = (y〈K1〉

1 , . . . , y
〈KN 〉
N ).

A.5. Proposition (Karlin, 1974). For any symmetric sampling plan
P and any continuous convex function ψ,

x ≺ y ⇒ EPψ
(∑

Xi

)
≤ EPψ

(∑
Yi

)
.

This proposition was obtained by Kemperman (1973) for the cases
of sampling with and without replacement.

To prove A.5, first recall that for each k ∈ K , tk is the number of
distinct permutations of k. For any y ∈ RN , let y(k) be a vector of
length tk in which

∑N
i=1 kΠ(i)yi occurs exactly once as a component for

each distinct permutation kΠ of k. Proposition A.5 is a consequence
of the following observations.

A.5.a. x ≺ y ⇒ x(k) ≺ y(k).

Proof . Let φr(x) =
∑

r,π[kπ(1)x1 + · · · + kπ(N)xN ], where
∑

r,Π
denotes summation over the r largest values of kπ(1)x1 + · · ·+kπ(N)xN
as π ranges over the distinct permutations of k. Since φr is symmetric
and convex (see 3.G.2.b), x(k) ≺w y(k). But the sum of all components
of x(k) is just c

∑
xi, where c is the sum over distinct components of

k, so x(k) ≺ y(k). ||
A.5.b. x ≺ y and ψ convex ⇒ Ekψ(

∑
Xi) ≤ Ekψ(

∑
Yi), where Ek ≡

EPk
and Pk is the sampling plan that concentrates on permutations

of k.

Proof. This is immediate from A.5.a and the fact that u ≺ v ⇒∑
ψ(ui) ≤

∑
ψ(vi). ||
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Proof of A.5. This follows from the fact that any symmetric
sampling plan is a mixture of the sampling plans Pk. ||

B Majorization Using Jensen’s Inequality

A general method for demonstrating certain majorizations involving
expectations is outlined here. The method makes use of Jensen’s in-
equality in a straightforward way and yields many of the results of
Sections C, D, and E.

B.1. Proposition. If X1, . . . ,Xn are random variables with finite
expectations EXi = μi, i = 1, . . . , n, then for all continuous convex
functions φ,

φ(μ1, . . . , μn) ≤ Eφ(X1, . . . ,Xn). (1)

If φ is also symmetric, then

φ(μ[1], . . . , μ[n]) ≤ Eφ(X[1], . . . ,X[n]). (2)

Proof . (1) is a restatement of Jensen’s inequality for random
vectors. When φ is symmetric, (1) can be rewritten as (2). ||

Proposition B.1 yields the following weak majorization result.

B.2. Proposition. Let A be a convex subset of Rm and let Z be a
random vector taking values in A . Suppose that the expectation EZ
exists and let f1, . . . , fn be continuous functions defined on A with
the properties that

(i) f1(EZ) ≥ · · · ≥ fn(EZ),
(ii)

∑k
1 fi(z) is a convex function of z ∈ A , k = 1, . . . , n.

Then

(Ef1(Z), . . . , Efn(Z)) �w (f1(EZ), . . . , fn(EZ)) (3)

whenever the expectations exist.

Proof. Since
∑k

1 fi(z) is convex, it follows from (1) that

k∑
1

Efi(Z) = E

k∑
1

fi(Z) ≥
k∑
1

fi(EZ), k = 1, . . . , n.

This means that the sum of the k largest of Efi(Z), i = 1, . . . , n, also
exceeds

∑k
1 fi(EZ), and because of (i), (3) follows. ||
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All of the applications of B.2 in the next three sections involve
some kind of extremal representation, as indicated in the following
proposition.

B.3. Proposition. Let f1, . . . , fn be defined by the equations

k∑
1

fi(z) = sup
u∈Uk

g(u, z), k = 1, . . . , n, z ∈ A ⊂ Rm,

where U1, . . . , Un are such that f1(z) ≥ · · · ≥ fn(z), z ∈ A . If g(u, z)
is continuous and convex in z for each fixed u ∈ ⋃n

k=1 Uk, then for any
random vector taking values in A ,

(Ef1(Z), . . . , Efn(Z)) �w (f1(EZ), . . . , fn(EZ)).

Proof . This result follows from B.2 because supu∈Uk
g(u, z) is a

convex function of z. ||

There is a dual to B.2 and to B.3 in case
∑k

1 fi(z) is concave. For
example, if

n∑
k

fi(z) = inf
u∈Uk

g(u, z), k = 1, . . . , n,

where again f1(z) ≥ · · · ≥ fn(z) but now g is concave in z for each
fixed u ∈ ⋃n

1 Uk, then by a similar argument,

(Ef1(Z), . . . , Efn(Z)) �w (f1(EZ), . . . , fn(EZ)). (4)

Because a ≺w b and a ≺w b together imply a ≺ b, (3) and (4)
can sometimes be combined to give a strong majorization. Strong ma-
jorization can also be obtained if Un contains just one element, say ũ,
and if g(ũ, z) is linear in z. Then in B.2, �w is replaced by �.

C Probabilities of Realizing at Least
k of n Events

Let A1, . . . , An be events on some probability space, with respective
probabilities p1, . . . , pn. Let qk be the probability that at least k of the
events A1, . . . , An occur. It is shown in Chapter 7, as a consequence of
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7.D.2, that (p1, . . . , pn) ≺ (q1, . . . , qn) when the pi’s and qi’s are multi-
ples of 1/n. Here the latter restriction is eliminated and a probabilistic
proof is provided.

C.1. Proposition. With the above notation,

(p1, . . . , pn) ≺ (q1, . . . , qn).

Three proofs of this result are given here that are all quite different,
and may have some intrinsic interest. Yet another proof was given by
Galambos (1971).

First proof. Let Bi = {at least i of the events A1, . . . , An occur},
and observe that

k∑
i=1

IBi
(ω) = sup

u∈Uk

n∑
i=1

uiIAi
(ω),

where Uk consists of all vectors in Rn with k components equal to
one and with the remaining components equal to zero. By taking
expectations and using Jensen’s inequality, it follows that

k∑
i=1

qi ≥
k∑
i=1

p[i], k = 1, . . . , n.

Equality holds for k = n because Un = {(1, . . . , 1)} has but one
member, and so

∑n
1 IBi

(ω) =
∑n

1 IAi
(ω). ||

Second proof of C.1. For convenience, relabel the events A1, . . . , An
to achieve p1 ≥ p2 ≥ · · · ≥ pn. Of course, it is always true that
q1 ≥ q2 ≥ · · · ≥ qn. The majorization we wish to prove follows easily
once it has been shown that

∑n
1 pi =

∑n
1 qi. For suppose this equality

holds and apply it to the case that n = k to obtain

k∑
1

pi =
k∑
1

P{at least i of the events A1, A2, . . . , Ak occur}

≤
k∑
1

P{at least i of the events A1, A2, . . . , An occur} =
k∑
1

qi.

To show that
∑n

1 pi =
∑n

1 qi, make use of the well-known fact
(Feller, 1968, p. 106) that

qi = Si −
(

i

i− 1

)
Si+1 +

(
i+ 1
i− 1

)
Si+2 − · · · ±

(
n− 1
i− 1

)
Sn,
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where

Si =
∑

j1<j2<···<ji

P{Aj1 ∩ · · · ∩Aji
}.

Write this out more fully as follows:

q1 = S1 −
(

1
0

)
S2 +

(
2
0

)
S3 −

(
3
0

)
S4 + · · · ±

(
n− 1

0

)
Sn,

q2 =
(

1
1

)
S2 −

(
2
1

)
S3 +

(
3
1

)
S4 − · · · ∓

(
n− 1

1

)
Sn,

q3 =
(

2
2

)
S3 −

(
3
2

)
S4 + · · · ±

(
n− 1

2

)
Sn,

...

qn =
(
n− 1
n− 1

)
Sn.

Since
l∑

j=0

(
1
j

)
(−1)j = 0,

addition yields
∑n

1 qi = S1 =
∑n

1 pi. ||

Third proof of C.1. As noted in the second proof, the majorization
is easy to obtain once

∑n
1 pi =

∑n
1 qi has been proved. An elementary

proof of this fact was suggested by Alfred Rényi after a seminar at the
Statistical Laboratory, Cambridge University, in the spring of 1968. Let

ri = qi − qi+1 = P{exactly i of the events A1, A2, . . . , An occur}.
Let vi be the indicator (characteristic) function of the set Ai; i.e.,

vi =
{

1 if Ai occurs,
0 otherwise, i = 1, . . . , n.

Then v =
∑n

i=1 vi is the number of the events A1, . . . , An that occur
and v is a random variable with expectation

Ev =
n∑
i=1

iri =
n∑
i=1

qi.

But also,

Ev =
n∑
i=1

Evi =
n∑
i=1

pi. ||
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Proposition C.1 was conjectured by Alfred Rényi; the basis for his
conjecture was the inequality

n∏
i=1

pi ≥
n∏
i=1

qi,

a result known to him, and which follows from C.1 using 3.F.1.a.
The following is a converse of B.1.

C.2. Proposition. If p ≺ q and 1 ≥ q1 ≥ · · · ≥ qn ≥ 0, then there
exist a probability space (Ω,F , P ) and sets A1, . . . , An in F such that
pi = P{Ai} and qi = P{at least i of the events Aj occur}, i = 1, . . . , n.

This proposition has been proved by Galambos (1971) using
Ω = [0, 1], F the Borel subsets of [0, 1], and P the restriction of
Lebesgue measure to F . The following proof was obtained in 1969
in collaboration with Roger J.-B. Wets.

Proof of C.2. Let Ω = {x = (x1, . . . , xn) : xi = 0 or 1 for all i},
let F include all subsets of Ω, and let Ai = {x : x ∈ Ω and xi = 1},
i = 1, . . . , n. Consider the set Q of all vectors r for which a probability
measure P on F exists satisfying∑

{x:xi=1}
P{x} = ri,

∑
{x:Σjxj=i}

P{x} = qi, i = 1, . . . , n. (1)

To prove C.2, it is necessary to show that p ∈ Q, which can be done
by showing that {r : r ≺ q} ⊂ Q.

(a) To see that q ∈ Q, take

P{(0, . . . , 0)} = 1 − q1,

P{(1, 0, . . . , 0)} = q1 − q2,
...

P{(1, 1, . . . , 1, 0)} = qn−1 − qn,

P{(1, . . . , 1)} = qn,

P{x} = 0 if the components of x are not decreasing.

(b) If r = qΠ for some permutation matrix Π, then r ∈ Q. This
follows from (a), for the Ai can simply be relabeled to achieve r = q.

(c) Q is convex. To see this, suppose that p(j) is a probability measure
which satisfies (1) when r = r(j), j = 1, 2. Then αP (1) + (1 − α)P (2)

satisfies (1) when r = αr(1) + (1 − α)r(2), 0 ≤ α ≤ 1.

It follows from 2.B.3 that {r : r ≺ q} ⊂ Q, and hence, p ∈ Q. ||
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D Expected Values of Ordered Random
Variables

There are several ways that majorization arises in the study of ordered
random variables; indeed, the results of Chapter 6 concerning re-
arrangements have already suggested such possibilities. Some stochas-
tic ordering results for ordered random variables are given in Section H.
Here, the emphasis is on expected values.

The term “order statistics” is not quite appropriate here because
this term usually refers to random variables obtained by ordering in-
dependent, identically distributed random variables. In this section
both the independence assumption and the assumption of a common
distribution are sometimes dropped.

In keeping with the convention of majorization, random variables
are put in decreasing order below. Order statistics with decreasing
order are sometimes called reverse order statistics.

D.1. Proposition. If Xi, i = 1, . . . , n, are random variables with
EXi = μi <∞, then

(μ[1], . . . , μ[n]) ≺ (EX[1], . . . , EX[n]). (1)

First proof. According to B(2), (μ[1], . . . , μ[n]) ≺E2 (X[1], . . . ,X[n]).
Because E2 implies E4 (see Fig. 1 in Section 11.F), this majorization
implies (1). ||

Another proof of D.1 can be obtained as an application of B.3, but
the arguments leading to B.3 are repeated here.

Second proof. Let Uk be the set of all vectors in R n with k
components equal to one and n− k components equal to zero. Since

x[1] + · · · + x[k] = sup
u∈Uk

∑
uixi, k = 1, . . . , n,

it follows from Jensen’s inequality that

k∑
1

EX[i] ≥ sup
u∈Uk

∑
uiEXi =

k∑
1

μ[i], k = 1, . . . , n.

That
∑n

1 EX[i] =
∑n

1 μi is trivial. ||

Yet another proof of D.1 can be obtained as an application of 6.A.1.a.
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D.1.a. Let Z1, . . . , Zn be random variables and let Xi be the rank of
Zi, i = 1, . . . , n. If pi = EXi, then

(p1, . . . , pn) ≺ (n, n− 1, . . . , 2, 1). (2)

This observation is an application of D.1.

The following is a kind of converse of D.1.

D.2. Proposition. If a ≺ b, then there exist random variables
X1, . . . ,Xn such that EXi = ai and EX[i] = bi, i = 1, . . . , n.

Proof. Apply 6.A.1.d to write

aj =
1
m

m∑
i=1

αij and bj =
1
m

m∑
i=1

αi[j], j = 1, . . . , n,

where for each i, αi[j] are obtained by reordering αij decreasingly. Then
let the Xj be independent random variables such that

P{Xj = αij} = 1/m, i = 1, . . . ,m. ||

The majorization (1) of expected values has a counterpart for
probabilities. To see this, let Ai be the event {Xi ∈ Ei}, i = 1, . . . , n,
and let Bi be the event that at least i of the events Ai, . . . , An occur.
Then by B.1,

(P (A1), . . . , P (An)) ≺ (P (B1), . . . , P (Bn)).

If, for all i, Ei = (t,∞), then Bi = {X[i] > t} and it follows that

(F 1(t), . . . , F n(t)) ≺ (G1(t), . . . , Gn(t)), −∞ < t <∞, (3)

where F i(t) = P{Xi > t} and Gi(t) = P{X[i] > t}, i = 1, . . . , n.
It is easy to verify directly from the definition of majorization that

a ≺ b⇒ e− a ≺ e− b,

where e = (1, . . . , 1). It follows from (3) that

(F1(t), . . . , Fn(t)) ≺ (G1(t), . . . , Gn(t)), −∞ < t <∞, (4)

where Fi(t) = 1 − F i(t) and Gi(t) = 1 −Gi(t). In fact, it is also true
that under some circumstances (3) implies (1).

D.3. Proposition. Let F i(t) = P{Xi > t}, Gi(t) = P{Yi > t},
i = 1, . . . , n. If

G1(t) ≥ · · · ≥ Gn(t), −∞ < t <∞,
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and if (3), i.e.,

(F 1(t), . . . , F n(t)) ≺ (G1(t), . . . , Gn(t)), −∞ < t <∞,

then for all monotonic functions h such that the expectations exist,

(Eh(X1), . . . , Eh(Xn)) ≺ (Eh(Y1), . . . , Eh(Yn)).

Proof. Because of (3) and the stochastic ordering G1 ≥ · · · ≥ Gn,

k∑
1

Fi(t) ≤
k∑
1

Gi(t), k = 1, 2, . . . , n,

with equality for k = n, −∞ < t < ∞, whatever the ordering of
F 1, . . . , Fn. Suppose that h is increasing and relabel the Fi’s so that
Eh(Xi) is decreasing in i. Then by 17.A.2, for k = 1, . . . , n,

k∑
1

Eh(Xi) =
∫
h(t) d

k∑
1

Fi(t) ≤
∫
h(t) d

k∑
1

Gi(t) =
k∑
1

Eh(Yi),

with equality for k = n. Because of the stochastic ordering G1 ≥
· · · ≥ Gn, Eh(Yi) is decreasing in i, so this proves the majorization for
increasing h. If h is decreasing, replace h by −h and use the fact that
a ≺ b if and only if −a ≺ −b. ||

As special cases, it follows that under the hypotheses of D.3,

(EX1, . . . , EXn) ≺ (EY1, . . . , EYn)

and more generally,

(EX2k+1
1 , . . . , EX2k+1

n ) ≺ (EY 2k+1
1 , . . . , EY 2k+1

n ), k = 0, 1, . . . .

In case the Xi and Yi are nonnegative random variables, a similar
majorization also holds for even powers or noninteger powers.

The following result is due to Sen (1970) in the special case that
F1(x) = · · · = Fn(x) = 1

n

∑n
j=1Gj(x).

D.4. Proposition. Let F i(x) = P{Xi > x}, Gi(x) = P{Yi > x},
i = 1, . . . , n. If

(F 1(x), . . . , Fn(x)) ≺ (G1(x), . . . , Gn(x)), −∞ < x <∞,

then

X[1] ≥st Y[1] and X(1) ≤st Y(1).
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Proof . Because φ(z) =
∏
zi defines a Schur-concave function

on R n
+ ,

P{X[1] > t} =
n∏
1

F i(t) ≥
n∏
1

Gi(t) = P{Y[1] > t} for all t.

Similarly,

P{X(1) ≤ t} =
n∏
1

Fi(t) ≥
n∏
1

Gi(t) = P{Y(1) ≤ t},

so

P{X(1) > t} ≤ P{Y(1) > t} for all t. ||

F Star-Shaped with Respect to G

When F and G are distribution functions which satisfy F (0) =
G(0) = 0, then F is said to be star-shaped with respect to G if
ψ(x) = G−1F (x) is star-shaped on [0,∞) [see (11) in 16.B]. This
concept, sometimes written F ≤∗ G, yields a partial ordering on dis-
tribution functions of positive random variables which has been studied
by various authors [see Barlow and Proschan (1975; reprinted 1996)].
Several equivalent conditions for F ≤∗ G have been given by Marshall,
Olkin, and Proschan (1967). In reliability theory, the concept is of par-
ticular interest when G(x) = 1 − e−x, x ≥ 0 [again, see Barlow and
Proschan (1975; reprinted 1996)].

D.5. Proposition. Let X1, . . . ,Xn be positive random variables,
and for some positive star-shaped function ψ defined on [0,∞), let
Zi = ψ(Xi), i = 1, . . . , n. Then

P
{(
X1

/∑
Xi, . . . ,Xn

/∑
Xi

)
≺
(
Z1

/∑
Zi, . . . , Zn

/∑
Zi

)}
= 1.

Proof. This is an immediate application of 5.B.2. ||
The above proposition illustrates condition (1) of 11.A.
If the Zi above are replaced by random variables Yi distributed as

Zi but not so simply dependent on X1, . . . ,Xn, then D.5 may fail,
whereas the somewhat weaker condition E1 of 11.A still holds.
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D.6. Proposition. Let X1, . . . ,Xn be independent random vari-
ables with distribution F , and let Y1, . . . , Yn be independent random
variables with distribution G. If F is star-shaped with respect to G,
then

Eφ
(
X1

/∑
Xi, . . . ,Xn

/∑
Xi

)
≤ Eφ

(
Y1

/∑
Yi, . . . , Yn

/∑
Yi

)

for all Schur-convex functions φ such that the expectations are finite.

Proof . Since Y1, . . . , Yn have the same joint distribution as
Z1, . . . , Zn, where Zi = ψ(Xi), i = 1, . . . , n, it follows that

Eφ
(
Y1

/∑
Yi, . . . , Yn

/∑
Yi

)
= Eφ

(
Z1

/∑
Zi, . . . , Zn

/∑
Zi

)

for all Schur-convex functions φ such that the expectations are finite.
But as a consequence of D.5,

φ
(
X1

/∑
Xi, . . . ,Xn

/∑
Xi

)
≤ φ

(
Z1

/∑
Zi, . . . , Zn

/∑
Zi

)

with probability 1, so the expectations are also ordered. ||
We remark that Marshall, Olkin, and Proschan (1967) obtain the

somewhat weaker result that P4 of Section 11.F holds rather than E1

as in D.5.
The normalizations by total sums in D.5 and D.6 are necessary, but

possibly detract some from the interest of the results. The following
proposition eliminates the normalizations but substitutes the condition
that F and G have equal finite means.

D.7. Proposition (Barlow and Proschan, 1966). Let X1, . . . ,Xn be
independent random variables with distribution F , and let Y1, . . . , Yn
be independent random variables with distribution G. If F is star-
shaped with respect to G and if EX1 = EY1, then

EX[i]/EY[i] is increasing in i = 1, . . . , n,

and

(EX[1], . . . , EX[n]) ≺ (EY[1], . . . , EY[n]).

Proof. Let ψ(x) = G−1F (x) for x ≥ 0 and let c > 0. It is easily
verified that

EX[i] − cEY[i] =
∫ ∞

0
[x− cψ(x)]i

(
n

i

)
Fn−i(x)[1 − F (x)]i−1 dF (x).
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Since ψ is star-shaped on [0,∞), x− cψ(x) changes sign at most once
(+ to −) as x increases from 0 to ∞. It is straightforward to check
that the kernel

n!
(i− 1)!(n − i)!

Fn−i(x)[1 − F (x)]i−1

is totally positive of order 2 in i = 1, . . . , n and −x ≤ 0. Hence, by
the variation-diminishing property of totally positive kernels (18.A.5),
EX[i] − cEY[i] changes sign at most once (− to +) as i increases
from 1 to n. Since c > 0 is arbitrary and EY[i] > 0, this means that
EX[i]/EY[i] is increasing in i. By 5.B.1, this implies the majorization
result. ||

Open problem. D.7 shows a majorization between order statistics
(E4). Is it true that E3 or E2 holds? (See notation of Sections 11.A
and 11.F.) Clearly, P4 will fail because

∑
Xi and

∑
Yi have different

distributions.

Positive Dependence by Mixtures

Suppose that for each a ∈ A , F (a) is a univariate distribution function
and let P be a probability measure defined on a σ-field of subsets of A .
With suitable measurability conditions on F (a),

F (x1, . . . , xn) =
∫

A
F (a)(x1)F (a)(x2) · · ·F (a)(xn) dP (a)

is an n-variate distribution function. Random variables X1, . . . ,Xn

having such a distribution, or the distribution itself, are said to be
positively dependent by mixture. Such distributions are studied, e.g.,
by Dykstra, Hewett, and Thompson (1973) and by Shaked (1977).
They arise naturally from various models for dependence. Examples
given by Shaked (1977) include the symmetric normal distribution
with nonnegative correlation and exchangeable multivariate Poisson,
geometric, logistic, gamma, t, beta, and F distributions.

There is good reason for using the term “positively dependent” here:
X1, . . . ,Xn tend to be more alike than Y1, . . . , Yn, where the Yi’s are
independent and have the same common distribution as the Xi’s. This
translates precisely into a majorization relating the distribution func-
tions or expected values of the ordered Xi’s and Yi’s. The treatment
here follows that of Shaked (1977) but differs in some respects because
reverse order statistics are considered. Moreover, Shaked found directly
the majorization relating expected values, whereas here use is made
of D.3.



D. Expected Values of Ordered Random Variables 467

The following lemma is a useful preliminary.

D.8. Lemma. Let

hi,n(p) =
n∑
j=i

(
n

j

)
pj(1 − p)n−j,

and let Hk(p) =
∑k

i=1 hi,n(p). The function Hk is concave on [0, 1].

Proof . Because Hn(p) = np, the result is true for k = n. It is
straightforward to verify that, for 1 ≤ k ≤ n− 1, the derivative

H ′
k(p) = n[1 − hk,n−1(p)]

decreases on [0, 1]. ||
D.9. Proposition (Shaked, 1977). Let X1, . . . ,Xn be positively
dependent by mixtures and let Y1, . . . , Yn be independent random vari-
ables with the same common marginal distributions as X1, . . . ,Xn.
Denote the distribution function of X[i] by Fi and the distribution
function of Y[i] by Gi. Then

(F 1(x), . . . , Fn(x)) ≺ (G1(x), . . . , Gn(x)), −∞ < x <∞.

Proof. It is well known that

F i(x) =
∫

A
hi,n(F

(a)(x)) dP (a).

Then, by using D.8 and Jensen’s inequality,

k∑
i=1

F i(x) =
∫

A

k∑
i=1

hi,n(F
(a)(x) dP (a)) =

∫
A
Hk(F

(a)(x)) dP (a)

≤ Hk

(∫
A
F

(a)(x) dP (a)
)

=
k∑
i=1

Gi(x), k = 1, . . . , n− 1.

Of course,
∑n

1 F i(x) =
∑n

1 Gi(x), and this completes the proof. ||
Another proof and a generalization of the above result are obtained

by Shaked (1978a); see also Shaked (1978b).

D.10. Proposition (Shaked, 1977). Under the hypotheses of D.9,

(EX[1], . . . , EX[n]) ≺ (EY[1], . . . , EY[n]).

Proof. This follows from D.3 and D.9. ||
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Although D.10 follows easily from D.9, the reverse is also true. The
reason for this is that if X1, . . . ,Xn are positively dependent by mix-
tures and g is monotonic on the common support of the Xi’s, then
g(X1), . . . , g(Xn) are positively dependent by mixtures. Thus it follows
from D.10 that

(Eg(X[1]), . . . , Eg(X[n])) ≺ (Eg(Y[1]), . . . , Eg(Y[n])).

In particular, if g(z) = 0 for z ≤ x and g(z) = 1 for z > x, then D.9 is
obtained.

Proposition D.10 says that condition E4 of Section 11.F holds for
X1, . . . ,Xn and Y1, . . . , Yn; one can ask if the stronger results E2 or P4

hold. The bivariate normal distribution with common marginals and
positive correlation provides a counterexample to

P{X(1) +X(2) ≤ x} = P{Y(1) + Y(2) ≤ x},
thereby showing that P4 fails. Somewhat more complex coun-
terexamples showing that E2 fails have been given by Shaked
(1977).

Dependence Ordering of Exchangeable
Random Variables

The inequalities in D.9 and D.10 relate certain exchangeable random
vectors with their counterparts having independent components but
the same marginal distributions. Shaked and Tong (1985) propose sev-
eral related dependence or dispersion orderings among exchangeable
random vectors with common marginal distributions.

For two n-dimensional exchangeable random vectors X and Y with
the same marginal distributions, three dispersion orders are defined as
follows:

D.11. Definition.

(I) Y is more dispersed in the sense I, denoted X ≺I Y , if Σn
1ci = 0

implies ∣∣∣∑n

1
ciX(i)

∣∣∣ ≤st
∣∣∣∑n

1
ciY(i)

∣∣∣ .
(II) X is more dispersed in the sense II, denoted X ≺II Y , if

(FX[1](t), . . . , FX[n](t)) ≺ (FY[1](t), . . . , FY[n](t)) for all t.
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(III) X is more dispersed in the sense III, denoted X ≺III Y , if

(EX[1], . . . , EX[n]) ≺ (EY[1], . . . , EY[n]).

Note that it is only assumed that X and Y are exchangeable; it
is not assumed that X and Y are positively dependent by mixtures.
Consequently, the arguments in the preceding section (assuming de-
pendence by mixing) provide some motivation for the following results
proved by Shaked and Tong (1985) for exchangeable vectors X and Y
for which the marginal distributions of X and Y are equal:

X ≺I Y ⇒ X ≺III Y

and

X ≺II Y ⇒ X ≺III Y.

Among exchangeable distributions with a given marginal distribution,
the distribution with independent marginals is the most dispersed in
all three orderings. Shaked and Tong (1985) provide an extensive list
of models in which the above orderings have interesting interpretations
(many, but not all, are positively dependent by mixtures).

E Eigenvalues of a Random Matrix

In Chapter 9, a number of majorization results for eigenvalues are
obtained as consequences of extremal representations. Because these
representations possess convexity properties, the methods introduced
in Section B apply to yield results comparing the expectation of a
function of the eigenvalues of a random matrix with the same function
of the eigenvalues of the expected value of the random matrix.

Eigenvalues of a Random Hermitian Matrix

If H is an n× n Hermitian matrix, then the eigenvalues λi(H) are all
real and can be arranged in decreasing order:

λ1(H) ≥ · · · ≥ λn(H).

With this convention and the notation

Uk = {U :U is a k × n complex matrix and UU∗ = Ik},
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it follows (see 20.A.2) that

k∑
1

λi(H) = max
U∈Uk

trUHU∗, k = 1, . . . , n. (1)

Of course, for k = n, trUHU∗ = trH is independent of U and∑n
1 λi(H) = trH.

E.1. Theorem (Cacoullos and Olkin, 1965). If Z is a random n×n
Hermitian matrix, then

(Eλ1(Z), . . . , Eλn(Z)) � (λ1(EZ), . . . , λn(EZ)). (2)

Proof. Using the representation (1), weak majorization follows from
Proposition B.3. Strong majorization then follows because

∑n
1 λi(Z) =

trZ and the trace is linear, so
∑n

1 Eλi(Z) = trEZ =
∑n

1 λi(EZ). ||
The special result Eλ1(Z) ≥ λ1(EZ), Eλn(Z) ≤ λn(EZ) was noted

by van der Vaart (1961), who gave a proof communicated by Theodore
W. Anderson.

Notice that as a companion to (2),

(λ1(EZ), . . . , λn(EZ)) � (a11, . . . , ann), (3)

where a11, . . . , ann are the diagonal elements of EZ. This result follows
from 9.B.1.

E.2. Theorem (Cacoullos and Olkin, 1965). If Z is a random m×m
positive definite Hermitian matrix with expectation EZ = A, and if
C is an n×m complex matrix, then

(Eλ1(CZ−1C∗), . . . , Eλn(CZ−1C∗))

�w (λ1(CA−1C∗), . . . , λn(CA−1C∗)). (4)

If n ≤ m and C is of rank n, then

(Eλ1(CZ−1C∗)−1, . . . , Eλn(CZ−1C∗)−1)

�w (λ1(CA−1C∗)−1, . . . , λn(CA−1C∗)−1). (5)

Proof . Consider (4) first. The representation (1) applied to the
Hermitian matrix CH−1C∗ yields

k∑
1

λi(CH−1C∗) = max
U∈Uk

trUCH−1C∗U∗, k = 1, . . . , n.
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To apply B.3, it is only necessary to note that g(V,H) = trV H−1V ∗
is convex in H for each fixed V (see 16.E.7.f).

The proof of (5) is similar but requires the fact (CH−1C∗)−1 is a
concave function of H (see 16.E.7.h), so that trU(CH−1C∗)−1U∗ is
also a concave function of H. ||

Although the right-hand sides of (4) and (5) are related because
λi(A−1) = [λn−i+1(A)]−1, i = 1, . . . , n, the left-hand sides of (4) and
(5) are not obtainable one from the other.

IfW and Z are independent random n×n positive definite Hermitian
matrices with EZ = A, EW = B, then the roots of |W − λZ| = 0
are of interest in multivariate analysis. These roots are the eigenvalues
of WZ−1 and the eigenvalues of W 1/2Z−1W 1/2, where W 1/2 is the
positive definite square root of W .

E.2.a. If W and Z are independent random n × n positive definite
matrices, then

(Eλ1(WZ−1), . . . , Eλn(WZ−1)) �w (λ1(BA−1), . . . , λn(BA−1)). (6)

Proof. With C = W 1/2 in (4), it follows that

E(λ1(W 1/2Z−1W 1/2), . . . , λn(W 1/2Z−1W 1/2))

�w (λ1(W 1/2A−1W 1/2), . . . , λn(W 1/2A−1W 1/2))

= (λ1(A−1/2WA−1/2), . . . , λn(A−1/2WA−1/2)).

Taking expectations again and reapplying (4) with W in place of Z
and A−1/2 in place of C yields (6). ||

Singular Values of a Random Complex Matrix

Let A be an n×m complex matrix and with t = min(m,n), let

σ1(A) ≥ · · · ≥ σt(A)

denote the singular values of A arranged in decreasing order. From
20.B.1.a, it follows that

k∑
1

σi(A) = max
(U,V )∈Uk

R trUAV ∗, k = 1, . . . , t, (7)
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where Uk = {(U, V ) :U and V are complex matrices, U is k × n, V is
k ×m, and UU∗ = Ik = V V ∗}.
E.3. Theorem. If Z is a random n×m complex matrix with finite
expectation EZ, then

(Eσ1(Z), . . . , Eσt(Z)) �w (σ1(EZ), . . . , σt(EZ)).

Proof. The proof is a direct application of B.3, making use of (7)
and noting that ER trUZV ∗ = R trU(EZ)V ∗. ||

There is an extension of E.3 to several matrices which uses the ex-
tremal representation 20.B.3: If Z1, . . . , Zl are independent random
n× n matrices with finite expectations A1, . . . , Al, then(

E
l∏
1

σ1(Zi), . . . , E
l∏
1

σn(Zi)

)
�w

(
l∏
1

σ1(Ai), . . . ,
l∏
1

σn(Ai)

)
.

Converse Theorems

E.4. Proposition. If b � a, then there exists a random n ×
n Hermitian matrix Z such that Eλi(Z) = b[i], λi(EZ) = a[i],
i = 1, . . . , n.

Proof. Take Z to be diagonal and apply D.2. ||
The question whether converses can be given for the other majoriza-

tions of this section is unresolved. For (4) of E.2, one would like the
following: Let C be a given n×m matrix and suppose CC∗ has rank r.
Given b �w a, a[i] > 0, b[i] > 0, i = 1, . . . , r, and a[i] = b[i] = 0,
i = r + 1, . . . , n, find a distribution for a random positive definite
m×m Hermitian matrix Z such that

Eλi(CZ−1C∗) = b[i], λi[C(EZ)−1C∗] = a[i], i = 1, . . . , n.

Unless b[i] ≥ a[i], i = 1, . . . , n, it can be shown that no such distribution
for Z exists that concentrates all mass on diagonal matrices even when
m = n and C is diagonal. This suggests that if a converse theorem for
(4) of E.2 is true, then it is not as trivial as E.4.

Efficiency of Estimators

In many statistical problems involving a random n × m matrix Z,
the expectation EZ = A is a natural parameter for the distribution
of Z. In choosing a procedure for making a statistical inference, the
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concept of invariance is often utilized. In particular, statistics invari-
ant under the group of transformations Z → ΓZΔ, where Γ and Δ
are unitary, are often used. This group of transformations induces
the transformation A → ΓAΔ in the parameter space. Because the
maximal invariants here are (σ1(Z), . . . , σt(Z)) and (σ1(A), . . . , σt(A)),
where t = min(m,n), it follows that any statistic invariant under this
group is a function of the singular values σ1(Z), . . . , σt(Z) of Z and,
moreover, the distribution of the statistics depends upon the parame-
ter A only through the singular values σ1(A), . . . , σt(A). This means,
for example, that any invariant test of a hypothesis will be based upon
a function of the singular values σi(Z), and the rejection probability
will be a function of the singular values σi(A). Because EZ = A, Z is
itself an unbiased estimator of A. But E.3 shows that

∑k
1 σi(Z) is a

positively biased estimator of
∑k

1 σi(A).
If Z is a random positive definite matrix with EZ = A, then a group

of transformations that often arises is Z → ΓZΓ∗, where Γ is unitary.
In this case, the eigenvalues take the place of the singular values in the
above comments.

With two random positive definite Hermitian matrices U and V
having expectations EU = A and EV = B, invariance under the group
(U, V ) → (LUL∗, LV L∗), where L is nonsingular, may be a natural
requirement, say, when testing for equality of A and B. The induced
group on the parameter space is (A,B) → (LAL∗, LBL∗). In this
case, the maximal invariants in the sample and parameter spaces are
the eigenvalues of UV −1 and the eigenvalues of AB−1. A comparison
between these is provided by E.2.a.

The matrix (CV −1C∗)−1 arises from efficiency considerations in a
regression model. Suppose that Y is a p-dimensional random vector
with expectation EY = βX and covariance matrix cov(Y ) = Σ, where
β is 1×m and X is a known m× p matrix of rank m ≤ p. When Σ is
known, the Gauss–Markov estimate of β is

β̂ = Y Σ−1X∗(XΣ−1X∗)−1;

β̂ has covariance matrix

cov(β̂) = (XΣ−1X∗)−1.

When Σ is unknown, a consistent estimate Σ̂ may be substituted to
provide an estimated cov(β):

est cov(β̂) = (XΣ̂−1X∗)−1.
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Various measures of efficiency of an estimator depend upon the
eigenvalues of the covariance matrix (XΣ−1X∗)−1 of β̂. When Σ is
unknown, the efficiency can be estimated using the eigenvalues of
(XΣ̂−1X ′)−1. Comparisons between these sets of eigenvalues are given
by E.2.

F Special Results for Bernoulli and
Geometric Random Variables

In Section 11.C, families of distributions are studied which preserve
symmetry and convexity in the sense that ψ(θ) = Eθφ(x) is sym-
metric and convex whenever φ is symmetric and convex (and the
expectation is defined). Similarly, families of distributions that pre-
serve Schur-convexity are found in Section 11.E. There are some cases
not quite so neat in that properties obtained for ψ do not coincide
with those imposed upon φ. Some such results are given here. Assume
throughout the existence of all indicated expectations.

Bernoulli Random Variables

Suppose that X1, . . . ,Xn are independent random variables with
Bernoulli distributions

P{Xi = 1} = pi, P{Xi = 0} = 1 − pi, i = 1, . . . , n. (1)

Hoeffding (1956) showed that, for p = (p1, . . . , pn), and for the vector
λ = (p, . . . , p), p =

∑
pi/n,

Epψ
(∑

Xi

)
≤ Eλψ

(∑
Xi

)
,

where ψ : {0, 1, . . . , n} → R is convex. Karlin and Novikoff (1963) show
that the vector λ can be replaced by any vector majorized by p. This
generalization of Hoeffding’s result has also been proved by Gleser
(1975), Karlin and Studden (1966), and Rinott (1973).

F.1. Proposition (Karlin and Novikoff, 1963). Let X1, . . . ,Xn be
independent random variables with Bernoulli distributions (1). If
ψ : {0, 1, . . . , n} → R is convex, then g(p) = Epψ(

∑n
1 Xi) is a

Schur-concave function of p.

Proof. If Ep1,p2ψ(X1 +X2 + z) is Schur-concave in p1 and p2, then
so is Epφ(X) = Ep3,...,pn

{Ep1,p2[ψ(X1+X2+
∑n

3 Xi)|
∑n

3 Xi]}. Because
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Schur-convexity in pairs implies Schur-convexity (2.B.1), it is sufficient
to prove the result for n = 2, in which case

Epψ(X1+X2) = [ψ(2)−2ψ(1)+ψ(0)]p1p2+(p1+p2)[ψ(1)−ψ(0)]+ψ(0).

Because p1p2 is Schur-concave in p1 and p2, and because ψ is convex
(see 16.B.10.a), ψ(2)− 2ψ(1)+ψ(0) ≥ 0 and the desired result follows
(for majorization comparison, p1 + p2 is fixed). ||

A generalization of F.1 is given in 15.E.

F.1.a. Proposition. Let X1, . . . ,Xn be independent random vari-
ables with Bernoulli distributions (1) and let Ri = − log pi for
i = 1, . . . , n. If ψ is a real function defined on {0, 1, . . . , n} such that

ψ(0) ≤ · · · ≤ ψ(n − 1),

then g(R1, . . . , Rn) = ERψ(
∑
Xi) is a decreasing Schur-convex

function of R1, . . . , Rn.

Proof. As in F.1, it is sufficient to prove that ER1,R2ψ(X1 +X2 +z)
is a decreasing Schur-convex function of R1, R2 for z = 0, 1, . . . , n− 2.
Note that

ER1,R2ψ(X1 +X2 + z) = [ψ(2 + z) − 2ψ(1 + z) + ψ(z)]e−(R1+R2)

+ (e−R1 + e−R2)[ψ(1 + z) − ψ(z)] + ψ(z).

Because e−x is a decreasing convex function, e−R1 +e−R2 is decreasing
and Schur-convex. Since ψ(1+z)−ψ(z) ≥ 0, the proof is complete. ||

F.1.b. Proposition. Let X1, . . . ,Xn be independent random vari-
ables with binomial distributions

P{Xi = x} = (mx )pxi (1 − pi)m−x, x = 0, 1, . . . ,m.

If ψ : {0, 1, . . . ,mn} → R is convex, then Epψ(
∑
Xi) is a Schur-

concave function of p.

Proof. Because each Xi is a sum of m independent random vari-
ables with a Bernoulli distribution, this result follows directly from
Proposition F.1 and 5.A.1.g or 5.A.6. ||

In the above proposition, the fact that m does not depend upon i is
essential.



476 12. Probabilistic, Statistical, and Other Applications

Geometric Random Variables

Let X1, . . . ,Xn be independent random variables and suppose that Xi

has a geometric distribution with parameter pi; i.e.,

P{Xi = k} = pi(1 − pi)k, k = 0, 1, . . . , i = 1, . . . , n. (2)

It is surprising that, for such random variables no results are known
regarding either the preservation of symmetry and convexity (Section
16.C), or regarding the preservation of Schur-convexity (Section 16.E).
However, with the notation pi = 1/ai, i = 1, . . . , n, the following result
can be given.

F.2. Proposition (Rinott, 1973). Let X1, . . . ,Xn be independent
random variables with geometric distributions (2). If φ : R n → R
is symmetric, convex in each variable separately, and if g(u, v, ẋ) =
φ((u+v)/2, (u−v)/2, ẋ) is increasing in v and L-superadditive in u and
v for all fixed ẋ ∈ R n−2 (see Definition 6.C.2), then ψ(a) = Eaφ(X)
is Schur-convex in a.

This result was proved by Rinott (1973) by verifying the derivative
conditions of 3.A.4. The details are omitted here.

G Weighted Sums of Symmetric Random
Variables

If φ is a continuous symmetric convex function on R n and X1, . . . ,Xn

are exchangeable, then according to 11.B.2, Eφ(a1X1, . . . , anXn) is
symmetric and convex, hence Schur-convex, in a = (a1, . . . , an). In
particular, when X1, . . . ,Xn are independent and g is convex,

ψ(a) = Eg
(∑

aiXi

)

is Schur-convex; i.e.,

a ≺ b⇒ ψ(a) ≤ ψ(b). (1)

For certain select functions g :R → R including some that are con-
vex and certain random variablesX1, . . . ,Xn, there is a kind of reversal
of this inequality, namely,

(a2
1, . . . , a

2
n) ≺ (b21, . . . , b

2
n) ⇒ ψ(a) ≥ ψ(b). (2)

Notice that there is no implication relating the conditions a ≺ b and
(a2

1, . . . , a
2
n) ≺ (b21, . . . , b

2
n), although it is true that a ≺ b implies

(a2
1, . . . , a

2
n) ≺w (b21, . . . , b

2
n) (see 5.A.1.b).
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There are companion theorems to (2) that give conditions under
which, for independent normal (mean 0, variance 1) random variables
Z1, . . . , Zn,

Eg
(∑

aiXi

)
≤ Eg

(∑
aiZi

)
≡ Eg

(
c
∑

Zi

)
,

where c2 =
∑
a2
i /n.

G.1. Theorem. Suppose that X1, . . . ,Xn are independent, iden-
tically distributed random variables, with distributions symmetric
about zero, and having finite moments μ2r = EX2r

j , r = 1, . . . ,m. If
λr ≡ μ2r/[2rΓ(r+ 1

2)/
√
π ] is logarithmically concave in r = 0, 1, . . . ,m,

then for m = 1, 2, . . . ,

(a2
1, . . . , a

2
n) ≺ (b21, . . . , b

2
n) implies

E

(
n∑
1

aiXi

)2m

≥ E

(
n∑
1

biXi

)2m

. (3)

Notice that for a normal distribution with zero expectation, λr is log-
arithmically linear, and equality holds in the conclusion of (3) because∑
a2
i =

∑
b2i .

If U has a χ2 distribution with one degree of freedom, that is, U has
density

fU(u) = u−1/2e−u/2/
√

2π, u ≥ 0, (4)

then EU r = 2rΓ(r + 1
2)/

√
π; thus λr is the rth moment of X2

i di-
vided by the rth moment of U . By Lyapunov’s inequality 16.D.1.d,
μ2r and EU r are logarithmically convex in r ≥ 0, so λr is a ratio of
two logarithmically convex functions.

G.1.a. Corollary (Eaton, 1970). If X1, . . . ,Xn are independent
symmetric Bernoulli random variables, i.e.,

P{Xi = 1} = P{Xi = −1} = 1
2 , i = 1, . . . , n,

then (3) holds.

Proof. Here, μ2r ≡ 1. Since EU r is logarithmically convex, λr is
logarithmically concave. ||

Efron (1969) obtains (3) for the special case ai = 1/
√
n, i = 1, . . . , n;

this result is also a special case of G.2 ahead. Efron encounters G.1.a

in studying the distribution of Student’s t-statistic
∑n

1 Ui/
√
U2
i when

the underlying joint distribution of ε1U1 + · · · + εnUn is invariant for
all choices εi = ±1, i = 1, . . . , n.
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To indicate some additional distributions for X1, . . . ,Xn that satisfy
the conditions of G.1, let V have an exponential distribution with
density

fV (v) = e−v, v ≥ 0.

Then EV r/EU r is logarithmically concave (Karlin, Proschan, and
Barlow, 1961, Theorem 1). Furthermore, if T is a nonnegative random
variable having an increasing hazard rate (IHR) (i.e., logP{T > t} is
concave in t ≥ 0), then ET r/EV r is logarithmically concave (Barlow,
Marshall, and Proschan, 1963). This means that ET r/EU r is loga-
rithmically concave because the product of logarithmically concave
functions is logarithmically concave.

The class of IHR distributions is quite broad and includes the gamma
distributions with shape parameter ≥ 1 and uniform distributions. As
a consequence of G.1, it follows that (3) holds whenever X2

i has an IHR
distribution, and the Xi’s are independent with common distribution
symmetric about 0. See Marshall and Olkin (2007, Section 4C).

Proof of G.1. Assume, without loss of generality, that
∑n

1 a
2
i =∑n

1 b
2
i = 1 and let θi = a2

i , i = 1, . . . , n. Then

E (
∑n

1 aiXi)
2m =

∑
m1,...,mn

(
2m

m1, . . . ,mn

) n∏
1

ami

i

n∏
1

EXmi

i

=
∑(

2m
2k1, . . . , 2kn

) n∏
1

a2ki

i

n∏
1

μ2ki

=
∑[(

2m
2k1, . . . , 2kn

)/(
m

k1, . . . , kn

)] n∏
1

μ2ki

(
m

k1, . . . , kn

) n∏
1

θki

i

= E
∑[(

2m
2K1, . . . , 2Kn

)/(
m

K1, . . . ,Kn

)] n∏
1

μ2Ki
,

where K1, . . . ,Kn have a multinomial distribution.
According to 11.E.11, this expectation is a Schur-concave function

of θ1, . . . , θn if

h(k1, . . . , kn) =
[(

2m
2k1, . . . , 2kn

)/(
m

k1, . . . , kn

)] n∏
1

μ2ki

is Schur-concave. By using the Gauss–Legendre duplication formula
(16.B.8b)

Γ(2r + 1)/Γ(r + 1) = 22rΓ(r + 1
2)/

√
π, (5)
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h can be rewritten in the form

h(k1, . . . , kn) =
Γ(2m+ 1)
Γ(m+ 1)

n∏
1

Γ(ki + 1)
Γ(2ki + 1)

n∏
1

μ2ki

=
Γ(2m+ 1)

2mΓ(m+ 1)

n∏
1

μ2ki

2kiΓ(ki + 1
2 )/

√
π

=
Γ(2m+ 1)

2mΓ(m+ 1)

n∏
1

λki
.

But this is Schur-concave in k1, . . . , kn if and only if λj is a
logarithmically concave function of j (see 3.E.1). ||

According to Theorem G.1, E(
∑n

1 aiXi)2m is a Schur-concave
function of a2

1, . . . , a
2
n for certain independent random variables Xi,

including those that have a symmetric Bernoulli distribution. For such
random variables, Schur-concavity is known to hold for a wider class
of functions.

G.2. Theorem (Eaton, 1970). Suppose that X1, . . . ,Xn are inde-
pendent symmetric Bernoulli random variables; i.e.,

P{Xi = 1} = P{Xi = −1} = 1
2 , i = 1, . . . , n.

If g : R → R is continuously differentiable and

t−1[g′(t+ Δ) − g′(−t+ Δ) + g′(t− Δ) − g′(−t− Δ)] (6)

is increasing in t > 0 whenever Δ ≥ 0, then

(a2
1, . . . , a

2
n) ≺ (b21, . . . , b

2
n) implies Eg

(
n∑
1

aiXi

)
≤ Eg

(
n∑
1

biXi

)
.

The proof of this, which is omitted here, consists of verifying the
conditions of 3.A.4; in fact, this approach leads directly to (6).

The condition (6) of G.2 is equivalent to the condition that

t−1E[g′(t+W ) − g′(−t+W )]

is increasing in t for all bounded symmetric random variables W . A
sufficient condition for (6) is that

t−1[g′(t+ Δ) − g′(−t+ Δ)]

is increasing in t > 0 for all real Δ. Examples of functions which satisfy
(6) are

g(t) = tm, m = 1, 2, . . . , (7)

g(t) = eat, a �= 0, (8)

g(t) = eat + e−at, a �= 0. (9)
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Of course, any odd function satisfies (6), but these lead only to the
inequality 0 ≤ 0 because

∑
aiXi and

∑
biXi are symmetric random

variables. Since the class of functions satisfying (6) is convex, exam-
ple (9) is obtainable from (8). By the same token, (8) is obtainable
from (7).

The following theorem does not involve majorization but is included
because of its close relationship with G.1.

G.3. Theorem. Suppose that X1, . . . ,Xn satisfy the hypotheses of
G.1 and, additionally, suppose EX2

i = 1. Let Z1, . . . , Zn be indepen-
dent normal (mean 0, variance 1) random variables. If

∑
a2
i = 1,

then

E
(∑

aiXi

)2m ≤ E

(
1√
n

∑
Zi

)2m

=
(2m)!
2mm!

, m = 1, 2, . . . . (10)

For the case that the Xi are symmetric Bernoulli random variables,
G.3 is due to Khintchine (1923). An independent proof in this case
was given by Efron (1969), who used the fact that it is sufficient to
prove

E

(
1√
n

n∑
1

Xi

)2m

≤ E

(
1√
n

n∑
1

Zi

)2m

, m = 1, 2, . . . . (11)

Efron’s proof is based on moment comparisons. As a consequence of
(10), by treating the weights as random variables, Efron obtains the
inequality

E

n∑
1

[
Yj

/
n∑
1

Y 2
i

]2m

≤ E

(
1√
n

n∑
1

Zi

)2m

, m = 1, 2, . . . ,

for random variables Y1, . . . , Yn such that (ε1Y1, . . . , εnYn) has the
same distribution for every choice of ε1, . . . , εn, εi = ±1.

Proof of G.3. Let U have a χ2 distribution with one degree of
freedom; i.e., let U have the density (4). Then (11) can be rewritten
as
∑(

2m
2k1, . . . , 2kn

) n∏
1

EUki

n∏
1

μ2ki

EUki
≤
∑(

2m
2k1, . . . , 2kn

) n∏
1

EUki .

Since λr = μ2r/EU
r is logarithmically concave, λ1/r

r is decreasing in
r = 1, 2, . . . . By hypothesis, λ1 = 1. Thus, (11) is immediate, and (10)
follows with the aid of G.1. ||
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Theorem G.3 is a generalization of Khintchine’s (1923) result to
random variables that need not be symmetric Bernoulli. Eaton (1970)
has given a generalization of Khintchine’s result which replaces the
functions g(x) = x2m by a more general class of functions. Newman
(1975a, b, 1975/1976) generalizes Khintchine’s result by allowing some
dependence of the random variables (arising in ferromagnetic models)
or by permitting them to be other than symmetric Bernoulli random
variables.

Bounds for a Ratio of Expectations

Suppose that T1, . . . , Tn are independent symmetric random variables
with ET 2k

i = μ2k. Then

E

(
n∑
1

aiTi

)2m

=
∑(

2m
2k1, . . . , 2kn

) n∏
1

a2ki

i

n∏
1

μ2ki
.

Since
∏n

1 μ2ki
is Schur-convex in k1, . . . , kn (Tong, 1977; see also 3.E.3),

μn
2k

≤
n∏
1

μ2ki
≤ μ2m,

where k =
∑
ki/n, m =

∑
ki. Hence,

μn
2k

≤ E(
∑n

1 aiTi)
2m

E(
∑n

1 aiXi)2m
≤ μ2m,

where X1, . . . ,Xn are independent symmetric Bernoulli random
variables.

H Stochastic Ordering from Ordered
Random Variables

Many results of Chapter 11 give conditions on random vectors X and
Y that imply

∑n
1 Xi ≤st

∑n
1 Yi. For example, suppose U ≺ P1V or

even U ≺ P3V and let Xi = g(Ui), Yi = g(Vi), i = 1, . . . , n, where
g is continuous and convex. Then

∑
Xi ≤st

∑
Yi because U ≺ P3V

requires
∑
g(Ui) ≤st

∑
g(Vi). Another example, not quite so trans-

parent, is given in 11.E.8.b. The purpose of this section is to give some
stronger stochastic ordering results that give still other examples of
stochastically ordered sums.
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Exponential Random Variables

H.1. Theorem (Proschan and Sethuraman, 1976). Let Y1, . . . , Yn be
independent random variables with the same exponential distribution

P{Yi > t} = e−t, t ≥ 0, i = 1, . . . , n.

Let X(θ) = (Y1/θ1, . . . , Yn/θn), where θi > 0 for all i. If λ ≺ ν on R n
++,

then

(X(λ)
(1) , . . . ,X

(λ)
(n) ) ≤st (X(ν)

(1) , . . . ,X
(ν)
(n)).

Proof. Suppose first that n = 2. Then, because λ1 + λ2 = ν1 + ν2,

P{X(λ)
(1) > x} = P{X(ν)

(1) > x} = e−(λ1+λ2)x, x ≥ 0.

Next, observe that for 0 ≤ x1 ≤ x2,

P{X(λ)
(2) > x2|X(λ)

(1) = x1} = [λ1e
−λ2(x2−x1) + λ2e

−λ1(x2−x1)]/(λ1 + λ2)

= [λ1e
λ1(x2−x1) + λ

λ2(x2−x1)
2 ]e−(x2−x1)(λ1+λ2)/(λ1 + λ2).

Because g(z) = zeaz is convex in z for all a ≥ 0, it follows from 3.C.1
that P{X(λ)

(2) > x2|X(λ)
(1) = x1} is Schur-convex in λ.

By 17.A.2, U ≤st V if and only if h(U) ≤st h(V ) for all increasing
functions h. Thus from the stochastic ordering

P{X(λ)
(2) > x2|X(λ)

(1) = x1} ≤ P{X(ν)
(2) > x2|X(ν)

(1) = x1},
it follows that for any increasing function h : R 2 → R,

P{h(x1,X
(λ)
(2) ) > t|X(λ)

(1) = x1} ≤ P{h(x1,X
(ν)
(2) ) > t|X(ν)

(1) = x1}.

Because X
(λ)
(1) and X

(ν)
(1) have the same distribution, unconditioning

yields

P{h(X(λ)
(1) ,X

(λ)
(2) ) > t} ≤ P{h(X(ν)

(1) ,X
(ν)
(2) ) > t}. (1)

This proves the theorem for n = 2.
Because of 3.A.5, it is sufficient to prove the theorem for the case

that λ and ν differ in but two components, say λi = νi, i = 3, . . . , n.
By 17.B.6, it follows from (1) that there exist random variables V (λ)

1 ,
V

(λ)
2 , V (ν)

1 , V (ν)
2 such that

(i) (V (λ)
1 , V

(λ)
2 ) and (X(λ)

(1) ,X
(λ)
(2) ) have the same distribution,
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(ii) (V (ν)
1 , V

(ν)
2 ) and (X(ν)

1 ,X
(ν)
2 ) have the same distribution,

(iii) V (λ)
1 ≤ V

(ν)
1 , V (λ)

2 ≤ V
(ν)
2 with probability 1,

and these random variables can be chosen so as to be independent of
Y3, . . . , Yn. Consequently,

V (λ) = (V (λ)
1 , V

(λ)
2 , Y3/λ3, . . . , Yn/λn)

≤ (V (ν)
1 , V

(ν)
2 , Y3/ν3, . . . , Yn/νn) = V (ν)

with probability 1. Thus (V (λ)
(1) , . . . , V

(λ)
(n) ) ≤ (V (ν)

(1) , . . . , V
(ν)
(n) ) with

probability 1, so that for all increasing functions h : R n → R,

Eh(V (λ)) ≤ Eh(V (ν)).

Because

(V (λ)
(1) , . . . , V

(λ)
(n) ) and (X(λ)

(1) , . . . ,X
(λ)
(n) ) have the same distribution,

(V (ν)
(1)
, . . . , V ν

(n)) and (X(ν)
(1)
, . . . ,X

(ν)
(n)

) have the same distribution,

this completes the proof. ||
H.1.a. In the notation of H.1, if λ ≺w ν on R n

++, then

(X(λ)
(1) , . . . ,X

(λ)
(n) ) ≤st (X(ν)

(1) , . . . ,X
(ν)
(n)).

Proof. If λ ≺w ν on Rn++, then by 5.A.9.a, there exists θ ∈ R n
++

such that θ ≥ ν and λ ≺ θ. Then with θ in place of ν in H.1, it follows
that (X(λ)

(1) , . . . ,X
(λ)
(n) ) ≤st (X(θ)

(1) , . . . ,X
(θ)
(n)). Because θ ≥ ν, it follows

that X(θ)
(i) ≤st X

(ν)
(i) , i = 1, . . . , n. ||

H.1.b. Corollary (Proschan and Sethuraman, 1976). Under the
conditions of H.1.a,

∑
i∈I X

(λ)
(i) ≤st

∑
i∈I X

(ν)
i for all subsets I of

{1, . . . , n}. Thus
k∑
i=1

X
(λ)
[i] ≤st

k∑
i=1

X
(ν)
[i] ,

k∑
i=1

X
(λ)
(i) ≤st

k∑
i=1

X
(ν)
(i) , k = 1, . . . , n,

and in particular,
n∑
1

X
(λ)
i ≤st

n∑
1

X
(ν)
i .

Proof. This follows from H.1.a since I{z:Σi∈Izi>t}(x) is increasing
in x. ||
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Boland, El-Neweihi, and Proschan (1994) prove that if λ ≺ ν, then∑n
i=1X

(λ)
i ≤lr

∑n
i=1X

(ν)
i , where ≤lr denotes the likelihood ratio or-

dering (defined in 17.A.11). However, they show that an extension
of H.1 to likelihood ratio ordering is not possible. They also pro-
vide a parallel result for sums of independent heterogeneous geometric
random variables. Specifically, suppose that X(p1), . . . ,X(pn) are
independent random variables and for each i, X(pi) has a geomet-
ric distribution with parameter pi. If (p1, . . . , pn) ≺ (p′1, . . . , p′n), or if
(log p1, . . . , log pn) ≺ (log p′1, . . . , log p′n), then

n∑
i=1

X(pi) ≤lr
n∑
i=1

X(p′i).

Families with Proportional Hazard Functions

If F is a univariate distribution function such that F (x) = 0 for x < 0,
the function R(x) = − log[1 − F (x)] is called the hazard function
of F . A family {Fλ, λ > 0} of distribution functions is said to have
proportional hazard functions if

F λ(x) ≡ 1 − Fλ(x) = e−λR(x),

where R is the hazard function of F1. See Marshall and Olkin (2007,
p. 232); there the parameter λ is called a frailty parameter. Families
with proportional hazard functions are often used in survival analysis,
where the random variables are nonnegative. The most familiar case
is R(x) = x, in which case Fλ(x) = 1 − e−λx, x ≥ 0, is an exponential
distribution.

H.1.c. Corollary (Kochar and Rojo, 1996). In the notation of H.1,
if λ ≺ ν on R n

++, then

(X(λ)
(2) −X

(λ)
(1) , . . . ,X

(λ)
(n) −X

(λ)
(1) ) ≤st (X(ν)

(2) −X
(ν)
(1) , . . . ,X

(ν)
(n) −X

(ν)
(1) ).

The proof utilizes the representation of stochastic ordering described
in 17.B.6. As a consequence, the ranges are stochastically ordered;
that is, X(λ)

(n) − X
(λ)
(1) ≤st X

(ν)
(n) − X

(ν)
(1) . This means that the range is

stochastically larger if the parameters are more dispersed in the sense
of majorization. In case n = 2, the stochastic ordering can be replaced
by the stronger likelihood ratio ordering (17.A.11).
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H.1.d. Corollary (Kochar and Rojo, 1996)). In the notation of H.1,
for 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn, the function

P{X(θ)
(2) > x2,X

(θ)
(3) > x3, . . . X

(θ)
(n) > xn|X(θ)

(1) = x1}
is Schur-convex in θ.

Proof. Use H.1.c and the fact that

P{X(θ)
(2) > x2, . . . ,X

(θ)
(n) > xn|X(θ)

(1) = x1}

= P{X(θ)
(2) −X

(θ)
(1) > x2 − x1, . . . ,X

(θ)
n −X

(θ)
(1) > xn − x1}. ||

The following theorem is essentially due to Proschan and Sethuraman
(1976), who assume λ ≺ ν.

H.2. Theorem. Let {Fλ, λ > 0} be a family of distribution
functions with proportional hazard functions. Let U (λ)

1 , . . . , U
(λ)
n and

U
(ν)
1 , . . . , U

(ν)
n be independent random variables where, for θ > 0, U (θ)

i
has distribution Fθi

. If (λ1, . . . , λn) ≺w (ν1, . . . , νn) on R n
++, then

(U (λ)
(1) , . . . , U

(λ)
(n) ) ≤st (U (ν)

(1) , . . . , U
(ν)
(n) ).

Proof. Let R(x) = − logF 1(x), so that F λ(x) = e−λR(x), and let
R−1(y) = inf{x :R(x) ≥ y}. If Yi = λiR(U (λ)

i ), then

P{Yi > t} = P{U (λ)
i > R−1(t/λi)} = e−t, t ≥ 0, i = 1, . . . , n,

so that by H.1.a,

(R(U (λ)
(1) ), . . . , R(U (λ)

(n) )) ≤st (R(U (ν)
(1) ), . . . , R(U (ν)

(n) )).

For any increasing function h : R n → R, let

h̃(x) = h(R−1(x1), . . . , R−1(xn)).

Then h̃ is also increasing, so

h(U (λ)
(1) , . . . , U

(λ)
(1) ) = h̃(R(U (λ)

(1) ), . . . , R(U (λ)
(n) ))

≤st h̃(R(U (ν)
(1) ), . . . , R(U (ν)

(n) )) = h(U (ν)
(1) , . . . , U

(ν)
(n) ). ||

Alternative proof of H.2. It is possible to prove H.2 with λ ≺ ν
by directly generalizing the proof of H.1. For any family {Fλ, λ > 0}
of absolutely continuous distribution functions, it is easy to compute
that for n = 2,
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(i) P{X(λ)
(1) > t} = F λ1(t)F λ2(t) for all t,

and for x1 ≤ x2,

(ii) P{X(λ)
(2)

> x2|X(λ)
(1)

= x1} =
fλ1(x1)F λ2(x2) + fλ2(x1)F λ1(x2)
fλ1(x1)F λ2(x1) + fλ2(x1)F λ1(x1)

.

From this, it is easy to see that with proportional hazard functions,
P{Xλ

(1) > t} is a function of λ1+λ2. The same argument as in the proof

of H.1 shows that P{X(λ)
(2) > x2|X(λ)

(1) = x1} is Schur-convex in λ. ||
H.2.a. Corollary (Proschan and Sethuraman, 1976). With the no-
tation and hypotheses of H.2,

∑
i∈I U

(λ)
(i) ≤st

∑
i∈I U

(ν)
(i) for all subsets

I ⊂ {1, . . . , n}.
Proof. This result follows from H.2 because the indicator function

I{z:Σi∈Izi>t}(x) is increasing in x. ||
H.2.b. Corollary (Pledger and Proschan, 1971). If λ ≺ ν, then
with the notation of H.2, U (λ)

(1) and U
(ν)
(1) have the same distribution

and U (λ)
(i) ≤st U

(ν)
(i) , i = 2, 3, . . . , n.

Proof. That U (λ)
(1) and U

(ν)
(1) have the same distribution is trivial.

The stochastic ordering is a special case of H.2.a. ||
Various applications of H.2 can be found by starting with some dis-

tribution function F satisfying F (x) = 0 for x < 0, and generating the
proportional hazards family Fλ(x) = exp{λ log[1−F (x)]}. Sometimes
this yields a family not parameterized naturally so some adjustments
are required, as in the following examples.

Bernoulli Distributions

H.3. Theorem (Proschan and Sethuraman, 1976). Let X1, . . . ,Xn

be independent random variables with Bernoulli distributions

P{Xi = 1} = pi, P{Xi = 0} = 1 − pi, i = 1, . . . , n.

Similarly, let Y1, . . . , Yn be independent random variables with
Bernoulli distributions having parameters r1, . . . , rn. If

(− log p1, . . . ,− log pn) ≺ (− log r1, . . . ,− log rn),

then
∑
Xi ≤st

∑
Yi.

Proof. Proschan and Sethuraman prove this result (in case of strong
majorization) as a corollary to H.2 with the hazard function R(x) = 1,
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0 < x ≤ 1, and R(x) = ∞, 1 < x <∞. As an alternative proof, notice
that φ(x) = I{z:Σzi>t}(x) satisfies the conditions of F.1.a (because

∑
zi

is an increasing function). Thus Eφ(x) = P{∑Xi > t} is a decreasing
Schur-convex function of (− log p1, . . . ,− log pn). ||

Weibull Distributions

H.4. Corollary (Proschan and Sethuraman, 1976). Let V1, . . . , Vn
be independent, identically distributed random variables with a
Weibull distribution given (for some α > 0) by

P{Vi > x} = exp{−xα}, x > 0.

If (μ−α1 , . . . , μ−αn ) ≺ (θ−α1 , . . . , θ−αn ), then
∑

μiVi ≤st
∑

θiVi.

Proof. This follows from H.2 because the μiVi’s have proportional
hazards with constants of proportionality μ−αi , i = 1, . . . , n. ||

I Another Stochastic Majorization Based
on Stochastic Ordering

A version of stochastic majorization not discussed in Chapter 11 is
obtainable by mimicking the usual definition of majorization on D
with stochastic ordering replacing ordinary inequalities. Suppose the
random variables Xi and Yi can be stochastically ordered so that

X1 ≥st · · · ≥st Xn, Y1 ≥st · · · ≥st Yn. (1)

If
k∑
1

Xi ≤st
k∑
1

Yi, k = 1, . . . , n, (2)

then write

X ≺(st)
w Y.

If, in addition,
∑n

1 Xi and
∑n

1 Yi have the same distribution, write

X ≺(st) Y.
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Analogously, X ≺w(st) Y can also be defined. Various examples of
these kinds of orderings can be found.

I.1. Proposition. Let {Fλ, λ ∈ Λ} be a family of distribution
functions indexed by a real parameter λ and suppose that

λ1, λ2 ∈ Λ implies λ1 + λ2 ∈ Λ, (3)

Fλ1 ∗ Fλ2 = Fλ1+λ2 , where ∗ denotes convolution, (4)

λ1 < λ2 implies 1 − Fλ1(x) ≤ 1 − Fλ2(x) for all x. (5)

Let X1, . . . ,Xn be independent random variables and let Y1, . . . , Yn be
independent random variables such that Xi has distribution Fλi

, Yi
has distribution Fνi

, i = 1, . . . , n. If λ ≺ v, then X ≺(st) Y .

Proof. Because
∑k

1 λi ≤
∑k

1 νi, it follows from (4) and (5) that

1 − FΣk
1λi

(x) = 1 − (Fλ1 ∗ · · · ∗ Fλk
)(x) ≤ 1 − (Fν1 ∗ · · · ∗ Fνk

)(x)

= 1 − FΣk
1νi

(x);

that is,
∑k

1 Xi ≤st
∑k

1 Yi, k = 1, . . . , n. By a similar argument,it fol-
lows that

∑n
1 λi =

∑n
1 νi implies

∑n
1 Xi and

∑n
1 Yi have the same

distribution. ||
By similar arguments, it can be shown that

λ ≺w ν implies X ≺(st)
w Y,

λ ≺w ν implies X ≺w(st) Y.

Various special cases of I.1 are apparent:

(i) Λ = (0,∞) and Fλ is a Poisson distribution with expectation λ.
(ii) Λ = {1, 2, 3, . . .} and Fλ is a binomial distribution with

parameters λ and p; i.e., Fλ has (discrete) density function

fλ(k) =
(
λ

k

)
pk(1 − p)λ−k, k = 0, 1, . . . , λ.

(iii) Λ = (0,∞) and Fλ is a gamma distribution with shape
parameter λ; i.e., Fλ has density

fλ(x) =
θλxλ−1

Γ(λ)
e−θx, x ≥ 0.

I.2. Proposition. Suppose {Fλ, λ > 0} is a family of distribution
functions with proportional hazard functions; i.e.,

F λ(x) ≡ 1 − Fλ(x) = exp{−λR(x)}
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for some increasing function R. Let Ui have distribution Fλi
, let Vi

have distribution Fνi
, and let Xi = U[i], Yi = V[i], i = 1, . . . , n. If ν ≺ λ

on R n
++, then X ≺(st)

w Y .

Proof. This is a direct consequence of H.2. ||
The following result is somewhat different than the previous ones of

this section, but it yields results of the same kind. The proposition is
essentially due to Kadiyala (1968), who took a1 = · · · = an = 1 and
assumed λn > 0. The proof given here is virtually the same as that of
Kadiyala.

I.3. Proposition. Suppose X1, . . . ,Xn are positive random vari-
ables, λ1 ≥ λ2 ≥ · · · ≥ λn, a1 ≥ a2 ≥ · · · ≥ an > 0, and bi/ai is
decreasing in i = 1, . . . , n; then for all t ∈ R,

P

{
n∑
i=1

λi
aiXi∑n
j=1 ajXj

≤ t

}
≥ P

{
n∑
i=1

λi
biXi∑n
j=1 bjXj

≤ t

}
.

Proof. Let ri = bi/ai, i = 1, . . . , n. It is sufficient to prove that if
x1 > 0, . . . , xn > 0, then

∑
i

λi
aixi∑
j ajxj

≤
∑
i

λi
bixi∑
j bjxj

=
∑
i

λi
riaixi∑
j rjajxj

.

With the notation pi = aixi/
∑

j ajxj, this inequality becomes
∑

λipi ≤
∑

λiripi

/∑
ripi .

But this follows from the fact that λi and ri are similarly ordered. ||
If Ui = aiXi/

∑
j ajXj and Vi = biXi/

∑
j bjXj , i = 1, . . . , n, then

with λ1 = · · · = λk = 1, λk+1 = · · · = λn = 0, it follows from I.1 that

k∑
1

Ui ≤st
k∑
1

Vi, k = 1, . . . , n.

Similarly, with λ1 = · · · = λk−1 = 0, λk = · · · = λn = −1, it follows
that

n∑
k

Ui ≥st
n∑
k

Vi, k = 1, . . . , n.
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The additional orderings

U1 ≥st · · · ≥st Un and V1 ≥st · · · ≥st Vn

are automatically satisfied, e.g., if X1, . . . ,Xn are exchangeable, in
which case U ≺(st) V .

According to 5.B.1, the condition bi/ai is decreasing in i = 1, . . . , n
implies a/

∑
ai ≺ b/

∑
bi. However, this majorization cannot replace

the hypothesis of I.3 that bi/ai is decreasing in i even when X1, . . . ,Xn

are exchangeable. To see this, take n = 3, λ1 = 1, λ2 = λ3 = 0, a =
(4, 2, 2), b = (4, 4, 0), and let (X1,X2,X3) take on the values (1, 1, 0),
(1, 0, 1), and (0, 1, 1) each with probability 1

3 . Then with 1
2 < t < 2

3 ,
the inequality of I.3 fails.

J Peakedness of Distributions of Linear
Combinations

According to a definition of Birnbaum (1948), the random variable U1

is more peaked about s1 than U2 about s2 if

P{|U1 − s1| > t} ≤ P{|U2 − s2| > t} for all t ≥ 0.

In case s1 = s2 = 0, U1 is said simply to be more peaked than U2.
If U1 and U2 have densities symmetric about 0, then U1 is more

peaked than U2 if and only if

P{U1 > t} ≤ P{U2 > t} for all t ≥ 0.

The notion of peakedness has been generalized; see, e.g., Mudholkar
(1972) and Section O.

The following proposition gives a peakedness comparison for lin-
ear combinations when the vectors of coefficients are ordered by
majorization.

J.1. Theorem (Proschan, 1965). Let X1, . . . ,Xn be independent
random variables with common density f which satisfies

(i) f(t) = f(−t) for all real t, i.e., f is symmetric,

(ii) log f is concave, i.e., f is a Pólya frequency function of order 2,
denoted PF2.

Then for all t ≥ 0,

ψ(a) = P
{∑

aiXi ≤ t
}

is a Schur-concave function of a, ai ≥ 0 for all i.



J. Peakedness of Distributions of Linear Combinations 491

Proof . By 3.A.5, it is sufficient to show that for fixed ȧ =
(a3, . . . , an),

ψ̃(a1, a2) = ψ(a1, a2, ȧ)

is Schur-convex in a1 ≥ 0 and a2 ≥ 0, i.e., that h(a1) = ψ̃(a1, b − a1)
is increasing in a1, 0 ≤ a1 ≤ b/2. Because

P
{∑

aiXi ≤ t
}

=E

[
P

{
a1X1 + a2X2 ≤ t−

n∑
3

aiXi|X3, . . . ,Xn

}]

and because t ≥ 0 is arbitrary, it is sufficient to prove the result for
n = 2 and b = 1.

If F is the distribution function corresponding to f , then with
a = 1 − a,

h(a) = P{aX1 + aX2 ≤ t} =
∫ ∞

−∞
F

(
t− au

a

)
f(u) du.

It is possible to justify differentiation under the integral sign here, so
that

a2h′(a) =
∫ ∞

−∞
f

(
t− au

a

)
(u− t)f(u) du

=
∫ t

−∞
f

(
t− au

a

)
(u− t)f(u) du+

∫ ∞

t
f

(
t− au

a

)
(u− t)f(u) du.

Now, let v = t− u in the first integral and let v = u− t in the second
integral to obtain

a2h′(a) =
∫ ∞

0
v

[
f

(
t− a

a
v

)
f(v + t) − f

(
t+

a

a
v

)
f(t− v)

]
dv.

Because f is symmetric, the integrand here can be rewritten as

v

[
f

(
a

a
v − t

)
f(v + t) − f

(
a

a
v + t

)
f(v − t)

]
.

But this is nonnegative because log f is concave and because t ≥ 0,
a ≥ a. ||

Note: Chan, Park, and Proschan (1989) show that the condi-
tions for Theorem J.1 can be weakened. It is enough to assume
that (X1,X2, . . . ,Xn) has a sign-invariant Schur-concave joint density;
that is,

f(x1, . . . , xn) = f(|x1|, . . . , |xn|).
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Further conditions are required for ψ(a) in Theorem J.1 to be strictly
Schur-concave, as provided by Proschan (1965).

The condition of J.1 that log f be concave is clearly not a necessary
condition. Indeed, if X1, . . . ,Xn have a Cauchy distribution symmet-
ric about 0, then ψ(a) is independent of a so long as

∑
ai is fixed.

The class of densities f for which the conclusion of J.1 holds has not
been identified. However, Proschan has shown that it is closed under
convolutions.

Ibragimov (2004) shows that J.1 also holds under any of the
following conditions:

(i) the Xi’s have a centered stable distribution with characteristic
exponent α > 1, i.e., if the common characteristic function of the Xi’s
is of the form

E(eitX ) = exp[−σα|t|α(1 − iβσ(t) tan(πα/2))],

where α > 1, β ∈ [−1, 1];

(ii) the common distribution of the X’s is a convolution of centered
symmetric stable distributions all with characteristic exponent α ≤ 1,
but possibly with different characteristic exponents;

(iii) X1, . . . ,Xn are independent and identically distributed, where
X1 admits a representation of the form X1 =

∑m
i=1 Zi, where the

Zi’s are independent symmetric random variables which either have
log concave densities or have stable distributions with characteristic
exponent in the interval [1, 2]. Note that the Zi’s are permitted to have
different characteristic exponents.

Applications of (iii) are discussed in detail by Ibragimov (2005).

Note. A straightforward consequence of Theorem J.1 is that if the
common density of the Xi’s satisfies conditions (i) and (ii), then
Xn =

∑n
1 Xi/n is more peaked than Xn−1 =

∑n−1
1 Xi/(n − 1). The

comparison of Xn and Xn−1 involves a comparison of two particu-
lar linear combinations with weights ( 1

n , . . . ,
1
n) and ( 1

n−1 , . . . ,
1

n−1 , 0).
This suggests a more general result given in J.3.

J.1.a. Theorem. Under the conditions of J.1,

ψ̃(a) = P
{∣∣∣∑ aiXi

∣∣∣ > t
}

is a Schur-convex function of a, ai ≥ 0 for all i.
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Proof. According to J.1, P{∑ aiXi < −t} = P{∑ aiXi > t} is
Schur-convex in a, t ≥ 0. Consequently, the sum of these probabilities
is Schur-convex in a. ||

Theorem J.1.a is just a recasting of J.1 in a new form.

J.1.b. Theorem. Let h : R → R be increasing on (−∞, 0) and
decreasing on (0,∞). Under the conditions of J.1, Eh(

∑
aiXi) is a

Schur-convex function of a, ai ≥ 0 for all i.

Proof. Let Ga be the distribution function of
∑
aiXi, so that

Eh
(∑

aiXi

)
=
∫ ∞

0
[h(z) + h(−z)] dGa(z).

Because h(z) + h(−z) is increasing in z > 0, and since Ga(0) = 1
2 for

all a, this result follows from the version of stochastic ordering given
by J.1 and from 17.A.2. ||

Of course, J.1.b is equivalent to J.1 and J.1.a.
A concept closely related to peakedness is formulated by Lawton

(1965) as follows. A random variable U1 is more concentrated about
s1 than U2 about s2 if

P{a < U1 − s1 < b} ≥ P{a < U2 − s2 < b} whenever a < 0 < b.

In case s1 = s2 = 0, U1 is said simply to be more concentrated than
U2. For random variables U1 and U2 with densities symmetric about
0, U1 is more concentrated than U2 if and only if U1 is more peaked
than U2.

J.2. Theorem (Lawton, 1965). Let h : R → (0,∞) and let X be a
random variable such that the functions

ga(z) = P{a < X/h(z) < 0}, gb(z) = P{0 ≤ X/h(z) < b}
are concave in z ≥ 0. If V1, . . . , Vm are independent, identically
distributed random variables independent of X, then

P

{
a <

X

h(
∑
λiVi)

< b

}

is a Schur-concave function of λ1, . . . , λm whenever a < 0 < b.

Proof. From the concavity of ga and gb, it follows that

P

{
a <

X

h (
∑
λiVi)

< b

}
= E

[
ga

(∑
λiUi

)
+ gb

(∑
λiUi

)]

is a symmetric concave function of λ1, . . . , λm, and hence is Schur-
concave. ||
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Several statistical applications of this result are given by Lawton
(1965). For extensions, see Lawton (1968).

A Multivariate Version

An extension of Theorem J.1 to cover k-dimensional random vari-
ables is provided by Olkin and Tong (1988). A k-dimensional random
variable X is said to be more peaked than a k-dimensional random
variable Y if

P{Y ∈ A} ≥ P{X ∈ A}
for all measurable compact, convex, and symmetric (about 0) subsets
A of R k. Paralleling Theorem J.1, we have

J.3. Theorem (Olkin and Tong, 1988). Let X1,X2, . . . ,Xn be inde-
pendent, identically distributed k-dimensional random variables with
common density f(x) which satisfies

(i) f(x) = f(−x) for all x ∈ R k,

(ii) log f(x) is a concave function of x.

If a ≺ b, then the random vector
∑n

1 aiXi is more peaked than the
random vector

∑n
1 biXi. In particular, if Xn = 1

n

∑n
1 Xi, then Xn is

more peaked than Xn−1.

Olkin and Tong (1988) also discuss peakedness of linear combina-
tions of dependent X’s.

K Tail Probabilities for Linear Combinations

Because of the symmetry present in Section J, the peakedness results
can be reformulated to say that if

∑
aiXi has distribution Fa and if

a ≺ b, then

Fa(t) ≤ Fb(t), t ≤ 0,

Fa(t) ≥ Fb(t), t ≥ 0.

This single crossing property of two distribution functions with the
crossing point specified is stronger than the results of this section which
assert only that for some t0 < t1,

Fa(t) ≤ Fb(t), t ≤ t0,

Fa(t) ≥ Fb(t), t ≥ t1.
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Results of this kind, where it is not possible to take t0 = t1, are appar-
ently more difficult intrinsically than the cleaner results of Section J or
the stochastic ordering of Section H. We are able to properly discuss
only the case of sums of Bernoulli random variables and to give some
partial results about exponential random variables.

Independent Bernoulli Random Variables

Let X1, . . . ,Xn be independent random variables with Bernoulli
distributions

P{Xi = 1} = pi, P{Xi = 0} = 1 − pi, i = 1, 2, . . . , n.

For integer values of t, let

ht(p1, . . . , pn) = P
{∑

Xi ≤ t
}

and p =
∑

pi/n.

Hoeffding (1956) shows that

ht(p1, . . . , pn) ≤ ht(p, . . . , p) if 0 ≤ t ≤ np− 1,

ht(p1, . . . , pn) ≥ ht(p, . . . , p) if np ≤ t ≤ n.
(1)

If np − 1 < t < np, the inequality might go either way. Gleser (1975)
extended Hoeffding’s result to make more general comparisons.

K.1. Theorem (Gleser, 1975). The function ht(p1, . . . , pn) is Schur-
concave in p for 0 ≤ t ≤ np−2 and it is Schur-convex in p for np+1 ≤
t ≤ n.

Proof. Let f(k; ṗ) = P{∑n
3 Xi = k}, where ṗ = (p3, . . . , pn). For

integers k and t, let

gt(k) =
{

1 if k ≤ t,

0 if k ≥ t+ 1,

so that

ht(p) = Egt

(
n∑
i=1

Xi

)
=

n∑
k=0

gt(k)P

{
n∑
i=1

Xi = k

}
.

The proof consists of checking the derivative conditions of 3.A.4 for ht
to be Schur-convex or Schur-concave. With the observation that

P

{
n∑
1

Xi = k

}
= p1p2f(k − 2; ṗ)

+ [p1(1 − p2) + p2(1 − p1)]f(k − 1; ṗ)

+ (1 − p1)(1 − p2)f(k; ṗ),



496 12. Probabilistic, Statistical, and Other Applications

and with the notation Δ2ψ(k) = ψ(k+ 2)− 2ψ(k+ 1)+ψ(k), it is not
difficult to verify that

(p1 − p2)
(
∂ht
∂p1

− ∂ht
∂p2

)
= −(p1 − p2)2

n∑
k=0

gt(k)Δ2f(k − 2; ṗ)

= −(p1 − p2)2
n−2∑
k=0

Δ2gt(k)f(k; ṗ).

Because Δ2gt(t) = 1, Δ2gt(t− 1) = −1, and Δ2gt(k) = 0 if k �= t and
k �= t− 1, this equation reduces to

(p1 − p2)
(
∂ht
∂p1

− ∂ht
∂p2

)
= −(p1 − p2)2[f(t; ṗ) − f(t− 1; ṗ)].

Let fm(k) be the probability of k successes in m not necessarily
identical Bernoulli trials and let τ =

∑m
0 kfm(k). Samuels (1965) has

shown that
fm(k) is increasing in k ≤ τ ,

fm(k) is decreasing in k ≥ τ .

Because
∑n−2

0 kf(k; ṗ) = np− p1 − p2, it follows that

f(k; ṗ) is increasing in k ≤ np− p1 − p2,

f(k; ṗ) is decreasing in k ≥ np− p1 − p2.

Furthermore, 0 ≤ p1 + p2 ≤ 2, so that

f(k; ṗ) − f(k − 1; ṗ)

{
≥ 0 for k ≤ np− 2,

≤ 0 for k − 1 ≥ np (k ≥ np+ 1).

By virtue of 3.A.4, this completes the proof. ||
Notice that the inequalities (1) of Hoeffding hold for a slightly larger

range of t-values than do the results of K.1. Gleser has shown by
counterexamples that this is inevitable if ht(p) is to be compared with
ht(r) for arbitrary r ≺ p. However, one can see from the proof of
K.1 that if the restriction 0 ≤ pi + pj ≤ 2 (i �= j) is replaced by
more stringent inequalities, then some extension of the range of Schur-
convexity or Schur-concavity can be made.

K.2. Corollary (Gleser, 1975). If 0 ≤ s ≤ np−2 and np+1 ≤ t ≤ n,
then

P

{
s ≤

n∑
1

Xi ≤ t

}

is Schur-convex in (p1, . . . , pn).
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Gleser has also obtained from K.1 that for any continuous con-
vex function g : R → R, Eg(

∑
Xi) is Schur-concave as a function

of (p1, . . . , pn). See F.1 for further discussion.

Consistency of the Sample Median

A statistic of a sample of size n is said to be consistent if it converges
in probability to the true parameter value as n → ∞. For example,
a sample variance is consistent if it converges in probability to the
variance of the underlying distribution. With independent, identically
distributed random variables, consistency of the sample mean and the
sample median as estimates of their population counterparts is read-
ily verified. An extension to nonindependent, identically distributed
random variables with density f(x1, . . . , xn) = f(|x1|, . . . , |xn|) for the
sample mean has been available for some time. Mizera and Wellner
(1998) use majorization arguments that involve the use of Theorem K.1
to identify necessary and sufficient conditions for consistency of the
sample median in the nonindependent, identically distributed case.
Because the empirical distribution function of a sample is express-
ible as a sum of indicator random variables, a role for nonidentically
distributed Bernoulli random variables is assured.

More specifically, consider a triangular array of random variables
{Xnj : n = 1, 2, . . . ; j = 1, 2, . . . , n}, with corresponding distribution
functions denoted by Fnj . For each n, define the empirical distribution
function F̃n by

F̃n(x) =
1
n

n∑
j=1

I{Xnj ≤ x},

where I is the indicator function, and define the average distribution
function F#

n by

F#
n =

1
n

n∑
j=1

Fnj.

The notation F# to denote the average is used instead of the more
customary F , which in this book denotes a survival function.

For any strictly increasing distribution function F , the median is
uniquely defined to be F−1(1

2 ). The sample median is said to be
consistent if F̃−1

n (1
2 ) − F#−1

n (1
2 ) converges in probability to 0.

Matters are simplified when the Fni’s have the same median, i.e.,
when F−1

ni (1
2 ) = ξ 1

2
, say, for every i ≤ n.
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Define, for each ε > 0,

an(ε) = F#
n (F#−1

n (1
2) + ε)

and

bn(ε) = F#
n (F#−1

n (1
2 ) − ε).

In this common median case, Mizera and Wellner (1998) show that
F̃−1
n (1

2 ) converges in probability to ξ 1
2

if and only if for every ξ > 0,
lim

√
n(an(ε)− 1

2 ) = ∞ and lim
√
n(1

2 −bn(ξ)) = ∞. More complicated
necessary and sufficient conditions for consistency in the absence of a
common median for the Xnj’s are also provided by Mizera and Wellner
(1998).

Independent Exponential Random Variables

K.3. Theorem (Persi Diaconis, private communication, 1976). Let
X1 and X2 be independent and let Xi have density

fi(x) =
1
θi
e−x/θi , x ≥ 0, i = 1, 2.

Then for θ1 + θ2 fixed,

P{X1 +X2 ≤ t} = (θ1 − θ2)(θ1e−t/θ1 − θ2e
−t/θ2), θ1 �= θ2,

is a Schur-convex function of (θ1, θ2) for t ≤ (θ1 + θ2) and it is a
Schur-concave function of (θ1, θ2) for t ≥ 3

2(θ1 + θ2).

The proof of this result, obtained by Diaconis, consists of verify-
ing the derivative conditions of 3.A.4, just as does the proof of K.1.
However, here the verification involves a detailed analysis, so it is
omitted.

Diaconis has also obtained partial results for a sum of n independent,
exponentially distributed random variables.

The following result, though related to those of this section, is rather
different from other results of this book and the proof is unlike any
other. The extent to which its methods might be applied to other
problems is not clear.

K.4. Theorem (Kanter, 1976). Let X1, . . . ,Xn be independent
random variables such that for j = 1, . . . , n

P{Xj = 1} = P{Xj = −1} = λj/2,

P{Xj = 0} = 1 − λj, 0 ≤ λj ≤ 1/2.
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Then P{∑Xj = 0} + P{∑Xj = m} is a Schur-concave function of
λ1, . . . , λn for any m = ±1, . . . ,±n.

Proof. First, note that the characteristic function of Xj is given by

φj(t) = EeitXj = 1 + λj [(cos t) − 1] = 1 + λjm(t),

where m(t) = (cos t) − 1. Thus,
∑n

1 Xj has characteristic function

φ(t|λ) =
n∏
j=1

[1 + λjm(t)].

Because m(t) ≥ −2, this function is Schur-concave in λ, 0 ≤ λj ≤ 1/2.
Using the inversion formula (Feller, 1971, p. 511), it follows that

pk ≡ P

{
n∑
1

Xj = k

}
=

1
2π

∫ π

−π
φ(t|λ)e−ikt dt

=
1
2π

∫ π

−π

n∏
j=1

[1 + λjm(t)]e−ikt dt.

Because pk is real, this means that the imaginary part of the integral
vanishes, so

p0 + pm =
1
2π

∫ π

−π

n∏
j=1

[1 + λjm(t)](1 + cosmt) dt, m = ±1, . . . ± n.

From the Schur-concavity of φ(t|λ) and the fact that 1 + cosmt ≥ 0,
it follows that p0 + pm is Schur-concave in λ, 0 ≤ λj ≤ 1/2. Note that
1+cosmt+cos 
t can be negative, and consequently p0 + pm+ p� may
not be Schur-concave. Mattner and Roos (2007) note that as stated
in the first edition of this book, Theorem K.4 is false because the
condition 0 ≤ λj ≤ 1/2 was omitted. ||

Generalized Rayleigh Distribution

The generalized Rayleigh distribution is the distribution of X =
σ(
∑k

1 Z
2
i )

1/2, where Z1, . . . , Zk are independent, each having a
standard normal distribution. (Here σ > 0.)

Denote this distribution by Fk,σ.
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K.5. Proposition (Hu and Lin, 2001). Let X1, . . . ,Xn be pairwise
independent random variables having a common Fk,σ distribution. If
(b21, . . . , b

2
n) ≺ (a2

1, . . . , a
2
n), then for all t > 0,

P

{
n∑
1

aiXi ≥ t

}
≤ P

{
n∑
1

biXi ≥ t

}
.

L Schur-Concave Distribution Functions
and Survival Functions

There are a number of examples of random variables X1, . . . ,Xn with
the property that the joint distribution function

F (x) = P{X1 ≤ x1, . . . ,Xn ≤ xn}
or the joint survival function

F (x) = P{X1 > x1, . . . ,Xn > xn}
is a Schur-concave function of x. Such random variables are necessarily
exchangeable.

Of course, Schur-concavity of F or F leads to various inequalities.
For example, if x =

∑
xi/n, then

F (x, . . . , x) ≥ F (x) or F (x, . . . , x) ≥ F (x).

If xi ≥ 0 for all i, it also follows that

F (x) ≥ F
(∑

xi, 0, . . . , 0
)

or F (x) ≥ F
(∑

xi, 0, . . . , 0
)
.

Schur-Concave Densities

L.1. Proposition. If X1, . . . ,Xn have a joint density that is Schur-
concave, then F and F are Schur-concave.

Proof. In Lemma 3.J.1.a, take A = {z : z1 ≤ 0, . . . , zn ≤ 0}. Then

F (x) =
∫
A+x

f(u) du,

and consequently F is Schur-concave. Similarly, with

A = {z : z1 > 0, . . . , zn > 0},
it follows from 3.J.1.a that F is Schur-concave. ||
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When X1, . . . ,Xn have a Schur-concave density, the choice of other
sets A as in the proof of L.1 leads to various other inequalities.

There are a number of cases in which F or F is Schur-concave even
though the density is not Schur-concave, so L.1 does not apply.

L.2. Proposition (Tong, 1982). If X1, . . . ,Xn have a Schur-concave
joint density, then

P{|Xi| ≤ xi, i = 1, . . . , n} (1)

is a Schur-concave function of x1, . . . , xn, and

P

{
n∑
1

X2
i /ci ≤ t

}
, t > 0, (2)

is a Schur-concave function of c1, . . . , cn.

The proofs of these results are not simple, and are not reproduced
here.

L.3. Proposition (Karlin and Rinott, 1983). If X1, . . . ,Xn are non-
negative random variables with a Schur-concave density, then for
i = 1, . . . , n,

P

{
n∑
1

Xα
i /c

β
i ≤ t

}
, t > 0, α ≥ 1, 0 ≤ β ≤ α− 1, ci > 0, (3)

is a Schur-concave function of c1, . . . , cn.

L.3.a. Proposition. If X1, . . . ,Xn have a Schur-concave density,
then

P

{
n∑
1

Xα
i /c

α−1
i ≤ t

}
, t > 0, α > 1, (4)

is a Schur-concave function of c1, . . . , cn. The case α = 2 is (2) in L.2.
Note that here, unlike in Proposition L.3, X1, . . . ,Xn are not required
to be nonnegative.

Remark. Under the conditions of L.2, it follows that

P

{
n∑
1

X2
i /ci > t

}
, t > 0, (5)

is a Schur-concave function of c1, . . . , cn. A similar comment applies to
L.3 and L.3.a.
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L.3.b. Example. If Y1, . . . , Yn are independent random variables
with chi-squared distributions and respective degrees of freedom
k1, . . . , kn, then as a function of c1, . . . , cn,

P

{
n∑
1

Yi/ci ≤ t

}
is Schur-concave. (6)

To verify (6), let
∑n

1 ki = m and let X1,X2, . . . ,Xm be independent,
normally distributed random variables with means 0 and variances 1.
Make use of the fact that

(c1, . . . , c1︸ ︷︷ ︸
k1

, c2, . . . , c2︸ ︷︷ ︸
k2

, . . . , cn, . . . , cn︸ ︷︷ ︸
kn

) ≺ (d1, . . . , d1︸ ︷︷ ︸
k1

, . . . , dn, . . . , dn︸ ︷︷ ︸
kn

)

if and only if (c1, . . . , cn) ≺ (d1, . . . , dn) to obtain (6) from Proposition
L.2. For a related result, see Proposition 11.E.8.b.

The regions for (X1, . . . ,Xn) discussed in L.2, L.3 and L.3.a are all
symmetric about the origin. Similar results for asymmetric regions can
be obtained using multivariate majorization. See Section 15.E. For a
version of these and related inequalities, see Tong (1988).

The following is a related result.

L.3.c. Proposition (Székely and Bakirov, 2003). Suppose that
Z1, . . . , Zn are independent standard normal random variables. If
(λ1, . . . , λn) ≺w (μ1, . . . , μn), Σμi = 1, then

P

{
n∑
1

λiZ
2
i ≤ x

}
≤ P

{
n∑
1

μiZ
2
i ≤ x

}
,

for all x ≥ 2.

The condition that x ≥ 2 is sharp in the sense that the result does
not hold in the interval 1 < x < 2.

Case of Independence

L.4. Proposition. Let G be a univariate distribution function, and
let G = 1 −G. If F (x) =

∏n
1 G(xi), and if F (x) =

∏n
1 G(xi), then

F is Schur-concave if and only if logG is concave,

F is Schur-concave if and only if logG is concave.

Proof. This is a direct application of 3.E.1.
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The condition that logG be concave has not received much atten-
tion in the literature. By contrast, when logG is concave, then G is
said to have an increasing hazard (failure) rate, and this condition
has been extensively studied in the literature of reliability theory [see,
e.g., Barlow and Proschan (1975; reprinted 1996)]. Both conditions are
implied by the condition that G has a density that is logarithmically
concave (see 18.B.2.c).

Exchangeable Sequences

The De Finetti representation theorem states that any infinite se-
quence of exchangeable random variables can be represented as a
mixture of independent, identically distributed sequences. [See, for
example, Spizzichino (2001).] Proposition L.2 above suggests the
conjecture that if an exchangeable sequence has Schur-concave dis-
tributions for (X1, . . . ,Xn) for every n, then it may be possible to
represent the sequence as a mixture of independent, identically dis-
tributed sequences with log concave (increasing hazard rate) survival
functions. This conjecture remains unverified. However, Barlow and
Spizzichino (1993) show that this is true if for each n, the density of
(X1, . . . ,Xn) is log concave.

L.5. Theorem (Hayakawa, 1993). If, for each n, the joint survival
function Fn of (X1, . . . ,Xn) is Schur-concave, and for some contin-
uous strictly decreasing univariate survival function G it is the case
that F n(x1, . . . , xn) and

∏n
i=1G(xi) have the same level sets, then the

sequence X1,X2, . . . can be represented as a mixture of independent,
identically distributed sequences with log concave survival functions.

Models for Dependence

L.6. Proposition (Marshall and Olkin, 1974). Let φz(u) be concave
and increasing in u for all z. If U1, . . . , Un and Z are independent
random variables and the Ui have a common distribution function G
such that G = 1 −G is logarithmically concave, then

X1 = φZ(U1), . . . ,Xn = φZ(Un)

are such that P{X1 > x1, . . . ,Xn > xn} is a Schur-concave function
of x.
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Proof. Assume that φz is strictly increasing and differentiable so
that it has an increasing differentiable inverse. Assume also that G has
a density g. Then

P{X1 > x1, . . . ,Xn > xn} = P{φZ(U1) > x1, . . . , φZ(Un) > xn}
= EP{φZ(U1) > x1, . . . , φZ(Un) > xn|Z}
= EP{U1 > φ−1

Z (x1), . . . , Un > φ−1
Z (xn)|Z}

= E

n∏
1

P{Ui > φ−1
Z (xk)|Z} = E

n∏
1

G(φ−1
Z (xi)).

Now, observe that

− d

dx
logG(φ−1

Z (x)) =
g(φ−1

Z (x))
G(φ−1

Z (x))
· 1
φ′Z(φ−1

Z (x))

is the product of two nonnegative increasing functions: φ−1
Z is increas-

ing and logG is concave so g(φ−1
Z (x)/G(φ−1

Z (x)) is increasing. Also, φ′Z
is decreasing, so φ′Z(φ−1

Z (x)) is decreasing. By using the fact that a
mixture of Schur-concave functions is Schur-concave, the result follows
from L.2. ||
L.6.a. The bivariate exponential survival function

F (x1, x2) = exp{−λx1 − λx2 − λ12 max(x1, x2)}
is Schur-concave.

Proof. This result follows from L.6 with φz(u) = min(u, z) and with
U1, U2, Z independently distributed with exponential distributions
having respective parameters λ, λ, and λ12. In this case,

X1 = min(U1, Z) and X2 = min(U2, Z). ||

The bivariate exponential distribution of L.6.a is discussed by
Marshall and Olkin (1967).

L.7. Proposition (Marshall and Olkin, 1974). Let φz(u) be convex
and increasing in u for all z. If X1, . . . ,Xn are defined as in L.6 and
logG is concave, then P{X1 ≤ x1, . . . ,Xn ≤ xn} is a Schur-concave
function of x.

The proof of this result is similar to the proof of L.6 and is omitted.
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M Bivariate Probability Distributions
with Fixed Marginals

Let Γ(F,G) be the class of all bivariate probability distributions with
marginal distribution functions F and G. Thus, if H ∈ Γ(F,G), then

H(x,∞) = F (x), H(∞, y) = G(y), −∞ ≤ x, y ≤ ∞.

M.1. Proposition (Hoeffding, 1940; Fréchet, 1951).

H∗(x, y) = min[F (x), G(y)] ∈ Γ(F,G),

H∗(x, y) = max[F (x) +G(y) − 1, 0] ∈ Γ(F,G).

Moreover, for all H ∈ Γ(F,G),

H∗(x, y) ≤ H(x, y) ≤ H∗(x, y) for all x, y ∈ R. (1)

The proof is quite elementary; see, e.g., Mardia (1970, pp. 30, 31).
A rearrangement proof based on 6.A.3 is given by Whitt (1976).

The ordering of distribution functions implicit in (1) is of some
interest.

M.2. Definition. Let H(1) and H(2) ∈ Γ(F,G). If

H(1)(x, y) ≤ H(2)(x, y) for all x, y ∈ R,

then H(1) is said to be less concordant than H(2).

This definition is essentially due to Tchen (1980), although the word
“concordance” was already used in this context by Gini (1915/1916).

Suppose that H(1), H(2) ∈ Γ(F,G), where F and G concentrate
mass on finitely many points. Suppose also that for some ε > 0,

H(1){x1, y2} ≥ ε, H(1){x2, y1} ≥ ε,

where x1 < x2, y1 < y2, and H(1){x, y} is the probability H(1) gives
to the point (x, y). Transform H(1) to obtain a new bivariate distribu-
tion by adding mass ε to the points (x1, y1), (x2, y2) and subtracting
mass ε from the points (x1, y2), (x2, y1). Of course, H(1) ∈ Γ(F,G)
implies that the transformed distribution is in Γ(F,G). According to
a theorem of Tchen (1980), H(1) is less concordant than H(2) if and
only if H(2) can be obtained from H(1) by a finite sequence of such
transformations.
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Suppose (Xi, Yi) is a bivariate random vector with distribution func-
tion H(i), i = 1, 2. Then intuitively, H(1) is less concordant than H(2)

if large values of X2 go with large values of Y2 to a greater extent than
for X1 and Y1.

M.3. Proposition (Cambanis, Simons, and Stout, 1976; Tchen,
1980). Suppose F and G have compact support and suppose H(1),
H(2) ∈ Γ(F,G). Then H(1) is less concordant than H(2) if and only if∫

φdH(1) ≤
∫
φdH(2) (2)

for all continuous L-superadditive functions φ (see Definition 6.C.2)
such that the expectations exist.

Indication of proof. The proof indicated here utilizes several key
ideas due to Whitt (1976).

Probability measures which, for some integer n > 0, assign mass
1/n to each of n points are called data distributions by Whitt (1976).
Suppose H1 and H2 are data distributions on R 2 and that H1, H2 ∈
Γ(Fn, Gn). Let (x1, yπk(1)), . . . , (xn, yπk(n)) be the points to which Hk

assigns mass 1/n and let x = (x1, . . . , xk), y(k) = (yπk(1), . . . , yπk(n)),
k = 1, 2. Notice that H1 is less concordant than H2 if and only if
(x, y(1)) ≤a (x, y(2)) (notation of Section 6.F). Because

∫
φdHk =

(1/n)
∑

i φ(xi, yπk(i)), it follows from 6.F.9 that
∫
φdH1 ≤ ∫

φdH2 for
all L-superadditive functions φ if and only if H1 is less concordant
than H2. This proves the proposition for data distributions.

For any sequence H, H1, H2, . . . of distribution functions, write
Hn ⇒ H to mean that limn→∞Hn(z) = H(z) for all continuity points
z of H.

Suppose that H(1) is less concordant than H(2). For i = 1, 2, let
{H(i)

n } be sequences of data distributions such that

(a) H(i)
n ∈ Γ(Fn, Gn),

(b) H(i)
n ⇒ H(i), and

(c) H(1)
n is less concordant than H

(2)
n for all n.

(The existence of such sequences is not proved here.) Then for all
continuous superadditive functions φ,

∫
φdH

(i)
n converges to

∫
φdH(i)

as n → ∞ (Billingsley, 1968, p. 18). By combining this with what is
proved above for data distributions, it follows that∫

φdH(1) = lim
∫
φdH(1)

n ≤ lim
∫
φdH(2)

n =
∫
φdH(2).
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Next, suppose that
∫
φdH(1) ≤ ∫

φdH(2) for all continuous L-
superadditive functions φ. Fix x0, y0 and approximate the indicator
function of the set {(x, y) : x ≤ x0 and y ≤ y0} with the continuous
L-superadditive function φk defined by

φk(x, y) = 1 if x ≤ x0 and y ≤ y0,

φk(x, y) = kmin[(1/k) + x0 − x, (1/k) + y0 − y]
if x0 ≤ x ≤ x0 + (1/k) and y ≤ y0 + (1/k),
or y0 ≤ y ≤ y0 + (1/k) and x ≤ x0 + (1/k),

φk(x, y) = 0 if x ≥ x0 + (1/k) or y ≥ y0 + (1/k).

Because
∫
φk dH

(1) ≤ ∫
φk dH

(2), it follows that

H(1)(x0, y0) = lim
k→∞

∫
φk dH

(1) ≤ lim
k→∞

∫
φk dH

(2) = H(2)(x0, y0).

Because x0 and y0 are arbitrary, this proves thatH(1) is less concordant
than H(2). ||
M.3.a. Corollary (Lorentz, 1953). If F and G have compact
support and ϕ is a continuous L-superadditive function, then∫

φdH∗ ≤
∫
φdH ≤

∫
φdH∗

for all H ∈ Γ(F,G), where H∗ and H∗ are the lower and upper
Hoeffding–Fréchet bounds defined in M.1.

N Combining Random Variables

Majorization from Convolutions

The concept of “more random” for discrete vectors is introduced
in Definition 17.E.10. Here, more randomness is obtained through
convolutions.

N.1. Proposition (Hickey, 1983). Let X and Y be independent dis-
crete random variables. The distribution of Z = X+Y is more random
than the distributions of X and Y .

Proof . Suppose first that X and Y take on a finite number of
values, say x1, . . . , xn and y1, . . . , yn, with respective probabilities
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pi = P{X = xi}, qi = P{Y = yi}, i = 1, . . . , n. According to the
convolution formula,

P{Z = zj} =
∑
i

P{X = xi}P{Y = zj − xi}, j = 1, . . . ,m,

where m ≤ n2 is the number of possible values of Z. Introduce the
notation rj = P (Z = zj), j = 1, . . . ,m, and rewrite the convolution
formula as

r = pD,

where dij = P{Y = zj − xi}, i = 1, . . . , n, j = 1, . . . ,m. It can be
verified that each qi appears once and only once in every row of D, so
the row sums of D are all one. However, the sum cj of the jth column
of D can be less than one.

Let E be the diagonal matrix with elements 1−c1, 1−c2, . . . , 1−cm,
and form the doubly stochastic matrix

P =
[
E D′
D O

]
.

Let p∗ = (0, . . . , 0, p1, . . . , pn) have m zeros and note that p∗P has the
form

p∗P = (pD, 0, . . . , 0) = (r, 0, . . . , 0) = r∗,

where r∗ has n zeros.
Because P is doubly stochastic, p∗ � r∗, and consequently

(p1, . . . , pn, 0, 0, . . .) � (r1, . . . , rm, 0, 0, . . .).

Thus the distribution of Z = X + Y is more random than the
distribution of X (and, by symmetry, of Y ).

Next, consider the case that X and Y can take on a countable num-
ber of values, x1, x2, . . . and y1, y2, . . . , with respective probabilities
p1, p2, . . . and q1, q2, . . . . Denote the possible values of Z = X + Y by
z1, z2, . . . and let ri = P{Z = zi}, i = 1, 2, . . . .

Truncate the distributions of X and Y to obtain Xn and Yn, where
Xn takes on the values x1, x2, . . . , xn with respective probabilities

p
(n)
i = pi

/
n∑
1

pj , i = 1, . . . , n,

and similarly for Yn. Denote the possible values of Zn = Xn + Yn by
z
(n)
1 , . . . , z

(n)
mn and their respective probabilities by r(n)

1 , . . . , r
(n)
mn .
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Then

r(n) = (r(n)
1 , . . . , r(n)

mn
, 0, 0, . . .) ≺ (p(n)

1 , . . . , p(n)
n , 0, 0, . . .) = p(n).

Because limn→∞ p(n) = p, limn→∞ r(n) = r, it follows that r ≺ p. ||
N.2. Definition. Let {pθ : θ ∈ Θ} be a family of discrete probability
distributions, where Θ = (0,∞) or Θ = 0, 1, 2, . . . . If the parameters
add with convolutions, that is, if pθ1 ∗ pθ2 = pθ1+θ2 , then {pθ : θ ∈ Θ}
is said to be a convolution family.

N.3. Proposition. If {pθ, θ ∈ Θ} is a convolution family of discrete
probability distributions, then

pθ1 ≺ pθ2 for all θ1 > θ2;

that is, randomness increases with θ.

Proof . Because pθ1 = pθ2 ∗ pθ1−θ2 , this result follows from
Proposition N.1. ||
N.4. Examples.

(a) Binomial distributions

P{X = k} = (nk)p
k(1 − p)n−k, k = 0, 1, . . . , n,

n = 1, 2, . . . , 0 < p < 1, form a convolution family in the
parameter n (with fixed p).

(b) Negative binomial distributions

P{X = k} = (k−1
n−1)p

r(1 − p)k−r, k = n, n+ 1, . . . ,

n = 1, 2, . . . , 0 < p < 1, form a convolution family in the
parameter n (with fixed p).

(c) Poisson distributions

P{X = k} = e−λ
λk

k!
, k = 1, 2, . . . , λ > 0,

form a convolution family in the parameter λ.

Majorization from Finite Groups

Let X and Y be independent random variables taking values in a finite
group G and let Z = X ◦ Y, where ◦ denotes the group operation.
Denote the inverse element of g ∈ G by g−1. For a particular ordering
g1, . . . , gm of the elements of G, let

pi = P{X = gi}, qi = P{Y = gi}, si = P{Z = gi}, i = 1, . . . ,m.
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N.5. Proposition. s ≺ p and s ≺ q.

An interesting special case of N.1 is obtained by Brown and Solomon
(1979). They consider the group of vectors (x1, . . . , xk), where each xi
takes on one of the values 0, 1, . . . ,m−1 and the group operation adds
vectors componentwise modulo m. The idea of the following proof is
due to Brown and Solomon.

Proof. In this argument it will be convenient to denote qi by q(i)
and pi by p(i). Moving from X to X ◦ Y is like taking a step in a
Markov chain on G with transition matrix Q = (Qjl) given by

Qjl = q(j−1 ◦ l), j, l = 1, . . . ,m.

Notice that
∑

j Qjl =
∑

i qi = 1 so that Q is doubly stochastic. Since
s = pQ, it follows that s ≺ p.

To see that s ≺ q, consider the Markov chain on G which moves
from Y to X ◦ Y according to the transition matrix P = (pil), where

pil = p(l ◦ i−1).

Like Q, P is doubly stochastic and s = qP . ||
Proposition N.5 is related to the fact that the only limit distributions

for random variables of the formX1◦· · ·◦Xn are uniform on a subgroup
of G [see, e.g., Heyer (1977)].

O Concentration Inequalities for
Multivariate Distributions

Take as a starting point the following well-known result.

O.1. Proposition (Anderson, 1955). IfX and Y have n-dimensional
normal distributions with means 0 and respective covariance matrices
ΣX and ΣY with ΣY − ΣX positive definite, then X is more concen-
trated about 0 than is Y , in the sense that P{X ∈ C} ≥ P{Y ∈ C}
for every convex set C ⊂ R n with C = −C.

Because ΣY −ΣX is positive definite, Y can be represented as X+Z,
where X and Z are independent. Proposition O.1 holds more generally
for elliptically contoured distributions, that is, for distributions with
densities that are functions of xΣ−1x′ (Fefferman, Jodeit, and Perlman,
1972).

Applications often involve an inequality of the form P{X ∈ C} ≥
P{Y ∈ C} for sets C not necessarily centrally symmetric and convex.
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To this end, Eaton and Perlman (1991) identify classes of subsets C of
R n such that ΣY ≥ ΣX implies P{X ∈ C} ≥ P{Y ∈ C} for C ∈ C ,
in which case they say that X is more concentrated than Y relative
to C .

Anderson’s result corresponds to the case

C = {C : C ∈ R n is convex, −C = C}.
Eaton and Perlman (1991) replace the symmetry requirement by one of
G-invariance, whereG is a finite subgroup of orthogonal n×nmatrices.
They conclude that X is more concentrated than Y relative to the class
of convex G-invariant sets, provided that ΣX itself is G-invariant and
that G acts effectively on R n. Counterexamples are provided to show
which additional assumptions are in general needed.

The requirement of convexity can be replaced by a requirement that
C be a G-decreasing set when G is a reflection group (Eaton and
Perlman, 1991). See 14.C for related discussion on G-invariance and
G-majorization.

Eaton (1988) shows that Proposition O.1 implies that the best linear
unbiased estimator, when it exists, is more concentrated at its mean
than any other linear unbiased estimator when the error vector Y − μ
is normally distributed. Eaton shows this to be true also when Y − μ
has an elliptically contoured distribution. He also discusses additional
conditions under which the result holds when Y −μ has a log concave
density.

P Miscellaneous Cameo Appearances
of Majorization

Covering the Circle by Random Arcs

Suppose that n arcs of lengths 
1, 
2, . . . , 
n are placed independently
and uniformly on the unit circle. With 
 = (
1, . . . , 
n), let P (
) denote
the probability that the unit circle is completely covered by these arcs.
Stevens (1939) gave the following explicit expression for this coverage
probability when all arcs are of equal length 
 =

∑n
1 
i/n:

P (
, . . . , 
) =
n∑
k=0

(−1)k(nk)[(1 − k
)+]n−1. (1)

Huffer and Shepp (1987) show that (1) represents an extremal case
by verifying that P (
) is a Schur-convex function. Thus, for a given
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total sum of arc lengths, increased inequality among the lengths of
the arcs yields a greater coverage probability. By 3.A.2.b, it suffices to
consider the effect on P (
) of making a small change in two unequal

i’s (to make them more alike), holding the other 
i’s fixed. The result,
conjectured by Frank Proschan, turns out to be more troublesome to
verify than might have been hoped. [See Huffer and Shepp (1987) for
details.]

Unequal Catchability

Assume that an island community contains an unknown number ν
of butterfly species. Butterflies are trapped sequentially until n have
been captured. Let r denote the number of distinct species represented
among the n butterflies that have been trapped. On the basis of r, we
wish to estimate ν. A plausible model involves the assumption that
butterflies from species j, j = 1, 2, . . . , ν, enter the trap according to
a Poisson (λj) process and that these processes are independent. If pj =
λj/

∑ν
i=1 λi, then pj denotes the probability that a particular trapped

butterfly is of species j. The pj ’s reflect the relative catchability of
the various species. Under the assumption of equal catchability (that
is, pj = 1/ν, j = 1, 2, . . . , ν), and under the (somewhat restrictive)
assumption that ν ≤ n, there exists a minimum variance unbiased
estimate ν̃ of ν based on r, namely,

ν̃ = S(n+ 1, r)/S(n, r), (2)

where S(n, x) denotes a Stirling number of the second kind [see; e.g.,
Abramowitz and Stegun (1972, p. 835)]. Nayak and Christman (1992)
investigate the effect of unequal catchability on the performance of
the estimate (2). They observe that the random number, R, of species
captured has a distribution function that is a Schur-convex function
of p and conclude that the estimate (2) is negatively biased in the
presence of unequal catchability.

Waiting for a Pattern

Suppose that X1,X2, . . . is a sequence of independent, identically
distributed random variables with possible values 1, 2, . . . , k and as-
sociated positive probabilities p1, p2, . . . , pk. Let N denote the waiting
time for a run of k consecutive values of the Xi’s that includes all k
possible values 1, 2, . . . , k; that is,

N = min{n ≥ k : Xn−k+1,Xn−k+2, . . . ,Xn are all distinct}.
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Ross (1999) proves that for any n, P{N > n} is a Schur-convex
function of p and consequently that EN is a Schur-convex function
of p.

Connected Components in a Random Graph

Following Ross (1981), consider a random graph with n nodes
numbered 1, 2, . . . , n. Let X1,X2, . . . ,Xn be independent, identically
distributed random variables with distributions determined by the
probability vector p = (p1, p2, . . . , pn), where

P{Xi = j} = pj , j = 1, 2, . . . , n.

The random graph is constructed by drawing n random arcs that con-
nect i to Xi, i = 1, 2, . . . , n. Thus one arc emanates from each node.
Let C denote the number of connected components of this random
graph. (C = k, if the set of nodes of the graph can be divided into k
subsets with each subset being connected and no arcs joining nodes
from different subsets.) In this type of random graph, the expected
number of connected components is equal to the expected number of
cycles (i.e., closed paths without repetitions) in the graph and thus

EC =
∑
S

(|S| − 1)!
∏
j∈S

pj,

where the summation extends over all nonempty subsets of {1, 2, . . . , n}
and |S| denotes the cardinality of S. Using 3.A(10), Ross proves that
EC is a Schur-concave function of p. Consequently, the expected num-
ber of connected components in the random graph is maximized when
pj = 1/n, j = 1, 2, . . . , n.

Infection in a Closed Population

A simple model of potential utility in the study of disease transmis-
sion was introduced by Eisenberg (1991) and further studied by Lefèvre
(1994). Subsequently, Tong (1997) identified a facet of the model in-
volving majorization. Consider a closed population of n+1 individuals.
One individual (number n+ 1) is susceptible to the disease but as yet
is uninfected. The other n individuals are carriers of the disease. Let pi
denote the probability of escaping infection after a single contact with
individual i, i = 1, 2, . . . , n. Assume that individual n + 1 makes a
total of J contacts with individuals in the population governed by a
preference vector α = (α1, α2, . . . , αn), where αi > 0 and

∑n
i=1 αi = 1.

Individual n+ 1 selects a “partner” among the n carriers according to
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the preference distribution α. He or she then makes k1 contacts with
this partner. He or she then selects a second partner (which could be
the same one) independently according to the preference distribution α
and has k2 contacts with this partner. This continues until J contacts
have been made.

The probability of escaping infection under this model is denoted
by H(k, α, p), to highlight its dependence on the preference vector α,
on nontransmission probabilities p = (p1, . . . , pn), and on the lifestyle
vector k = (k1, . . . , kJ ). Two extreme lifestyles are associated with the
vectors, (J, 0, . . . , 0) and (1, 1, . . . , 1). In the first case, the individual
chooses one partner and stays with that partner for all J contacts. In
the second case, each contact is made with a new individual chosen
at random. It is not difficult to verify that the probability of escaping
infection in these two cases is given by

∑n
i=1 αip

J
i and (

∑n
i=1 αipi)

J ,
respectively. Thus, from Jensen’s inequality (16.C.1), it follows that
the probability of escaping infection is larger with lifestyle (J, 0, . . . , 0)
than it is with lifestyle (1, 1, . . . , 1). This result holds uniformly in α
and p. Because these lifestyle vectors are extreme cases with respect
to majorization, a plausible conjecture is that the probability of es-
caping infection is a Schur-convex function of the lifestyle vector k.
Tong (1997) confirms this conjecture. An extension is also provided
to cover some cases in which a random number of contacts are made
(using 3.J.2).

Apportionment in Proportional Representation

Proportional representation seeks to assign to each political party a
proportion of seats that closely reflects the proportion of votes ob-
tained by that party. Because individual seats in a legislative body
are potentially highly influential in subsequent decision making, and
because typically exact proportionality is unobtainable, there has
been considerable discussion of alternative proposals regarding which
method of rounding should be used in the calculation. For more de-
tailed general discussions of voting, see Saari (1995) or Balinski and
Young (2001). Five apportionment schemes that have received consid-
erable attention in the United States are named after their well-known
supporters: John Quincy Adams, James Dean, Josef A. Hill, Daniel
Webster, and Thomas Jefferson (an impressive list!). In the order given,
they move from a method (Adams) kinder to small parties to the
method (Jefferson) which most favors large parties.
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All five methods operate via a sequence of sign-posts that govern
rounding decisions. The sign-posts s(k) are numbers in the interval
[k, k + 1] such that s(k) is a strictly increasing function of k, and the
associated rounding rule is that a number in the interval [k, k + 1]
is rounded down if the number is less than s(k) and rounded up if
greater than s(k). If the number equals s(k), we are allowed to round
up or down. A particular choice of sign-post sequence is a so-called
power-mean sign-post sequence of the form

sp(k) =
(
kp + (k + 1)p

2

)1/p

, −∞ ≤ p ≤ ∞.

The five apportionment methods named above can all be interpreted as
being based on a power-mean sign-post sequence: (Adams) p = −∞,
which means rounding up; (Dean) p = −1; (Hill) p = 0; (Webster)
p = 1; (Jefferson) p = ∞, which means rounding down.

Marshall, Olkin, and Pukelsheim (2002) show that for two sign-
post sequences s(k) and s′(k), a sufficient condition to ensure that the
seating vector produced by the method using s is always majorized by
the seating vector produced by the method using s′ is that the sequence
of sign-post ratios s(k)/s′(k) is strictly increasing in k. It follows that
the result of a power-mean rounding of order p is always majorized
by the corresponding power-mean rounding of order p′ if and only
if p ≤ p′. Consequently, the five popular apportionment procedures
moving from Adams to Jefferson move toward favoring large parties
in the sense of majorization. Indeed, an inspection of the results of
applying these five methods to any particular case shows that one can
move from an Adams apportionment toward a Jefferson apportionment
by moving assigned seats from smaller parties to larger parties [in a
series of reverse Dalton transfers from “poorer” parties (with fewer
votes) to “richer” parties (with more votes)].

P.1. Example. Pólya (1919) shows the allocation of 10 seats given
different vote counts in three regions.

Vote counts Adams Dean/Hill Webster Jefferson
5950 5 6 6 7
2532 3 2 3 2
1518 2 2 1 1

Here (7, 2, 1) � (6, 3, 1) � (6, 2, 2) � (5, 3, 2), and the allocations
clearly show that the Jefferson method favors the larger community,
and the Adams method favors the smaller communities.
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Paired Comparisons

During the 1952–1953 season, the six National Hockey League teams
played 70 games. Each pair of teams played 14 games. This can be
viewed as a prototypical paired comparison situation. To model the
situation in which n teams (or alternatives) compete (or are compared)
in pairs, it is customary to consider an n × n matrix P = (pij) in
which for i �= j, pij denotes the probability that team i beats team j
in a match. Assume that ties do not occur, so that pij +pji = 1 (Many
sporting events use extra time periods to resolve ties to satisfy this
rule). The diagonal elements of P are left undefined. For each i, define
pi =

∑
j �=i pij. This row total provides a measure of the strength of

team i. Let p = (p1, . . . , pn) and define P (p) to be the class of all
probability matrices P (with only off-diagonal elements defined) and
with row totals given by p.

Joe (1988) defines a variability ordering on the members of the class
P (p) based on majorization. For P,Q ∈ P (p), the matrix P is ma-
jorized by the matrix Q (P ≺ Q) if and only if P ∗ ≺ Q∗ in the usual
sense of majorization, where P ∗ (respectively Q∗) is the n(n − 1)-
dimensional vector whose entries are all the defined elements of P
(respectively Q). A matrix P ∈ P (p) is said to be minimal if Q ≺ P
implies Q∗ = P ∗ up to rearrangement. In applications, it is often
reasonable to assume that if team i dominates team j (reflected by
pij > 0.5) and if team j dominates team k, then team i dominates
team k.

The matrix P is weakly transitive if pij ≥ 0.5 and pjk ≥ 0.5 im-
plies that pik ≥ 0.5. The matrix P is strongly transitive if pij ≥ 0.5
and pjk ≥ 0.5 implies that pik ≥ max(pij , pjk). Joe (1988) relates the
concepts of minimality and transitivity as follows:

(i) A necessary condition for P to be minimal is that pij ≥ 0.5
whenever pi ≥ pj;

(ii) A necessary condition for P to be minimal is that p be strongly
transitive.

Extensions can be provided to allow the pi’s to be weighted sums of
the pij ’s (to reflect the differing frequencies of matches between pairs
of teams). In addition, order effects (home-field advantage) and ties
can be considered.
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Admissibility of Tests in Multivariate
Analysis of Variance

In the canonical multivariate analysis of variance problem (Anderson,
2003), the null hypothesis is accepted if certain ordered sample eigen-
values fall in a region A ⊂ D . Anderson and Takemura (1982), using
a result of Stein (1956), verify that such tests are admissible provided
that A is closed, convex, and has the property that if λ ∈ A, ν ∈ D ,
and ν ≺w λ, then ν ∈ A.

Gaussian Correlation

Suppose that the random vector Z has a normal distribution with
mean zero and identity covariance matrix, and that A and B are
symmetric convex sets in R n. It was conjectured that in such a case,

P{Z ∈ A ∩B} ≥ P{Z ∈ A}P{Z ∈ B}.
The conjecture was verified in the case n = 2 by Pitt (1977). Vitale
(1999) verified that, in n dimensions, the conjecture is true when A
and B are Schur cylinders. A set C in R n is a Schur cylinder if x ∈ C
implies x + ke ∈ C for every k ∈ R [and e = (1, 1, . . . , 1)] and the
indicator function of C is Schur-concave.

A Stochastic Relation Between the Sum
and Maximum of Two Variables

In the context of constructing confidence intervals for a difference be-
tween the means of two normal distributions with unknown unequal
variances (the so-called Behrens–Fisher setting), Dalal and Fortini
(1982) derive an inequality relating the distribution of the sum of two
nonnegative random variables to the distribution of the maximum of
the two variables.

P.2. Proposition (Dalal and Fortini, 1982). If X1 and X2 are non-
negative random variables with a symmetric joint density f(x1, x2),
such that f(

√
x1,

√
x2) is a Schur-convex function of x, then

P{X1 +X2 ≤ c} ≥ P{
√

2 max(X1,X2) ≤ c}
for every c > 0.

An important example of a nonnegative random vector with a joint
density f such that f(

√
x1,

√
x2) is Schur-convex is one of the form
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(X1,X2) = (|Y1|, |Y2|), where Y1 and Y2 are normally distributed with
zero means, common variance σ2, and correlation ρ.

Proposition P.2 is proved by conditioning on X2
1 + X2

2 , using the
fact that on any circle the density f at x increases as x moves away
from the line x1 = x2.

The conclusion of the proposition can be restated as X1 + X2 ≤st√
2 max(X1,X2).
Using the same idea of conditioning on the sum of squares but us-

ing stronger restrictions on the joint density, Dalal and Fortini (1982)
provide two related n-dimensional results.

P.3. Proposition. Let X1,X2, . . . ,Xn be independent, identically
distributed nonnegative random variables whose common density f is
such that log f(

√
x) is concave; if a ≺ b, then

n∑
i=1

√
aiXi ≤st

n∑
i=1

√
biXi.

P.4. Proposition. Let X1,X2, . . . ,Xn be independent, identically
distributed positive random variables with common density f such
that log f(

√
x) is concave and f(x)/x is decreasing, then

n∑
i=1

Xi ≤st √nmax(X1,X2, . . . ,Xn).

Tests for Homogeneity of Variances Under
Nonstandard Conditions

Let Yij , i = 1, 2, . . . , k, j = 1, 2, . . . , n, be such that

Yij = μi + σiZij,

where the Zij ’s are independent, identically distributed standard nor-
mal variables, i.e., a standard analysis of variance setup with equal
sample sizes and possibly different variances in the k populations. To
test the hypothesis that σ1 = σ2 = . . . = σk, three commonly used
statistics are

T1n =
k∏
i=1

⎛
⎝ k∑
j=1

S2
j

S2
i

⎞
⎠ (a Bartlett statistic),

T2n =
(maxi S2

i )

(
∑k

j=1 S
2
j )

(a Cochran statistic),



P. Miscellaneous Cameo Appearances of Majorization 519

and

T3n =
maxi S2

i

mini S2
i

(a Hartley statistic),

where for each i,

S2
i =

1
n− 1

n∑
j=1

(Yij − Y i)2, Y i =
∑

Yij/n.

In each case, the hypothesis of variance homogeneity is rejected if the
corresponding test statistic is large. Rivest (1986) uses majorization
arguments and 12.D.6 to investigate how these tests behave under
non-standard conditions. (Rivest’s notation is used in the above to
facilitate reference to his paper for more details.)

Remark. The three test statistics T1n, T2n, and T3n are comparisons
of power means (

∑
ari /n)1/r and (

∑
asi/n)1/s for different values of r

and s. But power means are Schur-convex or Schur-concave functions
depending on r or s, which clarifies how majorization arises in these
tests.

In order to determine appropriate critical values for the three statis-
tics, it is necessary to compute P{Tin > x} under the assumption that
the variances are homogeneous.

Write T (0)
i,n to denote the test statistics under the assumption that

the Zij ’s are normally distributed and σi = σ, i = 1, 2, . . . , k, for some
σ > 0. Consider T (F )

in the test statistics under the assumption that the
Zij’s have a common distribution F (which is not normal with mean 0).
Rivest shows that if F is a scale-mixture of normal distributions, or if
F is a scale-mixture of χ2

1 distributions, then

T
(F )
in ≤st T

(0)
in for i = 1, 2, 3.

Thus in each case, the true size of the test is larger than the nominal
size. An analogous result is obtained relating the true and nominal
sizes of the tests under the assumption that the Zij ’s are normal but
are correlated within the populations.

Further discussion of the performance of tests for variance homo-
geneity under standard conditions (when the Zij ’s are independent,
identically distributed standard normal variables) may be found in
13.A.1.
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Wireless Networks

The basic elements of a wireless network are a transmitting unit and
its receiving unit. The transmitter communicates with the receiver by
sending data with a certain power over the air to the receiver. How-
ever, this communication is disturbed by interferers, which themselves
are part of the wireless network, and which reduce the quality of the
received data. Thus, the receiver observes a superposition of the data
from the transmitter, that is, the desired signal and the undesired
signals from the interferers. An important performance metric is the
ratio of the power of the desired signal to the power of the undesired
signals originating from the interferers. This signal-to-interference ra-
tio (SIR) is measured at the receiver and indicates whether a certain
amount of data can be received reliably within a certain time period.
The parameters c1, c2, . . . , cm determine the level of interference.

The survival function of the SIR is given by

F (x; c) =
m∑
j=1

m∏
i=1
i�=j

[
cj

(cj − ci)( 1
xcj

− 1)

]
.

Pereira, Sezgin, Paulraj, and Papanicolaou (2008) show that

F (x; c) = 1

/
m∏
1

(xcj + 1)

and use the fact that F (x; c) is Schur-convex in (c1, . . . , cn) to note
that if one interference geometry (c1, . . . , cm) majorizes another, then
its SIR scaling is higher.

Server Assignment Policies in Queueing Networks

In an open queueing network with M stations, assume that all stations
are single-server stations with service rate μi for station i. Let λi denote
the total arrival rate from external and internal sources to station i.
Let ρi = λi/μi and assume that ρi < 1 for every i. ρi is referred to
as the loading of station i. Yao (1987) discusses optimal assignment of
servers to stations in this context. Using majorization and arrangement
orderings, he shows that a better loading policy is one which distributes
the total work more uniformly to the stations, i.e., one that makes the
ρi’s more uniform, and that better server assignment policies are those
which assign faster servers to busier stations.
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A Musical Interlude

Hall and Tymoczko (2007) apply weak majorization to music theory.
They are interested in changes as a vocal or instrumental line moves
from one note to another. One measure of the magnitude of change
that they consider is simply the number of half-steps necessary to
reach one note from the other; this is analogous to the way changes in
monetary values are evaluated.

Also considered is a somewhat more involved measure of change
magnitude in which they regard pitches an octave apart as equivalent.
In this case, the distance between two pitches is the minimum number
of half-steps (up or down) necessary to reach one note from the other.
Thus, to find the distance from C to G, count on a keyboard half-steps
up from C to G, and count half-steps down from C to the G below;
take the minimum of these counts as the distance between C and G.
Because there are 12 tones in a chromatic scale, the maximum distance
between two notes is 6.

Hall and Tymoczko (2007) analyze the simultaneous movements of
several voices. To compare one simultaneous movement with another,
they examine the vectors of voice changes. By imposing some musical
criteria, they conclude that the ordering of weak majorization gives an
appropriate comparison. Note that when pitches an octave apart are
regarded as equivalent, the largest vector that can be encountered is
the vector (6, . . . , 6) and the smallest vector is (0, . . . , 0).

A key part of their analysis is the following result:
If a, b ∈ R n, then

(b[1] − a[1], . . . , b[n] − a[n]) ≺w (|b1 − a1|, . . . , |bn − an|).

This submajorization follows from 5.A.1.a and 6.A.2.

Occupancy Problems

Occupancy problems involve the allocation of m balls into n bins,
where ordinarily m and n are large. Under one rule, each ball is placed
into a bin at random with each bin equally likely, but other rules are
also of interest. Rules are compared with regard to “load balance” ex-
pected, and probabilistic bounds are obtained for the maximum load.

Berenbrink, Czumaj, Steger, and Vöcking (2006, and their refer-
ences) investigate allocation rules. In particular, they compare two
rules for placing balls into bins and show that in terms of majorization,
one rule produces a stochastically better load balancing than the other.
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Occupancy models have many applications such as assigning tasks
to a set of servers. For a model called the neighboring coupling model,
a ball in the ith-fullest bin is moved into the jth-fullest bin. This
operation is a Dalton transfer. The numerical question is to determine
the number of balls that need to be transferred until the two allocations
are almost indistinguishable.

Comparison of Gibbsian States

For a vector x ∈ D , the probability vector(
ex1

Σexi
, . . . ,

exn

Σexi

)

is called the Gibbsian state given by x (Alberti and Uhlmann, 1982,
p. 19). According to 5.B.1.d, if x, y ∈ D and yi − xi is decreasing in
i = 1, . . . , n, then the Gibbsian state of x is majorized by the Gibbsian
state of y. Alberti and Uhlmann (1982) remark on two simple situa-
tions where this applies in physics. The raising of the temperature in
a Gibbsian state gives increasingly more chaotic Gibbsian states. The
same is true with Gibbsian states describing an isothermic expansion
of a free gas.

If A and B are Hermitian matrices with respective eigenvalues α1 ≥
. . . ≥ αn and β1 ≥ . . . ≥ βn, satisfying αi − βi ≥ αi+1 − βi+1, then(

eα1

Σeαi
, . . . ,

eαn

Σeαi

)
≺
(
eβ1

Σeβi
, . . . ,

eβn

Σeβi

)
.

This follows from 5.B.1.d.

Density Matrices in Quantum Physics

For the study of quantum systems, density matrices play an important
role. In R n, a matrix A is a density matrix if it is positive semidefinite
and if trA = 1. A density matrix A is said to be more chaotic or less
pure than the density matrix B, written A >mc B, if the eigenvalues
α1, . . . , αn of A and the eigenvalues β1, . . . , βn of B satisfy α ≺ β. Note
the “reversal” of these inequalities.

P.5. Proposition. A >mc B if and only if for every nonnegative
continuous convex function φ defined on [0, 1] such that φ(0) = 0,∑n

1 φ(αi) <
∑n

1 φ(βi).

For related results, see Wehrl (1973).
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Statistical Mechanics

A thermodynamic system consists of n independent subsystems, each
described by a Hamiltonian H = H0 + αiH1, i = 1, . . . , n, where H0

and H1 are Hermitian. The parameter α is called a coupling parameter
or a perturbation parameter. A partition function for the ith subsystem
is defined by

ϕ(αi;β) = tr exp{−β(H0 + αiH1)},
where β = 1/KT, K is the Boltzmann constant, and T is temperature.
The partition function for the system is

ψ(α1, . . . , αn) =
n∏
1

ϕ(αi;β).

Bogoljubov (1966) and Okubo and Isihara (1972) prove that logφ(α;β)
is convex in α and in β. Consequently, if (μ1, . . . , μn) ≺ (ν1, . . . , νn),
then ψ(μ1, . . . , μn) ≤ ψ(ν1, . . . νn).

For further discussion of applications in physics, see Zylka (1990)
and Zylka and Tok (1992).

Genetic Algorithms

An evolutionary system consists of basic units called replicators, an
example being an individual in a population. To the ith replicator,
i = 1, . . . , n, there are associated two nonnegative time-dependent
functions, a fitness function fi(t), and a proportion function pi(t) ≥ 0,
Σn

1pi(t) = 1, that represents the fraction of the population that is
identical to the ith replicator. A model that connects the fitness and
proportion functions is called a replicator selection model. One such
model is based on discrete replicator selection equations:

pi(t+ 1) = pi(t) fi(t)/f(t),

where f(t) = Σn
1pi(t) fi(t) denotes the average fitness. Here t is an

integer, but in continuous models t ∈ R+.
The following propositions by Menon, Mehrotra, Mohan, and Ranka

(1997) provide the connection between majorization and replicator
models.

P.6. Proposition. If x(t) ∈ R n
+ , x(0) �= 0, is a sequence of vectors

where t is an integer, such that

x(t) = x(t+ 1)M,
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where M is a doubly stochastic matrix that is independent of t, so that
x(t) ≺ x(t+1), then there exists a replicator system whose proportions
and fitness are related by a matrix A = (aij) such that

fi(t) =
n∑
j=1

aij
pj(t)
pi(t)

.

Here

pi(t) =
xi(t)

Σn
1xj(t).

P.7. Proposition. If p(t) ∈ R n
+ , Σpi(t) = 1, satisfies a replicator

selection model, and if the vectors f(t) = (f1(t), . . . , fn(t)) and p(t) =
(p1(t), . . . , pn(t)) are similarly ordered for each t > 0, then p(t) ≺
p(t+ 1).

A crossover or random mating model is a quadratic system
consisting of a vector p̃(t) with n2 components:

p̃(t) = (p1(t)p1(t), p1(t)p2(t), . . . , pn(t)pn(t)),

and elements q(i, j|k, l) ≥ 0, Σi,jq(i, j|k, l) = 1, that satisfy
exchangeable conditions

q(i, j|k, l) = q(k, l|i, j),
and symmetry conditions

q(i, j|k, l) = q(j, i|k, l) = q(i, j|l, k).
P.8. Proposition. If

pi(t+ 1) =
∑
j,k,�

q(i, j|k, l)pk(t)p�(t),

then p̃(t+ 1) ≺ p̃(t).

P.8.a. Example. For R = (rij) a symmetric doubly stochastic ma-
trix, let q(i, j|k, l) = rijrk�. This system can be described succinctly
in terms of Kronecker products (see 19.G). The vector p̃(t) can be
written as

p̃(t) = (p(t) ⊗ p(t)).

By 2.H.7.b, the matrix (R ⊗ R) is a symmetric doubly stochastic
matrix, and

p̃(t+ 1) = (p(t) ⊗ p(t))(R ⊗R),

so that p̃(t+ 1) ≺ p̃(t).
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P.9. Example. For R = (rij) a symmetric doubly stochastic matrix,
let

q(i, j|k, l) = rij + rk�.

This system can be described in terms of Kronecker sums (see 19.G).
The vector p̃(t) can be written as

p̃(t) = (p(t) ⊕ p(t)).

By 2.H.7.c, the matrix (R⊕R) is a symmetric doubly stochastic matrix,
and

p̃(t) = (p(t) ⊕ p(t))(R ⊕R),

so that p̃(t+ 1) ≺ p̃(t).

For further discussion of replicator genetic algorithms and refer-
ences, see Menon, Mehrotra, Mohan, and Ranka (1997).

Q Some Other Settings in Which
Majorization Plays a Role

The list of scenarios in which majorization has been profitably
used is extremely long. Without giving details, we mention here a
representative sampling of this literature.

Q1. Optimality properties of the first-come–first-served discipline for
G/G/s queues (Daley, 1987). See also Liu and Towsley (1994).

Q2. Stochastic versions of classical deterministic scheduling prob-
lems (Chang and Yao, 1993).

Q3. Discrete random variables with proportional equilibrium rates
(with queueing applications) (Shanthikumar, 1987).

Q4. Stochastic allocation problems (Liyanage and Shanthikumar,
1992).

Q5. Convex optimization problems under linear constraints (Kim and
Makowski, 1998).
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Q6. Robust testing of several location parameters and tests for
outliers (Kimura and Kakiuchi, 1989; Kakiuchi and Kimura,
1995).

Q.7. Monotone optimal multipartitions (Hwang, Rothblum, and
Shepp, 1993).

Q.8. Variables of Boolean functions (Hammer, Kogan, and Rothblum,
2000).

Q.9. Extremal sets in Hamming graphs (Azizoğlu and Eğecioğlu,
2003).



13
Additional Statistical

Applications

Majorization has been used as a mathematical tool in a variety of
statistical contexts. To illustrate these uses, several examples from
diverse areas are given. These examples have been chosen in part be-
cause the exposition of the statistical background is minimal, so that
the main emphasis lies in the use of majorization. There are other ex-
amples, not given here, where the statistical material is more involved
and/or the majorization does not play as critical a role.

The examples deal with unbiasedness of tests, monotonicity of power
functions, linear estimation, ranking and selection methods, reliabil-
ity, entropy, inequality and diversity, and design and comparison of
experiments.

To see how majorization enters each of these topics, consider first
tests of hypotheses. Tests are unbiased when the power function has a
minimum at the null hypothesis. Consequently, if a power function is
Schur-convex and the null hypothesis holds when the parameters are
equal, then majorization clearly can be useful.

When the goodness of a linear estimate is measured by a Schur-
convex function, then comparisons among estimators can be made by
comparing, via majorization, the weights in the linear estimator.

In selection procedures, identification of the “least favorable config-
uration” leads to bounds for the probability of a correct selection. This
least favorable configuration is often the least or largest vector in the
sense of majorization.

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 527
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 13,
c© Springer Science+Business Media, LLC 2011
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In reliability theory, the probability that the system operates is given
by a function of component reliabilities called the reliability func-
tion. Several Schur-convexity results concerning reliability functions
are given.

A Unbiasedness of Tests and Monotonicity
of Power Functions

Let X be a random variable, vector, or matrix with distribution
function Fθ, where θ = (θ1, . . . , θk) ∈ Ω ⊂ R k. A test of a hypothesis
H : θ ∈ ΩH , which has the form “reject H when φ(X) > c,” has power
function

β(θ) ≡ Pθ{φ(X) > c} = EθI{φ(X)>c}.

A test has level α if supθ∈ΩH
β(θ) = α. A level-α test is unbiased if

β(θ) ≥ α for all θ /∈ ΩH .
For the homogeneity hypothesis H : θ1 = · · · = θk with Ω

having a Schur-concave indicator function, sufficient conditions for
unbiasedness are

β(θ) is Schur-convex on Ω, so that for fixed
∑
θi, β(θ)

achieves a minimum when θ1 = · · · = θk,
(1)

and
β(θ∗, . . . , θ∗) is independent of θ∗ when (θ∗, . . . , θ∗) ∈ Ω,
so that β(θ) is constant for θ ∈ ΩH . (2)

Notice that these conditions for unbiasedness do not depend upon the
alternative hypothesis.

Of course, Schur-convexity of β also yields monotonicity of the power
function as θ moves away from the point (θ∗, . . . , θ∗) in the sense of
majorization.

Suppose X is a random vector, so that the domain of the test func-
tion φ is a subset of R n. If φ is Schur-convex, then g(x) ≡ I{y:φ(y)>c}(x)
is Schur-convex. This observation is useful when combined with re-
sults of Section 11.E. There, a number of families {Fθ, θ ∈ Ω} of
distributions are listed for which

ψ(θ) ≡
∫
g(x) dFθ(x)

is Schur-convex in θ whenever g is Schur-convex. In this way, sometimes
with certain variations, condition (1) for unbiasedness can often be
easily established. For a general discussion, see Perlman (1980a,b).
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A.1. Tests for equality of variances, independent normal
distributions. Let X1, . . . ,Xk be independent random variables,
where Xi is normally distributed with mean μi and variance τi,
i = 1, . . . , k. Suppose that independent samples, each of size n, are
available from these k distributions. The usual tests for the hypothesis
H : τ1 = · · · = τk are based on statistics V1, . . . , Vk, where each Vi/τi
has a chi-square distribution. The exact form of the statistics Vi and
their degrees of freedom 2m depend upon whether the means μi are
known [m = n/2] or are unknown [m = (n− 1)/2].

Tests of the form “reject H if φ(V1, . . . , Vk) > c” have power function

β(τ1, . . . , τk) = const
∫
I{u:φ(u)>c}(v)

k∏
i=1

h (vi/τi)
k∏
i=1

dvi
τi
,

where h(z) = [Γ(m)2m]−1zm−1 exp(−z/2) if z ≥ 0 and h(z) = 0
otherwise. As a consequence of 11.E.5.e, β(τ1, . . . , τk) is Schur-convex
in (log τ1, . . . , log τk) provided

(i)
∏k

1 h(e
vi) is Schur-concave in (v1, . . . , vk), and

(ii) φ(ev1 , . . . , evk) is Schur-convex in (v1, . . . , vk).

Condition (i) is satisfied for h as defined above because it is log
concave (3.E.1).

Various choices of φ are possible. The class

φ(v1, . . . , vk) =
(∑

vλi /k
)1/λ /(∑

vηi /k
)1/η ≡ R(λ, η)

is considered by Cohen and Strawderman (1971). Particular cases
include R(1, 0) = (

∑
vi/k)

∏
v
1/k
i , which is equivalent to Bartlett’s

test or the likelihood ratio test, and

R(∞,−∞) = max(v1, . . . , vk)/min(v1, . . . , vk),

which is equivalent to Hartley’s test.
For λ ≥ 0 > η, it is not difficult to show (ii) directly by

means of 3.A.4. This together with (i) yields (1). Because R(λ, η) is
homogeneous, (2) is satisfied. Consequently, the tests are unbiased.

A.2. Multivariate normal distribution: Test for sphericity.
Let S be a p × p sample covariance matrix based on n observa-
tions from a multivariate normal distribution with an unknown mean
vector and an unknown covariance matrix Σ. To test the sphericity
hypothesis H : Σ = τI against general alternatives A : not H, the like-
lihood ratio test is equivalent to “reject H if (trS/p)/(detS)1/p > c.”
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Consequently, the power function is

β(Σ) = PΣ

{
trS/p

(detS)1/p
> c

}
.

Because the likelihood ratio test is invariant under transformations
S → ΓSΓ′, where Γ is orthogonal, and because the distribution of
ΓSΓ′ depends only on the parameter ΓΣΓ′, we can choose Γ so that
Σ = Dτ = diag(τ1, . . . , τp). Then the power function is

β(τ) ≡ β(τ1, . . . , τp) = Pτ

{
trS/p

(detS)1/p
> c

}
. (3)

To show unbiasedness, write S = DvRDv, where

Dv = diag(v1, . . . , vp), v2
i = sii, R = (rij), rij = sij/

√
siisjj,

i, j = 1, . . . , p. Then

trS/p
(detS)1/p

=
∑
v2
i /p

(
∏
v2
i )1/p

1
(detR)1/p

,

and (3) becomes

β(τ1, . . . , τp) = Pτ

{ ∑
v2
i /p

(
∏
v2
i )1/p

> c(detR)1/p
}

= ERPτ

{ ∑
v2
i /p

(
∏
v2
i )1/p

> c(detR)1/p|R
}
.

When Σ = Dτ , the vector (v1, . . . , vp) and R are independent, and
indeed v1, . . . , vp are mutually independent, where each v2

i /τi has a
chi-square distribution with n− 1 degrees of freedom.

It now follows from A.1 that for each fixed R,

Pτ

{ ∑
v2
i /p

(
∏
v2
i )1/p

> c(detR)1/p
}

is Schur-convex, and hence β is Schur-convex. Thus the likelihood ratio
test is unbiased.

That the likelihood ratio test is unbiased is due to Gleser (1966).
The above proof that the power function is Schur-convex is due to
Michael D. Perlman (private communication).

A.2.a. Multivariate normal distribution: Tests for structured
covariance matrices. Two patterned structures for the covariance
matrix Σ = (σij) of a p-variate normal distribution with unknown
mean vector are the intraclass correlation model in which σii = τ ,
σij = τρ, i, j = 1, . . . , p, and the circular symmetric model in which
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σii = τ0, σi,i+j = τ0ρj , ρj = ρp−j, i = 1, . . . , p, j = 1, . . . , p − 1,
2 ≤ i + j ≤ p [see, e.g., Cohen (1969), Olkin (1974), Olkin and
Press (1969)]. Denote these covariance matrices by ΣIC and ΣCS, re-
spectively. Further, denote the spherical covariance matrix (i.e., when
σii = τ , σij = 0, i, j = 1, . . . , p) by ΣS.

The hierarchical hypotheses of interest are

H1 : ΣS versus ΣIC,

H2 : ΣIC versus ΣCS,

H3 : ΣCS versus general Σ.

In some contexts, other hypotheses involving ΣS, ΣIC, ΣCS, and Σ may
be of interest.

Following the development of A.2, the likelihood ratio tests are all
based on statistics that are invariant under orthogonal transformations
of the form S → ΓSΓ′, where Γ is a p×p orthogonal matrix. In each of
the cases, ΣS, ΣCS, ΣIC, the likelihood ratio statistics are of the form

k∏
j=1

( ∑pj

i=1 v
(j)
i /pj

(
∏pj

i=1 v
(j)
i )1/pj

)
(detR)1/p, (4)

where (s11, . . . , spp) = (v(1)
1 , . . . , v

(1)
p1 , v

(2)
1 , . . . , v

(2)
p2 , . . . , v

(k)
1 , . . . , v

(k)
pk ),

for some partition p1+· · ·+pk = p. Because of the invariance discussed
above, Γ can be chosen so that Σ has the form

ΣD = diag(τ1Ip1 , . . . , τkIpk
).

Then the sets {v(j)
1 , . . . , v

(j)
pj }, j = 1, . . . , k, are independent. Further-

more, within each set, v(j)
1 , . . . , v

(j)
pj , j = 1, . . . , k, are independently

and identically distributed with v(j)
i /τj , i = 1, . . . , pj, j = 1, . . . , k, hav-

ing a chi-square distribution with n− 1 degrees of freedom. It follows
(as in A.2) by conditioning on R and invoking A.1 that the likelihood
ratio tests within the class of hypotheses listed are unbiased.

Note that in (4), the statistic is based on the ratio of the arithmetic
to geometric means. As noted in A.1, tests based on other ratios of
means would also be unbiased.

A.3. Test for means in multivariate normal distributions. In
the canonical multivariate analysis of variance model, there are r inde-
pendent p-variate normal distributions all having the same covariance
matrix Σ, but with different unknown mean vectors μ(1), . . . , μ(r). Let
Θ = (μ(i)

j ) be the r × p matrix of means.
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If independent samples of size n are taken from all of the r distribu-
tions, the resulting data can be summarized by the sufficient statistic
(X,S), where X = (xij) is the r × p matrix of sample means and
S = (sij) is the p × p pooled sample covariance matrix. The joint
density of X and S is

f(X,S) = const|S|(r−p−1)/2 exp{−1
2 tr Σ−1[S + (X + Θ)′(X − Θ)]}

defined for S positive definite and −∞ < xij < ∞, i = 1, . . . , r,
j = 1, . . . , p. The problem of testing H : Θ = 0 versus the alternative
A : Θ �= 0 is invariant under the transformation

(X,S) → (ΓXA′, ASA′), (5)

where Γ is an r × r orthogonal matrix and A is a p × p nonsingular
matrix. A maximal invariant statistic is

(z1, . . . , zt) = (λ1(XS−1X ′), . . . , λt(XS−1X ′)),

where t = min(r, p) and z1 ≥ · · · ≥ zt are the t-largest eigenvalues of
XS−1X ′. The maximal invariant in the parameter space is

(ζ1, . . . , ζt) = (λ1(ΘΣ−1Θ′), . . . , λt(ΘΣ−1Θ′)),

where ζ1 ≥ · · · ≥ ζt are the t-largest eigenvalues of ΘΣ−1Θ′.
Any invariant test has a distribution that depends only on ζ1, . . . , ζt.

Consequently, the power function of any invariant test is a function,
β(ζ1, . . . , ζt), of ζ1, . . . , ζt. In terms of the ζi’s, the problem is to test
H : ζ1 = · · · = ζt = 0 versus A: not H.

Within this framework, Eaton and Perlman (1974) prove the
following.

A.3.a. Theorem (Eaton and Perlman, 1974). If K is any convex
set such that (X,S) ∈ K implies that (ΓXA′, ASA′) ∈ K for any
orthogonal matrix Γ and any nonsingular matrix A, then the power
function given by

β(ζ1, . . . , ζt) = 1 − const
∫

(X,S)∈K
|S|(r−p−1)/2

× exp{−1
2 tr[S + (X −D∗

ζ )
′(X −D∗

ζ )]} dX dS,

where D∗
ζ = diag(ζ1, . . . , ζt, 0, . . . , 0), is Schur-convex in (ζ1, . . . , ζt).

A consequence of this is the following more useful form:

A.3.b. Corollary. If h is any increasing symmetric convex function
on R t, then any test of the form “reject H if h(z1, . . . , zt) ≥ c” has a
Schur-convex power function.
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In particular, the Lawley–Hotelling trace test based on h(z) =
∑t

1 zi
and the Roy maximum root test based on h(z) = max{z1, . . . , zt} both
satisfy the conditions of A.3.b.

Remark . The full import of the results of Eaton and Perlman
(1974) requires some additional discussion which is not given here.
However, some details required to prove A.3.b are provided.

First note that f(X,S) ≡ XS−1X ′ is a convex function of (X,S)
(see 16.E.7.f). Consequently, for 0 ≤ α ≤ 1, α = 1 − α, S and T
positive definite,

G(α) ≡ (αX + αY )(αS + αT )−1(αX + αY )′

≤ α(XS−1X ′) + α(Y T−1Y ′) ≡ αG(1) + αG(0), (6)

where A ≤ B means that B − A is positive semidefinite. By 20.A.1.b
and 9.G.1, inequality (6) implies that

(λ1(G(α)), . . . , λt(G(α)))

≺w (λ1(αG(1) + αG(0)), . . . , λt(αG(1) + αG(0)))

≺ (αλ1(G(1)) + αλ1(G(0)), . . . , αλt(G(1)) + αλt(G(0))).

By 3.A.8, if h is any increasing symmetric convex function, then

h(λ(G(α))) ≤ αh(λ(G(1))) + αh(λ(G(0))).

Thus the region {(X,S) : h(z1, . . . , zt) ≤ c} is convex, which implies
the conclusion of A.3.b.

A.4. Multinomial distribution. For the multinomial distribution

P{X1 = x1, . . . ,Xk = xk} =
(

N

x1, . . . , xk

) k∏
1

θxi

i ,

where the xi’s are nonnegative integers, θi ≥ 0, i = 1, . . . , k,
∑k

1 θi = 1
and

∑k
1 xi = N , consider the hypothesis H : θ1 = · · · = θk = 1/k

versus the alternative A: not H. A key result, due to Perlman and
Rinott (1977), is as follows.

A.4.a. Theorem (Perlman and Rinott, 1977). If φ(x1, . . . , xk) is
Schur-convex, then the test “reject H if φ(x1, . . . , xk) > c” has a Schur-
convex power function

β(θ1, . . . , θk) = EθI{φ(X)>c}.

Proof. This is a consequence of 11.E.11. ||
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Three tests that have this property are the chi-square test based on
φ(x1, . . . , xk) =

∑
x2
i , the likelihood ratio test based on φ(x1, . . . , xk) =∑

xi log xi, and the divergence test based on information statistics of
Kullback (1959, p. 113), φ(x1, . . . , xk) =

∑
[(xi/N) − (1/k)] log xi.

Cohen and Sackrowitz (1975) consider the class of functions
φ(x1, . . . , xk) =

∑
h(xi), where h is convex. They prove that the power

function

β(θ1, . . . , θk) = P
{∑

h(Xi) > c | θ(α)
}
, (7)

where

θ(α) = α(θ1, . . . , θk) + (1 − α)(1/k, . . . , 1/k)

is monotonically increasing in α. That is, the power function increases
as the alternative θ(α) moves away from the hypothesis θ(0). Perlman
and Rinott (1977) note this result is implied by A.4.a. To see this,
write

θ(α) = θ(1)[αI + (1 − α)Q],

where Q = (qij) is a k × k matrix with each element equal to 1/k.
Consequently, θ(1) � θ(α) � θ(0). Since

∑
h(Xi) is Schur-convex

for any convex h, it follows that β(θ(1)) ≥ β(θ(α)) ≥ β(θ(0)) (see
A.4.a); that is,

β(θ1, . . . , θk) ≥ β(θ(α)) ≥ β(1/k, . . . , 1/k).

A.5. Unbiased tests for homogeneity. Cohen and Sackrowitz
(1987) obtain unbiasedness results for tests of homogeneity in exponen-
tial families of PF2 densities (18.A.11 and 18.B), though monotonic
power functions are not guaranteed in these more general settings.
Specifically, they assume that X1,X2, . . . ,Xk are independent ran-
dom variables, each having its density in a given one-parameter PF2

exponential family. Thus, for i = 1, 2, . . . , k,

f(xi, θi) = β(θi)h(xi) exp{xiθi},
where h is log concave. This condition ensures that the density is PF2.
Cohen and Sackowitz (1987) restrict tests of the hypothesis

H : θ1 = θ2 = . . . = θk

to be permutation-invariant, and show that any test of size α with
convex conditional acceptance sets (given T =

∑n
i=1Xi) is unbiased.

This is obtained as a corollary to the result that a sufficient condition
for unbiasedness of the test is that the test function φ(x) be Schur-
convex.
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Consequently, permutation-invariant tests of homogeneity are unbi-
ased in a broad spectrum of distributional cases: normal, gamma (with
shape parameter ≥ 1), Poisson, binomial, geometric, etc.

In the following, p is the number of dimensions and n > p is the
sample size.

A.6. Log-eigenvalues of a Wishart matrix. Suppose that the
p × p random matrix S has a Wishart distribution with mean μ
and ES = nΣ. Denote the eigenvalues of Σ and S in decreasing
order by λ1, λ2, . . . , λp and 
1, 
2, . . . , 
p, respectively. The correspond-
ing log-eigenvalues are denoted by τi = log λi, ti = log 
i, and
t = (t1, t2, . . . , tp).

The distribution of t depends on Σ. Perlman (1996) conjectured that
if the set L ⊂ D p is Schur-concave, then

P{t ∈ L|Σ}

is a Schur-concave function of τ = τ(Σ). The conjecture was verified
in the case p = 2 by Perlman (1984). A variety of other special cases
in p dimensions (p > 2) are discussed by Perlman (1996), all of which
lend credence to the conjecture. The conjecture, if proved true, would
allow verification of unbiasedness of a variety of tests of hypotheses
that can be stated in terms of the eigenvalues of covariance matrices.

B Linear Combinations of Observations

Comparison of Linear Estimators

In the model

Yi = μ+ Ui, i = 1, . . . , n,

where μ is a constant and the Ui are independent, identically dis-
tributed random variables with zero means and common variance σ2,
any weighted average

T (w1, . . . , wn) =
n∑
1

wiYi,

n∑
1

wi = 1,
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is an unbiased estimator of μ. The variance of T (w) is σ2
∑
w2
i , which

is Schur-convex. Consequently, among unbiased estimators of the form
T (w), the estimator T (1/n, . . . , 1/n) =

∑
Yi/n has minimum variance.

If (U1, . . . , Un) are exchangeable random variables with EUi = 0,
Var(Ui) = σ2, and for i �= j, Cov(Ui, Uj) = σ2ρ, where necessarily
−1/(n − 1) < ρ < 1, then the variance Var T (w) = wΣw′ is convex
and symmetric and hence is Schur-convex. Thus the minimum variance
unbiased estimator is again T (1/n, . . . , 1/n) =

∑
Yi/n.

B.1. Two-stage nested design. In a two-stage random-effects
nested design model,

Yij = μ+Ri + Zij , i = 1, . . . ,m, j = 1, . . . , ni,

n1 ≥ · · · ≥ nm,
∑
ni = n. The “row effects” random variables Ri and

the “error” random variables Zij are independently distributed with

ERi = EZij = 0, Var(Ri) = σ2
R, Var(Zij) = σ2

E,

for all i and j. With w = (w11, . . . , w1n1 , . . . , wm1, . . . , wmnm
), any

linear estimator

T (w) =
m∑
i=1

ni∑
j=1

Yijwij ,
∑
i,j

wij = 1,

is an unbiased estimator of μ. The variance of T (w) is

Var T (w) = Var

⎛
⎝∑

i,j

Riwij

⎞
⎠+ Var

⎛
⎝∑

i,j

Zijwij

⎞
⎠

= σ2
R

∑
i

w2
i0 + σ2

E

∑
i,j

w2
ij,

≡ σ2
RVR(T (W )) + σ2

EVE(T (W )),

where wi0 =
∑

j wij.
Because of the nested design, estimators are confined to be of

the form

T (d) ≡
m∑
1

(Yi1 + · · · + Yini
)

ni
di

= μ+
m∑
1

Ridi +
m∑
1

(Zi1 + · · · + Zini
)

ni
di,
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where the weights d1, . . . , dm satisfy
∑
di = 1. Then

Var T (d) = σ2
R

m∑
1

d2
i + σ2

E

m∑
1

d2
i

ni

≡ σ2
RVR(T (d)) + σ2

EVE(T (d)).

Koch (1967a) compares three estimators using the weights

(i) di =
1
m
, (ii) di =

ni
n
, (iii) di =

ni(n− ni)
n2 −∑

n2
j

,

where i = 1, . . . ,m and n =
∑
nj. Denote the estimators corre-

sponding to these weights by T1, T2, T3, respectively. Koch (1967a)
proves that

VR(T1) ≤ VR(T2), VE(T1) ≤ VE(T2),

and conjectures that

VR(T1) ≤ VR(T3) ≤ VR(T2), (1a)

VE(T2) ≤ VE(T3) ≤ VE(T1). (1b)

Low (1970) proves (1a) and (1b) using 5.B.3. A more direct proof is
based on the following majorization.

B.1.a. Lemma. If ni ≥ 0, i = 1, . . . ,m, and n =
∑m

1 ni > 0, then
(n1

n
, . . . ,

nm
n

)
�
(
n1(n− n1)
n2 −∑

n2
i

, . . . ,
nm(n− nm)
n2 −∑

n2
i

)
�
(

1
m
, . . . ,

1
m

)
.

Proof. The second majorization is immediate. To prove the first
majorization, assume without loss of generality that n1 ≥ · · · ≥ nm.
Because z1 ≥ z2 and z1 +z2 ≤ 1 together imply z1(1−z1) ≥ z2(1−z2),
it follows that n1(n − n1) ≥ · · · ≥ nm(n − nm). In (a′) of 5.B.1, take
xi = [ni(n − ni)]/[n2 −∑

n2
j ], yi = ni/n, i = 1, . . . ,m, to obtain the

desired majorization. ||
Inequalities (1a,b) follow directly from the lemma and the Schur-

convexity of
∑
d2
i and

∑
(1/ni)d2

i on D (3.H.2.b).

B.2. Two-way classification. In a two-way classification random-
effects model

Yij = μ+Ri + Cj + Zij, i = 1, . . . , r, j = 1, . . . , c,

where Ri, Cj , and Zkl are mutually independent,

ERi = ECj = EZij = 0,

VarRi = σ2
R, VarCj = σ2

C , VarZij = σ2
E .
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To estimate μ, consider the class of linear estimators

T (w) =
∑
i,j

Yijwij

= μ+
∑
i

(wi1 + · · · + wic)
c

Ri +
∑
j

(w1j + · · · + wrj)
r

Ci +
∑
i,j

wijZij,

where
∑

i,j wij = 1 and

w = (w11, . . . , w1c, w21, . . . , w2c, . . . , wr1, . . . , wrc)

is the vector of weights. Then

Var T (w) = σ2
R

∑
i

w2
i0 + σ2

C

∑
j

w2
0j + σ2

E

∑
i,j

w2
ij ,

= σ2
R VR(T (w)) + σ2

C VC(T (w)) + σ2
E VE(T (w)),

where

wi0 =
∑
j

wij/c, w0j =
∑
i

wij/r.

It is of interest to compare the variances that are obtained using
different weights. Let N = (nij), where nij = 1 if an observation
appears in the (i, j)th cell, and nij = 0 otherwise; ni0 =

∑
j nij, n0j =∑

i nij, n =
∑

i,j nij. Consider weights

(i) w
(1)
ij = 1/rc,

(iia) w
(2a)
ij = ni0/nc,

(iib) w
(2b)
ij = n0j/nr,

(iii) w
(3)
ij =

(n− ni0 − n0j + nij)nij
n2 −∑

i n
2
i0 −

∑
j n

2
0j + n

, i = 1, . . . , r, j = 1, . . . , c.

For a discussion of these weights, see Koch (1967b).
Denote the respective weight vectors by w(1), w(2a), w(2b), w(3), and

the corresponding estimators by T1, T2a, T2b, T3.

B.3. Lemma.

w(1) ≺ w(2a) ≺ w(3), (2a)

w(1) ≺ w(2b) ≺ w(3). (2b)
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Proof. The left-hand majorizations in (2a) and (2b) are immediate.
To obtain the right-hand majorization in (2a), note that

w(2a) ≡ (n10/nc, . . . , n10/nc︸ ︷︷ ︸
c

, . . . , nr0/nc, . . . , nr0/nc︸ ︷︷ ︸
c

)

= (n11, . . . , n1c, n21, . . . , n2c, . . . , nr1, . . . , nrc) diag(D, . . . ,D),

where D is a c×c doubly stochastic matrix with each element 1/c. The
elements nij are either 0 or 1. If any nij = 0, then the corresponding
element in w(2a) and in w(3) is zero. If any nij = 1, the corresponding
element of w(2a) is 1. Consequently, w(2a) can be permuted to obtain
(e, 0) and w(3) can be permuted to obtain (w(3), 0), where the 0 vectors
are of the same length. Since the total sums in both vectors are equal,
by 5.A.7, w(2a) ≺ w(3).

The proof that w(3) � w(2b) is parallel to the above, with columns
replacing rows. ||

As a consequence of B.3 and the Schur-convexity of
∑

i,j w
2
ij,

VE(T3) ≥ VE(T2a) ≥ VE(T1),

VE(T3) ≥ VE(T2b) ≥ VE(T1).

It also follows that VC(T2b) ≥ VC(T1), VR(T2a) ≥ VR(T1). However,
other comparisons cannot be made in this way since the variance∑

j w
2
0j , say, is not a symmetric function of the wij ’s.

For connections between majorization and weighted linear estimators
in the context of portfolio diversification and value at risk, see
Ibragimov and Walden (2007).

Subsampling Quantile Estimators

In the subsampling method, estimates are generated from subsamples
of a complete sample and then averaged over the subsamples. Such a
procedure has been shown to provide a robust estimator of location
for symmetric distributions, and also to have a smoothing effect for
the sample quantile for any continuous distribution.

More specifically, let X1, . . . ,Xn be a complete sample. For fixed k,
1 ≤ k ≤ n, select from the complete sample a random subsample of
size k without replacement, and denote the ordered observations in
the subsample by X1:k, . . . ,Xk:k. A more accurate notation would be
Xi:k:n for Xi:k, but for simplicity the n is omitted.

For a single subsample, the αth quantile (0 < α < 1) is estimated
by Xr:k, where r is the greatest integer less than or equal to (k + 1)α.
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However, for fixed r, instead of using a single subsample, an average of(n
k

)
estimators obtainable from distinct subsamples yields the following

quantile estimator that is a linear combination of the order statistics
of the complete sample:

u(r, k, n) =
r+n−k∑
j=r

[(
j − 1
r − 1

)(
n− j

k − r

)/(
n

k

)]
xj:n.

This estimator and two others which differ in the weights assigned
to the complete sample order statistics have been proposed as
nonparametric smoothed quantile estimators:

u(r, k, n) =
n∑
j=1

aj(r, k, n)xj:n, (3a)

v(r, k, n) =
n∑
j=1

bj(r, k, n)xj:n, (3b)

w(r, k, n) =
n∑
j=1

cj(r, k, n)xj:n, (3c)

where the weights are

aj(r, k, n) =
[(
j − 1
r − 1

)(
n− j

k − r

)/(
n

k

)]
, r ≤ k, (4a)

bj(r, k, n) =
∫ j/n

(j−1)/n

zr−1(1 − z)n−r

B(r, n − r + 1)
dz, (4b)

and for r ≤ k,

cj(r, k, n) =
[(
r + j − 2
r − 1

)(
n+ k + r − j

k − r

)/(
n+ k − 1

k

)]
. (4c)

Note that
n∑
j=1

aj(r, k, n) =
n∑
j=1

bj(r, k, n) =
n∑
j=1

cj(r, k, n) = 1.

For a fixed subsample size k, let

uk = (u(1, k, n), . . . , u(k, k, n)), (5a)

vk = (v(1, k, n), . . . , v(k, k, n)), (5b)
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wk = (w(1, k, n), . . . , w(k, k, n)). (5c)

Thus uk, vk, and wk represent vectors of estimates of the αth quantile
when [(k+ 1)α] = r for r = 1, . . . , k. A key result is that these vectors
are ordered by majorization.

B.4. Proposition (Kaigh and Sorto, 1993). For uk, vk, and wk
defined by (3a,b,c), (4a,b,c), and (5a,b,c),

uk � vk � wk.

For details of the proof and for further references and discussion of
quantile estimators, see Kaigh and Sorto (1993).

C Ranking and Selection

In ranking and selection problems, there is an underlying distribu-
tion F (x; θ1, . . . , θk), with unknown parameters θ1, . . . , θk lying in some
set Ω. Various goals are considered, such as ordering the θ’s, selecting
the t-largest θ’s, or selecting the t-smallest θ’s.

The emphasis of this section is on selection problems. A decision
procedure R which depends on a sample X1, . . . ,Xn is used to make
the selection. To control error probabilities, the procedure is ordinarily
required to satisfy

PR{correct selection| θ ∈ Ω∗} ≡ PR{CS| θ ∈ Ω∗} ≥ p0,

where p0 is a preassigned probability level and Ω∗ consists of points in
Ω bounded away from the boundary of Ω in some sense appropriate to
the problem at hand. If there exists a configuration θLF (called a least
favorable configuration) such that

PR{CS| θ} ≥ PR{CS| θLF} for all θ ∈ Ω∗,

then the right-hand side can be set equal to p0 in the determination
of a procedure R.

The utility of majorization is that sometimes PR{CS| θ1, . . . , θk} is
Schur-concave in (θ1, . . . , θk). If θ∗ is the largest vector θ (in the sense of
majorization) satisfying the constraints, then PR{CS| θ} ≥ PR{CS| θ∗}
and θ∗ is the least favorable configuration. More commonly, an ad-
ditional step is required: The probability of a correct selection is
Schur-concave only after some conditioning and a further argument
is required to remove the conditioning.
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These ideas are illustrated here for the multinomial and normal
distributions. They are applicable also to various problems involving
other distributions [e.g., see Alam and Thompson (1973) or Dudewicz
and Tong (1976)].

Multinomial Distribution

Let X1, . . . ,Xk have a multinomial distribution

P{X1 = x1, . . . ,Xk = xk} =
(

N

x1, . . . , xk

) k∏
1

θxi

i ,

k∑
1

xi = N, 0 ≤ θi,
k∑
1

θi = 1,

and the xi’s are nonnegative integers. Recall that the ordered X’s are
denoted by X(1) ≤ · · · ≤ X(k) and the ordered θ’s by θ(1) ≤ · · · ≤ θ(k).

C.1. Selecting the most likely event. For the goal of choosing
the cell with the highest cell probability, i.e., choosing the cell corre-
sponding to θ(k), Bechhofer, Elmaghraby, and Morse (1959) use the
procedure: Assert that the cell corresponding to X(k) has the largest
θ-value. (If ties occur, they are broken by randomization.) Subject to
the constraints

θ(k) ≥ aθ(k−1), a > 1, (1)

Kesten and Morse (1959) obtain the least favorable configuration

θLF =
(

a

a+ k − 1
,

1
a+ k − 1

, . . . ,
1

a+ k − 1

)
. (2)

In spite of the fact that this result is quite intuitive, it is somewhat
troublesome to prove.

Let X̃i be the random variable associated with the event having
probability θ(i). The probability φ(θ1, . . . , θk) of a correct selection is

φ(θ1, . . . , θk) = P{X̃k > X̃α, α �= k}

+
1
2

∑
j �=k

P{X̃k = X̃j , X̃k > X̃α, α �= j}
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+
1
3

∑
j1 �=k,j2 �=k

P{X̃k = X̃j1 = X̃j2 , X̃k > X̃α, α �= j1, j2}

+ · · · + 1
k
P{X̃k = X̃k−1 = · · · = X̃1}. (3)

The function φ can be written in terms of a conditional expectation
for which the following lemma is useful.

C.1.a. Lemma. For each z ∈ R, define the function

gz : R l → R by gz(u1, . . . , ul) = 1/(m+ 1)

if m of the u1, . . . , ul are equal to z, and the remaining l −m of the
u1, . . . , ul are strictly less than z; gz(u1, . . . , ul) = 0 otherwise. Then
gz(u1, . . . , ul) is Schur-concave in u1, . . . , ul.

Proof. Because gz is symmetric, by 3.A.5 it suffices to show that
for fixed ü = (u3, . . . , ul), 0 ≤ α ≤ 1, α = 1 − α,

gz(u1, u2, ü) ≤ gz(αu1 + αu2, αu1 + αu2, ü). (4)

Let r be the number of u3, . . . , ul equal to z. Then

gz(u1, u2, ü) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1/r if u1 < z, u2 < z, u3 ≤ z, . . . , ul ≤ z,

1/(r + 1) if u1 < z, u2 = z or u1 = z,

u2 < z, u3 ≤ z, . . . , ul ≤ z,
1/(r + 2) u1 = u2 = z, u3 ≤ z, . . . , ul ≤ z,

0 elsewhere.

Using this, (4) can be verified directly. ||
Rewrite (3) as

φ(θ1, . . . , θk) = E{Eθ[gz(X̃1, . . . , X̃k−1)|X̃k = z]}.
By 11.E.11, it follows that if g is Schur-concave, then

Eθ[gz(X̃1, . . . , X̃k−1)|X̃k = z] is Schur-concave in the ratios

(
θ(1)

1 − θ(k)
, . . . ,

θ(k−1)

1 − θ(k)

)
.

Because θ(k) = 1 − ∑k−1
1 θ(i), the conditional expectation is Schur-

concave in (θ(1), . . . , θ(k−1)) with θ(k) fixed.
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Alternatively, C.1.a can be restated as follows:

C.1.b. Proposition. Let φ be the function defined by (3). If
(α1, . . . , αk−1) ≺ (β1, . . . , βk−1), then

φ(α1, . . . , αk−1, θ(k)) ≥ φ(β1, . . . , βk−1, θ(k)), where θ(k) = 1 − Σk−1
1 αi.

For fixed θ(k), a/(a+ k − 1) ≤ θ(k) ≤ 1, determine μ and an integer
q by

0 ≤ μ ≤ θ(k)

a
, θ(k) + (q − 2)

θ(k)

a
+ μ = 1, (5)

and let

θ̃ = (θ̃k, . . . , θ̃1) = (θ(k), θ(k)/a, . . . , θ(k)/a︸ ︷︷ ︸
q−2

, μ, 0, . . . , 0︸ ︷︷ ︸
k−q

). (6)

By 5.C.1, θ ≺ θ̃ for all probability vectors with θ(k) fixed that satisfy
the constraints (1). It follows from C.1.b that φ(θ̃) ≤ φ(θ). This is
Theorem 1 of Kesten and Morse (1959).

To identify the least favorable configuration, it must be shown that,
for θ(k) = a(1 − μ)/(a − q − 2) determined by (6), φ(θ̃) is decreasing
in μ (Kesten and Morse, 1959, Lemma 2). This means that

φ

⎛
⎜⎜⎜⎝
a(1 − μ)
a+ q − 2

,
1 − μ

a+ q − 2
, . . . ,

1 − μ

a+ q − 2︸ ︷︷ ︸
q−2

, μ, 0, . . . , 0︸ ︷︷ ︸
k−q

⎞
⎟⎟⎟⎠

≥ φ

⎛
⎜⎜⎜⎝

a

a+ q − 1
,

1
a+ q − 1

, . . . ,
1

a+ q − 1︸ ︷︷ ︸
q−1

, 0, . . . , 0︸ ︷︷ ︸
k−q

⎞
⎟⎟⎟⎠

≥ φ

⎛
⎜⎜⎜⎝
a(1 − ν)
a+ q − 1

,
1 − ν

a+ q − 1
, . . . ,

1 − ν

a+ q − 1︸ ︷︷ ︸
q−1

, ν, 0, . . . , 0︸ ︷︷ ︸
k−q−1

⎞
⎟⎟⎟⎠ ,

where v (in place of μ) satisfies (5) with q−1 in place of q−2. Iteration
of this leads to the least favorable configuration (2).
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C.1.c. If the constraints (1) are replaced by

θ(k) ≥ θ(k−1) + a, 0 < a < 1/(k − 1), (7)

then the least favorable configuration is not easily described. Argu-
ments similar to those above can be used to show that for appropriately
fixed θ(k), φ(θ̃) ≤ φ(θ), where θ̃ is a probability vector of the form

θ̃ = (θ(k), θ(k) − a, . . . , θ(k) − a, μ, 0, . . . , 0),

0 ≤ μ ≤ θ(k) − a. It would then be expected that the least favorable
configuration is (

1 + (k − 1)a
k

,
1 − a

k
, . . . ,

1 − a

k

)
,

but an analog of the monotonicity result of the previous argument
is not available. Indeed, Chen and Hwang (1984) provided some
counterexamples to the conjecture regarding the nature of the least
favorable configuration. Subsequently, Bhandari and Bose (1987) in-
vestigated the situation in which the constraint (7) is replaced by the
more general constraint

θ(k) ≥ aθ(k−1) + b.

They verify that if a > 1, b ≤ 0, and a + bk > 1, then the least
favorable configuration is given by(

a+ b(k − 1)
a+ k − 1

,
1 − b

a+ k − 1
, . . . ,

1 − b

a+ k − 1

)
.

However, when a = 1 and b > 0, the monotonicity argument breaks
down, and the nature of the least favorable configuration actually de-
pends on N . If N is sufficiently large, the least favorable configuration
is 1

2(1+b, 1−b, 0, . . . , 0). Chen and Hwang (1984) also discuss the more
general problem of selecting the t most likely events in this context.

C.2. Selecting the least likely event. To select the cell with the
smallest probability, Alam and Thompson (1972) use the procedure:
Assert that the cell corresponding to X(1) has the smallest θ-value.

The probability of a correct selection φ(θ1, . . . , θk) is

φ(θ1, . . . , θk) = P{X̃1 < X̃α, α �= 1}

+
1
2

∑
j>1

P{X̃1 = X̃j, X̃1 < X̃α, α �= j, α > 1}

+ · · · + 1
k
P{X̃1 = · · · = X̃k}.

(8)



546 13. Additional Statistical Applications

With the aid of the following lemma, expression (8) can be written in
terms of a conditional expectation.

C.2.a. Lemma. The function gz(u1, . . . , ul) = 1/(m + 1) if m
of u1, . . . , ul are equal to z and the remaining l − m of u1, . . . , ul
are strictly greater than z; gz(u1, . . . , ul) = 0 otherwise. Then
gz(u1, . . . , ul) is Schur-concave in u1, . . . , ul.

This lemma follows from C.1.a by noting that

gz(u1, . . . , ul) = g−z(−u1, . . . ,−ul).
Conditioning on X̃1 with l = k − 1 yields

φ(θ1, . . . , θk) = E{Eθ[gz(X̃2, . . . , X̃k)|X̃1 = z]}.
By 11.E.11, it follows that because g is Schur-concave,

Eθ[gz(X̃2, . . . , X̃k)|X̃1 = a]

is Schur-concave in (θ(2)/(1 − θ(1)), . . . , θ(k)/(1 − θ(1))).

Since θ(1) = 1−∑k
2 θ(i), the conditional expectation is Schur-concave in

(θ(2), . . . , θ(k)). Hence, the unconditional expectation is Schur-concave
in (θ(2), . . . , θ(k)) with θ(1) fixed.

Alternatively, this may be stated as

C.2.b. Proposition. If (α2, . . . , αk) ≺ (β2, . . . , βk), then

φ(θ(1), α2, . . . , αk) ≥ φ(θ(1), β2, . . . , βk),

where φ is defined by (8) and θ(1) = 1 − Σk−1
1 αi.

Alam and Thompson (1972) implicitly prove the above proposition
by an argument similar to the one used here.

For the constraint set

θ(1) ≤ θ(2) − a, where 0 < a < 1/(k − 1),

the maximal vector for fixed θ(1) is obtainable from 5.C.1:

(θ̃1, . . . , θ̃k) = (θ(1), θ(1) + a, . . . , θ(1) + a, μ),

where

μ = 1 − (k − 1)θ(1) − (k − 2)a.

Alam and Thompson (1972) complete the derivation of the least
favorable configuration with a monotonicity argument to obtain

θLF =
(

1 − (k − 1)a
k

,
1 + a

k
, . . . ,

1 + a

k

)
.
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Remark. Alam, Rizvi, Mitra, and Saxena (1986) discuss the prob-
lem of selecting the most diverse multinomial population (i.e., the
population whose corresponding probability vector θ majorizes each of
the probability vectors corresponding to the other populations) based
on indices of diversity (13.F) computed for samples of size n from each
of the populations. In particular, they give approximate expressions
for the probability of correct selection for the binomial case with n
large.

Normal Distribution

C.3 Analysis of variance. Bechhofer, Santner, and Turnbull (1977)
consider an analysis of variance two-way classification with 2 rows
and c columns. The goal is to choose the treatment with the largest
interaction that represents the departure from additivity of row and
column effects. For this purpose, n observations are obtained from each
cell.

Denote by Yijk, i = 1, 2, j = 1, . . . , c, k = 1, . . . , n, the kth
observation on the ith row and jth column. The random variables
Yijk are independently and normally distributed with means

EYijk = μ+ αi + βj + γij ,

where μ, αi, βj , and γij are unknown constants which satisfy∑
i

αi =
∑
j

βj =
∑
i

γij =
∑
j

γij = 0.

The Yijk’s have a common known variance σ2.
In order to select the cell corresponding to the largest γij , estimate

γij using

Xij = Yij· − Yi·· − Y·j· + Y··· ,

where

Yij· =
∑
k

Yijk/n, Yi·· =
∑
j,k

Yijk/nc,

Y·j· =
∑
i,k

Yijk/nr, Y··· =
∑
i,j,k

Yijk/nrc.

The procedure is to assert that the cell corresponding to the largest
interaction is the one with the largest Xij value.

If γ2c > 0 is the unique largest interaction, then γ1c = −γ2c is the
smallest interaction, and because γ2j = −γ1j , j = 1, . . . , c − 1, all
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interactions will be at least a prescribed magnitude δ∗ smaller than
γ2c provided that

−(γ2c − δ∗) ≤ γ1j ≤ γ2c − δ∗, j = 1, . . . , c− 1.

This constraint set is nonempty if γ2c > δ∗. Our object here is to show
how majorization can be used to identify a least favorable configuration
subject to these constraints.

To simplify notation, let a = γ2c− δ∗ > 0, γ1j = δj , j = 1, . . . , c− 1,
and rewrite the constraints as

−a ≤ δj ≤ a, j = 1, . . . , c− 1. (9)

The probability of a correct selection,

P{X2c > Xij for all (i, j) �= (2, c)},
can conveniently be written in terms of the random variables

Wj =
c−1∑
i=1

X2i −X2j , j = 1, . . . , c− 1.

These random variables have a multivariate normal distribution with
means 0, variances σ2(c− 2)/cn, and covariances (c− 4)/[2(c − 2)]. If
A is the region

A =

{
(w1, . . . , wc−1) : − γ2c ≤ wj ≤ γ2c +

2
c− 2

c−1∑
i=1

wi − 2
c− 2

γ2c,

j = 1, . . . , c− 1

}
,

then the probability of a correct selection can be written as

P{(W1, . . . ,Wc−1) ∈ A+ δ},
where δ = (δ1, . . . , δc−1). From this, it is easy to apply 3.J.1.a to con-
clude that the probability of a correct selection is a Schur-concave
function of δ1, . . . , δc−1. To see this, note that W1, . . . ,Wc−1 are ex-
changeable multivariate normal random variables; hence, they have a
Schur-concave joint density (11.E.5.d). Further, if

(u1, u2) ∈ {a ≤ ui ≤ b+ u1 + u2, i = 1, 2} ≡ B,

then

(αu1 + αu2, αu1 + αu2) ∈ B.
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Consequently, if y ∈ A, then yT ∈ A, where T is a T -transform, so the
hypotheses of 3.J.1.a are satisfied.

Subject to the constraints (9), it follows from 5.C.1 that a maximal
δ in the sense of majorization is

δ̃ = (a, . . . , a︸ ︷︷ ︸
c−q−2

, μ︸︷︷︸
1

,−a, . . . ,−a︸ ︷︷ ︸
q

), −a ≤ μ < a,

where q, determined by the condition
∑c−1

1 δj = γ2c, is the unique
integer in the interval

[12(c− 1 − γ2c/a) − 1, 1
2 (c− 1 − γ2c/a)].

Because the probability of a correct selection is a Schur-concave
function of the parameters (δ1, . . . , δc−1), and subject to certain
constraints, δ̃ is the maximal vector,

P{correct selection|δ} ≥ P{correct selection|δ̃}.
This is the main result of Theorem 6.1 of Bechhofer, Santner, and
Turnbull (1977).

Rinott and Santner (1977) use majorization to obtain a least
favorable configuration in an analysis of covariance setting. Their
results are not discussed here.

D Majorization in Reliability Theory

Reliability of k-out-of-n Systems

For most systems of practical interest having n independent compo-
nents, the system reliability (probability that the system functions) is
a function h of component reliabilities. This function h : [0, 1]n → [0, 1]
is called the reliability function of the system.

Systems with n components that function if and only if at least k
components function are called k-out-of-n systems. One-out-of-n sys-
tems are commonly called parallel systems, and n-out-of-n systems
are called series systems. See Marshall and Olkin (2007) for further
discussion of k-out-of-n systems.

Let p1, . . . , pn be the reliabilities of the n independent components
and let hk be the reliability function of a k-out-of-n system. It is easy to
see that h1(p1, . . . , pn) = 1 −∏n

1 (1 − pi) and hn(p1, . . . , pn) =
∏n

1 pi.
Consequently, it is easy to verify that h1 is Schur-convex and hn is
Schur-concave. For 1 < k < n, hk is neither Schur-convex nor Schur-
concave.
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Let Xi = 1 if the ith component functions and Xi = 0 otherwise.
Then pi = P{Xi = 1} and

hk(p1, . . . , pn) = P{X1 + · · · +Xn ≥ k}.
From 12.K.1, it follows that hk is Schur-convex for k ≤ ∑n

1 pi − 1
and hk is Schur-concave for k ≥ ∑n

1 pi + 2. For
∑n

1 pi = A < k,
fixed, Derman, Lieberman, and Ross (1974) show that hk(p1, . . . , pn)
is maximized if (p1, . . . , pn) has the form (A/r, . . . , A/r, 0, . . . , 0) for
some r = 1, . . . , n.

Boland and Proschan (1983) confirm that hk(p) is a Schur-concave
function in the region [0, (k − 1)/(n− 1)]n, and is Schur-convex in the
region [(k − 1)/(n − 1), 1]n.

Note. The problem of obtaining confidence bounds for hk(p) based
on component data [i.e., independent binomial (ni, pi) samples] is of
some importance but of considerable difficulty. Under certain condi-
tions, Buehler (1957), and subsequently Soms (1989) provide bounds
for the system reliability in a k-out-of-n system.

For some purposes, the hazard transform η : [0,∞)n → [0,∞)
defined by

η(R1, . . . , Rn) = − log h(e−R1 , . . . , e−Rn)

is more convenient to work with than the reliability function [see Esary,
Marshall, and Proschan (1970)].

D.1. Proposition (Pledger and Proschan, 1971). The hazard trans-
form ηk of a k-out-of-n system is increasing and Schur-concave on
[0,∞)n.

Proof. Let X1, . . . ,Xn be independent Bernoulli random variables
where Xi = 0 or 1 according to whether the ith component fails or
functions, so that pi = P{Xi = 1}. Let Ri = − log pi, i = 1, . . . , n.
Because the indicator function φ of the set

X = {x : max
π

(zπ(1) + · · · + zπ(k)) = k}

is increasing in x ∈ {z : zi = 0 of 1 for all i}, it follows that φ satisfies
the conditions of 12.F.1.a, so that

ERφ(X) = PR

{
max
π

Xπ(1) + · · · +Xπ(k) = k
}
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is decreasing and Schur-convex in the vector R. The hazard transform
is ηk = −logERφ(X), where

ERφ(X) = hk(e−R1 , . . . , e−Rn).

Thus ηk is increasing and Schur-concave. ||
D.1.a. Proposition (Pledger and Proschan, 1971). If R �w R∗,
where Ri = − log pi and R∗

i = − log p∗i , then

hk(p) ≥ hk(p∗), k = 1, . . . , n− 1,

hn(p) = hn(p∗).

Proof. From D.1, it follows that ηk(R) ≤ ηk(R∗); that is,

hk(e−R1 , . . . , e−Rn) ≥ hk(e−R
∗
1 , . . . , e−R

∗
n), k = 1, . . . , n.

That equality holds for k = n is trivial because ηn(R) =
∑n

1 Ri. ||
D.1.b. Proposition (Pledger and Proschan, 1971). Denote the
“odds ratio” by ri = (1 − pi)/pi, i = 1, . . . , n. Then

hk(p1, . . . , pn) = hk((r1 + 1)−1, . . . , (rn + 1)−1)

is a decreasing Schur-convex function of r. Hence, r �w r∗ implies
hk(p) ≥ hk(p∗), where r∗i = (1 − p∗i )/p

∗
i , i = 1, . . . , n.

Proof. From ri = (1 − pi)/pi and pi = e−Ri , it follows that Ri =
log(ri + 1). Because φ(R1, . . . , Rn) = h(e−R1 , . . . , e−Rn) is decreasing
and Schur-convex on [0,∞)n and because log(ri + 1) is increasing and
concave on [0,∞), it follows from (vi) of Table 2 of Section 3.B that
the composition

φ(log(r1 + 1), . . . , log(rn + 1))

is decreasing and Schur-convex; i.e., hk((r1 + 1)−1, . . . , (rn + 1)−1) is
decreasing and Schur-convex. ||

When k Components Are Equally Reliable

Park (1988) studies the k-out-of-n system in which k of the components
are equally reliable, and n − k units might have different reliabilities.
Thus the vector of component reliabilities is of the form

p = (p0, . . . , p0, p1, . . . , pn−k)

in which the first k coordinates are equal to p0.
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Suppose that n − k ≥ 2 and that 0 < p0 < 1 is fixed. Park (1988)
shows that the reliability function h(p) is a Schur-convex function of
(p1, . . . , pn−k) if k − 1 ≤ (k + 1)p0 and is Schur-concave if 2k − n ≥
(k + 1)p0.

Optimal Component Allocation in Parallel-Series
and Series-Parallel Systems

Consider a parallel-series system consisting of k subsystems connected
in parallel where the ith subsystem consists of ni components con-
nected in series. Assume that n1 ≤ n2 ≤ n3 ≤ . . . ≤ nk and let
n =

∑k
i=1 ni denote the total number of components in the sys-

tem. Suppose that the reliabilities of the components are given by
p1, p2, . . . , pn and that the components function independently. With-
out loss of generality, assume that p1 ≥ p2 ≥ . . . ≥ pn; i.e., the
components are ordered in terms of their reliabilities, with the first
component being the most reliable and the nth component, least re-
liable. Assume that the components are interchangeable in the sense
that they can function when placed in any position in the system.
The goal is to allocate the components to the subsystems in order to
maximize system reliability.

D.2. Theorem (El-Neweihi, Proschan, and Sethuraman, 1986). The
reliability of the parallel-series system is maximized by assigning com-
ponents 1, 2, . . . , n1 to subsystem 1 (i.e., the most reliable components
to the smallest series subsystem), components n1 + 1, . . . , n1 + n2 to
subsystem 2 (the next-most-reliable components to the second-smallest
series subsystem), . . . ,the nk least reliable components to the largest
series subsystem.

Proof. Denote the subsystems by S1, . . . , Sk. The reliability of a
particular assignment of components is

1 −
k∏
j=1

⎛
⎝1 −

∏
i∈Sj

pi

⎞
⎠ ,

where i ∈ Sj if component i has been assigned to subsystem j. Define
xi = − log pi (the hazard of component i) and for each subsystem Sj
define yj =

∑
i∈Sj

xi (the hazard of subsystem j). Let y = (y1, . . . , yk)
denote the vector of subsystem hazards. The reliability of the sys-
tem, expressed as a function of y, is g(y) = 1 − ∏k

j=1(1 − e−yj ).
By Proposition 3.E.1, g(y) is Schur-convex in y. Denote the vector
of subsystem hazards corresponding to the allocation discussed in the
statement of the theorem by y∗, and let y denote the corresponding vec-
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tor associated with any other allocation of components to subsystems;
it can be verified that y ≺ y∗. The Schur-convexity of g, as a function
of x, then guarantees that the allocation associated with y∗ yields the
maximal system reliability. ||

This optimal allocation might be surmised without any computa-
tion, but a rigorous proof is not as transparent. But for a series-parallel
system, no obvious optimal allocation comes to mind for good reason.
It is not difficult in the spirit of Theorem D.2 to identify the allocation
that leads to minimal system reliability. Unfortunately, the optimal
allocation to maximize the reliability depends on the individual re-
liabilities p1, p2, . . . , pn and not just their ordering. It is possible to
compare allocations using majorization, but identification of the opti-
mal allocation can be recast as an integer linear programming problem
[see El-Neweihi, Proschan, and Sethuraman (1986) for more details].

An allocation of the type described in D.2 in which the best parts are
assigned to one subsystem, the next-best parts go to a second subsys-
tem, etc. can be called a monotone allocation. El-Neweihi, Proschan,
and Sethuraman (1987) show that such monotone allocations are opti-
mal in more general k-out-of-n systems. Subsequently, Du and Hwang
(1990) verified the optimality of monotone allocations in s-stage k-out-
of-n systems. For s ≥ 2, an s-stage k-out-of-n system is a k-out-of-n
system whose ith component is itself an (s − 1)-stage ki-out-of-ni
system.

It is, of course, reasonable to assume that the reliability of a compo-
nent in one of these systems depends not only on the component but
also on its operating environment, i.e., the subsystem in which it is
placed. Denote by pij the reliability of component i when it is placed
in subsystem j, perhaps for simplicity assuming that a multiplicative
representation such as pij = aibj is possible. Rajendra Prasad, Nair,
and Aneja (1991) study a more general version in which the reliability
of component i depends on the precise position within a subsystem
to which it is allocated. They describe an algorithm to be used in the
parallel-series setting and also discuss a special case of the problem
in the series-parallel setting. Revyakov (1993) studies series-parallel
settings in which component reliability depends on the subsystem to
which the component is allocated; i.e., pij = aibj. He discusses series-
parallel systems in which nj = n0 for every j, and series-parallel
systems in which ai = a for all i (i.e., an interchangeable setting in
which the reliability only depends on the system to which a component
is assigned).
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Allocation of Standbys in Series or Parallel Systems

Suppose the life lengths X1, . . . ,Xn of n units have a symmetric joint
density f(x) with support in R n

+ . The n units are to be allocated to
k(< n) subsystems which are to be connected in parallel or in series.
Let r = (r1, . . . , rk), with

∑k
1 ri = n, denote a typical allocation.

In subsystem i, one unit is installed and the remaining ri − 1 units
are available as standbys. The lifetime of subsystem i is

∑ri

j=1Xnj
,

where n1, . . . , nri
identify the units assigned to subsystem i. Without

loss of generality, units 1, 2, . . . , r1 are assigned to subsystem 1, units
r1 + 1, r1 + 2, . . . , r1 + r2 are assigned to subsystem 2, etc. Thus the
lifetimes of the subsystems are

Y
(r)
1 =

r∑
i=1

Xi, Y
(r)
2 =

r1+r2∑
i=r1+1

Xi, . . . , Y
(r)
k =

n∑
Xi

i=r1+r2+...+rk−1+1

.

Boland, Proschan, and Tong (1990) show that if φ(y) is a permutation-
invariant concave function, then

Eφ(Y (r)
1 , . . . , Y

(r)
k )

is a Schur-convex function of r, provided that the expectation exists.
As an application of this, it follows that if the subsystems are con-

nected in series, the units should be divided among the subsystems as
equally as possible, i.e., with |ri− rj| ≤ 1 for all i, j. If the subsystems
are connected in parallel, the best allocation puts r − k + 1 units in
subsystem 1 and one unit in every other subsystem.

Stochastic Ordering of Normalized Spacings

Suppose that X1, . . . ,Xn are exchangeable positive random variables.
The normalized spacings

Dk = (n− k + 1)(X(k) −X(k−1)), k = 1, 2, . . . , n

play a key role in certain reliability contexts (they are intimately
related to the empirical total time on test transform). Ebrahimi
and Spizzichino (1997) show that if X has a Schur-concave (convex)
density, then Dk ≥st (≤st)Dk+1.

Operation of Repairable Machines

Suppose that for i = 1, . . . , n, machine i alternates between the states
“operating” and “undergoing repair.” Upon entering the operating
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state, the machine remains there for a random length of time having
distribution Fi; repair times have distribution Gi. All periods are mu-
tually independent. Let {N(t), t ≥ 0} be the number of machines
operating at time t. Similarly, let F ∗

i , G∗
i , and {N∗(t), t ≥ 0} be

corresponding quantities for another set of n machines.

D.3. Proposition (Pledger and Proschan, 1973). Assume that
either N(0) = N∗(0) = n or that N(0) = N∗(0) = 0.

(a) For all t ≥ 0, suppose that

Fi(t) = 1 − e−λit, F ∗
i (t) = 1 − e−λ

∗
i t, i = 1, . . . , n,

G1(t) = · · · = Gn(t) = G∗
1(t) = · · · = G∗

n(t) = 1 − e−ρt

(where λi, λ∗i , ρ are positive). If (λ1, . . . , λn) ≺ (λ∗1, . . . , λ
∗
n), then for

all t ≥ 0, N(t) ≤st N∗(t), where ≤st denotes stochastic order (see
Section 17.A).
(b) For all t ≥ 0, suppose that

F1(t) = · · · = Fn(t) = F ∗
1 (t) = · · · = F ∗

n(t) = 1 − e−λt,

Gi(t) = 1 − e−ρit, G∗
i (t) = 1 − e−ρ

∗
i (t), i = 1, . . . , n

(again, ρi, ρ∗i , λ are positive). If (ρ1, . . . , ρn) ≺ (ρ∗1, . . . , ρ∗n), then for
all t ≥ 0, N(t) ≥st N∗(t).

The proof of these results is not given here.

Positive Dependence of a Class of
Multivariate Exponential Distributions

As a starting point, suppose that U1, . . . , Un, V1, . . . , Vn, and W are
independent exponential random variables with respective parameters
λ1 (for the Uj ’s), λ2 (for the Vj’s), and λ0 (for W ). Let k = (k1, . . . , kn)
be a vector of nonnegative integers with∑

ki = n, k1 ≥ · · · ≥ kr ≥ 1, kr+1 = · · · = kn = 0, (1)

for some r ≤ n. Further, define X = (X1, . . . ,Xn) by

Xj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(Uj, V1,W ), j = 1, . . . , k1,

min(Uj, V2,W ), j = k1 + 1, . . . , k1 + k2,
. .
. .
. .

min(Uj , Vr,W ), j = Σr−1
1 ki + 1, . . . , n.
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The random vector X thus defined has a multivariate exponential
distribution [see Marshall and Olkin (1967)].

D.4. Proposition (Olkin and Tong, 1994). If k = (k1, . . . , kn) and
k′ = (k′1, . . . , k′n) satisfy (1), and k � k′, then

Pk{X1 > t, . . . ,Xn > t} ≥ Pk′{X1 > t, . . . ,Xn > t}.

D.4.a Let n and k = (k1, . . . , kn) be fixed, with k satisfying (1). If
(λ1, λ2, λ0) ≺ (λ′1, λ′2, λ′0), then

Pλ{X1 ≥ x1, . . . ,Xn ≥ xn} ≥ Pλ′{X1 ≥ x1, . . . ,Xn ≥ xn}.

In particular, these results are applicable to various parallel-series
systems.

Additional Appearances of Majorization
in the Context of Reliability

Use of majorization in reliability is also made by El-Neweihi,
Proschan, and Sethuraman (1978), Proschan (1975), and Proschan
and Sethuraman (1976). The work of Derman, Lieberman,and Ross
(1972) is also suggestive of majorization. Boland and El-Neweihi (1998)
present a majorization result in the context of minimal repair of
two-component parallel systems with exponential components.

E Entropy

The entropy, H(ξ1, . . . , ξr) = −∑r
k=1 ξk log ξk, of a probability mass

function ξk ≥ 0, k = 1, . . . , r,
∑

k ξk = 1, provides a measure of the de-
gree of uniformness of the distribution. That is, the larger H(ξ1, . . . , ξr)
is, the more uniform the distribution is. In 3.D.1 it is shown that

H(1, 0, . . . , 0) ≤ H(ξ1, . . . , ξr) ≤ H(1/r, . . . , 1/r),

and indeed, that H(ξ) is Schur-concave in ξ.
For some probability mass functions, each ξk = ξk(θ1, . . . , θm) is a

function of θ1, . . . , θm, in which case write

H̃(θ1, . . . , θm) ≡ H(ξ1, . . . , ξr).

If each ξk is a decreasing Schur-convex function or an increasing Schur-
concave function of θ1, . . . , θm, then H̃(θ1, . . . , θm) is Schur-concave
(Table 1, Section 3.B). However, H̃ can still be Schur-concave even
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though ξk is not Schur-convex or Schur-concave. This is the case in
the two examples E.1 and E.2.

These results are obtained by Mateev (1978) and Shepp and Olkin
(1978, 1981); the present development follows the latter paper.

Entropy of the Distribution of the Sum of Independent
Bernoulli Random Variables

E.1. Proposition (Shepp and Olkin, 1978, 1981). Let X1, . . . ,Xn

be independent Bernoulli random variables with

P{Xi = 1} = θi, P{Xi = 0} = θi, i = 1, . . . , n, (1)

and

ξnk ≡ ξk(θ1, . . . , θn) = P{X1 + · · ·+Xn = k}, k = 0, 1, . . . , n. (2)

The entropy H̃(θ1, . . . , θn) of the distribution of the sum X1 + · · ·+Xn

is a Schur-concave function.

Proof. For k = 0, 1, . . . , n, define

ξnk ≡ ξnk (θ1, . . . , θn) = P{X1 + · · · +Xn = k| θ1, . . . , θn},
ξn−2
k ≡ ξn−2

k (θ3, . . . , θn) = P{X3 + · · · +Xn = k| θ3, . . . , θn}.
By a conditioning argument,

ξnk = θ1θ2ξ
n−2
k + (θ1θ2 + θ1θ2)ξn−2

k−1 + θ1θ2ξ
n−2
k−2 ,

where θi = 1 − θi, so that

∂ξnk
∂θ1

− ∂ξnk
∂θ2

= −(θ1 − θ2)(ξn−2
k − 2ξn−2

k−1 + ξn−2
k−2 ), (3)

∂H̃

∂θ1
− ∂H̃

∂θ2
= (θ1 − θ2)

∑
k

(1 + log ξnk )(ξn−2
k − 2ξn−2

k−1 + ξn−2
k−2 ). (4)

After summing (4), using a change in the index of summation, (4)
becomes

∂H̃

∂θ1
− ∂H̃

∂θ2
= (θ1 − θ2)

∑
k

ξn−2
k log

ξnk ξ
n
k−2

(ξnk−1)
2
, (5)

where the sum is over those k for which the argument of the logarithm
is finite and nonzero.
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The proof is completed by noting that

ξnk ξ
n
k−2 ≤ (ξnk−1)

2

is equivalent to the fact that the convolution of Bernoulli random
variables is PF2 (see 18.B). ||

Entropy of the Multinomial Distribution

E.2. Proposition (Mateev, 1978; Shepp and Olkin, 1978, 1981). Let
X1, . . . ,Xm have the multinomial distribution

ξnx ≡ ξnx (θ1, . . . , θm) = P{X1 = x1, . . . ,Xm = xm}

=
(

n

x1, . . . , xm

)
θx1
1 · · · θxm

m ,

m∑
1

θi = 1,
∑

xi = n, (6)

where x = (x1, . . . , xm). Now H(ξ) = −∑
x ξx log ξx, where the

sum is over all configurations x with
∑m

1 xi = n. Then the en-
tropy H̃(θ1, . . . , θm) is symmetric and concave on the simplex 0 ≤ θi,
i = 1, . . . ,m,

∑m
1 θi = 1.

Proof. A direct computation yields

H̃(θ1, . . . , θm) = −
∑

ξnx log ξnx

= − log Γ(n+ 1) +
m∑
1

[−nθi log θi + E log Γ(Xi + 1)], (7)

where each Xi has a binomial distribution with EXi = nθi, i =
1, . . . ,m. The essence of the proof lies in showing that each term in
the sum on the right-hand side of (7) is concave. This is proved in the
following lemma.

E.3. Lemma. If X has a binomial distribution with EX = np, then

g(p) = −np log p+ E log Γ(X + 1)

is a concave function of p.

Proof. Write q = 1 − p and

g(p) = −np log p+
n∑
j=0

(
n

j

)
pjqn−j log Γ(j + 1).

Differentiating with respect to p and collapsing terms yields

dg(p)
dp

= −n− n log p+ n
n−1∑
α=0

(
n− 1
α

)
pαqn−1−α log(α+ 1), (8)
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d2g(p)
dp2

= −n
p

+ n(n− 1)
n−2∑
β=0

(
n− 2
β

)
pβqn−2−β log

(
β + 2
β + 1

)
. (9)

From the fact that log(1 + u) < u for u > 0 and
m∑
j=0

(
m

j

)
pjqm−j 1

j + 1
=

1 − qm+1

(m+ 1)p
,

(9) becomes

d2g(p)
dp2

< −n
p

+ n(n− 1)
1 − qn−1

(n − 1)p
= −nq

n−1

p
< 0,

which completes the proof of the lemma. ||

F Measuring Inequality and Diversity

The concept of inequality arises in various contexts and there is consid-
erable interest in its measurement. As already discussed in Section 1.A,
economists have long been interested in the measurement of inequality
of wealth and income. In economics, inequality measurements related
to the Lorenz curve and inequality comparisons related to the Lorenz
order have been particularly prominent (see Section 17.C.8). In polit-
ical science and sociology, inequality of voting strength resulting from
legislative malapportionment, of tax structure, and even of racial im-
balance in schools has been measured using various indices [see Alker
(1965)]. The measurement of species diversity in ecology is essentially
a problem of measuring equality (Pielou, 1975). See also Rousseau and
Van Hecke (1999) for a discussion of measures of biodiversity, and Rao
(1984) for a general discussion of measures of diversity. Measurement
of income inequality is discussed and surveyed by Sen (1973) and Szal
and Robinson (1977). See also Blackorby and Donaldson (1978). For
an axiomatic approach to income inequality, see Krämer (1998).

The term “measure of inequality” is ambiguous in the sense that it
can refer to an index of inequality or to an estimated value of such an
index. Here, the term is used in the former sense, and in spite of the
chapter heading, statistical aspects of the problem are not discussed.

The intuitive idea that the components of x are “more nearly equal”
than the components of y is translated in Section 1.A to the precise
statement that x ≺ y; indeed, this is done, starting from several points
of view.
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If one accepts the idea that “x ≺ y” is the proper way of saying the
components of x are “more nearly equal” than the components of y,
then care must be exercised in using any measure of inequality. Indeed
if φ is such a measure and if x and y are incomparable by majorization,
then it will still be true that φ(x) < φ(y), φ(x) > φ(y), or φ(x) = φ(y).
Each statement can be misleading because each suggests a comparison
of noncomparable quantities. For other cautionary comments, see
Kondor (1975).

Criteria for Indices of Inequality

The above ideas suggest that if a function φ is to be used as a measure
of inequality, then it should satisfy

(i) x ≺ y ⇒ φ(x) ≤ φ(y);

i.e., φ should be Schur-convex. Even more, φ should satisfy

(i′) x ≺ y and x is not a permutation of y ⇒ φ(x) < φ(y);

i.e., φ should be strictly Schur-convex.

These conditions were first formulated by Dalton (1920) although
they are hinted at or are implicit in the work of Lorenz (1905) and
Pigou (1912). Economists usually refer to (i′) as the Dalton condition,
strong Dalton condition, or Pigou–Dalton condition.

If φ : R n → R is used as a measure of inequality, then the additional
requirement

(ii) φ(x) = φ(ax) for all a > 0

is sometimes also imposed [see, e.g., Fields and Fei (1978)] to ensure
that scale factors play no role. As already noted by Dalton (1920), if
φ is a proposed measure of inequality, then the function ψ defined for
all x such that

∑
xi �= 0 by

ψ(x) = φ
(
x1

/∑
xi, . . . , xn

/∑
xi

)

satisfies (ii). Moreover, if φ satisfies (i) or (i′), then so does ψ.
For measures of equality or species diversity in biology, it is desirable

that a maximum be achieved when all arguments are equal, so in (i)
and (i′), Schur-concavity should replace Schur-convexity.

Some additional criteria for measures of inequality have been dis-
cussed particularly in the context of economics [see, e.g., Sen (1973)],
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but no set of criteria is available that will characterize a particular
measure. Consequently, a number of measures have been proposed that
remain of current interest. Some of these are listed here. Notice that
many of these have the form

φ(x) =
n∑
1

g(xi) or φ(x) =
n∑
1

g

(
xi∑
xj

)
.

In the following, x = (1/n)
∑n

1 xi, and T =
∑n

1 xi.

F.1. The variance. The variance

φ1(x) =
1
n

n∑
1

(xi − x)2

is a familiar measure of dispersion. It is strictly Schur-convex by
3.C.1.a.

The closely related measures

φ1a(x) =

[
1
n

n∑
1

(log xi − log x)2
]1/2

,

φ1b(x) =

[
1
n

∑(
log xi −

∑
log xj
n

)2
]1/2

have been used in economics to measure inequality [see, e.g., Sen (1973)
or Szal and Robinson (1977)]. The measures φ1a and φ1b are not Schur-
convex, as noted by Szal and Robinson (1977) and by Dasgupta, Sen,
and Starrett (1973), respectively. Consequently, these are not valid
measures [see also Kondor (1975)].

A normalized version of the variance (or rather of its square root)
is the coefficient of variation

φ2(x) = [φ1(x)]1/2/x.

This measure is strictly Schur-convex and also satisfies (ii).

F.2. Sums of squares. The measure

φ3(x) =
∑

x2
i

is proposed by Simpson (1949). This measure is strictly Schur-convex
by 3.C.1.a. Simpson also suggests the modification:

φ4(x) =
∑
xi(xi − 1)
T (T − 1)

=
∑
x2
i − T

T (T − 1)
.
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Both φ3 and φ4 are strictly Schur-convex. To measure species diversity
or equality, a Schur-concave function is desired. Modifications to this
end are

φ5 = 1/φ4,

suggested by Emlen (1973), and

φ6 = 1 − φ4,

which is often called Simpson’s measure of diversity in biological
literature.

Yet another version is the measure of McIntosh (1967),

φ7(x) =
T − (

∑
x2
i )

1/2

T − T 1/2
,

which is strictly Schur-concave.
When (x1, . . . , xn) denote multinomial probabilities, 0≤xi,Σxi = 1,

then ∑
xi(1 − xi) = 1 −

∑
x2
i

has been used as a measure of diversity [see Weaver (1948)].

F.3. Entropy. A commonly used measure of equality is the entropy
function

φ8(x) = −
n∑
1

xi log xi, xi > 0,
∑

xi = 1,

which is strictly Schur-concave (3.D.1). A related measure, obtained
from this by substituting e−xi/T for xi, is suggested by Emlen (1973):

φ9(x) =
n∑
1

xi
T
e−xi/T .

This is also strictly Schur-concave, and so is a measure of equality.

F.3.a. Measures of diversity related to φ8 are

φ8a(x) =
1 − Σxαi
α− 1

, α > 0, α �= 1,

due to Havrda and Charvát (1967), and

φ8b(x) =
log Σxαi
1 − α

, α > 0, α �= 1,

due to Rényi (1961). Both φ8a and φ8b are Schur-concave.
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F.3.b. In a discrete setting, where x1, . . . , xn are integers (say for the
problem of measuring species diversity), the measure

φ10(x) =
1
T

log
(

T

x1, . . . , xn

)

has been proposed by Brillouin (1962) and by Margalef (1958) [see,
e.g., Pielou (1975)]. It can be shown that for large x1, . . . , xn,

φ10(x) ≈ φ8(x1/T, . . . , xn/T ),

so this measure is closely related to entropy. This measure is not Schur-
concave.

Examples Related to the Lorenz Curve

F.4.The Lorenz curve. The Lorenz curve, described in Section 1.A
and discussed in more detail and generality in Chapter 17, suggests
several possible measures of inequality.

F.4.a.Gini coefficient. The measure of inequality proposed by Gini
(1912) is twice the shaded area of Fig. 1, i.e., twice the area between
the Lorenz curve and the 45◦ line. The Gini coefficient (also known as
the Gini index ) can be written in several ways:

φ11(x) =
1

2n2x

n∑
i=1

n∑
j=1

|xi − xj | = 1 − 1
n2x

n∑
i=1

n∑
j=1

min(xi, xj)

= 1 +
1
n
− 2
n2x

n∑
i=1

ix[i].

This measure is strictly Schur-convex, as was already proved by Dalton
(1920). One way to show this is with the first or second form above
using the idea of “transfers” or “T-transforms.” Alternatively, Schur-
convexity can be demonstrated using the third form and 3.H.2.b.

Solomon (1978) proposes a linear function of φ11 as a diversity index
in a biological context.

F.4.b.Gini mean difference. The unnormalized version of the Gini
coefficient

φ11a(x) =
1
n2

∑
i

∑
j

|xi − xj|



564 13. Additional Statistical Applications

is known as the Gini mean difference. It is a direct competitor of the
variance as a strictly Schur-convex measure of dispersion. It has a
long history. Prior to being “rediscovered” by Gini, it was discussed
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Figure 1. The Lorenz curve.

by Helmert (1876) and other German writers in the 1870s. A history
of the Gini mean difference is provided by David (1968).

For an extensive general discussion of the Gini mean difference, see,
e.g., Yitzhaki (2003). A survey of bounds for the Gini mean difference
is given by Cerone and Dragomir (2008).

F.4.c. Minimal majority. In the context of political science [see
Alker (1965, p. 39)], the minimal majority is the smallest number
of individuals controlling a majority of the legislature. If x1, . . . , xn
determine the Lorenz curve h, then the minimal majority is

φ12(x) = h−1(1
2).

It is not difficult to see that this measure is Schur-convex, but it is not
strictly Schur-convex.

F.4.d.Top 100α percent. If x1, . . . , xn determine the Lorenz curve
h, then

φ13(x) = h(α)

is called the top 100α percent. In the context of wealth distribution,
this measure represents the total worth of the richest 100α percent of
the population. This measure, discussed by Alker and Russett (1966),
is Schur-convex but not strictly Schur-convex.



F. Measuring Inequality and Diversity 565

F.4.e. Fishlow poverty measure. With the usual notation
u+ = max(u, 0), the function

φ14(x) =
n∑
i=1

(Lp − xi)+

is the total aggregate income that must be transferred from those above
the poverty level Lp to those below in order to bring everyone up to
that level. This measure, proposed by Fishlow (1973), is Schur-convex
but not strictly Schur-convex.

Another measure of poverty, called the proportion of the population
in relative poverty, is the number of individuals in the population who
receive less than half the median income. By considering transfers, it is
not difficult to see that this measure is not Schur-convex. For a general
discussion of poverty orderings that includes many references, see, e.g.,
Foster and Shorrocks (1988).

F.4.f. Schutz coefficient. The function

φ15(x) =
∑
xi≥x

(xi
x

− 1
)

=
∑n

i=1(xi − x)+

x

was proposed by Schutz (1951) as a measure of income inequality. This
measure, which represents the total relative excess above the mean,
is Schur-convex (3.C.1.a), but it is not strictly Schur-convex because
g(z) ≡ z+ is not a strictly convex function. The Schutz coefficient has
a geometrical representation in terms of the slopes of the Lorenz curve.

F.4.g. Let x+ and x− denote, respectively, the means of all incomes
more than x and less than x. Éltetö and Frigyes (1968) discuss three
indices:

φ16(x) = x/x+,

φ17(x) = x−/x+,

φ18(x) = x−/x.
These measures are Schur-convex, but not strictly Schur-convex, as
can be seen by considering transfers.

F.4.h. The length of the Lorenz curve can also be used as a measure
of inequality (Amato, 1968; Kakwani, 1980).

Measures Based on Utility

F.5. Utility. Various arguments have led economists to consider∑n
1 U(xi) as a measure of equality, where ordinarily U is a concave
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utility function. Such functions are Schur-concave and strictly Schur-
concave if U is strictly concave (3.C.1, 3.C.1.a). Certain normalizing
methods have been proposed.

F.5.a. Dalton’s measure. This measure of equality is defined as

φ19(x) =
n∑
1

U(xi)/nU(x).

See Dalton (1925) and Sen (1973).

F.5.b. Atkinson’s measures. A general measure of inequality is
defined as

φ20(x) = 1 − 1
x

n∑
1

U(xi).

See Atkinson (1970).
A family of closely related income inequality measures was introduced

in Atkinson (1975, p. 48). The measures are indexed by a distributional
parameter a ∈ (0,∞) and are of the form

φ
(a)
21 = 1 − 1

x

[
1
n

n∑
1

x1−a
i

]1/(1−a)
.

Atkinson observes that as a increases, more weight is attached
to inequality in the lower ranges of income. The choice of a is of
importance since it is possible for two vectors x and y and two choices
a1 and a2 of the distributional parameter a to have φ(a1)

21 (x) < φ
(a1)
21 (y)

while φ(a2)
21 (x) > φ

(a2)
21 (y). Atkinson provides some guidance regarding

the appropriate choice of a.

G Schur-Convex Likelihood Functions

If the random vector X has a multinomial distribution with parameters
N and θ = (θ1, . . . , θk), θi ≥ 0,

∑
θi = 1, the corresponding likelihood

function is given by

L(x) = sup
θ

(
N

x1, . . . , xk

) k∏
i=1

θxi

i =
(

N

x1, . . . , xk

) k∏
i=1

(
N

N

)xi

.

That this function is Schur-convex was noted by Boland and Proschan
(1987) as a consequence of 3.E.8.b. They also verify the Schur-
convexity of the likelihood function of the multivariate hypergeometric
distribution.
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H Probability Content of Geometric Regions
for Schur-Concave Densities

Suppose that a p-dimensional random variable X has a Schur-concave
density f . An important example is the symmetric multivariate normal
distribution, for which the means satisfy μ1 = μ2 . . . = μp and the
variances satisfy σii = σ2 for each i and covariances σij = ρσ2 for
i �= j [where −(p − 1)−1 < ρ < 1]. In many statistical applications, it
is of interest to determine quantities such as P{X ∈ A}, where A is a
given geometric region in R p.

For example, if A(x) = {y : y ≤ x} for x ∈ R p, then of course
P{X ∈ A(x)} corresponds to the joint distribution function F of X.
According to 12.L.1, F inherits the property of Schur-concavity from
its density f . For regions of the form

B∞(x) = {y : −x ≤ y ≤ x}, x > 0,

Tong (1982) showed that if the density of X is Schur-concave, then
P{X ∈ B∞(x)} is a Schur-concave function of x. He also proved that
P{X ∈ Bλ

2 (x)} is a Schur-concave function of (x2
1, . . . , x

2
p) for every

λ > 0, where Bλ
2 (x) = {y :

∑p
1(yi/xi)

2 ≤ λ} represent elliptical re-
gions. Subsequently, Karlin and Rinott (1983) proved the more general
result that if X is a nonnegative random variable with a Schur-concave
density, then

P

{
p∑
i=1

(Xα
i /y

β
i ) ≤ λ

}

is a Schur-concave function of y on R p
++ for every α ≥ 1, 0 ≤ β ≤ α−1,

and every λ > 0.

Tong (1982) proved that the p-dimensional cube has the highest
probability content among all p-dimensional rectangles centered at the
origin with fixed perimeter. The proof is a consequence of the Schur-
concavity of P{X ∈ B∞(x)}.

It is possible to generate related inequalities dealing with p-
dimensional rectangles that are not centered at the origin. Consider a
2 × p matrix

A =
(
a11 a12 · · · a1p

a21 a22 · · · a2p

)
=
(
a(1)

a(2)

)
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with a1j < a2j , j = 1, . . . , p. Define a corresponding rectangle R(A) by

R(A) = {x : a(1) ≤ x ≤ a(2)}.
For a similarly defined rectangle R(B), if B is less “variable” than A in
the sense of being more like a cube, then B should have a higher prob-
ability content. The following proposition utilizes chain majorization
(15.A.1) to obtain a sufficient condition for such a result.

H.1. Proposition (Karlin and Rinott, 1983; Tong, 1989). If X has
a Schur-concave density and if A ≺≺ B (A is chain majorized by B),
then P{X ∈ R(A)} ≥ P{X ∈ R(B)}.

Tong shows by a counterexample that rowwise majorization (15.A.6)
between A and B is not sufficient to ensure the conclusion of H.1.

Shaked and Tong (1988) discuss related results when the volume
rather than the perimeter of the region is held fixed.

The fact that P{X ∈ Bλ
2 (x)} as a function of (x2

1, . . . , x
2
p) is Schur-

concave when X has a Schur-concave density was used by Tong to
obtain results related to those in Section 12.L.2 concerning linear
combinations of independent χ2 random variables. Without loss of
generality, consider linear combinations of p independent random vari-
ables U1, U2, . . . , Up with a common chi-square distribution with one
degree of freedom. Define

Φλ(a) = P

{
p∑
i=1

aiUi ≤ λ

}
,

where ai > 0, i = 1, 2, . . . , n, and λ > 0. Because the joint density of the
Ui’s is Schur-concave, it follows that if ( 1

a1
, . . . , 1

ap
) ≺ ( 1

b1
, . . . , 1

bp
), then

Φλ(a) ≥ Φλ(b) for every λ > 0. The parallel result that if log a � log b,
then Φλ(a) ≥ Φλ(b) for every λ > 0 is closely related to Proposition
11.E.8.b.

I Optimal Experimental Design

Under the classical linear model, it has long been recognized that cer-
tain design configurations are preferable to others when compared
using a variety of information measures. A typical statistical model
takes the form

y = Xβ + σu, (1)
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where y is the n-dimensional vector of observed yields or responses,
and X is an n × p “design matrix.” The p-dimensional vector β is
an unknown parameter vector. The error vector u is assumed to have
independent components with zero mean and unit variance. The error
scaling factor σ in (1) is positive and unknown. Assume further that
the corresponding information matrix

M = X ′X

is nonsingular. Denote the class of all designs by D̃ and denote by X =
{Xd : d ∈ D̃} the corresponding indexed collection of design matrices.
The corresponding class of information matrices is {Md : d ∈ D̃}. For
any such information matrix Md, denote the ordered eigenvalues by

λ1 ≥ λ2 ≥ . . . ≥ λp

and the vector of ordered eigenvalues by λ. A real-valued mapping Φ
whose domain is {Md : d ∈ D̃} is called an optimality criterion. For
such a function to serve as an information functional, it should be non-
negative, positive homogeneous [ i.e., satisfy Φ(cx) = cΦ(x), for c > 0],
and concave. The historically popular optimality criteria introduced
by Kiefer (1975) are D,A, and E optimality. Other criteria have been
added, but as noted by Pukelsheim (1993, Chapter 6), many of these
are special cases of power means of the eigenvalues of the information
matrix Md.

Let

Φ(Md| r) =
(

Σλri
p

)1/r

=
(

tr M r
d

p

)1/r

;

special cases are

determinant Φ(Md| 0) = |Md| =
∏

λi,

mean Φ(Md| 1) =
∑

λi/p,

harmonic mean Φ(Md| − 1) =
(∑

λ−1
i /p

)−1
,

minimum Φ(Md| −∞) = λp.

A more general set of criteria is based on

Φ(Md| r, s) =
(

Σλri
p

)1/s

=
(

tr M r
d

p

)1/s

;



570 13. Additional Statistical Applications

special cases are

Φ(Md|2, 1) =
∑

λ2
i /p,

Φ(Md| − r, r) =
(∑

λ−ri /p
)1/r

, 0 < r <∞.

Of note is the fact that each of these functions is a Schur function.

It is not obvious which of these optimality criteria should be used,
or indeed whether some other criterion would be even better.

This has motivated a search for a universal optimality criteria.
Typically, invariance [that is, ϕ(M) = ϕ(GMG′) for orthogonal G]
has been invoked in order to aid in the identification of a suitably uni-
versal optimality. Without invariance, the information matrices Md

can be ordered by the Loewner ordering (see Section 16.E). If orthog-
onal invariance is invoked, as it often is, then the appropriate ordering
of information matrices is equivalent to weak supermajorization of the
corresponding vector of eigenvalues.

I.1. Definition. A design d∗ ∈ D̃ is universally optimal in D if d∗
is Φ-optimal in D for every Φ which is an increasing Schur-concave
function of the eigenvalues of M .

I.2. Proposition (Bondar, 1983). A design d∗ is universally optimal
in D if and only if

p∑
i=k

λi(Md) ≤
p∑
i=k

λi(Md∗), k = 1, 2, . . . , p,

for every d ∈ D .

For a general discussion of optimal design of experiments, see
Pukelsheim (1993, p. 925, Chapter 14) or Pázman (1986). The term
“Schur optimality” was introduced by Magda (1980) and is equiva-
lent to universal optimality. A more detailed discussion of universal
optimality is given by Druilhet (2004).

J Comparison of Experiments

As a motivating example, consider the problem of allocation of
experimental units to blocks in a one-way random-effects model. The
n observations are allocated to the blocks in order to compare dif-
ferent n-dimensional random vectors whose distributions depend on
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a common parameter θ. In this context, the concept of information
ordering introduced by Blackwell (1951) becomes relevant. A link with
majorization was provided by Shaked and Tong (1992a,b). Let X =
(X1, . . . ,Xn) and Y = (Y1, . . . , Yn) be random vectors with respective
distribution functions Fθ and Gθ that depend on θ ∈ Θ ⊂ R k.

J.1. Definition. The experiment associated with Y is said to be at
least as informative as the experiment associated withX for θ, denoted
X ≤I Y, if for every decision problem involving θ and for every prior
distribution on Θ, the expected Bayes risk from Fθ is not less than
that from Gθ.

The following useful sufficient condition for information ordering was
provided by Lehmann (1959).

J.2. Proposition (Lehmann, 1959). The ordering X ≤I Y occurs if
there exist a function ψ : R n+r → R n and an r-dimensional random
vector Z independent of Y that has a distribution which does not
depend on θ, such that X and ψ(Y,Z) have the same distribution.

For example, let X and Y be normal random vectors with mean
vectors θX , θY and covariance matrices ΣX ,ΣY , respectively. If ΣX >
ΣY , then X and Y + Z have the same distribution, where Z has a
normal distribution with zero means and covariance matrix ΣX −ΣY .
Consequently, using Proposition J.2, X ≤I Y .

Another multivariate normal setting in which this ordering is en-
countered is provided by Shaked and Tong (1990). They consider X,
an exchangeable n-dimensional normal random variable with EXi = θ,
VarXi = σ2 > 0, and common correlation ρX . Analogously, Y is
an exchangeable n-dimensional normal random vector with EYi = θ,
VarYi = σ2, and common correlation ρY . It follows that if ρY ≤ ρX ,
then X ≤I Y . Note that this result does not follow from the above
because the difference of two correlation matrices is not positive
definite.

A related result is that if X(n) = (X1, . . . ,Xn) is normally dis-
tributed with EXi = 0 for all i, VarXi = σ2 > 0 for all i, and
corr(Xi,Xj) = ρ for all i �= j, then X(n − 1) ≤I X(n); that is, X(n)
becomes more informative as n increases.

Shaked and Tong (1992a) also study cases in which the coordinates
of the normal random vector X have a common mean but are not ex-
changeable. Assume that the coordinate random variables of X form
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r groups of sizes k1, k2, . . . , kr. The correlation between two variables
in the same group is ρ2, whereas the correlation between variables
in different groups is the smaller quantity ρ1. Such correlation ma-
trices arise in certain genetic modeling settings. The corresponding
correlation matrix is denoted by R(k), where k = (k1, . . . , kr).

Denote by X(k) an n-dimensional normal random vector with mean
vector (θ, θ, . . . , θ) and covariance matrix σ2R(k). The following propo-
sition shows how different choices of k lead to more or less informative
X(k)’s.

J.3. Proposition (Shaked and Tong, 1992a). Suppose that X(k)
and X(k∗) are two n-dimensional normal random vectors with mean
vector (θ, . . . , θ) and covariance matrices σ2R(k) and σ2R(k∗), respec-
tively, as described above. Assume that θ ∈ R is unknown, σ2 > 0 is
known, and 0 ≤ ρ1 < ρ2 < 1 are fixed but arbitrary. If k ≺ k∗, then
X(k) ≤I X(k∗).

See also Stepniak (1989) for an alternative proof of Proposition J.3.

A related result due to Eaton (1991) deals with the case in which
the vector k above is fixed but the correlations ρ1 and ρ2 are allowed to
vary. To indicate the dependence of R(k) on ρ1 and ρ2, write Rρ1,ρ2(k)
for R(k). Let Xρ1,ρ2(k) denote a p-dimensional normal random vector
with mean (θ, . . . , θ) and covariance σ2Rρ1,ρ2(k). If θ is unknown and
σ2 > 0 is known, it can be verified that

(i) if ρ2 = ρ′2 ≥ ρ1 ≥ ρ′1, then Xρ1,ρ2(k) ≤I Xρ′1,ρ
′
2
(k);

(ii) if ρ2 ≥ ρ′2 ≥ ρ1 = ρ′1, then Xρ1,ρ2(k) ≤I Xρ′1,ρ
′
2
(k).

Shaked and Tong (1992a) and Eaton (1991) warn against the
appealing conclusion that decreasing the correlations between nor-
mal variables with identical marginal distributions necessarily leads
to more information. Some additional structural assumptions on the
correlation matrices are needed for such a conclusion. Eaton (1992)
provides a relevant counterexample.

More complex hierarchical structures can be considered. For exam-
ple, suppose that random variables X1, . . . ,Xn have identical normal
marginal distributions with mean θ and variance σ2, and have a cor-
relation structure as follows. There are r groups of the Xi’s. The jth
group consists of sj subgroups, j = 1, 2, . . . , r. The correlation be-
tween Xi’s is ρ3 if they are in the same subgroup, ρ2 if they are
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in the same group but different subgroups, and ρ1 otherwise, where
0 ≤ ρ1 ≤ ρ2 ≤ ρ3 ≤ 1. In this setting (and related more complex
settings), the information in X is shown by Hauke and Markiewicz
(1994) to respect a group majorization ordering (14.C).

A useful tool in such discussions is the following

J.4. Proposition (Torgersen, 1984). If X and Y are normal vectors
with a common unknown mean vector (θ, . . . , θ) and respective covari-
ance matrices ΣX = σ2RX ,ΣY = σ2RY , where RX and RY are known
positive definite correlation matrices and σ2 is unknown, then X ≤I Y
if and only if eR−1

X e′ ≤ eR−1
Y e′.

Zhang, Fang, Li, and Sudjianto (2005) recommend the use of
majorization in the selection of balanced lattice designs. Consider ex-
periments involving s factors each having q levels. A lattice design
with n runs is associated with a set of n points chosen from the lat-
tice space L(qs) = {0, 1, . . . , q − 1}s. Coordinates of L(qs) correspond
to factors. The design is balanced if every one of the q levels occurs
equally often for each factor. The set of balanced lattice designs is de-
noted by U(n, qs). Zhang, Fang, Li, and Sudjianto (2005) address the
problem of selecting a design from a given subclass D(n, qs) ⊂ U(n, qs).
They argue for the use of a majorization condition based on pairwise
coincidence vectors defined as follows. For x, y ε L(qs), define the co-
incidence number β(x, y) =

∑s
j=1 δxj ,yj

, where δi,j is the Kronecker
delta function. A lattice design can be associated with a matrix X of
dimension n× s with rows x1, x2, . . . , xn which are members of L(qs).
The pairwise coincidence (PC) vector of a design X, denoted by β(X),
is a vector of dimension m = n(n − 1)/2 whose coordinates are the
β(xi, xk)’s (where 1 ≤ i < k ≤ n). The jth coordinate of β(X) is de-
noted by βj(X). A design X is said to be inadmissible if there exists
Y with β(Y ) ≺ β(X) and β(Y ) is not a permutation of β(X).

A random variable X is said to be a majorant in the class D if
β(X) ≺ β(Y ) for every Y in D. If such a majorant design exists, it can
be recommended for use. If not, then a Schur-ψ-optimality condition
can be used, where ψ is a convex function called a kernel. X is said
to be Schur-ψ-optimal in the class D if Ψ(X) ≤ Ψ(Y ) for all Y ε D,
where

Ψ(X) =
m∑
r=1

ψ(βr(X)). (1)
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Particular choices of the kernel ψ in (1) can be shown to yield
preference orderings classically used in the comparison of designs. This
justifies the argument in favor of ordering in terms of majorization of
the PC-vectors, because such majorization guarantees preference with
respect to all kernels. For further details, refer to Zhang, Fang, Li, and
Sudjianto (2005).



Part IV

Generalizations



14
Orderings Extending

Majorization

Majorization can be defined in several ways, each of which suggests
generalizations as well as related orderings of R n. Here are three
general approaches:

(i) x ≺ y if x = yD for some doubly stochastic matrix D. This
relation is a preorder because the set of n×n doubly stochastic matri-
ces contains the identity and is closed under multiplication. A preorder
is obtained if the doubly stochastic matrices are replaced by another
semigroup of matrices with identity. Well-known examples are dis-
cussed in detail in Sections A and B; a more general examination is
given in Section C.

(ii) On the set D , x ≺ y if y − x ∈ C , where C ⊂ R n is the convex
cone

C =

{
z :

k∑
1

zi ≥ 0, k = 1, . . . , n− 1,
n∑
1

zi = 0

}
.

With C replaced by other convex cones, various preorders can be
obtained, as described in Section D.

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 577
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 14,
c© Springer Science+Business Media, LLC 2011
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(iii) Several sets Φ of real-valued functions φ defined on R n are
known with the property that

x ≺ y if and only if φ(x) ≤ φ(y) for all φ ∈ Φ.

This very general approach is discussed in Section E.

Just as majorization can be defined by any of the approaches (i),
(ii), and (iii), other orderings can be obtained in more than one way.
Thus, the examples of Sections C, D, and E exhibit a fair amount of
overlap, but each section offers a different approach.

Finally, some additional orderings are discussed in Sections F, G,
and H.

A Majorization with Weights

The definition of majorization provided by Hardy, Littlewood, and
Pólya (1934, 1952) involving the condition

n∑
1

g(xi) ≤
n∑
1

g(yi)

for all continuous convex functions g : R → R permits the
introduction of weights.

A rather general extension is the condition
∑

pi g

(
xi
ui

)
≤
∑

qi g

(
yi
vi

)

for all continuous convex functions g : R → R.
This equation has not been studied in its complete generality.

The case ui = vi = 1 was studied already by Blackwell (1951,
1953). The case pi = qi, ui = vi = 1 leads to what is called
p-majorization . The case pi = ui, qi = vi has been studied by Ruch,
Schranner, and Seligman (1978), with particular attention to the con-
tinuous version. The case pi = qi, ui = vi leads to another majorization,
which has not been studied to our knowledge.

p-Majorization

Majorization is defined in 4.B.1 by the condition
n∑
1

g(xi) ≤
n∑
1

g(yi) (1)

for all continuous convex functions g :R → R.
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This raises the question: What corresponds to majorization if the
sums are replaced by weighted averages? Because x ≺ y if and only if
there exists a doubly stochastic matrix P such that x = yP , an answer
to this question is given by the following proposition.

A.1. Proposition (Blackwell, 1951, 1953). Let p = (p1, . . . , pn) and
q = (q1, . . . , qm) be fixed vectors with nonnegative components such
that

∑n
1 pi =

∑m
1 qj = 1. For x ∈ R n, y ∈ R m,∑n

1 pig(xi) ≤
∑m

1 qig(yi)

for all continuous convex functions g :R → R
(2)

if and only if there exists an m×n matrix A = (aij) with the properties

(i) aij ≥ 0 for all i, j,

(ii) eA = e [recall that e = (1, . . . , 1)],

(iii) Ap′ = q′,

such that x = yA.

Of course, when m = n and pi = qi = 1/n, i = 1, . . . , n, then
conditions (i), (ii), and (iii) are just the conditions that A be doubly
stochastic.

Proposition A.1 is due to Blackwell (1951, 1953) in the sense
that it follows quite directly from his more general results [see, e.g.,
Kemperman (1975, p. 114)].

There is an intermediate specialization of some interest: m = n and
p = q. As above, regard p as fixed, with nonnegative components that
sum to 1.

A.1.a. Corollary. For x, y ∈ R n and pi ≥ 0, i = 1, . . . , n,∑n
1 pig(xi) ≤

∑n
1 pig(yi)

for all continuous convex functions g :R → R
(3)

if and only if there exists an n×n matrix A = (aij) with the properties

(i) aij ≥ 0 for all i, j,

(ii) eA = e,

(iii) Ap′ = p′

such that x = yA.
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For fixed p, a natural analog of majorization is obtained by defin-
ing x to be less than or equal to y if (3) holds. Can the partial sums
conditions of 1.A.1 for majorization be extended to yield an equiva-
lent definition of this new ordering? At least under some conditions,
described below, the answer to this question is “yes.”

For any permutation π, write x ∈ D π to mean xπ1 ≥ · · · ≥ xπn
.

When π is the identity permutation, D π = D .

A.2. Definition. For arbitrary real numbers p1, . . . , pn, x is said to
be p-majorized by y on D π, written x ≺ p y on D π, if

k∑
1

pπi
xπi

≤
k∑
1

pπi
yπi
, k = 1, . . . , n− 1, (4)

n∑
1

pπi
xπi

=
n∑
1

pπi
yπi

(
i.e.,

n∑
1

pixi =
n∑
1

piyi

)
. (5)

The term “p-majorized” is due to Cheng (1977). To be ordered by
p-majorization, x and y must be similarly ordered.

A.3. Proposition (Fuchs, 1947). If p1, . . . , pn are arbitrary real
numbers and x ≺p y on D π for some permutation π, then (3) holds.
If g is strictly convex, then strict inequality holds in (3).

Proof. Suppose x, y ∈ D (otherwise, relabel the components). Let
A0 = B0 = 0, Ak =

∑k
1 pixi, Bk =

∑k
1 piyi, k = 1, . . . , n. If xk �= yk,

let Qk = [g(xk) − g(yk)]/[xk − yk]; if xk = yk, let Qk be the right-
hand derivative of g at xk. Because g is convex, Qk is decreasing in
k = 1, . . . , n. Thus

n−1∑
k=1

(Ak −Bk)(Qk −Qk+1) + (An −Bn)Qn ≤ 0.

This inequality can be rewritten in the form

n∑
k=1

pk[g(xk) − g(yk)] =
n∑
k=1

[(Ak −Ak−1) − (Bk −Bk−1)]Qk ≤ 0. ||
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Notice that unlike A.1.a, the pi’s here need not be of one sign. If the
pi’s are of one sign (say pi > 0 for all i), there is a converse to A.3.

Note. Pečarić and Abramovich (1997) discuss an analog of
Proposition A.3 in which the requirement that x and y be similarly
ordered is relaxed.

The following is a companion result to A.3 with the equality in (5)
replaced by an inequality.

A.3.a. Proposition (Bullen, Vasić, and Stanković, 1973). If (4)
holds for k = 1, . . . , n, then Σpig(xi) ≤ Σpig(yi) for all continuous
increasing convex functions g : R → R.

A.3.b. Proposition (Cheng, 1977). If pi > 0, i = 1, . . . , n, and (3)
holds, then for any permutation π such that x, y ∈ D π, x ≺p y on D π.

The proof of this result is quite similar to the proof of 4.B.1.

For fixed pi > 0, i = 1, . . . , n, let A p denote the set of all n × n
matrices with nonnegative entries such that for all y ∈ D , yA ∈ D ,
and yA ≺p y on D .

A.4. Proposition (Cheng, 1977). Let A be an n × n matrix with
nonnegative entries. Then A ∈ A p if and only if

(i)
∑k

i=1 aij is decreasing in j for k = 1, . . . , n− 1,

(ii) eA = e,

(iii) Ap′ = p′.

Proof. Suppose first that A ∈ A p. Then (i) follows from 2.E.1.
Because e ∈ D and −e ∈ D , eA ≺p e and −eA ≺p −e on D , so (ii)
holds. Finally, let f (k) = (1, . . . , 1, 0, . . . , 0) be the vector with first
k components equal to 1 and the remaining components equal to 0.
Because f (k)A ≺p f

(k) on D , f (k)Ap′ = f (k)p′, k = 1, . . . , n. This set
of equalities is equivalent to (iii).

Next, suppose that A is a matrix with nonnegative entries such that
(i), (ii), and (iii) hold. By 2.E.1, yA ∈ D for all y ∈ D ; by A.1.a, (3)
holds. Thus yA ≺p y on D (A.3.a), and so A ∈ A p. ||

The various propositions above can be combined to yield the
following:

A.4.a. Proposition (Cheng, 1977). If x, y ∈ D , then x ≺p y if and
only if there exists A ∈ A p such that x = yA.
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It is not difficult to show that A p has the following properties:

(i) A p is closed under multiplication.

(ii) If A ∈ A p, B ∈ A q, then
(
A 0
0 B

)
∈ A(p,q).

(iii) A p is convex (but the characterization of its extreme points is
somewhat more complicated than for the doubly stochastic matrices).

In various studies of majorization, the role played by T -transforms
(definition precedes 2.B.1) is quite critical. For p-majorization, a result
similar to 2.B.1 holds.

A.5. Proposition (Cheng, 1977). If x ≺p y on D , there exists a
finite sequence u(1), . . . , u(h) of vectors such that

(i) x ≡ u(0) ≺p u
(1) ≺p · · · ≺p u

(h) ≺p u
(h+1) ≡ y on D , and

(ii) for i = 0, 1, . . . , h, u(i) and u(i+1) differ in but two components.

Proof. The theorem is trivially true for vectors x and y of length 2.
Suppose it is true for vectors of length 2, 3, . . . , n− 1. Two cases arise.

I. If equality holds in one of the inequalities (4), say for k = l,
then ẋ ≺ṗ ẏ and ẍ ≺p̈ ÿ, where x = (ẋ, ẍ), y = (ẏ, ÿ), and p = (ṗ, p̈);
ẋ, ẏ, and ṗ are of dimension l. Then the result can be obtained from
the induction hypotheses applied to each partition of the vectors x, y,
and p.

II. If the inequalities (4) are all strict, take

δ = min
1≤k≤n−1

k∑
i=1

pi(yi − xi) > 0, pi > 0 for all i,

and

xδ = (x1 + δp−1
1 , x2, . . . , xn−1, xn − δp−1

n ).

Then x ≺p x
δ ≺p y on D . For the n − 1 component inequalities of

xδ ≺p y, at least one is an equality. An application of case I to xδ and
y completes the proof. ||
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The Order-Preserving Functions

Let φ : R n × R n
++ → R be a function such that

φ(x; p) ≤ φ(y; p) whenever p ∈ R n
++ and x ≺p y on D , (6)

φ(xπ1 , . . . , xπn
; pπ1 , . . . , pπn

) = φ(x; p) (7)

for all permutations π, x ∈ R n, and p ∈ R n
++. Then φ has the

property that for all p ∈ R n
++,

x ≺p y on D π implies φ(x; p) ≤ φ(y; p). (8)

A.6. Proposition (Cheng, 1977). Let φ : R n × R n
++ → R be a

differentiable function satisfying 7. Then (8) is satisfied if and only if
for all x,

(xi − xj)
(

1
pi

∂φ(x; p)
∂xi

− 1
pj

∂φ(x; p)
∂xj

)
≥ 0, i, j = 1, . . . , n.

This result can be proved with the aid of A.5 in a manner similar to
the way 3.A.4 is proved. The details are omitted.

A.7. Corollary. If g is differentiable, then φ(x; p) =
∑n

1 pig(xi)
satisfies (8) if and only if g is convex.

One use of Schur-convexity is in finding the minimum of a function:
Because, for all x ∈ R n,

(x, . . . , x) ≺ x, where x =
1
n

∑
xi,

it follows that for all Schur-convex functions φ, φ(x, . . . , x) ≤ φ(x). It
is possible to use p-majorization for the same purpose. Here,

(x, . . . , x) ≺p x, where x =
n∑
1

pixi

/
n∑
1

pi.

Weak majorization versions of ≺p have also been studied by Cheng
(1977), but these are not discussed here.

Continuous p-Majorization

Continuous majorization is briefly discussed in Section H and
Section 1.D. Analogous results have been obtained for p-majorization
by Pečarić (1984). See also Pečarić, Proschan, and Tong (1992, p. 328).
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A.8. Proposition (Pečarić, 1984). Let x and y be decreasing con-
tinuous functions defined on [0, 1] and let H be a function of bounded
variation defined on [0, 1]. If

∫ z

0
x(t)dH(t) ≤

∫ z

0
y(t)dH(t), 0 ≤ z < 1, (9)

and ∫ 1

0
x(t)dH(t) ≤

∫ 1

0
y(t)dH(t), (10)

then ∫ 1

0
φ(x(t))dH(t) ≤

∫ 1

0
φ(y(t))dH(t) (11)

for all continuous convex functions φ for which the integrals exist.

A.8.a. Example. Let the function y : [0, 1] → R+ be decreasing and
continuous. For θ ≤ 1 and for a distribution function H, let

x(t) = yθ(t)
∫ 1

0
y(z)dH(z)

/∫ 1

0
yθ(z)dH(z).

Then x and y satisfy conditions (9) and (10) of Proposition A.8, and
consequently (11) holds.

Proof. Clearly, (10) is satisfied. To obtain (9), note first that be-
cause θ ≤ 1, y(z)/yθ(z) = [y(z)]1−θ is decreasing in z. Thus, for u ≤ z,
y(u)yθ(z) ≥ yθ(u)y(z), and for u ≤ w,

y(w)
∫ 1

w
yθ(z)dH(z) ≥ yθ(u)

∫ 1

w
y(z)dH(z).

Thus∫ w

0
y(u)dH(u)

∫ 1

w
yθ(z)dH(z) ≥

∫ w

0
yθ(u)dH(u)

∫ 1

w
y(z)dH(z).

To obtain (9), add to both sides of this inequality the quantity
∫ w

0
y(u)dH(u)

∫ w

0
yθ(z)dH(z). ||
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B Majorization Relative to d

Let x and y be n-dimensional vectors such that Σxi = Σyi = ns.
A statement that x ≺ y can be regarded as saying that the elements
of x are “more equal” than those of y. In other words, x is “closer”
than y to the vector (s, . . . , s) = se with all components equal. Order-
preserving functions can be regarded as measures of the distance.

A generalization of majorization can be obtained by substituting
for the vector e a more general vector d ∈ R n

++. The resulting gen-
eralization, here termed “d-majorization,” can be defined in several
ways. The idea seems to have originated with Veinott (1971), and his
approach, followed here, is to start by generalizing the notion of a
doubly stochastic matrix.

B.1. Definition. An n×nmatrix A = (aij) is said to be d-stochastic
(d ∈ R n

++) if

(i) aij ≥ 0 for all i, j,

(ii) dA = d,

(iii) Ae′ = e′.

A d-stochastic matrix is simple if it has at most two nonzero
off-diagonal elements.

Conditions (i), (ii), and (iii) of Definition B.1 are to be contrasted
with those of A.1.a. When d = e, a d-stochastic matrix is doubly
stochastic and a simple d-stochastic matrix is called a “T -transform”
in Chapter 2.

B.2. Definition. For x, y ∈ R n, x is said to be d-majorized by y if
x = yA for some d-stochastic matrix A, and is denoted by x ≺r

d y.

The notation x ≺r
d y is introduced by Joe (1990). In place of “x

is d-majorized by y,” he uses the terminology “x is majorized by y
relative to d.” Thus the letter r in the notation ≺r

d stems from the
word “relative.”

B.2.a. Definition. If x = yP for some matrix P that is a product of
finitely many simple d-stochastic matrices, then x is said to be simply
d-majorized by y.

Because products of d-stochastic matrices are d-stochastic, x is d-
majorized by y if it is simply d-majorized by y. In case d = e, the
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converse is true (2.B.1). But unpublished work of Arthur Veinott
(private communication) shows that in general the converse is false.

The lack of a stepwise path lemma analogous to 2.B.1 makes the
order-preserving functions difficult to identify. However, some such
functions are known.

B.3. Proposition (Veinott, 1971). Functions of the form

φ(x) =
∑

dig

(
xi
di

)
, (1)

where g is convex, preserve the ordering of d-majorization.

Notice that if x is d-majorized by y, that is, x = yA, where A is
d-stochastic, then

Σxi = xe′ = yAe′ = ye′ = Σyi.

Notice also that if x is d-majorized by y, then for any positive constant
c, x is cd-majorized by y.

It can be verified directly from Definition A.8 that the matrix

A =
1

Σdi

⎛
⎜⎝

d1 d2 · · · dn
...

...
...

d1 d2 · · · dn

⎞
⎟⎠

is d-stochastic. Moreover, if Σyi = Σdi, then d = yA; that is, d is
d-majorized by y. This means that in the ordering of d-majorization,
the smallest vector is a multiple of d.

When Σdi = 1, a d-stochastic matrix can be viewed as the transi-
tion matrix of a Markov chain. Let {Xn}∞n=1 be a Markov chain with
transition matrix A and let p(n) denote the probability distribution of
Xn. Because p(n) = p(n−1)A, it follows that p(n) ≺r

d p
(n−1). If the chain

is irreducible, then p(n) converges to d.
In spite of the fact that Proposition B.3 does not identify all of the

functions preserving the ordering of d-majorization, there is a converse
included in the following proposition.

B.4. Proposition (Ruch, Schranner, and Seligman, 1978; Joe, 1990).
Let x and y be real vectors such that Σxi = Σyi, and let d ∈ R n

++ be
fixed. The following are equivalent:

(a) φ(x) ≤ φ(y) for all functions of the form (1), where g is
continuous and convex;



C. Semigroup and Group Majorization 587

(b) Σ|xi − dit| ≤ Σ|yi − dit| for all t ∈ R;

(c) Σ(xi − dit)+ ≤ Σ(yi − dit)+ for all t in the set{
x1

d1
, . . . ,

xn
dn
,
y1

d1
, . . . ,

yn
dn

}
;

(d) x is d-majorized by y.

Joe (1990) uses condition (a) to define d-majorization. In order to
verify d-majorization, condition (c) is often the easiest to check.

Joe (1990) extends the ordering ≺r
d by replacing the vector d (viewed

as a positive function defined on the set {1, 2, . . . , n}) by a positive
measurable function defined on a measure space (X ,F , ν). For non-
negative measurable functions f and g defined on (X ,F , ν) that
satisfy

∫
X f dν =

∫
X g dν, write f ≺r

d g to mean that∫
X
d(x) ψ

(
f(x)
d(x)

)
dν(x) ≤

∫
X
d(x) ψ

(
g(x)
d(x)

)
dν(x) (2)

for all real continuous convex functions ψ satisfying ψ(0) = 0 such that
the integrals exist. Joe (1990) discusses equivalent conditions for this
extension.

Another extension of the ordering ≺r
d has been studied by Ruch,

Schranner, and Seligman (1978). In place of the condition (2) of Joe
(1990), they require∫ 1

0
d(x) ψ

(
f(x)
d(x)

)
dx ≤

∫ 1

0
e(x) ψ

(
g(x)
e(x)

)
dx

for all real continuous convex functions ψ defined on [0, 1]. Here the
functions d and e need not be equal.

C Semigroup and Group Majorization

According to Theorem 2.B.2, x ≺ y if and only if x = yP for
some doubly stochastic matrix P. The set P of all n × n doubly
stochastic matrices constitutes a semigroup; that is, it is closed under
the formation of products. Moreover, the identity I ∈ P.

Cautionary comment. A semigroup with identity is properly called
a monoid. However, in what follows, the term “semigroup” is used in
place of “monoid” to mean “semigroup with identity.”
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C.1. Definition. Let A be a subset of R n and let S be a semigroup
of linear transformations (matrices) mapping A to A . A vector x ∈ A
is said to be semigroup majorized by y, written x ≺S y, if x = yM for
some M ∈ S.

The relation ≺S is a preorder; it is reflexive ( x ≺S x for all x ∈ A )
because I ∈ S, and it is transitive (x ≺S y, y ≺S z implies x ≺S z)
because S is closed under the formation of products.

Semigroup majorization is defined by Parker and Ram (1997) but
otherwise has received very little attention in the literature. Ṫhe reader
can expect to notice a number of open questions in the following
discussion.

C.2. Observations.
(i) Suppose that S1 and S2 are two semigroups of matrices mapping

A to A . If S1 ⊂ S2, then

{x : x ≺S1 y} ⊂ {x : x ≺S2 y} for all y ∈ A .

(ii) If S is a semigroup of matrices mapping A to A , then the con-
vex hull cS of S is a semigroup of matrices mapping A to A .

(iii) If S is a convex semigroup with extreme points Se, then x ≺S y
if and only if x lies in the convex hull of the points yM, M ∈ Se. This
can be particularly useful when Se is finite.

C.3. Example: Majorization. As mentioned at the beginning of
this section, the set of n×n doubly stochastic matrices forms a convex
semigroup. Thus, majorization is a semigroup order with A = R n.
The extreme points of the set of doubly stochastic matrices are the
permutation matrices; these matrices constitute a finite group. The im-
portance of this underlying group structure is discussed in a subsection
on group majorization later in this section.

C.4. Example: p-majorization. The set A of matrices A that
satisfy (i), (ii), and (iii) of Corollary A.1.a forms a convex semigroup,
so that p-majorization is a semigroup majorization. When p ∈ R n

++

and p-majorization is restricted to D , another semigroup ordering is
obtained; here the semigroup is a subset of A and consists of matrices
satisfying (i), (ii), and (iii) of Proposition A.4.

C.5. Example: d-majorization. The set A
′
of matrices that satisfy

(i), (ii), and (iii) of Definition B.1 consists of transposes of matrices in
the set A of Example C.4 when p = d ∈ R n

++.

C.6. Example: Componentwise ordering. Let S consist of all
n×n diagonal matrices with diagonal elements in [0, 1]. This semigroup
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leads to the usual componentwise ordering on R n
+ . When applied to

vectors in R n, it leads to the ordering

x ≺ y if |xi| ≤ |yi|, i = 1, . . . , n.

Componentwise ordering of R n is not a semigroup order.

C.7. Example: Unordered majorization. Let S consist of all
n× n upper triangular row-stochastic matrices (all row sums are one
and all entries are nonnegative). This convex set is a semigroup but
not a group. It can be verified that the extreme points of S are upper
triangular matrices with a single entry of one in each row and all
other entries zero. Parker and Ram (1997) show that for this example,
x ≺S y if and only if x is unordered majorized by y, as defined in
Example E.6.

G-Majorization

Semigroup majorization is based upon a monoid (semigroup with
identity) of linear transformations. In case the monoid is actually a
group or the convex hull of a group, the terms group majorization or
G-majorization are often used.

The ordering of majorization is intimately tied to the group of per-
mutations. This can be seen, for example, with the aid of 2.B.3 or
4.C.1 which states that {x : x ≺ y} is the convex hull C(y) of the orbit
of y under the group of permutations.

C.8. Definition. Let G be a group of linear transformations mapping
R n to R n. Then x is G-majorized by y, written x ≺G y, if x lies in
the convex hull of the orbit of y under the group G.

This section offers only a brief introduction to the theory of G-
majorization. For further discussions of the general theory, see, e.g.,
Eaton (1987), Eaton and Perlman (1977), and Steerneman (1990).

The idea of G-majorization has not been fully exploited. Undoubt-
edly, many majorization results hold in this more general setting.

Applications of G-majorization have been limited. Giovagnoli and
Romanazzi (1990) suggest the use of a G-majorization ordering for
correlation matrices based on the sign-change group and the permuta-
tion group. Miranda and Thompson (1994) discuss G-majorization in
a matrix theory context.

The idea of G-majorization seems to have been first considered by
Rado (1952). Rado was concerned primarily with generalizations of
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Muirhead’s inequality 3.G.2.e and confined his attention primarily to
subgroups of the permutation group. Further extensions of Rado’s
work are given by Daykin (1971).

C.9. Observation. G-majorization is equivalent to S-majorization
(as defined in C.1) with S the convex hull of G.

Proof. First, recall that by a theorem of Carathéodory, a point in
the convex hull of a subset of R n can always be written as the convex
combination of at most n+1 points in the subset: see, e.g., Roberts and
Varberg (1973, p. 76). Thus if x ≺G y, then x =

∑n+1
1 aigi(y), where

ai ≥ 0, i = 1, . . . , n+ 1,
∑n+1

1 ai = 1, and gi(y) ∈ G, i = 1, . . . , n+ 1.
But

∑n+1
1 aigi(y) ∈ S, so x ≺S y.

Next, suppose that x ≺S y; i.e., x = g(y) for some g ∈ S. Because S
is the convex hull of G, g can be written in the form g =

∑m
1 bigi, where

bi ≥ 0,
∑m

1 bi = 1, and gi ∈ G, i = 1, . . . ,m; again by Carathéodory’s
theorem, m is finite. Consequently, x ≺S y. ||
C.10. Example: Majorization. With Definition C.8 and the group
of permutations as a starting point, the theory of majorization has
been developed by various authors: See Eaton and Perlman (1977) and
Eaton (1982, 1987). This development uses the following proposition.

C.10.a. Proposition. For the permutation group P, the following
are equivalent:

(i) x ≺ y; i.e., x ≺P y;

(ii) C(x) ⊂ C(y);

(iii) m[u, x] ≤ m[u, y] for all u ∈ R n, where

m[u, z] = sup
P∈P

yPu
′
.

The equivalence of (i) and (ii) is easily verified; the equivalence of
(i) and (iii) is given by Proposition 4.B.8. All of these equivalences
remain valid if the permutation group is replaced by some other group
of linear transformations.

C.11. Proposition (Eaton, 1984; Giovagnoli and Wynn, 1985). The
majorization x ≺G y holds if and only if

sup
g∈G

∑
zi[g(x)]i ≤ sup

g∈G

∑
zi[g(y)]i for all z ∈ R n.
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This condition, which involves an infinite set of inequalities, simplifies
to a finite set of inequalities for certain groups. For example, this can
be achieved for any finite group G.

For additional results related to C.11, see Steerneman (1990).

C.12. Some terminology. A real-valued function φ defined on R n

is said to be G-invariant if φ(z) = φ(g(z)) for all g ∈ G.
If x ≺G y implies φ(x) ≤ φ(y), φ is said to be G-increasing ; that is,

φ is order-preserving. If x ≺G y implies φ(x) ≥ φ(y), then φ is said to
be G-decreasing.

In general, the convex cones of G-increasing and G-decreasing
functions are not well understood. However, an important class of
G-decreasing functions can be identified that involves the following
definition.

C.13. Definition. A real-valued function φ defined on R n is said
to be convex-unimodal if for each real constant α, {x : f(x) ≥ α} is
convex.

C.14. Proposition. If φ is a real-valued function defined on R n that
is G-invariant and convex-unimodal, then φ is G-decreasing.

Proof. Fix y ∈ R n and recall that {x : x ≺G y} is the smallest
convex set that contains the points g(y), g ∈ G. Because φ is convex-
unimodal, C = {x : φ(x) ≥ φ(y)} is a convex set. Because φ is G-
invariant, g(y) ∈ C for all g ∈ G. Thus {x : x ≺G y} ⊂ C; that is,
x ≺G y implies φ(x) ≥ φ(y). ||

Convolution Theorems

To begin a discussion of convolution theorems, consider the following
example.

C.15. Example. The set G0 = {I,−I} of n × n matrices forms a
group for which x ≺G0 y if for some α ∈ [0, 1],

x = αy + (1 − α)(−y) = (2α− 1)y.

Thus a function φ is G0-increasing if φ is G0-invariant (symmetric
about the origin) and if φ(x) ≤ φ(y) for all x lying on the line segment
that joins y with −y, y ∈ R n. This means that φ is G0-increasing
if for all y ∈ R n, φ(y) = φ(−y) and φ(βy) is increasing in β, β ≥ 0
[equivalently, φ(βy) ≤ φ(y), 0 ≤ β ≤ 1]. Such functions are sometimes
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said to be symmetric and ray-increasing. Similarly, φ is G0-decreasing
if it is symmetric and φ(βy) ≥ φ(y), 0 ≤ β ≤ 1.

C.16. Theorem (Anderson, 1955). Let E ⊂ R n be a convex set
symmetric about the origin and let f be a nonnegative function defined
on R n that is both convex-unimodal and symmetric about the origin.
If
∫
E f(z) dz <∞, then∫

E
f(x+ ky) dx ≥

∫
E
f(x+ y) dx, 0 ≤ k ≤ 1.

Anderson’s theorem is often stated in a more general form obtained
using the fact that non-negative symmetric convex-unimodal functions
can be approximated by positive combinations of symmetric convex
indicator functions.

C.16.a. Theorem. If f1 and f2 are nonnegative symmetric convex-
unimodal functions defined on R n, the convolution

f(z) =
∫

R n

f1(z − x)f2(x) dx (1)

is G0-decreasing.

According to Proposition C.14, the functions f1 and f2 of Theorem
C.16.a are G0-decreasing. But Theorem C.16.a falls short of stat-
ing that the convolution of nonnegative G0-decreasing functions is
G0-decreasing. This is to be contrasted with known results for the
group G1 of permutation matrices; according to Theorem 3.J.1,
the convolution of two G1-decreasing (Schur-concave) functions is
G1-decreasing.

It is known that the conditions imposed on f1 and f2 in Theorem
C.16.a can be relaxed.

C.16.b. Theorem (Sherman, 1955). Let C be the class of functions
taking the form

h(z) =
r∑
i=1

αihi(z), z ∈ R n, (2)

where αi ≥ 0, hi is nonnegative, symmetric and convex-unimodal for
all i = 1, . . . , r, where r is a positive integer. If f1, f2 ∈ C , then the
convolution (1) is G0-decreasing.
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Beyond the fact that functions in C are G0-decreasing, little is
known about the relation between the convex cone C and the convex
cone of G0-decreasing functions.

Mudholkar (1966) recognized the role that the group G0 played in
Anderson’s Theorem C.16, and he introducedG-majorization to obtain
the following generalization.

C.17. Theorem (Mudholkar, 1966). Let G be a finite group of
Lebesgue-measure-preserving linear transformations mapping R n to
R n, and let f1 and f2 be nonnegative functions defined on R n. If f1

and f2 are G-invariant and convex-unimodal, then the convolution f
in (1) is G-decreasing; that is, x ≺G y implies f(x) ≥ f(y).

The ideas that Sherman (1955) used in Theorem C.16.b to extend
Anderson’s theorem can be utilized to extend Mudholkar’s theo-
rem. But the results fall short of stating that the convolution of
G-decreasing functions is G-decreasing. According to Theorem 3.J.1,
such a convolution result holds for the group G of permutations. For
what other groups does it hold?

For a vector r ∈ R n such that rr′ = 1, Sr = I−2r′r is an orthogonal
matrix that reflects points in R n through the hyperplane

{x : x ∈ R n, rx′ = 0}.

Such a matrix Sr is called a reflection.

C.18. Definition. A group G is called a reflection group if it is the
smallest closed group that contains a given set of reflections.

C.19. Proposition (Eaton and Perlman, 1977). If G is a reflection
group and f1, f2 are G-decreasing functions defined on R n, then their
convolution (1) is is G-decreasing.

Eaton and Perlman (1977) show that the convolution theorem is
not true for all groups of linear transformations. For reflection groups,
they also obtain analogs of the basic stepwise path Lemma 2.B.1 of
Hardy, Littlewood, and Pólya (1934, 1952) and they obtain analogs
of the Schur conditions (10) of 3.A.4 for a differentiable function to
preserve the ordering ≺G:
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C.19.a. Proposition (Fernando, 1997). Let G be a finite linear
group. If the convolution (1) of G-increasing functions defined on R n

is G-decreasing, then G is a reflection group.

C.20. Theorem (Eaton and Perlman, 1977). SupposeG is a finite re-
flection group, and let φ be aG-invariant differentiable function on R n.
A necessary and sufficient condition that φ preserve the ordering of
G-majorization (φ is G-increasing) is that

(∑
rizi

)(∑
ri
∂φ(z)
∂zi

)
≥ 0

for all z ∈ R n and all unit vectors r such that the linear
transformation I − 2r′r is in G.

Of course, the group of permutations plays a fundamental role also
in Chapter 6. A number of important results of that chapter, par-
ticularly those of Hollander, Proschan, and Sethuraman (1977), have
been obtained for reflection groups by Conlon, León, Proschan, and
Sethuraman (1977).

Stochastic G-Majorization

Exchangeable random variables arise in a number of contexts, and for
such variables, the connection with the permutation group is clear. It
is of interest to consider other groups of linear transformations.

C.21. Definition. A random vector X is said to be G-invariant if
gX has the same distribution as X for all g ∈ G.

A version of 11.B.2 for G-majorization with G finite has been ob-
tained by León and Proschan (1977). Using their ideas, it is as easy to
obtain a G-majorization version of the more general 11.B.1.

C.22. Proposition (León and Proschan, 1977). Let G be a finite
group of linear transformations acting on R n and let X be a G-
invariant random vector. Let Φ :R n×R n → R be a function with the
property that Φ(x, a) is convex in a for each fixed x. Suppose also that
for each g ∈ G, there exists g∗ ∈ G such that Φ(g∗x, ga) = Φ(x, a). If
a ≺ G b and the expectations exist, then

EΦ(X, a) ≤ EΦ(X, b).

Proof. Let ψ(b) = EΦ(X, b) and note that for all g ∈ G,

ψ(gb) = EΦ(X, gb) = EΦ(g∗X, gb) = EΦ(X, b) = ψ(b).
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Because a ≺G b, a can be written in the form a =
∑m

1 αigib, where
each αi ≥ 0,

∑m
1 αi = 1, each gi ∈ G, and m ≤ n+1 by Carathéodory’s

theorem (Roberts and Varberg, 1973, p. 76). Thus

ψ(a) = EΦ

(
X,

m∑
1

αigib

)
≤ E

m∑
1

αiΦ(X, gib)

= E
m∑
1

αiΦ(X, b) = ψ(b). ||

A number of applications and special cases of the above result are
presented in detail by León and Proschan (1979).

D Partial Orderings Induced
by Convex Cones

Cone orderings are briefly described in Section 1.D.

D.1. Definition. A cone ordering on a set A ⊂ R n induced by a
convex cone C ⊂ R n is the relation ≤ on A defined by

x ≤ y if and only if y − x ∈ C . (1)

It is easy to see that cone orderings are preorderings; i.e.,

x ≤ x for all x ∈ A , (2)

x ≤ y and y ≤ z imply x ≤ z when x, y, z ∈ A . (3)

If A is itself a convex cone, then additionally such orderings satisfy

x ≤ y implies x+ z ≤ y + z for all z ∈ A , (4)

x ≤ y implies λx ≤ λy for all λ ≥ 0. (5)

Conversely, relations which satisfy (2)–(5) are cone orderings induced
by C = {x : x ≥ 0}. The cone C is pointed, i.e., x ∈ C and −x ∈ C
imply x = 0, if and only if the ordering ≤ satisfies

x ≤ y and y ≤ x imply x = y, (6)

in which case ≤ is a partial ordering.
A most familiar example is the usual componentwise ordering ≤ on

R n:

x ≤ y if and only if xi ≤ yi, i = 1, . . . , n.
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Here the associated convex cone is the nonnegative orthant

R n
+ = {x : xi ≥ 0, i = 1, . . . , n}.

The ordering of majorization does not arise from a convex cone in
R n; if A = R n, majorization fails to satisfy (4). On the other hand,
if the ordering is confined to the set A = D , then majorization is a
cone order obtained from the cone

C = {x : Σk
1xi ≥ 0, k = 1, . . . , n− 1,Σn

1xi = 0}.
A set T ⊂ C ⊂ R n is said to span C positively if every point

in C can be written as a nonnegative linear combination of a finite
number of points in T . Of course, the n unit coordinate vectors ei
(ith component 1, other components 0) span R n

+ positively.
For the cone ordering ≤ on A ⊂ R n induced by the convex cone

C , a set T which spans C positively is of considerable interest for its
usefulness in the identification of the order-preserving functions. If A
is a convex set with nonempty interior, f preserves ≤ on A whenever

(i) f is continuous on the boundary of A , and

(ii) f(x+λt)−f(x) ≥ 0 for all t ∈ T and λ > 0 such that x+λt ∈ A

(Marshall, Walkup, and Wets, 1967). In case f is continuous on A and
has a gradient

∇f(x) = (∂f/∂x1, . . . , ∂f/∂xn)

at each point in the interior of A , f preserves the ordering ≤ if and
only if

∇f(x) · t ≥ 0 for all t ∈ T and x in the interior of A . (7)

Often a convex cone C is given by m simultaneous linear inequalities

C = {x : xA ≥ 0},
where A is an n ×m matrix. In case n = m and A is nonsingular, it
is noted by Marshall, Walkup, and Wets (1967) that the rows of A−1

span C positively. To see this, observe that

C = {x : xA ≥ 0} = {x : x = yA−1 for some y ≥ 0}.
Because y ≥ 0, the rows of A−1 span C positively. It can also be shown
that no subset of the rows of A−1 spans C positively.

As examples, consider the weak majorizations ≺w and ≺w on D . On
D , both of these orderings satisfy (2)–(5), so both orderings are cone
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orderings on D . The corresponding convex cones are: For ≺w,

C = {x : x �w 0} =
{
x : Σk

1xi ≥ 0, k = 1, . . . , n
}

= {x : xA ≥ 0};

A =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1
0 1 · · · 1
0 0 1 · · · 1
...

. . .
...

0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦

; A−1 =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
...

...
0 · · · 1 −1
0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦
.

For ≺w,

C = {x : x �w 0} = {x : Σn
kxi ≤ 0, k = 1, . . . , n} = {x : xA ≥ 0};

A =

⎡
⎢⎢⎣

0 · · · 0 −1
0 0 −1 −1
...

−1 · · · −1

⎤
⎥⎥⎦ ; A−1 =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 1 −1
0 · · · 0 1 −1 0
...

...
...

1 −1 0 · · · 0
−1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦
.

The ordering ≺ on D is also a cone ordering. Here

C = {x : x � 0} =
{
x : Σk

1xi ≥ 0, k = 1, . . . , n− 1,Σn
1xi = 0

}

= {x : xA ≥ 0};

A =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1 −1
0 1 · · · 1 −1
0 0 1 · · · 1 −1
...

...
...

0 · · · 0 1 −1

⎤
⎥⎥⎥⎥⎥⎦
.

This matrix is not square, so a set which spans C positively cannot
be found by inverting A. However, it can be shown that C is spanned
positively by the vectors

(1,−1, 0, 0, · · ·, 0),

(0, 1,−1, 0, · · ·, 0),
·
·
·

(0, · · ·, 0, 1,−1).



598 14. Orderings Extending Majorization

In fact, x ∈ C implies

x = x1(1,−1, 0, . . . , 0) + (x1 + x2)(0, 1,−1, 0, . . . , 0) + · · ·
+ (x1 + · · · + xn−1)(0, . . . , 0, 1,−1).

These results can be coupled with (7) to show that if f :R n → R
is differentiable, and

if ∂f/∂x1 ≥ · · · ≥ ∂f/∂xn ≥ 0 on D , then

x ≺w y on D implies f(x) ≤ f(y); (8)

if 0 ≥ ∂f/∂x1 ≥ · · · ≥ ∂f/∂xn on D , then

x ≺w y on D implies f(x) ≤ f(y); (9)

if ∂f/∂x1 ≥ · · · ≥ ∂f/∂xn on D , then

x ≺ y on D implies f(x) ≤ f(y). (10)

In order to preserve ≺w, �w, or ≺ on R n, then in addition to the
corresponding condition (8), (9), or (10), f must be invariant under
permutations of its arguments. Separate proofs of these facts from first
principles are given in Section 3.A.

Other examples of cone orderings are G-majorizations, where G is a
finite reflection group. Steerneman (1990) shows that finite reflective
groups are the only finite groups for which ≺G is a cone ordering.

Niezgoda (1998a,b) discusses the problem of reducing a group ma-
jorization induced by an infinite group to a finite group majorization.
In general, this is shown to be possible only in a somewhat restricted
sense, and when it is possible, the resulting finite group is a reflection
group.

E Orderings Derived from Function Sets

Let Φ be a set of real-valued functions φ defined on a subset A of R n.
For x, y ∈ A , write x ≺Φ y to mean that

φ(x) ≤ φ(y) for all φ ∈ Φ. (1)

If (1) holds, then it holds for all linear combinations of functions in
Φ with positive coefficients. These linear combinations form a convex
cone C and C is said to be generated by Φ. This leads to the following
definition.
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E.1. Definition. Let A be a subset of R nand let C be a convex
cone of real-valued functions defined on A . For x, y ∈ A , write x ≤C y
to mean that φ(x) ≤ φ(y) for all φ ∈ C . The ordering ≤C is said to be
generated by the cone C .

The ordering ≤C is a preordering of A . In fact, all preorderings of A
arise from a convex cone of functions in the manner of Definition E.1.
To see this, let ≤ be an arbitrary preordering of A and for each x ∈ A
let Ix denote the indicator function of Hx = {y : x ≤ y}. If C is
the smallest convex cone containing these indicator functions, then
≤C is just the ordering ≤. This means that generating orderings via
Definition E.1 is a more general procedure than generating them via
D.1; not all preorders are cone orders, in the sense of Definition D.1.

E.2. Definition. Let C ∗ denote the set of all real-valued functions
φ defined on A with the property that x ≤C y implies φ(x) ≤ φ(y).
The set C ∗ is called the completion of C . If C = C ∗, then C is said
to be complete.

The order-preserving functions defined initially in this chapter for a
given cone ordering are clearly complete.

E.3. Proposition. If a convex cone is complete, then it contains
the constant functions and is closed under pointwise convergence and
under the formation of maxima and minima.

E.4. Proposition. If {φ(·, t), t ∈ T} is a family of functions
belonging to the convex cone C , then the mixture∫

T
φ(·, t)dμ(t)

belongs to C whenever the integral exists.

Proposition 3.C.5 is an important special case of Proposition E.4.

Note that the orderings ≺Φ,≺C , and ≺C ∗ are equivalent.

Given a set Φ of functions, two basic problems arise:

(i) Identify the completion C ∗ of the convex cone C generated by Φ.
This cone is of interest because it consists of all functions that preserve
the order ≺C .

(ii) Find a subset of C ∗ that

(a) generates a convex cone, the completion of which is C ∗,
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and
(b) is small enough to be useful in determining the validity

of the relation x ≺C y.

For further details about convex cones of functions, see Marshall
(1991).

E.5. Example: Majorization. For majorization, one starting point
is the convex cone C of functions φ having the form φ(x) = Σn

1g(xi)
for some real-valued convex function g defined on R. Through
Definition E.1, this provides a possible definition of majorization
(Proposition 3.C.1), but such a definition leaves both problems (i)
and (ii) to be solved.

As an alternative, consider starting with the set Φ = {φ1, . . . , φn+1},
where

φk(x) =
k∑
i=1

x[i], k = 1, . . . , n, φn+1(x) = −
n∑
i=1

x[i]. (2)

According to Definition 1.A.1, x ≺ y if

φk(x) ≤ φk(y), k = 1, . . . , n+ 1. (3)

The smallest convex cone C containing the functions (2) consists of
functions having the form

φ(x|a) =
n∑
1

aix[i], where a ∈ D . (4)

To verify this, note that

φ(x|a) =
n+1∑
k=1

bkφk(x), (5)

where bi = ai− ai+1, i = 1, . . . , n− 1, bn = an + bn+1, and bn+1 > 0
is arbitrary but sufficiently large that bn > 0.

The n + 1 functions (2) constitute a frame for the convex cone C ;
that is, these functions are a minimal set with the property that all
functions in C take the form (5).

The completion C ∗ of C consists of all functions that preserve the
order of majorization, i.e., the Schur-convex functions. This convex
cone is the completion of several convex cones in addition to the
one that introduced this example; it is the completion of the cone
of permutation-symmetric quasi-convex functions (3.C.3) and of the
cone of permutation-symmetric convex functions (3.C.2).
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E.6. Example: Unordered majorization (Parker and Ram,
1997). Let

φk(x) =
k∑
1

xi, k = 1, . . . , n, φn+1(x) = −φn(x), x ∈ R n. (6)

A vector x is unordered majorized by y (written x
uo≺ y) if

φk(x) ≤ φk(y), k = 1, . . . , n+ 1. (7)

Note that (6) is similar to (3), but here xi has replaced x[i].
In many applications of majorization, the components of x are

arbitrarily ordered; e.g., the numbering of individuals is arbitrary when
xi represents the income of the ith individual. Unordered majorization
is appropriate only if the components of x are not arbitrarily ordered;
they might, e.g., represent variables measured sequentially in time.

In a manner similar to the derivation of (5), it can be shown that
functions of the form (6) constitute a frame for the convex cone C of
functions taking the form

φ(x|a) =
n∑
1

aixi, a ∈ D , x ∈ R n.

E.7. Example: Variance majorization (Neubauer and Watkins,
2006). Consider a preorder of R n in which the functions (2) of Example
E.5 are replaced by the functions

v(x|k) =
k∑
1

(x(i) −mk)2

k
, k = 1, . . . , n, v(x|n + 1) = −v(x|n), (8)

where mk =
∑k

1 x(i)/k, k = 1, . . . , n. The vector x is variance

majorized by y (written x
var≺ y ) if

v(x|k) ≤ v(y|k), k = 1, . . . , n+ 1.

Neither the convex cone C of functions generated by those of the form
(8) nor its completion has been characterized. However, a differentiable
function φ : R n → R preserves the order of variance majorization if
its gradient ∇φ(x) = (φ1(x), . . . , φn(x)) satisfies

φi+1(z) − φi(z)
zi+1 − zi

is decreasing in i = 1, 2, . . . , n− 1

whenever z1 < z2 < · · · < zn.
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Let m(x) =
∑n

1 xi/n, v(x) =
∑

(xi−m)2/n. Neubauer and Watkins
(2006) show that for any vector x with m(x) = m and v(x) = v,

xmin
var≺ x

var≺ xmax,

where

xmin = (a, . . . , a, b), xmax = (c, d, . . . , d),

a = m−
√
v/(n − 1), d = m+

√
v/(n − 1),

b = m+
√
v(n − 1), c = m−

√
v(n− 1).

E.8. Example: Entropy majorization. For x ∈ R n
++, let

φk(x) = −
k∑
1

x[i] log x[i], k = 1, . . . , n, φn+1(x) = −φn(x).

If φk(x) ≤ φk(y), k = 1, . . . , n + 1, then x is said to be entropy ma-
jorized by y. Little is known about entropy majorization. However, if
x ≺ y or x

var≺ y, then φn(x) ≤ φn(y).

E.9. Example: Componentwise Majorization. The functions

φk(x) = xk, k = 1, . . . , n,

generate a convex cone Φ, the completion of which consists of all
functions increasing in each argument.

Transformations

Suppose that ≺Φ is the ordering of Definition E.1 defined on the set
In for some interval I ⊂ R. Let u be a strictly increasing function
mapping I to the interval J , and let

ψ(x|φ) = φ(u(x1), . . . , u(xn)), φ ∈ Φ, x ∈ In.

Write x ≺u
Φ y to mean that ψ(x|φ) ≤ ψ(y|φ) for all φ ∈ Φ. It can be ver-

ified that ψ preserves the order ≺u
Φ if φ(x) = ψ(u−1(x1), . . . , u−1(xn))

preserves the order ≺Φ.
As an example, suppose that the functions constituting Φ are

given by (2), so that ≺Φ is the ordering of majorization. Restrict
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majorization to the set R n
++; i.e., take I to be (0,∞) and let u(z) =

log z, z ∈ I. It follows that J = R. Let

ψi(x) = φi(u(x1), . . . , u(xn)), i = 1, . . . , n + 1,

where the φi’s are given by (2). These functions constitute a new family
Φ∗ of functions that determine the order ≺∗

Φ via Definition E.1. It
follows that a function ψ that maps R n to R preserves the order ≺∗

Φ
if φ(x) = ψ(exp(x1), . . . , exp(xn)) is Schur-convex.

F Other Relatives of Majorization

Relatives of majorization have arisen in diverse contexts. Two such
orderings, defined in terms of partial sums, are mentioned here. In
addition, a measure of diversity difference, that is intimately related
to majorization, is described.

Weak Bimajorization

F.1. Definition (Sanderson, 1974). A real vector x is said to be
weakly bimajorized by a real vector y if x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn,
and

(i)
∑k

i=1 xi ≤
∑k

i=1 yi, k = 1, . . . , n− 1,

(ii)
∑n

i=k xi ≤
∑n

i=k yi, k = 2, . . . , n,

(iii)
∑n

1 xi ≤
∑n

1 yi.

Equivalent conditions are x ≺w y and x �w y. Sanderson encountered
this ordering in a study of the role of constraints in the economic theory
of demand. Here, xi is the production of household i under one set
of constraints, and yi is the corresponding production under relaxed
constraints. In this application, Sanderson requires strict inequality
in (iii).

The motivation for this ordering was a need to provide conditions
under which

n∑
1

φ(xi) ≤
n∑
1

φ(yi) (1)

for all increasing functions φ that are convex, concave, or positive linear
combinations of such functions. According to 4.B.2, (1) holds for all
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increasing convex functions and all increasing concave functions if and
only if x ≺w y and x �w y, so that weak bimajorization is exactly the
required ordering.

Ordering for Complex Vectors

Let x and y be complex vectors such that |x1| ≥ · · · ≥ |xn|, and
|y1| ≥ · · · ≥ |yn|. Under what conditions on x and y does there exist a
matrix Q = (qij) of the form

qij = |uij |2, where U = (uij) is a unitary matrix

such that x = yQ?

F.2. Proposition (Thompson, 1978). Necessary and sufficient con-
ditions for the existence of a matrix Q = (qij), where qij = |uij |2, and
U = (uij) is unitary, such that x = yQ are

k∑
i=1

|xi| ≤
k∑
i=1

|yi|, k = 1, . . . , n,

k−1∑
i=1

|xi| −
n∑
i=k

|xi| ≤
n∑
i=1

|yi| − 2|yk|, k = 1, . . . , n,

n−3∑
i=1

|xi| − |xn−2| − |xn−1| − |xn| ≤
n−2∑
i=1

|yi| − |yn−1| − |yn|.

For applications in matrix analysis, see Chapter 9.

Relative Difference in Diversity

Let P denote the set of all n-dimensional probability vectors with
elements arranged in increasing order; that is, p ∈ P if and only if
0 ≤ p1 ≤ p2 ≤ · · · ≤ pn and

∑n
i=1 pi = 1. Alam and Williams (1993)

propose a measure of dissimilarity in diversity between members of P
that is intimately related to majorization. For p = (p1, . . . , pn) ∈ P,
and p′ = (p′1, . . . , p

′
n) ∈ P, define

ρ(p, p′) = inf ||p − p′Q||, (2)

where the infimum is over the class of all n × n doubly stochastic
matrices Q and || · || is a norm on R n. Note that ρ(p, p′) = 0 if and
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only if p ≺ p′ and consequently ρ(p, p′) measures the departure from
the majorization p ≺ p′. Thus, if ρ(p, p′) ≤ ρ(p, p′′), then p is closer to
being majorized by p′ than it is to being majorized by p′′.

If

d(p, p′) = ρ(p, p′) + ρ(p′, p), for p, p′ ∈ P, (3)

then d is a metric on P. Note that d(p, p′) = 0 if and only if p ≺ p′
and p′ ≺ p, i.e., if p = p′.

F.3. Proposition. If p ≺ p′ ≺ p′′, then d(p′, p′′) ≤ d(p, p′′) and
d(p, p′) ≤ d(p, p′′).

F.4. Proposition. If p′ =
∑m

i=1 λiq
(i), where λ = (λ1, . . . , λn) ∈ P,

and q(i) = (q(i)(1), . . . , q
(i)
(n)) ∈ P, then d(p, p′) ≤ ∑n

i=1 λid(p, q
(i)).

Alam and Williams (1993) also suggest a diversity measure H
defined on P using the metric (3):

H(p) = d(p, en); (4)

here en is the vector (0, 0, . . . , 0, 1).

Computation of the metric d( · , · ) and the related diversity measure
H depends on the norm selected for use in (2). For the L1 or L2

norm, the required values can be obtained by linear or quadratic
programming.

G Majorization with Respect
to a Partial Order

In the context of identifying optimal multipartitions, Hwang,
Rothblum, and Shepp (1993) introduce the concept of majorization
with respect to a given partial order, ⇒, on the integers {1, 2, . . . , n}.
If i⇒ j, then i is said to dominate j. Attention is restricted to partial
orders consistent with the usual ordering of the integers. Thus it is as-
sumed that if i⇒ j, then i > j. A subset I of {1, 2, . . . , n} is said to be
closed with respect to ⇒, denoted by ⇒closed, if I contains all integers
that are dominated by any integer in I. A vector a is majorized by a
vector b with respect to ⇒, written a ≺⇒ b, if∑

i∈I
ai ≤

∑
i∈I

bi for every ⇒closed subset I,
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and
n∑
i=1

ai =
n∑
i=1

bi.

A function g is said to be ⇒Schur-convex if g(a) ≤ g(b) whenever
a ≺⇒ b.

Hwang (1979) provides an analog of the Schur–Ostrowski theo-
rem (3.A.4) in this context. See also Hwang and Rothblum (1993),
where several alternative characterizations of ⇒Schur-convexity are
discussed.

Hwang, Rothblum, and Shepp (1993) use these concepts to iden-
tify monotone optimal multipartitions with applications to optimal
assembly problems, more general than those discussed in 13.D.

H Rearrangements and Majorizations
for Functions

An n-dimensional vector can be regarded as defining a real-valued
function with domain the integers {1, 2, . . . , n}. Hardy, Littlewood,
and Pólya (1929) develop an analogous partial order for real-valued
functions with domain [0, 1] and introduce the concept of a decreasing
rearrangement. Two key elements here are the domain and the measure
space. Generalizations are obtained by other versions of these two
elements.

Joe (1987b) [who refers to Day (1973) and Chong (1974c)] observes
that a parallel discussion can be provided for functions whose domain
is a quite arbitrary measure space. Applications frequently involve a
space that is a subset of R n, and use either Lebesgue or counting
measure, but the abstract formulation provides a unifying framework
for discussion of these ideas.

Let (X ,F , ν) be a measure space and let f be a nonnegative
ν-integrable function defined on X . With the notation

mf (t) = ν({x : f(x) > t}), t ≥ 0, (1)

define

f↓(u) = sup{t : mf (t) > u}, 0 ≤ u ≤ ν(X ). (2)

The function f↓ is called the decreasing rearrangement of f . This
definition agrees with Hardy, Littlewood, and Pólya’s definition of f↓
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when X is the unit interval with Lebesgue measure. Observe that the
domain of f↓ is [0, ν(X )], which usually differs from the domain X
of f .

Note. A close relationship exists between the generalized ordering
introduced here and the Lorenz ordering discussed in some detail in
Chapter 17. In the Lorenz order context, ν is a probability measure
and increasing rather than decreasing rearrangements are utilized.

H.1. Definition (Joe, 1987b). Let f and g be nonnegative integrable
functions on (X ,F , ν) such that

∫
f dν =

∫
g dν. The function f is

majorized by g, denoted f ≺ g, if

∫ t

0
f↓(u) dν(u) ≤

∫ t

0
g↓(u) dν(u) for all t ∈ [0, ν(X )). (3)

H.1.a. Proposition. The following conditions are equivalent to (3):

(a)
∫
φ(f) dν ≤ ∫

φ(g) dν for all continuous convex functions φ
with φ(0) = 0, for which the integrals exist;

(b)
∫∞
t mf (s) ds ≤

∫∞
t mg(s) ds for all t ≥ 0;

(c)
∫
[f − t]+dν ≤ ∫

[g − t]+dν for all t ≥ 0.

Ruch, Schranner, and Seligman (1978) prove the equivalence of (a),
(b), and (c) for ν a probability measure uniform on [0, 1]. The general
case is due to Joe (1987b).

Condition (c) is the extension to the continuous case of one of
the definitions of majorization in 1.A. The restriction to nonnegative
functions in H.1 can be relaxed if ν(X ) is finite.

A concept of a Schur-convex function can be introduced in the
present context. A real-valued function φ defined on a subset A of the
class of all nonnegative integrable functions on X is said to be Schur-
convex on A , if f1, f2 ∈ A and f1 ≺ f2 imply that φ(f1) ≤ φ(f2). In
the case that X is the unit interval, Chan, Proschan, and Sethuraman
(1987) provide an analog of the Schur–Ostrowski characterization of
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Schur-convex functions (3.A.4) involving Gateaux differentials. [For an
exposition of Gateaux differentials, see Nashed (1966).]

Remark . The functions f and g appearing in Definition G.1 can
be naturally associated with measures on (X ,F ) that are absolutely
continuous with respect to ν [by defining νf (A) =

∫
A fdν, etc.]. Con-

sequently, the majorization order (3) can be viewed as a partial order
on such measures absolutely continuous with respect to ν. Kadane and
Wasserman (1996) provide an extension of this partial order to deal
with measures on (X , F ) not necessarily absolutely continuous with
respect to ν.

Hickey (1983, 1984) discusses an ordering of probability densities in
terms of randomness. For this he assumes that the functions f and g
in Definition H.1 integrate to 1, and are thus densities (usually in this
context, X is a countable set or a subset of R m, where m denotes
the dimension of the random vector associated with the given den-
sity). Hickey’s randomness ordering is majorization, as defined in H.1,
restricted to functions that integrate to 1, and ν taken to be either
Lebesgue or counting measure. Here f is said to be more random than
g if f ≺ g.

If X is finite, Hickey’s randomness ordering is equivalent to the
classical majorization ordering applied to the corresponding discrete
probability density functions. Consequently, the most random distri-
bution over the n points in X is the uniform distribution over those
n points.

In parallel fashion, in the general measure space (X ,F , ν), the most
random density with support in a given subset A of X of finite
measure is the uniform density over A.

As a parallel to doubly stochastic matrices (which play a pivotal
role in classical majorization), define a doubly stochastic function to
be a function k : X × X → [0,∞) such that

∫
k(x, y) dν(x) = 1

for all x ∈ X and
∫
k(x, y) dν(y) = 1 for all y ∈ X . It is readily

verified using Jensen’s inequality that if f(x) =
∫
k(x, y)g(y) dν(y),

then f ≺ g. Hickey (1984) uses this to verify that if Z1, Z2 are indepen-
dent m-dimensional random vectors with densities fZ1 and fZ2, then
the density of Z1+Z2 is majorized by that of Z1; that is, fZ1+Z2 ≺ fZ1 .
In Hickey’s words, the density of Z1 + Z2 is more random than that
of Z1 or Z2. The result can be viewed as an extension of 12.N.5 by
Brown and Solomon (1979) to deal with an infinite group.
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Joe (1987b) advocates the use of density majorization as an order-
ing of dependence among k-dimensional densities with given marginals.
For this, he considers densities on a product space X 1×X 2×· · ·×X k

with given marginal densities f1, f2, . . . , fk on X 1,X 2, . . . ,X k, re-
spectively. Denote the set of all such densities by S (f1, f2, . . . , fk). If
the members of S (f1, f2, . . . , fk) are partially ordered in the sense of
Definition H.1, then the joint density f(x) = Πk

i=1fi(xi) (with indepen-
dent marginals) is minimal (though not the unique minimal density),
and thus the ordering can be viewed as one reflecting the dependence
of members of S (f1, f2, . . . , fk).

Density majorization permits comparisons between diverse cate-
gories. Condition (3) of Definition H.1 involves decreasing rearrange-
ment functions corresponding to f and g with domain a subset of
R, usually distinct from the original domains of f and g. Definition
H.1 can be extended to allow f and g to be defined on very different
measurable spaces. Thus consider f defined on (X 1,F 1, ν1) and g
defined on (X 2,F 2, ν2) to be non-negative integrable functions nor-
malized to have

∫
f dν1 =

∫
g dν2 and define f ≺ g if condition (3)

of Definition H.1 holds. This allows a comparison of the variability in
the geographic topography of Illinois and the variability in the income
distribution in Kansas. Further discussion of this ordering, including
the role of doubly stochastic functions in it, is given by Arnold and
Joe (2000).



15
Multivariate Majorization

The definition of the majorization x ≺ y is motivated in Section 1.A
as a way of making precise the idea that the components of x are
“less spread out” than the components of y. This basic idea makes
sense whether the components of x and y are points on the real line
or points in a more general linear space.

Univariate majorization arises, e.g., in comparisons of income alloca-
tions. When allocations of more than one attribute are to be compared
simultaneously, then some notion of multivariate majorization is re-
quired. In this case, the linear space to be considered is the space of
real m× n matrices.

In this book, row vectors are used instead of column vectors, so that
x ≺ y means x = yP for some doubly stochastic matrix P. The reader
is cautioned to be aware that in the multivariate case, some authors
use row vectors and some use column vectors, so this can be confusing
at times.

A Some Basic Orders

In the following, each row of a matrix represents allocations of a
particular attribute, and each column represents allocations to one
of the n receivers. In making a comparison, the univariate row vectors
x and y are replaced by m× n matrices

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 611
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 15,
c© Springer Science+Business Media, LLC 2011
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X = (xC
1 , . . . , x

C
n ), Y = (yC

1 , . . . , y
C
n ),

where xC
i and yC

i are all column vectors of length m.
There are several ways now to make precise the idea that xC

1 , . . . , x
C
n

are “less spread out” than yC
1 , . . . , y

C
n .

Chain and Matrix Majorization

Consider first the concept of ordinary majorization (m = 1). The idea
of a transfer, introduced by Muirhead (1903) and Dalton (1920) and
discussed in Section 1.A, can be phrased as follows: If yi and yj are
replaced by ỹi and ỹj to obtain a new vector ỹ from y, then with the
constraints that

(i) ỹi and ỹj lie in the convex hull of yi and yj,
(ii) ỹi + ỹj = yi + yj ,

inequality among the components of ỹ is certainly not greater than
inequality among the components of y. Notice that ỹ = yT, where T is
a T -transform; i.e., T is doubly stochastic and has exactly two nonzero
off-diagonal entries.

When phrased in the above manner, the idea of a transfer also ap-
plies if the components of y are vectors. This leads to the following
definition.

A.1. Definition. Let X and Y be m× n matrices. Then X is said
to be chain majorized by Y , written X ≺≺ Y , if X = Y P, where P is
a product of finitely many n× n T -transforms.

Suppose again that x and y are vectors of real numbers. Think of
the components of y as incomes and think of the components of x as
representing a redistribution of the total income

∑n
1 yi. If each xj is

an average of y1, . . . , yn, i.e.,

xj =
n∑
i=1

yipij,

where each pij ≥ 0 and
∑n

i=1 pij = 1 for all j, then the components
of x are surely “less spread out” than the components of y. Because
x1, . . . , xn represents a redistribution of incomes y1, . . . , yn, it must be
that

∑n
j=1 pij = 1. Thus, P = (pij) is doubly stochastic.

These ideas carry over to the case that the components of x and y
are vectors.
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A.2. Definition. Let X and Y be m × n real matrices. Then X is
said to be majorized by Y , written X ≺ Y , if X = Y P, where the
n× n matrix P is doubly stochastic.

Because a product of T -transforms is doubly stochastic,

X ≺≺ Y implies X ≺ Y.

When m = 1, the converse is true by 2.B.1; it is also true for n = 2
because all 2 × 2 doubly stochastic matrices are T -transforms. When
m ≥ 2 and n ≥ 3, majorization does not imply chain majorization, as
the following example shows. See also Berg, Christensen, and Ressel
(1984, p. 25).

A.3. Example. If (1, 1
2 ,

1
2) = (1, 1, 0)P , where P is doubly

stochastic, it can be verified that P has the form

P =
1
2

⎡
⎢⎣

α β 2 − α− β

2 − α 1 − β α+ β − 1

0 1 1

⎤
⎥⎦ , (1)

where 0 ≤ α ≤ 2, 0 ≤ β ≤ 1, 1 ≤ α + β ≤ 2. Similarly, (3, 4, 5) =
(2, 4, 6)P, where P has the form (1) if and only if α = β = 1. This
means that if

X =

[
1 1

2
1
2

3 4 5

]
and Y =

[
1 1 0
2 4 6

]

and X = Y P, where P is doubly stochastic, then

P =
1
2

⎡
⎣1 1 0
1 0 1
0 1 1

⎤
⎦ .

This doubly stochastic matrix is not a product of T -transforms (see
Example 2.G.1). Consequently, X is majorized by Y, but X is not
chain majorized by Y .

A well-known equivalent condition for the majorization x ≺ y is that
Σn

1φ(xi) ≤ Σn
1φ(yi) for all convex functions φ : R → R (see 4.B.1). A

parallel result exists for multivariate majorization.
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A.4. Proposition (Karlin and Rinott, 1983). X ≺ Y if and only if
n∑
i=1

φ(xCi ) ≤
n∑
i=1

φ(yCi ) (2)

for all continuous convex functions φ : Rm → R; here xCi and yCi are
column vectors.

Proof. If X ≺ Y, then there exists P = (pij), doubly stochastic,
with X = Y P .

Then
n∑
j=1

φ(xCj ) =
n∑
j=1

φ

(
n∑
i=1

pijy
C
i

)
≤

n∑
j=1

n∑
i=1

pijφ(yCi )

=
n∑
i=1

φ(yCi ).

The converse can be justified by an appeal to a result of Meyer (1966)
which relates balayages and dilations in a more abstract setting [see
Karlin and Rinott (1983) for details]. ||

Note. In addition to Meyer’s (1966) abstract treatment of Proposition
A.4, several precursors can be identified. Somewhat earlier, Sher-
man (1951) provides a slightly more general version of A.4. See also
Blackwell (1953), who refers to Charles Stein.

Fischer and Holbrook (1980) discuss several variants of Proposition
A.4. For example, they observe that it is sufficient to restrict to contin-
uous, convex, and coordinatewise increasing functions φ. In addition,
they permit X and Y to be of different dimensions (i.e., X of dimen-
sion m×r and Y of dimension m×n). A good survey of related results
is given by Dahl (1999a).

Recall the notation 〈A,B〉 = ΣiΣjaijbij = trAB′.

A.5. Proposition (Komiya, 1983). X ≺ Y if and only if

max{〈U,XP 〉 : P ∈ Pn} ≤ max{〈U, Y P 〉 : P ∈ Pn}
for every m × n matrix U , where Pn denotes the class of all n × n
permutation matrices.

Borobia (1996) describes an algorithm to determine whether X ≺ Y
in which he recasts the problem as a linear programming problem.
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A.6. Example. As defined in Section 1.D, for complex vectors x, y,
x ≺ y if x = yP for some doubly stochastic matrix P . To see that
this majorization can be regarded as multivariate majorization, write
x = a + ib, y = u + iv, where a, b, u, v are real. Then x = yP can be
written in the form (

a

b

)
=

(
u

v

)
P.

In this context, Goldberg and Straus (1977/1978) noted that chain
majorization implies majorization, but not conversely.

A.7. Example. The following statements are equivalent:

(i) x ≺ y, (ii)
(

x

e− x

)
≺≺

(
y

e− y

)
, (iii)

(
x

e− x

)
≺
(

y

e− y

)
,

where e = (1, . . . , 1). To see this, suppose first that x ≺ y. Then
x = yP, where P is a product of T -transforms (2.B.1). Because P is
doubly stochastic, it follows that (e−x) = (e−y)P and thus (ii) holds.
Trivially, (ii) ⇒ (iii) ⇒ (i).

More generally, it can be shown that if X ≺ Y , then(
X

a0e+
∑m

1 aixR
i

)
≺
(

Y

a0e+
∑m

1 aiyR
i

)
,

where the xR
i and yR

i are row vectors of X and Y and the ai ∈ R. A
similar statement can be made for chain majorization.

A.8. Example. For l = 1, . . . ,m, let A(l) = (a(l)
ij ) be Hermitian

matrices that commute with each other so that they can be
simultaneously diagonalized:

A(l) = UD(l)U∗ for some unitary matrix U, l = 1, . . . ,m,

where D(l) = (d(l)
ij ) is a diagonal matrix. Then, for l = 1, . . . ,m,

(a(l)
11 , . . . , a

(l)
nn) = (d(l)

11 , . . . , d
(l)
nn)P,

where P = (pij), pij = uijuij . Since P is doubly stochastic (in fact, P
is orthostochastic—see 2.B.5),⎡

⎢⎢⎣
a

(1)
11 · · · a

(1)
nn

...
...

a
(m)
11 · · · a

(m)
nn

⎤
⎥⎥⎦ ≺

⎡
⎢⎢⎣
d
(1)
11 · · · d

(1)
nn

...
...

d
(m)
11 · · · d

(m)
nn

⎤
⎥⎥⎦ .

This example generalizes 9.B.1.
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A.9. Proposition. If X ≺ Y , then for all r ×m matrices A,

AX ≺ AY.

Similarly, X ≺≺ Y implies AX ≺≺ AY .

Proposition A.9 follows immediately from the observation that if
X = Y P , then AX = AY P . In particular, X ≺ Y implies AX ≺ AY
for all idempotent matrices A. With r = m − 1, or r = 1, . . . ,m − 1,
one might expect a converse to A.8. However, Elton and Hill (1992)
provide an example in which AX ≺ AY for every 1× 2 matrix A, but
X �≺ Y .

Row Majorization

Let xR
1 , . . . , x

R
m and yR

1 , . . . , y
R
m be the rows of X and Y , so that these

quantities are row vectors of length n. Notice that X ≺ Y if and only
if there exists a doubly stochastic matrix P such that

xR
i = yR

i P, i = 1, . . . ,m. (3)

A similar remark applies to chain majorization, with P a product
of T -transforms. The equalities (3) can be written alternatively in the
form

(xR
1 , . . . , x

R
m) = (yR

1 , . . . , y
R
m)

⎡
⎢⎢⎢⎣
P 0 0 · · · 0 0
0 P 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 P

⎤
⎥⎥⎥⎦ . (4)

This implies that

xR
i ≺ yR

i , i = 1, . . . ,m, (5)

in the sense of ordinary majorization. But, of course, (5) does not
imply (4); (5) implies only that there exist doubly stochastic matrices
P1, . . . , Pm such that

xR
i = yR

i Pi, i = 1, . . . ,m,

but there is no guarantee that one can take P1 = · · · = Pm.

A.10. Definition. Let X and Y be m×n matrices. Then X is said
to be rowwise majorized by Y , written X ≺row Y , if (5) holds.
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Notice that if X ≺row Y , then there exist doubly stochastic matrices
P1, . . . , Pm such that

(xR
1 , . . . , x

R
m) = (yR

1 , . . . , y
R
m)

⎡
⎢⎢⎢⎣
P1 0 · · · 0
0 P2 · · · 0
...

... · · · ...
0 0 · · · Pm

⎤
⎥⎥⎥⎦ .

This shows that if X ≺row Y , then

(xR
1 , . . . , x

R
m) ≺ (yR

1 , . . . , y
R
m)

because the matrix diag(P1, . . . , Pm) is doubly stochastic. Various
other special doubly stochastic matrices can be used to define other
concepts of multivariate majorization.

Note that in contrast to Proposition A.9, if X ≺row Y , it does not
necessarily follow that AX ≺row AY . To see this, consider

X =
(

1 2
3 4

)
, Y =

(
1 2
4 3

)
, A =

(
1 1
1 1

)
.

Here, X ≺row Y trivially, but AX �≺row AY.

A.11. Proposition (Das Gupta and Bhandari, 1989). For m × n
matrices X and Y , X ≺row Y if and only if

m∑
i=1

n∑
j=1

ϕi(xij) ≤
m∑
i=1

n∑
j=1

ϕi(yij)

for all convex functions ϕ1, . . . , ϕm.

Proof. This result follows directly from Proposition 3.C.1. ||
Note. Alternative approaches to the definitions of multivariate

majorization are discussed by Tsui (1999).

Linear-Combinations Majorization

Recall from Proposition A.9 that if X and Y are m×n matrices such
that X ≺ Y, then for all r ×m matrices A, AX ≺ AY. Here the focus
is on the case that r = 1, so that A is a row vector a. With r = 1, the
order aX ≺ aY reduces to ordinary majorization. Two versions of this
type of multivariate majorization have received considerable attention
[the names of the orderings used here are the same as those suggested
by Joe and Verducci (1992)].
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A.12. Definition. For m× n real matrices X and Y , X is said to
be linear-combinations majorized by Y, written X ≺LC Y, if for all
a ∈ Rm, aX ≺ aY .

A.13. Definition. For m× n real matrices X and Y , X is said to
be positive-combinations majorized by Y, written X ≺PC Y, if for all
a ∈ Rm

+ , aX ≺ aY .

Other names for these orderings exist in the literature. Linear-
combinations majorization is sometimes called directional majoriza-
tion. Positive-combinations majorization or positive directional
majorization is sometimes called price majorization [see e.g., Mosler
(2002)]. In an economic context discussed further in Section 17.C, it
is a more appealing concept than is linear-combinations majorization.
However, as explained in Section 17.C, linear-combinations majoriza-
tion admits an attractive interpretation involving the natural extension
of the Lorenz curves to higher dimensions. Mosler (2002) provides
a link between positive-combinations majorization and a construct
known as an inverse Lorenz function, so in a sense both Defini-
tions B.6 and B.7 have attractive economic interpretations. Joe and
Verducci (1992) discuss algorithms useful to identify cases in which
positive-combinations Lorenz ordering can occur. The fact that the two
orderings are different is illustrated by the following simple example.

A.14. Example (Joe and Verducci, 1992). If

X =
(

1 3
4 2

)
, Y =

(
1 3
2 4

)
,

then X ≺PC Y but X �≺LC Y [shown by letting a = (1,−1)].

A.15. Example (Malamud, 2003, 2005). If

X =
(

12 12 5 3
12 12 3 5

)
and Y =

(
8 16 0 8
16 8 0 8

)
,

then X ≺LC Y but X ≺ Y fails. That X ≺LC Y can be verified by
a direct but tedious argument. Malamud (2003, 2005) shows that if
X = Y P, where P is doubly stochastic, then necessarily P must have
the form

P =

⎛
⎜⎜⎜⎝

1
2

1
2 0 0

1
2

1
2 0 0

0 0 p p

0 0 p p

⎞
⎟⎟⎟⎠ , where p = 1 − p;

but this is not possible, so that X ≺ Y fails.
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A.15.a. Example (Martinez Peŕıa, Massey, and Silvestre, 2005). If

X =
(

2 −2 0 0
0 0 −2 2

)
and Y =

(
0 3 −3 0
0 −2 −2 4

)
,

then X ≺LC Y but X ≺ Y fails.

Bhandari (1995) describes a technique to identify situations in which
linear-combinations majorization does not imply majorization.

A.16. Observation. If X ≺PC Y, then X ≺row Y. This follows from
the fact that X ≺PC Y implies that e(i)X ≺ e(i)Y, i = 1, . . . , n, where
e(i) is the vector with 1 in the ith place and 0 elsewhere.

A.17. Example (Martinez Peŕıa, Massey, and Silvestre, 2005). If

X =
(

1 0
1/2 1/2

)
and Y =

(
1 0
0 1

)
,

then X ≺row Y but X ≺PC Y fails.

Column-Stochastic Majorization

Yet another version of matrix majorization is proposed by Martinez
Peŕıa, Massey, and Silvestre (2005).

A.18. Definition. For m × n real matrices X and Y , X is said to
be column-stochastic majorized by Y , written X ≺CS Y , if X = Y R,
where the n× n matrix R is column stochastic.

Martinez Peŕıa, Massey and Silvestre (2005) use the term “weak
majorization” in place of “column-stochastic majorization” and write
X ≺w Y in place of X ≺CS Y . Alternative terminology and nota-
tion are introduced here to avoid potential confusion; the ordering
of Definition A.18 does not reduce to standard weak majorization
(Definition 1.A.2) when m = 1. The natural multivariate extension
of that notion would define X ≺CS Y to mean X = Y P for some
doubly substochastic matrix P . See Theorem 2.C.4.

A parallel to Proposition A.4 is

A.19. Proposition (Martinez Peŕıa, Massey, and Silvestre, 2005).
For m× n real matrices X and Y , X ≺CS Y if and only if

max
1≤i≤n

φ(xCi ) ≤ max
1≤i≤n

φ(yCi )

for every convex function φ : Rm → R.
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For a real m×n matrix X, let X̃(k) be an m× (
n
k

)
matrix in which

each column is the average of k different columns of X, arranged in
lexicographic order. Using this notation, an insight into the relation-
ship between linear combinations majorization and column stochastic
majorization is provided in the following result.

A.20. Proposition (Martinez Peŕıa, Massey, and Silvestre, 2005).
Suppose X and Y are real m × n matrices. Then X ≺LC Y if and
only if X̃(k) ≺CS Ỹ (k) for k = 1, 2, . . . , [n2 ] and k = n, where [n2 ] is
the greatest integer less than n/2.

A.21. Example. Take m = 1, n = 4 and let

X = (12, 3, 3, 1), Y = (8, 8, 2, 1).

Clearly, X ≺ Y fails; that is, X ≺row Y fails. However, X = Y R,
where

R =

⎛
⎜⎜⎜⎝

5
9

5
9 0 0

4
9

4
9 0 0

0 0 1
2 0

0 0 1
2 1

⎞
⎟⎟⎟⎠

is column-stochastic, so that X ≺CS Y.

Additional Orderings

Boland and Proschan (1988) suggest a version of multivariate ma-
jorization that is defined in terms of correlation increasing transfers.
Joe (1985) discusses a constrained multivariate majorization order-
ing in which only matrices with identical row and column totals
are compared. Subject to that constraint, the ordering is defined in
terms of ordinary majorization of the matrices viewed as vectors of
dimension mn. He proposes such an ordering as a suitable dependence
ordering in contingency tables. An extension to k-tuples is discussed
in Joe (1987a).

Summary of Relationships

The various notions of multivariate majorizations introduced in this
section relate as follows:

X ≺≺ Y =⇒ X ≺ Y =⇒ X ≺LC Y =⇒ X ≺PC Y

=⇒ X ≺row Y =⇒ X ≺CS Y. (6)
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None of the above implications can be reversed, as has been shown
by counterexamples:

X ≺ Y �=⇒ X ≺≺ Y (Example A.3),
X ≺LC Y �=⇒ X ≺ Y (Examples A.15 and A.15.a),
X ≺PC Y �=⇒ X ≺LC Y (Example A.14),
X ≺row Y �=⇒ X ≺PC Y (Example A.16),
X ≺CS Y �=⇒ X ≺row Y (Example A.21).

Additional relationships between the various notions of multivariate
majorization have been obtained under special conditions by Joe and
Verducci (1992).

B The Order-Preserving Functions

For the case that X ≺ Y , classes of order-preserving functions are
identified in Propositions A.4 and A.5. Similarly, Proposition A.11
identifies a class of functions that preserve the order of row majoriza-
tion, and Proposition A.19 identifies some functions that preserve
column-stochastic majorization. None of these convex cones of order-
preserving functions is complete. In this section, some convex cones
of order-preserving functions are complete apart from differentiability
requirements.

For any order ≺∗, denote the complete convex cone of order-
preserving functions by C (≺∗). If X ≺1 Y implies X ≺2 Y, then
clearly C (≺1) ⊃ C (≺2). This observation together with A(6) leads to
a chain of such inclusions.

The families C (≺≺) and C (≺row) have been characterized by Rinott
(1973), with some confusion due to the fact that the orderings ≺≺ and
≺ are not distinguished.

B.1. Proposition (Rinott, 1973). A function φ : Rmn → R that is
differentiable satisfies

φ(X) ≤ φ(Y ) for all X ≺≺ Y

if and only if

(i) φ(X) = φ(XΠ) for all permutation matrices Π,

(ii)
∑m

i=1(xik − xij)[φ(ik)(X) − φ(ij)(X)] ≥ 0 for all j, k = 1, . . . , n.

Here φ(ij)(X) = ∂φ(U)/∂uij |U=X .
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Proof. Suppose first that φ(X) ≤ φ(Y ) for all X ≺≺ Y . Because
X ≺≺ XΠ for all permutation matrices Π, (i) follows. To obtain (ii),
let

T =

⎡
⎣ α 1 − α 0

1 − α α 0
0 0 In−2

⎤
⎦ , 0 ≤ α ≤ 1,

where In−2 is the identity matrix of order n − 2. Then T is a T -
transform, so

[φ(Y ) − φ(Y T )]/(1 − α) ≥ 0, 0 ≤ α ≤ 1.

Thus

0 ≤ lim
α→1

φ(Y ) − φ(Y T )
1 − α

=
m∑
i=1

(yi1 − yi2)[φ(i1)(Y ) − φ(i2)(Y )].

By permuting the rows and corresponding columns of T and repeating
the above argument, or by using the symmetry of φ, (ii) follows.

Next suppose that (i) and (ii) hold. Let g(α) = φ(Y T ) and observe
that with α = 1 − α, uC

1 = αyC
1 + αyC

2 , uC
2 = αyC

1 + αyC
2 ,

g′(α) =
m∑
i=1

(yi1 − yi2)[φ(i1)(u
C
1 , u

C
2 , y

C
3 , . . . , y

C
n ) − φ(i2)(u

C
1 , u

C
2 , y

C
3 , . . . , y

C
n )]

=
m∑
i=1

ui1 − ui2
2α− 1

[φ(i1)(u
C
1 , u

C
2 , y

C
3 , . . . , y

C
n ) − φ(i2)(u

C
1 , u

C
2 , y

C
3 , . . . , y

C
n )]

≥ 0 for α > 1
2 .

Because g is symmetric about 1
2 , this means g(α) ≤ g(1), 0 < α < 1,

and so φ(Y T ) ≤ φ(Y ). By iteration, this means φ(Y P ) ≤ φ(Y ) when
P is a product of T -transforms. ||
B.2. Proposition (Rinott, 1973). Let φ : Rmn → R be a differen-
tiable function. It satisfies

φ(X) ≤ φ(Y ) for all X ≺row Y

if and only if it satisfies the conditions of 3.A.4 in each row, whatever
the fixed values of the other rows.

The proof of B.2 follows from the fact that X ≺row Y means that
xR
i ≺ yR

i for each i.
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Little is known about functions that preserve the ≺ ordering. The
difficulty here is that there is no stepwise path lemma like 2.B.1. Of
course, any function that satisfies the conditions of B.2 preserves the
ordering because C (≺row) ⊂ C (≺). Some additional examples are
obtainable from the following theorem, which is a generalization of
B.1.

B.3. Proposition. Let X and Y be m×n matrices. If X ≺ Y , then
φ(X) ≤ φ(Y ) for all functions φ :Rmn → R which are symmetric and
convex in the sense that

(i) φ(X) = φ(XΠ) for all n× n permutation matrices Π,

(ii) φ(αU + (1 − α)V ) ≤ αφ(U) + (1 − α)φ(V ),

0 ≤ α ≤ 1, and U and V are m× n matrices.

Proof. Let Π1, . . . ,Πn! be the n×n permutation matrices. Suppose
that X = Y P, where P is doubly stochastic. Then by Birkhoff’s the-
orem 2.A.2, there exist nonnegative numbers α1, . . . , αn! such that∑n!

1 αi = 1 and P =
∑
αiΠi. Then

φ(X) = φ(Y P ) = φ

(
n!∑
i=1

αiYΠi

)

≤
n!∑
i=1

αiφ(YΠi) =
n!∑
i=1

αiφ(Y ) = φ(Y ). ||

Note. Beasley and Lee (2000) provide a characterization of linear
operators on the space of m × n matrices that preserve multivariate
majorization.

C Majorization for Matrices of Differing
Dimensions

In this section, three methods of comparing matrices having different
dimensions are discussed. In the first two methods, the matrices differ
in the number of rows, and in the third they differ in the number of
columns.

In the following two definitions, X is an 
 × n matrix and Y is an
m× n matrix where 
 ≤ m.
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C.1. Definition (Fischer and Holbrook, 1980). If there exists an

(m− 
)×n matrix Z such that
(
X
Z

)
≺ Y in the sense of Definition

A.2, i.e.,
(
X
Z

)
= Y P for some doubly stochastic matrix P , then

write X ≺ds Y.

Of course, when 
 = m, the ordering ≺ds is just the ordering ≺ of
Definition A.2.

The following definition is motivated by Remark 1.A.1.c, which offers
a characterization of ordinary majorization.

C.2. Definition (Malamud, 2003, 2005). Denote the rows of X and
Y by xR1 , . . . , x

R
� and yR1 , . . . , y

R
m. If for j = 1, . . . , 
,

conv {xRi1 + · · · + xRij , 1 ≤ i1 < · · · < ij ≤ 
}

⊂ conv {yRi1 + · · · + yRij , 1 ≤ i1 < · · · < ij ≤ m},

then X is said to be Malamud majorized by Y, written X ≺M Y.

The following is a brief sketch of some results regarding the orderings
of Definitions C.1 and C.2.

C.3. Proposition (Malamud, 2003). If X ≺ds Y, then X ≺M Y.

Example A.15 shows that the converse is false.

C.4. Proposition (Malamud, 2005). Suppose that 
 = m. If
conv {yR1 , . . . , yRm} is affine isometric to the simplex

{(t1, . . . , tm) ∈ Rm : tj ≥ 0 for all j and Σm
1 tj = 1},

then X ≺M Y is equivalent to X ≺ Y. As already noted, ≺ and ≺ds

are identical when 
 = m.

C.5. Proposition (Fischer and Sendov, 2010). If⎛
⎝ xRj1

xRj2

⎞
⎠ ≺M Y implies

⎛
⎝ xRj1

xRj2

⎞
⎠ ≺ds Y

whenever 1 ≤ j1 < j2 ≤ 
, then X ≺M Y implies X ≺ds Y.
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C.6. Proposition (Fischer and Holbrook, 1980). X ≺ds Y if and
only if

�∑
i=1

f(xRi ) ≤
m∑
i=1

f(yRi ) (1)

for all continuous convex functions defined on

conv {xR1 , . . . , xR� , yR1 , . . . , yRm}.

C.7. Proposition (Malamud, 2005). X ≺M Y if and only if (1)
holds for all functions of the form f(x) = g(xz′) for some z ∈ R n; ,
where g is a nonnegative convex function defined on R.

Recall that a matrix Q = (qij) is row stochastic if qij ≥ 0 for all i, j
and all rows of Q sum to 1.

C.8. Definition (Dahl, 1999a). Let X be an m × r matrix and let
Y be m× n. Write X ≺S Y to mean that

X = Y Q (2)
for some n× r row stochastic matrix Q.

The subscript S on the symbol ≺S serves as a reminder that Q is
only required to be stochastic. Observe also that X has n columns,
whereas Y has r columns. When n = r and Q is doubly stochastic,
then ≺S agrees with Definition A.2 of matrix majorization.

However, when n = r and m = 1, the ordering ≺S does not reduce
to the usual notion of majorization because Q is required only to be
stochastic, not doubly stochastic. Nevertheless, the ordering possesses
a number of desirable properties.

C.9. Proposition (Dahl, 1999a). If X is m× r, Y is m× n, and Z
is m× s, then the following properties hold:

(i) X ≺S X;

(ii) if X ≺S Y and Y ≺S Z, then X ≺S Z;

(iii) if X ≺S Y and A is m×m, then AX ≺S AY.

Dahl (1999a) lists several other useful properties of the order ≺S.

A characterization of ≺S is provided in terms of two classes of func-
tions defined on Rm: the positive homogeneous subadditive functions

Ψ = {φ : φ(λx) = λφ(x), φ(x+ y) ≤ φ(x) + φ(y)

for all x, y ∈ R n, and for all λ ≥ 0},
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and

Ψ∗ = {φ : for some integer k, φ = max1≤i≤k φi,

where the φi are linear functions}.

C.10. Proposition (Dahl, 1999a). The following are equivalent:

(i) X ≺S Y ;

(ii)
∑r

i=1 φ(xCi ) ≤ ∑n
i=1 φ(yCi ) for all φ ∈ Ψ;

(iii)
∑r

i=1 φ(xCi ) ≤ ∑n
i=1 φ(yCi ) for all φ ∈ Ψ∗.

When r = n, the orders ≺S and ≺ are related by the condition

X ≺ Y if and only if
(

e
X

)
≺S

(
e
Y

)
, e = (1, . . . , 1).

This relationship can be used to derive Proposition A.4 as a corollary
of Proposition C.10.

Dahl (1999b) discusses properties of multivariate majorization poly-
topes. For X and Y of dimensions m×n and m× r, respectively,
consider the polytope

P (X ≺S Y ) = {Q : Q is row stochastic and X = Y Q}
of row stochastic matrices associated with X ≺S Y . Dahl (1999b)
shows that P (X ≺S Y ) can be identified as the intersection of m
scaled “transportation polytopes.”

Application to Thermodynamics

It is interesting that the concept of “d-majorization” (14.B.2) has
arisen in a thermodynamics setting and is related to the partial
order ≺S. In this context, a state is an n-dimensional probability
vector p. The following discussion of this and related concepts is based
on information kindly provided by Zylka (2004), now available in Al-
berti, Crell, Uhlmann, and Zylka (2008). They consider the partial
order ≺S restricted to the space of m× n stochastic matrices. For two
m× n stochastic matrices P and Q, P ≺S Q if there exists an n × n
stochastic matrix A such that P = QA.

Note. In a thermodynamic context, the row vectors of P , denoted
by {p(1), . . . , p(m)}, and of Q, denoted by {q(1), . . . , q(m)} are viewed
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as m-tuples of states. The majorization P ≺S Q is denoted by
{p(1), . . . , p(m)} ≺(m) {q(1), . . . , q(m)} and is called (m)-majorization.

A characterization of (m)-majorization in terms of homogeneous
convex functions is possible, paralleling the Hardy, Littlewood,
and Pólya characterization of majorization using convex functions
(Proposition 4.B.1).

C.11. Lemma. The majorization P ≺S Q, or equivalently, the
(m)-majorization

(p(1), . . . , p(m)) ≺(m) (q(1), . . . , q(m)),

holds if and only if
n∑
j=1

g(p1j , p2j , . . . , pmj) ≤
n∑
j=1

g(q1j , q2j, . . . , qmj) (3)

for all functions g : R m → R that are convex and homogeneous in
their arguments. [In (3) the coordinates of p(i) are denoted by pij.]

In the case m = 2, Lemma C.11 can be rewritten in the following
form:

{p(1), p(2)} ≺(2) {q(1), q(2)}
if and only if

n∑
j=1

p2jh

(
p1j

p2j

)
≤

n∑
j=1

q2jh

(
q1j
q2j

)
(4)

for any convex function h, where it is assumed that the components
p2j and q2j are positive. The expressions appearing in (4) are called
generalized relative entropies because the special choice h(x) = x log x
corresponds to the relative entropy (of p(1) with respect to p(2)).

Suppose m = 2. If one state, say q, is fixed as a reference state,
then (2)-majorization is defined as a partial order on the state space
relative to, or with respect to, q as follows.

C.12. Definition. p(1) ≺r
q p(2) if and only if {p(1), q} ≺(2) {p(2), q}.

The notation used in C.12 is not meant to confuse. It is the
same notation as was used in Definition 14.B.2 for q-majorization or
majorization relative to q [as introduced by Veinott (1971)]. Compar-
ison of 14.B(1) and (4), or reference to Proposition 14.B.4.(c) and
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Definition C.8, confirms that indeed the ordering defined in C.12 is a
reincarnation of majorization relative to q, with classical majorization
as the special case corresponding to q = e.

A stochastic process {X(t) : t ≥ 0} with state space 1, 2, . . . , n
is said to respect relative majorization with respect to q if the set
{p(t) : t ≥ 0}, where p(t) corresponds to the probability distribution
of X(t), satisfies

p(t1) ≺r
q p(t2) for all t1 ≤ t2. (5)

The study of such processes with q = e dates back to Lassner and
Lassner (1973). The extension to a general state q was introduced by
Ruch and Mead (1976), who described the ordering using the term
mixing distance relative to q.

Zylka (1985, 1990) discusses the nature of the class of all states
accessible from a fixed initial state in a process satisfying (5). Inter
alia he discusses extensions of several classes of stochastic matrices
related to the doubly stochastic matrices discussed in 2.B.5, replacing
e in the definitions by a general state q.

D Additional Extensions

In Section A, the ordinary majorization x ≺ y is generalized by replac-
ing each component of x and y by a vector. Here the idea is carried
one step further; each component of x and y is replaced by a matrix.

Let X1, . . . ,Xn and Y1, . . . , Yn be k × l matrices. The idea of a ma-
jorization between X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn) can be
obtained directly from the definitions of Section A because, after all,
X and Y are matrices. This approach is not really appropriate because
it does not treat the matrices X1, . . . ,Xn and Y1, . . . , Yn as entities
in themselves. For example, the appropriate analog of a T -transform
applied to (Y1, . . . , Yn) would yield an image of the form

(Y1, . . . , Yi−1, αYi + αYj, Yi+1, . . . , Yj−1, αYi + αYj , Yj+1, . . . , Yn),

where 0 ≤ α ≤ 1 and α = 1 − α.
In stating the definition below, the notion of the Kronecker product

(Section 19.G) is useful.
Note that if P is doubly stochastic, then the Kronecker product

P ⊗ I is doubly stochastic. If T is a T -transform, then T ⊗ I is not a
T -transform, but it is a product of l T -transforms if I is l × l.
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D.1. Definition. Let X1, . . . ,Xn and Y1, . . . , Yn be k × l matrices.
Then (X1, . . . ,Xn) is chain majorized by (Y1, . . . , Yn), written

(X1, . . . ,Xn) ≺≺ (Y1, . . . , Yn),

if

(X1, . . . ,Xn) = (Y1, . . . , Yn)(P ⊗ I), (1)

where P is a product of finitely many n×n T -transforms and I is l× l.
Similarly, (X1, . . . ,Xn) is majorized by (Y1, . . . , Yn), written

(X1, . . . ,Xn) ≺ (Y1, . . . , Yn),

if (1) holds for some n× n doubly stochastic matrix P .

These concepts of majorization are virtually unexplored. Use is made
of them in the following two propositions.

D.2. Proposition. If (X1, . . . ,Xn) ≺ (Y1, . . . , Yn), then

φ(X1, . . . ,Xn) ≤ φ(Y1, . . . , Yn)

for all functions φ : R kln → R such that

(i) φ(U) = φ[U(Π⊗ I)] for all n×n permutation matrices Π and all
k × ln matrices U ,

(ii) φ(αU + (1− α)V ) ≤ αφ(U) + (1− α)φ(V ) for all 0 ≤ α ≤ 1 and
all k × ln matrices U and V .

Proof. As in the proof of C.3, write P =
∑n!

1 αiΠi, where P is a
doubly stochastic matrix satisfying (X1, . . . ,Xn) = (Y1, . . . , Yn)(P⊗I).
Then

φ[(X1, . . . ,Xn)] = φ[(Y1, . . . , Yn)(P ⊗ I)]
= φ{(Y1, . . . , Yn)[(

∑
αiΠi) ⊗ I]}

= φ{(Y1, . . . , Yn)[
∑
αi(Πi ⊗ I)]}

≤ ∑
αiφ[(Y1, . . . , Yn)(Π ⊗ I)]

= φ[(Y1, . . . , Yn)]. ||

The following proposition generalizes 11.B.2.

D.3. Proposition. Let φ :R kpn → R satisfy conditions (i) and (ii)
of D.2 and let Z1, . . . , Zn be exchangeable random l × p matrices. If
(A1, . . . , An) ≺≺ (B1, . . . , Bn), where the Ai’s and Bi’s are k × l, then

Eφ(A1Z1, . . . , AnZn) ≤ Eφ(B1Z1, . . . , BnZn).
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Proof . It is sufficient to prove the theorem for the case that
(A1, . . . , An) = (B1, . . . , Bn)(T ⊗ I), where T is an n×n T -transform,
say

T =

⎡
⎣α α 0
α α 0
0 0 I

⎤
⎦ , α = 1 − α, 0 ≤ α ≤ 1.

In this case, (A1, . . . , An) = (αB1 + αB2, αB1 + αB2, B3, . . . , Bn), so
that

Eφ(A1Z1, . . . , AnZn)

= Eφ[(αB1 + αB2)Z1, (αB1 + αB2)Z2, B3Z3, . . . , BnZn]

= Eφ[α(B1Z1, B2Z2) + α(B2Z1, B1Z2), B3Z3, . . . , BnZn]

≤ αEφ(B1Z1, B2Z2, B3Z3, . . . , BnZn)

+ αEφ(B2Z1, B1Z2, B3Z3, . . . , BnZn)

= Eφ(B1Z1, . . . , BnZn).

The last equality uses the symmetry of φ and exchangeability of Z1

and Z2. ||

E Probability Inequalities

Inequalities Involving Mixtures

To introduce the results of this section, a special case is given where
ordinary majorization suffices.

Let W and Z be random variables such that W ≤st Z. For i =
1, . . . , n, let Xpi

be a “mixture” of Wi and Zi, where W1, . . . ,Wn are
independent random variables distributed as W and Z1, . . . , Zn are
independent random variables distributed as Z. That is,

Xpi
=

{
Wi with probability 1 − pi,

Zi with probability pi.

Then Xp = (Xp1 , . . . ,Xpn
) is a random vector with independent

components.

E.1. Proposition. If φ is a symmetric L-superadditive function on
R n and p = (p1, . . . , pn) ≺ (q1, . . . , qn) = q, then Eφ(Xp) ≥ Eφ(Xq).
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Notice that if W ≡ 0 and Z ≡ 1, then the components of Xp and
Xq have Bernoulli distributions. In this case, E.1 reduces to 12.F.1.

Recall from Example A.5 that p ≺ q if and only if(
p

e− p

)
≺≺

(
q

e− q

)
.

In order to analyze mixtures of more than two random variables,
multivariate majorization is required.

Let U1, . . . , Um be random variables such that U1 ≤st · · · ≤st Um.
For any m× n matrix P = (pij) of probabilities with column vectors
pC
j and column sums one, let XpC

j
be “mixture” random variables such

that, for i = 1, . . . ,m and j = 1, . . . , n, XpC
j

has the same distribution
as Ui with probability pij. Assume that XpC

1
, . . . ,XpC

n
are independent

and let XP = (XpC
1
, . . . ,XpC

n
). Conditions are obtained on functions

φ :R n → R and on the random variables U1, . . . , Um so that

P ≺≺ Q implies Eφ(XP ) ≥ Eφ(XQ). (1)

It is sufficient to find these conditions under the assumption that
P = QT , where T is a T -transform. Because of this, it is enough to
consider the case n = 2. Of course, it is essential that φ be symmetric.

Because U1 ≤st · · · ≤st Um, by 17.B.6 there exist random variables
V1, . . . , Vm such that

(i) P{V1 ≤ · · · ≤ Vm} = 1,

(ii) Ui and Vi have the same distribution, i = 1, . . . ,m.

Let Ṽ = (Ṽ1, . . . , Ṽn) be a random vector independent of, and having
the same distribution as, V = (V1, . . . , Vn). Then

ψ(P ) ≡ Eφ(XP ) =
∑
i,j

p1ip2jφ(Vi, Ṽj) = (pC
1 )′ApC

2 ,

where A = (aij) and aij = Eφ(Vi, Ṽj). Because V and Ṽ have the same
distribution and φ is symmetric, aij = aji. To apply the conditions of
C.1, let ej be the row vector with jth component one and all other
components zero, and compute

ψ(i1)(P ) = eiAp
C
2 − emAp

C
2 ,

ψ(i1)(P ) = (pC
1 )′A(ei − em)′ = eiAp

C
1 − emAp

C
1 .

Thus

ψ(i1)(P ) − ψ(i2)(P ) = (ei − em)A(pC
2 − pC

1 ),
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and the condition
m∑
i=1

(pi1 − pi2)(ei − em)A(pC
2 − pC

1 ) ≤ 0

can be written, with pi2 − pi1 = zi, in the form

zAz′ ≥ 0 whenever
m∑
i=1

zi = 0. (2)

Sufficient conditions to apply C.1 are that

(i) φ is symmetric in its n arguments;

(ii) for fixed x3, . . . , xn, φ̃(x1, x2) = φ(x1, x2, x3, . . . , xn) satisfies

m∑
i,j=1

zizj φ̃(ui, vj) ≥ 0 for all u1 ≤ · · · ≤ um, v1 ≤ · · · ≤ vm,

and all z1, . . . , zm such that
∑m

i=1 zi = 0.

Conditions (i) and (ii) reduce to the conditions of C.1 in case m = 2.
However, they are too strong to identify examples where (2) is satisfied.
For example, if φ(x1, . . . , xm) =

∏m
i=1 xi, then (2) holds but (ii) fails

to hold.

Probability Content of Rectangular Regions

Let A and B be 2 × n matrices

A =

(
a11, · · · , a1n

a21, · · · , a2n

)
, B =

(
b11, · · · , b1n
b21, · · · , b2n

)

such that a1j < a2j , b1j < b2j, j = 1, . . . , n.

E.2. Proposition (Karlin and Rinott, 1983; Tong, 1988, 1989). If
X1, . . . ,Xn have a Schur-concave joint density and B ≺≺ A, then

P{a1j ≤ Xj ≤ a2j, j = 1, .., n} ≤ P{b1j ≤ Xj ≤ b2j , j = 1, . ., n}. (3)

Note that B ≺≺ A implies the existence of a doubly stochastic matrix
P such that B = AP . Thus (−1, 1)B = (−1, 1)AP ; that is,

(a21 − a11, . . . , a2n − a1n) � (b21 − b11, . . . , b2n − b1n).

Thus the rectangle b1j ≤ xj ≤ b2j, j = 1, . . . , n, has edge lengths
closer to being equal (in the sense of majorization) than those of the
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rectangle a1j ≤ xj ≤ a2j , j = 1, . . . , n. As could be expected from the
exchangeability of X1, . . . ,Xn, among all rectangles with fixed edge-
length sum, the cube contains the highest probability.

E.2.a. Proposition (Karlin and Rinott, 1983; Tong, 1983, 1988). If
X1, . . . ,Xn have a permutation symmetric log concave density and
B ≺≺ A, then (3) holds.

As compared to Proposition E.2, Proposition E.2.a has stronger
conditions on the density of X1, . . . ,Xn, and weaker conditions on
A and B.



Part V

Complementary Topics



16
Convex Functions and Some

Classical Inequalities

Convex functions arise in a variety of contexts and are basic to a
number of results. For more extensive discussions of convexity, see
Roberts and Varberg (1973), Rockafellar (1970), Stoer and Witzgall
(1970), van Tiel (1984), Pecărić, Proschan, and Tong (1992), Webster
(1994), or Niculescu and Persson (2006). The book by Pachpatte (2005,
Chapter 1) provides a compendium of inequalities involving convex
functions.

A Monotone Functions

For any x, y ∈ R n, write x ≤ y if xi ≤ yi, i = 1, . . . , n. In this book,
a function φ : R n → R is said to be increasing if

x ≤ y ⇒ φ(x) ≤ φ(y),

and the term “nondecreasing” is not used. If

x ≤ y and x �= y ⇒ φ(x) < φ(y),

then φ is said to be strictly increasing. If −φ is increasing (strictly
increasing), then φ is said to be decreasing (strictly decreasing).

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 637
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 16,
c© Springer Science+Business Media, LLC 2011
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A.1. Proposition. Let I ⊂ R be an open interval and let φ : I → R
be differentiable. Then

(i) φ is increasing on I if and only if φ′(x) ≥ 0 for all x ∈ I,

(ii) φ is strictly increasing on I if and only if φ′(x) ≥ 0 for all x ∈ I
and the set where φ′(x) = 0 contains no intervals.

Proof of (ii). Suppose that φ is strictly increasing on I. If φ′(x) = 0
for x in some interval, say (a, b), then φ(x) is constant for x ∈ (a, b),
so φ is not strictly increasing. This contradiction means that there is
no interval on which φ′(x) = 0.

Next, suppose the set where φ′(x) = 0 contains no intervals. If φ is
not strictly increasing, a contradiction is again easily arrived at. ||

For functions φ defined on R n, denote by φ(i) the partial derivative
(if it exists) of φ with respect to its ith argument, i = 1, . . . , n. If the
gradient

∇φ(x) = (φ(1)(x), . . . , φ(n)(x))

exists for all x in the open set A ⊂ R n, then φ is said to be
differentiable on A .

A.1.a. Let A ⊂ R n be a convex set with nonempty interior and let
φ :A → R be differentiable on the interior of A and continuous on
the boundary of A . Then

(i) φ is increasing on A if and only if ∇φ(x) ≥ 0 for all x in the
interior of A ,

(ii) φ is strictly increasing on A if and only if ∇φ(x) ≥ 0 for all
x in the interior of A and for fixed x1, . . . , xi−1, xi+1, . . . , xn, the set
of all xi such that φ(i)(x1, . . . , xi, . . . , xn) = 0 contains no intervals,
i = 1, . . . , n.

A.1.a follows from A.1 and the fact that a function φ defined on
a convex set with interior is increasing (strictly increasing) if and
only if it is increasing (strictly increasing) in each argument, the other
arguments being fixed.

The convexity of A is not essential here; it is sufficient that

(iii) A is contained in the closure of its interior, and
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(iv) for each fixed x, y ∈ A such that x ≤ y, there exists a polygonal
path joining x to y that moves alternately parallel to one or another
coordinate axis and lies entirely within A .

A.2. Proposition. Let μ be a signed measure (difference of two
nonnegative measures) defined on the Borel subsets of R. Then

(i)
∫
φdμ ≥ 0 for all nonnegative increasing functions φ : R → R if

and only if

μ(t,∞) ≥ 0 for all t ∈ R,

(ii)
∫
φdμ ≥ 0 for all nonnegative decreasing functions φ : R → R

if and only if

μ(−∞, t] ≥ 0 for all t ∈ R,

(iii)
∫
φdμ ≥ 0 for all increasing functions φ : R → R if and only if

μ(t,∞) ≥ 0 for all t ∈ R and μ(−∞,∞) = 0.

The above proposition has certainly been known for a long time,
but we do not know to whom it should be attributed. It was given in
the above form by Marshall and Proschan (1970). In the absolutely
continuous case, A.2 was given by Steffensen (1925) [see Mitrinović
(1970, p. 114)].

Proposition A.2 for discrete measures is particularly useful in this
book and is here stated explicitly.

A.2.a. The inequality ∑
aixi ≤

∑
bixi (1)

holds whenever x1 ≤ · · · ≤ xn if and only if

k∑
i=1

ai ≥
k∑
i=1

bi, k = 1, . . . , n− 1, (2)

n∑
i=1

ai =
n∑
i=1

bi. (3)

Proof . If (1) holds whenever x1 ≤ · · · ≤ xn, then the choices
x = (1, . . . , 1) and x = (−1, . . . ,−1) yield (3). The choices x =
(0, . . . , 0, 1, . . . , 1), where the length of the 0 subvector is 1, . . . , n− 1,
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together with 3 yield (2). Next, suppose (2) and (3), and let y1 = x1,
yj = xj − xj−1, j = 2, . . . , n. Then xi =

∑i
j=1 yj, i = 1, . . . , n, and

n∑
i=1

aixi =
n∑
i=1

ai

i∑
j=1

yj =
n∑
j=1

yj

n∑
i=j

ai ≤
n∑
j=1

yj

n∑
i=j

bi =
n∑
i=1

bixi. ||

The Discrete Steffensen Inequality

The following case of A.2.a involving nonnegative x’s is often referred
to as the discrete Steffensen inequality.

A.3. Theorem (Evard and Gauchman, 1997). Suppose that x ∈ D+

and y ∈ R n has coordinates satisfying 0 ≤ yi ≤ 1 for every i. Let
k1 ∈ {0, 1, 2, . . . , n} and k2 ∈ {1, 2, . . . , n} be such that

k2 ≤
n∑
i=1

yi ≤ k1.

Then
n∑

i=n−k2+1

xi ≤
n∑
i=1

xiyi ≤
k1∑
i=1

xi. (4)

Inequality (4) is a consequence of the following refined version of A.3
which does not require that the decreasing sequence of xi’s contain only
nonnegative terms.

A.4. Theorem (Shi and Wu, 2007). If x ∈ D and y, k1 and k2 satisfy
the conditions in A.3, then

n∑
i=n−k2+1

xi+

(
n∑
i=1

yi − k2

)
xn ≤

n∑
i=1

xiyi ≤
k1∑
i=1

xi−
(
k1 −

n∑
i=1

yi

)
xn.

(5)

Proof. Here only the right-hand inequality in (5) is proved; the
left-hand inequality is proved in an analogous manner. Define zi = −xi
for i = 1, 2, . . . , n and let zn+1 = −xn. The zi’s are increasing, so that
A.2.a can be applied. Define the (n+1)-dimensional vectors a and b by

a = (1, 1, . . . , 1︸ ︷︷ ︸
k1

, 0, 0, . . . , 0),

b = (y1, y2, . . . , yn, k1 − Σn
i=1yi).
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It can be verified that Equations (1) and (2) are satisfied by this choice
of a and b (with n+ 1 instead of n). Consequently,

n∑
i=1

xiyi = −
n∑
i=1

ziyi = −
n+1∑
i=1

zibi +

(
k1 −

n∑
i+1

yi

)
zn+1

≤−
n+1∑
i=1

ziai +

(
k1 −

n∑
i=1

yi

)
zn+1 [by (1)]

= −
n∑
i=1

ziai +

(
k1 −

n∑
i=1

yi

)
zn+1

=
k1∑
i=1

xi −
(
k1 −

n∑
i=1

yi

)
xn. ||

Shi and Wu (2007) provide an alternative proof that relies on the
observations that if y, k1, and k2 are as defined in A.3, then

y ≺w (0, . . . , 0︸ ︷︷ ︸
n−k2

, 1, . . . , 1︸ ︷︷ ︸
k2

),

and

y ≺w (1, . . . , 1︸ ︷︷ ︸
k1

, 0, . . . , 0︸ ︷︷ ︸
n−k1

).

B Convex Functions

This section is intended to be only a brief outline concerning some
selected aspects of convex functions. More complete discussions have
been given, for example, by Rockafellar (1970), Stoer and Witzgall
(1970), Roberts and Varberg (1973), Webster (1995), and Niculescu
and Persson (2006).

In the following, φ denotes a function defined on A ⊂ R n, taking
on values in R ∪ {−∞} or in R ∪ {+∞}.

Because φ can take on the values ±∞, some conventions are
necessary:

∞a = a∞ =

⎧⎨
⎩

∞ if a > 0,
0 if a = 0,

−∞ if a < 0;
a+ ∞ = ∞ + a = ∞ if −∞ < a ≤ ∞;
a−∞ = −∞ + a = −∞ if −∞ ≤ a <∞.
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The expression ∞−∞ is avoided by assuming that φ does not take
on both of the values ±∞. Recall that α = 1 − α, where α is a real
number.

B.1. Definition. Let A ∈ R n be convex. A function φ : A → R is
convex on A if

φ(αx+ αy) ≤ αφ(x) + αφ(y) (1)

for all x, y ∈ A , and all α ∈ [0, 1]. If strict inequality holds in (1)
whenever x �= y and α ∈ (0, 1), φ is said to be strictly convex. If −φ is
convex, φ is said to be concave, and if −φ is strictly convex, φ is said
to be strictly concave. If φ is both convex and concave, φ is said to be
affine.

Notice that if φ is defined and convex on A and φ does not take
on the value −∞, then φ can be extended to R n while preserving
convexity. In fact,

φ̂(x) =

{
φ(x) if x ∈ A ,

+∞ if x /∈ A

is such an extension.
If φ is convex, the restriction of φ to the set domφ = {x :φ(x) <∞}

is also convex. The set domφ is called the effective domain of φ and
can be considered as the proper domain of definition of φ, although we
do not adopt this point of view.

For n > 1, φ is convex on A ⊂ R n if and only if A is convex
and the restriction of φ to any line segment in A is convex. Thus the
notion of a convex function is essentially a concept in one dimension,
and to check convexity of functions on arbitrary convex domains it is
enough to check convexity on [0, 1]. This is the content of the following
proposition [cf. Berge (1963, p. 190)].

B.2. Proposition. If φ : A → R is defined and convex on the convex
set A ⊂ R n, then for each x, y ∈ A , the function

g(α) ≡ φ(αx+ αy) (2)

is convex in α ∈ A ≡ {α :αx + αy ∈ A }. In particular, g is convex
on [0, 1]. Conversely, if g is convex on [0, 1] for all x, y ∈ A , then φ is
convex on A .

Proof. Fix x and y ∈ A and let α, β ∈ A, η ∈ [0, 1], u = αx+ αy,
v = βx+ βy. Then

g(ηα + ηβ) = φ((ηα+ ηβ)x+ (ηα + ηβ)y) = φ(ηu+ ηv).
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If φ is convex, then

g(ηα + ηβ) = φ(ηu+ ηv) ≤ ηφ(u) + ηφ(v) = ηg(α) + ηg(β),

so g is convex on A. If g is convex on [0, 1] and x, y ∈ [0, 1], then

φ(ηx+ ηy) = g(η) ≤ ηg(1) + ηg(0) = ηφ(x) + ηφ(y). ||

B.2.a. If A is open and g is convex on (0, 1) for all x, y ∈ A , then
φ is convex on A .

B.2.b. The function φ defined on the convex set A is strictly convex
if and only if for each x, y ∈ A , the function g defined by (2) is strictly
convex in α ∈ [0, 1].

B.3. Proposition. φ is convex on the convex set A ⊂ R n if and
only if for each x, y ∈ A and α, β ∈ (0, 1],

φ(αx+ αy) − φ(x)
α

≤ φ(y) − φ(βx+ βy)
β

. (3)

φ is strictly convex on A if and only if (3) holds with strict inequality
unless x = y or α = β = 1.

Proof. Suppose first that φ is convex. Then

φ(αx+ αy) − φ(x)
α

≤ φ(y) − φ(x) ≤ φ(y) − φ(βx+ βy)
β

.

Conversely, if (3) holds, then take α or β = 1 to see that φ is convex.
The case of strict convexity is proved similarly. ||
B.3.a. Let φ be defined on an interval I ⊂ R. If φ is convex on I,
then whenever x1 < y1 ≤ y2, x1 ≤ x2 < y2,

φ(y1) − φ(x1)
y1 − x1

≤ φ(y2) − φ(x2)
y2 − x2

. (4)

Conversely, if (4) holds in the special case that x1 < y1 = x2 < y2 and
y1 − x1 = y2 − x2, then φ is convex on I. This special case of (4) is
exactly the condition that φ has nonnegative second differences.

With the notation r = y2, s = x2 = y1, and t = x1, the special case
of (4) takes the form

(r − t)φ(s) ≤ (s− t)φ(r) + (r − s)φ(t), (4a)

for all r ≥ s ≥ t.
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B.3.b. Let φ be a function defined and differentiable on the interval
I = (a, b). φ is convex on (a, b) if and only if

φ′(x) ≤ φ′(y), a < x ≤ y < b. (5)

φ is strictly convex on (a, b) if and only if (4) holds with strict
inequality when a < x < y < b.

Proof. If φ is convex, then (5) follows from (4). If (5) and x < y,
then by the mean-value theorem, there exist ξ1 ∈ (x, αx + αy) and
ξ2 ∈ (αx+ αy, y) such that

l ≡ φ(αx + αy) − φ(x)
(αx+ αy) − x

= φ′(ξ1), u ≡ φ(y) − φ(αx+ αy)
y − (αx+ αy)

= φ′(ξ2).

Because ξ1 < ξ2, it follows from (5) that l ≤ u and this inequality
reduces to (1). The case of strict convexity is proved similarly. ||
B.3.c. Let φ be a real function twice differentiable on (a, b). Then φ
is convex on (a, b) if and only if

φ′′(x) ≥ 0 for all x ∈ (a, b). (6)

φ is strictly convex on (a, b) if and only if φ′′(x) ≥ 0 for all x ∈ (a, b)
and the set where φ′′(x) = 0 contains no intervals.

Proof. Because φ is convex if and only if φ′ is increasing on (a, b),
the result follows from A.1. ||
B.3.d. Let φ be a real function defined and twice differentiable on
the open convex set A ⊂ R n. Denote the Hessian matrix of φ by

H(x) =
(
∂2φ(x)
∂xi ∂xj

)
.

(i) φ is convex on A if and only if H(x) is positive semidefinite
on A ;

(ii) φ is strictly convex on A if and only if H is positive definite
on A .

Proof. By B.2, B.2.a, and B.2.b, φ is convex (strictly convex) on A
if and only if g(α) = φ(αx+αy) is convex (strictly convex) in α ∈ (0, 1)
for all x, y ∈ A . Thus, φ is convex on A if and only if g′′(α) ≥ 0 for all
α ∈ (0, 1), and φ is strictly convex on A if g′′(α) > 0 for all α ∈ (0, 1).

Because

g′′(α) = (x− y)H(αx+ αy)(x− y)′,
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it follows that if H is positive semidefinite (positive definite), then φ
is convex (strictly convex).

Next, suppose that φ is convex on A and let z ∈ A . Because A
is open, there exists ε > 0 such that u ∈ B = {w : ‖w‖ < ε} implies
z + u ∈ A . Let u ∈ B, x = z + (u/2), and y = z − (u/2) so that
x− y = u, z = (x+ y)/2, and

g′′(1
2 ) = uH(z)u′.

But g′′(1
2) ≥ 0 since φ is convex. Because u ∈ B and z ∈ A are

arbitrary, this shows that H is positive semidefinite on A . ||
B.4. Proposition (Hardy, Littlewood, and Pólya, 1929). If φ is a
convex function defined on a finite interval (a, b), then φ can be approx-
imated uniformly by positive linear combinations of finite numbers of
these convex functions:

(i) linear functions;
(ii) functions of the form (x− c)+ ≡ max(x− c, 0).

The functions (x− c)+ are termed “angles” by Hardy, Littlewood, and
Pólya. In their words, the above proposition “is intuitive, and easy to
prove.” In this proposition, the angles (x− c)+ can as well be replaced
by functions of the form (c− x)+ because they differ from angles only
by a linear function.

Proposition B.4 is of great utility in certain applications. It is used
by Karamata (1932) (who discovered it independently) to give a simple
proof of the following important result.

B.4.a. Proposition (Karamata, 1932). Let μ be a signed measure
defined on the Borel subsets of (a, b). Then

∫
φdμ ≥ 0 for all convex functions φ : (a, b) → R

if and only if
∫ b

a
dμ =

∫ b

a
x dμ = 0 and

∫ t

a
μ(a, x] dx ≥ 0, a ≤ t ≤ b.

This result was also obtained by Levin and Stečkin (1948) and by
Brunk (1956).

Special cases of B.4.a were given by Hardy, Littlewood, and Pólya
(1929). Some consequences and generalizations of B.4.a are given by
Karlin and Novikoff (1963) and by Karlin and Ziegler (1965).
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B.5. Definition. The set

epiφ = {(x, y) : x ∈ A , y ∈ R and φ(x) ≤ y} (7)

is called the epigraph of φ.

B.5.a. Proposition. Let A ⊂ R n be convex. Then φ is convex on
A if and only if epiφ is a convex set.

Proof. If A is empty or φ ≡ ∞ on A , then epiφ is empty (hence
convex) and φ is trivially convex. So suppose that A is nonempty and
that φ is not identically ∞.

If φ is convex on A , then for any x, y ∈ A and (x, u), (y, v) ∈ epiφ,

φ(αx+ αy) ≤ αφ(x) + αφ(y) ≤ αu+ αv,

so that α(x, u) + α(y, v) ∈ epiφ.
Conversely, suppose that epi φ is convex. Because (x, φ(x)) ∈ epiφ

and (y, φ(y)) ∈ epiφ for all x, y ∈ A , it follows from convexity that
(αx+ αy, αφ(x) + αφ(y)) ∈ epiφ for all α ∈ [0, 1]. Thus

φ(αx+ αy) ≤ αφ(x) + αφ(y),

so that φ is convex. ||
A function φ defined on A ⊂ R n is said to be closed if epiφ is a

closed subset of R n+1. The function

clφ(x) = lim
ε→0

inf{φ(z) : z ∈ A , ‖z − x‖ < ε}

is defined on the closure of A and is called the closure of φ. The
function φ is said to be closed if φ ≡ clφ. The closure of a convex
function is convex.

Continuity of Convex Functions

The convex function φ defined on [−1, 1] by

φ(x) =
{
x2 if − 1 < x < 1,
17 if |x| = 1

is not continuous, but clφ(x) = x2, |x| ≤ 1, is continuous. In general, a
closed convex function defined and finite-valued on an interval [a, b] ⊂
R is continuous. On the other hand, a closed convex function defined
on a closed convex subset of R n, n > 1, need not be continuous [for
an example, see Stoer and Witzgall (1970, p. 137)]. A convex function
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defined and finite on an open set must be continuous, so that difficulties
occur only on the boundary.

Gradients

Let φ : A → R. A vector a ∈ R n is called a subgradient of φ at
z ∈ A if

φ(x) ≥ φ(z) + a(x− z)′ for all x ∈ A . (8)

If A is an open convex set and φ is a convex function finite on A ,
then φ has a subgradient at each z ∈ A . On the other hand, if φ is
the closed convex function defined on the closed interval [−1, 1] by

φ(x) = 1 −
√

1 − x2,

then φ has no subgradient at x = ±1.
The following are useful basic facts:

B.6.a. If the convex function φ is finite and differentiable at a point
z in the interior of the set A , then the gradient ∇φ(z) is the unique
subgradient of φ at z.

For a proof of this, see Rockafellar (1970, p. 242), Stoer and Witzgall
(1970, p. 149), or Roberts and Varberg (1973, p. 102).

B.6.b. If A is open and the convex function φ is differentiable on
A , then the gradient ∇φ is continuous on A .

A proof of this fact is given by Rockafellar (1970, p. 246), and by
Stoer and Witzgall (1970, p. 151).

B.6.c. If A is open and φ is convex, then a Borel-measurable version
of the subgradient of φ exists. In fact, if ei is the vector with ith
component 1 and other components 0, if

φ+
(i)(x) = lim

δ↓0
φ(x+ δei) − φ(x)

δ
,

and

∇+φ(x) = (φ+
(1)(x), . . . , φ

+
(n)(x)), x ∈ A ,

then ∇+φ is the limit of continuous functions, and hence is measurable.
Of course, ∇+φ is a subgradient; that is,

φ(x) ≥ φ(z) + [∇+φ(z)](x − z)′ for all x, z ∈ A . (9)
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Notice that l(x) ≡ φ(z) + [∇+φ(z)](x − z)′ is an affine function such
that

φ(x) ≥ l(x) for all x ∈ A , φ(z) = l(z). (10)

Functions l satisfying (10) are called support functions of φ at z.

Compositions of Convex Functions

B.7. Proposition. If φ1, . . . , φk are convex functions defined on
the convex set A ⊂ R n and if h : R k → R is an increasing
convex function, then the function ψ : R n → R defined by ψ(x) =
h(φ1(x), . . . , φk(x)) is convex on A .

Proof. If x, y ∈ A , then for all α ∈ [0, 1],

ψ(αx+ αy) = h(φ1(αx+ αy), . . . , φk(αx+ αy))

≤ h(αφ1(x) + αφ1(y), . . . , αφk(x) + αφk(y))

= h(α[φ1(x), . . . , φk(x)] + α[φ1(y), . . . , φk(y)])

≤ αh(φ1(x), . . . , φk(x)) + αh(φ1(y), . . . , φk(y))

= αψ(x) + αψ(y).

Here the first inequality uses the monotonicity of h together with
the convexity of φ1, . . . , φk; the second inequality uses the convexity
of h. ||

B.7.a. If h : R k → R is a convex function monotone in each ar-
gument, and if φi is convex or concave on the convex set A ⊂ R n

according to whether h is increasing or decreasing in its ith argument,
i = 1, . . . , k, then ψ(x) = h(φ1(x), . . . , φk(x)) is convex on A .

B.7.b. Let A ⊂ R n and let φ : A → R+. If log φ is convex, then φ
is convex; if φ is concave, then log φ is concave.

Proof. If log φ is convex, then by B.7, exp(log φ) is convex because
h(x) = ex is increasing and convex. If φ is nonnegative and concave,
then by B.7.a, − log φ is convex because h(x) = − log x is convex and
decreasing. ||
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Of course, convexity does not imply log convexity and log concavity
does not imply concavity. In fact, φ(x) = ex − 1 is convex and log
concave.

Preservation of Log Convexity Under Mixtures

B.8. Theorem (Artin, 1931). Let A be an open convex subset of
R n and let φ :A × (a, b) → [0,∞) satisfy

(i) φ(x, z) is Borel-measurable in z for each fixed x,

(ii) log φ(x, z) is convex in x for each fixed z.

If μ is a measure on the Borel subsets of (a, b) such that φ(x, ·) is
μ-integrable for each x ∈ A , then

ψ(x) ≡
∫ b

a
φ(x, z) dμ(z)

is log convex on A .

Proof . By B.2, log φ(x, z) is convex in x ∈ A if and only if
log ξ(α, z) ≡ log φ(αx+αy, z) is convex in α ∈ [0, 1] for each x, y ∈ A .
By B.3.a, log ξ(α, z) is convex in α if and only if it has nonnegative
second differences, i.e., if and only if for Δ > 0 and 0 ≤ α,

log ξ(α+ 2Δ, z) − 2 log ξ(α+ Δ, z) + log(α, z) ≥ 0.

But this is equivalent to the inequality detA(z) ≥ 0, where

A(z) =

[
ξ(α, z) ξ(α+ Δ, z)

ξ(α+ Δ, z) ξ(α+ 2Δ, z)

]
.

Because ξ(α, z) ≥ 0, this is equivalent to the condition that A(z) is
positive semidefinite for all z. If A(z) is positive semidefinite, then so
is
∫
A(z) dμ(z), and this is equivalent to the convexity of log ψ. ||

For finitely discrete measures μ, B.8 can be proved with the aid
of B.7 from the fact that h(x) =

∑
aie

xi is increasing and convex
whenever each ai ≥ 0. An alternative proof of B.8 is given in D.4.

B.8.a. Example The gamma function

Γ(x) =
∫ ∞

0
tx−1e−tdt

is a mixture of log convex functions and hence is log convex.
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B.8.b. Example The Gauss–Legendre multiplication formula [see
Erdélyi, Magnus, Oberhettinger, and Tricomi (1953, p. 4)]

Γ(m(z + b)) = c
m−1∏
j=0

Γ(z + b+ j/m), m = 2, 3, 4, . . . ,

where

c = mm(z+b)−1/2/(2π)(m−1)/2 ,

is log convex.

Star-Shaped and Superadditive Functions

The properties of pseudo-convexity and quasi-convexity, discussed in
Section 3.C, are strictly weaker than the property of convexity. Here
two additional properties are mentioned which, in some circumstances,
are also implied by convexity.

A function φ : [0,∞) → R is said to be star-shaped if

φ(αx) ≤ αφ(x) for all α ∈ [0, 1] and all x ≥ 0. (11)

B.9. Proposition. If φ is a real function defined on [0,∞), then the
following conditions are equivalent:

(i) φ is star-shaped;

(ii) φ(0) ≤ 0 and φ(x)/x is increasing in x > 0;

(iii) z ∈ epiφ implies αz ∈ epiφ for all α ∈ [0, 1].

If φ(0) ≤ 0 and φ is convex, then φ is star-shaped, but convexity is
not a property of all star-shaped functions.

A real function φ defined on a set A ⊂ R n is said to be superadditive
if x, y ∈ A implies x+ y ∈ A and

φ(x+ y) ≥ φ(x) + φ(y).

If −φ is superadditive, then φ is said to be subadditive.

B.9.a. If φ : [0,∞) → R is star-shaped, then φ is superadditive.

Proof. Because φ is star-shaped,

φ(x) ≤ x

x+ y
φ(x+ y), φ(y) ≤ y

x+ y
φ(x+ y).

Addition of these inequalities completes the proof. ||
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B.9.b. If A ⊂ R n is a convex cone and if φ : A → R is subadditive
and homogeneous, then φ is convex.

Proof. φ(αx+ αy) ≤ φ(αx) + φ(αy) = αφ(x) + αφ(y). ||
Star-shaped functions and related families have been discussed by

Bruckner and Ostrow (1962). Subadditive functions are studied by
Rosenbaum (1950).

Convexity of Functions on Integers

For functions defined on the integers Z = {. . . ,−1, 0, 1, 2, . . .}, or on
intervals of integers, the following is a version of convexity:

B.10. Definition. Let I = (a, b), −∞ ≤ a < b ≤ ∞, and let φ be
a real-valued function defined on I ∩ Z. The function φ is said to be
convex if

φ(αx+ αy) ≤ αφ(x) + αφ(y)

for all x, y ∈ I ∩ Z and all α ∈ [0, 1] such that αx+ αy ∈ I ∩ Z.

B.10.a. It is not difficult to see that φ is convex if and only if φ has
nonnegative second differences; i.e.,

φ(x) − 2φ(x + 1) + φ(x+ 2) ≥ 0

for all x ∈ Z such that a < x, x+ 2 < b.

Hadamard-Type Inequalities

The following inequality was first obtained by Charles Hermite in
1881 and independently obtained by Jacques Hadamard in 1893. For
a history of this inequality and its variations, see Pecărić, Proschan,
and Tong (1992, Chapter 5).

B.11. Proposition. If φ is a convex function defined on an interval
I ⊂ R, and a, b,∈ I with a < b, then

φ

(
a+ b

2

)
≤ 1
b− a

∫ b

a
φ(x)dx ≤ φ(a) + φ(b)

2
. (12)
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Note that (12) can be rewritten in terms of a random variable U
which has a uniform distribution on the interval (a, b). Thus, for φ
convex,

φ

(
a+ b

2

)
≤ Eφ(U) ≤ φ(a) + φ(b)

2
. (12a)

Proof . The first inequality in (12a) is a direct consequence of
Jensen’s inequality (C.1). The second inequality is verified as follows.
Let g(x) = φ(x)−
(x), where 
(x) is a linear function chosen such that

(a) = φ(a) and 
(b) = φ(b). Because φ is convex, g is nonpositive on
(a, b) and the right-hand inequality in (12) [or (12a)] is equivalent to
the statement that the integral of g is over (a, b) is nonpositive. ||

The following proposition provides a refinement of the left-hand
inequality of (12).

B.12.a. Proposition (Dragomir, 1992). If φ is a convex function
defined on [a, b], and g : [0, 1] → R is defined by

g(α) =
1

b− a

∫ b

a
φ

(
αx+ (1 − α)

(a+ b)
2

)
dx,

then g is convex and increasing on [0, 1]. Thus, for every α ∈ [0, 1],

φ

(
a+ b

2

)
= g(0) ≤ g(α) ≤ g(1) =

1
b− a

∫ b

a
φ(x)dx.

B.12.b. Proposition (Dragomir, 1992). If φ is a convex function
defined on [a, b], and h on [0, 1] is defined by

h(α) =
1

(b− a)2

∫ b

a

∫ b

a
φ(αx+ (1 − α)y)dxdy,

then

(i) h(x) is convex on [0, 1] and symmetric about 1
2 ,

(ii) h is increasing on [0, 1
2 ] and decreasing on [12 , 1],

(iii) for every α ∈ [0, 1],

h(α) ≤ h(1) =
1

b− a

∫ b

a
φ(x)dx,
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and

h(α) ≥ h

(
1
2

)
=

1
(b− a)2

∫ b

a

∫ b

a
φ

(
x+ y

2

)
dxdy ≥ φ

(
a+ b

2

)
,

(iv) for every α ∈ [0, 1],

h(α) ≥ max{g(α), g(1 − α)},
where g(α) is as defined in B.12.a.

The expression 1
b−a

∫ b
a φ(x)dx and the function h defined in B.12.b

can be viewed as defining functions of (a, b). By this route Schur-
convexity enters the discussion.

B.13. Proposition (Elezović and Pec̆arić, 2000). If I is an interval
in R, and φ is a continuous function on I, then

Φ(a, b) =
1

b− a

∫ b

a
φ(t)dt, a, b ∈ I, a �= b,

= φ(a) if a = b

is Schur-convex on I2 if and only if φ is convex on I.

B.14. Proposition (Shi, 2007). If I is an interval in R, and φ is a
continuous convex function on I, then for any t ∈ [0, 1],

Q(a, b) = h(t), a, b ∈ I, a �= b,

= φ(a), a = b,

is Schur-convex on I2, where h is defined in B.12.b.

Schur’s condition, Equation (10) in 3.A, can be used to verify Schur-
convexity in these two theorems. For further details, together with
additional related applications, see Shi (2007).

The following basic theorem has a variety of applications.

B.15. Theorem (Prékopa, 1971). Suppose that φ is a nonnegative
function defined and log concave on Rm × R n. If the function

h(x) =
∫

R n

φ(x, z) dz

is finite for all x, then h is log concave on Rm. When m = 1 and mild
regularity conditions are satisfied, this can be written in the form∫

R n

φ(x, z) dz
∫

R n

∂2φ(x, z)
∂x2

dz ≤
[∫

R n

∂φ(x, z)
∂x

dz

]2

.

For a proof of Prékopa’s theorem, see Brascamp and Lieb (1976).
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B.15.a. Example. If f and g are log concave densities, then
Prékopa’s theorem can be used to verify that their convolution is
log concave. Since f and g are log concave, it follows that φ(x, z) =
f(x− z)g(z) is log concave and consequently, using Theorem B.15, it
follows that the convolution h(x) =

∫
f(x− z)g(z) dz is log concave.

C Jensen’s Inequality

The following inequalities are versions of what is called Jensen’s
inequality and is perhaps the most widely cited inequality in math-
ematics, in part because the class of convex functions is a rich
class.

For any convex function φ defined on (a, b), for all x1, . . . , xn ∈ (a, b),
and for all nonnegative numbers α1, . . . , αn such that

∑n
1 αi = 1, it is

easy to see that

φ
(∑

αixi

)
≤
∑

αiφ(xi).

An integral analog of this inequality using Lebesgue measure was
obtained by Jensen (1906).

C.1. Proposition. Let (Ω,B, P ) be a probability space and let X
be a random vector taking values in the open convex set A ⊂ R n

with finite expectation EX =
∫
X dP . If φ : A → R is convex, then

Eφ(X) ≥ φ(EX), (1)

with equality if and only if φ is affine on the convex hull of the support
of X. Conversely, if (1) holds for all random variables X taking values
in A such that the expectations exist, then φ is convex.

Proof. Since A is an open set, and EX is finite, EX ∈ A . Thus
there exists an affine function l (see B.6.c) such that

φ(x) ≥ l(x) for all x ∈ A , φ(EX) = l(EX).

Because φ(X) ≥ l(X), it follows that Eφ(X) ≥ El(X) = l(EX) =
φ(EX). Moreover, equality holds if and only if φ(X) = l(X) with
probability 1; i.e., φ is affine on the convex hull of the support of X.
The converse is immediate. ||
C.1.a. Arithmetic–Geometric mean inequality. If X is a
nonnegative random variable, then

EX ≥ expE logX. (2)

Equality holds if and only if X is degenerate or E logX = ∞.
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Proof. If EX = ∞, the result is trivial. If EX < ∞, in C.1 take
n = 1 and φ(x) = − log x if x > 0, φ(x) = ∞ if x ≤ 0. Note that X
need not be nonnegative, provided EX > 0. ||

Note. There are many proofs of the arithmetic–geometric mean
inequality. For a discussion of inequalities involving these and other
means, see Bullen, Mitrinovič, and Vasić (1988) and Bullen (2003).

In case X is a discrete random variable, P{X = ai} = qi ≥ 0,
i = 1, . . . , n, where

∑
qi = 1 and ai ≥ 0, then inequality (2) can be

written as
∑

aiqi ≥
n∏
1

aqi

i . (3)

Here, X is degenerate (equality holds) if and only if a1 = · · · = an or
all but one qi = 0.

C.1.b. If X is a nonnegative random variable, then

(EXr)1/r ≥ expE logX, r > 0,

(EXr)1/r ≤ expE logX, r < 0.

Equality holds if and only if X is degenerate, or E logX = ∞.

Proof. Replace X by Xr in C.1.a. ||
C.1.c. If X is a nonnegative random variable and r < s, then

(EXr)1/r ≤ (EXs)1/s.

Equality holds if and only if X is degenerate, or r ≥ 0 and EXr = ∞,
or s ≤ 0 and EXs = ∞.

Indication of proof. If t > 1 and φ(x) = xt, then EXt ≥ (EX)t

by C.1, with equality if and only if X is degenerate or EX = ∞.
If X = Y r and s = rt, it follows that EY s ≥ (EY r)s/r. The cases
r > 0 and s < 0 now must be treated separately; the case r ≤ 0 ≤ s
follows from C.1.b and the fact that limr→0(EXr)1/r = expE logX
[see Hardy, Littlewood, and Pólya (1934, 1952, p. 139)].

C.2. Proposition. Let φ be a convex function defined on the open
convex set A ⊂ R n and let X be a random variable defined on the
probability space (Ω,B, P ) taking values in A . Let F ⊂ B be a
σ-algebra such that E(X|F ) exists finitely almost everywhere (P ).
Then

E[φ(X)|F ] ≥ φ(E[X|F ]) a.e. (P ). (4)



656 16. Convex Functions and Some Classical Inequalities

Proof. According to B.6.c, for any fixed z ∈ A ,

φ(x) ≥ φ(z) + [∇+φ(z)](x − z)′ for all x ∈ A .

Because E(X|F ) ∈ A almost surely,

φ(X) ≥ φ(E(X|F )) + [∇+φ(E(X|F ))][X − E(X|F )]′. (5)

Because ∇+φ is Borel-measurable, ∇+φ(E(X|F )) is F -measurable.
Thus, (4) follows upon taking conditional expectations given F
in (5). ||

For an alternative proof of C.2, notice that because φ is convex and
A is open, φ has at least one support function at each z ∈ A . Thus,
if L is the set of all support functions of φ,

φ(x) = sup
l∈L

l(x).

For any l ∈ L, φ(x) ≥ l(x) for all x, so

E[φ(X)|F ] ≥ E[l(X)|F ] = l(E(X|F )).

Thus,

E[φ(X)|F ] ≥ sup
l∈L

l(E(X|F )) = φ(E(X|F )).

C.2.a. Under the conditions of C.2,

Eφ(X) ≥ Eφ(E(X|F )).

Proof. This follows from (4) upon taking expectations. ||
C.2.b. As a first application of Jensen’s inequality for conditional
expectations, an alternative proof is given for 3.C.1, which says that
if x ≺ y and φ :R → R is convex, then

∑
φ(xi) ≤

∑
φ(yi). If x ≺ y,

then there exists a doubly stochastic matrix P such that x = yP .
Let Q = (qij) = (1/n)P , and let X and Y be random variables such
that P{X = xi, Y = yj} = qij, i, j = 1, . . . , n. Then P{X = xi} =∑n

j=1 qij = 1/n =
∑n

i=1 qij = P{Y = yj} and

E(Y |X = xi) =
n∑
j=1

yj[qij/(1/n)] =
n∑
j=1

yjpij = xi.

As a consequence of C.2.a, it follows that Eφ(Y ) ≥ Eφ(E(Y |X));
that is,

1
n

∑
φ(yi) ≥ 1

n

∑
φ(xi).



D. Some Additional Fundamental Inequalities 657

C.2.c. Let Z be a random vector defined on the probability space
(Ω,B, P ) and let F1 and F2 be sub-σ-fields of B. If F1 ⊂ F2 and

X = E(Z|F1), Y = E(Z|F2), (6)

then

Eφ(X) ≤ Eφ(Y ) (7)

for all convex functions φ defined on R n for which the expectations
are defined.

Equation (7) says that if X and Y have a representation like (6),
then X ≺E2 Y , a relationship discussed in Section 11.A.

D Some Additional Fundamental Inequalities

The arithmetic–geometric mean inequality is obtained in C.1.a as
a consequence of Jensen’s inequality. In a sense, the arithmetic–
geometric mean (AM–GM) inequality and the familiar inequalities
of Hölder, Cauchy–Bunyakovskĭi–Schwarz (C–B–S), Lyapunov, and
Artin’s Theorem B.8 are all equivalent: Each of these results can be
used to derive any of the others. The following derivations are given
in this section:

Artin B.8
AM–GM Hölder ⇔ ⇒ Lyapunov AM–GM⇒ ⇒

C.1.a D.1 ⇒ ⇒ D.1.d C.1.a
C–B–S D.1.e

In addition, the inequality of Minkowski is given as a consequence
of Hölder’s inequality.

D.1. Hölder’s inequality. Let (Ω,B, μ) be a measure space, let
fi : Ω → [0,∞) be finitely μ-integrable, i = 1, . . . , n, and let qi ≥ 0,∑n

1 qi = 1. Then
∏n

1 f
qi

i is finitely integrable and
∫ n∏

1

f qi

i dμ ≤
n∏
1

(∫
fi dμ

)qi

. (1)

Equality holds in (1) if and only if

(i) all but one qi = 0,

or

(ii) the fi’s are proportional a.e. (μ),
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or

(iii) fi = 0 a.e. (μ) for some i.

Proof. By the arithmetic–geometric mean inequality C.1.a,

ai ≥ 0, qi ≥ 0,
∑

qi = 1 implies
n∏
1

aqi

i ≤
n∑
1

aiqi

with strict inequality unless a1 = · · · = an or all but one qi = 0.
Suppose that

∫
fi dμ �= 0 (otherwise, the inequality is trivial), and let

ai = fi(ω)/
∫
fi dμ, so that

n∏
1

(
fi(ω)∫
fi dμ

)qi

≤
n∑
1

qi
fi(ω)∫
fi dμ

.

Integration of both sides yields (1). ||
A number of variations of Hölder’s inequality can be given.

D.1.a. Let p1, . . . , pn be numbers in [1,∞] such that
∑n

1 1/pi = 1. If
fi is a complex-valued function defined on the measure space (Ω,B, μ)
such that

∫ |fi|pi dμ <∞, i = 1, . . . , n, then
∫ ∣∣∣∏n

1
fi

∣∣∣ dμ ≤
∏n

1

(∫
|fi|pi dμ

)1/pi

, (2)

with equality if and only if (i) all but one pi = ∞, or (ii) the |fi|pi are
proportional a.e., or (iii) for some i, fi = 0 a.e.

Proof. Replace fi in D.1 by |fi|pi , where pi = 1/qi. ||
D.1.b. Let qi > 0, i = 1, . . . , n,

∑n
1 qi = 1, and r ∈ R. If

fi : Ω → [0,∞) and f
r/qi

i is μ-integrable, i = 1, . . . , n, then (
∏
fi)r

is μ-integrable and
[∫ (∏

fi

)r
dμ

]1/r

≤
∏(∫

f
r/qi

i dμ

)qi/r

if r > 0. (3)

Unless
∏
fi = 0 a.e.,

[∫ (∏
fi

)r
dμ

]1/r

≥
∏(∫

f
r/qi

i dμ

)qi/r

if r < 0. (4)

Equality holds if and only if (i) f1/q1
1 , . . . , f

1/qn

n are proportional a.e.,
or (ii) fi = 0 a.e. for some i.
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Proof. In D.1, replace fi by f r/qi

i . ||
Numbers p and q are said to be conjugate if (i) (1/p) + (1/q) = 1,

or (ii) p = 1, q = ∞, or p = ∞, q = 1, or (iii) p = q = 0.

D.1.c. Let p and q be conjugate and let f , g : Ω → [0,∞).

(i) If p > 1 and
∫
fp dμ <∞,

∫
gq dμ <∞, then

∫
fg dμ <∞ and

∫
fg dμ ≤

(∫
fp dμ

)1/p(∫
gq dμ

)1/q

. (5)

(ii) If 0 < p < 1 (q < 0) and
∫
fg dμ < ∞,

∫
gq dμ < ∞, then∫

fp dμ <∞ and
∫
fg dμ ≥

(∫
fp dμ

)1/p(∫
gq dμ

)1/q

. (6)

(iii) If p < 0 (0 ≤ q ≤ 1) and
∫
fg dμ < ∞,

∫
fp dμ < ∞, then∫

gq dμ <∞ and
∫
fg dμ ≥

(∫
fp dμ

)1/p(∫
gq dμ

)1/q

.

Proof. (5) is an obvious special case of (1). To obtain (6) from (1)
with n = 2, take q1 = p, q2 = −p/q, f1 = fg, f2 = gq. Case (iii) is the
same as (ii) but with p and q, f and g interchanged. ||
D.1.d. Lyapunov’s inequality. If a ≥ b ≥ c and f : Ω → R is
μ-integrable, then

(∫
|f |b dμ

)a−c
≤
(∫

|f |c dμ
)a−b(∫

|f |a dμ
)b−c

, (7)

with equality if and only if (i) f is a constant on some subset of Ω
and 0 elsewhere, or (ii) a = b, or (iii) b = c, or (iv) c(2a− b) = ab.

Proof. If a = b or b = c, the result is trivial. Otherwise, in D.1 take
n = 2, f1 = |f |c, f2 = |f |a, q1 = (a− b)/(a − c), q2 = (b − c)/(a − c).
If f1 = kf2 a.e., then either f is constant on some subset of Ω and 0
elsewhere or c(a−b)/(a−c) = a(b−c)/(a−c); that is, c(2a−b) = ab. ||

In the more familiar form of Lyapunov’s inequality, μ ≡ P is a
probability measure and f ≡ X is a random variable with absolute
moment νr =

∫ |X|r dP . Then (7) takes the form

νa−cb ≤ νa−bc νb−ca . (8)
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Inequality (8) implies an inequality for quadratic forms: If A is a
symmetric positive definite matrix, and z is a unit vector, i.e., ||z|| = 1,
then for a ≥ b ≥ c,

(zAbz′)a−c ≤ (zAcz′)a−b (zAaz′)b−c.

This follows from the fact that zArz′ can be expressed as the rth
moment of a distribution on the eigenvalues of A.

The Lyapunov inequality is also discussed in 3.E.2 and in D.5,6,7.

D.1.e.Cauchy–Bunyakovskĭi–Schwarz inequality. Let f1, f2 be
real (or complex-valued) functions defined on Ω. If |fi|2 are finitely
μ-integrable, i = 1, 2, then f1f2 is finitely μ-integrable and

∣∣∣∣
∫
f1f2 dμ

∣∣∣∣
2

≤
∫

|f1|2 dμ
∫

|f2|2 dμ. (9)

Proof. In D.1, take n = 2, q1 = q2 = 1
2 and replace fi there by

|fi|2. ||

For historical comments concerning this inequality, see Dunford
and Schwartz (1958, p. 372). Steele (2004) provides a discussion of
the Cauchy–Bunyakovskĭi–Schwarz inequality and its relation to other
inequalities.

D.1.f.Minkowski inequality. Let p ≥ 1 and let fi : Ω → R be such
that

∫ |fi|p dμ <∞, i = 1, . . . , n. Then
∫ |∑ fi|p dμ <∞ and

(∫ ∣∣∣∑ fi

∣∣∣p dμ
)1/p

≤
∑(∫

|fi|p dμ
)1/p

. (10)

Equality holds if and only if the fi(ω)’s are of the same sign for almost
all ω ∈ Ω and

(i) p = 1

or

(ii) the fi’s are proportional a.e. (μ).
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Proof. Let q satisfy (1/p)+(1/q) = 1. By first applying the triangle
inequality and then Hölder’s inequality, it follows that∫ ∣∣∣∑ fi

∣∣∣p dμ =
∫ ∣∣∣∑ fj

∣∣∣ ∣∣∣∑ fi

∣∣∣p−1
dμ ≤

∑
j

∫
|fj |

∣∣∣∑ fi

∣∣∣p−1
dμ

≤
∑
j

(∫
|fj|p dμ

)1/p(∫ ∣∣∣∑ fi

∣∣∣(p−1)q
dμ

)1/q

=
∑
j

(∫
|fj|p dμ

)1/p(∫ ∣∣∣∑ fi

∣∣∣p dμ
)1/q

.

This yields (10). The conditions for equality yield equality in both
inequalities of this proof. ||
D.1.g. If 0 < p < 1, fi ≥ 0,

∫ |fi|p dμ < ∞, and
∫ |∑ fi|p dμ < ∞,

then (∫ ∣∣∣∑ fi

∣∣∣p dμ
)1/p

≥
∑(∫

|fi|p dμ
)1/p

.

The proof of this is essentially the same as the proof of D.1.f but makes
use of (6) rather than (1).

The following is a generalization of Hölder’s inequality which elim-
inates the restriction that only a finite number of functions be
involved.

D.2.A generalized Hölder’s inequality. Let (Ω,B, P ) be a prob-
ability space and let (X ,F , μ) be a σ-finite measure space. Let
f :X × Ω → [0,∞) be an F × B -measurable function such that∫
X f(x, ω) dμ(x) <∞ for almost all ω(P ).
If
∫
Ω log

∫
X f(x, ω) dμ(x) dP (ω) <∞, then∫

X
exp

(∫
Ω

log f(x, ω) dP (ω)
)
dμ(x) <∞

and ∫
X

exp
∫

Ω
log f(x, ω) dP (ω) dμ(x)

≤ exp
∫

Ω
log

∫
X
f(x, ω) dμ(x) dP (ω). (11)
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Equality holds in (11) if and only if (i) f(x, ω) = g(x)h(ω) except for x
in a set A of μ-measure 0, or x /∈ A and ω in a set Bx of P -measure 0,
or (ii) for each fixed ω in a set of positive P -measure, f(x, ω) = 0 a.e.
(μ) (the exceptional set possibly depending on ω).

Proof. Let f̂(x, ω) = f(x, ω)/
∫
X f(y, ω) dμ(y). By the arithmetic–

geometric mean inequality C.1.a,

exp
∫

Ω
log f̂(x, ω) dP (ω) ≤

∫
Ω
f̂(x, ω) dP (ω) for all x.

Thus,∫
X

exp
∫

Ω
log f̂(x, ω) dP (ω) dμ(x) ≤

∫
X

∫
Ω
f̂(x, ω) dP (ω) dμ(x)

=
∫

Ω

∫
X
f̂(x, ω) dμ(x) dP (ω) =

∫
Ω
dP (ω) = 1,

which can be rewritten as∫
X

exp
[∫

Ω
log f(x, ω)dP (ω)

−
∫

Ω
log

∫
X
f(y, ω)dμ(y)

]
dP (ω)dμ(x) ≤ 1;

that is, (11).
To determine conditions for equality, it is necessary to determine

conditions under which for almost all x, f̂(x, ω) is degenerate (as a
random variable) or conditions under which both sides of (11) are 0.
This part of the proof is omitted. ||

The above development has established the implications

Jensen’s inequality C.1 ⇒ Hölder’s inequality D.1

⇒ Lyapunov’s inequality D.1.d

There is also a close connection with Artin’s theorem B.8 which estab-
lishes the fact that “mixtures” of log convex functions are log convex.
In fact, B.8 can be used to establish Hölder’s inequality and conversely.

D.3.Hölder’s inequality from Artin’s theorem. Since
∑
qi log fi

is linear (hence convex) in (q1, . . . , qn), the function

ξ(q1, . . . , qn) = log
∫ ∏

f qi

i dμ
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is convex in (q1, . . . , qn) =
∑n

1 qiei, where ei is the vector with ith
component 1 and other components 0. Thus

ξ(q1, . . . , qn) ≤
∑

qiξ(ei),

and this is just Hölder’s inequality (1) of D.1. ||
D.4.Artin’s theorem from Hölder’s inequality. Because φ(x, z)
is log convex in x for each fixed z, φ(αx+αy, z) ≤ [φ(x, z)]α[φ(y, z)]α.
Thus, by Hölder’s inequality,

ψ(αx + αy) =
∫
φ(αx+ αy, z) dμ(z) ≤

∫
[φ(x, z)]α[φ(y, z)]α dμ(z)

≤
[∫

φ(x, z) dμ(z)
]α [∫

φ(y, z) dμ(z)
]α

= [ψ(x)]α[ψ(y)]α. ||

D.5. Lyapunov’s inequality from Artin’s theorem. Because
log |f |r is linear (hence convex) as a function of r, the mixture∫ |f |r dμ is logarithmically convex, and this is equivalent to Lyapunov’s
inequality. ||
D.6. Lyapunov’s inequality from the Cauchy–Bunyakovskĭi–
Schwarz inequality. In (9), set f1 = |f |(r−r′)/2, f2 = |f |(r+r′)/2,
r′ ≤ r, to obtain∣∣∣∣

∫
|f |r dμ

∣∣∣∣
2

≤
∫

|f |r−r′ dμ
∫

|f |r+r′ dμ.

Upon taking logarithms, it follows that log
∫ |f |r is “midpoint

convex”; i.e.,

log
∫

|f |(u+v)/2 dμ ≤ 1
2 log

∫
|f |u dμ + 1

2 log
∫

|f |v dμ.

Convexity follows from the continuity in r of log
∫ |f |r. ||

Logarithmic Convex (Concave) Functions

A number of important inequalities arise from the logarithmic convex-
ity or concavity of some functions. Logarithmic convexity (concavity)
also leads to Schur-convexity (concavity).

Log convexity (concavity) plays an important role in fields of
application such as reliability and survival analysis [see Marshall
and Olkin (2007)] and in economics [see An (1998) or Bagnoli and
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Bergstrom (2005)]. For applications in applied mathematics, see Borell
(1975) and Brascamp and Lieb (1976).

For a discussion of the convolution of log concave functions see
18.B.1.

Recall that a function φ : R → R is log convex if

log φ(αx+ αy) ≤ α log φ(x) + α log φ(y), 0 ≤ α ≤ 1, x, y ∈ R, (12)

where α = 1 − α. With x = a > c = y and αa + αc = b, inequality
(12) can be written in the form

[φ(b)]a−c ≤ [φ(c)]a−b[φ(a)]b−c, a > b > c. (13)

Another inequality for log convex functions follows from 16.B.3.a:

If a ≥ d > c, a > b ≥ c, then

log φ(d) − log φ(c)
d− c

≤ log φ(a) − log φ(b)
a− b

;

that is,
[
φ(d)
φ(c)

] 1
d−c ≤

[
φ(a)
φ(b)

] 1
a−b

, (14a)

or

[φ(b)]d−c[φ(d)]a−b ≤ [φ(a)]d−c[φ(c)]a−b. (14b)

With d = b, (14b) reduces to (13).

Inequalities (12), (13), (14a) and (14b) are reversed if φ is log
concave.

D.7. Example. According to 3.E.2, the function

φ(x) = νx =
∫

|z|xdμ(z)

is log convex. For this example, the application of (13) yields
Lyapunov’s inequality (8), and (14a) yields(

νb
νa

)d−c
≤
(
νc
νd

)a−b
, a ≥ d > c, a > b ≥ c.

If x ≺ y, then from 3.E.1 it follows that
n∏
1

νxi
≤

n∏
1

νyi
.
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Specific functions are identified as moments in 3.E.5-3.E.8. In
particular,

μr = Γ(r + u), r > −u, (15)

μr = Γ(r + u)/Γ(r + u+ v), u, v > 0, r > −u, (16)

μr = Γ(r + 1)/rr+1, r > 0, (17)

are all moments of some measure. Consequently, these functions are all
log convex and hence admit a Lyapunov-type inequality by applying
(13). For example, (16) yields, for a ≥ b ≥ c > −u, v > 0,
[

Γ(b+ u)
Γ(b+ u+ v)

]a−c
≤
[

Γ(c+ u)
Γ(c+ u+ v)

]a−b [ Γ(a+ u)
Γ(a+ u+ v)

]b−c
, (18a)

and (17) yields, for a ≥ b ≥ c > −1,
[
Γ(b+ 1)
bb+1

]a−c
≤
[
Γ(c+ 1)
cc+1

]a−b [Γ(a+ 1)
aa+1

]b−c
. (18b)

For a probability density f with corresponding distribution function
F satisfying F (0) = 0, the normalized moments

λr = μr/Γ(r + 1)

possess log concavity (convexity) properties summarized in 3.E.4.
According to (8) or (13), log convexity of λr can be expressed in the
form

λa−cb ≤ λa−bc λb−ca . (19)

D.8. Proposition.

(i) If f is completely monotone, then log λr is convex in r > −1,
and thus (19) holds for a > b > c > −1;

(ii) if log f is concave, then log λr is concave in r ≥ 0, so that the
reversal of (19) holds for a > b > c ≥ 0;

iii if log f is convex, then log λr is convex in r ≥ 0, so that (19)
holds for a > b > c ≥ 0;

(iv) if F = 1 − F is log concave, then log λr is concave in r ≥ 1, so
that the reversal of (19) holds for a > b > c ≥ 1;

(v) if F = 1 − F is log convex, then log λr is convex in r ≥ 1, and
(19) holds for a > b > c ≥ 1.
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D.8.a. Example. The gamma density

f(x|λ, ν) =
λνxν−1e−λx

Γ(ν)
, x ≥ 0, λ, ν > 0,

is log concave for ν ≥ 1 and log convex for 0 < ν ≤ 1. For this density,
μr = Γ(r + ν)/λrΓ(ν). Take λ = 1 and conclude from D.8 that, as a
function of r,

λr =
Γ(r + ν)

Γ(r + 1)Γ(ν)
=

Γ(r + ν)
rΓ(r)Γ(ν)

=
1

rB(r, ν)

is log concave in r > −ν, r > 0, ν > 0 and log convex in r ≥ 0, 0 <
ν ≤ 1.

More Moment Inequalities from Log Convexity

Following Simić (2007), for x > 0, let

ψs(x) =
xs

s(s− 1)
, s �= 0, 1,

= − log x, s = 0,
= x log x, s = 1.

For each s, ψs has the second derivative ψ′′
s = xs−2, x > 0, and

consequently, ψs is convex. If pi ≥ 0, i = 1, . . . , n, Σn
1pi = 1, then

from Jensen’s inequality C.1, it follows that

ψs

(∑
pixi

)
≤

n∑
1

piψs(xi).

More generally, suppose that p1, . . . , pn ∈ R and that x ≺p y. By
14.A.3,

n∑
1

piψs(xi) ≤
n∑
1

piψs(yi).

With the goal of refining this inequality, the following proposition
considers the difference:

φs(x, y; p) =
n∑
1

piψs(yi) −
n∑
1

piψs(xi). (20)

D.9. Proposition (Latif, Anwar, and Pec̆arić, 2009, private commu-
nication). If p ∈ R n, x, y ∈ D , and x ≺p y on D , then φs(x, y; p) is
log convex as a function of s, with x, y, and p fixed.
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Proof . Suppose that r = (s + t)/2 and u, v ∈ R. Because the
function

f(z) = u2ψs(z) + 2uwψr(z) + w2ψt(z), z > 0,

has a positive second derivative, it follows that f is convex on (0,∞).
With the aid of 14.A.3 and the assumption that x ≺p y, this ensures
that

n∑
1

pif(yi) −
n∑
1

pif(xi) ≥ 0.

More explicitly,

u2φs(x, y; p) + 2uwφr(x, y; p) + w2φt(x, y; p) ≥ 0,

so that by 18.A.10.a, φs is a log convex function of s. ||
D.10. Corollary (Simić, 2007). The function

φs(y; p) =
n∑
1

piψs(yi) − ψs(y)
n∑
1

pi (21)

is log convex as a function of s, where y =
∑n

1 piyi/
∑n

1 pi.

This follows from D.9 and the fact that (y, . . . , y) ≺p y.

For the functions φs of D.9 and D.10, various inequalities can be
obtained from (13), (14a), and (14b).

Continuous versions of D.9 and D.10 can be obtained either by a
limiting argument or from 14.A.8.

D.11. Proposition (Latif, Anwar, and Pec̆arić, 2009, private com-
munication). If x and y are decreasing continuous functions defined on
[0, 1], H is a function of bounded variation defined on [0, 1], and∫ u

0
x(z)dH(z) ≤

∫ u

0
y(z)dH(z), 0 ≤ u ≤ 1,

with equality when u = 1, then

φs(x, y;H) =
∫ 1

0
ψs(y(z))dH(z) −

∫ 1

0
ψs(x(z))dH(z) (22)

is log convex in s.

The proof of D.11 is nearly identical to the proof of D.9, but makes
use of 14.A.8 rather than 14.A.3.
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D.12. Corollary. If W is a positive random variable for which the
expectations exist and α ≥ β, then the function

g(t) =
EWαt − (EW βt)(EWα/EW β)t

t(t− 1)
, t �= 0, 1, (23)

g(t) = (logEWα − E logWα) − (logEW β − E logW β), t = 0,

g(t) = E(Wα logWα) − (EWα)(logEWα)
−E(W β logW β) − (EW β)(logEW β)(EWα/EW β), t = 1,

is log convex.

Proof. Assume first that the distribution F of W is strictly in-
creasing on its support, and continuous. In (22), take H(z) = z for
0 ≤ z ≤ 1 and let y(z) = [F−1(1− z)]α, x(z) = K[F−1(1− z)]β , where
K = EWα/EW β, α ≥ β. Because W is positive, x and y are nonneg-
ative. It follows from 14.A.8.a that x and y satisfy the conditions of
Proposition D.11. To apply this proposition, take t �= 0, 1 and compute

∫ 1

0
ψt(y(z))dH(z) =

∫ 1

0
ψt([F−1(1 − z)]α)dz =

∫ ∞

−∞
ψt(wα)dF (w)

=
∫ ∞

−∞

wαt

t(t− 1)
dF (w) =

EWαt

t(t− 1)
,

∫ 1

0
ψt(x(z))dH(z) =

∫ 1

0
ψt(K[F−1(1−z)]β)dz =

∫ ∞

−∞
ψt(Kwβ)dF (w)

=
∫ ∞

−∞

Ktwβt

t(t− 1)
dF (w) =

KtEW βt

t(t− 1)
.

By substituting these quantities in (22), it follows that d(t) is log
convex, t �= 0, 1. For t = 0 or 1, the result follows by taking limits.

If F is not strictly increasing or continuous, the limiting arguments
can be used. One way to do this is to note that the convolution of F
with an exponential distribution G(z) = 1 − e−λz, z ≥ 0, is strictly
increasing and continuous. Apply the above result to this convolution,
and then let λ→ 0. ||
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With α = 1, β = 0, g(t) takes the particularly simple form

g(t) =
EW t − (EW )t

t(t− 1)
, t �= 0, 1, (24)

g(t) = logEW − E logW, t = 0,
g(t) = EW logW − EW logEW, t = 1.

The log convexity of this special case is due to Simić (2007).

The application of (13) to the log convex function d(t) as defined in
(23) yields (for a > b > c, a, b, c �= 0, 1, α > β) the inequality

(
EWαb−EW βb(EWα/EW β)b

b(b−1)

)a−c
(25)

≤
(
EWαc−EW βc(EWα/EW β)c

c(c−1)

)a−b

×
(
EWαa−EW βa(EWα/EW β)a

a(a−1)

)b−c
.

Various special cases of this complex inequality may be of interest.
In particular, if α = 1, and β = 0 as for (24), it follows that for
a > b > c, a, b, c �= 0, 1,

(
EW b − (EW )b

b(b− 1)

)a−c
(26)

≤
(
EW c − (EW )c

c(c− 1)

)a−b(EW a − (EW )a

a(a− 1)

)b−c
.

With c = 0, (26) becomes, for a > b > 0, a, b �= 1,

(
EW b − (EW )b

b(b− 1)

)a
(27)

≤ (logEW − E logW )a−b
(
EW a − (EW )a

a(a− 1)

)b
.

Assume that the distribution function F of W is not degenerate, so
that logEW − E logW �= 0. With b = 1, (27) becomes

EW a − (EW )a ≥ a(a− 1)(EW logW −EW E logW )
logEW − E logW

, a > 1.
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Here the lower bound is positive; Jensen’s inequality gives the lower
bound of 0, but does not require W to be positive. The case of equality
in Jensen’s inequality has been ruled out by the assumption that F is
not degenerate.

Various other special cases of (25) may be of interest. More specific
inequalities can be obtained by specifying the distribution F of W.

E Matrix-Monotone and Matrix-Convex
Functions

Let H n be the set of all n × n Hermitian matrices. For each n, a
function φ : R → R can be extended to a function on Hn to Hn in
the following way: Write A ∈ Hn in the form A = ΓDΓ∗, where D =
diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues of A and Γ is
unitary (see 19.A.4). Then define

φ(A) = ΓDφΓ∗,

where Dφ = diag(φ(λ1), . . . , φ(λn)). Thus the eigenvalues of φ(A) are
obtained by applying the function φ to each eigenvalue of A, and
the eigenvectors of φ(A) are the same as the eigenvectors of A. Such
extensions of φ satisfy, for any unitary matrix Γ,

φ(ΓAΓ∗) = Γφ(A)Γ∗.

Matrix-valued functions of matrices also arise naturally by way of
standard matrix operations, as some of the examples below show.

To define monotonicity for matrix-valued functions of matrices,
a partial ordering of Hn is required. One standard ordering, often
called the Loewner ordering, makes use of the convex cone of positive
semidefinite matrices in Hn:

A ≤ B means B −A is positive semidefinite;

A < B means B −A is positive definite.

If A ⊂ Hn, a function φ : A → Hn is said to be matrix-increasing or
matrix monotone on A if for A,B ∈ A ,

A ≤ B implies φ(A) ≤ φ(B); (1)

φ is strictly matrix-increasing if for A,B ∈ A (1) holds and

A < B implies φ(A) < φ(B) whenever A,B ∈ A . (2)

Matrix-monotone functions have been studied, e.g., by Loewner (1934,
1950), Bendat and Sherman (1955), and Davis (1963). A general
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discussion of matrix-monotone functions is provided by Bhatia (1997,
Chapter V), Horn and Johnson (1991, Section 6.6), and Zhan
(2002, Chapter 1). See also Kwong (1989) for an exposition of
matrix-monotone and matrix-convex functions.

Loewner (1934) shows that in case A is the set of n× n Hermitian
matrices with eigenvalues in (a, b), then φ as a function on (a, b) gen-
erates, for all n, a matrix-monotone function on A if and only if φ is
analytic on (a, b), can be analytically continued into the whole upper
half-plane, and there represents an analytic function whose imaginary
part is nonnegative.

Notice that the class of matrix-increasing functions on a set A forms
a convex cone. Moreover, there is an obvious closure under composi-
tions: If φ1 :An → Bn and φ2 : Bn → Cn are matrix-monotone, then
φ1 ◦ φ2 :An → Cn is matrix-monotone.

In some proofs of matrix-monotonicity and matrix-convexity (de-
fined below), the following lemma is a useful tool.

E.1. Lemma. Let A and G ∈ Hn. If A > 0 and GA+AG ≥ 0, then
G ≥ 0; if A > 0 and GA+AG > 0, then G > 0.

Proof. LetG= ΓDθΓ∗, where Γ is unitary andDθ = diag(θ1, . . . , θn)
[see 19.A.4], and let B = Γ∗AΓ. Because GA+AG ≥ 0 (>0),

Γ∗GAΓ + Γ∗AGΓ = DθB +BDθ ≥ 0 (>0).

But bii > 0 because B > 0, so that the diagonal elements 2θibii of
DθB + BDθ are nonnegative (positive). Consequently, θi ≥ 0 (>0),
i = 1, . . . , n. ||

E.2. Proposition (Loewner, 1934). On the set of n × n pos-
itive definite Hermitian matrices, the function φ(A) = logA is
matrix-increasing.

Loewner’s proof of this result involves analytic continuation of φ and
is omitted here.

Monotonicity of Powers of a Matrix

Rather surprising conditions under which Ar is or is not monotone are
given here in a series of propositions. Some limited results about strict
monotonicity are also given.
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E.3. Proposition (Loewner, 1934). On the set of n × n positive
semidefinite Hermitian matrices, the functions φ(A) = Ar, 0 < r ≤ 1,
are increasing.

Loewner’s proof of this result also involves analytic continuation of
φ and is not given here. Another proof using an integral representation
of Ar is given by Bhagwat and Subramanian (1978). The special case
r = 1

2 has simple proofs.

E.3.a. The function φ(A) = A1/2 is strictly matrix-increasing on the
set of n× n positive semidefinite Hermitian matrices.

First proof. Let B > A ≥ 0 and let g(α) = (αB + αA)1/2 ≡ Q1/2.
It suffices to prove that g is strictly increasing in α ∈ [0, 1]; that is,
0 ≤ α < β ≤ 1 implies g(β) − g(α) > 0. A continuity argument
shows that it is sufficient to prove this in case 0 < α < β < 1. We
prove the slightly stronger result that dg/dα is positive definite. Since
Q1/2Q1/2 = Q, it follows that

dQ1/2

dα
Q1/2 +Q1/2 dQ

1/2

dα
=
dQ

dα
= B −A > 0.

Since Q1/2 > 0 for 0 < α < 1, dQ1/2/dα > 0, 0 < α < 1, by E.1. ||

Second proof. With continuity, it is sufficient to show that
B>A> 0 implies B1/2 > A1/2. Denote the eigenvalues of a matrix
M ∈ Hn by λ1(M) ≥ · · · ≥ λn(M). Because B > A > 0, it follows
that A−1/2BA−1/2 > I, or equivalently, λn(A−1/2BA−1/2) > 1. It is
well known [see, e.g., Marcus and Minc (1964, p. 144)] that for any n×n
complex matrix U with absolute eigenvalues |λ1(U)| ≥ · · · ≥ |λn(U)|,
λn(UU ′) ≤ |λn(U)|2, so that

1 < λn(A−1/2BA−1/2) ≤ [λn(A−1/2B1/2)]2 = [λn(A−1/4B1/2A−1/4)]2.

But the above arguments show that λn(A−1/4B1/2A−1/4) > 1, which
is equivalent to A−1/4B1/2A−1/4 > I; i.e., B1/2 > A1/2. ||

Yet another proof of E.3.a is given by Davis (1963).

E.3.b. On the set of positive definite Hermitian matrices, the function
φ(A) = A−1 is strictly matrix-decreasing.

Proof. Let B > A > 0 and let g(α) = (αB + αA)−1 ≡ Q−1. As in
the first proof of E.3.a, it is sufficient to show that dg/dα is negative
definite. Since QQ−1 = I, (dQ/dα)Q + Q(dQ−1/dα) = 0, so that
dQ−1/dα = −Q−1(dQ/dα)Q−1 = −Q−1(B −A)Q−1 < 0. ||
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Extensions of E.3 to the set of positive semidefinite Hermitian
matrices using the Moore–Penrose inverse have been obtained by
Milliken and Akdeniz (1977).

E.3.c. On the set of positive definite matrices, the function φ(A) =
Ar is matrix-decreasing, −1 ≤ r < 0.

This result follows from E.3 and E.3.b because a matrix-decreasing
function of a matrix-increasing function is matrix-decreasing.

The monotonicity of Ar is established above for −1 ≤ r ≤ 1. The
following counterexample shows that corresponding results for |r| > 1
are false.

E.4. Counterexample.

A =
[
1 1
1 1

]
=

⎡
⎢⎢⎣

1√
2

1√
2

1√
2
− 1√

2

⎤
⎥⎥⎦
[
2 0
0 0

]⎡⎢⎢⎣
1√
2

1√
2

1√
2
− 1√

2

⎤
⎥⎥⎦ and B =

[
b1 0
0 b2

]
,

so that

Ar = 2r−1

[
1 1
1 1

]
and Br =

[
br1 0

0 br2

]
.

Then

B −A =
[
b1 − 1 −1
−1 b2 − 1

]
> 0

whenever b1 > 1 and (b1 − 1)(b2 − 1) > 1. If r > 1, then Br − Ar is
not positive semidefinite when br1 < 2r−1. It follows that B − A > 0,
but Br − Ar is not positive semidefinite when 1 < b1 < 21−1/r and
b2 − 1 > 1/(b1 − 1). The same choice shows that if r < −1, then
Ar −Br is not positive semidefinite even though B −A > 0.

It is possible to show, by differentiating (αA+αB)r(αA+αB)−r =
I with respect to α, that (d/dα)(αA+αB)r is not positive semidefinite
when (d/dα)(αA+αB)−r is not negative semidefinite. So φ(A) = Ar is
not matrix-decreasing when r < −1 if it is not increasing when r > 1.
This observation shows that counterexamples for r > 1 are all that are
needed.

In summary, the function φ(A) = Ar is matrix-decreasing in A > 0,
−1 ≤ r ≤ 0, and is matrix-increasing in A ≥ 0, 0 ≤ r ≤ 1. It is not
matrix-monotone if r < −1 or r > 1.
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Several additional examples of nonmonotone matrix functions are
known. These include the extensions of step functions and of ex

(Bendat and Sherman, 1955). Counterexamples can be obtained from
E.4. If

φ(x) =
{

0, x < 1.6,
1, x ≥ 1.6,

then with b1 = 3
2 and b2 > 5

3 , it is seen that the matrix extension of φ
is not increasing. With b1 = 6, b2 = 1.2, it is seen that φ(A) = eA is
not matrix-increasing. As was noted by Davis (1963), the extension of
max(x, 0) is not matrix-increasing.

There are a number of matrix-valued functions of matrices that do
not arise as extensions of functions on R to R in the manner described
at the beginning of this section. The monotonicity of such functions is
a neglected subject, but some examples follow.

E.5. Additional Examples of Matrix-Monotone Functions

E.5.a. Let

A =

[
A11 A12

A21 A22

]

denote a partitioned matrix. On the set of Hermitian matrices, the
function

φ(A) = A11

is strictly matrix-increasing.

Proof. This result is trivial, because B > A implies

(I, 0)B(I, 0)∗ > (I, 0)A(I, 0)∗ . ||

E.5.b. Denote the conformably partitioned inverse of

A =

[
A11 A12

A21 A22

]

by

A−1 =
[
A11 A12

A21 A22

]
.
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On the set of positive definite Hermitian matrices, the function

φ(A) = A11

is strictly matrix-decreasing.

Proof. If B>A> 0, then 0<B−1<A−1, so that (I, 0)B−1(I, 0)∗ <
(I, 0)A−1(I, 0)∗; that is, B11 < A11. ||
E.5.c. On the set of positive semidefinite n× n Hermitian matrices,
the kth compound function (see 19.F.1)

φ(A) = A(k)

is strictly matrix-increasing, k = 1, . . . , n.

Proof. If B > A > 0, then A−1/2BA−1/2 > I. This means that
all of the eigenvalues of A−1/2BA−1/2 exceed 1 (see 20.A.1.b), so that
products of eigenvalues of A−1/2BA−1/2, k at a time, also exceed 1.
This means that (A−1/2BA−1/2)(k) = (A−1/2)(k)B(k)(A−1/2)(k)>I,
that is, B(k) > A(k), after noting that [(A−1/2)(k)(A−1/2)(k)]−1 =
A(k). ||
E.5.d. For a fixed m×m matrix M , let

φ1(A) = A⊗M,

φ2(A) = M ⊗A

be Kronecker products of A and M (see Section 19.G). If M is positive
semidefinite Hermitian, φ1 and φ2 are matrix-increasing on the set of
n× n Hermitian matrices. The monotonicity is strict if M is positive
definite.

Proof. If M ≥ 0 and B−A ≥ 0, then by 19.G.2.a, (B−A)⊗M ≥ 0.
This shows that φ1 is matrix-increasing. A similar argument applies to
φ2 and a similar argument shows strict monotonicity when M > 0. ||
E.5.e. From E.5.d, it follows that if 0 ≤ B1 ≤ A1 and 0 ≤ B2 ≤ A2,
then

A1 ⊗A2 ≥ B1 ⊗B2

because A1 ⊗ A2 ≥ B1 ⊗ A2 ≥ B1 ⊗ B2. Generalizations of this have
been obtained by Marcus and Nikolai (1969).

E.5.f. (Furuta, 1987). If A ≥ B ≥ 0, then for all r ≥ 0 and s ≥ 1,

(BrAsBr)(1+2r)/(s+2r) ≥ B(1+2r),

A(1+2r) ≥ (ArBsAr)(1+2r)/(s+2r).

For extensions, see Fujii and Kamei (1992).



676 16. Convex Functions and Some Classical Inequalities

Matrix-Convex Functions

The concept of a matrix-convex function was first studied by Krauss
(1936). Matrix-convex functions have also been studied by Bendat and
Sherman (1955) and by Davis (1963); see also Roberts and Varberg
(1973, pp. 259–261). Bhatia (1997, Chapter V) provides a detailed
discussion of matrix-monotone and matrix-convex functions.

A function φ defined on a convex set A of matrices and taking values
in Hn is said to be matrix-convex if

φ(αA + αB) ≤ αφ(A) + αφ(B) for all α ∈ [0, 1] and A,B ∈ A , (3)

where the inequality denotes the Loewner ordering. The function φ is
strictly matrix-convex if (3) and

φ(αA+ αB) < αφ(A) + αφ(B) (4)

for all α ∈ (0, 1) and all A, B ∈ A such that B −A has full rank.

E.6. Proposition. Let φ be a function defined on a convex set A
of m× k matrices, taking values in Hn for some n. The following are
equivalent:

(i) φ is matrix-convex on A .

(ii) For all fixed A and B in A , the function g(α) = φ(αA + αB)
is convex in α ∈ [0, 1] in the sense that ηg(α) + ηg(β) − g(ηα + ηβ) is
positive semidefinite for all α, β, η ∈ [0, 1].

In case A is open, another equivalent condition is

(iii) for all random matrices X taking values in A and having finite
expectation EX,

φ(EX) ≤ Eφ(X).

If A is open and g is twice differentiable for all A, B ∈ A , yet
another equivalent condition is

(iv) for all fixed A and B in A , d2g(α)/dα2 is positive semidefinite,
0 < α < 1.

There is also a version of E.6 for strict matrix-convexity:

E.6.a. Proposition. With the notation E.6, the following are
equivalent:

(i) φ is strictly matrix-convex on A .
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(ii) For all matrices A and B in A such that B − A has full rank,
g(α) = φ(αA + αB) is strictly convex in α ∈ [0, 1] in the sense that
ηg(α) + ηg(β) − g(ηα + ηβ) is positive definite for all α, β ∈ [0, 1],
α �= β, and η ∈ (0, 1).

If

(iii) for all A and B in A such that B − A has full rank, g is twice
differentiable and d2g(α)/dα2 is positive definite, 0 < α < 1, then
(i) holds.

Proof of E.6 and E.6.a. The function φ is matrix-convex (strictly
matrix-convex) on A if and only if, for all x ∈ R k, ψ(A) = xφ(A)x′ is
convex (strictly convex). Consequently, E.6 and E.6.a follow from B.2,
B.2.b, B.3.c, and C.1. ||

As noted by Roberts and Varberg (1973), remarkably few explicit
examples of matrix-convex functions have been found. However, E.6
provides some useful tools for identifying a few such examples, and
other methods are also illustrated below.

E.7. Matrix-convex functions: Examples. The proofs of E.7.a–
E.7.h are collected after E.7.h. Several methods of proof are illustrated.

E.7.a. Let L be a fixed n×n positive semidefinite Hermitian matrix.
The function φ defined on the space of all m× n complex matrices by

φ(A) = ALA∗

is matrix-convex. The convexity is strict if L is positive definite and
m ≤ n.

The special case L = I and A Hermitian was obtained by Davis
(1968).

E.7.b. (Ando, 1979). On the set of n×n positive definite Hermitian
matrices, the function

φ(A) = Ar

is matrix-convex for 1 ≤ r ≤ 2 or −1 ≤ r ≤ 0, and matrix-concave for
0 ≤ r ≤ 1.

The following three special cases are singled out because they have
elementary proofs. See also Kwong (1989).
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E.7.c. (Olkin and Pratt, 1958; Whittle, 1958). On the set of n × n
positive definite Hermitian matrices, the function

φ(A) = A−1

is strictly matrix-convex.

E.7.d. On the set of n× n positive definite Hermitian matrices, the
function

φ(A) = A1/2

is strictly matrix-concave.

E.7.e. On the set of n× n positive definite Hermitian matrices, the
function

φ(A) = A−1/2

is strictly matrix-convex.

E.7.f. (Kiefer, 1959; Haynsworth, 1970; Olkin, 1973; Lieb and Ruskai,
1974). On the set where M is an m× n complex matrix and A is an
n× n positive definite Hermitian matrix, the function

φ(A,M) = MA−1M∗

is matrix-convex.

E.7.g. For any partitioned nonsingular matrix

A =
[
A11 A12

A21 A22

]
,

denote the conformably partitioned inverse by

A−1 =
[
A11 A12

A21 A22

]
.

On the set of positive definite Hermitian matrices, the function

φ(A) = (A11)−1 = A11 −A12A
−1
22 A21

is matrix-concave.

E.7.h. (Ingram Olkin; see Ylvisaker, 1964). If M is a fixed m × n
complex matrix of rank m ≤ n, then on the set of positive definite
Hermitian matrices, the function

φ(A) = (MA−1M∗)−1

is matrix-concave.
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An extension of this to the set of positive semidefinite matrices is
given by Pukelsheim (1977).

All of the above examples are strictly matrix-convex or matrix-
concave except the last three. In E.7.f, even with n = m = 1, the
function is not strictly convex because φ(a,m) = m2/a is linear on the
line a = m. However, φ is strictly matrix-convex in A for fixed M of
rank m ≤ n (as follows from E.7.c) and φ is strictly matrix-convex in
M for fixed A when m ≤ n (as follows from E.7.a). For similar reasons,
Example E.7.g is not strictly matrix-concave even in the case that A
is a 2 × 2 matrix, and E.7.h is not strictly convex when m = n = 1.

E.7.i. Proposition (Zhan, 2002). If A ≥ 0, B ≥ 0, then for all
0 ≤ r ≤ 1, the Hadamard–Schur product

φ(A,B) = Ar ◦B1−r

is matrix-convex.

Proofs of E.7.a–E.7.h

The results E.7.a–E.7.h can be proved by showing that the second
derivative of g(α) ≡ φ(αA+αB) is positive definite or positive semidef-
inite, α ∈ (0, 1). This method is illustrated ahead for E.7.c, d, f, and h.
Other kinds of proofs are given for E.7.a, c, e, f, and h in order to
illustrate other methods which are also of independent interest.

Except possibly for the question of strict convexity, several of the
above examples follow from others as special cases. These implications
are easy to find but are not fully exploited here. Our purpose is not
to give a collection of concise proofs, but rather to illustrate possible
methods of proof.

Proof of E.7.a. Notice that the inequality

(αA+ αB)L(αA+ αB)∗ ≤ αALA∗ + αBLB∗

is equivalent to 0 ≤ αα(A−B)L(A−B)∗. ||

First proof of E.7.c. Let g(α) = (αA+αB)−1 ≡ Q−1, where A and
B are positive definite and B −A has full rank. Then

dg(α)
dα

= −Q−1 dQ

dα
Q−1 and

d2g(α)
dα2

= 2Q−1 dQ

dα
Q−1 dQ

dα
Q−1 > 0

because dQ/dα = A−B has full rank, as does Q−1. ||
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Second proof of E.7.c. Let A and B be positive definite Hermitian
matrices such that B − A has full rank. According to 19.E.1, there
exist a matrix W and a diagonal matrix D such that A = WW ∗,
B = WDW ∗. Then the inequality (αA + αB)−1 < αA−1 + αB−1 be-
comes [W (αI + αD)W ∗]−1 < α(WW ∗)−1 + α(WDW ∗)−1, which is
equivalent to (αI + αD)−1 < αI +αD−1. Here, all matrices are diag-
onal. Thus the result follows from the strict convexity of the function
x−1 on (0,∞). ||

Another proof of E.7.c that φ(A) = A−1 is matrix-convex is obtained
by Whittle (1958) by showing that

αA−1 + αB−1 − (αA+ αB)−1

= αα(A−1 −B−1)(αB−1 + αA−1)−1(A−1 −B−1) ≥ 0.

Olkin and Pratt (1958) and Whittle (1958) prove that trA−1C is
convex in A for all positive semidefinite matrices C. This fact is equiv-
alent to the convexity of A−1: It is easy to see that A−1 is convex
implies trA−1C is convex when C is positive semidefinite, and con-
versely with C = x′x, the convexity of trA−1C = xA−1x′ implies that
A−1 is convex. A proof of E.7.c similar to the first proof above is given
by Groves and Rothenberg (1969). A proof similar to the second above
proof is given by Moore (1973).

Proof of E.7.d. Let Q = αA + αB, where A and B are posi-
tive definite Hermitian matrices such that B − A has full rank. Since
Q1/2Q1/2 = Q, it follows that

dQ1/2

dα
Q1/2 +Q1/2 dQ

1/2

dα
=
dQ

dα
= B −A

has full rank. Since Q1/2 has full rank, this means that dQ1/2/dα has
full rank. Differentiating a second time yields the fact that

d2Q1/2

dα2
Q1/2 +Q1/2 d

2Q1/2

dα2
= −2

(
dQ1/2

dα

)2

is negative definite. Since Q1/2 is positive definite, this means that
d2Q1/2/dα2 is negative definite (E.1). ||

Proof of E.7.e. By E.3 and E.7.c, ψ(A) = A−1 is strictly matrix-
decreasing and strictly matrix-convex. Since φ(A) = A1/2 is strictly
matrix-concave, the composition ψ ◦ φ is strictly matrix-convex. ||
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First proof of E.7.f. Let M and N be m×n complex matrices, and
let A and B be n×n positive definite matrices. Let g(α) = WS−1W ∗,
where W = αM + αN , S = αA+ αB. Then

dg

dα
=
dW

dα
S−1W ∗ +WS−1 dW

∗

dα
−WS−1 dS

dα
S−1W ∗,

d2g

dα
= 2

(
WS−1 dS

dα
− dW

dα

)
S−1

(
WS−1 dS

dα
− dW

dα

)∗
≥ 0. ||

Second proof of E.7.f (Rizvi and Shorrock, 1979). Here it is
convenient to use (iii) of E.6. So regard A as a random positive
definite Hermitian matrix with finite expectation Σ > 0, and re-
gard M as a random complex matrix with expectation μ. Then
(M − μΣ−1A)A−1(M − μΣ−1A)′ ≥ 0, so

E(M − μΣ−1A)A−1(M − μΣ−1A)′ ≥ 0,

which is equivalent to E(MA−1M ′) ≥ μΣ−1μ′. ||

Proof of E.7.g. Because A11 is a linear function of A, this follows
from E.7.f with the choices M = A12 and A = A22. ||

First proof of E.7.h. Let W = αA+αB, where A and B are
positive definite, let Q = MW−1M∗, and let g(α) = Q−1. Compute

d2g(α)
dα2

= 2Q−1 dQ

dα
Q−1 dQ

dα
Q−1 −Q−1 d

2Q

dα2
Q−1,

where
dQ

dα
= −MW−1 dW

dα
W−1M∗,

d2Q

dα2
= 2MW−1 dW

dα
W−1 dW

dα
W−1M∗.

This shows that

d2g(α)/dα2 = 2XSX∗,

where X = Q−1MW−1(dW/dα)W− 1
2 and

S = W− 1
2M ′Q−1MW− 1

2 − I.

With R = MW− 1
2 , it is easy to see that S + I = R′(RR′)−1R is

idempotent and hence S = −S2 ≤ 0. Thus d2g(α)/dα2 ≤ 0. ||

Second proof of E.7.h. By 19.C.2, there exist a nonsingular m×m
matrix T and an n × n unitary matrix Γ such that M = T (I, 0)Γ.
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Let ΓAΓ∗ = Ã and observe that it is sufficient to show that φ(A) =
T ∗−1[(I, 0)Ã−1

(I
0

)
]−1T−1 is concave in Ã. This follows from the

concavity of (Ã11)−1 = [(I, 0)Ã−1
(I
0

)
]−1 given by E.7.g. ||

Here, E.7.h is obtained from E.7.g. Notice that it is also easy to
obtain E.7.g from E.7.h as a special case by choosing M = (I, 0).

There is an interesting combination of E.7.c and E.7.h. To see
this, regard A as a random matrix and write E.7.h in the form
E(MA−1M∗)−1 ≤ (M(EA)−1M∗)−1; similarly, with A replaced by
MA−1M∗ in E.7.c, it follows that (EMA−1M∗)−1 ≤ E(MA−1M∗)−1.
Together, these inequalities yield

(ME(A−1)M∗)−1 ≤ E(MA−1M∗)−1 ≤ (M(EA)−1M∗)−1;

that is,

ME(A−1)M∗ ≥ [E(MA−1M∗)−1]−1 ≥M(EA)−1M∗.

Notice that the comparison of the two extremes here, ME(A−1)M∗ ≥
M(EA)−1M∗, follows directly from E.7.c.

E.7.j. A convexity-like result related to E.5.e has been obtained by
Watkins (1974): If A1, A2, B1, B2 are Hermitian matrices such that
0 ≤ B1 ≤ A1 and 0 ≤ B2 ≤ A2, then for all α ∈ [0, 1],

(αA1 + αB1) ⊗ (αA2 + αB2) ≤ α(A1 ⊗A2) + α(B1 ⊗B2).

Proof. Let

g(α) = (αA1 + αB1) ⊗ (αA2 + αB2),

and notice that
d2

dα2
g(α) = 2(A1 −B1) ⊗ (A2 −B2). (3)

But the eigenvalues of this Kronecker product are just products of
roots of A1 −B1 and of A2 −B2, hence nonnegative. Thus the matrix
(3) is positive semidefinite. ||

Watkins (1974) also obtains a generalization of the above result.

E.8. Nonconvex matrix functions: Examples

E.8.a. (Rizvi and Shorrock, 1979). On the set of positive definite
matrices, let

φ(A) = Ar.

For r /∈ [−1, 2], φ is not matrix-convex.
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Proof. According to Theorems 2 and 4 of Davis (1963), a function
ψ is matrix-convex on (−1, 1) [i.e., the domain of ψ is restricted to
matrices with roots in (−1, 1)] if and only if ψ′′(0) ≥ 0 and for some
random variable Z such that P{|Z| ≤ 1} = 1,

ψ(x) = ψ(0) + ψ′(0)x+
ψ′′(0)

2
E

(
x2

1 + Zx

)
. (4)

For the particular choice of the function ψ, ψ(x) = (1 +x)r, (4) yields

(1 + x)r = 1 + rx+
r(r − 1)

2
E

x2

1 + Zx
.

By expanding the last term and equating coefficients, it is not difficult
to compute that for such a random variable Z, VarZ = (2 − r)(r +
1)/36, which is negative if r /∈ [−1, 2]. ||

Remark . Ando (1979) unifies and extends the results on matrix
convexity of powers using an integral representation of functions that
are matrix-monotone of order n for every n, due to Loewner. Ando
verifies that the function φ(A) = Ar defined on the class of positive
definite Hermitian matrices is matrix-convex if 1 ≤ r ≤ 2 or if −1 ≤
r ≤ 0, and concave if 0 ≤ r ≤ 1. For other values of r, φ is neither
matrix-concave nor matrix-convex (Ando, 1979, p. 215).

E.8.b. (Davis, 1963). The matrix extension of φ(x) = |x| is not
matrix-convex even on (−1, 1). Davis shows this by exhibiting a
counterexample.

E.8.c. The function φ(A) = eA is not matrix-convex. To see this, let

A =
[
1 1
1 1

]
=

1
2

[
1 1
1 −1

] [
2 0
0 0

] [
1 1
1 −1

]
, B =

[
10 0
0 0

]
,

so that

eA ≈ 3.69A, eB =
[
e10 0
0 1

]
.

Then

A+B

2
≈
[
0.995 0.1
0.1 −0.995

] [
5.55 0
0 0.45

] [
0.995 0.1
0.1 −0.995

]



684 16. Convex Functions and Some Classical Inequalities

and

e(A+B)/2 ≈
[
254.65 25.44
25.44 4.13

]
.

Here,

e(A+B)/2 �≤ 1
2
eA +

1
2
eB =

[
11015.10 −1.85

−1.85 2.35

]
.

F Real-Valued Functions of Matrices

Section E is concerned with matrix-valued functions of matrices. Here,
some real-valued functions of matrices are discussed which are mono-
tone or convex. A real-valued function φ defined on some set H of
n×n Hermitian matrices is increasing on H if, for A,B ∈ H , A ≤ B
implies

φ(A) ≤ φ(B);

φ is strictly increasing on H if, for A,B ∈ H , A < B implies

φ(A) < φ(B).

A real-valued function ϕ defined on some set H of n × n Hermitian
matrices is convex on H if, for A,B ∈ H ,

ϕ(αA + αB) ≤ αϕ(A) + αϕ(B).

For any n×n Hermitian matrix M , let λ1(M) ≥ · · · ≥ λn(M) denote
the eigenvalues of M in decreasing order.

F.1. Theorem (Loewner, 1934). If A ≤ B, then λi(A) ≤ λi(B); if
A < B, then λi(A) < λi(B), i = 1, . . . , n.

As noted by Beckenbach and Bellman (1961, p. 72), this is an
immediate consequence of the Fischer minmax theorem (see 20.A.1).

Remark. As a consequence of F.1, if A ≤ B, then

(λ1(A), . . . , λn(A)) ≺w (λ1(B), . . . , λn(B)).
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Theorem F.1 is a basic result because it can be used to show that
various increasing functions of eigenvalues are also increasing.

Determinant Examples

F.2. Theorem (Oppenheim, 1954). On the set of positive semidefi-
nite n× n Hermitian matrices, the function

φ(A) =

[
k∏
i=1

λn−i+1(A)

] 1
k

is concave and strictly increasing, k = 1, . . . , n. Thus if A and B are
positive semidefinite, then

[
k∏
1

λn−i+1(A+B)

] 1
k

≥
[
k∏
1

λn−i+1(A)

] 1
k

+

[
k∏
1

λn−i+1(B)

] 1
k

. (1)

Proof. According to 20.A.5,

min
trAM
k

=

[
k∏
1

λn−i+1(A)

]1/k

,

where the minimum is over all matrices M = X∗X, X is k × n, and
detXX∗ = 1. Because

min
tr(αA + αB)M

k
≥ αmin

trAM
k

+ αmin
trBM
k

, 0 ≤ α ≤ 1,

the concavity of φ is immediate. That φ is strictly increasing follows
from F.1. Inequality (1) follows from the concavity with α = 1

2 . ||
F.2.a. On the set of n× n positive semidefinite Hermitian matrices,
the function

φ(A) = (detA)1/n

is concave and increasing. Consequently, if A and B are positive
semidefinite,

[det(A+B)]1/n ≥ (detA)1/n + (detB)1/n. (2)

Proof. In F.2, take k = n. ||
As an alternative proof when A and B are positive definite, use

19.E.1 to write A = WW ∗, B = WDβW
∗, where Dβ is a diagonal
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matrix with the eigenvalues βi of BA−1 as diagonal elements. Then
(2) reduces to

[
n∏
1

(1 + βi)

]1/n

≥ 1 +

(
n∏
1

βi

)1/n

.

This inequality follows from 3.F.2. It is also possible to prove F.2.a by
differentiating g(α) = (detQ)1/n, Q = αA+ αB. Here,

d2g(α)
dα2

= −(detQ)1/n

n

[
trW 2 − (trW )2

n

]
≤ 0,

where W = Q−1/2(A − B)Q−1/2. The proof is completed by a
continuity argument when A and B are positive semidefinite. ||
F.2.b. (Fan, 1950). On the set of positive definite Hermitian
matrices, the functions

φk(A) = log

[
k∏
i=1

λn−i+1(A)

]
, k = 1, . . . , n,

are concave and strictly increasing. Consequently, if A and B are
positive definite and 1 ≤ k ≤ n, 0 ≤ α ≤ 1, α = 1 − α,

k∏
i=1

λn−i+1(αA + αB) ≤
[
k∏
i=1

λn−i+1(A)

]α [ k∏
i=1

λn−i+1(B)

]α
. (3)

Proof. If ψ(x) = log x, x > 0, and f(A) = [
∏k
i=1 λn−i+1(A)]1/k,

then because f is concave and ψ is concave and increasing, the com-
position ψ ◦f = (1/k)φ is concave. The monotonicity of φ follows from
F.1. ||
F.2.c. (Fan, 1950). On the set of positive definite Hermitian
matrices, the function

φ(A) = log detA

is concave and strictly increasing. Consequently, if A andB are positive
definite Hermitian,

det(αA+ αB) ≥ (detA)α(detB)α, 0 ≤ α ≤ 1. (4)
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Proof. This is the special case k = n of F.2.b. ||
Various other proofs of F.2.c can be given [for example, see

Beckenbach and Bellman (1961, p. 63)]. See Mirsky (1955b) for a proof
by induction.

Partitioned Matrices

Let

A =
[
A11 A12

A21 A22

]

be an n× n nonsingular matrix and let

A−1 =
[
A11 A12

A21 A22

]
,

where A11 and A11 are k × k submatrices. If A11 is nonsingular, then
it is easy to verify that

A22 = (A22 −A21A
−1
11 A12)−1.

Because[
A11 A12

A21 A22

] [
I −A−1

11 A12

0 I

]
=

[
A11 0

A21 A22 −A21A
−1
11 A12

]
,

it follows that

detA = detA11(detA22)−1. (5)

Similarly, if A22 is nonsingular, A11 = (A11 −A12A
−1
22 A21)−1 and

detA = (detA22)(detA11)−1. (6)

F.2.d. (Fan, 1955b). On the set of positive definite Hermitian
matrices, the functions

φ1(A) = (detA11)−1/k, φ2(A) = (detA22)−1/(n−k)

are decreasing and concave. Consequently, if A and B are positive
definite Hermitian,
(

det(A+B)
det(A11 +B11)

)1/(n−k)
≥
(

detA
detA11

)1/(n−k)
+
(

detB
detB11

)1/(n−k)
.

(7)
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Proof. Because (A11)−1 is matrix-concave (E.7.g) and because the
function (detM)m is concave and increasing on the m × m positive
definite Hermitian matrices, it follows that the composition φ1 of these
functions is concave. The proof for φ2 is analogous.

To obtain (7), use the concavity of φ2 together with (5). ||
F.2.e. (Bergström, 1952). If A and B are positive definite Hermitian
matrices and Ai, Bi are obtained by deleting the ith row and column
from A and B, then

det(A+B)
det(Ai +Bi)

≥ detA
detAi

+
detB
detBi

. (8)

This inequality is essentially (7) with k = n− 1.

F.3. (Fan, 1949). On the set of n × n Hermitian matrices, the
functions

φk(A) =
k∑
1

λi(A), k = 1, . . . , n,

are increasing and convex; the functions

φ̃k(A) =
n∑

n−k+1

λi(A), k = 1, . . . , n,

are increasing and concave.

Proof . These results are immediate from the representations
(20.A.2):

φk(A) = max trXAX∗, φ̃k(A) = min trXAX∗,

where the extrema are over k×n matrices X such that XX∗ = Ik. ||
Notice that it is sufficient to prove F.3 for k = 1 because the result

can then be applied to the kth compound of A.

F.4. (Muir, 1974/1975). Let X be a k×n complex matrix of rank k.
On the set of n× n positive definite Hermitian matrices, the function

φ(A) = log detXA−1X∗

is decreasing and convex.

Proof. Write φ in the form

φ(A) = −n log[det(XA−1X∗)−1]1/n.
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By E.7.h, (XA−1X∗)−1 is concave in A and by F.2.a, (detB)1/n is an
increasing concave function of B. Because − log is strictly convex and
decreasing, it follows that φ is strictly convex. ||

This proof was suggested to us by Friedrich Pukelsheim.

F.4.a. On the set of positive definite Hermitian matrices, the function

φ(A) = log detA11 = log
detA22

detA
is decreasing and strictly convex.

Proof. This is the special case X = (I, 0) in F.4. The two forms of
φ follow from (6). ||

The special case that A11 is 1 × 1 is due to Bergström (1952).

F.4.b. (Muir, 1974/1975). Let Sk be the kth elementary symmet-
ric function. On the set of positive definite Hermitian matrices, the
function

φ(A) = log Sk(λ1(A−1), . . . , λn(A−1))

is strictly convex.

Proof . For a complex matrix Z, the kth elementary symmetric
function Sk(λ1, (Z), . . . , λn(Z)) = trZ(k), where Z(k) is the kth com-
pound of Z (see 19.F.1 and 19.F.2.d). It is thus necessary to prove
that if 0 < α < 1, and A �= B are positive definite Hermitian matrices,
then

tr[(αA+ αB)(k)]−1 > [tr(A(k))−1]α[tr(B(k))−1]α.

From 19.E.1, there exists a nonsingular n× n matrix M such that

A = MDθM
∗ and B = MM∗,

where Dθ = diag(θ1, θ2, . . . , θn) and θ1 ≥ · · · ≥ θn ≥ 0 are the
eigenvalues of AB−1. From this it follows, using Theorem 19.F.2, that

tr[(αA+ αB)(k)]−1 = tr[(αMDθM
∗ + αMM∗)(k)]−1

= tr[(M(αDθ + αI)M∗)(k)]−1

= tr[M (k)(αDθ + αI)(k)M∗(k)]−1

= tr[M (k)]−1[(αDθ + αI)(k)]−1[M∗(k)]−1

= tr[M (k)M∗(k)]−1[D(ψ)](k),
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where ψi = (αθi + α)−1. The desired result then follows since the
function 1/(αx + α) is strictly log convex. ||

Convex Trace Functions

Motivated by problems in quantum physics, Lieb (1973) obtained a
number of convexity results for the trace. See also Bhatia (1997, p. 271)
for proofs.

F.5.a. Suppose A, B ≥ 0 are m×m and n× n Hermitian matrices,
respectively, and X is a complex matrix. If

φ1(A,B,X) = (trArXBsX∗)q, 0 ≤ r, s, r + s ≤ 1,

φ2(A,X) = trArXAsX∗, 0 ≤ r, s, r + s ≤ 1,

then
(i) φ1(A,B,X) is concave in (A,B) for 0 < q ≤ 1/(r + 1) and con-

vex for q < 0,

(ii) φ1(A,B,X) is convex in X for q ≥ 1/2,

(iii) φ2(A,X) is concave in A and convex in X.

F.5.b. With A > 0, B > 0, if

φ3(A,B,X) = (trA−rXB−sX∗)q, 0 ≤ r, s, r + s ≤ 1,

φ4(A,X) = trA−rXA−sX∗, 0 ≤ r, s, r + s ≤ 1,

then
(i) φ3(A,B,X) is convex in (A,B,X) for q ≥ 1/(2 − r − s),

(ii) φ4(A,X) is convex in (A,X).

Two special cases are that φ(A) = trA−r is convex for r > 0, and
φ(A) = (trA−r)−s is concave for s ≤ 1.

F.5.c. If A ≥ 0, then

φ1(A,X) = tr
∫ ∞

0
dμ (A+ μI)X(A+ μI)X∗

is convex in (A,X).
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If A > 0, then

φ2(A,X) = tr
∫ ∞

0
dμ (A+ μI)−1X(A+ μI)−1X∗

is convex in (A,X).

F.5.d. If A ≥ 0, then

φ(A,B,X) =
[
tr
∫ ∞

0
dμ (A+ μI)−1X(B + μI)−1X∗

]q

is convex in (A,B,X) for q ≥ 1; convex in X for q ≥ 1/2; convex in
(A,B) for q > 0; concave in (A,B) for −1 ≤ q < 0, X �= 0.

Ordering Arbitrary Square Matrices

The partial ordering of Loewner that A ≤ B when B − A is positive
semidefinite is defined for Hermitian matrices. It is of some interest to
extend the ordering so as to order arbitrary complex square matrices.
One way to do this is to define A ≤ B when x(B − A)x∗ ≥ 0 for
all x. It is not difficult to show that this achieves very little because
x(B −A)x∗ is real for all x only when B −A is Hermitian.

An alternative extension of the Loewner ordering has been studied
by Lax (1958). Lax’s ordering, written here as ≤r, is as follows:

A ≤r B means B −A has nonnegative eigenvalues;

A <r B means B −A has positive eigenvalues.

F.6. Theorem (Lax, 1958). If aA+bB has real eigenvalues for all a,
b ∈ R and if A ≤r B, then λi(A) ≤ λi(B), i = 1, . . . , n. This theorem
is a generalization of F.1.

F.7. Theorem (Lax, 1958). If aA + bB has real eigenvalues for all
a, b ∈ R, then for all α, 0 ≤ α ≤ 1,

λ1(αA + αB) ≤ αλ1(A) + αλ1(B),

λn(αA + αB) ≥ αλn(A) + αλn(B).

Theorems F.6 and F.7 are proved by Lax using differential equations.
Alternative matrix-theoretic proofs are given by Weinberger (1958).
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F.8. Theorem. If aA+bB has real eigenvalues for all a, b ∈ R, then
for all α, 0 ≤ α ≤ 1, and k = 1, . . . , n,

k∑
1

λi(αA + αB) ≤ α

k∑
1

λi(A) + α

k∑
1

λi(B),

k∑
1

λn−i+1(αA + αB) ≥ α
k∑
1

λn−i+1(A) + α
k∑
1

λn−i+1(B).

These generalizations of F.3 were proved by Davis (1963) making use
of F.7. A proof similar to that of Davis can be accomplished by using
the kth additive compound (see 19.F.4 and 19.F.5) in F.6.



17
Stochastic Ordering

The notion of stochastic ordering for random variables is a familiar
and useful concept. A basic reference is Lehmann (1955). More recent
work, with many results in stochastic ordering and further references,
is in Stoyan (1977, 1983). However, the most comprehensive discussion
of stochastic and related orders is given by Shaked and Shanthikumar
(2007), to which frequent reference is made in this chapter. Other
useful references are Szekli (1995) and Müller and Stoyan (2002).

Section A of this chapter reviews key properties and concepts as-
sociated with some basic stochastic orders. Stochastic orders derived
from convex cones of functions are discussed in Section B.

The second part of chapter, Sections C and D, is concerned with
the Lorenz order and certain related variability orders. The concept
of majorization is perhaps most easily motivated by reference to the
familiar income distribution curve of Lorenz (1905). The natural ex-
tension of this concept to deal with random variables and eventually
multivariate random variables is the central theme of the presentation.
In many cases, parallel results are available for variability orders re-
lated to, but distinct from, the Lorenz order. For details, reference to
Shaked and Shanthikumar (2007) will be rewarding. The Lorenz curve
and Lorenz order scenario has the advantage that simple motivation
and insights are often available in terms of income distributions.

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 693
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 17,
c© Springer Science+Business Media, LLC 2011
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A Some Basic Stochastic Orders

The usual stochastic order, the hazard rate order, and the likelihood
ratio order are perhaps the best-known orders of distribution func-
tions. The most basic of these orders, the “usual stochastic order,”
was first known simply as “stochastic order” and has never been given
a distinguishing name.

A.1. Definition. A random variable X is said to be stochasti-
cally less than (or equal to) Y , written X ≤st Y , if the upper tail
probabilities satisfy

P{X > t} ≤ P{Y > t}, −∞ < t <∞.

In the economics literature, this ordering is called first-order
stochastic dominance. See B.19.

To see how this ordering can be extended to random vectors, some
equivalent conditions are useful.

A.2. Proposition. The following conditions are equivalent:

X ≤st Y ; (1)

Eφ(X) ≤ Eφ(Y ) for all increasing functions such that the
expectations exist; (2)

φ(X) ≤st φ(Y ) for all increasing functions φ; (3)

P{X ∈ A} ≤ P{Y ∈ A} for all sets A with increasing
indicator functions. (4)

Proof. Suppose that (1) holds. If φ is an increasing function and
φ−1(t) = inf{z :φ(z) > t}, then

P{φ(X) > t} = P{X > φ−1(t)} ≤ P{Y > φ−1(t)} = P{φ(Y ) > t},
and this proves (3). To see that (3) implies (2), use (iii) of 16.A.2 with
μ(t,∞) = P{Y > t} − P{X > t}. If φ is the indicator function of the
set A, then (2) reduces to (4). Finally, (4) clearly implies (1). ||

Notice that the equivalence of (1) and (2) is also given by (iii) of
16.A.2.
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Some possible multivariate conditions suggested by A.1 that the
upper right orthant probabilities satisfy are

P{X1 > t1, . . . ,Xn > tn} ≤ P{Y1 > t1, . . . , Yn > tn}

for all t = (t1, . . . , tn) ∈ R n, (1′)

P{X1 ≤ t1, . . . ,Xn ≤ tn} ≥ P{Y1 ≤ t1, . . . , Yn ≤ tn}

for all t = (t1, . . . , tn) ∈ R n, (1′′)

Eφ(X1, . . . ,Xn) ≤ Eφ(Y1, . . . , Yn) for all increasing functions
φ : R n → R such that the expectations exist, (2′)

φ(X1, . . . ,Xn) ≤st φ(Y1, . . . , Yn) for all increasing functions
φ : R n → R, (3′)

P{X ∈ A} ≤ P{Y ∈ A} for all measurable sets A ⊂ R n with
increasing indicator functions. (4′)

In conditions (2′) and (3′), “φ is increasing” ordinarily means that φ
is increasing in each argument separately, the other arguments being
fixed. These functions are just the order-preserving functions for the
ordering x ≤ y, which means xi ≤ yi, i = 1, . . . , n. As discussed in
Section B, other partial orderings or preorderings (see Section 1.B)
can be used here. In fact, if the ordering is majorization, then “φ is
increasing” means φ is Schur-convex. Then, (2′) and (3′) are just the
conditions E1 and P1 of Section 11.A.

With componentwise ordering ≤, it can be shown that

=⇒ (1′)
(4′) ⇐⇒ (3′) ⇐⇒ (2′) =⇒ (1′′)

.

But for n > 1 no further implications can be added to this diagram.

A.3. Definition. If (2′), or equivalently, if (3′) or (4′) holds, then
the random vector X is said to be stochastically less than (or equal
to) Y , written X ≤st Y .

A.4.Examples. If X has the bivariate distribution P{X = (0, 0)} =
P{X = (0, 1)} = P{X = (1, 0)} = P{X = (1, 1)} = 1/4 and also if
P{Y = (0, 0)} = P{Y = (1, 1)} = 1/2, then (1′) is satisfied, but (1′′)
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and (2′) fail. If X has the same distribution but P{Y = (1, 0)} =
P{Y = (0, 1)} = 1/2, then (1′′) is satisfied but (1′) and (2′) fail.

Because (1′) and (1′′) are distinct conditions not implying (2′), condi-
tion (2′) or (3′) is probably the most interesting multivariate extension
of stochastic ordering.

The following result is essentially due to Veinott (1965); some sim-
plifications of the hypotheses are due to Kamae, Krengel, and O’Brien
(1977), who also state a much more general version involving general
preorders.

A.5. Proposition (Veinott, 1965; Kamae, Krengel, and O’Brien,
1977). Let X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn) be random vectors
such that for all t ∈ R and all u ≤ v (u, v ∈ R j−1), j = 2, . . . , n,

P{X1 > t} ≤ P{Y1 > t}
and

P{Xj > t| X1 = u1, . . . ,Xj−1 = uj−1}

≤ P{Yj > t| Y1 = v1, . . . , Yj−1 = vj−1}.
Then X ≤st Y .

A simple proof of this result is given by Franken and Kirstein (1977)
and by Arjas and Lehtonen (1978).

Conditions Weaker Than Stochastic Ordering

As already noted, conditions (1′) and (1′′) are strictly weaker than
the condition of stochastic ordering. The following result shows that
at least for some monotone functions, inequalities (1′) and (1′′) imply
Eφ(X) ≤ Eφ(Y ).

A.6. The survival functions satisfy

F (t) ≡ P{X1 > t1, . . . ,Xn > tn}
≤ P{Y1 > t1, . . . , Yn > tn} ≡ G(t) for all t ∈ R n (1′)

if and only if

Eφ(X) ≤ Eφ(Y )

whenever φ is the distribution function of some n-dimensional random
vector Z. The lower left orthant probabilities satisfy

F (t) ≡ P{X1 ≤ t1, . . . ,Xn ≤ tn}
≥ P{Y1 ≤ t1, . . . , Yn ≤ tn} ≡ G(t) for all t ∈ R n (1′′)



A. Some Basic Stochastic Orders 697

if and only if

Eφ(X) ≥ Eφ(Y )

whenever φ is the survival function of some random vector Z, that is,
φ(t) = P{Z1 > t1, . . . , Zn > tn} for all t ∈ R n.

Proof . Suppose that Eφ(X) ≤ Eφ(Y ) for all distribution func-
tions φ. In particular, for the choice

φt(z) =
{

1 if zi ≥ ti, i = 1, . . . , n,
0 otherwise,

it follows that

F (t) = Eφt(X) ≤ Eφt(Y ) = G(t),

which is (1′).
Next, suppose that (1′) holds. If Z takes on only finitely many values,

say t(1), . . . , t(k) with respective probabilities p1, . . . , pk, then

Eφ(X) =
∑
i

piφt(i)(X) ≤
∑

piφt(i)(Y ) = Eφ(Y ),

and limiting arguments will complete the proof. Alternatively,
Eφ(X)≤Eφ(Y ) can be obtained directly using conditional expecta-
tions.

The case of (1′′) is proved similarly. ||

The Hazard Rate Ordering

A.7. Definition. Let X and Y be random variables with correspond-
ing distribution functions F and G; then X is said to be smaller in the
hazard rate ordering than Y , denoted by X ≤hr Y (or F ≤hr G), if

F t(x) = P{X > x+ t|X > t} ≤ P{Y > x+ t|Y > t} = Gt(x) (5)

for every x ≥ 0 and every t such that F (t) > 0 and G(t) > 0.

Note. F t(x) is called the residual life survival function of F at time t.

A condition equivalent to (5) is that

F (z)/G(z) is decreasing in z such that G(z) > 0. (6)

If F and G are absolutely continuous with corresponding densities f
and g, then condition (6) reduces to the condition

rX(t) ≥ rY (t) for every t, (7)
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where for a univariate random variable Z with density function fZ ,
distribution function FZ , and survival function FZ = 1 − FZ ,

rZ(t) = fZ(t)/[F Z(t)], −∞ < t <∞.

This function is called the hazard rate of Z.
The name “hazard rate ordering” is actually motivated by condition

(7), though Definition A.7 is more general.

A.8. If X ≤hr Y, then X ≤st Y .

Proof. This result is immediate from the definitions. ||
An alternative condition equivalent to (5) and (6) [and (7) in the

absolutely continuous case] is obtained by substituting u = G(z) in (6).
The condition then becomes

F (G−1(u))
u

is increasing in u, 0 < u < 1. (8)

Note. Replacement of F and G by F and G in (5), (6), and (8)
results in what is called the reverse hazard rate order.

Multivariate extensions of the hazard rate order have not been exten-
sively studied, and there are a number of possible definitions. A most
obvious multivariate version is to use componentwise ordering and
allow all quantities in (5) to be vectors:

Condition (i). For random vectors X,Y , and for every t ∈ R n such
that P{X > t} > 0 and P{Y > t} > 0, the inequality

P{X > x+ t | X > t} ≤ P{Y > x+ t | Y > t}
holds for all x ∈ R n

+ .
Of course, with componentwise ordering of R n, x > t and x �≤ t are

the same conditions only when n = 1. This fact suggests

Condition (ii). For random vectors X,Y,

P{X �≤ x+ t | X �≤ t} ≤ P{Y �≤ x+ t | Y �≤ t}.
The following proposition offers multivariate versions of (7).

A.9. Proposition. If Condition (i) is satisfied and the partial
derivatives exist, then

∂F (t)
∂ti

/F (t) ≤ ∂G(t)
∂ti

/G(t), i = 1, . . . , n. (9)
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If Condition (ii) is satisfied and the partial derivatives exist, then

∂F (t)
∂ti

/[1 − F (t)] ≤ ∂G(t)
∂ti

/[1 −G(t)], i = 1, . . . , n. (10)

Of course, F and 1 − F are the same only when n = 1, in which case
(9) and (10) both reduce to (7).

Proof. If Condition (i) holds, then

1 − P{X > x+ t} ≤ 1 − P{Y > x+ t|Y > t}
for all x ≥ 0 and all t ∈ R n; that is,

P{X > t} − P{X > t+ x}
P{X > t} ≤ P{Y > t} − P{Y > t+ x}

P{Y > t} .

Set x = Δei, where ei is the vector with 1 in the ith place and other
components 0. Divide by Δ and let Δ → 0 to obtain (9).

If Condition (ii) holds, then it similarly follows that

P{X �≤ t} − P{X �≤ t+ Δei}
P{X �≤ t} ≤ P{Y �≤ t} − P{Y �≤ t+ Δei}

P{Y �≤ t} ,

which can be rewritten in the form
1 − P{X ≤ t} − 1 + P{X ≤ t+ Δei}

1 − P{X ≤ t} ≤ P{Y ≤ t+ Δei} − P{Y ≤ t}
1 − P{Y ≤ t} .

From this, (10) follows by taking limits. ||
The quantity −∂F (t)

∂ti
/F (t) can be written as ri(t) = ∂R(t)/∂ti,

where R = − logF . The quantity r = (r1, . . . , rn) = ∇R is known as
the hazard gradient of F . Condition (9) is the condition that the haz-
ard gradient of F dominates that of G (in the sense of componentwise
ordering). Hazard gradients are discussed by Marshall (1975).

A.10. Example. If a multivariate survival function F can be pa-
rameterized to take the form F (x|a) = exp{−aR(x)}, then the hazard
gradient is increasing in a.

The Likelihood Ratio Ordering

A.11. Definition. Let X and Y be random variables with distribu-
tion functions F and G. X is said to be smaller in the likelihood ratio
ordering than Y , written X ≤lr Y or F ≤lr G, if, for every u,

P{X > u | a < X ≤ b} ≤ P{Y > u | a < Y ≤ b} (11)

whenever a < b and the conditional probabilities are defined.
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The explanation for the name of this ordering comes from a possible
reinterpretation in the absolutely continuous case, i.e., when densi-
ties f and g exist. In that case, f and g are likelihoods and (11) is
equivalent to

f(u)
g(u)

is decreasing in u. (12)

This is a statement involving likelihood ratios.

A.12. Proposition (Lehmann and Rojo, 1992). F ≤lr G if and only
if F G

−1(u) is convex in u, 0 ≤ u ≤ 1.

Proof. In the absolutely continuous case, it is possible to verify
that the derivative of F G

−1 is increasing because of (12). In general,
a differencing argument can be used. ||

It is clear from the definitions that X ≤lr Y implies X ≤hr≤ Y and
also that X is less than Y in the reverse hazard rate ordering.

Because of the monotonicity of the likelihood ratio noted in (12),
it becomes clear that if F ≤lr G, the corresponding densities cross
exactly once (unless F = G) and the sign of f − g changes from + to
− at the crossing point.

B Stochastic Orders from Convex Cones

Starting with a convex cone of real-valued functions defined on a set
A ⊂ R n, the generation of a preorder ≤C of A is discussed in Section
14.D. In particular, for x, y ∈ A , write x ≤C y to mean that

φ(x) ≤ φ(y) (1)

for all φ ∈ C . As in Example 14.E.5, it can happen that x ≤C y implies
that (1) holds for some functions not in C . The set C ∗ of all functions
such that x ≤C y implies (1) is called the completion of C . Clearly,
C ∗ is a convex cone.

Example. Let ≤p be a preorder of A contained in R n, and let C con-
sist of all real-valued functions defined on A that preserve the ordering
≤p. Then C is a complete convex cone, and ≤C is the order ≤p.

B.1. Definition. Let C be a convex cone of real-valued measurable
functions φ defined on a measurable subset A of R n. Write X ≤st

C Y
to mean that
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Eφ(X) ≤ Eφ(Y ) (2)

for all φ ∈ C such that the expectations exist. When X ≤st
C Y , then

X is said to be stochastically less than Y (with respect to C ).

B.2. Definition. The stochastic completion of C is the convex cone
C + of all measurable functions φ : A → R for which X ≤st

C Y implies
(2) (whenever the expectations exist).

B.3. Proposition. For all convex cones of real-valued measurable
functions defined on A , the completion C ∗ of C and the stochastic
completion C + of C satisfy the relationship

C ⊂ C + ⊂ C ∗.

Moreover, C + is closed in the sense of uniform convergence, C + con-
tains the constant functions, and every monotone pointwise limit of
functions in C is in C +.

B.4. Example. Let C be the convex cone of (componentwise) in-
creasing functions defined on R n. This cone is complete and the
resulting stochastic order is that of Definition A.3. More generally,
let ≤p be a preordering of A ⊂ R n and let C consist of all functions
defined on A that preserve the order ≤p. Then C is complete.

B.5. Example. Let A = R and let C be the convex cone of func-
tions φ having the form φ(x) = ax + b, x ∈ R, for some a ≥ 0 and
some b ∈ R. In this case, X ≤st

C Y if and only if EX ≤ EY . Clearly,
C is stochastically complete. However, the ordering x ≤C y of R gen-
erated by C (in the manner of Definition 14.E.2) is just x ≤ y in the
usual sense. Consequently, C ∗ consists of all increasing functions. In
this example, C + and C ∗ differ markedly.

The following fundamental theorem is essentially due to Strassen
(1965), but see also Marshall (1991).

B.6. Theorem. Suppose that A ⊂ R n is closed and that ≤C is the
preorder of A generated by the convex cone C of real-valued functions
defined on A . Suppose further that {(x, y) : x ≤C y} is a closed set.
Then the conditions
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(i) X ≤st
C Y ,

(ii) there exists a pair X̃, Ỹ of random variables such that

(a) X and X̃ are identically distributed, Y and Ỹ are
identically distributed,

(b) P{X̃ ≤C Ỹ } = 1

are equivalent if and only if C + = C ∗; i.e. , the stochastic completion
C + of C is complete.

Proof. Suppose first that C + is complete. The fact that (i) and
(ii) then hold is given by Strassen (1965) as an application of his
Theorem 11. On the other hand, if (i) and (ii) hold, then for all
φ ∈ C ∗, P{φ(X̃) ≤ φ(Ỹ )} = 1, and hence Eφ(X) = Eφ(X̃) ≤
Eφ(Ỹ ) = Eφ(Y ) for all φ ∈ C ∗. Thus C + = C ∗. ||

Mixtures and Convolutions

B.7. Proposition. Suppose that Xθ ≤st
C Yθ for all θ in an index

set B, and suppose that the respective distributions Fθ and Gθ are
measurable in θ ∈ B. If X and Y have respective distributions F and
G, where

F (x) =
∫
Fθ(x)dH(θ), G(x) =

∫
Gθ(x)dH(θ),

then X ≤st
C Y .

Proof. For any φ ∈ C ,

Eφ(X) = E{E[φ(X)|Θ]} ≤ E{E[φ(Y )|Θ]} = Eφ(Y ),

where Θ has the distribution H. ||
B.8. Proposition. Suppose that φ ∈ C implies φu ∈ C , where

φu(x) = φ(x+ u), u, x ∈ R n.

If X ≤st
C Y and U ≤st

C V, where X and U , Y and V are independent,
then X + U ≤st

C Y + V . If φ ∈ C implies φ(a) ∈ C , where

φ(a)(x) = φ(ax), x ∈ R n, a > 0,

then X ≤st
C Y implies aX ≤st

C aY.
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B.9. Proposition. Let Ci be a convex cone of measurable functions
defined on the measurable subset Ai of R i, i = m,n. Let C be the
convex cone of all functions φ on Am × An with the property that for
each fixed y ∈ An, φ(·, y) ∈ Cm and for each fixed x ∈ Am, φ(x, ·) ∈ Cn.
If X ≤st

Cm
Y and U ≤st

Cn
V , where X and U, Y and V are independent,

then (X,U) ≤st
C (Y, V ).

B.10. Proposition. Let S be a set of real-valued measurable func-
tions defined on the measurable set A ⊂ R n, and let C be the
smallest convex cone containing S . Then X ≤st

C Y if and only if
Eφ(X) ≤ Eφ(Y ) for all φ ∈ S .

B.10.a. Proposition. The ordering X ≤st
C Y holds if and only if

P (X ∈ A} ≤ P{Y ∈ A} for all sets A with the property that

x ∈ A and x ≤C y imply y ∈ A. (3a)

To show that ordered probabilities of the above kind imply X ≤st Y ,
it is necessary to approximate increasing functions φ using positive
linear combinations of indicator functions.

B.10.b. Let ≤p be a preordering of R n such that probability
measures on R n are determined by their values on sets satisfying

x ∈ A and x ≤p y imply y ∈ A . (3b)

If X ≤st Y and Y ≤st X, then X and Y have the same distribution.

Proposition A.2 includes, for the cone of increasing functions, a con-
dition A(3) alternative to (2) for the order ≤st. For a general convex
cone C , this alternative takes the form

φ(X) ≤st
C φ(Y ) for all φ ∈ C . (4)

If X and Y satisfy this condition, the notation X ≤ p
C Y has been used.

Because (4) means that Ehφ(X) ≤ Ehφ(Y ) for all increasing
functions h : R → R and all φ ∈ C ,

X ≤ p
C Y implies X ≤st

C Y.

To compare the orders ≤st
C and ≤ p

C , yet another extension of C enters
the picture.

B.11. Notation. For a convex cone C of functions φ : A → R, let

C̃ = {f : for some φ ∈ C and some increasing function

ψ : R → R, f = ψ ◦ φ}.
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B.12. Example. In Section 11.A, two convex cones are considered
to obtain stochastic versions of majorization:

C1 = {φ : φ is a real-valued measurable Schur-convex function

defined on R n} ,

C2 = {φ : φ is a real-valued function, continuous, permutation-

symmetric, and convex on R n} .
As noted in Section 11.A, ≤st

C1
and ≤ p

C1
are equivalent, but the equiva-

lence fails for C2. Of course, C1 is complete and C̃1 = C1. But C2 is not
complete. Functions in C̃2 are quasi-convex but need not be convex.

B.13. Proposition. The orders ≤ p
C and ≤st

C̃
are equivalent. Thus

the orderings ≤ p
C and ≤st

C are equivalent if and only if C̃ ⊂ C +.

Convex Order

The convex order is a prime example of a stochastic order derived from
a convex cone.

B.14. Definition. Suppose that A ⊂ R n is convex and that C
consists of all continuous convex functions defined on A . If X ≤st

C Y ,
then X is said to be smaller in the convex order than Y . In this case,
the notation X ≤cx Y is often used.

This order was studied by Karamata (1932); see Proposition 16.B.4.a.
The convex order was encountered by Blackwell (1953) in his studies
regarding comparisons of experiments. In more general settings, this
order arises in probabilistic potential theory and it provides the set-
ting for Choquet’s theorem [see, e.g., Phelps (1966)]. Particularly in
this context, the convex order is sometimes called balayage order [see
e.g., Meyer (1966, p. 239)]. See also Shaked and Shanthikumar (2007,
Chapter 3) or Marshall and Olkin (2007, p. 62).

The case that the random variables X and Y are real-valued is of
particular importance.

B.15. Definition. For real-valued random variables X,Y , write
X ≤cx Y if Eφ(X) ≤ Eφ(Y ) for all convex functions φ : R → R
such that the expectations exist.
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Generalizations of Hadamard Inequalities

For definitions and introduction to Hadamard inequalities, see 16.B.

Let φ be a convex function defined on the interval [a, b]. According
to Proposition 16.B.11,

φ

(
a+ b

2

)
≤ 1
b− a

∫ b

a
φ(x)dx ≤ φ(a) + φ(b)

2
. (5)

If X has a distribution degenerate at (a + b)/2, Y is uniformly dis-
tributed on [a, b], and Z takes on the values a, b each with probability
1/2, then (5) can be restated as

X ≤cx Y ≤cx Z.

The following proposition leads to a variety of generalizations of
Hadamard’s inequalities (5).

B.16. Proposition. If φ is a convex function defined on the convex
set A ⊂ R n and if X, Y are random vectors taking values in A , then

g(α) = Eφ(αX + αY ), 0 ≤ α ≤ 1, (6)

is a convex function of α, provided that the expectation exists.

Proof. This is a direct consequence of Proposition 16.B.2. ||
B.17. Proposition. If X ≥cx Y, then g(α) as defined in (6) is an
increasing function of α, 0 ≤ α ≤ 1.

Proof. Because X ≥cx Y, Eφ(αX + αz) ≥ Eφ(αY + αz), z ∈ A .
Consequently, for all α ∈ [0, 1],

Eφ(αX + αY ) = E{E[φ(αX + αY )|Y ]}
≥ E{E[φ(αY + αY )|Y ]} = Eφ(Y ),

and similarly

Eφ(X) = E{E[φ(αX + αX)|X]}
≥ E{E[φ(αY + αX)|X]} = Eφ(αX + αY ).

By interchanging α and α in the last inequality, it follows that

Eφ(X) ≥ Eφ(αX + αY ) ≥ Eφ(Y ). (7)

The first inequality of (7) indicates that X ≥cx αX + αY, 0 ≤ α ≤ 1.
Because (7) is based only on the assumption that X ≥cx Y, (7) remains
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valid if Y is replaced by βX + βY, 0 ≤ β ≤ α, and α is replaced by
γ = (α − β)/(1 − β). With this replacement, the second inequality of
(7) becomes

g(α) = Eφ(αX + αY ) ≥ Eφ(βX + βY ) = g(β), 0 ≤ β ≤ α ≤ 1. ||

Note. If X is uniformly distributed on [a, b] and Y is degenerate at
(a+ b)/2, then B.17 yields 16.B.12.a.

B.17.a. Corollary. If X has a finite expectation

EX = (EX1, . . . , EXn)

and P{Y = EX} = 1, then X ≥cx Y and g as defined in (6) becomes

g(α) = Eφ(αX + αEX).

This function is convex and increasing in α, 0 ≤ α ≤ 1.

Proof. It follows directly from Jensen’s inequality that X ≥cx Y,
so this result is an application of Proposition B.17. ||

With the assumption that φ is differentiable, Corollary B.17.a can
be proved by writing the derivative g′ of g in terms of the inner product

g′(α) = E〈#φ(αX + αEX),X − EX〉

= E
n∑
1

φi(αX + αEX)(Xi − EXi),

where φi is the partial derivative of φ with respect to its ith component.
Thus g′(0) = E

∑n
1 φi(EX)(Xi − EXi) = 0. Because g is convex, its

derivative is increasing, so that g′(α) ≥ 0.

From the monotonicity of g in Corollary B.17.a, it follows that
g(0) ≤ g(α) ≤ g(1), 0 ≤ α ≤ 1; that is,

φ(EX) ≤ g(α) ≤ Eφ(X).
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The fact that φ(EX) ≤ Eφ(X) is Jensen’s inequality, but here g(α) is
inserted between these extremes.

B.17.b. Corollary. If X(1),X(2), . . . is a sequence of independent,
identically distributed random vectors with finite expectation, then

1
k

k∑
1

X(i) ≥cx
1

k + 1

k+1∑
1

X(i), k = 1, 2, . . . . (8)

Proof. In the left-hand inequality of (7), take X = 1
k

∑k
1 X

(i), with
α = n/(n+ 1) and Y = X(n+1). This yields (8). ||

B.17.c. Example (Dragomir, 1992). In B.17.a, take n = 1, A =
[a, b]; and assume that X is uniformly distributed on [a, b], then
16.B.12.a is obtained.

B.18. Proposition. If in Proposition B.16, X and Y are exchange-
able random vectors, then g is symmetric about 1/2; that is, g(α) =
g(1 − α), 0 ≤ α ≤ 1.

Proof. In (6), exchanging X and Y is equivalent to interchanging
α and α. ||

B.18.a. Example (Dragomir, 1992). In B.18, take n = 1, A = [a, b],
and suppose that X and Y are independent with distributions uniform
on [a, b]; then 16.B.12.b is obtained.

Much more could be said about the convex order. Example 1.D.3
relates it to continuous majorization, and Proposition C.8 relates it to
the Lorenz order. Through these relationships, several results in the
the following Section C apply to the convex order.

Additional Orderings

B.19. Stochastic dominance in economics. Economists ordinar-
ily use the term “stochastic dominance” in place of “stochastic order”.
Stochastic dominance underlies decision making under uncertainty; it
is a central theme, for example, in comparison of investment policies,
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risk analyses, and portfolio analyses. For a detailed exposition and
extensive lists of references, see Hadar and Russell (1978) and Levy
(2006).

For each of the three kinds of stochastic dominance that are in-
troduced here, two alternative definitions are available. Both of the
definitions are given here together with proofs of equivalence.

The following classes of utility functions are of interest. Let

C1 be the class of increasing functions φ : R → R,

C2 be the class of increasing concave functions φ : R → R,

C3 be the class of increasing concave functions φ : R → R
that have convex derivatives.

The assumption that a utility function is in C1 says only that more
money has a higher utility than less money.

The additional assumption that a utility function is concave (and
so is in C2) corresponds to the assumption that the decision-maker is
risk-averse. For example, if the investor has a choice between receiving
the quantity μ or receiving a random quantity X such that EX = μ,
the risk-averse investor will select the quantity μ. That is, the utility
function φ satisfies Eφ(X) ≤ φ(EX); according to Jensen’s inequality
16.C.1, this holds for all random variables with finite expectations if
and only if φ is concave.

A decision-maker’s local risk aversion is often measured by the quan-
tity r(x) = −φ′′(x)/φ′(x). In order that this be a decreasing function,
it is necessary (though not sufficient) that φ ∈ C3.

In the following, F and G are, respectively, the distributions of the
random variables X and Y .

B.19.a. Definitions. For i = 1, 2, 3, G is said to ith-order dominate
F (alternatively, Y ith-order dominates X) if

Eφ(X) =
∫
φ(x) dF (x) ≤

∫
φ(x) dG(x) = Eφ(Y ) (9)

for all φ ∈ Ci such that the integrals converge.

Note that first-, second- and third-order stochastic dominance are
all cone orderings in the sense of Definition B.1.

Although B.19.a offers good conceptual definitions based upon prop-
erties of utility functions, the conditions are not easily checked directly.
The following definitions remedy this fault, but require proofs of
equivalence.
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B.19.b. Definitions.
(i) The distribution G is said to first-order stochastically dominate F
(alternatively, Y first-order stochastically dominates X) if

F (x) ≥ G(x) for all x; (10)

that is, X ≤st Y.

(ii) The distributionG is said to second-order stochastically dominate F
(alternatively, Y second-order stochastically dominates X) if∫ x

−∞
G(t) dt ≤

∫ x

−∞
F (t) dt <∞ for all x <∞. (11)

(iii) The distribution G is said to third-order stochastically dominate F
(alternatively, Y third-order stochastically dominates X) if∫ x

−∞

∫ z

−∞
G(t) dt dz ≤

∫ x

−∞

∫ z

−∞
F (t) dt dz for all x <∞. (12)

It is often convenient to abbreviate first-, second- and third-order
stochastic dominance by

FSD, SSD, TSD,

respectively. Note that

FSD ⇒ SSD ⇒ TSD;

this follows from Definition B.19.a because

C3 ⊂ C2 ⊂ C1,

and it also follows directly from Definition B.19.b.

Remarks. Some authors add the requirement that strict inequality
holds for some x in (10), (11), and (12), but this does not play a role
in what follows.

The condition in (11) and (12) that the integrals be finite avoids
some meaningless comparisons. The integrals are always finite if
F (
) = G(
) for some 
 > −∞. It is often assumed that 
 = 0, in
which case the lower limits of integration in (10) and (11) can be re-
placed by 0.

Condition (10) is sometimes written in the form F (x) ≤ G(x) for
all x, where F (x) = 1 − F (x), G(x) = 1 − G(x). If F (
) = G(
) = 0
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for some 
 > −∞, then (11) can be rewritten in the form∫ x

�
F (t) dt ≤

∫ x

�
G(t) dt, x ≥ 
;

similarly, (12) can be rewritten in terms of F and G.

B.19.c. Proposition. For first-, second- and third-order stochastic
dominance, the conditions of Definitions B.19.a and B.19.b are
equivalent.

Proof. For FSD, the proof is given in Proposition A.2. To prove
the equivalence for SSD, suppose first that (11) holds. With the aid
of Fubini’s theorem, it follows that∫ x

−∞
F (t) dt =

∫ x

−∞

∫ t

−∞
dF (z) dt =

∫ x

−∞

∫ x

z
dt dF (z) (13)

=
∫ x

−∞
(x− z) dF (z) =

∫ ∞

−∞
(x− z)+ dF (z).

It follows from (13) and (11) that for all constants c and x,∫ ∞

−∞
[c− (x− z)+] dF (z) ≤

∫ ∞

−∞
[c− (x− z)+] dG(z).

Because concave increasing functions can be approximated by positive
linear combinations of functions having the form

φ(x) = c− (x− z)+, −∞ < x < z (14)

(this fact is a variant of Proposition 16.B.4), it follows that (9) holds
for all φ ∈ C2.

Conversely, if (9) holds for all φ ∈ C2, then in particular it holds for
functions of the form (14); this is equivalent to (11).

It remains to prove the proposition for third-order dominance. Again
with the aid of Fubini’s theorem, it follows that∫ x

−∞

∫ z

−∞
F (t) dt =

∫ x

−∞

∫ z

−∞
(z − w)+ dF (w) dz (15)

=
∫ x

−∞

∫ x

w
(z − w)+ dz dF (w) =

∫ ∞

−∞

1
2
[(x− w)+]2 dF (w).

If (12) holds, it follows from (15) that∫ ∞

−∞

{
c− 1

2
[(x− w)+]2

}
dF (w) ≥

∫ ∞

−∞

{
c− 1

2
[(x− w)+]2

}
dG(w)

for all c, x ∈ R.
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Let

φ(w|x, c) = c− 1
2
[(x− w)+]2,

and note that

φ
′
(w|x, c) = x− w, w ≤ x, (16)

= 0, w ≥ x.

Suppose that u ∈ C3; that is, u is an increasing concave function
with convex derivative u′. Then

u′ ≥ 0, u′ is decreasing and u′′ is increasing.

In a manner similar to that used in Proposition 16.B.4, it can be
verified that u′ can be approximated by a positive linear combination
of functions of the form (16). Consequently, u can be approximated
by a linear combination of functions of the form φ(·|x, c). Thus (12)
implies (9) for all φ ∈ C3.

Conversely, if (9) holds for all φ ∈ C3, it holds in particular for
functions of the form φ(·|x, c); i.e., (12) holds. ||
Remarks.

1. If Y first-, second-, or third-order stochastically dominates X, then
EX ≤ EY because the function φ(x) = x is in Ci, i = 1, 2, 3.

2. If EX = EY, then the stochastic completion of C2 includes all
concave functions, increasing or not; and the stochastic completion of
C3 includes all concave functions with convex derivatives, increasing
or not. It follows that if EX = EY and Y second-order stochastically
dominates X, then VarX ≥ Var Y. To see this, take φ(x) = −x2 in (9).

B.20. Peakedness. Let C consist of all centrally symmetric nonneg-
ative quasi-concave functions defined on R n. If X and Y are random
variables with centrally symmetric distributions and if X ≤st

C Y , then
X is said to be less peaked than Y . This definition, due to Birnbaum
(1948) in the univariate case, has been studied by various authors [see
Dharmadhikari and Joag-Dev (1988, p. 160) and Bergmann (1991)];
see Section 12.J for an extended discussion of peakedness.

The cone of this example is not complete, and in fact its completion
consists of all reflection-symmetric functions φ such that φ(αx) ≤ φ(x)
for all x and α in [0, 1]. Of course, the cone C does not even include
all constant functions. On the other hand, it is clear that C = C̃ ,
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where C̃ is defined in B.11. This means that X ≤st
C Y if and only if

φ(X) ≤st φ(Y ) for all φ in C .

B.21. Concordance. Suppose that C consists of the L-superadditive
functions defined on R 2, i.e., functions φ for which

φ(α1 + δ1, α2 + δ2) + φ(α1 − δ1, α2 − δ2)

≥ φ(α1 + δ1, α2 − δ2) + φ(α1 − δ1, α2 + δ2)

whenever δ1, δ2 ≥ 0. Then X ≤st
C Y if and only if X is less concordant

than Y in the sense of Cambanis, Simons, and Stout (1976) or Tchen
(1980). Because of its connection with the notion of positive quadrant
dependence (Lehmann, 1966), this ordering was introduced and stud-
ied by Yanagimoto and Okamoto (1969). See also Section 12.M and
Rüschendorf (1981). It is easily shown that in this case, X and Y
necessarily have the same marginal distributions.

The convex cone of L-superadditive functions is stochastically com-
plete but not complete; in fact, its completion consists of all real
functions defined in R 2.

B.22. Scaled order statistics. For ai > 0, i = 1, . . . , n, the ordered
values of a1X1, . . . , anXn are called scaled order statistics; these reduce
to the usual order statistics when ai = 1, i = 1, . . . , n. See 12.D.

Scarsini and Shaked (1987) define a preordering ≤ of nonnega-
tive random vectors by the condition that the kth order statistic of
a1X1, . . . , anXn be stochastically smaller than the kth order statistic
of a1Y1, . . . , anYn for all ai > 0, i = 1, 2, . . . , n. They identify a rather
complicated set of functions φ for which Eφ(X) ≤ Eφ(Y ) implies
X ≤ Y in their ordering. It would be of interest to characterize the
convex cone generated by their set of functions.

C The Lorenz Order

Motivation

The original motivation for studying the Lorenz curve was given in
terms of income or wealth distributions. It was introduced at a time
when there was considerable debate regarding the merits of several
competing summary measures of inequality that were currently in use.
Indeed, the Lorenz curve was regarded as an excellent alternative to
single-number summaries of the inequality in economic populations.
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This is a parallel to the fact that, though a mean (or median) gives a
useful summary or typical value of a density, the density itself is surely
more informative. Nevertheless, the attraction of simple summary in-
equality measures remained. What was generally conceded was that
such measures should “preserve” the Lorenz order based on nested
Lorenz curves introduced in this section.

The Lorenz curve introduced in 1.A for comparing income or
wealth distributions among finite populations with n individuals in the
population admits a straightforward extension to allow comparisons
between populations of different sizes, and also admits an extension to
allow variability comparison of nonnegative random variables with fi-
nite positive expectations. To this end, a more general definition of the
Lorenz curve is required that subsumes the original definition provided
by Lorenz (and described in detail in 1.A). Along the way extensions
of the inequality measures described in 13.F for finite populations are
introduced. The Lorenz order is compared with several other “variabil-
ity” orderings available in the literature. Much of the motivation given
is still in terms of inequalities of wealth and income, though it must
be recalled that diversity or inequality measurement is of interest in a
broad spectrum of fields outside economics.

It is observed in Chapter 15 that a number of candidate multivariate
extensions of majorization exist. Likewise, several multivariate exten-
sions of the Lorenz curve have been proposed. One particular extension
involving zonoids that might lay claim to being “the” natural extension
of the Lorenz curve is described in this section.

The Lorenz Curve

Denote the class of univariate distribution functions with positive finite
expectations by L and denote by L+ the class of all distributions
in L with F (0) = 0, i.e., those corresponding to nonnegative random
variables.

C.1. Definition (Gastwirth, 1971). The Lorenz curve L of a random
variable X with distribution F ∈ L is

L(u) =

∫ u
0 F

−1(y)dy∫ 1
0 F

−1(y)dy
=

∫ u
0 F

−1(y)dy
EX

, 0 ≤ u ≤ 1, (1)
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where

F−1(y) = sup{x : F (x) ≤ y}, 0 ≤ y < 1,

= sup{x : F (x) < 1}, y = 1,

is the right continuous inverse distribution function or quantile func-
tion corresponding to F . [See Marshall and Olkin (2007, p. 639) for
a detailed discussion of alternative definitions of inverse distribution
functions.]

It is readily verified that this definition of a Lorenz curve agrees
with the definition in 1.A, in which the Lorenz curve corresponding
to n ordered numbers x(1) ≤ x(2) ≤ . . . ≤ x(n) is obtained by linear
interpolation of the points(

i

n
,

∑i
1 x(j)∑n
1 x(j)

)
, i = 1, 2, . . . , n. (2)

The interpretation of the Lorenz curve, “as the bow is bent, inequality
increases,” continues to be valid with the more general definition (1).

Figure 1 provides illustrations of empirical Lorenz curves based on
data provided by Atkinson (1975). It shows the Lorenz curves for in-
come distributions in the United Kingdom (1964), the Netherlands
(1962), and West Germany (1964). The figure confirms the observa-
tion that Lorenz curves are in some cases nested, but that they can
cross (in fact, multiple crossing points can be encountered).
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roportion of total incom
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Figure 1. Lorenz curve comparisons.

Because every distribution function can be expressed as a limit in
distribution (as n → ∞) of a sequence of discrete distributions with
n support points, it is verified by taking limits that the definition
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presented in (1) is inevitable in the sense that it is the only definition
that is consistent with Lorenz’s original definition for distributions
with n support points.

Several properties of Lorenz curves corresponding to distributions in
L+ are self-evident from (1). Such a Lorenz curve is a nondecreasing
convex function that is differentiable almost everywhere in [0, 1] and
satisfies L(0) = 0, L(1) = 1. The Lorenz curve always lies below the
line joining (0, 0) and (1, 1) and coincides with this diagonal line if and
only if F is degenerate. Observe also that the Lorenz curve determines
the distribution F up to a scale change. If F is an absolutely continuous
distribution, then the Lorenz curve is twice differentiable.

C.2. Example: The Pareto distribution. The classical Pareto
distribution function with finite mean is defined by

F (x) = 1 − (x/σ)−ξ , x > σ, ξ > 1. (3)

The corresponding quantile function is

F−1(u) = σ(1 − u)−1/ξ , 0 < u < 1,

and the Lorenz curve is thus given by

L(u) = 1 − (1 − u)(ξ−1)/ξ , 0 ≤ u ≤ 1. (4)

C.3. Example: The Uniform distribution. For the uniform dis-
tribution on the interval (a, a + b), where a, b > 0, the distribution
function is

F (x) =

⎧⎨
⎩

0, x ≤ a,
(x− a)/b, a < x ≤ a+ b,
1, x > a+ b.

The quantile function is

F−1(u) = a+ bu, 0 ≤ u ≤ 1,

and the Lorenz curve is

L(u) =
2au+ bu2

2a+ b
, 0 ≤ u ≤ 1.

Lorenz Curves for Nonnegative Random Variables

In many areas, such as engineering, economics, reliability theory, or
medical survival analysis, the random variables involved are necessarily
nonnegative. Write X ∈ L+ if X is nonnegative with positive finite
expectation. Note that the notation L+ is used to denote the class of
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random variables and the class of corresponding distribution functions.
The restriction of random variables under consideration to those which
are nonnegative has the advantage that their Lorenz curves, as defined
in C.1, are closer in form to those described in the original vision of
Lorenz.

If X ∈ L+, the Lorenz curve, LX , is always contained in the area
below the diagonal in the unit square. It is a continuous convex func-
tion joining (0, 0) to (1, 1). If the Lorenz curve is twice differentiable
in an interval (u1, u2), then the corresponding distribution of X has a
finite positive density on the interval

((EX)L′(u1+), (EX)L′(u2−)),

and in that interval its density is given by

f(x) = [(EX)L′′(F (x))]−1. (5)

If a continuous convex function L(u) defined on [0, 1] is the Lorenz
curve of some random variable in L+, then

L(0) = 0, L(1) = 1, L′(0) ≥ 0, L′(1) ≥ 1.

Much of the early discussion of Lorenz curves was presented with refer-
ence to a somewhat different (but equivalent) parametric definition of
the Lorenz curve. For any random variable X ∈ L+ with distribution
function F , define its first moment distribution function, F(1), to be

F(1)(x) =

∫ x
0 y dF (y)∫∞
0 y dF (y)

. (6a)

The set of points comprising the Lorenz curve of X can be identified
as the set of points

{(F (x), F(1)(x)) : 0 ≤ x ≤ ∞}, (6b)

completed if necessary by linear interpolation. Make a natural change
of variables in (6a) to obtain the expression for the Lorenz curve:

L(u) = F(1)(F
−1(u)), 0 ≤ u ≤ 1. (7)

The advantage of the representation (6b) is that it avoids the necessity
of computing the quantile function of X.

There are, in fact, relatively few families of distributions for which
analytic expressions for the corresponding Lorenz curves are available.
The classical Pareto family and the uniform distribution (Examples
C.2, C.3) are, of course, such families. Other examples are the
exponential distribution and the arcsin distribution.
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It is possible to begin with parametric families of Lorenz curves
with simple analytic forms, and then identify analytic expressions for
the corresponding densities or distribution functions. For example,
Villaseñor and Arnold (1989) begin with general quadratic forms for
Lorenz curves and identify the corresponding density functions. Be-
cause much income distribution data is presented in terms of Lorenz
curves, it is desirable to identify parametric families of Lorenz curves
that can be used to “fit” such data. For more details, refer to Section D.

The exponential distribution is a favored building block for many
reliability and survival models, so it is indeed fortunate that it has an
available analytic expression for its Lorenz curve; see, e.g., Marshall
and Olkin (2007, p. 293). In the income distribution literature, the
Pareto distribution (and its variants) holds a place of honor. There
is, and has been for a long time, a challenger for “supremacy” in the
income distribution area. The lognormal distribution has frequently
been proposed as an alternative to the classical Pareto model.

C.4. Example: The lognormal distribution. A nonnegative
random variable X is said to have a lognormal distribution with
parameters μ and σ if its density is

f(x) =
1

σx
√
π

exp

{
−1

2

(
log x− μ

σ

)2
}
, x > 0. (8)

Such a random variable can be represented in the form

X = exp(μ+ σZ),

where Z has a standard normal distribution. Consequently, eμ is a scale
parameter for X, and σ is a parameter which determines the shape of
the distribution. Detailed discussion of the lognormal distribution is
provided by Marshall and Olkin (2007, pp. 431–441). A simple analytic
form for the lognormal Lorenz curve is not available, but there is a
very useful expression for this Lorenz curve that takes advantage of
readily available tables of the standard normal distribution and its
corresponding quantiles.

In computation of the Lorenz curve of X, the assumption that eμ = 1
(i.e., μ = 0) can be made without loss of generality.

It can be verified that if X has the lognormal density (8), then

L(u) = Φ(Φ−1(u) − σ), 0 ≤ u ≤ 1, (9)

where Φ denotes the standard normal distribution function.
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Will an expression such as

L(u) = F (F−1(u) − σ), 0 ≤ u ≤ 1, (10)

for some distribution function F other than Φ yield a family of Lorenz
curves? A sufficient condition can be identified.

C.5. Proposition (Arnold, Robertson, Brockett and Shu, 1984).
A sufficient condition for (10) to represent a family of Lorenz curves
indexed by σ > 0 is that F has a log concave (also called strongly
unimodal) density (18.B).

The Lorenz Order

Lorenz originally proposed an ordering of income distributions in terms
of nested Lorenz curves, or in his phraseology, in terms of the degree
to which “the bow is bent.” By using the more general Definition C.1,
the ordering that he proposed can be extended to provide a partial
order in the class L (of univariate distributions with positive finite
expectations).

C.6. Definition: Lorenz order. Let FX , FY ∈ L , with correspond-
ing Lorenz curves LX and LY . Then X is less than Y in the Lorenz
order, denoted X ≤L Y , or equivalently, FX ≤L FY if LX(u) ≥ LY (u)
for all u ∈ [0, 1].

C.7. Example. A family of distributions with Lorenz curves of the
form (10) is, in the Lorenz order, increasing in σ. In particular, if X
has the lognormal density (8) with parameters μX and σX , and Y has
the density (8) with parameter μY and σY , then σX ≤ σY implies
X ≤L Y .

The interpretation of the Lorenz partial order defined in C.6 is that
if LX(u) ≥ LY (u) for all u ∈ [0, 1], then X exhibits less (or equal)
inequality in the Lorenz sense than does Y [or equivalently that the
distribution function FX exhibits less (or equal) inequality than the
distribution function FY ].

The reader is cautioned that the reverse ordering is sometimes called
the Lorenz ordering.

The Lorenz order is a natural extension of classical majorization in
the following sense. Suppose that x, y ∈ R n. Let X denote a random
variable corresponding to a random selection of a coordinate of x, i.e.,
P{X = xi} = 1/n, i = 1, . . . , n. Similarly, associate a random vari-
able Y with y. It can be verified that x ≺ y if and only if X ≤L Y .
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As a consequence, it is not surprising that several of the characteri-
zations of majorization included in Chapter 1 extend readily to the
Lorenz order setting. The proofs can be obtained using limiting ar-
guments, though in fact Hardy, Littlewood, and Pólya (1929) discuss
more general settings also.

The Lorenz order is intimately related to the convex order
(Definition B.14), which is defined on a larger class of random
variables.

C.8. Theorem. Suppose that X,Y ∈ L and EX = EY . Then
X ≤L Y if and only if Eh(X) ≤ Eh(Y ) for every continuous convex
function h, that is, if and only if X ≤cx Y .

C.9. Corollary. For X,Y ∈ L , X ≤L Y if and only if Eg(X/EX) ≤
Eg(Y/EY ) for every continuous convex g, such that expectations exist.

C.10. Corollary C.9 can be restated follows: For X,Y ∈ L+,

X ≤L Y if and only if X/EX ≤cx Y/EY.

C.11. Theorem. If X,Y ∈ L and EX = EY , then X ≤L Y if and
only if E(X − c)+ ≤ E(Y − c)+ for every c ∈ R.

The relation between C.8 and C.11 is illuminated by considering
16.B.4, which relates convex functions (in C.8) with “angle” functions
(in C.11).

There is an analog to Theorem 2.B.2 that is best understood as a
consequence of the fact that when x = yP for some doubly stochastic
matrix P (and so x ≺ y), then the coordinates of x are averages of the
coordinates of y. Identify x and y with discrete random variables X
and Y with n equally likely possible values given by the coordinates
of x and y, respectively; then it follows that x ≺ y implies that X and
E(Y |Z) have the same distribution, where Z has a discrete uniform
distribution. This remains true in more general settings.

C.12. Theorem (Strassen, 1965). Let X,Y ∈ L with EX = EY .
The following are equivalent:

(i) X ≤L Y ;

(ii) there exist jointly distributed random variables Y ′, Z ′ such that
Y and Y ′ have the same distribution, and X and E(Y ′|Z ′) have
the same distribution.
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That (ii) implies (i) is a direct consequence of Jensen’s inequality and
Theorem C.8. The proof of the converse is given by Strassen (1965).

Theorem C.12 makes precise the statement that averaging decreases
inequality in the Lorenz ordering sense.

C.13. Example. Suppose that X has a Weibull distribution with
P{X > x} = exp{−(λx)α}, x > 0;λ, α > 0, and Y has a Pareto (IV)
distribution with P{Y > y} = (1+(δy)α)−ξ, y > 0 and λ, δ > 0, where
αξ > 1. Then X ≤L Y .

To see that X ≤L Y , begin by noting that because the Lorenz order
is unaffected by changes of scale, assume with no loss in generality that
λ = δ = 1, so that P{X > x} = exp{−xα}, x > 0, and P{Y > y} =
(1 + yα)−ξ, y > 0. Let Z be a random variable that is independent
of X, and having a gamma density f(z) = zξ−1e−z/Γ(ξ), z > 0, ξ > 0.
If Y ′ = X/Z1/α, then Y and Y ′ have the same distribution with
E(Y ′|X) = XEZ−1/α. By Theorem C.12, XEZ−1/α ≤L Y and by
the scale invariance of the Lorenz order, X ≤L Y .

Other examples involving distributions that are expressible as scale
mixtures can be similarly treated.

Inequality Measures

In 13.F a spectrum of candidate summary inequality measures is in-
troduced in the discrete setting. In economic terms, the measures
in 13.F are suitable for comparing finite populations with the same
number, n, of individuals in the populations being compared. The ex-
tended Definition C.1 of the Lorenz curve allows comparison of infinite
populations and populations of different sizes.

In a general context, a reasonable measure of inequality is a real-
valued quantity h(X) whose value is determined by the distribution of
X that satisfies

X ≤L Y ⇒ h(X) ≤ h(Y ).

The notation used here might cause confusion. The expression h(X)
does not refer to a random variable that is a function of X. It refers
to a typically positive quantity that is associated with the random
variable X. Usage of this form is familiar, for example, when we denote
the standard deviation of X by σ(X), implying that σ(X) is a positive
quantity and not a random variable.
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According to Proposition C.8,

h(X) = E(g(X/EX)) (11)

is a suitable choice for such a measure, where g is any continuous
convex function. For example, the choice g(x) = x log x leads to a
measure related to the entropy measures of inequality in 13.F.3.

A fairly common inequality measure for random variables in L+ that
preserves the Lorenz order is the coefficient of variation defined by

h(X) =

√
E

[
X − EX

EX

]2

, (12)

which is location- and scale-invariant. It is recognizable as the square
root of a function of the form (11).

Observe that measures of the form (11) essentially compare the value
of X with a typical value EX. There are, however, several attractive
measures of inequality that respect the Lorenz order and are not of
this form. These measures are defined in terms of geometric features
of the graph of the Lorenz curve, though they often admit alternative
interpretations.

The Gini Index

The best-known inequality measure associated with the Lorenz curve
is the Gini index [proposed by Gini (1912)]. For an extensive bibli-
ography of the Gini index, see Giorgi (1990). The description of this
measure (or index) provided in 13.F.4.a remains valid in the more gen-
eral context. The Gini index is geometrically described as twice the
area between the Lorenz curve and the egalitarian line [the line join-
ing (0, 0) to (1, 1)]. By construction, it preserves the Lorenz order.
Denote the Gini index of a random variable X ∈ L+ by G(X).

The Gini index can be defined without reference to the Lorenz curve.
Instead of determining how farX is from a typical value on the average,
the variability or inequality can be assessed in terms of how far apart
two independent and identically distributed copies X1 and X2 of X
are on the average. To determine the Gini index of X, evaluate

G(X) = E
|X1 −X2|

2EX
. (13a)
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It is customary to divide by twice the mean rather than the more
natural division by the mean in order to have a measure ranging in
value between 0 and 1 (for X ≥ 0).

When the variables X1 and X2 are regarded as representing a sample
of size 2, (13a) can be rewritten in terms of order statistics. Denote by
Xi:m the ith order statistic from a sample of size m. The Gini index
G(X) can then be expressed as follows:

G(X) =
E|X1 −X2|

2EX
=
EX2:2 − EX1:2

EX2:2 + EX1:2

= 1 − EX1:2

EX2:2
. (13b)

An alternative measure based on the Lorenz curve is the Pietra index
π(X) introduced by Pietra (1915). It is the maximum vertical deviation
between the Lorenz curve and the egalitarian line joining (0, 0) to
(1, 1). By construction, it preserves the Lorenz order. An alternative
expression for π(X) is given by

π(X) =
E|X − EX|

2EX
. (14)

Amato (1968) suggested measuring inequality by the length of the
Lorenz curve [see also Kakwani (1980)]. Such a measure clearly pre-
serves the Lorenz order, but is somewhat troublesome with regard to
its evaluation in specific cases. Kakwani actually suggested that, in-
stead of the length, a standardized version of the length (ranging in
value between 0 and 1) be used. For simplicity, standardization is fore-
gone and the length of the Lorenz curve, denoted by K(X), is used
as an inequality measure. The three inequality orderings, in terms of
G(X), π(X), andK(X), all preserve the Lorenz order, but they provide
intrinsically different orderings of random variables in L .

It is not difficult to construct examples of pairs of random variables
in L such that any two of the three orders disagree, i.e., such that

(i) G(X) < G(Y ) and π(X) > π(Y ),

(ii) G(X) < G(Y ) and K(X) > K(Y ),

(iii) π(X) < π(Y ) and K(X) > K(Y ).
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Reference to Fig. 1 in Chapter 1 provides a visual confirmation of
the fact that the three indices G(X) (area between the Lorenz curve
and the egalitarian line), π(X) (maximal vertical deviation between
the Lorenz curve and the egalitarian line), and K(X) (length of the
Lorenz curve) preserve the Lorenz order.

Rather trivial one-point summaries of the Lorenz curve can be also
used as inequality measures. For example, the “top 100α percent”
LX(α) defined in 13.F.4.d could be used. Generalizing the minimal
majority measure in 13.F.4.c, inequality can be measured by evaluating
L−1
X (β) for some fixed value of β (not necessarily 1/2).
One clear advantage of the use of summary measures of inequality

rather than the full Lorenz ordering is that a summary measure pro-
vides a total ordering on L , whereas the Lorenz order is only a partial
order because Lorenz curves can cross.

Orderings Related to the Lorenz Order

Determining whether X ≤L Y in a particular case can be a non-trivial
exercise, because analytic expressions are frequently not available
for the Lorenz curves of the random variables. However, there are
orderings stronger than the Lorenz order that are on occasion eas-
ier to check. For simplicity, focus on orderings on L+ (the class of
nonnegative integrable random variables).

C.14. Definition. Let F,G be the distributions of X,Y ∈ L+. Then
X is said to be star-shaped with respect to Y , denoted X ≤∗ Y , if
F−1(u)/G−1(u) is increasing on (0, 1).

This is equivalent to the definition in Section 12.D.
The star-shaped ordering is obviously scale-invariant; i.e., if X ≤∗ Y,

then aX ≤∗ bY for any a, b > 0.

C.15. Proposition. If X,Y ∈ L+ and X ≤∗ Y, then X ≤L Y .

Proof. Without loss of generality, assume EX = EY = 1. Then

LX(u) − LY (u) =
∫ u

0
[F−1(v) −G−1(v)]dv. (15)

Because F−1(u)/G−1(u) is increasing, the integrand is first positive
and then negative as v ranges over (0, 1). So the integral in (15) is
smallest when u = 1 and so LX(u) − LY (u) ≤ LX(1) − LY (1) =
1 − 1 = 0, for every u ∈ (0, 1). ||

An essential ingredient in the proof is that F−1(v)−G−1(v) has only
one sign change from + to −. This motivates the following:
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C.16. Definition. If X,Y ∈ L+ and if

F−1(v)
EX

− G−1(v)
EY

has at most one sign change (from + to −) as v varies over (0, 1), then
say that X is sign-change ordered with respect to Y denoted X ≤sc Y .

C.17. Proposition. The sign-change order, X ≤sc Y , implies the
Lorenz order, X ≤L Y .

Proof. The argument used in Proposition C.15 applies. ||
If X and Y have densities f(x) and g(y), then the following density

crossing condition provides a convenient sufficient condition for sign-
change ordering and hence Lorenz ordering.

C.18. Proposition. If X,Y ∈ L+ have corresponding densities f
and g on R+ and expectations μ and ν and if the function

μf(μx) − νg(νx) (16)

has either two sign changes (from − to + to −) or one sign change
(from + to −) as x varies from 0 to ∞, then X ≤sc Y .

Proof. The expression (16) is just the density of X/μ minus the
density of Y/ν. The fact that (16) exhibits at most two sign changes is
sufficient to guarantee a single sign change for the difference between
the respective distribution functions F (μx) −G(νx), and because in-
verse functions cross only once if the original functions cross only once,
it follows that [F−1(v)/μ] − G−1(v)/ν] has at most one sign change
from + to −; i.e., X ≤sc Y. ||

Proposition C.18 has the potential advantage of allowing the veri-
fication of sign-change ordering, and hence Lorenz ordering, without
the need to compute the inverse distribution functions F−1 and G−1.

Observe that a condition equivalent to the sufficient condition of
Proposition C.18 is that the ratio of the densities in (16) crosses the
level 1 at most twice, and if twice, then from − to + to −.

C.19.a. Example. A random variable X is said to have a gamma
distribution with parameters λ and ν if its density is of the form

f(x) =
λνxν−1e−λx

Γ(ν)
, x > 0, λ; ν > 0.

Suppose that, with λ = 1, X and Y have gamma distributions with
parameters ν1 and ν2, respectively, where ν1 < ν2. The condition of
Proposition C.18 can be verified so that X ≤sc Y , and thus X ≤L Y .
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An alternative derivation of this fact is given by Marshall and Olkin
(2007, p. 318).

C.19.b. Example. Let Ui:n denote the ith order statistic correspond-
ing to a sample of size n from a uniform distribution on (0, 1). The
corresponding density of Ui:n is

fUi:n(u) = n
(
n−1
i−1

)
ui−1(1 − u)n−i, 0 < u < 1.

Using the density crossing criterion of Proposition C.18 and the fact
that EUi:n = i/(n+1), it can be verified that Ui−1:n ≥∗ Ui:n and hence
Ui−1:n ≥L Ui:n.

There is another variability ordering called dispersion ordering that
is intimately related to star ordering.

C.20. Definition (Doksum, 1969). Suppose that X and Y are ran-
dom variables with respective distributions F and G. Then X is said
to be smaller than Y in the dispersion order, written X ≤disp Y or
F ≤disp G, if for every 0 < α < β < 1

F−1(β) − F−1(α) ≤ G−1(β) −G−1(α).

To see the relationship between dispersion ordering and star order-
ing, it is convenient to observe that X ≤∗ Y if and only if for every
c > 0, X and cY have distribution functions that cross at most once,
and if there is a sign change, then the distribution of X crosses that of
Y from − to +. Analogously, X ≤disp Y if and only if, for every real c,
X and c+ Y have distribution functions that cross at most once and
if there is a crossing, then the distribution of X crosses that of c+ Y
from − to + (Shaked, 1982). So another sufficient condition for Lorenz
ordering X ≤L Y is that logX ≤disp log Y .

A more detailed discussion of these relationships is given by Marshall
and Olkin (2007) and by Shaked and Shantikumar (2007). Shaked
and Shantikumar (2007, Chapter 3) provide an exhaustive coverage
of variability ordering and several other related orderings. Examples
not considered here are the total time on test ordering, the excess
wealth ordering, and the new better than used in expectation ordering.
Further discussion of these orderings is provided in Section D.

C.21. Example (Korwar, 2002). Let X1,X2, . . . ,Xn be independent
random variables uniformly distributed on (0, 1). For λ, μ ∈ R n

++, a
sufficient condition for
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n∑
i=1

Xi

λi
≤disp

n∑
i=1

Xi

μi

is that λ ≺ μ. Subsequently, Khaledi and Kochar (2002) show that the
condition λ ≺ μ can be replaced by the weaker condition log λ ≺w log μ
[called p-ordering by Bon and Păltănea (1999)]. A parallel result holds
if the Xi’s have a gamma distribution with a common parameter ν ≥ 1
(Korwar, 2002, and Khaledi and Kochar, 2004).

Transformations

Within the context of income distributions there is considerable inter-
est in the effects of transformations on the Lorenz order. A frequent
interpretation is that the random variable X ≥ 0 represents the initial
income distribution, and g(X) represents a modified distribution after
some intervention in the economic process, such as the imposition of
an income taxation policy. Two classes of functions are of particular
interest here.

C.22. Definition. A function g is said to be inequality-preserving if
X ≤L Y implies g(X) ≤L g(Y ) for X,Y ∈ L+.

C.23. Definition. A function g is said to be inequality-attenuating
if g(X) ≤L X for every X ∈ L+.

A trivial example of an inequality-preserving function is one of the
form g(x) = cx for some c > 0. There are, in fact, only three types of
inequality-preserving functions:

g1c(x) = cx for some c > 0; (17)

g2c(x) = c for some c > 0; (18)

g3c(x) =
{

0, x = 0,
c, x > 0 for some c > 0. (19)

This conclusion can be compared with the result in 5.A.1.e in which
measurable functions that preserve majorization are linear. In the
context of preservation of the Lorenz order, it can be verified that
preservation of inequality implies monotonicity, and hence measura-
bility. Moreover, a function of the form cx + b with b �= 0 preserves
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majorization but not the Lorenz order. For details, see Arnold and
Villaseñor (1985) or Arnold (1991).

Note. In contrast, the class of transformations that preserve the star
order is broader; for example, it includes g(x) = xp for any p �= 0
(Shaked and Shanthikumar, 2007, p. 212, Theorem 4.B.6).

Inequality-attenuating functions can be readily characterized as fol-
lows (compare with Proposition 5.B.2, which involves the parallel
result for majorization in one direction).

C.24. Proposition (Fellman, 1976; Arnold and Villaseñor, 1985).
Let g : R+ → R+. The following are equivalent:

(i) g(X) ≤L X for all X ∈ L+;

(ii) g(x) > 0 for all x > 0, g(x) is increasing on [0,∞), and g(x)/x
is decreasing on (0,∞).

Proof. (ii) implies (i). If X ∈ L+ and g satisfies (ii), then it can
be verified that g(X) ∈ L+. Without loss of generality, assume that
X = F−1(U), where U has a uniform distribution on (0, 1) and that
Y = g(F−1(U)). For u ∈ (0, 1),

LY (u) − LX(u) =
∫ u

0

g(F−1(v))dv
EY

−
∫ u

0

F−1(v)dv
EX

=
∫ u

0

[
g(F−1(v)) − EY

EX
F−1(v)

]
dv

EY
.

But (compare the proof of Proposition C.15) because g(x)/x is decreas-
ing on (0,∞), the above integrand is first positive and then negative
as v ranges from 0 to 1. The integral is thus smallest when u = 1, but
LY (1) − LX(1) = 1 − 1 = 0. So LY (u) − LX(u) ≥ 0 for all u ∈ [0, 1],
and consequently Y = g(X) ≤L X.

To prove the converse, verify that if any one of the conditions in (ii)
is violated, a random variable X with just two possible values can be
constructed to violate (i). ||
C.25. Example. Suppose that X is a random variable in L+ with
EXα < ∞ and EXβ < ∞ for some α, β > 0. By Proposition C.24, it
follows that Xα ≤L X

β if and only if α ≤ β.

Transformations that include a random component are more dif-
ficult to deal with. Suppose that X ∈ L+ and Y = ψ(X,Z) ≥ 0,
where Z is random. What conditions must be placed on ψ and on the
joint distribution of X and Z to ensure inequality attenuation, that
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is, that Y ≤L X? And what conditions are needed to ensure increased
inequality, that is, X ≤L Y ?

Because the introduction of additional randomness typically in-
creases variability, it is to be expected that increased inequality
will be more frequently encountered than inequality attenuation.
A representative sufficient condition is provided in the following:

C.26. Theorem (Arnold and Villaseñor, 1985). Suppose that the
function g : R 2

+ → R+ is such that g(z, x)/x is increasing in x for every
z, and g(z, x) is increasing in x for every z. If X and Z are independent
nonnegative random variables with X ∈ L+ and g(Z,X) ∈ L+, then
X ≤L g(Z,X).

Multivariate Extensions

Extension of the Lorenz curve concept to higher dimensions was long
frustrated by the fact that the usual definition of the Lorenz curve
involved either order statistics or the quantile function of the cor-
responding distribution, neither of which has a simple multivariate
analog.

There is one readily available representation of the univariate Lorenz
curve that does not explicitly involve the quantile function, namely, the
Lorenz curve given in (6b). Analogously, Taguchi (1972) and Lunetta
(1972) define, for a bivariate distribution F with density f , a Lorenz
surface parameterized by (x, y) to be the set of points in R 3 with
coordinates{

F (x, y),
∫ x

−∞

∫ y

−∞
uf(u, v)dudv,

∫ x

−∞

∫ y

−∞
vf(u, v)dudv

}
.

Arnold (1987) proposed an alternative parametric definition of a
Lorenz surface for bivariate distributions, again indexed by (x, y) with
marginal distributions F1 and F2. The points on this surface are{

F1(x), F2(y),
∫ x

−∞

∫ y

−∞
uvf(u, v)dudv

}
.

Both of these proposals are difficult to interpret, and neither has
received much subsequent attention.

To move smoothly from one dimension to higher dimensions, a new
definition of the Lorenz curve is required. A seminal paper for the
identification of a suitable definition is that of Koshevoy (1995). Sub-
sequent results obtained by Koshevoy and Mosler (1996, 1997b) are
summarized by Mosler (2002). The following presentation introduces
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the topic, but reference to Mosler is recommended for an in-depth
discussion in which zonoids not only are discussed with relation to
multivariate dispersion ordering but also are shown to play a funda-
mental role in the study of central regions and data depth (as indicated
by the title of Mosler’s monograph).

Begin by again considering the Lorenz curve associated with n or-
dered numbers x1 ≤ x2 ≤ . . . ≤ xn as a linear interpolation of the
points ⎛

⎝ i

n
,

i∑
j=1

xj

/⎛
⎝ n∑
j=1

xj

⎞
⎠
⎞
⎠ . (20)

For each i, an income interpretation is available for the point (20).
Its first coordinate represents the fraction of the total population (i.e.,
i/n) accounted for by the poorest i individuals in the population. The
second coordinate corresponds to the fraction of the total income of the
population accruing to the poorest i individuals in the population. An
alternative to considering such extreme subsets of the population is to
plot, for every subset of j of the individuals in the population, the point
whose coordinates are (a) the proportion of the population accounted
for by the j individuals (i.e., j/n), and (b) the proportion of the total
income accounted for by the j individuals. No ordering of the xi’s is
required to plot these points. In this setting it is convenient to define
also a “reverse” Lorenz curve in which are plotted the income share of
the richest i individuals against i/n, i = 1, 2, . . . , n.

See Fig. 2, in which the Lorenz curve and the reverse Lorenz curve
for the 5 numbers (3, 5, 9, 2, 1) are plotted. The lower curve in the figure
is the Lorenz curve. The upper curve is the reverse Lorenz curve. The
points that are graphed in the figure correspond to the “income shares”
for the various subsets of the population (there are 25 subsets of the
set of n = 5 numbers in the population). It is evident from the figure
that the region between the Lorenz curve and the reverse Lorenz curve
is the convex hull of these 25 points. If one Lorenz curve is uniformly
below a second Lorenz curve, their corresponding reverse Lorenz curves
are ordered in the reverse order. It then becomes evident that Lorenz
ordering can be defined in terms of the nesting of the convex hulls of the
income shares of all subsets of the populations. This avoids ordering
and happily permits a straightforward extension to higher dimensions.

The set of points between the Lorenz curve and the reverse Lorenz
curve is called the Lorenz zonoid. Before attempting an extension of
this concept to higher dimensions, an extension of the definition to
associate a Lorenz zonoid with every X ∈ L+ is required. To this
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1

0.5

0 10.5

Figure 2. The Lorenz curve, the reverse Lorenz curve, and the corresponding
Lorenz zonoid.

end, envision computing income shares for subsets of the population
that include fractional individuals. Thus, for a given vector α ∈ [0, 1]n,
consider the income share comprising α1 times the income of individual
1, plus α2 times the income of individual 2, etc. The size of this subset
is Σn

1αi/n and its corresponding income share is Σn
i=1αixi/Σ

n
i=1xi. It is

then evident that the Lorenz zonoid corresponding to the population
can be envisioned as the set of all points ( 1

nΣαi,Σn
i=1αixi/Σ

n
i=1xi) in

which α ranges over [0, 1]n.
The extension to L+ is then straightforward.

C.27. Definition. Let Ψ denote the class of all measurable mappings
from R+ to [0, 1]. The Lorenz zonoid L(X) of the random variable X
with distribution function F is defined to be the set of points

L(X) =
{(∫ ∞

0
ψ(x)dF (x),

∫∞
0 xψ(x)dF (x)

EX

)
: ψ ∈ Ψ

}

=
{(

Eψ(X),
EXψ(X)
EX

)
: ψ ∈ Ψ

}
. (21)

It can be verified that the set of points defined in (21) does indeed, in
the finite population setting, coincide with the set of points between
the Lorenz curve and the reverse Lorenz curve as illustrated in Fig. 2.
Again, it is important to emphasize the fact that in Definition C.27,
no ordering of the xi’s and no reference to a quantile function are
required. Thus the definition has potential for extension to higher di-
mensions without requiring a suitable definition for higher-dimensional
quantiles. Note also that the definition of the Lorenz order on L+ is
expressible as

X ≤L Y ⇐⇒ L(X) ⊆ L(Y ) for X,Y ∈ L+, (22)
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where the Lorenz zonoid is defined in (21). Nesting of Lorenz zonoids
describes the ordering precisely.

An extension to k dimensions can now be developed. Denote by L k
+

the set of all k-dimensional nonnegative (though this can be relaxed)
random vectors X with finite positive marginal expectations (i.e., such
that EX1, . . . , EXk ∈ R++). In addition, let Ψ(k) denote the class of
all measurable functions from R k

+ to [0, 1].

C.28. Definition. Let X ∈ L k
+ . The Lorenz zonoid L(X) of the

random vector X = (X1, . . . ,Xk) with distribution F is

L(X) =
{(∫

ψ(x)dF (x),
∫
x1
ψ(x)
EX1

dF (x),
∫
x2
ψ(x)
EX2

dF (x), . . .

. . . ,

∫
xkψ(x)dF (x)

EXk

)
: ψ ∈ Ψ(k)

}
(23)

=
{(

Eψ(X),
E(X1ψ(X))

EX1
, . . . ,

E(Xkψ(X))
EXk

)
: ψ ∈ Ψ(k)

}
.

The Lorenz zonoid is thus a convex “football”-shaped (American
football) subset of the (k+ 1)-dimensional unit cube that includes the
points (0, 0, . . . , 0) and (1, . . . , 1).

The Lorenz order is defined in terms of nested Lorenz zonoids as in
the one-dimensional case. Thus for, X,Y ∈ L k

+ ,

X ≤L Y ⇐⇒ L(X) ⊆ L(Y ), (24)

where L(X) is as defined in (23).
Recall that a definition of Lorenz order in one dimension was possible

in terms of expectations of convex functions. Thus in one dimension,
X ≤L Y if and only if E(g(X/EX)) ≤ E(g(Y/EY )) for every contin-
uous convex function g. This suggests several obvious extensions to k
dimensions, using subscripts to identify Lorenz-like orderings on L k

+

that are not necessarily equivalent to the Lorenz order ≤L based on
nested Lorenz zonoids.
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C.29. Definition. Let X,Y ∈ L k
+ and define the orders

(i) X ≤L Y if L(X) ⊆ L(Y ),

(ii) X ≤L1 Y if

Eg

(
X1

EX1
, . . . ,

Xk

EXk

)
≤ Eg

(
Y1

EY1
, . . . ,

Yk
EYk

)

for every continuous convex function g : R k → R for which expec-
tations exist,

(iii) X ≤L2 Y if
∑
aiXi ≤L

∑
aiYi for every a ∈ R k,

(iv) X ≤L3 Y if
∑
ciXi ≤L

∑
ciYi for every c ∈ R k

+ ,

(v) X ≤L4 Y if Xi ≤L Yi, i = 1, 2, . . . , k.

It can be verified that

≤L1 =⇒ ≤L2 ⇐⇒ ≤L =⇒ ≤L3 =⇒ ≤L4 .

It is evident that the marginal Lorenz ordering ≤L4 is weaker than ≤L

or ≤L3 , because it corresponds to particular choices for c in ΣciXi. It is
evident that the convex ordering ≤L1 implies all of the other orderings
≤L,≤L2 ,≤L3 , and ≤L4 . The convex order is stronger than the Lorenz
order ≤L. Examples of simple two-dimensional cases in which X ≤L Y
but X �≤L1 Y are provided by Elton and Hill (1992).

In an economic context, ≤L3 seems to be the most natural version
of multivariate Lorenz ordering and has been called the price Lorenz
order. Joe and Verducci (1992) call it the positive-combinations Lorenz
order. Alternatively, it might be called the exchange rate Lorenz or-
dering using the following interpretation. Imagine that the coordinates
of X and Y represent financial holdings in k different currencies. Now
suppose that all k currencies are to be exchanged for, say, euros accord-
ing to k exchange rates c1, . . . , ck. The corresponding random variables
ΣciXi and ΣciYi can now be compared in terms of inequality. The ex-
change rate Lorenz ordering postulates that X exhibits less inequality
than Y if ΣciXi ≤L ΣciYi for every exchange rate vector c ∈ R k

+ . In
this context it is reasonable to restrict the c’s to be positive because a
negative exchange rate is difficult to interpret. Nevertheless, because
≤L and ≤L2 are equivalent, the definition of Lorenz ordering does
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require Lorenz ordering of ΣaiXi with respect to ΣaiYi for a ∈ R k,
i.e., even allowing some negative exchange rates.

A variety of summary measures of inequality have been suggested
for k-dimensional distributions. We mention but a few. For the convex
order ≤L1 , any specific choice of a continuous convex function g could
be used to measure inequality by the quantity

Eg

(
X1

EX1
, . . . ,

Xk

EXk

)
.

If the Lorenz ordering via nested Lorenz zonoids [as in (22)] is used,
then attractive analogs to univariate measures are available: (i) the
(k+1)-dimensional volume of the Lorenz zonoid, (ii) the k-dimensional
volume of the boundary of the Lorenz zonoid, (iii) the maximal dis-
tance between two points in the Lorenz zonoid. When k = 1, relatively
simple expressions for these indices are available. In higher dimensions,
this is not true. Koshevoy and Mosler (1997a) do provide an analytic
expression for the volume of the Lorenz zonoid, though it is not easy
to evaluate. For X ∈ L k

+ , define a normalized version of X, denoted
by X̃, in which X̃i = Xi/EXi. Consider k+1 independent, identically
distributed k-dimensional random vectors X̃1, . . . , X̃k+1 each with the
same distribution as X̃. Let Q be a (k+ 1)× (k+ 1) matrix whose ith
row is (1, X̃i), i = 1, 2, . . . , k + 1. It follows that

volume(L(X)) =
1

(k + 1)!
E|detQ|. (25)

A drawback associated with the use of the volume of the Lorenz zonoid
as a measure of inequality is that it can assume the value of 0 for
certain nondegenerate distributions. See Mosler (2002) for discussion
of a variant definition avoiding this pitfall.

When k = 1,

Q =
(

1 X̃1

1 X̃2

)
,

so that (25) reduces to an expression for the Gini index of X in the
one-dimensional case that is equivalent to (13a), namely,

G(X) =
1
2
E

∣∣∣∣∣
X(1)

EX(1)
− X(2)

EX(2)

∣∣∣∣∣ , (26)
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whereX(1) andX(2) are independent and identically distributed copies
of X; i.e., it is one half of the expected distance between independent
normalized copies of X.

The expression (26) leads to the following extension to k dimensions.
For X ∈ L k, define

G(X) =
1
2k
E||X̃(1) − X̃(2)||, (27)

where X̃(1) and X̃(2) are independent, identically distributed normal-
ized copies of X (i.e., rescaled so that the marginal means are all
equal to 1) and where || · || denotes the k-dimensional Euclidean norm.
A proof that if X ≤L Y , then G(X) ≤ G(Y ) [where G is defined
by (27)] is given by Mosler (2002). Other norms or other measures of
distance (instead of Euclidean distance) can be used in (27), perhaps
with an advantage of computational simplicity.

D Lorenz Order: Applications
and Related Results

The Lorenz order has, since its introduction in 1905, been a focal point
of discussion regarding inequality measurement in socioeconomic set-
tings. A truly enormous literature has been developed to deal with
extensions, variations, and properties of the ordering. This section
makes no attempt to navigate all of this ocean of research. However,
the topics and examples included inevitably lead the interested reader
more deeply into that literature. In the following discussion, the fo-
cus is on the mathematical features of the results; in many cases the
supplied references lead directly or indirectly to discussion of related
theoretical and applied economic concepts. Without such motivational
material, the results may seem to be, in some cases, mathematical cu-
riosities. Nevertheless, challenging mathematical problems arise that
are of interest even without subject area motivation.

Parametric Families of Lorenz Curves

For a nonnegative random variable with distribution function F and
finite expectation, the corresponding Lorenz curve is defined by

L(u) =
∫ u

0
F−1(v)dv/

∫ 1

0
F−1(v)dv, 0 ≤ u ≤ 1. (1)
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Properties of Lorenz curves are discussed in Section C. The following
result provides sufficient conditions for a given curve to be a Lorenz
curve.

D.1. Proposition. Sufficient conditions for a twice-differentiable
function L(u) defined on [0, 1] to be the Lorenz curve of some
nonnegative integrable random variable are

L(0) = 0, L(1) = 1, (2)

L′(u) ≥ 0 for all u ∈ (0, 1), (3)

L′′(u) ≥ 0 for all u ∈ (0, 1). (4)

Pakes (1981) shows that it is sufficient to replace condition (3) by the
condition that L′(0) ≥ 0. Rather than consider parametric families
of distributions, it is often reasonable to consider parametric families
of Lorenz curves satisfying only (2), (3), and (4), and to select from
such families a representative member that closely resembles or “fits”
a given data-based empirical Lorenz curve.

To find familiar examples of Lorenz curves, note that conditions
(2), (3), and (4) are satisfied when L is a distribution on [0, 1] with
increasing density.

D.1.a. Example. Rasche, Gaffney, Koo, and Obst (1980) study the
family of curves

L(u) = [1 − (1 − u)a]1/b, 0 ≤ u ≤ 1, 0 < a ≤ 1, 0 < b ≤ 1. (5)

This family includes classical Pareto Lorenz curves (when b = 1).

D.1.b. Example. A more general family of the form

L(u) = uc[1 − (1 − u)a]1/b, 0 ≤ u, a, b ≤ 1, c ≥ 0, (6)

was proposed by Sarabia, Castillo, and Slottje (1999). Flexible families
of Lorenz curves such as (6) can be used to identify better-fitting
alternatives to the classical Pareto model in many settings.

Other parametric families of Lorenz curves have been proposed.
Villaseñor and Arnold (1989) propose a general quadratic family of
curves [with coefficients selected to ensure that (2), (3), and (4) hold]
that provides a convenient flexible family for modeling purposes. Par-
ticular cases in which the curves are elliptical or hyperbolic in form
have received special attention.
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D.1.c. Example. Hyperbolic curves take the form

L(u) =
u(1 + au)

1 + au+ b(1 − u)
, 0 ≤ u ≤ 1, a > 1, b > 0 (7)

(Arnold, 1986). Explicit expressions for the distribution and density
corresponding to (7) are available. Villaseñor and Arnold (1989) iden-
tify the density and distribution function corresponding to an elliptical
Lorenz curve.

D.1.d. Example. Gupta (1984) proposes the family

L(u) = ucu−1, 0 ≤ u ≤ 1, c ≥ 1. (8)

D.1.e. Example. Sarabia (1997) analyzes a popular family of dis-
tributions that are defined in terms of their quantile functions, namely
the Tukey-lambda family, which leads to the candidate Lorenz curves

L(u) = a+ bu+ c1u
d1 + c2(1 − u)d2 , 0 ≤ u ≤ 1. (9)

Constraints on the parameters in (9) are identified to ensure that L(u)
is a Lorenz curve [i.e., that equations (2), (3), and (4) hold].

D.1.f. Example. Sarabia, Castillo, and Slottje (1999) describe a
useful procedure for constructing more flexible families of Lorenz
curves beginning with a given family. Let L0(u; θ) be a family of Lorenz
curves parameterized by θ, θ ∈ Θ ⊆ R p, and define

L1(u; θ, α, β) = uα[L0(u; θ]β , (10)

where α and β are chosen to ensure that (3) and (4) are satisfied. For
example, α > 1 and β ≥ 1 suffice.

Lorenz Order Within Parametric Families

It is observed in Example C.4 that the lognormal family of distri-
butions is parametrically ordered by the Lorenz order. A similar
statement can be made for the classical Pareto family of distribu-
tions [see C(4)]. Several other parametric families have been studied
to determine whether similar orderings can be identified. The family of
generalized gamma distributions was studied initially by Taillie (1981)
and subsequently by Wilfling (1996a).

D.2. Definition. The random variable X has a generalized gamma
distribution if its density is of the form

f(x) =
αxνα−1 exp(−xα)

Γ(ν)
, x > 0, α, ν > 0. (11)
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This density arises from the representation X = U1/α, where U has
a gamma distribution with shape parameter ν and scale parameter 1.
Marshall and Olkin (2007, p. 348) provide further details on the ori-
gin and properties of the generalized gamma distribution. The Lorenz
order within the classical gamma family was discussed in C.19.a, and
the extension to the generalized gamma family is contained in the
following:

D.2.a. Proposition (Wilfling, 1996a). LetX and Y have generalized
gamma distributions with respective parameters (ν1, α1) and (ν2, α2).
The following are equivalent:

(i) X ≤L Y ;

(ii) α1 ≥ α2 and α1ν1 ≥ α2ν2.

Wilfling proves this result using a variation of the density crossing
argument. Taillie (1981) also studies the case in which the α’s are
negative.

D.3. Definition. A distribution with density of the form

f(x) =
αxαθ−1

B(ξ, θ)[1 + xα]ξ+θ
, x = 0, α, ξ, θ ≥ 0, (12)

is variously called a generalized F distribution, a generalized beta
distribution of the second kind, or a Feller–Pareto distribution. For
a detailed discussion of these distributions, see Marshall and Olkin
(2007, Section 11.C).

D.3.a. Proposition (Wilfling, 1996b). Suppose that X and Y have
the density (12) with respective parameters α1, ξ1, θ1 and α2, ξ2, θ2. If
α1 ≥ α2, θ1 > θ2, and ξ1 > ξ2, then X ≤L Y .

Wilfing (1996b) obtains these sufficient conditions for Lorenz
ordering, again by using a density crossing argument.

D.4. Example. A distribution with density of the form

f(x|a, b, α) =
αxaα−1(1 − xα)b−1

B(a, b)
, 0 ≤ x ≤ 1, a, b, α > 0, (13)

is called a generalized beta distribution of the first kind, or a beta dis-
tribution with power parameter. For a discussion of this and other
generalized beta distributions, see Marshall and Olkin (2007, Section
14.C.i).
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D.4.a. Proposition (Wilfling, 1996c). Suppose that X and Y have
the density (13) with respective parameters a1, b1, α1 and a2, b2, α2.
Any one of the following conditions is sufficient to ensure thatX ≤L Y :

(i) α1 = α2 ≥ 1, a1 = a2, b1 = b2 = a1 − 1;

(ii) α1 = α2, a1 > a2, b1 = b2 ≥ 1;

(iii) α1 = α2, a1 > a2, b1 > ξ > 0, where ξ is the solution of
the equation EX = EZ, where Z has the density (13) with
parameters a2, ξ and α1.

(iv) α1 ≥ α2, a1 = a2, b1 = b2.

Note. The term “generalized beta distribution” is applied by
Marshall and Olkin (2007, p. 488) to a four-parameter distribution
with density different from (13).

Lorenz Ordering of Sample Statistics

Suppose that X1,X2, . . . is a sequence of independent, identically
distributed nonnegative random variables with common distribution
function F with finite mean. Because the Lorenz order, in a sense, re-
flects variability, it is to be expected that certain sample statistics are
ordered by the Lorenz order in a decreasing fashion as sample size in-
creases. Some results in this direction are available. Denote the sample
mean by Xn = Σn

i=1Xi/n.

D.5. Proposition (Arnold and Villaseñor, 1986). If n ≥ 2, then
Xn ≤L Xn−1.

Proof. Observe that E(Xn−1|Xn) = Xn and apply Theorem C.12.

D.5.a. A finite population version of D.5 is also true. Consider a
finite population of N units with attributes x1, x2, . . . , xN . Let Xn

denote the mean of a random sample of size n drawn without replace-
ment from this population. It follows that for n ≥ 2, Xn ≤L Xn−1.
This is just a restatement of the set of inequalities found in 3.C.1.f.
Alternatively, the result can be obtained by verifying that in the finite
population sampling setting, E(Xn−1|Xn) = Xn, just as in the case
of independent, identically distributed Xi’s.

The results of Pečarić and Svrtan (2002) can alternatively be used
to argue that Xn ≤L Xn+1 in the context of finite population sampling
without and with replacement.
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In fact, only exchangeability, not independence, of the Xi’s is
required in D.5. An analogous result is possible for more general
U -statistics provided expectations exist.

Sample medians, however, are not generally Lorenz ordered by sam-
ple size. Restricting attention to odd sample sizes (to ensure a unique
unambiguous definition of the median), Arnold and Villaseñor (1986)
prove that if F has a symmetric density on some interval [0, c], then
the medians satisfy

Xn+2:2n+3 ≤L Xn+1:2n+1 (14)

for any n.
The sample mean typically has a smaller variance than the

corresponding sample median, which leads to the speculation that

X2n+1 ≤L Xn+1:2n+1, n = 1, 2, . . . . (15)

This result is known to hold if the common distribution of the Xi’s
is exponential (proved by a density crossing argument). However, it
is not universally true. An example is available in which the Lorenz
curves of the random variables in (15) cross. Sufficient conditions for
(15) are not known. For further discussion, see Arnold and Villaseñor
(1986).

It was remarked in C.19.b that certain uniform order statistics are
Lorenz ordered. More generally, what are the conditions on i1, n1 and
i2, n2 and the common distribution of the Xi’s, to ensure that

Xi1:n1 ≤L Xi2:n2? (16)

D.5.b. Example (Arnold and Nagaraja, 1991). Suppose that the
common distribution is exponential. Then for i1 ≥ i2, (16) holds if and
only if (n2 − i2 + 1)EXi2:n2 ≤ (n1 − i1 + 1)EXi1:n1 . Because EXi:n =
Σn
j=n−i+11/j, a complete characterization of values of (i1, n1, i2, n2) for

which (16) holds is obtained.

D.5.c. Example (Arnold and Villaseñor, 1991). If the distribution
is uniform on the interval (0, 1), then only partial results are available
for (16) to hold. Denote the ith order statistic in a sample of size n
from a uniform distribution by Ui:n. Then
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Ui+1:n ≤L Ui:n for all i, n, (17)

Ui:n ≤L Ui:n+1 for all i, n, (18)

Un−j+1:n+1 ≤L Un−j:n for all j, n, (19)

Un+2:2n+3 ≤L Un+1:2n+1 for all n. (20)

The proofs of (17), (18), and (19) follow from Theorem C.12.
Equation (20) [which is a special case of (14)] is verified by a den-
sity crossing argument. It can be verified that (17), (18), and (19)
hold for random variables having a uniform distribution with a power
parameter [F (x) = xλ, 0 ≤ x ≤ 1, λ > 0] and are reversed if the Xi’s
have a common classical Pareto distribution [as defined in C(3)].

Wilfling (1996c) describes Lorenz ordering relationships between
order statistics from uniform distributions with different power
parameters.

Some analogous results have been obtained for Lorenz ordering of
record values [see, for example, Arnold and Villaseñor (1998)].

Total Time on Test Curves

In the study of lifetime data, an important statistic is the total time
on test. For a sample X1,X2, . . . ,Xn from a common distribution F
[with F (0) = 0 and finite mean μ], the total time on test at the time
of the ith failure is defined to be

Tn,i =
i∑

j=1

(n− j + 1)(Xj:n −Xj−1:n). (21)

A scaled version of the total time on test is provided by

T̃n,i = Tn,i

/
n∑
j=1

Xj:n. (22)

Population analogs of these statistics are

T (u) =
∫ F−1(u)

0
[1 − F (v)]dv, 0 ≤ u ≤ 1, (23)

the total time on test transform of F , and

T̃ (u) =
1
μ
T (u), 0 ≤ u ≤ 1, (24)
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the scaled total time on test transform of F . There is an intimate
relationship between T (u) [or T̃ (u)] and the Lorenz curve correspond-
ing to the distribution F . As pointed out by Chandra and Singpurwalla
(1981), this suggests an interrelationship between results in the reli-
ability literature using total time on test concepts and results in the
economics literature involving the Lorenz order. Marshall and Olkin
(2007, p. 35) provide details on this topic.

In addition, Shaked and Shantikumar (1998) introduce what they
call the excess wealth transform of the distribution function F ,
defined by

W (u) =
∫ ∞

F−1(u)
[1 − F (v)]dv. (25)

The excess wealth function is intimately related to the unscaled Lorenz
curve (μL(u)) and the (unscaled) total time of test transform. By a
direct verification,

W (u) = μ− T (u), 0 ≤ u ≤ 1, (26)

and

T (u) = μL(u) + (1 − u)F−1(u), 0 ≤ u ≤ 1. (27)

D.6. Definition. The excess wealth order is defined by

X ≤ew Y ⇐⇒WX(u) ≤WY (u), 0 ≤ u ≤ 1. (28)

The excess wealth order differs from the Lorenz order in that it is
location-invariant, i.e.,

X ≤ew Y =⇒ X + a ≤ew Y for all a ∈ R. (29)

[The location parameter a can be negative because the definition of the
excess wealth transform continues to be meaningful even if F (0) < 0.]

D.6.a. Definition. If Eg(X) ≤ Eg(Y ) for all increasing convex func-
tions g for which the expectations exist, then X is said to be less than
Y in the increasing convex order, denoted by X ≤icx Y.
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D.6.b. Proposition (Shaked and Shantikumar, 2007, p. 196). If
X ≤ew Y and if F−1

X (0) ≤ F−1
Y (0), then X ≤icx Y .

Reference to Section 1.A confirms that the increasing convex or-
dering is a natural extension of the concept of weak submajorization
defined on R n (or if you wish, associated with uniform distributions
with n points in their support sets).

The relationship between increasing convex order and ordering by
unscaled Lorenz curves [μL(u)), also called generalized Lorenz curves]
is discussed by Ramos, Ollero, and Sordo (2000). See also Shorrocks
(1983). Meilijson and Nádas (1979) discuss a closely related ordering
in which the increasing convex functions are also required to be non-
negative.

Aging concepts introduced in reliability analysis such as “new bet-
ter than used,” “new better than used in expectation,” and so on
can be used to define partial orders among distributions of nonnega-
tive random variables. Such orderings sometimes can be interpreted as
variability orderings. See Kochar (1989) for details, and for verification
that the Lorenz order can be identified with a “harmonic new better
than used in expectation” order.

The difference between the total time on test transform T (u) and
the Lorenz curve L(u) is highlighted by the observation of Barlow and
Campo (1975) that a lifetime distribution F has increasing hazard rate
if and only if T (u) is concave. If T (u) is convex, then F has a decreasing
hazard rate on the interval (F−1(0), F−1(1)). However, it was observed
that the related Lorenz curve is always convex. The second term on
the right in (27) is responsible for any concavity in T (u).

Note. Empirical total time on test transforms based on exchange-
able (rather than independent) lifetimes are discussed by Nappo and
Spizzichino (1998).

Finally, note that there is a relationship between the scaled total
time on test transform T̃ (u) and the “equilibrium distribution” Fe
of F (arising in renewal process contexts) defined by

Fe(x) =
1
μ

∫ x

0
[1 − F (v)]dv. (30)

Evidently,

Fe(x) = T̃ (F (x)), (31)
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thus permitting a comparison of equilibrium distributions in terms of
total time on test transforms and indirectly in terms of the Lorenz
order.

Hitting Times in Continuous-Time Markov Chains
and Lorenz Order

Consider a continuous-time Markov chain with n+ 1 states, in which
states 1, 2, . . . , n are transient and state n+1 is absorbing. The time, T ,
until absorption in state (n+1) is said to have a phase-type distribution
(Neuts, 1975). This distribution is determined by an initial distribution
over the transient states denoted by α = (α1, α2, . . . , αn) (assume that
the chain has probability 0 of being initially in the absorbing state).
The intensity matrix Q for transitions among the transient states has
elements satisfying qii < 0 and qij ≥ 0 for j �= i. In this setting, the
time, T , to absorption in state (n + 1) is said to have a phase-type
distribution with parameters α and Q. A particularly simple case is
one in which α = α∗ = (1, 0, . . . , 0) and Q = Q∗, where q∗ii = −δ
for each i and q∗ij = δ for j = i + 1, q∗ij = 0 otherwise. In this case,
the Markov chain begins in state 1 with probability 1, and spends
an exponential time with mean 1/δ in each state before moving to
the next state. The corresponding time to absorption, T ∗, is thus a
sum of n independent and identically distributed random variables
having an exponential distribution with parameter δ; and T ∗ has a
gamma distribution with scale parameter δ and shape (convolution)
parameter n. (See C.19.a.)

There are multiple possible representations of phase-type distribu-
tions. The same distribution of time to absorption can be associated
with more than one choice of n,α, and Q.

A phase-type distribution is said to be of order n if n is the smallest
integer such that the distribution can be identified as an absorption
time for a chain with n transient states and one absorbing state.
In some sense the variable T ∗ clearly exhibits the least variability
among phase-type distributions of order n. Aldous and Shepp (1987)
show that the T ∗ having a gamma distribution with parameters δ and
n has the smallest coefficient of variation among phase-type distribu-
tions of order n. In fact, O’Cinneide (1991) shows that T ∗ exhibits
the least variability in a more fundamental sense. For any phase-type
variable T of order n, T ∗ ≤L T .
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Dependence Orderings via Lorenz Curves

Scarsini (1990) introduces an ordering of dependence on the class of
probability measures on a finite probability space with given marginals.
In two dimensions, such a probability measure can be viewed as an I×J
matrix P = (pij) with nonnegative elements that sum to one with
given row and column sums by prescribed vectors p∗R and p∗C . Thus
ΣJ
j=1pij = p∗Ri for each i, and ΣI

i=1pij = p∗Cj for each j. For simplicity
of discussion, assume that row and column sums are positive. Denote
the class of such matrices by P ∗. Among such matrices there is one,
denoted by Q, which has independent marginals, i.e., qij = p∗Rip

∗
Cj , for

each pair (i, j).
Any matrix in P ∗ distinct from Q exhibits more dependence than

does Q which exhibits no dependence. For any matrix P ∈ P ∗, define
a measure on the space (1, 2, . . . , I) × (1, 2, . . . , J) by

P{A} =
∑

(i,j)∈A
pij . (32)

In (32), a convenient abuse of notation is introduced. P denotes the
matrix in P ∗, and also P denotes the associated measure defined on
subsets of (1, 2, . . . , I) × (1, 2, . . . , J). The likelihood ratio of P with
respect to Q is defined by

LRP (i, j) = pij/qij. (33)

A random variable XP can be associated with this likelihood ratio as
follows. For each (i, j) ∈ (1, . . . , I) × (1, . . . , J), let

P

{
XP =

pij
qij

}
= qij.

Each such random variable XP has mean 1 and a corresponding Lorenz
curve LP (u). If P = Q, the random variable is degenerate and thus
LQ(u) = u. Increased dependence between the rows and columns of P
is reflected by a lowered Lorenz curve, LP , and it is thus natural for
P1, P2 ∈ P ∗ to rank P1 more dependent than P2 if XP1 ≥L XP2 or
equivalently if LP1(u) ≤ LP2(u).

Interestingly, LP admits an interpretation as the size versus power
curve of most powerful tests of the independence hypothesis, i.e., of
Q vs. P .
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These concepts readily extend to the case of m-fold product spaces
(m > 2). As Scarsini (1990) points out, the rationale for this de-
pendence ordering breaks down if attention is not restricted to finite
spaces.

Partial Sums of Vector-Valued Random Variables

Let X1,X2, . . . ,Xn be independent k-dimensional random variables.
Define Sn =

∑n
i=1Xi. Berger (1991) describes techniques that lead to

theorems for such sums Sn from parallel or related results for sums of
independent real-valued random variables (for example, laws of large
numbers). A key tool in this endeavor involves the Lorenz order.

Denote the k-dimensional Euclidean norm by || · ||. Berger (1991)
shows that the following results are valid for Xi’s taking on values in
an abstract vector space.

Assume that E||Xj || < ∞, j = 1, 2, . . . , n, and define the vector
V = (V1, V2, . . . , Vn), where

Vj = ||Xj || + E||Xj ||. (34)

In addition, let V ′ denote an independent copy of V , and let
R1, R2, . . . , Rn be independent Bernoulli random variables (i.e., with
P{Ri = −1} = P{Ri = 1} = 1/2) that are independent of V and V ′.
Then define

Tn =
n∑
j=1

Rj(Vj + V ′
j ), (35)

T ∗
n =

n∑
j=1

Rj ||Xj ||. (36)

It can be verified that

||Sn|| − E||Sn|| ≤cx Tn ≤cx 4T ∗
n , (37)

where X ≤cx Y means Eg(X) ≤ Eg(Y ) for all convex functions g
provided the expectations exist. Note that the random variables in
(37) all have mean 0 so that convex ordering is appropriate but Lorenz
ordering is not well-defined.
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Two elementary results regarding the convex order (and conse-
quently the Lorenz order) used in the proof of (37) are:

D.7. Lemma (Berger, 1991). If X and X ′ are identically distributed
and not necessarily independent with E|X| <∞, then

X +X ′ ≤cx 2X.

Proof. For g convex such that all expectations exist,

Eg(X +X ′) ≤ 1
2
[Eg(2X) + Eg(2X ′)] = Eg(2X). ||

D.7.a. If X,X ′ ∈ L+ (see p. 713) are identically distributed and not
necessarily independent, then X +X ′ ≤L 2X and so X +X ′ ≤L X.

D.8. Lemma (Berger, 1991). If X is a real-valued random variable
with finite expectation, then

X + EX ≤cx 2X.

Proof. Let X ′ be an independent copy of X. For g convex such
that all expectations exist,

Eg(X + EX) = Eg(E(X +X ′|X))
≤ Eg(X +X ′) ≤ Eg(2X).

The first inequality is a consequence of Jensen’s inequality (16.C.1),
and the second inequality follows from D.7. ||
D.8.a. If X ∈ L+, then X + EX ≤L 2X and X + EX ≤L X.

By using (37) and C.12, Berger (1991) deduces several results for
vector-valued Xj ’s from corresponding results for real-valued variables.

Probability Forecasting

A weather forecaster each day announces his subjective probability of
rain on that day. His announced subjective probability x is assumed
to be a realization of a random variable X. Let Y be an indicator
random variable with Y = 1 if it rains, and 0 otherwise. The per-
formance of the forecaster can be summarized by the density ν(x) of
X, and for each x the conditional probability ρ(x) of rain given that
the forecaster’s prediction was x. If ρ(x) = x, the forecaster is said to
be well-calibrated. If the probability of rain in the forecaster’s city is
0.25, then a forecaster who every day predicts 0.25 is well-calibrated,
but not very helpful. In contrast, if the forecaster predicts rain with
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probability 1 on days when it actually rains and 0 on other days,
then the forecaster is also well-calibrated and amazingly skillful. Well-
calibrated forecasters are discussed by DeGroot and Fienberg (1983).
They order such forecasters using a concept called refinement. How-
ever, it turns out that this refinement ordering on random variables
with support [0, 1] and mean μ is identifiable with the Lorenz order.
The better forecasters (in terms of refinement) are those who predic-
tions are most variable, subject to being well-calibrated. A definition
of proper scoring rules is provided (rules that encourage forecasters
to announce their true subjective probability of rain), and DeGroot
and Fienberg (1983) show that more refined forecasters receive higher
expected scores using such rules.

See DeGroot and Eriksson (1985) for more detailed discussion of the
relationship between refinement and the Lorenz order.

A Rational Fraction Inequality

The Lorenz curve definition can prove useful in unexpected situa-
tions. In the following a property of the Lorenz curve is used to
justify a polynomial inequality. For x ≥ 0, consider the polynomial
Pn(x) =

∑n
k=0 x

k, and for m > n let f(x) = Pm(x)/Pn(x) and
g(x) = f(x)xn−m.

D.9. Theorem (Jichang, 2002). If x > 1, then

1 < g(x) <
m+ 1
n+ 1

< f(x),

whereas if x < 1,

max
{

1, xm−nm+ 1
n+ 1

}
< f(x) <

m+ 1
n+ 1

< g(x).

Proof. First, note that g(x) = f(x−1). It is thus only necessary to
consider x > 1 because the results for x < 1 follow readily. To verify
that for x > 1, f(x) > (m+ 1)/(n+ 1) observe that this is equivalent
to the statement that

n+ 1
m+ 1

>
Pn(x)
Pm(x)

=
∑n

k=0 x
k∑m

k=0 x
k
.

However, this follows by considering the Lorenz curve corresponding
to the set of numbers {1, x, x2, . . . , xm} at the point (n + 1)/(m + 1),
since the Lorenz curve, LX for any nondegenerate random variable
X satisfies LX(u) < u for 0 < u < 1. The other inequalities in the
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theorem follow from this fact [and the fact that g(x) = f(x−1)]. An
alternative argument, not involving the Lorenz curve, uses the fact
that Pm(x)/(m+ 1) is a power mean, so that h(n) = Σn

0x
k/(n + 1) is

increasing in n. ||
Shi (2006) obtains refinements of the inequalities in D.9 using

majorization arguments. For example, for x > 1, he proves that

g(x) <
m+ 1
n+ 1

− xn−m(1 − x−
1
2
(m+1)(n+1)(m−n))

(n+ 1)Pn(x)
<
m+ 1
n+ 1

.

E An Uncertainty Order

There have been a number of attempts to measure the “uncertainty”
associated with a random variable X. In statistical contexts, the vari-
ance of X is often used. In economics the Gini index may replace
the variance, and in the physical sciences uncertainty is ordinarily
measured using entropy. These approaches attempt to measure “un-
certainty” without defining it. When measures such as variance and
entropy are used to order two random variables in terms of uncertainty,
these measures can give opposite orderings. To avoid this problem, an
uncertainty ordering of random variables is defined here. This uncer-
tainty ordering is a preorder; random variables may or may not be
comparable.

A random variable X might be thought of as exhibiting “more un-
certainty” than Y if the value of X can be predicted “less precisely”
(with confidence p) than can the value of Y . The following definition
serves to make this idea precise.

Let λ be a measure defined on the Borel subsets B of R n, and for
a random variable X taking values in R n, let

A (X; p) = {A ∈ B : P{X ∈ A} ≥ p},
and

μ(X, p) = inf
A∈A (X;p)

λ(A).

E.1. Definition. A random variable X is said to be more level-p
uncertain than Y if μ(X; p) ≥ μ(Y ; p). If X is more level-p uncertain
than Y at all levels p ∈ (0, 1), then X is said to be more uncertain
than Y , written X ≥U Y.
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In this book, λ is usually Lebesgue measure or counting measure
and the random variables usually take values in R n.

Uncertainty Parameters in Absolutely
Continuous Distributions

In this subsection, the measure λ in Definition E.1 is taken to
be Lebesgue measure. With this provision, Definition E.1 can prof-
itably be connected to continuous majorization, briefly introduced in
Section 1.D. But first, a reexamination of the notion of a decreasing
rearrangement of a function f is required. In the following, it is as-
sumed that f is a nonnegative integrable function defined on (−∞,∞)
such that

∫∞
−∞ f(x) dx <∞.

To make clear the definition of a decreasing rearrangement of a
nonnegative function f , imagine the area between the horizontal axis
and the graph of f to be cut into very narrow vertical strips. Now start
at the origin (an arbitrary choice) to reassemble the strips starting with
the tallest strip, then the next tallest, etc. By continuing in this way,
the profile of a new function, decreasing on [0,∞), will emerge; call
this function the decreasing rearrangement of f. Because the strips
are merely rearranged, the total area is the same before and after the
rearrangement.

Note that the above procedure places points on (−∞,∞) into a one-
to-one correspondence with points on [0,∞); the original location of a
strip is identified with its new location.

The essential feature of this construction is that whereas the sets
{u : f(u) > y} and {u : f↓(u) > y} may be quite different, they have
the same Lebesgue measure:

m(y) = λ{u : f(u) > y} = λ{u : f↓(u) > y}, y > 0.

Moreover, the profile of f↓ as constructed above has the property that

f↓(m(y)) = y.

The function m is finite because f is assumed to be nonnegative and
integrable. If f is defined on a bounded closed interval, say [0, 1], then
m(y) cannot exceed the measure of the interval, whether or not f is
nonnegative.

E.2. Definition. Let m−1(x) = sup{y : m(y) > x} be the right-
continuous inverse of the decreasing function m. The function f↓
defined by
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f↓(x) =

{
0, x < 0,

m−1(x), x ≥ 0

is called the decreasing rearrangement of f .

E.3. Lemma. Let f be a nonnegative integrable function defined on
(−∞,∞) and let φ be a real-valued function defined on the range of
f such that

∫∞
−∞ φ(f(x)) dx <∞. Then∫ ∞

−∞
φ(f(x)) dx =

∫ ∞

−∞
φ(f↓(x)) dx.

Proof. Let Bni = {x : (i−1)/2n ≤ f(x) < i/2n}, i = 1, 2, . . . , and
let

f−n (x) =
∞∑
1

i− 1
2n

IBni
(x), f+

n (x) =
∞∑
1

i

2n
IBni

(x),

where IS is the characteristic (indicator) function of S. Note that f−n
is increasing in n, f+

n is decreasing in n, and

lim
n→∞ f−n (x) = lim

n→∞ f+
n (x) = f(x) almost everywhere.

Let A = {u : φ(u) is increasing at u}, A∗ = {x : f(x) ∈ A}, and let

fn(x) =

{
f−n (x), x ∈ A∗,

f+
n (x), x /∈ A∗.

With this construction, the function φ(fn(x)) is increasing in n and
limn→∞ φ(fn(x)) = φ(f(x)) almost everywhere. It follows from the
Lebesgue monotone convergence theorem that

lim
n→∞

∫ ∞

−∞
φ(fn(x)) dx =

∫ ∞

−∞
φ(f(x)) dx.

Now repeat the above construction with f↓ in place of f, and define
f↓n analogously to the definition of fn. Because

λ

{
x :

i− 1
2n

≤ f(x) <
i

2n

}
= λ

{
x :

i− 1
2n

≤ f↓(x) <
i

2n

}
, i = 1, 2, . . . ,

where λ is Lebesgue measure, it follows that∫ ∞

−∞
φ(fn(x)) dx =

∫ ∞

−∞
φ(f↓n(x)) dx.

The proof is completed by taking limits. ||
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The following proposition is a modification of Theorem 1.D.2 of
Hardy, Littlewood, and Pólya (1929). This modification allows the
functions f and g to be defined on (−∞,∞) rather than on the
bounded interval [0, 1], but it requires that f and g be nonnegative.

E.4. Proposition. Let f and g be nonnegative integrable functions
defined on (−∞,∞). Then∫ ∞

−∞
φ(f(x)) dx ≤

∫ ∞

−∞
φ(g(x)) dx (1)

for all continuous convex functions such that the integrals exist if and
only if ∫ x

0
f↓(u) du ≤

∫ x

0
g↓(u) du, x ≥ 0, (2)

and ∫ ∞

0
f↓(u) du ≤

∫ ∞

0
g↓(u) du. (3)

Proof. Because
∫∞
−∞ φ(f(u)) du =

∫∞
0 φ(f↓(u)) du (Lemma E.3), it

is sufficient to prove the result with f and g replaced by f↓ and g↓.

Suppose first that (1) holds. Denote max(x, 0) by x+ and note that
φ(x) = x+ is convex. Because g↓ is decreasing, it follows that g↓(u) ≥
g↓(x), u ≤ x. From (1) with φ(x) = x+, it follows that∫ x

0
[g↓(u) − g↓(x)] du =

∫ x

0
[g↓(u) − g↓(x)]+ du

≥
∫ x

0
[f↓(u) − g↓(x)]+ du ≥

∫ x

0
[f↓(u) − g↓(x)] du. (4)

But (4) is equivalent to (2). With the choices φ(x) = x and φ(x) = −x,
(1) yields (3).

Next suppose that (2) and (3) hold. Because all values of f↓ and
g↓ fall between 0 and g↓(0), it is sufficient to prove that (1) holds for
all continuous convex functions defined on [0, g↓(0)]. As already noted,
(2) is equivalent to (4), and (5) is a statement that (1) holds for all
functions φ of the form φ(x) = (x−z)+, 0 ≤ z ≤ g↓(0). It follows from
(3) that (1) holds when φ is linear.

It is well known that any continuous convex function defined on
an interval J can be approximated from below by a sum of a linear
function and a linear combination of a finite number of functions of
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the form φ(x) = (x − z)+, x ∈ J. The proof is completed by taking
limits. ||
E.5. Proposition. LetX and Y be random variables with respective
densities f and g. Then X ≥U Y (with λ Lebesgue measure) if and
only if ∫ ∞

−∞
φ(f(x))dx ≤

∫ ∞

−∞
φ(g(x))dx

for all continuous convex functions φ such that the integrals exist.

Proof. Let f↓ and g↓ be the decreasing rearrangements of f and g.
Then X ≥U Y if and only if∫ z

0
f↓(x) dx = p =

∫ w

0
g↓(x) dx ⇐⇒ w ≤ z.

Because ∫ ∞

0
f↓(x) dx =

∫ ∞

0
g↓(x) dx = 1,

the proposition follows from Proposition E.4. ||
E.6.a. Example. The function

∫∞
−∞−f(x) log f(x) dx is called the

entropy of X (or f). Because φ(z) = −z log z is concave, it follows from
Proposition E.5 that if X ≥U Y, then the entropy of X is greater than
the entropy of Y . Note that entropy provides a measure of disorder or
randomness.

E.6.b. Example. Let Xα have the density

f↓(x) =

{ 1
2(α+ 1)|x− 1|α, 0 ≤ x ≤ 2, α ≥ 0,

0, elsewhere.

In the order ≥U, Xα is decreasing in α and consequently the entropy
of Xα is decreasing in α. But the variance of Xα is increasing in α.

E.7. Notation. Let ψ be an increasing right-continuous function
defined on R and let ψ−1 be its right-continuous inverse. If

ψ−1(v) − ψ−1(u) ≥ v − u for all u ≤ v

and if X = ψ−1(Y ), write X ≥T Y. Here ψ−1 is a transformation that
“stretches” the axis.

E.8. Proposition. If X ≥T Y, then X ≥U Y (in the sense of
Lebesgue measure).
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Proof. Let A = (u, v] be a finite interval in A (X; p), for which
P{X ∈ A} ≥ p. Also, u < X ≤ v if and only if ψ(u) < Y ≤ ψ(v). Thus,
for all finite intervals in A (X; p), there exists an interval (ψ(u), ψ(v)]
in A (Y ; p) such that λ(u, v] ≥ λ(ψ(u), ψ(v)].

To complete the proof, this must be extended to sets A that are
not intervals. Note that λ(ψ(u), ψ(v)] = λψ(u, v], where λψ is the
Lebesgue–Stieltjes measure determined by ψ. Because λψ(I) ≤ λ(I) for
all half-open intervals I, the extension of these set functions retains this
order. Thus, with A∗ = {z : z = ψ(x), x ∈ A}, λ(A) ≥ λ(A∗). Con-
sequently for every set A ∈ A (X; p), there exists a set A∗ ∈ A (Y ; p)
such that λ(A∗) ≤ λ(A). ||
E.9. Proposition. If X ≥T Y and the expectations of X and Y are
finite, then

Eφ(X − EX) ≥ Eφ(Y −EY ) (5)

for all continuous convex functions such that the expectations are
finite.

Proof. First note that X ≥T Y implies X ≥T Y + c for all c ∈ R.
Consequently, no generality is lost by assuming EX = EY = 0.

Denote the distributions of X and Y by F and G, respectively. As
a consequence of the fact that X = ψ−1(Y ), F (x) = G(ψ(x)) and
F−1(u) = ψ−1(G−1(u)), 0 ≤ u ≤ 1. Because ψ−1(v)−ψ−1(u) ≥ v−u,
it follows that ψ−1(z) − z is increasing in z. Thus

h(z) =
∫ z

0
[F−1(1 − u) −G−1(1 − u)] du

=
∫ z

0
[ψ−1(G−1(1 − u)) −G−1(1 − u)] du

is decreasing in z. Because EX = EY, it follows that h(1) = 0, and
consequently h(z) ≥ 0. This means that∫ z

0
F−1(1 − u) du ≥

∫ z

0
G−1(1 − u) du, 0 ≤ z ≤ 1.

Observe that Eφ(X) =
∫∞
−∞ φ(x) dF (x) =

∫ 1
0 φ(F−1(u)) du and

Eφ(Y ) =
∫ 1
0 φ(G−1(u)) du to obtain (5) from either Theorem 1.D.2

or Proposition E.4. ||

Note that according to Proposition E.9, X ≥T Y implies that the
variance of X, var(X), is greater than or equal to the variance of Y ,
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var(Y ). This is in contrast to the order ≥U; Example 6.b shows that
it is possible for X ≥U Y but var(X) ≤ var(Y ).

Uncertainty Parameters in Discrete Distributions

In this subsection, the notion of majorization for infinite sequences is
utilized (see Section 1.D).

Let p = (p1, p2, . . .) and q = (q1, q2, . . .) be discrete probability
vectors; i.e., pi, qi ≥ 0, i = 1, 2, . . . and

∑∞
1 pi =

∑∞
1 qi = 1.

E.10. Definition. The probability vector p is said to be more
random than q if p ≺ q.

Cautionary note: In terms of randomness, the ordering of majoriza-
tion is reversed from what might be natural. In fact, physicists often
write “≺” in place of “�,” a source of possible confusion.

E.11. Proposition. Let X and Y be discrete random variables
taking on values in the countable set Ω = {ω1, ω2, . . .} such that

P{X = ωi} = pi, P{Y = ωi} = qi, i = 1, 2, . . . .

Then X ≥U Y if and only if p is more random than q; that is, p ≺ q.

Proof. Without loss of generality, assume that p1 ≥ p2 ≥ · · · and
q1 ≥ q2 ≥ · · · . In Definition E.1, replace the letter “p” by “r” to avoid
dual use of “p,” and suppose that p ≺ q. By definition, μ(X; r) = k
if Σk−1

1 pi < r and Σk
1pi ≥ r. Because r ≤ Σk

1pi ≤ Σk
1qi, it follows that

μ(Y ; r) ≤ k. Thus μ(X; r) ≥ μ(Y ; r) for all r ∈ (0, 1); that is, X ≥U Y.
Conversely, if X ≥U Y, then μ(X; r) ≥ μ(Y ; r) for all r ∈ (0, 1).

Let r = Σk
1qi. For this choice of r, Σk

1qi = μ(Y ; r) ≤ μ(X; r); that is,
Σk

1pi ≤ r = Σk
1qi. ||

Note that Proposition E.11, when restricted so that only finitely
many of the pi and qi are positive, is essentially a recasting of
Proposition 4.D.1.

For a parametric family of discrete distributions, denote the density
(probability mass function) by

pθ(x) = P{X = x| θ}.
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Write pθ = (pθ(x1), pθ(x2), . . .), where x1, x2, . . . are the possible values
of X.

E.12. Definition (Hickey, 1983). Let {pθ : θ ∈ Θ ⊂ R} be a para-
metric family of discrete probability vectors. The parameter θ is called
an uncertainty parameter if, when θ > θ′, pθ majorizes pθ′ and pθ, pθ′
differ by more than a permutation of elements.

E.13. Example. For the geometric distribution on 1, 2, . . . ,

pθ(x) = (1 − θ)x−1θ, x = 1, 2, . . . , 0 < θ ≤ 1.

Set pθ = (pθ(1), pθ(2), . . .) and note that pθ(i) is a decreasing function
of i. Moreover,

k∑
1

pθ(i) = 1 − (1 − θ)k, k = 1, 2, . . . .

Because these partial sums are increasing in θ, pθ ≺ pθ′ , when θ < θ′.
Thus, θ is an uncertainty parameter.

E.14. Example. For θ a positive integer, let

pθ(x) =
1

θ + 1
, x = 0, 1, . . . , θ.

Clearly, θ is an uncertainty parameter with uncertainty increasing in θ.

Remark. Examples E.13 and E.14 are easily verified using the par-
tial sums definition of majorization because in both cases pθ(x) is
decreasing in x for all θ. In such cases, the concepts of more ran-
domness and stochastic order coincide. In Section 12.N.4, examples
are given in which pθ(x) is not monotone, and the concepts of more
randomness and stochastic order are distinct.

E.15. Example. Let θ ∈ (0, 1) and let

pθ(x) =
θx

x a(θ)
,

where a(θ) = − log (1 − θ). Then pθ(x) is decreasing in x, and qk(θ) =
Σk

1pθ(x) is decreasing in θ, k = 1, 2, . . . . Thus θ is an uncertainty
parameter.

Proof. Because θ < 1, the monotonicity in x of pθ(x) is clear. To
prove that qk(θ) is decreasing, note that pθ(x) is TP∞ in θ and x
(18.A.2 and 18.A.6.a). Let I(x) = 1 if x ≤ k, and I(x) = 0 if x > k.
Then I(x) − c changes sign at most once, from + to − if there is a
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sign change. By the variation-diminishing property of totally positive
functions (18.A.5), it follows that

qk(θ) − c =
∞∑
x=1

[I(x) − c] pθ(x)

has at most one sign change, from + to − if one occurs. Because c is
arbitrary, it follows that qk(θ) is decreasing in θ.

The monotonicity of qk(θ) can also be verified by showing that its
derivative is negative. ||



18
Total Positivity

The theory of totally positive matrices and functions has its origins
in work of Pólya (1913, 1915). Such matrices and functions were in-
vestigated by I. Schoenberg in a series of beautiful papers starting in
1930. Much early history of the subject can be found in later papers
of Schoenberg (1951, 1953).

In more recent years, the theory of total positivity has found
applications in a variety of fields. Important books devoted to the
subject have been written by Gantmacher and Krein (1961) and by
Karlin (1968). In addition, totally positive matrices are treated by
Gantmacher (1959). A more recent collection of papers on the subject
has been edited by Gasca and Micchelli (1996). A survey of the sub-
ject is offered by Barlow and Proschan (1975; reprinted 1996) and by
Ando (1987). Interesting historical details not well known are given by
Pinkus (1996).

A Totally Positive Functions

A.1. Definition. Let A and B be subsets of the real line. A function
K defined on A × B is said to be totally positive of order k, denoted
TPk, if for all m, 1 ≤ m ≤ k, and all x1 < · · · < xm, y1 < · · · < ym
(xi ∈ A, yj ∈ B),

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 757
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 18,
c© Springer Science+Business Media, LLC 2011
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K

(
x1, . . . , xm
y1, . . . , ym

)
≡ det

⎡
⎢⎣
K(x1, y1) · · · K(x1, ym)

...
...

K(xm, y1) · · · K(xm, ym)

⎤
⎥⎦ ≥ 0. (1)

When the inequalities (1) are strict form = 1, . . . , k,K is called strictly
totally positive of order k (STPk).

If K is TPk (STPk) for k = 1, 2, . . . , then K is said to be totally
positive (strictly totally positive) of order ∞, written TP∞ (STP∞).

When A and B are finite sets, K can be regarded as a matrix and
the same terminology applies.

There are several obvious consequences of the definition:

A.2. If a and b are nonnegative functions defined, respectively, on A
and B and if K is TPk, then a(x)b(y)K(x, y) is TPk.

A.3. If g and h are defined on A and B, respectively, and monotone in
the same direction, and if K is TPk on g(A)×h(B), then K(g(x), h(y))
is TPk on A×B.

The following fundamental identity is an indispensable tool in the
study of total positivity, and is often called the basic composition
formula:

A.4. Lemma (Andréief, 1883; Pólya and Szegö, 1972, p. 61,
Problem 68). If σ is a σ-finite measure and the integral M(x, y) ≡∫
K(x, z)L(z, y) dσ(z) converges absolutely, then

M

(
x1, . . . , xm
y1, . . . , ym

)

=
∫

· · ·
∫

z1<· · ·<zm

K

(
x1, . . . , xm
z1, . . . , zm

)
L

(
z1, . . . , zm
y1, . . . , ym

)
dσ(z1) · · · dσ(zm).

A proof of this result is outlined by Karlin (1968, p. 17).

A.4.a. Theorem. IfK is TPm, L is TPn, and σ is a σ-finite measure,
then the convolution

M(x, y) =
∫
K(x, z)L(z, y) dσ(z)

is TPmin(m,n).
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The Variation Diminishing Property

The interest in totally positive functions is due in large part to their
variation-diminishing property. If f :B → R, where B ⊂ R, then the
number of sign changes of f on B is the supremum of the numbers
of sign changes in sequences of the form f(x1), . . . , f(xm), where m is
finite, x1, . . . , xm ∈ B, x1 < · · · < xm, and zero values in the sequences
are discarded.

A.5. Theorem. For A,B ⊂ R, let K :A × B → R be Borel-
measurable and TPk. Let σ be a regular σ-finite measure on B, and let
f :B → R be a bounded measurable function such that the integral

g(x) =
∫
B
K(x, y)f(y) dσ(y)

converges absolutely. If f changes sign at most j ≤ k − 1 times on
B, then g changes sign at most j times on A. Moreover, if g changes
sign j times, then it must have the same arrangement of signs as does
f .

The above theorem was put in its present form by Karlin, following
earlier work of Schoenberg, Motzkin, and Gantmacher and Krein. For
this history, see Karlin (1968, pp. 21 and 22; for a more general result,
see p. 233).

With the aid of A.2, A.3, and A.4a, many examples of totally positive
functions are obtainable from a few relatively basic examples.

A.6. Example. The function

K(x, y) = exy, −∞ < x, y <∞, is STP∞. (2)

In this case, the positivity of the relevant determinants is well known
because they are generalized Vandermonde determinants [see, e.g.,
Pólya and Szegö (1976, Problem 76, p. 46)].

A.6.a. The function

K(x, y) = xy, 0 < x <∞, −∞ < y <∞, is STP∞. (3)

For 0 ≤ x <∞ and −∞ < y <∞, K is TP∞. Here ex of A.6 has been
replaced by x.

A.6.b. The function

K(x, y) = e−(x−y)2 , −∞ < x, y <∞, is STP∞. (4)

The result follows from A.6 and A.2 because e−(x−y)2 = e−x2−y2 ·
e2xy.
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A.7. Example. The function

K(x, y) =

{
1 if x ≤ y,

0 if x > y, −∞ < x, y <∞,
is TP∞. (5)

A.7.a. The function

K(x, y) =

{
0 if x < y,

1 if x ≥ y, −∞ < x, y <∞,
is TP∞. (6)

The fact that (5) and (6) define TP∞ functions is easily verified
directly. Of course, these functions are not strictly totally positive of
any order.

A.8. Example. The function

K(x, y) =
1

x+ y
, 0 < x, y <∞, (7)

is STP∞.

To verify this, it is sufficient to note that if C = (cij), where cij =
1/(xi + yj), then

detC =
∏
i<j

(xi − xj)(yi − yj)

/∏
i,j

(xi + yj)

[see, e.g., Noble (1969, p. 223), where this result is given as an exercise;
see also Karlin (1968, p. 149) and Bernstein (2005, p. 119)]. The eval-
uation of detC is due to Cauchy, so C is sometimes called Cauchy’s
matrix. When xi = i, yj = j + γ, where γ > 0 is a constant, C is also
called Hilbert’s matrix.

A.9. Example. The functions

K1(x, y) =
(
x

y

)
, K2(x, y) =

(
x+ y − 1

y

)
, x, y = 0, 1, . . . , (8)

are TP∞. These results can be found in Karlin (1968, p. 137).

The class of log concave functions occurs in many contexts, and the
following is a fundamental result.

A.10. Example: Log concave functions (Schoenberg, 1951). The
function

K(x, y) = f(y − x), −∞ < x, y <∞,

is TP2 if and only if f is nonnegative and log f is concave on R.
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Here the required positivity of relevant 2 × 2 determinants is
essentially the definition of log concavity, so a direct verification is
not difficult.

A.10.a. A positive function f is log convex on R if and only if

Λ =
[
f(x1 + y1) f(x1 + y2)
f(x2 + y1) f(x2 + y2)

]
(9)

has a nonnegative determinant for all x1 ≤ x2, y1 ≤ y2.

A positive function is log convex in the sense of Jensen, i.e.,

log f
(
x+ y

2

)
≤ 1

2
log f(x) +

1
2

log f(y),

if and only if det Λ ≥ 0 holds under the additional restriction that
x1 + y2 = x2 + y1. In this case Λ is symmetric and the condition that
f is log convex in the sense of Jensen reduces to the condition that Λ
is positive definite. This is sometimes useful because convexity in the
sense of Jensen together with continuity implies convexity. See 16.C.

Statistical Examples

A.11. Example: Exponential families. A family of probability
density functions that have the form

f(x, θ) = a(x)b(θ)exθ, θ ∈ B ⊂ R,

is called an exponential family. From A.6, it follows that such densities
are TP∞ in x and θ. Particular examples (with appropriate parameter-
ization) include (i) normal distributions with mean θ and variance 1,
(ii) exponential distributions with mean −1/θ, θ < 0, (iii) binomial
distributions, and (iv) Poisson distributions [see, e.g., Karlin (1968,
p. 19)].

A.12. Example: Noncentral distributions. A number of families
of probability density functions have total positivity properties by
virtue of representations of the form

f(x, θ) =
∫
g(x, t)h(t, θ) dσ(t),

where g and h are totally positive of some order. To verify the following
special cases, use is made of A.2, A.3, and A.6, and the density (with
respect to counting measure on {0, 1, 2, . . .}) given by

h(j, θ) = e−θθj/j!.
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A.12.a. Noncentral χ2 distribution with noncentrality parameter θ:

f(x, θ) =
∞∑
j=0

e−θ
θj

j!
x[(n+2j)/2]−1e−x/2

Γ((n+ 2j)/2)2(n+2j)/2
, x ≥ 0.

A.12.b. Noncentral F distribution with n, m degrees of freedom and
noncentrality parameter θ:

f(x, θ) =
∞∑
j=0

e−θ
θj

j!

(
x

1 + x

)(n+2j)/2[
x(1 + x)m/2B

(
n+ 2j

2
,
m

2

)]−1

,

where x ≥ 0 and B is the beta function.

A.12.c. Squared multiple correlation based on k “independent”
variables:
f(r2, ρ2)

=
∞∑
j=0

a(j)ρ2j(1 − ρ2)(n−1)/2(r2)(k/2)+j−1(1 − r2)[(n−k−1)/2]−1,

where r2 > 0 and

a(j) =
Γ((n− 1 + 2j)/2)
j!Γ((n − 1)/2)

[
B

(
k

2
+ j,

n− k − 1
2

)]−1

.

A.12.d. Noncentral t distribution:

f(x, θ) = c

∫ ∞

0
exp

⎡
⎣−1

2

(
x

√
t

(2α)1/2
− θ

)2
⎤
⎦ tα−1e−t/2 dt,

where −∞ < x, θ < ∞ , c is a normalizing constant, and α > 0 is
fixed.

The total positivity in this case is apparently more difficult to verify
than the preceding examples, but see Karlin (1968, p. 118).

B Pólya Frequency Functions

An important class of totally positive functions is those which have
the form

K(x, y) = L(y − x), −∞ < x, y <∞. (1)

Examples include A.6.b, A.7, A.7.a, and A.10. If such a function K
is TPk for some k ≥ 2, then it follows from A.10 that L is either
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monotone or unimodal. In case L is unimodal, then Schoenberg (1951)
showed that

∫∞
−∞ L(z) dz < ∞, and he called such a function a Pólya

frequency function of order k (PFk). This term has come to be used
even when L is monotone.

B.1. Proposition. If f and g are PFk, then the convolution

h(x) =
∫ ∞

−∞
g(x− y)f(y) dy

is PFk.

This proposition is a special case of A.4.a.

From Example A.10 and Proposition B.1, it follows that the
convolution of log concave functions is log concave.

A more general result, obtained by Davidovič, Korenbljum, and
Hacet (1969), is that if x, y ∈ R n, and f, g are log concave, then

φ(x) =
∫

R n

f(x− y)g(y) dy

is log concave.

B.1.a. If the probability density function f is PFk, then the corre-
sponding distribution function F and survival function F = 1−F are
PFk.

Proof . This follows from B.1 by successively taking g(x − y) =
K(x, y) as defined in A.7 and A.7.a. ||
B.2. The following conditions are equivalent:

(i) the hazard rate r(x) = f(x)/F (x) is increasing in x on
{x :F (x) < 1};

(ii) F = 1 − F is PF2;

(iii) logF is concave.

Proof. That (ii) and (iii) are equivalent follows from A.10. Since
r(x) = −(d/dx) log F (x), it follows that (i) and (iii) are equivalent. ||

In a similar way, a companion result can be proved:

B.2.a. If F (x) = 0 for all x < 0, the following conditions are
equivalent:

(i) r(x) is decreasing in x > 0;
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(ii) F (x+ y) is TP2 in x and y, x+ y ≥ 0;

(iii) logF is convex on (0,∞).

Distributions with increasing or decreasing hazard rate have been
extensively studied in the context of reliability theory [see, e.g., Barlow
and Proschan (1975; reprinted 1996)]. The usual examples are obtained
with the aid of the following theorem.

B.2.b. If f is a logarithmically concave probability density, then the
distribution function F has an increasing hazard rate; if log f is convex
on (0,∞), then F has a decreasing hazard rate.

Proof. The first part of this result is a consequence of A.10, B.1.a
with k = 2, and B.2. The second part can be proved similarly. ||
B.2.c.Examples of logarithmically concave or convex densities.
A logarithmically concave (convex) density can be written in the form

f(x) = e−φ(x),

where φ is convex (concave). This observation is useful for verifying
the indicated properties of the following examples.

(i) Normal density:

f(x) =
1√
2πσ

e−(x−μ)2/2σ2
, −∞ < x <∞, −∞ < μ <∞, σ2 > 0.

This density is logarithmically concave, and hence has an increasing
hazard rate.

(ii) Gamma density: For λ, r > 0,

f(x) =

⎧⎪⎨
⎪⎩
λrxr−1

Γ(r)
e−λx, x ≥ 0,

0, x < 0.

This density is logarithmically concave on (−∞,∞) if r ≥ 1 and
logarithmically convex on [0,∞) if 0 < r ≤ 1.

(iii) Beta density: For a, b > 0,

f(x) =

{
[B(a, b)]−1xa−1(1 − x)b−1, 0 ≤ x ≤ 1,

0 elsewhere,
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where B is the beta function. This density is logarithmically concave
if a ≥ 1 and b ≥ 1. In particular, the uniform density (a = b = 1) is
logarithmically concave.

(iv) Weibull density: For λ, α > 0,

f(x) =

{
λαxα−1e−λx, x ≥ 0,
0, x < 0.

This density is logarithmically concave on [0,∞) if α ≥ 1 and
logarithmically convex on [0,∞) if α ≤ 1.

(v) Gompertz density: For λ, ξ > 0,

f(x) =

{
λξ exp{λx+ ξ − ξeλx}, x ≥ 0,
0, x < 0.

This density is logarithmically concave on [0,∞).

Other examples of logarithmically concave densities are contained
in Marshall and Olkin (2007).

Inequalities for Normalized Moments

Suppose f is a probability density with distribution F such that
F (0) = 0. Let μr =

∫∞
0 xr dF (x) and let λr = μr/Γ(r + 1). Several

logarithmic convexity and concavity results for λr are summarized in
3.E.4. These results are proved here.

B.3. If f(x) = 0 for x < 0 and log f is concave (convex) on [0,∞),
then log λr is concave (convex) in r ≥ 0.

Proof . Suppose that log f is concave on [0,∞). If 0 ≤ α ≤ 1,
α = 1 − α, s+ α > 0, and t+ α > 0, then

λs+t−1 =
∫ ∞

0

zs+t−1

Γ(s+ t)
f(z) dz

=
∫ ∞

0

∫ z

0

(z − x)s+α−1

Γ(s+ α)
xt+α−1

Γ(t+ α)
dxf(z) dz

=
∫ ∞

0

ys+α−1

Γ(s+ α)

∫ ∞

0

xt+α−1

Γ(t+ α)
f(x+ y) dx dy.
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Because f(x+y) is TP2 in x and −y, and since xt is TP∞ (by A.6.a),
it follows from A.4.a that the inner integral is TP2 in t and −y. Again
by A.6.a, ys is TP∞ in −s and −y, so it follows from A.4.a that λs+t−1

is TP2 in −s and t for s+ α > 0 and t+ α > 0; i.e., s+ t > −1. Thus
log λr is concave in r > 0, so it is concave in r ≥ 0 by continuity.

If log f is convex, the proof is similar. ||
The above result is essentially due to Karlin, Proschan, and Barlow

(1961).

B.4. If F (0) = 0 and log(1 − F ) is concave (convex) on [0,∞), then
log λr is concave (convex) in r ≥ 1.

Proof. It follows from an integration by parts that∫ ∞

0

zr+1

Γ(r + 2)
dF (z) =

∫ ∞

0

zr

Γ(r + 1)
[1 − F (z)] dz.

Thus the proof is essentially the same as the proof of B.3, but with
1 − F in place of f . ||

The above result was obtained by Barlow, Marshall, and Proschan
(1963).

B.5. Definition. A probability density f on [0,∞) is completely
monotone if it has the form

f(z) =
∫ ∞

0

1
μ
e−z/μ dH(μ), z ≥ 0, (2)

for some distribution function H.

By virtue of 16.B.8, completely monotone densities are logarithmi-
cally convex. Thus by B.3, their normalized moments are logarithmi-
cally convex on [0,∞). A slightly stronger result is obtainable.

B.6. If f is a probability density function such that f(x) = 0, x < 0,
and f is completely monotone on [0,∞), it follows that for r > −1, λr
is logarithmically convex.

Proof.

λr =
∫ ∞

0

zr

Γ(r + 1)
f(z) dz

=
∫ ∞

0

μr

Γ(r + 1)

[∫ ∞

0

(
z

μ

)r
e−z/μd

(
z

μ

)]
dH(μ)=

∫ ∞

0
μr dH(μ).

But this is logarithmically convex by 16.D.1.d. ||
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The Lyapunov inequality is also based on logarithmic convexity and
concavity; see 3.E.2 and 16.D.1.d.

For further discussion of completely monotone functions, see Feller
(1971, p. 439).

C Pólya Frequency Sequences

If K(x, y) = f(y − x) where x and y are integers, and if for some
k ≥ 2, K is TPk (with A and B of Definition A.1 taken to consist of
the integers), then

. . . , f(−1), f(0), f(1), . . .

is called a Pólya frequency sequence of order k. Alternatively, f is said
to be PFk on the integers.

Of course, the convolution theorem A.4.a applies to Pólya frequency
sequences, as do other results of Section A. In a manner similar to A.10,
f is PF2 on the integers if and only if f ≥ 0 and log f is concave in
the sense of 16.B.10.

Examples of Pólya frequency sequences are provided by certain dis-
crete probability mass functions. For example, Poisson probability
mass functions yield PF∞ sequences (see A.9), and binomial proba-
bility mass functions yield PF2 sequences. In addition, convolutions of
Bernoulli probability mass functions with possibly different parameters
yield PF2 sequences, as can be seen using A.4.a.

D Total Positivity of Matrices

In the Definition A.1, let the sets A and B be {1, . . . , n}; then a ma-
trix X = (xij) can be regarded as a function defined on {1, . . . , n}2.
This function (matrix) is TPk (STPk) if the mth compound X(m) has
nonnegative (positive) elements for m = 1, . . . , k.

D.1. Proposition (Salinelli and Sgarra, 2006). If R is an STP2

correlation matrix, then

(i) ρij < ρsj, 1 ≤ j < s < i ≤ n,

(ii) ρsj < ρij , 1 ≤ s < i < j ≤ n.

Condition (i) means that the subdiagonal column elements are
strictly decreasing, and condition (ii) means that the superdiagonal
column elements are strictly increasing.
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D.1.a. Examples. The matrices R = (ρij) with

(i) ρij = exp{−β|τi − τj|}, β > 0, τ1 < · · · < τn,

(ii) ρij = exp{−β|i − j|q}, β > 0, q ≥ 1,

satisfy D.1.
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Matrix Factorizations,

Compounds, Direct Products,
and M-Matrices

It is often convenient to represent a matrix in terms of other matrices
that have special properties. Of the many such known representa-
tions, a few are listed here that relate to the development of this
book. General references for some of the material are Bellman (1960),
Householder (1964), and Mirsky (1955a). An exposition of exponen-
tial and polar representations of matrices is given by de Bruijn and
Szekeres (1955). For a compendium on matrix factorizations, see
Bernstein (2005, Chapter 5).

The eigenvalues of an n×nmatrix A are denoted by λ1(A), . . . , λn(A).
When the eigenvalues are real, they are ordered λ1(A) ≥ · · · ≥ λn(A).

A Eigenvalue Decompositions

In this section, some representations in terms of triangular and
diagonal matrices are given for n× n complex matrices.

A.1. Definition. When two n×n complex matrices A and B satisfy
the relation S−1AS = B for some nonsingular complex matrix S, then
A and B are said to be similar. If the matrix S is unitary, then A and B
are said to be unitarily similar.

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 769
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 19,
c© Springer Science+Business Media, LLC 2011
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Of particular interest is the case when B is a diagonal or triangular
matrix, for then the eigenvalues of A are equal to the diagonal elements
of B.

When the eigenvalues of A are distinct, then A is similar to a di-
agonal matrix, but not in general. However, it is similar, and in fact,
unitarily similar, to a triangular matrix.

A.2. Theorem. If A is an n × n complex matrix with distinct
eigenvalues, then there exists a nonsingular complex matrix S such
that

A = S−1DαS, (1)

where Dα = diag(α1, . . . , αn), αi = λi(A), i = 1, . . . , n.

If |α1| > · · · > |αn|, the representation is unique up to a scale
factor. That is, if A = S−1DαS = U−1DαU , then U = SDc, where
Dc = diag(c1, . . . , cn).

A.3. Theorem (Schur, 1909). If A is an n×n complex matrix, then
there exists a unitary matrix Γ such that

A = ΓTΓ∗, (2)

where T is lower triangular (i.e., tij = 0, i < j), and where tii =
λi(A), i = 1, . . . , n.

If the eigenvalues of A are distinct and there are two representations
of the form (2), say, A = Γ1T1Γ∗

1 = Γ2T2Γ∗
2, with Γ1,Γ2 n× n unitary

matrices, T1 and T2 lower triangular, then T2 = DεT1Dε and Γ2 =
Γ1Dε, where Dε = diag(ε1, . . . , εn), εi = ±1, i = 1, . . . , n.

A representation analogous to (2) for upper triangular matrices
follows from A.3 by applying the theorem to A∗.

A.3.a. Theorem. Let A be a real n × n matrix. Then there exists
a real orthogonal matrix Γ such that A = ΓTΓ′, where T is lower
triangular and tii = λi(A), i = 1, . . . , n, if and only if the eigenvalues
of A are real.

If A is Hermitian, that is, A = A∗, it follows from A.3 that ΓTΓ∗ =
ΓT ∗Γ∗, where Γ is unitary and T is lower triangular. Consequently,
T = T ∗, which implies that T is diagonal and that the diagonal
elements λ1(A), . . . , λn(A) are real.

A.3.b. If S is a real n×n symmetric matrix, then there exists a real
orthogonal matrix Γ such that

S = ΓDαΓ′,
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where Dα = diag(α1, . . . , αn) and α1 ≥ · · · ≥ αn are the ordered
eigenvalues of S.

This follows from A.3.a since S = ΓTΓ′ = ΓT ′Γ′, where T is lower
triangular, implies that T is diagonal. The ordering of the eigenvalues
is achieved by a permutation matrix.

A.4. Theorem. If H is an n×n Hermitian matrix, then there exists
a unitary matrix Γ such that

H = ΓDαΓ∗, (3)

where Dα = diag(α1, . . . , αn) and α1, . . . , αn are the real eigenvalues
of H ordered α1 ≥ · · · ≥ αn.

If the eigenvalues are distinct and there are two representations

H = Γ1DαΓ∗
1 = Γ2DαΓ∗

2,

where Γ1,Γ2 are unitary, then Γ2 = Γ1Dε, where Dε = diag(ε1, . . . , εn)
and εi = ±1, i = 1, . . . , n.

B Singular Value Decomposition

The singular values σ1(A), . . . , σm(A) of an m×n complex matrix, A,
are defined as σi(A) = [λi(AA∗)]1/2, i = 1, . . . ,m. Note that AA∗ is
Hermitian and positive semidefinite so that its eigenvalues are real and
nonnegative.

The decomposition in B.1 below has had a long history. Special cases
were obtained by Beltrami (1873) and by Jordan (1874). The case for
square matrices with real elements was obtained by Sylvester (1889),
and for complex square matrices by Autonne (1915) and Browne
(1930b). The rectangular case B.1.a for complex matrices is due to
Eckart and Young (1936, 1939).

B.1. Theorem. If A is an n × n complex matrix, then there exist
unitary matrices Γ and Δ such that

A = ΓDσΔ, (1)

where Dσ = diag(σ1, . . . , σn) and σ1 ≥ · · · ≥ σn ≥ 0 are the singular
values of A.

If there are two representations A = Γ1DσΔ1 = Γ2DσΔ2, where
Γ1,Γ2,Δ1,Δ2 are unitary, and if σ1 > · · · > σn > 0, then Γ2 =
Γ1Dε,Δ2 = DεΔ1, where Dε = diag(ε1, . . . , εn), εi = ±1, i = 1, . . . , n.
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The singular value decomposition can be stated for rectangular
matrices by applying (1) to[

B
0

]
= Γ

[
Dσ 0
0 0

]
Δ

≡
[
Γ11 Γ12

Γ21 Γ22

] [
Dσ 0
0 0

] [
Δ11 Δ12

Δ21 Δ22

]
=
[
Γ11Dσ(Δ11,Δ12)
Γ21Dσ(Δ11,Δ12)

]
, (2)

where B is an m × n,m ≤ n, complex matrix. In (2) the n singular
values of

(B
0

)
consist of the m singular values of B and (n−m) zeros.

From (2), [
BB∗ 0
0 0

]
=
[
Γ11 Γ12

Γ21 Γ22

] [
D2
σ 0

0 0

] [
Γ∗

11 Γ∗
21

Γ∗
12 Γ∗

22

]
. (3)

Assume that BB∗ is positive definite. Then ΓΓ∗ = Γ∗Γ = I, and (3)
implies that Γ21 = 0, and hence that Γ12 = 0. This argument yields
the following theorem.

B.1.a. Theorem. If B is an m × n complex matrix, m ≤ n, then
there exist an m×n complex matrix Ψ, with ΨΨ∗ = Im, and an n×n
unitary matrix Δ such that

B = Ψ(Dσ, 0)Δ,

where Dσ = diag(σ1, . . . , σm) and σ1, . . . , σm are the singular values
of B.

If B is an m× n complex matrix with m ≥ n, then an application
of B.1.a to B∗ yields a parallel representation.

C Square Roots and the Polar Decomposition

If H is an n × n Hermitian matrix, then the square roots of H are
defined according to the first paragraph of 16.E as

H1/2 = ΓD1/2
α Γ∗,

where H = ΓDαΓ∗ is a representation of A.4. If any eigenvalue of
H is negative, some square roots H1/2 are not Hermitian, but
when H is positive semidefinite, any matrix of the form B = Γ
diag(ε1α

1/2
1 , . . . , εnα

1/2
n )Γ∗, where εi = ±1, i = 1, . . . , n, is a Hermitian

square root of H in the sense that B2 = H. However, the positive
semidefinite square root of H is unique.

Indeed, if H is an n × n positive semidefinite Hermitian matrix,
and m is any positive integer, there is a unique positive semidefinite
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Hermitian matrix H̃ such that H̃m = H. This result is due to Autonne
(1902, 1903). Asymmetric square roots can also be defined:

C.1. Definition. If H is a positive semidefinite n × n Hermitian
matrix, then any n×m matrix X satisfying

H = XX∗

is called an asymmetric square root of H.

If X is an asymmetric square root of H, then for any m×m unitary
matrix Δ,XΔ is also a square root. Two classes of square roots of
interest are the positive semidefinite Hermitian and triangular square
roots. These can be obtained from the following representations.

C.2. Theorem (Schmidt, 1907). If X is an m× n complex matrix,
m ≤ n, then there exists an m ×m upper triangular matrix U with
uii ≥ 0, i = 1, . . . ,m, and an m ×m lower triangular matrix L with
lii ≥ 0, i = 1, . . . ,m, such that

(i) X = LΓ1 = (L 0)Γ = L(I 0)Γ,

(ii) X = UΔ1 = (U 0)Δ = U(I 0)Δ,

where

Γ =
(

Γ1

Γ2

)
and Δ =

(
Δ1

Δ2

)

are n×n unitary matrices, and Γ1 and Δ1 are m×n complex matrices
satisfying Γ1Γ∗

1 = Δ1Δ∗
1 = Im.

If X is of rank m, then there exists a representation with
lii > 0, uii > 0, i = 1, . . . . ,m, and the matrices L,Γ1, U , and Δ1 are
unique. Notice that LΓ1 = (LDε)(DεΓ1), where Dε = diag(ε1, . . . , εn),
εi = ±1, i = 1, . . . , n. Consequently, it is possible to assign arbitrary
signs to the diagonal elements of L. A similar discussion holds for the
diagonal elements of U in (ii).

C.3. Polar decomposition theorem (Autonne, 1902, 1913;
Browne, 1928; Wintner and Murnaghan, 1931; von Neumann, 1932).
If X is an m× n complex matrix, m ≤ n, then there exists a positive
semidefinite m× n Hermitian matrix G such that

X = GΨ,

where Ψ is an m× n complex matrix satisfying ΨΨ∗ = Im.

The matrix G is the positive semidefinite Hermitian square root of
XX∗. When X is n× n and nonsingular, then Ψ is unique.
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Theorem C.3 can be stated equivalently as a representation for a
positive semidefinite Hermitian matrix. This equivalence is stated more
precisely in D.1 ahead.

C.4. Theorem (Toeplitz, 1907). If H is a positive semidefinite n×n
Hermitian matrix, then there exist a lower triangular matrix L with
nonnegative diagonal elements and an upper triangular matrix U with
nonnegative diagonal elements, such that

H = LL∗ = UU∗.

If H is positive definite, then lii > 0, uii > 0, i = 1, . . . , n, and the
matrices L and U are unique.

D A Duality Between Positive Semidefinite
Hermitian Matrices and Complex Matrices

The following result shows how some representations for positive
semidefinite Hermitian matrices can be obtained from representations
for arbitrary complex matrices, and vice versa.

D.1. Theorem (Parker, 1945; Vinograde, 1950). If A is a complex
p×mmatrix and B is a complex p×nmatrix,m ≤ n, then AA∗ = BB∗
if and only if B = AΩ, where Ω is an m×n complex matrix satisfying
ΩΩ∗ = Im.

To illustrate the duality between positive semidefinite Hermitian
matrices and complex matrices, suppose that X is a complex n × r
matrix, n ≤ r. Then XX∗ ≡ H is a positive semidefinite Hermitian
matrix. From A.3.b, there exists a unitary matrix Γ and a nonnegative
diagonal matrix Dθ such that

XX∗ = H = ΓDθΓ∗ = (ΓD1/2
θ )(D1/2

θ Γ∗). (1)

Applying D.1 to (1) yields the singular value decomposition B.1:

X = ΓD1/2
σ Δ1 = Γ(D1/2

σ 0)Δ,

where Δ =
(Δ1

Δ2

)
is an r × r unitary matrix, and Δ1 is n × r. The

diagonal elements θ1/2
i = [λi(XX∗)]1/2 ≡ σi(X), i = 1, . . . , n, are the

singular values of X.
There is a parallel duality between C.2 and C.4 which is also a

consequence of D.1. Further details relating to D.1 are given by Horn
and Olkin (1996).
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E Simultaneous Reduction of Two
Hermitian Matrices

In general, two Hermitian matrices V and W cannot be simultaneously
diagonalized by a unitary matrix. However, if V and W are positive
definite Hermitian matrices, then a simultaneous reduction is possible,
though not necessarily by a unitary matrix.

E.1. Theorem. If V and W are n × n positive definite Hermitian
matrices, then there exists a nonsingular n× n matrix M such that

V = MM∗, W = MDθM
∗,

where Dθ = diag(θ1, . . . , θn), in which θ1 ≥ · · · ≥ θn ≥ 0 are the
eigenvalues of WV −1.

If θ1 > · · · > θn > 0 and there are two representations

V = M1M
∗
1 = M2M

∗
2 , W = M1DθM

∗
1 = M2DθM

∗
2 ,

then M2 = M1Dε, where Dε = diag(ε1, . . . , εn), εi = ±1, i = 1, . . . , n.
Consequently, the representations are unique up to the signs of the
first row of M .

The hypothesis that both V and W be positive definite can be
weakened somewhat to the case where W is positive semidefinite.

F Compound Matrices

The kth compound of a matrix A is important partly because its
eigenvalues are products (k at a time) of the eigenvalues of A. Con-
sequently, results involving the largest or smallest eigenvalue of a
matrix can often be extended to products of the k largest or smallest
eigenvalues of A by applying the results to compounds.

For a general discussion of compounds, see Aitken (1939, 1956,
Chapter V) or Wedderburn (1934, Chapter V).

F.1. Definition. If A is an m × n complex matrix and 1 ≤ k ≤
min(m,n), then the kth compound, denoted A(k), is the

(m
k

) × (n
k

)
matrix whose elements are determinants

A

(
i1, . . . , ik
j1, . . . , jk

)

arranged lexicographically. (For a definition of this notation, see 9.A.4.)
The kth compound is sometimes referred to as a skew-symmetric
tensor power and denoted by Λk(A) [see, e.g., Bhatia (1997)].
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In lexicographic ordering, the subscript i1i2 · · · imj · · · appears
before i1i2 · · · iml · · · if j < l.

For example, if A is a 4 × 4 matrix, then

A(3) =

⎡
⎢⎢⎢⎢⎣

A
(123
123

)
A
(123
124

)
A
(123
134

)
A
(123
234

)
A
(124
123

)
A
(124
124

)
A
(124
134

)
A
(124
234

)
A
(
134
123

)
A
(
134
124

)
A
(
134
134

)
A
(
134
234

)
A
(234
123

)
A
(234
124

)
A
(234
134

)
A
(234
234

)

⎤
⎥⎥⎥⎥⎦ .

Clearly, A(1) ≡ A. If A is an n× n matrix, then A(n) = detA.
Some basic facts about compounds follow directly from the

definition:

(i) (A(k))∗ = A∗(k), (A(k))′ = A′(k).
(ii) If Da = diag(a1, . . . , an), then D

(k)
a is an

(n
k

) × (n
k

)
diagonal

matrix with elements ai1 · · · aik , 1 ≤ i1 < · · · < ik ≤ n. In particular,
I
(k)
n = I(n

k)
.

(iii) If A is Hermitian, then A(k) is Hermitian.
(iv) If A is lower (upper) triangular, then A(k) is lower (upper)

triangular.

Binet–Cauchy Theorem and Eigenvalues
of a Compound Matrix

A result of central importance from which many properties of a com-
pound are derived is the Binet–Cauchy theorem, proved in special
cases by Binet (1812) and Cauchy (1812). A detailed description of
the contents of these papers is given in Muir (1906), who notes that
both memoirs were read at a meeting on the same day.

F.2. Theorem (Binet, 1812; Cauchy, 1812). If A is a p×m complex
matrix, B is an m×n complex matrix, and 1 ≤ k ≤ min(p,m, n), then
(AB)(k) = A(k)B(k).

The following are some important consequences of F.2:

F.2.a. If A is a nonsingular n× n matrix, then (A−1)(k) = (A(k))−1.

Proof. An application of F.2 to AA−1 = I yields A(k)(A−1)(k) =
I(k) = I. ||
F.2.b. If Γ is an n × n unitary matrix, then Γ(k) is an

(
n
k

) × (
n
k

)
unitary matrix.
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Proof . This is a consequence of F.2.a and the fact that Γ∗ =
Γ−1. ||
F.2.c. If A is an n × n complex matrix with eigenvalues λ1, . . . , λn,
then A(k) has eigenvalues λi1 · · ·λik , 1 ≤ i1 < · · · < ik ≤ n.

Proof. By A.3 there exists an n×n unitary matrix Γ and a lower tri-
angular matrix T such that A = ΓTΓ∗. Further, the diagonal elements
of T are the eigenvalues of A. By applying F.2, it follows that

A(k) = (ΓTΓ∗)(k) = Γ(k)T (k)Γ∗(k) = Γ(k)T (k)Γ(k)∗.

Since T (k) is lower triangular with diagonal elements λi1 · · ·λik , 1 ≤
i1 < · · · < ik ≤ n, and Γ(k) is unitary (F.2.b), the eigenvalues of A(k)

are the diagonal elements of T (k). ||
As a consequence of F.2.c, if H is a positive semidefinite Hermi-

tian matrix, the largest and smallest eigenvalues of H(k) are
∏k

1 λi(H)
and

∏k
1 λn−i+1(H), respectively. Since H(k) is Hermitian, it is positive

semidefinite. Similarly, if H is a positive definite Hermitian matrix,
then H(k) is a positive definite Hermitian matrix.

F.2.d. If A is an n × n complex matrix with eigenvalues λ1, . . . , λn,
then

trA(k) = Sk(λ1, . . . , λn) =
∑

1≤i1<···<ik≤n
A

(
i1, . . . , ik
i1, . . . , ik

)
,

where Sk(λ1, . . . , λn) is the kth elementary symmetric function of the
eigenvalues.

The first expression for tr A(k) follows from F.2.c, and the second
proceeds directly from the definition. The notation trkA is frequently
used for trA(k).

F.2.e.

detA(k) =
∑

1≤i1<···<ik≤n
(λi1 · · · λik) =

(
n∏
1

λi

)(n−1
k−1)

= (detA)(
n−1
k−1).

This is another consequence of F.2.c.

Additive Compound Matrix

The usefulness of the kth compound A(k) of a matrix A stems in part
from the fact that the eigenvalues of A(k) are products of the eigenval-
ues of A k at a time, without repetitions. There is an additive version
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of this result that can be stated in several different ways; here we follow
the development of Wielandt (1967).

A matrix, called the kth additive compound of A, is defined. This ma-
trix has two important properties: (a) the mapping from A to its kth
additive compound is linear (F.4); and (b) the eigenvalues of the kth
additive compound are sums of k of the eigenvalues, without repetition,
of A (F.5).

In a private communication from Helmut Wielandt of January 27,
1979, he stated that he developed the concept of additive compound
and believed that it was original after checking his notes from Issai
Schur’s class in matrix theory.

F.3. Definition. If A is an n × n complex matrix, the kth additive
compound (of order 1) Δk(A) is the

(n
k

)× (n
k

)
matrix

(i) Δk(A) =
d

dt
(I + tA)(k)

∣∣∣∣
t=0

.

Alternatively, Δk(A) is the coefficient matrix of t in the expansion

(ii) (I + tA)(k) = I + tΔk(A) + t2Δ(2)
k (A) + · · · .

The kth additive compound can be viewed as a sum of tensor
products [see e.g., Bhatia (1997, p. 19)].

F.4. Theorem. If A and B are n× n complex matrices, then

Δk(αA + βB) = αΔk(A) + βΔk(B),

for all α, β.

Proof. Elements of Δk(A + B) are obtained upon differentiation
from matrices of the form

det(E + t(Ã+ B̃)),

where Ã and B̃ are k × k submatrices of A and B, and E is a matrix
obtainable from the k × k matrix[

Il 0
0 0

]

by permuting rows and columns. Denote the cofactor of aij by (cofA)ij
and compute
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d

dt
det(E + t(αÃ+ βB̃))

∣∣∣∣
t=0

=
∑
i,j

(cofE + t(αÃ+ βB̃))ij(αaij + βbij)
∣∣∣∣
t=0

= α
∑
i,j

(cofE)ij ãij + β
∑
i,j

(cofE)ij b̃ij

= α
d

dt
det(E + tÃ)

∣∣∣∣
t=0

+ β
d

dt
det(E + tB̃)

∣∣∣∣
t=0

.

Consequently,

(Δk(αA+ βB))ij = α(Δk(A))ij + β(Δk(B))ij ,

for all i, j, which completes the proof. ||
F.5. Theorem. If A is an n × n complex matrix with eigenvalues
λ1, . . . , λn, then the eigenvalues of the additive compound Δk(A) are
λi1 + · · · + λik , 1 ≤ i1 < · · · < ik ≤ n.

Proof. Using the representation A.3, write A = ΓTΓ∗, where Γ is
unitary and T is lower triangular, with tii = λi(A), i = 1, . . . , n. Then
by the Binet–Cauchy theorem F.2,

(I + tA)(k) = (I + tΓTΓ∗)(k) = Γ(k)(I + tT )(k)Γ(k)∗

= Γ(k)T̃ (k)Γ(k)∗,

where T̃ = I + tT is a lower triangular matrix with diagonal elements
(1 + tλi), i = 1, . . . , n. Then T̃ (k) is lower triangular with diagonal
elements

∏k
j=1(1 + tλij), 1 ≤ i1 < · · · < ik ≤ n. The eigenvalues of

Δk(A) are the eigenvalues of

d

dt
Γ(k)T̃ (k)Γ(k)∗

∣∣∣∣
t=0

= Γ(k)

(
d

dt
T̃ (k)

)
Γ(k)∗

∣∣∣∣
t=0

.

These eigenvalues are the diagonal elements of the triangular matrix
(d/dt)T̃ (k) and have the form

d

dt

k∏
1

(1 + tλij)

∣∣∣∣∣
t=0

= λi1 + · · · + λik . ||

Recall from F.2.e that the kth compound A(k) has determinant

detA(k) = (detA)(
n−1
k−1).
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A counterpart for the kth additive compound is

F.5.a.

tr Δk(A) =
(
n− 1
k − 1

)
tr A.

Proof. This follows from the fact that trΔk(A) is the sum of its
eigenvalues; i.e.,

∑
1≤i1<···<ik≤n

(λi1 + · · · + λik) =
(
n− 1
k − 1

) n∑
1

λi. ||

F.6. To prove F.4 and F.5, it is not necessary to evaluate the elements
in the kth additive compound. However, it may be of interest to give
an example. The following are all the additive compounds for n = 3:

Δ1(A) = A,

Δ2(A) =

⎡
⎣a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

⎤
⎦ ,

Δ3(A) = a11 + a22 + a33.

G Kronecker Product and Sum

If A is an m×n matrix and B is a p× q matrix, the Kronecker product
(also called direct product) A⊗B is the mp× nq matrix

A⊗B =

⎡
⎢⎣
a11B · · · a1nB

...
...

am1B · · · amnB

⎤
⎥⎦ .

The Kronecker sum, A⊕B, is the mp× nq matrix

A⊕B =

⎡
⎢⎣
a11J +B · · · a1nJ +B

...
...

am1J +B · · · amnJ +B

⎤
⎥⎦ ,

where J is a p× q matrix with elements 1.
Alternatively,

A⊕B = (A⊗ Im) + (In ⊗B).
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In particular, if x = (x1, . . . , xn), y = (y1, . . . , yn), then

x⊕ y = (x1 + y1, x1 + y2, . . . , x1 + yn, . . . , xn + yn).

There is an extensive matrix calculus for Kronecker products, and
we list here only those results that are used in this book. For more
details see Bernstein (2005, Chapter 7).

G.1. Whenever the matrices are conformable for multiplication,

(A⊗B)(U ⊗ V ) = AU ⊗BV.

Proof. For a proof, see, e.g., Lancaster (1969, p. 257). ||
G.2. Let A be an n × n matrix with eigenvalues α1, . . . , αn and let
B be an l× l matrix with eigenvalues β1, . . . , βl. The nl eigenvalues of
A⊗B are given by αiβj , i = 1, . . . , n, j = 1, . . . , l.

Proof. The result follows by applying G.1 to the representation
A.3: A = ΓTΓ∗, B = ΔUΔ∗, where Γ and Δ are unitary, and T and U
are lower triangular with diagonal elements tii = αi, i = 1, . . . , n, and
ujj = βj , j = 1, . . . , l. Then

A⊗B = (ΓTΓ∗) ⊗ (ΔUΔ∗) = (Γ ⊗ Δ)(T ⊗ U)(Γ∗ ⊗ Δ∗).

But Γ ⊗ Δ is unitary and T ⊗ U is lower triangular with diagonal
elements αiβj , which are the eigenvalues of A⊗B. ||
G.2.a. If A is a positive definite Hermitian matrix and B is a posi-
tive definite (semidefinite) Hermitian matrix, then A⊗B is a positive
definite (semidefinite) Hermitian matrix.

Proof. This is a direct consequence of G.2. ||
As a consequence of G.2, it follows that the eigenvalues of the prod-

uct A⊗A⊗· · ·⊗A (k times) are αi1αi2 · · ·αik , where the indices include
repetitions. This is in contrast to the kth compound, where the indices
do not include repetitions.

G.3. If A is an n × n matrix, B is an m × m matrix, and C is an
r × r matrix, then

A⊕ (B ⊕ C) = (A⊕B) ⊕ C.
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H M-Matrices

The class ofM -matrices introduced by Ostrowski (1937) can be defined
in a number of ways.

H.1. Definition. A real n × n matrix A is called an M-matrix if
A = cI −B, where bij ≥ 0 for all i, j and c > |λi(B)|, i = 1, . . . , n.

Fan (1964) shows that each of the following conditions (i), (ii), and
(iii) are necessary and sufficient for a real n×n matrix A = (aij) with
aij ≤ 0, i �= j, to be an M -matrix:

(i) A is nonsingular and A−1 = (aij) has aij ≥ 0, for all i, j;
(ii) all principal minors of A are positive;
(iii) Rλi(A) > 0, i = 1, . . . , n.

An exposition of M -matrices is given by Keilson and Styan (1973).



20
Extremal Representations

of Matrix Functions

A number of real-valued functions of the eigenvalues of a matrix have
variational or extremal representations. These representations are fre-
quently useful in that they yield comparisons between the extreme and
other values of the function. In addition, the extremal representation
may yield in a simple manner properties about the function of the
eigenvalues.

A Eigenvalues of a Hermitian Matrix

If H is an n × n Hermitian matrix, with ordered eigenvalues
λ1(H) ≥ · · · ≥ λn(H), then

max
xx∗=1

xHx∗ = λ1(H), min
xx∗=1

xHx∗ = λn(H). (1)

These classical examples of representations can be extended in a vari-
ety of ways: (i) to the ith eigenvalue, (ii) to the sum of the k largest
(smallest) eigenvalues, and (iii) to the jth elementary symmetric
function of the k largest (smallest) eigenvalues, j ≤ k.

A.1. Minmax theorem (Fischer, 1905; Courant, see Courant and
Hilbert, 1953). If H is an n × n Hermitian matrix with eigenvalues
λ1 ≥ · · · ≥ λn, then

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 783
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1 20,
c© Springer Science+Business Media, LLC 2011
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max
xx∗=1

xHx∗ = λ1,

min
y(1),...,y(j)

max
xx∗=1

y(1)x∗=···=y(j)x∗=0

xHx∗ = λj+1, j = 1, . . . , n− 1,

min
xx∗=1

xHx∗ = λn,

max
y(1),...,y(j)

min
xx∗=1

y(1)x∗=···=y(j)x∗=0

xHx∗ = λn−j+1, j = 2, . . . , n.

Equivalently,

λk = min
U

max
x

xUHU∗x∗,

λn−k+1 = max
U

min
x
xUHU∗x∗, 1 ≤ k ≤ n,

where U runs over all r × n complex matrices satisfying UU∗ = Ir,
with r = 1, . . . , n − k + 1, and x runs over all r-dimensional complex
vectors satisfying xx∗ = 1.

Proofs are given by Bellman (1960, p. 113) and by Courant and
Hilbert (1953, pp. 31 and 405).

A.1.a. If A is an n × n positive semidefinite Hermitian matrix and
H is an n× n positive definite Hermitian matrix, then

λj(HA)λ1(H−1) ≥ λj(A) ≥ λn(H−1)λj(HA), j = 1, . . . , n.

A.1.b. If A and B are n×n Hermitian matrices and A−B is positive
semidefinite, then

λj(A) ≥ λj(B), j = 1, . . . , n.

If A − B is positive definite, the inequalities are strict. This result is
due to Loewner (1934).

A.1.c. Let

H =
[
H11 H12

H21 H22

]

be an n× n positive semidefinite matrix partitioned with H11 an l× l
submatrix. Then

λi(H) ≥ λi(H11),
λn−i+1(H) ≤ λl−i+1(H11), i = 1, . . . , l.
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The next result, due to Fan (1950), extends (1) to the sum of the
k largest (smallest) eigenvalues and is of fundamental importance as
a tool for obtaining other results. The proof given here makes use of
majorization.

A.2. Theorem (Fan, 1950). If H is an n×n Hermitian matrix with
eigenvalues λ1(H) ≥ · · · ≥ λn(H), then

max
UU∗=Ik

trUHU∗ =
k∑
1

λi(H), min
UU∗=Ik

trUHU∗ =
k∑
1

λn−i+1, (2)

k = 1, . . . , n, where the extrema are over k × n complex matrices U
satisfying UU∗ = Ik.

Proof. By 19.A.4, there exists a unitary matrix Γ such that H =
ΓDλΓ∗, where Dλ = diag(λ1(H), . . . , λn(H)). Consequently, there is
no loss in generality if H is assumed to be diagonal. Then with λi ≡
λi(H), i = 1, . . . , n,

trUDλU
∗ =

k∑
i=1

n∑
j=1

uijuijλj ≡
k∑
i=1

n∑
j=1

pijλj = ePλ′, (3)

where e = (1, . . . , 1), λ = (λ1, . . . , λn), and P = (pij) is a k×n, k ≤ n,
stochastic matrix. By 2.C.1(4) it follows that there exists an (n−k)×n
matrix Q such that

(P
Q

)
is doubly stochastic. Thus (3) can be written as

trUDλU
∗ = (1, . . . , 1, 0, . . . , 0)

(
P

Q

)⎡
⎢⎣
λ1
...
λn

⎤
⎥⎦ .

But (λ1, . . . , λn)(P ′, Q′) ≺ (λ1, . . . , λn), so that with the aid of 3.H.2.b
(or directly from the definition of majorization), it follows that

trUDλU
∗ ≤

k∑
1

λi, trUDλU
∗ ≥

k∑
1

λn−i+1, k = 1, . . . , n. (4)

The proof is completed by noting that equality in (4) is achieved for
UΓ = (Ik, 0) and (0, Ik), respectively. ||

Remark . Essentially the same argument as in A.2 was used by
Ostrowski (1952) to prove the following more general result. If φ is a
Schur-convex function on R n and if H is an n× n Hermitian matrix,
then

max
UU∗=In

φ(λ(UHU∗)) = φ(λ(H)).
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A.2.a. Proposition. If G is an n× n Hermitian matrix with eigen-
values μ1 ≥ · · · ≥ μn, and H is an m × m Hermitian matrix with
eigenvalues λ1 ≥ · · · ≥ λm, m ≤ n, then

max
ΨΨ∗=Im

tr ΨGΨ∗H =
m∑
1

λiμi,

where the extremum is over m × n complex matrices Ψ satisfying
ΨΨ∗ = Im.

Proof . As in the proof of A.2, let G = ΓDμΓ∗, H = ΔDλΔ∗,
where Γ and Δ are unitary, Dμ = diag (μ1, . . . , μn), and Dλ =
diag (λ1, . . . , λm). Then

tr ΨGΨ∗H = tr ΨΓDμΓ∗Ψ∗ΔDλΔ∗

= trUDμU
∗Dλ,

where U = Δ∗ΨΓ satisfies UU∗ = Im. Consequently,

trUDμU
∗Dλ =

m∑
i=1

n∑
j=1

uijuijμiλj =
m∑
i=1

n∑
j=1

pijμiλj,

where P = (pij) is an m× n stochastic matrix. The remainder of the
proof follows that of A.2. ||

The result in Theorem A.2 corresponds to the case in which φ(x) =∑k
i=1 x[i]. The parallel result when φ is Schur-concave includes results

A.3 and A.3.a below as special cases.

Multiplicative Versions

An application of A.2 to the kth compound yields a set of multiplica-
tive versions in terms of the elementary symmetric functions of the
kth largest (smallest) eigenvalues.

A.3. If H is an n × n Hermitian matrix with eigenvalues λi ≡
λi(H), i = 1, . . . , n, ordered so that λ1(H) ≥ · · · ≥ λn(H), and if
U is a k × n complex matrix, k ≤ n, then for j ≤ k,

max
UU∗=Ik

trj UHU∗ = max
UU∗=Ik

Sj(λ1(UHU∗), . . . , λk(UHU∗))

= Sj(λ1, . . . , λk),
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and

min
UU∗=Ik

trj UHU∗ = min
UU∗=Ik

Sj(λ1(UHU∗), . . . , λk(UHU∗))

= Sj(λn, . . . , λn−k+1),

where trj A = trA(j) (see 19.F.2.d), and Sj is the jth elementary
symmetric function.

Proof. Using the Binet–Cauchy theorem 19.F.2,

trj UHU∗ = tr(UHU∗)(j) = trU (j)H(j)U∗(j).

An application of A.2 then yields

max
UU∗=Ik

trU (j)H(j)U∗(j) ≤ max
U (j)U∗(j)=1

trU (j)H(j)U∗(j)

=
(k

j)∑
i=1

λ[i](H
(j)) = Sj(λ1, . . . , λk),

min
UU∗=Ik

trU (j)H(j)U∗(j) ≥ min
U (j)U∗(j)=1

trU (j)H(j)U∗(j)

=
(k

j)∑
i=1

λ(i)(H
(j)) = Sj(λn, . . . , λn−k+1).

The proof is completed by noting that equality is achieved in the
two cases by UΓ = (Ik, 0) and (0, Ik), where H = ΓDλΓ∗, and Γ
is unitary. ||
A.3.a. A case of special interest is j = k:

max
UU∗=Ik

detUHU∗ =
k∏
1

λi(H), min
UU∗=Ik

detUHU∗ =
k∏
1

λn−i+1(H).

This result is due to Fan (1949, 1950).

The additive version (A.2) and multiplicative version (A.3.a) are
contained in a number of books, e.g., Bellman (1960, p. 132), House-
holder (1964, pp. 76 and 77), and Beckenbach and Bellman (1961,
p. 77). Householder obtains the multiplicative version A.3.a by using
compounds as above. The idea of a hierarchical structure in a related
context is used by Marcus and Moyls (1957) and by Mirsky (1958b).

Bounds for the function trUHU∗ can be obtained by applying a
rearrangement theorem and majorization.
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A.4. Theorem. If H is an n × n Hermitian matrix with eigen-
values λ1 ≥ · · · ≥ λn, U is a k × n complex matrix, k ≤ n, and
βi = λi(UU∗), i = 1, . . . , k, ordered β1 ≥ · · · ≥ βk ≥ 0, then

k∑
1

λiβi ≥ trUHU∗ ≥
k∑
1

λn−i+1βi, k = 1, . . . , n. (5)

Proof. Let H = ΓDλΓ∗ be the eigenvalue decomposition (19.A.4)
of H and let V = UΓ. Because λ(UU∗) = λ(V V ∗), we assume, with
no loss in generality, that H is diagonal.

Let B = U∗U . Then

trUDλU
∗ = trDλB =

∑
λibii.

By the rearrangement theorem 6.A.3,
n∑
1

λ[i]b[ii] ≥
∑

λibii ≥
n∑
1

λ(i)b[ii].

Further, (λ1, . . . , λn) � (b11, . . . , bnn), so that
n∑
1

λ(i)b[ii] ≥
n∑
1

λ(i)β[i] =
n∑
1

λn−i+1βi,

n∑
1

λ[i]b[ii] ≤
∑

λ[i]β[i] =
n∑
1

λiβi. ||

As a consequence of A.4, A.2 can easily be obtained:

A.4.a. Alternative proof of A.2. If UU∗ = I, then (5) with β1 =
· · · = βk = 1 yields

k∑
1

λi ≥ trUHU∗ ≥
k∑
1

λn−i+1, k ≤ n.

Equality in the left- and right-hand inequalities are achieved for
U = (Ik, 0)Γ and U = (0, Ik)Γ, respectively, where H = ΓDλΓ∗ is
the eigenvalue decomposition. ||

The right-hand inequality of (5) yields another extremal
representation.

A.5. If H is an n× n positive definite Hermitian matrix with eigen-
values λ1 ≥ . . . ≥ λn > 0, and U is a k × n complex matrix,
k ≤ n, then
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min
detUU∗=1

trUHU∗

k
=

(
k∏
1

λn−i+1

)1/k

.

Proof. From (5) and the arithmetic–geometric mean inequality,

trUHU∗

k
≥

k∑
1

λn−i+1βi
k

≥
(

k∏
1

λn−i+1

)1/k ( k∏
1

βi

)1/k

.

But detUU∗ = 1 is equivalent to
∏k

1 βi = 1, so that

min
detUU∗=1

trUHU∗

k
≥
(

k∏
1

λn−i+1

)1/k

.

The proof is completed by noting that equality can be achieved for

βj =

(
k∏
1

λn−i+1

)1/k/
λn−j+1,

and B = U∗U = diag(β1, . . . , βk, 0, . . . , 0). ||

B Singular Values

One of the earliest results for the sum of the k largest (smallest) sin-
gular values of a matrix is due to von Neumann (1937) and later to
Fan (1951). The proof given below uses majorization. An extension to
several matrices is discussed.

The real part of a complex number z is denoted Rz.

B.1. Theorem (von Neumann, 1937; Fan, 1951). If A and B are
n × n complex matrices, U and V are n × n unitary matrices, and
σ1 ≥ · · · ≥ σn ≥ 0 denote ordered singular values, then

R trUAV B ≤ |trUAV B| ≤
n∑
1

σi(A)σi(B), (1a)

sup
U,V

R trUAV B = sup
U,V

|trUAV B| =
n∑
1

σi(A)σi(B). (1b)

Denote the singular value decompositions (19.B.1) of A and B by

A = Γ1DαΔ1, B = Γ2DβΔ2,
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where αi = σi(A), βi = σi(B), i = 1, . . . , n, and Γ1,Δ1,Γ2,Δ2 are
unitary; then equality is achieved in (1a) for U = Δ∗

2Γ
∗
1, V = Δ∗

1Γ
∗
2.

Proof. For any complex number z, R(z) ≤ |z|, so the left-hand
inequality is immediate. To prove the right-hand inequality, using the
singular value decompositions for A and B, let Ũ = Δ2UΓ1, Ṽ =
Δ1V Γ2, so that, in effect, we can assume A and B to be diagonal.
Then

|tr ŨDαṼ Dβ | =
∣∣∣∑

j,l
ujlαlvljβj

∣∣∣ ≤∑
j,l
αl|ujlvlj|βj

=
∑

j,l
αlpjlβj ≡ (α1, . . . , αn)P (β1, . . . , βn)′, (2)

where pjl = |ujlvlj |, P = (pij). From 2.H.7.a, the matrix P is doubly
substochastic, so that with the aid of 3.H.2.b, it follows that

(α1, . . . , αn)P (β1, . . . , βn)′ ≤ (α1, . . . , αn)(β1, . . . , βn)′ =
n∑
1

αiβi.

That equality in (2) is achieved for Ũ = Ṽ = I is immediate. ||
The result of von Neumann (1937) is

max
UU∗=V V ∗=I

R trUAV B =
n∑
1

σi(A)σi(B), (3)

whereas the result of Fan (1951) is

max
UU∗=V V ∗=I

|trUAV B| =
n∑
1

σi(A)σi(B). (4)

In view of the left-hand inequality in (1a), (3) implies (4). Since (3)
achieves equality for a matrix for which R trUV AB = |trUV AB|, (4)
implies (3).

An important case is obtained by the choice

B =
[
Ik 0
0 0

]
, A =

[
A11 0
0 0

]
,

where A11 is m× p. Partition U and V :

U =
[
U11 U12

U21 U22

]
, V =

[
V11 V12

V21 V22

]
.

where U11 is k ×m, and V1 is p× k. Then

trUAV B = trU11A11V11.

Thus, the following corollary is obtained.
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B.1.a. Corollary. If A is an m × p complex matrix, U and V are
complex k ×m and k × p matrices, respectively, k ≤ m,k ≤ p, then

max
UU∗=V V ∗=Ik

R trUAV ∗ = max
UU∗=V V ∗=Ik

|trUAV ∗| =
k∑
1

σi(A).

An Extension to an Arbitrary Number of Matrices

The extension of B.1 to an arbitrary number of matrices is clear. The
proof, however, is not obvious. We give an inductive proof that is
elementary, though still somewhat lengthy.

B.2. Theorem (Fan, 1951). Let A1, . . . , Am be n× n complex ma-
trices with singular values σ1(Aj) ≥ · · · ≥ σn(Aj) ≥ 0, j = 1, . . . ,m,
and let U1, . . . , Um be n× n unitary matrices. Then

R tr(U1A1U2A2 · · ·UmAm) ≤ |tr(U1A1U2A2 · · ·UmAm)|

≤
n∑
1

σi(A1) · · · σi(Am), (5a)

sup
U1,...,Um

R tr(U1A1U2A2 · · ·UmAm) = sup
U1,...,Um

|tr(U1A1U2A2 · · ·UmAm)|

=
n∑
1

σi(A1) · · · σi(Am). (5b)

Equality in (5a) is achieved for U1 = Δ∗
mΓ∗

1, U2 = Δ∗
1Γ

∗
2, . . . , Um =

Δ∗
m−1Γ

∗
m, where the Γj and Δj are obtained from the singular value

decompositions Aj = ΓjDjΔj , i = 1, . . . ,m, of 19.B.1.

Proof. The case m = 2 was proved as B.1. Assume that (5a) holds
for m−1, and assume, with no loss in generality, that each Aj = Dj =
diag(a(j)

1 , . . . , a
(j)
n ), with ordered a(j)

1 ≥ · · · ≥ a
(j)
n ≥ 0, j = 1, . . . ,m−1.

That is, the singular values are ordered.
In the following, the maxima are always over the set of n × n uni-

tary matrices. Using B.1 and writing R = D1U2D2 · · ·Dm−2, S =
Dm−1UmDm,

|trU1(D1U2D2 · · ·Dm−2)Um−1(Dm−1UmDm)| ≡ |trU1RUm−1S|

≤
n∑
1

σi(R)σi(S).(6)
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Suppose the following two weak majorizations can be established:
k∑
1

σi(S) ≤
k∑
1

σi(Dm−1)σi(Dm), k = 1, . . . , n; (7)

k∑
1

σi(R) ≤
k∑
1

σi(D1) · · · σi(Dm−2), k = 1, . . . , n. (8)

It would then follow from 3.H.2.c that
k∑
1

σi(R)σi(S) ≤
k∑
1

σi(D1) · · · σi(Dm),

in which case it follows from (6) that

|trU1D1U2D2 · · ·UmDm| ≤
n∑
1

σi(D1) · · · σi(Dm).

Equality is achieved for Ui = I, i = 1, . . . ,m, as claimed.
It remains to prove (7) and (8).
The weak majorization (8) is a direct consequence of the induction

hypothesis with the choices

Dm−1 =
[
Ik 0
0 0

]
, k = 1, . . . , n.

To prove (7), write Da,Db in place of Dm−1 and Dm. Let U3 :n× n
be unitary. Then by B.1.a,
l∑
1

σi

[
DbU3

[
Ik 0
0 0

]]
= max

V V ∗=Il
W W∗=Il

∣∣∣∣trWDbU3

[
Ik 0
0 0

]
V ∗

∣∣∣∣ (9)

≤ max
V V ∗=Il

W W∗=Il

|trWDbṼ | =
l∑
1

bi, l = 1, . . . , n,

where

Ṽ = U3

[
I 0
0 0

]
V ∗.

Next let U1 :n× n be unitary and apply B.1 to obtain∣∣∣∣trU1DaUm−1DbU3

[
Ik 0
0 0

]∣∣∣∣ ≤
n∑
1

aiσi

[
DbU3

[
Ik 0
0 0

]]

=
k∑
1

aiσi

[
DbU3

[
Ik 0
0 0

]]
. (10)
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From the weak majorization (9), it follows with the aid of 3.H.2.c that

∣∣∣∣trU1DaUm−1DbU3

[
Ik 0
0 0

]∣∣∣∣ ≤
k∑
1

aibi. (11)

Finally, by B.1.a and (11),

k∑
1

σi (S) = max
U1,U3

∣∣∣∣tr
[
Ik 0
0 0

]
U1DaUm−1DbU3

[
Ik 0
0 0

]∣∣∣∣

= max
U1,U3

∣∣∣∣trU1DaUm−1DbU3

[
Ik 0
0 0

]∣∣∣∣ ≤ max
U1,U3

k∑
1

aibi =
k∑
1

aibi. ||

A proof using compounds is given by Marcus and Moyls (1957), and
an inductive proof is given by Kristof (1970).

Multiplicative Versions

Multiplicative versions of (5a, b) for the determinant have been ob-
tained by Fan (1951) and subsequently generalized to symmetric
functions by Marcus and Moyls (1957) and by Mirsky (1958b). Closely
related results are contained in de Bruijn (1956) and Visser and Zaanen
(1952).

B.3. Theorem. Let A1, . . . , Am be n× n complex matrices and let

A = U1A1U2A2 · · ·UmAm,
where U1, . . . , Um are n× n unitary matrices. Then

R Sj(λ1(A), . . . , λn(A)) ≤ |Sj(λ1(A), . . . , λn(A))|

≤ Sj (
∏m

1 σ1(Ai), . . . ,
∏m

1 σn(Ai)) , j = 1, . . . , n,
(12a)

and

sup
U1,...,Um

R Sj (λ1(A), . . . , λn(A))

= sup
U1,...,Um

|Sj(λ1(A), . . . , λn(A))|

= Sj

(
m∏
1

σ1(Ai), . . . ,
m∏
1

σn(Ai)

)
.

(12b)

Equality in (12a) is achieved for U1, . . . , Um as in B.2.
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In (12a) the choice of one matrix, say

Am =
[
Ik 0
0 0

]
,

yields the apparently more general form:

B.3.a. Corollary. If A1, . . . , Am and n×n complex matrices V1 and
V2 are k×n, k ≤ n matrices satisfying V1V

∗
1 = V2V

∗
2 = Ik, U2, . . . , Um

are n× n unitary matrices, and

A = V1A1U2A2 · · ·UmAmV ∗
2 ,

then
RSj(λ1(A), . . . , λk(A)) ≤ |Sj(λ1(A), . . . , λk(A))|

≤ Sj

(
m∏
1

σ1(Ai), . . . ,
m∏
1

σk(Ai)

)
, j ≤ k = 1, . . . , n,

(13a)

and
sup

V1,V2,U2,...,Um

R Sj (λ1(A), . . . , λk(A))

= sup
V1,V2,U2,...,Um

|Sj(λ1(A), . . . , λk(A))|

= Sj

(
m∏
1

σ1(Ai), . . . ,
m∏
1

σk(Ai)

)
.

(13b)

Equality in (13a) is achieved for U1 = V ∗
2 V1, U2, . . . , Um as in B.2.

An application of B.2 using the polar decomposition 19.C.3 yields

B.3.b. Corollary. If H is Hermitian, U is n × n, and V is k × n,
then for j ≤ k = 1, . . . , n,

max
(UU∗=In

V V ∗=Ik
)
Sj(λ(V (HU)r(U∗H∗)rV ∗)) = Sj(|λ1(H)|2r, . . . , |λk(H)|2r).

C Other Extremal Representations

The following provides a representation for the determinant of a
principal submatrix of a positive definite Hermitian matrix.

Let

H =
[
H11 H12

H21 H22

]
, G = H−1 =

[
G11 G12

G21 G22

]

be n× n Hermitian matrices with p× p submatrices H11, G11.
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C.1. Theorem (Fan, 1955b). If H is positive definite, then

min
X

det[(X +H12H
−1
22 )H22(X∗ +H−1

22 H21) +G−1
11 ] = detG−1

11

= det(H11 −H12H
−1
22 H21) = detH/detH22,

where the minimum is over all p× (n− p) matrices X. The minimum
is achieved if and only if X = −H12H

−1
22 .

An equivalent formulation of C.1 is

C.1.a. Theorem. minX det(I,X)H(I,X)∗ = detG−1
11 , where the

minimum is over all p× (n− p) matrices X.

Proof. The result follows from C.1 after noting that

(I,X)H(I,X)∗ = H11 +XH12 +H21X
∗ +XH22X

∗

= (X +H12H
−1
22 )H22(X∗ +H−1

22 H21) + (H11 −H12H
−1
22 H21),

and H11 −H12H
−1
22 H21 = G−1

11 . ||
Theorem C.1.a for p = 1 is given by Olkin and Pratt (1958) and

by Mirsky (1963), who then obtained determinant inequalities as a
consequence.
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BARON EDWARD HUGH JOHN NEAL DALTON
1887–1962

Hugh Dalton was born in 1887 at Neath, Glamorgan County, Wales.
He was educated at Eton and King’s College, Cambridge, where he won
the Winchester Reading Prize in 1909 and received his M.A. From 1911
to 1913, he studied at the London School of Economics on a Hutchin-
son Research Studentship, leading to a D.Sc. In 1914 he became a
Lecturer at the London School of Economics and also passed legal
examinations.

During the First World War, Dalton served in the Army Service
Corps and Royal Garrison Artillery, and in 1919 set up his law practice.
From 1920 to 1925, he was the Sir Ernest Cassel Reader in Commerce
and from 1925 to 1936 was Reader of Economics at the University
of London. From 1929 to 1935, he was a Lecturer at the London
School of Economics. He served on the Council of the Royal Statistical
Society.

In 1924 Dalton won a seat in Parliament. When Ramsay MacDonald,
the Labor Party leader, became Prime Minister in 1929, he was chosen
as Parliamentary Undersecretary at the Foreign Office (1929–1931).

A.W. Marshall et al., Inequalities: Theory of Majorization and Its Applications, 797
Springer Series in Statistics, DOI 10.1007/978-0-387-68276-1,
c© Springer Science+Business Media, LLC 2011
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During the Second World War, he was a member of the Cabinet
as Minister of Economic Warfare (1940–1942). In 1942 he became
President of the Board of Trade and in 1945 again joined the Cabinet
as Chancellor of the Exchequer under Prime Minister Clement Attlee.

Hugh Dalton died on February 13, 1962.

References

Current Biography, p. 132, H. W. Wilson, New York (1945).
H. Dalton, Call Back Yesterday; Memoirs 1887–1960, 3 vols. Miller,

London (1953/1962).
Obituary, February 14, p. 17, The Times, London, England (1962).

Figure 1. Hugh Dalton
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GODREY HAROLD HARDY, 1877–1947

Godfrey Harold Hardy was born on February 7, 1877, at Cranleigh,
Surrey. He began his university studies at Trinity College, Cambridge,
in 1896, where he was elected to a Prize Fellowship and was awarded
a Smith’s Prize. From 1906 to 1919, he was Lecturer in Mathematics
at Trinity and was given the honorary title of Cayley Lecturer at the
University of Cambridge in 1914. In 1919 he was elected to the Savilian
Chair of Geometry at New College, Oxford.

In 1928–1929 he was a Visiting Professor at Princeton University
and at the California Institute of Technology. In 1931 he returned to
Cambridge in the Sadleirian Chair of Pure Mathematics, and again
became a Fellow of Trinity. He retired from the Chair in 1945.

Hardy was a Fellow of the Royal Society and the Royal Astronomical
Society. He served on the Council of the London Mathematical Society
from 1905 to 1908 and subsequently almost continuously from 1914
until 1945; he was a secretary 1917–1926, 1941–1945, and president
1926–1928, 1939–1941.

He won the Royal Medal in 1920, the Sylvester Medal in 1940, the
Copley Medal in 1947 from the Royal Society, the De Morgan Medal in
1929 from the London Mathematical Society, and the Chauvenet Prize
in 1933 from the American Mathematical Association, and received
numerous fellowships and honorary degrees throughout the world.

Hardy died on December 1, 1947.

References

List of papers by G. H. Hardy, J. London Math. Soc. 25, 89–101,
(1950).

Some aspects of Hardy’s mathematical work, J. London Math. Soc.
25, 102–138 (1950).

Collected papers of G. H. Hardy, Vols. I–VI. Oxford Univ. Press,
London (1966–1974).

Obituary, December 2, p. 7, The Times, London, England (1947).
E. C. Titchmarsh, Godfrey Harold Hardy, J. London Math. Soc. 25,
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Figure 2. Godfrey Harold Hardy

JOHAN LUDWIG WILLIAM VALDEMAR JENSEN,
1859–1925

Johan L.W.V. Jensen was born on May 8, 1859, in Nakskov, Denmark,
the son of a bookseller. Shortly after he began school, the family moved
to the north of Sweden, where his father was a farmer. He later re-
turned to Denmark to attend the Polytechnical Institute in 1876, and
subsequently worked as a mathematics teacher. In 1881 he became an
assistant at the International Bell Telephone Company, which later
became the Copenhagen Telephone Company. Incidentally, his father
also worked at the telephone company as an accountant. While work-
ing at the telephone company, he exhibited his mathematical ability
as well as an unusual technical ability in a variety of tasks, and was
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promoted rapidly. In 1890, at the young age of 31, he became senior
engineer and head of the technical department. He continued working
with the telephone company until 1924. Although Jensen never had
an academic position, he reached as high a level as a mathematician
as he did as an engineer. His contributions were on the Riemann hy-
pothesis, infinite series, gamma functions, and inequalities for convex
functions in 1906, for which he is best remembered. He was elected
to the Royal Danish Academy of Sciences and Letters and in 1918
received an honorary doctorate from Lund University in Sweden. He
suffered from angina pectoris attacks and died on March 6, 1925, in
Copenhagen.

Figure 3. Johan Ludwig William Valdemar Jensen

JOVAN KARAMATA, 1902–1967

Jovan Karamata was born in Zagreb, Croatia, on February 1, 1902.
Shortly thereafter the family moved to Zemun in Serbia, where he
was educated until high school. Because of the First World War, his



802 Biographies

father sent him, together with his brothers and sister, to Lausanne,
Switzerland, where he finished high school in 1920. He then en-
rolled in Belgrade University, and graduated in 1925 with a major
in mathematics.

He spent the years 1927–1928 in Paris, as a fellow of the Rockefeller
Foundation, and in 1928 he became Assistant for Mathematics at the
Faculty of Philosophy of Belgrade University. In 1930 he became As-
sistant Professor, and in 1937 Associate Professor; after the end of the
Second World War, in 1950 he became Full Professor. In 1951 he was
elected Full Professor at the University of Geneva. He also taught at
the University of Novi Sad.

In 1933 he became a member of Yugoslav Academy of Sciences and
Arts, Czech Royal Society in 1936, and Serbian Royal Academy in
1939 as well as a fellow of Serbian Academy of Sciences in 1948. He
was one of the founders of the Mathematical Institute of the Serbian
Academy of Sciences and Arts in 1946.

Karamata was a member of the Swiss, French, and German math-
ematical societies, the French Association for the Development of
Science, and the primary editor of the journal l’Enseignement
Mathematique in Geneva.

After a long illness, Jovan Karamata died on August 14, 1967, in
Geneva, but his ashes rest in his native town of Zemun.
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Figure 4. Jovan Karamata

JOHN EDENSOR LITTLEWOOD, 1885–1977

John Edensor Littlewood was born in Rochester, England, on June 9,
1885. From 1892 to 1900 he lived in South Africa and returned to
England in 1900. In 1903 he began his university studies as a scholar
of Trinity College, Cambridge. He won a Smith’s Prize in 1908 and was
elected a Fellow of Trinity. From 1908 to 1911, he was a Richardson
Lecturer, Victoria University, Manchester, and returned to Trinity in
1910 as a College Lecturer. At the University of Cambridge, he was
Cayley Lecturer from 1920 to 1928, and then was elected to the Rouse
Ball Chair of Mathematics, a position he held until he retired in 1950.

Littlewood obtained an M.A. from Cambridge in 1950, an Hon-
orary D.Sci. from Liverpool, an Honorary L.L.D. from St. Andrews,
and an Honorary Sc.D. from Cambridge. He won the Royal Medal in
1929, the Sylvester Medal in 1944, the Copley Medal in 1948 from
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the Royal Society, the De Morgan Medal from the London Mathe-
matical Society in 1939, and the Senior Berwick Prize in 1960. He
was a Fellow of the Royal Society and the Cambridge Philosophical
Society, a Corresponding Member of the French and Göttingen Aca-
demics, and a Foreign Member of the Royal Dutch, Royal Danish, and
Royal Swedish Academies.

Littlewood died on September 7, 1977.
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Figure 5. John Edensor Littlewood

MAX OTTO LORENZ, 1876–1959

Max Otto Lorenz was born in Burlington, Iowa, on September 19,
1876. He received a B.A. degree from the University of Iowa in 1899
and a Ph.D. in economics from the University of Wisconsin in 1906.
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He started his career in government agencies as Deputy Commissioner
of Labor and Industrial Statistics for the State of Wisconsin, and sub-
sequently worked as Statistician and Economist for the U.S. Bureau
of the Census, the Bureau of Railway Economics, and the Interstate
Commerce Commission. From 1920 until his retirement in 1944, he was
Director of the Bureau of Statistics and the later Bureau of Transport
Economics and Statistics. Lorenz died in Sunnyvale, California, on
July 1, 1959.

While working for the Bureau of the Census in 1910, he applied the
Lorenz curve which he had developed in 1905; the curve continues to
be used extensively by economists.

References

National Cyclopedia of American Biography, Vol. 47, p. 490, J. T.
White, Clifton, NJ (1965).

Figure 6. Max Otto Lorenz

ROBERT FRANKLIN MUIRHEAD, 1860–1941

Robert Franklin Muirhead was born on January 22, 1860, near
Glasgow, Scotland. He attended Glasgow University, 1876–1881,
and received his M.A. and B.Sc. degrees with highest honors in
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mathematics and natural philosophy. With a scholarship, he at-
tended St. Catherine’s College, Cambridge, where he was awarded a
Smith’s Prize in 1886. After another year’s study at Göttingen, Muir-
head returned to Britain and held a series of teaching positions. He
unsuccessfully applied for several professorships, and finally settled in
Glasgow about 1893 as a “Coach” in mathematics, physics, and en-
gineering. About 1900 he founded the Glasgow Tutorial College and
continued as Principal until his death in 1941.

Muirhead was elected a member of the Edinburgh Mathematical
Society in its second session, in 1884, and was president of the Society
in 1899 and 1909. He was also active in promoting socialism, was for a
number of years a Member of Council of the Scottish National Party,
and was for a time editor of the party publication, Scots Independent.

References

J. Dougall, Robert Franklin Muirhead, B.A., D.Sc, Proc. Edinburgh,
Math. Soc. [2] 6, 259–260 (1941).

Figure 7. Robert Franklin Muirhead
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Figure 8. Muirhead

GEORGE PÓLYA, 1887–1985

George Pólya was born in Budapest, Hungary, on December 13, 1887,
and studied at the Eötvös Lorand University, Budapest, and the
University of Vienna. He received the Ph.D. degree at Budapest in
1912.

He spent the academic years 1912–1913 and 1913–1914 in Göttingen
and Paris and then joined the Federal Polytechnical School in Zürich,
Switzerland, as “Privatdozent” from 1914 to 1919, “Titular Professor”
from 1920 to 1928, and Professor from 1928 to 1940.

Pólya taught at Brown University from 1940 to 1942, at Smith Col-
lege in 1942, and then joined the faculty of Stanford University. His
official “retirement” was in 1953, but he was still teaching in 1977.

Pólya was a Rockefeller Traveling Fellow at Oxford and Cambridge
in 1924–1925, a visiting lecturer in Princeton in 1933, and at various
times a Visiting Professor at Princeton, University of Geneva, Uni-
versity of Paris, University of Göttingen, University of Cambridge,
University of British Columbia, and University of Toronto.

He received an Honorary D.Sci. from the Federal Polytechnical
Institute in Zürich in 1947, and from the University of Wisconsin–
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Milwaukee in 1969, an Honorary L.L.D. from the University of Alberta
in 1961, and a D. Math. from the University of Waterloo in 1971.

He was awarded the Distinguished Service Award of the American
Mathematical Association in 1963. Memberships include the National
Academy of Sciences U.S.A., the American Academy of Arts and Sci-
ences, the Hungarian Academy of Sciences, and the French Academy
of Sciences.

The book Studies in Mathematical Analysis and Related Topics, Es-
says in Honor of George Pólya, published in 1962 on his 75th birthday,
contains articles by some of his many friends, students, and colleagues.
Pólya continued to give occasional talks, even at age 90. He died in
Palo Alto, California, on September 7, 1985.
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Univ. Press, Stanford, CA (1962).

Figure 9. George Pólya
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ISSAI SCHUR, 1875–1941

Issai Schur was born on January 10, 1875, in Mogilev, Russia. He
attended the Gymnasium in Libau (now Liepaja, Latvian SSR) and
began his studies at the University of Berlin in 1894, where he was
awarded a doctorate summa cum laude in 1901.

Schur taught in Berlin from 1903 to 1913, was an “assistant” pro-
fessor at Bonn from 1913 to 1916, and returned to the University of
Berlin in 1916 where he became a full professor in 1919. From 1933
to 1935 his position became precarious and in 1935 he was forced to
retire by the Nazi authorities. In 1936 he visited the Eidgenössische
Technische Hochschule in Zürich.

He became a member of the Prussian Academy of Science in 1922,
and was also a member of the Academies at Leningrad, Leipzig, Halle,
and Göttingen.

In 1939 Schur managed in ill health to emigrate to Israel (then
Palestine). His health did not improve, and he died there two years
later on his 66th birthday, January 10, 1941.
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Figure 10. Issai Schur

Figure 11. Hardy and Pólya
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Figure 12. Hardy and Littlewood

Figure 13. Pólya and Littlewood
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Absolute singular values, 299
Additive compound, 778
Admissibilty of Tests, 517
Affine function, 642
Altruistic transfer, 17
Analysis of variance

ranking and selection for, 547
two-way classification, 537

Angle function, 645
Antecedent mapping, 19
Apportionment in proportional

representation, 514
Arc of a graph, 243
Arithmetic geometric mean

inequality, 125
proof of, 478, 654

Arrangement increasing function,
230

convex cone of, 232
identification of, 232

Artin’s theorem, 649
and Holder’s inequality, 662,

663
and Lyapunov’s inequality, 663

Associated roots of a matrix, 299
Asymmetric square root of a

matrix, 773
Atkinson’s measure of inequality,

566

Bartlett’s test, 529
Basic composition formula, 752
Bernoulli distribution

entropy of convolutions of, 557
inequality for convolutions of,

474
stochastic majorization for,

486
tail probabilities of linear

combinations, 495

893
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Bernoulli random variables,
symmetric

moments of, 477
Schur-convexity for, 479
sum of, 498

Beta distribution
generalized, 737
log concavity of density, 864

Beta function, generalized, 109
Bimajorization, weak, 603
Binet–Cauchy theorem, 776
Binomial distribution

mean, 141
preservation of

Schur-convexity for, 409,
433

stochastic majorization for,
488

Birkhoff’s theorem, 30, 38, 42, 47
Birthday problem, 413
Bistochastic matrix, 30
Bivariate distributions with fixed

marginals, 505
Bivariate exponential

distribution, 504

Capacity of network, 244
Carathéodory’s theorem, 38, 52
Cauchy–Binet theorem, 776
Cauchy–Bunyakovskǐı–Schwarz

inequality, 660
Cauchy distribution, 492
Cauchy’s matrix, total positivity

of, 760
Cayley transform, 374
Chain in a graph, 266
Chain majorization

for matrices, 612
order preserving functions for,

621
for vectors of matrices, 629

Chaotic order, 18

Chi-square distribution
moment inequality for, 477
multivariate, Schur-concavity

of density, 407
noncentral, total positivity of,

762
preservation of

Schur-convexity for, 410
Circuit in a graph, 266
Circular matrix (circulant), 62
Circular moving average, 62
Circular symmetric multivariate

normal distribution, 531
Closed function, 646
Closure of a function, 646

properties, 438
under convolution, 423
under limits, 438

Coefficient of ergodicity, 176
Coefficient of variation, as

measure of diversity, 561,
721

Coincidence, 50
Color-feasibility in a graph,265
Comparison of experiments, 570
Complementary inequalities, 102
Complete monotonicity, 766
Complete symmetric function,

119
Completely monotone function,

108, 766
Complex vectors, weak

majorization and, 41
Composition

of convex functions, 648
of totally positive functions,

758
and Schur-convexity, 88

Compound distributions, 391
Compound matrix, 502, 775

Binet–Cauchy theorem for, 776
eigenvalues of, 777
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Compound, additive, of a matrix,
778

Concave function, 642
majorization for, 95, 97, 165

Concavity of determinant, 685
Concentration of distributions,

493, 511
Concordance of distributions,

505, 712
Condition number, 376

and norms, 376
for submatrix, 380

Cone
convex, 21
ordering, 21, 595
pointed, 595

Configuration
least likely, 545
most likely, 545

Conjugate numbers, 659
Conjugate sequence, 197, 245

generalization of, 258
Continuity of convex functions,

646
Continuous majorization, 22

generalized, 23
Convergence of ordered

sequences, 71
Converse theorems

for diagonal elements, 305
for eigenvalues, 322
for singular values, 322
for sums of matrices, 335

Convex cone, 21
of arrangement increasing

functions, 232
Convex function, 453, 641, 651

composition of, 648
continuity of, 646
Jensen sense, 20
majorization for, 95, 97, 165
and weak majorization, 12

Convex hull of permutation
matrices, 30

Convex matrix function, 676
Convex polytope, 48
Convex trace functions, 690
Convexity

log, preservation under
mixtures, 649

of matrix inverse, 768
Convolution

notation for, 395
of Schur-concave functions, 48,

235
Correct selection, probability of,

541
Correlation

Gaussian, 517
intraclass, 530

Covariance matrix, structured,
530

d-majorization, 585
d-stochastic matrix, 585
Dalton condition, 560
Dalton’s measure of inequality,

566
Dalton transfer, 17
Data distributions, 506
Decreasing function, 637
Decreasing hazard rate, 106
Decreasing in transposition, 230
Decreasing rearrangement of

functions, 22
Demidegree of a graph, 254
Density function, totally positive,

236
Density matrices, 522
Derivatives, fractional, 127
Design of experiments, 568
Design, random effects, 536
Determinant

concavity of, 685
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extremal representation for,
795

Hadamard’s inequality for, 306
inequalities for, 685

Diagonal elements and singular
values, majorization for, 313

Dilation (or dilatation), 26, 421
in sampling plans, 446

Direct product of matrices, 780
Directed graph, 243
Dirichlet compound negative

multinomial distribution,
preservation of
Schur-convexity for, 420, 434

Dirichlet distribution, 144, 415
preservation of symmetry and

convexity for 400
Schur-convexity for, 415

Disordered, more, 18
Distinct representatives, system

of, 256
Distribution, see also Compound

distributions; Multivariate;
and specific distributions:
Bernoulli; Beta; Binomial;
Bivariate exponential;
Chi-square; Circular
symmetric multivariate
normal; Dirichlet;
Exponential; Gamma;
Geometric; Hypergeometric,
multivariate; Inverse
hypogeometric,
multivariate;
Liouville–Dirichlet;
Logarithmetic series;
Multinomial; Negative
binomial, multivariate;
Negative multinomial;
Negative multivariate
hypergeometric; Noncentral
chi-square; Noncentral F ;

Noncentral t ; Normal;
Poisson; t ; Uniform; Weibull

mixtures of 393, 466
with proportional hazard

function, 484, 488
Diversity

measurement of, 559
relative differences in, 604

DNA sequences, 201
Dominance

and weak majorization, 18
stochastic, 709
utility gap, 187

Domination, for sampling plans,
445

Doubly stochastic matrix, 10, 29
and majorization, 29, 33, 35,

155
regular, 68

Doubly substochastic matrix, 12,
36

augmentation of, 37
and weak majorization, 14, 36,

39, 40
Doubly superstochastic matrix,

12, 43
and weak majorization, 42, 43

Duality for triangle inequalities,
294

Duplication formula,
Gauss–Legendre, 478, 650

Edge in a graph, 243
Edge coloring of a graph, 265
Effective domain of convex

function, 642
Eigenvalue

of compound matrix, 796
decomposition, 771
elementary symmetric

functions of, 777
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extremal property for sum of,
785

interlacing property of, 301,
303, 311

notations for, 298
of random matrix, 469
and singular values,

majorization for, 317
Elementary dominant, 445
Elementary symmetric functions,

114
of characteristic roots, 777
and Hermitian matrices, 306
majorization for, 172
normalized, 137
ratio of, 117
for sides of triangle, 230

Elementary T-transform, 82
Entropy, 101

of Bernoulli distributions, 557
as measure of diversity, 562
generalized relative, 627
Kapur’s, 101
of multinomial distribution,

558
Schur-concavity of, 556

Epigraph, 646
Ergodicity, coefficient of, 176
Estimation, linear, 535
Estimators

efficiency of, 472
minimum variance unbiased,

536
Exchangeable normal random

variables
preservation of

Schur-convexity for, 411
Schur-convexity of density, 408

Exchangeable random matrices,
397

Exchangeable random variables,
126, 392

preservation of
Schur-convexity for, 406

preservation of symmetry and
convexity for, 396, 397

Schur-concavity for, 407
translation of, 406

Exponential distribution, 482
bivariate, 504
mixture of, 108
order statistics from, 482
preservation of symmetry and

convexity for, 399
tail probabilities of linear

combinations, 498
Exponential family of

distributions, total
positivity of, 761

Extended logarithmic mean,
143

Extremal representations, 794
Extreme points of

complex matrices, 42
doubly stochastic matrices, 30
infinite doubly stochastic

matrices, 25
uniformly tapered matrices, 58

F distribution
generalized, 737
noncentral, total positivity of,

762
Failure rate, 503
Feller-Pareto distribution, 737
Ferreri-Sylvester diagrams, 246
Finite graph, 243
Fischer minmax theorem, 783
Fishlow poverty measure of

inequality, 565
Flow in network, 244
Fractional derivatives, 127
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Function
closure of, 646
completion of, 599
doubly stochastic, 608
inequality attenuating, 726
inequality preserving,726
matrix valued, 361
ray-increasing, 592

G-increasing (decreasing), 591
G-invariant, 591
G-majorization, 589

order preserving functions for,
594

Gale–Ryser theorem, 249
Gamma distribution

generalized, 736
logarithmic concavity of

density, 764
moments of, 110
preservation of

Schur-convexity for, 410,
433

preservation of symmetry and
convexity for, 399, 430

stochastic majorization for,
488

Gamma function, majorization
for, 109

Gateaux differentials, 608
Gauge function symmetric, see

Symmetric gauge function
Gauss–Legendre duplication

formula, 478, 650
Gauss–Markov estimate, 473
Generalized averaging operation,

23
Generalized inverse of matrix,

375
Genetic algorithms, 523
Geometric distribution,

Schur-convexity for, 476

Gibbsian states, comparison of,
522

Gini coefficient, as measure of
inequality, 563, 721

Gradient, 647
Graph

arc of, 243
chain in, 266
circuit in, 266
color-feasibility in, 265
demidegree of, 254
directed, 243
edge of, 243
edge coloring of, 265
finite, 243
incidence matrix of, 243
loop of, 244
network, 244
node of, 243
nondirected, 264
random, 513
s-, 258
tournament, 260, 264
vertex of, 243

Hadamard product, 352
Hadamard-type inequality

for M -matrix, 369
for totally positive matrix, 357

Hadamard’s determinant
inequality, 4, 300

proof of, 306
variations of, 347
via extremal representation,

350
Hartley’s test, 529
Hazard function, 484
Hazard rate, 763

decreasing, 106
increasing, 106, 478, 503

Hazard transform, 550
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Heinz mean, 144
Helmert matrix, 65
Hermitian matrices

and elementary symmetric
functions, 306

diagonal elements of, 300
differences of, 374
eigenvalue decomposition, 771
simultaneous decomposition,

775
singular part, 328
submatrices of, 308
submatrix inequalities, 311
sum of, 329
with prescribed diagonal

elements, 308
Heronian mean, 144
Hessenberg matrix, 35, 60
Hessian matrix, 644
Hilbert’s matrix, total positivity

of, 760
Hoeffding’s inequality, 443
Hölder’s inequality

and Artin’s theorem, 662,
663

generalized, 661
proof of, 657

Hypergeometric distribution,
multivariate, 417

preservation of
Schur-convexity for, 418,
434

Idempotent matrix, 68
Imaginary singular values, 299
Incidence matrix of a graph, 243
Income inequality, measurement

of, 5, 20
Increasing function, 637
Increasing hazard rate, 106, 478,

503

Inequality,
arithmetic–geometric mean,

125
proof of, 478, 684

Cauchy–Bunyakovskǐı–
Schwarz,
660

complementary, 102
for polygons and simplexes,

295
Hadamard’s 4, 300, 306, 350
Hoeffding’s 443
Hölder’s, 657

generalized, 661
isoperimetric, 270

for plane figures, 287
Jensen’s, 109, 456, 654

for conditional expectations,
655

Kantorovich, 102
Lyapunov’s, 107, 659
measurement of, 559
Minkowski, 660
Steffensen, 640
for triangle, 271, 276, 281,

287
Infinite sequences, majorization

of, 25
Information statistics, test for

multinomial distribution,
534

Interlaced numbers, 177
Interlacing property of

eigenvalues, 301, 303, 310
Interpolation formula of

Lagrange, 303
Intraclass correlation,

multivariate normal
distribution, 530

Inverse matrix
convexity of, 678
Moore-Penrose, 67
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Inverse hypergeometric
distribution, multivariate,
preservation of
Schur-convexity for, 419

Isoperimetric figures, 270
Isoperimetric inequalities, 270

for plane figures, 287
Isotonic function, 19

Jensen’s inequality, 109, 654
for conditional expectations,

655
and majorization, 456

k -out-of-n system
probabilities for, 457
reliability of, 549

Kronecker matrices, 780
monotonicity, 675
product of, 780
sum of, 780

L-superadditive
(lattice-superadditive)
function, 218

examples, 219
Lagrange’s interpolation formula,

303
Laplace transform, 107
Latin square, 61
Lawley–Hotelling trace test, 533
Least concave majorant, 181
Least favorable configuration,

542
Least-squares estimators for

regression model, 381
Leibniz’s principle of

nonsufficient reason, 21
Likelihood ratio order, 699
Linear combinations

peakedness of, 490
tail probabilities, 494

Linear estimation, 535
Linear regression, least-squares

estimators for, 381
Liouville–Dirichlet

distribution,416
preservation of

Schur-convexity, 417, 433
Loewner order, 670

and majorization, 360
Log convexity, preservation

under mixtures, 649
Logarithmic concave density

beta density, 764
gamma density, 764
Gompertz density, 765
normal density, 764
Weibull density, 765

Logarithmic concave function,
105, 663

Logarithmic series distribution
multivariate, preservation of

Schur-convexity for, 418
modified multivariate,

preservation of
Schur-convexity for, 419

Loop in a graph, 244
Lorenz curve, 5, 503, 563

generalized, 742
length of, 722
lognormal distribution, 717
parametric families of, 734
Pareto distribution, 715
Pietra index, 722
positive random variables, 715

Lower weak majorization, 12, 36
Lyapunov’s inequality, 107, 108,

659
and Artin’s theorem, 663

M -matrix, 782
Hadamard-type inequality for,

359
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Majorization
chain

for matrices, 612
for vectors of matrices, 629

characterization by linear
transformations, 155

characterization by
order-preserving
functions, 156

column-stochastic, 619
componentwise, 602
continuous, 22, 583
from convolutions, 507
for diagonal elements and

singular values, 313
and doubly stochastic

matrices, 29, 33, 35, 155
for eigenvalues and singular

values, 317
entropy, 602
equivalent conditions for, 155
from finite groups, 509
G-, 589
generation of, 185
geometric characterization of,

162
group, 587
of infinite sequences, 25
in integers, 194
using Jensen’s inequality, 456
linear combinations, 617
for matrices, 612
matrix, 623
p-, 58
relative to d, 585
row, for matrices, 616
semigroup, 588
for sides of polygon, 281
stochastic, 387
and T -transforms, 32
unordered, 589, 601
upper weak, 42

variance, 601
for vectors of matrices, 629
weak, 12

and convex functions, 12
and doubly substochastic

matrices, 12, 36, 37,
156

and doubly superstochastic
matrix, 12, 42

and T -transforms, 41
stochastic, 427

with weights, 578
Matrix, see also Norm; Singular

Values; and specific
matrices; Bistochastic;
Cauchy’s; Circular
(circulant); Compound;
d-stochastic; Doubly
stochastic; Doubly
substochastic; Doubly
superstochastic; Helmert;
Hermitian; Hessian;
Hilbert’s idempotent;
Incidence; Inverse; M ;
Maximal; Orthostochastic;
Oscillatory; Permutation;
Random; Regular doubly
stochastic; Stochastic;
Sub-Markovian; Symmetric;
T -transform; Totally
nonnegative; Totally
positive; Uniformly tapered;
Unitarily similar; Unitary
stochastic

absolute singular values of, 299
additive compound of, 778
associated roots of, 299
asymmetric square root of, 773
average of, 332
condition number of, 376
-convex function, 676
direct product of, 780
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Hadamard product, 352
imaginary singular values of,

299
-increasing function, 670
Kronecker product of, 780
Loewner ordering of, 670
maximal, 246
monotonicity of powers of, 671
normal, 313
ordering of, 691
pinching, 17
products, 338
pseudoinverse of, 375
real roots of, 333
real singular values of,

299
real-valued function of, 684
residual, 375
Schur product, 356
similar, 769
skew-symmetric, 370
totally positive, 357
triangular representation of,

770, 773
unitary part of, 324
with given rank, 373

Maximal invariant, 473
in test for means, 531

Matrix-convex functions,
676

Maximal matrix, 246
Maximal vector under

constraints, 192
Means, 141

binomial, 141
bounds for, 141
Heinz, 144
Heronian, 144
logarithmic, 141
power, 141

Measure of diversity, Simpson’s,
562

Measure of inequality
Atkinson’s, 566
based on utility, 565
Dalton’s, 566
Fishlow poverty, 565
minimal majority, 564
Schultz coefficient, 565
top 100α percent, 564

Median, consistency of, 497
Minimal majority measure of

inequality, 564
Minimal vector under

constraints, 192
Minimum variance unbiased

estimator, 536
Minkowski inequality, 660
Minmax theorem, 783
Mixing distance, 628
Mixture of distribution, 391, 393,

466
convolutions of, 702
inequalities for, 630
and Schur-convex functions,

100
preservation under, 425

Moments,
normalized logarithmic

concavity of, 766
product of, 107, 480
ratios of, 189

Monotone matrix norm, 379
Monotonicity

of power functions, 528
of powers of a matrix, 671

Moore–Penrose inverse, 67
Moving average, circular, 62
Muirhead’s theorem, 125, 126,

159, 394, 450
Multinomial coefficients, 113
Multinomial distribution

divergence test for, 534
entropy of, 762
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preservation of
Schur-convexity for, 412

preservation of symmetry and
convexity for, 400

ranking and selection for, 542
Schur-convexity for, 412, 414,

416, 434
test for equality of parameters,

533
Multiplicative norm, unitarily

invariant, 382
Multivariate chi-square density,

Schur-concavity of, 407
Multivariate exponential

distributions, positive
dependence of, 555

Multivariate hypergeometric
distribution, 417

preservation of
Schur-concavity for, 418,
434

Multivariate inverse
hypergeometric distribution,
preservation of
Schur-convexity for, 419

Multivariate logarithmic series
distribution, preservation of
Schur-convexity for, 418

Multivariate modified
logarithmic distribution,
preservation of
Schur-convexity for, 419

Multivariate negative binomial
distribution, preservation of
Schur-convexity for, 418

Multivariate normal distribution
with circular symmetry, 531
with intraclass correlation,

530
preservation of

Schur-convexity for, 411,
433

preservation of symmetry and
convexity for, 430

Schur-concavity of density,
407

test for means for, 531
test for sphericity in, 529
tests for structured covariance

matrices in, 530
Multivariate regression, 473
Multivariate “t” distribution,

Schur-concavity of density,
407, 433

Musical theory, majorization in,
521

Negative binomial distribution
multivariate, preservation of

Schur-convexity for, 418,
434

preservation of symmetry and
convexity for, 400

Negative multinomial
distribution, preservation of
Schur-convexity for, 418

Negative multivariate
hypergeometric distribution,
preservation of
Schur-convexity for, 419,
435

Network, capacity of, 244
Network flow, 244
Network graph, 244
New better than used, 742
Node of a graph, 243
Noncentral chi-square

distribution, total positivity
of, 762

Noncentral F distribution, total
positivity of, 762

Noncentral t distribution, total
positivity of, 762
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Norm
matrix, consistent with vector

norm, 383
monotone matrix, 379
multiplicative, unitarily

invariant, 382
subordinate matrix, 381
unitarily invariant, 367

Normal distribution, see also
Multivariate normal
distribution

logarithmic concavity of
density, 764

moments of, 480
ranking and selection for, 547
test for equality of variances,

529
Normal matrix, 313
Number of sign changes of

function, 759

Ocupancy problems, 521
Odds ratio and reliability

functions, 557
Order-preserving function, 819

for chain majorization, 621
for G-majorization, 594
for p-majorization, 583
for row majorization, 622

Order statistics, 461
from exponential distribution,

482
Ordered random variables,

expected values of, 461
Ordering

cone, 21, 595
convex, 704
dispersion, 725
excess wealth, 741
exchange rate, Lorenz, 732
for complex vectors, 604
hazard rate, 697

increasing convex, 741
information, 571
likelihood ratio, 699
Lorenz, 718
partial, 19
price, Lorenz, 732
positive combinations, Lorenz,

732
sign change, 724
star-shaped, 723
stochastic, 694
uncertainty, 748
vector, 21

Orthostochastic matrix, 34
examples of, 53, 65
and majorization, 35

Oscillatory matrix, 353

p-majorization, 580
order-preserving function for,

583
continuous, 583

Paired comparisons, 516
Parallel system, 549, 552
Parameterization to preserve

Schur-convexity, 403
Parameterization to preserve

symmetry and convexity,
398

Partial ordering, 19, 595
Partial transversal, 256
Partitioned matrices, 687
Partitions, 199
Patterned matrix, 63
Peakedness

of distributions, 490, 711
of linear combination, 442, 490

Permanent, 50
Permutation

notation for, 229
ordering of, 229

Permutation invariance, 230
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Permutation matrix, 30
convex hull of, 10, 30

Permutation symmetric function,
20

Phase-type distribution, 743
Pietra index, 722
Pigou–Dalton condition, 560
Pinch, 7, 17
Pinching matrix, 17
Poisson distribution

preservation of symmetry and
convexity for, 400, 430

preservation of
Schur-convexity for, 409,
433

stochastic majorization for,
488

Polar decomposition of
Hermitian matrix, 772

Pólya frequency function, 763
of order 2, 762

Pólya frequency sequence, 767
Polygon

circumscribing circle,
Schur-concavity for, 292

inequalities for, 295
inscribed in circle,

Schur-concavity for, 291
majorization for sides of, 281

Polynomial, zeros of, 362
Polytope, convex, 48
Positive dependence by mixture,

393, 466
Positive dependence for

multivariate exponential
distributions, 555

Positive quadrant dependence,
712

Positive set function, definition
of, 219

Power functions, monotonicity
of, 528

Power mean, 141, 273
Preordering, 18, 577
Preservation of Schur-convexity

and monotonicity, 431
Preservation of symmetry and

convexity, 431
Probability content for

rectangular regions, 632
Probability density function,

totally positive, 236
Proportional fitting procedure,

76
Proportional hazard functions,

distributions with, 484, 488
Pseudo-convex function, 98
Pseudoinverse of matrix, 375

Quadratic form, Schur-convexity
of, 136

Quantile estimator, 539
Quantile function, 714
Quasi-convex function, 98, 159
Queueing networks, 520

Random effects design, 536
Random matrix

eigenvalues of, 469
exchangeable, 397
singular values of, 471

Random replacement sampling
plans, 444

Random variables
exchangeable, 126, 392

preservation of
Schur-convexity for,
403

preservation of symmetry
and convexity for, 397

Schur concavity for, 407
translation of, 406

stochastic ordering of, 694
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symmetric Bernoulli,
Schur-convexity for, 479

symmetric Bernoulli, moments
of, 480

Rank order statistics, 236
Ranking and selection, 541

for analysis of variance, 547
for multinomial distribution,

542
for the normal distribution,

547
Rational fraction inequality, 747
Ratios, bounds for, 481
Real singular values, 299
Real-valued function of matrices,

684
Rearrangement of functions,

decreasing, 22, 606, 749
Reducible matrix, 72
Reflection group, 593
Reliability function, 549

and odds ratios, 551
Regular doubly stochastic

matrix, 68
Regression, 473, see also Linear

regression, Multivariate
regression

efficiency of, 473
ridge, 379

Repair of machines, 554
Residual life survival function,

697
Residual matrix, 375
Reverse-order statistics, 461
Ridge regression, 379
Risk averse, local, 707
Robin Hood transfer, 7, 17
Row majorization for matrices,

616
order-preserving functions for,

622
Roy maximum root test, 533

s-graph, 258
Sample statistics, Lorenz order

of, 738
Sampling plan, 443

domination for, 444
random replacement, 444
symmetric, 443

Sampling
with replacement, 444
without replacement, 443

Scaling of matrices, 76
Schur-concave densities, 406, 500
Schur-concave function, 80

convolution of, 146, 235
Schur-concavity for polygon, 291
Schur’s condition, 84
Schur-convex function, 80

mixture of, 100
terminology, 20

Schur-Hadamard product, 70
Schur product, 352
Schur transformation, 30
Schutz coefficient, measure of

inequality, 565
Score vector of tournament

graph, 261
Selection, probability of correct,

541
Selection and ranking, 541

for multinomial distribution,
542

for normal distribution, 547
Semigroup property, 148, 239
Sequence, conjugate, 197, 245

generalization of, 258
Sequence of DNA, 201
Sequence of 0’s and 1’s, 198
Sequence, Pólya frequency,

767
Series system, 549, 552
Shannon information entropy,

101



Subject Index 907

Sign changes of function, number
of, 759

Similar matrices, 769
Similarly ordered vectors, 205
Simpson’s measure of diversity,

561
Singular value decomposition,

771
Singular values

and diagonal elements,
majorization for, 314

and eigenvalues, majorization
for, 317

extremal representation for,
789

of matrix, 298
notation for, 298
of random matrix, 471

Skew-symmetric matrix, 370
Snapper order, 18
Spacings, normalized, 554
Spanned positively, 45
Sphericity test for multivariate

normal distributions, 530
Square root of a matrix

asymmetric, 771
symmetric, 770

Standard deviation, 101
Standby’s, allocation of, 554
Star-shaped function, 650

majorization for, 188
Star-shaped with respect to, 464
Statistical mechanics, 523
Statistics

order, 461
rank order, 236
reverse-order, 461

Stochastic completion, 701
Stochastic dominance, 709
Stochastic G-majorization, 594
Stochastic majorization, 387

weak, 427

Stochastic matrix, 29
Stochastic ordering

of random variables, 694
of random vectors, 695

Strictly concave function, 642
Strictly convex function, 642
Strictly decreasing function, 637
Strictly increasing function, 637
Strictly matrix-convex function,

676
Strictly matrix-increasing

function, 670
Strictly totally positive function,

758
Student’s t-statistic, moment

inequality for, 477
Subadditive function, 218, 650
Subgradient, 647
Submajorization, weak, 12
Sub-Markovian matrix, 36
Submatrix, notation for, 299
Subordinate matrix norm, 381
Substochastic matrix, doubly, 12
Superadditive function, 650
Supermajorization, weak, 12
Superstochastic matrix, doubly,

12
Support function, 648
Survival functions,

Schur-concave, 500
Symmetric Bernoulli random

variables
moments of, 477
Schur-convexity for, 478,

479
sum of, 498

Symmetric function
complete, 119
of eigenvalues, 777
elementary, 114

majorization for, 172
normalized, 134
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ratio of, 170
permutation, 20

Symmetric gauge function, 138
and majorization, 160
of singular values, 377
and unitarily invariant norms,

367
Symmetric matrix, eigenvalue

decomposition of, 769
Symmetric random variables,

sums of, 476
System

of distinct representative, 256
k -out-of-n, 549
parallel, 549
series, 549

t distribution
multivariate, Schur-concavity

of density, 407
noncentral, total positivity of,

762
t-statistic, Student’s, moment

inequality for, 477
T -transform, 32

elementary, 82
and majorization, 33
and weak majorization, 41, 43,

156
examples of, 53

Test of significance, unbiased,
528

Thermodynamics, majorization
in, 626

Top 100α percent, measure of
inequality, 564

Total positivity
of exponential densities, 761
of noncentral chi-square

densities, 762
of noncentral F densities, 762
of noncentral t densities, 762

Total time on test transform, 740
Totally nonnegative matrix,

Hadamard-type inequality
for, 357

Totally positive density
functions, 236

Totally positive function, 756
and log concave functions, 760
composition of, 758
examples of, 759
generalized, 147
variation-diminishing property

of, 759
Totally positive matrix,

Hadamard-type inequality
for, 357

Tournament graph, 260
score vector of, 261

Trace functions, convex, 690
Transfer, 194

correlation increasing, 620
Dalton, 17
principle of, 6
Robin Hood, 7

Transversal, 256
partial, 256

Triangle
elementary symmetric function

for, 280
inequalities for angles of, 271
inequalities for exradii and

altitudes of, 282
inequalities for sides of, 276
inequalities for sides, exradii,

and medians of, 284

Unbiased test of significance,
528, 534

Uniform distribution
preservation of

Schur-convexity for, 411,
433
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preservation of symmetry and
convexity for, 430

Uniformly tapered matrix, 34
examples of, 53

Unitarily invariant norm, 367
inequalities for, 370
and symmetric gauge function,

367
Unitarily similar matrices, 769
Unitary part of a matrix, 324
Unitary-stochastic matrix, 34
Upper weak majorization, 10, 36
Utility gap dominance, 187

Vandermonde determinants, and
totally positive functions,
759

Variance, 101
as measure of diversity, 561
test for equality of, 529, 578

Vector ordering, 21
Vectors, similarly ordered, 205
Vertex of a graph, 243

van der Waerden, conjecture of,
50

Weak bimajorization, definition
of, 603

Weak log majorization, 16
Weak majorization, 12

and complex vectors, 41
and convex functions, 13
and doubly substochastic

matrices, 14, 40, 41
and doubly superstochastic

matrices, 15, 42
lower, 12, 36
and T -transforms, 41, 43, 156
upper, 12, 42

Weak stochastic majorization,
427

Weak submajorization, 12
Weak supermajorization, 12
Weibull distribution

logarithmic concavity of
density, 765

stochastic majorization for,
487

Wireless networks, 520
Wishart distribution, eigenvalues

of, 535

Young diagrams, 535

Zonoid, Lorenz, 731
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