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Preface

In this monograph we review numerical computation methods for multivari-
ate normal and t probabilities while focusing on recent computer intensive
integration methods. This monograph has two main objectives. First, we aim
to convince the reader that these type of integration problems are compu-
tationally feasible for moderate accuracies and dimensions. Numerical results
suggest that typical computation problems require only a few seconds of work-
station time. Generalizations are available to singular problems, to domains
other than the classical rectangular regions and to related integrals having
multivariate normal and t weights. Special cases such as lower dimensional
integrals or specific correlations structures allow quick and accurate compu-
tations for most practical purposes. Second, this monograph gives the reader
a glimpse into current multidimensional integration techniques. This work
might therefore also serve as a guide for other integration problems.

The monograph is organized as follows. In Chapter 1 we motivate the
problem and offer a historical perspective to show how methodological ap-
proaches have evolved over time. We then introduce the integration problems
and some related notation. We conclude this chapter with several numerical
examples, which are used later to illustrate the methods. Chapter 2 is devoted
to special cases, for which the integration problem can be simplified. We first
consider the work done on bivariate and trivariate normal and t probabilities.
We then consider calculating probabilities over special integrations regions,
such as orthants, ellipsoids, and hyperboloids. Finally, we review multivari-
ate normal and t probability problems for special correlation structures. In
Chapter 3 we describe inexact methods for approximating general multivari-
ate normal and t probabilities by one or more integration problems which
have easier solutions than the original problem. This includes, for example,
methods that are based on Boole’s formula, which uses combinations of lower
dimensional problems to approximate the original problem. In Chapter 4 we
describe approximation methods for the general integration problems that can
lead to exact results given sufficient computational resources. These methods
are based on reparameterizing the integrals of the original problems, thus en-
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abling the use of efficient numerical integration methods, including stochastic
and deterministic methods. In Chapter 5, some related and application spe-
cific topics are considered, such as singular distributions, integration problems
having an application specific expectation function with multivariate normal
or t weight, and a review of numerical test results. A description of current
software implementations in MATLAB and R is also given. Finally, in Chap-
ter 6 we illustrate the theoretical results from the previous chapters with nu-
merical examples from different applications, including multiple comparison
procedures, Bayesian statistics and computational finance.

Acknowledgments. We are very grateful to Torsten Hothorn for imple-
menting and maintaining the R package mvtnorm. We are also grateful to
Klaus Strassburger for his valuable comments on an earlier version of this
monograph.

Pullman, Basel, Alan Genz
March 2009 Frank Bretz
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1

Introduction

1.1 A Historical Perspective

The numerical availability of distribution functions is important for many sta-
tistical applications. The numerical computation of multivariate distribution
functions is considerably more complex than the numerical evaluation of uni-
variate distributions due to the “curse” of dimensionality. This is particularly
true for the multivariate normal (MVN) and t (MVT) distributions. These dis-
tributions occur frequently in many different applications, including multiple
comparison procedures (Hochberg and Tamhane, 1987; Hsu, 1996), integrated
log-likelihood problems (Lin and Breslow, 1996; Hartzel et al, 2001), appli-
cations of the multivariate probit model (Ochi and Prentice, 1984), Bayesian
computations (Shaw, 1988; Evans and Swartz, 1995), stochastic programming
(Prékopa, 1995), structural system reliability (Pandey, 1998) as well as many
applications in engineering and finance. For a general overview of the MVN
and the MVT distributions we refer to the books of Tong (1990), Kotz et al
(2000) and Kotz and Nadarajah (2004).

Although considerable research has been devoted to the computation of
MVN, MVT and related probabilities, reliable and highly accurate numerical
algorithms are not yet available for many MVN and MVT problems. Initial
work on the computation of MVN probabilities was done as early as 1858,
when Schläfli (1858) studied orthant probabilities using differential equations
similar to those used by Plackett (1954) one hundred years later. Mehler (1866)
derived a series expansion for the bivariate normal case, which later became
known as the Kibble series for the general MVN case. Similarly, Pearson (1901)
introduced the tetrachoric series expansion in the correlation coefficient ρ for
the bivariate normal distribution function. Sheppard (1900) obtained exact
bivariate probabilities over positive orthants. But broad research on the MVN
problem began only in the mid-20th century with the work of Kendall (1941),

others. At the same time, the MVT distribution was introduced independently
by Cornish (1954) and Dunnett and Sobel (1954).

1A. Genz, Computation of Multivariate Normal and t Probabilities

Kibble (1945), David (1953), van der Vaart (1953) and Plackett (1954) among
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2 1 Introduction

The year 1980 was key in the history of MVN and MVT computations.
Previously, most research focused on asymptotic density expansions and re-
lated approaches. With the negative results published by Harris and Soms
(1980), later research on MVN computations changed direction drastically. In
the same year, Deák (1980) published his article on three-digits accuracy by
Monte Carlo techniques. Although applications of Monte Carlo methods on
MVN problems had been studied much earlier (Escoufier, 1967), these meth-
ods became more popular with the rise of modern computer technology in
the early eighties. Modern methods for MVN and MVT computations often
use Monte Carlo and modified Monte Carlo methods. There has been signifi-
cant progress since the last major review of MVN (and MVT) computational
methods (Martynov, 1981). This monograph summarizes some of the recent
developments in this quickly evolving area.

1.2 Problem Setting

We consider integrals of the general form
∫

A

f(x)g(x)dx,

where x = (x1, x2, . . . , xk)t ∈ R
k, A ⊆ R

k, f(x) is either the MVN or the
MVT (central or non-central) density function and g(x) is an application
specific expectation function. If g(x) = 1, the problem reduces to the ordinary
MVN and MVT integrals. The integration region A is typically a hyper-
rectangle

[a,b],−∞ ≤ ai < bi ≤ ∞, i = 1, . . . , k.

Many applications, however, involve more general integration regions, such as
intersections of half-spaces or elliptically contoured regions.

The major focus of this monograph is on g(x) = 1 and A defined as above.
Let X1, . . . , Xk be jointly MVN or MVT distributed random variables. We are
then interested in computing the probability

P (A) = P (a1 ≤ X1 ≤ b1, . . . , ak ≤ Xk ≤ bk).

The corresponding MVN integral is given by

Φk(a,b;Σ) =
1√|Σ|(2π)k

b1∫

a1

b2∫

a2

. . .

bk∫

ak

e−
1
2xtΣ−1xdxk . . . dx1, (1.1)

where Σ is a symmetric, positive definite k × k covariance matrix. In this
monograph, we do not distinguish whether Σ = (σij) or its standardized form
as a correlation matrix R = (ρij) is used. If Σ is positive semidefinite and
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consequently |Σ| = 0, the integral is called singular and will be discussed
separately in Section 5.2.

The non-central MVN integral is given by

Φk(a,b;Σ, δ) =
1√|Σ|(2π)k

b1∫

a1

b2∫

a2

. . .

bk∫

ak

e−
1
2 (x−δ)tΣ−1(x−δ)dxk . . . dx1,

where δ denotes the k× 1 non-centrality vector with −∞ < δi <∞. Because

Φk(a,b;Σ, δ) = Φk(a − δ,b − δ;Σ),

any non-central MVN integral can be determined from a central MVN inte-
gral with shifted integration limits. We also note that a general non-central
MVN probability Φk(a,b;Σ, δ) can be transformed to a standardized MVN
probability. If D denotes the diagonal matrix which has the square roots of
the diagonal entries for Σ on its diagonal, the correlation matrix R is defined
by Σ = DRD. Then the transformation x = Dy + δ reduces the general
non-central MVN probability to

Φk(a,b;Σ, δ) = Φk(D−1(a − δ),D−1(b − δ);R).

We will sometimes refer to the associated probability density function
(pdf) in (1.1) as φk(x;Σ) or φk,Σ. In the case where a = −∞ (i.e., ai =
−∞, i = 1, . . . , k), equation (1.1) defines a multivariate normal cumulative
distribution function (cdf). A related special case with a = 0 and b = ∞ is
sometimes called a MVN orthant probability. The univariate standard cdf and
pdf are denoted by Φ(x) and φ(x), respectively.

The central MVT integral is given by

Tk(a,b;Σ, ν) =
Γ (ν+k

2 )

Γ (ν
2 )
√

|Σ|(νπ)k

b1∫

a1

. . .

bk∫

ak

(
1 +

xtΣ−1x
ν

)− ν+k
2

dx (1.2)

=
21− ν

2

Γ (ν
2 )

∞∫

0

sν−1e−
s2
2 Φk

(
sa√
ν
,
sb√
ν

;Σ
)
ds, (1.3)

where ν ∈ R
+ is a scale (or degrees-of-freedom) parameter. The second form

(1.3) allows any method for the MVN problem to be applied to the MVT
problem at the cost of an additional integration; see Cornish (1954) for the
original definition and a derivation of the equivalence between the two forms.

We will also sometimes refer to the associated pdf in (1.2) as tk(x;Σ, ν).
The univariate standard t cdf and pdf, with scale parameter ν, are denoted
by T (x; ν) and t(x; ν), respectively, with
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T (x; ν) =

x∫

−∞
t(s; ν)ds

=

x∫

−∞

Γ (ν+1
2 )

Γ (ν
2 )
√
νπ

(
1 +

s2

ν

)− ν+1
2

ds.

One possible definition for a non-central MVT integral is

Tk(a,b;Σ, ν, δ) =

Γ (ν+k
2 )

Γ (ν
2 )
√|Σ|(νπ)k

b1∫

a1

. . .

bk∫

ak

(
1 +

(x − δ)tΣ−1(x − δ)
ν

)− ν+k
2

dx.

Any non-central MVT integral in this form can be determined from a central
MVT integral with shifted limits. An alternate definition of the non-central
MVT integral is based on equation (1.3) and given by

Tk(a,b;Σ, ν, δ) =
21− ν

2

Γ (ν
2 )

∞∫

0

sν−1e−
s2
2 Φk

(
sa√
ν
− δ,

sb√
ν
− δ;Σ

)
ds; (1.4)

see Owen (1965) for the bivariate case.
Note that throughout this monograph we consider the most common form

of the MVT distribution, which is defined as dividing a MVN distributed
vector by a common χν variable. Other forms of the central and non-central
MVT distribution are discussed in Johnson and Kotz (1972) and Kotz and
Nadarajah (2004).

1.3 Some Examples

Throughout the rest of the monograph we will use a series of numerical exam-
ples to illustrate the different methods and types of problems that we discuss.
This section provides a collection of integration problems that we will refer to
later.

1.3.1 Simple Three-Dimensional Examples

To start with, let (X1,X2,X3) be trivariate normal distributed with correla-
tion matrix

Σ =

⎡
⎣ 1 3

5
1
3

3
5 1 11

15
1
3

11
15 1

⎤
⎦
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and non-centrality vector δ = (0, 0, 0)t. Assume that we are interested in
calculating the probability

P (−∞ < X1 ≤ 1,−∞ < X2 ≤ 4,−∞ < X3 ≤ 2).

The trivariate normal probability is then

Φ3ex =
1√|Σ|(2π)3

1∫

−∞

4∫

−∞

2∫

−∞
e−

1
2xtΣ−1xdx3dx2dx1 (1.5)

≈ 0.827984897456834.

A related MVT example, with ν = 5, is

T3ex =
Γ (4)

Γ ( 5
2 )
√|Σ|(5π)3

1∫

−∞

4∫

−∞

2∫

−∞

(
1 +

xtΣ−1x
5

)−4

dx3dx2dx1 (1.6)

≈ 0.791453793811934.

We also consider a singular MVN problem given through the covariance matrix

Σ̃ =

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ .

with a = (−∞,−∞,−∞)t and b = (1, 1, 1)t. In this case the trivariate prob-
lem essentially reduces to a univariate problem and

Φ3sex = Φ(1) ≈ 0.841344746068543. (1.7)

1.3.2 Five-Dimensional Examples

For a second set of examples, consider a problem over the hyper-rectangle
[a,b] with a = (−1,−2,−3,−4,−5)t, b = (2, 3, 4, 5, 6)t and the covariance
matrix

Σ =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5

⎤
⎥⎥⎥⎥⎦ .

The associated pentavariate normal probability is

Φ5ex =
1√|Σ|(2π)5

2∫

−1

3∫

−2

4∫

−3

5∫

−4

6∫

−5

e−
1
2xtΣ−1xdx5dx4dx3dx2dx1

≈ 0.4741284. (1.8)
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A related integration problem over a region within the positive orthant has
a = (0, 0, 0, 0, 0)t with

Φ5oex = Φ5(0,b;Σ) ≈ 0.11353418,

and the related cdf example has a = −∞ with

Φ5cex = Φ5(−∞,b;Σ) ≈ 0.81031466.

A related MVT example, with ν = 8, is

T5ex =
Γ ( 13

2 )

Γ (4)
√|Σ|(8π)5

6∫

−5

5∫

−4

4∫

−3

3∫

−2

2∫

−1

(
1 +

xtΣ−1x
8

)− 13
2

dx5dx4dx3dx2dx1,

≈ 0.447862.

1.3.3 Eight-Dimensional Examples

Finally, we consider the eight-dimensional problem

Φ8ex =
1√|Σ|(2π)5

2∫

−1

3∫

−2

4∫

−3

5∫

−4

6∫

−5

7∫

−6

8∫

−7

9∫

−8

e−
1
2xtΣ−1xdx

≈ 0.32395, (1.9)

with

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2
1 2 3 3 3 3 3 3
1 2 3 4 4 4 4 4
1 2 3 4 5 5 5 5
1 2 3 4 5 6 6 6
1 2 3 4 5 6 7 7
1 2 3 4 5 6 7 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The related example over the positive orthant has a = 0 and b = ∞ with

Φ8oex = Φ8(0,∞;Σ) ≈ 0.076586,

and the related cdf example has a = −∞ with

Φ8cex = Φ8(−∞,b;Σ) ≈ 0.69675.



2

Special Cases

The problem of evaluating (1.1) or (1.3) can often be simplified by specializing
either k, R or a and b. In Section 2.1 we focus on the work that has been done
on bivariate and trivariate probabilities and not on general MVN and MVT
probabilities. In Section 2.2 we consider calculating probabilities over special
integration regions, such orthants, ellipsoids, and hyperboloids. Finally, in
Section 2.3 we discuss MVN and MVT problems involving special correlation
structures. We do not consider the univariate cases, which have been carefully
analyzed elsewhere; see Johnson and Kotz (1970a,b) for extensive discussions
and references. Highly accurate implementations for Φ(x), Φ−1(x), T (x; ν),
and T−1(x; ν) are available in standard statistical computing environments.
We assume the availability of these functions for many of the computational
methods that we discuss in this and later chapters.

2.1 Bivariate and Trivariate Probabilities

2.1.1 Bivariate Probabilities

The method developed by Owen (1956) was for a long time the most
widely used approach to calculate bivariate normal (BVN) probabilities. Owen
showed that

Φ2(−∞,b; ρ) =
Φ(b1) + Φ(b2)

2
− E(b1, b̂1) − E(b2, b̂2) − c,

where ρ is the correlation coefficient,

c =
{

0, if b1b2 > 0 or b1b2 = 0, b1 + b2 ≥ 0
1
2 , otherwise ,

b̂1 =
b2 − b1ρ

b1
√

1 − ρ2
, b̂2 =

b1 − b2ρ

b2
√

1 − ρ2
,

A. Genz, Computation of Multivariate Normal and t Probabilities
DOI: 10.1007/978-3-642-01689-9_2, © Springer-Verlag Berlin Heidelberg 2009
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8 2 Special Cases

and where the function E (called T−function by Owen) is defined as

E(h, a) =
1
2π

a∫

0

e−h2(1+x2)

1 + x2
dx. (2.1)

For numerical computations, Owen (1956) evaluated the integral in (2.1) by
expanding the exponential into a power series and integrating it term by term.
The resultant series expression

E(h, a) =
1
2π

⎧⎨
⎩tan−1(a) −

∞∑
j=0

cja
2j+1

⎫⎬
⎭

with

cj =
(−1)j

2j + 1

{
1 − e−h2/2

j∑
i=0

h2i

2ii!

}

converges for all h and a, although the convergence may be slow if neither h nor
a is small (Wijsman, 1996). Therefore, much effort has been devoted to more
efficient computations of E(h, a). Recent developments include the approaches
of Wijsman (1996) and Patefield and Tandy (2000). They proposed hybrid
methods based on different approaches of evaluating the integral in (2.1). The
(h, a)−plane is divided into disjoint subsets such that a minimum computing
effort is required by selecting an appropriate method for each subset.

Divgi (1979) developed an approximation that avoids the computation of
E(h, a). Let

R2 =
a2
1 − 2a1a2ρ+ a2

2

1 − ρ2
,

with
π/2 − θ = sin−1

(a1

R

)
and θ − γ = sin−1

(a2

R

)
.

Then,
Φ2(a,∞; ρ) = W (R, π/2 − θ) +W (R, θ − γ) + c′, (2.2)

where c′ is a constant dependent on a. The function W (R,ψ) was first intro-
duced by Ruben (1961) as the probability content of the sector

{X ≥ R} ∩ {(X −R) tan(ψ) ≥ Y ≥ 0}

for two standard normal variates X and Y . Divgi (1979) proposed to approx-
imate the function W with the help of a polynomial expansion of Mill’s ratio
(1 − Φ(x))/φ(x). Terza and Welland (1991) compared equation (2.2) with
several competing methods, including Owen’s original series expansion given
above. The study came to the conclusion that the method of Divgi (1979)
outperformed the other methods, achieving “... 14 digits accuracy 10 times
faster then its nearest competitor”.



2.1 Bivariate and Trivariate Probabilities 9

At approximately the same time, Drezner and Wesolowsky (1990) pre-
sented a simple method based on a reduction formula by Sheppard (1900),

Φ2(a,∞; ρ) =
1
2π

π∫

cos−1(ρ)

e
− a2

1−2a1a2 cos(x)+a2
2

2 sin2(x) dx.

Differentiating with respect to ρ and integrating from 0 to ρ yields

Φ2(a,∞; ρ) = Φ(−a1)Φ(−a2) +
1
2π

ρ∫

0

1√
1 − x2

e
− a2

1−2a1a2x+a2
2

2(1−x2) dx, (2.3)

which Wang and Kennedy (1990) considered “a competitor” to the Divgi al-
gorithm. Drezner and Wesolowsky showed that the use of low-order numerical
integration methods applied to (2.3) could produce very accurate Φ2(a,∞; ρ)
values. It is worth noting that equation (2.3) already appears in the deriva-
tion for E(h, a) in Owen (1956, p. 1078); it can also be determined from the
general MVN identity (Plackett, 1954)

∂φk(x;R)
∂ρij

=
∂2φk(x;R)
∂xi∂xj

. (2.4)

Genz (2004) modified (2.3) by additionally substituting x = sin(θ) so that
(2.3) becomes

Φ2(a,∞; ρ) = Φ(−a1)Φ(−a2) +
1
2π

sin−1(ρ)∫

0

e
− a2

1−2a1a2 sin(θ)+a2
2

2 cos2(θ) dθ.

The resulting modified method is believed to be slightly more accurate.
Other approaches for computing BVN probabilities were presented by

Moskowitz and Tsai (1989), Cox and Wermuth (1991) and Maghsoodloo and
Huang (1995). Albers and Kallenberg (1994) and Drezner and Wesolowsky
(1990) discussed simple approximations to BVN probabilities for large values
of ρ.

One of the few direct approaches for computing bivariate t (BVT) prob-
abilities was introduced by Dunnett and Sobel (1954). They succeeded in
expressing T2(−∞,b; ρ, ν) as a weighted sum of incomplete beta functions.
In addition, the authors provide asymptotic expressions (in ν) for T2 and for
the inverse problem of finding equi-coordinate quantiles b = (b, b)t, such that
T2(−∞,b; ρ, ν) = p for a given 0 < p < 1.

Genz (2004) considered the use of a bivariate generalization of Plackett’s
formula in the form

∂T2(−∞,b; ρ, ν)
∂ρ

=
1

2π
√

1 − ρ2

(
1 +

b21 + b22 − 2ρb1b2
ν(1 − ρ2)

)− ν
2
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as the basis for a BVT algorithm. Integration of this equation provides the
formula

T2(−∞,b; ρ, ν) =

T2(−∞,b;u, ν) +
1
2π

ρ∫

u

1√
1 − r2

(
1 +

b21 + b22 − 2rb1b2
ν(1 − r2)

)− ν
2

dr,

where u = sign(ρ) and

T2(−∞,b;u, ν) =
{
T (min(b1, b2); ν), if u = 1,
max(0, T (b1; ν) − T (−b2; ν)), if u = −1.

Genz studied the use of this formula with various numerical integration meth-
ods, but concluded that an implementation of the Dunnett and Sobel (1954)
algorithm was the most efficient.

2.1.2 Trivariate Probabilities

The trivariate integration problem has been addressed less often in the liter-
ature. For the triviariate normal (TVN) case, Gupta (1963a) conditioned on
the third integration variable and thereby obtained

Φ3(−∞,b; R ) = (2.5)
b1∫

−∞
Φ2

(
b2 − ρ21y√

1 − ρ2
21

,
b3 − ρ31y√

1 − ρ2
31

;
ρ32 − ρ21ρ31√

(1 − ρ2
21)(1 − ρ2

31)

)
φ(y)dy.

A different approach is based on Plackett’s identity (2.4). Plackett (1954)
integrated this identity to show that

Φ3(−∞,b;R) = Φ3(−∞,b;R′) (2.6)

+
1
2π

∑
i<j

1∫

0

ρij − ρ′ij√
1 − r2ij(y)

e
− x2

i −2rij(y)xixj+x2
j

2(1−r2
ij

(y)) Φ (x′l(y)) dy,

where rij(y) = (1 − y)ρ′ij + yρij , l is the third coordinate and

x′l(y) =
(1 − r2ij(y))xl − (ril(y) − rij(y)rjl(y))xi − (rjl(y) − rij(y)ril(y))xj√

1 − r2ij(y)|R|
.

The reference matrix R′ = (ρ′ij) is chosen so that the associated probability
Φ3 is easily computed. Equation (2.6) thus reduces the computational effort
to three univariate integrals. There are several choices for R′. Plackett proved
that ρ′32 can always be chosen so that the second term in (2.6) consists of
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one single integral. Other possibilities are R′ = I3, where Ik is the k× k unit
matrix, resulting in Φ3(−∞,b;R′) =

∏3
i=1 Φ(bi), or the use of the product

correlation structure (2.16). Drezner (1994) proposed using ρ′21 = ρ′31 = 0
and ρ′32 = ρ32, in which case ∂Φ3/∂r32(t) = 0 and the sum in (2.6) consists
of only two integrals instead of three. Detailed discussions on the numerical
stability of the various methods are given by Gassmann (2002). Genz (2004)
reported a comparison study of the Plackett identity methods and methods
based on the numerical evaluation of equation (2.5). The results of these stud-
ies indicate that a Plackett identity method which uses Drezner’s choice for
R′ with numerical integration can provide the most efficient general method
for computing TVN probabilities.

Genz (2004) also considered algorithms for efficient and accurate compu-
tation of trivariate t (TVT) probabilities. A generalization of Plackett’s TVN
identity was derived for the TVT case in the form

∂T3(−∞,b;R, ν)
∂ρ21

=
(1 + f3(ρ21)

ν )−
ν
2

2π
√

1 − ρ2
21

· T
(

u3(ρ21)

(1 + f3(ρ21)
ν )

1
2

; ν

)
, (2.7)

where

f3(r) =
b21 + b22 − 2rb1b2

(1 − r2)
and

u3(r) =
b3(1 − r2) − b1(ρ31 − rρ32) − b2(ρ32 − rρ31)
((1 − r2)(1 − r2 − ρ2

31 − ρ2
32 + 2rρ31ρ32))

1
2
.

Integration of this formula can provide formulas for TVT probabilities that
combine a reference matrix probability and univariate integrals, but the choice
of a reference matrix is more difficult, compared to the TVN case. The pre-
ferred R′ for TVN computations (Drezner, 1994) does not have an easily
computed TVT value. Genz (2004) recommends a hybrid method that uses
an initial reference R′′ with ρ′′21 = ρ′′31 = 0, and ρ′′32 = sign(ρ32). The singular
T3(−∞,b;R′′, ν) value can be computed using univariate t and BVT values.
Numerical integration of equation (2.7) from R′′ to R′, followed by integra-
tion from R′ to R provides an efficient and accurate numerical method for
TVT probability computations. Some software for the accurate computation
of TVN and TVT probabilities will be discussed in Section 5.5.

2.2 Special Integration Regions

2.2.1 Orthants

If the integral (1.1) is defined over the positive orthant [0,∞]k, the associ-
ated MVN integral is called a (centered) orthant probability Pk. The evalua-
tion of orthant probabilities is a classical problem whose history and applica-
tions are briefly summarized by Owen (1985). Note that Tk(−∞,0;R, ν) =
Φk(−∞,0;R) for all ν, as seen from (1.3).
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For integrals Pk with general correlation matrices, explicit formulas are
only available for small values of k:

P1 =
1
2
,

P2 =
1
4

+
sin−1(ρ12)

2π
and

P3 =
1
8

+
1
4π
{
sin−1(ρ12) + sin−1(ρ23) + sin−1(ρ13)

}
.

For general k, the following approach halves the dimensionality of the inte-
gration problem. If k = 2n, Childs (1967) showed that

22nP2n = 1 +
2
π

2n∑
i<j

sin−1(ρij) +
n∑

j=2

(
2
π

)j

+
2n∑

i1<...<i2j

I2j

(
Ri1,...,i2j

)
, (2.8)

where Ri1,...,i2j denotes the submatrix consisting of the ith1 , . . . , i
th
2j rows and

columns of R and

I2j(Λ2j) = (−2π)j

∫

R2j

exp(−ztΛ2jz)
2j∏

i=1

z−1
i dz,

where Λ2j is a covariance matrix with 2j covariates. Childs (1967) also devel-
oped a similar formula for k = 2n+1, but a result of David (1953) ensures that
the computation of any orthant probability of odd order 2n+1 can be reduced
to a sum of integrals of order at most 2n. Sun (1988a) extended formula (2.8)
and obtained the following recursive relationship among the I2j ’s,

I2j(Λ2j) =

1∫

0

2j∑
i=2

λ1i√
λ11λii − λ2

1ix
2
I2j−2(Λi

2j−2)dx. (2.9)

Therefore, by using (2.8) and the recursive application of (2.9), the compu-
tation of orthant probabilities can be reduced to the computation of several
multidimensional integrals of order at most n−1. In addition, the unbounded
integration region over the positive orthant is transformed to an integration
over the unit hypercube [0,1] and the methods of Section 4.2 can be applied.
Sun (1988a,b) established explicit formulas up to k = 9. These formulas were
extended to k = 11 by Sun and Asano (1989) when R is tridiagonal.

A few other methods shall be reviewed briefly. Evans and Swartz (1988)
developed a class of Monte Carlo estimators for the given integration problem.
The estimators take the form of a constant multiplied by ||Wz||−k, where z
is distributed on a (k−1)−dimensional manifold and W is the decomposition
W = Ddiag(||d1||−1, . . . , ||dk||−1) with D = R−1/2 = (d1, . . . ,dk) and where
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||.|| denotes the Euclidean norm. The different estimators arise based on dif-
ferent choices of the manifold as the authors try to stabilize the estimator as
much as possible. In particular the authors show that earlier results of Moran
(1984) arise naturally within the context of their estimators. Both importance
sampling and control variate methods are discussed. Another method was de-
veloped by Gibbons et al (1987, 1990). They modified the approximation by
Clark (1961) to the moments of the maximum of k jointly normal variables,
and used the formula Pk = P (min{X1, . . . , Xk} ≥ 0). Finally, Ni and Kedem
(1999) used the Cholesky decomposition of R, followed by a polar coordinate
transformation. These transformations are discussed for more general MVN
and MVT problems in Section 4.1. Some specific orthant probability problems
can be expressed in terms of simplified numerical expressions developed by Ni
and Kedem (1999, 2000).

2.2.2 Ellipsoids

General MVN probabilities for elliptical regions are defined by

Φk(A, c, t;Σ) =
1√|Σ|(2π)k

∫

{(x−c)tA(x−c)≤t}

e−
1
2xtΣ−1xdx,

for a positive semidefinite k × k matrix A, and t > 0, so that the integration
region is an ellipsoid centered at c. Several statistical applications require
Φk(A, c, t;Σ), and some of these are surveyed by Ruben (1960). This type of
problem can be put into a simpler standard form if we let Σ = LLt, where
L is the lower triangular Cholesky factor for Σ. If we determine a spectral
decomposition for LtAL = QDQt, with Q an orthogonal matrix and D a
diagonal matrix, then the result of the transformation x = LQz is

Φk(A, c, t;Σ) = Φk(D, δ, t; Ik)

=
1√

(2π)k

∫

{(z−δ)tD(z−δ)≤t}

e−
1
2ztzdz, (2.10)

where δ = QtL−1c, because

xtΣ−1x = ztQtLt(LLt)−1LQz = ztz

and

(x − c)tA(x − c) = (LQz − c)tA(LQz − c)
= (z − QtL−1c)tD(z − QtL−1c).

Ruben (1962) derived a series solution for the problem (2.10) in the form

Φk(D, δ, t; Ik) =
∞∑

j=0

cjF (k′ + 2j, t/β).
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In this formula, F (l, y) is a central χ2 distribution function with l degrees of
freedom, k′ is the rank of D and β is a parameter. If we denote the nonzero
diagonal entries in D by d1, d2, . . . , dk′ , it follows from Ruben that 0 < β <
2mini di is a sufficient condition for uniform convergence of the series. The
series coefficients are given by

c0 = Ae−λ/2 and cj = j−1

j−1∑
i=0

gj−ici for j > 0,

where

A =
k′∏

i=1

√
β/di, λ =

k′∑
i=0

δ2i , and gj =
k′∑

i=1

γj−1
i (jδ2i (1 − γi) + γi)/2,

with γi = 1 − β/di. An implementation of this method has been provided
by Sheil and O’Muircheartaigh (1977), where the choice β = 29mini di/32 is
used.

Simulation methods for Φk(A, c, t;Σ) based on spherical-radial integration
were provided by Lohr (1993) and Somerville (2001) and will be discussed later
in Section 4.1.1. Ruben (1960, 1961, 1962) also discussed related problems of
determining the probability contents over other geometrical regions (simplices,
polyhedral cones, etc.) under spherical normal distributions.

General MVT probabilities for elliptical regions can be defined in a way
that is similar to Φk(A, c, t;Σ), by

Tk(A, c, t;Σ, ν) = (2.11)

Γ (ν+k
2 )

Γ (ν
2 )
√|Σ|(νπ)k

∫

{(x−c)tA(x−c)≤t}

(
1 +

xtΣ−1x
ν

)− ν+k
2

dx.

An equivalent definition, in terms of Φk(A, c, t;Σ), can be determined if the
integral in (2.11) is multiplied by a χ integral term (with value 1), so that

Tk(A, c, t;Σ, ν) =
21− k+ν

2

Γ (k+ν
2 )

∞∫

0

rk+ν−1e−
r2
2 dr,

If we then change variables using r = s
√

1 + xtΣ−1x/ν, change the order of
integration, cancel the Γ (ν+k

2 ) terms, and separate the exponential terms,

Tk(A, c, t;Σ, ν) =

21− k+ν
2

Γ (ν
2 )
√|Σ|(νπ)k

∞∫

0

sk+ν−1e−
s2
2

∫

{(x−c)tA(x−c)≤t}

e−
s2
2ν xtΣ−1xdxds.

After a final transformation x =
√
νy/s, and some further cancelations in the

constant terms
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Tk(A, c, t;Σ, ν) =

21− ν
2

Γ (ν
2 )

∞∫

0

sk+ν−1e−
s2
2

1√
|Σ|(2π)k

∫

{(y− s√
ν
c)tA(y− s√

ν
c)≤ s2t

ν }

e−
1
2ytΣ−1ydyds,

which can be written in terms of Φk as

Tk(A, c, t;Σ, ν) =
21− ν

2

Γ (ν
2 )

∞∫

0

sν−1e−
s2
2 Φk

(
A,

sc√
ν
,
s2t

ν
;Σ
)
ds. (2.12)

Simulation methods for Tk(A, c, t;Σ, ν) are discussed in Sections 4.1.1 and 4.1.2.

2.2.3 Hyperboloids

There are applications in financial mathematics (Albanese and Seco, 2001;
Brummelhuis et al, 2002; Sadefo Kamdem, 2005; Sadefo Kamdem and Genz,
2008) where the integration region is determined by a set of the form {x :
(x − c)tA(x − c) ≤ t}, with A a symmetric indefinite matrix. Following the
notation in the previous section, after Cholesky decomposition of Σ = LLt,
the spectral decomposition of LtAL = QDQt, and the transformation x =
LQz, we obtain the same (MVN case) equation (2.10)

Φk(A, c, t;Σ) = Φk(D, δ, t; Ik)

=
1√

(2π)k

∫

{(z−δ)tD(z−δ)≤t}

e−
1
2ztzdz,

with δ = QtL−1c, but now we assume that the diagonal matrix D has
some negative entries. The variables can be now reordered so that D =
diag{d+

1 , d
+
2 , . . . , d

+
k+
,−d−1 ,−d−2 , . . . ,−d−k−} with all d+

i ≥ 0 and all d−i > 0,
and the z and δ vectors are partitioned into components associated with
the non-negative and negative diagonal entries in D with z = (z+, z−) and
δ = (δ+, δ−). Then the hyperboloid integration region can be written in the
form

R = {z : zt
+D+z+ ≤ t̂+ zt

−D−z−},
with D± = diag(d±i ) and t̂ = t + δt

−D−δ− − δt
+D+δ+. Now, Φk(D, δ, t; Ik)

can be written as

Φk(D, δ, t; Ik) =
∫

{t̂+zt
−D−z−≥0}

e−
1
2zt

−z−√
(2π)k−

∫

{zt
+D+z+≤t̂+zt

−D−z−}

e−
1
2zt

+z+√
(2π)k+

dz,

with dz = (dz+, dz−) so that the z− integral is the outer integral. The method
from Ruben (1960) could be used for the numerical evaluation of the inner
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z+ integral, combined with another method for the outer integral. Simulation
methods for these integrals will be discussed in Chapter 5. A similar analysis
can also be applied to MVT problems over hyperboloid regions, working with
either equation (2.11) or (2.12).

2.3 Special Correlation Structures

There are several cases, where a special correlation matrix R leads to sim-
plified computational problems. In some cases the dimensionality of the inte-
gration problem can be reduced, and in other cases a special structure for R
allows a faster algorithm to be used. We consider two main classes of special
correlation structures. In Section 2.3.1 we consider problems involving cor-
relation matrices that can be written as the sum of a diagonal matrix and
a reduced rank matrix. In Section 2.3.2 we review methods for correlation
matrices that have a banded structure.

2.3.1 Diagonal and Reduced Rank Correlation Matrices

In this section we assume that R can be written as

R = D + VVt, (2.13)

where D denotes a diagonal matrix with nonzero diagonal entries di, and V
is a k × l matrix with l ≤ k − 1. Marsaglia (1963) showed that for the MVN
case

Φk(a,b;R) =
∫

Rl

φl(y; Il)

b−Vy∫

a−Vy

φk(x;D)dxdy.

The inner integral can be written as a product of one-dimensional integrals.
After the change of variables x = D−1/2z, the previous formula becomes

Φk(a,b;R) = (2.14)
∫

Rl

φl(y; Il)
k∏

i=1

[
Φ

(
bi −
∑l

j=1 vijyj√
di

)
− Φ

(
ai −
∑l

j=1 vijyj√
di

)]
dy.

Note that any correlation matrix can be written as R = eIk + VVt with
l ≤ k − 1, where e denotes the smallest eigenvalue of R.

There is a natural generalization of formula (2.14) for the MVT problem
in the form given by equation (1.3), which can be rewritten as

Tk(a,b;R, ν) =
21− ν

2

Γ (ν
2 )

∞∫

0

sν−1e−
s2
2 (2.15)

∫

Rl

φl(y; I)
k∏

i=1

⎡
⎣Φ
⎛
⎝

sbi√
ν
−∑l

j=1 vijyj√
di

⎞
⎠− Φ

⎛
⎝

sai√
ν
−∑l

j=1 vijyj√
di

⎞
⎠
⎤
⎦ dyds.
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If l = 1, the problem is said to have product correlation structure. Problems
with this form arise in a number of statistical applications (Dunnett, 1989).
In this case, ρij = λiλj for i 
= j. If all |λi| < 1, then R can be written as
R = D + vvt, with di = 1 − λ2

i and vi = λi, and equation (2.14) takes the
simplified form

Φk(a,b;R) =
∫

R

φ(y)
k∏

i=1

[
Φ

(
bi − λiy√

1 − λ2
i

)
− Φ

(
ai − λiy√

1 − λ2
i

)]
dy. (2.16)

Expressions similar to equation (2.16) were derived independently by several
authors. We refer to Curnow and Dunnett (1962) and Marsaglia (1963) for
additional references. If λi = 1 for some i, then the problem becomes a singular
problem, see Section 5.2 for further details.

The computation of MVN probabilities in the form (2.16) reduces to the
computation of a one-dimensional integral over R with a Gaussian weight
function. Gauss-Hermite integration rules (Davis and Rabinowitz, 1984) can
be used to approximate integrals in this form. Another method for this type
of integral involves first applying the transformation y = Φ−1(t) so that

Φk(a,b;R) =

1∫

0

k∏
i=1

[
Φ

(
bi − λiΦ

−1(t)√
1 − λ2

i

)
− Φ

(
ai − λiΦ

−1(t)√
1 − λ2

i

)]
dt, (2.17)

and then using a selected one-dimensional integration method for the finite
integration interval [0, 1].

In the equicorrelated case, where ρij = ρ for all i and j, equation (2.16) is
valid for ρ ≥ 0 with λi =

√
ρ. Steck and Owen (1962) have shown that (2.16)

continues to hold for ρ > −(k − 1)−1, where the arising complex normal
integral with argument z = x+ iy is defined by

Φ(z) =
1
2π
e−

y2

2

x∫

−∞
e−ity− t2

2 dt,

with i2 = −1. Extending this result, Nelson (1991) proved that (2.16) remains
valid for ρij = −λiλj in the nonsingular case

∑k
i=1 λ

2
i /(1 + λ2

i ) < 1 (nega-
tive product correlation structure). Nelson (1991) further tried to prove by
induction that (2.16) is also valid in the singular case

∑k
i=1 λ

2
i /(1 + λ2

i ) = 1
but only the induction step was completed. The missing analytical proof for
k = 2 to start the induction was given by Soong and Hsu (1998). The lat-
ter authors also provided numerical details particular to the present complex
integration problem. Further relationships to evaluate negative product cor-
related probabilities were given by Kwong (1995) and Kwong and Iglewicz
(1996).

Yang and Zhang (1997) extended the above results to quasi-decomposable
correlation matrices with ρij = λiλi + τij , where τij are nonzero deviations
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for some i and j. This case is also covered by the general formula (Marsaglia,
1963)

Φk(a,b;A + B) =
∫

Rk

φk(y;B)

b−y∫

a−y

φk(x;A)dxdy.

Curnow and Dunnett (1962) provided a method for reducing the dimension
by a factor of two when ρij = γi/γj with |γi| < |γj | for i < j.

2.3.2 Banded Correlation Matrices

Banded correlation matrices satisfy the condition ρij = 0 whenever |i−j| > l,
for some l ≥ 0. The simplest nontrivial case is l = 1, where Σ is tri-diagonal. In
this case, the Φk values have been called orthoscheme probabilities. Problems
in this form have been studied by several authors (Schläfli, 1858; Abrahamson,
1964; Hayter and Liu, 1996; Miwa et al, 2003; Hayter, 2006; Craig, 2008).

If we determine the Cholesky decomposition for Σ = LLt, then L is a
lower bi-diagonal matrix. After the transformation x = Ly, equation (1.1)
becomes

Φk(a,b;Σ) =

b1/l11∫

a1/l11

φ(y1)

(b2−l21y1)/l22∫

(a2−l21y1)/l22

φ(y2) · · ·
(bk−lk,k−1yk−1)/lk,k∫

(ak−lk,k−1yk−1)/lk,k

φ(yk)dy.

If we define

gk(y) = Φ

(
bk − lk,k−1y

lk,k

)
− Φ

(
ak − lk,k−1y

lk,k

)
,

and

gj(y) =

(bj−lj,j−1y)/lj,j∫

(aj−lj,j−1y)/lj,j

φ(t)gj+1(t)dt,

for j = k − 1, k − 2, . . . , 2, then

Φk(a,b;Σ) =

b1/l11∫

a1/l11

φ(t)g2(t)dt.

If the gj(y) functions are successively computed for j = k, k − 1, . . . , 2 at
selected y values using an appropriately chosen one-dimensional integration
method, then the total computational work can be significantly reduced, com-
pared to methods for the general MVN problem. If, for example, the inte-
gration method for each gj(y) value requires m integrand values, then the
time complexity for an MVN computation is O(km2). An application of this
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method with cubic polynomial integration for the one-dimensional integrals is
given in Miwa et al (2000). Craig (2008) has described further refinements of
this recursive integration method with implementations using the fast Fourier
transform to reduce the time complexity to O(km log(m)). Miwa et al (2000)
and Craig (2008) also show that any MVN cdf probability can be written
as a combination of at most (k − 1)! orthoscheme probabilities. We discuss
these methods in more detail in Section 4.1.4. Similar techniques are possi-
ble for MVT probabilities if the separation-of-variables method discussed in
Section 4.1.2 is used.

If we consider the l = 2 case, then Σ is a quin-diagonal matrix, and the
Cholesky factor L is lower tri-diagonal. Thus,

Φk(a,b;Σ) =

b1/l11∫

a1/l11

φ(y1)

(b2−l21y1)/l22∫

(a2−l21y1)/l22

φ(y2)

(b3−l31y1−l32y2)/l33∫

(a3−l31y1−l32y2)/l33

φ(y3)

· · ·
(bk−lk,k−2yk−2−lk,k−1yk−1)/lk,k∫

(ak−lk,k−2yk−2−lk,k−1yk−1)/lk,k

φ(yn)dy.

If we define

hk(x, y) = Φ

(
bk − lk,n−2x− lk,k−1y

lk,k

)
− Φ

(
ak − lk,k−2x− lk,k−1y

lk,k

)
,

hj(x, y) =

(bj−lj,j−2x−lj,j−1y)/lj,j∫

(aj−lj,j−2x−lj,j−1y)/lj,j

φ(t)hj+1(y, t)dt,

for j = k − 1, k − 2, . . . 3, and

h2(y) =

(b2−l21y)/l22∫

(a2−l21y)/l22

φ(t)h3(y, t)dt,

then

Φk(a,b;Σ) =

b1/l11∫

a1/l11

φ(t)h2(t)dt.

If tables of the hj(x, y) values are computed and the integration method for
each hj(x, y) value requires m integrand values, then the time complexity
for a MVN computation is O(km3). A similar technique is possible for MVT
probabilities if the separation-of-variables method discussed in Section 4.1.2 is
used. When k is large, a similar analysis shows that if Σ is a (2l+1)-diagonal
matrix then an O(kml+1) time complexity method can be constructed for the
computation of MVN and MVT probabilities.
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A related class of problems, where Σ−1 is banded, has also been studied.
If Σ−1 is tridiagonal, then

xtΣ−1x = r11x
2
1 + 2r21x1x2 + r22x

2
2 + . . .+ 2rk,k−1xk−1xk + rkkx

2
k,

where Σ−1 = (rij), and

Φk(a,b;Σ) =
1√|Σ|

b1∫

a1

φ(r11x2
1)

b2∫

a2

φ(2r21x1x2 + r22x
2
2)

· · ·
bk∫

ak

φ(2rk,k−1xk−1xk + rkkx
2
k)dx.

This class of MVN and MVT probabilities can also be computed using a
sequence of iterated one-dimensional integrals, and the result is an O(km2)
method if an m-point one-dimensional numerical integration method is used.
Problems in this form have been studied by Genz and Kahaner (1986) and
Craig (2008).
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Methods That Approximate the Problem

In this chapter we approximate the original MVN or MVT problem by using
one or more MVN or MVT problems which are relatively easier to solve. In
Section 3.1 we consider various approximations to Boole’s formula, providing
MVN and MVT approximations that consist of combinations of lower dimen-
sional problems. In Section 3.2 we briefly describe methods that replace the
original problem with one or more problems using covariance matrix struc-
tures that simplify the computation. In Section 3.3 we review further approx-
imations. Finally, in Section 3.4 we review some asymptotic expansions of
historical interest.

3.1 Boole’s Formula Approximations and Bounds

As in Chapter 1, we define Ai = {Xi : ai ≤ Xi ≤ bi}. Let Ac
i denote the

complement of Ai, and let further P (A) denote Φk(a,b;R) or Tk(a,b;R, ν).
If we use

P (A) = P

⎛
⎝ k⋂

j=1

Aj

⎞
⎠ = 1 − P

⎛
⎝ k⋃

j=1

Ac
j

⎞
⎠ ,

then Boole’s formula for P (A) can be written in the form

P (A) = 1 −
k∑

j=1

P (Ac
j) +
∑
j<i

P (Ac
j ∩Ac

i ) + . . .+ (−1)kP

(
k⋂

i=1

Ac
i

)
.

The simplest approximation to P (A) in this form uses only the constant
term and the univariate probabilities. If we let

S1 =
k∑

j=1

P (Ac
j),
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we obtain the well-known Bonferroni lower bound

1 − S1 ≤ P (A).

A simple upper bound based only on univariate probabilities is

P (A) ≤ 1 − min
j
P (Ac

j).

Better approximations and sharper bounds result if using bivariate proba-
bilities. The Hunter-Worsley bound (Hunter, 1976; Worsley, 1982) guarantees
that

L2 = 1 − S1 +
∑

(i,j)∈T

P (Ac
i ∩Ac

j) ≤ P (A),

where T is a maximal spanning tree for the complete graph of order k with
edge weights P (Ac

i ∩Ac
j); but see Maurer (1983) for improved results by using

bivalent trees. An upper bound, derived by Dawson and Sankoff (1967), is
given by

P (A) ≤ U2 = 1 − 2(S1 − S2/m)/(m+ 1),

where m = 1 + �2S2/S1� and

S2 =
∑
i<j

P (Ac
i ∩Ac

j).

We can determine even better approximations using higher order bounds
based on hyper-trees (Tomescu, 1986). Bukszár and Prékopa (2001) showed
a cherry tree (hyper-tree of order three) bound always exists which is better
than the Hunter-Worsley bound. These hybrid bounds, which we denote by
L(2,3), are lower bounds for P (A) that require only k − 2 trivariate values.
Determining the optimal cherry tree bound requires evaluating all of the k(k−
1)(k−2)/6 trivariate P (Ac

m∩Ac
j∩Ac

i ) values, but a bound that is often optimal
or nearly optimal is defined by

L(2,3) = L2 +
∑

(i,j)∈T∗
(P (Ac

j ∩Ac
i ) − P (Ac

m(i,j)
∩Ac

j ∩Ac
i ))

The edge set T ∗ contains k − 2 of the k − 1 edges in the L2 bound edge set
T . For each edge in T ∗, the vertex m(i,j) is selected using a method described
by Bukszár and Prékopa (2001). It is always true that L(2,3) ≥ L2, because

P (Ac
j ∩Ac

i ) ≥ P (Ac
m(i,j)

∩Ac
j ∩Ac

i ).

If we define S3 by

S3 =
∑

m<j<i

P (Ac
m ∩Ac

j ∩Ac
i ),
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then sharp bounds that use S1, S2 and S3 (Boros and Prékopa, 1989) are
given by

L3 = 1 − S1 + 2
(2j − 1)S2 − 3S3

j(j + 1)

≤ P (A) ≤ U3 = 1 − (i+ 2k − 1)S1 − 2((2i+ k − 2)S2 − 3S3)/i
k(i+ 1)

,

where

i = 1 + �2((k − 2)S2 − 3S3)/((k − 1)S1 − 2S2)� and j = 2 + �3S3/S2�.

Unfortunately, it is not always true that L2 ≤ L3, but Boros and Prékopa
(1989) showed that U3 ≤ U2. The bounds L3 and U3 require evaluating all
of the k(k − 1)(k − 2)/6 trivariate probabilities, which might be expensive to
compute for higher dimensional problems. The L3 bound is more expensive to
compute than L(2,3) (which does not require all of the trivariate probabilities)
and often L(2,3) is sharper than L3. All of the bounds become sharper if the
integration limits defining A approach ±∞.

Tomescu (1986) described a class of hybrid upper bounds. Let

U(2,3) = 1 − S1 + S2 −
∑

E(T 3
k )

P (Ac
m ∩Ac

j ∩Ac
i ),

where E(T 3
k ) is the set of (k−1)(k−2)/2 hyperedges (i, j, k) for a cherry tree.

Tomescu showed that P (A) ≤ U(2,3). The optimal hypertree bound could also
be expensive to compute because all possible trivariate distribution values are
needed, but a bound that is often nearly optimal can be determined using the
maximal spanning tree T . The k− 2 terminal vertices from T are successively
deleted. Each time a terminal vertex (along with its edge) is deleted that
vertex is adjoined to each remaining T edge to form a set of hyperedges. The
union of the sets of k − 2, k − 3, . . . , 1 hyperedges found in this way form the
hypertree T 3

k that is used for U(2,3). This bound is always less than or equal
to the second order Bonferroni 1 − S1 + S2 bound but is not necessarily less
than or equal to U2 or U3.

In practice, if a lower bound L and an upper bound U have been computed,
the quantity (L+U)/2 is an approximation to P (A) with maximum error of
E = (U−L)/2. If this error is small enough for the chosen application, then no
further computations are necessary. A useful strategy involves first computing
L1 and U1, checking the error, and then successively computing L2 and U2,
L(2,3), and L3 and U3 (if the dimension is not too large). At each stage the
error bound can be computed, and the calculation terminated if the error is
small enough. If none of the errors is small enough, then a more accurate
method will be necessary (see Chapter 4).

As an example, consider the five-dimensional example problem (1.8) where
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(L2, L3, L(2,3), P̂ , U(2,3), U3, U2)
= (0.4732, 0.4719, 0.474113, 0.474129, 0.474146, 0.4937, 0.526),

with P̂ = [max(L2, L3, L(2,3)) + min(U(2,3), U3, U2)]/2 and associated error
bound Ê = [min(U(2,3), U3, U2) − max(L2, L3, L(2,3))]/2 = 0.000016. These
results are consistent with results from methods described in Chapter 4, where
a more accurately computed P̄ = 0.4741284. The related five-dimensional cdf
example problem, with all lower limits ai = −∞, has

(L2, L3, L(2,3), P̂ , U(2,3), U3, U2)
= (0.81012, 0.81014, 0.810313, 0.810315, 0.810316, 0.814, 0.820),

with error bound Ê = 0.0000013, and P̄ = 0.81031466. The eight-dimensional
example problem (1.9) has

(L2, L3, L(2,3), P̂ , U(2,3), U3, U2)
= (0.28, 0.16, 0.296, 0.343, 0.404, 0.398, 0.448),

with Ê = 0.046, and P̄ = 0.32395. The related eight-dimensional cdf example
problem, with all lower limits ai = −∞, has

(L2, L3, L(2,3), P̂ , U(2,3), U3, U2)
= (0.689, 0.632, 0.693, 0.700, 0.708, 0.726, 0.748),

with Ê = 0.008, and P̄ = 0.69675.
Bukszár (2001) and Szántai (2001) compared several lower and upper

bounds for MVN probabilities as an application of hyper-trees. Naiman
and Wynn (1992, 1997) gave sufficient conditions on improving the classi-
cal inclusion-exclusion identities and inequalities by decreasing the maximum
depth and the number of terms at each depth. The resulting inequalities are
guaranteed to be at least as sharp as the classical approaches. Further devel-
opments and applications of these improved inequalities are given for example
by McCann and Edwards (1996, 2000) and Dohmen (2000). An application of
these bounds for the approximate calculation of MVT probabilities for multi-
ple comparison problems is discussed in Genz and Bretz (2000) and Genz et al
(2004), see also Section 6.1.2. For further references on probability inequalities
we refer to Tong (1980, 1990), Galambos and Simonelli (1996), and Dohmen
(2003).

3.2 Correlation Matrix Approximations

Several authors have considered replacing a given correlation matrix R by a
more convenient R′, so that equation (2.16) may be used. Based on theoretical
and numerical justifications, Iyengar (1988) and Iyengar and Tong (1989) pro-
posed replacing the individual correlations by their common average. Similar
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application-specific approximations based on different averaging techniques
for the correlation coefficients can be found in Hochberg and Tamhane (1987,
p. 141) and Hochberg (1994). Royen (1987) and Hsu (1992) independently
provided different techniques to find the “closest” R′ with a product correla-
tion structure ρij = λiλj . Factor-analytic and linear programming methods
that find the “closest” R′ with a product correlation structure were inves-
tigated by Hsu (1992) and Hsu and Nelson (1998). These methods typically
do not provide information about the approximation error. Some numerical
tests, however, have often shown a reasonable overall performance.

3.3 Other Approximations

In this section we review other approximation methods, which do not quite fit
into the framework of the previous sections. Several authors have investigated
the decomposition of P (A) into a product of conditional probabilities,

P (A) = P

(
m⋂

i=1

Ai

)
k∏

i=m+1

P

⎛
⎝Ai

∣∣∣∣∣∣
i−1⋂
j=1

Aj

⎞
⎠ , (3.1)

for a fixed m ∈ {1, . . . k}. Different approximations to the conditional proba-
bilities were proposed. Pearson (1903) suggested approximating the bivariate
normal distribution by

P (X1 > a1,X2 > a2) = Φ(−a1)Φ
(
μ2|1 − a2

σ2|1

)
,

where μ2|1 and σ2|1 are the conditional mean and variance of X2 given X1 >
a1. Mendell and Elston (1974) generalized this early result to the multivariate
case by the recursion

P (A) =
k∏

i=1

Φ(−Zi|i−1),

with the standardized thresholds

Zi|j =
Zi|j−1 − μj|j−1rij|j−1

σj|j−1
,

starting with Z1|0 = a1, and using

μj|j−1 =
φ(Zj|j−1)
Φ(−Zj|j−1)

,

σ2
i|j = 1 − r2ji|j−1μj|j−1(μj|j−1 − Zj|j−1)

and
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rmn|j =
rmn|j−1 − rjm|j−1rjn|j−1μj|j−1(μj|j−1 − Zj|j−1)

σm|jσn|j
,

with rmn|0 = ρmn. Rice et al (1979) introduced minor modifications of this ba-
sic procedure. Kamakura (1989) compared these approaches with the approx-
imation of Clark (1961) and the separated split method of Langdon (1984a,b).
(This latter approach is based on the observation that the decomposition (3.1)
is not unique and selects the “best” permutation with minimum variance.)

Solow (1990) investigated (3.1) for m = 2 and approximated each condi-
tional probability using a linear regression model. Let IA denote the indicator
function of the event A. Then,

P

⎛
⎝Ai

∣∣∣∣∣∣
i−1⋂
j=1

Aj

⎞
⎠ = E(IAi

|IAj
= 1, j = 1, ..., i− 1)

is approximated by

E(IAi
) + Σ21Σ−1

11 (1 − E(IA1), . . . , 1 − E(IAi−1))
t

where Σ21 is a row vector with the entries

cov(IAi
, IAj

) = E(IAi
IAj

) − E(IAi
)E(IAj

)

and Σ11 is a (i− 1) × (i− 1) matrix with the entries

cov(IAj1
, IAj2

) = E(IAj1
IAj2

) − E(IAj1
)E(IAj2

),

for 1 ≤ j, j1, j2 ≤ i− 1. Note that

E(IAi
) = Φ(bi) − Φ(ai)

and
E(IAi

IAj
) = E(IAi∩Aj

) = Φ2(a,b; ρ).

Joe (1995) extended this approach using tri- and quadrivariate marginal
probabilities, that is, m = 4 in (3.1). To overcome the non-uniqueness of the
decomposition (3.1), Joe proposed averaging over all approximation results
of the k!/m! equivalent permutation to (3.1). Tests by Joe showed that the
resulting approximations are often very accurate for selected test problems,
although these methods do not provide direct information about the approx-
imation error.

3.4 Asymptotic Expansions

As indicated in Chapter 1, asymptotic expansions played a major historical
role in evaluating MVN integrals. In particular, the tetrachoric series has often
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been referenced as a series method for MVN integrals. Let Hn(x) denote the
Chebyshev-Hermite polynomial of degree n satisfying

∞∫

−∞
Hn(x)Hm(x)φ(x)dx =

{
n!, n = m,
0, n 
= m,

(Stuart and Ord, 1987) and let H−1(x) = (1 − Φ(x))/φ(x). Kendall (1941)
proposed the asymptotic expansion

Φk(a,∞;R) =
∞∑

n12=0

. . .
∞∑

nk−1,k=0

∏
1≤i<j≤k

ρ
nij

ij

nij !

k∏
i=1

Hni−1 (ai)φ (ai) (3.2)

where ni =
∑

j:i<j +
∑

j:j<i. The right hand side of equation (3.2) is called
tetrachoric series (Pearson, 1901). Kibble (1945) obtained the correspond-
ing series for the MVN density function. In the literature prior to 1980, the
tetrachoric series has often been introduced with the comment that conver-
gence may be slow unless the |ρij | are small for all i and j. Kendall (1941)
noted that equation (3.2) “... will be found to be convergent.” Similarly, Kib-
ble (1945) stated in view of his series “... is absolutely convergent for all real
values of the variables if R is positive definite.” Harris and Soms (1980) re-
examined above series and showed that in general both the tetrachoric and
the Kibble series can diverge. They proved that both series converge abso-
lutely if |ρij | < 1/(k − 1). The authors introduced several counterexamples,
showing among other things that the tetrachoric series (3.2) will diverge for
ai = 0, i = 1, . . . , k, k even, whenever |ρij | > 1/(k − 1).

Only a few methods have been published after 1980 using asymptotic
expansions. Moran (1983) derived a new expansion using the elements of R−1.
The author partially identified regions of convergence and divergence, which
are somewhat different from those for the tetrachoric series. Because of the
restricted convergence properties of the classical approaches, Royen (1987)
proposed shifting the center of the series to a correlation matrix R′ close to
the given R. To simplify the computations, R′ is assumed to be of l−factorial
structure (2.13). Royen (1987) proved that under these assumptions the series
is absolutely convergent for |hij | ≤ τ iτ j/(k − 1), with

R − R′ = (hij)ij and τ i =
√

(1 − |vi|)2,

where the vi are the rows of V in (2.13). Other Taylor expansions were pro-
posed by Olson and Weissfeld (1991), Wang and Kennedy (1992, 1997), and
Dash (2007). Breitung and Hohenbichler (1989) and Breitung and Richter
(1996) discuss asymptotic approximations to large deviation probabilities in-
volving MVN variables.
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Methods That Approximate the Integral

In this chapter we describe selected numerical integration methods that can be
applied to general MVN and MVT problems. Such problems are often given
as a multiple integral over an unbounded integration domain. The applica-
tion of most integration methods requires a transformation or reparameteri-
zation of the original problem to one where the integration domain is bounded.
Consequently, we first discuss various reparameterizations in Section 4.1. In
Section 4.2 we then describe several multidimensional integration methods.

4.1 Reparameterizations

4.1.1 Spherical-Radial Transformation Methods

A key issue for many numerical integration methods is a suitable reparam-
eterization of the original integral. The aim is to transform mode and scale
appropriately, thus making the integrand more suitable for integration. In ad-
dition, efficient integration methods may require the variables to range over
a particular set. The first class of methods that we discuss uses the combi-
nation of an initial standardization with a spherical-radial (SR) transforma-
tion. These reparameterizations have been developed independently by several
authors for MVN integrals (Deák, 1980, 1990; Richter, 1994; Monahan and
Genz, 1997; Somerville, 1997, 1998; Ni and Kedem, 1999). Similar derivations
for MVT problems starting from either of equations (1.2) to (1.4) are given
by Somerville (1997, 1998) and Genz and Bretz (2002).

All of the methods begin with a Cholesky decomposition. This yields a
lower triangular k × k matrix L = (lij) such that lii > 0 and L−1ΣL−t = Ik.
Let |A| denote the determinant of a matrix A. Then the linear transformation
x = Ly, with its Jacobian given by

dx = |L|dy =
√

|Σ|dy,
reduces equation (1.1) to
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Φk(a ≤ x ≤ b;Σ) = Φk(a ≤ Ly ≤ b; Ik) (4.1)

=
∫

a1≤l11y1≤b1

φ(y1) . . .

∫

ak≤ltky≤bk

φ(yk)dy,

where ltj is the j-th row of L. Note that other methods exist (for example, the
principal component decomposition) which lead to similar standardizations.
A second change of variables transforms the standardized vector y to a radius
r and direction vector z, y = rz with ||z|| = 1, so that yty = r2 for r ≥ 0.
This changes the integral (4.1) accordingly to

Φk(a,b;Σ) =
∫

||z||=1

21− k
2

Γ
(

k
2

)
ru(z)∫

rl(z)

rk−1e−
r2
2 drdU(z), (4.2)

where U(.) is the joint cdf of the uniform distribution on the unit hypersphere
{z : ||z|| = 1}. Letting

R(z) = {r : r ≥ 0,a ≤ rLz ≤ b},
the integration limits of the inner integral are defined as rl(z) = min{r : r ∈
R(z)} and ru(z) = max{r : r ∈ R(z)}. If we let v = Lz, the limits for the
r-variable integration can be given more explicitly by

rl(z) = max
{

0,max
vi>0

{ai/vi},max
vi<0

{bi/vi}
}
,

ru(z) = max
{

0,min{min
vi>0

{bi/vi},min
vi<0

{ai/vi}}
}
.

These limits are the distances from the origin to the two points where the
vector with direction z intersects the boundary of the integration region.

For the MVT case, the expressions remain similar, with the exception of
integrating a density for the Fk,ν distribution along the direction z, instead
of the χk distribution. We have

Tk(a,b;Σ, ν) =
∫

||z||=1

Fk,ν(rU (z)) − Fk,ν(rl(z))dU(z), (4.3)

with

Fk,ν(r) =
2Γ (ν+k

2 )

Γ (k
2 )Γ (ν

2 )ν
k
2

r∫

0

tk−1

(
1 + t2

ν

) ν+k
2

dt.

This can also be written in terms of a Betaa,b distribution using the relation
Fk,ν(r) = Beta k

2 , ν
2
(r2/(ν + r2)).

Extensions of these transformations were provided by Somerville (2001) for
elliptical regions and by Lohr (1993) for general star shaped regions. Different
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integration techniques have been applied to equations (4.2), (4.3), and related
expressions: completely randomized methods, randomization of fixed sets of
integration nodes, mixed methods using fixed quadrature on the radius and
randomized spherical integration, and other methods. Some of these methods
will be discussed in Section 4.2.

We illustrate the SR transformation described in this section with an ex-
ample. Consider the three-dimensional example problem (1.6) where
a = −∞, b = (1, 4, 2)t, ν = 5 and

Σ =

⎡
⎣ 1 3

5
1
3

3
5 1 11

15
1
3

11
15 1

⎤
⎦ = LLt, with L =

⎡
⎣ 1 0 0

3
5

4
5 0

1
3

2
3

2
3

⎤
⎦ .

The integration region determined by a ≤ rLz ≤ b can be explicitly written

−∞ ≤ rz1 ≤ 1, −∞ ≤ 3rz1
5

+
4rz2

5
≤ 4, −∞ ≤ rz1

3
+

2rz2
3

+
r2z3

3
≤ 2,

and the SR form for T3ex is

T3ex =
∫

||z||=1

2Γ (4)
Γ ( 3

2 )Γ (5
2 )ν

3
2

ru(z)∫

0

r2(
1 + r2

5

)4 drdU(z).

Note that rl(z) = 0 because the integration region contains the origin. If
we let v1 = 1, v2 = 3z1/5 + 4z2/5, and v3 = z1/3 + 2z2/3 + 2z3/3, then
ru(z) = max{0,min

vi>0
{bi/vi}}.

4.1.2 Separation-of-Variables Methods

A second set of reparameterizations effects a separation-of-variables (SOV).
The methods considered here involve the evaluation of each element xi con-
ditional on the realized values of the preceding terms x1, . . . , xi−1. The inner-
most integral − after transformation − depends on all integration variables
x1, . . . , xk, while the outermost integral depends solely on x1. In addition,
these transformations standardize the original integral to one over the unit hy-
percube [0, 1]k, irrespective of the initial parameter values a,b and Σ. Geweke
(1991a) and Genz (1992) independently derived such transformations for the
MVN problem. Geweke (1991a), Vijverberg (1996), Genz and Bretz (1999),
and Genz and Bretz (2002) derived similar methods for MVT probabilities,
starting from either of the equations (1.2) through (1.4). It is worth pointing
out that these transformations, in principle, have already been described by
Rosenblatt (1952). The MVT decomposition is also stated by Zellner (1971,
pp. 383), though in a different context.

All methods start with a Cholesky decomposition Σ = LLt (as given in
equation (4.1) for the MVN integral) followed by substitutions which effect
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the separation of variables. A k−fold application of the inverse normal or
t function and subsequent standardization of the integration region to [0, 1]
along each axis finishes the transformation.

We first provide some details for the MVN problem. After the Cholesky
decomposition, equation (4.1) becomes

Φk(a,b;Σ) =

b̃1∫

ã1

φ(y1)

b̃2(y1)∫

ã2(y1)

φ(y2) · · ·
b̃k(y1,...,yk−1)∫

ãk(y1,...,yk−1)

φ(yk)dy, (4.4)

with

ãi =
ai −
∑i−1

j=1 li,jyj

li,i
and b̃i =

bi −
∑i−1

j=1 li,jyj

li,i
.

If we let yi = Φ−1(zi), then

Φk(a,b;Σ) =

Φ(b̃1)∫

Φ(ã1)

Φ(b̃2(Φ
−1(z1)))∫

Φ(ã2(Φ−1(z1)))

· · ·
Φ(b̃k(Φ−1(z1),...,Φ

−1(zk−1)))∫

Φ(ãk(Φ−1(z1),...,Φ−1(zk−1)))

dz.

Finally, we let zi = di + (ei − di)wi, so dzi = (ei − di)dwi, with

di(w1, . . . , wi−1) = Φ
(
ãi(Φ−1(z1(w1)), . . . , Φ−1(zi−1(wi−1)))

)
,

ei(w1, . . . , wi−1) = Φ
(
b̃i(Φ−1(z1(w1)), . . . , Φ−1(zi−1(wi−1)))

)
.

Then

Φk(a,b;Σ) = (e1 − d1)

1∫

0

(e2(w1) − d2(w1)) (4.5)

· · ·
1∫

0

(ek(w1, . . . , wk−1) − dk(w1, . . . , wk−1))

1∫

0

dw.

The central MVT and non-central MVT distributions can be transformed
in a similar manner. In the central MVT case, there is a choice between either
equation (1.2) or (1.3). If equation (1.3) is used, then

Tk(a,b;Σ, ν) =
21− ν

2

Γ (ν
2 )

∞∫

0

sν−1e−
s2
2 Φk

(
sa√
ν
,
sb√
ν

;Σ
)
ds.

If we define

χν(s) =
21− ν

2

Γ (ν
2 )

t∫

0

rν−1e−
r2
2 dr,
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and use the transformation s = χ−1
ν (t), then

Tk(a,b;Σ, ν) =

1∫

0

Φk

(
χ−1

ν (t)a√
ν

,
χ−1

ν (t)b√
ν

;Σ
)
dt. (4.6)

The transformations described previously for the MVN problem can then be
applied, to produce a (k + 1)-dimensional integral with [0, 1] for all of the
integration limits. The non-central MVT problem can be transformed in a
similar way by applying the MVN transformations to

Tk(a,b;Σ, ν, δ) =

1∫

0

Φk

(
χ−1

ν (t)a√
ν

− δ,
χ−1

ν (t)b√
ν

− δ;Σ
)
dt.

If equation (1.2) is used for the central MVT definition, then after the
Cholesky decomposition, we have

Tk(a,b;Σ, ν) =
Γ (ν+k

2 )

Γ (ν
2 )
√

(νπ)k

b̃1∫

ã1

b̃2(y1)∫

ã2(y1)

· · ·
b̃k(y)∫

ãk(y)

(
1 +

yty
ν

)− ν+k
2

dy.

Now, we let

K(k)
ν =

Γ (ν+k
2 )

Γ (ν
2 )(νπ)

k
2
, (4.7)

and perform a partial separation of variables using the identity
(

1 +

∑k
j=1 y

2
j

ν

)
=
(

1 +
y2
1

ν

)(
1 +

y2
2

ν + y2
1

)
· · ·
(

1 +
y2

m

ν +
∑k−1

j=1 y
2
j

)
.

Then we use the transformations

yi = ui

√
ν +
∑i−1

j=1 y
2
j

ν + i− 1
,

which can also be written as

yi = ui

√∏i−1
j=1(ν + j − 1 + u2

j )
ν + j

, (4.8)

combined with some more algebra (see Genz and Bretz (1999) for details),
with the result
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Tk(a,b;Σ, ν) =

b̃1∫

ã1

K
(1)
ν

(1 + u2
1

ν )
1+ν
2

b̃2(u1)∫

ã2(u1)

K
(1)
ν+1

(1 + u2
2

ν+1 )
2+ν
2

· · · (4.9)

b̃k(y(u))∫

ãk(y(u))

K
(1)
ν+k−1

(1 + u2
k

ν+k−1 )
k+ν

2

du

=

b̃1∫

ã1

t(u1; ν)

b̃2(u1)∫

ã2(u1)

t(u2; ν + 1) · · ·
b̃k(y(u))∫

ãk(y(u))

t(uk; ν + k − 1)du.

If we let ui = T−1(zi; ν + i− 1), then

Tk(a,b;Σ, ν) =

T (b̃1;ν)∫

T (ã1;ν)

T (b̃2(u1(z1));ν+1)∫

T (ã2(u1(z1));ν+1)

· · ·
T (b̃k(y(u(z)));ν+k−1)∫

T (ãk(y(u(z)));ν+k−1)

dz.

A final transformation to w variables using

zi = T (ãi(y(u(z))); ν + k − 1)
+ (T (b̃i(y(u(z))); ν + k − 1) − T (ãi(y(u(z)))); ν + k − 1)wi

for i = 1, 2, . . . , k, provides a k-dimensional integral with [0, 1] for all of the
integration limits.

We consider the three-dimensional example problem (1.6) investigated in
the previous section to illustrate the method described in this section. The
SOV integration region is determined by a ≤ Ly ≤ b, with

−∞ ≤ y1 ≤ 1, −∞ ≤ y2 ≤ 5 − 3y1
4
, −∞ ≤ y3 ≤ 3 − y1

2
− y2.

We apply the transformation to the u variables using

y1 = u1, y2 = u2

√
5 + u2

1

6
, y3 = u3

√
5 + u2

1

6
6 + u2

2

7
,

so that

T3ex =
Γ ( 8

2 )

Γ ( 5
2 )
√

(5π)3

∫

a≤Cy≤b

(
1 +

yty
5

)− 8
2

dy

=

1∫

−∞

K
(1)
5(

1 + u2
1
5

) 6
2

b̃2(u1)∫

−∞

K
(1)
6(

1 + u2
2
6

) 7
2

b̃3(u1,u2)∫

−∞

K
(1)
7(

1 + u2
1
7

) 8
2
du,

with
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b̃2(u1) =

√
6

5 + u2
1

(
5 − 3

4
u1

)
,

and

b̃3(u1, u2) =

√
6

5 + u2
1

7
6 + u2

2

(
3 − 1

2
u1 − u2

√
6

5 + u2
1

)
.

Then we use e1 = T (1; 5), z1 = e1w1, u1 = T−1(z1; 5), e2 = T (b̃2(u1); 6),
z2 = e2w2, u2 = T−1(z2; 6), and e3 = T (b̃3(u1, u2); 7), so that

T3ex = e1

1∫

0

e2(w1)

1∫

0

e3(w1, w2)dw2dw1. (4.10)

Original, Var =4.2
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Fig. 4.1. Example graphs for T3ex

In Figure 4.1 we provide four graphs to illustrate the different methods.
The top left graph is a contour plot for the original density function in this
example, with the last variable integrated out. The top right graph is a contour
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graph for the SR integrand from equation (4.3), using the spherical surface
parameterization described in Section 4.1.1; see equation (4.15) for the explicit
expression. The bottom left graph is a contour plot for the SOV integrand
e1e2(w1)e3(w1, w2) from equation (4.10). The bottom right graph also shows
the SOV integrand for the example in this section but variables 2 and 3 are
interchanged (see next section). These graphs show the integrands that would
be sampled by Monte Carlo methods applied to the transformed problems.
The Var quantities given for each graph are variances for the data used to plot
each graph. These graphical representations suggest that such transformed
integrands are indeed better suited for multidimensional integration than the
original problems (Genz and Bretz, 2002). It is also possible to truncate the
unbounded domain to simplify the numerical integration problem, but it is
difficult to provide good a priori truncated integration limits. For a discussion
of this issue with examples involving trivariate t orthant probabilities we refer
to Fang and Wang (1994, p. 78).

4.1.3 Variable Reordering

Many of the resulting numerical evaluation problems can be transformed into
easier computational problems if the variables are reordered. There are k!
possible reorderings of the variables for a MVN or MVT problem. These re-
orderings do not change the MVN or MVT value as long as the integration
limits and corresponding rows and columns of the covariance matrix Σ are
also permuted. Schervish (1984) originally proposed sorting the variables so
that the variables with shortest integration interval widths are the outer in-
tegration variables. This approach is expected to reduce the overall variation
of the integrand and consequently to result in an easier numerical integra-
tion problem. Gibson et al (1994) suggested an improved prioritization of the
variables. They proposed sorting the variables so that the innermost integrals
have the largest expected values. The first (outermost) integration variable is
chosen by selecting a variable

i = arg min
1≤i≤k

{
Φ

(
bi√
σi,i

)
− Φ

(
ai√
σi,i

)}
.

The integration limits as well as the rows and columns of Σ for variables 1
and i are interchanged. Then the first column of the Cholesky decomposition
L of Σ is computed using l1,1 = √

σ1,1 and li,1 = σi,1/l1,1, for i = 2, . . . ,m,
and we set

y1 =
1

Φ(b1) − Φ(a1)

b1∫

a1

sφ(s)ds.

Given this (expected) value for y1, the second integration variable is chosen
by selecting a variable
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i = arg min
2≤i≤k

⎧⎨
⎩Φ
⎛
⎝ bi − li,1y1√

σi,i − l2i,1

⎞
⎠− Φ

⎛
⎝ ai − li,1y1√

σi,i − l2i,1

⎞
⎠
⎫⎬
⎭ .

The integration limits, rows and columns of Σ, and rows of L for variables 2
and i are interchanged. Then the second column of L is computed using

l2,2 =
√
σ2,2 − l22,1 and li,2 =

σi,2 − l2,1li,1
l2,2

,

for i = 3, . . . , k, and we compute the expected value for y2 using

y2 =
1

Φ(b̃2) − Φ(ã2)

b̃2∫

ã2

sφ(s)ds.

At stage j, given the expected values for y1, y2, . . . , yj−1, the j-th integration
variable is chosen by selecting a variable

i = arg min
j≤i≤m

⎧⎨
⎩Φ
⎛
⎝ bi −

∑j−1
m=1 li,mym√

σi,i −
∑j−1

m=1 l
2
i,m

⎞
⎠− Φ

⎛
⎝ ai −

∑j−1
m=1 li,mym√

σi,i −
∑j−1

m=1 l
2
i,m

⎞
⎠
⎫⎬
⎭ .

The integration limits, rows and columns of Σ, and rows of L for variables j
and i are interchanged. Then the j-th column of L is computed using

lj,j =

√√√√σj,j −
j−1∑
m=1

l2j,m and li,j =
1
lj,j

(
σi,j −

j−1∑
m=1

lj,mli,m

)
,

for i = j + 1, . . . , k, and we let

yj =
1

Φ(b̃j) − Φ(ãj)

b̃j∫

ãj

sφ(s)ds.

The complete k − 1 stage process has overall cost O(k3), which is usually
insignificant compared to the rest of the computation cost for the methods
discussed here, and is therefore a relatively cheap preconditioning step that
can be used with the algorithms. The yi’s that are produced by the algorithm
can also be used to approximate Φk(a,b;Σ) following Mendell and Elston
(1974),

Φk(a,b;Σ) ≈
b̃1∫

ã1

φ(z1)

b̃2(y1)∫

ã2(y1)

φ(z2) · · ·
b̃k(y1,...,yk−1)∫

ãk(y1,...,yk−1)

φ(zk)dz, (4.11)
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which is just a product of one-dimensional normal probabilities (see also Sec-
tion 3.3).

The variance for Φk(a,b;Σ) in the SOV form given by equation (4.5) is

1∫

0

k∏
i=1

(ei(w1, . . . , wi−1) − dk(w1, . . . , wi−1))2dw − Φk(a,b;Σ)2.

The variable reordering algorithm above is a “greedy” algorithm for minimiz-
ing the Φk variance by successively selecting the variable orderings to minimize
the (ei(w1, . . . , wi−1) − dk(w1, . . . , wi−1))2 terms in the variance product for
i = 1, 2, . . . , k.

A related consequence of the algorithm is that the wi variables with smaller
indices have smaller domains than the variables with larger indices. But the
variations in a variable wi cause variations in all wj with j > i, so a reduction
in the domain for wi should reduce the variation in the variables wj with
j > i, and the overall variance for Φk(a,b;Σ). These considerations lead to
a slightly more sophisticated algorithm which minimizes the variance for the
variables selected at each stage. We define the variance for a normal variable
x over the truncated interval [a, b] by

v(a, b) =

∫ b

a
x2e−x2/2dx

Φ(b) − Φ(a)
−
(∫ b

a
xe−x2/2dx

Φ(b) − Φ(a)

)2

,

which simplifies to

v(a, b) = 1 +
aφ(a) − bφ(b)
Φ(b) − Φ(a)

−
(
φ(a) − φ(b)
Φ(b) − Φ(a)

)2

.

At stage j, with this revised strategy, the j-th integration variable is chosen
to minimize v, by selecting variable

i = arg min
j≤i≤m

⎧⎨
⎩v
⎛
⎝ ai −

∑j−1
m=1 li,mym√

σi,i −
∑j−1

m=1 l
2
i,m

,
bi −
∑j−1

m=1 li,mym√
σi,i −

∑j−1
m=1 l

2
i,m

,

⎞
⎠
⎫⎬
⎭ .

Examples show that the variance of the estimated integral can vary by an
order of magnitude or more for different orderings. If we consider the trivariate
normal problem (1.5), then the original variable ordering produces an SOV
integrand (as given by equation (4.5)) with approximate variance 0.002, com-
pared to an approximate variance of 0.00006 for the SOV integrand which
is produced by either of the reordering strategies discussed in this section
(and which resulted in a (1, 3, 2) variable reordering). If we consider the five-
dimensional problem (1.8), then the original variable ordering leads to a SOV
integrand with approximate variance 0.07, compared to 0.0001 for the SOV
integrand produced by either of the reordering strategies discussed in this
section and which resulted in a (5, 4, 3, 2, 1) variable reordering.
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Corresponding variable reordering strategies can also be used for MVT
SOV integrands. If definition (1.2) is used, then strategies similar to the ones
discussed is this section can be developed if the Φ’s are replaced by appro-
priate tν ’s; see Genz and Bretz (2002) for further details. For the trivariate
t problem (1.6), we achieve a variance reduction from 0.042 to 0.000068, see
also Figure 4.1. If definition (1.3), is used, then a simple strategy, suggested by
Genz and Bretz (2002), uses

√
ν for an approximation to the expected value

of s for the outer χk integral, and then (after cancelation of the
√
ν terms)

applies the Gibson et al (1994) strategy to Φk(a,b;Σ).
Tests by Genz and Bretz (2002) show that a significant improvement in

efficiency is possible when the Gibson et al (1994) strategy is used. These
variable reordering strategies will be discussed further when test results are
reviewed in Chapter 5. These ideas are closely related to the problem of de-
termining the effective dimension of multidimensional integrals, where recent
research has focused on finding sufficient conditions for the tractability of
certain classes of integrals. Results relating to MVN integrals are given by
Woźniakowski (2000), Curbera (2000) and Sloan (2002).

4.1.4 Tridiagonal Decomposition Methods

In Section 2.3.2 we described how the cost for MVN and MVT computations
can be reduced when the covariance matrix or its inverse is tridiagonal. In this
section we describe methods for decomposing a general MVN cdf problem into
a set of tridiagonal MVN cdf problems. Similar methods can also be used for
MVT cdf problems. Related methods were originally described by Schläfli
(1858), but more recently by Miwa et al (2003) and Craig (2008).

We consider the method by Miwa et al (2003) in more detail, where the
decomposition is based on the covariance matrix. Here, we provide an alternate
description of this in terms of a decomposition of the inequalities for the
integration region. After the Cholesky decomposition Σ = LLt, the general
MVN cdf is

Φk(−∞ ≤ x ≤ b;Σ) = Φk(−∞ ≤ Ly ≤ b; Ik).

The basic idea is to successively transform Φk(−∞ ≤ Ly ≤ b; Ik) into a
set of problems with L, each of which has a lower bidiagonal matrix for L.
Focusing on the set of integration region inequalities −∞ ≤ Ly ≤ b, we begin
by replacing L with LQ, where Q is an orthogonal (reflector) matrix (Golub
and Van Loan, 1996, p. 209) chosen such that LQ has zeros in the first k− 2
positions in the last row, that is

LQ =

⎡
⎢⎢⎢⎣

� 0 · · · · · · · · · 0
...

...
. . . . . . . . .

...
? ? · · · ? � 0
? ? · · · · · · ? �

⎤
⎥⎥⎥⎦Q =

⎡
⎢⎢⎢⎣

? ? · · · · · · ? 0
...

...
...

...
...

...
? ? · · · · · · ? 0
0 0 · · · 0 ? �

⎤
⎥⎥⎥⎦ ,
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where �’s are nonzero entries and ?’s are either zero or nonzero entries. Now,
−∞ < Ly ≤ b becomes −∞ < LQQty = LQz ≤ b, with z = Qty, and

Φk(−∞ ≤ x ≤ b;Σ) = Φk(−∞ ≤ LQz ≤ b; Ik).

because e−ztz/2 = e−ytQQty/2 = e−yty/2. Then, Fourier-Motzkin elimination
(Schechter, 1998) can be used to replace −∞ < LQz ≤ b by k−1 inequalities
of the form −∞ < M(1)

j z ≤ bj , for j = 1, 2, . . . , k − 1, where

M(1)
j =

⎡
⎢⎢⎢⎢⎢⎣

? ? ? ? 0 0
...

...
...

...
...

...
? ? · · · ? 0 0
? ? · · · ? � 0
0 0 · · · 0 ? �

⎤
⎥⎥⎥⎥⎥⎦
.

Now, with signs sj = ±1, depending on the M(1)
j diagonal entries,

Φk(−∞ ≤ x ≤ b;Σ) =
k−1∑
j=1

sj

∫

−∞<M
(1)
j z≤bj

e−
ztz
2√

(2π)m
dz.

The next stage in this process chooses orthogonal Q’s so that the M(1)
j Q

matrices have zeros in the first k − 3 positions in row k − 1, followed by
Fourier-Motzkin elimination to create zeros in the first k − 3 positions in the
columns numbered k−3. Now, there are (k−1)(k−2) inequalities of the form
−∞ < M(2)

j z ≤ bj , with

M(2)
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

? ? ? 0 0 0
...

...
...

...
...

...
? · · · ? 0 0 0
? · · · ? � 0 0
0 · · · 0 ? � 0
0 0 · · · 0 ? �

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

After k − 1 stages, there are (k − 1)! inequality sets with the form −∞ <

M(k−1)
j z ≤ bj , where (after some diagonal entry scaling)

M(k−1)
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · · · · 0
c1 1 0 · · · · · · 0
0 c2 1 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 ck−2 1 0
0 0 · · · 0 ck−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,
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so that

Φk(−∞ ≤ x ≤ b;Σ) =
(k−1)!∑

i=j

sj

∫

−∞<M
(k−1)
j z≤bj

e−
ztz
2√

(2π)m
dz

=
(k−1)!∑

j=1

sjΦk(−∞ ≤ x ≤ bj ;Tj), (4.12)

with Tj = M(j)
j (M(k−1)

j )t, and all of the Tj matrices are tridiagonal. All
of the Φk(−∞ ≤ Tjz ≤ bj) integrals can be efficiently computed using the
recursive algorithm described in Section 2.3.2.

The result of this is an O((k − 1)!) algorithm for MVN cdf probabili-
ties, which limits the use of this algorithm for large values of k. However,
for some practical applications, there can be fewer than (k − 1)! tridiagonal
subproblems, because of extra zero entries in the reduction matrices (Miwa
et al, 2003; Craig, 2008). An alternate algorithm with a reduction to at most
(k − 1)! subproblems, which all have tridiagonal inverse covariance matrices,
is also described by Craig (2008). These algorithms have the potential to
efficiently compute low to moderate dimensional MVN (and MVT) cdf prob-
abilities to much higher accuracy than the simulation based SOV algorithms
for the full covariance matrix problems, described in the next section. Un-
fortunately, the only general reduction to tridiagonal problems for MVN and
MVT probabilities when the lower integration limits a are bounded first re-
quires a decomposition into 2k cdf problems, so the overall time complexity
increases to O(2k(k − 1)!).

4.2 Integration Methods

4.2.1 Monte Carlo Methods

The (simple) Monte Carlo (MC) method is a standard device for evaluating
multidimensional integrals. Deák (1990) and Hajivassiliou et al (1996) pro-
vide good reviews of MC integration methods while emphasizing the MVN
distribution. For general discussions on MC methods we refer to Hammersley
and Handscomb (1965) and Ripley (1987).

Discrete simulators (acceptance-rejection methods, crude frequency sim-
ulators, etc.) were some of the first MC methods used. These simulators use
expressions such as

1
N

N∑
i=1

Ia≤xi≤b,

where I is an indicator function, N denotes the number of samples, and the
xi are sampled from some given distribution. These methods are known to
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behave poorly in comparison to other methods and we refer to them only for
the sake of completeness. Crude MC methods are based on

1
N

N∑
i=1

f(xi)

for a given integrand f and where xi are sampled from the domain. In the
following we discuss several major variance reduction techniques, which have
been shown to perform well for the present integration problems. To make the
notation concrete, we start by discussing the MVN case.

A standard method of variance reduction is the use of antithetic variates.
Their implementation has been recommended by Deák (1980), Vijverberg
(1997) and others. Genz and Bretz (2002), for example, suggested replacing
f(xi) by (f(xi)+ f(1−xi))/2 for the separation-of-variables reparameteriza-
tions leading to integrals over the unit hypercube.

For importance sampling techniques, let hk(x) =
∏k

j=1 h(xj) denote the
continuous density of k independent and identically distributed random vari-
ables, which is decomposable into a product of univariate densities h. Since
according to equation (4.1)

Φk(a,b;Σ) =
∫

a≤Ly≤b

φk(y; Ik)dy =
∫

a≤Ly≤b

φk(y; Ik)
hk(y)

hk(y)dy,

Φk can be estimated by

1
N

N∑
i=1

φk(yi; Ik)
hk(yi)

=
N∑

i=1

k∏
j=1

φ(yij)
h(yij)

, (4.13)

where y1, . . . ,yN is a sample from the importance density hk. The basic
idea of importance sampling is to choose hk so that the generated random
numbers are concentrated in the region where φk,Ik

is large. If hk is chosen to
be the truncated normal density φ(yij)/Φ(aj ≤ ltjyi ≤ bj), expression (4.13)
simplifies to

1
N

N∑
i=1

k∏
j=1

Φ(aj ≤ ltjyi ≤ bj).

This importance sampler is known as GHK simulator (Geweke, 1991a; Haji-
vassiliou, 1993a; Keane, 1993) and was independently derived by Genz (1992)
using SOV techniques (see Section 4.1.2). If simple Monte Carlo sampling is
applied to the integral (4.5), then the resulting computations are equivalent
to GHK importance sampling. Vijverberg (1997) investigated the exponen-
tial density, the truncated logit, t and transformed Beta2,2 densities as al-
ternative choices for hk in equation (4.13). Vijverberg (2000) extended above
importance samplers to integrals over wedge-shaped regions.
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A third variance reduction technique is to use control variates. This re-
quires a function hk to be closely related to φk,R, where the integral is known
or easy to compute. Then, the first integral of the decomposition∫

−∞≤x≤b

φk,R(x) − hk(x)dx +
∫

−∞≤x≤b

hk(x)dx

can be estimated using standard MC techniques. Stern (1992) proposed spec-
ifying hk as φk,I and estimating the remaining integral by frequency simu-
lation. A different approach, which combines control variate techniques with
importance sampling, has been proposed by Breslaw (1994). For convenience
in terminology, let s = k(k − 1)/2 and consider any correlation matrix R as
defining a s×1 vector ρ(R) with coordinates ρij . For a given starting point R′,
the differential element dΦk is then integrated along the line R′R to obtain

Φk(−∞,b;R) = Φk(−∞,b;R′) +
∑
i<j

ρij∫

ρ′
ij

∂Φk

∂κij
(K)dκij ,

see also Plackett (1954). Breslaw (1994) proposed choosing R′ so that it has
the product correlation structure (2.16). The elements are chosen to lie “close”
to R by minimizing ρ(R−R′)tρ(R−R′). The author then showed how the
gradient ∂Φk

∂κij
(K) can be evaluated efficiently using the GHK simulator with

the help of the dimension reduction from Plackett (1954); recall equation (2.6)
for the trivariate expression. Numerical comparisons of Breslaw (1994) and
Bommert (1999) suggest that this line integral simulator is more accurate
than the GHK simulator for a variety of parameter combinations. Szántai
(2001) has studied the use of control variate simulators based on some of the
probability bounds described in Section 3.1.

A different set of simulators is based on the SR transformation (4.2). The
generation of points that are uniformly random on the unit hypersphere is
extensively discussed by Fang and Wang (1994). One useful transformation
described by Fang and Wang from the unit k − 1 dimensional hypercube to
the surface of the unit k− sphere Uk is defined as follows. If w ∈ [0, 1]k−1 and
z ∈ Uk, then the transformation is given by

zk−2i+2(w) = sin(2πwk−2i+1)

√
1 − w

2
k−2i

k−2i

i−1∏
j=1

w
1

k−2j

k−2j

zk−2i+1(w) = cos(2πwk−2i+1)

√
1 − w

2
k−2i

k−2i

i−1∏
j=1

w
1

k−2j

k−2j

for i = 1, 2, . . . l, where l = �k
2 � − 1, and ending with

z2(w) = sin(2πw1)
l∏

j=1

w
1

k−2j

k−2j
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and

z1(w) = cos(2πw1)
l∏

k=1

w
1

k−2j

k−2j ,

when k is even, or ending with

z3(w) = (2w1 − 1)
l∏

j=1

w
1

k−2j

k−2j ,

z2(w) = 2 sin(2πw2)
√
w1(1 − w1)

l∏
j=1

w
1

k−2j

k−2j

and

z1(w) = 2 cos(2πw2)
√
w1(1 − w1)

l∏
j=1

w
1

k−2j

k−2j ,

when k is odd. This transformation has a constant Jacobian, so integral (4.2)
becomes

Φk(a,b;Σ) =

1∫

0

1∫

0

· · ·
1∫

0

χk (ru(z(w))) − χk (rl(z(w))) dw. (4.14)

An MC algorithm for the MVN problem can use uniform points from [0, 1]k−1.
There are a variety of further simulators or variations on the methods de-

scribed above. Many of them were investigated by Hajivassiliou et al (1996)
and were found to perform poorly in comparison to the methods above.
Further references include Deák (1986, 2001), Gassmann (1988), McFadden
(1989), Börsch-Supan and Hajivassiliou (1993), Ambartzumian et al (1998),
and Genz and Bretz (2002).

Most MC methods are directly generalized to the MVT case. Geweke
(1991a) and Vijverberg (1996) independently examined using importance sam-
pling techniques. Both authors reformulated the MVT pdf as a product of uni-
variate t pdf’s and applied the same set of candidate importance densities as
described above for the MVN case. Westfall (1997) proposed a hybrid method
of combing a control variate method with crude MC estimates by means of
generalized least squares. Applications of MC techniques for SR transforma-
tions tailored to the MVT case are given by Genz and Bretz (2002). In this
case the integral for (4.3) becomes

Tk(a,b;Σ, ν) =

1∫

0

1∫

0

· · ·
1∫

0

Fk,ν (ru(z(w))) − Fk,ν (rl(z(w))) dw. (4.15)

Formulas similar to this based on other sphere surface parameterizations and
other formulas for the MVT case are given by Somerville (1997, 1998).
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4.2.2 Quasi-Monte Carlo Methods

As a consequence of the central limit theorem, crude MC integration yields a
probabilistic error bound in O(σN−1/2), where σ = σ(f) is the square root of
the variance of the integrand f . Thus, halving the integration error requires
quadrupling the number of sample points. One reason for this relatively low
accuracy is that the sample points are independent. Some parts of the inte-
gration region typically contain clusters of points, while other parts remain
almost empty. Error reduction of MC methods can be performed in two ways.
Variance reduction methods, such as those discussed in the previous section,
transform the integrand so that the constant σ is reduced. A second approach
− to be discussed in this section − is to replace the independent random
variables by alternative sequences, which improve the −1/2 exponent.

Quasi-Monte Carlo (QMC) methods (also sometimes known as number
theoretic methods) use carefully selected, deterministic sequences of sample
points. QMC methods are often justified by the Koksma-Hlawka inequality
bound (Hlawka, 1961; Niederreiter, 1992) for the integration error

EN (f) =

∣∣∣∣∣∣∣
∫

[0,1]k

f(x)dx − 1
N

N∑
i=1

f(xi)

∣∣∣∣∣∣∣
≤ D(SN )V (f).

Here, V (f) < ∞ denotes the k−dimensional variation of f in the sense of
Hardy and Krause (Zaremba, 1968; Niederreiter, 1992) and

D(SN ) = sup
v∈[0,1]k

∣∣∣∣ #{i : xi ≤ v, i = 1, . . . , N}
N

− v1v2 . . . vk

∣∣∣∣

measures the discrepancy of any sequence SN = {x1, . . . ,xN} from U [0, 1]k.
The Koksma-Hlawka inequality ensures that the integration error is practi-
cally bounded by D(SN ). If the absolute difference between the ratio of the
number of points lying in the rectangle [0,v] to the total number N of points
and the volume v1v2 . . . vk of the rectangle [0,v] is small, then the set of points
SN is considered uniformly scattered. Low-discrepancy sets are typically of
order O(N−1+ε), where N ε stands for logN to some power. Thus, QMC is
asymptotically better than MC. However, because the Koksma-Hlawka in-
equality is a gross worst-case bound, practical implementations of QMC in-
tegration methods typically behave much better than the inequality suggests
(Caflisch et al, 1997; Sloan and Woźniakowski, 1998; Tezuka, 2002).

To see the effect, compare the two graphs in Figure 4.2. They depict the
sets of 313 integration points within the unit hypercube [0, 1] × [0, 1] of a
two-dimensional problem. The figure suggests that the MC sampling points,
though obtained pseudo randomly, are not well equidistributed throughout the
integration region. Note the gap [0.2, 0.3]× [0.5, 0.8], which contains almost no
integration nodes. Other parts of [0, 1]2 have clusters of nodes. By contrast,
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Fig. 4.2. Comparison of MC and QMC integration point sets.

the set of QMC points is much more regular and seems to fill the integration
region more evenly.

There is much literature available on QMC integration methods. We refer
the reader to Niederreiter (1992), Caflisch (1998) and Owen (2000) for general
reading and further references. The latest developments in QMC methods are
published in the biennial conference proceedings Niederreiter et al (1998),
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Niederreiter and Spanier (2000), Fang et al (2002), Niederreiter and Talay
(2006), and Keller et al (2008). In the following we focus on QMC methods
for MVN and MVT integration problems.

Three important classes of low-discrepancy sets are Kronecker sequences
(also called Weyl sequences), lattices and digital nets. Kronecker sequences
(Drmota and Tichy, 1997, p. 67) are point sets

KN = {iv mod 1, i = 1, . . . , N},

where the components of v are irrational and linearly independent over the
rational numbers. Simple choices for v are the Richtmyer (1951) vector, which
has vi =

√
pi, with pi = ith prime, the Niederreiter (1972) vector, which has

vi = 2i/(k+1), and the Zinterhof (1969) vector, which has vi = ei/k. These
low-discrepancy sequences are easy to use in implementations, but often have
larger discrepancies than good lattices and digital nets.

Lattice rules are particularly accurate for periodic functions over the unit
hypercube (Niederreiter, 1992; Sloan and Joe, 1994; Wang and Hickernell,
2002). A rank-1 lattice is a point set in the form

LN = {iv/N mod 1, i = 0, . . . , N − 1},

where v is a k−dimensional integer generating vector that depends on N . A
common choice for v is the Korobov form

v(h) = (1, h, h2 mod N, . . . , hk−1 mod N)

for a given h with 1 ≤ h ≤ �N
2 � and prime N (Korobov, 1960). In order

to achieve O(N−1+ε) integration errors, a “good” lattice parameter h must
be determined. Simple methods for choosing a good h require an O(N2) cost
minimization, which is usually too expensive for run-time computations, com-
pared to the lattice rule application cost. Consequently, Korobov lattice rule
implementations often store good h values for selected prime N sequences for
a range of k values.

More recent work on the construction of good lattice rules has led to
considering component-by-component (CBC) algorithms for determining good
lattice parameters in the more general v form, and there are now O(N log(N))
algorithms available for this purpose (Dick and Kuo, 2004; Nuyens and Cools,
2006a,b). These algorithms allow for the feasible run-time construction of
good lattice parameters for QMC MVN and MVT computations.

An inherent problem with any standard deterministic QMC integration
is that no simple error bounds are available. Randomized lattice rules have
therefore been suggested, which give unbiased integral estimates along with
standard MC error estimates. These lattice rules shift the whole lattice LN

by a k−dimensional shift Δ ∼ U [0, 1]k, so that

Lshift
N = {z + Δ mod 1 : z ∈ LN}
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(Cranley and Patterson, 1976; Joe, 1990). Averages of these randomly shifted
lattice rule integral estimates are “randomized” QMC integral estimates.
Beckers and Haegemans (1992) first studied randomized lattice rules for MVN
computations. Genz and Bretz (2002) considered the use of

IM =
1
M

M∑
i=1

IN,i,

with

IN,i =
1

2N

N∑
j=1

(
f(|2{zj + Δi} − 1|) + f(1 − |2{zj + Δi} − 1|)) (4.16)

to approximate both MVN and MVT probabilities. In this expression, {·}
denotes the remainder mod 1. The number of shifts, M , is usually small, but
large enough so that the standard error

σ̂M =

(
1

M(M − 1)

M∑
i=1

(IN,i − IM )2
) 1

2

provides an error estimate for IM . In practice, λσ̂M provides a robust error
estimate when λ = 3 and M = 12, based on approximate 99% confidence
intervals. The “baker” transformation |2x − 1| in (4.16) periodizes the in-
tegrand. Hickernell (2002) showed this type of periodization combined with
a randomization step provides O(N−2+ε) asymptotic errors for sufficiently
smooth functions. Other periodizing transformations (Sloan and Joe, 1994)
introduce non-constant Jacobian factors which can significantly increase the
difficulty of the integration problem.

Previous versions of (4.16) have been used by Genz (1993) for MVN and
Genz and Bretz (1999) for MVT computations, where test results showed that
these methods were very efficient, compared to other methods. Hickernell and
Hong (1997) and Hickernell et al (2001) extended above lattices by introducing
extensible lattice sequences. The authors constructed infinite sets of points,
the first bm of which form a lattice for a given base b and any m ∈ N. Thus,
if quadrature error using an initial lattice is too large, the lattice can be
extended without discarding the original points. In related work, Cools et al
(2006) have described how to construct embedded lattice rule sequences using
CBC algorithms.

Digital nets form the second major class of low-discrepancy sets (Nieder-
reiter, 1992; Larcher, 1998). For any i ∈ N, let

i = · · · i3i2i1 (base b) =
∞∑

j=1

ijb
j−1

be the b-nary representation, with i1, i2, . . . ∈ {0, . . . , b − 1}, only a finite
amount of which are non-zero. Define the function
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ψb(i) = 0.i1i2i3 · · · =
∞∑

j=1

ijb
−j ∈ [0, 1),

which reverses the digits for i about the decimal point. Given a set of generator
matrices C1, . . . ,Ck, a digital sequence is defined as

{(
ψb(zi1), ψb(zi2), . . . , ψb(zik)

)
: i = 0, 1, . . .

}
,

where zij = · · · zij3zij2zij1 (base b) and
⎛
⎜⎜⎜⎝

zij1

zij2

zij3

...

⎞
⎟⎟⎟⎠ = Cj

⎛
⎜⎜⎜⎝

i1
i2
i3
...

⎞
⎟⎟⎟⎠ .

A digital net is then the set containing the first bm points of a digital sequence.
Different choices of Cj are given in Halton (1960), Sobol (1967), Faure (1982),
Niederreiter (1992) and Niederreiter and Xing (1998). Scrambled digital se-
quences were originally considered by Warnock (1972) and Braaten and Weller
(1979). Braaten and Weller (1979) pointed out that scrambled Halton se-
quences have a significantly improved rate of convergence over non-scrambled
sequences. Scrambling methods were popularized in a series of articles by
Owen (1995, 1997a,b). Starting with the first coordinate, the cube is divided
into b equal pieces. The results are then randomly permuted. This procedure is
repeated for each of these b pieces by cutting them individually into b smaller
pieces, which are then randomly permuted within the larger slices. This pro-
cess is carried out several times. Finally, these permutations are repeated
independently for the remaining coordinates; see Hickernell and Hong (2002)
for an illustrative example. The resulting point set is again a digital set with
probability one. Note that in general, scrambled lattices lose their lattice struc-
ture. Hong and Hickernell (2003) proposed efficient implementations of scram-
bling and compared the performances of these sequences on MVN integrals.
The authors compared subregion adaptive methods (see Section 4.2.4) with
the randomly shifted extensible lattices introduced above, the non-scrambled
Niederreiter and Xing (1998) sequence and the Owen-scrambled Sobol se-
quence. Their results suggest that randomized QMC methods indeed perform
better than competing methods. Sándor and András (2002) came to a similar
conclusion; they also compared randomized QMC methods to antithetic MC
and Latin hypercube sampling.

A Randomized QMC Algorithm for MVN and MVT Problems

We conclude this section by providing an algorithm to compute MVN and
MVT probabilities for hyper-rectangular regions using the SOV reparame-
terization. The algorithm below uses a periodized, randomized QMC rule
(Richtmyer, 1951) in the form



50 4 Methods That Approximate the Integral

Tk(a,b;Σ, ν) ≈ 1
M

M∑
i=1

1
N

N∑
j=1

(
f(|2{j√p + Δi} − 1|)),

with p = (2, 3, 5, . . . , pk), where pj is the j-th prime, Δi is a random U [0, 1]k

shift vector, and the integrand function f is the SOV integrand from equation
(4.6).

1. Input Σ, a, b, ν, N , M , and α.
2. Compute lower triangular Cholesky factor L for Σ, permuting a and b,

and rows and columns of Σ for variable prioritization.
3. Initialize T = 0, N = 0, V = 0, and q =

√
p.

4. For i = 1, 2, . . . ,M
a) Set Ii = 0, and generate uniform random Δ ∈ [0, 1]k

b) For j = 1, 2, . . . , N
i. Set w = |2{jq + Δ} − 1|, s = χ−1

ν (wk),
a′ = sa√

ν
, b′ = sb√

ν
,

d1 = Φ
(

a′
1

l1,1

)
, e1 = Φ

(
b′1

l1,1

)
, and

f1 = e1 − d1 .
ii. For m = 2, 3, . . . , k set

ym−1 = Φ−1 (dm−1 + wm−1(em−1 − dm−1)),

dm = Φ
(

a′
m−Pm−1

n=1 lm,nyj

lm,m

)
,

em = Φ
(

b′m−Pm−1
n=1 lm,nyj

lm,m

)
, and

fm = (em − dm)fm−1.
End m loop

iii. Set Ii = Ii + (fm − Ii)/j;
End j loop

c) Set δ = (Ii − T )/i, T = T + δ, V = (i− 2)V/i+ δ2 and E = α
√
V .

End i loop
5. Output T ≈ Tk(a,b;Σ, ν) with error estimate E.

The output error estimate E is the usual Monte Carlo standard error based
on N samples of the randomly shifted QMC rule, and scaled by the confi-
dence factor α. A sample size of M = 12, with α = 3, produces E with at
least 99% confidence. The algorithm can easily be modified to compute MVN
probabilities by using a′ = a and b′ = b and removing the s computation in
step 4(b)i.

4.2.3 Polynomial Integration Methods

For this section and the following section we assume that we have reparame-
terized a selected MVN or MVT problem so that we need to approximate a
multivariate integral in the form
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I(f) =

1∫

0

f(u)du

Traditional methods for this type of problem have used integration formulas
(or rules), in the form

I(f) ≈ BN (f) =
N∑

i=1

wif(ui),

with points ui and weights wi (and N) chosen so that the rule BN (f) will
integrate exactly all polynomials with degree ≤ d for some d. One motivation
for this approach is that smooth integrands f(u) can be closely approximated
by polynomials, so a good rule BN (f) for polynomials should also be good
for smooth functions. Another motivation is that once a good polynomial-
integrating rule is found, it can be copied (transformed linearly) to any other
bounded hyper-rectangular integration region without changing its degree d,
and it can be applied to subdivisions of the initial integration region [0, 1]k to
increase accuracy.

An extensive amount of research has been devoted to finding multidi-
mensional polynomial integrating rules with minimal point numbers N for
specified d and dimension k; see the books by Stroud (1971) and Davis and
Rabinowitz (1984) as well as the review article by Cools (1999). One focus
for this work was the construction of good local integration rules for subre-
gion adaptive methods (see Section 4.2.4). The most efficient rules were often
constructed using many different methods, but more recently, large families
of efficient rules based on “sparse grids” have been constructed from good
one-dimensional rules (Genz, 1986; Gerstner and Griebel, 1998; Bungartz and
Dirnstorfer, 2003), and some of these rules have been used for efficient MVN
computation implementations.

4.2.4 Subregion Adaptive Methods

Subregion adaptive methods begin with the original integration region [0, 1]k,
and dynamically construct a finer and finer subdivision of this integration
region, with smaller subregions concentrated where the integrand is most ir-
regular. Within each subregion a moderate degree local (basic) integration
rule (or formula) is used to provide an estimate for the integral. These local
results are combined to produce the global estimate. Although various ba-
sic rule types could be used, polynomial integrating basic rules are usually
used with the subregion adaptive methods because they can provide rapid
convergence once the subdivision has been refined enough that a low degree
polynomial approximation can provide an accurate approximation to the in-
tegrand. Along with the chosen basic integration rule B, an associated error
estimation method is also needed. Error estimates for polynomial rules typi-
cally use the difference between the basic rule and a lower degree local rule.
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Typical input for this type of algorithm consists of (i) the integrand, (ii) an
error tolerance ε and (iii) a work limit W on the total number of subregions
allowed (this can either be used to limit the maximum time allowed or to
limit the maximum workspace allowed). There are many possible adaptive
strategies that may be used to dynamically refine a list of subregions. Below,
we give a generic globally adaptive integration algorithm.

1. Input f(w), an absolute error tolerance ε and a work limit W
2. Main loop:

a) Begin with global estimates (from B(f)) for I(f) and the error.
b) While (total error > ε) and (total work < W) Do

i. Determine new subdivision by subdividing largest error subregion.
ii. Apply B to f(w) in the new subregions.
iii. Update the subregion list, and estimates for I(f) and error.
End While

3. Output estimates for I(f) and the absolute error.

In order to avoid a rapid growth in the number of subregions, the subdi-
vision step 2(a) in the generic globally adaptive algorithm must be done in a
controlled way. A natural subdivision strategy subdivides the chosen region
into 2k pieces by halving along each coordinate axis. But with this strategy the
number of subregions grows too rapidly and the differences in the behavior of
the integrand as w varies in different directions is not accounted for. A better
strategy was developed by van Dooren and de Ridder (1976), where the sub-
division step 2(a) divides the selected subregion in half along the coordinate
axis where the integrand is (locally) changing most rapidly. This allows the
computational time to increase slowly and adaptation to occur only in those
variables that cause most of the variation in the integrand. A detailed devel-
opment of this type of algorithm with a robust error estimation method, and
a carefully tested implementation was provided by Berntsen et al (1991a,b).
This type of algorithm was used in tests by Genz (1993) and Genz and Bretz
(2002) for SOV reparameterized MVN and MVT probabilities, and was very
efficient for low-dimensional problems

4.2.5 Sparse-Grid Methods

Sparse-grid methods are based on a construction originally developed by
Smolyak (1963). These have been carefully analyzed more recently because
of efficiency and implementation considerations. The Smolyak construction
starts with a family of one-dimensional integration rules

Bj(f) =
Nj∑
i=1

wi,jf(ui,j) ≈
1∫

0

f(u)du,

for j = 0, 1, . . ., with N0 ≥ 1 and Nj+1 > Nj . A (tensor) product rule, which
uses one dimensional rules from this sequence, can be written in the form
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Bj(f) =
Nj1∑
i1=1

Nj2∑
i2=1

. . .

Njk∑
ik=1

(
k∏

l=1

wil,jl
f(ui1,j1 , ui2,j2 , . . . , uik,jk

)

)
≈

1∫

0

f(u)du.

A family of k−dimensional sparse-grid rules using product rules constructed
from the one-dimensional family Bj(f) is then given by

Sd(f) =
∑

max{0,d−k+1}≤|j|≤d

(−1)d−|j|
(
k − 1
d− |j|

)
Bj(f),

with |j| = j1 + j2 + . . .+ jk. For example, S0(f) = B(0,0,...,0)(f),

S1(f) = B(1,0,...,0)(f)+B(0,1,...,0)(f)+ . . .+B(0,0,...,1)(f)−(k−1)B(0,0,...,0)(f),

for k > 1, with S1(f) = B1(f) when k = 1,

S2(f) = B(2,0,...,0)(f) +B(1,1,...,0)(f) + . . .+B(0,0,...,2)(f)
−(k − 1)(B(1,0,...,0)(f) +B(0,1,...,0)(f) + . . .+B(0,0,...,1)(f))

+
(k − 1)(k − 2)

2
B(0,0,...,0)(f),

for k > 2, with S2(f) = B2(f) when k = 1, and

S2(f) = B(2,0)(f) +B(1,1)(f) +B(0,2)(f) −B(1,0)(f) −B(0,1)(f)

when k = 2.
For efficiency, the one-dimensional rules usually have N0 = 1 and B0(f) =

f(1/2) (the mid-point rule). Popular choices for these one-dimensional rule
families are Gauss, Patterson, or Chebyshev point rules (Genz, 1986; Gerst-
ner and Griebel, 1998; Bungartz and Dirnstorfer, 2003). These k−dimensional
rules inherit polynomial integrating properties for the one-dimensional rules,
and if the {Nj} sequence is not increasing too rapidly, Sd(f) uses significantly
fewer function values than a product rule B(d,d,...,d)(f) with the same poly-
nomial degree. If the function evaluation points for the one-dimensional rules
form a nested sequence, then the points for Sd(f) are a (sparse) subset of the
(grid) points for B(d,d,...,d)(f), and this motivates the “sparse-grid” nomen-
clature for these rules. Error estimates for these rules are usually computed
using differences from successive rules in the {Sd(f)} sequence. For lower
dimensional problems, sparse-grid methods, when applied to the SOV repa-
rameterized MVN and MVT problems, can be more efficient than randomized
QMC methods (see Section 5.4 for further discussion).

4.2.6 Other Numerical Integration Methods

A number of other numerical integration methods have been used for MVN
and MVT calculations. There is a good overview of the methods described
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so far and other methods emphasizing on statistical applications in the book
by Evans and Swartz (2000). The use of specialized Gauss rules (Steen et al,
1969) for MVN problems has been studied by Drezner (1992) and Yang (1998).
Schervish (1984) has described the implementation of an algorithm that uses
Newton-Cotes rules with error bounds, see also Bohrer and Schervish (1981)
and Milton (1972). The specialized algorithms described in Sections 2.1.1 and
2.1.2 are examples of this for k = 2 and k = 3. Wang and Kennedy (1990)
and Wang and Kennedy (1992) have developed self-validated MVN methods
that use Taylor series with interval arithmetic.



5

Further Topics

In this chapter we consider subjects which were not discussed in the previous
chapters. Topics include MVN and MVT problems with an integration re-
gion defined by a set of linear inequalities; evaluation of singular distribution
functions; numerical tests of different integration methods; and integration
problems having an application specific expectation function with MVN or
MVT weight. A description of current software implementations in MATLAB
and R is also given.

5.1 Linear Inequality Constraints

Some MVN and MVT problems have an integration region defined by a set
of linear inequalities in the form

a ≤ Mx ≤ b,

where M is a k × k nonsingular matrix, in contrast to the simpler initial
integration regions defined by a ≤ x ≤ b (with a k × k identity matrix for
M), which we have been considering so far. We will also consider a more
general case, where M is not a square matrix, in the next section. If we make
the Cholesky decomposition (Σ = LLt) change of variables x = Ly, then the
integration region is determined by

a ≤ MLy ≤ b.

Integration methods for the spherical-radial transformed problem (4.2) are
easily adapted to this more general region. We simply define

R(z) = {r : r ≥ 0,a ≤ rMLz ≤ b},

and there is no explicit change in the definition of the integration limits (which
depend on R(z)) for the inner integral in equation (4.2). As was mentioned
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previously, Lohr (1993) investigated using some spherical-radial methods for
this type of problem.

Methods which use the separation-of-variables reparameterizations de-
scribed in Section 4.1.2 can also be used for this type of problem if we make
an additional change of variables. First, we need to determine an orthogonal
matrix Q so that MLQ is lower triangular. This is a standard problem in nu-
merical linear algebra (see Golub and Van Loan (1996)), where all we need to
do is determine the QR decomposition for (ML)t. The result is (ML)t = QR,
with Q k× k orthogonal and R k× k upper triangular. This equation can be
rewritten in the form MLQ = Rt (a lower triangular matrix), and the set of
inequalities can be rewritten in the form a ≤ RtQty ≤ b. If the change of
variables y = Qv is used, then (because yty = vtQtQv = vtv) the result-
ing MVN and MVT integration problems have integration regions given by
a ≤ Rtv ≤ b. This is the same type of integration region that was needed
for use with equations (4.4) and (4.9), except that the y variables have been
replaced by v variables. This analysis can be generalized for problems with
an M matrix which is a singular or non-square matrix. The matrix (LM)t

still has a QR factorization (with singular or non-square R) and the integra-
tion region is still determined by a system of linear inequalities in the form
a ≤ Rtv ≤ b. These types of problems are discussed in the next section.

5.2 Singular Distributions

If |Σ| = 0 for a given covariance matrix, Σ−1 does not exist and (1.1)
does not appear to be well-defined. For such singular MVN distributions the
probability mass is concentrated on a linear subspace of R

k. Assume that
(X1, . . . , Xk)t follows a k-variate multivariate normal distribution with mean
vector μ and covariance matrix Σ, that is, (X1, . . . , Xk)t ∼ Nk(μ,Σ), such
that rank(Σ) = r < k. We can then find a r × k transformation matrix C,
so that y = C(X1, . . . , Xk)t ∼ Nr(Cμ,CΣCt). Motivated by this, Genz and
Kwong (2000) and Bansal et al (2000) derived different methods for comput-
ing general singular MVN probabilities. The Genz and Kwong method uses a
generalized Cholesky decomposition Σ = LLt with lij = 0 for all j > r, when
rank(Σ) = r < k (Healy, 1968), which was also used by Lohr (1993). Then,
Φk can be written with variables separated in a form similar to equation (4.1)
as

Φk(a ≤ x ≤ b;Σ) =
∫

a1≤l11y1≤b1

φ(y1) . . .

∫

ar≤ltry≤br

φ(yr) dyr . . . dy1.

The final set of k − r constraints ai ≤ ltiy ≤ bi, i > r, are still valid for the r
integration variables and must be included in the definition of the transformed
domain. The remaining k− r variables yr+1, yr+2, . . . , yk are not constrained,
so the associated terms in the form

∫∞
−∞ φ(yi)dyi, for i = r + 1, r + 2, . . . , k,
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which have value equal to 1 are not included in the equation for Φk. The SR
methods described in Section 4.1.1 can also be used for the problem in this
form.

The efficient use of the SOV methods described in Section 4.1.2 requires a
more detailed analysis of the inequalities for the integration region. We first
assume that (if necessary) a permutation of inequalities and a scaling has been
completed so that the L matrix has the structure

L = [ L′ 0 ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . . . . . . . . . . 0
...

...
...

...
...

...
...

...
1 0 0 . . . . . . . . . . . . 0
� 1 0 . . . . . . . . . . . . 0
...

...
...

...
...

...
...

...
� 1 0 . . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

...
...

� � . . . � 1 0 . . . 0
...

...
...

...
...

...
...

...
� � . . . � 1 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
...
k1

1
...
k2

...
1
...
kr

, (5.1)

where
∑r

j=1 kj = k, � denotes an entry which could be zero or nonzero,
and L′ contains L’s scaled and permuted columns 1, . . . , r. For those cases
where the scaling of an inequality requires division by a negative number,
the inequality directions must be reversed, so that after scaling by a negative
number, a scaled upper limit becomes a lower limit and a scaled lower limit
becomes an upper limit. We use a′ and b′ to denote the new limit vectors
after permutations, scalings, and interchanges of the original limit vectors a
and b, so that the new set of inequalities for the integration region takes the
form a′ ≤ L′y ≤ b′.

We can now produce explicit expressions for the limits of the successive
integration variables. If we let mi =

∑i−1
j=1 kj , then the revised limits for yi

can be written as

ãi(y1, . . . , yi−1) = max
mi<u≤mi+1

⎛
⎝a′u −

i−1∑
j=1

l′u,jyj

⎞
⎠ ,

and

b̃i(y1, . . . , yi−1) = min
mi<u≤mi+1

⎛
⎝b′u −

i−1∑
j=1

l′u,jyj

⎞
⎠ .

The resulting expression for Φk becomes

Φk(a,b;Σ) =

b̃1∫

ã1

φ(y1)

b̃2(y1)∫

ã2(y1)

φ(y2) . . .

b̃r(y1,...,yr−1)∫

ãr(y1,...,yr−1)

φ(yr)dy. (5.2)
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The integration methods discussed in Section 4.2 can be applied directly to
the problem in this form. A further reduction to a set of trivariate problems
is also possible for MVN and MVT cdf problems using the methods described
in Section 4.1.4.

If (as described in the preceding section) the original problem is given with
an integration region defined by a set of linear inequalities in the form

a ≤ Mx ≤ b,

but M is an m × k matrix, with k not necessarily equal to m, then the
transformation x = Ly still produces the system of inequalities

a ≤ MLy ≤ b.

In the singular covariance case, where L has zeros in the last k − r columns,
the last k− r variables may be removed, and the system with r variables now
has the form

a ≤ ML′′y ≤ b,

where L′′ has the same structure as L′ above, but it has not yet been scaled
to have ones for the last nonzero element in each row. However, ML′′ is not
generally in (the SOV required) lower triangular form, so a QR decomposition
of (ML′′)t = QR) can be followed by the transformation y = Qv to produce
an inequality system in the form a ≤ L′′′v ≤ b, with L′′′ = Rt. A final scaling
and relabeling of the variables results in the system

a′ ≤ L′y ≤ b′,

where L′ has the same structure as in (5.1), except that the number of rows,∑r
j=1 kj , is now m. If m ≥ r, then the method described in the preceding

paragraph can be used. If m < r, there are fewer inequalities than there are
variables, but because of the structure of the QR factorization, the L′ matrix
will have zeros in the last r −m columns, so the associated variables can be
ignored, leaving a problem in a form that can be also handled by the method
described in the preceding paragraph.

The reparameterization that we have just described generalizes the meth-
ods discussed by Genz and Kwong (2000). Brodtkorb (2006) considered fur-
ther refinements of these methods for singular MVN problems associated with
wave distribution applications. Bansal et al (2000) used a principal compo-
nent decomposition to reduce equation (1.1) to an r−dimensional integral.
The authors proposed the use of linear programming techniques combined
with Gauss-Legendre quadrature to handle the resulting set of inequalities
on the integration variables. This method is usually much more computa-
tionally intensive, because of the extra linear programming work required for
each integration point. An explicit representation of these transformations
for the bivariate and trivariate normal cases based on the principal compo-
nent decomposition is given by Rudolfer and Watson (1993). de Los Reyes
(1990) provided upper bounds for singular MVN probabilities by integrating
the standard MVN distribution over a hypersphere.
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5.3 Related Integrals

We briefly consider the more general integration problem

E(g) =
∫

A

f(x)g(x)dx,

where g(x) is an application specific expectation function with MVN or MVT
weight f(x), so that

E(g) =
∫

A

φk(x;Σ)g(x)dx, (5.3)

or
E(g) =

∫

A

tk(x;Σ, ν)g(x)dx, (5.4)

5.3.1 A = R
k

A significant set of applications from Bayesian analysis and computational
finance have A = R

k; see, for example, Shaw (1988), Ninomiya and Tezuka
(1996), Caflisch et al (1997), Curbera (1998, 2000), Jäckel (2002), and Glasser-
man (2004). These integrals can be transformed to integrals over the unit hy-
percube if the reparameterizations introduced in Section 4.1 are used. With
the MVN case, the simplest methods use the transformation x = SΦ−1(w),
where Σ = SSt (S is a “square root” of Σ) and Φ−1 is applied componentwise
to the vector w. Then,

E(g) =

1∫

0

g(Φ−1(w))dw,

and standard numerical integration methods for the unit hypercube can be
applied to estimate E(g).

Other methods start with the transformation x = Sy, followed by the SR
transformation y = rz so that

E(g) =
21−k/2

Γ (k/2)

∫

||z||=1

∞∫

0

rk−1e−r2/2g(rSz)drdU(z).

Special numerical integration methods for problems in this form have been
studied by Monahan and Genz (1997) and Genz and Monahan (1998, 1999).
A detailed comparison of several MC and QMC techniques involving a three
dimensional integral with Gaussian weight is given by Caflisch (1998). We
discuss some methods for the choice of a good S and more general transfor-
mations for these and related problems in Section 6.2.
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5.3.2 A = [a, b]

If A is the truncated region A = [a,b], with some finite components in a or
b, then a normalized E(g) in the form

E(g) =
1

Φk(a,b;Σ)

∫

A

φk(x,Σ)g(x)dx,

is usually needed. The SOV method can be used (Genz, 1992) to reparame-
terize the problem so that equation (4.5) becomes

E(g) =
e1 − d1

Φk(a,b;Σ)

1∫

0

(e2(w1) − d2(w1)

. . .

1∫

0

(ek(w1, . . . , wk−1) − dk(w1, . . . , wk−1))

1∫

0

g(LΦ−1(z(w)))
)
dw.

The Φk(a,b;Σ) normalization constant can be computed in conjunction with
the expectation integral, saving some computation time associated with the
transformations.

5.4 Numerical Tests

Several numerical studies have been carried out to compare the various in-
tegration techniques with each other. In the following we first survey those
major studies which have compared methods designed to compute general
MVN probabilities. Then we summarize the findings and make some recom-
mendations.

Genz (1993) compared the methods of Schervish (1984) and Deák (1980,
1990), the subregion adaptive method of Berntsen et al (1991a,b), as well
as both MC and randomized lattice rule implementations of the SOV repa-
rameterization for random correlation matrices and k < 15. Hajivassiliou
et al (1996) compared 13 simulators for k ≤ 16 and the correlation ma-
trices of either one-factorial or AR(1) structure. The comparisons included
Deák’s method, the control variate method of Stern (1992), a Gibbs sampler
and the GHK simulator. No QMC method was included. (Recall that the
GHK simulator is the same as MC sampling after the SOV reparameteriza-
tion.) Gassmann et al (2002) compared 10 integration methods for k ≤ 20
and randomly chosen correlation matrices. The study included the meth-
ods considered by Genz (1993), as well as several variations of the bounding
procedure of Szántai (1986) and of a hybrid method originally proposed by
Gassmann (1988). Sándor and András (2002) compared Latin hypercube sam-
pling (McKay et al, 1979; Tang, 1993) and orthogonal arrays (Owen, 1992)
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with randomized Niederreiter (1988) and Halton sequences (Wang and Hick-
ernell, 2000) as well as randomized (0, 2, s)-nets in base 32 (Owen, 1995). The
comparisons were performed for correlation matrices of either one-factorial
or AR(1) structure with k ≤ 50. Hong and Hickernell (2003) compared the
subregion adaptive method with randomly shifted extensible lattices, non-
scrambled Niederreiter and Xing (1998) sequences and Owen-scrambled Sobol
sequences (k ≤ 15, random correlation matrices). The only major comparison
study including MVT computations was performed by Genz and Bretz (2002),
who compared methods based on SR and SOV reparameterizations for several
MC methods and different randomized lattice rule implementations (k ≤ 20,
random correlation matrices).

Summarizing the numerical tests, we can draw the following conclu-
sions. Acceptance-rejection methods and their derivatives should generally
be avoided (Genz, 1993; Hajivassiliou et al, 1996). This is also true for the
method of Schervish (1984), because of its rapidly increasing computation
times for k > 6 (Genz, 1993; Gassmann et al, 2002). The subregion adaptive
method performs well for k ≤ 10 (Hong and Hickernell, 2003; Genz and Bretz,
2002), but problems with unreliable error control have been reported occasion-
ally (Gassmann et al, 2002). Among the reparameterizations, SOV and their
variations seem to be more efficient than SR based methods (Genz, 1993; Ha-
jivassiliou et al, 1996; Genz and Bretz, 2002), although Gassmann et al (2002)
found SR based methods competed well for some problems involving very high
correlations. Randomized QMC methods seem to perform better than deter-
ministic QMC methods (Hong and Hickernell, 2003). Both methods, however,
outperform MC methods by at least an order of magnitude (Genz and Bretz,
2002; Sándor and András, 2002). The question of which QMC method to use
remains open and is left for future research. MVT related computations usu-
ally perform better, if reparameterizations start from equation (1.3) instead
of equation (1.2) (Genz and Bretz, 2002). With currently available hardware,
computations of four-digit MVN and MVT probabilities using randomized
QMC methods require on average a few seconds of workstation time.

5.5 Software Implementations

In this section we give the links to some relevant web sites, which contain
source code for some methods described in this monograph. Implementations
in MATLAB1 and R will be discussed separately in the subsequent sections.
The websites of Genz (www.math.wsu.edu/faculty/genz/homepage) and Haji-
vassiliou (econ.lse.ac.uk/∼vassilis/) contain most of the algorithms discussed
in Chapter 4. The Genz website contains FORTAN 77, FORTRAN 90 and
MATLAB software. The FORTRAN 90 MVDIST package includes special
functions for univariate, bivariate and trivariate normal and t distributions (in-
cluding the non-central case), along with general purpose QMC software for
1 MATLAB is a registered trademark of MathWorks, Inc.
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MVN and MVT problems that can handle general linear inequality constraints
and singular correlation matrices; it also includes functions for the computa-
tion of second and third order bounds and equicoordinate quantiles. The web-
site of Bretz (www.biostat.uni-hannover.de/staff/bretz/) contains SAS/IML
implementations for general MVN and MVT problems based on randomized
QMC methods along with code for orthant probabilities. Source code pub-
lished in Applied Statistics is available from lib.stat.cmu.edu/apstat/. This
site includes the algorithms AS 195 (Schervish, 1984), AS 251 (Dunnett,
1989) and AS 285 Lohr (1993). The algorithms of Joe (1995) are available
using anonymous ftp from ftp.stat.ubc.ca/pub/hjoe/mvnapp. FORTRAN
code for the calculation of Owen’s T−function using the hybrid approach
of Patefield and Tandy (2000) is available at www.jstatsoft.org/v05/i05/.
Some parallel MVN and MVT software is available from the ParInt website
www.cs.wmich.edu/∼parint/. Recent information on MC and QMC meth-
ods and links to other related sites are obtained from www.mcqmc.org. Some
newer (after 2007) versions of MATLAB contain implementations for MVN
and MVT cdf functions in the Statistics Toolbox based on some of the methods
developed by the authors of this book (try “help mvncdf” or “help mvtcdf”
within MATLAB for details). There are also some Mathematica2 functions
(also based on methods developed by the current authors) in the Mathe-
matica Statistic Package for MVN computations (searching for “Multinormal
Distribution” within the Help section will provide further information).

5.5.1 R

R is a language and environment for statistical computing and graphics (Ihaka
and Gentleman, 1996). It provides a wide variety of statistical and graphi-
cal techniques, and is highly extensible. The latest version of R is available
at the Comprehensive R Archive Network (CRAN), which can be accessed
from www.r-project.org. In this section we illustrate the use of the R pack-
age mvtnorm, which computes MVN and MVT probabilities (Hothorn et al,
2001). The mvtnorm package includes additional functionality (calculation of
density values, random variable generation, etc.), some of which is described
in Appendix A.

The mvtnorm package uses a careful implementation of the methods de-
scribed in Chapter 4. SOV methods are used, which provide a transformation
of the original integration problem to the unit hypercube [0, 1]k (Section 4.1.2).
Variable reordering, as described in Section 4.1.3, is additionally implemented
to improve integration efficiency. Several suitable standard integration rou-
tines can be applied to this transformed integration problem. The mvtnorm
package uses an extension of the lattice rules described in Section 4.2.2 com-
bined with an antithetic variable sampling (Section 4.2.1). Robust integration
error bounds are obtained by introducing additional shifts of the entire set of

2 Mathematica is a registered trademark of Wolfram Research, Inc.
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integration nodes in random directions. Since this additional randomization
step is only performed to introduce a robust Monte Carlo error bound, 10
simulation runs are usually sufficient.

In order to illustrate the mvtnorm package, we start considering the three-
dimensional problem (1.5). We can use the following statements to calculate
the required probabilities,

> library(mvtnorm)
> k <- 3
> R <- diag(3)
> R[2,1] <- 3/5
> R[3,1] <- 1/3
> R[3,2] <- 11/15
> pmvnorm(mean=rep(0,k), R, lower=rep(-Inf,k),
+ upper=c(1,4,2))
[1] 0.8279847
attr(,"error")
[1] 2.870095e-07
attr(,"msg")
[1] "Normal Completion"

In the beginning, we call the mvtnorm library to load the required functions.
We then enter the lower triangular of the correlation matrix R. The non-
centrality vector is passed to pmvnorm by specifying the argument mean. The
integration region is given by the vectors lower and upper, both of which
can have elements -Inf or +Inf. The value of pmvnorm is then the estimated
integral value with the two attributes error (the estimated absolute error)
and msg (a status message, indicating whether or not the algorithm terminated
correctly). From the results above it follows that

Φ3ex = P (−∞ < X1 ≤ 1,−∞ < X2 ≤ 4,−∞ < X3 ≤ 2) ≈ 0.82798

with an absolute error estimate of 2.9e− 07.
We next consider the singular problem (1.7), in which case the mvtnorm

package uses the methods described in Section 5.2. As mentioned in Sec-
tion 1.3, the trivariate problem essentially reduces to a univariate problem. If
we call

> one <- rep(1,k)
> R <- one%*%t(one)
> p <- pmvnorm(mean=rep(0,k), R, lower=rep(-Inf,k),
+ upper=rep(1,k))
> p
[1] 0.8413447
attr(,"error")
[1] 0
attr(,"msg")
[1] "Normal Completion"
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and compare the result with the univariate normal distribution call

> pnorm(1)
[1] 0.8413447

we see that the results coincide.
The mvtnorm package allows the user to pass either the covariance or the

correlation matrix. Consider the following non-central MVT problem. We now
use the pmvt function to calculate the MVT probabilities,

> a <- pmvt(lower=-Inf, upper=2, delta=rep(0,5), df=3,
+ sigma = diag(5)*2)
> b <- pmvt(lower=-Inf, upper=2/sqrt(2), delta=rep(0,5),
+ df=3, corr=diag(5))
> attributes(a) <- NULL
> attributes(b) <- NULL
> all.equal(round(a,3), round(b,3))
[1] TRUE

The second of the previous statements passes the correlation matrix to pmvt.
Note that the integration bounds have to be standardized accordingly, but
not the non-centrality parameter.

Finally, we compare pmvt and pmvnorm for large degrees of freedom. If we
compute the MVT probabilities for increasing values of ν using

> foo <- function(x) pmvt(lower=-Inf, upper=1,
+ delta=rep(0,5), x, corr=diag(5))
> x <- as.matrix(c(1:19,10*(2:20)))
> p <- apply(x, 1, foo)

and plot the resulting probabilities, we obtain the graph shown in Figure 5.1,
where the horizontal dotted line indicates the limiting MVN probability. As
seen from Figure 5.1, the MVT and MVN probabilities are very similar for
large values of ν.

5.5.2 MATLAB

MATLAB is a language and environment for numerical computations. It is
widely used for scientific and engineering computations. In this section we
illustrate the use of some MATLAB functions for MVN and MVT computa-
tions which are available from the Genz website by following the “Software”
link (www.math.wsu.edu/faculty/genz/homepage). All functions have intro-
ductory comment sections which describe the function’s input and output
parameters; some of this information is given in Appendix B. In the following
we describe the current list of available functions.

bvnl : a function for the computation of bivariate normal cdf probabilities.
This function uses methods described in Section 2.1.1 and Genz (2004).
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Fig. 5.1. MVT probabilities for increasing degrees of freedom

tvnl : a function for the computation of univariate, bivariate and trivariate
cdf normal probabilities. These functions use methods described in Sec-
tion 2.1.2 and Genz (2004).

tvnls : a simpler but less accurate version of tvnl.
qsimvn : a function for the numerical computation of multivariate normal

distribution values. This function uses the SOV reparameterization de-
scribed in Section 4.1.2 with variable reordering (see Section 4.1.3) and a
quasi-random integration method with a randomized point set based on
a Kronecker sequence (see Section 4.2.2).

qsimvnv : a vectorized version of qsimvn, with similar parameters.
qsilatmvnv: similar to qsimvnv, except that randomized lattice rules (see

Section 4.2.2) are used for the numerical integration.
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qscmvn : a function for the numerical computation of multivariate normal
distribution values. The integration region may be specified by a set of
linear inequalities in the form a < Cx < b, where C is an m× k matrix.
This function uses a method similar to qsimvn combined with methods
for handling singular and inequality constrained problems described in
Section 5.1.

qscmvnv : a vectorized version of qscmvn, with similar parameters.
qsclatmvnv : similar to qscmvnv, except randomized lattice rules (see Sec-

tion 4.2.2) are used for the numerical integration.
mvnlps : a function for the numerical computation of multivariate nor-

mal distribution values for ellipsoidal integration regions. This function
uses methods described in Section 2.2.2 and Sheil and O’Muircheartaigh
(1977).

qsimvnef : a function for the numerical computation of multivariate normal
distribution expected values. The method used is similar to the method
used for qsimvn, but also computes the expected value of a user specified
function; see Section 5.3.2.

qsimvnefv : a vectorized version of qsimvnef, with similar parameters.
tvtl : a set of functions for the computation of univariate, bivariate and

trivariate cdf normal and t probabilities. These functions use methods
described in Section 2.1.2 and Genz (2004).

qsimvt : a function for the numerical computation of multivariate t distri-
bution values. This function uses the MVT distribution in the form (1.3)
with the SOV reparameterization described in Section 4.1.2, variable re-
ordering (see Section 4.1.3) and a Niederreiter sequence (see Section 4.2.2)
quasi-random integration method.

qsilatmvtv : similar to qsimvt, except that randomized lattice rules (see
Section 4.2.2) are used for the numerical integration and and the function
references are vectorized.

qscmvt : a function for the numerical computation of MVT probabilities.
The integration region may be specified by a set of linear inequalities in
the form a < Mx < b, where M is an m× k matrix. This function uses a
method similar to qsimvt combined with methods for handling singular
and inequality constrained problems described in Section 5.1.

qscmvtv : a vectorized version of qscmvt, with similar parameters.

We now provide some examples to illustrate the MATLAB functions. Con-
sider again the Φ3ex MVN problem (1.5), which was also used in Section 5.5.1.
We can use the following MATLAB statements to obtain some example re-
sults.

>> b = [1 4 2]’; r3 = [3/5 1/3 11/15];
>> p = tvnl( b, r3, 1e-12 ); disp(p)

0.827984897456834
>> a = -inf*[1 1 1]’; r = [1 3/5 1/3;3/5 1 11/15;1/3 11/15 1];
>> [ p e ] = qsilatmvnv( 10000, r, a, b ); disp([p e])
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0.827984872246485 8.05123962846801e-08

The first result for Φ3ex is the highly accurate 0.827984897456834 value from
tvnl and the second result comes from a 1000-point randomized lattice rule
simulation. The error estimate for this result is consistent with the tvnl re-
sult. A related problem is the T3ex MVT problem (1.6), which has the same
parameters, except for the degrees of freedom (ν = 5). We can use a similar
set of MATLAB statements to obtain example results.

>> b = [1 4 2]’; r3 = [3/5 1/3 11/15];
>> p = tvlt( 5, b, r3, 1e-12 ); disp(p)

0.791453793811934
>> a = -inf*[1 1 1]’; r = [1 3/5 1/3;3/5 1 11/15;1/3 11/15 1];
>> [ p e ] = qsimvt( 10000, 5, r, a, b ); disp([p e])

0.791561147814799 0.00109331493304781
>> [ p e ] = qsilatmvtv( 100000, 5, r, a, b ); disp([p e])

0.791454692453579 1.04944158384174e-06

The results are similar to the Φ3ex results, but the simulated results require
significantly more computation to achieve high accuracy. Some results from a
related singular problem where all Σ entries are 1:

>> b = [1 4 2]’; r3 = [1 1 1];
>> p = tvnl( b, r3, 1e-14 ); disp(p)

0.841344746068543
>> a = -inf*[1 1 1]’; r = ones(3);
>> [ p e ] = qsilatmvnv( 10000, r, a, b ); disp([p e])

0.841344746068551 0

In this case the simulated result is (within rounding) identical to the tvnl
result because both functions reduce the problem to a one-dimensional prob-
lem.

Some MATLAB results for the 5-dimensional Φ5ex problem (1.8) are

>> a = [-5:-1]’; b = -a + 1;
>> c = tril(ones(5)); r = c*c’;
>> [ p e ] = qsilatmvnv( 10000, r, a, b ); disp([p e])

0.474128241397226 2.6890463317249e-06
>> [ p e ] = qsilatmvnv( 100000, r, a, b ); disp([p e])

0.474128319994297 2.67591852853959e-07

The two different simulation results illustrate approximately linear decrease
in estimated errors as the number of samples is increased. Similar results were
obtained with a positive orthant probability for the same covariance matrix:

>> ao = zeros(5,1); bo = inf*ones(5,1);
>> c = tril(ones(5)); r = c*c’;
>> [ p e ] = qsilatmvnv( 10000, r, ao, bo ); disp([p e])

0.246105114254968 2.09977198987622e-05
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>> [ p e ] = qsilatmvnv( 100000, r, ao, bo ); disp([p e])
0.24609474118263 3.95720168886173e-06

The use of the MATLAB function qsclatmvnv which allows the integration
region to be defined in terms of a system of linear inequalities (see Section
5.1) can be illustrated with this problem. Suppose the integration region is
the simplex defined by the inequalities 0 ≤∑5

i=1 xi ≤ 1 with 0 ≤ xi ≤ 1, i =
1, . . . , 5, which can be written as 0 ≤ Mx ≤ 1 with

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Some MATLAB results are

>> as = zeros(6,1); bs = ones(6,1); M = [eye(5); ones(1,5)];
>> c = tril(ones(5)); r = c*c’;
>> [ p e ] = qsclatmvnv( 10000, r, as, M, bs ); disp([ p e ])

7.4946e-05 7.665e-07
>> [ p e ] = qsclatmvnv( 100000, r, as, M, bs ); disp([ p e ])

7.5042e-05 9.6451e-08

5.6 Miscellaneous and Further References

In this subsection we give additional references which have not been discussed
before. Kotz et al (2000) is a good starting point for further problems.

DiDonato et al (1980) and DiDonato and Hageman (1982) presented some
methods for the computation of bivariate normal probabilities over poly-
gons. Drezner (1990) and Hutchinson (1993) proposed simple approximations
to tri- and quadrivariate normal probabilities. Wang (1987) partitioned the
(x1, x2)−plane into fine rectangular regions to calculate bivariate normal prob-
abilities and modeled the resulting contingency table by an association model
from Goodman (1981). Extensions to higher dimensions were given by Rom
and Sarkar (1990) and Wang (1997). A series of structural safety articles fo-
cused on approximating the MVN integral after the Cholesky decomposition
(4.1); see Hohenbichler and Rackwitz (1983, 1985), Gollwitzer and Rackwitz
(1987), Tang and Melchers (1987), Ambartzumian et al (1998) and Pandey
(1998), to name a few. Other approaches for computing general MVN proba-
bilities include James (1991), Drezner (1992), and Berens et al (1995). Henery
(1981) approximated truncated MVN probabilities based on a Gram-Charlier
expansion. Siddiqui (1967), Krishnan (1972) and Bulgren et al (1974) con-
sidered computational aspects of bivariate t distributions with different stan-
dardizations than those considered in this book.
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Most of the algorithms for MVN and MVT computations involve compu-
tationally intensive but highly repetitive evaluations of integrands for repa-
rameterized probability distribution integrals. These algorithms can therefore
be easily parallelized, with a resulting significant reduction in total computa-
tion time. Various authors have described parallelization and implementation
of MVN and MVT algorithms, see, for example, Hajivassiliou (1993b), Wang
and Kennedy (1997), and de Doncker et al (1999, 2001).
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Applications

In this chapter we consider a variety of applications, which require efficient nu-
merical MVN and/or MVT integration methods. In Section 6.1 we discuss the
numerical computation of high-dimensional integrals for multiple comparison
problems. In Section 6.2 we discuss the application of MVN and MVT integra-
tion methods for problems in computational finance and Bayesian statistical
analysis.

6.1 Multiple Comparison Procedures

We consider classes of high dimensional integrals that are needed for the appli-
cation of multiple comparison procedures. The numerical integration problems
involve computation of MVT or MVN probabilities with integration over re-
gions determined by sets of linear inequalities (Hochberg and Tamhane, 1987;
Hsu, 1996; Bretz et al, 2010). In Section 6.1.1 we introduce some notation and
discuss how the methods from the previous chapters can be applied to common
multiple test problems. In Section 6.1.2 we consider the calculation of critical
values, which leads to the numerical problem of combining an appropriate
optimization method with an efficient numerical integration method. We re-
fer to Bretz et al (2001) for a more detailed review of numerical integration
problems arising in the context of multiple comparison procedures.

6.1.1 Multiple Testing in Linear Models

We consider a general linear model with fixed effects,

Y = Xβ + ε,

We assume that we are given an n×1 data vector Y, a fixed and known n×p
design matrix X, an unknown p × 1 parameter vector β and a n × 1 error
vector ε ∼ Nn(0, σ2In) with unknown variance σ2. Let

A. Genz, Computation of Multivariate Normal and t Probabilities
DOI: 10.1007/978-3-642-01689-9_6, © Springer-Verlag Berlin Heidelberg 2009
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β̂ = (XtX)−XtY

and

σ̂2 =
(Y − Xβ̂)t(Y − Xβ̂)

ν

denote the least square unbiased estimates of β and σ, respectively, where
ν = n− rank(X) and (XtX)− denotes some generalized inverse of XtX.

The setup for multiple comparison problems provides a constant p × k
matrix C. The covariance matrix for the multiple comparison problem is Σ =
Ct(XtX)−C, an k × k positive semi-definite matrix. The matrix C specifies
the k two-sided (lower-tailed, upper-tailed) null hypotheses H=

i : ct
iβ = 0

(H≤
i : ct

iβ ≤ 0,H≥
i : ct

iβ ≥ 0), where ct
i denotes the i−th column of C,

i = 1, . . . , k. Each null hypothesis is tested using the test statistics

Ti =
ct

iβ̂

σ̂
√

ct
i(XtX)−ci

, i = 1, . . . , k.

The joint distribution of T1, . . . , Tk is as follows. Let Zi = σ̂Ti/σ. Then it
follows that Z = (Z1, . . . , Zk)t ∼ Nk(δ,R), where R is obtained by standard-
izing Σ and the non-centrality vector δ is given by

δ =

(
ct

iβ

σ
√

ct
i(XtX)−ci

)

i=1,...,k

.

Because under the conditions above νσ̂2 is χ2
ν distributed and independent of

Z, the vector (T1, . . . , Tk)t = Z/
√
χ2

ν follows a k−variate t distribution with
parameters R, ν, and δ (Cornish, 1954; Dunnett and Sobel, 1954). Under the
null hypothesis, δ = 0 and we need to calculate central MVT probabilities
based on either (1.2) or (1.3). Thus, if ti denotes the observed value for Ti,
we reject ⎧⎨

⎩
H=

i , if 1 − Tk(−t, t;Σ, ν) ≤ α,

H≤
i , if 1 − Tk(−∞, t;Σ, ν) ≤ α,

H≥
i , if 1 − Tk(−t,∞;Σ, ν) ≤ α,

(6.1)

where t = (ti, . . . , ti)t denotes an k × 1 vector with equal entries ti and α ∈
(0, 1) denotes the significance level. Otherwise, δ 
= 0 and we need to calculate
non-central MVT probabilities based on (1.4), as required, for example, for
power calculations and sample size determination (Bretz et al, 2001). In the
asymptotic case ν → ∞ or if σ is known, the calculations reduce to the
evaluation of the MVN probabilities (1.1).

To illustrate the framework described above, we discuss two common mul-
tiple comparison procedures in more detail. We first consider the Dunnett
test for comparing k treatments with a control in a standard one-factorial
analysis-of-variance (ANOVA) model (Dunnett, 1955). Here, p = k + 1 and
β = (β1, . . . , βk+1)t denotes the parameter vector with the treatment means
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βi, where the index i = 1 denotes the control, to which the remaining k
treatments are compared with. The associated C matrix is

Ck+1×k =

⎡
⎢⎢⎢⎢⎢⎣

−1 −1 . . . −1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦
.

Let ni denote the sample size of treatment group i, such that n =
∑k+1

i=1 ni.
Straightforward algebra shows that after standardizing Σ = Ct(XtX)−C the
k×k correlation matrix R can be written as R = D+vvt, with D = diag(1−
λ2

i ), vi = λi, and λi =
√

ni

n1+ni
. This leads to a product correlation structure

and equation (2.16) can be used. Thus, the computation of MVN probabilities
for the Dunnett test reduces to the computation of a one-dimensional integral
over R with a Gaussian weight function, see Dunnett (1989). In the MVT
case, we have an additional integral for the χν variable. Note that the product
correlation structure does not hold in general ANOVA models, see Hsu (1996,
Chapter 7). In such cases the general purpose methods from Chapter 4 have
to be used.

As a second example for a multiple comparison procedure we consider
all pairwise comparisons between p treatments, resulting in a total of k =
p(p− 1)/2 two-sided hypotheses. The studentized range test of Tukey (1953)
is a standard approach. For p = 3 we have k = 3 and

C3×3 =

⎡
⎣−1 −1 0

1 0 −1
0 1 1

⎤
⎦ .

Figure 6.1 illustrates the associated integration region, which consists of an
infinite hexagonal cylinder, see also Hsu (1996, p. 120). One immediately rec-
ognizes this is a singular integration problem and the methods from Section 5.2
have to be applied. Consider an all pairwise comparison problem with p = 10
and sample sizes 12, 14, . . . , 30. In this case (XtX)− is a diagonal matrix with
entries 1/12, 1/14, . . . , 1/30, and the matrix C has 45 columns in the form

C10×45 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 . . . −1 0 . . . 0 . . . 0

1 0 . . . 0 −1 . . . −1 . . .
...

0 1 . . .
... 1 . . . 0 . . .

...
... 0 . . .

...
... . . .

... . . .
...

...
... . . .

...
... . . .

... . . . 0
...

... . . . 0
... . . . 0 . . . −1

0 0 . . . 1 0 . . . 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Fig. 6.1. Cylindric hexagonal integration region for Tukey test, p = 3

If the transformations from Section 5.2 are applied, then the final Cholesky
factor Lt takes the form

Lt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · · · · 0
� 1 0 · · · · · · 0
� 1 0 · · · · · · 0
...

. . . . . .
...

...
...

� � · · · · · · � 1
...

...
...

...
...

...
� � · · · · · · � 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

Lt has nine columns.
The framework described above follows the canonical linear model the-

ory and thus includes classical regression and ANOVA models allowing for
covariates and/or factorial treatment structures with identically and indepen-
dently distributed normal errors and constant variance, see Bretz et al (2008)
and the references therein. This framework can be extended to more general
parametric and semi-parametric models based on standard asymptotic results,
thus requiring the efficient computation of multivariate normal probabilities
(Hothorn et al, 2008). We refer the reader to Bretz et al (2010) for further
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details and a detailed description of the multcomp package in R, which pro-
vides a general software implementation of multiple comparisons procedures
in generalized linear models, mixed-effects models, survival models, etc.

6.1.2 Numerical Computation of Critical Values

A different problem from equation (6.1) is the determination of simultaneous
confidence intervals for ct

iβ, which – in the two-sided case – take the form
[
ct

iβ̂ − t1−ασ̂
√

ct
i(XtX)−ci; ct

iβ̂ + t1−ασ̂
√

ct
i(XtX)−ci

]
.

The actual numerical problem consists of finding the critical value t1−α where
P (t1−α) = 1 − α, with

P (t) =

⎧⎨
⎩
Tk(−t, t;Σ, ν) (two-sided),
Tk(−∞, t;Σ, ν) (lower-tailed),
Tk(−t,∞;Σ, ν) (upper-tailed).

Here, t denotes a k× 1 vector with equal entries t. The numerical problem is
therefore a combined problem of using an appropriate numerical optimization
method to determine t1−α with an efficient numerical integration method for
evaluating P (t).

The numerical optimization-integration methods considered below use the
function

h(t) = P (t) − (1 − α).

These methods involve finding t1−α, the point where h(t1−α) = 0, using a nu-
merical optimization method. Since h(t) is often expensive to compute using
numerical integration, particularly for large values of k, a numerical optimiza-
tion method that requires only a few iterations is needed. We can accomplish
this if we combine a method for getting good starting points for the optimiza-
tion step with an optimization method that converges rapidly. An additional
complication with the combined numerical optimization-integration method
is the presence of numerical integration errors, which must be controlled along
with the numerical optimization errors. Below, we discuss these issues along
the lines of Genz and Bretz (2000).

Starting Interval Selection

For the purpose of obtaining a good starting interval for t1−α, the methods
from Section 3.1 can be used. Let

L1(t) = 1 − S1(t) ≤ P (t)

and
P (t) ≤ 1 − min

j
P (Ac

j(t)) = U1(t)
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denote the lower and upper bounds introduced in Section 3.1 based on one-
dimensional distribution values. If t1,a and t1,b are determined by solving
U1(t) = 1 − α and L1(t) = 1 − α, respectively, then t1−α ∈ [t1,a, t1,b].
This bounding interval for t1−α can be found directly using the appropri-
ate one-dimensional inverse distribution function. For example, with the two-
sided case, [t1,a, t1,b] = [T−1(1 − α

2 ; ν), T−1(1 − α
2k ; ν)]. As shown in Sec-

tion 3.1, shorter intervals can be found using bivariate distribution values if
the modified Bonferroni bound U2(t) from Dawson and Sankoff (1967) is com-
bined with the Hunter-Worsley bound L2(t) (Hunter, 1976; Worsley, 1982).
If U(t2,a) = 1 − α and L(t2,b) = 1 − α then t1,a ≤ t2,a ≤ t1−α ≤ t2,b ≤ t1,b.
Starting with [t1,a, t1,b], we can use numerical optimization, applied to L2(t),
to determine t2,b, then use numerical optimization, applied to U2(t) starting
with [t1,a, t2,b], to determine t2,a. We refer the reader to Genz et al (2004)
for an investigation of such lower and upper bounds for multiple comparison
problems.

Choice of Optimization Method

A primary goal for selecting an optimization method is finding a method that,
given good starting points, requires only a few iterations for a large class
of problems. Thus, it would be desirable to use a second order method like
Newton’s method to find t1−α. The Newton iteration method for improving an
estimate for tc approximating t1−α, successively replaces tc by tc−h(tc)/h′(tc).
This method requires values for both h(t) and h′(t). If we make a simple
change of variable y = tx in the detailed expression for h(t) determined from
the definition of the MVT distribution function, we have (for the two-sided
case)

h(t) = α− 1 + tk
21− ν

2 |Σ|− 1
2

Γ (ν
2 )(2π)

k
2

∞∫

0

sν−1e−
s2
2

s√
ν∫

− s√
ν

e−
t2ytΣ−1y

2 dyds.

Differentiating h(t), and then changing the variables back to x, we find

h′(t) =
1
t
(kP (t) −H(t)),

where H(t) is given by

21− ν
2 |Σ|− 1

2

Γ (ν
2 )(2π)

k
2

∞∫

0

sν−1e−
s2
2

st√
ν∫

− st√
ν

xtΣ−1x e−
xtΣ−1x

2 dxds.

For the lower-tailed (upper-tailed) case, the lower (upper) limits for the inner
integral are all −∞ (∞). In either case, H(t) may be computed with only a
little extra work during the computation of P (t).



6.1 Multiple Comparison Procedures 77

Given a starting interval [ta, tb] with t1−α ∈ [ta, tb] and a required error
tolerance τ for the final estimate of t1−α, we let tc = ta+tb

2 and use a Newton
algorithm that repeats the following steps:

IF tb − ta > 2τ and |h(tc)| > τ |h′(tc)| THEN
(a) if h(tc) < 0, set (ta, h(ta)) = (tc, h(tc));

otherwise set (tb, h(tb)) = (tc, h(tc));
(b) set tc = tc − h(tc)

h′(tc)
;

ELSE stop and output t1−α ≈ ta+tb

2 or t1−α ≈ tc.

Genz and Bretz (2000) also investigated the use of Secant-like methods for
solving h(t) = 0 but believed that the simple Secant method is not suitable for
many problems because |h′(t)| is sometimes very small near t1−α (particularly
when α is small), and this can result in divergence unless a very good starting
value is available. Various bisection-Secant hybrid methods were considered
and after some experiments, the Pegasus method (Ralston and Rabinowitz,
1978) was selected. This method has asymptotic order of convergence similar
to that of the Secant method and at each iteration provides a bracketing
interval for t1−α. The Pegasus method that was finally implemented (starting
with τ and [ta, tb]) initially sets tc = ta+tb

2 . If h(tc) < 0, then (ta, h(ta)) =
(tc, h(tc)); otherwise, (tb, h(tb)) = (tc, h(tc)). The basic iteration repeats the
following steps:

IF tb − ta > 2τ and |h(tc)| > τ
∣∣∣h(tb)−h(ta)

tb−ta

∣∣∣ THEN

(a) compute tc = tb − h(tb)(tb−ta)
h(tb)−h(ta) ;

(b) if h(tc) < 0, set (ta, h(ta)) = (tc, h(tc));
otherwise set h(ta) = h(ta)h(tb)

h(tb)+h(tc)
and (tb, h(tb)) = (tc, h(tc))

ELSE stop and output t1−α ≈ ta+tb

2 or t1−α ≈ tc.

The Pegasus method is the same as the linearly convergent False-Position
method except for the ha modification at step (b), which improves the ap-
proximate order of convergence to 1.64.

Error Control

When numerical integration is used to evaluate h(t), what is actually com-
puted is ĥ(t) = h(t) + εI , where εI is the numerical integration error. This
error can, in principle, be made arbitrarily small, but at the expense of more
work (computer time). Let t̂ = t1−α + εt be an approximation to t1−α with
error εt. What is actually computed at each step in a combined numerical
optimization-integration algorithm is

ĥ(t̂) = h(t̂) + εI ≈ εth
′(t1−α) + εI , (6.2)

for sufficiently small |εt|. In order to balance the numerical integration and
optimization errors, an estimate for |h′(t1−α)| is needed. This quantity does
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not need to be very accurate, so a simple difference-quotient approximation,
in the form

h′(t1−α) ≈ ĥ′ =
ĥ(tb) − ĥ(ta)

tb − ta
,

can be determined using quantities from the Pegasus method iterations. If
the Newton method is used, then an accurate value of h′(t1−α) is already
available.

Given ĥ′ and τ (the desired error tolerance for t1−α), the numerical inte-
gration error tolerance must be set at a level at least as small as ĥ′τ . Otherwise
the numerical integration errors may dominate the total error in ĥ(t̂) and it
will be impossible to reliably determine when the optimization method has
converged. The strategy used for the example test results reported below was
to set the error tolerance for the numerical integration at τ |ĥ′|.
Examples

The following examples illustrate the use of the numerical optimization-
integration algorithms described above. Tables 6.1 and 6.2 summarize the
numerical results. Total work is measured in terms of the number of density
function evaluations needed for the integration to compute P (t). The basic
starting interval [ta, tb] was computed using the Pegasus method; the cost is
minimal because only univariate and bivariate distribution function values are
required. The initial bracketing interval for t1−α is given in the first row for
each of the problems considered in Tables 6.1 and 6.2. The work reported in
that row is the work to compute the initial h(ta), h(tc) and h(tb) values (with
only h(tc) required to start the Newton iteration). Subsequent rows show
results of the iterations necessary to determine t1−α to the specified accuracy

The first example is based on data taken from Hsu and Nelson (1998). We
calculate two-sided confidence intervals for six treatment-control comparisons
with P (t) = T6(−t, t;Σ, 86) and

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − − − − −
0.3958 1 − − − −
0.5677 0.4936 1 − − −
0.5468 0.4621 0.7598 1 − −
0.5140 0.4488 0.7675 0.6930 1 −
0.5505 0.4922 0.8651 0.7738 0.7915 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

For α = 0.1, we obtain [t1,a, t1,b] = [1.663, 2.442] and [t2,a, t2,b] = [2.116, 2.324].
Similarly, for α = 0.05, we compute [t1,a, t1,b] = [1.988, 2.701] and [t2,a, t2,b] =
[2.429, 2.606]. The numerical optimization-integration results are summarized
in Table 6.1, where τ = 0.001 throughout.

The second example involves all pairwise comparisons of four treatments
based on an one-factorial ANOVA model with sample sizes ni = 20, 3, 3, 15
(Westfall et al, 1999). We calculate two-sided confidence intervals with P (t) =
T6(−t, t;Σ, 37), given
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Table 6.1. Numerical optimization-integration results for the first example

Iteration ta, tc, tb h(ta), h(tc), h(tb) ĥ′ Work

Pegasus method, α = 0.1

#1 2.220, 2.264, 2.324 –0.01, 0.00050, 0.0100 0.22 39952
#2 2.220, 2.262, 2.264 –0.01, 0.00001, 0.0005 0.22 51152

Newton method, α = 0.1

#1 2.116, 2.220, 2.324 – , –0.01, – 0.26 11200
#2 2.220, 2.261, 2.324 –0.01, –0.0002, – 0.24 28752

Pegasus method, α = 0.05

#1 2.518, 2.561, 2.606 –0.005, 0.00020, 0.0060 0.12 146432
#2 2.518, 2.559, 2.561 –0.005, 0.00004, 0.0002 0.12 187984

Newton method, α = 0.05

#1 2.429, 2.518, 2.606 – , –0.005, – 0.14 41552
#2 2.518, 2.557, 2.606 –0.005, –0.0002, – 0.13 104880
#3 2.557, 2.559, 2.606 –0.0002, 0.00001, – 0.12 168208

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − − − − −
0.1304 1 − − − −
0.2364 0.2364 1 − − −

−0.6594 0.6594 0 1 − −
−0.8513 0 0.3086 0.6455 1 −

0 −.8513 0.3086 −0.6455 0.1667 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

For α = 0.1, we obtain [t1,a, t1,b] = [1.687, 2.508] and [t2,a, t2,b] = [2.265, 2.383].
Similarly, for α = 0.05, we compute [t1,a, t1,b] = [2.050, 2.788] and [t2,a, t2,b] =
[2.026, 2.684]. The numerical optimization-integration results are summarized
in Table 6.2, again with τ = 0.001.

The results from these example tests demonstrate that the algorithms de-
scribed here provide feasible methods for computing t1−α values for confidence
intervals. Thus, efficient numerical optimization-integration methods are avail-
able which only require a few iteration steps to achieve an accurate estimate
of t1−α for a given error tolerance τ . Given good starting intervals determined
from bivariate distribution values, the numerical optimization based on the
use of the Newton method seems to be more efficient than optimization based
on the Pegasus method.

6.2 Bayesian Statistics and Finance Applications

Many integrals that arise in Bayesian statistical analysis applications (Evans
and Swartz, 1995; Shaw, 1988) have the general form
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Table 6.2. Numerical optimization-integration results for the second example

Iteration ta, tc, tb h(ta), h(tc), h(tb) ĥ′ Work

Pegasus method, α = 0.1

#1 2.324, 2.339, 2.383 –0.003, 0.0003, 0.0090 0.21 86144
#2 2.324, 2.337, 2.339 –0.003, –0.0002, 0.0003 0.21 127696

Newton method, α = 0.1

#1 2.265, 2.324, 2.383 – , –0.003, – 0.25 41552
#2 2.324, 2.338, 2.383 –0.003, –0.00006, – 0.21 68592

Pegasus method, α = 0.05

#1 2.648, 2.654, 2.684 –0.0006, –0.00001, 0.003 0.11 255680

Newton method, α = 0.05

#1 2.612, 2.648, 2.684 – , –0.0006, – 0.13 63328
#2 2.648, 2.654, 2.684 –0.0006, 0.00003, – 0.12 159504

I(g) =

∞∫

−∞
p(θ)g(θ)dθ, (6.3)

where θ is a k-dimensional vector of integration variables, p(θ) is a posterior
density (usually not normalized), and g(θ) is some elementary real-valued
function (for example, g(θ) = θj , a component of θ). If the posterior p(θ) is
characterized by the presence of a dominant peak, then the integral can often
be efficiently computed by combining a multivariate normal or multivariate t
approximation to p(θ) together with a good numerical integration method.

Many computational finance problems require the computation of integrals
in the form

I =

∞∫

−∞
φk(x; Ik)q(x)dx,

see Hull (1993), Jäckel (2002), and Glasserman (2004). These problems are
similar in form to the (6.3) problems, with g ≡ 1 and a peaked posterior
density p(θ) = φk(θ; Ik)q(θ), dominated by a simple product MVN density
(with Σ = Ik and δ = 0), but the location of the peak for p(θ) is often shifted
away from the θ = 0 position for the MVN density. Many of these problems
have very large values for k, which might count a number of time periods (for
example, days in a year, or months in the life of a mortgage). So, methods
which use the location of the peak and information about the behavior of p(θ)
near the peak can often lead to more efficient computation.

In this section we discuss some of the details for methods which construct
a multivariate normal or multivariate t approximation to p(θ) and use this
approximation with an appropriate numerical integration method, focusing on
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the Bayesian statistical analysis problems. We finish with several illustrations
of these methods, including several computational finance problems.

6.2.1 The Standardizing Transformation

Below, we follow the conventions used in computational finance and refer
to the non-centrality parameter δ as the “mean” and denote it by μ. We
begin with a standardizing transformation of the posterior density in the form
θ = μ + Cy, where μ is the location of the peak for p(θ) (the mode), and
C is the lower triangular Cholesky factor for what is often called the modal
covariance matrix Σ (with Σ = CCt). The modal covariance matrix Σ is
defined as the inverse of the negative of the Hessian matrix for log(p(θ)) at
μ. Note that if p(θ) is a multivariate normal density with mean μ, then the
modal covariance matrix is the covariance matrix for the multivariate normal
density. We also note that any k × k matrix C satisfying Σ = CCt could be
used for the standardizing transformation, but the Cholesky C is often chosen
for computational convenience.

The mode μ can be determined using a numerical method to determine
the point μ where the maximum of the function F (θ) = log(p(θ)) is attained.
Then the inverse of the modal covariance matrix Σ can be approximated
using finite difference approximations to the partial derivatives of F (θ). For
example, if H is used to denote the Hessian matrix at μ, the following standard
finite difference approximations to the partial derivatives could be used:

Hij ≈ 1
h2

(
F (θ + h(ei + ej)/2) + F (θ − h(ei + ej)/2)

−F (θ + h(ei − ej)/2) − F (θ − h(ei − ej)/2)
)
,

when i 
= j, otherwise

Hii ≈ F (θ + hei) + F (θ − hei) − 2F (θ)
h2

.

Here ei is the i-th standard Euclidean basis vector with a 1 for the i-th
component and 0 otherwise, and h is a step size chosen to provide moderately
accurate derivative approximations but avoiding large subtractive cancellation
errors that often result from these approximations (for example, h = 0.001).
Then the standardizing Cholesky factor C is determined by CCt = −H−1.
After applying the standardizing transformation θ = μ + Cy, we have

I(g) =

∞∫

−∞
. . .

∞∫

−∞
g(θ)p(θ)dθ

= |C|
∞∫

−∞
. . .

∞∫

−∞
g(μ + Cy)p(μ + Cy)dy.
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6.2.2 The Multivariate Normal Transformation

If we assume that the posterior density is approximately multivariate normal,
then after the standardizing transformation, we multiply and divide by the
MVN density so that

I(g) =
1√
2π

∞∫

−∞
. . .

∞∫

−∞
φk(y; Ik)g(μ + Cy)h(y)dy, (6.4)

with

h(y) =
|C|p(μ + Cy)
φk(y; Ik)

.

If the MVN approximation is good, then h(y) ≈ 1 and the I(g) integrals
should be easy to estimate, as long as g is not too complicated.

A final set of univariate normal transformations of the form yi = Φ−1(zi)
can be used to put I(g) into a form suitable for standard multidimensional
integration methods. Then, I(g) becomes

I(g) =

1∫

0

. . .

1∫

0

g(μ + Cy(z))h(y(z))dz,

where y(z) = (Φ−1(z1), . . . , Φ−1(zk))t.

6.2.3 The Multivariate t Transformation

A more general unimodal mode, that can be used for the posterior densities
with thicker tails than those for the MVN density, is the MVT density from
(1.2),

tk(x;Σ, ν) = K(k)
ν |Σ|− 1

2

(
1 +

xtΣ−1x
ν

)− ν+k
2

,

where K
(k)
ν is defined in equation (4.7), see also Evans and Swartz (1995,

2000). With this model, the modal covariance matrix (−H−1 at x = 0) and
the actual covariance matrix Σ for the model differs by a factor of (ν + k)/ν,
so that the correct standardizing transformation matrix is C =

√
(ν + k)/νĈ,

where ĈĈt = −H−1.
An approximate ν can be determined by comparing the behavior of the log

posterior ratio near μ, log
(
p(μ+

√
ν+k

ν Ĉy)/p(μ)
)
, with the log of the MVT

model, −ν+k
2 log

(
1 + yty

ν

)
, for selected y vectors. If we define an average log

posterior ratio near μ by

S(δ, ν) =
1
2k

n∑
i=1

⎛
⎝log

⎛
⎝p(μ + δ

√
ν+k

ν Ĉei)

p(μ)

⎞
⎠+ log

⎛
⎝p(μ − δ

√
ν+k

ν Ĉei)

p(μ)

⎞
⎠
⎞
⎠ ,
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where ei denotes the i-th column of the k × k identity matrix, then a simple
heuristic strategy is to choose the ν value (νmin) which minimizes the absolute
difference between S(δ, ν) and −ν+k

2 log
(
1+ δ2

ν

)
for selected values of δ. Genz

and Kass (1997) minimized the function
∣∣∣∣S(1, ν) +

ν + k

2
log
(

1 +
1
ν

)∣∣∣∣+
∣∣∣∣S(2, ν) +

ν + k

2
log
(

1 +
4
ν

)∣∣∣∣ ,

for ν ∈ [1, νmax], given some heuristic threshold νmax (for example, νmax =
15). If νmin = νmax, then an MVN model is selected.

Once a good ν has been chosen, and if an MVT model is selected, the
transformation θ = μ + Cy produces I(g) in the form

I(g) =

∞∫

−∞
. . .

∞∫

−∞
tk(y; I, ν)g(μ + Cy)h(y)dy, (6.5)

with

h(y) =
|C||p(μ + Cy)
tk(y; I, ν)

.

At this stage, the transformation y = w
√
ν/s (which introduces the addi-

tional s variable, see equations (1.2) and (1.3)) could be used to express I(g)
as a weighted MVN integral

I(g) =
21− ν

2

Γ (ν
2 )

∞∫

0

sν−1e−
s2
2

∞∫

−∞
. . .

∞∫

−∞
φk(w; Ik)h

(
w
√
ν

s

)
g

(
μ + C

w
√
ν

s

)
dwds,

In this case, a final transformation to z ∈ [0, 1]k+1 combines s = χ−1
ν (zk+1),

and w(z) = (Φ−1(z1), . . . , Φ−1(zk))t for computation with standard numerical
integration methods for integration over [0, 1]k+1, so that I(g) is given by

I(g) =

1∫

0

1∫

0

· · ·
1∫

0

h

(
Φ−1(z)

√
ν

χ−1
ν (zk+1)

)
g

(
μ + C

Φ−1(z)
√
ν

χ−1
ν (zk+1)

)
dz.

Alternatively, a final transformation to z ∈ [0, 1]k, using inverse univariate
T transformations, starts with the transformations (4.8) so that I(g) becomes

I(g) =

∞∫

−∞
t(u1; ν)

∞∫

−∞
t(uk; ν + k − 1)g(μ + Cy(u))h(y(u))du.
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The final transformations to [0, 1] variables zi uses the univariate inverse T
transformations ui = T−1(zi; ν + i− 1) for i = 1, 2, . . . , k, with the final form
for I(g) given by

I(g) =

1∫

0

1∫

0

. . .

1∫

0

g(μ + Cy(u(z)))h(y(u(z)))dz,

where u(z) = (T−1(z1; ν), . . . , T−1(zk; ν + k − 1))t.

6.2.4 The Split-t Transformations

Some problems have skewed tail behavior, instead of the symmetric non-
normal tail behavior which can be handled with the MVT transformation
discussed in the previous section. For these skewed problems, a set of “split”
transformations has been studied for use after the standardizing transforma-
tion θ = μ + Cy. With the split-t transformations, the univariate normal
transformations zi = Φ(yi) described in Section 6.2.2 have to be modified.
These univariate transformations are split at the origin and replaced by (pos-
sibly) different transformation functions, chosen from the MVT family, for
each of the y variables. With this method, the function p(μ + Cy) is in-
vestigated along both the positive and negative directions for each of the y
variables to determine the appropriate degrees of freedom ν±i and scale factors
δ±i , for i = 1, 2, . . . , k. The split transformations take the form

yi = S−1
i (zi) =

{
δ±i T

−1(zi; ν±i ), if ±(z − 0.5) > 0 and ν±i < νmax

δ±i , Φ
−1(zi), if ±(z − 0.5) > 0 and ν±i ≥ νmax,

with all zi ∈ [0, 1] and νmax set to some heuristic threshold value (for example,
νmax = 10). A numerical method for the determination of good values for the
δ and ν parameters based on evaluations of p(μ + Cy) is described in detail
by Genz and Kass (1997).

After the transformations, the integral over the unit k-cube is then

I(g) =

1∫

0

. . .

1∫

0

g(μ + Cy(z))h(y(z))dz,

where y(z) = (S−1
1 (z1), . . . , S−1

m (zk))t and

h(y(z)) = |C|p(μ + Cy(z))
k∏

i=1

Ji(yi),

with the transformation Jacobian factors Ji defined by
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Ji(y) =

⎧⎪⎪⎨
⎪⎪⎩
δ±i
(
K

(1)

ν±
i

)−1 (
1 + y2

ν±
i (δ±

i )2

) ν
±
i

+1
2

, if ±yi > 0 and ν±i < νmax,

δ±i
√

2πe
y2

2(δ
±
i

)2 , if ±yi > 0 and ν±i = νmax.

If the split-t transformations are used with Monte Carlo integration, then
this is equivalent to using the split-t distributions as importance functions for
Monte Carlo integration (Geweke, 1989, 1991b; Evans, 1991).

6.2.5 Some Examples

Stanford Heart Transplant Data Example

This example has been considered in a number of papers; see, for example,
Naylor and Smith (1982) and Genz and Kass (1997). The integrals of interest
have the form

I(g) =

∞∫

0

∞∫

0

∞∫

0

g(λ, τ, ρ)p(λ, τ, ρ)dλdτdρ,

with

p(λ, τ, ρ) =
n∏

i=1

ρλρ

(λ+ xi)p+1

N∏
i=n+1

(
λ

λ+ xi

)ρ

m∏
j=1

τρλρ

(λ+ yj + τzj)ρ+1

M∏
j=m+1

(
λ

λ+ yj + τzj

)ρ

,

where we use the Naylor and Smith (1982) data values for (x, y, z)i. Approx-
imate expected values for (λ, τ, ρ) were needed, so a computation which uses
the vector (1, λ, τ, ρ) provides approximations to (λ̄, τ̄ , ρ̄) = I(λ, τ, ρ)/I(1).

Following Naylor and Smith (1982), we first make the transformation
(λ, τ, ρ) = (eθ1 , eθ2 , eθ3), so that the integrals now have the form

I(g) =

∞∫

−∞

∞∫

−∞

∞∫

−∞
g
(
eθ1 , eθ2 , eθ3

)
p
(
eθ1 , eθ2 , eθ3

)
eθ1+θ2+θ3dθ.

Then, numerical optimization is applied to the function

q(θ) = log
(
p
(
eθ1 , eθ2 , eθ3

))
+ θ1 + θ2 + θ3

to obtain the mode μ and modal covariance matrix Σ, with Cholesky fac-
tor C. The sum θ1 + θ2 + θ3, which arises from the Jacobian for the trans-
formation to the θ variables, is included in the objective function during
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the optimization, because the transformation selection and integration algo-
rithms also use this sum. Applying numerical optimization, we then obtain
μ ≈ (3.3850,−0.092401,−0.72291) with (the finite difference approximated)

Σ ≈
⎡
⎣ 0.21468 −0.0092513 0.093005
−0.0092513 0.17276 −0.49946

0.093005 −0.049946 0.06893

⎤
⎦

and the resulting

C =

⎡
⎣ 0.46333 0 0
−0.19967 0.41516 0

0.20073 −0.11065 0.12804

⎤
⎦ .

The maximum value of q is approximately −375, so the constant 375 is added
to log(p) during the integral computations to avoid underflow problems when
computing p.

Table 6.3. Heart Transplant Results

Expected Values

p’s 1̄ λ̄ τ̄ ρ̄

2025 0.2961 32.556 1.0406 0.4976
4365 0.2963 32.585 1.0421 0.4976
9135 0.2964 32.597 1.0441 0.4975

Err. Est. 0.0005 0.037 0.0033 0.0007

The results in Table 6.3 were computed using adaptive integration software
(Berntsen et al, 1991b) applied to the transformed integral in the form (6.4).
The errors given are estimated errors from the adaptive integration method.
Similar results were also obtained using split transformations because the
transformation selection algorithm selected a normal/normal split for all three
variables with the scale factors δ± � 1.

Photocarcinogenicity Data Example

This example was discussed Dellaportas and Smith (1993). The integrals of
interest have the form

I(g) =

∞∫

0

∞∫

−∞

∞∫

−∞

∞∫

−∞
g(θ, ρ)p(θ, ρ)dθdρ,

with θ = (θ1, θ2, θ3, θ4)t,

p(θ, ρ) =

(
n∏

i=1

ρtρ−1
i eZiθ

)(
n+m∏
i=1

e−tρ
i Ziθ

)
,
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n = 65, m = 15, and data values given in the t vector and the 80 × 4 ma-
trix Z with rows Z1,Z2, . . . ,Z80. Approximate expected values for (θ, ρ) were
needed, so a computation which uses the vector (1,θ, ρ) provides approxima-
tions to (θ̄, ρ̄) = I(θ, ρ)/I(1). The transformation ρ = eθ5 produces integrals
in the form

I(g) =

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞
g(θ, eθ5p(θ, eθ5)eθ5dθdθ5.

Numerical optimization is applied to the function

q(θ, θ5) = log
(
p
(
θ, eθ5
))

+ θ5

to obtain the mode μ and modal covariance matrix Σ, with Cholesky factor C.
For this example, we have μ ≈ (−10.847,−1.1791,−0.35168, 0.40198, 1.1903)t,

Σ ≈

⎡
⎢⎢⎢⎢⎣

1.3442 0.015174 −0.023852 −0.12772 −0.11510
0.015174 0.13312 0.054143 0.048690 −0.0060429

−0.023852 0.054143 0.11577 0.050959 −0.0025648
−0.12772 0.048690 0.050959 0.11582 0.0066915
−0.11510 −0.0060429 −0.0025648 0.0066915 0.010258

⎤
⎥⎥⎥⎥⎦ ,

and

C =

⎡
⎢⎢⎢⎢⎣

1.1594 0 0 0 0
0.013088 0.36461 0 0 0

−0.020573 0.14923 0.30509 0 0
−0.11016 0.13749 0.092348 0.27614 0

−0.099279 −0.013010 −0.008738 −0.0059725 0.010972

⎤
⎥⎥⎥⎥⎦ .

The minimum value of −q is approximately 243.6, so the constant 243.6 is
added to log(p) during the integral computations to avoid underflow problems
when computing p.

Table 6.4. Photocarcinogenicity Results

Expected Values

p’s 1̄ θ̄1 θ̄2 θ̄3 θ̄4 ρ̄

10000 0.038613 -10.862 -1.1940 -0.35565 0.39772 3.2852
20000 0.038927 -10.873 -1.1926 -0.35936 0.39676 3.2887
40000 0.039068 -10.891 -1.1936 -0.36597 0.39300 3.2940

Err. Est. 0.0008 0.3 0.03 0.02 0.008 0.08

The results in Table 6.4 were computed using randomized lattice rules
(4.16) for integrals in the form (6.4). The errors given are estimated errors
(using 3 times the standard errors) for the last expected value row, using
10 randomly shifted lattice rules. Similar results were also obtained using
split transformations because the transformation selection algorithm selected
a normal/normal split for all five variables with the scale factors δ± ≈ 1.
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Asian Option Example

A set of integrals that are needed for pricing an Asian financial option takes
the form

Ik(S0, T,K, r, s) =
∞∫

−∞
φk(x; Ik)e−rT

(
S0

k

k∑
i=1

e

“
r− s2

2

”
iΔ+s

√
Δ

Pi
j=1 xj −K

)+

dx,

with Δ = T/k, and where (Y )+ ≡ max(Y, 0), see Hull (1993). These integrals
approximate an expected payoff integral over an interval [0, T ] which is dis-
cretized with step size Δ, so larger k values provide more accurate approxima-
tions. For the purpose of illustrative methods in this section, we consider the
approximate computation of I16(50, 1, 50, 0.05, 0.1) and I64(50, 1, 50, 0.05, 0.1).

Numerical optimization is applied to the function

q(x) = −xtx
2

− rT + log

(
S0

k

k∑
i=1

e

“
r− s2

2

”
iΔ+s

√
Δ

Pi
j=1 xj

)

to obtain the mode μ and modal covariance matrix Σ, with Cholesky factor
C. For k = 16, numerical optimization produces an approximate

μ = (0.34413, 0.32397, 0.30351, 0.28294, 0.26214, 0.24118, 0.2199, 0.19855,
0.177, 0.15534, 0.13347, 0.1115, 0.089416, 0.067186, 0.044829, 0.022458)t

with C approximately equal to the identity matrix. For k = 64, numerical
optimization produces an approximate

μ = (0.17809, 0.17551, 0.1729, 0.17027, 0.16767, 0.16505, 0.1624, 0.15976,
. . . , 0.020351, 0.017451, 0.01455, 0.01164, 0.0087575, 0.0058308, 0.0029156)t

with C approximately equal to the identity matrix.

Table 6.5. Some Asian Option Results

Expected Values

p’s I16(50, 1, 50, 0.05, 0.1) I64(50, 1, 50, 0.05, 0.1)

10000 1.9181 1.8439
20000 1.9192 1.8473
40000 1.9190 1.8445

Err. Est. 0.003 0.004

The results in Table 6.5 were computed using randomized lattice rules
(4.16) for integrals in the form (6.4). The errors given are estimated errors for
the last expected value row, using 10 randomly shifted lattice rules. Approxi-
mate I16 and I32 values were also computed with μ = 0, but the results were
similar.
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Mortgage Backed Securities Computation Example

Another integration problem is given by

Ik(C,Q0, θ) =

∞∫

−∞
φk(x; Ik)

⎛
⎝C

k∑
i=1

i∏
j=1

1

1 +Q0eθ(
Pj

l=1 xl−j θ
2 )

⎞
⎠ dx,

see Fishman (2006, pp. 62–63). These integrals approximate the present value
of mortgage acked security assuming k monthly payments of an amount C.
The interest rate starts with value Q0, but changes randomly following a
lognormal distribution with volatility parameter θ. For the purpose of illus-
trative methods in this section, we consider the approximate computation of
I120(1000, 0.07, 0.02) (k = 120 for 10 year mortgages).

Numerical optimization is applied to the function

q(x) = −xtx
2

+ log

⎛
⎝C

k∑
i=1

i∏
j=1

1

1 +Q0e
θ(Pj

l=1 xl−j θ
2 )

⎞
⎠

to obtain the mode μ and modal covariance matrix Σ, with Cholesky factor
C. Numerical optimization provided an approximate

μ = (−0.006176,−0.006043,−0.005918,−0.005818, . . . ,−0.000018)t

with C approximately equal to the identity matrix.

Table 6.6. Some Mortgage Backed Security Results

Expected Values

p’s I120(1000, .07, .02) Î120(1000, 0.07, 0.02)

10000 86196.74 86198.2
20000 86196.76 86196.7
40000 86196.77 86197.5

Err. Est. 0.06 1.5

The results in Table 6.6 were computed using randomized lattice rules
(4.16) for integrals in the form (6.4). The errors given are estimated errors
for the last expected value row, using 10 randomly shifted lattice rules. The
Î120 results are for computations done with μ = 0, and for this example the
μ 
= 0 results were clearly better, with significantly smaller standard errors.
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Description of the R Functions

In this appendix we reproduce the relevant online documentation for the key
functions available in the R package mvtnorm. The complete documentation is
available with the library, which can be downloaded from the Comprehensive
R Archive Network (CRAN) at www.r-project.org.

mvnorm

Description

These functions provide the density function and a random number
generator for the multivariate normal distribution with mean equal to
mean and covariance matrix sigma.

Usage

dmvnorm(x, mean, sigma, log=FALSE)
rmvnorm(n, mean = rep(0, nrow(sigma)),

sigma = diag(length(mean)),
method=c("eigen", "svd", "chol"))

Arguments

x Vector or matrix of quantiles. If x is a matrix, each row is taken
to be a quantile.

n Number of observations.
mean Mean vector, default is rep(0, length = ncol(x)).

sigma Covariance matrix, default is diag(ncol(x)).
log Logical; if TRUE, densities d are given as log(d).
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method Matrix decomposition used to determine the matrix root of
sigma, possible methods are eigenvalue decomposition ("eigen",
default), singular value decomposition ("svd"), and Cholesky de-
composition ("chol").

Examples

dmvnorm(x=c(0,0))
dmvnorm(x=c(0,0), mean=c(1,1))

sigma <- matrix(c(4,2,2,3), ncol=2)
x <- rmvnorm(n=500, mean=c(1,2), sigma=sigma)
colMeans(x)
var(x)

x <- rmvnorm(n=500, mean=c(1,2), sigma=sigma,
method="chol")

colMeans(x)
var(x)
plot(x)

mvt

Description

These functions provide information about the multivariate t distri-
bution with non-centrality parameter delta, covariance matrix sigma
and degrees of freedom df. dmvt gives the density and rmvt generates
random deviates.

Usage

rmvt(n, sigma = diag(2), df = 1)
dmvt(x, delta, sigma, df = 1, log = TRUE)

Arguments

x Vector or matrix of quantiles. If x is a matrix, each row is taken
to be a quantile.

n Number of observations.
delta The vector of noncentrality parameters of length n.
sigma Covariance matrix, default is diag(ncol(x)).

df Degree of freedom as integer.
log Logical; if TRUE, densities d are given as log(d).
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Examples

dmvt(x=c(0,0), sigma = diag(2))
x <- rmvt(n=100, sigma = diag(2), df = 3)
plot(x)

pmvnorm

Description

Computes the distribution function of the multivariate normal dis-
tribution for arbitrary limits and correlation matrices based on algo-
rithms by Genz and Bretz.

Usage

pmvnorm(lower=-Inf, upper=Inf, mean=rep(0, length(lower)),
corr=NULL, sigma=NULL, algorithm = GenzBretz(),
...)

Arguments

lower The vector of lower limits of length n.
upper The vector of upper limits of length n.
mean The mean vector of length n.
corr The correlation matrix of dimension n.

sigma The covariance matrix of dimension n. Either corr or sigma can
be specified. If sigma is given, the problem is standardized. If
neither corr nor sigma is given, the identity matrix is used for
sigma.

algorithm An object of class GenzBretz or Miwa specifying both the algo-
rithm to be used as well as the associated hyper parameters.

... Additional parameters (currently given to GenzBretz for back-
ward compatibility issues).

Details

This program involves the computation of multivariate normal prob-
abilities with arbitrary correlation matrices. It involves both the com-
putation of singular and nonsingular probabilities. The methodology
is described in Genz (1992, 1993).

Note that both -Inf and +Inf may be specified in lower and upper.
For more details see pmvt.

The multivariate normal case is treated as a special case of pmvt with
df = 0 and univariate problems are passed to pnorm.
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Multivariate normal density and random numbers are available using
dmvnorm and rmvnorm.

Value

The evaluated distribution function is returned with attributes

error estimated absolute error and
msg status messages.

Examples

n <- 5
mean <- rep(0, 5)
lower <- rep(-1, 5)
upper <- rep(3, 5)
corr <- diag(5)
corr[lower.tri(corr)] <- 0.5
corr[upper.tri(corr)] <- 0.5
prob <- pmvnorm(lower, upper, mean, corr)
print(prob)
stopifnot(pmvnorm(lower=-Inf, upper=3,

mean=0, sigma=1) == pnorm(3))

a <- pmvnorm(lower=-Inf, upper=c(.3,.5), mean=c(2,4),
diag(2))

stopifnot(round(a,16) ==
round(prod(pnorm(c(.3,.5),c(2,4))), 16))

a <- pmvnorm(lower=-Inf, upper=c(.3,.5,1), mean=c(2,4,1),
diag(3))

stopifnot(round(a,16) ==
round(prod(pnorm(c(.3,.5,1),c(2,4,1))), 16))

# Example from R News paper (original by Genz, 1992):
m <- 3
sigma <- diag(3)
sigma[2,1] <- 3/5
sigma[3,1] <- 1/3
sigma[3,2] <- 11/15
pmvnorm(lower=rep(-Inf, m), upper=c(1,4,2), mean=rep(0, m),

corr=sigma)

# Correlation and Covariance
a <- pmvnorm(lower=-Inf, upper=c(2,2), sigma = diag(2)*2)
b <- pmvnorm(lower=-Inf, upper=c(2,2)/sqrt(2), corr=diag(2))
stopifnot(all.equal(round(a,5) , round(b, 5)))
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pmvt

Description

Computes the distribution function of the multivariate t distribution
for arbitrary limits, degrees of freedom and correlation matrices based
on algorithms by Genz and Bretz.

Usage

pmvt(lower=-Inf, upper=Inf, delta=rep(0, length(lower)),
df=1, corr=NULL, sigma=NULL, algorithm = GenzBretz(),
...)

Arguments

lower The vector of lower limits of length n.
upper The vector of upper limits of length n.
delta The vector of noncentrality parameters of length n.

df Degree of freedom as integer.
corr The correlation matrix of dimension n.

sigma The covariance matrix of dimension n. Either corr or sigma can
be specified. If sigma is given, the problem is standardized. If
neither corr nor sigma is given, the identity matrix is used for
sigma.

algorithm An object of class GenzBretz defining the hyper parameters of
this algorithm.

... Additional parameters.

Details

This program involves the computation of central and noncentral mul-
tivariate t-probabilities with arbitrary correlation matrices. It involves
both the computation of singular and nonsingular probabilities. The
methodology is described in Genz and Bretz (1999, 2002).

For a given correlation matrix corr, for short A, say, (which has to be
positive semi-definite) and degrees of freedom df the following values
are numerically evaluated

I = K

∫
sdf−1e−s2/2Φ(s · lower/

√
df−delta, s ·upper/

√
df−delta)ds

where Φ(a, b) = K ′ ∫ b

a
exp(−x′Ax/2)dx is the multivariate normal dis-

tribution, K ′ = 1/
√|A|)(2π)m and K = 21−df/2/Gamma(df/2) are
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constants and the (single) integral of I goes from 0 to +Inf.

Note that both -Inf and +Inf may be specified in the lower and upper
integral limits in order to compute one-sided probabilities. Random-
ized quasi-Monte Carlo methods are used for the computations.

Univariate problems are passed to pt. If df = 0, normal probabilities
are returned.

Value

The evaluated distribution function is returned with attributes

error estimated absolute error and
msg status messages.

Examples

n <- 5
lower <- -1
upper <- 3
df <- 4
corr <- diag(5)
corr[lower.tri(corr)] <- 0.5
delta <- rep(0, 5)
prob <- pmvt(lower=lower, upper=upper, delta=delta,

df=df, corr=corr)
print(prob)
pmvt(lower=-Inf, upper=3, df = 3, sigma = 1) == pt(3, 3)

# Example from Edwards and Berry (1987)
n <- c(26, 24, 20, 33, 32)
V <- diag(1/n)
df <- 130
C <- c( 1, 1, 1, 0, 0,

-1, 0, 0, 1, 0,
0, -1, 0, 0, 1,
0, 0, 0, -1, -1,
0, 0, -1, 0, 0)

C <- matrix(C, ncol=5)

### covariance matrix
cv <- C %*% V %*% t(C)

### correlation matrix
dv <- t(1/sqrt(diag(cv)))
cr <- cv * (t(dv) %*% dv)
delta <- rep(0,5)
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myfct <- function(q, alpha) {
lower <- rep(-q, ncol(cv))
upper <- rep(q, ncol(cv))
pmvt(lower=lower, upper=upper, delta=delta, df=df,

corr=cr, abseps=0.0001) - alpha
}

round(uniroot(myfct, lower=1, upper=5, alpha=0.95)$root, 3)

# compare pmvt and pmvnorm for large df:
a <- pmvnorm(lower=-Inf, upper=1, mean=rep(0, 5),

corr=diag(5))
b <- pmvt(lower=-Inf, upper=1, delta=rep(0, 5),

df=rep(300,5), corr=diag(5))
stopifnot(round(a, 2) == round(b, 2))

# correlation and covariance matrix
a <- pmvt(lower=-Inf, upper=2, delta=rep(0,5), df=3,

sigma = diag(5)*2)
b <- pmvt(lower=-Inf, upper=2/sqrt(2), delta=rep(0,5),

df=3, corr=diag(5))
attributes(a) <- NULL
attributes(b) <- NULL
stopifnot(all.equal(round(a,3) , round(b, 3)))

a <- pmvt(0, 1,df=10)
attributes(a) <- NULL
b <- pt(1, df=10) - pt(0, df=10)
stopifnot(all.equal(round(a,10) , round(b, 10)))

qmvnorm

Description

Computes the equicoordinate quantile function of the multivariate
normal distribution for arbitrary correlation matrices based on an
inversion of the algorithms by Genz and Bretz.

Usage

qmvnorm(p, interval = c(-10, 10), tail = c("lower.tail",
"upper.tail", "both.tails"), mean = 0, corr = NULL,
sigma = NULL, algorithm = GenzBretz(), ...)
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Arguments

p Probability.
interval A vector containing the end-points of the interval to be searched

by uniroot.
tail Specifies which quantiles should be computed. lower.tail gives

the quantile x for which P [X ≤ x] = p, upper.tail gives x with
P [X > x] = p and both.tails leads to x with P [−x ≤ X ≤
x] = p.

mean The mean vector of length n.
corr The correlation matrix of dimension n.

sigma The covariance matrix of dimension n. Either corr or sigma can
be specified. If sigma is given, the problem is standardized. If
neither corr nor sigma is given, the identity matrix is used for
sigma.

algorithm An object of class GenzBretz or Miwa specifying both the algo-
rithm to be used as well as the associated hyper parameters.

... Additional parameters to be passed to uniroot.

Details

Only equicoordinate quantiles are computed, i.e., the quantiles in each
dimension coincide. Currently, the distribution function is inverted by
using the uniroot function which may result in limited accuracy of
the quantiles.

Value

A list with four components: quantile and f.quantile give the lo-
cation of the quantile and the value of the function evaluated at that
point. iter and estim.prec give the number of iterations used and
an approximate estimated precision from uniroot.

Examples

qmvnorm(0.95, sigma = diag(2), tail = "both")

qmvt

Description

Computes the equicoordinate quantile function of the multivariate t
distribution for arbitrary correlation matrices based on an inversion
of the algorithms by Genz and Bretz.

Usage
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qmvt(p, interval = c(-10, 10), tail = c("lower.tail",
"upper.tail", "both.tails"), df = 1, delta = 0,
corr = NULL, sigma = NULL, algorithm = GenzBretz(),
...)

Arguments

p Probability.
interval A vector containing the end-points of the interval to be searched

by uniroot.
tail Specifies which quantiles should be computed. lower.tail gives

the quantile x for which P [X ≤ x] = p, upper.tail gives x with
P [X > x] = p and both.tails leads to x with P [−x ≤ X ≤
x] = p.

delta The vector of noncentrality parameters of length n.
df Degree of freedom as integer.

corr The correlation matrix of dimension n.
sigma The covariance matrix of dimension n. Either corr or sigma can

be specified. If sigma is given, the problem is standardized. If
neither corr nor sigma is given, the identity matrix is used for
sigma.

algorithm An object of class GenzBretz defining the hyper parameters of
this algorithm.

... Additional parameters to be passed to uniroot.

Details

Only equicoordinate quantiles are computed, i.e., the quantiles in each
dimension coincide. Currently, the distribution function is inverted by
using the uniroot function which may result in limited accuracy of
the quantiles.

Value

A list with four components: quantile and f.quantile give the lo-
cation of the quantile and the value of the function evaluated at that
point. iter and estim.prec give the number of iterations used and
an approximate estimated precision from uniroot.

Examples

qmvt(0.95, df = 16, tail = "both")



B

Description of the MATLAB Functions

In this appendix we reproduce the relevant documentation for the key MAT-
LAB functions available from the Genz website (www.math.wsu.edu/faculty/genz),
by following the “Software” link. All functions have introductory comment
sections which describe the functions input and output parameters, and some
of this comment material is reproduced here.

bvnl :

function p = bvnl( dh, dk, r )
%
% A function for bivariate normal probabilities.
% bvnl calculates the probability that x < dh and y < dk.
% parameters
% dh 1st upper integration limit
% dk 2nd upper integration limit
% r correlation coefficient

tvnl :

function tvn = tvnl( h, r, epsi )
%
% A function for trivariate normal probabilities;
% it computes the probability that x(i) < h(i), i = 1-3.
% h real array of three upper integration limits
% r real array of three correlation coefficients,
% r should contain the lower left portion of the
% correlation matrix, r21, r31, r32, in that order.
% epsi real required absolute accuracy; maximum
% accuracy for most computations is 1e-14.

tvnls : a simpler but less accurate version of tvnl.
qsimvn :
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function [ p, e ] = qsimvn( m, r, a, b )
%
% [ P E ] = QSIMVN( M, R, A, B )
% uses a randomized quasi-random rule with m points to
% estimate an MVN probability for a positive definite
% covariance matrix r, with lower integration limits a
% and upper integration limits b.
% Probability p is output with error estimate e.
% Example usage:
% >> r = [4 3 2 1;3 5 -1 1;2 -1 4 2;1 1 2 5];
% >> a = -inf*[1 1 1 1 ]’; b = [ 1 2 3 4 ]’;
% >> [ p e ] = qsimvn( 5000, r, a, b ); disp([ p e ])

qsimvnv : a vectorized version of qsimvn, with similar parameters.
qsilatmvnv : similar to qsimvnv, except randomized lattice rules (see Sec-

tion 4.2.2) are used for the numerical integration.
qscmvn :

function [ p, e ] = qscmvn( m, r, a, cn, b )
%
% [ P E ] = QSCMVN( M, R, A, CN, B )
% uses a randomized quasi-random rule with m points to
% estimate an MVN probability for positive semi-definite
% covariance matrix r, with constraints a < cn*x < b. If
% r is nxn and cn is kxn, a and b must be kx1.
% Probability p is output with error estimate e.
% Example usage:
% >> r = [4 3 2 1;3 5 -1 1;2 -1 4 2;1 1 2 5];
% >> a = [ -inf 1 -5 ]’; b = [ 3 inf 4 ]’;
% >> cn = [ 1 2 3 -2; 2 4 1 2; -2 3 4 1 ];
% >> [p e] = qscmvn( 5000, r, a, cn, b ); disp([ p e ])

qscmvnv : a vectorized version of qscmvn, with similar parameters.
qsclatmvnv : similar to qscmvnv, except randomized lattice rules (see Sec-

tion 4.2.2) are used for the numerical integration.
mvnlps :

function mvnval = mvnlps( mu, sigma, q, e, r, re )
%
% MVNLPS Multivariate Normal probability for an ellipsoid.
% MVNVAL = MVNLPS( MU, SIGMA, Q, E, R, RE ) computes
% an MVN value to relative accuracy RE for an
% ellipsoid centered at Q with radius R and positive
% semi-definite ellipsoid matrix E:
% MVNVAL = PROB( ( X - Q )’E ( X - Q ) < R^2 )
% SIGMA is a positive definite covariance matrix for
% a multivariate normal (MVN) density with mean MU.



B Description of the MATLAB Functions 103

% MU and Q must be column vectors.
% Example:
% sg = [ 3 2 1;2 2 1;1 1 1]; mu = [1 -1 0]’;
% e = [4 1 -1; 1 2 1; -1 1 2]; q = [2 3 -2]’;
% p = mvnlps( mu, sg, q, e, 4, 1e-5 ); disp(p)

qsimvnef :

function [ p, e, ef, efe ] = qsimvnef( m, r, a, b, f )
%
% [ P E EF EFE ] = QSIMMVNEF( M, R, A, B )
% uses a randomized quasi-random rule with m points to
% estimate an MVN expectation for positive definite
% covariance matrix r, with lower and upper integration
% limits a b, and expectation function f.
% Probability MVN p is output with error estimate e,
% along with expected value ef and error estimate efe.
% Note: ef approx.= E[f] = I[f]/p = I[f]/I[1], where
% I[.] denotes the truncated MVN integral.
% Example:
% r = [4 3 2 1;3 5 -1 1;2 -1 4 2;1 1 2 5];
% a = -inf*[1 1 1 1 ]’; b = [ 1 2 3 4 ]’;
% f = inline(’x(1)^2*x(2)*x(3)*x(4)’,’x’);
% [ p e ef efe ] = qsimvnef( 50000, r, a, b, f );
% disp([ p e ef efe ])

qsimvnefv : a vectorized version of qsimvnef, with similar parameters.
tvtl :

function tvt = tvtl( nu, h, r, epsi )
%
% A function for computing trivariate normal and
% t-probabilities; tvtl computes the probability
% that x(i) < h(i), for i = 1, 2, 3.
% parameters
% nu integer degrees of freedom;
% use nu = 0 for normal probabilities.
% h real array of three upper integration limits
% r real array of three correlation coefficients,
% r should contain the lower left portion of the
% correlation matrix, r21, r31, r32, in that order.
% epsi requested absolute accuracy; maximum accuracy
% for most computations is approximately 1e-14.

qsimvt :

function [ p, e ] = qsimvt( m, nu, sigma, a, b )
%
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% QSIMVT
% Qsimvt estimates a multivariate t-probability using an
% m point randomized quasi-random integration method
% for a t-distribution with
% nu degrees-of-freedom;
% Note: nu <= 0 computes normal probabilities.
% sigma, a positive definite covariance matrix.
% The probability is computed over a hyper-rectangle with
% a, lower integration limits and
% b, upper integration limits.
% If sigma is nxn then a and b must be nx1.
% Output for qsimvt is
% p, the estimated probability, along with
% e, an absolute error estimate for p.
% Example:
% >> r = [4 3 2 1;3 5 -1 1;2 -1 4 2;1 1 2 5];
% >> a = -inf*[1 1 1 1 ]’; b = [ 1 2 3 4 ]’;
% >> [p e] = qsimvt( 5000, 5, r, a, b ); disp([p e])

qscmvt :

function [ p, e ] = qscmvt( m, nu, sigma, a, cn, b )
%
% QSCMVT
% [ p, e ] = qscmvt( m, nu, sigma, a, cn, b )
% Qsimvt computes a multivariate t-probability using an
% m-point randomized quasi-random integration method
% for a t-distribution with
% nu degrees-of-freedom;
% use nu = 0 for normal probabilities.
% sigma, a positive semi-definite covariance matrix.
% The probability is computed over an integration region
% specified a < cn*x < b. If sigma is n x n and
% cn is k x n, then a and b must be kx1.
% Output for qscmvt is
% p, the estimated probability, along with
% e, an absolute error estimate for p.

qscmvtv : a vectorized version of qscmvt, with similar parameters.
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Prékopa A (1995) Stochastic Programming. Kluwer, Dordrecht Cited on p. 1.
Ralston A, Rabinowitz P (1978) A First Course in Numerical Analysis.

McGraw-Hill, New York Cited on p. 77.
Rice J, Reich T, Cloninger CR, Wette R (1979) An approximation to the

multivariate normal integral: Its application to multifactorial qualitative
traits. Biometrics 35:451–459 Cited on p. 26.

Richter WD (1994) A geometric approach to the Gaussian law. In: Mam-
mitzsch V, Schneeweiß H (eds) Symposia Gaussiana, Walter de Gruyter,
Berlin, pp 25–46 Cited on p. 29.

Richtmyer R (1951) The evaluation of definite integrals and a quasi-Monte
Carlo method based on the properties of algebraic numbers. Tech. Rep. LA-
1342, Los Alamos Scientific Laboratory, Los Alamos, New Mexico Cited on
p. 47, 49.

Ripley BD (1987) Stochastic Simulation. Wiley, New York Cited on p. 41.
Rom D, Sarkar SK (1990) Approximating probability integrals of multivariate

normal using association models. Journal of Statistical Computation and
Simulation 35:109–119 Cited on p. 68.

Rosenblatt M (1952) Remarks on a multivariate transformation. The Annals
of Mathematical Statistics 23:470–472 Cited on p. 31.

Royen T (1987) An approximation for multivariate normal probabilities of
rectangular regions. Statistics 18:389–400 Cited on p. 25, 27.

Ruben H (1960) Probability contents in regions under spherical normal dis-
tributions I. The Annals of Mathematical Statistics 31:598–618 Cited on p.
13, 14, 15.

Ruben H (1961) Probability contents in regions under spherical normal dis-
tributions. III: The bivariate normal integral. The Annals of Mathematical
Statistics 32:171–186 Cited on p. 8, 14.



References 119

Ruben H (1962) Probability contents in regions under spherical normal dis-
tributions. IV: The distribution of homogeneous and non-homogeneous
quadratic functions of normal variables. The Annals of Mathematical Statis-
tics 33:552–570 Cited on p. 13, 14.

Rudolfer SM, Watson PC (1993) Evaluation of orthant probabilities for sin-
gular bi- and trivariate normal distributions. Journal of Statistical Compu-
tation and Simulation 48:219–232 Cited on p. 58.

Sadefo Kamdem J (2005) Value-at-risk and expected shortfall for linear port-
folios with elliptically distributed risk factors. International Journal of The-
oretical and Applied Finance 8:537–551 Cited on p. 15.

Sadefo Kamdem J, Genz A (2008) Approximation of multiple integrals over
hyperboloids with application to a quadratic portfolio with options. Com-
putational Statistics and Data Analysis 52:3389–3407 Cited on p. 15.

Sándor Z, András P (2002) Alternative sampling methods for estimating mul-
tivariate normal probabilities. Journal of Econometrics 120:207–234 Cited
on p. 49, 60, 61.

Schechter M (1998) Integration over a polyhedron: An application of the
Fourier-Motzkin elimination method. American Mathematical Monthly
105:246–251 Cited on p. 40.

Schervish MJ (1984) Algorithm AS 195: Multivariate normal probabilities
with error bound. Journal of the Royal Statistical Society, Series C 33:81–
94, correction: 34 (1985) 103−104 Cited on p. 36, 54, 60, 61, 62.
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