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PREFACE
Dyskinesia is a clinical phenomenon that sounds simplistic in describing a

disruption of motor function leading to the expression of involuntary movements

but the terminology hides a multitude of signs and symptoms that underlie both

drug induced and genetic/idiopathic diseases where dyskinesia is expressed. At an

initial level dyskinesia is composed of chorea, dystonia, and athetosis that can be

focal, segmental, or generalized in nature. Then add to this the many manifesta-

tions of tics, ballisms, and the motor and mental components of akathisia together

with the underlying causes of psychogenic movement disorders, and you find that

dyskinesia is anything but simplistic in nature.

Since some causes of dyskinesia are well known, such as neuroleptic involve-

ment in acute dystonia and tardive dyskinesia and the chorea and dystonia char-

acterizing L-dopa-induced dyskinesia in Parkinson’s disease, it might be thought

that the underlying mechanisms responsible for dyskinesia would be thoroughly

understood. Similarly, in a disease such as Huntington’s chorea where patholog-

ical change is well documented, clues to those regions of brain and those specific

nuclei involved in the initiation and expression of dyskinesia might be very obvi-

ous. But, while advances in understanding have been made, there are many

unknowns when considering the pathophysiology of the array of dyskinesias that

afflict man. Even in well-defined familial diseases, such as the inherited dystonias

and Huntington’s chorea, the identification of the gene products responsible for

onset involuntary movements has not taken us directly to their cause. When

considering what appear to be entirely sporadic dyskinesias, including many of

the dystonias and tics, the situation becomes even less well understood.

It is this lack of knowledge that has held back the introduction of effective

pharmacological treatments for dyskinesia. However, the role of genetic predis-

position, specific neuronal cell groups and specific neurotransmitter systems is now

better understood than previously and this is opening up new avenues for drug

treatment and also for the avoidance of the induction of dyskinesia where these are

drug related in nature. Fortunately, surgical approaches to the treatment of dyski-

nesias and the use of botulinum toxin have advanced significantly in some areas

and these start to offer the opportunity for the provision of relief from constant

involuntary movement. This volume is a comprehensive review of the current
xvii
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state-of-the-art in relation to the major manifestations of dyskinesia occurring in

many different clinical settings. The contributors are the leaders in their fields and

they have reviewed the causes, clinical symptomatology, pathology and biochem-

istry and treatment, current and future, for this important group of movement

disorders. The volume offers a big picture overview of dyskinesia and it will be

essential reading for neurologists, geriatricians, psychiatrists, and neuroscientists

who face the clinical spectrum of dyskinesia on a daily basis.
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The term movement disorder is used to describe a variety of abnormal

movements, and may involve an excess or paucity of movement. Careful

characterization of phenomenology is an essential component of diagnosis.

Factors such as speed, amplitude, duration, distribution, rhythmicity,

suppressibility and pattern of movement provide valuable information to guide

the clinician in their assessment of the movement disorder. In this chapter, the

clinical spectrum and phenomenology of dyskinesias will be reviewed.
I. Introduction
Movement disorders may present as either an abnormal excess or paucity of

movement. Commonly used terms for excessive movements include dyskinesia,

hyperkinesia, and abnormal involuntary movement. These terms are often used

interchangeably. Terms used to describe paucity of movement include hypokine-

sia, bradykinesia, and akinesia.
ATIONAL REVIEW OF
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2 AINHI D. HA AND JOSEPH JANKOVIC
Movements may also be categorized according to the degree of volitional

control. As such, they may be divided into automatic, voluntary, semi-voluntary

(or “unvoluntary”) (Fahn and Jankovic, 2007a; Fahn, 2005; Tourette Study Group,

1993) and involuntary (Jankovic, 1992). Automatic movements are learned motor

behaviors that are performed without conscious effort such as walking (Fahn and

Jankovic, 2007a). Voluntary movements are those that are performed under voli-

tional control, and are intentionally planned. Semi-voluntary (or “unvoluntary”)

movements are induced by an inner sensory stimulus or compulsion, and are

performed in order to relieve the unpleasant or unwanted sensation. Semi-voluntary

movements, such as some tics, are usually suppressible. Involuntary movements,

such as myoclonus, are usually not suppressible, but most other hyperkinesias are at

least partially suppressible and often disappear completely during sleep.

Evaluation of abnormal movement first involves determination of whether they

are involuntary, voluntary, semi-voluntary, or automatic. For instance, exaggerated

gestures, compulsive movements, and mannerisms should be differentiated from

involuntary movements. The movements are then characterized phenomenologi-

cally. Features such as speed, amplitude, duration, distribution, rhythmicity, and

pattern of the movements are observed including the presence of simple versus

complex movements. Movements can be intermittent (paroxysmal) or continuous

(repetitive without stopping). Induction, which refers to whether the movements are

stimulus-induced, action-induced, or exercise-induced may also assist with the

characterization of the movements. The examiner should also assess for suppressi-

bilty by volitional attention or sensory tricks (Fahn and Jankovic, 2007a) and

whether there are premonitory localized sensations or more generalized urges prior

to execution of the movement such as that which occurs in tics (Kwak et al., 2003).

Once the movement is characterized by phenomenology, the next step is to deter-

mine the etiology of the particular movement disorder.

This chapter will focus on phenomenology and the clinical spectrum of dyski-

nesias, the critical elements in the diagnosis of movement disorders. To enhance

the understanding and recognition of the broad phenomenology of hyperkinetic

movement disorders the reader is invited to review textbooks on movement dis-

orders that are accompanied by videos (Albanese and Jankovic, 2011; Fahn et al.,

2011; Jankovic and Tolosa, 2007). The sequence of the various dyskinesias is

organized alphabetically. A summary of the key clinical features of eachmovement

disorder is provided in the table.
II. Akathisia
Akathisia is used to describe an abnormal subjective state of restlessness and an

urge to move. It is accompanied by restless movements, which give temporary relief

to the inner sense of restlessness.Most movement disorder experts consider akathisia
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as a combination of sensory components (subjective feeling of inability to be still) and

motor components (restless, complex, stereotypic movements). Akathisia may be

acute and self-limiting, but has also been recognized as a persistent and late-onset

phenomenon, particularly in the setting of a tardive syndrome (Braude and Barnes,

1983; Burke et al., 1989; Fahn, 1978; Weiner and Luby, 1983).

The subjective aspect of akathisia consists of an inner sense of restlessness or

tension, associated with an aversion to remaining still (Fahn and Jankovic, 2007e).

It may also present as focal areas of discomfort, particularly involving the oral or

genital region. The motor component of akathisia consists of “akathitic” move-

ments that are generally complex, stereotypic, semi-purposeful, and repetitive

(Fahn and Jankovic, 2007e). The legs appear to be most frequently affected,

although other body parts may also be involved. Observations of patients with

tardive akathisia reveal a number of characteristic movements, including body

rocking, alternating (“pumping”) movements of legs or crossing–uncrossing of legs

when sitting, shifting weights from one foot to another when standing, walking on

the spot, and other complex movements (Braude and Barnes, 1983). A study of

patients with tardive akathisia also found involvement of complex hand move-

ments such as touching the scalp, face rubbing, or scratching, as well as truncal

rocking and respiratory grunting and moaning (Burke et al., 1989). Akathisia needs

to be differentiated from other conditions, such as restless legs syndrome, in which

similar symptoms are described, but are mainly localized to the legs and are

predominantly nocturnal (Blom and Ekbom, 1961).
III. Ballism
Ballism refers to forceful, flinging, high-amplitude movements that mainly

involve the proximal limb muscles. When unilateral, it is referred to as hemibal-

lism. Choreiform movements often co-exist with ballism, and as such they may be

considered as variants in the same clinical spectrum (Dewey and Jankovic, 1989).

Hemichorea-hemiballism can be observed with contra-lateral basal ganglia

pathology, particularly involving the subthalamic nucleus, but damage to other

parts of the brain have also been associated with this syndrome.
IV. Chorea
Chorea, derived from the latin word “to dance,” results from dysfunction in the

complex neuronal networks interconnecting motor cortical areas with the basal

ganglia (Cardoso et al., 2006). Thomas Sydenham reported childhood chorea in

the late 17th century, however the association between rheumatic fever and

Sydenham’s chorea had not yet been established at that stage (Cardoso et al.,
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2006). In the 19th century, George Huntington’s concise and detailed descriptions

of hereditary chorea on affected families in the state of New York, later known as

Huntington disease, further helped to define this entity (Huntington, 1872).

Chorea refers to involuntary, irregular, purposeless, non-rhythmic, abrupt,

and unsustained movements that seem to flow randomly from one body part to

another. It is differentiated from other rapid and non-rhythmic hyperkinetic

movement disorders by its random, un-patterned, and non-repetitive nature.

Infrequent and mild chorea may appear as isolated, small-amplitude brief move-

ments. It may resemble restless, fidgety, or anxious behavior. Although slower than

myoclonus, mild chorea can also be difficult to distinguish from myoclonic move-

ments (Fahn and Jankovic, 2007c). When chorea is more severe, it may appear

almost continuous, flowing from one site of the body to another. The term para-

kinesia refers to the incorporation of the involuntary movements into semi-pur-

poseful movements, in an attempt to camouflage them. Chorea may be partially

suppressible. Chorea is often associated with motor impersistence, in which the

individual is unable to maintain a sustained contraction. Examples include an

inability to maintain prolonged tongue protrusion and handgrip (“milkmaid

grip”). Rating scales, such as the UHDRS, allow some degree of quantification

of the distribution and severity of the chorea and motor impersistence.

The prototype for chorea is seen in Huntington disease. Early surface EMG

studies in patients withHuntington disease revealed a wide variability in the timing

of EMG burst duration, with bursts even as brief as 10–30 ms (Hallet and

Kaufman, 1981). In addition, there was a continuous change in the activation

order of each muscle, as well as changes in the type of movement within an

individual muscle (Marsden et al., 1983). Some studies found a tendency for

synchronous activation between antagonist muscles (Hallet and Kaufman, 1981;

Rondot, 1977). Surface EMG in patients with Sydenham chorea revealed asyn-

chronous bursts of activity in antagonist muscles without reciprocal inhibition

(Hoefer and Putnam, 1940). Variation was also seen in the timing of EMG burst

duration (Herz, 1944).

Chorea is typically bilateral. Focal chorea or hemichorea may raise the suspi-

cion of an underlying structural lesion, although hemichorea or asymmetric cho-

rea is common in patients with Sydenham disease, a term preferred to Sydenham

chorea as other neurological and behavioral symptoms, besides chorea, are often

present (Wang et al., 2001).
V. Dystonia
Dystonia is described as a syndrome of involuntary sustained muscle contrac-

tion, causing twisting or repetitive movements, or abnormal postures (Fahn, 1988;
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Fahn et al., 1998). The twisting quality is unique to this condition, and helps to

distinguish dystonic postures from other conditions that are associated with

increased muscle tone. An exception to this is when the nature of the joints is

such that they do not allow twisting, such as in the jaw and facial muscles (Fahn

and Jankovic, 2007b). The movements in dystonia are patterned, repeatedly

involving the same muscle groups. Dystonia involves simultaneous contraction

of agonist and antagonist muscles, and electrophysiological studies reveal pre-

dominantly prolonged co-contracting activity (Herz, 1944; Yanagisawa and

Goto, 1971).

Dystonia can be classified according to its distribution (Fahn and Jankovic,

2007b). Focal dystonia refers to involvement of a single area of the body such as

blepharospasm or torticolis. When a continguous body part is also affected, the

term segmental dystonia is used. Generalized dystonia refers to segmental crural

dystonia, such as involvement of both legs or leg plus trunk, in addition to any other

part of the body. Multifocal dystonia is used when two or more non-continguous

parts of the body are affected. When there is unilateral involvement, the term

hemidystonia is used. There is a great variation in the speed at which the invol-

untary movements occur in dystonia. Dystonic spasms refer to brief dystonic

contractions. The term dystonic posturing describes more prolonged movements

lasting minutes to hours. When present for weeks or longer, they may lead to fixed

contractures (Fahn and Jankovic, 2007b).

Dystonia may also be classified as primary or secondary (M€uller, 2009).
Primary dystonia classically presents as a pure or predominant dystonia syndrome,

and is frequently caused by a single gene. DYT1 dystonia, otherwise referred to as

idiopathic torsion dystonia, is an example of primary dystonia. Classically, it

presents as a childhood onset dystonia with progressive generalization, although

the clinical phenotype may vary greatly. Dystonia plus syndromes, which are also

usually monogenic in origin, refer to conditions in which additional neurological

manifestations are present. An example includes myoclonus dystonia, or DYT11,

an alcohol responsive condition in which the onset of myoclonic jerks typically

precede the appearance of relatively mild dystonia. Hereditary progressive dys-

tonia with marked diurnal fluctuation, or Segawa disease, is another example of a

dystonia-plus syndrome (Segawa, 2011), and is associated with parkinsonism. It is

characterized by marked diurnal fluctuation during childhood. Clinically, it may

present as either a postural or action type, depending on the locus of the muta-

tion, or other factors. The postural type is more common, classically starting in

the lower limb during childhood. The condition tends to improve during the third

decade, and stabilize in the forth decade. On the other hand, the action dystonia

type of childhood onset has additional features of action dystonia affecting the

upper limb or neck. Dopa-responsive dystonia is caused bymutation of theGCH-

1 gene. Secondary dystonias are those that occur in the setting of another

disorder.
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Primary dystonia typically starts as a focal dystonia. The anatomic presenta-

tion of primary torsion dystonia is influenced by the age at onset, with a distal to

proximal progression in the distribution of the dystonia with increasing age

(O’Riordan et al., 2004). In the majority of cases, the dystonia remains localized.

Dystonia that occurs at a younger age of onset is generally associated with a higher

risk of progression (Ozelius and Bressman, 2011). When onset is in childhood or

adolescence, it tends to start in the arm or leg, and then progress to other body

parts over the course of 5–10 years. Spread of dystonia usually occurs by affecting

continguous body parts, resulting in segmental dystonia. Progression to general-

ized dystonia is more likely in childhood-onset dystonia (Fahn, 1986; Marsden

et al., 1976). Dystonia which starts in adulthood is typically focal or segmental, and

may often present as blepharospasm, oromandiular dystonia, and torticollis

(Le et al., 2003). Lower limb dystonia that occurs in adulthood is usually secondary

to other causes, although adult onset primary lower limb dystonia has been

described in small series (Schneider et al., 2006).

Action dystonia refers to the appearance or exacerbation of dystonia during

voluntary movements. Primary dystonia typically starts as a specific action dystonia,

and may not be present at rest. This is in contrast to secondary dystonias, which are

more likely to begin with dystonia at rest (Svetel et al., 2004). Task-specific dystonias,

a type of action dytonia, occur almost exclusively with a particular task. Task-specific

dystonia more commonly affects the upper limbs and face. They tend to occur in

highly skilled, over-learned tasks (Garc�ıa-Ruiz et al., 2010). Themost common adult-

onset upper limb task-specific dystonia is writer’s cramp (Pont-Sunyer et al., 2010).

Musician’s cramp occurs whilst playing amusical instrument (Jankovic andAshoori,

2008). Embouchure dystonia affects the control of the lip, jaw, and tongue muscles,

and may be seen in woodwind and brass players (Frucht et al., 2001). The lower

limbs are rarely affected, although they have been reported in professional dancers

(Garc�ıa-Ruiz et al., 2010). Isolated reports of task specific dystonia have also been

described with walking down steps, suggesting that relatively autonomic functions

may also be affected (Lo and Frucht, 2007). Runner’s dystonia has been reported to

occur initially in long-distance running, and later progressing to also involve walking

(Wu and Jankovic, 2006). One case of runner’s dystonia involving the neck and

trunk reportedly responded to an interoceptive sensory trick with mental imagery

(Suzuki et al., 2011).

As the condition progresses, dystonia may occur with less specific voluntary

action. When the dystonia is also induced by action in other parts of the body, it is

referred to as overflow dystonia. In the more severe stages, the dystonia may also

be present at rest. The so-called paradoxical dystonia is an uncommon phenom-

enon in which rest dystonia improves with voluntary movements (Fahn, 1989).

The most common example of paradoxical dystonia is blepharospasm.

Approximately 60% of patients experience improvement with talking, whilst

40% experience worsening of blepharospasm (Fahn, 1985).
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Dystonia may be exacerbated by fatigue and stress. Dystonia gravidarum

refers to the uncommon occurrence of dystonia during pregnancy (Fasano et al.,

2007; Lim et al., 2006). Relieving factors for dystonia may include sleep and

relaxation. The sensory trick, or geste antagoniste, is a unique feature of dystonia,

in which the dystonic movement can be diminished with a tactile or proprioceptive

stimulus. Examples of the sensory trick include resting the hand on the chin or side

of face to improve cervical dystonia. One study found that the application of a

sensory trick leads to changes in cortical activation patterns, and possibly mod-

ulates motor programming (Naumann et al., 2000).

Rhythmic group action potentials may occur in dystonia, resulting in the

presence of a dystonic tremor (Jedynak et al., 1991). The tremor may only appear

when the affected body part is placed in a position which is opposite to the

abnormal dystonic contractions, and disappear when the body part is moved to

the position favored by the dystonia (Fahn and Jankovic, 2007b). Dystonic tremor

has a more irregular quality compared to essential tremor. Apart from tremor, the

presence of other associated movement disorders, such as myoclonus or parkin-

sonism, raises the suspicion of secondary dystonia. (Jedynak et al., 1991). Fixed

painful dystonia, which is usually post-traumatic, is possibly related to chronic

regional pain syndrome (Schrag et al., 2004). Evidence of higher motor dysfunction

has been reported in one study with primary cervical dystonia, whereby signifi-

cantly more errors were made in copying meaningless hand gestures, compared

with a control group (Hoffland et al., 2010).
VI. Jumpy Stumps
The term jumpy stumps is used to refer to the involuntary movement disorder

that may be seen in the stump of an amputated limb. The movements are varied,

and may consist of jerking, tremulousness, or spasms (Steiner et al., 1974). They

may be associated with severe phantom pain. A case of psychogenic jumpy stumps

has also been reported (Zadikoff et al., 2006).
VII. Levodopa-Induced Dyskinesias
The common clinical presentations of levodopa-induced dyskinesias include

peak-dose (on) dyskinesia, diphasic dyskinesia, and off-dystonia (Voon et al., 2009).

Levodopa-induced dyskinesias are more likely to start on the side more severely
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affected by Parkinson’s disease (PD). A retrospective study found that dyskinesias

may also start bilaterally, or in the cranio-cervical region, in a small proportion of

patients (Fabbrini et al., 2009).

Peak dose dyskinesia typically coincides with the on-response following

levodopa administration. This is the most common temporal pattern of levo-

dopa-induced dyskinesia (Encarnacion and Hauser, 2008). It is aggravated by

dopaminergic medication, and usually improves as the treatment wears off.

Movements are predominantly stereotypic or choreiform in nature, particularly

in the earlier stages of levodopa therapy (Fahn, 2000). Mild levodopa-induced

chorea tends to be non-disabling, and is often first noticed by family members

rather than by the patients themselves. The mildest form is that of “action” chorea

(Fahn, 2000), in which the involuntary movements, such as continuous head

bobbing, occur only during active voluntary movements, such as talking or walk-

ing. The chorea in peak dose dyskinesia typically involves the neck, axial, and

upper limb muscles. Occular dyskinesias (LeWitt, 1998; Linazasoro et al., 2002)

and belly dancer’s dyskinesias have also been described (Carecchio et al., 2010).

Ballism occurs uncommonly in levodopa-induced dyskinesia (Hametner et al.,

2010). When present, it usually occurs in the setting of severe chorea, rather than

as an isolated abrupt flinging of the limbs. In the later stages of dopaminergic

therapy, patients may develop more dystonia and less chorea, and this tends to be

more disabling. The combination of dystonia and chorea may manifest as some

sustained posturing at the height of a movement. Peak-dose dyskinesia can also

exist as a pure dystonia, without accompanying chorea. The sustained contraction

is typically limited to one part of the body such as an arm, leg, or trapezius muscle.

It may also affect the oral, lingual, and palatal muscles, resulting in disturbances in

articulation. Peak-dose dytonia occurring with relatively low doses of levodopa

raises the suspicion of multiple systems atrophy. Some patients develop dyskinesia

as soon as they attain a medication response (“on-response”), and this lasts until the

medication wears off. In this so-called “square wave response,” the dyskinesia

always accompanies the on-phase, and patients are unable to be “on” without

associated dyskinesia. In one study, the temporal relationship between the anti-

parkinsonian response to an intravenous infusion of levodopa was essentially iden-

tical to the onset and offset of dyskinesia (Nutt et al., 2010). This was observed in

both PD patients with dyskinesias on long-term levodopa therapy, as well as those

who were previously untreated with levodopa in whom dyskinesias first appeared

during the study follow-up period. The time to onset of dyskinesia and antiparkin-

sonian response tended to be shorter in those on longer-term levodopa therapy.

Diphasic dyskinesia appears at the beginning of the medication effect, prior to

the attainment of a full medication response. It may also reappear as the medica-

tion effect starts to wear off. It develops as the plasma levels of levodopa are rising

or falling, but not during peak plasma level (Fahn, 2000; Lhermitte et al., 1978;

Muenter et al., 1977). Originally, these were referred to as “D-I-D”, a term coined
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by Muenter and colleagues in reference to the temporal pattern of dystonia

(dyskinesia)-improvement-dystonia (dyskinesia)(Fahn, 2000; Muenter et al., 1977).

Diphasic dyskinesias typically consist of repetitive stereotypic, large-amplitude,

rhythmical involuntary movements. They may have ballistic movements

(Hametner et al., 2010). The dyskinesias can be explosive and distressing

(Marconi et al., 1994). Surface electromyographical studies reveal alternating

activation of antagonist muscles (Fahn, 2000; Voon et al., 2009). Many patients

may also experience dystonia, chorea, or a mixture of the two (Fahn, 2000).

Diphasic dyskinesias predominantly affect the legs. They typically start in the foot

that is most affected by disease. The dyskinesias may then spread as an “ascending

wave” to the contralateral side, the trunk, upper limbs, and head (Marconi et al.,

1994). In one study using video-electromyographic recordings, an evolution of

different types of dyskinesias was seen, including a transition from dystonic to

choreic movements (Marconi et al., 1994). In addition, the changes in the char-

acteristics of the dyskinesias were simultaneous with the change in spatial distribu-

tions. Diphasic dyskinesias may co-exist with parkinsonian features such as tremor

or hypomimia, particularly in the upper limbs or face.

Off-period dystonias occur when the dopaminergic benefit has worn off, as in

early morning, leaving the patient in an “off” state withoutmedication effect. Early

morning dystonia affecting the feet is often quite painful and is one of the most

common presentations of “off-period” dystonia, occurring as the previous night’s

dose of levodopa has completely worn off (Melamed, 1979). This sign has been

incorporated into theUnified Parkinson’s Disease Rating Scale as an assessment of

motor fluctuation. “Off-period” dystonia may, however, also occur during any “off

period”, and may be segmental or generalized. The dystonia itself consists of a

prolonged sustained contraction, and is often distressful to the patient. In one

study, off-period dystonia was found to be continuous with diphasic (“onset-of-

dose”) dykinesias in 8 out of 11 patients (Marconi et al., 1994). A number of

differences were noted between off-period and diphasic (“onset-of-dose”) dyskine-

sias. The contractions of muscle groups in off-period dystonia were more sustained

and relatively fixed compared with the more vivid movements in diphasic dyski-

nesia. Furthermore, the side of maximal prevalence was not always concordant

between the two types of dyskinesias, and the passage from off-period dystonia to

diphasic dyskinesias was not constant (Marconi et al., 1994).

Myoclonus (see below) has also been described in the setting of levodopa. It

typically signifies levodopa toxicity, but its presence should also raise the suspicion

of some other form of Parkinsonism such as diffuse Lewy-body disease (Fahn,

2000). Levodopa associated myoclonus has also been described in the setting of

sub-maximal dopamine levels, occurring during the first 10–20 min after levo-

dopa administration, and disappearing as the parkinsonian symptoms improve

(Klawans et al., 1975; Marconi et al., 1994). Levodopa associated myoclonus

typically causes brief muscle contractions (positive myoclonus) rather than
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inhibitions of muscle activity (negative myoclonus) as is seen in asterixis. It usually

manifests as a single jerk in the extremities, either unilaterally or bilaterally. It is

predominantly nocturnal, but may also occur during the day.

Akathisia has been reported to occur in some patients in the period preceding

the onset of levodopa benefit (Marconi et al., 1994).

Respiratory dyskinesias are an uncommon form of levodopa-induced dyski-

nesia, and are characterized by episodes of symptomatic dyspnea with irregular-

ities in respiratory rate and depth. They may also cause forced inspiratory spasms,

sighing respirations and panting (Calabresi et al., 2010). They tend to occur as a

peak-dose phenomenon, appearing after introduction or increase in levodopa

medication, and resolving with levodopa dose reduction (Rice et al., 2002). They

may be associated with facial and orobuccal dyskinesias (Brown, 1994; Jankovic

and Nour, 1986; Rice et al., 2002; Weiner et al., 1978). Reports of respiratory

dyskinesia occurring as an “off-period” phenomenon have also been described

(Gardner et al., 1987; Mehanna and Jankovic, 2010; Rice et al., 2002).

The incidence of levodopa-induced dyskinesia is clearly related to duration of

therapy, however the reported percentages vary greatly in the published literature.

There are many factors that may be contributing to this discrepancy including

differing patient cohorts affected by various risk factors. In addition, heterogeneity

of diagnostic criteria and differences in thresholds for recognizing motor compli-

cations are also likely to contribute to this inconsistency in data. It does appear,

however, that the occurrence of dyskinesias is higher and of earlier onset than

previously thought. In the past, reviews examining mainly retrospective data have

estimated median dyskinesia frequencies of less than 10% at 1 year of treatment,

increasing to 40% after 5 years of levodopa therapy (Ahlskog and Muenter, 2001).

The ELLDOPA trial, a large, randomized trial designed to examine the impact of

levodopa on PD progression, however, found that in patients treated with levo-

dopa 600 mg per day, dyskinesias developed in 16% after only 9 months of

therapy (Fahn et al., 2004). In addition to duration of treatment, total daily

levodopa dose is also a risk factor for the development of dyskinesias. This dose-

dependent nature of levodopa-induced dyskinesias was demonstrated in a ran-

domized, double-blind, placebo-controlled trial in which 16.5% of patients treated

with 600 mg/day of levodopa for 40 weeks developed LID, in contrast to 2.3% of

patients taking 150 mg/day and 3.3% of patients taking 300 mg/day. The addi-

tion of the dopamine agonist pramipexole also increased the severity of dyskinesia

in patients already on levodopa with pre-existing dyskinesias (Brodsky et al., 2010).

On the other hand, the use of the dopamine agonist ropinirole prolonged-

release as adjunctive therapy to levodopa in early PD appeared to delay the onset

of dyskinesias in one study, compared to those patients who were treated with

increased levodopa (Watts et al., 2010). A long-term observational study suggested

that although the frequency of dyskinesia was increased with levodopa use after 5

years, the frequency of dyskinesia was similar after 10 years, regardless of the initial
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Parkinson medication used. In this study, 43/64 (67%) patients took levodopa as

their initial medication, and by 5 years, all patients were on levodopa (Lopez et al.,

2010).

Age has also been shown to be a significant risk factor for the development of

levodopa-induced dyskinesias. A number of studies have shown an inverse rela-

tionship between the age of PD onset and the incidence of dyskinesias (Jankovic,

2005b; Kumar et al., 2005; Quinn et al., 1987; Schrag et al., 1998; Wagner et al.,

1996). There is a higher incidence of choreiform dyskinesia and dystonia in

levodopa-treated patients with PD onset before the age of 65 years, compared

with the older age group (Wagner et al., 1996). In a retrospective population-based

study individuals with PD onset between 40–59 years were found to have a 50%

risk of developing dyskinesias at 5 years. This was in contrast to a 26% risk in

individuals with onset of PD in the 60–69 years age group, and a 16% risk in those

who developed PD after the age of 70 years (Kumar et al., 2005). The incidence of

levodopa-induced dyskinesias has been estimated at 91% at 5 years in individuals

with PD onset before the age of 40 years (Schrag et al., 1998). The relationship

between younger age of onset and increasing dyskinesia risk may not be a linear

association, with a significantly higher risk found in one study after 5 years of

treatment in patients with PD onset between 40–49 years, compared with those

with onset between 50 and 79 years (Ku and Glass, 2010). In this study, 70% of

patients with PD onset between 40 and 49 years developed dyskinesia after 5 years

of therapy, compared to 42% of patients with PD onset between 50 and 59 years. It

was also found that after 5 years of therapy, the risks become similarly high across

all ages of onset between 40 and 79 years.

Other possible associations identified in one patient sample included female

sex, body weight and Hoehn–Yahr score (Zappia et al., 2005). A number of genetic

polymorphisms have been implicated in a few studies, but this has not been a

consistent finding. A certain DRD2 polymorphism may increase the risk of dyski-

nesias in men (Zappia et al., 2005). The DRD2Taq1A polymorphism has also been

associated with an increased risk for developing motor fluctuations (Wang et al.,

2001). The presence of diphasic dyskinesia, but not peak-dose dyskinesia, has been

associated with a polymorphism of DRD3 p.S9G (Lee et al., 2010). In contrast, one

study found no association between genetic polymorphisms in DRD2, DRD3 and

DRD4 and dyskinesia risk, but instead showed that the 40-bp VNTR of the DAT

gene was a predictor for dyskinesias. The met allele of the BDNF gene has been

associated with an increased risk of dyskinesia earlier in the course of dopaminergic

therapy (Foltynie et al., 2009). Certain monogenic forms of Parkinson’s disease

may be associated with a higher frequency of dyskinesia. Dyskinesias have been

reported to occur in all patients with the parkin (PARK2) mutation (Khan et al.,

2003).

Particularly in the early stages, levodopa-induced dyskinesias may be mild,

non-persistent, or functionally inconsequential. Dyskinesias requiring medication
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adjustment are estimated to affect 17% of patients after 5 years of treatment, and

43% of patients at 10 years in population-based studies.

The impact of levodopa-induced dyskinesias on quality of life is not clearly

defined. Although one study of early PD patients suggested that dyskinesias did not

cause significant negative impact on quality of life after 4 years of follow-up

(Marras et al., 2004), a prospective observational study of patients in various stages

of PD found that dyskinesias did adversely affect quality of life, and this remained

significant after adjusting for disease progression and motor fluctuations

(P�echevis et al., 2005). A multicenter survey found that the level of concern

regarding dyskinesias was higher in patients without dyskinesias compared to those

who had developed dyskinesias (Hung et al., 2010). In addition, patients with

dyskinesias were more likely to prefer better control of their PD symptoms at

the expense of having more dyskinesia.
VIII. Assessment of Dyskinesia
Several rating scales are used to assess severity of dyskinesias. Some of these

were created specifically for dyskinesia, however, many have been taken from

global scales used for motor assessment in PD (Colosimo et al., 2010). One of the

difficulties in creating a universal standardized rating scale has been the inherent

variable nature of dyskinesias, which may fluctuate over time and also change with

activity. Difficulties are also encountered in assessing the different types of dyski-

nesias in a standardized scale. Thus objective assessments by an examiner are likely

to be restricted to the one point in time during which the evaluation occurs. In

contrast, subjective evaluations by the patient are likely to be influenced by

individual perceptions of the disease, and also be limited by their ability to differ-

entiate parkinsonian tremor from dyskinesias.

Various rating scales have been evaluated by a task force commissioned by

the Movement Disorder Society to evaluate dykinesia in PD (Colosimo et al.,

2010). The Abnormal Involuntary Movement Scale (AIMS), which was origi-

nally designed to assess tardive dyskinesia and the Rush Dyskinesia Rating Scale

(RDRS) are predominantly used to assess dyskinesia in patients with PD, but

other scales are also being evaluated for potential use in clinical trials

(Colosimo et al., 2010). The original Unified Parkinson Disease Rating Scale

(UPDRS) has been modified by a task force of the Movement Disorder Society

(MDS-UPDRS) to better capture not only some of non-motor features of PD,

but also to better assess levodopa-induced dyskinesias (Goetz et al., 2008).

(Further information may be obtained at http://www.movementdisorders.

org/publications/rating_scales/).

http://www.movementdisorders.org/publications/rating_scales/
http://www.movementdisorders.org/publications/rating_scales/


AN INTRODUCTION TO DYSKINESIA—THE CLINICAL SPECTRUM 13
IX. Moving Toes and Moving Fingers
A characteristic abnormal involuntary movement involving the toes has been

described in the setting of pain, often secondary to peripheral injury (Montagna

et al., 1983; Nathan, 1978; Spillane et al., 1971). Pain typically precedes the onset of

movement by days to years. The pain is typically very severe, and is most often

burning in character (Alvarez et al., 2008). Throbbing, crushing, searing pain, or a

deep dull ache may also be described. The distribution of pain is often diffuse, and

not limited to an anatomical region (Fahn and Jankovic, 2007g). Complex move-

ments involving various combinations of flexion, extension, abduction, and adduc-

tion are seen. The movements may be bilateral or unilateral. When they occur

bilaterally, the movements tend to be asynchronous. Surface electrophysiological

studiesmay reveal irregular or semi-continuous EMGbursts. Themovementsmay

be partially suppressible. In one series, radiculopathy and neuropathy were found

to be the most common pre-disposing factors (Alvarez et al., 2008). Painful legs and

moving toes has also been reported in association with central nervous system

disorders, with one case occurring in the setting of Hashimoto’s encephalopathy

(Guimar~aes et al., 2007).
X. Myoclonus
Myoclonus is characterized by involuntary brief, jerky, shock-like movements,

with preservation of consciousness (Shibasaki, 2002). Positive myoclonus occurs

when the movements are caused by brief muscle contraction, whereas negative

myoclonus occurs in the setting of sudden cessation of muscle contraction, with

accompanying loss of tonic electromyographic activity (Shibasaki and Hallett,

2005). The latter, negative, myoclonus is exemplified by asterixis, typically present

in patients with hepatic and other encephalopathies. Myoclonus may be localized

to one region of the body, as in focal or segmental myoclonus, or it may be

generalized. Multifocal myoclonus occurs when many different parts of the body

are affected.

Brief muscle spasmsmay occur in the setting of other movement disorders, and

these should be differentiated from myoclonus. Tics are usually associated with a

conscious urge to move and a feeling of relief of tension after the movement. In

addition, many tics are suppressible, in contrast to myoclonus. Brief muscle move-

ments in dystonia are often associated with dystonic posturing. Mild chorea may

be difficult to distinguish from myoclonus. Sometimes myoclonus is rhythmic and

can resemble tremor (Fahn and Jankovic, 2007f).
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On the basis of electrophysiological studies, myoclonus can be categorized

according to its site of origination into cortical myoclonus, brainstem myoclonus,

and spinal myoclonus. Rarely, peripheral myoclonus may arise from peripheral

nerves, nerve plexi, and spinal roots. Cortical myoclonus, which arises from the

sensorimotor cortex, can present as focal repetitive jerks, termed epilepsia paritalis

continua (Hallett et al., 1979). Palatal myoclonus, generalized muscle jerks, and

exaggerated startle syndromes (hyperekplexia) may bemanifestations of brainstem

myoclonus. Spinal myoclonus consists of spinal segmental myoclonus, which is

restricted to a few spinal segments, and propriospinal myoclonus, which manifests

as generalized axial jerks (Fahn and Jankovic, 2007f).
XI. Myokymia
Myokymia describes fine quivering, rippling, and undulating contractions of

parts of muscle fascicles that is often triggered or exacerbated by stress, sleep

deprivation, and caffeine and may persist during sleep. They are caused by

hyperexcitability of peripheral nerve motor axons (Gutmann and Gutmann,

2004). Myokymia is differentiated from benign fasciculations by electromyo-

graphic features of regular groups of motor unit discharges, especially doublets

and triplets, occurring with a regular rhythmic discharge (Denny-Brown and

Foley, 1948; Fahn and Jankovic, 2007a). They most commonly occur in facial

muscles, particularly around the eyelids, but may also involve other facial muscles

and upper limbs as in episodic ataxia type 1.
XII. Myorhythmia
This term has been used in relation to different movements, and its use has

evolved over time. In earlier descriptions, the term myorhythmia was used to refer

to rhythmic movements seen in torsion dystonia (Herz, 1944). Subsequently,

myorhythmia was used in reference to palatal myoclonus, and other rhythmic

myoclonias (Monrad-Krohn and Refsum, 1958). It has since been used to describe

a coarse, alternating tremor, which is usually relatively rhythmic and regular but

can also vary in rate, rhythm, or amplitude over time (Masucci et al., 1984). The

movement is of slow frequency (<3 Hz), and can be intermittent or continuous.

Myorhythmia may affect an isolated limb, or it may affect multiple body parts.

When multiple body parts were involved, it could either be synchronous or
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asynchronous. Myorhythmia has been reported in stroke, trauma, nutritional

deficiency, phenytoin intoxication, Hashimoto encephalopathy, listerial rhomben-

cephalitis, and Hodgkin’s lymphoma (Erickson et al., 2002; Park et al., 2010;

Wiener et al., 2003). It has also been described in encephalitis associated with

refractory celiac disease (Dimberg et al., 2007).

Oculomasticatory myorhythmia is typically seen in Whipple disease. It refers

to slow-moving, repetitive, synchronous and rhythmic contractions in the ocular,

facial, and masticatory muscles, and consists of pendular vergence oscillations of

the eyes and concurrent contractions of the masticatory muscles (Hausser-Hauw

et al., 1988; Schwartz et al., 1986). Isolated facial myorhythmia has been reported

rarely (Tan et al., 2007).
XIII. Stereotypy
Stereotypies are co-ordinated, patterned, repetitive, rhythmic movements

(Jankovic, 1994, 2005a). They may be involuntary, or may occur in response to

an inner sensory stimulus or unwanted feeling. Stereotypies include both motor

and phonic types. They may appear purposeless. Motor stereotypies can include

repetitive and sequential finger movements, body rocking, chewing movements,

and hand waving. Phonic stereotypies include grunting, moaning, and humming.

Stereotypies may be classified as simple, such as foot tapping, or complex, such as

sitting down and rising from a chair. They may also be classified according to the

body part that is involved.

The etiologies of stereotypies are broad, and may range from physiological

(seen in otherwise normal children during development) to pathological causes.

Adult-onset continuous stereotypies should suggest the diagnosis of tardive dyski-

nesia. Stereotypies may also be a feature of a number of neuro-behavioral dis-

orders including frontotemporal dementia, Tourette syndrome, autism, mental

retardation, and schizophrenia.
XIV. Tardive dyskinesia
Tardive dyskinesia refers to involuntary movements that occur as a complica-

tion of long-term dopamine receptor antagonist therapy. In a 3-year prospective

Schizophrenia Outpatient Health Outcomes study, the incidence of tardive dys-

kinesia ranged from 2.8% with olanzapine therapy to 11.1% with the use of depot
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typical anti-psychotic medication (Novick et al., 2010). The frequency in chronic

schizophrenic patients on anti-psychotic medication may be as high as 20–25%.

Reported risk factors have included older age, female gender, duration and inten-

sity of antipsychotic treatment, and affective disorders although these are not

consistently correlated (Tenback et al., 2009). Other possible associations include

first generation antipsychotic use (Correll and Schenk, 2008), ethnicity, and early

extrapyramidal symptoms. Genetic pre-disposition may be another risk factor

(Greenbaum et al., 2010). The principle site of involvement is classically the

oral-buccal-lingual area, and this may be referred to as OBL dyskinesias. The

movements are typically repetitive, complex, and coordinated, often resembling

normal activity such as chewing. Occasionally, patients with tardive stereotypy

may also exhibit lip smacking, lip pursing, sucking, and puckering movements

(Fahn and Jankovic, 2007f). Lingual protrusion dystonia may also occur

(Esper et al., 2010). Involvement of the forehead and eyebrows is less common.

Limb and trunk involvement may also occur in addition to the mouth movements,

but these areas tend not to be as severely affected. The toes may exhibit a repetitive

flexion and extension movement, as well as foot tapping. The term “piano playing

fingers and toes” has been used to describe this characteristic repetitive appear-

ance (Fahn and Jankovic, 2007f). Repetitive movements of the legs such as adduct-

ing-abducting of thighs and crossing-uncrossing of legs are commonly seen in

patients with tardive dyskinesia and tardive akathisia. Some patients also display

rhythmic truncal rocking movements. Other less common involuntary movements

seen in tardive dyskinesia include respiratory and esophageal dyskinesias

(Horiguchi et al., 1999; Kang et al., 1986; Mehanna and Jankovic, 2010).

The mouth movements of tardive dykinesia typically do not cause significant

functional impairment. The movements may temporarily cease during talking,

when food is being placed in the mouth, or when a finger is placed on the lips. As a

result, patients may not be aware of the presence of these movements.

Occasionally, however, patients will report interference with chewing and talking.

On examination, the tongue assumes a continuous writhing and coiling move-

ment. In contrast to Huntington disease, motor impersistence is not a feature, and

thereforemost patients canmaintain voluntary sustained tongue protrusion.Many

patients with tardive dyskinesia also complain of an uncomfortable sensation in the

mouth, tongue, and genital area.

Other movement disorders may also occur as part of a tardive syndrome.

Tardive dystonia often resembles idiopathic dystonia. They may improve with

sensory tricks. Tardive dystonia can be focal (such as in tardive cervical dystonia

and tardive blepharospasm), segmental, or generalized. Similar to idiopathic dysto-

nia, the distribution of tardive dystonia appears to be related to the age of onset

(Kang et al., 1986;Kiriakakis et al., 1998). The site of onset ascends rostrally as the age

of onset increases. Furthermore, younger onset dystonia is more likely to become

generalized. Thus, childhood-onset tardive dystonia tends to start in the lower limbs
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and gradually progress to becomemore widespread, whereas adult-onset dystonia is

more likely to remain focal or segmental, and affect the craniocervical region. There

are some clinical features, however, that are more characteristic of tardive dystonia.

In cervical dystonia, the presence of retrocolis is more common in the tardive variety

than in the idiopathic group. In addition, opisthotonic posturing with internal

rotation of the arms, elbow extension and wrist flexion can also been seen in tardive

dystonia, in contrast to the more lateral truncal twisting in idiopathic dystonia.

Finally, whereas voluntary movement often exacerbates idiopathic dystonia, move-

ments such as walking may actually reduce tardive dystonia.

Persistent akathisia (tardive akathisia) may occur in the setting of neuroleptic

drug exposure, and may persist despite discontinuation of the medication. The

clinical features are believed to be similar to acute akathisia. Moaning and focal

pain appear to be more common in tardive akathisia than the acute variety.

Although it may exist in isolation, other tardive syndromes, such as dystonia or

dyskinesia, often accompany tardive akathisia.
XV. Tics
Tics are the clinical hallmark of Tourette syndrome (Jankovic, 1997). Both

motor tics and phonic tics typically occur in Tourette syndrome. Phonic tics are

often considered to be due to motor tics that affect the respiratory, laryngeal, oral,

and nasal musculature (Lyon et al., 2010).

Tics are typically sudden, intermittent, repetitive stereotyped movements or

phonic productions, and may be involuntary or semi-voluntary. They may appear

as fragments of normal action that are misplaced in context (Jankovic and Kurlan,

2011; Leckman et al., 2001). Brief and abrupt tics are referred to as clonic tics.

These movements are typically less than 100 ms in duration and jerk-like in

character. Examples include blinking, nose twitching, and head jerking. Tics

may also be more sustained in nature. Sustained tics are generally more than

300 ms in duration. They can occur in combination with clonic tics in any one

individual, and likely represent variants within the same spectrum. Sustained tics

can be further classified into dystonic tics and tonic tics. Dystonic tics are associated

with twisting, squeezing movements, or posturing. They include blepharospasm,

oculogyric movements, bruxism, mouth opening, torticollis, and shoulder rota-

tion. Tonic tics are usually more prolonged, with duration of more than 500 ms.

They involve isometric muscle contractions, and may not be associated with

movement. Examples include abdominal or limb tensing. The so-called blocking

tic, which consists of sudden and transient cessation of motor activity without

alteration of consciousness, may be due to prolonged tonic or dystonic tics.
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Tics may also be classified as simple or complex. Simple motor tics involve

brief jerk-like movements involving only one muscle group. Simple phonic tics

can involve brief occurrences of sniffing, throat clearing, grunting, screaming,

coughing, blowing, or sucking sounds. Pathological laughter has also been

reported as a manifestation of a simple phonic tic (Cavanna et al., 2010). In

contrast, complex tics are more coordinated and sequenced. Complex motor

tics may resemble normal motor acts or gestures, but are generally inappropri-

ately intense and timed (Jankovic, 1997). The movements can appear purpose-

ful, such as touching, throwing, hitting, jumping, kicking, or non-purposeful,

such as head shaking or trunk bending. Occasionally tics can be so severe as to

cause neurological sequelae, with reports of compressive cervical myelopathy

resulting from recurrent head thrusting and violent neck hyperextension tics

(Krauss and Jankovic, 1996). Complex motor tics can also include copropraxia

(grabbing or exposing one’s genitals) or echopraxia (imitating gestures).

Complex phonic tics may consist of linguistically meaningful verbalizations,

and can include coprolalia (shouting obscenities or profanities), echolalia

(repeating someone else’s words or phrases), and palilalia (repeating one’s

own utterances, particularly the last syllable, word, or phrase in a sentence).

Rarely, tics may be continuous and disabling, resulting in so-called “tic status”

(Kovacs et al., 2011).

Tics are preceded by premonitory sensations or urges in over 80% of indivi-

duals. The urges transiently subside following execution of the tic. Dystonic tics are

more likely than clonic tics to be associated with premonitory symptoms (Jankovic,

1997). One study found that, in contrast to most non-tic movement disorders, 68%

(40/61) of patients with tics reported that their tics were intentionally produced,

whilst a further 25% described both voluntary and involuntary components. Thus,

although the majority of movements are perceived as intentional, they are

“irresistibly but purposefully executed” (Lang, 1991). Patients may need to repeat

a particular movement to relieve the premonitory urge until “it feels just right”

(Leckman et al., 1994). It has also been suggested that these patients have an

abnormal experience of volition, in which the experience of conscious intention

is delayed (Moretto et al., 2011).

Premonitory sensations may be localizable or non-localizable. Localizable

sensations include a feeling of tension, tightness, itch, pulling, stretching, burn-

ing, pressure, tickle, warmth or other abnormal sensation that is relieved by the

tic. They are sometimes referred to as sensory tics (Kurlan et al., 1989). They are

primarily localized to the shoulder girdle, palms, midline abdominal region,

posterior thighs, feet, and eyes (Jankovic, 1997). A rare phenomenon is that of

extracorporeal “phantom” tics, in which the tic is provoked by sensations

projected to other people, inanimate or even non-existent objects (Karp and

Hallett, 1996), that are temporarily relieved by touching or scratching. Non-

localizable sensations, on the other hand, are premonitory phenomena that are
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less well-defined and less specific, and include feelings of anxiety, anger, urge,

and other psychic sensations (Jankovic, 1997).

There may be some overlap between premonitory sensations, which include

feelings of incompleteness and the need for “just-right” sensations, with compul-

sive behavior (Kwak et al., 2003). These have been referred to as “compulsive tics”

(Leckman et al., 1994). Indeed, complex mental events are often experienced by

Tourette patients, with tics needing to be performed in a certain manner or a

certain number of times in order to satisfy an internal urge (Jankovic and Kurlan,

2011). Tics and compulsive behaviors may often co-exist, and may not always be

easily distinguished (Kurlan, 2010). Obsessive-compulsive symptomatology may

involve intrusive and disturbing thoughts (obsessions), which in turn lead to ritu-

alized behaviors (compulsions) (Jankovic and Kurlan, 2011). The presence of

repetitive behaviors in Tourette syndrome has been attributed to both tic-like

behaviors (such as touching and counting), and obsessive compulsive behaviors

(such as in checking rituals) (Worbe et al., 2010). In one study, poor quality of life

was associated with the comorbid symptoms of depression, obsessive compulsive

disorder, and attention deficit disorder, but not tic severity (Eddy et al., 2010).

Another feature of tics is that they may often fluctuate in frequency, intensity,

and distribution. Theymay be transiently suppressible. However, suppressionmay

be associated with a build-up of inner tension, resulting in subsequent release of

more forceful tics (Jankovic and Kurlan, 2011). Potential exacerbating factors

include stress, excitement, boredom, and fatigue (Jankovic, 1997). In one report,

there was a marked exacerbation of tics in response to heat exposure and exercise

(Lombroso et al., 1991). The frequency of tics may also increase during a period of

relaxation following stress. CNS stimulant medication and dopaminergic drugs

may also exacerbate tics. Suggestibility is another feature of tic disorders, and tic

frequencymay increase when patients are asked about their symptoms. In contrast

to many other hyperkinetic movement disorders, tics can persist during sleep.

By definition, the diagnosis of Tourette syndrome involves the onset of tics

before the age of 18 years. The so-called adult-onset tic has been reported to

represent re-emergence of childhood-onset tics in the majority of cases

(Jankovic et al., 2010). In addition, adult-onset tics tend to have troublesome facial

and truncal tics. These patients were also found to have an increased risk of

depression and substance abuse, compared to those with childhood onset tics.
XVI. Tremor
Tremor is an oscillatory movement or a rhythmic back-and-forth movement of

a body part (Sanger et al., 2010). It is often produced by alternating contractions of
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agonist and antagonist muscles. Tremor may be broadly classified as rest tremor,

postural tremor, or action tremor. Rest tremor refers to tremor that is present when

the affected body part is fully supported against gravity and not actively contracting.

The tremor is reduced or disappears with voluntary muscle contraction, or during

movement. The typical rest tremor of PD has a frequency of 4–6 Hz, and is most

prominent distally. Its characteristic appearance in the hand is also referred to as a

pill-rolling tremor. Postural tremor is present with maintenance of a particular

posture such as holding the arms outstretched in front of the body. It is commonly

seen in physiological and essential tremor. Re-emergent tremor refers to a postural

tremor that occurs after a variable latency period during which time no observable

postural tremor is present (Jankovic et al., 1999). This typically occurs in the setting

of PD, and most likely represents a parkinsonian rest tremor that has been “reset”

during maintenance of a posture (Fahn and Jankovic, 2007d) It typically has the

same slow frequency as the Parkinson’s rest tremor, as opposed to the higher

frequencies seen in the postural tremors of physiological and essential tremor.

Action tremors occur with voluntary contraction of muscle. The term kinetic tremor

may be used to refer to a tremor that occurs during voluntary movement. It includes

tremor that occurs with initial movement (initial tremor), as well as that which

occurs during active movement (dynamic tremor). Kinetic tremor may also be seen

as the affected body part approaches a particular target. An example of this can be

seen on finger-to-nose testing, with tremor occurring in the finger as it reaches the

nose or the examiner’s finger. This type of kinetic tremor is referred to as terminal,

or intention, tremor, and is associated with cerebellar dysfunction. Task-specific

tremor occurs only during execution of a particular task such as writing. Position-

specific tremors are tremors that only occur when the affected body part is placed in

a particular position or posture. Orthostatic tremor is an example of a position-

specific tremor, and refers to a fast (14 16 Hz) tremor, mainly affecting the trunk

and legs, that occurs after standing for a certain period of time (Jankovic, 2009).

Isometric tremor occurs during isometric contraction, when muscle is contracted

without a change in its length. Dystonic tremor may occur in the setting of dystonia,

and may be less rhythmic than other tremor types (Sanger et al., 2010). The

appearance may vary depending on the posture of the limb. A “null point” may

exist at a particular posture, where there may be minimal tremor.
XVII. Conclusion
This overview has focused on the clinical spectrum and phenomenology of

abnormal involuntary movement disorders, also referred to as dyskinesias. The

ability to accurately classify the phenomenology and clinical syndrome of
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movement disorders provides crucial information towards determining the possi-

ble etiologies, and guides the assessment towards the underlying diagnosis.

TABLE CLINICAL CHARACTERISTICS OF DYSKINESIAS

Movement Disorder Key Clinical Features

Akathisia Sensory: feeling of inability to keep still

Motor: stereotypic, complex, restless appearance

Athetosis Slow

Continuous

Writhing

Ballism Forceful, flinging

High-amplitude

Proximal limb

Chorea Non-rhythmic, random

Irregular

Flows randomly from one body part to another

Variable duration and direction

Dystonia Sustained muscle contraction

Twisting or repetitive movements

Abnormal postures

Jumpy stumps Jerking, tremulousness, or spasms

Phantom pains

Levodopa-induced dyskinsia Peak dose: Pre-dominant neck, axial, upper limb involvement

Chorea, stereotypies, ballism

Diphasic: Starts in legs, “ascending wave”

Stereotypies, large-amplitude, rhythmical

Dystonia, chorea

Off period: dystonia

Moving toes and moving fingers Burning pain

Complex, repetitive, rhythmic movements

Myoclonus Brief

Shock-like

Often non-rhythmic

Myokymia Quivering, rippling, and undulating contractions

Myorhythmia Rhythmic

Slow frequency (1–3 Hz)

Intermittent or continuous

Stereotypy Coordinated

Patterned

Repetitive

Rhythmic

Tardive dyskinesia Complex bucco-oral-lingual, lower limbs Stereotypy, chorea

Dystonia

Akathisia

Discomfort (mouth, tongue, genitals)

(continued )
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(continued )

Movement Disorder Key Clinical Features

Tics Sudden, intermittent, repetitive, Stereotyped

Premonitory urge

Involuntary or semi-voluntary

Tremor Oscillatory

Rhythmic back-and-forth movement
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I. Introduction
The word “dyskinesia” is derived from Greek roots meaning “troubled move-

ments” (dys-trouble, kinesis- movement). According to Stedman’s medical dictio-

nary dyskinesia means: “Abnormal involuntary movements attributed to pathologic state of one

or more parts of the striate body and characterized by insuppressible, stereotyped, automatic

movements that cease only during sleep.” Early medical literature on dyskinesia started

to appear following the use of neuroleptics in the early 1950s (Wolf et al., 1997) and

the first clear description of clinical dyskinesia was recorded by Schoenecker in

1957 (Schoenecker, 1957). The term “tardive” dyskinesia was first coined in 1964

to indicate abnormal movements induced by neuroleptics (Faurbye et al., 1964).

Clinically dyskinesia compromises a wide spectrum of motor phenomenology that

is fairly similar despite varied etiologies. In Parkinson’s disease (PD), dyskinesia

was recognized with the advent of levodopa, and since then“levodopa induced

dyskinesia”(LID) has become one of the major clinical limitations of long-term

management. Despite recent advances and the development of alternative dopa-

minergic medications for management of PD, dyskinesia still remains a clinical

problem with a need to understand the pathophysiology and develop novel ther-

apies. In this chapter we will review the current understanding of epidemiology,

clinical phenomenology, genetics, and available therapeutics for dyskinesia in PD.
II. Historical Aspects
LID was not commented in the initial paper of Cotzias (1967) when describing the

successful utility of D,L-dihyroxyphenylalanine. Soon reports of LID started to

appear in literature with first publication as early as 1969 (Cotzias et al., 1969;

McDowell et al., 1970). Subsequently, all major clinical series on PD started to

notethe appearance of LID (Schwarz and Fahn, 1970; Yahr et al., 1969) and by the

early 1970s, LID was the most common dose limiting adverse effect (Calne et al.,

1971).

By the late 1970s, the clinical phenomenology of LID was being carefully

studied and now familiar descriptions were coined for the various terms associated

with LID. Thus, dyskinesia noted at the peak clinical benefit of levodopa was called

“Peak dose dyskinesia”. In 1977,Muenter et al. (1977) described dyskinesia appear-

ing at the beginning and at the end of each levodopa dose, which they termed

Dystonia-Improvement-Dystonia (“D-I-D”) or alternatively labeled as “diphasic

dyskinesia” (Marsden et al., 1982). In 1979, Melamed described painful dystonia

occurring in the foot early in the morning, when the effect of previous night’s
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dose of levodopa had completely worn off which was termed “OFF dystonia”

(Melamed, 1979). In 1982, Marsden classified dyskinesia based upon two criteria:

clinical phenomenology and timing of symptoms in relation to levodopa’s clinical

effects, which still holds good today (Marsden et al., 1982).
III. Epidemiology
LID is a well-recognized entity, however not every patient on levodopa develops

dyskinesia and even for those who develop LID, the timing of appearance may

vary. In addition, assessing the frequency of LID can be difficult as patients

frequently have LID but may be unaware of the presence of involuntary move-

ments, unless bothersome. Hence answers to who develops dyskinesia; how com-

monly they are noticed by patients; and at what time during the disease course they

appear may be difficult to accurately ascertain (Marras and Lang, 2003). Thus,

there is variability in the frequency of LID reported in the literature since the

introduction of levodopa in 1960s. The first major review article on LID was

published in 1974, involving 116 patients, where LID was noted within a month

of therapy and increased from 20 to 81% by the end of 1 year (Duvoisin, 1974).

However, these publications were considered part of the “pre-Levodopa era” in

which patients had significant duration of the disease and motor disability (and

hence dopamine loss) before the time of initiation of levodopa and thus do not

reflect current practice. Thus, more recent literature does not report such a large

population of patients being affected so early in the treatment. In a major review of

frequency of LID wherein published literature on LID from 1966 to 2000 was

reviewed and reported that less than 10% of cumulative patients had LID within 1

year of levodopa therapy and this increased to 25% by 2.5–3.5 years, 35–40% by

4–6 years and reached almost 90% by those who received treatment beyond

9 years (Ahlskog and Muenter, 2001).

Since then, major long-term follow-up publications on therapeutic trials of

dopaminergics drugs in PD have replicated similar frequencies of LID. In the

10 year extended follow up of PD patients who were initially randomized to

receive levodopa or ropinirole, 77.8% patients who were initially randomized to

receive levodopa had developed dyskinesia (Hauser et al., 2007). Long-term

follow-up of subjects initially randomized to receive bromocriptine versus levo-

dopa, for example bromocriptine 14 years follow-up and The Sydney multicen-

ter study, noted that among those who survived atleast for 15 years, 94% of

patients had developed dyskinesia (Hely et al., 1994; Hely et al., 2005;

Katzenschlager et al., 2008). A definitive long-term follow-up of PD subjects
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between 1968 and 1996 with clinico-pathological correlation also reported

similar outcomes with 61.9% developing dyskinesia after average 9 years of

follow-up (Rajput et al., 2002). Thus overall, dyskinesia is a common, almost

inevitable, consequence in patients with advanced PD.
IV. Risk Factors
As noted above, dyskinesia occurs more frequently in advancing disease and

corresponding long-term use of levodopa. Thus, the principal causes of LID are

a combination of pathological changes and chronic pulsatile dopaminergic recep-

tor stimulation. The early appearance of LID in PD subjects with more advanced

disease also confirms the link between disease severity and propensity for LID

(Fahn and Bressman, 1984; Montastruc et al., 1999; Weiner, 1999). The main

factors associated with the development of dyskinesia are summarized in Table I.

The common risk factor is the disease duration and several studies report that

longer disease duration with greater disease severity is associated with an increased

risk for LID (PSG, 1996; Rajput et al., 2002; Sharma et al., 2010; Tanner et al., 1985).

The age at onset of PD has also been determined as one of the prominent risk

factors for developing LID. Thus, younger age of disease onset is a high risk factor

for developing LID (Kostic et al., 1991; Schrag and Quinn, 2000; Sharma et al.,

2010; Van Gerpen et al., 2006). It has been noted that about 53% of younger onset

patients (onset age 50–59 years) develop dyskinesia at 5 years as compared to 16%

with the age of onset at 70–79 years (Kumar et al., 2005). However, these frequen-

cies are less compared to earlier reports of 94% dyskinesia in young onset PD

(Quinn et al., 1987). The cumulative dosage of levodopa and longer duration of

treatment are also associated with higher risk of developing LID (Miyawaki et al.,
Table I

RISK FACTORS POSSIBLY ASSOCIATED WITH DEVELOPMENT OF DYSKINESIA.

1. Early age at onset of PD

2. Longer duration of PD

3. Rate of progression of PD

4. Longer duration of treatment with Levodopa

5. Cumulative dose of Levodopa exposure

6. Severity of PD

7. Female gender

8. Genetic factors including genetic parkinsonism
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1997; Tanner et al., 1985). In a community-based study of risk factors for the

development of LID and motor fluctuations, shorter time from symptom onset to

initiation of levodopa therapy, younger age and duration of levodopa therapy were

identified as the main risk factors (Schrag and Quinn, 2000).

Female gender is also a risk factor for higher frequency of LID (Lyons et al.,

1998). In a study looking at determinants of peak dose dyskinesia, involving 105

patients, female sex, as well as earlier age of onset of PD, longer duration of

treatment and higher dose of levodopa were significant risk factors (Zappia et al.,

2005). This association with female gender may relate to smaller body weight and

thus overall higher mg/kg dose of levodopa exposure. In a study assessing the

relationship between the per kilogram bodyweight levodopa dosage and develop-

ment of dyskinesia, data from ropinirole versus levodopa study and REAL-PET

study were used (Sharma et al., 2008). The authors noted that higher absolute

amount of levodopa dosage and the levodopa dosage per kilogram of body weight

was significantly associated with the development of LID but not specifically to

female sex (Sharma et al., 2008). The association of oestrogen with dyskinesia has

also been investigated; however, to date the link remains unclear (Shulman, 2002;

Shulman and Bhat, 2006).
V. Genetics of Dyskinesia
Several studies have assessed genetic factors and individual genetic variations

which may predict the development of LID. In general, based upon studies on

single nucleotide polymorphisms (SNPs) and targets encoded by genes of interest,

the genetic basis of LID has been suggested to be due to genes implicated in genetic

parkinsonism per se; as well as dopamine and non-dopamine-mediated neurotrans-

mission (Linazasoro, 2005).

The recent developments in understanding the genetics of PD and association

of some of these genetic forms of PD with prominent and early dyskinesia have

suggested the involvement of genetic factors. Accordingly, PARK-2 (parkin),

PARK-6 (pink-1), and PARK-7 (DJ-1) mutations are associated with young-onset

PD and frequent appearance of dyskinesia (Dekker et al., 2003). In addition, PARK

8 (LRRK2) parkinsonism has also been linked to a higher risk of developing LID

(OR 4.2 compared to age-matched genetically undefined PD subjects)

(Nishioka et al., 2010). Altogether, genetic parkinsonism tends to affect individuals

at a younger age, often <30 years, known to be a risk factor for developing LID.

However, recent evidence suggests that parkin-related PD is associated with a

delayed-onset of dyskinesia compared to age-matched non-genetic PD subjects,

probably due to an overall lower daily levodopa dose (Lohmann et al., 2009). It

remains, therefore, unclear if these genetic abnormalities have a direct effect on the
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risk of developing LID or if other mechanisms in line with the earlier age at onset

and/or levodopa requirements play a role.

There have been various studies investigating genetic associations of dopamine

and non-dopamine receptors implicated in basal ganglia function with LID. In this

view, polymorphisms of dopamine D2 receptors but not D1 receptors seem to be

linked to a reduced risk of developing LID (Oliveri et al., 1999). In another study,

the TaqIA polymorphism located in the gene encoding the D2 receptor, but not

polymorphisms in the dopamine D3 and D5 receptors, was shown to increase the

risk of developing motor fluctuations in PD patients (Wang et al., 2001).

In a study investigating genetic susceptibility factors of diphasic and peak-dose

dyskinesia, diphasic dyskinesia was associated with the dopamine 3 receptor p.S9G

variant after adjusting for gender, age at PD onset, Hoehn and Yahr stage, and

duration of levodopa treatment. Carrying the AA genotype was likely to shorten

the onset of diphasic dyskinesia in relation to the duration of levodopa therapy,

while the presence of peak dose dyskinesia was not associated with any of the six

genetic variants studied (Lee et al., 2011).

Opioid receptors have been implicated in the pathophysiology of LID.

Strong et al. (2006) looked at whether particular dopamine and opioid receptor

polymorphisms were associated with a risk of earlier onset LID. They found

carrying the G-allele of the A118G single nucleotide coding region polymorphism

of the m opioid receptor as well as a history of never smoking were independently

associated with the increased risk of earlier onset of dyskinesia.

The role of brain derived neurotrophic factor (BDNF), a factor implicated in

synaptic plasticity and hence LID, has also been investigated. PD patients with the

met allele of BDNF (associated with lower activity dependent secretion of BDNF)

were reported to be at significantly higher risk of developing dyskinesia earlier in

the course of treatment with dopaminergic agents (Foltynie et al., 2009).

The importance of these genetic factors in the overall risk of developing LID

needs further clarification. However, such findings may have future practical

implications for helping predict individual PD patients at risk of developing LID.
VI. Classification
Several classifications of LID have been proposed based upon the type of move-

ments, timing in relation to levodopa dosage, and combinations of the two

(Table II). Prior to the early 1980s most of the literature reports were simply

descriptions of LID and the variety of associated movements. The first major

classification of LID was proposed by Marsden in 1982 (Marsden et al., 1982).

In this classification, combination of both, type of movements and timing of



Table II

VARIOUS CLASSIFICATIONS OF LEVODOPA INDUCED DYSKINESIA.

Author, year Proposed Classification

Marsden et al., 1982 1. Peak dose chorea, ballism, dystonia

2. Diphasic chorea and dystonia

3. “OFF” dystonia

4. Myoclonus

5. Simultaneous dyskinesia and Parkinsonism

Obeso et al., 1989 1. “ON” dyskinesia

2. Diphasic dyskinesia

3. “OFF” period dystonia

4. Dyskinesia without benefit

5. Dyskinesia-Parkinsonism

6. Paroxysmal dyskinesia

7. Nocturnal myoclonus

Fabbrini et al., 2007 1. Typical forms of dyskinesia

a. “OFF” period dystonia

b. Peak dose dystonia

c. Peak dose chorea and ballism

2. Less usual forms of dyskinesia

a. Respiratory dyskinesia

b. Ocular dyskinesia

c. Myoclonic dyskinesia

3. Movements considered as controversial to be designated as dyskinesia

a. Restlessness/hyperactivity

b. Akathisia

c. Enhanced tremor
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movements were used to classify LID (Table II). In 1989, Obeso further extended

this classification and proposed the following types of LID (Obeso et al., 1989):

1.
 “ON” dyskinesia: Involuntary movements that coincide with the period of

greatest mobility (“Peak dose”) or when present throughout the whole period

of adequate motor capability (“Square wave”). These movements are pre-

dominantly choreic in nature and predominantly involve neck, axial, and

proximal upper limbs.

2.
 Diphasic dyskinesia: Movements that emerge immediately before the levodopa

dose turns the patient “ON” and reappear at the end of the therapeutic

benefit. This diphasic phenomenon can either be noted simultaneously, both

at the onset and wearing off effect of a single dose response, or can appear

only during one phase of the cycle, that is at the onset or at the wearing off.

These movements tend to be dystonic and painful, and often involve the legs

with stereotypic kicking or flexion/extension of the lower leg.
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3.
 “OFF” period dystonia: Consists of dystonic postures of the limbs but can also be

generalized or affect the cranial musculature during the period when clinical

therapeutic benefit of levodopa is not noted. More commonly presents in one

foot in the early morning, but might be segmental or generalized, and occur

during any “OFF” period.

4.
 Dyskinesia without benefit: Wherein a dose of levodopa produces dyskinetic

effects without a parallel clinical benefit.

5.
 Dyskinesia–Parkinsonism: Characterized by one part of the body being dyski-

netic and other being parkinsonian.

6.
 Paroxysmal or unpredictable dyskinesia: Part of true “ON–OFF” phenomenon

where dyskinetic symptoms occur at any time when the patients mobility

state changes or is about to change.

7.
 Nocturnal myoclonus: Reported as special category and particularly noted in leg

of patients with levodopa-induced psychosis. It was also suggested that this

could be early manifestation of abnormal sleep pattern. (Currently these jerks

are part of sleep-related events than of true dyskinetic spectrum).
Fabbrini et al. (2007) have included various types of LID and subdivided them

into three broad categories based upon the frequency reported in the literature into

(1) typical forms, (2) less usual forms, and (3) movements which are considered

controversial to be designated as dyskinesia (Table II).
VII. Clinical Characteristics
The phenomenology of LID is heterogeneous. The most commonly noted move-

ment disorders associated with levodopa therapy are chorea, chorea-athetosis, and

dystonia.

A. CLINICAL PHENOMENOLOGY OF VARIOUS LID

1. Chorea

Choreic movements are characterized by involuntary, irregular, purposeless, non-

rhythmic, abrupt, rapid, unsustained movements that seems to flow from one part

of body to other. These choreic or choreoathetotic movements are the most

common forms of LID which are noticed at various stages of LID and are most

commonly associated with peak dose dyskinesia. Chorea usually appears first on

the side of the body which is predominantly affected and intensity of movements

can vary. The severity of chorea varies from very subtle movements which are non-

intrusive and may not be recognized by patients, to bothersomemovements which

interfere with activities of daily living.
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2. Dystonia

After chorea, dystonia is the most common form of LID, characterized by

sustained muscle contractions. The appearance of dystonia as part of LID can

be varied from peak dose, beginning/end of dose dystonia to “OFF” dystonia.

The dystonia varies in intensity and pattern from involving focal/segmental

muscle groups to all limbs—termed “generalized” dystonia. “OFF” period dys-

tonia requires a special mention due to the characteristic presentation and

the most common form of dystonia for which a patient seeks relief. These

“OFF” period dystonia symptoms are most commonly seen as early morning

dystonia, characterized by dystonia affecting one foot or toes, and are most often

painful.
3. Ballism

Ballism is characterized by very large amplitude choreic movements of the prox-

imal parts of the limbs causing flinging movements. Such movements can be

unilateral or bilateral and mostly noted as a part of severe form of choreoathetosis

rather than isolated findings.
4. Myoclonus

Myoclonus is a sudden brief shock-like involuntarymovement whichmay rarely be

seen as part of LID (when other causes of myoclonus have been excluded including

other parkinsonian syndromes or drug induced e.g. due to amantadine) and can

occur unilateral or bilaterally (Fahn, 2000).
5. Other Movements

In addition, other involuntary movements have also been described to be associ-

ated with LID. These movements include respiratory dyskinesia(Jankovic and

Nour, 1986; Rice et al., 2002), ocular dyskinesia (Linazasoro et al., 2002), restless-

ness/hyperactivity, akathisia and enhanced tremor. Some of these movements are

considered controversial to be designated as dyskinesia (Fabbrini et al., 2007).
B. PATTERNS OF LID IN RELATION TO THE TIMING OF LEVODOPA

As discussed above, there have been various studies looking at the pattern of LID in

relation to clinical phenomenology. Obeso et al. (1989) classified the type of

involuntary movements in relation to levodopa’s clinical benefits and classified
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as: (1) “ON” / Benefit of dose-related movements—chorea, dystonic movements,

cranial dystonia, myoclonus; (2) Diphasic—repetitive alternating movements, dys-

tonic postures; and (3) “OFF” period movements—dystonic postures. Luquin et al.

(1992) studied the pattern of dyskinesia among 168 patients. Ninety-four per cent of

patients showed “ON” period dyskinesia’s and 18.5% had a diphasic pre-

sentation.“OFF” period dystonia was noted in 35.7% of patients. They also

noticed a mixture of abnormal movements in one part of the body and parkin-

sonism in another 10 patients (mixed dyskinesia and parkinsonism). In addition,

they observed that 50% of patients showed only one type of dyskinesia, 40% had

two different types of dyskinesia, and the remaining had more than two types of

dyskinesia. With regard to types of movements, they reported that chorea was the

most frequent involuntary movement (generalized—22% and segmental—78%),

followed by dystonic postures of limbs (37.5%), repetitive movements of the limbs

(14.2%), action dystonia (10.7%), cranio-cervical dystonia (8.9%), mixed move-

ment disorders (5.3%), myoclonus and blepharospasm (3.5%), and tics (0.5%). In

another study, Marconi et al. (1994) conducted a detailed assessment of the clinical

characteristics of dyskinesia using video electromyographic recordings in a small

group of PD patients (n = 15). They noted that dyskinesia started in the foot,

usually in the most affected side by the disease and then spread in an ascending

wave to the contralateral side, the trunk and upper extremities. The dyskinesia was

considered to be dystonic and ballistic at start and became increasingly choreic as

they attained the upper limbs, hence describing the variation of movements in

relation to the dosing of medications (Marconi et al., 1994).

Overall, the pattern and the type of dyskinetic movements vary in relation to

the dosing of levodopa with chorea being the most common peak dose symptom

and dystonia being most common during “OFF” period or diphasic dyskinesia.

LID usually first appears on the most affected side by PD and commonly begins in

foot followed by the involvement of other anatomical structures. However, even in

individual patients, the pattern and type of dyskinesia can vary over time and

multiple types of LID can be seen in many patients.
VIII. Treatment
Current treatment options for dyskinesia are limited; only one drug, amantadine, a

N-methyl-D-aspartic acid (NMDA) receptor antagonist, has met the designation of

efficacious by the Movement Disorder Society Evidence Based Medical Review

(Fox et al., in press). This designation is based on the results of several small clinical

studies (da Silva-Junior et al., 2005; Luginger et al., 2000; Metman et al., 1999;

Verhagen Metman et al., 1998).



Table III

THERAPEUTICARRAY OFTREATMENTS FOR LEVODOPA INDUCEDDYSKINESIA: CURRENT AND INDEVELOPMENT.

1. Amantadine

2. Deep brain stimulation

3. Continuous delivery of apomorphine

4. Continuous delivery of levodopa

5. Antiepileptics: Levetiracetam, Topiramate, Zonisamide

6. Atypical antipsychotics: Clozapine, Olanzapine, Quetiapine

7. 5 HT1A agonist: Sarizotan

8. mGlu5 receptor negative allosteric modulators: AFQ 056, ADX10059

9. NMDA receptor 2B antagonist: Taxoprodil

10. Selective AMPA receptor antagonist: Perampanel

11. Sodium channel inhibitor with MAO-B inhibitor: Safinamide

12. a-2-adrenergic antagonist: Fipamezole, Idazoxan
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There have been various drugs tried for the management of LID

(Table III). Many of these have failed when tested in larger double-blind

placebo-controlled trials. Three major areas of limitation have hampered the

development of new treatments. First, the pharmacology of dyskinesia is

incompletely understood. Second, well-established clinical outcome measure

are lacking, despite the availability of multiple dyskinesia rating scales

(Colosimo et al., 2010). The development of a unitary, sensitive, and robust

rating scale has been a challenge because of the different types of dyskinesia,

their temporal patterns, anatomical distributions, and associated disabilities.

Some scales rely on observations by a physician, some by home diaries where

the patient records over several days the time spent with dyskinesia, and some

combine these efforts. According to the results of a systematic review by a task

force of the Movement Disorders Society, the Abnormal Involuntary

Movement Scale (AIMS) and the Rush Dyskinesia Rating Scale (RDRS)

formally fulfill the criteria for recommended (Colosimo et al., 2010), but still have

significant limitations. The AIMS, initially developed for the evaluation of

tardive dyskinesia in psychiatric patients, has been modified by several authors

for its use in PD, but these modifications raise issues with the scale’s overall

clinimetric properties. The RDRS focuses on disability or the impact of dys-

kinesia on specific activities of daily living. The newly developed Unified

Dyskinesia Rating Scale (UDysRS) combines elements of the AIMS and

RDRS into a single measure to cover both impairment and disability

(Goetz et al., 2008). It contains a self-assessment by the patient and an examina-

tion by the physician. Another scale of high potential future value once further

testing is performed is the Parkinson Disease Dyskinesia Scale-26 which is a
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patient-based measure for quantifying the impact of dyskinesia on activities of

daily living and quality of life (Katzenschlager et al., 2007).

Finally, dyskinesia are highly susceptible to placebo effects, and therefore

sample size calculations and power estimates must include an expectation of

improvement even with placebo treatment (Goetz et al., 2007). Noteworthy, the

placebo effect may vary considerably between different regional sites in multina-

tional clinical trials(Goetz et al., 2007), and the likelihood of placebo assignment

may also influence outcome (Lidstone et al., 2010).
A. AMANTADINE

Amantadine reduced dyskinesia severity by around 50% on subjective and objec-

tive outcome measures compared to placebo in a cross-over study where patients

either received amantadine or placebo for 2 weeks (Luginger et al., 2000). In a

second cross-over trial, it improved AIMS scores by 60% compared to placebo

during an acute intravenous levodopa infusion without worsening PD motor signs

(Verhagen Metman et al., 1998). The same patients received another intravenous

levodopa infusion 1 year after completion of the first study (Metman et al., 1999).

The magnitude of the antidyskinetic effect was similar to the first trial suggesting

sustained effects of amantadine on dyskinesia. This observation has been ques-

tioned by the results of one study enrolling 40 patients and reporting that the

benefit of amantadine lasted only for less than 8 months (Thomas et al., 2004). By

contrast, a recent trial confirmed long-lasting antidyskinetic effects of amantadine

compared to placebo in PD patients receiving amantadine for a mean duration of

4.8 years (Wolf et al., 2010).

Finally, the effect of acute intravenous amantadine infusion has been tested in a

small cross-over study (Del Dotto et al., 2001). Intravenous amantadine infusion

reduced modified AIMS scores by 50% compared to placebo, while Unified

Parkinson Disease Rating Scale (UPDRS)motor scores were not different between

groups.
B. DEEP BRAIN STIMULATION

Several studies have shown antidyskinetic effects of deep brain stimulation

(DBS) of the subthalamic nucleus (STN) and the internal pallidum (Deuschl

et al., 2006; Krack et al., 1998, 2003; Volkmann et al., 1998). Antidyskinetic

properties may be mediated via direct modulation of the activity of the basal

ganglia network or an indirect action through a reduction of concomitant

dopaminergic treatment. Surgical approaches to LID will be discussed in a

specific chapter of this issue.
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C. CONTINUOUS DELIVERY OF APOMORPHINE AND LEVODOPA

Dopaminergic treatment adjustment such as dose fragmentation, smaller single-

doses in case of peak-dose dyskinesia, and increased single-doses in patients with

biphasic dyskinesia may be helpful in dealing with dyskinesia through a more

continuous stimulation of postsynaptic dopamine receptors (Nutt, 2007).

Continuous stimulation also underlies the rationale of subcutaneous apomorphine

and intraduodenal levodopa infusion.

Continuous subcutaneous apomorphine infusion has been used for many years

in PD patients with severe motor fluctuations and dyskinesia despite optimal oral

dopaminergic drug treatment. The open-label experience with subcutaneous

apomorphine infusion has been reported in several publications (Garcia Ruiz

et al., 2008). Besides the reduction in daily “OFF” time, dyskinesia improved by

a mean of 36%. More than half of these patients were not suitable for surgical

treatment which corresponds to current practice where apomorphine is reserved

for patients with severe motor fluctuations who are not suitable or who are waiting

for surgery.

One prospective study has assessed the effect of continuous subcutaneous

apomorphine infusion on dyskinesia severity (Katzenschlager et al., 2005). In this

trial, patients were evaluated with an acute levodopa and apomorphine chal-

lenge at baseline and after 6 months of treatment. During the second examina-

tion, dyskinesia severity was decreased by 40% suggesting desensitization of

postsynaptic receptors and cascades that underlie the development of dyskinesia.

Another small prospective trial has compared STN-DBS with continuous sub-

cutaneous apomorphine infusion (Antonini et al., 2010). In this study, 76% of the

patients receiving apomorphine dropped out while only 8% stopped DBS.

Reasons for drop-out in the apomorphine group were subcutaneous nodules,

insufficient control of motor signs, or death during the 5-year follow-up.

However, this study was limited by its open-label design and the lack of

randomization.

Beyond classical systemic adverse events due to its action on peripheral and

central dopamine receptors, local side effects of continuous subcutaneous

apomorphine treatment are common, ranging from pruritic erythema to pain-

ful nodules (Garcia Ruiz et al., 2008). Histological examination of skin nodules

in 10 patients revealed a florid panniculitis with some fat necrosis and

an eosinophilic infiltrate in most patients (Acland et al., 1998). Cutaneous

side effects are usually mild to moderate, but require sometimes treatment

discontinuation. A dilution of 5 mg/mL apomorphine instead of 10 mg/m

and a regular change of the injection site allow reducing local side effects.

Ultrasonic treatment may also provide some relief (Hughes et al., 1993;

Poltawski et al., 2009).
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Neuropsychiatric symptoms are frequent in later disease stages at the time PD

patients receive continuous subcutaneous apomorphine infusion. It may therefore

be difficult to distinguish between disease-associated symptoms and treatment-

related side effects. In a large retrospective series of 82 patients, 26% had hallu-

cinations and 33% cognitive impairment at treatment initiation (Garcia Ruiz et al.,

2008). No change was observed during the mean follow-up of 20 months but nine

patients were excluded from the analysis because of drop-out in relation to psy-

chosis. In another cohort of 25 patients, three stopped apomorphine because of

psychiatric side effects. Overall, 44% showed psychiatric changes during a mean

follow-up of 4.5 years, most of them developing concomitant cognitive impairment

(Pietz et al., 1998). These results suggest that psychiatric side effects of apomor-

phine should be thoroughlymonitored in patients with cognitive impairment while

treatment discontinuation in relation to these adverse events only occurs in a low

number of patients.

Continuous nasoduodenal levodopa infusion has been assessed in PD patients

with motor fluctuations and dyskinesias in two small randomized controlled trials

with a cross-over design (Kurth et al., 1993; Nyholm et al., 2005). In the first study,

the efficacy of continuous duodenal levodopa infusion was compared with inter-

mittent oral levodopa in 10 PD patients with motor fluctuations. The clinical

outcome was assessed with the Parkinson Mobility Scale, a 9-point scale ranging

from “severe abnormal involuntary movements” to “severe slowness” (Kurth et al.,

1993). Continuous duodenal levodopa infusion increased total hours of “good”

function and decreased plasma levodopa level variability by 47%. All enrolled

patients decided to pursue duodenal levodopa infusion after the end of the study.

The second study found for continuous duodenal levodopa infusion a 14%

increase in “ON” time by reducing “OFF” time without increasing “ON” time

with dyskinesias compared to conventional levodopa treatment. Median total

UPDRS scores were 53 versus 35 in favor of continuous duodenal levodopa

infusion. Quality of life was also significantly improved with levodopa infusion,

while safety was not different between treatments.

The experience in daily practice with continuous intraduodenal levodopa

infusion has recently been reported for 102 patients (Devos, 2009). In almost all

of these patients, intraduodenal levodopa infusion was the last line treatment for

motor complications. Accordingly, in 98% of them continuous apomorphine

infusion or DBS had failed or were contra-indicated. Dyskinesias were improved

in 95% on a 3-point rating scale (improvement - no change - worsening). Most side

effects were related to the gastrostomy or the infusion technique (problems with the

inner tubing or pump failure) and required discontinuation in 8%. Hallucinations

were seen in two thirds and half of the patients were demented. Severe hallucina-

tions were noted in 42% at the beginning of intraduodenal levodopa infusion

without any worsening over time.
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D. RE-POSITIONING OF EXISTING DRUGS FOR THE TTREATMENT OF DYSKINESIA

1. Antiepileptics

The antidyskinetic properties of different antiepileptic drugs have been assessed in

small pilot studies. Accordingly, levetiracetam increased “ON” time without or

with non-troublesome dyskinesia by 18% while “ON” time with troublesome

dyskinesia was reduced by 12% (Zesiewicz et al., 2005). However, there was a

considerable drop-out rate of 56% of patients, mostly because of somnolence. In a

second study with levetiracetam, there was also a remarkable drop-out rate (44%)

due to worsening of PD symptoms and somnolence (Lyons and Pahwa, 2006). Of

the remaining five patients, four discontinued levetiracetam after the end of the

study because of side effects. In contrast, a recent exploratory randomized con-

trolled trial (RCT) reported good tolerability and mild significant effect on “ON”

time without dyskinesia with levetiracetam 500–1000 mg/d (Stathis et al., 2011). A

second RCT showed no significant change in AIMS but mild positive effect on

UPDRS IV dyskinesia using doses up to 2000 mg/d, with no major tolerability

issues (Stathis et al., 2011; Wolz et al., 2010).

The effect of topiramate on dyskinesia, another approved antiepileptic drug,

has been evaluated in several small studies (no results yet reported).

Zonisamide (25–100 mg) has been tested in a large, randomized study

including 347 PD patients with motor fluctuations (Murata et al., 2007). The

secondary endpoints included UPDRS part IV scores. Patients receiving zoni-

samide had significantly lower UPDRS motor scores and daily “OFF” time

compared to placebo. UPDRS part IV scores were not different between groups,

while zonisamide (50 mg) decreased disabling dyskinesia when separately ana-

lyzing item 33 of the UPDRS part IV (severity of dyskinesia ranging from

0 = not disabling to 4 = completely disabled). Patients receiving zonisamide

complained dose-dependently about more dizziness, apathy and, a decrease in body

weight. Zonisa-mide is approved in Japan as a treatment for PD motor symptoms

since 2009.
2. Atypical Antipsychotics

The efficacy of clozapine, a dopamine receptor antagonist with serotonergic,

muscarinic, adrenergic and histaminergic action, has been evaluated in several

small pilot studies (Bennett et al., 1993, 1994; Durif et al., 1997; Pierelli et al., 1998)

and in one larger RCT (Durif et al., 2004). In the latter, 50 dyskinetic PD patients

either received clozapine up to 75 mg/d or placebo for 10 weeks. Patients under

clozapine gained 2.4 h of “ON” time without dyskinesia compared to placebo,

while the duration of “OFF” periods remained unchanged in both groups.

Dyskinesia ratings at rest during an acute levodopa challenge were also decreased
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in the clozapine group, while dyskinesia severity in the same condition during an

activation task was not different. Clozapine had no effect on the antiparkinsonian

action of levodopa.

Olanzapine has shown antidyskinetic properties in a small randomized, pla-

cebo-controlled cross-over trial. Nine PD patients with physically disabling or

socially embarrassing dyskinesia either received olanzapine up to 7.5 mg/d or

placebo for 2 weeks (Manson et al., 2000b). Objective and subjective efficacy

measures showed a decrease in dyskinesia severity and duration in favor of olan-

zapine. However, adverse events were more common with olanzapine, consisting

in increased “OFF” time, parkinsonism, and drowsiness. As a result, olanzapine is

not recommended for use in PD.

Quetiapine, another atypical antipsychotic with few extrapyramidal side

effects, has been tested in a small randomized, placebo-controlled, cross-over study

(Katzenschlager et al., 2004). Patients either received 25 mg/d of quetiapine or

placebo for 2 weeks. No differences were observed between quetiapine and pla-

cebo. The double blind trial was followed by an open-label period of around

30 days during which patients received up to 50 mg/d of quetiapine. Mild

improvement in dyskinesia duration and severity were observed during the

open-label period according to patient home diaries.
E. OTHER

Cannabis has been examined in a randomized, placebo-controlled cross-over trial

(Carroll et al., 2004). From 59 screened patients, 20 were found to be unsuitable for

the study and 14 declined participation. Patients received cannabis extract (stan-

dardized to 2.5 mg D9-THC and 1.25 mg cannabidiol) up to a maximum of

0.25 mg/kg THC per day or placebo. Cannabis tended to worsen dyskinesia on

UPDRS part IV ratings. No serious adverse events were observed.
F. NEW AGENTS AND TARGETS FOR THE TREATMENT OF DYSKINESIA

Research of recent years has focused on the development of non-dopaminergic

drugs including molecules acting on serotonin, glutamate, and adrenergic

receptors.

Agonists of 5-HT1A and 5-HT1B as well as antagonists of 5-HT2A and 5-HT2C

receptors are in development for motor fluctuations and dyskinesia. The most

advanced compound is the 5-HT1A agonist sarizotan which failed to demonstrate

effective for dyskinesia in two late stage trials (Goetz et al., 2007). Reasonsmay have

included prominent placebo effect (Goetz et al., 2007) and dose limitations due to
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lower potency dopamine D2 receptor antagonism. The current status of late

development for sarizotan is uncertain at present.

Of all other targets, mGlu5 receptor negative allosteric modulators (NAM) are

most advanced in clinical development for dyskinesia. In this view, AFQ056 has

shown antidyskinetic effects in parkinsonian non-human primates and in a phase

Ib/II clinical trial in PD patients (Berg et al., 2010; Gr�egoire et al., 2011). AFQ056

decreased AIMS scores by 50% compared to placebo. UPDRS motor scores were

also improved by more than three points versus placebo, but the study was under-

powered to reach statistical significance. A large RCT is ongoing and ADX10059,

another mGlu5 NAM is entering early stage assessments for dyskinesias.

The selective NMDA receptor 2B (NR2B) antagonist taxoprodil has shown

antidyskinetic properties while abnormal thinking, depersonalization, and amne-

sia were frequent side effects (Nutt et al., 2008). Selective AMPA receptor antago-

nists such as perampanel have also been evaluated in PD patients. However, the

drug failed to demonstrate a significant effect on wearing-off, dyskinesia, and

cognition (Eggert et al., 2010).

Safinamide, a sodium channel inhibitor withMAO-B inhibitory activity initially

developed as an antiepileptic, has been shown to inhibit glutamate release (Schapira,

2010). Safinamide is currently in late stageRCTs formotor control, and is also being

explored for potential efficacy against dyskinesia and cognitive impairment in PD.

The effect of fipamezole, an a-2-adrenergic antagonist, on dyskinesia has been

assessed in a phase II trial (Lewitt et al., 2010). The overall results displayed no

differences between drug and placebo probably because of an important heteroge-

neity between the enrolling centers. When only looking at US subjects, fipamezole

showed a significant decrease in dyskinesia ratings without worsening parkinsonism

(Lewitt et al., 2010). Another a-2-adrenergic antagonist, idazoxan, has been tested in
two small clinical studies. Results were conflicting (Manson et al., 2000a; Rascol et al.,

2001) and the development of this drug for dyskinesia was finally stopped.

Novel approaches to dyskinesia therapy will be more detailed in a specific

chapter of this issue.
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Strategies to avoid or minimize dyskinesia and other motor complications of

chronic dopamine replacement therapy in Parkinson’s disease (PD) remain a

significant unmet clinical need. As such, the refinement and development of

animal models with which to delineate the underlying molecular mechanisms of

dyskinesia and to find effective treatment paradigms remain as necessary as

ever. Toxin-based models including the MPTP-lesioned primate and the

6-hydroxydopamine (6-OHDA) lesioned rodent continue to form the bedrock of

current L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia modeling

approaches. This chapter reviews these models, illustrating their origins,

application and strengths as well as problems that accompany their use. We also

describe new methodologies that, although still in their infancy, may offer

powerful future alternatives by which to better model this debilitating

complication of current PD treatment.
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I. Historical Development of a Model of L-DOPA-Induced Dyskinesia
Not long after George Cotzias and colleagues began chronically administering

the dopamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA) to patients with

Parkinson’s disease (PD) in the 1960s (Cotzias et al., 1967) came the recognition that

this break-through symptomatic treatment for PD was marred by the development

of treatment-related motor complications (Cotzias et al., 1968). Such complications

include a shortening in duration of the anti-parkinsonian benefit of L-DOPA

(“wearing-OFF”), sporadic benefit (“ON–OFF” phenomenon) and L-DOPA-

induced dyskinesia (LID) (Stocchi et al., 2008). These latter abnormal involuntary

movements (AIMs) may either be predominantly choreiform or dystonic in nature

(Fabbrini et al., 2007) and whilst early L-DOPA treatment regimens often involved

what are now recognized to have been profound over-medication of PD patients,

LID continues to exert a major negative impact to patient’s quality of life

(Hung et al., 2010). After 15 years of dopaminergic therapy, LID will affect 95%

of PD patients causing significant disability and restricting the use of L-DOPA to

combat parkinsonian symptoms (Hely et al., 2005). Fifty years on there is still a

limited understanding of LID and a demonstrable need for good animal models.

Ideally such a model will recapitulate all the elements of LID although as yet the

relationship of LID to different features of the disease is uncertain. It would there-

fore ideally mimic underlying disease pathogenesis and its behavioral consequences,

as well as both the positive and negative effects of L-DOPA treatment. Experimental

models of LID have developed out of those used to study the consequences of

dopamine denervation and potential therapeutics for PD. While we have made

significant progress using this approach they also have significant limitations.

At around the time when treatment-related motor complications such as LID

were first being noted in PD patients, the animal models available for PD were

centered around use of the rodent or rabbit. The acute administration of the

irreversible vesicular monoamine transporter inhibitor reserpine produced a tran-

sient, bilateral nonspecific monoamine depletion resulting in profound akinesia,

but lacked any PD-like neuronal degeneration (Carlsson et al., 1957). A significant

advance came with the discovery of selective neurotoxins such as 6-hydroxydo-

pamine (6-OHDA) (Ungerstedt, 1968). This catecholaminergic toxin is taken up

by monoamine reuptake transporters, leading to increased oxidative stress and

subsequent cell death. At the time, this model provided the closest approximation

not only of behavioral symptoms of untreated PD but for the first time true

neuronal degeneration. Whilst L-DOPA exhibits anti-parkinsonian efficacy in

both the reserpine and 6-OHDA rodent models (Carlsson et al., 1957; Uretsky

and Schoenfeld, 1971) it was believed that neither species reproduced the diffuse

and complex range of abnormal movements observed in patients with LID. Key in

the timeline of dyskinesia research was in 1983 when a contaminant in the
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synthesis of meperidine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),

was identified as the cause of sudden onset parkinsonism in a group of drug addicts

(Langston et al., 1983). Not only were their symptoms indistinguishable from

idiopathic PD, L-DOPA or dopamine agonist administration also evoked all of

the treatment-related motor complications including dyskinesia (Langston and

Ballard, 1984). Subsequent administration of MPTP to various species of non-

human primate was able to recapitulate all these key elements of parkinsonism

including loss of nigrostriatal dopaminergic cells and behavioral sequelae (Burns

et al., 1983; Jenner et al., 1984; Langston et al., 1984). Moreover, there was now a

model in which chronic administration of L-DOPA provided the closest behavioral

correlate of dyskinesia in PD patients yet seen (Bedard et al., 1986; Clarke et al.,

1987). This development provided significant advancement in the understanding

of the pathophysiology and pharmacology of LID and it continues to be the most

robust and clinically relevant model. Over a decade later, Cenci and colleagues

published the first paper reasserting a pivotal role for the 6-OHDA lesioned rat

model in dyskinesia studies (Cenci et al., 1998). This has since been extended into

the mouse (Lundblad et al., 2004), which is now being further advanced with the

evolution of transgenic species (Darmopil et al., 2009). This review revisits these

models, exploring their role specifically in the development of novel treatments for

dyskinesia and critically evaluates the contribution of each, whilst exploring how

we can move the field forwards.
II. MPTP-Lesioned Primate Model of L-DOPA-Induced Dyskinesia
A. INTRODUCTION

After more than 25 years the L-DOPA-treated, MPTP-lesioned primate

remains the gold standard in terms of modeling dyskinesia in PD. No current

approach surpasses the fidelity with which the key behavioral phenomenology and

underlying neurophysiological changes seen in PD patients with LID are repro-

duced. The MPTP-lesioned primate has been used frequently in the development

of novel therapeutics predicting the efficacy and therapeutic outcome of novel

dopaminergic (Jenner, 2009) and non-dopaminergic treatments (Fox et al., 2006),

surgical (Aziz et al., 1991), and transplantation approaches (Bakay and Herring,

1989). The model has also been pivotal in helping delineate some of the mecha-

nistic underpinnings of LID such as the role of the direct striatonigral and indirect

striatopallidal pathways and subthalamic nucleus (STN) in regulating output

regions of the basal ganglia in generating the motor symptoms of PD and LID

(Crossman et al., 1985; DeLong et al., 1985; Wichmann and DeLong, 2003).
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B. BASIS FOR THE MODEL: THE MPTP-LESIONED PRIMATE

Prior to the induction of clinically relevant dyskinesia in any primate species, a

parkinsonian phenotype must first be established. Administration ofMPTP evokes

the primary parkinsonian motor abnormalities seen in PD patients including

bradykinesia, postural instability, and rigidity (Burns et al., 1983). Of these, the

impact of a potential novel therapy on bradykinesia or akinesia, along with the

animal’s general range of movement (extent of spontaneous exploratory behavior)

is often of utmost importance. A host of primate species have been utilized in

studies of parkinsonism and LIDwith the rhesus and cynomolgus macaque (macaca

mulatta and macaca fascicularis respectively) species being the most frequently

employed (Burns et al., 1983). Administration of MPTP to other species including

the common marmoset (Callithrix jacchus) (Jenner et al., 1984), squirrel monkey

(Langston et al., 1984), and African green monkey (Elsworth et al., 1987) has also

been successfully undertaken. MPTP is most commonly administered repeatedly

via systemic intravenous or subcutaneous injection to give a bilateral parkinsonian

syndrome. Although with sufficiently high doses of L-DOPA dysregulation of

striatal function and subsequent LID may be invoked in normal intact animals

(Pearce et al., 2001), typically the severity of dyskinesia in non-human primates, as

with human PD patients is correlated to the severity of underlying parkinsonism

(Obeso et al., 2000; Schneider et al., 2003). Thus, most MPTP dosing regimens

designed with dyskinesia studies in mind strive to achieve a substantial and irre-

versible loss of dopaminergic phenotype. By contrast, mild MPTP regimens, for

example in the marmoset using low-dose MPTP (1 mg/kg daily for 3 days) to

model earlier disease stages, evoked only a 60% loss of tyrosine hydroxylase

positive cells in the substantia nigra with animals displaying modest parkinsonian

symptoms and a poor response to L-DOPA (Iravani et al., 2005). Furthermore,

most primate species exhibit some capacity for spontaneous behavioral recovery if

the MPTP regimen employed is not sufficiently robust. Indeed, this feature has

been usefully exploited in order to explore potential compensatory mechanisms in

early stages of PD (Boulet et al., 2008; Mounayar et al., 2007). In the marmoset a

more severe parkinsonian phenotype may be achieved using higher doses of

MPTP for longer periods (for example 2 mg/kg once daily for 5 days) (Iravani

et al., 2005; Visanji et al., 2009a). In contrast, macaques appear to demonstrate

greater variation in their sensitivity to MPTP and most regimens, either higher

doses (1–2 mg/kg) given once weekly (Samadi et al., 2003) or lower doses (0.2 mg/

kg) given daily for up to 2 weeks (Bezard et al., 1997) may require individual

titration of MPTP dose over a period of several months in order to produce a

group of animal with comparable levels of disability. A single intracarotid infusion

of MPTP has been employed as a means of obtaining a unilateral parkinsonian

phenotype akin to that of the 6-OHDA lesioned rat (Bankiewicz et al., 1986). This

approach has also been recently extended to combine sequential intracarotid and
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systemic MPTP administration to give an asymmetric lesion that incorporates

severe and partially lesioned hemispheres (Kells et al., 2010). However, whilst of

great utility for studies in which an internal contralateral “control” brain hemi-

sphere remains against which to compare the effect of MPTP-lesion or unilateral

therapy the standard intracarotid model may not be best suited for use in dyski-

nesia studies (Lieu et al., 2011).

In generating more robust MPTP-induced lesions suitable for LID experi-

ments primates of either sex may successfully be employed (Johnston et al., 2010c).

Sensitivity to the effects of MPTP becomes of greater significance however when

the age of the animal is taken into consideration. For example, young macaques

(5–9 years old) required on average 3-fold higher total doses of MPTP to achieve

the same level of parkinsonian symptoms as old (20–23 years) animals

(Ovadia et al., 1995). Care should therefore be taken in the design of MPTP-

primate studies to employ as closely aged a group of animals as possible.
C. GENERATION OF L-DOPA-INDUCED DYSKINESIA IN THE PRIMATE

Chronic treatment of PD patients with L-DOPA results in the development of a

spectrum of motor complications including both choreiform and dystonic dyski-

nesias (Fabbrini et al., 2007) that are virtually indistinguishable from those observed

inMPTP-lesioned primates (Clarke et al., 1987; Jenner, 2003). Studies in which the

ability of a novel therapeutic to impact on LID is assessed commonly fall into two

broad categories. Thus, two or more groups of “de novo” parkinsonian animals may

be treated with L-DOPA either alone or in combination with test compound and

the effect on the genesis and development of LID assessed over time (Visanji et al.,

2009a). Alternatively, animals are treated chronically with L-DOPA for several

weeks or months to evoke established, stable expression of LID prior to assessment

of the acute or chronic effect of test compound when co-administered with

L-DOPA (Bezard et al., 2004; Henry et al., 1999; Iravani et al., 2003; Johnston

et al., 2010b). For each of these studies the propensity of a potential therapeutic to

influence the expression of dyskinesia may be tested in various ways. Thus, an

agent may act to reduce dyskinesia evoked by optimal or supraoptimal doses of

L-DOPA that maximally reverse parkinsonian symptoms (Bezard et al., 2004;

Johnston et al., 2010b; Morin et al., 2010). Alternatively, the ability of a therapeutic

to enhance the anti-parkinsonian benefit afforded by threshold doses of L-DOPA

that only partially alleviate symptoms whilst evoking less dyskinesia than that

achieved by merely increasing L-DOPA dose (an L-DOPA “sparing” effect) may

also be assessed (Johnston et al., 2010c; Kanda et al., 2000).

The route and dosing paradigm by which L-DOPA is administered in order to

elicit dyskinesia is critical. In the macaque, it is often necessary to individually

titrate L-DOPA doses in order to elicit the same levels of dyskinesia (Johnston et al.,



60 TOM H. JOHNSTON AND EMMA L. LANE
2010b) in spite of the underlying dopaminergic lesion being comparable in such

animals (Guigoni et al., 2005). For primate dyskinesia studies in which the aim is to

inform the design and potential outcome of clinical Phase II studies, comparable

means of evoking dyskinesia between primate and PDpatients should be employed

(Fox et al., 2006). Thus, L-DOPA may be given orally at doses that would be

comparable to those used clinically but at the risk of insufficient dyskinesia being

evoked to demonstrate statistically significant effects of treatment. Conversely, a

dose of L-DOPA that is too high, whilst providing robust expression of dyskinesia in

the primate, may be such that subtle effects of treatment are missed (Blanchet et al.,

1999). Although intravenous infusion of L-DOPA is sometimes used in a clinical

proof-of-concept setting in PD patients to allow controlled assessment of dyskinesia

with optimal anti-parkinsonian effect (Verhagen Metman et al., 1998a) it is not

used in primate models due to the complexities of restraining the animal.

Intraperitoneal or subcutaneous routes of L-DOPA administration using the

methyl-ester form to provide more stable and reproducible plasma levels are

however used commonly (Gomez-Ramirez et al., 2006) thus avoiding potential

variability in absorption and first-pass metabolism of L-DOPA associated with the

oral route (Cooper et al., 1984).

Differences in the phenomenology of the dyskinetic response to L-DOPA are

apparent between various primates with some correlation between phylogenetic

complexity of the species and the breadth of PD-like dyskinesias expressed. For

instance, macaques readily express both choreiform and dystonic forms of dyski-

nesia (Boyce et al., 1990a) whereas in the marmoset distinguishing the two types

may be less straightforward (Fox and Brotchie, 2010). However, the locomotor

activity response to L-DOPA challenge is generally more robust in the marmoset

making it an excellent model in which to assess the anti-parkinsonian effect of

monotherapy or that of an adjunct treatment in combination with L-DOPA (Fox

and Brotchie, 2010).

In all primate species, the severity of dyskinesia generally increases with the

duration of frequency of L-DOPA therapy (Kuoppamaki et al., 2007). Much work

has focused on the pulsatility of central dopamine receptor stimulation as being

key in evoking dyskinesia in both primate and human (Olanow et al., 2006; Smith

et al., 2003). Such observations have led to the development of therapeutic strat-

egies to deliver continuous dopamine stimulation with agents such as entacapone

(Smith et al., 2005) or transdermal delivery of dopamine agonists (Stockwell et al.,

2009). However, in the context of primate modeling, pulsatile dopamine receptor

stimulation is often employed to better evoke robust expression of dyskinesia in

naive MPTP-lesioned animals (Visanji et al., 2009a). Chronic treatment with

L-DOPA in both PD patients and parkinsonian primates not only increases the

severity of dyskinesia but modulates its temporal pattern of expression following

acute challenge. Thus, upon first administration of L-DOPA to de novo animals

there is a graded reversal of parkinsonism and accompanying expression of
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dyskinesia as a product of increasing L-DOPA dose. In chronically treated animals

or in PD patients following long-term therapy, there is a more rapid anti-parkin-

sonian response (Nutt et al., 2002) and an “all-or-nothing” dyskinetic effect in

which increasing the dose of L-DOPA further fails to evoke more any more severe

a response (Mestre et al., 2010). The MPTP-primate also successfully models the

lack of separation of anti-parkinsonian and pro-dyskinetic properties of L-DOPA

seen in chronically treated PD patients (Nutt et al., 2010). Following chronic dosing

with L-DOPA inMPTP-primates, usually after several weeks or months of admin-

istration, dyskinesia is typically stable and reproducible between dosing

(Pearce et al., 1995) thus allowing the reliable assessment of adjunct treatment

on acute expression of LID (Johnston et al., 2010e). Peak levels of dyskinesia (“peak-

dose”) as expressed in parkinsonian primates, typically occurs when plasma levels

L-DOPA are maximal (Clarke et al., 1987; Crossman et al., 1987). “Diphasic”

dyskinesia may be experienced by PD patients as plasma levels of L-DOPA are

rising and falling but is less commonly examined in the MPTP-primate

(Boyce et al., 1990b). Interestingly, the expression of diphasic dyskinesia seems

temporally correlated with another complication of long-term L-DOPA treatment

that of “beginning and end-of-dose worsening.” Thus, after acute L-DOPA chal-

lenge, animals exhibit a worsening of motor function before any improvement,

and at the end of dose period, after decline in L-DOPA benefit, motor performance

shows rebound worsening (Kuoppamaki et al., 2002).

D. RATING SCALES

In addition to the assessment of motor complications such as dyskinesia in the

L-DOPA-treatedMPTP-primate, it is essential that measurements of parkinsonian

disability are first conducted. Not only is it vital to describe the extent to which a

given dose of L-DOPA affords benefit but also to gauge the level of disability

exhibited by the animal in the untreated parkinsonian state. Thus, the therapeutic

potential of a treatment that reduces LID is greatly compromised if it also nega-

tively impacts on anti-parkinsonian benefit. A multitude of scales for assessing

parkinsonian disability in the primate have been developed (reviewed by

Imbert et al., 2000). All the scales currently in use derive from clinically employed

rating scales such as the Unified Parkinson’s Disease Rating Scale (UPDRS)

(Goetz et al., 2008b). Although weighted differently between scales, the cardinal

features of parkinsonism including range of movement, bradykinesia, posture, and

alertness are all represented. Since the two major primate species employed in PD

research, the marmoset and macaque, do not show appreciable levels of tremor in

response to MPTP (Fox and Brotchie, 2010), some versions of the scale do not

include this parameter (Johnston et al., 2010b). These scales are applied to recorded

footage of the animal by trained personnel, optimally neurologists specializing in

movement disorders who are blinded to the experimental condition. Progress is
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being made in digital computer-based assessment of video-footage (Saiki et al.,

2010) although the sophistication required to distinguish between complex move-

ments, for example hyperkinesia and chorea, may still be lacking. Automated

measures of total locomotor activity are also employed for instance using passive

infrared sensor placed above individual observation cages (Visanji et al., 2009b) or,

as a measure of an animal’s total activity across whole 24 h periods, accelerometers

may be attached to the animal’s collar (Johnston et al., 2010d). Assessment of an

animal’s finemotor skill as well as aspects ofmotivation and cognitive ability that are

impacted upon by MPTP-lesioning and restored by L-DOPA treatment may be

made using the monkey Movement Assessment Panel (mMAP) (Gash et al., 1999).

As with parkinsonian disability, scales for the assessment of dyskinesia in

primates have in large part been modified from those used to rate dyskinesias in

human PD patients (reviewed by Colosimo et al., 2010). Increasingly recognized is

the need for methods of assessment in primate to inform the type of endpoints that

would be measured at Phase II in the clinic and furthermore bear some compar-

ison to quality of life measures reported by the patient themselves at Phase III

(Fox et al., 2006). To these ends, of the existing dyskinesia scales used in the clinic,

the Abnormal Involuntary Movement Scale (AIMS) (Guy, 1976) and the Rush

Dyskinesia Rating Scale (Goetz et al., 1994) are recommended since both are in

regular use and have had multiple clinimetric studies establish that they are valid,

reliable, and sensitive (Colosimo et al., 2010). The AIMS scale assesses dyskinesia

intensity according to a 4-point scale across seven body parts while the Rush scale

assesses the disability imparted by dyskinesia on performance of specific activities.

Phase II relevant equivalents of both scales exist in the form of the macaque AIMS

scale (Blanchet et al., 1998), marmoset dyskinesia-disability scale (Pearce et al.,

1995), and the global non-human primate dyskinesia rating scale (GPDRS) for

the squirrel monkey (Petzinger et al., 2001). A recently devised human dyskinesia

scale, the Unified Dyskinesia Rating Scale (UDysRS) was developed specifically

for the assessment of dyskinesia in PD (Goetz et al., 2008a). Although currently

lacking long-term validation across clinical centers, the UDysRS represents amore

comprehensive rating system that seeks to capture not only measures of disability

and severity of dyskinesia as assessed clinically but also patient perceptions of their

dyskinesia, a factor much more relevant to successful outcome at Phase III. As a

consequence of this, concerns have arisen that existing primate scales, although

generally reliable indicators of efficacy for anti-dyskinetic actions of non-dopami-

nergic drugs at Phase II, may not adequately serve in the successful translation of

potential therapies for motor complications to Phase III trial (Fox et al., 2006;

Linazasoro, 2004). This concern reflects the frequent absence of Phase III-relevant

endpoints in primate studies. Alternative assessments have been designed to model

clinical measures of quality of a treatment’s benefit. For example, to provide some

measure of proportion of time for which dyskinesia is present (MDS-UPDRS item

4.1) (Goetz et al., 2008b) and diary measures of duration of anti-parkinsonian
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benefit (ON-time) that incorporate the impact of troublesome dyskinesia such as

proportion of ON-time without troublesome dyskinesia (Encarnacion and Hauser,

2008). These, unlike the traditional measures of the impact of dyskinesia employed

in the majority of non-human primate studies, have been successfully employed in

Phase III to provide a bridge through to the approval process and successful clinical

use (Rascol et al., 2005). Thus, a recent suggestion has been to incorporate measures

of “good” ON-time, when there is reversal of parkinsonism with either no or non-

disabling dyskinesia in contrast to “bad” ON-time when the animal exhibits a lack

of parkinsonism but with disabling dyskinesia (Johnston et al., 2010b, 2010c).
E. USE OF THE MODEL

A multitude of studies have employed the MPTP-lesioned primate model to

explore the pathogenesis underlying both parkinsonism and LID. These include

investigations as to the effect of dopaminergic denervation on the electrophysiology

of basal ganglia nuclei (Wichmann and DeLong, 2003) and pre- and post-synaptic

molecularmechanisms (Calabresi et al., 2010; Fasano et al., 2010; Hallett et al., 2005).

In this regard the primate model excels in being the closest representation both

anatomically and in expression of pathological behavioral phenotype, to the human

disease state. However, post-mortem studies of this type present huge cost and

logistical obstacles and most commonly are first investigated using rodent models.

Perhapsmore widely employed, theMPTP-lesioned primate remains without equal

as an example of a neurological disease model with which to assess novel therapeu-

tics with potential to improve parkinsonian disability, either asmonotherapy or as an

adjunct to L-DOPA. With such expectation placed upon it, the MPTP-primate’s

ability to inform and predict success in the clinic has been subjected to considerable

scrutiny (reviewed by Fox et al., 2006). The MPTP-primate has been employed to

optimize use of L-DOPA or dopamine agonists and thus informed clinical dosing

paradigms that minimize the development and/or expression or motor complica-

tions of treatment (Jackson et al., 2007; Smith et al., 2005). Use of non-dopaminergic

therapies in PD long preceded that of L-DOPA lending credence to a vast array of

subsequent studies demonstrating the role of glutamate, serotonin, noradrenaline,

and other transmitters in the pathogenesis and expression of parkinsonian and

dyskinetic behaviors. Table I serves to illustrate the considerable breadth of pre-

clinical efficacy studies of novel therapeutics in the MPTP-primate and, where

conducted, the equivalent clinical correlate. Examples of both translational succ-

esses such as the noradrenergic a2 antagonist, fipamezole (Dimitrova et al., 2009;

Johnston et al., 2010c), and the adenosine A2a antagonists such as preladenant

(Hauser et al., 2010; Hodgson et al., 2010) may be compared with application of

opioid antagonists (Fox et al., 2004; Henry et al., 2001) or monoamine reuptake

inhibitors Y (Frackiewicz et al., 2002; Pearce et al., 2002) that while still affording



Table I

ASSESSMENT OF SELECT APPROACHES WITH POTENTIAL FOR THE TREATMENT OF L-DOPA-INDUCED DYSKINESIA IN PRE-CLINICAL STUDIES AND MAN.

Class and Receptor/

Target Subtype

Name of Compound Demonstrated Ability to Evoke Reduced Dyskinesia or to Lessen L-DOPA-Induced Dyskinesia:

6-OHDA-lesioned rat MPTP-lesioned primate PD patient Comment

Dopaminergic

D1/D2/D3 agonist Rotigotine Y (Schmidt et al., 2008) Y (Stockwell et al., 2009) Y (Poewe et al., 2007) Not anti-dyskinetic per

se but may evoke less

dyskinesia than

L-DOPA when given

as monotherapy or in

combination with

L-DOPA

D2/D3 agonist Pramipexole

Cabergoline

Y (Larramendy et al.,

2008)

Y (Larramendy et al.,

2008)

Y (Tayarani-Binazir et al.,

2010b)

Y (Fedorova and

Chigir, 2007; Poewe

et al., 2007)

Ropinirole Y (Carta et al., 2008) Y (Jackson et al., 2007;

Pearce et al., 1998)

Y (Hauser et al., 2007)

D3 partial agonist BP897 Y (Visanji et al., 2006) Y (Bezard et al., 2003;

Hsu et al., 2004)

Not solely due to

actions at D3R

D4 antagonist L-745,870 N/D Y (Huot et al., 2010a) N/D

DA reuptake/MAO-B

inhibition

Safinamide N/D Y (Gregoire et al., 2010) Y (Meshram et al.,

2010; Schapira et al.,

2010)

Brasofensine N/D Y (Pearce et al., 2002) N (Frackiewicz et al.,

2002)

As for rotigotine
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Table I (Continued )

Class and Receptor/

Target Subtype

Name of Compound Demonstrated Ability to Evoke Reduced Dyskinesia or to Lessen L-DOPA-Induced Dyskinesia:

6-OHDA-lesioned rat MPTP-lesioned primate PD patient Comment

Mixed monoamine

reuptake inhibitor

UWA-101 N/D Y (Huot et al., 2010b) N/D

SEP-228791 N/D Y (Johnston et al., 2010a) N/D

COMT inhibitor Entacapone Y (Marin et al. 2006) Y (Marin and Obeso,

2010; Smith et al., 2005)

N (Hauser et al., 2009) May require more

frequent

administration to be

effective

Nebicapone N/D N/D N (Ferreira et al., 2010) Increases ON-time

only

MAO-B inhibitor Rasagiline N/D N/D Y (Parkinson-Study-

Group, 2005)

Increases ON-time

but needs careful

L-DOPA titration to

avoid concomitant

increased LID

Potential

neuroprotective

Striatal dopamine

receptor desensitization

GRK6 overexpression Y (Ahmed et al., 2010) Y (Ahmed et al., 2010) N/D

Ras-GRF1 inhibition (Fasano et al., 2010) Y (Fasano et al., 2010) N/D

Noradrenergic

a2a/2c antagonists Idazoxan Y (Buck et al., 2010) Y (Domino et al., 2003;

Grondin et al., 2000;

Henry et al., 1999)

Y (Rascol et al., 2001)

Fipamezole N Y (Johnston et al., 2010c;

Savola et al., 2003)

Y (Dimitrova et al.,

2009)

No ON-time

extension in patients

Rauwolscine Y (Dekundy et al., 2007) Y (Henry et al., 1999) N/D

Clonidine Y (Dekundy et al., 2007) Y (Gomez-Mancilla and

Bedard, 1993)

N/D

Yohimbine Y (Dekundy et al., 2007) Y (Gomez-Mancilla and

Bedard, 1993)

N/D
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Table I (Continued )

Class and Receptor/

Target Subtype

Name of Compound Demonstrated Ability to Evoke Reduc yskinesia or to Lessen L-DOPA-Induced Dyskinesia:

6-OHDA-lesioned rat MPTP-les d primate PD patient Comment

Serotonergic

5-HT1a agonist (non-

selective)

Sarizotan Y (Gerlach et al., 2011) Y (Bibbian al., 2001;

Gregoire e , 2009)

Y (Bara-Jimenez et al.,

2005)

N (Goetz et al., 2007)

May also extend ON-

time

AlsoD3/4 antagonism

activity

Clozapine N (Dekundy et al., 2007) Y (Grondi al., 1999b) Y (Durif et al., 2004)

8-OHDPAT Y (Carta et al., 2007) Y (Iravani l., 2006;

Munoz et 2008)

N/D Worsens PD

symptoms

Pardoprunox Y (Jones et al., 2010) Y (Tayara inazir et al.,

2010a)

Y (Bronzova et al.,

2010)

Buspirone Y (Dekundy et al., 2007) N/D Y (Bonifati et al., 1994)

5-HT1b/1d agonist SKF-99101 N/D Y (Jackson l., 2004) N/D Worsens PD

symptoms

5-HT2a inverse agonist Pimavanserin N/D Y (Vanove al., 2008) N/D Reduces psychosis in

PD

5-HT2c antagonist (mixed) Quetiapine N/D Y (Oh et a 002) N

(Katzenschlager et al.,

2004)

Methysergide N/D Y (Gomez ncilla and

Bedard, 1 )

N/D

5-HT reuptake inhibition Paroxetine N/D N/D N (Chung et al., 2005)

Fluoxetine N (Dekundy et al., 2007) N/D N/D

Fluvoxamine N/D N (Iravan l., 2003) N/D

(Continued )
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Table I (Continued )

Class and Receptor/

Target Subtype

Name of Compound Demonstrated Ability to Evoke Reduced Dyskinesia or to Lessen L-DOPA-Induced Dyskinesia:

6-OHDA-lesioned rat MPTP-lesioned primate PD patient Comment

Glutamatergic

Non-selective NMDA

antagonist

Amantadine Y (Dekundy et al., 2007;

Lundblad et al., 2002)

Y (Blanchet et al., 1998;

Hill et al., 2004)

Y (Sawada et al., 2010;

Snow et al., 2000;

Verhagen Metman

et al., 1998b)

LY235959 N/D Y (Papa and Chase, 1996) N/D

NR2a-selective NMDA

antagonist

MDL 100,453 N/D N (Blanchet et al., 1999) N/D

NR2b-selective NMDA

antagonist

Traxoprodil N/D N (Nash et al., 2004) Y (Nutt et al., 2008) Risk of cognitive

deficits

Besonprodil N/D Y (Morissette et al., 2006) N/D

AMPA antagonist Talampanel N/D Y (Bibbiani et al., 2005) N/D

LY300164 N/D Y (Konitsiotis et al., 2000) N/D (-) enantiomer of

talampanel

IEM-1460 Y (Kobylecki et al., 2010) Y (Kobylecki et al., 2010) N/D GluR2-lacking, Ca2+

-permeable selective,

some NMDA

blockade

mGlu5 negative allosteric

modulator

MTEP Y (Mela et al., 2007;

Rylander et al., 2009)

Y (Johnston et al., 2010b;

Morin et al., 2010)

N/D May worsen PD

symptoms

MPEP Y (Jimenez et al., 2009;

Yamamoto and

Soghomonian, 2009)

Y (Morin et al., 2010) N/D

Fenobam Y (Rylander et al., 2010a) Y (Rylander et al., 2010a) N/D

ADX 48621 N/D Y (Hill et al., 2010) N/D Phase II ongoing

AFQ056 N/D Y (Gregoire et al., 2008) Y (Berg et al., 2010) Phase II ongoing

Exogenous cannabinoids

CB1 agonist Nabilone N/D Y (Fox et al., 2002) Y (Sieradzan et al.,

2001)

WIN 55,212-2 Y (Morgese et al., 2007) N/D N/D
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Table I (Continued )

Class and Receptor/

Target Subtype

Name of Compound Demonstrated Ability to Evoke Reduced Dyskinesia or to Lessen L-DOPA-Induced Dyskinesia:

6-OHDA-lesioned rat MPTP-lesioned primate PD patient Comment

CB1 inverse agonist Rimonabant N (Walsh et al., 2010) Y (van der Stelt et al., 2005) N (Mesnage et al.,

2004)

Opioids

Non-specific opioid

antagonist

Naloxone Y (Dekundy et al., 2007;

Lundblad et al., 2002)

Y (Klintenberg et al., 2002)

N (Samadi et al., 2003)

N (Fox et al., 2004)

m-opioid antagonist Naltrexone N/D Y (Henry et al., 2001)

N (Samadi et al., 2003;

Tamim et al., 2010)

N (Manson et al., 2001;

Rascol et al., 1994)

Cyprodime N/D Y (Henry et al., 2001) N/D

ADL5510 N/D Y (Fox et al., 2010) N/D

d-opioid antagonist Naltrindole N/D Y (Henry et al., 2001) N/D

Nor-binaltorphimine N/D Y (Henry et al., 2001) N/D

k-opioid agonist U50, 488 N/D Y (Cox et al., 2007) N/D May worsen PD

symptoms

TRK-820 Y (Ikeda et al., 2009) N/D N/D May worsen PD

symptoms

Adenosinergic

A2a antagonist Istradefylline Y (Lundblad et al., 2003;

Spinnewyn et al., 2010)

Y (Bibbiani et al., 2003;

Grondin et al., 1999a)

Y (Bara-Jimenez et al.,

2003; Kanda et al.,

2000)

Preladenant N/D Y (Hodgson et al., 2010) Y (Hauser et al., 2010)

Vipadenant N/D N/D Y (Papapetropoulos

et al., 2010)

Efficacious but toxicity

issues

A2a/A1 antagonist ASP5854 N/D Y (Mihara et al., 2008) N/D

(Continued )
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Table I (Continued )

Class and Receptor/

Target Subtype

Name of Compound Demonstrated Ability to Evoke Reduced Dyskinesia or to Lessen L-DOPA-Induced Dyskinesia:

6-OHDA-lesioned rat MPTP-lesioned primate PD patient Comment

Histaminergic

H2 antagonist Famotidine N/D Y (Johnston et al., 2010e) Y (Molinari et al.,

1995)

Reduces chorea

exacerbates dystonia

H3 agonist Immepip/Imetit N/D Y (Gomez-Ramirez et al.,

2006)

N/D Reduces chorea only

Cholinergic

Nicotinic agonist NP002 (nicotine

dehydrate bitatrate)

N/D Y (Quik et al., 2007) Y (Neuraltus, 2010) Phase II ongoing

Varenicline N (Huang et al., 2011) N/D N/D

Mecamylamine Y (Bordia et al., 2010)

N (Dekundy et al., 2007)

N/D N/D Effects only found with

chronic treatment, not

acute

A-85380 Y (Huang et al., 2011) N/D N/D Phase II ongoing

Miscellaneous

SV2a Levetiracetam N/D Y (Bezard et al., 2004) Y (Stathis et al., 2010)

Key: Y: Reduced expression of dyskinesia (either as monotherapy or in combination with L-DOPA) N: No effect of drug on dyskinesia N/D: Not determined
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considerable preclinical promise have yet to be successfully applied in the clinic.

Exhaustive commentary specifically regarding development of novel therapeutics

for dyskinesia in PD may be found in accompanying chapters of this book and

elsewhere (Buck and Ferger, 2010; Fox and Brotchie, 2010; Fox et al., 2006).
III. Unilateral 6-OHDA-Lesioned Rodent Model of L-DOPA-Induced Dyskinesia
A. INTRODUCTION

The considerable strengths of the primatemodels of LID support their primary

use in the translation of new anti-parkinsonian or anti-dyskinetic agents to the

clinic. However, in contrast to the rodent, their widespread use in understanding

mechanisms of LID is often limited by logistical and ethical concerns (indeed the

use of primates in Europe is becoming significantly more limited under new

legislation). Rodents can be used in greater abundance to create highly controlled

and homogenous experimental groups. Nevertheless the rodent model has only

been a relatively recent addition to the dyskinesia field, and has fought consider-

able controversy centered largely on the accuracy and relevance of the evoked

behaviors. It has now become widely accepted as an additional tool in the need to

understand PD and LID, albeit with limitations, many of which also apply to the

MPTP-lesioned primate.

From its inception in the late 1960s the 6-OHDA lesioned rat model has been

widely used in the study of PD. This toxin, administered stereotaxically as it cannot

cross the blood–brain barrier, is taken up through the catcholaminergic transporter

causing degeneration of catecholaminergic neurons thought to be through increased

oxidative stress. Complete bilateral dopaminergic depletion, as caused by MPTP in

primates, can be obtained by the administration of 6-OHDA into the lateral ven-

tricles but this has a significant impact on the health and wellbeing of the animal,

inducing adipsia and aphagia (Ungerstedt, 1971a) and is therefore rarely used today.

These consequences, however, can be avoided by the unilateral stereotaxic injection

of 6-OHDA directly into the nigrostriatal tract. Direct administration into the

substantia nigra produces rapid cell death within days whilst if targeted to the medial

forebrain bundle (containing the nigrostriatal dopaminergic projections) retrograde

cell death takes a little longer, and longer still if the toxin in injected into the terminal

regions in the striatum (about 2–3 weeks). The result is a dopaminergic lesion on one

side of the brain, leaving the animal capable of maintaining itself fully but with

lateralized motor and sensory impairments (Ungerstedt and Arbuthnott, 1970).

Typically it requires a specific behavioral task or challenge with a dopaminomimetic

agent to reveal these lesion-induced deficits in motor behavior and batteries of such
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tests are well described elsewhere (reviewed by Schwarting and Huston, 1996). The

extent and topographical location of the lesion determine the specific nature and

degree of the deficits, as well as the level of improvement attained by therapeutic

intervention. However, the primary use of this model has been in the exploitation of

the rotational locomotor asymmetry caused by the dopamine imbalance, an easily

measured indicator of dopaminergic activity. The indirect acting dopamine agonist,

amphetamine, increases synaptic dopamine in the intact hemisphere, but is unable

to do so in the dopamine depleted striatum, evoking robust ipsiversive rotations that

are correlated with lesion extent (Ungerstedt, 1971c). In contrast, direct acting

dopamine agonists and L-DOPA preferentially stimulate dopamine receptors that

have become supersensitive in the lesioned hemisphere, thus evoking contraversive

rotations (Ungerstedt, 1971b). This continues to be used as a screening tool for the

anti-parkinsonian potential of new agents but formerly had a limited relationship

with assessment of dyskinesia. The dyskinesiogenic potential of new ligands has been

evaluated against parameters of the rotational behavior observed in the chronically

L-DOPA treated rat, that is the response to L-DOPA becomes more rapid in onset

and increases in magnitude and some groups have found a reduced response

duration compared to the first day of treatment (Bevan, 1983; Deshaies et al.,

1984). This change in responsiveness (rapid onset and increased rate) is reminiscent

of the behavioral sensitization observed in non-human primates and PD patients,

while the reduced duration has been likened to the “wearing-OFF” effect.

“Wearing-OFF” is another complication of chronic L-DOPA administration where

patients require medicating at more frequent intervals as the efficacy of L-DOPA

wanes (Stocchi et al., 2008). It is now clear that these characteristics are not good

parameters against which to judge dyskinetic potential, as dopamine D2 receptor

preferring agonists have limited potential to induce dyskinesia in the clinic, but will

cause pronounced changes in rotational behavior in rats over time. In 1998, the first

paper was published by Cenci and colleagues, who demonstrated that beyond

circling behavior rats also display abnormal involuntary AIMs in response to

long-term administration of L-DOPA (Cenci et al., 1998). The behaviors were

described as torsional twisting of the torso, dystonic, and hyperkinetic movements

of the forelimb and rapid chewing motion of the orolingual area with tongue

protrusions. Using rating scales in a similar fashion to the MPTP-lesioned primate,

these behaviors can be scored based on their presence and severity over the course of

activity of L-DOPA or other pharmacological agent.
B. GENERATION OF L-DOPA-INDUCED DYSKINESIA IN THE RODENT

AIMs in the rodent are generated through the subchronic administration of

L-DOPA in combination with an aromatic acid decarboxylase inhibitor. The

ideology is clearly to be clinically relevant therefore low starting doses of
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L-DOPA are generally preferred (Cenci and Lundblad, 2007) although some

groups advocate high doses in the early stages of treatment then reducing after

AIMs have been established (Steece-Collier et al., 2003). Initial treatments typically

should evoke a mild contraversive rotational response and be sufficient to restore

motor function to the impaired side of the body as determined through symmet-

rical paw use in the cylinder test or performance on the rotarod (Lundblad et al.,

2002). Movements become increasingly pronounced and are present for a greater

proportion of the time “ON” L-DOPA. A stable response to L-DOPA at a single

dose is commonly obtained after 2–3 weeks of drug administration by which point

the dose can be increased if AIMs are not sufficiently severe.Once a stable state has

been reached this responding remains remarkably consistent, in both overall

severity and the distribution of AIMs across the subtypesmeasured (e.g., orolingual

or limb) and administration can be dropped to once or twice a week. The vari-

ability of absorption andmetabolism of oral administration is avoided by the use of

the methyl ester of L-DOPA, most commonly administered through a parenteral

route (typically subcutaneous). Initial studies used interperitoneal administration

and some suffered from a high degree of variability when some animals failed to

respond during particular trials. This “dose failure” rate was abolished by the now

preferred use of subcutaneous L-DOPA administration, giving similar behavioral

motor responses but with a slight shift in time course (Lindgren et al., 2007).

The location along the nigrostriatal pathway at which the lesion is applied is

not of primary importance but, as with patients and the primate model, the

development of dyskinesia is in part determined by the extent of the dopamine

depletion (Winkler et al., 2002). Striatal lesions, allowing the preservation of limbic

accumbal dopaminergic innervation can require several toxin deposits to produce

the 80% or more dopamine depletion necessary for the generation of AIMs

although the locomotor component will be less pronounced using this approach.

These methods have also been applied in 6-OHDA lesioned mice and extensively

validated in both species. One important consideration in testing this model is that

the rotational response to amphetamine and apomorphine is a standard approach

to the assessment of lesion extent. Apomorphine, a non-selective D1/D2 dopamine

agonist is capable itself of producing significant sensitization and AIMs after single

doses and therefore cannot be used to test evaluate lesion extent in AIMs experi-

ments. “Non-dyskinetic” animals are defined as having rotational responses and

therefore being motorically active in response to L-DOPA but with minimal or no

abnormal movements. Approximately 20% of any cohort will be classified as non-

dyskinetic (showing few or no dyskinetic movements in response to L-DOPA but

with a sustained locomotor response) and this has not been related to the extent of

dopaminergic depletion or other conclusively identifiable parameter thus far. As a

result of the large group numbers that can been employed in rat experiments

(compared to primates) this inherent variability can be exploited; non-dyskinetic

animals may either be removed from the study or used as a control cohort.
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C. RATING SCALES

In a similar approach to human and primate dyskinesia assessments the basis

for the study is a subjective rating scale. The first reported rating scale for dyski-

nesia assessment in rodents was based on the duration of expression of axial,

orolingual, and forelimb behaviors, scoring 0 for absent, 1 if it was present for

less than half time, 2 if present for more than half the time, 3 if present for the whole

time but interruptible by an external stimulus (e.g., a sharp tap on the cage), and 4

if uninterruptible by said stimulus. This scoring is repeated at regular intervals

throughout the duration of L-DOPA activity (2–4 h depending on dose).

Locomotion is also scored, and specifies deliberate locomotion in a circular pat-

tern, as opposed to the “rotation” counts generated by an automated rotometer

that may include movements generated by extreme axial twisting and loss of

balance. The measure of locomotor AIMs is therefore able to provide an alternate

index of rotational behavior and is particularly useful if testing is not performed in

automated rotometers. However, this temporal based scoring criterion fails to

recognize the development of the movements themselves, the quality of which

changes over the course of chronic L-DOPA treatment. For example, forelimb

movements, especially following the first few doses of low dose L-DOPA, are

typically small oscillations of the paw and distal forelimb around a fixed position,

but may develop into more vigorous limb and shoulder movements, occasionally

ballistic in character as treatment progresses.Winkler and colleagues added a layer

of complexity and greater dynamic range of the scale by the inclusion of

“amplitude” scores, which take into account these movement changes in forelimb,

axial, and orolingual dimensions (Winkler et al., 2002). An additional component

that can also be added to this score is that of hindlimb dystonia, assessing the

extension, rotation and elevation of the hindlimb. An overall score reflecting

dyskinesia severity can then be obtained from a combination of the different

parameters (Cenci and Lundblad, 2007). This scale is now remarkably similar

to the clinical AIMs rating scale described by Guy (1976), one of only two clinical

scales recommended for use in clinical trial assessment of dyskinesia severity in

patients (Colosimo et al., 2010; Guy, 1976).

In a similar approach, a slightly different scoringmethod was proposed in 2003

by Steece-Collier and co-workers that also incorporates measures of duration and

amplitude generally applied at one or two time-points post-administration of

L-DOPA. This scale includes a greater number of parameters and also attempts

to classify components of the behaviors as dystonic or hyperkinetic, two distinct

elements of the clinical syndrome of dyskinesia (Maries et al., 2003; Steece-Collier

et al., 2003). This is clearly advantageous but with the greater number of para-

meters it is technically challenging to score live and is not commonly used.

Whether these elements can truly be distinguished in a rodent model in combi-

nation with locomotion and other complex movements is questionable and other
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elements in this scale have not been as rigorously validated against pharmacolog-

ical probes as has been applied by Cenci and co-workers.
D. USE OF THE MODEL

Rotational behavior remains a popular measure of dopaminergic or anti-

parkinsonian activity and in some cases dyskinesiogenic potential (Henry et al.,

2003; Visanji et al., 2009a) but the arguments against rotation as measure of

dyskinesia actually work to support the AIMs model. As described above, the

chronic administration of selective D2/D3 dopamine receptor agonists will induce

the sensitization of rotational behavior in a similar fashion to L-DOPA (Lane and

Dunnett, 2010; Lindgren et al., 2007; Ravenscroft et al., 2004), yet clinically,

dopamine agonists are associated with significantly lower levels of dyskinesia when

administered de novo (Perez-Lloret and Rascol, 2010). However, the quality of the

circling behavior differs, circling being more “on the spot” small diameter turns

with a twisted torso in the center of the bowl following apomorphine or L-DOPA.

On the other hand, dopamine agonists such as bromocriptine produce contralat-

eral amphetamine-like locomotion, circling with large diameter, and a straighter

torso around the perimeter of the bowl (Koshikawa, 1994). Thus the current

interpretation of the behavior of the rodent model is that rotation is a useful index

of functional recovery, whilst the development of abnormal movements is repre-

sentative of dyskinesia. The litmus test in the validation of this model as a screen for

potential anti-dyskinetic agents is that when co-administered with L-DOPA there is

a reduction in the severity of abnormal movements but importantly, with the

preservation of the circling behaviors indicating that L-DOPA retains its anti-

parkinsonian efficacy. A major criticism of the dyskinesia model has been that

the behaviors are simply unilateral stereotypies. However, whilst amphetamine

induces significant stereotypy, LID-like movements are not observed, suggesting

that this is specific to the changes that occur in the denervated striatum. We have

found that if behaviors are assessed using the Creese and Iversen stereotypy scale

(Creese and Iversen, 1973) there is no significant change over chronic L-DOPA

usage, in contrast to AIMs that increase in severity. The Cenci scale of abnormal

movements has been extensively validated in both 6-OHDA lesioned rats and

mice using known anti-dyskinetic agents such as amantadine and to evaluate

putative agents such as 5-HT1A agonists, metabotropic glutamate receptor antago-

nists, opioid agonists, and antagonists (for a more comprehensive list see Table I)

(Dekundy et al., 2007; Lundblad et al., 2002, 2004, 2005). Many of these have been

either previously or subsequently identified as alleviating LID in the MPTP-

lesioned primate, although translation into clinical trials has been more variable

(See Table I and reviewed extensively in Fox et al., 2006). As with the MPTP-

lesioned primate the model can be used either to assess anti-parkinsonian efficacy,
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use as an adjunct to L-DOPA, or evaluated purely as an anti-dyskinetic agent.

Most agents are evaluated in all three paradigms, given de novo, co-administered

with L-DOPA over several weeks or given in single pulses to rats with established

dyskinesia generated through several weeks of L-DOPA treatment until stabilized.

Neurochemical evaluations have often taken advantage of the unilateral

nature of the model, using the intact hemisphere as a control, this should be done

with caution as recent studies highlight the bilateral changes that can occur as a

result of the lesion (Pierucci et al., 2009) and intact or lesion only control groups

would always be valuable. Many of the identified changes in striatal neuro-

chemistry following chronic L-DOPA administration are comparable to the

MPTP-lesioned primate, some of which have also been examined in PET scans

or post-mortem analysis of dyskinetic patients, supporting the use of the rodent

model in studies of underlying mechanistic changes. Key examples of this include

the elevated striatal expression of pre-proenkaphlin B and d-FosB-like proteins

in rodents and primates with LID and in patients with PD that have been treated

with L-DOPA (Andersson et al., 1999; Doucet et al., 1996; Henry et al.,

2003; Tekumalla et al., 2001). In distinguishing the beneficial effects of L-DOPA

from LID, the presence of non-dyskinetic animals has been hugely facilitatory in

the continued understanding of dyskinesia. The rodent model has enabled full

proteomic and mRNA microarray screens of dyskinetic, non-dyskinetic, and com-

parable dopamine agonist-treated groups (Konradi et al., 2004; Valastro et al., 2007).

The full potential of this model has yet to realized with the increasing availability of

transgenic and knock-out technologies in the search for the causative mechanisms of

LID but increasingly collaborative studies are emerging in which mechanistic clues

are obtained in the rodent models and then evaluated in the primate.
IV. Critique of Toxin-Based Models of L-DOPA-Induced Dyskinesia
As much as the behavioral phenotype induced by L-DOPA treatment in the

MPTP-lesioned primate clearly resembles dyskinesia in PD there are limits to its

ability to predict therapeutic efficacy in the clinic and to model all pathological

processes underlying both LID and PD. Most obviously, cell death and devel-

opment of parkinsonian symptoms in PD are ongoing processes and 6-OHDA

and MPTP paradigms, whilst able to cause slow (MPTP) or partial cell loss

(both) are not truly “progressive”. Patterns of aberrant protein aggregation and

neuronal loss particularly in regard to deposition of a-synuclein also differ

between human, primate, and rodent (Braak et al., 2003). In that capacity, the

6-OHDA lesioned rat does not show significant accumulation of a-synuclein, while
in the primate a-synuclein pathology can occur, but to a lesser extent that that seen
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in PD patients. In the parkinsonian baboon, increased intracellular a-synuclein has

been shown within the substantia nigra although it is not complexed into Lewy-like

aggregates (Kowall et al., 2000). The perceived absence of Lewy bodies in the

MPTP-lesioned primate is unlikely due to inspection of the tissue being made too

close to the time of MPTP-administration since a lack of Lewy pathology has also

been witnessed over a decade following MPTP (Halliday et al., 2009). Instead, it is

possible that the relatively rapid kinetics of MPTP-induced cell-death combined

with differences in the array of causes of idiopathic PD compared to those exerted

by MPTP underlie the lack of Lewy pathology.

Post-mortem and imaging studies of PD patients have demonstrated that

degeneration of the nigrostriatal dopaminergic system, whilst being the dominant

pathological feature of the disease, is not the sole degenerative process occuring in

this disorder. Noradrenaline, serotonin, and acetylcholine are all affected in PD

albeit to a lesser degree than dopamine (Fahn et al., 1971; Javoy-Agid et al., 1984;

Jellinger, 1991). Levels and patterns of brain dopamine loss might bear close

comparison between PD and the MPTP primate particularly in striatal regions

but those of key non-dopaminergic transmitters, noradrenaline and 5-HT show

considerable variations between the two (Pifl et al., 1991). In the case of the rodent

model, the surgical process involved in the lesion into the medial forebrain bundle

can damage noradrenergic and serotonergic projections to varying degrees.

Targeting the dopaminergic cell bodies in the substantia nigra or the terminal

areas in the striatum can avoid the loss of noradrenergic forebrain innervation but

other projection areas may still be affected. Typically the nigral and striatal lesions

produce a less complete lesion but adequate dopaminergic depletion can be

achieved with multiple injection sites. To minimize non-dopaminergic cell loss,

noradrenaline and serotonin reuptake blockers are administered prior to surgery

to prevent uptake of the toxin and slower infusion speeds have been used to limit

non-specific reuptake or damage to other projection fibres in the vicinity of the

injection site. The ability to selectively lesion not only dopaminergic systems but

also noradrenaline and serotonin (with the use of DSP-4 and 5’7-DHT respec-

tively) has been taken advantage of in the 6-OHDA lesioned rodent and to

specifically explore their contribution to the development of LID (Carta et al.,

2007; Perez et al., 2009). Selective destruction of the serotonergic system has

revealed that in the absence of these terminals in the striatum, LID does not

develop but at the same time L-DOPA no longer produced a functional effect

(Tanaka et al., 1999). L-DOPA requires conversion into dopamine by amino acid

decarboxylase and it is now becoming widely accepted that this may occur in

serotonergic terminals in the striatum (Carta et al., 2007; Rylander et al., 2010b). In

addition, prolonged dopamine replacement therapy in 6-OHDA-lesioned animals

has recently been shown to evoke increased sprouting of striatal serotonergic

terminals (Rylander et al., 2010b). Dopamine is then stored in serotonergic vesicles

and its release is no longer under the control of dopaminergic feedback systems and
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this dysregulation contributes to the receptor sensitization that leads to dyskinesia

(see commentary by Picconi et al., 2010).

The continued ability of the animals to sustain themselves is the primary

reason for the popularity of the unilateral 6-OHDA lesioned rat compared to

bilateral versions (Ungerstedt, 1971a). However, the laterality of the behavior and

rotational tendency can complicate the measurement of functional recovery. If the

animal is severely dyskinetic in the presence of L-DOPA or other pharmacological

agent, their performance in simple and more complex behavioral tasks can be

hindered, for example identifying deliberate forelimb use in the cylinder test when

an animal is rotating and moving one limb excessively is difficult and can lead to

false positive scores.

Another caveat to the rodent model is the ease with which LID can become

associated with the environment (Lane et al., 2011). The sensitization of the

rotation and development of dyskinesia is certainly in part due to the pharmaco-

logical changes occurring through the basal ganglia, but an element of the

observed change in responsivity may be due to a process termed context-specific

sensitization. Groups of rats that were exposed to a particular environment during

chronic L-DOPA administration developed dyskinesia as expected, but when they

were placed in a familiar but different environment, the severity of dyskinesia

dropped significantly. In particular the rapid onset of the response is not sustained

and the peak severity of the response is reduced. Given that many drugs are not

currently translating into the clinic this could be one of the mechanisms through

which artifacts are being introduced into studies and it remains fundamental to the

study of LIDs that animals are exposure to testing environments frequently in the

absence of drug administration to limit the impact of this association.
V. Alternative Models of L-DOPA-Induced Dyskinesia
The therapeutic predictive validity of the 6-OHDA lesioned rodent and

particularly the MPTP-lesioned primate models, when applied appropriately,

remains impressive though not without room for improvement. Alternative

animal models for the study of LID that better mimic underlying disease path-

ogenesis have been sought. However, there remain few in number, largely

because they fail to show significant levels of dopamine depletion. Since it has

been established that in PD the extent of dopamine depletion is largely associated

with the risk of developing LID, and that rodent models do not develop LID in

the absence of dopamine depletion this aspect of the model is fundamental.

There is one current exception to this and that is the transgenic line of mice

lacking the gene encoding the transcription factor, pituitary homeobox-3
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(PITX3) (Nunes et al., 2003). This is one of the key genes in the development of

dopaminergic neurons and these mice lack A9 nigral and to some extent their

ventral tegmental (A10) neurons. PITX3 deficient mice have motor deficits that

are reminiscent of PD that can be ameliorated by dopamine replacement while

the sub-chronic administration of L-DOPA reportedly is able to induce LID

(Ardayfio et al., 2010; Ding et al., 2007). They do, however, show some paradox-

ical behaviors in response to anti-psychotic stimulation, which may indicate that

other dopaminergic systems are altered (Ardayfio et al., 2010). Importantly they

also show changes in biochemical markers that have been associated with LID

development such as increased DfosB and pre-prodynorphin expression in the

striatum (Ding et al., 2007).
VI. Future Modeling of L-DOPA-Induced Dyskinesia
Current animal models of dyskinesia suffer from the same criticisms that are

levied at the underlying representation of parkinsonism on which they are based.

Thus, their face validity is reasonable but the construct validity is flawed. The

pathophysiology of PD is far more complex and diffuse than the nigrostriatal

dopamine loss (Braak et al., 2003) and the presence of Lewy bodies that are

commonly used as the definitive post-mortem diagnosis. As discussed above, the

role of other neural pathways in the pathogenesis of the disease is not fully

understood nor well represented in current models of the disease. Similarly,

neither model reproduces the protein inclusion pathology. The role of a-synuclein
in the development of dyskinesia remains undetermined but there is evidence that

a-synuclein could be involved in the regulation of synaptic neurotransmitter

release (Nemani et al., 2010).

Increasingly the understanding of the genetics of PD is starting to lead to new

animal models, providing what are hoped to be more disease-specific progressive

modeling of the pathophysiology of PD. However, a significant problem with the

transgenic models produced thus far is that they do not develop significant dopa-

minergic depletion andmotor deficits that do develop have instead been attributed

to degeneration at the level of the spinal cord (Mendritzki et al., 2010). The use of

viral vector-driven administration of wild-type or mutant a-synuclein (Kirik et al.,

2002; Koprich et al., 2010; Ulusoy et al., 2010) or commonmutations of LRRK2 to

specifically target dopaminergic neurons ARE being used (Dusonchet et al., 2011).

Nevertheless, the significant roadblock to the use of these models in dyskinesia

research is the lack of dopaminergic denervation. A 70–80% loss of striatal dopa-

mine is considered necessary before dyskinesia will be evoked and these models do

not consistently give that level of deficit.
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VII. Conclusions
Progress in the understanding and treatment of complications of dopamine

replacement therapy in PD owes much to the discovery and development of

animal models of the condition. Unequivocally, the MPTP-lesioned primate

remains the definitive model of parkinsonian motor symptoms as well as

L-DOPA-induced dyskinesia in PD. Its continued use in translating pre-clinical

findings into therapeutically useful treatments will be enhanced as experimental

designs increasingly take stock of clinically relevant outcome measures.

Meanwhile, the 6-OHDA-lesioned rat and other models currently in development

will continue to be pivotal in adding to our understanding of the pathophysiolog-

ical mechanisms responsible for dyskinesia in PD.
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Parkinson’s disease (PD), a common neurodegenerative disorder caused by the
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L-DOPA. Use of this drug, however, is severely limited by the development of

dystonic and choreic motor complications, or dyskinesia. This chapter describes

the molecular mechanisms implicated in the emergence and manifestation of

L-DOPA-induced dyskinesia (LID). Particular emphasis is given to the role played

in this condition by abnormalities in signal transduction at the level of the

medium spiny neurons (MSNs) of the striatum, which are the principal target

of L-DOPA. Recent evidence pointing to pre-synaptic dysregulation is also
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I. Introduction
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, character-

ized by the death of midbrain dopaminergic neurons located in the substantia nigra

pars compacta (SNc) and projecting to the dorsal striatum (Hornykiewicz, 1963).

The loss of striatal dopamine results in the appearance of the cardinal symptoms

of PD, which include tremor, rigidity, and hypokinesia. These symptoms are

commonly treated with the dopamine precursor, L-3,4-dihydroxyphenylalanine

(L-DOPA) and dopamine agonists, which, in the early phase of the disease,

effectively reverse motor impairment (Birkmayer and Hornykiewicz, 1998;

Cotzias et al., 1967; Mercuri and Bernardi, 2005). However, prolonged use of many

of these drugs, in parallel to the progressive degeneration of nigrostriatal neurons,

results in the appearance of motor complications including dystonic and choreic

movements generally referred to as dyskinesia (Fabbrini et al., 2007; Obeso et al.,

2000).

The development of dyskinesia is particularly problematic in combination with

administration of L-DOPA, which still represents the most effective pharmacolog-

ical approach to the treatment of PD (Mercuri and Bernardi, 2005). Several factors

have been proposed to contribute to the development of L-DOPA-induced dyski-

nesia (LID) including age at PD onset (Kumar et al., 2005), duration of disease and

higher cumulative doses of L-DOPA (Hauser et al., 2006; Schrag andQuinn, 2000).

In addition, pre-clinical studies show that treatment regimens that avoid pulsatile

stimulation of dopamine receptors reduce the risk for LID (Di Monte et al., 2000;

Jenner, 2004).

Clinical studies indicate that resolving LID in patients with advanced stages of

PD would represent a significant improvement of their quality of life (Damiano

et al., 2000; Pechevis et al., 2005). Moreover, the risk of developing drug-induced

dyskinesia often leads clinicians to prescribe doses of medications insufficient to

provide a full anti-parkinsonian effect. For these reasons, the possibility to combine

dopaminergic drugs with substances able to prevent the development of dyskinesia

would represent a considerable progress in the current pharmacotherapy of PD.

At present, amantadine, an antagonist at the N-methyl-D-aspartate (NMDA)

subtype of glutamate receptor, is the drug most often used for the treatment of

LID (Goetz et al., 2005). Dyskinesia is also treated with deep brain stimulation

of the globus pallidus and the subthalamic nucleus (Metman and O’Leary,

2005, The Deep-Brain Stimulation for Parkinson’s Disease Study Group,

2001). These approaches are challenged by side effects that include confusion

and exacerbation of hallucinations, and by potential complications related to

the surgical procedure necessary to implant deep brain stimu-lators. An

improvement in the interventions aimed at reducing the emergence or the

expression of dyskinesia in parkinsonian patients is therefore highly desirable.
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A first critical issue in the study of the mechanisms at the basis of LID is the

identification of the plastic rearrangements produced in the brain by the loss of

nigrostriatal neurons, particularly during advanced stages of PD. These changes

alter dramatically the basic properties of specific groups of neurons and, most

importantly, modify their ability to respond to dopaminergic drugs, including

L-DOPA. A second important point is to establish which of these changes con-

tribute to the development and to the maintenance and expression of dyskinesia.

During the last years, considerable progress has been made along these directions,

primarily through the combined use of non-human primate and rodent models of

PD and LID (B�ezard et al., 2001; Cenci et al., 2002; Jenner, 2008).
II. Basal Ganglia and Medium Spiny Neurons
The study of themechanisms of LID is strictly related to the characterization of

the effects exerted by L-DOPA and other anti-parkinsonian drugs at the level of the

basal ganglia, a collection of subcortical structures involved in the control of motor

function. The striatal formation, which includes the dorsal (caudate-putamen) and

the ventral striatum (nucleus accumbens), is the major component of the basal

ganglia. The dorsal striatum is densely innervated by dopaminergic fibers origi-

nating in the SNc, which modulate glutamatergic excitatory inputs from cortical,

thalamic, and limbic areas. This signal integration occurs for the most part on the

dendritic arborization of GABAergicmedium spiny neurons (MSNs), the principal

neuronal type in the striatum (Albin et al., 1989; Alexander et al., 1986; Gerfen,

1992).

In the dorsal striatum, MSNs can be distinguished on the basis of their con-

nectivity to the output stations of the basal ganglia (globus pallidus pars interna and

substantia nigra pars reticulata). One group of MSNs innervates directly these

structures, whereas the other projects to these nuclei indirectly, via globus pallidus

pars externa and subthalamic nucleus. Because of this difference in connectivity, it

is generally assumed that activation of the neurons of the “direct,” or striatonigral,

pathway promotes motor activity via disinhibition of thalamo-cortical neurons,

whereas activation of the neurons of the “indirect,” or striatopallidal, pathway

suppresses motor activity by increasing inhibition on thalamo-cortical neurons

(Albin et al., 1989; Alexander et al., 1986; Gerfen, 1992).

Dopamine promotes motor activity by exerting an excitatory effect on the

MSNs of the direct pathway and, concomitantly, by reducing the activity of the

MSNs of the indirect pathway. These regulations are brought about by acting on

two G-protein-coupled receptors (GPCRs): the dopamine D1 receptor (D1R),

which is selectively expressed in the direct pathway, and the dopamineD2 receptor
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(D2R), which is expressed in the indirect pathway (Gerfen, 1992). The contrasting

actions of D1Rs and D2Rs on the activity of MSNs are in line with the coupling of

these receptors to different G-proteins, which exert opposite regulations on ade-

nylyl cyclase (AC), the enzyme responsible for the conversion of ATP into cAMP.

Activation of D1Rs leads to Gaolf-mediated stimulation of AC and increased

cAMP, whereas activation of D2Rs leads to Gai/o-mediated inhibition of AC

(Herve et al., 1993; Stoof and Kebabian, 1981; Zhuang et al., 2000). The distinct

functional roles played by the MSNs of the direct and indirect pathways in motor

function, as well as the different control exerted by dopamine on these neurons,

indicate the importance of identifying changes occurring specifically in one or the

other neuronal population.
III. LID and Hyperactivity of D1R/cAMP Signaling
In PD, the loss of dopamine caused by the degeneration of SNc neurons results

in a dramatic increase in the responsiveness of striatal MSNs to dopaminergic

drugs, including L-DOPA. For instance, the ability of dopamine to stimulate AC

via D1Rs is enhanced in parkinsonian patients and in experimental animals

lesioned with 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetra-

hydropyridine (MPTP), two toxins commonly employed to generate experimental

models of PD (Corvol et al., 2004; Mishra et al., 1974; Pifl et al., 1992a, 1992b). The

hyper-responsiveness produced by the loss of dopamine, which most likely repre-

sents a compensatory mechanism to counteract the lack of striatal dopamine,

cannot be accounted for by changes occurring at the receptor level. In fact, the

number and affinity of striatal D1Rs is not increased in rodents lesioned with 6-

OHDA, inmonkeys intoxicated withMPTP (Aubert et al., 2005; Breese et al., 1987;

Joyce, 1991; Marshall et al., 1989; Savasta et al., 1988), or in parkinsonian patients

(Hurley et al., 2001; Pimoule et al., 1985; Shinotoh et al., 1993).

Studies performed in 6-OHDA lesioned rats and in post-mortem samples from

parkinsonian patients demonstrated that loss of striatal dopamine is accompanied

by increased levels of Gaolf (Corvol et al., 2004; Herve et al., 1993, Rangel-

Barajas et al., 2011). In line with this possibility, it has been reported that, in the

monkey, lesion with MPTP increases the coupling of striatal D1Rs to Gaolf
(Aubert et al., 2005). Interestingly, during chronic treatment with L-DOPA, this

change persists only in animals that develop dyskinesia (Aubert et al., 2005).

A recent study performed in 6-OHDA-lesioned rats shows that dopamine deple-

tion increases the levels of AC type V in the striatum and in the substantia nigra pars

reticulata (Rangel-Barajas et al., 2011), which is innervated by the MSNs of the direct

pathway (cf. above). In the same study, it is also shown that this effect is maintained in

dyskinetic but not in non-dyskinetic animals (Rangel-Barajas et al., 2011).
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Taken together these observations indicate that dopamine depletion is associ-

ated with increased D1R-mediated activation of cAMP signaling, produced by

over-expression of Gaolf and AC type V. They also suggest that LID is associated

with augmented coupling of D1Rs to Gaolf and to enhanced levels of AC type V,

in the MSNs of the direct, striatonigral pathway. The involvement of elevated

cAMP signaling in dyskinesia is supported by the observation that, in 6-OHDA-

lesioned rats, striatal infusion of the cAMP-dependent protein kinase (PKA) inhib-

itor, Rp-cAMPS, attenuates LID (Lebel et al., 2010). This finding indicates the

importance of identifying molecular changes occurring downstream of cAMP/

PKA and potentially implicated in LID.
A. PATHOLOGICAL ANCHORING OF D1R AT THE MEMBRANE

Asmentioned in the previous section, dopamine depletion is not sufficient per se

to affect the levels of D1Rs cf. (Aubert et al., 2005; Breese et al., 1987; Hurley et al.,

2001; Joyce, 1991; Marshall et al., 1989; Pimoule et al., 1985; Savasta et al., 1988;

Shinotoh et al., 1993). However, loss of dopamine in combination with chronic

administration of L-DOPA, which leads to the development of LID, has been

shown to increase the expression and modify the subcellular distribution of D1Rs.

Indeed, in dyskinetic rats and monkeys, D1R is more abundant at the plasma

membrane compared with control animals (Berthet et al., 2009; Guigoni et al.,

2007) suggesting that LID is associated with deficiencies in D1R desensitization

and trafficking (Bezard et al., 2005; Guigoni et al., 2007). This idea is supported by

studies showing that GPCR kinases (GRK), which start the process of homologous

desensitization by phosphorylating the receptor, and arrestins, which bind to the

phosphorylated receptor initiating receptor internalization (Shenoy and

Lefkowitz, 2003), are both downregulated in comparison to D1Rs, in the striatum

of dyskinetic monkeys (Bezard et al., 2005) and rats (Ahmed et al., 2008). However,

it should be noted that, although impaired, D1R internalization is still possible.

Thus, in dyskinetic animals, D1Rs retain their ability to internalize after stimula-

tion by a D1R agonist (Berthet et al., 2009). Moreover, this phenomenon is not

limited to D1R, as both NMDA and a-amino-3-hydroxyl-5-methyl-4-isoxazole-

propionate (AMPA) receptors are recruited at the membrane in dyskinetic mon-

keys (see below) (Silverdale et al., 2010).

The above findings suggest that, in LID,D1Rs are preferentially anchored at the

plasma membrane when bound to dopamine (the natural non-specific DA receptor

ligand) and that interventions aiming at counteracting this phenomenonmay reduce

dyskinesia. In line with this idea, recent findings have shown that dyskinesia is

reduced by promoting the expression of specific components of the homologous

desensitization machinery, such as GRK. It was found that lentiviral-mediated

overexpression of GRK6 reduced behavioral sensitization and L-DOPA-induced
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abnormal involuntary movements (a surrogate marker of dyskinesia in rodents) in

the 6-OHDA rat model. Importantly, the same intervention was also able to

alleviate LID in MPTP-lesioned monkeys (Ahmed et al., 2010). Interestingly, the

reverse effect, that is worsening of LID, was observed when the expression of GRK6

was further downregulated by transfection with a GRK6 miRNA. GRK6 over-

expression was able to induce specifically D1R internalization without affecting

other GPCRs potentially implicated in dyskinesia such as the D2R and the type 5

metabotropic glutamate receptor (mGluR5) (see below). Thus, GRK6-mediated

attenuation of sensitized D1R-mediated transmission was clearly highlighted as the

key factor leading to decreased LID severity (Ahmed et al., 2010).
B. DOPAMINE D3 RECEPTORS IN LID

The dopamine D3 receptor (D3R) represents an interesting target for the

development of anti-dyskinetic drugs. D3Rs are expressed in striatonigral MSNs

(Bordet et al., 2000), where they exert a synergistic effect on D1Rs through direct

intramembrane interaction (Fiorentini et al., 2008; Marcellino et al., 2008). In view

of the involvement in dyskinesia of increased D1R transmission, disruption of such

D1R-D3R cross-talk may affect LID. Studies in rodents and non-human primates

have demonstrated that dyskinesia is accompanied by increased expression of

D3Rs (Bezard et al., 2003; Bordet et al., 1997; Gross et al., 2003; Hurley et al.,

1996a, 1996b). This effect occurs mainly in the prodynorphin expressingMSNs of

the direct pathway and depends on the activation of D1Rs (Bordet et al., 2000). The

increase in D3R expression is triggered by enhanced levels of brain-derived

neurotrophic factor (BDNF) (Guillin et al., 2001). BDNF, in turn, is activated via

D1R-mediated activation of CREB (Carlezon et al., 2005), whose levels are

increased in LID (Guigoni et al., 2005; Oh et al., 2003).

Taken together, the above observations suggest that enhanced levels of D3Rs

may participate to the development of LID by further exacerbating sensitized

D1R-mediated transmission. Activation of D3Rs may exert this effect by increas-

ing the anchoring of D1Rs at the plasma membrane. In support of this possibility,

co-treatment with L-DOPA and the D3R antagonist ST 198 restores normal levels

of membrane-bound D1R in dyskinetic animals (Berthet et al., 2009) and counter-

acts dyskinesia in rodent and non-human primate models of PD (Bezard et al.,

2003; Visanji et al., 2009).
C. ABNORMAL ACTIVATION OF DARPP-32

One of the major targets of PKA in MSNs is the dopamine and cAMP-

regulated phosphoprotein of 32 kDa (DARPP-32) (Walaas and Greengard,

1984; Walaas et al., 1983). PKA catalyzes the phosphorylation of DARPP-32 at
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a Thr in position 34. This, in turn, converts DARPP-32 into an inhibitor of protein

phosphatase-1 (PP-1) (Hemmings et al., 1984), thereby suppressing dephosphory-

lation of other downstream effector proteins and amplifying PKA-mediated

responses (Greengard, 2001). Through this mechanism,DARPP-32 plays a critical

role in D1R-mediated transmission in the basal ganglia (Fienberg et al., 1998;

Greengard, 2001).

Studies performed in various animal models show that depletion of dopamine

results in a remarkable increase in the ability of L-DOPA to promote DARPP-32

phosphorylation at Thr34 (Santini et al., 2007, 2010). This effect, which is a direct

consequence of sensitized D1R/cAMP/PKA signaling, persists during chronic

administration of L-DOPA only in animals that develop dyskinesia (Lebel et al.,

2010, Picconi et al., 2003; Santini et al., 2007, 2010). In line with these observations,

it has been shown that LID is attenuated in DARPP-32 knock out mice

(Santini et al., 2007). Interestingly, LID is also reduced following cell-specific

inactivation of DARPP-32 in the MSNs of the direct pathway whereas it is main-

tained in mice lacking DARPP-32 in the MSNs of the indirect pathway

(Bateup et al., 2010). Taken together these studies indicate the importance of

enhanced cAMP/PKA/DARPP-32 signaling in LID and point to the MSNs of

the direct pathway as a key neuronal substrate implicated in this condition.

The persistent hyper-phosphorylation of DARPP-32 associated with LIDmay

have profound repercussions on the state of excitability of MSNs. High-frequency

stimulation of cortical afferents to striatal MSNs is known to increase synaptic

efficiency by inducing long-term potentiation (LTP) (Calabresi et al., 1992). This

phenomenon requires dopaminergic innervation and is abolished by lesion with

6-OHDA (Centonze et al., 1999; Picconi et al., 2003). LTP can be reversed by low

frequency stimulation, which re-establishes normal level of excitability at cortico-

striatal synapses (Picconi et al., 2003). This phenomenon, called depotentiation, is

thought to prevent the generation of aberrant motor patterns by re-instating

normal levels of striatal synaptic efficiency and “erasing” non-essential motor

information. Experiments performed in 6-OHDA-lesioned rats showed that

LID is accompanied by loss of depotentiation in the striatum. Interestingly, cor-

tico-striatal depotentiation is abolished by blockade of PP-1 (Picconi et al., 2003). It

is, therefore, possible that the absence of depotentiation associated with LID is

caused by specific changes occurring along the D1R/PKA signaling pathway

leading to abnormally high levels of Thr34 phosphorylated DARPP-32 and,

consequently, to inhibition of PP-1 (cf. above).

The increase in PKA/DARPP-32 signaling observed in dyskinesia leads to

enhanced phosphorylation of the GluR1 subunit of the a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor at the PKA site,

Ser845 (Santini et al., 2007). Phosphorylation of GluR1 at Ser845 promotes

excitatory glutamatergic transmission (Banke et al., 2000; Mangiavacchi and

Wolf, 2004) and may participate to the block of depotentiation observed in
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dyskinetic rats (Picconi et al., 2003). Furthermore, in MPTP-lesioned non-human

primates, dyskinesia is accompanied by augmented synaptic recruitment of AMPA

receptor GluR2/3 subunits (Silverdale et al., 2010). Indeed, enhanced AMPA

receptor transmission appears to be implicated in dyskinesia. For example, in

non-human primates LID is increased by an AMPA receptor agonist and reduced

by an AMPA receptor antagonist (Konitsiotis et al., 2000).
IV. Increased ERK Signaling in LID: Transcriptional and Translational Changes
Abnormalities in synaptic plasticity, such as loss of depotentiation, may also

occur in response to changes in the activity of signaling pathways involved in the

regulation of protein expression. In this regard, the extracellular signal-regulated

protein kinase 1 and 2 (ERK) cascade, which regulates transcriptional and trans-

lational processes (Costa-Mattioli et al., 2009; Thomas and Huganir, 2004), repre-

sents a particularly interesting subject of study.

In the striatum, ERK are regulated by activation of NMDA glutamate

receptors and D1Rs (Sgambato et al., 1998; Valjent et al., 2005) and are involved

in the induction of LTP (Xie et al., 2009). Depletion of dopamine confers to

L-DOPA the ability to activate ERK in the striata of rodents and non-human

primates (Gerfen et al., 2008, Lebel et al. 2010, Pavon et al., 2006; Santini et al.,

2007, 2010; Westin et al., 2007). This effect, which occurs specifically in the D1R

expressing MSNs of the direct pathway (Darmopil et al., 2009; Santini et al.,

2009a), depends on DARPP-32 phosphorylation (Santini et al., 2007, but see

also Gerfen et al., 2008) and persists in association with dyskinesia (Gerfen et al.,

2008; Lebel et al., in press, Pavon et al., 2006; Santini et al., 2007; Westin et al.,

2007).

In the mouse, LID is associated with changes in the expression of the calcium

and diacylglycerol-guanine exchange factors (CalDAG-GEF) I and II

(Crittenden et al., 2009) which are highly expressed in striatal MSNs and act by

promoting ERK signaling via regulation of Ras family G proteins (Kawasaki et al.,

1998; Toki et al., 2001). In particular, it has been found that the severity of

dyskinesia correlates with increased expression of CalDAG-GEFII and decreased

expression of CalDAG-GEFI (Crittenden et al., 2009). These changes may be

responsible for the abnormal activation of ERK observed in dyskinetic rodents.

The importance of ERK in the development of LID is supported by the

observation that the inhibition of ERK phosphorylation reduces the severity of

AIMs induced by L-DOPA in the mouse (Santini et al., 2007) and in the rat

(Schuster et al., 2008). Moreover, it has been shown that genetic inactivation, or

downregulation of Ras-guanyl nucleotide releasing factor 1 (Ras-GRF1), a brain
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specific activator of the ERK cascade (Farnsworth et al., 1995), attenuates dyski-

nesia in mice and non-human primates (Fasano et al., 2010).
A. MODIFICATIONS OF ERK NUCLEAR TARGETS

Studies in 6-OHDA lesioned rodents showed that LID is associated with

increased phosphorylation of the mitogen and stress-activated kinase 1 (MSK1)

(Santini et al., 2007; Westin et al., 2007), a nuclear target of ERK. MSK1 phos-

phorylates the transcription factor cAMP response element binding protein

(CREB) (Sgambato et al., 1998) and increased CREB phosphorylation has been

found to correlate with dyskinesia (Oh et al., 2003). However, the significance of

this change remains to be fully understood, since downregulation of CREBwith an

anti-sense oligonucleotide does not affect the ability of L-DOPA to induce dyski-

nesia (Andersson et al., 2001).

LID is also accompanied by increased phosphorylation of histone H3

(Darmopil et al., 2009; Santini et al., 2007, 2009a) which is another important

nuclear target of the ERK/MSK1 signaling cascade (Davie, 2003). In addition, a

comparative study conducted in mouse and non-human primate models indicates

that LID is associated with deacetylation of histone H4 (Nicholas et al., 2008). The

overall impact of these chromatin modifications on gene expression and, ulti-

mately, on dyskinesia needs to be further elucidated, particularly considering that

phosphorylation of histone H3 at Ser10 is involved in transcriptional activation,

whereas histone deacetylation is generally regarded as a repressive mechanism

(Berger, 2007; Nowak and Corces, 2004).
B. CHANGES IN IMMEDIATE EARLY GENE EXPRESSION

Among the various genes potentially involved in the expression of LID, the

immediate early gene coding for the transcription factors FosB has received

particular attention. The dorsolateral striata of dyskinetic rats and monkeys

contain higher levels of FosB and of its alternatively spliced isoforms, collec-

tively named DFosB (Andersson et al., 1999; Berton et al., 2009). In rodents,

increased DFosB expression is restricted to the MSNs of the direct pathway

(Andersson et al., 1999; Darmopil et al., 2009) where activation of ERK is also

occurring (Darmopil et al., 2009; Santini et al., 2009a). Indeed, ERK activation

has been involved in the increase in fosB expression produced by dopamino-

mimetic drugs such as cocaine (Zhang et al., 2004). Enhanced levels of FosB

appear to be causally related to the development of dyskinesia. Thus, striatal

injection of a fosB anti-sense oligonucleotide reduces LID (Andersson et al.,

1999). A similar effect has been recently observed, in the macaque, following
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viral overexpression of a dominant negative of DFosB (Berton et al., 2009).

Conversely, in the rat, viral vector-induced overexpression of DFosB exacer-

bates LID (Cao et al., 2010).

One question raised by the above findings is the identifications of specific genes

regulated by DFosB and implicated in LID. The increase in FosB-like immuno-

reactivity associated with dyskinesia is involved in the up-regulation of mRNA

coding for the opioid peptide, prodynorphin, which is selectively expressed by the

MSNs of the direct pathway (Andersson et al., 1999). However, a precise assess-

ment of the role played by increased opiod transmission in dyskinesia is compli-

cated by contrasting data on the effects of opioid receptor antagonists on LID

(Samadi et al., 2006). Further studies will be necessary to fully characterize the

significance of this and other FosB-dependent effects for the development and/or

expression of LID.

Another transcription factor implicated in dyskinesia is that encoded by the

immediate early gene zif268 (or NGFI-A/krox24/egr1). The ability of L-DOPA to

increase zif268mRNA inMSNs is dramatically enhanced in both striatopallidal

and striatonigral neurons, following dopamine depletion. Interestingly,

repeated administration of L-DOPA to 6-OHDA-lesioned rats normalizes the

levels of zif268mRNA in the neurons of the indirect pathway, but not in those of

the direct pathway (Carta et al., 2005). The lack of normalization of zif268

expression in the MSNs of the direct pathway may be due to the persistent

activation of ERK observed in these cells in association with dyskinesia

(Gerfen et al., 2008; Lebel et al., in press, Pavon et al., 2006; Santini et al.,

2007; Westin et al., 2007).

Zif268 promotes the expression of the activity-regulated cytoskeletal-associ-

ated protein arc (or arg3.1) (Li et al., 2005), an immediate early gene involved in

syaptic plasticity (Bramham et al., 2008). Interestingly, dyskinesia is accompanied

by increased arc expression in the MSNs of the direct pathway (Sgambato-

Faure et al., 2005). In the hippocampus, zif268-induced expression of arc has been

implicated in the induction of the late phase of LTP (Li et al., 2005). Therefore, it is

possible that the persistent overexpression of zif268 and arc is involved in the

suppression of depotentiation at corticostriatal synapses, observed in association

with LID (cf. above) (Picconi et al., 2003).
C. INVOLVEMENT OF MAMMALIAN TARGET OF RAPAMYCIN IN LID

Recent evidence indicates that the activation of ERK associated with LID

promotes signaling along the mammalian target of rapamycin complex

1 (mTORC1) cascade (Santini et al., 2009b). Administration of L-DOPA to

6-OHDA-lesioned mice increases the phosphorylation of several effectors of
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mTORC1 including the initiation factor 4E-binding protein, the p70 ribosomal

S6 kinases, and the ribosomal protein S6 (Santini et al., 2009b). Collectively, these

changes, which are mediated via activation of D1Rs in the MSNs of the direct

pathway (Santini et al., 2009b), are known to promote initiation of translation

(Richter and Sonenberg, 2005; Roux et al., 2007; Ruvinsky and Meyuhas, 2006)

and may participate to the development of dyskinesia. In support of this possibility

it has been shown that rapamycin, an allosteric inhibitor of mTORC1

(Oshiro et al., 2004), reduces the development of dyskinesia when administered

in combination with L-DOPA (Santini et al., 2009b).
V. Glutamate NMDA Receptors and LID
Amantadine, an antagonist at the ionotropic glutamate NMDA receptor, is

currently the most efficacious treatment for LID (Blanchet et al., 2003; Goetz et al.,

2005; Snow et al., 2000; Thomas et al., 2004). This points to the involvement in

dyskinesia of aberrant NMDA receptor mediated transmission. Activation of

D1Rs is known to potentiate NMDA currents (Flores-Hernandez et al., 2002)

and increase the surface expression of NMDA receptors at the post-synaptic

density (Hallett et al., 2006). Therefore, the sensitized transmission at D1Rs asso-

ciated with LID is in line with the increase in NMDA receptor function generally

associated with this condition.

Most NMDA receptors in the brain are comprised of NR1 and NR2 subunits,

forming a tetrameric complex of two NR1 associated with two NR2 subunits

(Furukawa et al., 2005). NR2 subunits exist as four subtypes, denominated

NR2A-D, each subtype being encoded by a distinct gene. NR1 exists as seven

subtypes (NR1a–g) which are generated by alternative splicing from a single gene

(Dingledine et al., 1999).

Studies performed in 6-OHDA lesioned rats indicate that LID is accompanied

by increased levels of NR2A and decreased levels of NR2B at post-synaptic level.

In addition, chronic administration of L-DOPA promotes the phosphorylation of

NR1 and NR2 which may result from activation of D1Rs (Dunah and Standaert,

2001; Dunah et al., 2004; Hallett et al., 2006; Snyder et al., 1998). In the rat,

dyskinesia is associated with downregulation of a complex formed by D1Rs and

NMDA which is thought to desensitize NMDA receptors (Fiorentini et al., 2006).

This modification may be related to the increase in NMDA receptor transmission

generally associated to LID.

The striata of patients affected by L-DOPA-induced motor complications

contain higher numbers of binding sites for receptors composed of NR1/NR2B,

whereas the binding sites for NR1/NR2A appear to be unaltered (Calon et al.,
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2003). In line with this finding, increased expression of NR2B has been reported

in the striatum and other brain regions of dyskinetic marmoset monkeys

(Hurley et al., 2005). However, in the same species, increased levels of NR2A,

but not NR2B, have been found in association with dyskinesia (Hallett et al.,

2005) and a similar change has been described in striatal synapses of

dyskinetic rats (Gardoni et al., 2006). Moreover, disruption of the ability of

NR2B receptors to interact with the membrane-associated guanylate kinase

(MAGUK) protein family (which include the post-synaptic density-95 and

synapse-associated proteins) results in the exacerbation of LID (Gardoni et al.,

2006). Altogether, these various observations indicate that NMDA receptors,

and NR2B in particular, are implicated in LID. However, a clear under-

standing of this phenomenon is complicated by contrasting reports on the

ability of NR2B selective antagonists to affect LID (Hadj Tahar et al.,

2004; Morissette et al., 2006; Nash et al., 2004; Rylander et al., 2009; Wessell

et al., 2004).
VI. mGluR5
The mGluR5 is abundantly expressed in striatal MSNs (Kerner et al., 1997;

Testa et al., 1994). Studies performed in parkinsonian patients andMPTP-lesioned

monkeys showed increase mGluR5 binding in association with dyskinesia

(Ouattara et al., 2009; Samadi et al., 2008). Most importantly, pharmacological

blockade of mGluR5 has been found to reduce LID in rodent and non-human

primate models (Dekundy et al., 2006; Johnston et al., 2010; Levandis et al., 2008;

Mela et al., 2007; Morin et al., 2010; Rylander et al., 2010a; Yamamoto and

Soghomonian, 2009). Electrophysiological studies indicate that mGluR5 agonists

potentiate the excitatory NMDA response in MSNs (Pisani et al., 2001) suggesting

that blockade of mGluR5 may exert anti-dyskinetic action by counteracting the

increase in NMDA receptor transmission associated with LID (cf. above).
VII. Controlling Dyskinesia by Acting on the MSNs of the Indirect Pathway
Considerable evidence has been collected pointing to a critical involvement in

LID of aberrant signaling at the level of the D1R-expressing MSNs of the direct

pathway. Much less is known about parallel abnormalities occurring in the MSNs

of the striatopallidal indirect pathway, which express selectively D2Rs.

Nevertheless, a number of observations indicate that dyskinesia can be controlled

by specific interventions focused on this neuronal population.
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Previous work has shown that D2R agonists induce behavioral sensitization

and dyskinesia in primed animals, albeit to a lesser extent as compared to D1R

agonists (Calon et al., 1999; Carta et al., 2008, 2010;Kumar et al., 2009; Pearce et al.,

1998; Rascol et al., 2000, 2001; Smith et al., 2006; Stockwell et al., 2008). In

dopamine-depleted animals, D2R distribution and expression are not affected

by chronic treatment with L-DOPA (Aubert et al., 2005; Guigoni et al., 2007).

Therefore, it is not surprising that a considerable part of the evidence in support of

the involvement of D2Rs in LID is indirect and comes from studies on specific

components of the signal transduction machinery connected to these receptors.
A. ACTING ON THE REGULATORY GPCR SIGNALING PROTEIN 9-2

The regulatory GPCR signaling protein 9-2 (RGS9-2) is a striatal-enriched

GTPase (Rahman et al., 1999) which reduces D2R-mediated transmission by

accelerating the inactivation of the Gai/o subunit coupled to D2Rs (see above)

(Rahman et al., 2003). RGS9-2 knock outmice show a higher propensity to develop

severe LID suggesting that RGS9-2 may exert a protective action against this

condition (Gold et al., 2007). In keeping with this possibility, studies in animal

models of LID (Gold et al., 2007) and in L-DOPA-exposed PD patients

(Tekumalla et al., 2001) suggests that increased RGS9-2 expression may represent

an adaptive response to counteract sensitized D2R transmission developed in

response to dopamine depletion. Such a compensatory adaptation is per se insuf-

ficient to effectively reduce dyskinesia as MPTP-lesioned monkeys and L-DOPA-

treated PD patients do develop LID. However, if potentiated using viral vectors,

increased RGS9-2 expression is able to reduce the severity of LID in 6-OHDA-

lesioned rats and MPTP-treated monkeys (Gold et al., 2007), thereby unmasking

the importance of exaggerated D2Rs transmission in LID. This positive effect is

counterbalanced by the concomitant abolishment of the anti-parkinsonian action

of ropinirole (a D2/D3R agonist) (Gold et al., 2007), an observation that clearly

highlights the complex role of the D2R in PD and dyskinesia.
B. CAV1.3 L-TYPE CA
2+ CHANNELS IN PD AND LID

Profound plastic changes affect striatal MSNs during the progressive loss of

DA input (Arbuthnott et al., 1998; Ingham et al., 1998; Neely et al., 2007). It has

been demonstrated that, in experimental rodent models of PD, the MSNs of the

indirect pathway lose a significant fraction of dendritic spines and glutamatergic

synapses (Day et al., 2006). This loss of connectivity is triggered by a dysregulation

of Cav1.3 L-type Ca2+ channels. Reduced spines and synaptic connectivity is

likely to alter information flow through the striatum and the rest of the basal
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ganglia and may therefore participate in the development of adverse events

related to L-DOPA therapy. Interestingly, in 6-OHDA-lesioned rats, adminis-

tration of isradipine, a Cav1.2-1.3 L-type Ca2+ channel antagonist, reduces in a

dose-dependent manner L-DOPA-induced rotational behavior and AIMs

(Schuster et al., 2009). In addition, isradipine prevents the loss of spines induced

by 6-OHDA and normalizes pre-proenkephalin-A mRNA expression in the

MSNs of the indirect pathway. Involuntary movements are not reduced when

isradipine treatment is started concomitantly with L-DOPA (Schuster et al.,

2009). These results suggest that blocking Cav1.2–1.3 L-type Ca2+ channels,

and thus dendritic spine loss on striatopallidal MSNs, represents a treatment

option to prevent LID.
C. ADENOSINE A2A RECEPTORS

The MSNs of the indirect pathway are highly and selectively enriched in the

A2A type of receptor for the neuromodulator, adenosine (Fink et al., 1992;

Schiffmann et al., 1991). Activation of A2A receptors leads to Gaolf-mediated

stimulation of AC and increased cAMP-signaling (Corvol et al., 2001; Fredholm,

1977) which opposes the inhibitory action exerted on this pathway by D2Rs (Stoof

andKebabian, 1981). In line with this notion, antagonists at A2A receptors such as

KW-6002 (istradefylline), have been proposed to relieve the symptoms of PD by

promoting dopaminergic transmission (Morelli et al., 2007). This effect is exerted

without producing any apparent motor complication. The anti-parkinsonian

properties of A2A receptor antagonists confer to these drugs the ability of poten-

tiating the therapeutic efficacy of low doses of L-DOPA. This would indirectly

counteract or delay the onset of LID whose emergence is hastened by high

L-DOPA dosage.

A2A receptor antagonists may also exert a direct anti-dyskinetic effect. This

idea rests for the most part on the observation that, inMPTP-lesioned non-human

primates, the administration of istradefylline prevents dyskinesia induced by the

dopaminergic agonist, apomorphine (Bibbiani et al., 2003). Moreover, LID is

reduced in mice in which A2A receptors are selectively inactivated in the forebrain

(Xiao et al., 2006). In contrast, a study performed in the rat did not report any effect

of A2A receptor antagonists on dyskinesia (Lundblad et al., 2003).

The mechanisms underlying the potential anti-dyskinetic action of A2A recep-

tor antagonists remain to be elucidated. Emerging evidence indicates that A2A

receptors are present not only post-synaptically, at the level of the MSNs of the

indirect pathway, but also pre-synaptically on corticostriatal terminals, where they

promote the release of glutamate (Ciruela et al., 2006; Quiroz et al., 2009).

Therefore A2A receptor antagonists may counteract dyskinesia by inhibiting

excessive glutamatergic transmission which is thought to be implicated in LID.
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VIII. Cannabinoid CB1 Receptors
The striatum is highly enriched in type 1 cannabinoid (CB1) receptors

(Herkenham et al., 1990), which are expressed in both populations of projection

MSNs (Hohmann and Herkenham, 2000). CB1 receptors reduce glutamatergic

transmission and MSNs excitability by acting on corticostriatal terminals (Brown

et al., 2003; Gerdeman and Lovinger, 2001), thereby suggesting a potential use of

CB1 receptor agonists in the treatment of dyskinesia (cf. above). This possibility is

supported by several studies showing that WIN 55,212-2 and nabilone, two CB1

receptor agonists, reduce LID in rats and non-human primates, respectively

(Ferrer et al., 2003; Fox et al., 2002; Morgese et al., 2007; Sieradzan et al., 2001).

It should be noted, however, that in a study conducted using MPTP-lesioned

marmoset monkeys a similar anti-dyskinetic effect has been found in response to

the administration of the CB1 receptor antagonist, rimonabant (van der Stelt et al.,

2005, but see also Cao et al., 2007).

The ability of CB1 receptor agonists to reduce dyskinesia has prompted the

analysis of the effects produced on LID by drugs that interfere with themetabolism

of endocannabinoids which include arachidonyl-ethanolamide or anandamide.

CB1 receptors can be activated through the administration of URB597, an inhib-

itor of the fatty acid amide hydrolase (FAAH), which catabolizes anandamide

(Piomelli et al., 2006). The increase in anandamide levels produced by FAAH

inhibition activates not only CB1 receptors but also transient receptor potential

vanilloid type-1 (TRPV1) receptors (De Petrocellis et al., 2001; Ross, 2003).

Interestingly, the anti-dyskinetic effect produced by anandamide-mediated acti-

vation of CB1 receptors is prevented by concomitant stimulation of TRPV1

receptors (Morgese et al., 2007). Thus, URB597 effectively reduces LID only when

combined with the TRPV1 receptor antagonist, capsazepine (Morgese et al.,

2007). TRPV1 receptors are expressed in the basal ganglia (Cristino et al., 2006;

Mezey et al., 2000) and may therefore represent a further target for the develop-

ment of anti-dyskinetic compounds.
IX. Pre-Synaptic Mechanisms: Serotonin Receptors
It is generally assumed that, in the early stages of PD, L-DOPA is taken up into

spared dopaminergic neurons and terminals, where it is converted to dopamine,

stored into synaptic vesicles and released in a physiologically regulated manner

(Cenci and Lundblad, 2006). As the dopaminergic degeneration progresses, fewer

and fewer dopamine terminals can contribute to the conversion of peripherally
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administered L-DOPA. In this situation, other neuronal and non-neuronal cell

types have been suggested to play a role in dopamine production (Melamed et al.,

1980). Among these, the serotonin neurons represent an interesting element

because they express aromatic amino acid decarboxylase (AADC) and vesicular

monoamine transporter 2 (VMAT2), which are responsible for conversion of

L-DOPA to dopamine and storage of dopamine into synaptic vesicles, respectively

(Arai et al., 1995).

Several studies have shown that the serotonin neurons have the capacity to

store and release dopamine after peripheral administration of L-DOPA, both in vivo

and in vitro (Ng et al., 1970, 1972). Tanaka and co-workers showed that lesion of

the serotonin system by intraventricular administration of the specific toxin 5,7-

dihydroxytryptamine (5,7-DHT) reduced L-DOPA-derived extracellular dopa-

mine by about 80% in hemiparkinsonian rats (Tanaka et al., 1999). A similar

reduction in extracellular striatal DA level was also obtained following

co-administration of the 5-HT1A agonist (W)-8-OH-DPAT with L-DOPA

(Kannari et al., 2001). Carta and co-workers have elegantly demonstrated in a

series of pivotal papers a causal link between the dopamine released from the

serotonin neurons and the appearance of AIMs and LID (Carta et al., 2007;Mu~noz
et al., 2008). In these experiments, removal of the serotonin innervation by intra-

ventricular injection of 5,7-DHT, or pharmacological silencing of the release from

these neurons by a combination of 5-HT1A and 5-HT1B receptor agonists, resulted

in a near-complete suppression of LID in 6-OHDA-lesioned rats (Carta et al.,

2007). In addition, serotonin neuron transplants increased the pro-dyskinetic effect

of L-DOPA by providing a 2–3-fold increase in the serotonin innervation of the

host striatum and thus a possible additional source of dysregulated dopamine

release (Carlsson et al., 2007). It has also been shown that L-DOPA treatment per

se induces sprouting of serotonin axon terminals in the striatum, thereby further

exacerbating unregulated dopamine release (Rylander et al., 2010b).

The involvement of dysfunctional serotonin function in LID is further indi-

cated by the observation that the levels of 5-HT1B receptors and of their adaptor

protein, p11, are increased by L-DOPA in the striata of 6-OHDA lesioned rodents

(Zhang et al., 2008). These effects are mediated via D1Rs and appear to be

implicated in the development of LID, since treatment with the selective

5-HT1B receptor agonist, CP94253, reduced L-DOPA-induced abnormal invol-

untary movements (Carta et al., 2008; Zhang et al., 2008) and this effect was

abolished in p11 knock out mice (Zhang et al., 2008).

These observations suggest that the dopamine released from serotonin

terminals is the main pre-synaptic determinant of LID in the rodent PD

model. They also indicate that 5-HT1A and 5-HT1B agonists, particularly in

combination, may be employed for the treatment of LID. Thus, in the MPTP-

treated macaque model of PD, a comparison between stand-alone and com-

bined treatments with the 5-HT1A and 5-HT1B agonists demonstrated a
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potent synergistic effect between these drugs in their ability to dampen LID

(Mu~noz et al., 2008). Sub-threshold doses of 5-HT1A or 5-HT1B agonists,

which individually produced no effect, reduced the abnormal involuntary

movements by up to 80% when administered in combination, without affect-

ing the anti-parkinsonian properties of L-DOPA (Mu~noz et al., 2008). Others

have since shown that serotoninergic neurons may be responsible as well for

extrastriatal release of dopamine, a likely contributing factor to LID (Navailles

et al., 2010, 2011).
X. Conclusions
The use of simple rodent models in combination with more advanced non-

human primate models has spurred tremendous progress toward the identification

of the molecular determinants of LID and its neuronal substrates. A large amount of

data indicate that this condition is linked to the sensitization developed by dopami-

nergic receptors, particularly D1Rs, in response to the loss of dopamine associated

with PD. This phenomenon results in a dramatic increase in the ability of L-DOPA

to affect not only the cAMP/PKA/DARPP-32 cascade, which is typically coupled

to activation of D1Rs but also the ERK and the mTORC1 cascades.

The emerging picture suggests that the intermittent and persistent activation

of these signal transduction pathways produced by L-DOPA ultimately results in

the permanent modification of the functional features of striatal MSNs such as

the inability to control excessive synaptic potentiation (i.e., loss of depotentia-

tion). It still remains to be determined what are the specific signaling components

responsible for “locking” corticostriatal synapses in an excited state and what is

the relevance of this phenomenon in the generation of dysfunctional motor

behavior.

Increased understanding of the molecular abnormalities implicated in LID has

led to the design of novel therapeutic strategies, in addition to those based on the

use of drugs acting at receptor level (i.e., glutamate receptor antagonists, A2AR

antagonists, CB1 receptor agonists, etc.). For instance, the dyskinetic effect pro-

duced by increased dopaminergic transmission has been reduced by viral vector-

mediated overexpression of proteins (i.e., GRK6 and RGS9-2) involved in D1R

and D2R desensitization. LID is also counteracted, both in rodents and non-

human primates, through inhibition of ERK and mTORC1 signaling.

In conclusion, the study of the molecular mechanisms of LID represents a

successful example of translational approach, in which information obtained at

molecular and cellular level usingmouse and rat models is tested inmore advanced

non-human primate models, ultimately providing essential knowledge for the

design of more effective clinical strategies.
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L-DOPA-induced dyskinesia (LID) is a major complication of the treatment of

Parkinson’s disease (PD). LID comprises two major components, the priming

process responsible for its onset and the expression of involuntary movements that

underlies its clinical manifestation. The mechanisms responsible for these

components are partially understood and their biochemical basis is being

unraveled but avoidance and treatment remain an issue. In this chapter, we review

what is known about the involvement of dopaminergic systems in LID and the way

in which dopaminergic therapy can be used to avoid the onset of LID or to reverse

or suppress involuntary movements once these have been established. The

involvement of specific dopamine receptor subtypes, continuous dopaminergic

stimulation (CDS) and continuous drug delivery (CDD) is reviewed. However, a

major role is emerging in the avoidance and suppression of LID through the use of

nondopaminergic mechanisms and we consider the present and future use of

glutamatergic drugs, serotoninergic agents, adenosine antagonists and others as a

means of improving therapy. There is compelling basic science supporting a role

for nondopaminergic approaches to LID but at the moment the translational

benefit to PD is not being achieved as predicted. There needs to be further

consideration of why this is the case and how in future, both experimental models

of dyskinesia and clinical trial design can be optimized to ensure success.
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I. Introduction
L-DOPA-induced dyskinesia (LID) remains a common side effect of the treat-

ment of Parkinson’s disease (PD) affecting between 30% and 40% of the patient

population (Schrag and Quinn, 2000). Although LID is mild and nontroublesome

in the majority of affected individuals, it becomes severe and troublesome and

treatment limiting in significant patient numbers. The clinical phenomenology

and assessment are well described but the underlying causes of dyskinesia remain

uncertain. There appear to be two important components—the induction of

dyskinesia that leads to the persistent expression of dyskinesia that is commonly

referred to as the priming phenomena and the subsequent expression of dyskinesia

in response to every dose of dopaminergic medication (Jenner, 2008). From a

mechanistic perspective, these appear to be distinct events. Priming for dyskinesia

again appears to be related to two major considerations—first, the risk of devel-

oping dyskinesia increases with the extent of nigral cell degeneration and the more

advanced stages of the illness, both of which lower the threshold for dyskinesia

induction and the degree of L-DOPA exposure required. Second, the nature of

early drug exposure appears to determine the risk of dyskinesia induction with an

apparent difference between a high risk associated with L-DOPA use compared to

the effects of dopamine agonists. This might reflect differences in their duration of

action and the nature of postsynaptic dopamine receptor stimulation or simply

differences in their pharmacology. Once dyskinesia is established, it is generally

held that the same pattern of involuntary movements is evoked by all dopaminer-

gic treatments—but this view will be challenged in this chapter.

The treatment of dyskinesia remains a significant problem and it is currently an

unmet need in the therapeutic approaches taken to PD (Jankovic and Stacy, 2007).

The usual avenues are to reduce dopaminergic medication, to attempt to deliver

drugs more continuously by subcutaneous or intraduodenal infusion, to add in

treatment with the NMDA antagonist amantadine or to resort to a surgical

approach, most notably implantation of electrodes into the overactive subthalamic

nucleus (deep brain stimulation (DBS)). However, none of the pharmacological

strategies employed leads to the effective suppression of dyskinesia without a loss of

control of motor symptomatology or the onset of adverse events and infusions, and

surgical approaches are invasive and of limited application to the whole patient

population. In addition, while dyskinesia can be suppressed, there appears to be

little that can be done to reverse the underlying priming process. This chapter

reviews novel therapeutic approaches that are currently undergoing preclinical

and clinical evaluation for the prevention and treatment of LID in PD andmany of

which target nondopaminergic neuronal systems.

The investigation of novel experimental approaches to dyskinesia has been

underpinned by the availability of effective animalmodels of PDwhere LID can be
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induced and expressed (Duty and Jenner, 2011). These are most notably, the

L-DOPA treated 6-OHDA-lesioned rat expressing abnormal involuntary move-

ments (AIMs) and the L-DOPA treated MPTP-treated primate showing chorea,

dystonia, and athetosis (Pearce et al., 1995;Winkler et al., 2002). In these models, as

well as through the use of postmortem tissues from PD, it has been possible to

explore the nature of changes that occur in efferent and afferent pathways in the

cortico-basal ganglia-thalamic loop that controls voluntary movement and in

which dyskinesia is thought to originate. These studies have identified numerous

neuronal receptor targets that can potentially improve motor function in PD and

prevent the onset and expression of dyskinesia. These include glutamate, opioid,

cannabinoid, cholinergic, adenosine, histamine, and serotonin receptors (Fox et al.,

2008). In addition, intracellular signaling cascades have been identified that offer

the opportunity to intervene in processes linked to the priming for dyskinesia as

well as its expression (Bezard et al., 2005; Cenci and Konradi, 2010; Jenner, 2008;

Santini et al., 2010). However, experimental models of PD are focused on the

primary loss of the nigrostriatal pathway that occurs in PD, and they do not reflect

the more widespread pathology and adaptive changes that occur in brain in PD.

These also might contribute to the risk of developing dyskinesia and to its subse-

quent avoidance and suppression. Consequently, there is increasing interest in

nondopaminergic inputs to basal ganglia, notably serotoninergic and noradren-

ergic pathways. As a consequence, an extensive range of new therapeutic moieties

are under investigation and form the focus for this review.

The unmet therapeutic need in treating LID in PD comes from several direc-

tions and these form the basis of the subsequent sections. The requirement is for
1)
 therapies to stop the development of LID;
2)
 therapies to suppress LID, once it has developed while continuing to use

L-DOPA;
3)
 therapies to reduce/avoid LID involving reducing L-DOPA or switching to

other medications; and
4)
 therapies to reduce priming for LID.
We will discuss all of these issues but divide the available information in to that

relating to dopaminergic therapy and that which relates to nondopaminergic

approaches to treatment.
II. Factors that Control the Priming and Expression of LID
The two major factors that influence the development of dyskinesia are, first

the nature of drug exposure and second the severity of dopaminergic cell loss

(Schneider, 1989; Kuoppamaki et al., 2007). In particular, the more intermittent
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the dopaminergic stimulation with mixed activation of D1/D2 receptors and the

more severe the dopaminergic degeneration, the more rapidly dyskinesia will

develop once L-DOPA treatment is initiated. It appears likely that the extent of

nigral cell loss changes the sensitivity of basal ganglia for priming by dopaminergic

agents as repeated treatment with high-dose L-DOPA can lead to the development

of dyskinesia in normal animals (Pearce et al., 2001; Togasaki et al., 2001).

The neural mechanisms responsible for the expression of dyskinesia, once it

has developed, likely involve abnormal neuroplasticity in the striatum and result in

imbalances between the activity of medium spiny neurons of the direct and

indirect striatal output pathways (Crossman, 1989; Crossman, 1990; Obeso

et al., 2000). The mechanisms by which intermittent dopamine replacement ther-

apy, especially in the dopamine-depleted brain, sensitizes the striatum such that it

becomes primed to elicit dyskinesia on subsequent challenges with L-DOPA, or

other dopaminergic drugs, are less clear. However, in recent years, a concept has

arisen that proposes that in a manner similar to the expression of dyskinesia, the

“priming” process may involve an interplay between the direct and indirect path-

ways (Brotchie et al., 2005). The role of dopaminergic therapy in dyskinesia

development focuses on the direct pathway. In lesioned animals, repeated admin-

istration of L-DOPA leads to a remarkable increase of the expression of D3

dopamine receptors in neurons of the direct pathway that appears to be driven

by D1 dopamine receptor activation (Bordet et al., 2000). In the normal dorsal

motor striatum, D3 dopamine receptors are essentially absent and their presence

after priming can be considered ectopic (Bordet et al., 1997). These abnormal D3

receptors may play a role in both the process of priming and expression of

dyskinesia (Bezard et al., 2003; Hsu et al., 2004; Visanji et al., 2009). This suggests

that it might be useful to employ D3 dopamine receptor antagonists as a means to

reduce the development of dyskinesia, for instance, by using them in combination

with L-DOPA from the outset of treatment. Alternatively, this concept highlights

the potential value of developing dopamine replacement therapy that avoids

stimulation of D1-like or D3 receptors and/ or provides continuous stimulation

of dopaminergic receptors. Both approaches are discussed below.

The role of denervation focuses attention on the role of the indirect output

pathway. Understanding how dopamine depletion sensitizes to the priming effects

of intermittent dopaminergic stimulation, and increases the propensity of dopa-

minergic treatments to lead to dyskinesia development, requires some discussion.

In untreated PD, the indirect pathway bears the brunt of abnormalities, at least in

terms of basic firing rates and patterns. This leads to increased signaling in the

indirect pathway involving both the corticostriatal glutamatergic pathway and

A2a adenosine receptors (Brotchie, 2005). This is demonstrated by the ability of

a range of glutamate receptor antagonists and A2a adenosine antagonists to exert

antiparkinsonian activity. As discussed below, the abnormal regulation of gluta-

matergic and adenosinergic control of the indirect pathway may also contribute to
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the priming process. In contrast, their role in the development of dyskinesia is

poorly understand and based largely on empirical evidence. This shows reduced

development of dyskinesia following combined treatment with an adenosine or

glutamate antagonist and L-DOPA. Likewise, it is not clear how changes in the

direct pathway, initiated by D1 receptor stimulation, interact with changes in the

indirect pathway and underlie priming. Such interplay between the direct and

indirect pathway may involve signaling between recurrent collaterals of medium

spiny neurons of the direct and indirect pathway or might involve additional

neuromodulatory processes. For example, a D3-BDNF cascade has the potential

to modulate corticostriatal inputs, including those to the indirect pathway

(Guillin et al., 2003). Notwithstanding the paucity of mechanistic explanations,

the data available at present do support the development of A2a adenosine and

glutamatergic antagonists as adjuncts to dopamine replacement.
III. Modifying LID Through Dopaminergic Approaches
The requirement of priming for LID for intermittent stimulation of both D1

and D2 dopamine receptors highlights approaches which have been developed

through preclinical models of PD and that have had a significant impact on clinical

practice. These involve the introduction of dopamine agonists that are selective for

D2-like receptors, continuous dopaminergic stimulation (CDS) using longer acting

dopamine agonists and more recently, continuous drug delivery (CDD) (Jenner,

2009). These have led to a move away from initiating treatment of PD with

classical orally administered formulations of L-DOPA with a peripheral aromatic

amino acid decarboxylase inhibitor, such as benserazide or carbidopa to employ-

ingD2/D3 selective dopamine agonists and to strategies that deliver dopaminergic

stimulation in a continuous, or at least less intermittent, manner (Olanow et al.,

2006; Olanow, 2008).
A. LESSONS FROM DOPAMINE RECEPTOR AGONISTS

Selective D2/D3 dopamine receptor agonists have been available for clinical

use since 1970s. Based on the concept that dopamine derived from L-DOPA-

induced dyskinesia through the stimulation of both D1-like and D2-like dopamine

receptors linked to the direct and indirect pathways, it was proposed that D2

agonists might alleviate motor symptoms of PD without dyskinesia induction.

This was thought to involve an action on the indirect pathway through D2 recep-

tors without activity at D1 receptors on the direct pathway so avoiding priming for

dyskinesia. The concept has been widely tested in preclinical models of PD, namely



128 JONATHAN BROTCHIE AND PETER JENNER
the 6-OHDA-lesioned rat and the MPTP-treated primate, and in the clinic is

widely held to be true. Thus, in MPTP-treated primates, monotherapy of previ-

ously drug-naive animals with the D2 agonists ropinirole, pramipexole, pergolide,

piribedil, and pardoprunox induces sustained reversal of motor deficits that was

equivalent to that produced by L-DOPA (Johnston, 2010; Maratos et al., 2003;

Pearce et al., 1998; Smith et al., 2002; Tayarani-Binazir et al., 2010). However, the

intensity of dyskinesia at the end of the treatment period was significantly less than

that produced by L-DOPA. In long-term clinical study in PD, the same appears to

be true. Thus, 5 years de novo treatment with ropinirole was associated with a

significantly lower prevalence of dyskinesia than occurred with L-DOPA

(Rascol et al., 2000). Likewise, 5 years de novo cabergoline, 2 years pramipexole,

and 3 years of pergolide treatment were associated with less dyskinesia than

L-DOPA treatment (Bracco et al., 2004; Oertel et al., 2006; Parkinson’s Study

Group, 2009). This success might have been expected to lead the introduction of

therapy in PD to be invariably started with a D2 agonist rather than L-DOPA so

removing the issue of dyskinesia induction. However, this has not happened for a

combination of reasons and more recently there has been an increasing trend to

return to early L-DOPA therapy. Notably, selective D2/D3 dopamine agonists

have failed to demonstrate the efficacy provided by L-DOPA in early PD. In

addition, the vast majority of the dyskinesias produced by L-DOPA are of the

“nontroublesome” type with no difference in “troublesome” or painful involuntary

movements (Parkinson’s Study Group, 2009). With time, as disease advances, the

agonist monotherapy invariably fails to adequately control motor symptoms, and

supplementation with L-DOPA is inevitably required. This may argue that in

addition to involvement in dyskinesia, agonism at D1 receptors may also contribute

to antiparkinsonian activity (see later). Additional issues that complicate the use of

D2/D3 agonists as first line treatment in early PD include the propensity to induce

impulse control disorders, daytime somnolence and, with ergot derived dopamine

agonists, such as bromocriptine, pergolide, and cabergoline, a potential to cause

cardiac valve pathology and pulmonary fibrosis (Chaudhuri et al., 2004). However,

it is the major role played by the extent of neuronal loss in dyskinesia induction that

is starting to limit dopamine agonist use. Long-term follow-up of the early agonist

monotherapy studies suggests that there is no difference in final outcome for motor

complications dependent on the initial treatment option (Katzenschlager et al.,

2008). Indeed, the “honeymoon” period for L-DOPA is reduced in later disease

as less exposure to the drug is required to induce LID.

Some of the arguments used above raise the question of the role of the various

dopamine receptor subtypes in the genesis of dyskinesia and in the control of motor

symptoms of PD. From the outset, it is important to make it clear that dopamine

receptor subtypes are not only present in the striatum but are also selectively

localized in the GPe and GPi and the subthalamic nucleus as well as in substantia

nigra. These receptors are innervated by collaterals from the nigrostriatal pathway
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and while it is clear that this innervation is lost in PD, the role of extra-striatal

dopamine receptors in the symptomatology and treatment of PD remains largely

unknown. D1-like receptors (D1/D5) are clearly important in PD as a range of D1

receptor agonists are able to exert antiparkinsonian activity in 6-OHDA-lesioned

rats andMPTP-treated monkeys (Jenner, 1995; Jenner, 2002; Temlett et al., 1989).

Limited clinical experience has also shown an antiparkinsonian effect of the D1

agonists, dihydrexidine, CY-208-243, and ABT 431 in man. What is strange

considering the proposed role of D1 receptors in priming for dyskinesia, is that

little seems to have done to put this to a functional test by examining the ability of

D1 agonists to induce involuntary movements in previously drug-naive animals.

The limited evidence available suggests that dyskinesia can be induced in MPTP-

treated primates but there has been no comparison to the effects of L-DOPA or a

D2 agonist in the same study. Nothing appears to be known in PD. There are some

clues from the effects seen with dopamine agonists that have some D1 activity

coupled to their effects on D2/D3 receptors. Again in drug-naive MPTP-treated

primates, a comparison across studies shows dyskinesia is induced more intensely

by apomorphine, pergolide, and piribedil than by ropinirole, pramipexole, or

bromocriptine. There are also some intriguing insights into the interaction

between D1 and D2 receptors in dyskinesia induction. In studies involving the

repeated administration of ropinirole or piribedil, the intensity of resulting dyski-

nesia was low compared to comparable doses of L-DOPA but on switching to

L-DOPA treatment, the first exposure to the drug-induced intense involuntary

movements (Jackson et al., 2007; Smith et al., 2006). In contrast, switching animals

with intense dyskinesia due to L-DOPA exposure, to an equivalent dose of a

dopamine agonist, reduced dyskinesia intensity by half. This suggests that admin-

istration of D2/D3 dopamine agonists alone does not lead to marked dyskinesia

expression but that they do prime for involuntary movements and that this is

exposed when L-DOPA administration stimulates both D2-like and D1-like

receptors. This synergy is also seen when using a combination of a dopamine

agonist and L-DOPA (Maratos et al., 2001). Treatment with ropinirole in a dose

producing a maximal improvement in motor function in MPTP-treated primates

resulted in some dyskinesia. Presumably, a maximal occupation of D2 receptors

ensued but the addition of pulsatile L-DOPA to ropinirole treatment caused a

marked increase in dyskinesia intensity and the obvious explanation would be the

additional action on D1 receptors (Zubair et al., 2007). All of these data suggest a

role for both D1 and D2 receptors in dyskinesia induction with the D1 component

necessary for the expression of the more intense involuntary movements.

As mentioned previously, the role of the D3 receptor in dyskinesia induction is

also of importance. In 6-OHDA-lesioned rats, the D3 antagonist S33084 reduced

the development of L-DOPA-induced sensitization of rotational behavior that

reflects priming for LID (Visanji et al., 2009). Moreover, this treatment also

reduced markers of abnormal activity in the direct pathway that have been
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traditionally associated with the development of dyskinesia, for example, an ele-

vation of the opioid precursor, preproenkephalin-B (PPE-B). In theMPTP-treated

primate, the development of dyskinesia is prevented when S33084 therapy is

initiated alongside L-DOPA therapy (Visanji et al., 2009). S33084 does not reduce

the antiparkinsonian action of L-DOPA. Importantly, when the animals treated

with a combination of S33084 and L-DOPA were subsequently challenged with

L-DOPA alone, little dyskinesia was apparent suggesting that S33084 inhibited

priming for dyskinesia rather than suppressing the expression of LID. Indeed, in

animals that had been treated with L-DOPA alone leading to marked dyskinesia

expression, administration of S33084 in combination with L-DOPA did not lead

to inhibition of established involuntary movements. This finding highlights the

difference in pharmacology of priming for LID compared to its expression.
B. LESSONS FROM CDS

The alternative view of dyskinesia induction has been that producing a phys-

iological tonic stimulation of dopamine receptors is less likely to produce perturba-

tions in basal ganglia function that lead to the onset of involuntary movements.

This has again centered around differences between dopamine agonist drugs and

L-DOPA, and their ability to induce dyskinesia in early PD and in primate and

rodent models of PD. The argument has been that dopamine agonists are more

likely to produce CDS than L-DOPA based on their longer plama half-life

(Olanow et al., 2006). Certainly, the concept is supported by the long half-life

D2 agonists such as cabergoline where a plasma half-life of 65 h is associated with

a low rate of development of dyskinesia in early PD compared to L-DOPA whose

half-life is in the range of 1.5–2 h (Bracco, 2004). What is difficult, is to distinguish

between the effects of cabergoline that derive fromCDS as opposed to D2 receptor

selectivity. In fact, CDS does not appear to be as rigorous a concept of how to treat

PD as initially thought. Clinical evaluation of different dopamine agonists of

differing half lives or duration of effect has not been undertaken in head-to-head

studies so there has to be a reliance of data arising from preclinical investigations

and most notably the MPTP-treated primate (Jenner, 2008; Jenner, 2009). It is

certainly true that the longer acting oral dopamine agonists used clinically to treat

PD produce less dyskinesia than equivalent doses of L-DOPA in this model.

However, short-acting dopamine agonists, such as rotigotine administered by

subcutaneous injection, also result in much less dyskinesia and overall there

seems to be no correlation with plasma half-life or duration of effect

(Stockwell et al., 2009). This takes the argument back to the previous discussion

that the difference lies in the pharmacology of L-DOPA and dopamine agonists

and not in their pharmacokinetics. Once more the D1 receptor seems to be the

biggest unknown in the debate over CDS. There is virtually no data on the



NEW APPROACHES TO THERAPY 131
relative effects of short-acting and long-acting D1 agonists and the development

of dyskinesia. What is clear is that tolerance develops rapidly to the repeated

administration of long-acting D1 agonists and this is associated with a loss of

their antiparkinsonian activity but how this relates to the role of the D1 receptor

in dyskinesia induction is far from clear (Smith et al., 2002b). This is important as

the D1 receptor is implicated in the propensity of L-DOPA to induce dyskinesia

but precisely how has not been defined. One last difficulty over CDS is whether

plasma half-life defines the striatal actions of dopamine agonist drugs and the

duration of receptor occupancy. For most this has not been studied but there are

interesting PET investigations with the D2 partial agonist pardoprunox. While

its plasma half-life of 1–3 h suggests a short-acting drug, 11C-raclopride dis-

placement studies in striatum in man show an 11–13 h half-life. The example of

pardoprunox also raises the issue of whether partial agonism as D2 receptors

might be advantageous in preventing dyskinesia induction but the available data

are equivocal and insufficient preclinical work has been undertaken.

What has emerged from CDS is that the delivery of dopaminergic drugs

influences the onset of dyskinesia. Two broad approaches to this issue have evolved

showing that it applies equally to L-DOPA and dopamine agonists. A series of

studies in MPTP-treated primates showed that the continuous delivery of D2/D3

selective dopamine agonists by continuous subcutaneous infusion results in even

lower levels of dyskinesia than seen on repeated oral administration or subcuta-

neous injection (Bibbiani et al., 2005b; Stockwell et al., 2008; Stockwell et al., 2009).

For example, continuous 24 h subcutaneous infusion of rotigotine using osmotic

minipumps was used to achieve steady-state plasma levels andmimic delivery from

a transdermal patch in man. Continuous delivery was associated with less dyski-

nesia than that produced by intermittent rotigotine administration or L-DOPA.

Similarly, while repeated subcutaneous injection of the short-acting D1/ D2

dopamine receptor agonist apomorphine resulted in dyskinesia induction, contin-

uous delivery from polymer rods impregnated with the drug and implanted

subdermally resulted in minimal involuntary movements. Indeed, the most con-

vincing demonstration of the potential of CDD in PD for avoiding dyskinesia

induction has come from this approach and has led to the introduction of trans-

dermal approaches to treatment and also to extended release once daily formula-

tions of ropinirole and pramipexole.

Whether the same principle applies rigorously to the delivery of L-DOPA has

still to be demonstrated. Intuitively, a formulation of L-DOPA that delivers dopa-

mine to the striatum will remove pulsatile stimulation of postsynaptic dopamine

receptors and prevent dyskinesia induction but there is little available evidence.

L-DOPA has proved extremely difficult to produce in an extended or sustained

release form.Many of the problems arise from the effect of erratic gastric emptying

in PD on its absorption and the fact that L-DOPA is only absorbed by active

transport from the upper small intestine. Immediate release L-DOPA was
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compared to Sinemet CR for the prevalence of dyskinesia in early PD but over

5 years no difference was observed (Block et al., 1997). Whether this reflects a lack

of effect of continuous delivery, the minimal difference of half-life between the two

forms or the generally low incidence of dyskinesia in early PD is not clear. More

recently, the pharmacokinetic profile of L-DOPA plus a peripheral decarboxylase

inhibitor has been improved by combination with a peripherally acting inhibitor of

COMT, namely entacapone. Inhibition of peripheral COMT will prevent the

peripheral breakdown of L-DOPA, and will provide a more sustained delivery of

L-DOPA to the brain. Studies in the MPTP-treated primate suggest that this

approach might lead to a reduction in dyskinesia induction (Smith et al., 2005).

Entacapone significantly increases the duration of antiparkinsonian action of

L-DOPA in MPTP-lesioned primates. When administered four times daily with

L-DOPA plus carbidopa, entacapone treatment resulted in less dyskinesia than

treatment with L-DOPA plus carbidopa alone. However, to date translation of

these effects to the clinic has not been successful. A clinical study in early PD,

STRIDE-PD compared L-DOPA/carbidopa/entacapone (Stalevo) treatment

with L-DOPA/carbidopa administered four times daily at 3.5 h intervals over

2 years with time to onset of dyskinesia as the primary endpoint (Stocchi et al.,

2010). Stalevo did not reduce the prevalence of dyskinesia with time but the dosing

regimen used appears not to have producedCDD inman.However, it may be that

this approach in general may not reduce dyskinesia induction by L-DOPA as

continuous duodenal infusion of L-DOPA plus benserazide in 6-OHDA-lesioned

rats failed to reduce the onset of the rodent equivalent of dyskinesia or AIMs

compared to pulsatile L-DOPA treatment (unpublished data). Again this returns to

the point that the difference between L-DOPA and dopamine agonists with

respect to dyskinesia may be pharmacological in nature. Perhaps a glimmer of

hope comes from the finding that reinstatement of dopamine production in the

denervated caudate-putamen of MPTP-treated primates using a viral vector con-

taining the genes for TH, AADC, and GTP cyclohydrolase (Prosavin) showed

improved motor function in the absence of dyskinesia induction (Jarraya et al.,

2009). However, transplantation of foetal dopaminergic neurones into the puta-

men in PD has been associated with the induction of dyskinesia so making the

overall effect of dopamine replacement difficult to assess (see Lane; this volume).
C. LESSONS FROM TRYING TO CONTROL ESTABLISHED DYSKINESIA THROUGH

DOPAMINERGIC ROUTES

Once dyskinesia has developed as a response to L-DOPA treatment, it is

difficult to control the involuntary movements while needing to improve themotor

symptoms of PD. All currently used dopaminergic medications from L-DOPA,

dopamine agonists, COMT inhibitors, and MAO-B inhibitors add to the overall
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dopaminergic load and provoke the same involuntary movements. The normal

pharmacological strategies that relate to oral drug treatment involve cutting back

on drug dosage or fractionating doses to avoid peak dose LID. But this is more

witch doctoring than neurology and requires detailed attention to an individual

patients treatment regimen and drug response. There is evidence, however, that

CDDmight be usefully employed. Indeed, the original definition of CDS related to

the continuous infusion of L-DOPA, apomorphine, and lisuride in mid- to late-

stage PD rather than to longer acting oral medications. Importantly, the contin-

uous subcutaneous or intravenous infusion of apomorphine improves “on” time in

patients with marked motor fluctuations and over time leads to a significant

reduction in the intensity of dyskinesia that was present on oral medication

(Katzenschlager et al., 2005; Manson et al., 2001). More recently, the continuous

intraduodenal infusion of L-DOPA or L-DOPA methyl ester has been shown to

have exactly the same effects with marked improvements in motor function being

associated with significant reductions in LID (Antonini et al., 2010; Karlsborg et al.,

2010; Nyholm, 2006; Stocchi et al., 2005). Again there is a time factor with the

reduction in dyskinesia occurring over a period of months. There does not seem to

have been any experience of delivering other dopamine agonists in a continuous

manner associated with decreased dyskinesia. It does not seem to be known

whether a selective D2/D3 agonist would have the same effects. Why the decrease

occurs is not well understood but must involve a resetting of basal ganglia output

that requires continuous receptor stimulation and time for adaptive change to

occur. It is also unclear whether the decrease in dyskinesia represents decreased

expression of involuntary movements or whether de-priming has occurred. The

long time course of the effect seems to suggest the latter but this does not seem to

have been tested experimentally or in the clinic.

Other potential approaches to dealing with dyskinesia in the face of the need

for continuing dopaminergic medication are either based on preclinical data or

hypothetical in nature and have not been tested in man. The advantages of

targeting D3 dopamine receptors with antagonists, such as S33084, have already

been described. D2 agonists seem to express less dyskinesia than L-DOPA (see

above) but it is not general clinical practice to switch to agonist therapy in later PD

although there is some evidence that a switch to high doses of the long-acting

dopamine agonist pergolide can reduce dyskinesia intensity (Facca and Sanchez-

Ramos, 1996). This would be consistent with the finding that LID in MPTP-

treated primates can be reversed over time by switching to the long-acting oral

agonist cabergoline (Hadj et al., 2000) or rotigotine (Stockwell et al., 2010). Adding a

D2 agonist to L-DOPA treatment is seldom used as a strategy to control LID in PD

but in primates a combination of L-DOPA and pramipexole allowed a reduction

in L-DOPA dosage, maintained or improved efficacy and reduced dyskinesia

intensity (Tayarani-Binazir et al., 2010). D2 partial agonists, such as pardoprunox,

might also offer an advantage when administered together with L-DOPA as in
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MPTP-treated primates, the combination increased antiparkinsonian efficacy but

decreased dyskinesia intensity (Tayarani-Binazir et al., 2010). The D1 receptor

might perhaps surprisingly offer advantages for established dyskinesia. In MPTP-

treated primates with LID, a comparison of equivalent doses of L-DOPA, D1 and

D2 agonists showed less expression of LID with selective D1 agonists but no

difference between L-DOPA and D2 agonists (Blanchet et al., 1993). In PD, too

little has been done to determine the translational value of this finding. The only

real experience is with ABT-431 that was shown to provoke dyskinesia in PD with

LID but the intensity of involuntary movements relative to L-DOPA or efficacy

was not assessed (Rascol et al., 1999; Rascol et al., 2001). Lastly, and perhaps most

speculatively, the MPTP-treated primate suggests that monoamine reuptake

blockers, such as brasofensine, possess antiparkinsonian effects that are not asso-

ciated with the expression of established dyskinesia (Hansard et al., 2002; Hansard

et al., 2004; Pearce et al., 2002). The problem with these findings is that the efficacy

was not reproduced in early clinical trials in PD and this remains as a failure of the

predictive value of the primate model (Bara-Jimenez et al., 2004).
IV. Nondopaminergic Approaches to LID
The complexity of the basal ganglia offers the opportunity for modulating

striatal output through multiple neurotransmitter systems and this, in turn, pro-

vides numerous pharmacological targets that might be able to prevent the onset of

dyskinesia or to attenuate the intensity of established involuntary movements. In

this part of the chapter, we will consider some of these pathways and look at the

evidence that their modulation might be functionally useful in the clinical control

of dyskinesia in PD.

The mechanisms underlying the expression of LID, once this has developed,

have received significant attention over the last decade and, in contrast to those

responsible for priming, are better understood (see other chapters in this volume)

(Bezard et al., 2001; Cenci and Lindgren, 2007; Jenner, 2008). There is an appre-

ciation of changes occurring beyond dopamine receptors that alter intracellular

signaling cascades and synaptic plasticity and these relate to imbalances in the

activity of the direct and indirect striatal output pathways. A core component of

the mechanisms underlying LID expression may be an overactivity of the D1-

mediated direct pathway resulting in an inability to alterations in a synaptic

process responsible for long-term potentiation of synaptic efficacy or alterations

in the intracellular signaling cascades downstream of the G proteins to which D1

receptors couple (Bezard et al., 2005). However, LID is not a single entity and ideas

have begun to emerge as to how LID of a choreic nature might differ
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mechanistically from that of dystonic LID. In addition, the expression of LID may

be focal, segmental, or generalized and this may relate to discrete alterations in

firing patterns in the target of the direct pathway, namely the internal segment of

the globus pallidus (GPi). Underactivity in the indirect pathway may also contrib-

ute to LID but this remains disputed. The concept is broadly supported by a large

body of literature, and alterations in the indirect pathway might play a role in

defining the phenomenology of LID (Bezard et al., 2001).

The importance of this discussion resides in the fact that both the direct and

indirect pathways are primarily composed of GABAergic neurones but are excep-

tionally rich in neuromodulators that control motor function. These give a wide

range of drug targets that could, theoretically, modulate firing of indirect and

direct pathway neurones and thus modify LID. There is a significant opportunity

to develop an approach that is focused on nondopaminergic agents and employs

them as adjuncts to the dopaminergic treatment of PD to modify the activity of the

direct and indirect pathways so as to prevent the onset of dyskinesia or to its

suppression once established. The challenge is to define approaches that can

achieve the desired modulation of basal ganglia output, whether it be of the direct

or indirect pathway. Given the critical involvement of these pathways in motor

function, a major challenge is to identify drugs that have a wide therapeutic

window which allows suppression of dyskinesia without inhibition of antiparkin-

sonian benefit. Similarly, there has to be a selectivity of action between the effects

exerted on the direct and indirect pathways to ensure that the beneficial effect on

dyskinesia is not cancelled out or that chorea is converted to dystonia or vice versa

as can occur through manipulation of cholinergic function.
A. THE EXPERIENCE WITH GLUTAMATE ANTAGONISTS

The glutamatergic manipulation of basal ganglia output forms a strong can-

didate for the drug treatment of LID. The cortico-striate pathway has been shown

to be altered following AIMs induction in 6-OHDA-lesioned rats with alterations

in LTD and abnormal storage of information (Cenci and Konradi, 2010;

Kobylecki et al., 2010). Since it activates glutamatergic receptors on medium spiny

neurones making up the direct and indirect pathways, this may be a key target.

When this is coupled with the over-activity of the subthalamic nucleus in PD/LID,

then a clear rationale for the use of glutamate antagonists is established. Indeed,

the only compound approved for the treatment of dyskinesia in PD is the weak

NMDA antagonist, amantadine which can provide long-term suppression of

involuntary movements. However, amantadine is not well-tolerated by many

patients and it can be difficult to reach effective doses. In addition, amantadine

is nonspecific in its activity and it has significant dopaminergic properties and there

are also reports of anticholinergic activity. For these reasons, alternative molecules
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had to be sought to determine the effectiveness of NMDA antagonists in suppres-

sing established dyskinesia. The rationale for this approach was validated by

subsequent studies that showed abnormal expression, and phosphorylation of

striatal NMDA receptors occurs in both rodent and nonhuman primates models

of LID (Dunah et al., 2000; Hallett et al., 2005, 2006). This along with evidence of

abnormalities in synaptic plasticity typically associated with NMDA signaling,

provided cellular and molecular mechanisms by which the direct pathway might

become overactive in LID (Cenci and Konradi, 2010).

As adjunctive therapies to suppress the expression of established dyskinesia,

NMDA receptor antagonists have been very successful. Indeed, in both rodent and

primate models of PD, amantadine and other NMDA antagonists generally show

good antidyskinetic benefit, without compromising the antiparkinsonian effects of

L-DOPA. The most effective have been those antagonists that are selective for the

NR2B receptor. Perhaps importantly, MPTP treated primates, while reducing

dyskinesia overall, NMDA antagonists are most effective against chorea. This

suggests that some glutamatergic therapies for suppressing established dyskinesia

may have more benefit in patients whose LID is chorea or dystonia dominant or

vice versa. In addition, NMDAantagonists may also exacerbate dyskinesia and there

are clinical reports of marked worsening of dyskinesia after withdrawal of aman-

tadine, perhaps suggesting an upregulation of receptor function following block-

ade. To date, no NMDA antagonist with the exception of amantadine has been

successfully developed for the treatment of dyskinesia in PD. This may relate to the

difficulty in identifying a subtype of the NMDA receptor that is localized to basal

ganglia and will not induce marked side effects through actions on NMDA recep-

tors in other brain regions.

As a consequence, the focus of research has been broadened to other classes of

glutamatergic receptor and to the AMPA receptor (Bibbiani et al., 2005; Kobylecki

et al., 2010; Perier et al., 2002).Within the striatum of rodent and primatemodels of

LID, AMPA receptors are abnormally phosphorylated and appear to have

increased targeting to the synapse (Silverdale et al., 2010). These changes may

underpin enhanced AMPA-mediated excitation of the direct pathway in LID.

Indeed, AMPA antagonists, including talampanel and topiramate, can suppress

AIMs and dyskinesia in the 6-OHDA rodent and MPTP-treated primate without

compromising the antiparkinsonian activity of L-DOPA (Silverdale et al., 2005).

Both talampanel and topiramate were advanced to proof-of-concept clinical stud-

ies in patients with established LID. While topiramate was found to be poorly

tolerated and the study discontinued, phase III studies to assess the ability of

talampanel to suppress established dyskinesia were completed but the findings

have never been made public. So far attacking ionotropic glutamate receptors for

the treatment of LID in PD has not been a therapeutic success.

A third approach to reducing excitatory transmission and suppressing LID has

been that focused on metabotropic glutamate receptors and specifically,
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antagonists of mGluR5. mGluR5 is expressed in relatively high levels throughout

the basal ganglia and its levels are increased in the MPTP-lesioned primate

(Samadi et al., 2008). In 6-OHDA-lesioned rodents, the mGluR5 antagonists,

MTEP and MPEP, can reduce AIMS. In nonhuman primates, mGluR5 antago-

nists, including MTEP, AFQ056, and fenobam, are efficacious in reducing

L-DOPA-induced dyskinesia (Gregoire et al., 2011; Johnston et al., 2010; Morin

et al., 2010). Of these, AFQ056 has advanced to clinical evaluation, where at Phase

II proof-of-concept it displayed modest antidyskinetic efficacy without impairing

the antiparkinsonian efficacy of L-DOPA (Berg et al., 2011). In contrast to this and

to some studies in MPTP-treated primates, a single primate study with MTEP did

suggest amodest loss of antiparkinsonian benefit with the doses ofMTEP that were

most effective in suppressing dyskinesia (Johnston et al., 2005). This latter finding

raises caution as to whether the therapeutic window for mGluR5 antagonists will

be wide enough to be used with ease in clinical practice.

The question of whether the initial introduction of a glutamate antagonist into

therapy in PD would prevent the initiation of dyskinesia in response to L-DOPA

therapy is important. Indeed, NMDA, AMPA, and metabotropic glutamate

receptor antagonists have all shown an ability to prevent priming and stop the

development of AIMs in 6-OHDA-lesioned rats. In the nonhuman primate, the

only compound that has been assessed is the NR2B selective NMDA antagonist

besondopril. In the MPTP-lesioned primate, initiation of besondopril treatment

with L-DOPA significantly reduced the rate of development of LID which was

essentially absent. The difficulty with the interpretation of this study relates to

whether priming for dyskinesia was prevented or whether the effects observed

reflected the ability of NMDA antagonists to suppress the expression of LID.

Unfortunately, the animals were not challenged with L-DOPA at the end of the

study in the absence of besondopril to solve this dilemma. Data on clinical studies

to evaluate the effects of besondopril in PD have not been reported to date. It is

really surprising that more is not known in primates concerning the effects of

glutamate antagonists on the development of LID. What is really surprising is that

the ability of amantadine to prevent dyskinesia induction has not been studied in

MPTP-treated primates or in patients with PD despite its quite common use in

treatment of early motor symptoms.
B. TARGETING A2A RECEPTORS ON THE INDIRECT PATHWAY

The A2a adenosine receptor is relatively enriched on medium spiny neurones

of the indirect pathway compared to other neuronal populations (Morelli et al.,

2007; Schwarzschild et al., 2006). The localization on the cell bodies in the striatum

and on the terminals of this GABAergic pathway in the GPe provides a selective

means of manipulating basal ganglia output. In addition, the adenosine A2a
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receptor can modulate dopaminergic, cholinergic, and glutamatergic function in

the striatum. It provides an attractive target for a systemically administered

approach to reducing the activity of the indirect pathway in PD so improving

motor function without the development of dyskinesia. The reality is that A2a

antagonists by themselves do not induce marked rotation in 6-OHDA-lesioned

rats or markedly improvemotor function inMPTP-treated primates. There are no

reports of improvements in motor symptoms of PD when A2a antagonists are used

as monotherapy. Rather there is a synergism with dopaminergic drugs and

improvements in motor function are seen in rodents, primates, and man when

utilized in this manner. It was initially suggested that A2a antagonists would

improve motor function without worsening established dyskinesia but this was

based on a misreading of the literature. In fact, it had been shown that the A2a

antagonist istradefylline did not itself provoke dyskinesia in L-DOPA primed

MPTP-treated primates but the effects of combinations with L-DOPA were not

studied for their effects on LID (Kanda et al., 1998). In clinical study, istradephyl-

line improved “on” time in PD but at the expense of a worsening in nontrouble-

some dyskinesia. This may be a general effect of this class of drug although similar

findings were not made in phase II studies with another A2a antagonist

preladenant.

So, selective effects on the indirect output pathway do not seem to provoke a

robust antiparkinsonian effect but does not provoke established LID. So the key

question becomes whether A2a antagonists can prevent the onset of dyskinesia and

here, at least, there are some positive findings. In rodents, administration of A2a

antagonists to previously drug naive 6-OHDA-lesioned rats does suppress the

development of L-DOPA-induced abnormal involuntary movements (AIMs).

Likewise in mice where the gene encoding the A2a adenosine receptor has been

knocked down, the ability of repeated L-DOPA treatment to induce AIMs is much

reduced. In the MPTP-lesioned primates, the A2a antagonist istradefylline essen-

tially abolished the ability of the short-acting D1/ D2 dopamine receptor agonist

apomorphine, to induce dyskinesia without reducing the improvement in motor

function produced by apomorphine (Bibbiani et al., 2003). This effect appeared to

be a true prevention of priming for dyskinesia since on withdrawal of istradephyl-

line, continuation of apomorphine treatment alone did not initially result in

dyskinesia but then involuntary movements started to appear at the same rate as

in drug-naive animals treated with apomorphine alone. A fly in the ointment is the

results of an unpublished study of the effects of istradefylline administered in

combination with L-DOPA to previously drug-naive MPTP-treated primates.

The administration of istradefylline enhanced the improvement inmotor disability

produced by L-DOPA in line with expectations. However, it did not prevent or

slow dyskinesia induction produced by L-DOPA treatment and even enhanced

peak effects in the early stages of treatment in line with clinical findings on the use

of istradefylline in PD. So, it may be that the role of A2a antagonists in PDmay be
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in allowing the use of L-DOPA sparing strategies that allow a dose reduction while

maintaining the improvement in motor function seen at higher doses and with

minimal worsening of LID. What is needed now is a greater experience of the use

of A2a antagonists in man and the initiation of trials in early PD with end points

related to time to dyskinesia appearance.
C. 5-HT NEURONES AND RECEPTORS AND THE INHIBITION OF LID

There is an intimate relationship between dopaminergic and serotoninergic

transmission in brain in the control of motor function and this is disturbed in PD.

While neuronal loss occurs in the raphe nuclei leading to a fall in forebrain serotonin

content, a different series of events appear to occur in the striatum. The loss of

nigrostriatal neurones leads to a hyperinnervation by serotoninergic fibers that can

be seen in 6-OHDA-lesioned rats, MPTP-treated primates, and in PD. This may in

itself have functional consequences as 5-HT receptors (5-HT1A and 5-HT2A) are

present on medium spiny output neurones and on the terminals of glutamatergic

fibers of the corticostriatal tract. By regulating striatal output and glutamate release,

drugs acting through serotoninergic mechanisms may be able to manipulate motor

function in PD although no agent has been brought through clinical evaluation for

symptomatic treatment. However, in LID there are clear morphological abnormal-

ities in serotoninergic fibers in the striatum seen in AIMs in rats, dyskinesia in

MPTP-treated primates, and in dyskinetic individuals with PD (Rylander et al.,

2010). The importance of these changes is not entirely clear but they seem to be

associated with the uptake of L-DOPA into serotoninergic terminals, its conversion

to dopamine by AADC and its nonphysiological release on to dopamine receptors

(Carta et al., 2007). This may have a crucial role to play in LID since destruction of

the serotoninergic system in 6-OHDA-lesioned rats prevents the onset of AIMs on

subsequent L-DOPA treatment (Munoz et al., 2009). This provides a potential

therapeutic target for LID as the synthesis and nonphysiological release of dopamine

from serotoninergic neurones is regulated by 5-HT1A, 5-HT1B/D, and 5-HT2A

receptors. Notably, 5-HT1A agonists have been shown to suppress dyskinesia in

6-OHDA-lesioned rats exhibiting AIMs and in MPTP-treated primates with LID

but with disagreement over whether this occurred without impairing the beneficial

motor effects of L-DOPA (Gerlach et al., 2011, 2009; Iravani et al., 2006; Munoz

et al., 2008). In Phase II studies in PD, the 5-HT1A agonist sarizotan reproduced the

effects on dyskinesia although a worsening of motor symptoms occurred but was

ascribed to disease progression over the course of the study (Goetz et al., 2007;

Olanow et al., 2004). However, in Phase III evaluation, in two independent studies,

PADDYI and PADDYII, sarizotan did not alter the antiparkinsonian effects of

L-DOPA but it was no more effective than placebo in reducing dyskinesia. In

subsequent studies inMPTP-treated primates, the issue seems to have been resolved
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by careful dose titration with sarizotan (Gregoire et al., 2009). The therapeutic

window for antidyskinetic efficacy appears to be narrow, with inhibition of the

antiparkinsonian activity of L-DOPA occurring at higher doses so making clinical

development difficult. Subsequent preclinical investigations have shown that a com-

bination of 5-HT1A and 5-HT1B agonist activity may produce a more robust

inhibition of AIMs in 6-OHDA-lesioned rodents and of dyskinesia inMPTP-treated

primates (Munoz et al., 2008) and that 5-HT2A antagonists (Oh et al., 2002) have

utility in reducing dyskinesia. Indeed, the 5-HT1A/1B agonist, eltoprazine is currently

undergoing clinical evaluation for the treatment of LID in PD. In further clinical

studies, two other serotonergic agents, quetiapine and clozapine, have been success-

ful in reducing established dyskinesia in both MPTP-treated primates (Oh et al.,

2002; Visanji et al., 2006) and Phase II studies in PD though those of quetiapine were

not confirmed with subsequent Phase IIb studies (Katzenschlager et al., 2004). The

effects seen have been ascribed to a 5-HT2A antagonist like action, though it is

probably fair to term these compounds as having mixed serotoninergic activity.

Buspirone has recently been demonstrated to suppress dyskinesia in patients with PD

who had received a human fetal nigral cell transplant some years ago and were now

exhibiting involuntary movements in the “off” state (Politis et al., 2010). A more

selective 5-HT2A ligand, a partial agonist ACP-103, is currently being evaluated for

antidyskinetic actions in PD and may better address the value of this target.
D. NORADRENERGIC RECEPTORS AND ATTEMPTS TO MODIFY LID

In a similar manner to serotonin, there is a well-established relationship

between noradrenergic and dopaminergic transmission in the control of motor

function. Noradrenergic cells in the locus coeruleus degenerate in PD leading to a

fall in forebrain noradrenaline content. This is partially replenished by L-DOPA as

some of the dopamine formed is subsequently converted to noradrenaline. This

might in part explain why L-DOPA possesses greater efficacy and has a greater

liability to induce dyskinesia, than occurs with dopamine agonist drugs.

Noradrenergic receptors (a-2a,b and c) are present on medium spiny neurones in

the striatum so forming a target for therapeutic intervention. However, there is little

evidence of innervation by noradrenergic fibers, which raises the question of their

physiological role. One suggestion is that they may in reality act as low-affinity

dopamine receptors that play a regulatory role to modulate dopaminergic trans-

mission in conjunction with the high-affinity D1- and D2-like receptors on output

neurones. However, it is feasible that their modulation might form the basis of an

antidyskinetic therapy and this has been explored in both animals and man. The

a-2 antagonist idazoxan was shown to decrease AIMs in 6-OHDA-lesioned rats

and LID in MPTP-lesioned primates without impairing the efficacy of L-DOPA

and it suppressed dyskinesia in Phase II evaluation in PD (Buck et al., 2010;
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Grondin et al., 2000; Rascol et al., 2001). However, a large Phase III study failed to

identify an antidyskinetic action of the drug and the program was terminated. The

a-2 antagonist fipamezole was also shown to be similarly effective in rat and rodent

models of LID (although the findings were not universally positive) and it was able

to suppress dyskinesia (Savola et al., 2003) and to enhance the duration of action of

L-DOPA in a small group of patients with PD receiving acute intravenous

L-DOPA infusions. However, the drug was not well absorbed orally and a novel

buccal spray formulation was devised for subsequent evaluation. A recent Phase IIb

study failed to confirm the antidyskinetic actions of fipamezole when the whole

treatment population was analyzed but there was a positive effect when only those

patients in North American centers were included and compliance issues may have

tainted the overall trial outcome. However, at this point in time, no other norad-

renergic approaches are being pursued for the suppression of LID in PD.
E. OTHER APPROACHES

Basic research on neurotransmission within the basal ganglia continues to

highlight additional mechanisms by which adjuncts to L-DOPA might be devel-

oped and suppress established LID. Of these, several have shown efficacy in

MPTP-treated primates and are being, or have potential to be translated to the

clinic. These include mu opioid antagonists, histamine H2 receptor antagonists,

histamine H3 receptor agonists, and CB1 receptor agonists and antagonists. The

list of agents with demonstrated efficacy in reducing AIMs in 6-OHDA-lesioned

rats includes some interesting and very druggable targets, for example, fatty acid

amide hydrolase (FAAH) inhibitors and PPAR-a. However, their effectiveness in

MPTP-treated primates and in man remains to be investigated.
F. OTHER THERAPIES AIMED AT REVERSING PRIMING FOR LID

The process of priming of basal ganglia for the induction and subsequent

expression of LID is poorly understood. Notably, the persistence, if not permanent

nature of the involuntary movements suggests a phenomenon that must involve

changes in motor programs laid down in basal ganglia for the execution of

voluntary movement and suggests a key role for processes involving LTP/LTD

or the like (Calabresi et al., 2008; Picconi et al., 2003). The persistence is remarkable

since in MPTP-treated primates, once dyskinesia is established by even short

periods of L-DOPA treatment, the same involuntary movements can be provoked

by single L-DOPA challenges even if the animal has remained drug free for many

months in the interim. This probably explains the difficulties experienced in

reversing priming and the limited measures that can be taken once dyskinesia

has become established (see above).
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There are three potential approaches to the problem, some of which will be

dealt with elsewhere in this volume but are worthy of mention at this point. The

majority are currently theoretical and involve the restoration of normal basal

ganglia function through cellular or viral vector technologies. First, it may be

possible to undo the changes that lead to the establishment of an abnormal basal

ganglia. For example, the administration of the gene for GAD in to the subthalamic

nucleus is reported to have a positive effect on motor symptoms of PD (in a similar

manner to DBS) and the same approach could be conceived as being able to reverse

dyskinesia through an increase in GABAergic tone (Kaplitt et al., 2007; LeWitt et al.,

2011). Second, the restoration of nigrostriatal function could undo the effect that

denervation has in gating the sensitivity of the basal ganglia to L-DOPA and

dyskinesia. For example, dopamine production in the striatum through the implan-

tation of a vector containing the genes for TH, AADC, and GTP-cyclohydrolase

(ProSavin) restores motor function but without dyskinesia induction and again,

could be seen as having positive effects on established dyskinesia (Jarraya et al.,

2009). Recently, a viral vecior delivering the genes for TH andGTP-cyclohydrolase

was shown to prevent priming for AIMs in 6-OHDA-lesioned rats suggesting a way

forward that might also reverse involuntary movements (Bjorklund et al., 2010).

This, however, should be balanced against the induction of dyskinesia in the “off”

state produced by implantation of fetal dopaminergic cells (see Lane et al., this

volume). Restoring nigral TH positive cell numbers may potentially “deprime”

the basal ganglia. In studies involving the direct intracerebral injection of the trophic

factor, GDNF in MPTP-treated primates with established LID, a small improve-

ment in the number of TH positive cells in substantia nigra had a significant effect

on the intensity of dyskinesia produced by L-DOPA challenge (Iravani et al., 2001).

Cell- and gene-based approaches are now being developed to look at the effects of

GDNF on motor components of PD. A related approach involves the use of a viral

vector delivery the gene for neurturin, another member of the GDNF super family

(Gasmi et al., 2007; Grondin et al., 2008; Herzog et al., 2009; Marks et al., 2010). This

improves motor function in MPTP-treated primates through an action leading to

increased TH positive cell numbers in substantia nigra. Once more, this may be

advantageous in reversing the process underlying dyskinesia in PD but it has yet to

be investigated and recent clinical studies failed to reproduce the effects of neurturin

seen in primates. Finally, it may be possible to interfere at the molecular level in

signaling pathways that are critical to the maintenance of priming for dyskinesia.

For example, nitric oxide is crucial as a signaling pathway for the induction of LTP/

LTD and nitric oxide synthase inhibitors appear to have effects at least on estab-

lished dyskinesia. Their effects on dyskinesia induction remain unknown. The Ras-

Erk pathway has been linked to LID induction and inhibition of Ras-guanine

nucleotide-releasing factor 1 (RAs-GRF1) signaling in the striatum reverses motor

symptoms associated with L-DOPA induced AIMs in 6-OHDA-lesioned rats

(Fasano et al., 2010).
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V. Conclusions
In conclusion, there is no shortage of targets or classes of compound with

potential to suppress established LID. Several classes show efficacy in nonhuman

primate models and these models appear to predict efficacy in first in man, Phase

IIa proof-of-concept studies. However, failures at Phase IIb and Phase III are a

recurring theme with dyskinesia studies. The only widely available drug to sup-

press dyskinesia, amantadine was able to avoid this Phase III process as it was

already marketed for PD and has proved a valuable approach in a significant

proportion of patients with LID. Amajor challenge in reducing the burden of LID

falls on understanding how to surmount the Phase III hurdle.
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Many patients treated chronically with L-dopa for Parkinson disease (PD) become

functionally disabled by L-dopa-induced dyskinesias (LID). Evolved from early

empirical procedures, modern stereotactic surgical lesioning techniques and deep

brain stimulation (DBS) can effectively treat LID while simultaneously improving

the cardinal motor symptoms of PD. Here we review the common surgical targets

used to treat LID, and compare their relative efficacy. We explain the anti-

dyskinetic action of surgery at each of these targets based on evolving models of

basal ganglia function. Finally, we discuss the appropriate selection of patients with

LID for surgery and address relevant technical and management issues in these

patients.
I. Introduction
L-dopa was first introduced for the treatment of Parkinson disease (PD) in the

1960s by Cotzias et al. (1969), and brought with it a profound beneficial effect on

the cardinal motor symptoms of the disease. Unfortunately, within a decade, the

unquestioned efficacy of L-dopa was partially offset by the appearance of several

limitations. L-dopa did not prevent the progression of PD and its chronic use was
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often associated with a predictable overall loss of drug effect throughout the course

of the day (“wearing off”), less predictable fluctuations in efficacy (“on–off” fluc-

tuations), and involuntary movements now recognized as L-dopa-induced dyski-

nesia (LID). These complications are observed in as many as 50%—with frank

dyskinetic activity seen in upwards of 80%—of patients treated with L-dopa for

more than 5 years (Rascol, 2000; Rascol et al., 2000).

For some patients, LIDmay be as disabling as the underlying symptoms of PD,

and a reduction in LID can produce an overall improvement in motor function,

the ability to perform activities of daily living, and self-esteem (Follett, 2004).

Typically, LID is managed by adjustments in the dose and timing of administra-

tion of L-dopa. In the setting of severe dyskinesia this means that there may be a

need to reduce the dose of L-dopa altogether with an associated, undesirable loss of

control of the cardinal symptoms of PD. Consequently, patients are often faced

with the unpleasant choice between acceptingmore dyskinesias with better control

of PD or settling for dyskinesias which are less severe but accompanied by a

worsening of off period PD symptoms. In such patients, stereotactic surgery of

the basal ganglia, either by lesioning or high frequency deep brain stimulation

(DBS), can be effective. An understanding of the various surgical options to treat

LID is particularly timely, given the increasingly established role of DBS for

moderate to advanced PD.

In this review, we summarize approaches to the surgical management of LID

in patients with PD. Beginning with an overview of the current definition of LID in

the neurosurgical literature we address some of the mechanistic and physiological

underpinnings of LID. We then summarize the effectiveness and proposed

mechanisms of action of surgery for LID in the three brain structures most

commonly targeted in PD: the thalamus, the globus pallidus interna (GPi), and

the subthalamic nucleus (STN). Finally, we describe a modern neurosurgical

approach to the treatment of LID including patient selection, choice of target,

and a brief consideration of technical issues including DBS programming.
II. Brief Overview of LID
A. CLINICAL DEFINITION

LID occurs after the prolonged chronic daily use of L-dopa, though the dura-

tion between the initiation of L-dopa therapy and the development of LID is

variable. The clinical expression of LID is a complex series of involuntary move-

ments that has been divided into three distinct patterns (Guridi et al., 2008; Obeso

et al., 2000). Peak dose dyskinesias occur during the “on” medication state and are

associated with a high serum concentration of L-dopa and, typically, maximal anti-
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parkinsonian effect. Biphasic dyskinesias are characterized by repetitive stereo-

typed movements occurring just before or just after the period of maximal L-dopa

benefit. Frequently, biphasic dyskinesias are worst in the lower extremities. Finally,

“off” period dystonia occurs in conjunction with the lowest plasma levels of L-dopa

and is characterized by sustained, painful postures primarily of the feet. Recent

reports have suggested that varying genetic susceptibilities may pre-dispose PD

patients to one subtype of LID over another (Lee et al., 2011). Ideally, surgical

intervention alleviates all three forms of LID, though many published reports in

the neurosurgical literature do not distinguish between these subtypes.
B. CAUSATIVE MECHANISMS UNDERLYING LID AND IMPLICATIONS FOR SURGICAL

TREATMENT

The precise pathophysiological mechanisms underlying LID are still being

elucidated and are addressed in detail elsewhere in this book. In brief, data from

classical stereotactic lesioning procedures in the pre L-dopa era, intra-operative

microelectrode recordings (MERs) during modern DBS surgery, and from animal

models of Parkinsonism—chiefly the MPTP (1-methyl-4-phenyl-1-2-3-6-tetrahy-

dropyridine) model in monkeys—have provided reasonable explanations for the

efficacy of certain surgical targets in the treatment of LID, while simultaneously

creating paradoxes in our understanding of basal ganglia function and the changes

in basal ganglia physiology induced by surgery.

In the pre L-dopa era, there was no effective medical treatment for so-called

“hyperkinetic” conditions such as chorea or hemiballism (Guridi et al., 2008),

which share many common features with LIDs. This stimulated an intense search

for surgical treatment targets, and motivated several studies examining the effects

of lesions in the basal ganglia and motor thalamus of experimental animals. In

1949, Whittier and Mettler (1949) showed that lesioning the STN in rhesus

monkeys produced severe contralateral hemiballism, which was only expressed

in the presence of an intact pallidum and ansa lenticularis. With Carpenter et al.

(1950), they went on to show that hemiballism produced by an STN lesion

was partially reversed by lesioning the pallidum or its outflow tract to the pallidal

receiving portion of the thalamus. Subsequently, Talairach et al. (1950) were able

to produce sustained improvement in a human patient suffering from hemiballism

by partial coagulation of the Gpi and ansa lenticularis via an open surgical

approach. Similar results were obtained by Cooper (1981). Later,

Mundinger et al. (1970) showed that lesions in the zona incerta or in the ventro-

lateral pallidal-receiving portions of the thalamus were effective against medically

refractory extrapyramidal dyskinesias. In summary, these early studies established

two key points: (1) that the pallidothalamic pathway is involved in the generation

and/or maintenance of dyskinesias and (2) that lesioning the pallidum or
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FIG. 1. The “rate” model of basal ganglia function in the setting of (A) normal motor function, (B)

Parkinson Disease (PD), and (C) L-dopa-induced dyskinesia (LID). In PD, the net effect of reduced

dopaminergic outflow from the substantia nigra pars compacta (SNc) is to increase the inhibitory effect

of the globus pallidus interna (GPi) on the thalamus and reduce the thalamocortical drive in favor of

movement. Conversely, pulsatile L-dopa administration causes dyskinesia by abnormally increasing

thalamocortical drive. This occurs in two ways: (1) by reducing the inhibitory tone of striatal neurons in

the indirect pathway, in turn increasing inhibition of the subthalamic nucleus (STN), and reducing the

activation of the GPi and (2) by an increase in inhibition of the GPi directly by connections from the

striatum. SNr = substantia nigra pars reticulata, VL = ventrolateral nuclei of the thalamus,

PPN = pedunculopontine nucleus. With permission from Guridi et al. (2008).
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interrupting the pallidothalamic pathway has an anti-dyskinetic effect.

Accordingly, as we discuss later in this review, lesioning or stimulation within

components of the pallidothalamic pathway have become established treatments

of LID in the modern era of stereotactic functional neurosurgery.

In 1980s, the seminal “rate” model evolved to explain basal ganglia function

and the cardinal features of PD (Alexander et al., 1986, 1990) (Fig. 1). In PD,

depletion of dopaminergic neurons in the substantia nigra pars compacta (SNpc)

alters the output of the both the direct and indirect pathways to result in a net

increase in the mean firing rate of the GPi, which in turn inhibits thalamocortical

drive. By contrast, in LID the net effect of replenishing L-dopa should be a

reduction in the mean firing rate of the GPi, in turn disinhibiting thalamocortical

motor projections, producing an abnormal increase in cortical drive, and,
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FIG. 2. Firing rate of a neuron in the globus pallidus interna (GPi) from a patient with L-dopa

responsive Parkinson Disease (PD) demonstrating slowed firing accompanied by contralateral dyski-

nesia in response to apomorphine (a dopamine agonist). With permission fromHutchinson et al. (1997).
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ultimately, resulting in abnormal or excessivemovement (Albin, 1995; Guridi et al.,

2008). In MPTP-treated monkeys, L-dopa administration has indeed been asso-

ciated with an inverse relationship between the mean firing rate of GPi neurons

and the severity of dyskinesias (Papa et al., 1999). Similarly, in humans, we have

shown with intra-operative single-unit recordings that administering apomor-

phine—a dopamine agonist which, like L-dopa, causes dyskinesias in parkinson-

sian patients—results in a significant reduction in the mean firing rate of neurons

in both the GPi and STN during the peak on period (Hutchinson et al., 1997; Levy

et al., 2001; Lozano et al., 2000) (Fig. 2). In addition, metabolic imaging data have

confirmed that there is a downstream increase in cortical activity during peak dose

LID, particularly in the supplementary motor area (SMA). These changes are not

observed in PD patients without LID (Rascol et al., 1998).

Unfortunately, the rate model of basal ganglia function cannot fully explain the

efficacy of surgical procedures originally applied empirically to treat both hypo-

kinetic and dyskinetic conditions alike. Some have called this the Marsden and

Obeso paradox (Marsden and Obeso, 1994). If PD and other hypokinetic states

are the product of an overinhibited thalamus, then thalamotomy, which has long

been used in treating PD, should worsen parkinsonian symptoms. Similarly, if

dyskinesias are the exclusive consequence of a reduced firing rate in GPi neurons,

then pallidotomy—which further reduces pallidal output—should actually worsen

LID rather than improve it. To explain this paradox, several authors have invoked

the existence of patterns of abnormal firing activity that accompany changes in

firing rate in patients with LID (Krack et al., 1998a, 1998b;Wu et al., 2001).We and

others have found supporting in vivo evidence of such patterns from intra-operative

recordings (Lozano et al., 2000; Obeso et al., 2000). In particular, changes in the

oscillatory activity of the basal ganglia seem to be important. As b-band (20 Hz)
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activity appears associated with the parkinsonian state (Brown, 2003), so too is

data now suggesting that LID is related to prominent low frequency activity in the

4–10 Hz range (Alonso-Frech et al., 2006). The direct anti-dyskinetic effects of

surgery, whether lesioning or DBS, may therefore be due to modifications in

pathological oscillations that predominate in LID. Indeed it appears that

“no news” from the pathological motor basal ganglia as occurs with lesions is

better than “bad news” associated with either parkinsonism or dyskinesias. We will

address the specific anti-dyskinetic mechanisms of surgery at each of the common

surgical targets in the next section.
III. Surgical Treatment of LID: Efficacy and Mechanisms of Action by Target
A. THALAMUS

1. Thalamotomy and Thalamic DBS

In the pre L-dopa era, Hassler and Reichert (1954) performed the first thala-

motomy in 1954, with the primary aim of treating tremor. Initially, they targeted

the ventral oral nucleus complex which Hassler further subdivided into posterior

(VOP) and anterior (VOA) subdivisions. This target proved somewhat ineffective

for tremor control, and the target was eventually moved to Hassler’s ventral

intermediate nucleus (VIM) which corresponds to the cerebellar terminal territory

of the thalamus, as opposed to the pallidal receiving portion. The VIM went on to

become an established site for lesioning procedures (Ohye et al., 1976) to control

Parkinsonian and non-Parkinsonian tremor alike.

VIM thalamotomy has generally proven to be of little or limited effectiveness

against LID (Guridi et al., 2008). Some evidence for an anti-dyskinetic effect has

been suggested by studies where a lesion in the VIM prevented the later develop-

ment of LID (Cardoso et al., 1995; Ohye et al., 1976), but the exact location of the

thalamic lesion in these reports—specifically whether they were consistently

placed within VIM—is uncertain. Most studies have shown no effect altogether

(Diederich et al., 1992), and it may simply be that in patients with PD-associated

tremor, successful VIM thalamotomy may permit a reduction in L-dopa dose with

a subsequent indirect improvement of LID (Nagaseki et al., 1986). To date themost

convincing evidence arguing against the direct anti-dyskinetic effect of VIM

thalamotomy comes from a study by Narabayashi et al. (1984). These authors

examined patients who had undergone thalamotomy at either the VIM or VOA/

VOP sites prior to being treated with L-dopa. They found that patients with lesions

in the VOA/VOP region did not develop LID after L-dopa therapy was initiated,

while those with VIM lesions did. This is in keeping with the presumed anti-
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dyskinetic effect of lesions within the pallidothalamic pathway, and has been

reproduced under controlled conditions in MPTP monkeys (Page et al., 1993).

Despite these findings, lesioning of the VOA/VOP has rarely been the procedure

of choice among functional neurosurgeons and there are no robust long-term data

on its sustained efficacy against LID.

High-frequency DBS of the VIM as first employed by Benabid et al. (1996) has

an excellent effect against Parkinsonian tremor but has had little success in abol-

ishing LID. Similarly, two of the largest VIM DBS series found either an insignif-

icant decrease or no change altogether in LID (Limousin et al., 1999; Tasker et al.,

1993). By contrast, two smaller studies by Caparros-Lefebvre et al. (1993, 1999)

showed some improvement in LID with chronic VIM stimulation. In both reports,

however, the authors attributed this unexpected finding to spread of electrical

stimulation outside of the VIM proper, caused by the orientation or trajectory of

the DBS electrode, and involving either the ventral oralis or centromedian-par-

afascicular nuclear groups.

In summary, surgical manipulations of the VIM thalamus appear to have little

direct effect on LID. This follows from the role of the VIM as the cerebellar-

receiving component of the ventrolateral thalamus, which places it outside of the

classically described pallidothalamic pathway implicated in dyskinetic activity.

Conversely, the VOA/VOP complex is the thalamic representative within this

pathway, and lesioning or stimulation of the VOA/VOP seems to alleviate LID,

although this observation is not supported by a large amount of clinical data.

B. GLOBUS PALLIDUS INTERNA

1. Pallidotomy

Leksell’s posteroventral pallidotomy was revived by Laitinen et al. (1992) and

has been shown to cause an immediate and permanent reduction on LID contra-

lateral to the side of the lesion, as well as a significant positive impact on off period

motor performance (Guridi et al., 2008). In our experience, all three forms of LID

(i.e., peak dose, biphasic, and off-period dystonia) are ameliorated by pallidotomy

(Alkhani and Lozano, 2001; Lang et al., 1997). In 2001, we published a systematic

review of the literature on pallidotomy from 1992 onward, and found across 85

articles reporting on nearly 2000 patients that, on average, contralateral dyskine-

sias were reduced by 86.4% at 1 year, and further that the maximum anti-dyski-

netic benefit was sustained for roughly 4 years (Alkhani and Lozano, 2001).

Longer-term follow-up by ourselves (Kleiner-Fisman et al., 2010) and others

(Fine et al., 2000; Ondo et al., 2006) has shown that the anti-dyskinetic effect

may remain for at least 10 and in some cases up to 13.5 years (Hariz and

Bergenheim, 2001). Efficacy against LID following pallidotomy does not require

a reduction in L-dopa dose (Guridi et al., 2008).
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The precise location of the pallidotomy lesion within the GPi and its impact on

efficacy in LID has been a matter of some debate. In general, lesions of the

anterodorsal GPi can mimic the effects of L-dopa, producing improvements in

rigidity and akinesia, but potentially inducing or worsening dyskinesias (Follett,

2004). Posteroventral lesions are better at relieving LID, but may worsen akinesia.

We reported that even within the posteroventral GPi, there is a variable response

to lesioning along its anteromedial to posterolateral axis: lesions situated more

anteriorly and medially are better at reducing on period dyskinesias and off period

rigidity, centrally placed lesions improve akinesia, and posterior lesions

produce greater tremor reduction (Gross et al., 1999). These findings may argue

for the importance of MER prior to lesioning in order to precisely define the

pallidotomy target. By and large, bilateral pallidotomy is perfomed infrequently

because of an increased risk of complications, specifically dysarthria and cognitive

deterioration (Merello et al., 2001).
2. Pallidal DBS

There is now class I evidence supporting high frequency DBS of the GPi as

superior to best medical management in improving off period motor symptoms,

LID, and overall quality of life in patients suffering from moderate to severe PD

(Bronstein et al., 2011; Moro et al., 2010; Weaver et al., 2009). This evidence

represents the confirmation of several previous non-randomized studies that

reported a significant and stable anti-dyskinetic effect with both unilateral

(Visser-Vandewalle et al., 2003) and bilateral GPi DBS (Ghika et al., 1998; Loher

et al., 2002; Obeso et al., 2001; Rodriguez-Oroz et al., 2005; Volkmann et al., 2004).

A review of these published studies reveals an average reduction in LID of 64–78%

in the short term, with a more variable reduction of between 28–64% at long-term

follow-up.

Similar to the pallidotomy experience, some studies examining stimulation in

the acute setting confirm the existence of distinct sites in the GPi at which DBS

may produce opposing effects, with ventral pallidal stimulation tending to antag-

onize L-dopa effects and dorsal stimulation mimicking L-dopa (Bejjani et al., 1997;

Krack et al., 1998b). This has led some authors to advocate stimulation of the

middle portion of the GPi between these two extremes, which may produce a

suitable compromise between improvements in the cardinal symptoms of PD and

amelioration of LID (Follett, 2004).

3. Mechanisms of Action

The proven efficacy of pallidotomy and pallidal DBS has lent some support to

the classic concept that an intact pallidothalamic tract is a prerequisite for the

development of LID, and that dyskinetic activity can be abolished by disrupting
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this tract. As we have seen, however, a reduction in the firing rate of the GPi,

whether due to a lesion or electrical stimulation, sets up a paradox because such a

decrease in firing rate—at least according to the rate model of basal ganglia

function—should release the thalamus from inhibition with the resultant produc-

tion of unwanted or excessive movements.

In response to this paradox, a more complex explanation has evolved. Some

authors now believe that chronic L-dopa use leads to the creation of an abnormal

pattern of activity that originates in the basal ganglia and is eventually transmitted

to the cortex (Guridi et al., 2008). The net result of this altered activity is a release of

dyskinetic movements. These movements are indeed correlated with reduced

firing rates in the GPi but also more subtle neurophysiological changes including

alterations in firing synchrony between neuronal subpopulations, interspike inter-

val, and bursting activity (Guridi et al., 2008; Lozano et al., 2000;Obeso et al., 2000).

The anti-dyskinetic activity of pallidotomymay be due to its ability to correct these

abnormal patterns by obliterating those GPi neurons that express or help sustain

them. Similarly, pallidal DBS likely affects the same sub-populations of GPi

neurons, although the mechanisms of action underlying DBS altogether are still

incompletely understood. The simplistic notion that DBS produces a depolarizing

blockade within target neurons is being replaced by experimental evidence show-

ing that the mode of action of DBS varies according to target (Benabid et al., 1998;

Benazzouz and Hallett, 2000). In the GPi, DBS may in fact result in a complex

reshaping of the temporal structure of neuronal activity. Work done in MPTP-

treated monkeys undergoing acute GPi stimulation has revealed a stereotyped

triphasic response time-locked to each individual train of stimuli: a period of initial

excitation is followed by inhibition, and then followed by a second excitation, with

a subtle overall decrease seen in firing rate averaged over the entire nucleus (Bar-

Gad et al., 2004).
C. SUBTHALAMIC NUCLEUS

1. Subthalamotomy

In experimental parkinsonian animals, lesioning of the STN has been shown

to improve motor function (Bergman et al., 1990; Blandini et al., 1997; Guridi

et al., 1996). In humans, subthalamotomy has been used only sparingly in PD

patients, owing to the risk of inducing contralateral hemiballism or hemichorea

(Barlas et al., 2001; Guridi et al., 2008). A handful of studies have reported on this

limited experience (Alvarez et al., 2001, 2005, 2009; Barlas et al., 2001; Patel et al.,

2003; Su et al., 2002; Vilela Filho and Da Silva, 2002). Indeed, there is a low but

real incidence of hemiballism/chorea, on the order of 15%, which tends to be

self-limited but which may be permanent and require further treatment in up to
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50% of these patients (Alvarez et al., 2009). Nevertheless, there is also a definite

improvement in motor function. With the exception of Alvarez et al. (2001), LID

is consistently and significantly reduced at medium- or long-term follow-up in the

range of 50–74.2%. Interestingly, the initial paper by Alvarez et al. (2001) was the

only series in which the dose of L-dopa was not reduced, compared to a mean

dose reduction ranging from 34–47% in the other series, including two more

recent studies by the same group (Alvarez et al., 2005, 2009). Consequently, the

existence of a direct anti-dyskinetic effect of STN lesioning—or whether the

effect is secondary to a post-operative reduction in L-dopa intake—is still a matter

of debate. Furthermore, we still lack a satisfactory explanation as to why a

lesion within the STN may on the one hand reduce LID while on the other

produce an occasional paradoxical increase in hyperkinetic movements such as

hemiballism/chorea.
2. STN DBS

DBS of the STN is the most commonly chosen procedure used to treat PD.

There is now evidence from randomized, controlled trials for the efficacy of STN

DBS against the cardinal symptoms of PD as well as overall quality of life

(Bronstein et al., 2011; Follett et al., 2010; Weaver et al., 2009). These positive

effects are sustained up to at least 5 years (Bronstein et al., 2011; Gervais-Bernard

et al., 2009; Krack et al., 2003; Moro et al., 2010; Rodriguez-Oroz et al., 2005;

Schupbach et al., 2005). The motor improvements seen with STN DBS are

essentially equivalent to those brought on by DBS in the GPi (Anderson et al.,

2005; Burchiel et al., 1999; Follett et al., 2010). However, stimulating the STNmay

be associated with an increased risk of new or worsened psychiatric or cognitive

side effects (Bronstein et al., 2011; Follett et al., 2010). Conversely, STN DBS

consistently allows for a post-operative reduction in total L-dopa dose

(Follett et al., 2010).

STN DBS produces a significant and sustained reduction in LID, essentially

equivalent to that achieved by GPi stimulation, but largely proportional to the

reduction in L-dopa dose (Guridi et al., 2008; Herzog et al., 2003). Guridi et al.

(2008) reviewed the largest case series of STN DBS published until 2008 and

found a range in mean dyskinesia reduction of 46.4–85%, accompanied by a

mean daily L-dopa reduction of 22–70%. As observed with GPi DBS,

Krack et al. (1999) found that STN DBS improves the entire spectrum of LID

including peak dose, biphasic, and off period dyskinesias. Interestingly, and in

keeping with the finding of hemiballism/chorea seen with subthalamotomy, many

patients who undergo STNDBS develop choreiformmovements in the immediate

post-operative period which are similarly transient and may even predict a favor-

able surgical outcome (Houeto et al., 2003).
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3. Mechanisms of Action

The improvement in LID in PD patients undergoing subthalamotomy is likely

multi-factorial. First and most importantly, subthalamotomy significantly reduces

daily L-dopa requirements. According to Guridi et al. (2008), this probably results

in a shift in the dose-response curve away from the induction of LID; LIDmay still

be induced but only by administering a higher dose of L-dopa or exposing patients

to a period of L-dopa resensitization. This indirect mechanism may be comple-

mented by a more direct effect of STN lesioning, helping to explain why some

authors have noted an improvement in LID that precedes the actual reduction in

L-dopa (Su et al., 2002). A reasonable hypothesis is that a distinct subsection of the

STN may contribute to the generation of an abnormal dyskinetic pattern of

activity (Guridi et al., 2008). Accordingly, experimental evidence in the MPTP

monkey shows an association between LID and increased metabolism in the

ventromedial (i.e., limbic) portion of the STN (Mitchell et al., 1985). In humans,

the 4–10 Hz oscillations associated with LID also predominate in the ventral STN

(Alonso-Frech et al., 2006). Conceivably, a lesion in the ventral STN could disrupt

a necessary component of the circuit subserving LID, resulting in a clinical anti-

dyskinetic effect.

Another possible explanation relates to a relative stabilizing effect of STN

lesioning on fluctuations in the basal ganglia. Recall that subthalamotomy may

initially induce abnormal hemiballism/chorea, which is frequently self-limited.

Following this initial hyperkinetic period, there is good data to suggest that the

basal ganglia transitions to a state of “functional normalization” (Guridi et al.,

2008). In both parkinsonian rats treated with 6-hydroxydopamine (6-OHDA) or

MPTP-treated monkeys, metabolic markers of neuronal activation, as well as

markers of GABAergic inhibition such as mRNA expression of glutamic acid

decarboxylase, reach a steady state following subthalamotomy (Blandini et al.,

1997; Guridi et al., 1996). The ultimate manifestation of this new equilibrium is

to minimize the impact of L-dopa in the parkinsonian state, shortening its effects

via the so-called “wearing off” model and resulting in a clinical reduction in motor

fluctuations (Marin et al., 2004). In essence, the basal ganglia become buffered

against the prodyskinetic effects of L-dopa.

Any of the putative mechanisms that apply to subthalamotomy are also suit-

able explanations for the efficacy of STNDBS against LID. Indeed, a reduction in

L-dopa medication following DBS is unequivocally linked to a proportional

decrease in dyskinesias. In addition, stimulating the STN may dampen patholog-

ical fluctuations in the basal ganglia, which some authors have likened to the effect

of a continuous administration of L-dopa (Guridi et al., 2008; Obeso et al., 2000),

although it has been well established that DBS does not actually alter dopamine

release per se (Abosch et al., 2003). More recently, there has been some evidence for

a direct anti-dyskinetic effect of STN related to stimulation of structures in the
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dorsal STN region as opposed to within the STN proper. Alterman et al. (2004)

published a case where the dorsal relocation of a correctly placed STN electrode

produced immediate and sustained relief of contralateral LID. Moreover, some

now argue that the dorsal subthalamic area, which includes the zona incerta and

the lenticulus fascicularis (a component of the pallidothalamic pathway), may in

fact be the real target of STN DBS (Plaha et al., 2006; Saint-Cyr et al., 2002). If this

is the case, then DBS of this region may contribute to improvements in LID

through a disruption of the classic pallidothalamic connection.

Another possibility is that DBS in the STN may actually drive, as opposed to

inhibit or stabilize, neuronal or axonal outflow activity within the basal ganglia,

and in so doing, circumvent the abnormal synchronization seen in PD

(Guridi et al., 2008). Garcia et al. (2003) have called this the “dual effect” of high

frequency stimulation in the STN: there is first a suppression of spontaneous

activity and next the induction of a new therapeutic pattern of activity at a

characteristically higher frequency. Part of this effect is a reduction in the overall

presence of b-band activity (Brown, 2003).
IV. Surgical Approach to the Patient With LID
A. SELECTION OF THE PATIENT AND TARGET

Surgery is the only current treatment that can effectively and simultaneously

treat both the motor symptoms of PD as well as LID (Guridi et al., 2008; Toda

et al., 2004). Consequently, the selection of patients for surgical intervention to

treat LID is invariably coupled to a consideration of the efficacy of surgery

against the cardinal features of the parkinsonian state, with rare exceptions.

Furthermore, the safety, efficacy, and reversibility of DBS make it the contem-

porary method of choice; the role for lesioning procedures is becoming increas-

ingly limited (Bronstein et al., 2011; Esselink et al., 2006; Gross, 2008; Starr et al.,

1998). In particular, the paucity of evidence supporting the efficacy of thalamot-

omy against LID and the risk of hemiballism/chorea associated with subthala-

motomy have all but eliminated these two procedures from the movement

disorder surgery armamentarium. Pallidotomy is still a reasonable option to

control contralateral LID in the PD patient with predominantly unilateral dyski-

nesias who is either a prohibitive medical risk for DBS, wants to avoid implanted

hardware, is at elevated risk of infection, has a history of recurrent DBS infection

with a previously implanted system, or is unwilling to commit to long-term

programming (Bronstein et al., 2011). These indications must be weighed against

the small but real risk of a permanent neurological deficit resulting from a
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mistargeted lesion, the occasional need for multiple procedures to improve

efficacy, and the increased risk of side effects if bilateral pallidotomy is attempted

(Bronstein et al., 2011; Gross, 2008).

The ideal candidate for DBS to treat LID has functionally disabling dyskinesias

in the setting ofmoderate to severe PD, accompanied by severemotor fluctuations,

and has exhausted all appropriate medical options. Ideally, LID should be a dose-

limiting side-effect of L-dopa therapy (Follett, 2004), but patients should still derive

benefit from L-dopa, demonstrated by at least a 30% improvement in motor scores

on part III of the Unified Parkinson Disease Rating Scale (UPDRS) in response to

a standard L-dopa challenge (Charles et al., 2002; Kleiner-Fisman et al., 2006) The

only firm exclusionary criterion for DBS is dementia, although active psychiatric

conditions are a relative contraindication and should aim to be brought under

control before surgery (Bronstein et al., 2011).

To date, head-to-head studies have not shown a significant difference in

efficacy against either LID or cardinal motor symptoms between pallidal and

STN DBS (Burchiel et al., 1999; Bronstein et al., 2011; Follett et al., 2010). As a

result, target selection must be individualized to the patient. Several factors may

play a role in choosing the right target for the right patient. Each patient’s unique

risk profile for side effects, personal preferences regarding the frequency and dose

of medication, as well as surgeon experience and comfort must all be considered. If

a withdrawal or reduction of medication is the desired goal of surgery, then STN

DBS is the clear choice. STN DBS is also the best option in patients previously

treated with a pallidotomy (Ondo et al., 2006). Conversely, there is evidence that

STN DBS may be complicated by adverse alterations in mood or impulsivity,

leading in extreme cases to increased suicide risk (Voon et al., 2008). In addition,

cognitive and executive frontal lobe function may be impaired by targeting the

STN (Saint-Cyr et al., 2000). The GPi therefore becomes the preferred target in

patients with pre-existing psychiatric or cognitive conditions.
B. TECHNICAL CONSIDERATIONS

The stereotactic surgical techniques used to perform lesioning procedures or to

implant DBS systems are variable from center to center, in constant evolution, and

the subject of an extensive body of literature. Consequently, we will not exhaus-

tively describe these techniques further in this review. Nevertheless, there are some

technical considerations unique to performing DBS for LID, which are worth

mentioning.

Typically, implantation of DBS electrodes is done after patients have been in

the off-medication state for several hours, usually following an overnight period

free of L-dopa consumption. This gives the best opportunity to avoid motion

artifact caused by dyskinesias which may corrupt pre-operative imaging, alter
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intra-operative MERs, or cause a patient to slip out of pin fixation in the stereo-

tactic frame (Follett, 2004). These advantages are offset, of course, by the inability

to document a reduction in LID using intra-operative stimulation, although

macroelectrode stimulation should still be used in the standard fashion to confirm

proper electrode position by the absence of stimulation side effects and, frequently,

by stimulation-dependent improvement in parkinsonian symptoms.

To date there is no definitive evidence that refining the target with MER

improves outcome or, conversely, sacrifices safety in either lesioning or DBS

procedures of the GPi and STN (Sierens et al., 2009). However, with the notable

exception of some centers (Hariz, 1999; Hariz et al., 2004), MER is a routine and

nearly universally applied technique in functional movement disorder surgery

(Ondo and Bronte-Stewart, 2005).Moreover, in the setting of LID treatment there

may be an added incremental benefit to using MER in targeting the STN because

recordings can help identify the dorsal (i.e., theoretically anti-dyskinetic) border of

the nucleus (Alterman et al., 2004).
C. DBS PROGRAMMING FOR LID

In a review of North American practices, initial programming of internalized

DBS systems was performed on average 18 days after electrode placement but

ranged from 1–90 days (Ondo and Bronte-Stewart, 2005). A detailed analysis of

the various stimulation parameters and adjustment options is outside the scope of

this review; for an overview of basic DBS programming algorithms, the reader is

referred to Volkmann et al. (2006). In brief, there are two general approaches to

DBS programming in the setting of LID (Follett, 2004; Kumar, 2002). The first

andmore common approach takes into account that the primary aim of most DBS

procedures in PD is to improve cardinal off-period motor symptoms. This

approach argues that programming should be done with the patient in the off-

medication state following an overnight washout (Volkmann et al., 2006). Once the

optimal relief of these symptoms is achieved, the patient can then begin taking

medication and be monitored for dyskinesia. Dyskinesias will usually manifest or

be worse in the afternoon, after the patient has taken several doses of L-dopa. If no

dyskinesias are observed in the on-state, then the stimulation parameters require

no further adjustment. If dyskinesias are present, then programmingmodifications

should be undertaken, but again only during the off period, to ensure that off-

medication motor benefit is preserved (Kumar, 2002). The second approach

argues that performing all programming in the on-medication state provides

immediate feedback on the anti-dyskinetic effect of DBS, in turn permitting

immediate reprogramming and the greatest opportunity for maximally reducing

LID (Follett, 2004). This approach risks exacerbating off-medication motor symp-

toms as well as off-period dyskinetic activity.
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In theory, the selection of active DBS contacts ought to take into account the

most anti-dyskinetic portion of the target area. As we have seen, for pallidal DBS

this is the posteroventral GPi usually corresponding to the deepest contacts; in the

STN it may be the dorsal region corresponding to the most superficial contacts. In

practice, considerable trial and error is needed to determine the optimal electrode

configuration in each patient (Kumar, 2002; Volkmann et al., 2006). Striking a

balance between achieving anti-dyskinetic effects and avoiding antagonism of

beneficial motor effects is critical. In the GPi, where DBS has a proven direct

anti-dyskinetic effect, some authors believe that this argues in favor of using

contacts situated in the central portion of the nucleus (Bejjani et al., 1997; Krack

et al., 1998b; Kumar, 2002). In the STN, by contrast, where the direct anti-

dyskinetic effect is of uncertain importance, the optimal electrode configuration

is one which permits the maximum reduction in L-dopa dose without loss of motor

function (Krack et al., 2002).
V. Conclusion
Treatment with L-dopa produces an unquestioned improvement in the motor

function and quality of life of patients with PD. Unfortunately, a substantial

number of these patients are functionally disabled by LID with the subsequent

need for modifications in medical therapy. Modern day stereotactic surgical

lesioning procedures and DBS are effective treatments against LID and are simul-

taneously and predictably effective against the cardinal features of PD as well. As

the surgical treatment of LID has undergone an evolution from early empirical

procedures, so too has our understanding of basal ganglia physiology. At the same

time, some of the paradoxical effects of surgery for LID have confounded attempts

to model the basal ganglia, ushering in new ideas about its oscillatory state in PD

and in response to chronic L-dopa therapy. Going forward, further basic and

clinical research is going to be necessary to refine the surgical treatment of LID,

whether through the improvement of existing techniques, or by identifying new

targets for intervention.
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Clinical trials evaluating transplantation of fetal tissue for the treatment of

Parkinson’s disease identified the unexpected side effect of abnormal movements

in the ‘off’ L-DOPA state. Termed graft-induced dyskinesia (GID), various

hypotheses have been put forward as to their cause but unfortunately the

significant differences in clinical trial protocols and lack of a truly representative

animal model has hindered the search for a conclusive basis for their appearance.

Likely causative factors have been identified through careful examination of

patient data and the use of amphetamine-induced dyskinesia in a rodent model of

Parkinson’s disease. New trials being planned in Europe hope to avoid GID, whilst

maximizing on the functional benefit that can be afforded by this treatment

approach but questions still remain as to the underlying mechanism.
I. Introduction
For most patients, L-DOPA or dopamine agonist pharmacotherapy produces

very effective relief of some motor symptoms in the early stages of Parkinson’s

disease. As the disease progresses, dopamine agonists and other adjunctive agents

become increasingly less able to counteract the symptoms and there is a greater

need for L-DOPA to form a major part of their pharmacotherapy. Both disease

progression associated with ongoing degeneration of the nigrostriatal dopaminergic

pathway and the increasing doses of L-DOPA required to control the symptoms
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contribute to the risk of developing abnormal involuntary movements known as

L-DOPA-induced dyskinesia (LID) (Grandas et al., 1999). The significant impact of

LID on quality of life, and the fact that these abnormalmovements limit the quantity

of L-dopa that can be administered, has driven the need to understand the mechan-

isms underlying LID and the search for anti-dyskinetic agents. Fraught with diffi-

culties, putative agents have demonstrated clear potential in pre-clinical models but

then failed to translate into successful clinical trials, either being ineffective in the

treatment of the LID in patients, or simultaneously worsening the parkinsonism

(reviewed in Fox et al., 2006; Lane and Dunnett, 2008). L-DOPA remains the most

effective treatment especially in the latter stages of the disorder but given these

problems, alternative treatment strategies have also been considered. One strategy

is the transplantation of dopamine producing cells into the putamen which has

successfully ameliorated motor symptoms for some patients with idiopathic PD

and also patients with PD resulting from the accidental self-administration of

MPTP (Madrazo et al., 1991; Freed et al., 1992; Lindvall et al., 1994; Peschanski

et al., 1994;Kordower et al., 1998). However, the implementation of this technique in

two double-blind clinical trials revealed a new form of intractable dyskinesia caused

by the graft in the absence of L-DOPA.This chapter will detail what is known to date

of these “graft-induced dyskinesia” (GID) in terms of their clinical presentation,

hypotheses of their cause, the development of animal models and how new clinical

trials are being designed with a view to avoiding them.
II. Transplantation for Parkinson’s Disease
More than three decades ago, research groups in Europe and theUnited States

began to work on the concept that the ectopic implantation of catecholaminergic

neurons into the putamen would replace the dopamine lost through the disease

process and may alleviate the motor symptoms of Parkinson’s disease. In support

of this, early experiments in the 6-OHDA lesioned rat demonstrated that the

transplantation of adrenergic or developing fetal dopaminergic tissue into the

striatum of hemiparkinsonian rodents would ameliorate motor deficits

(Backlund et al., 1985; Bjorklund et al., 1980; Dunnett et al., 1981; Freed, 1983;

Nadaud et al., 1984). Clinical trials followed and whilst there were significant

benefits to the autologous transplantation of the patients own adrenal gland cells,

avoiding the need for immunosuppression and therefore related complications,

this approach only produced mild clinical benefit (Backlund et al., 1985; Lindvall

et al., 1987). The only study reporting on the clinical neuropathology of an adrenal

transplant recipient failed to find survival of chromaffin cells 16 years post-trans-

plantation (Kompoliti et al., 2007).
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The earliest open label trials carried out with the allogeneic transplantation of

fetal cells demonstrated that the strategy of obtaining dopaminergic neurons from 6

to 9 weeks embryos following elective surgical terminations of pregnancy did have

the potential to provide significant clinical benefit (Freed et al., 1992; Lindvall et al.,

1990; Madrazo et al., 1991). Functional recovery could be achieved along with the

reduction, and in some cases complete cessation of anti-Parkinson’s medication, in

itself alleviating the dyskinesia associated with L-DOPA administration (Hagell et al.,

1999). In contrast to the autologous adrenal cell transplants, fetal cell transplant

pathology of a similar survival time shows the clear maintenance of the graft and

high expression of tyrosine hydroxylase indicative of sustained dopamine production

(Kordower et al., 2008; Li et al., 2008). This is consistent with maintained functional

improvement over several years (Politis et al., 2010).

On the tails of the success of the open label trials, there was a drive to follow the

pharmaceutical rationale of double-blind, placebo-controlled trials. While the

appropriateness of such a trial in long-term surgical therapies such as transplan-

tation may be (and indeed has been) debated (R. Barker, personal communica-

tion), the outcome of twoNIH sponsored trials (Denver-Colombia and Tampa-Mt

Sinai trials) to prove the efficacy of transplantation threw the field into disarray.

Not only did they both report an efficacy far below that which was predicted by the

open label trials, there was also the development of a novel form of dyskinesia,

abnormal involuntary movements present in clinically defined ‘off’ (Freed et al.,

2001; Olanow et al., 2003). These movements, now termed ‘graft-induce dyskine-

sia’ (GID), were then also identified in a retrospective analysis of patients trans-

planted in a successful open-label trial (Lund-London trial) (Hagell et al., 2002).

There was a large amount of negative publicity generated, and the result was a

mutual consensus to cease transplanting patients until these issues of efficacy and

GID could be resolved.
III. The Clinical Phenomena of GID
In 1999, Greene and coworkers published the first abstract reporting on GID

in the patients transplanted in the Denver-Colombia study (Greene et al., 1999).

Fuller details were reported in the subsequent article in the New England Journal

of Medicine, reporting that “dystonia and dyskinesia developed in five patients

(15%) and persisted after a substantial reduction in, or elimination of therapy with

dopamine-agonist drugs” (Freed et al., 2001; Greene et al., 1999). The movements

were described variously as being either severe cranial dystonia, persistent dyski-

nesia in the arm or generalized dyskinesia (Freed et al., 2001). Two years later the

Tampa-Mt Sinai double-blind NIH-funded trial reported that 57%, 13 out of
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23 patients, developed abnormal movements in clinically defined ‘off’ in which

the lower extremities, namely leg and hip, were the most affected with “repetitive

stereotypic alternating contractions of flexor and extensor muscle groups at a

relatively low frequency” (Olanow et al., 2003). The Lund-London patients (6 out

of 14, 43%) reviewed by video, presented with concurrent hyperkinesia and

dystonia, also predominantly in the lower limbs with “ballistic repetitive stereo-

typic movements” (Hagell et al., 2002). At this point it is also worthy of mention

that the development of GID in other open label trials was not explicitly looked

for or clearly evaluated; however, there were mentions of delayed onset changes

in dyskinesia in one Swiss open-label trial report and an earlier open-label trial by

the Tampa-Mt Sinai collaboration (Graff-Radford et al., 2006; Jacques et al.,

1999). Nevertheless, the above descriptions highlight differences in the expres-

sion of GID elicited in each trial. In the Tampa-Mt Sinai and Lund-London

groups the behaviors were typically in the lower extremities and stereotypic in

nature, conversely in the Denver-Colombia study, more axial and facial and

upper body dystonia were reported. This could simply be a facet of the location of

the graft in the somatotopically organized putamen or a directly comparable

difference in symptomatology. Despite these phenotypic differences, one impor-

tant consistency between all groups was that patients suffering from GID also

benefited from the graft with a degree of improvement in motor function, albeit

slight in the double blind trials (Hagell et al., 2002; Olanow et al., 2009). Whilst

some patients improved significantly without the development of GID, these

data support the assumption that the behaviors are a direct consequence of the

transplantation procedure and only develop when there is a surviving graft-

producing dopamine.

Aside from the obvious difference in double-blind versus open-label trials, the

transplantation protocols varied in many parameters including the selection of

patient cohorts, immunosuppression regimes, andmeasures used in the assessment

of functional outcome. This is excellently reviewed by Winkler et al. (2005), but in

summary, the features potentially critical to GID were firstly in the areas of tissue

preparation. The Denver-Colombia trial implanted “noodles” of cells cultured for

4 weeks prior to transplantation in a frontal approach. The Tampa-Mt Sinai trial

transplanted solid pieces of tissue either freshly obtained or stored for 2 days

(Tampa), whilst Lund-London grafted cell suspension either fresh or occasionally

up to a week when necessary to garner enough tissue. The number of ventral

mesencephalon used per transplant varied from 1 to 7 across the trials and

immunosuppression regimes ranged from none administered in the Denver-

Colombia trial, with up to 4 years of continuous cyclosporine and steroid use in

the Lund/London trial. Other variations that could also be significant were in the

mean age of patients, disease duration, their UPDRS motor score in ‘off’ and

medication in L-DOPA equivalents. Drawing any firm conclusions for the basis of

GID from this varied profile has been impossible.
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IV. Animal Models of GID
A major difficulty in studying GID is that they are purely clinical phenomena,

and only a few patients globally are known to have developed them. Given that this

was not an anticipated consequence of transplantation, one possibility was that the

behaviors had simply been overlooked, especially as clinical reports were diverse

and generally described mild dyskinesia. Prior to the clinical trial reports, a

plethora of animal studies had been performed in parkinsonian rodents and

primates none of which reported any incident of spontaneous abnormal move-

ments. Following the publication of the clinical findings and recognition of the

potential impact of GID on the field, transplantation studies were carried out in the

6-OHDA lesioned rat and MPTP-treated primate specifically to look for sponta-

neous GID. Two rodent studies in Lund, Sweden, closely examined 6-OHDA

lesioned rats’ behavior post-transplantation (Carlsson et al., 2006; Lane et al.,

2006). The concept was to replicate the experience of the patient as closely as

possible; patients were in the later stages of the disease treated with L-DOPA and

typically had developed LID. Therefore, in the animal model 6-OHDA lesions

were used, a severe unilateral lesion producing 95–99% depletion of nigrostriatal

dopamine, and rats were pre-treated with L-DOPA to generate LID. Following

transplantation with ventral mesencephalon from rat embryos at embryonic day

14, an approximate correlate of the 6–9 weeks human embryos used in patient

trials, no spontaneous abnormal movements were observed. Mild stressors were

applied to the rats, tail pinch for example, in an attempt to trigger spontaneous

dyskinesia but to no avail (Carlsson et al., 2006; Lane et al., 2006). Mild, sporadic

dyskinesia in the absence of L-DOPA was observed in one of these, and one other

reported study but these were too occasional, inconsistent, and easily interpretable

as normal behaviors to use as a robust model (Lane et al., 2006; Vinuela et al., 2008).

A large-scale primate study was also conducted but spontaneous dyskinesia was

similarly elusive (Redmond et al., 2008). An important and unexpected outcome

was in the rodent studies. Amphetamine is commonly used to crudely assess the

extent of the 6-OHDA lesioned (triggering an ipsilateral rotational response) and to

test the success of transplantation (contralateral rotations in a distinctive biphasic

pattern (Bjorklund et al., 1980; Dunnett et al., 1983; Herman et al., 1993; Torres and

Dunnett, 2007)). In testing the transplanted rats with amphetamine, a proportion of

the rats began to display abnormal movements similar in nature to the L-DOPA-

induced AIMs (described in Johnston and Lane, this volume). Whilst not being

spontaneous, these amphetamine-induced AIMs have parallels with GID that

support its use a model for the movement disorder. They are only present following

transplantation; if the graft is rejected, the response to amphetamine reverts back to

a pre-transplantation state with no dyskinesia (Lane et al., 2008). Moreover they are

present in the absence of L-dopa approximating the clinically defined ‘off’ and
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prolonged withdrawal of L-DOPA in patients. However, it is noteworthy that some

transplanted patients were given amphetamine as part of an imaging study and it

did not appear to evoke or exacerbate GID (P. Piccini, personal communication).

These rodent abnormal movements in response to amphetamine develop over

12–16 weeks post-transplantation despite the almost immediate reversal of the

rotational response (Lane et al., 2006). This suggests that the mechanisms are not

simply as a result of dopamine release, but may relate to the way the graft develops.

In general, and in agreement with clinical studies, rats with GID have improved

motor function and reduced LID when L-DOPA is administered suggesting that

they only occur with a functionally effective transplant. A couple of years prior to

these studies, a US group had identified behavioral changes in transplanted animals

in response to L-DOPA. They first reported increased forelimb hyperkinesia and in

a later study describe the development of L-DOPA-induced “forelimb-facial stereo-

typy” and “forepaw tapping” that only develops post-transplantation (Maries et al.,

2006; Soderstrom et al., 2008; Steece-Collier et al., 2003). These behaviors, induced

by L-DOPA, are even further removed methodologically from clinical GID than

amphetamine-induced behaviors but provide strong indications that even distribu-

tions of graft tissue and immune reactions to the graft can influence motor function

(Maries et al., 2006; Soderstrom et al., 2008).
V. Understanding the Cause of GID
Each clinical trial reporting GID has identified potential influential factors in

their analyses. The first hypothesis, put forward by the Denver-Colombia study,

was that “continued fiber outgrowth from the transplant has led to a relative excess

of dopamine”[sic] (Freed et al., 2001). [18F]DOPA PET scans quickly negated this

hypothesis demonstrating that dopamine levels were below that of a healthy cau-

date putamen. However, these scans did reveal that some grafts were not homog-

enous in distribution and that “hotspots” of dopamine within the transplanted

putamen were only present in patients with GID (Ma et al., 2002). This sounded

like a plausible explanation, uneven distribution of the cells causing intense areas of

dopamine release, which could trigger excessive, uncontrolled motor responses.

Unfortunately similar scans from patients in other trials did not validate this

hypothesis, failing to find any evidence of “hotspots” in other transplanted patients

(Hagell et al., 2002). Moreover, reports from the Tampa-Mt Sinai cohort of GID

patients, with a more stereotypic phenotype, likened the movements to the end-of-

dose dyskinesia observed with L-DOPA administration, as opposed to the more

classic peak-dose LID. They suggest, in contrast to the Denver-Colombia hypoth-

esis, that low levels of dopamine are responsible for GID implicating suboptimal
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grafts that produce insufficient dopamine to normalize striatal function and instead

intermittently activate the sensitized dopamine receptors (Olanow et al., 2009). Pre-

clinical studies in the 6-OHDA lesioned rats evaluated the consequence of graft size

but failed to find any association with amphetamine-induced dyskinesia (Lane et al.,

2006). Interestingly, rat studies suggest that it may be more to do with the location

of striatal reinnervation and that more caudal and lateral areas of the caudate

putamen may be associated with the expression of amphetamine-induced dyskine-

sia (Carlsson et al., 2006; Lane et al., 2010b). Maries and coworkers tried to

reproduce hotspots in the graft by creating concentrated dopamine cell deposits

in the rat striatum (Maries et al., 2006) but this study focused on the consequences of

the transplant on LID rather the GID. Nevertheless, they did find that while focal

grafts reduced LID they did so less consistently than widespread grafts and that

there was an increase in mild stereotypies of the forelimb and orolingual area.

These studies contribute to the clinical findings that best functional recovery will be

obtained with even, widely innervating grafts.

One of the more recent hypotheses has postulated a role for the neurotrans-

mitter serotonin in the development of GID, partly in response to findings of its

significant role in LID (Carta et al., 2008). As dopaminergic terminals degenerate,

there are insufficient numbers to readily convert the exogenously administered

L-DOPA into dopamine. Serotonergic terminals in the striatum possess the nec-

essary cellular machinery to carry out this process and appear to take up L-DOPA,

synthesize, store, and release dopamine (Maeda et al., 2005; Tanaka et al., 1999).

Given that the appropriate feedback systems can no longer function as they would

in a dopaminergic terminal, dysregulated dopamine release may contribute sig-

nificantly to the dyskinesia in advanced stages of the disease (Carta et al., 2010).

The significance of the issue in GID is that the developing dorsal raph�e is located
immediately caudal to the ventral mesecephalon. Depending on the dissection

parameters, some serotonin neurons may be included in the VM tissue dissected

and transplanted. There is a limited knowledge of how much serotonin may have

been transplanted into patients in previous clinical trials as serotoninergic neurons

have proved difficult to identify conclusively in the post-mortem cases that have

been analyzed. However, this analysis has been successfully performed in five

patients from one transplantation study in Nova Scotia, Canada identifying a high

proportion of serotonin neurons in the grafts of five patients (Mendez et al., 2008).

Furthermore, [11C]DASB PET scans of serotonin transporter levels in the caudate

putamen of two patients transplanted in Lund identified levels well above those of

control subjects and parkinsonian controls (Politis et al., 2010). Critically, the

Canadian patients were reported as having no indication of GID whilst the two

Lund patients did (Mendez et al., 2008; Politis et al., 2010). Given that patients with

successful transplants without GID from the Lund cohort were not scanned, this

data is far from conclusive. Rodent studies have found no relationship between

GID and serotonergic neuron “contamination” (Lane et al., 2006, 2009) and a
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detailed study by Garcia suggests that so long as the number of serotonin neurons

does not exceed the number of dopaminergic neurons there is no significant effect

(Garcia et al., 2011). This, however, is not the end of the story as both rodent and

patient GID studies have suggested that GID are modulated by 5-HT1A agonists

but not increased 5-HT levels induced by serotonin selective reuptake inhibition

(rodents only) (Lane et al., 2006, 2009; Politis et al., 2010). Care should be taken in

the interpretation of the clinical experiment though as buspirone, the 5-HT1A

agonist used (a licensed anxiolytic), also functions as a D2-like dopamine receptor

antagonist with significant effects on the dopaminergic system (Skolnick et al.,

1984). Pre-clinically D1 and D2 receptor antagonists have been found to

completely abolish GID; therefore, direct interference through the D2 receptor

could also mediate the observed reduction in GID. Nevertheless, these are the

only pharmacological studies carried out on GID and open up intriguing ques-

tions as to the role of 5-HT. Data from the group of Winkler suggest that

functional efficacy may be marginally compromised by the inclusion of 5-HT

neurons (Garcia et al., 2011) (although the inverse is found in another study

(Carlsson et al., 2007)). This conflicting and potentially coincidental data does

not support or condemn the inclusion of 5-HT neurons; therefore, narrow

dissections that minimize their incorporation into the graft are justified in future

clinical trials, without the need for excessive steps to actively exclude them from

the transplant preparation.

Due to the difficulties of procuring 6–9weeks ventral mesencephalon there was

a requirement for some clinical trials to store tissue for short periods of time prior to

transplantation (Hauser et al., 1999; Mendez et al., 2000; Olanow et al., 2003).

There has also been the addition of factors to improve graft survival, namely

lazaroids and GDNF (Brundin et al., 2000; Mendez et al., 2000). While survival

factors have not been associated with GID, Hagell et al. (2002) reported that the

patients who received stored tissue in their trials were among those that developed

GID. Storing rodent ventral mesencephalic tissue for 8 days did not increase the

likelihood of amphetamine-induced AIMs in the rat model but as shown by others,

despite transplanting the same number of cells, dopaminergic neuron survival is

significantly reduced (Hebb et al., 2003; Lane et al., 2010b; Nakao et al., 1994;

Petersen et al., 2000).

The temporal profile of GID onset varied across the reported studies, a

finding that may relate to the variable use of immunosuppression. In the Lund-

London trial, there was a significant development or initiation of GID following

cessation of immunosuppression, which took place an average 2 years but in

some cases up to 4 years post-transplantation (Piccini et al., 2005). This contrasts

with the two double-blind NIH studies in which either 6 months or no immu-

nosuppression was given and the abnormal movements were reported as devel-

oping and stabilizing in the first 6–12 months following transplantation (Freed

et al., 2001; Olanow et al., 2003; Lane et al., 2010a). Multiple donors were used in
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all of these studies, an increased pooling might be expected to increase the

chances of an inflammatory response to the graft, although there was no differ-

ence between the numbers of patients developing GID who received one or four

donors (Olanow et al., 2009). It has not been possible to examine the neural

tissues of any patients with GID but patients from the same cohorts have shown

evidence of inflammation in and around the graft (Kordower et al., 1997). Like

the limited clinical insights, pre-clinical studies on inflammation and immuno-

suppression have been similarly inconclusive but immune responses between the

host and grafted tissue may affect synaptic contacts and adversely affect

L-DOPA-induced behaviors (Soderstrom et al., 2008).
VI. Strategies for Dealing with GID
Two or three patients in each experimental cohort of the three trials reporting

GID required additional interventions due to the severity of their GID.

Amantadine was not successful long-term but the use of DBS had particularly

interesting results. Patients in the Denver-Colombia and Lund-London trials

reportedly responded well to DBS of the internal globus pallidus (more so than

that of the subthalamic nucleus); however, this was only transiently successful in

one Tampa-Mt Sinai patient (Cho et al., 2005; Graff-Radford et al., 2006; Herzog

et al., 2008; Ma et al., 2002). Conversely, DBS of the subthalamic nucleus did

ameliorate movements in all three patients of this trial (Cho et al., 2005).

Unfortunately, this disparity again fails to reveal a common mechanism between

the three clinical trials. The 5-HT1A agonist buspirone produced a noticeable

reduction in GID in the two London patients but is not a possibility as long-term

treatment strategy (Politis et al., 2010).

The goal is, and must continue to be, avoiding GID altogether in transplan-

tation alongside producing maximum benefit. However, a consideration when

evaluating the potential of transplantation is that despite some patients experienc-

ing relatively prominent GID, their symptoms were better controlled and overall

profile of dyskinesia is less severe than had they remained on the best available

medication. Their GIDs were significantly less than would be evoked by L-DOPA

with a reduction in other motor complications such as “on–off” fluctuations

consistent with a reduction in their medication intake. The two patients reported

by Politis et al. (2010) have disease durations of over 25 years and are still able to

walk with ease, read, and communicate.

Controversy surrounds the US led NIH-funded double-blind trials and signif-

icant support for transplantation is now more “Europe-centric.” Evidence accu-

mulated thus far from examining all the clinical trial data and consideration of the
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pre-clinical evidence has been assimilated into the design of an imminent new

European clinical trial TransEUro, funded by the EU and led by Dr Roger

Barker (CambridgeUniversity). In thesemulticenter phase II and II/III trials, many

of the factors discussed above have been taken into account. Younger, earlier stage

Parkinson’s patients with no, or low levels of LID will receive grafts of embryonic

tissue dissected to minimize the inclusion of 5-HT neurons. They will have long-

term immunosuppression and undergo a carefully considered panel of assessments

at stages prior to and following transplantation. The results are eagerly awaited and

will be major determinant in the future of stem cell therapy for Parkinson’s disease.
VII. Final Considerations
In summary, dyskinesias post-transplantation observed in clinically defined

‘off’ are described in at least three transplantation clinical trials and can be of a

significant magnitude. However, the phenotype varies in each case, the time line of

development is different and “curative” sites for DBS are on opposing branches of

the basal ganglia circuitry. We may therefore be dealing with an innately variable

phenomenon thatmay in part depend on the location of the dopaminergic deposits

in the striatum, serotonin innervation, and duration of immunosuppression.

Alternatively are we looking at “GIDisms,” similar disorders with different root

causes in each trial?We should also bear inmind that GID are considerably milder

than LID and are well tolerated by many patients (Hakan Widner, personal

communication). Even with GID, patients are significantly better off with a suc-

cessful transplant than would be predicted if they had continued on their pharma-

cotherapeutic regime. Whilst the mechanisms are not fully understood, enough

information has been ascertained to cautiously move forward with a new clinical

trial, the significance of which goes beyond the role of fetal tissue transplants.

Success now has repercussions for the use of new sources of cells, whether they are

embryonic, adult, or induced pluripotent stem cells, which will supersede the

ethically controversial use of fetal tissue.
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Tardive dyskinesia (TD) is a common and potentially irreversible side effect of

dopamine blocking agents, most often antipsychotics. It is often socially and

sometimes also physically disabling. The clinical picture can be divided into

orofacial, limb-truncal, and respiratory dyskinesia.

The clinical options to prevent or mitigate TD include psychoeducation,

systematic screening, and evaluation of the need for antipsychotics and/or dosages,

managementof known risk factors, and switching to an antipsychotic with a lower

risk of TD.There is no evidence-based approach for treating existingTDbut several

clinical interventions can be effective including discontinuing the antipsychotics or

reducing the dosage, switching to clozapine, adding an antidyskinetic agent, or

applying deep brain stimulation.
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I. Introduction
Tardive dyskinesia (TD) is a severe neurological side effect of long-term treat-

ment with dopamine blocking agents generally antipsychotics. Antipsychotics are

the cornerstone in the treatment of psychotic disorders, particularly schizophrenia,

for which long-term antipsychotic treatment is often mandatory. Movement dis-

orders are among the many side effects of antipsychotics. These are divided into

acute and tardive movement disorders: the acute variant starts within days or

weeks after starting dopamine blocking agents or increasing the dose (or cessation

of anticholinergics); tardive movement disorders develop after months or years of

treatment with antipsychotics. TD can be potentially irreversible and when it is,

the antipsychotic treatment has induced a new syndrome. In mild forms, patients

may exhibit psychological problems while severe forms can even cause physical

disability.

This chapter presents the clinical picture, pathophysiology, differential diag-

nosis, prevention, and treatment of TD.

However, two issues need to be discussed first because many subjects in this

chapter are based on the assumption that TD is (i) associated with antipsychotics

and (ii) is a clinical issue after the introduction of the new (second-generation)

antipsychotics.

A. IS TARDIVE DYSKINESIA ASSOCIATED WITH ANTIPSYCHOTICS?

Although most clinicians agree that TD is associated with antipsychotics (it is

recognized as a separate category in the DSM-IV), there is still a debate about

whether dyskinetic movements are a consequence of antipsychotic use or whether

they are closely related to the underlying disease process of schizophrenia itself

(Crow et al., 1983; Koning et al., 2010). The hypothesis that the tardive syndromes

are related to schizophrenia is based on (i) descriptions of dystonic and dyskinetic

features in schizophrenic patients in the pre-neuroleptic era, (ii) substantial prev-

alence of TD in antipsychotic-naive populations with schizophrenia, and (iii) the

absence of a significant association between the duration of antipsychotic use and

the presence of TD (Koning et al., 2010). However, several arguments strongly

support the relationship between dyskinesia and the use of antipsychotics. First, the

absence in many studies of a significant relationship between the presence of TD

and the duration of antipsychotic usemay be due to the populations included in the

studies, very often patients on long-term antipsychotic treatment. This would tend

to obscure any relationship between duration of antipsychotic use and the risk of

TD. Indeed, incidence studies with samples of patients in the early years of

treatment do show a significant relationship between the duration of antipsychotic

use and the development of TD (Kane and Marder, 1993; Kane et al., 1986). This
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relationship is even more obvious in older patients receiving antipsychotics for the

first time. In those patients, a 1 year incidence of TD of 26% and a 3-year

incidence of 60% has been reported repeatedly (Jeste, 2000, 2004).

Second, there are many case reports of tardive syndromes in non-schizo-

phrenic patients who have used antipsychotics for other indications, such as

anxiety, personality disorders, hypochondriasis, or behavioral problems

(Skidmore et al., 2005). Third, dopamine blocking agents are used in general

practice and can induce movement disorders. There is even a black box warning

issued by the FDA in 2009 regarding long-term or high-dose use of metoclopra-

mide (dopamine blocking antiemetic) because of the risk of developing TD (Rao

and Camilleri, 2010). Fourth, there are case reports of patients in whom tardive

dystonia or TD decreased after withdrawal of antipsychotics but increased or

reappeared after being re-challenged with these agents. Fifth, it is clear that

antipsychotics cause acute extrapyramidal side effects, and in a few cases, acute

dystonia developed into persistent dystonia (Skidmore et al., 2005; vanHarten et al.,

1996a). These considerations have ledmany clinicians and researchers to conclude

that antipsychotics are capable of causing or precipitating persistent dyskinesia or

dystonia.
B. IS TARDIVE DYSKINESIA STILL A PROBLEM?

The prevalence of antipsychotic-induced movement disorders in patients on

long-term treatment with first-generation antipsychotics (FGAs) is between 50 and

75% (Janno et al., 2004; van Harten, 1998; van Harten et al., 1996b). The intro-

duction of the second-generation antipsychotics (SGAs) led to the expectation that

drug-induced movement disorders would disappear. However, the results of 12

long-term studies of SGAs made it clear that SGAs only reduce the risk when

compared to FGAs (Correll and Schenk, 2008). Moreover, these studies had

several methodological problems such as no equivalent dosage of haloperidol in

the control arm, high dropout rates, short study duration, and invalid approaches

to measuring movement disorders, all of which limit the validity of the conclusions.

Also, these trials were sponsored by pharmaceutical companies, which have a

direct interest in the outcome of their product as illustrated by Heres et al. (2006).

In contrast, three other, large non-pharmaceutical company-sponsored trials

published in the last 5 years did find differences between FGAs and SGAs in the

incidence of parkinsonism and akathisia, but almost none in the incidence of TD

(Casey, 2006; Jones et al., 2006; Kahn et al., 2008; Lieberman et al., 2005). However,

these studies also had methodological problems, such as relatively short follow-up

period to detect TD (around 1 year), high dropout rates, and in the Cutlass trial,

many patients in the FGA group used sulpiride, which has a lower incidence of

extrapyramidal side effects and is classified by some researchers as a SGA.
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Furthermore, FGAs are still prescribed and combining FGAs with SGAs is not

uncommon in clinical practice (Barbui et al., 2006; Broekema et al., 2007; Ganguly

et al., 2004).

Another development of great importance for the absolute number of patients

with antipsychotic-inducedmovement disorders is that SGAs are increasingly used

for other indications as SGAs have strong mood stabilizing properties

(Citrome et al., 2009). Thus, even if SGAs have a reduced risk, when used in a

much larger population (bipolar and other disorders), the total number of drug-

induced movement disorders will still be substantial. Therefore, it is not realistic to

suggest that drug-induced movement disorders are disappearing.

Recognition and measurement of these disorders and identification of those

patients who are particularly at risk of developing TD may pave the way to the

development of preventive and treatment strategies, which in turn should increase

the quality of life of the patient.
II. Clinical Features
TD is characterized by involuntary writhing and purposeless, irregular move-

ments that may or may not be continuous. All antipsychotic-induced involuntary

movements disappear during sleep, particularly during the deep phase of the sleep.

The severity of dyskinesia may change with the patient’s level of excitement. In an

anxious patient the disorder may be more severe whereas during relaxation it may

decrease. Moreover, volitional motor activity may alter the severity, for example,

finger tapping or walking may bring out or increase dyskinesia (APA, 1992). This

alteration in severity is sometimes wrongly interpreted as evidence that the disor-

der is of psychogenic origin, particularly if the clinician has made the incorrect

assumption that the severity of dyskinetic movements should be constantly the

same.

The assessment of the severity of the movement disorder can be based on

location, character, amplitude, frequency (i.e., the number of movements occur-

ring in a defined period), and persistence (the proportion of a period during which

themovements are apparent). The absence or presence of subjective feelings (often

feelings of shame) caused by the involuntary movements are also an indicator of

the severity, and for the patient often more important than the “objective” severity

based on a rating scale (Emsley et al. (2011), Freed, 1982).

TheDSM-IV defines the diagnosis of TDby several criteria as formulated in the

DSM-IVTR. (APA, 2000). In research, Schooler andKane (1982) criteria are often

used. They define TD as the development of dyskinesia during the use of antipsy-

chotics for a minimum of 3 months or within 3 months (in depot antipsychotics
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6months) after cessation of the antipsychotics; patients should have at least twomild

or onemoderate score on the Abnormal InvoluntaryMovement Rating Scale (Guy,

1976; Schooler and Kane, 1982).

There is no specific (laboratory) test to differentiate between schizophrenia-

related dyskinesia and drug-induced TD (see differential diagnosis).

TD can be divided into orofacial, limb-truncal, and respiratory dyskinesia and

combinations are not uncommon.
A. OROFACIAL DYSKINESIA

The core sign in orofacial dyskinesia is the bucco-linguo-masticatory triad.

This consists of involuntary movements of the tongue, jaw, lips, or face, for

example, twisting, curling or protrusion of the tongue, chewing or lateral jaw

movements, pursing, sucking, pouting, or puckering of the lips, facial tics, and

frequent eye blinking.

The orofacial type is the most common type of TD and accounts for approx-

imately 80% of TD cases (Rapaport et al., 2000). Severe oral dyskinesia may result

in dental problems that can progress to ulceration, as well as to muffled or

unintelligible speech or impaired eating and swallowing.

Although rare, TD can be accompanied by painful sensations that can become

a source of profound distress for the patient (Tschopp et al., 2009). Sometimes the

cause of the pain is related to a dental condition in which a dyskinetic tongue

brushes over a tooth that is raw (van Harten and Hovestadt, 2006).

However, most of the time oral TD does not cause pain or physical disabilities

but if patients are conscious of their dyskinetic movements, social disability is often

present. Patients may feel embarrassed, anxious, or depressed when they notice

that others observe their dyskinetic movements and the presence of obviously odd

movements can lead to stigmatization. Feelings of shame are a common reason for

seeking help. One study showed that patients with orofacial dyskinesia are deemed

less socially acceptable (Boumans et al., 1994).
B. LIMB-TRUNCAL DYSKINESIA

Limb-truncal dyskinesia consists of choreiform purposeless movements of

trunk and/or limbs, such as writhing movements of the fingers (“piano-playing

fingers”) or irregular toe movements, rotation of the wrists, arms, ankles, and legs,

head nodding, trunk movements, and pelvic thrusting (Paulsen et al., 1996). Pelvic

thrusting can be very socially invalidating and limb and/or trunk dyskinesia may

cause gait disturbances and may leave patients vulnerable to falls (Alentorn et al.,

2009).



192 PETER N. VAN HARTEN AND DIEDERIK E. TENBACK
C. RESPIRATORY DYSKINESIA

A fast irregular breathing pattern is the core feature of respiratory dyskinesia.

Sometimes other symptoms are present, such as gasping, sighing, and/or grunting,

forceful breathing, shortness of breath, and dyspnea (Kruk et al., 1995; Nakamura

et al., 1991). Respiratory dyskinesia can even induce dyspnea and cyanosis. The

muscles involved are the respiratory musculature or the diaphragm. The involve-

ment of the diaphragm can also induce dyskinetic movements of the belly and is

then known as the belly dancer syndrome, which can also be induced by dyskinetic

movements of the abdominal muscles.

A clinical rule of thumb is that almost all cases of respiratory dyskinesia are

accompanied by orofacial dyskinesia (Yassa and Lal, 1986). In fact, if orofacial

dyskinesia is not present, one should re-consider the diagnosis of respiratory

dyskinesia.

The patient’s lack of awareness of or even denial of dyskinetic movements may

be striking and is associated with cognitive impairment and negative symptoms

often present in patients with schizophrenia (Chong et al., 2001). However, lack of

awareness of TD and lack of insight in schizophrenia are not directly related

(Emsley et al., 2011). Patients with schizoaffective, bipolar, or anxiety disorders

are more often aware of their movement disorders (Macpherson and Collis, 1992).
III. Differential Diagnosis
Dyskinesia occurs ideopathically in antipsychotic-naı̈ve patients with psychotic

disorders, drug induced (antipsychotics or other drugs), in hereditary diseases, in a

systemic or neurological disease, or as a result of psychological stress.

Spontaneous hyperkinetic dyskinesias such as “grimacing” and “irregular

movements of tongue and lips” are prevalent in antipsychotic-naı̈ve psychotic

patients: Kraepelin and Bleuler described the phenomenon more than 100 years

ago (Koning et al., 2010). Also, recent studies indicate that the number of sponta-

neous movement disorders related to schizophrenia are substantial and increase

with age (Fenton, 2000; Koning et al., 2010; McCreadie et al., 2002; Tarbox and

Pogue-Geile, 2006).

Schizophrenia stereotypies (purposeless, meaningless actions) andmannerisms

(peculiar ways of carrying out normal actions) may be confused with drug-induced

dyskinetic movements. Differentiation between dyskinesia related to psychosis and

drug-induced dyskinesia can be effected by a careful history regarding the timing

of the onset of the dyskinesia in relation to antipsychotic use. However, when the

onset of the dyskinesia occurs after the use of antipsychotics, differentiation may be
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impossible. In clinical practice the differentiation is often based on the character of

the movement. For example, in a patient with schizophrenia, raising the shoulders

with each step taken is classified as a stereotypy because the movement differs from

movements typically seen in TD. The repeated touching of his hair by a mutistic

patient, followed by a grimace and clapping of hands, is classified as mannerism

(it may have a magical function) because the movements are far too complex

compared to dyskinetic movements. On the other hand, the curling wormlike

movements of the tongue developed by a patient on long-term antipsychotic

medication are classified as TD because this is a typical dyskinetic movement seen

in orofacial TD.

However, another reason for continuous movements in the orofacial region

could be ill-fitting dentures or other dental problems. Although these movements

are voluntary in contrast to the involuntary movements in TD, patients do not

always recognize the voluntary nature of the movements.

TD must also be differentiated from tics. A tic is a stereotyped repetitive,

involuntary movement or sound, frequently preceded by premonitory sensations

or urges (Shprecher and Kurlan, 2009). These sensations are not present in TD.

Acute drug-induced movement disorders such as akathisia, acute dystonia, or

withdrawal syndromes may be confused with TD. Akathisia is characterized by

feelings of restlessness and it is this restlessness that forces the patient to move his

legs or even his whole body. Acute dystonia is clearly related to the start of or a

substantial increase in the dosage of an antipsychotic (or other drugs that block

dopamine receptors), or after a sudden withdrawal of an anticholinergic

(van Harten et al., 1999). Acute dystonia disappears after an injection of an

anticholinergic in contrast to TD, which will persist or even worsen.

Withdrawal emergent dyskinesia is more often seen in children than in adults

and develops after a sudden withdrawal of antipsychotics. It is always self-limiting

and most of the time it disappears within a few hours or days (Mejia and Jankovic,

2010).

If the dyskinesia is accompanied by dystonic features, Wilson’s disease, which

can start with dystonic movements, must be ruled out also because it is potentially

treatable (Schilsky, 2009; Wiggelinkhuizen et al., 2009).

If the dyskinesia is progressive or is accompanied by other somatic and/or

psychiatric signs (such as cognitive impairment, memory, and attention distur-

bances), diseases such as Huntington’s disease, Sydenham’s chorea, neuroa-

canthocytosis, Fahr’s syndrome, and Hallervorden-Spatz disease should be

considered. Although an increase in the severity of the dyskinesia is a warning

to consider other diagnoses, TD or spontaneous dyskinesia related to schizophre-

nia can be progressive also.

Psychogenic movement disorders can mimic many other movement disorders,

most frequently tremors but also such disorders as psychogenic dystonia or myoc-

lonus. Psychogenic movement disorders often start abruptly, after a traumatic
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event, in contrast to TD, which emerges gradually (Espay et al., 2009; Miyasaki

et al., 2003).

Respiratory dyskinesia is often misdiagnosed as a respiratory disorder or as

psychogenic hyperventilation. However, the breathing pattern in hyperventilation

is regular in contrast with respiratory dyskinesia, which has an irregular pattern.

Furthermore, as mentioned, respiratory dyskinesias almost always go together

with orofacial dyskinesia.

Many other drugs can produce hyperkinetic movement disorders that must

also be differentiated from TD. We describe a few drugs that may be the cause of

dyskinesia or an increase in severity of existing TD. Abuse of amphetamines,

cocaine, and other stimulants can cause chorea, dystonia, and stereotyped behav-

ior during use or withdrawal. Anticholinergics and antihistaminic agents have

rarely been associated with the onset of orofacial dyskinesias but do increase the

severity of dyskinetic movements. Several anticonvulsants can produce dyskinesias

resembling TD. Oral contraceptives and the chloroquine-based antimalarial

agents can also cause chorea and other dyskinetic symptoms. The use of lithium

or tricyclic antidepressants (partly due to their anticholinergic effect) has been

associated with aggravating existing TD. These agents can also produce fine, rapid

tremors that may be superimposed on TD. Dopamine agonists, and the dopamine

precursor levodopa can also provoke hyperkinetic dyskinesias (Casey, 1990).

In clinical practice, the diagnosis of TD is made when a patient has used

antipsychotics for at least 3 months (in older patients at least 1 month) or within

3 months after cessation of antipsychotics (in depot antipsychotics 6 months) and

dyskinesia is the only symptom. In these patients, the benefits of extensive research

into various rare diseases do not weigh against the burden of all the diagnostic

procedures for the patient or against the costs.
IV. Pathophysiology
The pathophysiology of TD is not yet totally understood. We discuss two

hypotheses, the dopamine supersensitivity hypothesis, including the related D2

binding affinity theory, because they explain at least some of the characteristics of

TD, and the neurotoxicity theory which hypothesis is also linked to movement

disorders found in neurology. However, there are other pathophysiological expla-

nations, such as those related to Gamma-aminobutyric acid (GABA) a central role

in generating abnormal neuronal activity in subcritical areas or striatal dysfunc-

tion. These theories explain dyskinesia by increased activity of the D1-mediated

striatonigral/striatopallidal pathway. These striatal neurons are primarily

GABAergic but other neuropeptides and neurotransmitters such as dynorphin,
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substance P, neurotensin, CCK (cholecystokinin), and NMDA (N-methyl D-aspar-

tate, a glutamate receptor), and opioid receptors may also contribute to the

development of TD (Hyde et al., 2005; Margolese et al., 2005).
A. DOPAMINE SUPERSENSITIVITY THEORY

Receptor supersensitivity can be induced by several biochemical mechanisms

such as a change in the interaction of the receptor with G-protein, with guanine

diphosphate (GDP), with adenylcyclase, and other messenger systems. These are

intracellular mechanisms that trigger the receptor on the cell membrane to act, for

example to activate a neuron. When the D2 receptor becomes supersensitive, a

shift occurs that causes D2 receptors with a low affinity to a high affinity state. In a

high-affinity state, receptors already bind dopamine in lower concentrations; they

have become supersensitive. The dopamine supersensitivity theory suggests that

long-term dopamine receptor blockage in the striatal area induces supersensitivity

which causes dyskinetic symptoms.

This hypothesis explains the inverse relationship between the dosage of the

antipsychotics and the severity of the TD: a higher dosage of antipsychotics blocks

supersensitive dopamine receptors so that they cannot cause dyskinetic symptoms.

Another argument for this theory is that clozapine does not (or very rarely) cause

TD nor induce D2 receptor supersensitivity. Furthermore, it is consistent with the

fact that early parkinsonism is a risk factor for TD (Tenback et al., 2006).

However, several arguments challenge this hypothesis: (i) supersensitivity of

the receptor is already present after a few weeks of antipsychotic use while TD

often develops much later, (ii) almost all patients on antipsychotics develop dopa-

mine supersensitivity but not all develop TD, and (iii) after cessation of antipsy-

chotics, the dopamine supersensitivity disappears but TD often persists for years

(Hyde et al., 2005).

1. Affinity for D2 Receptor

The binding affinity theory is closely related to the dopamine supersensitivity

theory. Blockage of the D2 receptor is a necessary condition for the antipsychotic

efficacy of a drug. There appear, however, to be major differences among antipsy-

chotics in the extent to which the D2 receptor is released, the Koff values. The higher

the value, the faster the D2 receptor is released. The Koff values of clozapine and

quetiapine for example are higher, of olanzapin slightly higher, and of risperidone

and haloperidol much less than the Koff of dopamine. This model explains the

differences between antipsychotics regarding the risk of developing acute movement

disorders (Kapur and Seeman, 2001). This model also explains the difference in the

risk of developing TD. Indeed, a neuroimaging study in humans showed that



196 PETER N. VAN HARTEN AND DIEDERIK E. TENBACK
dopamine D2 receptor binding is increased after long-term treatment with FGAs

and SGAs with high affinity for dopamine D2 receptors (Silvestri et al., 2000).

It is also likely that dopamine supersensitivity is less in antipsychotics that

dissociate quickly from theD2 receptor. Indeed, an imaging study in rats suggested

that vacuous chewing movements require high D (2) occupancy and that a certain

level of D(2) occupancy may be necessary to induce dyskinetic movements

(Turrone et al., 2003, 2005). Supporting this theory is the fact that FGAs often

induce parkinsonism, which is related to a high and sustained blockage of more

than 80% of the D2 receptor, and that parkinsonism is an established risk factor of

TD (Mizrahi et al., 2007; Tenback et al., 2009).

Several neuroimaging studies show that for the treatment of psychosis, the

most effective range of D2 receptor occupancy is between 60 and 70%, beyond

which the likelihood of response diminishes, while risk of D2-related side effects

increases (DeHaan et al., 2003; deHaan et al., 2004; Remington andKapur, 2010).

These studies also confirmed that over a 24-h interval, D2 occupancy levels can fall

well below the recommended threshold without loss of antipsychotic effect. This

means that continuous and high levels of D2 occupancy are not always required

and it could be that those antipsychotics with the characteristic of dissociating

quickly from the receptor carry less risk of TD without the loss of antipsychotic

effectiveness (Remington and Kapur, 2010). Moreover, this may explain why

clozapine does not induce parkinsonism and very rarely TD and that some

SGAs have a reduced risk (Tauscher et al., 2004).
B. NEUROTOXICITY

The neurotoxicity hypothesis is related to the free radical theory. A free radical

is an atom or molecule that has a single unpaired electron in an outer shell; free

radicals are released in the metabolization of dopamine. Dopamine is converted to

3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). This

process frees hydrogen peroxide, a powerful oxidant that can damage proteins,

phospholipids, and other cellular components. Thus oxidation of phospholipids in

the membranes of the dopamine-producing cells may induce cell degeneration.

Antipsychotics increase dopamine metabolization and more neurotoxic free

radicals are released than cells can handle. This may damage the dopamine

receptors, which explains why TD persists even after discontinuation of the anti-

psychotics (Casey, 2004).

This theorymay also explain why TD occurs more rapidly in old age, when the

dopamine system is more vulnerable. Genetic data also argue for this hypothesis

(see chapter 9 for discussion about genetics). Furthermore, some (but not all, see

discussion under Treatment) RCTs (Randomized Controlled Trials) support this

hypothesis by showing a beneficial effect on TD with the use of free radical
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scavengers such as vitamins E, D, and B6 and melatonin (Lerner et al., 2007;

Nelson et al., 2003; Shamir et al., 2001; Soares and McGrath, 2001). It could also

explain why free radical scavengers are probably effective in early TD (<1–3

years), when the damage to the receptors may still be reversible (Soares and

McGrath, 2001).

Although the ultimate model for TD has not yet been formulated, it is plausible

that several of these vulnerabilities and mechanisms act together to produce TD

(Margolese et al., 2005).
V. Tardive Dyskinesia Treatments
More than 500 RCTs evaluating over 90 different interventions did not

generate enough evidence to make a guideline on “how to prevent or treat

TD.” This conclusion is based on the extensive reports by the Cochrane

Schizophrenia Group about RCTs concerning the treatment of TD (Soares-

Weiser and Fernandez, 2007). Interpretation of these RCTs are hampered by

the poor methodology used in most of these trials, in particular in regard to small

sample size (thereby reducing the power of the study considerably) and short

duration of follow-up (most studies are shorter than 8 weeks). TD develops over

a long period and for many treatments, it takes considerable time to evaluate the

effect of treatment. Furthermore, baseline values are often based on a single

measurement while TD symptoms fluctuate over time. It may be preferable to

measure the TD at two consecutive 3-months intervals. If TD is diagnosed in both

measurements such patients can then be categorized as having persistent TD. Any

improvements found would then have more clinical value. The RCTs that com-

pared a treatment with a placebo included trials with anticholinergics (actually the

withdrawal of), benzodiazepines, calcium channel blockers, cholinergics,

GABAergic compounds, antipsychotic medication (including dose reduction

and cessation of the antipsychotic), catecholaminergics, and vitamin E.

We discuss the results of interventions that are regularly used in clinical

practice based on the Cochrane reports. For further details, see the Cochrane

Library (Soares-Weiser and Fernandez, 2007). Furthermore, we discuss three

promising treatments, tetrabenazine, botulinum toxin, and deep brain stimula-

tion. Thereafter, we will suggest prevention and treatment recommendations.
A. CESSATION OR REDUCTION OF THE ANTIPSYCHOTIC DOSAGE

Discontinuation of antipsychotics must be weighed against the risk of a psy-

chotic relapse. However, many patients receive antipsychotics for indications
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other than a psychotic disorder, such as borderline personality disorder, behav-

ioral problems in elderly or mentally disabled patients, anxiety, automutilation, or

autism spectrum disorder, and sometimes as an antiemetic (metoclopramide). In

the case of all of these non-psychotic indications, cessation should be considered.

This is even more indicated in older patients who are highly vulnerable for

developing TD. However, there are no relevant TD RCTs that compare discon-

tinuation versus maintenance treatment. Most discontinuation studies are not

randomized, hindering an objective interpretation. In these studies, discontinua-

tion or reduction was favorable over the long-term in 30–50% of the patients

(Jeste et al., 1988). However, some of these studies showed that after discontinua-

tion of the antipsychotics there was an increase in the severity of TD and dysphoria

or a psychotic relapse, resulting in the early removal of subjects from the study.

Two small trials showed that a reduction of the antipsychotic dose resulted inmore

than a 50% improvement in TD compared to no reduction (Soares-Weiser and

Rathbone, 2006).
B. SWITCHING TO CLOZAPINE

Clozapine does not or very rarely induce TD. In the few case reports suggest-

ing that clozapine induces TDmost of the patients had a history of long-term use of

FGAs. In such cases switching to clozapine may reveal suppressed TD (Bruscas

et al., 2007; Duggal and Mendhekar, 2007; Ertugrul and Demir, 2005; Li et al.,

2009; Raguraman and Vijaysagar, 2007).

In one trial, clozapine was compared with haloperidol for the treatment of

patients with TD. Clozapine produced significantly greater motor symptom ben-

efit after 12 months of treatment than did haloperidol. Moreover, the dyskinesia

rebound, which occurred equally in both drug groups at the beginning of the

study, was sustained in the haloperidol group but disappeared in the patients

treated with clozapine (Tamminga et al., 1994). These data suggest that dyskinetic

symptoms decrease, along with dopaminergic hypersensitivity, with long-term

clozapine treatment (Lieberman, 2007; Lieberman et al., 1991).

There are several open trials and case series or case reports suggesting a

beneficial effect of clozapine on existing TD. It seems that clozapine is especially

beneficial in those patients in which TD is combined with tardive dystonia (Louza

and Bassitt, 2005; van Harten et al., 1996a).
C. SWITCHING TO ANOTHER SGA THAN CLOZAPINE

According to a systematic review, the annualized incidence of TD was 3.9%

for people taking SGAs and 5.5% for FGAs (Correll and Schenk, 2008). This
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suggests that switching patients with TD to a SGA other than clozapine may be

beneficial. However, only a few studies have addressed this issue. In a 12-month,

randomized, investigator-blinded study, the efficacy of quetiapine (N = 22) and

haloperidol (N = 23) was compared in patients with schizophrenia or schizoaffec-

tive disorder and established TD. Compared to the haloperidol group, the que-

tiapine group showed significantly greater improvements (Emsley et al., 2004).

A randomized 24-week single blind trial (N = 60) with patients with schizo-

phrenia on treatment with FGAs and with TD compared the results of a switch to

risperidone versus olanzapine. Both groups showed a reduction in TD (Chan et al.,

2010).

In a large observational study, the TD in those patients switched to an SGA

showed less persistence than those switched to a FGA (Tenback et al., 2010)
D. TREATMENT WITH CHOLINERGIC MEDICATION

TDmay include a central cholinergic deficiency. Therefore, cholinergic drugs

(arecoline, choline, deanol, lecithin, meclofenoxate, physostigmine, RS 86, tac-

rine, metoxytacrine, galantamine, ipidacrine, donepezil, rivastigmine, eptastig-

mine, metrifonate, xanomeline, cevimeline) have been used to treat TD. None

of the RCTs with cholinergic drugs have shown a significant beneficial effect on

TD. However, the sample size of most studies was small (5–20) and the new

cholinergic Alzheimer drugs have not been tested yet (Tammenmaa et al., 2004).
E. TREATMENT WITH BENZODIAZEPINES

Because of the sedative, anxiolytic, anticonvulsant, and particularly the muscle

relaxant effects of benzodiazepine, these drugs have been used as an adjunct to the

antipsychotic treatment to treat TD. Three trials using benzodiazepines (total

N = 56) did not find an important clinical improvement. Only one small study

reports some preliminary evidence that benzodiazepines may have some effect in

antipsychotic-induced TD (Bhoopathi and Soares-Weiser, 2006).
F. WITHDRAWAL OF ANTICHOLINERGIC DRUGS

A substantial number of psychotic patients using antipsychotics also receive

anticholinergic drugs to reduce some of the acute drug-induced movement dis-

orders such as akathisia and parkinsonism. It has been observed that withdrawal of

anticholinergic drugs reduced the severity of TD. However, the Cochrane review

concluded that there were insufficient data to make a conclusion about withdrawal
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or adding anticholinergics for patients with TD (Rathbone and Soares-Weiser,

2006). Furthermore, some patients experience a worsening of akathisia and/or

parkinsonism after withdrawal and this often leads to more discomfort than the

discomfort related to TD
G. ADDING ANTIOXIDANTS

As discussed above, the neurotoxic hypothesis of TD is related to free radicals

generated by the metabolization of antipsychotics. In line with this theory, anti-

oxidants may minimize the neurotoxic effect of these free radicals. Most studies

were done with vitamin E and several small studies show a decrease in the severity

of TD, particularly in those in whom the onset of the TD occurred in the preceding

5 years (Soares and McGrath, 2001). Other antioxidants such as melatonin and

vitamin B6 were also effective in small RCTs (Lerner et al., 2001, 2007; Shamir

et al., 2001).

One large long-term RCT of vitamin E versus placebo found no evidence for

the efficacy of vitamin E in the treatment of TD. However, the mean duration of

TD of the population was long (over 3 years) and this could have induced a bias

because after several years, the damage to the dopamine receptors may be irre-

versible (Adler et al., 1999).

Despite these results, the Cochrane concluded that small trials with uncertain

quality of randomization indicate that vitamin E protects against deterioration of

TD but that there is no evidence that vitamin E improves the symptoms of TD

(Soares-Weiser and Fernandez, 2007).

A clinically important question that has not been studied yet is the preventive

properties of vitamin E. An RCT of vitamin E versus placebo in patients who are

starting with antipsychotics is indicated, in particular for older patients, who are

very vulnerable for TD.
H. POTENTIALLY PROMISING TREATMENTS

1. Tetrabenazine

Tetrabenazine is a monoamine depletor and a dopamine receptor blocker

used to treat several hyperkinetic movement disorders. It has been registered to

treat dyskinetic movements in Huntington’s chorea (Kenney and Jankovic, 2006).

One small study (N = 20) without a control group but with blind assessment by

randomized videotape protocol showed significant improvement (Ondo et al.,

1999). Furthermore, several case reports and case series showed improvement,

often within a few weeks, in patients with severe forms of TD. However, the
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evidence is not sufficient and furthermore 10–15% of the patients receiving tetra-

benazine developed depressive feelings, which were even more severe in patients

with a history of depression (Jankovic and Orman, 1988; Kenney and Jankovic,

2006; Kenney et al., 2006).

2. Botulinum Toxin

Botulinum toxin is established as an effective therapy for focal dystonic dis-

orders such as blepharospasm and torticollis (Bouchard et al., 2010; Ellison and

Wandres, 1992; Gill and Kraft, 2010). Botulinum toxin may also be useful in

severe TD, especially when accompanied by dystonic features (a combination of

TD and tardive dystonia). Several case reports show the effectiveness in orofacial

dyskinesia complicated by tongue protrusion, which can be socially disabling

(Charles et al., 1997; Hennings et al., 2008; van Harten and Hovestadt, 2006).

A small single blind (raters were blind) study (N = 12) showed a non-significant

reduction in the severity of orofacial dyskinesia (Slotema et al., 2008).

3. Deep Brain Stimulation

Deep brain stimulation is a well-known treatment for Parkinson’s disease

(Bronstein et al., 2011). In patients with severe forms of TD combined with

dystonia, several case reports have shown remarkable improvement (Cohen

et al., 2007; Damier et al., 2007; Eltahawy et al., 2004; Koller et al., 2001;

Schrader et al., 2004; Trottenberg et al., 2005; Zhang et al., 2006). One small study

(N = 10) of the French Stimulation for TD Study Group (STARDYS) showed that

patients with severe TD unresponsive to previous treatment could benefit from

bilateral deep brain stimulation of the globus pallidus. After 6 months, a double-

blind evaluation in the presence and absence of stimulation showed that all 10

patients had improved (mean improvement, 61%; range, 44–75%). There were no

marked changes in the patients’ psychiatric status (Kefalopoulou et al., 2009).

Although a larger and longer trial is needed, this study suggests that bilateral

globus pallidus stimulation offers a new treatment option for disabling TD.
VI. Prevention and Treatment of Tardive Dyskinesia in Clinical Practice
Given the lack of firm evidence for the treatment of best practices, it is not

possible to formulate exact clinical guidelines. However, in daily practice clinicians

are asked to treat these patients. Therefore, we will try with the aid of the literature

and clinical experience to present practical advice for preventive and treatment

strategies.
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A. PREVENTION OF TD

1. Communication With the Patient

Inform the patient or the family about the risk of TD as a result of prolonged use

of antipsychotics. This is important from legal and ethical points of view, necessary

for obtaining informed consent to treatment, and also to alert the patient (or family)

to this side effect. Some doctors fear that this will provoke patient non-compliance

but this is not our experience and one study found that giving information about TD

did not have a negative impact onmedication compliance (Chaplin andKent, 1998;

Chaplin andTimehin, 2002). On the other hand, uninformed patients or family can

be very distressed or annoyed when TD “unexpectedly” develops. It is often not

possible to inform a patient during an acute psychotic episode but information can

be given when the patient has stabilized.

2. Regular Systematic Screening for TD

The www.psychiatrynet.eu section on movement disorders provides a guide-

line for systematic screening (www.psychiatrynet.eu/druginduced.pdf). Such an

exam consists of observing the patient’s body parts, extremities, tongue, and

mouth under resting conditions as well as in response to a motor task that acts

as a stressor, for example touching the thumb and fingers together in sequential

fashion or walking. These motor tasks are provocative tests and help to judge the

TD, to uncover covert TD, and to check whether those activities provoke invol-

untary movements in other regions of the body. Such a screening is recommended

for patients on long-term antipsychotic treatment every 6 months (APA, 1992;

Lieberman, 2007). Special attention should be given to the breathing pattern as

respiratory dyskinesia is often missed or misdiagnosed.

3. Re-evaluation of the Necessity and Dosage of the Antipsychotic

When antipsychotics are used for non-psychotic indications, alternative treat-

ment is often available and discontinuation possible. In psychotic disorders, dis-

continuation usually significantly increases the risk of a psychotic relapse. The

alternative, intermittent antipsychotic treatment probably increases the risk for

TD (Gaebel, 1994; Goldman and Luchins, 1984; van Harten et al., 1998).

However, the dosage of the antipsychotic can often be reduced over time.

4. Awareness of the Risk Factors

The clinical significance of a risk factor depends on its prevalence and the

possibility of mitigating it (how well can the consequences be treated) Chapter 9

discusses this aspect thoroughly.
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5. Change of Medication

Start with or switch to an atypical antipsychotic, as discussed above
B. TREATMENT OF TD

If patients have developed TD, the main points are to determine whether

discontinuation of the antipsychotic is possible and how much suffering the TD

causes the patient. As described above, some patients are not aware of their

orofacial or other movement disorders and do not complain about it. In such

cases, especially when the TD is not severe and the risk of a psychotic relapse is

considerable, one should be cautious about interfering. However, the family may

be concerned about the movement disorders, especially when the TD is severe or

disabling. The patient’s preferences about treating the TD must be also be taken

into account.

If discontinuing the antipsychotics is possible, clinicians should be aware that

tardive syndromes may worsen, at least initially. However, regularly after 6–12

weeks, the severity is back to the severity level before discontinuation and several

follow-up studies show that, in the long run, discontinuation reduces the severity

of TD, especially when the duration of TD is short and patients are younger than

50–60 years (Fernandez and Friedman, 2003; Jeste and Wyatt, 1982).

Main treatment options if cessation of antipsychotics is not possible are as

follows:
1.
 Lowering the dosage: This is the usual recommended step. Although the effec-

tiveness is not established, lowering the dosage is often also beneficial for

other side effects (APA, 1992; Fernandez and Friedman, 2003; Soares-

Weiser and Fernandez, 2007).
2.
 Switching to clozapine: Based on follow-up trials and also in our experience,

switching to clozapine is often more effective than lowering the dosage,

especially when TD is combined with tardive dystonia. Sometimes the effect

is already perceptible within a few weeks but sometimes it takes more time

(3–6 months) to evaluate the result. It has been suggested that the improve-

ment is not only due to the passage of time in the absence of the antipsychotic

that caused the TD but also because of therapeutic effect of clozapine

(Dalack et al., 1998; Lieberman et al., 1991; Tamminga et al., 1994,

van Harten et al., 1996a).
3.
 Switching to another SGA: See discussion above.
4.
 Adding an antidyskinetic agent: If the preceding steps are not effective (enough)

and the TD and or tardive dystonia is severe or patients complain about it,

our movement disorder center (Amersfoort, the Netherlands) regularly

advises botulinum toxin or tetrabenazine. Botulinum toxin is indicated in
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focal dystonic symptoms and in tongue protrusion (botulinum toxin in the

genioglossus) or can also be given for orofacial dyskinesia (Slotema et al.,

2008; van Harten and Hovestadt, 2006). Tetrabenazine is indicated for

dyskinetic or dystonic symptoms present in different body parts (Kenney

and Jankovic, 2006; Ondo et al., 1999).
5.
 Referral for Deep Brain Stimulation: Referral to a neurosurgical center for deep

brain stimulation is indicated for severe forms that do not react to the

preceding measures (see above) (Damier et al., 2007).
6.
 Increasing the dosage of the antipsychotics: The mechanism, as described above, is

that an increase in the antipsychotic dosage increases dopamine receptor

blockage and that may decrease the severity of dyskinetic and dystonic symp-

toms. However, this step should only be used in extreme situations such as

severe generalized TD or dystonia that is either painful or causes muscle

damage (confirmed by elevated serum Creatine phosphokinase (CPK)) which

can be life threatening. Increasing the antipsychotic dosage can also be helpful

when all other treatments have failed. Beware that this stepmay also be limited

by the increase of other side effects (Skidmore et al., 2005).
VII. Conclusion
TD is a severe side effect of dopamine blocking agents and although SGAs

present less risks of TD, it remains a clinical issue. Prevention may be more

important than treatment because of a lack of clearly effective treatment options.
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Dyskinesia can develop in patients with schizophrenia in the course of the disease

with or without the use of antipsychotics.In patients with psychiatric disorders

other than schizophrenia Tardive Dyskinesia (TD) can develop in patients treated

with antipsychotics or other drugs with dopamine D2 blocking properties.

Spontaneous Dyskinesia in antipsychotic naive patients with schizophrenia ranges

from 4 to 40%, depending on the age and duration of the illness. Moreover,

siblings of patients with schizophrenia have higher prevalence rates of dyskinesia

than matched controls. Incidence rates of TD due to dopamine blocking

properties vary due to the sample population and the affinity for the dopamine

blocker to the D2 dopamine receptor. Once developed, TD seems very persistent,

the course of TDmight be mediated by the affinity for the dopamine D2 receptor.

Risk factors for TD in the literature are numerous, in this chapter only replicated

and risk factors from longitudinal studies will be reported limiting the amount of
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risk factors. Furthermore only meta-analyses on genetic factors related to TD

will be discussed due to inconsistency of genetic effects because of sample

heterogeneity, small effects of multiple genes, (epi)genetic interactions,

pleiotropy and small sample size. Finally the concept “Tardive Dyskinesia” will

be discussed and the influence hereof on the above mentioned factors.
I. Introduction
Tardive dyskinesia (TD) is a movement disorder characterized by involuntary,

choreoathetoidmovements in the orofacial region, limbs, trunk and/or respiratory

system. Most clinicians in psychiatry view TD as an antipsychotic related side

effect and unrelated to the underlying disease for which the antipsychotics are

prescribed, yet relatively little is known about the etiology of TD, the clinical

consequences of its diagnosis, and treatment.
A. TARDIVE DYSKINESIA

Movement disorders as side effects of medications are reported since the

introduction of antipsychotic medication. The term “Tardive Dyskinesia” was

first introduced in 1964 (Faurbye et al., 1964). The first reports of tardive dystonia

as a side effect of antipsychotic drugs date back to 1982 (Burke et al., 1982). The

current DSM IV describes both TD and acute dystonia as a side effect of anti-

psychotics. The term tardive dystonia, however, is not mentioned as a solitary

entity in the psychiatric classification of side effects of antipsychotics and is cur-

rently in the shared domain of TD (DSM-IV, 2000).
B. SPONTANEOUS DYSKINESIA VERSUS TARDIVE DYSKINESIA

There are many types of dyskinesia associated with neurological diseases like

Morbus Huntington, Sydenham’s chorea, Hyperthyroidism,MorbusWilson, and

last but not least spontaneous dyskinesia in the elderly.

After the introduction of antipsychotics in 1952, dyskinesia symptoms became

associated with antipsychotic treatment. However, the notion that Dyskinesia in

psychiatry is due to antipsychotic treatment needs refinement because involuntary

hyper- and hypokinetic movements have already been documented in patients

with schizophrenia long before the introduction of antipsychotic medication

(Kraepelin, 1919). The patients with these movement disorders were diagnosed

with “Dementia Preacox,” now known as schizophrenia. Thus, a refinement could

be, dyskinesia can develop in patients with schizophrenia in the course of the
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disease with or without the use of antipsychotics, in patients with psychiatric

disorders other than schizophrenia TD can develop in patients treated with anti-

psychotics. This is still not fully correct because although TD is mainly attributed

to the treatment with antipsychotics, other medications like SSRIs, tricyclic anti-

depressants, or anti-emetics in rare cases also cause TD.

The notion that in psychiatry only antipsychotic naive patients with schizo-

phrenia have dyskinesia is based on the fact that “spontaneous dyskinesia” is only

reported in schizophrenia (Pappa and Dazzan, 2009) or in schizotypical disorder

(Mittal et al., 2008). Patients with schizotypical personality disorder, however, are

at a risk of developing schizophrenia (Dragt et al., 2011). Finally, the lack of

literature about spontaneous dyskinesia in other psychiatric disorders does not

mean it is not existent. It remains a caveat in the current knowledge.

Thus when discussing the epidemiology of TD, spontaneous dyskinesia in

schizophrenia and TD possibly including other tardive forms of movement disor-

der like dystonia and akathisia inmixed populations in psychiatry will be discussed.
II. Spontaneous Dyskinesia in Psychiatry
A. PREVALENCE RATES OF SPONTANEOUS DYSKINESIA IN PATIENTS WITH

SCHIZOPHRENIA

Tardive means slow or belated onset. Therefore in schizophrenia the naming

Tardive Dyskinesia poses a semantic challenge. Antipsychotic naive patients with

schizophrenia develop or already display more dyskinesia than normal matched

control subjects (Koning et al., 2008; Pappa and Dazzan, 2009), which concurs

with the early literature in dementia praecox (Kraepelin, 1919).

A review of the literature suggested spontaneous dyskinesia prevalence rates of

approximately 4% in first-episode schizophrenic patients, 12% for patients ill

several years but below 30 years of age, 25% for those aged between 30 and 50

years, and 40% for those aged 60 years or older (Fenton, 2000). However, instru-

mental measurements in first episode antipsychotic naive patients (mean age 23.6

SD (6.2)) with schizophrenia suggest higher prevalence rates of 13–20% for dys-

kinesia (Cortese et al., 2005).
B. PREVALENCE RATES OF SPONTANEOUS DYSKINESIA IN SIBLINGS OF

PATIENTS WITH SCHIZOPHRENIA

The instrumental measurements are more sensitive than clinical movement

rating scales like for example, the AIMS, is illustrated in research where both
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traditional measurement scales and instrumental measurements were used

appraising movement disorders in siblings of patients diagnosed with schizophre-

nia. Based on the clinical assessment of movement disorders with the AIMS in a

small study comparing movement disorders in siblings of patients with schizophre-

nia andmatched controls 7% of siblings and 3% controls met the clinical definition

of dyskinesia versus 21% in siblings and 5% controls whenmeasured mechanically

(Koning et al., 2011).
C. TARDIVE DYSKINESIA ASSOCIATED WITH ANTIPSYCHOTICS

There are meta-analyses reporting on incidence and prevalence rates of TD.

These meta-analyses take age and type of antipsychotic into account by reporting

TD in different age strata and per type of antipsychotic. Antipsychotics differ in

their propensity to induce TD. Antipsychotics are divided into first- (FGA) and

second-generation antipsychotics (SGA). The FGA characterized by a higher affin-

ity to the dopamine receptor than the SGA (Kapur and Seeman, 2001) and are

generally more inclined to induce TD (Correll and Schenk, 2008;Miller et al., 2007).

1. Incidence rates of TD in patients taking antipsychotics

Current meta-analyses report on mixed psychiatric classified populations.

Combined for all age strata and psychiatric diagnoses, incidence rates for TD

are 5.5% for First Generation Antipsychotics (FGA) and 4.0% annually for Second

Generation Antipsychotics (SGA) (Correll et al., 2009).

When reporting on incidence rates of TD for adult patients with schizophrenia

incidence rates are 3.0% (SGA) and 7.7% (FGA) respectively (Correll et al., 2009).

2. First episode schizophrenia and antipsychotics

Incidence rates of dyskinesia in first episode patients treated with either halo-

peridol (FGA) or risperidone (SGA) were 2.33% (5 of 215, 95% confidence interval

[CI] = 0.31–4.34) and 0.87% (2 of 229, 95%CI = 0.00–2.08), respectively.

Annualized rates were 1.87 and 0.72% respectively using low equivalent doses

of both FGA and SGA and a median treatment length of 206 days (Schooler et al.,

2005).

3. Chronically treated patients

In a cohort with chronic patients fromAfrican descent using antipsychotics, with

a mean duration of antipsychotic treatment of 18 years, incidence rates of TD and

tardive dystonia were 10.2% (95%CI = 7.7–13.5) and 0.7% (95%CI = 0.4–1.5)

respectively (van Harten et al., 2006). This is high because when analyzing incidence
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rates, patients with the disorder of interest are removed from the analysis because

they already display the disorder, thereby removing the person who already devel-

oped the disorder and were probably most at risk. The fact that the incidence is still

high indicates that patients remain at risk even after years of treatment with anti-

psychotics and is of serious clinical concern.

4. Mixed populations

In children and adolescent with diagnoses of disruptive behavior disorders

(n = 688, 87.9%), bipolar disorder (n = 52, 6.6%), schizophrenia/schizoaffective

disorder (n = 26, 3.3%), and autism spectrum disorders (n = 17, 2.2%), the crude

annualized TD incidence rates were 0.38%; 95%CI (0.08, 1.11) and 0.42%; 95%

CI (0.09, 1.24) for FGA and SGA, respectively (Correll and Kane, 2007). Adjusted

TD incidence rates of adult patients with bipolar disorder in a large naturalistic

cohort were presented; FGAHR 2.64 95%CI (1.94, 3.60) and SGAHR 2.18 95%

CI (1.20, 3.97) respectively versus no antipsychotic (van Rossum et al., 2009).

In the elderly TD incidence rates are reported of respectively 5.2% with

second-generation antipsychotics versus 5.2% with first-generation antipsychotics

(P = 0.865). This last incidence rate is based almost exclusively on one retrospec-

tive cohort study (Correll and Schenk, 2008) and is not in line with previous

reported incidence rates in the elderly. A prospective study reporting on 266

patients using high and low potency first generation antipsychotics reports a

cumulative incidence of TD of 26, 52, and 60% after 1, 2, and 3 years, respectively

(Jeste et al., 1995). The same author reported on a trial with low doses of SGA and

reported a cumulative 1 year incidence of TD of 2.6% (Jeste et al., 2000).
D. PREVALENCE RATES

The following prevalence rates for TD were presented in a meta-analysis in a

psychiatric diagnostically mixed population. Prevalence rates were 32.4, 13.1, and

15.6% for FGAs, SGAs, and antipsychotic naive patients with schizophrenia

respectively (Correll et al., 2009).
E. COURSE OF TARDIVE DYSKINESIA

In the era of the FGA, several studies reported on the course of TD. Some

studies report improvement of TD over time (Fernandez et al., 2001) while others

report a more or less steady state (Bergen et al., 1989) or worsening of symptoms

(Barnes et al., 1983). A study in the era of the SGA evaluated the course of TDwhile

changing class of antipsychotic. A differential effect for persistence of TD symp-

toms and class of antipsychotic was reported in this study, where patients with TD
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at baseline who were receiving second-generation antipsychotics were less likely

than patients receiving first-generation antipsychotics to have TD symptoms at 6

months (43.6% vs. 60.8%, odds ratio (OR) = 0.50, 95%CI = 0.30–0.85)

(Tenback et al., 2005). A randomized single blind study found similar results for

the differential effects on the persistence of TD in an albeit small study

(Emsley et al., 2004). This suggests an effect of the affinity to the Dopamine D2

receptor on the presentation of TD.
F. PERSISTENCE RATES OF DYSKINESIA

In the first antipsychotic era, incidence rates of TD were estimated to be 5%

(Kane et al., 1984) with persistence rates of 32, 57, and 68% after 5, 15, and 25 year

respectively (Morgenstern and Glazer, 1993).

In the second antipsychotic era, incidence rates of TD are lower because of the

lower propensity of SGA to induce TD (Correll et al., 2004). In a study where

patients were treated with SGA, the incidence rate was 0.77% (95%CI: 0.50, 1.19)

with a subsequent persistence rate of 82% (95%CI: 59, 94%) (Tenback et al., 2010).
G. NON-THERAPEUTIC RISK FACTORS FOR TD

There are numerous articles reporting on risk factor for TD.Many of them are

retrospective or cross-sectional and conducted in patients using antipsychotic with

all kinds of psychiatric diagnoses. However, when considering risk factors basic

epidemiological concepts have to be adhered to including: (i) obtaining the expo-

sure of interest prospectively in a sample free of the outcome of interest at baseline,

(ii) defining and sampling the population, and (iii) defining the outcome clearly and

measuring it validly and completely.

Ameta-analysis looking at non-therapeutic risk factors found only eight studies

satisfying the basic epidemiological rules for risk factor for TD in schizophrenia

and reported on 25 different single estimate risk factors. Of the 25 risk factors, only

six concerned replicated estimates suitable for meta-analysis. Of these six, two risk

factors (non-white ethnic group and early EPS) predicted TD in both the fixed and

random effects model in schizophrenia, while age predicted TD in the fixed but

not in a random model. Female sex, dose, and akathisia did not predict TD

(Tenback et al., 2006b).

Other non-replicated risk factors derived from longitudinal studies are tardive

dystonia (van Harten et al., 2006), treatment non-responders (Chakos et al., 1996),

worse premorbid functioning (Strous et al., 2004), motor sequencing factor from

the Neurological Evaluation Scale (NES) (Emsley et al., 2005), percentage change

in negative symptoms (Oosthuizen et al., 2003), poor prognosis and long treatment
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duration (Chouinard et al., 1988), worsening of psychosis (Tenback et al., 2007),

prolactine-related sexual dysfunction (Tenback et al., 2006b).
H. RISK FACTORS ASSOCIATED WITH PHARMACOGENETICS

In the light of risk for TD, particular interest in the literature is shown for single

nucleotide polymorphisms (SNPs) in genes related to schizophrenia, and the

pathophysiology of TD including prolonged blockade of post-synaptic dopamine

receptors, post-synaptic dopamine hypersensitivity, damage to striatal GABA

interneurons, and damage of striatal cholinergic interneurons through the mech-

anism of oxidative stress (Margolese et al., 2005).

However, studies on genetic factors related to TD are often inconsistent owing

to sample heterogeneity, small effects of multiple genes, (epi)genetic interactions,

pleiotropy and small sample size (Abdolmaleky et al., 2005). Because of these

limitations, only meta-analyses on the subject will be discussed.
I. DOSE-RELATED SNPS

Antipsychotics are metabolized by the cytochrome P450 (CYP) isoenzymes,

especially by CYP2D6, CYP1A2, and CYP3A4. As the genes coding for CYP2D6

and CYP1A2 are genetically polymorphic resulting in the alteration of the phar-

macokinetics of antipsychotics, they have been considered as candidate genes for

the development of TD (Ellingrod et al., 2002; Patsopoulos et al., 2005). Although

CYP3A4 metabolizes more than 50% of all known drugs and the gene is highly

inducible, the wide inter-individual variation cannot be explained by functional

polymorphisms, as they are few in number (Tiwari et al., 2005a, 2005b).

CYP2D6 is the most notorious and metabolizes about 25% of all drugs. The

multi-allelic system in CYP2D6 gene is responsible for the phenotypic variety

consisting of ultrarapid, extensive, intermediate, and slow metabolizers for

CYP2D6 metabolizers (UM, EM, IM, and UM, respectively) (Patsopoulos et al.,

2005; Zhou, 2009a). Approximately, 18% of antipsychotics are substrates of

CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4. About 10–20% of

Western populations are defective in genes of the CYP superfamily. Only 26%

of Southern Europeans are pure extensive metabolizers for the trigenic cluster

integrated by the CYP2D6 + CYP2C19 + CYP2C9 genes (Cacabelos and

Martinez-Bouza, 2010). Recommendations on therapeutic drug monitoring have

been made for the following antipsychotics: perphenazine, zuclopenthixol, risper-

idone, and haloperidol (Zhou, 2009b). Although antipsychotic dose could be

deemed a proxy measure the rate of metabolism of an antipsychotic, dose of

antipsychotics was not considered to be a risk factor in a meta-analysis evaluating

risk factors for TD in schizophrenia (Tenback et al., 2009).
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1. Catechol-O-methyltransferase (COMT)

Catechol-O-methyltransferase is an enzyme catalyzing the degradation of

catecholamines thus diminishing the dopamine load. Catechol-O-methyltransfer-

ase contains an SNP located in exon 4, a G–A substitution at codon 158 changing

valine (Val) to methionine (Met), causing a missense mutation resulting in a lower

metabolic activity and lower stability form Met of the COMT enzyme

(Bakker et al., 2008). A meta-analysis for an association between TD and

COMTval158met (rs4680) in mixed population using Val–Val homozygotes as

reference reported a protective effect with an OR of 0.63 (95%CI: 0.46–0.86,

P = 0.004) for Val–Met genotype and 0.66 (95%CI: 0.49–0.88, P = 0.005) forMet

carriers using fixed effect models (Bakker et al., 2008). Similar results were reported

in a sex-stratified meta-analysis of COMT and TD in a population with schizo-

phrenia or a schizo-affective disorder, and reported an association betweenValVal

genotype and TD in females (OR(ValVal) = 1.63, 95%CI: 1.09–2.45; P = 0.019)

but not in males (Zai et al., 2010b). The significant higher OR for the ValVal

genotype and TD seems related to a higher dopaminergic load.

2. CYP1A2

CYP1A2 is involved in the metabolism of 18% of all neuroleptics drugs

(Cacabelos and Martinez-Bouza, 2010).

In the analyses of CYP1A2*1F (rs762551), no significant pooled OR was

evident for allelic or genotypic comparisons of this polymorphism (Bakker et al.,

2008). However, another meta-analysis reported a positive association

(Thelma et al., 2008)

3. CYP2D6 and TD

A meta-analysis performed by Patsopoulos et al. (2005) showed an OR of 1.43

[95%CI 1.06–1.93] of increase in TD for the single comparison group of deficient

alleles (*3, *4, *5) together. Positive associations between CYP2D6*10 and TD

have been established (Thelma et al., 2008)
J. SNPS POSSIBLY RELATED TO THE PATHOPHYSIOLOGY OF TD

1. Dopamine 2 receptor (DRD2)

A number of allelic association studies focused on polymorphisms in genes

coding for the dopamine 2 receptor (DRD2). Meta-analyses studied the associa-

tion between DRD2 and clinical antipsychotic response, and dyskinesia (Bakker

et al., 2008; Zhang et al., 2010).
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Ameta-analysis for an association between SNPs in DRD2 and TD reported a

risk-increasing effect for the A2 variant in Taq1A (rs1800497) using the A1 variant

as reference category (OR = 1.30, 95%CI: 1.03–1.65, P = 0.026) and A2–A2

homozygotes using A1–A1 as reference category (OR = 1.80, 95%CI: 1.03–

3.15, P = 0.037) (Bakker et al., 2008).

2. Manganese superoxide dismutase (MnSOD)

Manganese superoxide dismutase (MnSOD) is one of the enzymes related to

the oxidative stress theory of TD (Hori et al., 2000). A meta-analysis for an

association between TD and MnSOD Ala–9Val (rs4880) using Ala–Ala homo-

zygotes as reference reported a protective effect for Ala–Val (OR = 0.37, 95%CI:

0.17–0.79, P = 0.009) and for Val carriers (OR = 0.49, 95%CI: 0.24–1.00,

P = 0.047) (Bakker et al., 2008). Another meta-analysis did not report this associ-

ation (Zai et al., 2010a).

3. DRD3

The Dopamine 3 receptor (DRD3) showed evidence for an association

between Ser9Gly (rs6280) and TD in two early meta-analyses (Lerer et al. 105–

119; Bakker, van Harten, and van 185–192), however, no or little evidence in a

recent meta-analysis (Tsai et al. 57–66).
III. Discussion
TD in schizophrenia is a severe symptom or syndrome with a negative impact

on disease outcome. Patients with persistent TD are less likely to experience

psychiatric symptom remission, and have more severe extrapyramidal side effects,

and lower levels of quality of life and functioning, lower productivity, and fewer

activities (Ascher-Svanum et al., 2008). In general SGA pose a lower risk of TD

than FGA, however once TD emerges while using FGA is seems to persist.

This chapter aims to appraise incidence, course, and patient-related and med-

ication-related risk factors for TD. However, in order to discuss risk, a frame of

reference with regard the definition of TD has to be established. Therefore, the term

“Tardive Dyskinesia” needs delimiting in order to discuss the epidemiology of TD.

Involuntary movements such as dystonia, myoclonus, tics, tremor, and akathi-

sia could be considered manifestations of dysregulation of the dopamine system

caused by direct blockade of the dopamine receptor, structural changes of the

dopamine system (e.g., sensitization of dopamine receptor), or interaction with

other neurotransmitter systems, Previously, the term dyskinesia, Greek for
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“difficulty of movement,” covered all these movements. Tardive comes from

French word tardif meaning tardy or late, referring to the fact that signs of

dyskinesia appear late in the course of drug treatment.

In general, tardive dystonia is seen as a variation of TD (Burke and Kang,

1988) which aligns with the fact that most scales measuring TD make no distinc-

tion between TD and dystonia (Chouinard and Margolese, 2005; Guy, 1976a).

However, when looking at dyskinesia, dystonia, myoclonus, tremor, and

akathisia, there are distinct phenomenological differences, which raise the ques-

tion if this is indeed one disorder.
A. IS TARDIVE DYSTONIA PART OF TD

Although currently tardive dystonia is regarded to be an integral part of the

TD domain, dyskinesia and dystonia might be two distinctly different disorders:

the classical description of TD is choreatic movements. Chorea means dance,

which refers to fluid motions. Tardive dystonia on the other hand is characterized

by a persistent nature of the disorder with a static phenomenology with sustained

muscle contractions. Sometimes dystonia impersonates dyskinesia withmore fluid-

like motions because patients try to actively work against the sustained muscle

contraction. Although dystonia has a persistent nature it is often not static. For

example, a patient with a torticollis often moves his or her head due to dystonic

contractions of different muscle groups or voluntary active antagonist muscles

group contraction for correction of the dystonia.

Both tardive variants of dystonia and TD can be caused by dopamine antag-

onism (Burke et al., 1982; Casey, 2004) which supports a shared domain in spite of

the different phenomenology. A possible shared domain of movement disorder is

corroborated by a longitudinal cohort study of mostly chronic inpatients. In this

population, TDwas strongly associated with the severity of tardive dystonia and vice

versa (van Harten et al., 2006). There were strong connections between the hyper-

kinetic syndromes (TD, tardive dystonia, and akathisia) while the hypokinetic

Parkinsonism was found to be inversely related to TD and tardive dystonia.

Although inversely related the highest prevalence rates of combinations were TD

combined with parkinsonism (12.9%) because both side effects are highly prevalent

in patients on long-term antipsychotic treatment followed by combinations of TD

with tardive dystonia (9.8%) and TD with akathisia 5.2%. (van Harten et al., 1997).

There are two studies evaluating tardive dystonia; in first episode patients and

results remain inconclusive whether tardive dystonia occurs in antipsychotic naı̈ve

patients with schizophrenia (Pappa and Dazzan, 2009). Current scales do not

differentiate between tardive dystonia and TD. Tardive dystonia in antipsychotic

naı̈ve patients with schizophrenia could add to the concept that the two phenom-

enologically different states could indeed be one syndrome.
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1. Is akathisia a part of TD

Akathisia is primarily viewed as an acute dose-dependent syndrome of motor

restlessness with a large subjective component (Barnes, 2003). When restlessness

persists more than 6 months after the last dose increment the term chronic is

proposed (Barnes, 2003). Besides the commonly motor features like marching in

place, crossing and uncrossing the legs when sitting, other movement like trunk

rocking, respiratory grunting and moaning, complex hand movements as face

rubbing, scratching, and rubbing the thighs are thought to be associated with

akathisia (Barnes, 2003). These last motor signs are also common in TD possibly

leading to misclassification if tardive akathisia is not in the domain of TD.

Moreover, similar to dystonia, akathisia has an acute and tardive variety as well.

Phenomenologically, the acute and tardive form appears similar; however, with

regard to treatment and diagnostic properties the two are distinctly different

(Tenback and van Harten, 2011). In fact tardive akathisia and TD are similar

with regard to the dosage change of antipsychotic medication. Increasing the

dosage often diminish the severity of TD an tardive akathisia while reducing the

dosage often increase the severity (often temporarly) of both. Alike tardive dysto-

nia, if akathisia would already manifest itself in antipsychotic naı̈ve patients with

schizophrenia it could be because of a shared pathophysiological basis. However,

similar to tardive dystonia the presence of akathisia in antipsychotic naı̈ve patients

with schizophrenia remains inconclusive (Pappa and Dazzan, 2009). If akathisia

had a shared domain with TD, one would expect to manifest itself in antipsychotic

naı̈ve patients with schizophrenia (van Harten and Tenback, 2009).

Although currently the tardive form of akathisia could be regarded as a shared

domain of TD, most current measures to evaluate movement disorders do not

include akathisia thereby affecting incidence and prevalence rates of TD.

Moreover, there is also a difference in incidence and prevalence rates of akathisia

depending on the type of antipsychotic (Kane et al., 2009).
B. SCALES AND MEASURING TARDIVE DYSKINESIA AND DYSTONIA

Movement disorder scales are used to measure incidence and prevalence rates.

To include or exclude akathisia or dystonia will affect these epidemiological

measures. Furthermore, sensitivity and specificity will affect reported incidence

and prevalence rates. Also, a lack of standardization towards the rating of the

severity of the movement disorders, case definition, and a lack of explicit criteria to

differentiate between tardive akathisia, TD, tardive dystonia, stereotypies, spon-

taneous dyskinesia, and other movements will influence incidence and prevalence

rates. Finally, differences in populations at risk or vulnerability due to psychiatric

illness or dopaminergic affinity of the dopamine blockermight affect incidence and

prevalence rates (van Rossum et al., 2009).
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Antipsychotics according to the regulatory authorities should be tested for

effectiveness and side effects. In most regulatory studies with antipsychotics in

schizophrenia TD was measured with the AIMS (Abnormal Involuntary

Movement Scale) (Guy, 1976a) or the ESRS (Extrapyramidal Symptom Rating

Scale) is scale which measures TD, parkinsonism, and akathisia in one scale

(Chouinard and Margolese, 2005).

None of the above scales used tomeasure drug-inducedmovement disorders of

antipsychotics in registration dossiers specifically looked at the occurrence of

tardive dystonia as a side effect. Moreover, the AIMS does not include the item

akathisia. These scales do not differentiate between TD and tardive dystonia;

therefore, misclassification might influence rates of TD reported in the literature

depending if akathisia and/ or dystonia is reported separately or combined. In

meta-analyses reporting on this subject no case definition of TD is mentioned

(Correll and Schenk, 2008)

Lastly, sensitivity and specificity influence incidence and prevalence rates.

Instrumentally measured movement disorders report higher prevalence rates

compared to rates measured with clinical rating scales (Dean et al., 2004).
C. MIXED PSYCHIATRIC POPULATIONS

Spontaneous dyskinesia might be a symptom instead of merely a side effect of

antipsychotics (van Harten and Tenback, 2009). This might indicate a different

etiology or different dispositions to develop TD in different psychiatric diagnostic

categories (van Rossum et al., 2009). Also the type of antipsychotic is a determinant

in the liability to develop TD (Correll and Schenk, 2008). There are other factors

like race and age which seem to affect liability for TD (Tenback et al., 2009). When

considering the epidemiology of TD it is important to realize that (Tardive)

Dyskinesia itself might be very heterogeneous and incidence and prevalence rates

might depend on several risk factors. The course of TD is waxing and waning and

the severity of TD can vary over time, during the day and per examiner (Bergen

et al., 1984, 1988, 1989).

1. Biological basis of spontaneous dyskinesia in schizophrenia

In schizophrenia, dyskinesia could be a criterion for schizophrenia and thereby

more a symptom of the disease than a side effect of dopamine blockade (van

Harten and Tenback, 2009). This could suggest a different pathophysiological

mechanism than the tardive form induced by dopamine blockade and would

justify a separate discussion (van Harten and Tenback, 2009). Furthermore, the

adjective Tardive does not apply because it is more an early symptom of

schizophrenia and possibly an expression of genetic liability for schizophrenia

or psychosis (Koning, 2011; Koning et al., 2011; Mittal et al., 2008).
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The biological origin of schizophrenia and movement disorders is likely to

reside in a shared dysfunction in the dopamine system. Despite the fact that

schizophrenia exhibits a wide clinical variability and heterogeneous genetic archi-

tecture, dysfunction in the dopamine system seems to be the final common path-

way (Howes and Kapur, 2009).

Schizophrenia is associated with spontaneous dyskinesia in patients never

exposed to antipsychotics (Fenton, 2000) and in first-degree family members of

patients with schizophrenia (Koning et al., 2010, 2011). In siblings with motor

symptoms, dyskinesia was found to be clustered with positive schizotypical symp-

toms (Koning et al., 2011). In addition, birth cohort studies have shown that infants

and children destined to develop schizophrenia have abnormalities in motor

development (Cannon et al., 2002; Erlenmeyer-Kimling et al., 2000; Jones et al.,

1994). Dyskinesia may therefore form an integral part of the illness and its genetic

liability to develop schizophrenia (van Harten and Tenback, 2009) in interplay

with environmental factors (van Os and Kapur, 2009). Thus, given the fact that

part of the risk for drug-induced movement disorders is thought to be associated

with schizophrenia (van Harten and Tenback, 2009; van Os et al., 1997), genes

related to schizophrenia are attractive candidates for study in the context of drug-

induced movement disorders. Various anatomic and functional mechanism are

linked in the striatum and nucleus accumbens related to drug-induced movement

disorders suggesting that various combinations of susceptibility genes may con-

verge on synaptic processing in microcircuits leading to EPS or TD. The possible

genetic component of shared dopamine dysfunction is illustrated by two meta-

analyses; one reporting on spontaneous movement disorder in antipsychotic naı̈ve

patients with schizophrenia (Pappa and Dazzan, 2009) and a meta-analysis in

which there is a gradual decrease in the prevalence of dyskinesia when comparing

antipsychotic-naı̈ve patients with first degree family members, and family mem-

bers with matched normal controls (Koning et al., 2008). Moreover, a longitudinal

study provided evidence for more movement disorders in schizotypical personality

disorders than in normal controls, and longitudinally the worsening of movement

disorders were correlated with an increase of positive symptoms (Mittal et al.,

2008). This strongly suggests that movement disorders are pathogenetically related

to psychosis and schizophrenia. It could therefore be imagined that dyskinesia in

schizophrenia is a symptom of schizophrenia instead of merely a side effect of

antipsychotics (Cortese et al., 2005; vanHarten and Tenback, 2009). Just like other

signs of schizophrenia, dyskinesia improves after treatment with antipsychotics

(Peralta et al., 2010). Thus spontaneous dyskinesia in schizophrenia is not

“tardive,” and it is not known if spontaneous dyskinesia is pathophysiologically

similar to the tardive form, which occurs after antipsychotic treatment.

Dyskinesia as a symptom of schizophrenia could be explained by a theory of

dopamine supersensitivity, illustrated by associations of dyskinesia and symptoms

in schizophrenia in a large cohort of patients with schizophrenia. In this study, the
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main hypothesis is the existence of a pan-dopaminergic D2 hypersensitivity in

schizophrenia influenced by exogenous factors as a model to explain the occur-

rence of TD (Tenback et al., 2010).

Several proxies for the four different dopamine pathways were examined

for longitudinal associations with incident TD. The first proxy was early extra

pyramidal symptoms (EPS) as a proxy for the nigrostriatale pathway as a risk

factor for TD (Tenback et al., 2006a). A second proxy consisted of prolactin-

related sexual disturbances as a proxy for the tuberoinfundibular tract inde-

pendent of the antipsychotic-induced rise in prolactin (Tenback et al., 2006b),

and finally, a proxy psychopathological measure of dopaminergic mesolimbic

and mesocortical signaling represented by a single Clinical Global Impression

overall symptom severity score (CGI) (Guy, 1976b) was used to examine

associations between TD onset and change in CGI scores, hypothesized to

reflect underlying changes in neurochemical signaling in the mesolimbic and

mesocortical pathways (Tenback et al., 2007). This resulted in positive longi-

tudinal associations of all proxies for the different dopamine tracts and the

emergence of TD.

Thereafter, calculating the incidence and persistence of TD and EPS in the

same cohort of patients with schizophrenia, treated predominantly with SGA, over

a period of 2 years, assessed the morbidity force of movement disorder. In line with

previous publications, incidence rates of TD and EPS were considerably lower in

the SGA era. However, once emerged, these disorders prove highly persistent,

suggesting strongmoderator effects of underlying pre-disposing factors. To explain

these strong moderator effects, a hypothesis of a pandopaminergic supersensitivity

was proposed where TD and EPS are core symptoms of schizophrenia and

possible markers for the course of the disease, and where gradually increasing

dopamine (D(2)) receptor sensitivity can be considered as a marker for schizophre-

nia disease severity (Tenback et al., 2010).

These findings are corroborated by a study using positron emission tomogra-

phy that patients showing the highest degree of D2 receptor upregulation after

using Q24 antipsychotics develop TD (Silvestri et al., 2000). The association with

schizophrenia is illustrated by a twin study showing that the unaffected co-twins of

patients had increased caudate D2 density compared to healthy twin-pair controls,

a finding that implies that D2 receptor up-regulation is related to the liability for

schizophrenia (Hirvonen et al., 2005) and, finally, the finding that first-degree

family members of patients with schizophrenia displayed more dyskinesia and

parkinsonian signs than a healthy matched control group (Koning et al., 2008).

Contrary to the debate on the specificity of overall neurological signs for

schizophrenia (Boks et al., 2000), the diagnostic specificity of TD in antipsy-

chotic-naı̈ve patients in schizophrenia is more apparent (Chatterjee et al., 1995;

Fenton, 2000; McCreadie et al., 2003). Indicators of nigrostriatal dysfunction such

as TD and other EPS may therefore be considered as an integral part of the
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underlying disease (van Harten and Tenback, 2009) and its genetic aetiology and

could be considered as a schizophrenia-associated endophenotype (Gottesman

and Gould, 2003).

However, when comparing studies in a populations of patients with schizo-

phrenia reporting on both dyskinesia (never treated with antipsychotics) and TD

(treated with antipsychotics), both present more or less similar prevalence rates in

patients for the never exposed and in those exposed to antipsychotics groups

(McCreadie et al., 1996; Owens et al., 1982), although not all studies endorse these

findings (McCreadie and Ohaeri, 1994). The data seem to suggest that antipsy-

chotics in schizophrenia merely have a potentiating effect.

Although further research should validate the concept of gradually increasing

dopamine (D(2)) receptor sensitivity in schizophrenia, early EPS and Dyskinesia

could be useful early markers for disease prognosis, and thus make it possible to

consider implications with regard to pharmacological treatment options, early

treatment intervention, and expected burden of care (Ascher-Svanum et al.,

2008; Caroff et al., 2011; Murray and Van Os, 1998).
IV. Conclusion
TD in diagnostically mixed populations treated with dopamine blockers may

differ from spontaneous dyskinesia in antipsychotic naı̈ve patients with schizo-

phrenia. The incidence of TD in the era of SGA with a lower affinity to the

dopamine D2 receptor seems generally lower but remains a clinical concern

especially since it might be related to a worse clinical outcome.

Prevalence rates of TD remain high, even in antipsychotic naı̈ve patients,

and there is an indication that switching dopamine blockers with high affinity to

the Dopamine D2 receptor to blockers with a lower affinity to the D2 receptor

might improve symptoms of TD. It is not clear if this also improve clinical

outcome.

There is a large quantity of literature on risk factors for TD. There are however

few “hard” risk factors. Age, early EPS, and ethnicity are probable risk factors for

TD. There are some promising genes that show an association with TD. These

genes are either related to an increased dose linked to the impaired metabolism or

linked to hypotheses with regard to the pathophysiological basis of TD. Some

caution should be exerted because these are cross-sectional associations reported

in the literature and do not differentiate in the mixture between onset and persis-

tence of TD.

TD remains an interesting field for clinicians and research especially in psy-

chiatry where it is one of the few symptoms that can be measured objectively.
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Tardive dyskinesia (TD) is one of the most serious adverse side effects of

antipsychotic drugs and is an important topic of pharmacogenetic studies. Since

there is a genetic susceptibility for developing this adverse reaction, and given that

it is hard to predict its development prior to or during the early period of

medication, the genetic study of TD is a promising research topic that has a direct

clinical application. Moreover, such studies would improve our understanding of

the genetic mechanism(s) underlying abnormal dyskinetic movement. A

substantial number of case-control association studies of TD have been performed,

with numbers of studies focusing on the genes involved in antipsychotic drug

metabolism, such as those for cytochrome P450 (CYP) and oxidative stress related

genes as well as various neurotransmitter related genes. These studies have

produced relatively consistent though controversial findings for certain
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polymorphisms such as CYP2D6*10, DRD2 Taq1A, DRD3 Ser9Gly, HTR2A

T102C, and MnSOD Ala9Val. Moreover, the application of the genome-wide

association study (GWAS) to the susceptibility of TD has revealed certain

associated genes that previously were never considered to be associated with TD,
such as the rs7669317 on 4q24, GLI2 gene, GABA pathway genes, and HSPG2

gene. Although a substantial number of genetic studies have investigated TD,

many of the positive findings have not been replicated or are inconsistent, which

could be due to differences in study design, sample size, and/or subject ethnicity.

We expect that more refined research will be performed in the future to resolve

these issues, which will then enable the genetic prediction of TD and clinical

application thereof.
I. Introduction
Tardive dyskinesia (TD) is a serious adverse side effect that is occasionally

experienced by schizophrenic patients who are treated with antipsychotic drugs.

Although the prevalence rates are difficult to estimate and have reportedly differed

between studies, a meta-analysis including 39,187 subjects from 76 studies found

an overall prevalence of 24.2% (Yassa and Jeste, 1992). The most typical sign of

TD is involuntary orofacial dyskinesia, but the trunk and extremities may also be

affected. TD is generally caused by antipsychotics, and particularly first-generation

antipsychotics (FGAs), but sometimes also second-generation antipsychotics

(SGAs). Although many SGAs have been developed and are increasingly used,

FGAs are still extensively prescribed due to factors such as the lack of any signif-

icant differences in the efficacy of the two generations of antipsychotic (Lieberman,

2007), the side effects of SGAs (such as metabolic syndrome), and the lower

acquisition costs of FGAs.

The causes of the TD are deemed multifactorial; many multiple demographic

causes including the age, gender, dosage, ethnicity, and duration of exposure to

antipsychotics have been proposed, and several pathophysiological causes have also

been proposed, none of which has been considered conclusive. Several biological

mechanisms underlying the pathophysiology of TD have been proposed, including

dopamine receptor hypersensitivity (Tarsy and Baldessarini, 1977), serotonergic

dysfunction (Meltzer, 1994), g-aminobutyric acid (GABA) insufficiency (Casey et al.,

1980), and disturbances of antioxidative protection (Andreassen and Jorgensen,

2000). However, the pathophysiology of TD remains poorly understood.

Many studies have provided evidence that TD involves genetic and familial

causes. Specifically, it has been found that TD occurs only in some patients taking

antipsychotics, and that such occurrences involve a familial tendency, thus
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indicating a biological or genetic factor (Tamminga et al., 1990; Yassa and Ananth,

1981). This background has prompted many genetic studies of TD, which mainly

involve pharmacogenetic investigations of antipsychotics. Another reason why

many studies have investigated TD pharmacogenetics is that TD is the type of

side effect that is potentially irreversible and it is very hard to predict who it will

affect. Furthermore, TD causes patients serious distress and leads to noncompli-

ance with pharmacotherapy. Elucidating the details of the genetic susceptibility to

this side effect would make prescription after genotyping and biomarker-guided

prediction possible (Ozdemir et al., 2006). In the future, it may become possible to

calculate the probability of developing TD by considering the presence of certain

associated variables (i.e., genes and demographic parameters). Moreover, the

pharmacogenetic study of TD will contribute to discovery of the genetic mecha-

nism underlying abnormal dyskinetic movement and movement disorders.

The candidate genes that are thought to determine susceptibility to TD are

cytochrome P450 (CYP), diverse neurotransmitter, and oxidative-stress-related

genes. The medication response is very closely related to the drug metabolism, and

CYP genes have been investigated extensively. In addition, the neurotransmitter-

related genes, and especially those related to dopamine and serotonin, have been

studied substantially because these neurotransmitters are deemed to be the targets of

antipsychotics. Several recent studies of oxidative-stress-related genes have provided

evidence of a relationship between TD and oxidative stress. Moreover, numerous

pharmacogenetic studies have investigated genes related to neurotrophic factors,

opioid receptors, estrogen receptors, the GABA pathway, and the glutaminergic

pathway. Fig. 1 shows hypothetical genetic factors contributing to TD.
[(Fig._1)TD$FIG]

FIG. 1. Genetic factors contributing to TD. Bold arrows represent having replicated evidences by

multiple studies. TD, tardive dyskinesia; CYP, cytochrome P450. GABA, gamma-aminobutyric acid.
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II. Genes Involved in Pharmacokinetics
The metabolism of antipsychotic drugs is a crucial determinant of their ther-

apeutic and adverse effects. The contribution of pharmacokinetic factors is impor-

tant to the clinical outcome of antipsychotic treatment. Antipsychotic drugs are

metabolized and distributed by various enzymes. For example, since perphenazine

is metabolized extensively by CYP2D6, variants of CYP2D6 may substantially

influence the exposure of perphenazine to patients. It is hypothesized that reduced

metabolism of antipsychotics by a CYP variant resulting in deficient enzymatic

activity can increase the possibility of TD development due to increased exposure

to the drug.
A. PHASE I ENZYMES (CYP FAMILY)

Phase I oxidation is a fairly significant metabolic process for antipsychotics.

Most antipsychotics undergo extensivemetabolism by various enzymes of the CYP

family, which play an important role in the elimination of the drugs, thus influ-

encing their effectiveness and adverse effects. Poor metabolizers (PMs), interme-

diate metabolizers (IMs), extensive metabolizers, and ultrarapid metabolizers

(UMs) are phenotypes of persons having defective, reduced, normal, and duplicate

copies of the CYP genes, respectively.

CYP2D6 is the major metabolic factor of many typical antipsychotics, and is

the most extensively investigated enzyme with regard to genetic polymorphisms.

Coding of the CYP2D6 gene is highly variable. Among 90 mutations, four poly-

morphisms (*3, *4, *5, and *6) cover most of the inactive alleles (98%) in

Caucasians (Bradford, 2002). Some gene duplications (or multiplications) are

responsible for the UM phenotype. The allele frequencies of CYP2D6 polymorph-

isms differ with ethnicity, such as PMs representing 7–10% of Caucasians but only

1–2% of Asians (Kubota et al., 2000). This suggests that the efficacy and the severity

of adverse reaction to medication depend on ethnicity. Genetically determined

CYP enzyme dysfunction and the ensuing accumulation of drug metabolites

contribute significantly to the development of TD. The adverse effects of anti-

psychotics are known to be associated with the CYP2D6 enzyme (Arthur et al.,

1995; de Leon et al., 2005a). Thus, if the metabolism of haloperidol is extremely

reduced by PMs, then the therapeutic dosage should be reduced accordingly in

these patients (Kirchheiner et al., 2004).

It was recently observed that the CYP2D6 phenotype does not predict the

effectiveness of risperidone, but rather predicts the metabolic rate and side effects

of the drug (de Leon et al., 2005a; Kakihara et al., 2005; Riedel et al., 2005). Several

associations between the CYP2D6 gene and TD have been reported, showing that
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genetic variants for reduced CYP2D6 metabolism are particularly associated with

TD development. For Asian populations, the frequency of CYP2D6-genotypic

PMs (*3, *4, *5, and *6) is rare. However, IMs who are CYP2D6*10 allele carriers

with reduced enzymatic activity are very common, representing 40–50% of the

Asian population (Lee et al., 2006).

One Japanese study found that the CYP2D6*10 genotype plays a role in the

development of moderate or severe abnormal movements (Ohmori et al., 1998). A

Chinese study showed an increased frequency of the CYP2D6*10 allele in female

patients with TD (Lam et al., 2001), and another Chinese study found an associ-

ation between CYP2D6*10 C188T polymorphism and TD (Liou et al., 2004a).

Fu et al. (2006) observed significant excess of the T allele of the CYP2D6 C100T

polymorphism in Chinese schizophrenic TD patients.

Meanwhile, Kobylecki et al. (2009) showed that TD develops more frequently in

Danish PMs patients (subjects who carry two of the followingmutation alleles: *3, *4,

*5, and *6). Previous research onCaucasians concluded that heterozygous carriers of

PM alleles (*1/*3 or *1/*5) of CYP2D6 exhibited an increased susceptibility to the

development of TD (Kapitany et al., 1998). Antipsychotic drug exposure, genotype,

and cigarette smoking interaction were significant factors for schizophrenia patients

with the CYP2D6*1/*3, *4 genotype (Ellingrod et al., 2002). Of smokers carrying the

CYP2D6*1/*3, *4 genotype, 78%hadTD, compared to 20–33%of patients in other

groups, which suggests that CYP PM allele carriers shunt antipsychotic metabolism

through other pathways that are induced by cigarette smoking.

Screening tests for 19 alleles using the Affymetrix CYP GeneChip system

revealed that the probability of developing TD was moderately higher in

Korean male schizophrenic patients with at least one decreased or loss-of-function

allele than in those with only wild-type alleles (Nikoloff et al., 2002). A recent meta-

analysis investigating the association between CYP2D6 polymorphism and TD

revealed that subjects with loss-of-function alleles (PMs) are vulnerable to the

development of TD (Patsopoulos et al., 2005).

CYP1A2 is a major metabolic iso-enzyme of clozapine and olanzapine

(Eiermann et al., 1997; Ring et al., 1996). Three variants of CYP1A2 polymorphisms

(*1C, *1K, and *11) show decreased activity (Murayama et al., 2004; Sachse et al.,

1999). However, theCYP1A2 polymorphism does not markedly influence themetab-

olism of clozapine (Kootstra-Ros et al., 2005), although delayed therapeutic

responses have been reported in patients with the UM phenotype (Eap et al.,

2004; Ozdemir et al., 2001). An association betweenCYP1A2 variants and the genetic

risk factors for the development of TD has also been reported by several research

groups. For example, the C-allele frequency of the CYP1A2C163A single-nucleotide

polymorphism (SNP) was significantly higher in patients with TD than in those

without TD (Fu et al., 2006). In addition, the mean score on the abnormal involun-

tary movement scale (AIMS) was 2.7- and 3.4-fold higher in carriers of the C/C

genotype (which is associated with reduced CYP1A2 inducibility) than in those with
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the A/C orA/A genotype, respectively (Basile et al., 2000). Furthermore, Tiwari et al.

(2005a) reported an association between CYP1A2*1C polymorphism and TD.

Variants of the CYP3A4 enzyme are also related to the metabolism of most

antipsychotics. However, only CYP3A4*17 and *18A exhibit functional variety,

with a decreased or increased activity, respectively (Dai et al., 2001). No relation-

ship between the CYP3A5, CYP2C9, and CYP2C19 variants and the level of efficacy

or adverse reaction to antipsychotics has been reported (Fang and Gorrod, 1999;

King et al., 2004; Sim et al., 2006). Research on the CYP3A4 and CYP3A5 genes has

failed to yield any association with TD (de Leon et al., 2005b; Tiwari et al., 2005b).

The first pharmacogenetic microarray-based test (AmpliChip) was recently

approved for clinical use (de Leon, 2006). The AmpliChip supplies a comprehensive

coverage of gene variations for the CYP2D6 and CYP2C19 genes, which play a

pivotal role in the metabolism of approximately 25% of all prescribed drugs.

However, the clinical effectiveness and cost-effectiveness of testing for CYP in

schizophrenic patients treated with antipsychotics has not been confirmed

(Fleeman et al., 2010). Future genetic studies of CYP genes should use larger samples,

and detailed data regarding patient selection, genotype information, environmental

factors (smoking, concomitant medications, medication adherence, and ethnicity),

and pharmacokinetic parameters should be provided to clarify the cost-effectiveness

of testing for CYP. The adherence, relapse, quality of life, and life expectancy of

patients with schizophrenia also need to be investigated (Fleeman et al., 2010).

Table I shows studies reported significant association between CYP genes and TD.
B. PHASE II ENZYMES

Phase II enzymes are responsible for the inactivation of drug metabolites via

conjugation reactions. N-acetyltransferases, thiopurine S-methyltransferases, uri-

dine diphosphate glucuronosyltransferases, and glutathione S-transferases (GSTs)

are major enzymes involved in Phase II reactions. Some researchers have sug-

gested that Phase II enzyme variants contribute to treatment variability and

disease pathogenesis, especially those related to toxic environmental compounds

(Cascorbi, 2006). Genetic differences underlying differences in drug metabolism

have important implications for determining the appropriate therapeutic dosage

and may also be related to variations in the drug toxicity. Pharmacogenetic studies

of pharmacokinetic factors have yielded the most informative and clinically useful

results in clinical psychiatry. Genetic information on the metabolic status of the

individual patient may be beneficial to determining the optimal antipsychotic

treatment in clinical practice. It has been estimated that pretreatment metabolic

determination may decrease adverse reactions by 10–20% and improve drug

efficacy by 10–15% (Ingelman-Sundberg, 2004). Genetic variants of some other

Phase II enzymes are discussed in the section on oxidative-stress-related genes.



Table I

STUDIES REPORTED SIGNIFICANT ASSOCIATION BETWEEN CYP GENES AND TD.

Genes

investigated

SNP (genotype or allele) Findings Ethnicity Investigators, year

CYP2D6 *1, *3, *4, and *5 alleles *1/*3 and *1/*5 genotypes:

association with TD

Austrian Kapitany et al., 1998

*1, *3, and *4 alleles *1/*3, *1/*4: association with TD Caucasian Ellingrod et al., 2002

*3, *4, and *10 alleles *10 allele: association with TD and its

severity

Japanese Ohmori et al., 1998

*10 allele *10 allele and genotype: association

with TD only in females

Chinese Lam et al., 2001

*10 C188T *10 C188T: association with TD only

in males

Chinese Liou et al., 2004a

C100T of CYP2D6 and

C163A of CYP1A2 gene

T allele of 2D6 C100T: association

with TD

Chinese Fu et al., 2006

C allele of 1A2 C163A: association

with TD

19 alleles of CYP2D6 gene Decreased or loss of function allele:

association with TD

Korean Nikoloff et al., 2002

(screened by Affymetrix GeneChip)

*2, *6, *7, *10, and other

alleles

Loss of function alleles: association

with TD (meta-analysis)

Caucasian and

Asian

Patsopoulos et al., 2005

CYP1A2 734 C/A CC genotype: association with

severity of TD

Caucasian and

African-

American

Basile et al., 2000

*1C and *1F alleles *1C: association with severity of TD Indian Tiwari et al., 2005a

CYP, cytochrome P450; TD, tardive dyskinesia; SNP, single-nucleotide polymorphism.
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III. Genes Involved in Pharmacodynamics
Pharmacogenetic studies of pharmacodynamic factors have been conducted in

order to validate therapeutic targets. Neurotransmitter systems in the brain are

considered to be altered in patients with schizophrenia, and hence have been

targets of antipsychotic therapy. Antipsychotics have diverse affinities for each

neurotransmitter receptor, including dopamine, serotonin, adrenergic, glutamate,

histamine, and muscarine receptors. Therefore, the pharmacodynamic properties

of antipsychotics are responsible for both their side effects and their therapeutic

effects. The main candidate genes of antipsychotic-drug-induced TD are dopa-

mine-, serotonin-, GABA-, and glutamatergic pathway genes. Table II summa-

rized the studies reporting significant association between dopamine or serotonin

pathway genes and TD.
A. DOPAMINE-RELATED GENES

The dopaminergic system is considered to be an important neurotransmitter

system for mediating the activity of antipsychotics. Dopamine dysfunctions of the

brain have been the major pathological findings in schizophrenia research, and

most antipsychotic drugs appear to have a preferential affinity for dopamine

receptors. Therefore, dopaminergic receptor genes have become the most widely

investigated in studies of TD pharmacogenetics.

1. Dopamine D2 Receptor

Numerous genetic case-control association studies of dopamine receptor genes

have been performed. Chen et al. (1997) performed an association study of

Taiwanese schizophrenic patients and found that the frequency of the TaqI

A2/A2 genotype of the dopamine D2 receptor (DRD2) gene was higher in female

patients with TD than in those without TD. Two recent meta-analysis studies

yielded similar results. Zai et al. (2007a) revealed higher A2 allele and A2/A2

genotype frequencies in TD patients, and Bakker et al. (2008) reported the risk-

increasing effects of the A2 variant (using the A1 variant as a reference category)

and of A2/A2 homozygotes (using A1/A1 as a reference category). Other SNPs of

the DRD2 gene have also been investigated. Liou et al. (2006a) found that B2

homozygotes of Taq1B and A2 homozygotes of Taq1A are associated with sus-

ceptibility to TD. Hori et al. (2001) found a marginally significant association

between the 141C Ins/Del polymorphism and the total AIMS score. Zai et al.

(2007b) found that genotype frequencies of the functional polymorphisms (i.e.,

C957T and the adjacent C939T) are significantly associated with TD. Our group

also performed an association study using five DRD2 polymorphisms for TD in



Table II

STUDIES REPORTED SIGNIFICANT ASSOCIATION BETWEEN DOPAMINE- AND SEROTONIN-RELATED GENES AND TD.

Genes investigated SNP (genotype or allele) Findings Ethnicity Investigators, year

DRD2 TaqI A A2/A2 genotype: association

with TD in female

Chinese Chen et al., 1997

TaqI A and -141 Ins/Del A2 allele and A2/A2

genotype: association with TD

Meta-analysis Zai et al., 2007a

TaqI A of DRD2 and other

genes (COMT, CYP1A2, and

MnSOD)

A2 allele and A2/A2

genotype: association with TD

Meta-analysis Bakker et al., 2008

-141C Ins/Del, TaqI B, TaqI

D, S311C, and TaqI A

B2/B2 genotype of TaqIB

and A2/A2 genotype of

TaqIA: protective haplotype

against TD

Chinese Liou et al., 2006a

Ser311Cys TaqI and A-141C

Ins/Del

-141 Ins/Del: more severe TD Japanese Hori et al., 2001

12 SNPs C957T and C939T:

association with TD

Caucasian and African-

American

Zai et al., 2007b

DRD3 Ser9Gly Gly/Gly: association with TD Scottish Steen et al., 1997

Ser9Gly Gly allele: associationwith TD Jewish Segman et al., 1999

Ser9Gly Gly/Gly genotype: more

severe TD

Caucasian and Jewish Lerer et al., 2002

Ser9Gly Gly allele: more severe TD Caucasian and other

ethnicities

de Leon et al., 2005

Ser9Gly Ser/Gly genotype: more

severe TD

Chinese Liao et al., 2001

(continued )
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Table II (continued )

Genes investigated SNP (genotype or allele) Findings Ethnicity Investigators, year

Ser9Gly Gly/Gly genotype:

association with TD

Korean Woo et al., 2002

Ser9Gly Gly allele: associationwith TD Meta-analysis Bakker et al., 2006

Ser9Gly Gly allele: more severe limb-

truncal TD

Russian Al Hadithy et al.,

2009

34 SNPs of DRD3 and 14

SNPs of BDNF

rs905568 G allele: protective

against TD

Caucasian Zai et al., 2009b

Ser9Gly and HTR2C Gly allele: more severe TD Greek Rizos et al., 2009

DRD4 SNPs from DRD2, DRD3,

DRD4, and HTR2A

Short allele of VNTR

polymorphism in exon 3:

association with TD

Italian Lattuada et al., 2004

SNPs from DRD1, DRD2,

DRD3, DRD4, DAT, and

COMT

DRD4 120 bp duplication

marker: association with TD

Indian Srivastava et al., 2006

5 SNPs Haplotypes consisting of 4

SNPs (rs3758653, rs916457,

rs762502, rs11246226):

association with TD in males

Caucasian Zai et al., 2009a

COMT SNPs from DRD1, DRD2,

DRD3, DRD4, DAT, and

COMT

408C/G and Val158Met

genotype: association with TD

Indian Srivastava et al., 2006

Val158Met of COMT and

other genes (DRD2, CYP1A2,

and MnSOD)

Val/Met genotypes:

protection against TD

Meta-analysis Bakker et al., 2008

(continued )
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Table II (continued )

Genes investigated SNP (genotype or allele) Findings Ethnicity Investigators, year

HTR2A T102C, A-1438G, His452Tyr 102C and -1438G alleles:

association with TD

102CC and -1438GG

genotypes: association with

TD

Jewish Segman et al., 2001

T102C CC genotype: association with

TD

Italian Lattuada et al., 2004

T102C T allele and T/T genotype:

associated with non-

occurrence of TD

Chinese Singaporean Tan et al., 2001

T102C and His452Tyr T102C genotype: association

with TD

Mixed ethnicity (Caucasian,

Jewish, and Asian)

Lerer et al., 2005

-1438G/A AA genotype: related to TD Turkish Boke et al., 2007

HTR2C Cys23Ser of HTR2C and

DRD3

Ser allele: associated with TD Jewish Segman et al., 2000

-759C/T, -697C/G -697C allele: association with

TD

Chinese Zhang et al., 2002

TD, tardive dyskinesia; SNP, single-nucleotide polymorphism; DRD2, dopamine D2 receptor; COMT, catechol-O-methyltransferase; CYP, cytochrome P450;

MnSOD, manganese superoxide dismutase; DRD3, dopamine D3 receptor; DRD4, dopamine D4 receptor; VNTR, variable number of tandem repeat; DAT,

dopamine transporter; bp, base pair; BDNF, brain-derived neurotrophic factor; HTR, 5-hydroxytryptamine receptor.
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Korean schizophrenic patients. However, we did not find any association between

SNPs or haplotypes and TD (Park et al., 2011).

2. Dopamine D3 Receptor

The dopamine D3 receptor (DRD3) is located in the brain areas that control

motor function, and DRD3 antagonism has been shown to exacerbate locomotor

activity in the brain (Accili et al., 1996). In addition, antipsychotics with compara-

tively low DRD3 affinity, such as clozapine, are reported to cause significantly rarer

movement disorders (Kapur and Seeman, 2001). The DRD3 gene has been sug-

gested as a susceptibility factor for TD, and the Ser9Gly SNP of this gene has been

investigated extensively, resulting in many positive findings (Al Hadithy et al., 2009;

de Leon et al., 2005b; Lerer et al., 2002; Liao et al., 2001; Rizos et al., 2009; Segman

et al., 1999; Steen et al., 1997; Woo et al., 2002). A meta-analysis of this polymor-

phism produced results in line with those of other studies (Bakker et al., 2006).

However, negative results have also been reported (Lee et al., 2008; Rietschel et al.,

2000). Zai et al. (2009b) found that TD was associated with rs905568 SNP but not

with Ser9Gly after investigating 34 SNPs of the DRD3 gene and 14 SNPs of the

brain-derived neurotrophic factor (BDNF) gene. Furthermore, a very recent meta-

analysis found no association between TD and Ser9Gly using stratified analysis and

meta-regression (Tsai et al., 2010a). Consequently, the once widely accepted asso-

ciation between Ser9Gly and TD has been recently become equivocal.

3. Dopamine D4 Receptor

Fewer studies have investigated how the development of TD is associated with

the dopamineD4 receptor (DRD4) gene thanwithDRD2 andDRD3. Lattuada et al.

(2004) reported a marginally significant association between the short allele of the

DRD4 variable number of tandem repeat (VNTR) polymorphisms in exon III and

TD, but Segman et al. (2003) reported that there was no such association.

Srivastava et al. (2006) found that a 120-bp duplication marker that is 1.2-kb

upstream of the initiation codon of the DRD4 gene is associated with TD.

However, our group could find no association between another SNP of DRD4

(–521C/T) and TD (Lee et al., 2007a). Zai et al. (2009a) examined the five SNPs of

theDRD4 gene and showed that the haplotype of four tag SNPs (only theVNTR in

exon III was excluded in the haplotype) was associated with TD. Therefore,

replication studies are necessary to determine the association (if any) between

TD and the other SNPs of DRD4, as well as the VNTR in exon III.

4. Other Dopamine-Related Genes

Other dopamine-related genes have been studied for possible associations with

TD. Srivastava et al. (2006) reported no association when they investigated DRD1
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polymorphisms and a polymorphism in the dopamine transporter in relation to TD.

Similarly, the monoamine oxidase A and B genes involved in dopamine degrada-

tion were not found to contribute to TD (Matsumoto et al., 2004). Furthermore,

there is no disagreement as to the association between TD and the dopamine

degradation enzyme catechol-O-methyltransferase (COMT) genes (Bakker et al.,

2008; Kang et al., 2008a; Lai et al., 2005; Matsumoto et al., 2004; Srivastava et al.,

2006). Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosyn-

thesis. Because the TH Val81Met polymorphism is located in the amino-terminal

regulatory domain of the tetrameric enzyme, it is a candidate marker for suscepti-

bility to dopamine-related traits such as TD. However, Lee et al. (2009) did not find

any significant association between the TH Val81Met polymorphism and TD.
B. SEROTONIN-RELATED GENES

The serotoninergic system is also considered to be related to schizophrenia

due to the hallucinogenic properties of a serotonin antagonist, lysergic acid diethy-

lamide. Recent attention paid to the function of the serotoninergic system with

regard to the action of antipsychotics has been based mainly on many atypical

antipsychotics (e.g., clozapine, olanzapine, quetiapine, risperidone, and ziprasi-

done) being potent 5-hydroxytryptamine 2A receptor antagonists and weaker

DRD2 antagonists (Meltzer, 1999).

In this context, many pharmacogenetic studies of the side effects of antipsy-

chotic drugs have investigated serotonin-related genes.

1. Serotonin 2A Receptor Gene

Serotonin inhibits dopamine function, which supports the hypothesis that the

serotonergic system is involved in the pathogenesis of TD. Tan et al. (2001) and

Segman et al. (2001) were the first to report the existence of an association between

serotonin 2A receptor gene (HTR2A) T102C polymorphisms and TD. However,

although their findings were not replicated in subsequent studies (Basile et al., 2001;

Herken et al., 2003), they were eventually confirmed by Lerer et al. (2005) in a

combined meta-analyses controlling for age, which is an important factor in the

development of TD. A logistic regression analysis conducted by Boke et al. (2007)

revealed that another SNP (–1438A/G) of the HTR2A gene is associated with TD.

Hsieh et al. (2010) found that theHTR2A T102C polymorphism was associated with

susceptibility to TD, and especially the limb-truncal subtype in Taiwanese schizo-

phrenia patients. However, the –1438A/GSNPwas not associated with TD in either

Russian (Al Hadithy et al., 2009) or African-Caribbean (Wilffert et al., 2009) schizo-

phrenia patients. Interestingly, Wilffert et al. (2009) reported that the combination of

23Ser of the serotonin 2C receptor (HTR2C) and –1438A of HTR2A carriership

increased the risk of TD only in male African-Caribbean schizophrenic patients.
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2. Serotonin 2C Receptor

Cys23Ser and –697C/G polymorphisms in serotonin 2C receptor (HTR2C)

gene have been reported to be associated with TD by some authors (Segman et al.,

2000; Zhang et al., 2002) but not by others (Deshpande et al., 2005; Rietschel et al.,

1997). Al Hadithy et al. (2009) reported an association between Cys23Ser of

HTR2C and limb-truncal TD, but not orofaciolingual TD among 146 Russian

schizophrenia patients.

3. Serotonin-Transporter-Linked Promoter Region

Studies of serotonin transporter gene polymorphisms have failed to find any

association with TD (Chong et al., 2000; Herken et al., 2003; Hsieh et al., 2010;

Ohmori et al., 2002).
C. GABA-RELATED GENES

Reduced activity in a striatal GABA neurons has been suggested as the one of

the possible causes of TD (Kulkarni and Naidu, 2003). In an animal study,

Gunne et al. (1984) found that decreased GABA activity in the substantia nigra

was correlated with enhanced oral movement in rats and with neuroleptic-induced

dyskinesia in monkeys. Delfs et al. (1995) reported elevated levels of mRNA encod-

ing glutamic acid decarboxylase (the rate-limiting enzyme in GABA synthesis) in the

striatum and pallidum of adult rats after long-term haloperidol treatment, suggest-

ing that decreased GABA transmission plays a critical role in the motor side effects

associated with long-term antipsychotic therapy.

Inada et al. (2008) conducted a genome-wide association study (GWAS) to

identify the pathway(s) in which genetic variations influence susceptibility to neu-

roleptic-induced TD. They suggested that the GABA receptor signaling pathway

is involved in the genetic susceptibility to treatment-resistant TD. In their study,

eight genes (ABAT, ALDH9A1, GABRA3, GABRA4, GABRB2, GABRAG3, GPHN,

and SLC6A11) contained polymorphisms with gene-based corrected allelic proba-

bility values of<0.05. Associations were replicated in an independent sample of 36

patients with TD and 136 patients without TD for polymorphisms in SLC6A11

(GABA transporter 3), GABRB2 (b-2 subunit of the GABA-A receptor), and

GABRG3 (c-3 subunit of the GABA-A receptor) (Inada et al., 2008). Our group

very recently attempted to confirm this association between these three GABA-

related genes (SLC6A11, GABRB2, and GABRG3) and TD, but were only able to

replicate their finding for rs4684742 of SLC6A11 (Lee et al., 2011). However,

another GWAS using 2580 SNPs in 118 candidate genes selected from the liter-

ature including GABA pathways, with the Clinical Antipsychotic Trials of

Intervention Effectiveness (CATIE) study, did not find any significant association

between GABA-related genes and TD (Tsai et al., 2010b).
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D. GLUTAMATERGIC GENES

It has been hypothesized that increased release of glutamate due to prolonged

antipsychotics treatment may result in an excitotoxic lesion in basal ganglia leading

to TD (McGeer and McGeer, 1976). Animal studies reported that haloperidol-

induced spontaneous oral dyskinesias (i.e., vacuous chewing movement, VCM)

was attenuated when a co-treatment with the anti-excitotoxic GM1 ganglioside

was provided (Andreassen and Jorgensen, 1994) and memantine, an N-methyl-D-

aspartate (NMDA) receptor antagonist, inhibited the development of VCM in rats

(Andreassen et al., 1996). These findings strongly indicate that NMDA receptor-

mediated excitotoxicity is involved in antipsychotic-induced VCM development.

Meshul et al. (1994) reported that treatment with haloperidol for 1 month results in

an increase in the mean percentage of striatal asymmetric synapses containing a

perforated postsynaptic density and that these synapses are glutamatergic. The

glutamate release may be modulated by dopamine receptors located on corticos-

triatal terminals and the release of glutamate can be increased due to haloperidol-

induced blockage of DRD2 receptors (Yamamoto and Davy, 1992). Therefore,

glutamatergic candidate genes have been implicated in the etiology of TD. Three

polymorphisms (�200T/G, 366C/G and 2664C/T) of the glutamate receptor

ionotropic NMDA 2B (GRIN2B) gene were analyzed in Chinese schizophrenic

patients; however, no association with susceptibility to, or severity of TD was found

(Liou et al., 2007).
IV. Oxidative-Stress-Related Genes
Neuronal degeneration by oxidative stress has been suggested as a mechanism

for TD pathogenesis. Excessive reactive oxygen species (ROS) produced by an

imbalance between free-radical metabolism and the antioxidant defense mecha-

nism can interact with lipids, proteins, and nucleic acids, resulting in cellular

dysfunction or cell death (Halliwell, 1997). Neuronal cells appear to be highly

susceptible to oxidative damage, and several studies have found that elevated lipid

peroxidation in the cerebrospinal fluid (CSF) might be related to the development

and severity of TD (Brown et al., 1998; Lohr et al., 1990a). Detoxification enzymes

such as superoxide dismutase (SOD), glutathione peroxidase, and catalase that

function as cellular defense mechanisms against oxidative stress have been

regarded to be related to TD susceptibility (Rao and Balachandran, 2002).

Animal studies have also suggested that oxidative stress plays a role in the path-

ogenesis of TD (Sagara, 1998). Long-term exposure to antipsychotics increases

dopamine turnover, which results in the excessive production of oxidative
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metabolites, especially in dopamine-rich brain regions such as the basal ganglia.

The oxidative metabolites, which are dopamine quinones and hydrogen peroxide,

lead to the formation of ROS. ROS could induce neuronal damage as a result of

oxidative stress. The hypothesis about the relationship between oxidative stress

and TD comes from two studies that demonstrated the increased formation of lipid

peroxidation products in the CSF of patients with TD (Lohr et al., 1990b; Tsai et al.,

1998). Moreover, several studies have shown that vitamin E, a free-radical scav-

enger, has a positive effect on TD symptoms (Adler et al., 1998).

Among the oxidative-stress pathway-related enzymes, SOD is the first-line

antioxidant defense enzyme that plays an essential role in preventing the cell

damage induced by free radicals. In particular, manganese SOD (MnSOD) is

an intramitochondrial enzyme that scavenges the superoxide anions produced by

mitochondrial energy metabolism (Fridovich, 1974; Robinson, 1998). Several

studies have investigated the association between theMnSOD gene and TD, some

of which have produced positive findings (Galecki et al., 2006a,b; Hitzeroth et al.,

2007; Hori et al., 2000). In addition, a recent meta-analysis revealed a significant

association between TD and theMnSOD gene (Bakker et al., 2008). However, these

studies have provided conflicting data as to which genotype and allele are associ-

ated with TD, and most were based on small samples of TD subjects in genetic

association studies. Two Korean studies, including ours, did not find a significant

association between TD and the Ala-9Val SNP of the MnSOD gene (Kang et al.,

2008b; Pae et al., 2007); however, we did show that this SNP is related to the

severity of TD (Kang et al., 2008b).

GST is also involved in the oxidative stress system. This enzyme is one of the

important phase II drug-metabolizing enzymes that catalyze the conjugation of

various endogenous and exogenous compounds, including antipsychotic drugs

with reduced glutathione. de Leon et al. (2005b) reported an association between

TD and the GSTM1 polymorphism, but did not find an association between TD

and GSTT1, DRD2, and P-glycoprotein (MDR1) polymorphisms. Al Hadithy et al.

(2010) found that the GSTP1 polymorphism is associated with TD. To further

investigate the oxidative stress hypothesis of TD development, we analyzed

whether genetic variants of GSTM1, GSTT1, and GSTP1 are associated with neu-

roleptic-induced TD. We found that GST gene polymorphisms do not confer

increased susceptibility to TD in patients with schizophrenia, but that TD severity

might be related to GSTP1 variants (Kang et al., 2009). However, another Korean

study was not able to confirm this association (Pae et al., 2004a).

Studies examining the association between TD and other antioxidant genes

such as the NAD(P)H quinone oxidoreductase gene (NQO1), and the genes for

glutathione peroxidase and nitric oxide synthase (NOS) have produced inconsistent

results. Many studies found no relationship between TD and these antioxidant

enzyme genes (Hori et al., 2006; Shinkai et al., 2004, 2006; Zai et al., 2010), while

several others have found a significant association between the NQO1 and NOS3
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genes and TD (Liou et al., 2006b; Pae et al., 2004b). Thelma et al. (2007) performed

a genetic association study to determine any links between variants of the several

oxidative-stress-related genes (SOD2,UCP2, NOS1, NOS3, GSTM1, GSTT1, GSTP1,

and NQO1) and the development of TD in Indian patients with schizophrenia, and

found a tendency toward an association between theNOS3 variant and the severity

of TD. Table III summarized the studies reporting significant association between

ROS-related genes and TD.
V. Other Genes Reported to be Associated with TD
A. ESTROGEN RECEPTOR

It has been suggested that estrogen modulates dopamine receptors in the

central nervous system and decreases the incidence and/or relieves the symptoms

of TD. However, in a study of the relationship between estrogen receptor-a gene

polymorphisms and TD in 118 schizophrenia and 128 matched non-TD schizo-

phrenia patients, Lai et al. (2002) found only a marginal association.
B. OPIOID RECEPTOR

There are several lines of evidence that the opioid receptors are involved in the

pathology of TD (Cadet and Rothman, 1986; Sasaki et al., 1996). Substance abuse,

which increases vulnerability to TD in patients with schizophrenia (Dixon et al.,

1992), is associated with polymorphisms of the m-opioid receptor gene polymor-

phism (Bond et al., 1998). Ohmori et al. (2001) reported that the 118G allele of the

m-opioid receptor gene was significantly less common in those with TD.
C. G-PROTEIN RELATED GENES

Animal studies have found that abnormal involuntary movements develop in

G-protein signaling gene knockout or mutant mice (Kovoor et al., 2005; Rahman

et al., 2003), which suggests that the G-protein signal transduction process is

associated with antipsychotic-induced TD. Therefore, variations in the regulator

of G-protein signaling (RGS9) gene may be consequential for the development

and/or severity of TD. A significant haplotypic association from RGS9 gene was

reported among TD subjects from Taiwan (Liou et al., 2009). Our group investi-

gated the functional SNP of another G-protein gene, G-protein b3 subunit gene,

with TD susceptibility in Korean patients with schizophrenia, but did not find any

such association (Lee et al., 2007b).



Table III

STUDIES REPORTED SIGNIFICANT ASSOCIATION BETWEEN OXIDATIVE STRESS–RELATED GENES AND TD.

Genes investigated SNP (genotype or allele) Findings Ethnicity Investigators, year

MnSOD Ala9Val Ala9: protective against TD Japanese Hori et al., 2000

Ala9Val Val/Val genotype: association with TD Polish Galecki et al., 2006

Ala9Val The Ala/Ala genotype had significantly lower

AIMS scores

Xhosa Hitzeroth et al., 2007

Ala9Val Ala allele carriers: more severe abnormal

movements

Korean Kang et al., 2008b

Ala9Val of MnSOD and

others

Ala-Val genotype and Val allele: protective

against TD

Meta-analysis Bakker et al., 2008

GSTM1 Null/Wild GSTM1 Null: association with TD Mixed ethnicity de Leon et al., 2005

GSTM1,T1,P1 Ile105Val of GSTP1 Ile/Ile genotype of GSTP1 had higher AIMS

score

Korean Kang et al., 2009

GSTP1, SOD2, and GPX1 Ile105Val of GSTP1

Ala-9Val of MnSOD

Pro197Leu of GPX1

105Val allele of GSTP1 associated with lower

risk of TD

Russian Al Hadithy et al., 2010

NQO1 609C/T T allele: associated with TD, T/T genotype:

more severe TD

Korean Pae et al., 2004

NOS3 -786T/C, 27 bp VNTR,

Glu298Asp

T-4b-Glu haplotype: higher in non-TD Chinese Liou et al., 2006b

SOD2, UCP2, NOS1,

NOS3, GSTM1,T1,P1,

and NQO1

NOS3 27 bp ins/del and

other SNPs

Homozygote of NOS3 27 bp ins allele: more

severe TD

Indian Thelma et al., 2007

TD, tardive dyskinesia; SNP, single-nucleotide polymorphism; MnSOD, manganese superoxide dismutase; AIMS, abnormal involuntary movement scale;

DRD2, dopamine D2 receptor; CYP, cytochrome P450; COMT, catechol-O-methyltransferase; GST, glutathione-S-transferase; GPX, glutathione peroxidase;

NQO, quinone oxidoreductase; NOS, nitric oxide synthase; VNTR, variable number of tandem repeat; UCP, uncoupling protein; bp, base pair.
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D. BDNF

Neurodegenerative processes may be involved in the pathogenesis of TD

(Lohr et al., 2003). BDNF has been regarded to play a critical role in the mainte-

nance of functional neurons (Lewin and Barde, 1996). Tan et al. (2005) reported

that serum BDNF levels were lower in patients with TD than in non-TD patients,

and that the levels in the TD patients were inversely correlated with their AIMS

score, suggesting that BDNF plays an important role in the pathophysiology of

TD. However, other studies have found no such association between BDNF gene

variants and TD (Kang et al., 2008c; Liou et al., 2004b; Park et al., 2009;Wang et al.,

2010; Zai et al., 2009b). A recent Korean study found significant gene–gene

interactions between BDNF and glycogen synthase kinase 3 gene variants on

TD susceptibility (Park et al., 2009).
E. MELATONIN RECEPTOR

Melatonin receptor genes (MTNR1A andMTNR1B) were studied very recently

to ascertain their relationship to TD susceptibility because of their modulating

effect on dopaminergic neurotransmission in the brain (Lai et al., 2010). In rela-

tively large Taiwan samples (256 TD patients and 162 non-TD subjects), that

study revealed that MTNR1A haplotypes are associated with TD.
VI. The Genome-Wide Association Approach
The genetic study method that is most widely used and provides an ample

number of samples is the case-control association study. In practice, because TD is

a side effect that only develops in patients with schizophrenia who are taking

antipsychotics, it is difficult to conduct a linkage study involving family members

with TD. For this reason, the hypothesis-based association study with the candidate

gene approach is thought to be one of the best methods of TD research, providing

substantial statistical power. The hypothesis-based approach toward candidate

gene selection is attempted based on their relevance to the pharmacologic actions

(pharmacokinetics and pharmacodynamics) of the drug and their relevance to the

etiology and pathogenesis of the phenotype being investigated. However, since it is

widely accepted that TD is caused by multiple genes, it is recognized that minor

effects of several genes are responsible for the development of TD. A growing

number of studies are focusing on gene–gene and gene–environmental-factor

interactions. Even in cases where individual genes show no association with the

occurrence of TD, interactions between several genes have been reported to be
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related to the development TD in several cases. GWASs involve the examination of

all or most of the genes (the genome) in different individuals of a particular species

to see howmuch they vary between individuals. GWASs are necessarily hypothesis-

free, and thus the entire genome is searched for associations rather than focusing on

small candidate areas.

GWASs have recently been introduced to studies of TD, several of which have

now been published. An unexpected association has been found between TD and

SNPs, which have not previously been considered as candidate genes (Aberg et al.,

2010; Greenbaum et al., 2010; Inada et al., 2008; Syu et al., 2010). The genes or

polymorphisms reported to be associated with TD through these recent studies are

rs7669317, located 167 kb from pyrophosphatase (inorganic) 2 (PPA2) and 16 kb

from the locus encoding the hypothetical protein FLJ20184 on chromosome 4q24

(Aberg et al., 2010), GLI family zinc finger 2 (GLI2) gene (Greenbaum et al., 2010),

GABA pathway genes (Inada et al., 2008), and the heparan sulfate proteoglycan 2

(HSPG2) gene (Syu et al., 2010). Therefore, this new technology may help to define

novel candidate genes or pathways, improve our understanding of the pathogen-

esis of disease, and elucidate a spectrum of new potential drug targets. However,

thus far their findings have not been consistent, which may be attributable to small

samples and population stratification. GWASs usually require >1000 cases and

the same number of controls; however, previous GWASs for TD have involved

cohorts that were too small (<150). The differences in allele frequency relative to

ethnicity are crucial in genetic studies. Ancestry-informative markers, a method

that simplifies the ethnicity factor in research, or categorizing research results

according to each ethnic group are necessary. Table IV summarized the other

genes associated with TD in candidate gene studies and GWASs.
VII. Future Research: Copy-number Variations and Epigenetics
Other new genetic testing technologies have recently been developed. Some

researchers have stressed that other types of genetic variation such as deletions or

duplications—the so-called copy-number variations (CNVs)—may have been

neglected (Redon et al., 2006). Moreover, other less common genetic variations such

as microsatellite polymorphisms and translocations, inversions, and substitutions

may be relevant to pharmacogenomics (Court, 2007). Unfortunately, many of the

current platforms and systems used for genotyping do not pay much attention to

CNVs (Ouahchi et al., 2006) and were first discovered in CYP2D6 (Ingelman-

Sundberg et al., 2007), an important pharmacogenetic gene. Autism (Sebat et al.,

2007) and schizophrenia (Walsh et al., 2008) have been reported to be associatedwith

CNVs. However, it is not known whether CNVs are relevant to TD susceptibility.



Table IV

STUDIES REPORTED SIGNIFICANT ASSOCIATION OF OTHER GENES WITH TD INCLUDING GWASS.

Genes investigated SNP (genotype or allele) Findings Ethnicity Investigators, year

Mu and delta Opioid receptor 118A/G of mu

921T/C of delta

118G allele: less frequent in TD Japanese Ohmori et al., 2001

ESR1 PVUII and Xbal PvuII polymorphism: marginal association

with TD

Chinese Lai et al., 2002

BDNF and GSK3beta Val66Met of BDNF

507T/C of GSK3beta

CC homozygote of GSK3beta with Val

allele of BDNF: lower risk of TD

Korean Park et al., 2009

RGS9 7 SNPs AGG haplotype (rs8077696-rs8070231-

rs2292593): association with TD

Taiwan Liou et al., 2009

MTNR1A and MTNR1B 6 SNPs Significant association between the

haplotype ATG in the MTNR1A gene and

non-TD

Taiwan Lai et al., 2010

SLC6A11, GABRB2, and

GABRG3

3 SNPs rs4684742 of SLC6A11 associated with TD Korean Lee et al., 2011

Partial GWAS 40573 SNP GABA pathway genes (ABAT, ALDH9A1,

GABRA3, GABRA4, GABRB2, GABRAG3,

GPHN, and SLC6A11) associated with TD

Japanese Inada et al., 2008

GWAS 492000 SNP rs7669317: associated with AIMS score CATIE study sample

(mixed ethnicity)

Aberg et al., 2010

GWAS 495000 SNPs rs3943552T allele in theGLI2 gene: associated

with TD in Ashkenazi subsample

CATIE study sample

(mixed ethnicity)

Greenbaum et al., 2010

Partial GWAS 40573 SNPs! 24 SNPs

in the HSPG2 gene

rs2445142 of HSPG2: associated with TD Japanese Syu et al., 2010

TD, tardive dyskinesia; SNP, single-nucleotide polymorphism; ESR, estrogen receptor; BDNF, brain-derived neurotrophic receptor; GSK, glycogen synthase kinase;

RGS, regulator of G protein signaling; MTNR, melatonin receptor; GABA, gamma-aminobutyric acid; SLC6A11, solute carrier family 6 member 11; GABRB2,

GABA A receptor, beta 2; GABRG3, GABA A receptor, gamma 3; GWAS, genome-wide association study; ABAT, 4-aminobutyrate aminotransferase; aldehyde

dehydrogenase 9 family, member A1; GABRA3, GABA A receptor, alpha 3; GABRA4, GABA A receptor, subunit alpha 4; GPHN, Gephyrin; AIMS, abnormal

involuntary movement scale; CATIE, clinical antipsychotic trials of intervention effectiveness; GLI2, GLI family zinc finger 2; HSPG, heparan sulfate proteoglycan.
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The importance of epigenetics in psychiatry (Abdolmaleky et al., 2005) and

psychotropic drug responses (Sharma et al., 2006) is increasing. DNAmethylation,

histone modification, and micro-RNA interference are examples of epigenetics.

Some epigenetic variants can be inherited by offspring, indicating the existence of

a mechanism for biological heredity not based on the DNA sequence, a finding for

which there is some evidence. For example, cigarette smoking by a grandmother

increases the risk of asthma in the granddaughter (Li et al., 2005). Famine in males

in early puberty can exert an unknown epigenetic change in his grandson, resulting

in a fourfold lower risk of type 2 diabetes; famine in the same population, among

females while their oocytes are forming in utero, increases the risk of obesity and

diabetes fourfold in that baby’s granddaughter (Pembrey, 2002). In utero exposure

of the mother to microbial-rich environments such as farms protects against the

development of atopic sensitization and enhances the innate immune system in her

children (Ege et al., 2006).

There is accumulating evidence that epigenetic mechanisms are involved in

various diseases as well as during normal development (Feinberg, 2007). However,

the relevance of epigenetics in the pharmacogenetic response in humans is not well

understood (Nebert et al., 2008). Drug tolerance to an anesthetic in the fly has been

shown to be caused by epigenetic histone modification and transcriptional induc-

tion (Wang et al., 2007). Epigenetic effects increase with each passing decade of life,

due to constant bombardment by environmental stimuli (including drugs and

chemical ormetal toxicants). Epigenetic alterations of response-related genes, such

as dopamine and serotonin, have been suggested (Abdolmaleky et al., 2005;

Flomen et al., 2004) and differences in DNA methylation in the regulatory regions

of the DRD2 and COMT genes have been identified (Petronis, 2006). It is currently

unclear how epigenetic changes can be tested in the clinical setting, but it has been

suggested that pyrosequencing is a technology that can be used for genetic changes

including SNPs, CNVs, and methylation status (Marsh, 2007). Within the next

several years, we expect to find examples of epigenetic-mediated effects on gene–

drug interactions, especially on the development of TD development.
VIII. TD as a Phenotype
While many significant findings of genetic studies for TD have been reported,

the results obtained in a considerable proportion of these studies have not been

replicated. The more important causes for these discrepancies include study

design, sample size, and ethnicity. Diagnosing TD is not simple, and the diagnostic

criteria and/or inclusion criteria for TD have differed somewhat among TD

studies. Most of the pharmacogenetic studies of TD have adopted the AIMS

(Guy, 1976) and/or criteria for TD proposed by Schooler and Kane (1982), which
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requires the persistence of TD symptoms for 3 months for a TD diagnosis.

However, some studies conclusively diagnosed TD after a single interview and

physical examination, subsequently including the relevant patients as TD samples.

Interpreting the results and making comparisons among the studies are thus

limited due to the different inclusion criteria. A prospective study designminimizes

this problem, but many studies are performed retrospectively for practical reasons.

Another important issue is the wide diversity of medications for patients with

schizophrenia. Since individual antipsychotics exhibit various receptor profiles

and pharmacological characteristics, the neurologic impacts may differ between

patients. It is therefore necessary to control for antipsychotics. However, in clinical

practice it is common to prescribe diverse and combined medications to schizo-

phrenic patients and to use antipsychotics in polypharmacy regimens. In addition,

since many other factors including age, gender, smoking, dosage, and duration of

exposure to antipsychotics influence the development of TD, appropriate type of

statistical analysis should be considered to control the demographic factors. In

addition, separate analyses will be required as to the orofacial movement and the

limb-truncal movement because it is thought that they are biologically different,

depending on which abnormal movements are involved.
IX. Conclusion
Relatively consistent findings have been reported on certain polymorphisms

such as CYP2D6*10,DRD2Taq1A,DRD3 Ser9Gly,HTR2AT102C, SLC6A11, and

MnSOD Ala9Val, although they remain controversial. Moreover, several GWASs

on TD have found positive findings with rs7669317 on 4q24, GLI2, GABA

pathway genes, and HSPG2. Although many genetic studies have been conducted

on TD, the positive results of a considerable proportion of these studies have not

been replicated or are inconsistent. These discrepancies seem to be attributable to

differences in study design, sample size, and ethnicity. Furthermore, epigenetic

approaches are also necessary and are expected to be associated with variations in

antipsychotic response. These kinds of novel approaches to pharmacogenomic

studies of TD will undoubtedly improve our knowledge about the determinants

of the variability in antipsychotic-drug-induced TD and dyskinetic movement.
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Tardive dyskinesia (TD) is a complex hyperkinetic syndrome characterized by

choriform, athetoid, and rhythmic abnormal involuntary movements. Even

though various neuroprotective strategies have been explored for the management

of TD, nevertheless, the condition is difficult to treat. Various homologous,

analogous, and correlational animalmodels have been standardized to understand

the complex neurobiology of TD. The most common animal models include

chronic administration of different typical neuroleptic agents to rodents that may

lead to the development of (i) vacuous chewingmovements, (ii) tongue protrusions,

and/or (iii) facial jerking. The drug molecules that prevent or decrease the

outcome of these symptoms are considered to be antidyskinetic agents. However,

these animal models do not mimic the exact human condition and possess several

phenomenological and methodological problems and therefore need clinical

validation. The present review will discuss some of these animal models in context

of exploring the novel drug targets in treating patients suffering from TD.
I. Introduction
Tardive dyskinesia (TD) is a severe movement disorder characterized by invol-

untarymovements of the tongue, lips, face, trunk, and extremities. These abnormal

actions are commonly observed in patients who are chronically treated with typical

neuroleptic agents. Some of the other agents such as anticholinergics, toxins, and

substance of abuse may also induce TD symptoms. Various theories have been

put forward to understand the neuropathology of TD. Some of these include
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dopaminergic hypersensitivity, disturbed balance between dopamine and cholin-

ergic systems, dysfunctions of striatonigral GABAergic neurons, and excitotoxicity

(Kulkarni and Naidu, 2003). One treatment strategy for these patients is to suspend

the use of typical neuroleptic agent and instead prescribe atypical antipsychotics,

mood stabilizers agents (lithium carbonate, carbamazepine, and divalproex

sodium), benzodiazepines, or antidepressants. Unfortunately, the symptoms persist

even after the withdrawal of typical antipsychotic drugs, indicating that these drugs

produce some long term alterations in the brain tasks that are no longer associated

with drug usage. Based on the above facts, it can be concluded that there are still

numerous unanswered questions in the understanding of the pathophysiology of

TD that requires step-by-step exploration. This will be possible only if there are

suitable animal models mimicking the human disease condition.

Animal models have always been an important tool in understanding the

complex pathophysiology of the diseases and in developing effective treatment

strategies. Some of the basic requirements of animal models for studying neuropsy-

chiatric disorders include symptom similarity, pharmacological isomorphism, and

cross-species biochemical processes. These models should have face construct and

predictive validity. Although these animal models never imitate the exact human

disease condition, they allow for close approximation. For example, nonhuman

primates due to their close proximity with human physiology are often considered

as a more justifiable tool for unscrambling the anonymities of various human

neurological disorders including TD. However, this animal species is difficult to

manage and not cost-effective. Therefore, in the laboratories, rodents are generally

employed due to their ease of handling, easy of breeding, cost, and resemblance with

the human brain in many aspects. In this context, different animal models using

both rodents and nonhuman primates have been standardized and validated to

study the neuropathogenesis of TD and to explore various therapeutic strategies.

There are three general types of animal models that have contributed signif-

icantly in understanding the pathophysiology of TD (Kulkarni and Naidu, 2001a).

These can be categorized as homologous, analogous, and correlational. The

homologous models are the extremely predictive models of the clinical picture

of TD and acquire similar etiology, biological basis, symptoms, response to treat-

ment, course and outcome as well as unique features such as individual suscepti-

bility. The long-term neuroleptic treatment with neuroleptics in nonhuman

primates represents the homologous model of TD (Kulkarni and Naidu, 2001a).

However, these animal models are very expensive and time-consuming to work.

In contrast to homologous models, the analogous models have some of the critical

features similar to that of TD (Kulkarni and Naidu, 2001a): for example, the

VCMs observed in rodents when neuroleptic agents are administered for either

short or extended period of time. These models in contrast to homologous models

are efficient, inexpensive, and less time-consuming. While ideally a homology

should be aimed for, isomorphic models may be useful for certain investigations.
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The correlational models are somewhat different than homologous and analogous

models. The correlational models require only few or no similarities between

preclinical and clinical observations; however, the results of the preclinical model

are highly predictive of the clinical picture (Kulkarni and Naidu, 2001a): for

example, possible correlation between the likelihood of specific antipsychotic

drugs to cause TD and acute extrapyramidal syndrome induced by neuroleptics

or response to specific dopamine agonists following brief neuroleptic treatment in

rodents. The correlational models are also efficient; however, the results are strain

dependent and not highly predictive (Kulkarni and Naidu, 2001a).

An ideal animal model of TD should possess the following characteristics:
*
 Abnormal involuntary repetitive movements of the oral region that extends to

extremities or trunk.
*
 Delayed development of these movements after chronic administration of neu-

roleptics and these movements persists even after the withdrawal of neuroleptic

agent.
*
 Symptoms antagonized by dopamine receptor antagonists.
*
 Symptoms aggravated with stress.
*
 Symptoms resistant to suppression with anticholinergic agents.

The two analogous animal models that are generally employed to study the

neuropathogenesis of TD include haloperidol- and reserpine-induced TD in

rodents (mice and rats). Haloperidol, a D2 dopamine receptor blocker, is a potent

antipsychotic agent that is known to block the action of dopamine on its receptors.

Chronic dopamine receptor blockagemay lead to the supersensitivity of dopamine

receptors and produce TD- like symptoms. Reserpine, on the other hand, is a

neurotransmitter depleting agent that decreases the levels of norepinephrine,

serotonin, and dopamine in the brain. Although, reserpine is not classified as a

typical neuroleptic agent, it is being prescribed as an antipsychotic agent in some

rare instances. Unfortunately, reserpine is also associated with the development of

TD problem. Reserpine at low doses is known to induce orofocial movements late

during the course of administration and these movements persist for a long time

even after cessation of its administration.

The symptoms of TD that are generally observed in neuroleptic or reserpine-

induced TD in rodents include (i) vacuous chewingmovements (VCMs) referred to

as single mouth openings in the vertical plane not directed toward physical mate-

rial. The term oral dyskinesia was referred by Glassman and Glassman to refer to

VCMs characterized by up and down jaw movements with occasional tongue

protrusions (TP) (Glassman and Glassman, 1980). Rupinak and colleagues used

the term “perioral movements” describing the purposeless chewing jaw move-

ments with occasional TP with no wide openings. The VCMs observed are

independent of and evident physical material. However, in contrast to actual

TD symptoms that are observed in humans, the VCMs in rodents are generally
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confined to the oral region and do not spread to the whole body, (ii) number of TP

defined as stereotypically turning movements of the tongue with protrusions or fly

catching tongue (iii) facial twitching.

Generally, on the test day, animals (rodents) are placed individually in a small

plexiglas cage for the assessment of oral dyskinesia. Animals are generally accli-

matized for at least 10 min before the start of counting. Hand-operated counters

are used to score tongue protrusion and VCMs. Counting should be stopped

whenever the animal starts grooming. Mirrors are always placed under the floor

and behind the back wall of the cage to permit observation of oral dyskinesia when

the animal faces away from the observer. Some of the other neuroleptics such as

chlorpromazine and fluphenazine are also known to induce TD-like symptoms in

rodents. The present review attempts to discuss some of the important animal

models of TD and their significance in drug discovery. Haloperidol- and reserpine-

induced TD are discussed in detail.

1. Haloperidol-induced TD

In one of the case reports published in 1980, a 7-year-old boy suffering from

multiple tic or Gilles de la Tourette’s disease was put on haloperidol therapy

(Mizrahi et al., 1980). Chronic administration of haloperidol in this child for 5

months resulted in the development of lingual-buccal-facial movements, a char-

acteristic of TD (Mizrahi et al., 1980). The dopamine D2 receptor blocking prop-

erty of haloperidol has been manipulated by the researchers to create an animal

model of TD. Haloperidol (1–1.5 mg/kg) if administered chronically for approx-

imately 21 days in rodents has been shown to produce TD-like symptoms (Naidu et

al., 2003a; Bishnoi et al., 2008a). The symptoms are more severe in aged rats as

demonstrated by significant increase in hyperkinetic motor activities, VCMs, TP,

facial jerking, and development of dopamine supersensitivity (increased locomotor

activity and stereotypy) as compared to young controls (Bishnoi et al., 2007a). The

mechanism of haloperidol-induced TD is not fully clear; however, various theories

have been proposed. These include the following:
(i)
 Dopamine receptor supersensitivity: Chronic blockage of dopamine receptors by

haloperidol in animals may lead to an upregulation of dopamine receptors

and increased their sensitivity toward dopmine or dopaminergic agonists.
(ii)
 Enhanced dopamine metabolism: Chronic blockage of dopamine receptors may

also result in an increase in metabolism of dopamine following its release.

An increase in dopamine metabolism may lead to the generation of free

radicals and thus enhance oxidative stress.
(iii)
 Free radical generation: Generation of excessive free radicals and oxidative

stress by chronic haloperidol administration may damage different neurons

such as GABAergic or dopaminergic systems and produce TD-like symp-

toms in animals.
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FIG. 1. Proposed mechanisms in haloperidol-induced TD in rats. In brief, chronic administration of

haloperidol is known to block dopamine D2 receptors, which, in turn, can enhance the dopamine

metabolism leading to formation of excessive free radicals. Chronic blockade of D2 receptors may lead

to enhanced supersensitivity of dopamine receptors. Furthermore, chronic administration of haloperidol

may mobilize arachidonic acid, which can produce various inflammatory prostaglandins and cause

neuronal cell death. All these changes induced by chronic administration of haloperidol may result in

TD-like symptoms. (For color version of this figure, the reader is referred to the web version of this book.)
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(iv)
 Enhanced prostaglandin production: Chronic haloperidol treatment may lead to

enhanced production of inflammatory prostaglandins that, in turn, can

increase the oxidative stress in the brain and exaggerate TD-like symptoms.

All these proposed mechanisms have been illustrated in Fig. 1.
Chronic administration of haloperidol for 21 days in rodents has shown to

produce VCMs, TP, and facial jerking. Neurochemical analysis have revealed that

chronic administration of haloperidol (1 mg/kg for 21 days) reduces the levels of

norepinephrine, dopamine, and serotonin in the striatum region of the rat brain

when identified through in vivomicrodialysis studies (Kulkarni et al., 2009). Chronic

administration of haloperidol has been associated with an increased expression of

inflammatory markers such as TNF-a (tumor necrosis factor-alpha) and NF-kB
(nuclear factor kappa-light-chain-enhancer of activated B cells) (Post et al., 1998;

Post et al., 2002) that may lead to neurotoxicity. A study conducted in our

laboratory has shown that chronic administration of haloperidol significantly

increased the levels of TNF-a and NFkappaB p65 subunit in rat striatum
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FIG. 2. (a) Vacuous chewing movements (VCMs), (b) TP, (c) number of facial jerking, recorded on

day 0 and day 22 (test day) in rats chronically treated with vehicle, haloperidol (1 mg/kg, i.p. 21 days),

Verapamil (20 mg/kg), and Verapamil (10 and 20 mg/kg) + Haloperidol (1). Data are expressed in

MeanW SEM. aP < 0.05 as compared to control group, bP < 0.05 as compared to haloperidol group,

and cP< 0.05 as compared to verapamil (10) + haloperidol (1) group. H-Haloperidol; Ver-Verapamil.

(Reproduced with permission from Bishnoi et al., 2008c).
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(Bishnoi et al., 2008b). Various neuroprotective agents have been explored against

haloperidol-induced orofacial dyskinesia. Some of these include:

1a Calcium channel blockers: The protective effects of calcium channel blockers

have been studied in haloperidol-induced TD in rodents (Bishnoi et al., 2008c). It

has been found that administration of verapamil, diltiazem (both nondihydropyr-

idines), or nifedipine (dihydropyridine) protected the animals against haloperidol-

induced TD. These drugs attenuated the chronic haloperidol-induced VCMs, TP,

and facial jerking (Figs. 2–4). Out of all the calcium channel blockers tested in this
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FIG. 3. (a) Vacuous chewing movements (VCMs), (b) TP, (c) number of facial jerking, recorded on

day 0 and day 22 (test day) in rats chronically treated with vehicle, haloperidol (1 mg/kg, i.p. 21 days),

diltiazem (20 mg/kg), and diltiazem (10 and 20 mg/kg) + Haloperidol (1). Data are expressed in mean

W SEM. aP < 0.05 as compared to control group, bP < 0.05 as compared to haloperidol group, and
cP < 0.05 as compared to diltiazem (10) + haloperidol (1) group. H-Haloperidol; Dil-Diltiazem.

(Reproduced with permission from Bishnoi et al., 2008c).
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study, nifedipine was found to be themost effective (Bishnoi et al., 2008c). Impaired

cognitive function is a side effect of chronic neuroleptic administration. In this

study, administration of haloperidol produced significant memory loss that was

prevented by chronic treatment with calcium channel blockers. Following
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FIG. 4. (a) Vacuous chewing movements (VCMs), (b) TP, (c) number of facial jerking, recorded on

day 0 and day 22 (test day) in rats chronically treated with vehicle, haloperidol (1 mg/kg, i.p. 21 days),

nifedipine (20 mg/kg), and nifedipine (10 and 20 mg/ kg) + Haloperidol (1). Data are expressed in

meanW SEM. aP < 0.05 as compared to control group, bP < 0.05 as compared to haloperidol group,

and cP < 0.05 as compared to nifedipine (10) + haloperidol (1) group. H-Haloperidol; Nif-Nifedipine.

(Reproduced with permission from Bishnoi et al., 2008c).
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behavioral observations, animals were sacrificed and brains were removed. The

striatum was then isolated and analyzed for various oxidative stress parameters. It

was found that chronic haloperidol resulted in an increase in levels of lipid per-

oxidation, superoxide anion generation, and significant decrease in the nonprotein
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thiols and antioxidant enzyme pool (catalase and superoxide dismutase) (Bishnoi

et al., 2008c). Furthermore, neurochemical analysis has revealed that chronic

administration of haloperidol decreases the levels of serotonin, dopamine, homo-

vanillic acid, and hydroxyindole acetic acid in rat brain striatum homogenates that

were reversed by the calcium channel blockers (Bishnoi et al., 2008c). These

preclinical findings are in agreement with clinical outcomes where calcium chan-

nel blockers particularly nifedipine has been shown to improve the TD symptoms

in patients (Kushnir and Ratner, 1989).

1b Neurosteroids:Neurosteroids are the steroid molecules that are synthesized by

the brain and nervous system and play an important role in various physiological

functions of the body. They have been found to be protective in different disorders

of the central nervous system such as epilepsy, traumatic brain injury, anxiety and

depression, insomnia, etc. Some of the important neurosteroids include proges-

terone, dehydroepiandrosterone sulfate (DHEAS), pregnenolone sulfate (PS), allo-

pregnanolone, etc. These neurosteroid molecules are known to act on different

receptor systems, ion channels, and various signaling pathways in the brain. Some

of these neurosteroids are positive allosteric modulators of GABAA receptors and

thus speculated to play an important role in the pathogenesis of TD. This

prompted us to explore the effect of various neurosteroids in animal models of

TD. We examined the effect of progesterone (a positive modulator of GABAA

receptor) against haloperidol-induced TD in rats (Bishnoi et al., 2008d). Results

revealed that chronic administration of progesterone (5–20 mg/kg, i.p.) dose

dependently reversed the orofacial dyskinetic movements induced by chronic

administration of haloperidol (Bishnoi et al., 2008d). Progesterone also prevented

the increase in lipid peroxidation and superoxide anion generation and the

decrease in nonprotein thiols, catalase, and superoxide dysmutase induced by

haloperidol. When neurochemical analysis was carried out in the striatum region

of the rat brain, it was found that daily administration of progesterone attenuated

decreases in dopamine levels induced by chronic administration of haloperidol

(Bishnoi et al., 2008d). Finasteride, a 5-alpha reductase inhibitor, prevented the

protective effect of progesterone in the haloperidol-induced TD model (Bishnoi

et al., 2008d). Therefore, it was concluded that the protective effect of progesterone

in this animal model is due to its metabolite, allopregnanolone (Bishnoi et al.,

2008d). In another study, various other neurosteroid agents were evaluated in

the haloperidol-induced TD model. Again, allopregnanolone and progesterone

attenuated the manifestation of haloperidol-induced orofacial dyskinesia whereas

pregnenolone and DHEAS aggravated effect in this animal model (Bishnoi et al.,

2008a). It is important to mention here that allopregnanolone and progesterone

are positive allosteric modulators of GABAA receptors while pregnenolone and

DHEAS are negativemodulators. Therefore, it can be concluded that haloperidol-

induced VCMs and related behaviors are caused due to the decrease in

GABAergic function, an increase in glutamatergic neurotransmission, and positive
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GABA-modulating/negative NMDA-modulating agents can prevent the symp-

toms (Bishnoi et al., 2008a).

1c Lazaroids (21-aminosteroids): These are 21-aminosteroid compounds that have

demonstrated protective effect in various animal models of neurological disorders.

Lazaroids have an antioxidant property through the stabilization of the cell mem-

brane as well as maintain the membrane-stabilizing effect of glucocorticoids with-

out the receptor-dependent side effects (Kavanagh and Kam, 2001). Lazaroids are

nonglucocorticoid analogs of methylprednisolone.Methylprednisolone is neuroprotec-

tive when administered at higher doses and this protection is independent of its

glucocorticoid activity (Kavanagh and Kam, 2001). In one of the studies carried

out in our laboratory, we have explored the protective effect of lazaroid, U-74500A

[pregna-1,4,9(11)-triene-3,20-dione, 21-(4-(5,6-bis(diethylamino)-2-pyridinyl)-1-

piperazinyl)-16-ethyl-HCl (16-alpha)] in haloperidol-induced TD (Bishnoi et al.,

2007b). Our study revealed that chronic treatment of U-74500A (1–5 mg/kg., i.p.)

attenuated the haloperidol-induced VCMs and related behavioral abnormalities

(Bishnoi et al., 2007b). Furthermore, U-74500A attenuated increased malondial-

dehyde levels (indicator of lipid peroxidation) induced by chronic administration

of haloperidol in the cortex and striatum but not in the subcortical region of the

rat brain (Bishnoi et al., 2007b). All the above findings have suggested that this

class of drug may be useful in treating patients suffering from TD. However,

proper clinical evidence is required before we may consider the use of lazaroids in

therapeutics.

1d N-methyl-d-aspartate (NMDA) receptor antagonists: Chronic blockage of dopa-

mine D2 receptors localized on glutamatergic terminals in the striatum region has

been hypothesized to enhance the release of glutamate. This can, in turn, destroy

the striatal neurons (Naidu and Kulkarni, 2001a). Therefore, NMDA receptor

antagonists can be protective in treating patients suffering from TD. In preclinical

findings, memantine, an NMDA receptor blocker, was shown to be neuroprotec-

tive in preventing behavioral alterations induced by chronic administration of

haloperidol in rats. These animals were pretreated with memantine at doses of

20 and 40 mg/kg before being subjected to haloperidol injections. The experiment

lasted for total of 20 weeks (Andreassen et al., 1996). Additional studies demon-

strated that glutamate upregulates striatal enkephalin levels that, in turn, play an

important role in the development of haloperidol-induced persistent oral dyskine-

sias. Memantine, by decreasing the expression of preproenkephalin mRNA, is

protective in haloperidol-induced TD (Andreassen et al., 2003). Our lab has shown

that dizocilpine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antag-

onist, reversed the haloperidol-induced VCMs (Naidu and Kulkarni, 2001a).

Similarly, antiexcitotoxic GM1 ganglioside has been found to be protective in this

animal model (Andreassen and Jørgensen, 1994). Also, chronic treatment of

haloperidol has been shown to induce the expression of cFOS (a cellular proto-

oncogene belonging to the immediate early gene family of transcription factors) and
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the expression of cFOS is significantly attenuated by pretreatment withMK-801, a

noncompetitive NMDA receptor antagonist (Lee and Rajakumar, 2003). In a

study, amantadine (a low-affinity, uncompetitive NMDA-receptor antagonist),

ifenprodil (a noncompetitive allosteric NMDA receptor antagonist acting at

the polyamine site), and Ro 25-6981 (a potent and selective blocker of

NMDA receptors which contain the NR2B subunit) has been found to be effective

in reversing haloperidol-induced orofacial dyskinesia (Konitsiotis et al., 2006). The

study has found that out of all these molecules, Ro 25-6981 is most effective in this

animal model indicating that antagonists selective for NMDA receptors containing

the NR2B subunit are more potent in reversing TD (Konitsiotis et al., 2006).

1e GABAergic agents: Enhancing the GABAergic neurotransmission has been

found to be protective in animal models of TD. In one of the studies, tiagabine, an

indirect acting GABA agonist, reversed the haloperidol-induced TD (Gao et al.,

1994). Progabide, an analog and prodrug of gamma-aminobutyric acid, when

administered in food for a total of 12 months prevented haloperidol-induced

TD in rats (Kaneda et al., 1992). Interestingly, progabide decreased the VCMs

up to 40% as compared to its vehicle control group. These studies have suggested

that GABAergic modulators can be potent antidyskinetic drugs (Kaneda et al.,

1992).

1f Serotoninergic modulators: Serotonin has an important role to play in the path-

ophysiology of TD and various serotoninergic modulators are known to be pro-

tective in these animal models. It has been shown by Kozell and colleagues that

there is possible altered serotoninergic modulation in neuroleptic-induced dyski-

nesia and L-tryptophan (a serotonin precursor) was found to be protective in

haloperidol-induced TD in rats (Kozell et al., 1987). The 5-HT1A serotonin recep-

tor agonists are known to protect animals against haloperidol-induced TD. It has

been concluded that increasing the effect of somatodendritic 5-HT1A receptors by

administering various serotonin receptor agonists can reduce the inhibitory influ-

ence of serotonin on the action of dopaminergic neurons to produce VCMs

(Samad et al., 2007). In this context, buspirone, a 5 HT1A receptor agonist has

shown to be neuroprotective in animal models of TD (Haleem et al., 2007). Similar

to 5HT1A receptors, 5-HT2A/2C receptors are also known to play an important

role in the pathophysiology of TD (Naidu and Kulkarni, 2001b). It has been

demonstrated in our laboratory that both acute and chronic administration of

seganserin, ketanserin, and ritanserin, 5-HT2A/2C receptor antagonists, reduce

haloperidol-induced VCMs in a dose-dependent (0.05, 0.1, and 0.2 mg/kg, i.p.)

fashion (Naidu and Kulkarni, 2001b).

1g curcumin: Researchers have established the protective effect of curcumin in

almost all the disorders of the body. It is one of the common ingredients of Indian

Curry and possesses anti-inflammatory and antioxidant properties. However, its

use has been restricted in therapeutics due to very low oral bioavailability. There

are different approaches proposed to enhance the bioavailability of curcumin.One
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approach is to co-administer curcumin with piperine, a known inhibitor of hepatic

and intestinal glucuronidation. As curcumin is known to possess antioxidant and

anti-inflammatory properties, we hypothesized its protective effect in haloperidol-

induced TD. Chronic administration of curcumin at doses of 25 and 50 mg/kg

before haloperidol administration prevented the animals against haloperidol-

induced behavioral, biochemical, and neurochemical alterations (Bishnoi et al.,

2008e). In this study, we also measured rearing (ability to stand) as one of the

altered behavioral parameters induced by haloperidol administration (Bishnoi

et al., 2008e). Results demonstrated that chronic administration of haloperidol

decreased the stereotypic rearing behavior up to seventh day that was thereafter

increased up to last behavioral quantification (22 day). Pretreatment of curcumin

prevented this increase of stereotypic rearing behavior (Bishnoi et al., 2008e).

Moreover, chronic haloperidol-challenged animals have demonstrated a decrease

in cognitive ability when tested in elevated plus maze test and this deficiency was

partially restored by chronic treatment with curcumin (Bishnoi et al., 2008e).

Neurochemical analysis has revealed that curcumin reversed the haloperidol-

induced decrease in dopamine, norepinephrine, and serotonin in the homogenates

of cortical and subcortical regions of rats. Based on the above findings, it can be

concluded that the antidyskinetic effect of cucruminmight be due to its antioxidant

or anti-inflammatory actions (Bishnoi et al., 2008e).

1h Zolpidem [N, N, 6-trimethyl-2-p-tolyl-imidazo (1, 2-a) pyridine 3-acetamide]: Is a

nonbenzodiazepine-related hypnotic drug with an imidazopyridine structure

that binds to the omega site of the GABA-benzodiazepine chloride channel

ionophore. The heterocyclic moiety present in zolpidem is hypothesized to be

responsible for its antioxidant property. Similar kind of heterocyclic moiety is

also present in melatonin, a powerful antioxidant. Like melatonin, zolpidem is

also clinically used in subsiding jet-lag symptoms. Zolpidem is found to be

protective in many neurological disorders. The neuroprotective effect of zolpi-

dem is hypothesized to act through its GABA mimetic property and/or antiox-

idant effect. When tested in haloperidol-induced TD, zolpidem prevented the

development of VCMs, TP, and facial jerking induced by chronic administra-

tion of haloperidol (Bishnoi et al., 2007c). Biochemical analyses have revealed

that chronic administration of haloperidol produced enhanced maliondialde-

hyde levels, significantly decreased nonprotein thiols (NPSH), as well as super-

oxide dysmutase and catalase activities in rat brain striatum that was reversed by

pretreatment with zolpidem (Bishnoi et al., 2007c). Additionally, chronic admin-

istration of haloperidol for 21 days enhanced the levels of vanillyl mandelic acid

(VMA, metabolite of norepinephrine) and homovanillic acid (HVA, metabolite

of dopamine) in urine. This effect was significantly reversed by chronic zolpidem

treatment (Bishnoi et al., 2007c).

1i Adenosine reuptake inhibitors: Adenosine is an inhibitory neurotransmitter in the

brain and plays an important role in the pathophysiology of many neurological
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disorders of the body including TD. Adenosine maintains a delicate balance

between the GABAergic inhibitory and glutamatergic excitatory neurotransmis-

sion in the brain. Any kind of disturbance in this balance may lead to different

neurological disorders. Our laboratory has tested the effect of dipyridamole, an

adenosine reuptake inhibitor, and nimodipine, an adenosine transport inhibitor,

in haloperidol-induced TD in rats (Bishnoi et al., 2007d). Both dipyridamole and

nimodipine were protective in haloperidol-induced TD (Bishnoi et al., 2007d).

Chronic administration of haloperidol decreased the turnover of dopamine and

norepinephrine in both cortical and subcortical regions that was dose-dependently

reversed by adenosine reuptake/transport inhibitors (Bishnoi et al., 2007d).

Moreover, another study has demonstrated the protective effect of caffeine (A2A

receptor antagonist) when combined with adenosine in haloperidol-induced TD in

rats. To this end, the combination of both adenosine and caffeine did not show any

potentiating effect in this animal model. This may be due to the fact that both

adenosine and caffeine are acting on the same receptor system (Bishnoi et al., 2006).

Theophylline, an A2A receptor antagonist, has also demonstrated protective

action in this animal model (Bishnoi et al., 2007e). All of the above-mentioned

studies have demonstrated that adenosine neurotransmission plays a major role in

the pathophysiology of TD and treatment with adenosinergic modulators may be

beneficial for the patients suffering from TD. However, the efficacy/risk ratio

should be considered carefully before these drugs are put into clinical use for the

treatment of TD.

1j Rutin: It is a flavonol glycoside composed of a flavonol quercetin and disac-

charide rutinose. Flavonoids possess multiple pharmacological activities in human

body. Rutin is present in abundance in onions, apples, tea, and red wine. The

antioxidant property of rutin may be responsible for its neuroprotective action.

Rutin reversed haloperidol-induced VCMs, TP, and facial jerking when tested in

rats (Bishnoi et al., 2007f). The oxidative stress induced by chronic administration

of haloperidol was reversed by chronic treatment with rutin. The study concluded

with the fact that oxidative stress is involved in haloperidol-induced various

behavioral and biochemical alterations in rats. Rutin due to its antioxidant poten-

tial is protective in this animalmodel (Bishnoi et al., 2007f). Therefore, rutinmay be

considered as a future drug for the treatment of hyperkinetic movements in

patients suffering from TD; however, the hypothesis still requires clinical evalua-

tion and validation.

1k Anti-inflammatory drugs: Cyclooxygenase (COX) inhibitors are found to be

protective in animal models of TD. COX is an enzyme that converts arachidonic

acid released from membrane phospholipids into prostaglandins (PGs). COX

enzyme exists in two isoforms, COX-1 and COX-2. COX-1 is also known as

constitutive isoform of COX enzyme and known to be expressed in different organs

of the body including stomach, kidney, bladder, and brain. In contrast, COX-2 is an

inducible enzyme that is expressed in most of the tissues following any inflammation
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or injury. Recent literature has indicated an important role of COX enzymes and

prostaglandins in brain physiological functions. COX is expressed in different

regions of brain that are important in the pathophysiology of TD. Our laboratory

has explored the protective effect of different COX-inhibitors in animal models of

TD (Naidu and Kulkarni, 2001c). Indomethacin, a nonselective COX-inhibitor is

protective in haloperidol-induced TD. Indomethacin at dose range of 5–20 mg/kg

reversed the VCMs induced by chronic haloperidol challenge (Naidu andKulkarni,

2001c). These studies suggested an important role of prostaglandins in haloperidol-

induced VCMs. Based on the above-mentioned studies, various anti-inflammatory

drugs could be potential antidyskinetic drugs (Naidu and Kulkarni, 2001c).

However, further clinical and preclinical findings are required to uncover the fact.

1l: Other agents in haloperidol-induced TD: Some of the other agents that have

revealed protective action in haloperidol-induced TD include FK-506 (immuno-

modulatory drug) (Singh et al., 2003),Withania somnifera (Naidu et al., 2003a, 2003c),

quercetin (Naidu et al., 2003b), melatonin (Naidu et al., 2003a), carvedilol (Naidu et

al., 2002), 5-HT3 serotonin receptor antagonists (Naidu and Kulkarni, 2001d),

alpha lipoic acid (Thaakur and Himabindhu, 2009), spirulina (Thaakur and

Jyothi, 2007), ebselen (Burger et al., 2005), SR48692 (neurotensin receptor antag-

onist) (McCormick and Stoessl, 2003), risperidone (Carvalho et al., 2003), etc.

2. Reserpine-induced TD

Reserpine depletes various neurotransmitters and has been earlier prescribed

to provide symptomatic relief in patients suffering from hypertension. However,

the drug did not find much acceptance by the patients and clinicians due to its

propensity to produce major depression in patients. The neurotransmitter-

depleting property of reserpine has been manipulated by the researchers to

develop an animal model for TD. The dopamine depleting property has been

hypothesized to be responsible for reserpine propensity to induce TD symptoms.

The reserpine-induce TD is faster in onset [(the effects are observed even after

5 days (every alternate day) of reserpine (1 mg/kg., s.c.) administration] as com-

pared to other models. The reserpine-induced dyskinetic movements can last for

at least 60 days postadministration. In contrast, the TD symptoms in humans

generally develop after months or years of neuroleptic treatment.Various chem-

ical moieties have been tested against reserpine-induced TD. These include the

following:

2a melatonin: It is a powerful antioxidant. When tested in reserpine-induced

TD, melatonin inhibited the occurrence of VCMs (Fig. 5). However, treat-

ment of animals with luzindole or prazosin (antagonists for the putative

melatonin receptors MT1/T2 and MT3, respectively) or flumazenil (central

benzodiazepine receptor antagonist) did not reverse the antidyskinetic effect

of melatonin (Raghavendra et al., 2001). However, PK11195, a peripheral
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FIG. 5. Effect of melatonin (1–10 mg/kg, i.p.) against reserpine-induced vacuous chewing move-

ments (VCMs) in rats. Values are expressed as meanW S.D. of VCMs/5 min. ANOVA values F (4,25)

=65.38 (P < 0.01). *P < 0.05 compared to vehicle-treated group (Dunnett’s t-test).

(Reproduced with permission from Raghavendra et al., 2001).
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benzodiazepine receptor antagonist, antagonized the melatonin reversal of

reserpine-induced VCMs. This indicated that the antidyskinetic effect of

melatonin involves peripheral but not central benzodiazepine receptors

(Raghavendra et al., 2001).

2b quercetin: Quercetin has been found to possess antidyskinetic activity in

reserpine-induced TD. The protective effect of quercetin has been credited to

its antioxidant potential. The following figure (Fig. 6) has demonstrated a decrease

in VCMs and TP by quercetin in reserpine-induced TD animal model (Naidu

et al., 2004).

2c Withania somnifera: The root extract of Withania somnifera has been found to

protect rodents from reserpine-induced TD. It was demonstrated that oxidative

stress plays an important role in the pathophysiology of reserpine-induced VCMs

and Withania somnifera due to its antioxidant property is protective in this animal

model (Naidu et al., 2006).

2d valproic acid:Valproic acid is an antiepileptic drug that acts through decreas-

ing the sodium channels-induced neuronal depolarization. There is an enhanced

excitotoxic reaction in the brains of TD patients. Therefore, administration of

some powerful neuroprotective agent that can reduce the excitotoxic process in the

brainmay be a powerful antidyskinetic agent. One study has explored the action of
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FIG. 6. Effect of chronic administration of quercetin (QUR) on reserpine (RES)-induced VCMs (a)

and TPs (b) in rats. Values expressed as meanW SEM. aP< 0.05 as compared with the vehicle (VEH)-

treated control group. bP < 0.05 as compared with the reserpine- and quercetin 100 mg/kg-treated

groups. cP <0.05 as compared with the reserpine- and quercetin 50 mg/kg-treated groups (ANOVA

followed by Tukey’s test).

(Reproduced with permission from Naidu et al., 2004).
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valproic acid in rat model of TD. It has been found that valproic acid at dose of

200 mg/kg protected the rats from reserpine-induced orofacial dyskinesia (Peixoto

et al., 2003). This study strongly demonstrates the protective effect of valproic acid

in ameliorating the symptoms of TD.

2e GABAergic drugs: It has been suggested that GABAergic hypofunction could

be a consequence of neuroleptic-induced dopamine receptor supersensitivity and

therefore GABAergic modulators could be protective in TD. Both tetrahydroisox-

azolopyridine (THIP) (GABAA agonist) and baclofen (GABAB agonist) reversed

reserpine-induced orofacial dyskinesia in rats (Peixoto et al., 2005). However,

diazepam (1-4 mg/kg) did not affect the manifestation of reserpine-induced TD.

Similar kind of study has suggested the protective effect of baclofen in reserpine-

induced TD (Castro et al., 2006).

3. Chlorpromazine-induced TD

Chlorpromazine, the first and most famous drug introduced for the treat-

ment of psychosis, revolutionized the treatment of psychiatric disorders. It is

included under the category of aliphatic phenothiazines. However, chlorpromazine



Table I

BEHAVIORAL EFFECTS OF CHRONIC HALOPERIDOL AND CHLORPROMAZINE TREATMENT IN RATS. VCMS-

VACUOUS CHEWING MOVEMENTS.

Treatment (mg/kg) VCMs/5 min Tongue protrusions/5 min

Vehicle 6W 1 2W 0.577

Haloperidol (1) 58.667W 3.667 22.833W 1.167

Chlorpromazine (5) 52.833W 2.667 19.667W 2.167
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has also been associated with the problem of TD. Our laboratory has stan-

dardized chlorpromazine-induced TD as an animal model to evaluate anti-

dyskinetic drugs. Chlorpromazine when administer in a dose of 5 mg/kg to rats

for a total of 21 days is known to produce orofacial hyperkinetic movements.

The behavioral effects of both haloperidol and chlorpromazine-induced TD

are compared in the following table (Table I). In brief, chlorpromazine at

5 mg/kg for 21 days produced similar numbers of VCMs and TP as compared

to haloperidol (1 mg/kg for 21 days) in the rat model. In vivo microdialysis

evaluation has demonstrated decrease in the levels of norepinephrine, dopa-

mine, and serotonin in the striatal region of rat brain (Kulkarni et al., 2009).

Carvedilol (Naidu et al., 2002), lazaroids (Bishnoi et al., 2007b), neurosteroids

(Bishnoi et al., 2008d), and zolpidem (Bishnoi et al., 2007c) have found to be

protective in reserpine-induced TD.

4. Isoniazid-induced TD

Intracerbroventricular (i.c.v.) injection of isoniazid has been shown to produce

TD symptoms in rats (Kulkarni and Naidu, 2001b). The probable mechanism of

isoniazid-induced TD includes (i) depleting the GABAergic neurotransmission

and (ii) abolishing the activity of glutamic acid decarboxylase (GAD). The symp-

toms of isoniazid-induced TD resembles very much with neuroleptic-induced TD

in animal models (Kulkarni andNaidu, 2001b). Some of the similarities include the

following:
1
 VCMs induced by isoniazid are very much identical to those observed with

chronic neuroleptic treatment in animal models (Kulkarni and Naidu,

2001b).
2
 VCMs induced by isoniazid are significantly reversed by acute treatment

with reserpine or haloperidol (Kulkarni and Naidu, 2001b). Acute treat-

ment with reserpine or haloperidol has shown to reduce the neuroleptic-

induced VCMs and reported to give symptomatic relief to the patients

suffering from TD.
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3
 Isoniazid-induced vacuous chewing movements persisted for more than

30 days post-treatment. This is similar to that observed with neuroleptic-

induced TDwhere these movements are known to persist for longer duration

even after neuroleptic cessation sometimes is irreversible (Kulkarni and

Naidu, 2001b).
5. Primate model of TD

The Cebus apellamonkey is considered to be the most suitable animal model to

study TD due to the fact that this species resembles human beings in many

characteristics and also is very highly vulnerable to the effect of neuroleptic agents

(Werge et al., 2003). Chronic treatment of neuroleptics inmonkeys (Cebus apella) can

produce oral dyskinesia characterized by TP and facial grimacing (B�ar�any et al.,
1983). Gunny and Barany have earlier measured the behavioral disturbances

induced by chronic administration of haloperidol to Cebus apella monkeys

(Gunne and B�ar�any, 1976). Haloperidol, a D2 dopamine receptor blocker was

administered chronically for 4–16months once daily in the diet of the animals, and

signs of acute dystonia–parkinsonian and buccolingual abnormal movements

characterized of TD were noted (Gunne and B�ar�any, 1976). It was demonstrated

that the chronic administration of haloperidol displayed the sign of sedation and

Parkinson during first 5–7 weeks and later these animals developed acute dystonia

(Gunne and B�ar�any, 1976), the symptoms characterized the human condition of

chronic neuroleptic use. Furthermore, two of the monkeys developed the bucco-

lingual signs characterized by grimacing and tongue protrusion after 3 and 12

months of chronic administration (Gunne and B�ar�any, 1976). In another study

carried out on 11 Cebus apella monkeys, chronic administration of haloperidol

(0.05–1.0 mg/kg/d) orally for up to 35 months resulted in the development of

acute dystonic reaction (B�ar�any et al., 1979). Similar to that observed with halo-

peridol, fluphenazine enanthate, another antipsychotic agent, has also been shown

to induce TD-like symptoms in monkeys (Kovacic and Domino, 1982). It has been

demonstrated that biweekly injections of fluphenazine enanthate for 1 year may

has led to the development of acute dystonia, dyskinetic, parkinsonian, and

akathisia-like reactions in monkeys that get worsened after every injection and

later on these animals developed the symptoms of TD similar to that observed in

patients (Kovacic and Domino, 1982). The levels of various neuropeptides have

shown to be altered in the monkey model of TD (Johansson et al., 1990). The

monkeys more susceptible to TD carry the gly9/gly9 DRD3 genotype (gene

associated with TD in humans) (Werge et al., 2003). However, in contrast to this,

there was no ser23 5HT2C serotonin allele that has been reported to increase TD

susceptibility in humans (Werge et al., 2003). Various drug categories such as

GABAergic or cholinergic modulators has shown to alleviate the symptoms of

TD in this animal model (B�ar�ay and Gunne, 1979). The molecules like



Table II

SUMMARY OF ANIMAL MODELS OF TD.

Animal model of TD

Treatment and evaluation of TD

symptoms Mechanism of TD

Haloperidol-induced

TD

1–1.5 mg/kg., i.p. for �21 days

and various parameters such as

vacuous chewing movements

(VCMs), TPs, and facial jerking

are evaluated

* Chronic treatment with anti-dopa-

minergic agent may lead to the

supersensitivity of dopamine D2

receptors that, in turn, can produce

TD-like symptoms
* Treatment with haloperidol may

enhance dopamine metabolism

which in turn can lead to enhance

oxidative stress and thus death

of dopaminergic or GABAergic

neurons
* Chronic treatment with haloperi-

dol may lead to enhance release of

arachidonic acid and inflammatory

prostaglandins

Reserpine-induced TD 1 mg/kg., s.c. alternatively for

5 days and various parameters

such as VCMs, TPs, and facial

jerking are evaluated

* Reserpine depletes various mono-

amine levels such as norepineph-

rine, serotonin and dopamine
* It has been speculated that decrease

in dopamine levels may lead to

onset of TD
* It may enhance the oxidative stress

in the brain

Chlorpromazine-

induced TD

5 mg/kg., i.p. for a total of 21 days

and various parameters such as

VCMs, TPs, and facial jerking are

evaluated

* The mechanism is similar to halo-

peridol-induced TD

Isoniazid-induced TD 1–10 mmol/rat., i.c.v. and

vacuous chewing movements are

measured. Peak effect can be

observed after 30 min of its

administration and effect may

sustain for 60 min

* It depletes the GABA

* It abolishes the activity of gluta-

mate decarboxylase

Neuroleptic

administration in

primate model of TD

Haloperidol (0.05–1.0 mg/kg/d)

orally for up to 35 months and

various parameters such as

buccolingual signs characterized

by grimacing and tongue

protrusion are observed

* Dopamine receptor

supersensitivity
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pramipexole (D3/D2 dopamine receptor agonist) and CIS-8-OH-PBZI (D3 dopa-

mine receptor agonist) reduced SKF 81297 (Dl dopamine receptor agonist)-

induced TD in Cebus monkeys (Peter et al., 2004) demonstrating the role of

dopamine receptors in the pathophysiology of TD.
II. Limitations
Although, there are numerous animal models available to evaluate the path-

ophysiology and treatment strategies of TD, however, these models do not exactly

imitate the human state of disease. To cite an example, the VCMs observed in

animals are generally confined to the orofacial region. However, in humans these

tremors may extend to other parts of the body such as face, neck, and limbs.

Moreover, in animals, these VCMs are often noticeable after >2–3 weeks of

subchronic haloperidol treatment that is relatively long time in the average life

span of a rat (24 months). Also, besides the availability of these animal models,

there is no clear-cut treatment available for TD. The GABAergic agents found

effective in animal models of TD are sometimes not effective in clinics, the reason

being unknown. Therefore, we need to explore more homologous animal models

of TD that resembles the human disease in every specification.
III. Conclusion
Various animal models of TD are summarized in Table II. Despite the pres-

ence of these enormous animal models, we are still not able to completely under-

stand the pathophysiology of TD. However, these animal models have led the

researchers to explore novel drug targets and validate the neurobiological concepts

in understanding the TD. The animal models discussed above have their own

advantages and disadvantages. There is a strong need to develop some of the new

alternative animal models that has reasonable face and predictive validity and

should be reproducible between investigators.
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Tardive dyskinesia (TD) is an often bothersome side effect of antipsychotic

treatment. Medical treatment options are usually disappointing. A few single case

reports have suggested some efficacy of lesionning surgery (i.e. pallidotomy or

thalamotomy). A much greater number of series (including one controlled-study)

have assessed the effects of deep brain stimulation applied to the internal globus

pallidus. All of them have shown a marked improvement of motor symptoms

without any major psychiatric side effects.
I. Introduction
Tardive dyskinesia (TD), consisting in a wide spectrum of abnormal involun-

tarymovements (from dystonia to choreic-like movements), is an often bothersome

side effect of a chronic antipsychotic treatment (for review, see Damier, 2009). For

severe cases, medical treatment options are usually disappointing. The first option

is to attempt withdrawing the antipsychotic drug if the psychiatric state of the

patient permits it. However, in about half of the cases, TD persists even after more

than a year without any intake of the incriminated drug. When the use of a

neuroleptic is mandatory (e.g., for chronic psychotic diseases), a switch to an

atypical neuroleptic such as clozapine is a useful option to consider. The risk of

TD is indeed much lower with such a drug than with the classical antipsychotic
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(Correll et al., 2004). Several add-on treatments have also been proposed for

reducing TD. Among them, tetrabenazine is probably the most effective but with

the risk of inducing a depression or a parkinsonian syndrome (Kenney et al., 2007).

Many other drugs (i.e., vitamin E, calcium channel blockers, noradrenergic

antagonists, and benzodiazepines) have also shown to have some efficacy

(Soares andMcGrath, 1999) In many patients however, despite all these attempts,

distressing TD may persist and lead to a severe disability.

Since the late 1980s, there has been a renewed interest in surgery for treating

variousmovement disorders, such as Parkinson’s disease, tremor or dystonia. Such

a treatment consists in a focal brain lesion or in continuous deep brain stimulation,

the currently preferred option due to the reversibility (the stimulation can be

turned off if required) and the adaptability (the electrical parameters can be

fine-tuned in order to obtain the best ratio between effectiveness and stimula-

tion-induced side effects) of the treatment. Three main targets are used for treating

movement disorders: the subthalamic nucleus for Parkinson’s disease (Krack et al.,

2003); the ventral intermediate nucleus of the thalamus for tremor (Benabid et al.,

1993); and the sensorimotor part of the internal globus pallidus (GPi) for

Parkinson’s disease and for dystonia (Vidailhet et al., 2005). GPi stimulation and

pallidotomy have shown to be effective to treat either generalized or focal primary

dystonia. Its efficacy remains more controversial for secondary dystonias

(Vidailhet et al., 2005, 2009). Several studies have recently reported substantial

benefits of the surgical treatment for severe TD. The results of lesioning surgery

and deep brain stimulation in this indication are reviewed.
II. Lesioning Surgery
A few studies have analyzed the efficacy of lesioning surgery in TD. All of them

were open-labeled single case reports. The level of evidence for efficacy for such

treatment is thus low. Lesioning surgery corresponded either to a pallidotomy or to a

thalamotomy. In one case, a unilateral pallidotomy was performed and a 78%

improvement of the Abnormal Involuntary Movement Scale (AIMS) score com-

pared to the preoperative state is reported after a 2-month follow-up (Wang et al.,

1997). In another case, the improvement assessed by the Burke FahnMarsden (BFM)

scale was similar 8 months after a bilateral pallidotomy (Weetman et al., 1997). One

last case reports the results of a unilateral thalamotomy consisting in two lesions (one

anterior and the other one posteromedial) (Hillier et al., 1999). A 78% improvement of

the BFM score was obtained after a 12-month follow-up. No side effects were

reported in these three case reports. The data are summarized in Table I.



Table I

STUDIES HAVING ASSESSED THE EFFICACY OF LESIONING SURGERY ON TARDIVE DYSKINESIA
a.

Series Design Number of

Patients

Target Follow-up Scales Preoperative

Score

(Mean)

Postoperative

Score

(Mean)

% of Improvement

(Mean)

Reported

side effects

Hillier et al. Case report 1 Thalamus unilateral

(1 anterior lesion

+ 1 posteromedial lesion)

12 months AIMS 36 8 78 None

Weetman et al. Case report 1 GPi, bilateral 8 months BFM 98 25 74 None

Wang et al. Case report 1 GPi, unilateral 2 months AIMS 26 6 77 None

aAbbreviations: GPi: internal globus pallidus; BFM: Burke Fahn Marsden scale; AIMS: Abnormal Involuntary Movement Scale.
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III. Deep Brain Stimulation
The efficacy of deep brain stimulation in TD has been analyzed in a much

greater number of series. Most of them are small and open-labeled series or single

case reports but one controlled study has been carried out.

In all but one studies the ventroposterolateral part of the GPi has been the

chosen target (Damier et al., 2007; Eltahawy et al., 2004; Franzini et al., 2005;

Kefalopoulou et al., 2009; Kosel et al., 2007; Sako et al., 2008; Schrader et al., 2003;

Trottenberg et al., 2005) (Fig. 1). In one series, the subthalamic nucleus has been

the target for deep brain stimulation (Zhang et al., 2006).

For bilateral GPi stimulation, the mean follow-up was between 5 and 21

months. The mean improvement, as assessed by the BFM or the AIMS scale

was 63 + 17%. No permanent and disabling side effect was reported. The most

frequently side effects observed were transitory and induced by the stimulation

itself. In one case, GPi stimulation led to a bradykinesia concomitant to the

reduction of abnormal movements (Schrader et al., 2003); we have observed a

similar effect in a few patients (Thobois, unpublished personal observation).

Importantly no worsening of the underlying psychiatric disease was reported

(Damier et al., 2007; Eltahawy et al., 2004; Franzini et al., 2005; Kefalopoulou

et al., 2009; Kosel et al., 2007; Sako et al., 2008; Schrader et al., 2003; Trottenberg

et al., 2005). One have to acknowledge that in all the cases the patients were

carefully selected (i.e., with no more or stabilized psychiatric disorders) and closely

monitored. Inmost of the patients, psychotropic drugs were reduced and themood

tended to improve (Damier et al., 2007; Kosel et al., 2007). The parameters of

stimulation were variable ranging from low (40 Hz) to high (> 100 Hz) frequency,

and a wide spectrum of pulse width and voltage. There is only one controlled study
[(Fig._1)TD$FIG]

FIG. 1. Brain MRI, T1 sequences showing the final location of the electrodes within the GPi in a

patient operated for tardive dyskinesia. A: axial view; B: coronal view.



Table II

STUDIES HAVING ASSESSED THE EFFICACY OF DEEP BRAIN STIMULATION ON TARDIVE DYSKINESIA
a.

Series Design Number of

Patients

Target Follow-up Scales Preop Score

Mean

Postop Score

Mean

% Improvement

Mean

Stimulation

Parameters

Mean

Damier et al. Double blind 10 GPi ventroposterolateral 6 months ESRS

AIMS

73.1+10

25 + 3

28 + 4.5

11+2

61% (p = 0.005)

56% (p = 0.006)

3.5 (0.2) V/150/

130 Hz,

monopolar

Eltahawy et al. Case report

Open labeled

1 GPi ventroposterolateral 18 months BFM 52 21 60% 2.6 V/210/40 Hz,

monopolar

Franzini et al. Case report

Open labeled

2 GPi ventroposterolateral 12 months BFM 53 6.5 87.7% Unknown

Kefalopoulou et al. Case report

Double blind

1 GPi ventroposterolateral 6 months BFM

AIMS

54

30

2.5

6

90.7%

76.7%

2.5 to 3.6 V/250–

450/185 Hz

Kosel et al. Case report

Open labeled

1 GPi ventroposterolateral 18 months BFM

BDI

27

22

185

17

35% 3.65 V/90/130

Hz

Sako et al. Open labeled 6 GPi ventroposterolateral 21 months BFM 40.2 5.7 85.8% 2.9 (0.9) V/450/

119 (28) Hz

Schrader Case report

Open labeled

1 GPi ventroposterolateral 5 months AIMS 24 9 63% 6.5 V/60/60 Hz

Trottenberg Open labeled 5 GPi ventroposterolateral 6 months AIMS

BFM 40 4

78%

90%

2.7 (0.8)/111 (57)/

144(22) Hz

Zhang Case report

Open labeled

2 STN DBS 3 months BFM 26.5 2 90.6% Unknown

Mean (SD) 63.3% + 17

aAbbreviations: Gpi: internal globus pallidus; STN: subthalamic nucleus; BFM: Burke Fahn Marsden scale; AIMS: Abnormal Involuntary Movements Scale;

ESRS: Extrapyramidal Symptoms Rating Scale.
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having included 10 patients. Its results are in line with those obtained in open-

labeled studies and clearly support the interest of bilateral GPi stimulation for

treating severe TD (Damier et al., 2007). Interestingly, this study demonstrated that

GPi stimulation improved at the same time and to the same extent both dystonic

and choreic-like abnormal movements observed in TD.

The efficacy of subthalamic nucleus stimulation was assessed in a 2-patient

study. The beneficial effect was similar to the one obtained by GPi stimulation.

Yet, no other study has confirmed this observation. The data are summarized in

Table II.

The mechanism of action of GPi stimulation in TD remains poorly under-

stood. Recent functional imaging studies have provided some interesting insights.

Concomitantly to the improvement of the dystonia, GPi stimulation was shown to

lead to a major reduction of the widespread brain overactivation (involving the

prefrontal, premotor, motor and parietal cortices, and the cerebellum) associated

with TD (Kefalopoulou et al., 2009; Thobois et al., 2008).
IV. Conclusion
In severe and persistent TD, the surgical treatment, especially continuous

bilateral GPi stimulation, can lead to a major improvement without any perma-

nent disabling side effects. The level of improvement is comparable to the one

obtained in DYT 1 primary dystonia (Vidailhet et al., 2005). No psychiatric

decompensation was reported in the studies but the patients suffering from TD

were carefully selected, especially for not having any unstabilized psychiatric

disorders, and were regularly monitored. It is a mandatory requisite for such a

treatment. A close collaboration between neurologists, psychiatrists, and neuro-

surgeons is thus a key factor for selecting, operating, and following-up the patients

appropriately and to obtain the level of efficacy observed in the reported studies.
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Huntington’s disease (HD) is a devastating inherited neurodegenerative disease

characterized primarily by progressive motor, cognitive, and psychiatric

symptoms. It is caused by autosomal dominant inheritance of an expanded CAG

repeat within the Huntington’s gene on chromosome 4. In this chapter, we

characterize the typical and variant motor phenotypes of the disease and then

proceed to describe the cognitive and psychiatric profile.We then give an overview

of a suggested multidisciplinary approach to the management of HD, emphasizing

the fact that it is a disease which impacts on entire families rather than affecting

individuals in isolation. We then describe the pharmacological and

nonpharmacological options available for management of specific symptoms.
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I. Clinical Presentation and Genetics
A. INTRODUCTION

Huntington’s disease (HD) is a devastating inherited neurodegenerative dis-

ease characterized primarily by progressive motor, cognitive, and psychiatric

symptoms. The mean age of onset of symptoms is 40 years, but juvenile (onset

< 20 years) and older onset (> 70 years) forms also exist. The disease was originally

namedHuntington’s chorea after GeorgeHuntington, who wrote the first detailed

description in 1872. More recently, however, the name has changed to

Huntington’s disease to reflect the fact that chorea is not the only important

manifestation of the disease: there are also many nonmotor symptoms which

may in fact be more disabling and distressing than the motor symptoms. These

are discussed in more detail below (Craufurd and Snowden, in press; Nance and

Westphal, in press; Rothlind et al., 1993). The pattern of symptoms can vary

markedly between one patient and the next, even within the same family, so it is

crucial to tailor management to every individual. In this chapter, we present a

framework within which to address these issues.

B. EPIDEMIOLOGY

HD occurs in all racial groups but is most common in people of Northern

European origin. Its prevalence in theWestern hemisphere is approximately 7-10/

100,000 (Harper, 1992).

C. THE GENETICS OF HUNTINGTON’S DISEASE

HD is a single-gene disease; it is caused by autosomal dominant inheritance of an

expanded CAG trinucleotide repeat within the Huntingtin (HTT) gene on chro-

mosome 4.This can be identified through genetic testing (TheHuntington’s Disease

Collaborative Research Group, 1993). The HTT gene codes for the protein hun-

tingtin, which is essential for normal neural development, though its functions are

incompletely understood (Cattaneo et al., 2005; Walker, 2007; Young, 2003). In

HD, the expandedHTT gene codes for a mutant form of huntingtin protein which

causes or contributes to the development of symptoms though various pathogenic

mechanisms (Imarisio et al., 2008).

A “normal” Huntington gene has fewer than 36 repeats. The gene is abnormal,

or expanded, if it has 36 ormore repeats, andCAG repeats of 40 ormore will always

cause HD. Genes with CAG repeat lengths of between 36 and 39 show reduced

penetrance, which means that some people with these lengths will develop HD and

some will not. Those who do develop disease are likely to develop later onset disease
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(Langbehn et al., 2004). An intermediate repeat length between 29 and 35 does not

cause HD, but may expand into the pathogenic range in future generations.

The instability of intermediate alleles is one cause of apparently sporadic cases of

HD, inwhich the disease develops in someonewith no apparent family history of the

disease. Apparently sporadicHDoccurs in 6–8%of new cases ofHD (Almqvist et al.,

2001; Siesling et al., 2000), and can also be due to unexpected or unknown paternity,

or a parent dying before they develop symptoms of the disease. Instability of the

CAG repeat expansion can also cause “genetic anticipation,” in which the CAG

repeat length increases and causes the onset of the disease at a younger age in the

affected offspring of someone with HD than in the parents themselves. Genetic

anticipation is more common when the expanded allele is inherited from a father

than from a mother. 90% of people with juvenile HD (with CAG repeats typically

>60) inherit the mutation from their father (Harper and Jones, in press; Barbeau,

1970).

The following sections describe clinically relevant aspects of the genetics of

HD. For more information, please see the authors’ recent review of HD (Novak

and Tabrizi, 2010).

1. Genetic testing for Huntington’s disease

Genetic testing for HD is performed through quantification of the CAG repeat

length in the HTT gene. We use the term “positive” genetic test result to refer to

CAG lengths in the pathogenic fully penetrant expanded CAG repeat range of>39

repeats. Testing falls into two categories: diagnostic testing is carried out to confirm (or

refute) the diagnosis in a patient with symptoms suggestive of HD, whereas predictive

testing is carried out in a person who has no symptoms of HD, but who is at risk

because of their family history. Predictive testing determines whether an individual

carries the expanded HTT gene and will develop HD in the future. A positive

predictive test result indicates that they will certainly develop HD at some point

in the future (unless they die of another cause in the meantime), but does not tell

them when this will happen or what the presenting symptoms will be. Predictive

testing for HD is only performed in specialist genetic centers and follows interna-

tionally agreed guidelines (Craufurd and Harris, 1989; International Huntington

Association, 1994; Went, 1990). These include an initial session of pretest counsel-

ing, followed by a period of reflection and then a second session of counseling. Post-

test counseling must also be available and strict confidentiality must be observed.

Both emotional and practical issues are discussed. Insurance and mortgage eligibil-

ity, for example, may be affected by a positive predictive test result.

2. Reproductive options

Deciding whether or not to have children is often difficult for people with or at

risk of having an expanded HTT gene. A minority choose to have either prenatal
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testing or preimplantation genetic diagnosis, which ensure that their child has a

<1% chance of carrying the expanded HTT gene.

Prenatal testing

Prenatal testing is usually carried out via chorionic villus sampling between 11

and 13 weeks of pregnancy. Pretest counseling is important: potential parents need

to be sure that they will terminate the pregnancy if their fetus is found to have an

expanded HTT gene, otherwise their child will grow up in the shadow of a

predictive test for which they did not consent. This would violate the autonomy

of the child.

Preimplantation genetic diagnosis (PGD)

Preimplantation genetic diagnosis (PGD) is available through specialist units.

In PGD, embryos are created using normal IVF procedures and then tested for the

expanded HTT gene. Unaffected embryos are implanted. Overall, about one in

five cycles results in a live birth, but success rates vary.
Exclusion (nondisclosing) prenatal testing and PGD

Exclusion (nondisclosing) prenatal testing or PGD can be carried out for

couples in which one partner is at risk but does not wish to have a predictive test

themself: the potential parents do not find out their own HD gene status. Linkage

techniques are used. A “high risk” result means that the fetus is at 50% risk of

developing HD–—the same as its at-risk parent. The couple undergoing this test

therefore chooses to terminate a pregnancy at 50% risk. Clearly this test requires

detailed discussion with the couple beforehand.

D. THE COURSE OF THE DISEASE AND ITS RELATIONSHIP WITH CAGREPEAT LENGTH

An individual with an expanded HTT gene will usually develop symptomatic,

or “manifest,” HD in their 30s or 40s. This will generally progress to end-stage

disease over 15–30 years. The onset of manifest HD is currently defined as the

point at which characteristic motor signs develop (Huntington Study Group,

1996); prior to this point, the individual is classed as a “premanifest gene carrier.”

The distinction between premanifest and manifest disease is somewhat arbitrary,

however, as most patients develop some or all of cognitive, psychiatric or subtle

motor symptoms during the premanifest (“prodromal”) period, and this often

occurs many years before any “hard” motor signs are seen (Paulsen et al., 2006,

2008; Tabrizi et al., 2009). Patients may present initially with any symptom.

Chorea and loss of balance are early symptoms that patients themselves often
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FIG. 1. Progression of Huntington’s disease over a patient’s lifespan (reproduced from

“Huntington’s disease: from molecular pathogenesis to clinical treatment” by CA Ross and SJ

Tabrizi by kind permission of the publishers (Ross and Tabrizi, 2011)).
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notice, though frequently families notice cognitive or personality changes prior to

this.

The typical pattern of disease progression is shown in Fig. 1 (Ross and Tabrizi,

2011).

The expanded CAG repeat length is related to age of onset of disease at a

population level: the longer the CAG repeat length, the earlier the onset of

symptoms tends to be (Andrew et al., 1993; Brinkman et al., 1997; Duyao et al.,

1993; Snell et al., 1993; Stine et al., 1993; Langbehn et al., 2004). However, repeat
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FIG. 2. The correlation between CAG repeat length and age of symptom onset (reproduced from

“The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s

disease” by SE Andrew et al. by kind permission of the publishers (Andrew et al., 1993)).
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length only accounts for between 50 and 70% of this variance, so disease onset in

an individual cannot be predicted reliably through genetic testing (Wexler et al.,

2004). This can be seen in Fig. 2 (Andrew et al., 1993). Use of the CAG

repeat length to predict disease onset is useful in Huntington’s disease research,

but has minimal relevance to the management of individual patients. The CAG

repeat length is also associated with the rate of disease progression, but less

strongly than with the age of symptom onset (Rosenblatt et al., 2006; Ravina

et al., 2008).
E. STAGING OF HUNTINGTON’S DISEASE

In clinical practice, staging in HD is usually based on the HD-specific Total

Functional Capacity (TFC) scale (Shoulson and Fahn, 1979). Staging is based on

functional ability in recognition of the fact that some symptoms of HD are more

functionally disabling than others (Rothlind et al., 1993). A score is given according

to an individual’s ability to function independently in each of four domains—

occupation, finances, domestic chores and activities of daily living—and the level

of nursing care they need. The scale covers all stages of the disease, ranging from

minimal functional impairment to requiring complete support in every domain.
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TheUnified Huntington’s Disease Rating Scale (UHDRS) (Huntington Study

Group, 1996) is a clinical rating scale used primarily for research purposes. It is

used to assess patient ability in four domains: functional capacity (assessed using

the Shoulson–Fahn TFC scale), motor function, cognition, and behavior.
F. HUNTINGTON’S DISEASE IS A DISEASE OF THE FAMILY

HD has a profound impact on those around an affected individual as well as on

that individual him or herself. The inexorable progression of the disease is painful

for families and friends to watch, and most affected families will include more than

one affected individual, with several more at risk of developing the disease in the

future. In addition, the burden of being first a carer and later a patient is handed

down through the generations; for many people, being tested positive for the HD

gene carries the dual consequences of being diagnosed with a disease that has taken

the life of a parent, and passing on the burden of being a carer and perpetuating the

cycle to one’s own children. HD is often little understood by those who have not

experienced it first hand, so having supportive family members who are familiar

with the disease can be particularly important.
G. OVERALL PRINCIPLES OF MANAGEMENT OF HUNTINGTON’S DISEASE

As mentioned earlier, HD can cause markedly different patterns of symptoms

from one patient to the next, even within the same family. It is therefore crucial to

tailor management to each individual, and to ensure that the priorities of the

patient are listened to when formulating management plans. Patients may be less

concerned by their chorea than their family is, for example (and, in fact, it is very

common for people withmild chorea not to be aware of it at all). If this is the case, it

is important not to medicalize the person with HD or to expose them to potential

drug side-effects by attempting to treat a symptom which is not actually causing a

problem: the aim of current treatments for HD is to manage symptoms and

improve quality of life (Novak and Tabrizi, 2010). One caveat to this, however,

is that it is common for patients to lack insight into their symptoms; carer input

is therefore invaluable when assessing someone with HD and deciding which

symptoms are causing difficulties. The social and financial impact of HD can

also be considerable and this should always be considered when assessing anyone

with HD.

There are no treatments available to slow disease progression yet, but there are

many effective options for symptomatic management, including both
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pharmacological and nonpharmacological measures (Mestre et al., 2009; Phillips

et al., 2008). The evidence base for drugs in HD is very small (Adam and Jankovic,

2008; Bonelli and Hofmann, 2007; Mason and Barker, 2009; Priller et al., 2008) so

the choice of pharmacological agents is based mainly on clinical experience.

Nonpharmacological measures are often more helpful than pharmacological mea-

sures (Nance, 2007; Nance andWestphal, in press); once again, limited evidence is

available, but recommendations are based on extensive clinical experience.

Further details are given in subsequent sections of this chapter.

The provision of care in HD usually requires a multidisciplinary approach

(Nance, 2007; Nance andWestphal, in press). Patients usually benefit from referral

to a specialist multidisciplinary HD clinic where possible, from which they can

access care from a range of healthcare professionals experienced in the manage-

ment of HD. Support from professionals in the community remains vital, and

optimal care is typically provided from a multidisciplinary team which includes

some or all of the following: general practitioners, neurologists, geneticists, psy-

chiatrists, physiotherapists, occupational therapists, speech and language thera-

pists, dieticians, community mental health teams, and social workers (Novak and

Tabrizi, 2010). Table I gives an overview of the multidisciplinary nonpharmaco-

logical management of HD. Early involvement is recommended so that patients

learn how to manage their symptoms while they still have the cognitive capacity to

adapt and learn new skills.
Table I

MULTIDISCIPLINARY NONPHARMACOLOGICAL MANAGEMENT OF HUNTINGTON’S DISEASE (REPRODUCED

FROM “HUNTINGTON’S DISEASE” BY MJU NOVAK AND SJ TABRIZI BY KIND PERMISSION OF THE PUBLISHER).

Feature of Disease Examples of Management Measures

Gait disturbance and

chorea

Physiotherapy to optimize and strengthen gait and balance, and to assess for

walking aids; occupational therapy assessment to modify home environment

to improve safety; weighted wrist bands to combat limb chorea

Cognitive symptoms Ensure every day has a structure to overcome apathy and difficulty in

initiating activities (occupational therapy can advise on this); maintain

routines to reduce need for flexibility

Social support Carers to help at home; residential or nursing home care; day centers to

maintain social interactions

Communication Speech and language therapy to optimize speech, and later in disease to

assess for communication aids; ensure patient has time to comprehend and

respond to speech, and that information is presented simply

Nutrition Speech and language therapy to advise on safest food consistencies at

different stages of disease, and, in later disease, to advise on need to consider

enteral nutrition; dietician to optimize nutritional intake, especially adequate

calorie intake; minimize distractions to optimize swallowing safety

Psychological therapy Develop strategies to deal with cognitive and/or emotional challenges of

disease using counseling or CBT
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Advisors and local groups linked with HD support organizations can play an

invaluable role in supporting patients and their families. These organizations

include the HD Association (HDA) in England and Wales and the HD Society

of America (HDSA); many other countries have similar organizations (the

International Huntington Association website, www.huntington-assoc.com,

includes contact details for these). Care advisors can also provide educational

input for healthcare professionals caring for people with HD. In some countries,

specific groups exist to support young people affected by HD and can be accessed

via the main support organizations.
II. The Clinical Phenotype and its Management
A. THE MOTOR DISORDER

The motor symptoms of HD can be divided into two categories: added invol-

untary movements such as chorea, and impaired voluntary movements, which

cause limb incoordination and impaired hand function. These symptoms are

worsened by loss of postural reflexes. The pattern of symptoms tends to change

over time in typical adult-onset HD: typically chorea dominates in early disease,

but then tends to decline as the disease progresses, with dystonia, rigidity, and

bradykinesia then becoming more marked (Novak and Tabrizi, 2010). In general,

these later symptoms tend to be more functionally incapacitating than the more

readily recognized chorea. The change in symptomatology over time is particu-

larly important when considering pharmacotherapy. Movement-suppressing

medications used in the earlier stages of the disease may exacerbate the impaired

movements that develop later on. They will often need to be reduced, and even-

tually stopped, so regular reassessment is vital.

A summary of the pharmacological treatments of the movement disorder is

given in Table II.

1. Chorea

The first step in managing the movement disorder is to decide whether symp-

toms need treating. This is particularly relevant for chorea; patients are often not

bothered by early chorea, and may not even be aware of it (Novak and Tabrizi,

2010). As chorea develops, however, it tends to become more problematic and to

interfere with voluntary activities like writing or eating, and frequently causes falls.

Chorea can also be distressing in itself, and patients often find themselves accused

of drunkenness by people unaware of their diagnosis. These issues may be indica-

tions for treatment.

http://www.huntington-assoc.com/


Table II

SYMPTOMATIC MANAGEMENT OF THE HUNTINGTON’S DISEASE MOTOR DISORDER (REPRODUCED FROM

“HUNTINGTON’S DISEASE” BY MJU NOVAK AND SJ TABRIZI BY KIND PERMISSION OF THE PUBLISHER).

Symptom Drug Class Medication Main Adverse Effects and Treatment Notes

Chorea Atypical

neuroleptics

Olanzapine Sedation, parkinsonism, tardive dyskinesias

but less risk than with older neuroleptics

raised triglycerides, weight gain from

increased appetite which may be beneficial in

HD. Caution should be exercised in patients

with diabetes and blood glucose monitored.

May rarely cause prolonged QT interval.

Useful if also significant agitation, irritability

and anxiety

Atypical

neuroleptics

Risperidone As above but less effect on increasing appetite.

Atypical

neuroleptics

Quetiapine As above, less effects on lipids and glucose

Older

neuroleptics

Sulpiride Agitation, dystonia, akathisia, sedation,

hypotension, dry mouth, constipation.

Haloperidol Sedation, more parkinsonism, dystonia,

akathisia, hypotension, constipation, dry

mouth, weight gain, higher risk of neuroleptic

malignant syndrome than atypical

neuroleptics

Dopamine

depleting agents

Tetrabenazine Depression and sedation

Myoclonus

Chorea

Dystonia

Rigidity

Spasticity

Benzodiazepines Clonazepam Sedation, ataxia, apathy, cognitive

impairment may be exacerbated, withdrawal

seizures

Myoclonus Anticonvulsant Sodium valproate GI disturbance, weight gain, blood dyscrasia,

hyperammonemia

Levetiracetam GI disturbance, rash, mood changes, myalgia

Rigidity

(particularly

associated with

juvenile HD or

young adult-onset

Parkinsonian

phenotype)

Amino acid

precursor of

dopamine

Levodopa GI disturbance, postural hypotension,

insomnia, agitation, psychiatric symptoms

Rigidity

Spasticity

Skeletal muscle

relaxants

Baclofen

Tizanidine

Sedation, drowsiness, confusion, GI

disturbances, hypotension

Bruxism

Dystonia

Inhibits

acetylcholine

release at

neuromuscular

junction to cause

muscle paralysis

Botulinum toxin May paralyze nearby muscles
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Nonpharmacological interventions should be considered first. Chorea often

varies with posture or positioning, and assistive devices, such as padded chairs or

wrist and ankle weights to reduce chorea amplitude, may be helpful. Wearing

shoes with nonslip soles and installing grab rails around the home can improve

safety, and occupational therapy assessment to assess the home environment is

often extremely useful. Physiotherapy is also helpful to optimize mobility and can

be beneficial at an early point in the disease to preservemobility and independence

for as long as possible (Novak and Tabrizi, 2010).

Stress, anxiety, and depression can all worsen chorea, so measures to treat

these are often helpful. Creating a calm and predictable environment is also

beneficial.

If these measures are not sufficient to control symptoms, medications can be

tried. These are unlikely to obliterate chorea, but can dampen down symptoms

considerably. There are three different classes of medication that are commonly

used: neuroleptics (e.g., olanzapine, risperidone), benzodiazepines (e.g., clonaze-

pam, diazepam), and dopamine depleting agents (e.g., tetrabenazine). As men-

tioned above, there have been very few systematic clinical trials comparing the

efficacy of these drugs and so management is primarily based on the opinion of

experts rather than on a substantial evidence base. Choice is often dependent on

consideration of the side-effect profile of each drug class.

Tetrabenazine has the best evidence of efficacy in HD and has been shown to

reduce chorea in a randomized controlled clinical trial (Huntington Study Group,

2006). It is frequently the first choice of medication for uncomplicated chorea as

although it shares some of the side effects of the neuroleptics, they tend to be

milder. In addition, tetrabenazine has not been shown to cause tardive dyskinesia.

(Tardive dyskinesia is of particular concern in HD because it can be difficult to

detect in someone with a movement disorder.) Tetrabenazine can, however,

exacerbate or trigger psychiatric symptoms so should be avoided in patients with

a history of depression or other psychiatric disorders; in these patients, or in those

in whom symptoms are not controlled with tetrabenazine, neuroleptics are helpful.

CYP2D6 (cytochrome P450 2D6) is integral in the metabolism of tetrabena-

zine. To avoid reduced clearance, tetrabenazine should therefore be used with

care in patients who are also taking drugs with a CYP2D6 inhibitory effect.

CYP2D6 inhibitors include fluoxetine, paroxetine and fluvoxamine; noninhibi-

tory alternatives include citalopram, escitalopram and sertraline (Guay, 2010).

Neuroleptics are used to treat chorea by harnessing the movement suppression

that is seen as an undesirable side-effect when the same drugs are used to treat

psychosis. In the past, “typical” neuroleptics like haloperidol were frequently used,

but the “atypical” neuroleptics are now more commonly used. These include

olanzapine risperidone and quetiapine. They are usually better tolerated with

fewer extrapyramidal side-effects (such as unacceptable levels of rigidity and

dystonia) and a lower incidence of tardive dyskinesia than the older neuroleptics.
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The atypical neuroleptics also promote weight gain, suppress irritability, and

mood swings, and improve sleep—all of which are useful side-effects in HD.

They should be started at the lowest dose, and can be gradually titrated up as

needed. Olanzapine and risperidone can both cause hypercholesterolaemia and

hyperlipidaemia and are associated with an increased risk of stroke in elderly

patients with dementia (Ballard and Howard, 2006); it is therefore important to

consider a history of stroke or transient ischemic attack in older patients before

using them and to monitor glucose and lipid levels during treatment.

The typical neuroleptics are also still used to suppress chorea. Sulpiride, for

example, is a good suppressor of chorea, but can cause agitation and Parkinsonism.

Haloperidol causes even more frequent Parkinsonian side effects, and also causes

tardive dyskinesia. All neuroleptics carry a risk of neuroleptic malignant syndrome,

but this is greater with the typical than the atypical neuroleptics. (Neuroleptic

malignant syndrome is a rare, but life-threatening reaction characterized by acute

onset of delirium, rigidity, and fever, often accompanied by leukocytosis and

elevated CPK. Families should know about this so that patients can be given

prompt medication attention if this develops.)

Benzodiazepines can also be used for treatment of chorea, but they cause

sedation and can have depressant effects on cognition. For these reasons, they

are better avoided in the longer term. Amantadine can also be used for intractable

chorea. Its main side-effects are ankle edema, worsening of confusion, and livedo

reticularis.

2. Dystonia, spasticity, rigidity, and bradykinesia

As mentioned earlier, rigidity, spasticity and bradykinesia tend to emerge later

in adult-onset HD, often becomingmore prominent as chorea declines. In juvenile

HD, however, a more Parkinsonian phenotype is often present from the onset of

the disease. These symptoms usually cause marked functional impairment and

often impair gait, leading to falls and the need for a wheelchair.

Dystonia may be a symptom of HD, or a side effect of a neuroleptic. Different

presentations include twisting, tilting, or turning of the neck (torticollis), involun-

tary arching of the back (opisthotonos), and arching of the feet.

A variety of medications have been used to treat rigidity, spasticity, and

dystonia. As with chorea, these do not obliterate symptoms, but may partially

suppress them. Benzodiazepines or baclofen may relieve stiffness, but may also

increase bradykinesia. Anti-Parkinsonian medicines such as levodopa-containing

compounds or amantadine can also be helpful. Tizanidine sometimes improves

spasticity. All of these medicines may cause delirium, however, and even if initially

helpful, may lose their efficacy after several months; improving mobility with the

help of a physiotherapist and preventing contractures is frequently the most

important aspect of management. Botulinum toxin injections are not often used
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but may be useful if severe rigidity of a particular small muscle or group of muscles

is impairing function.

3. Myoclonus and tics

Myoclonus is sudden brief jerking of groups of muscles. It is most common in

juvenile-onset HD, and may be mistaken for a seizure. It may not be especially

disabling or distressing, but if needed, can be dampened down with clonazepam,

sodium valporate, or levetiracetam. Tics are brief, intermittent stereotyped move-

ments such as blinking, nose twitching, head jerking, or transient abnormal pos-

tures. Tics can also cause sounds like sniffs, snorts, grunts, coughs, and sucking

through involvement of respiratory and vocal structures. As with chorea, patients

often do not notice their tics although other people who spend a lot of time with

them can find the constant noise of a persistent vocal tic irritating; it is important to

explain that, just like chorea, tics are not something that patients can control. Tics

do not usually need treatment, but neuroleptics, benzodiazepines, or SSRIs may

help to suppress them.
4. Akathisia

Akathisia is an extremely uncomfortable internal sense of restlessness, which

may cause patients to pace or to be unable to sit still. It can be caused by

neuroleptics and can look like agitation or anxiety; this means that a vicious circle

can be created if the causative neuroleptic is increased to treat perceived agitation

or anxiety.
B. THE COGNITIVE DISORDER

Cognitive symptoms tend to begin insidiously, but can have a profound effect

even at an early stage. In 1993, Rothlind et al. assessed the effect of cognitive and

motor symptoms on the ability of 67 individuals with early HD to carry out

activities of daily living and found that cognitive impairment was associated with

reduced functional ability independent of motor impairment (Rothlind et al.,

1993). Additionally, many patients and their families can identify problems at

work and in personal relationships that can, with hindsight, be attributed to

development of the cognitive syndrome many years before the onset of motor

symptoms. Patients themselves may not be aware of these symptoms (or may be in

denial about them), and this lack of insight may confound the problem.

The first step in managing cognitive symptoms is therefore to identify areas of

difficulty and to recognize that they might be due to HD. This can be difficult to

address in at-risk individuals who do not wish to know their gene status and needs
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to be introduced gently. There are no pharmacological treatments for cognitive

symptoms, but coping strategies can often be adopted to overcome or compensate

for problems. Encouraging patients to continue to exercise their mind, for example

by doing crosswords or other puzzles, is advised across the disease span, and

cognitive behavioral therapy (CBT) can be very helpful for people with early

cognitive or behavioral symptoms who have insight and are motivated to engage

with the therapy. This can also be a useful way for premanifest individuals to learn

cognitive strategies that will stand them in good stead once cognitive and psychi-

atric symptoms become manifest. (We are aware of no controlled trials of CBT in

HD, though one case study has reported benefit for a premanifest individual who

underwent CBT to manage depression and anxiety after a positive predictive gene

test (Silver, 2003)).

The following sections summarize some of the features of the cognitive

syndrome.

1. Executive dysfunction

Executive functions are the high-level cognitive processes that control other

aspects of cognitive function. These almost invariably decline in HD. Typically,

patients report difficulty with multi-tasking and concentration. Thinking-style

becomes more concrete and less efficient, and planning, initiation and organiza-

tion of time, thoughts and activities become harder. External structure can be

provided through establishing regular routines and keeping diaries and “to do”

lists; this helps patients to organize activities.

Difficulty with multitasking is a common early sign of HD, and can result in

significant problems in day-to-day function. Many workplaces require rapid

switching of attention, for example; HD-related deficits can result in patients

making mistakes in this type of environment. Concentrating in a busy office

becomes harder and tension develops in relationships with colleagues. This, in

turn, increases stress and exacerbates the underlying problem with concentra-

tion. Once these issues have been identified, however, appropriate compensatory

strategies can be devised. Moving into a quiet office and reducing workload, for

example, may enable someone to stay in work and preserve their independence

for as long as possible. Employers have a statutory duty to optimize the working

environment for people with a disability where possible, though this needs to be

approached sensitively and support and advice offered (Novak and Tabrizi,

2010).

2. Psychomotor symptoms

People with HD are frequently impulsive and develop psychomotor

perseveration.
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3. Visuospatial and perceptual deficits

HD causes subtle visuospatial perceptual changes (Craufurd and Snowden, in

press; Paulsen et al., 2008). In particular, patients’ perception of their own bodies in

relation to the rest of the world can be impaired; this may contribute to trips, falls

and bumping into furniture.

4. Learning and memory

Memory loss and difficulty in learning new skills are common. Strategies to

deal with this include providing cues to jog the memory, and again, keeping “to

do” lists and diaries and maintaining regular routines.

5. Dementia in Huntington’s Disease

As cognitive dysfunction progresses, patients can develop severely limiting

frontal and subcortical dementia. It is important to remember, however, that some

people with profound motor symptoms will remain able to comprehend and

evaluate information and make decisions for themselves, even if they find this

difficult to communicate. Assessment by a clinical psychologist can be extremely

helpful in order to explore this more fully and to evaluate the extent of an

individual’s capacity.
C. THE PSYCHIATRIC DISORDER

Psychiatric symptoms are common in HD and, like cognitive symptoms, often

precede motor onset by many years. They frequently lead to considerable distress

and difficulty for patients and their families/carers, who typically find them more

difficult to deal with than the physical symptoms. It is important to recognize

psychiatric symptoms so that symptomatic treatment can be offered, and to

acknowledge that symptoms are probably caused by HD. Detection of psychiatric

symptoms may be difficult later in the disease as diagnoses may be obscured by

other symptoms; depression, for example, may be difficult to detect in a patient

who has altered facial expressions and tone of voice. Conversely, metabolic symp-

toms such as weight loss and sleep disturbance may be misattributed to depression

(Novak and Tabrizi, 2010).

HD can cause a wide range of psychiatric symptoms. A survey of 52 patients

with HD was found to have symptoms with the frequencies shown in Table III.

(Paulsen et al., 2001).

A summary of the pharmacological treatment of psychiatric symptoms in HD

is given in Table IV.



Table III

FREQUENCY OF NEUROPSYCHIATRIC SYMPTOMS IN HUNTINGTON’S DISEASE AS MEASURED BY THE

NEUROPSYCHIATRIC INVENTORY (NPI; CUMMINGS ET AL., 1994) (ADAPTED FROM “NEUROPSYCHIATRIC

ASPECTS OF HUNTINGTON’S DISEASE” BY JS PAULSEN ET AL. BY KIND PERMISSION OF THE PUBLISHER).

Symptom Frequency Mean SD

Dysphoria 69.2 3.12 3.46

Agitation 67.3 2.88 3.32

Irritability 65.4 2.63 3.11

Apathy 55.8 2.79 4.02

Anxiety 51.9 1.96 3.14

Disinhibition 34.6 1.29 2.77

Euphoria 30.8 1.04 2.27

Delusions 11.5 0.75 2.63

Aberrant motor 9.6 0.60 2.18

Hallucinations 1.9 0.23 1.66
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1. Depression

Depression is extremely common in HD and occurs as an intrinsic feature of

the disease rather than merely as a response to being diagnosed with an incurable

disease. A recent survey of 2,835 patients with HD found that 40% currently had

symptoms of depression and 50% reported having sought treatment for depression

in the past (Paulsen et al., 2005). 10% of those surveyed had made at least one

suicide attempt in the past.

Treatment is with standard antidepressant medications. While there is not an

established evidence base for the treatment of depression in HD, our experience is

that antidepressants are frequently very effective (Novak and Tabrizi, 2010). An

SSRI such as citalopram is generally used as first line treatment, though stimulat-

ing SSRIs such as fluoxetine should be avoided as they can cause hyperstimulation

and exacerbate anxiety, both of which are common in HD. If insomnia is a

problem, a sedating antidepressant at night instead (e.g. mirtazapine) can be

useful. Psychological therapies, such as CBT, can also be helpful in well-selected

patients, and support from local community mental health teams is often

invaluable.
2. Suicide risk

Patients with HD are more likely than the general population to commit

suicide according to a meta-analysis of studies that reported on mortality associ-

ated with mental disorders (standardized mortality ratio of 290) (Harris and



Table IV

SYMPTOMATIC MANAGEMENT OF PSYCHIATRIC SYMPTOMS IN HUNTINGTON’S DISEASE (REPRODUCED FROM

“HUNTINGTON’S DISEASE” BY MJU NOVAK AND SJ TABRIZI BY KIND PERMISSION OF THE PUBLISHER).

Symptom Drug Class Medication Main Adverse Effects and

Treatment Notes

Psychosis Atypical neuroleptics Olanzapine,

Risperidone,

Quetiapine

See above. Careful use in the

elderly where there is increased

risk of stroke with olanzapine and

risperidone

Treatment-resistant

psychosis

Neuroleptics Clozapine As for the other neuroleptics, plus

agranulocytosis, myocarditis and

cardiomyopathy. Requires blood

monitoring

Psychosis with

prominent negative

symptoms

Neuroleptics Aripiprazole Parkinsonism, akathisia,

drowsiness, GI disturbance,

tremor, blurred vision

Depression, anxiety,

OCB, irritability,

aggression

Selective serotonin

reuptake inhibitors

(SSRI)

Citalopram GI disturbance, hypersensitivity

reactions, drowsiness, syndrome

of inappropriate antidiuretic

hormone secretion (SIADH),

postural hypotension

Fluoxetine As for citalopram, sleep

disturbances

Paroxetine As for other SSRIs, raised

cholesterol

Sertraline As for other SSRIs

Presynaptic a2-
antagonist, increases

central noradrenaline

and serotonin activity

Mirtazapine Weight gain, edema, sedation,

headache, dizziness, tremor.

Useful when insomnia is a

problem as it is sedating.

Serotonin and

noradrenaline

reuptake inhibitor

Venlafaxine Hypertension, GI disturbance,

hypersensitivity reactions,

drowsiness, agitation, SIADH,

palpitations

Irritability, aggression Neuroleptics Olanzapine,

Risperidone,

Quetiapine

See above

Altered sleep-wake

cycle

Hypnotics Zopiclone Zolpidem Drowsiness, confusion, memory

disturbance, GI disturbance

Mood stabilizers Anticonvulsants Sodium valproate See above

Lamotrigine Hypersensitivity reactions, blood

dyscrasias, dizziness, GI

disturbance, depression

Carbamazepine Hypersensitivity reactions,

drowsiness, blood dyscrasias,

hepatitis, hyponatremia,

dizziness, GI disturbance
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Barraclough, 1997). A survey of 4,171 carriers of the Huntington’s gene with

premanifest and manifest disease found that 17.5% had suicidal thoughts at or

around the time of assessment and 10% of those surveyed had made at least one

suicide attempt in the past (Paulsen et al., 2005). It is therefore vital to ask depressed

patients whether they have been experiencing suicidal thoughts. Suicidal ideation

was highest among (a) gene carriers who were nearing the threshold of being

diagnosed with manifest disease (i.e. those with soft motor signs of HD) and (b)

among those who were beginning to lose their functional ability and independence

(i.e. those with stage 2 disease). Risk factors for suicide in HD include depression

and impulsivity (Craufurd and Snowden, in press). Some people with HD also

have suicidal thoughts in the absence of depression (Lipe et al., 1993): for some,

thoughts of suicide appear to be a rational response to their imminent loss of

independence (Novak and Tabrizi, 2010).

3. Anxiety

Anxiety is also common in HD but can respond to treatment with nonstimu-

lating SSRIs, buspirone or benzodiazepines.
4. Irritability and agitation

As seen in Table III, these are also common symptoms of HD. Both respond

well to neuroleptics - olanzapine, for example, is very effective and, as described

earlier, has beneficial side-effects. Behavioral strategies are also invaluable and

carers should be encouraged to create a calm and structured environment and to

avoid confrontation wherever possible. It is also helpful to avoid situations that

trigger outbursts, but if this is not possible, short-term use of benzodiazepines (e.g. a

low dose of clonazepam) can be useful to reduce agitation and anxiety. These

strategies can be difficult for carers to maintain, and support groups like local

Huntington’s Disease Association (HDA) meetings can be valuable sources of

support and suggestions.
5. Apathy

Apathy is also a challenging symptom to manage. It can be difficult to differ-

entiate from depression and a trial of antidepressants may be worth considering if

there is uncertainty about this. It is helpful to gently impose structure on the day as

patients often find that having an appointment to aim for, such as coffee with a

friend, is a helpful way to initiate and organize their behavior (Novak and Tabrizi,

2010). Patients suffering from apathy can find it particularly difficult to initiate

activities, but are often able to participate fully with encouragement and support

once they get started on things.
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6. Obsessive-compulsive behaviors and perseveration

Obsessive-compulsive thoughts and behaviors are also relatively common in

HD. (Cummings and Cunningham, 1992; Paulsen et al., 2001; Rosenblatt and

Leroi, 2000). These take three main forms: obsessions related to other people (e.g.

suspicions of infidelity), obsessions which are related to the self (e.g. fixations on

bowel or bladder function), and ritualistic behaviors (e.g. preoccupations with

specific routines) (Tabrizi et al., 2011). It is generally not helpful to be confronta-

tional; gentle redirection can however be helpful. Neuroleptics such as olanzapine

can also improve symptoms, as can antidepressants. The choice of drug class

should be based on the pattern of concurrent symptoms: neuroleptics would be

a good choice in a patient who also has agitation, for example. In patients with little

or no cognitive impairment, CBT can also be useful.

7. Sexuality

Sexuality often remains unchanged in HD, though it is also common for sex

drive to decline. A minority of people with HD, almost invariably men, develop

hypersexuality. An open and supportive atmosphere is important to explore strat-

egies to deal with this. In general, a behavioral approach is used to broach issues

arising from altered sexuality, but neuroleptics such as olanzapine can help to

reduce hypersexuality if needed. It is also important to remember that many

patients with HD are on medications such as SSRIs which can cause sexual

dysfunction; these should be reviewed if sexual dysfunction is a problem.

8. Psychosis

Psychotic symptoms are rare in HD, but delusions and hallucinations can

occur (Paulsen et al., 2001; Rosenblatt and Leroi, 2000). Any precipitating factors

should be assessed and treated if present, and neuroleptic treatment instigated as

necessary. The choice of specific neuroleptic depends on the concurrent symptom

profile (Rosenblatt and Leroi, 2000).
D. COMMUNICATION

Communication can be impaired by both dysarthria and cognitive dysfunc-

tion. Dysarthria is mainly caused by incoordination of voluntary oromotor muscle

movement and, as with most other HD symptoms, is often worse when an affected

individual is tired or under stress. Cognitive symptoms which contribute to com-

munication problems include word-finding difficulties and an inability to initiate

or structure speech.
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Maintaining communication is vital, and there are a number of strategies

which can help to optimize communication. When giving information to someone

with HD, it is important to be clear. Decision-making can be challenging, so

present an individual with simple and clear choices rather than asking open-ended

questions (“would you like a sandwich or a biscuit?” rather than “what would you

like to eat?”). Use uncomplicated language and allow the patient plenty of time to

reply. Prompting can be helpful to overcome difficulties in initiating speech.

People with HD are often distracted by extraneous information in their environ-

ment, so if communication is difficult, it can help to move to a quieter space where

distractions are minimized. If the listener cannot understand the person with HD,

asking them to repeat things or phrasing questions differently may help. As

communication problems progress, speech aids such as communication boards

can be helpful. People with HD frequently often understand far more than initial

attempts at communication suggest, however; it is important to keep this in mind

and to look actively for ways to optimize communication.

Speech and language therapy (SALT) is frequently helpful and can be very

useful to maximize speech clarity in the early stages of the disease and to teach

patients and their families communication strategies while they have the cognitive

ability to learn them.
E. SWALLOWING PROBLEMS

Swallowing problems also arise from both motor and cognitive dysfunction.

Oromotor incoordination and distractibility are common factors. Food often goes

down the wrong way when patients are distracted while eating; minimizing distrac-

tions such as talking or watching television during mealtimes is helpful and patients

should be advised to eat slowly, sitting upright and concentrating on chewing and

swallowing.Mealsmay need to be supervisedwith carers reinforcing this advice, and

it is important to make sure that any dentures fit well. As the disease progresses,

people with HD usually need to modify their diets to avoid troublesome foods, and

food consistencies can be altered to reduce the chance of aspiration, for example by

adding thickener to fluids. SALT referral is important at an early stage for advice on

how to reduce the risk of aspiration and it is useful for carers to be trained in how to

perform airway clearing maneuvers in case choking occurs.

Eventually patients may become unable to swallow anything safely and PEG

insertion may be considered. This is often a highly emotive subject and the issue

should be raised with patients and their carers while patients are still able to eat to

avoid crisis point being reached. PEG insertion does reduce the risk of aspiration but

patients may choose not to have this. It may be the subject that triggers a patient to

make an advanced directive; a significant number of individuals decide against PEG

insertion and planning in advance with an advanced directive can be invaluable in
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avoiding the need to discuss this when disease has advanced to the point when

patients are unable to communicate and a decision is needed urgently. This is

discussed in more detail in the section on advanced disease and end of life issues.
F. NUTRITION

Widespread metabolic and endocrine changes are increasingly recognized in

HD, and their management can be difficult. The disease creates a catabolic state,

resulting in weight loss being a prominent feature of HD. This may begin in the

prodromal period of the disease. As the disease progresses, massive weight loss may

occur unless calorie intake is increased. People with HD often need a vastly

increased daily calorie intake—up to 4000 calories a day—to maintain a stable

weight. Anecdotally, weight loss has a negative impact on other symptoms, so

avoiding it and monitoring weight carefully is a priority.

Diet can be supplemented with high calorie foods such as cream and chocolate

in the first instance. Nutritional supplements are useful as the disease progresses,

and referral to a dietician to optimize calorie intake while maintaining as well

balanced and enjoyable a diet as possible can be helpful. As people with HD are

encouraged to eat a high calorie/high sugar diet, close attention should be paid to

oral hygiene and regular dental reviews encouraged.
G. SLEEP

Sleep disturbance is common in HD (Arnulf et al., 2008; Hansotia et al., 1985;

Videnovic et al., 2009; Wiegand et al., 1991). Low mood, anxiety, and added

movements are all secondary causes of insomnia, and in addition, primary sleep

disturbance is a significant feature of the disease itself. The sleep-wake cycle

becomes disordered and daytime somnolence is common.

Sleep hygiene measures are the first step in managing this; avoiding afternoon

napping and keeping regular hours for going to bed and getting up are particularly

important things to mention to patients, especially as the cognitive changes of HD

mean that they can find it difficult to impose structure on daily routines. Treating

chorea and mood disturbances as required can improve sleep, and a small dose of

olanzapine or clonazepam at night as sedation may also be helpful.
H. METABOLIC AND ENDOCRINE FEATURES

As mentioned earlier, widespread metabolic and endocrine changes are

increasingly recognized in HD. Weight loss and sleep disturbances have been
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mentioned in the sections above. Other metabolic and endocrine effects of HD

include cardiac failure, increased peripheral inflammation, and altered endocrine

profiles (van der Burg et al., 2009). Neither the pathological mechanisms underly-

ing these nor their impact on the clinical manifestations of the disease are yet fully

understood; they are the subject of increasing research interest.
I. SEIZURES

Seizures are common in juvenile HD; they are seen in 30–50% of cases

(Brackenridge, 1980; Hayden, 1981; Jervis, 1963; Kremer, in press; Osborne et al.,

1982). This is in contrast with adult onset HD, in which the incidence of seizures

is similar to that of the general population: approximately 1-3% (Hayden, 1981).

A first seizure should not be attributed to HD without further evaluation as it

may be indicative of an additional neurological problem, such as a subdural

hematoma sustained in a fall. The workup of a first seizure should include a

complete examination, laboratory studies to rule out an infection or metabolic

disturbance, an EEG, and a brain imaging study. The treatment of a seizure

disorder in a person withHD depends on the seizure type. In patients with juvenile

HD, myoclonic epilepsy or other generalized seizures are usually treated initially

with sodium valproate. Although seizure management in HD is not usually par-

ticularly problematic, seizure control can be difficult in some cases and may

require a combination of drugs or referral to a specialist.
III. The Atypical Phenotype, including Juvenile Huntington’s Disease
Although the majority of people with HD have the typical hyperkinetic phe-

notype with symptom onset in adulthood, variant phenotypes exist. Juvenile

Huntington’s Disease (JHD) is HD which manifests in people before they are 20

years old, and is typically associated with a CAG repeat length of greater than 50.

Andrew et al. (1993), for example, found that CAG repeat length ranged from 46 to

121 with a median repeat length of 56.5 in a sample of 20 juvenile HD patients.

Juvenile HD causes many of the same symptoms as adult-onset disease although

the movement disorder is typically hypokinetic rather than hyperkinetic. The

presentation of juvenile HD is therefore similar to young-onset Parkinson’s disease

and levodopa is often used as symptomatic treatment. The rigid of variant of HD is

also known as Parkinsonian, akinetic-rigid, orWestphal variant HD, and though it

is usually seen in young-onsetHD, it can also occur in adults. The overall incidence

of this phenotype is around 6–10% of all HD cases (Shoulson and Chase, 1975).



HUNTINGTON’S DISEASE: CLINICAL PRESENTATION AND TREATMENT 319
Late onset HD is also well recognized; this is when manifest disease does not

develop until an individual is over 60 years old. On average, late onset HD follows

a more benign course than typical onset HD, with slower disease progression and,

frequently, milder symptoms (Kremer, in press).
IV. Advanced Disease and End of Life Issues
Patients with advanced HD require significant support in all activities of daily

living, usually because of a combination of motor, cognitive, and behavioral

symptoms. Communication may be severely limited and muteness is common,

often resulting in agitation and frustration due to inability to speak. HD does not

cause a global dementia, however, and the ability to recognize and interact with

people is frequently relatively well preserved.

As HD progresses, it often becomes increasingly difficult to provide care at

home. Looking after someone with advanced HD at home is challenging and

frequently exhausting, and carers should be offered considerable levels of sup-

port, including periods of respite care. For many people, however, a nursing

home is the best option; education and support should be provided for staff to

facilitate understanding of the complexity of caring for someone with HD.

Periods of respite during which the patient spends time in a nursing home can

be a useful way for the patient and his or family to develop a relationship with the

nursing home staff; this can ease the transition to full time nursing home resi-

dency at a later stage, avoiding or reducing the agitation caused by moving

someone with advanced disease directly into an entirely new environment.

Involvement of palliative care teams in addition to HD teams can be extremely

helpful when managing advanced HD.

As cognitive impairment progresses, patients with HD almost invariably

lose the capacity to make decisions about their own care. It is therefore helpful

to raise potentially problematic questions early in the course of the disease to

allow individuals to plan ahead while they still have the cognitive capacity to do

so. Given that people with HD have usually seen the progression of the disease

in other family members, bringing up the issues surrounding end of life care

rarely comes out of the blue. Topics that commonly arise include:
1.
 Advanced Decisions to Refuse Treatment (previously known as advanced direc-

tives): these are extremely helpful and allow individuals to make decisions

about their care in advance. They give patients the security of knowing that

their wishes will be carried out, even if they are no longer able to make

decisions or communicate, and they relieve relatives of the responsibility of

making choices.
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2.
 Power of Attorney: this allows an individual to nominate someone else to make

decisions on their behalf.
3.
 Enteral feeding (usually via percutaneous endoscopic gastrostomy, or PEG):

this may be appropriate in patients who are unable to maintain adequate

nutrition and body weight.
4.
 Use of antibiotics or intravenous fluids in an individual with end stage disease.
The most common causes of death in people with HD are bronchopneumonia

and heart disease, with choking, nutritional deficiencies, and chronic skin ulcers

also associated with mortality (Lanska et al., 1988a, 1988b; Sorensen and Fenger,

1992). In our experience, few patients request information about assisted suicide.

This remains illegal in the UK.
V. Looking to the Future: Research into New Treatments for Huntington’s Disease
At the time of writing, there is a major drive to find disease-modifying and new

symptomatic treatments for HD; many new developments have been made in

recent years, and phase 3 trials are ongoing (Novak and Tabrizi, 2010). Much

progress has also been made in developing and evaluating sensitive biomarkers

which will help to measure the effects of disease modifying therapies in future

clinical trials, particularly in the premanifest and early stages of the disease

(Paulsen et al., 2008; Tabrizi et al., 2009).

Future disease modifying treatments will, in practice, probably comprise a

combination of compounds which will target several key pathogenic pathways to

achieve optimal effect. This approach is similar to that used in the treatment of

HIV or cancer. Some potential therapeutic strategies are summarized below (Ross

and Tabrizi, 2011).
*
 Enhancing clearance of mutant huntingtin by cellular clearance mechanisms: a

numberofcompoundsbeingtestedinmousemodelsofHDaimtopromoteclearance

of themutant protein, huntingtin, which is generated by the expandedHTT gene.
*
 Histone deacetylase inhibitors: these target the transcriptional dysregulation

that occurs early in HD pathogenesis.
*
 Inhibitors of proteolytic cleavage of full-length mutant huntingtin to prevent

production of the potentially toxic N-terminal fragment.
*
 Gene silencing: switching off expression of the mutant gene itself.
VI. Conclusions
HD is a multisystem disease that is characterized primarily by progressive

motor, cognitive, and psychiatric symptoms. Management of the disease is
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challenging, but there are many options which can ameliorate symptoms and

improve quality of life; these are best provided in a collaborative multidisciplinary

setting. Extensive research is currently being carried out with the aim of develop-

ing treatments that will delay or halt the disease process in the premanifest phase.
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Huntington’s disease (HD) is an autosomal dominant progressive

neurodegenerative disorder that prominently affects the basal ganglia, leading to

affective, cognitive, behavioral andmotor decline. The basis of HD is a CAG repeat

expansion to >35 CAG in a gene that codes for a ubiquitous protein known as

huntingtin, resulting in an expandedN-terminal polyglutamine tract. The size of the

expansion is correlated with disease severity, with increasing CAG accelerating the

age of onset. A variety of possibilities have been proposed as to the mechanism by
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which the mutation causes preferential injury to the basal ganglia. The present

chapter provides a basic overview of the genetics and pathology of HD.
I. Introduction
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disor-

der, characterized by affective, cognitive, behavioral, andmotor dysfunctions (Albin

and Tagle, 1995; Bruyn and Went, 1986; Wilson et al., 1987). HD has a prevalence

of 5–10 per 100,000 in South America, North America, Australia, and most

European countries and countries of European descent, but significantly lower in

Africa and Asia, with an estimated prevalence of 0.5:100,000 in Japan and China,

and even lower in South Africa (Walker, 2007). HD affects males and females at the

same frequency, and themean age of onset is around 40 although it can be as early as

4 and as late as 80 years of age. Epidemiologic studies show that in US, there are

about 30,000 HD patients and that there are about 150,000 people at risk of

developing the disease (Margolis and Ross, 2003; Walker, 2007). The primary site

of neuron loss in HD is the striatal part of the basal ganglia, with striatal projection

neurons being nearly completely lost in advanced HD. Early dysfunction and late

loss of cortical neurons is prominent as well. Neuron loss is progressive, and the

dysfunction and loss account for the cognitive and motor decline, leading to death

typically about 20 years after onset in adults. The basis of HD is a CAG repeat

expansion to >35 CAG in a gene that codes for a ubiquitous protein known as

huntingtin, resulting in an abnormally long polyglutamine tract in the protein N-

terminus (HDCRG, 1993). Many possibilities have been raised as to the means by

whichmutant huntingtin results in preferential destruction of the striatumand injury

to cortex (Reiner et al., 2003). For example, based on the premise that mutant htt

injures neurons in a cell autonomous manner, transcriptional dysregulation (Kegel

et al., 2002; Luthi-Carter et al., 2002; Ross, 2002), proteosomal dysfunction (Bence

et al., 2001; Chai et al., 1999), induction of autophagy (Kegel et al., 2000, Peters�en
et al., 2001), release of calcium from intracellular stores (Tang et al., 2009), mito-

chondrial failure (Bossy-Wetzel et al., 2008), induction of apoptosis (Sanchez et al.,

1999; Zuccato et al., 2005), and excitotoxicity at extrasynaptic NMDA receptors

(Cowan and Raymond, 2006) have been raised as possible mechanisms responsible

for striatal and/or cortical neuron death. Additionally, deficient production and

transport of BDNF from cortex to striatum (Cattaneo et al., 2005), excessive cortical

release of glutamate, and defective glutamate uptake by glia have been invoked as

possible pathogenic mechanisms involving an indirect killing action of mutant htt

(Behrens et al., 2002; Cepeda et al., 2007; Joshi et al., 2009; Lievens et al., 2001; Rebec

et al., 2006). The present review focuses on the genetics and pathology of HD, with

comments on pathogenesis as these relate to findings onHDgenetics and pathology.



GENETICS AND NEUROPATHOLOGY OF HUNTINGTON’S DISEASE 327
II. The HD Gene
The identification of the HD gene relied strongly on the analyses of a large

Venezuelan HD kindred with extremely high HD incidence, due to a high fre-

quency of inbreeding. Using standard linkage analyses, theHD gene was mapped to

the tip of the short arm of chromosome 4 in 1983 (Gusella et al., 1983, 1994), but it

took scientists another 10 years to isolate it and identify the underlyingmutation that

causes HD (Fig. 1). In 1993, theHD gene was finally identified byTheHuntington’s

Disease Collaborative Research Group (HDCRG), comprising 58 researchers from

six independent research groups. Using haplotype analysis of linkage disequilibrium

inHD families of distinct ethnicities, they identified a small segment of 4p16.3 as the

likely location of themutation. A new gene, IT-15 (interesting transcript 15), isolated

using cloned trapped exons from the target area, was shown to contain a polymor-

phic trinucleotide CAG repeat within the coding region of the gene that was

expanded and unstable on one of the chromosomes of all 75 HD families examined

(HDCRG, 1993). The HD locus was found to span 180 kb, consisting of 67 exons,

and encoding a protein (huntingtin, htt) of �350 kDa. Homologues of the human

gene have been identified in several species, including but not limited to pig

(Matsuyama et al., 2000), mouse (Barnes et al., 1994; Lin et al., 1995), pufferfish

(Baxendale et al., 1995), zebrafish (Karlovich et al., 1998), and Drosophila (Li et al.,

1999), indicating a conserved essential function of huntingtin through evolution.

The promoter region of theHDgene has features in commonwith housekeeping

genes that are expressed ubiquitously (multiple G/C rich promoter elements and no

TATA box sequence (Coles et al., 1998). The CAG repeat (which encodes polyglu-

tamine) is found within exon 1 of all vertebrate HD homologues. Downstream of the

CAG repeat is a stretch of polymorphic CCG (polyproline encoding) repeats, also

located within exon 1 (HDCRG, 1993). Although highly conserved across different

species, with the exception of HEATmotifs, huntingtin has no homology with other

proteins (Andrade and Bork, 1995). The function of huntingtin is currently unknown.

The fact thatHD shows autosomal dominant inheritance had long been taken to

indicate that theHDmutation acts in a “gain-of-function” manner. Discovery of the

HD gene allowed further investigation of this notion, leading to several lines of

evidence taken to affirm this view (Sharp and Ross, 1996; Ross, 2002). For example,

hemizygous inactivation of the HD gene was found to not cause HD symptoms in

humans or mice, despite a reduction in HD gene expression to half of normal

(Ambrose et al., 1994; Duyao et al., 1995; Nasir et al., 1995; Zeitlin et al., 1995).

Moreover, nullizygous mutant mice were found to die in utero (Duyao et al., 1995;

Nasir et al., 1995; Zeitlin et al., 1995), whereas humans that are homozygous for the

HD mutation are born and do not show profound differences from HD hetero-

zygotes in disease onset or progression (Myers et al., 1989; Wexler et al., 1987).
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FIG. 1. Image A shows the location of theHuntington’s disease gene in band 4p16.3 of chromosome 4

(Adapted from Figure 1 of Gusella et al., 1994). Image B illustrates the huntingtin protein, showing that it

contains a polyglutamine region (polyQ) and a proline-rich domain (PRD) at its N-terminus, and 10

HEAT repeats clustered in three domains in theN-terminal half of the protein (Adapted fromFigs. 1 and 2

of Harjes and Wanker, 2003). Numbers indicate amino acids. Image C shows a graph depicting the

relationship between CAG repeat and Huntington’s disease age of onset. Note the overall significant

negative correlation between HD onset and the expanded repeat length (n = 609, r2 = 0.65, p = 0.0001).

Nonetheless, the relationship is more complex than this. For example, while there is a strong correlation

betweenCAG repeat and age of onset for adult-onset cases (>20 years) over the 35-55 repeat range, in the

case of juvenile (<20 years) onset increasing CAG does not notably advance age of onset highlighted

(by dark and pale shading).Moreover, this is also true for the fewHDcases found with repeats>200 CAG

(not shown in graph). The textured box highlights anomalous adult onset cases with expansion beyond

the 60CAG typically associated with juvenile onset (Adapted fromFig. 4 of Squitieri et al., 2006). (For color

version of this figure, the reader is referred to the web version of this book.)
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III. Normal CAG Repeat Length
Early studies by different research groups, involving the analyses of the number

of CAG repeats in �1200 HD individuals and 2000 non-HD individuals, estab-

lished that the CAG tract in the IT15 gene is polymorphic in the general popu-

lation, with the normal range of repeat numbers varying from 9 to 11 at the low

end and 34–37 at the high end (with an average of 17–20), and that repeat lengths

longer than 37 are associated with HD (Read, 1993). Subsequent studies involving

large cohorts of individuals who carried between 30 and 40 CAG repeats in the

IT15 gene further refined this concept and indicated that repeats up to 35 in length

do not cause HD, and that repeat lengths between 36 and 39 are associated with

reduced penetrance, meaning that, within this range, some individuals develop

HDwithin their lifetime, while others do not (McNeil et al., 1997; Rubinsztein et al.,

1996). Late onset HD with as low as 29 or 34 repeats has, however, been reported

(Andrich et al., 2008; Kenney et al., 2006).
IV. CAG Repeat Length and Disease Onset and Progression
The picture that eventually emerged from numerous studies is that the number

of CAG repeats is inversely correlated with age of onset of the disease (Andrew et

èal., 1993; Duyao et al., 1993; Snell et al., 1993; Brinkman et al., 1997). Whereas

expansions of 40–50 CAG repeats in the mutant HD allele are usually associated

with adult onset, juvenile-onset HD, defined as onset before 20 years of age, is

usually associated with expansions above 60 CAG repeats (Fig. 1). Clinical man-

ifestations of the disease also differ depending on the length of the CAG tract. The

classical HD presentation—adult-onset with predominant chorea—has an onset

of around 40 years of age, and the average repeat length is about 44 (Martin and

Gusella, 1986; Kremer et al., 1994; Ross et al., 1997; Margolis and Ross, 2003). In

patients displaying the reduced-penetrance repeat lengths (36–38 repeats), HD

onset not only occurs late in life (60 years of age and older), but patients may

present only mild chorea, and without the cognitive, psychiatric and behavioral

abnormalities usually associated with longer repeat tracts (McNeil et al., 1997;

Rubinsztein et al., 1996). In contrast, chorea is not a major manifestation of

juvenile-onset HD, but rigidity and seizures appear to be the predominant char-

acteristics and are often preceded by abnormal behavior (Nance andMyers, 2001;

Ribaı̈ et al., 2007). Note, however, that the rare cases with CAG repeats ranging

from 60 to >200 indicate that severity does not increase as prominently with

repeat expansion beyond 60 (Fig. 1) (Andresen et al., 2006; Squitieri et al., 2006).
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V. CAG Repeat Instability
In the vast majority (>80%) of the hereditary transmissions from HD parents,

the expanded repeat is only mildly altered by one or a few CAG repeats, usually

decreasing if transmitted maternally, and increasing if transmitted paternally

(Bates et al., 1997; Duyao et al., 1993). However, on occasion, paternal transmis-

sions lead to large intergenerational expansions, causing the phenomenon of

anticipation, where the age of onset tends to decrease in successive generations

(Vonsattel and DiFiglia, 1998). Hence, juvenile-onset HD is associated with pater-

nal transmission in 80–90% of the cases. So far, the longest CAG expansion

reported consists of 250 repeats (Nance et al., 1999).

Due to the high rate ofmeiotic CAG instability during spermatogenesis, normal

fathers can also have affected children. Several studies indicate that CAG repeats

between 27 and 35 can also be meiotically unstable during paternal transmission,

leading to descendents with HD and carrying CAG expansions of 40 or more

repeats (Myers, 2004). About 10–15% of all HD cases, in fact, arise from non-

affected parents whose repeat lengths fall within the high end of the normal range

(Chong et al., 1997; Maat-Kievit et al., 2001; Semaka et al., 2010). Of particular

interest, the highest incidence of HD among populations of European descent

correlates with the higher frequency of HD alleles bearing 28–35 repeats in these

populations compared to populations in either Asia or Africa (Walker, 2007).

The HD CAG repeat is also somatically unstable and undergoes progressive

length increases over time. Analyses of tissues from affected individuals showed

that repeat mosaicism is present in all tissues, with the greatest levels detected in

sperm and in the brain, and in particular in the areas with more pronounced

neuropathology (De Rooij et al., 1995; Telenius et al., 1994). Whether this plays a

role in pathogenesis is yet uncertain.
VI. Genetic Modifiers of CAG Repeat Instability
Although paternal transmission has been clearly shown to increase CAG

instability, other genetic factors are believed to contribute to CAG instability in

HD, including cis-acting factors, such as the size of the CAG tract and HD

haplotypes, and trans-acting factors.

Several studies have shown that trinucleotide repeats larger than 28 show

instability during replication, and that there is a positive correlation between the

instability and the size of the repeat, in particular, in the male germline. Hence, the

size of CAG tract is itself a determinant of instability (Leeflang et al., 1999;

MacDonald et al., 1993; Wheeler et al., 2007). A very interesting finding is that
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postzygotic mechanisms also may play a role in triplet repeat instability in HD (this

was first observed in mouse models for HD, Kovtun et al., 2000, 2004). In any

event, in maternal transmissions, the daughters will more often carry contractions

of the CAG repeat, while the sons will more often carry expansions. While with

paternal transmissions expansions are equally frequent in male and female off-

spring, the CAG repeat increases in length significantly more in sons than in

daughters (Wheeler et al., 2007).

In addition, HD haplotypes also appear to influence CAG instability. In a

recent study, Warby and collaborators (Warby et al., 2009) found that, in spite of

the large number of single nucleotide polymorphisms (SNPs) in the HD gene,

disease-associated SNPs form a cluster of similar haplotypes (termed haplogroup

A) found in 95% of disease chromosomes. In addition, they found that the same

haplogroup is significantly enriched (>80%) in HD genes with intermediate CAG

repeats (27–35 CAGs). This finding supports the hypothesis that some variants

may have a predisposition for expansion, and that would explain the origin of

disease-associated haplotypes.

The availability of mouse models for HD made it possible also to analyze other

potential genetic modifiers of CAG repeat instability by assessing the rate of insta-

bility in specific gene knockout backgrounds. For instance, somatic CAG instability

of transgenic HD mouse models is drastically reduced in mice lacking either the

mismatch repair enzymeMSH2or the base excision repair enzymeOGG1 (Manley

et al., 1999;Kovtun et al., 2007). Although the role ofMsh2 inCAG repeat expansion

is currently not clear, analyses of mice and cell lines lacking OGG1 provided

evidence that OGG1 is responsible for initiating an escalating oxidation-excision

cycle that leads to progressive age-dependent expansion of the CAG repeats in post-

mitotic neurons inHD, and possibly in other trinucleotide disorders as well (Kovtun

et al., 2007). Thus, at least one mechanism of CAG expansion appears to involve

oxidative DNA damage and single-strand break repair.
VII. Genetic Modifiers of HD Age-of-Onset
Although the primary factor that determines whether and when a person will

develop HD is the length of the expanded CAG tract, the precise manifestations of

the disease and their onset are clearly affected by modifiers that include environ-

mental and other genetic factors. While it is commonly recognized that the

correlation of repeat size accounts for about 70% of the variation in age of onset

(Gusella and MacDonald, 2009), there is high variation in age of onset among

patients with repeat lengths <55 (Myers, 2004). Strong substantiation that heri-

table components account for the remaining variation in age of onset was first

provided by the HD-MAPS (Modifiers of Age at onset in Pairs of Sibs) study
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involving >600 sibling pairs of multiple ethnicities (Djouss�e et al., 2003; Li et al.,
2003). These studies and their follow-ups provided strong evidence of linkage

between chromosome 6q and 4q to age of onset of neurological symptoms (Li

et al., 2006). Analyses of HD Venezuelan kindreds, encompassing >15,000 indi-

viduals and comprising 4500 sibships, also confirmed the association of several loci

with age of onset and identified significant linkage to chromosomes 2p and 6q,

among others (Gay�an et al., 2008; Wexler et al., 2004). However, in both cases, the

genomic regions are large and so far the specific modifier genes have not been

identified. Genome-wide studies using densely spaced single-nucleotide-poly-

morphisms (SNPS) are currently been applied in an expanded version of the

HD-MAPS collaboration to identify the modifier genes in these regions (Gusella

and MacDonald, 2009).

The search for genetic modifiers among genes that are connected to pathways

and processes thought to be involved in HD also led to the identification of

additional candidates. GRIK2 (glutamate receptor ionotropic kainate2, also

known as GLUR6) was the earliest reported genetic modifier, and multiple studies

have shown that a polymorphic TAA trinucleotide repeat in its 3’ untranslated

region (3’UTR) is associated with earlier HD onset (Gusella and MacDonald,

2009; MacDonald et al., 1999; Rubinsztein et al., 1997). The mechanism by which

different GRIK2 alleles affect onset is still unknown.

Polymorphisms in huntingtin-associated protein 1 (HAP1) and Atg7 (autop-

hagy-related 7 homolog) genes have also been shown to play a role in onset age in

HD. By sequencing the HAP1 gene in unaffected populations, six polymorphisms

have been identified, including one that substitutes methionine (M441) for thre-

onine (T441) at amino acid 441. Analyses of 980 European HD patients revealed

that patients homozygous for theHAP1M441 genotype (that substitutes threonine

by methionine) showed an 8-year delay in the onset. Functional assays demon-

strated that human M441-HAP1 interacts with mutant htt more tightly than

does human T441-HAP1 and protects against mutant htt-induced toxicity

(Metzger et al., 2008). Using the same approach, the same group reported one

polymorphism in the Atg7 gene that substitutes alanine for valine (V471A). This

polymorphism showed a significant effect and was associated with an earlier

disease onset of 4 years. Although the mechanism by which this polymorphism

affects age of onset is unknown, it has been hypothesized that the V471A Atg7 has

reduced autophagic function (Metzger et al., 2010).

The hypothesis that somatic instability of the HD CAG repeat is itself a

modifier of disease age of onset gained support by the finding that somatic insta-

bility is a significant predictor of onset age, with larger repeat length gains asso-

ciated with earlier disease onset (Swami et al., 2009; Veitch et al., 2007). Hence,

factors that are involved in the control of repeat instability may also represent

potential genetic modifiers for age of onset.

Analyses of animal models for HD also implicate several other genes as

potential genetic modifiers of age of onset. For instance, age of onset is significantly
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earlier and pathology is exacerbated in mouse models of HD lacking either the

heat shock protein Hsp70 (Wacker et al., 2009) or the neurotrophin BDNF (Canals

et al., 2004), while inhibition of caspase-1 delays both the age of onset of motor

symptoms and the occurrence of other behavioral and neuropathological changes

(Ona et al., 1999). The role of any of these genetic factors in HD in humans,

however, remains to be verified.
VIII. HD: A True Dominant Gain-of-Function Disorder?
HD is one of a group of inherited neurodegenerative disorders, commonly

referred to as “trinucleotide repeat disorders,” caused by expansions of trinucle-

otide repeats in distinct genes. In at least nine of these diseases, includingHD, these

expansions involve CAG repeats that are present in the coding region of the gene

and are translated into polyglutamine stretches. Although the mutant protein of

the distinct disorders do not share any homology or sequence similarity, except for

the presence of the polyglutamine tract, all of them have similar features (for

example, repeat length—onset age correlation, and dominant inheritance) and

are likely to possess some similarities in their pathogenic mechanisms. Since

neuronal degeneration occurs in different areas of the brain in these different

CAG repeat diseases, there clearly are also disease mechanisms specific to each

disorder that impart the differential regional vulnerability. The dominant pattern

of inheritance of HD strongly indicates that HD, like all other polyglutamine

disorders, is caused by a gain-of-function mechanism and that the expanded

polyglutamine stretch is responsible for the pathogenesis.

Homozygous HD patients are rare, and there is still controversy over whether

homozygosity for the mutation in HD is associated with a more severe phenotype.

Most information on homozygosity in HD has come from analyses of probable

homozygous offspring within the Venezuelan kindreds (Wexler et al., 1987) or from

other sporadic cases in which both parents are affected (Alonso et al., 2002; D€urr
et al., 1999; Myers et al., 1989). In all these reports, the age-at-onset appeared

similar in homozygotes and heterozygotes, and both progression and severity of

the disease were in some cases actually worse in the heterozygotes. Together, these

reports led to the conclusion that HD displays complete dominance. However, this

conclusion was based on clinical evaluation of eight potential homozygous and

only two confirmed cases, and did not take into account differences in CAG tract

sizes between siblings, or other possible genetic modifiers. In contrast, a more

detailed comparison between a large homozygous patients’ series and their het-

erozygous counterparts in a multicenter study revealed significant clinical and

neuropathological differences between the two groups (Squitieri et al., 2003). In

this study, not only the disease progression was more rapid in homozygous

patients, but also homozygous patients appeared to have a wider spectrum of
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neurological symptoms. More recent work involving cell lines derived from het-

erozygous and homozygous HD patients (Mormone et al., 2006; Squitieri et al.,

2010; Varani et al., 2003) and analyses of mousemodels for HD (Fossale et al., 2002;

Graham et al., 2006; Lin et al., 2001) also support the notion that HD is more severe

in homozygosity. Thus, more recent work is consistent with the notion that, like

other triplet repeat disorders, HD is not a true dominant disorder, and that gain of

function is only one of the facets of this devastating disease.
IX. Expression of Huntingtin in Normal and HD Human brain
Huntingtin mRNA and protein are widely distributed in mammalian brain,

and almost no brain region is devoid of huntingtin-containing perikarya—

although glial cells typically show only low levels (Bhide et al., 1996; Fusco et al.,

1999; Gutekunst et al., 1995; Landwehrmeyer et al., 1995; Li et al., 1993; Sapp et al.,

1997; Sharp and Ross, 1996; Strong et al., 1993; Vonsattel and DiFiglia, 1998).

Large neuronal perikarya tend to be richer in huntingtin than medium-sized or

small neuronal perikarya, and huntingtin-positive neurons are especially abundant

in the telencephalon and thalamus, but seemingly sparse in the hypothalamus.

Within telencephalon, the highest density of huntingtin-rich neurons is in cerebral

cortex, in which pyramidal neurons of layers 3 and 5 are especially rich (Fig. 2), and

in hippocampus, in which the pyramidal neurons of CA2–CA3 are labeled

intensely for huntingtin. The vast majority of striatal projection neurons are,

however, only moderate in huntingtin, but scattered large neurons in striatum

and the large neurons of globus pallidus externus, the ventral pallidum, basal

nucleus of Meynert, and the globus pallidus internus are rich (Fig. 2) (Bhide

et al., 1996; Fusco et al., 1999; Gutekunst et al., 1995; Landwehrmeyer et al.,

1995). The disease-producing mutation in the HD gene does not appear to affect

its regional expression in brain (Bhide et al., 1996; Gourfinkel-An et al., 1997;

Landwehrmeyer et al., 1995; Sapp et al., 1997; Schilling et al., 1995; Vonsattel

and DiFiglia, 1998). Thus, while the widespread distribution of huntingtin in brain

indicates that it possesses a role in the functioning of many brain neurons, this

function is not limited to the brain regions and neurons that are the major target of

HD, and huntingtin expression is not obviously selectively impaired in the regions

or neuron types most affected by theHDmutation. At the cellular level, huntingtin

is found in the cytoplasm of neuronal perikarya, in dendrites, and to seemingly a

lesser extent in axons and terminals (Vonsattel and DiFiglia, 1998). Ko et al. (2001)

recently suggested, based on studies using antibodies directed against different

epitopes of wild-type Htt, that Htt may play diverse roles in cellular function.

Presumably as a reflection of this diversity, they found that different epitopes of

huntingtin are immunohistochemically detectible in different subcellular
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FIG. 2. Immunofluorescence labeling for huntingtin (Ht) in the rat striatum viewedwithCLSM.Two

low-magnification fields (A, B) and two high-magnification fields (C, D) show that scattered large

neurons intensely labeled for huntingtin and numerous medium-sized neurons moderately labeled

for huntingtin are present in striatum. Magnification in A is as in B; magnification in C is as in D.

Images E and F show immunofluorescence labeling for huntingtin in the lower layers of rat cerebral

cortex, at increasingly higher magnification. Both fields show intense labeling of pyramidal neurons in

Layer 5 of cortex. All images are from Fusco et al. (1999).
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compartments, implying differential processing or folding of Htt for its role in the

different compartments. Among its functions, huntingtin appears to be a cell

membrane-associated scaffolding protein involved in vesicular trafficking

(DiFiglia et al., 1995; Qin et al., 2004; Sharp et al., 1995; Velier et al., 1998;

Wood et al., 1996). Immunolabeling and immunoprecipitation studies indicate
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that huntingtin may also be involved in the endosomal-lysosomal protein degra-

dation pathway (DiFiglia et al., 1995; Gutekunst et al., 1995; Sapp et al., 1997; Sharp

et al., 1995; Velier et al., 1998; Vonsattel and DiFiglia, 1998; Wood et al., 1996).

Nuclear localization of full-length wild-typeHtt has also been reported (Atwal et al.,

2007; Dorsman et al., 1999; Wilkinson et al., 1999).

Neuropathological studies suggest that the pathogenic HD gain of function

could be the formation of ubiquitinated aggregates of the N-terminal fragment of

mutated huntingtin, which is thought to occur due to enhanced cleavage and

aggregation of the polyglutamine rich part of the mutant huntingtin N-terminus

(DiFiglia et al., 1997; Gutekunst et al., 1999; Li and Li, 1998; Maat-Schieman et al.,

1999; Martindale et al., 1998; Sieradzan et al., 1999; Vonsattel, 2008). Aggregates of

mutant protein are observed in neocortex, entorhinal cortex, subiculum, hippocam-

pal pydamidal neurons, and striatum, more so in advanced and/or juvenile onset

HD (Fig. 3). Aggregates are, however, rare in globus pallidus, substantia nigra, and

cerebellum. Some aggregates in HD brain possess an amyloid-like structure, sug-

gesting parallels in aggregate formation with other amyloid-associated diseases such

as Alzheimer’s and prion diseases (McGowan et al., 2000). Both cytoplasmic and

intranuclear aggregation have been observed in HD brain, the latter termed neu-

ronal intranuclear inclusions, or NIIs (Kuemmerle et al., 1999). While considerable

attention has been given to the possibility that these aggregates are themselves

pathogenic (Davies et al., 1997; DiFiglia et al., 1997; Kim and Tanzi, 1998;

Saudou et al., 1998; Sisodia, 1998), the means by which they might lead to neuronal

death remains uncertain (Cha et al., 1998; Hackham et al., 1998a,b; Sisodia, 1998).

Mutant huntingtin aggregates may, in part, be pathogenic by their capacity to

incorporate and thus sequester vital proteins such as the transcription factor

TATA-binding protein (van Roon-Mom et al., 2002). The possibility that the aggre-

gates may, at least in part, act by inactivating both mutant and normal huntingtin

has been raised by recent evidence showing that the aggregates which form in HD

can sequester normal-length polyglutamine-containing proteins, including Htt and

CREB-binding protein, both of which promote BDNF production (Cattaneo et al.,

2001; Narain et al., 1999; Nucifora et al., 2001;Ona et al., 1999; Preisinger et al., 1999;

Shieh et al., 1998; Tao et al., 1998; Wheeler et al., 2000). Neuropathological studies,

however, show that formation of NIIs in HD victims is not prominent in cerebral

cortex until advanced stages of HD and is never prominent in striatum (1–4% of

neurons) at any stage (DiFiglia et al., 1997; Gutekunst et al., 1999; Kuemmerle et al.,

1999; Sapp et al., 1999). In fact, the striatal neurons that do possess NIIs tend to be

interneurons, which survive well in HD, rather than projection neurons

(Kuemmerle et al., 1999). This brings into question if NIIs are pathogenic.

Neuropil aggregates (found in spines, dendrites, and axons) are far more common

in HD cortex and striatum than NIIs, and thus may be pathogenic by interfering

with neuronal function, particularly corticostriatal communication (DiFiglia et al.,

1997; Gutekunst et al., 1999; Kuemmerle et al., 1999; Sapp et al., 1999). Regardless of

the motor versus mood symptoms, there is a consistently higher number of
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FIG. 3. Images showing immunolabeling for huntingtin in HD brain, revealing aggregates of mutant

huntingtin in neuronal nuclei, termed intranuclear inclusions (NIIs). Image A shows the presence of

numerous NIIs in cerebral cortex of juvenile HD victim at low magnification. Images B and C show

immunolabeled NIIs in individual cortical pyramidal neurons in the same juvenile HD victim, using

Nomarski optics to highlight the NIIs. The nucleolus in each cell is unlabeled. These images are adapted

from A-C of Fig. 1 from DiFiglia et al. (1997).

GENETICS AND NEUROPATHOLOGY OF HUNTINGTON’S DISEASE 337
aggregates in the superior frontal gyrus than in the motor cortex, suggesting a

consistent regional difference in aggregate density that thus does not account for

differing symptomatology between cases (van Roon-Mom et al., 2006).
X. HD Brain Pathology and the Vonsattel Grading System
Neuropathological and imaging studies reinforce the view that brain abnor-

malities in HD develop well before evident symptoms, are progressive, and even-

tually involve the entire brain to a greater or lesser extent, resulting in about 25%

brain weight loss in advanced HD (Halliday et al., 1998; Sharp and Ross, 1996).

Nonetheless, the most prominent neuropathology in HD occurs within the striatal

part of the basal ganglia, in which gross atrophy is accompanied by extensive
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FIG. 4. Coronal slices though human telencephalon, showing a normal brain on the right and an

advanced HD brain (Grade 4) on the left. Note the profound shrinkage of cortex and caudate and

the resulting ventricular expansion in the HD brain. Image courtesy of the Harvard Brain Tissue

Resource Center. (For color version of this figure, the reader is referred to the web version of this book.)
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neuronal loss and astrogliosis, both of which become more severe as the disease

progresses, with the atrophy leading to great enlargement of the lateral ventricles

(Fig. 4). At least some of these dying neurons show nuclear fragmentation and

marker expression characteristic of apoptotic cell death (Thomas et al., 1995; Vis

et al., 2005). Reactive astrocytes are increased in HD striatum and show increased

coupling by gap junctions, which may provide increased spatial buffering in an

attempt to maintain a beneficial environment for neurons (Vis et al., 1998). Striatal

pathology in both caudate and putamen is more prominent caudally than rostrally

in early disease, and striatal degeneration proceeds, for unknown reasons, in a

dorsomedial to ventrolateral direction (Roos et al., 1985; Vonsattel, 2008). Caudate

atrophy as detected by MRI or CT has been shown to be correlated with CAG

repeats and with a worsening of the UHDRS motor score (Culjkovic et al., 1999;

Jech et al., 2007). Marked neuronal loss and shrinkage is also seen in deep layers of

the cerebral cortex. Other regions, including globus pallidus, hippocampus, amyg-

dala, thalamus, subthalamic nucleus, substantia nigra, and cerebellum, show

varying degrees of atrophy and/or neuronal loss, depending on disease stage

(Rosas et al., 2003). The neuron loss is reflected in regional brain atrophy. For

example, late in disease, volumetric losses of the following magnitudes are

observed: 20% in cortex, 30% in cerebral white matter, 60% in striatum, 55%
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in globus pallidus, and 30% in thalamus (de laMonte et al., 1988; Lange et al., 1976;

Heinsen et al., 1994). Caudate shrinkage is significant already 10 years from

estimated disease onset, while putamen and globus pallidus shrinkage is not

significant until 3 years before estimated disease onset (Aylward et al., 1996).

Gene expression analysis of caudate, cerebellum, prefrontal association cortex,

and primary motor cortex shows the greatest number and magnitude of differen-

tially expressed mRNAs in caudate, followed by motor cortex, then cerebellum,

with no detected changes in prefrontal cortex (Hodges et al., 2006). Thus, caudate

is most affected in HD, and cerebral cortex is not uniform in its response in HD.

Note that caudate volume loss, overall brain volume loss, and white matter

disorganization are manifest early in HD, and these HD brain abnormalities

precede overt signs of disease (Aylward et al., 1994; Kassubek et al., 2004c;

Paulsen et al., 2006; Squitieri et al., 2009; Reading et al., 2005; Rosas et al., 2005).

A system for gradingHD neuropathological severity has been developed based

on macroscopic and microscopic criteria related to striatal morphology (Fig. 5)

(Vonsattel et al., 1985). This system recognizes five Grades (0–4) designated in the

ascending order of severity, with the grades correlating closely with the degree of

clinical disability. There are no evident gross, and few microscopic abnormalities

in premanifest HD striatum (Grade 0, also termed presymptomatic). The micro-

scopic abnormalities that can be present involve increased abundance of oligoden-

drocytes and neurons with nuclear aggregates in the tail of caudate, and some

neuron loss in head of caudate (G�omez-Tortosa et al., 2001; Vonsattel, 2008).

Grade 1 cases have abnormalities that can be detected microscopically in striatum

(50% neuron loss in head of caudate) but gross atrophy is not evident, as the

ventricular profile of the caudate maintains its normal convex appearance. The

Grade 1 changes involve neuron loss and gliosis in the medial paraventricular

portions of the caudate, in the tail of the caudate, and in the dorsal part of the

putamen. In Grade 2, striatal atrophy is present, but the ventricular profile of

the caudate remains convex, but less so than in normal brain. The lateral half of the

striatum shows relative preservation in Grades 1–2. In Grade 3, striatal atrophy is

more severe, and the ventricular profile of the caudate is flat. In Grade 4, 95% of

caudate neurons are lost, striatal atrophy is severe, and the ventricular surface of

the caudate is concave. Astrocytes are greatly increased above normal in HD

Grades 2–4. This grading system has come to be widely used in neuropathological

studies of HD that seek to describe changes as disease progresses.
XI. Basal Ganglia Pathology in HD
Themajor site of pathology inHD is the basal ganglia, which consists of striatal

and pallidal subdivisions. The striatum consists of two major neuron types,
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FIG. 5. Schematic illustrations of caudate at HDGrades 0 through 4 according to the Vonsattel et al

grading scale. Note that the ventricular profile of the caudate is diagnostic for classification, and the

extent of caudate neuron loss distinguishes normal from HD, and Grade 0 versus Grade 1 HD. This

illustration is adapted from Fig. 2 of Vonsattel et al. (1985).
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projection neurons and interneurons, while globus pallidus consist mainly of

projection neurons. We will detail how HD affects these various neuronal popula-

tions below. Of note, striatal neuron loss in HD largely involves projection neu-

rons, with most striatal interneuron types highly resistant to HD.
A. STRIATUM—PROJECTION NEURONS

Striatal projection neurons are all GABAergic and can be subdivided into four

major types based on their primary projection target: (1) those projecting only or

mainly to the external segment of globus pallidus (GPe), which are typically rich in

enkephalin (ENK) and poor in or devoid of substance P (SP), and located in the
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striatal matrix compartment; (2) those projecting mainly to the internal segment of

globus pallidus (GPi), which are rich in SP and dynorphin (DYN) but poor in ENK,

and located in the striatal matrix compartment; (3) those projecting mainly to the

substantia nigra pars reticulata (SNr), which are also rich in SP and DYN, and

typically poor in ENK, and located in the striatal matrix compartment; and (4)

those projecting to the substantia nigra pars compacta (SNc), which also are rich in

SP and DYN, and typically poor in ENK, and largely localized to the striatal patch

compartment (Beckstead and Cruz, 1986; Feger and Crossman, 1984; Kawaguchi

et al., 1990; Parent et al., 1989, 1995; Reiner and Anderson, 1990; Reiner et al.,

1999; Wu et al., 2000). Because these striatal neurons are GABAergic, they all

express the enzymes that convert glutamate to GABA, namely the 65kD and 67kD

forms of glutamic acid decarboxylase (GAD). The perikarya of striato-GPe neu-

rons and their terminals in GPe are also enriched in D2 dopamine and A2a

adenosine receptors (Fink et al., 1992; Le Moine and Bloch, 1995; Schiffmann

et al., 1991). In turn, the perikarya of striato-GPi neurons and their terminals in

GPi are enriched in D1 dopamine receptors, as are the perikarya of striatonigral

neurons and their terminals in substantia nigra (Fink et al., 1992; Le Moine and

Bloch, 1995; Schiffmann et al., 1991). All striatal projection neuron perikarya and

terminals also possess cannabinoid receptors (Glass et al., 1997; Herkenham et al.,

1991; Mailleux and Vanderhaeghen, 1992). These various neurochemical traits

provide markers by which the progressive effect of HD on these projection neuron

populations can be characterized, either by studying the loss of terminals in the

target areas or by studying loss of the perikarya. These four neuronal types play

different roles inmovement control, and it is thus valuable to characterize howHD

affects them to better understand HD pathophysiology. As summarized below, the

overall data indicate that while striatal projection neurons as a class are highly

vulnerable in HD, and as a result projection neurons markers are lost from striatum

as disease progresses (Goto et al., 1989; Seto-Ohshima et al., 1988), projection neuron

types do exhibit differences in susceptibility. Notably, striato-GPe and striato-nigral

neurons are lost more rapidly in HD than are striato-GPi neurons.

Immunohistochemical studies have indicated that ENK/GAD+ terminals in

GPe and SP/GAD+ terminals in the substantia nigra are lost sooner in HD

progression than are SP/GAD+ terminals in GPi (Figs. 6–8). For example, deple-

tion of ENK+ immunostaining from GPe has been noted in premanifest HD

(Albin et al., 1990b, 1992;Hedreen and Folstein, 1995), and striatal PPE expression

appears reduced in premanifest HD (Albin et al., 1991; Augood et al., 1996, 1997).

By Grade 1, ENK/GAD+ fibers in GPe are reduced to about 35% of control

abundance and SP/GAD+ fibers in SNc and SNr are reduced to about 30% and

50%, respectively, of control abundance (Allen et al., 2009; Deng et al., 2004; Sapp

et al., 1995). By contrast, the loss of striatal terminals in GPi is much less in Grade 1,

with SP/GAD+ fibers being 70–80% of control abundance (Deng et al., 2004;

Sapp et al., 1995). The loss of striato-GPe and striato-nigral projections remains
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FIG. 6. Images of immunohistochemically labeled sections showing GPi, GPe, and substantia nigra

in control, Grade 1 HD, and Grade 3 HD cases, immunostained for SP in the case of GPi and the nigra

and for ENK in the case of GPe. In the control, SP+ fibers abound inGPi, ENK+ fibers abound inGPe,

and SP+ fibers abound in the nigra. In Grade 1 HD, ENK+ fibers in GPe and SP+ fibers in the nigra

are depleted, while SP+ fibers in GPi remain abundant. The contrast is even more evident in the Grade

3 specimen, where ENK+ fibers aremarkedly depleted in the atrophiedGPe and SP+ fibers in the nigra

are sparse and patchy, but SP+ fibers in GPi are still quite prominent. This illustration is Fig. 5 from

Deng et al. (2004).
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greater than the loss of striato-GPi projections through Grades 2 and 3 (Albin et al.,

1990a; Allen et al., 2009; Deng et al., 2004; Reiner et al., 1988; Sapp et al., 1995). For

example, in Grade 2, striatal terminals in GPe are at 25% of normal abundance

(Deng et al., 2004; Sapp et al., 1995), and in SNc and SNr are at about 35% of

normal abundance (Deng et al., 2004). By contrast immunolabeled striatal term-

inals in GPi are at 60% of their normal abundance (Deng et al., 2004; Sapp et al.,

1995). In Grade 3 HD, immunolabeled striatal fibers in GPe, SNc, and SNr are at

20% of normal abundance, but in GPi are at 50% of normal abundance (Deng

et al., 2004). By Grade 4 of HD, however, profound loss in all projection systems is

apparent (Albin et al., 1990a; Reiner et al., 1988), with striato-GPe and striato-GPi

projections at about 5% of normal, and striato-SNc and SNr projections at 10% of

normal (Deng et al., 2004). Thus, striato-GPe and striatonigral neurons appear to

be lost more rapidly than striato-GPi neurons during HD progression. DTI con-

firms massive loss of striatal projections in HD, indicating the immunolabeling

changes reflect real fiber loss and not just staining loss (Douaud et al., 2009). Direct

support for this premise at the perikaryal level has come from in situ hybridization

histochemistry for SP and ENK mRNA in HD striatum (Albin et al., 1991;

Richfield et al., 1995a, 1995b), and from binding of D1 and D2 dopamine (Glass
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FIG. 7. High-power images showing SP+ fibers in GPi (B, D, F) and ENK+ fibers (A, C, D) in GPe.

In the control case, abundant woolly fibers can be seen in both GPi and GPe. In Grade 1, loss of ENK+

fibers in GPe is apparent, while the SP+ fibers in GPi are indistinguishable from that in control. In

Grade 3, ENK+ woolly fibers are completely absent, while the SP+ fibers in GPi are relatively

preserved, although a decrease in terminal density is apparent. This illustration is Fig. 6 from

Deng et al. (2004).
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FIG. 8. Low-power images showing GAD+ staining in both GPi and GPe of control, Grade 1 HD,

and Grade 3 HD cases. Note the greater loss of GAD+ woolly fibers from GPe than from GPi. This

illustration is Fig. 7 from Deng et al. (2004).
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et al., 2000) and A2a adenosine receptors (Glass et al., 2000) in HD striatum. For

example, the loss of the SP+ projection to nigra and the loss of the ENK+

projection to GPe, with the relative preservation of the SP+ projection to GPi,

predict that SP+ neuron survival should be better than ENK neuron survival in

HD striatum. In fact, neurons expressing mRNA for the SP precursor (i.e., pre-

protachykinin or PPT) aremore abundant in striatum duringGrades 1–3HD than

are neurons expressing mRNA for the ENK precursor PPE (Richfield et al., 1995a,

1995b).

These findings for striato-GPe and striato-GPi projections in HD are also

compatible with the radioimmunoassay (RIA) study of Seizinger et al. (1986),

who reported that dynorphin (DYN), which is co-localized with SP in striatal

terminals in GPi (Reiner et al., 1999), was undiminished in GPi in HD victims.

By contrast, the PPE-derived neuropeptide MERGL was only half its normal

abundance in GPe in the HD brains they studied. Biochemical studies have also

shown that GABA and GAD are more greatly decreased in GPe than in GPi in

symptomatic HD (Ellison et al., 1987; Spokes, 1980; Storey and Beal, 1993). Since

striato-GPi and striato-GPe projection neurons are both GABAergic (Reiner and

Anderson, 1990), these results too indicate a preferential loss among striatopallidal

neurons of those projecting to GPe. One prior biochemical study has suggested

that GABA is diminished in GPe in premanifest HD while GABA in GPi remains

normal (Reynolds and Pearson, 1990).

Biochemical studies of SP, DYN, GABA, or GAD also indicate that striatal

input to nigra is severely depleted in HD (Buck et al., 1981; Beal et al., 1988; Ellison

et al., 1987; Emson et al., 1980; Gale et al., 1977; Kanazawa et al., 1977, 1979;
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Seizinger et al., 1986; Spokes, 1980; Spokes et al., 1980; Storey and Beal, 1993). Of

note, Seizinger et al. (1986) found that DYN in nigra and MERGL in GPe were

halved in HD victims, but DYN in GPi was undiminished. The possibility that the

striatal projection to SNc is differently affected in HD than that to SNr has been of

interest because they arise from different striatal neuron types, and because

Hedreen and Folstein (1995) reported that striosomal neurons, whose principal

projection target is pars compacta (Gerfen, 1992), are already affected at Grade 0.

Judging whether the SP+ fiber loss is greater for SNc than for SNr is difficult,

however, because many dopaminergic neurons of SNc in primates are dispersed

within the SNr territory, making it ambiguous to precisely define the boundaries of

SNc (Arsenault et al., 1988; H€okfelt et al., 1984). Not surprisingly, the available

immunolabeling data do not unambiguously support the notion that presymp-

tomatic HD is characterized by loss in the striato-SNc projection but not in the

striato-SNr projection (Deng et al., 2004). Similarly, by RIA Beal et al. (1988)

observed extensive loss of SP from both SNr and SNc by Grade 1, followed by

further loss in subsequent grades, with no clear differences between them at any

grade. Other biochemical studies have reported varied results, however, with some

observing greater loss of SP or GABA from SNr than SNc (Buck et al., 1981; Ellison

et al., 1987; Emson et al., 1980; Kanazawa et al., 1977), and others the opposite

(Gale et al., 1977). One study that distinguished HD cases as choreic (early to mid-

HD) versus rigid (late HD) reported greater loss of GAD from SNr than SNc in

both (Spokes, 1980). Tippett et al. (2007) have reported that preferential striosomal

loss (i.e., striato-SNc neuron loss) is not invariably a trait of early HD but does

appear associated with mood abnormality when it does occur.

The major findings in HD obtained using neuropeptides or GAD as markers

have been confirmed by studies using additional markers of striatal neurons and

their terminals. For example, Grade 0 HD has been found to be characterized by

loss of cannabinoid, D2 and A2a receptor binding from striatum and by a large

increase in GABAA binding in GPe (Glass et al., 2000). These findings are consis-

tent with a preferential loss of ENK+ input to GPe at Grade 0. The absence of

reductions in D1 receptor binding in striatum or in GPi at Grade 0 (Glass et al.,

2000) suggests that striatal SP+ neurons in general and those projecting to GPi, in

particular, are largely unaffected in premanifest HD. The occurrence of reduced

D1 receptor binding in SNr at Grade 0 (Glass et al., 2000) and reduced striatal

message for D1 receptors and PPT at Grade 0, however, suggest that defects not

yet evident at the peptide level or the level of GABA/GAD production are present

in presymptomatic HD in striato-SNr projection neurons.

Grade 1 HD is characterized by about 90% loss of striatal D2 dopamine and

A2a adenosine receptors (localized to ENK+ neurons), 75% loss of striatal can-

nabinoid receptors, 50% loss of striatal D1 receptors, near complete depletion of

D2 and A2a adenosine receptors from GPe, continued upregulation of GABAA

receptor binding in GPe, complete preservation of D1 receptors in GPi, greater



346 ANTON REINER ET AL.
preservation of cannabinoid receptors in GPi than GPe or SNr, and 20% loss of

D1 receptors from SNr (Allen et al., 2009; Glass et al., 2000; Richfield and

Herkenham, 1994; Walker et al., 1984). These findings are consistent with relative

preservation of the striato-GPi projection at Grade 1 concomitant with consider-

able loss in the striato-GPe and striatonigral projections. Grade 2 is characterized

by 80–95% loss of striatal cannabinoid, D2 dopamine and A2a adenosine recep-

tors, 50% loss of striatal D1 receptors, near complete depletion of D2 and A2a

adenosine receptors fromGPe, 66% loss of D1 receptors fromGPi, 69% loss of D1

receptors from SNr, and greater preservation of cannabinoid receptors inGPi than

GPe (Allen et al., 2009; Glass et al., 2000; Richfield and Herkenham, 1994). These

findings are consistent with greater preservation of the striato-GPi than the striato-

GPe projection at Grade 2, although the finding by Glass et al. (2000) of compa-

rable preservation of D1 receptors in GPi and SNr at Grade 2 is inconsistent with

greater vulnerability of the latter. At Grade 3, striatum and GPe are nearly devoid

of cannabinoid, D2 and A2a receptors, but about 30% of striatal D1 receptors

remain, and GPi cannabinoid receptor levels still exceed those in GPe (Allen et al.,

2009; Glass et al., 2000; Richfield and Herkenham, 1994). Both GPi and SNr are,

however, greatly depleted of D1 receptors by Grade 3, and substantial upregula-

tion of GABAA receptors is evident in GPi (Allen et al., 2009; Glass et al., 2000).

These findings too are consistent with greater preservation of the striato-GPi

projection than the striato-GPe at Grade 3, but with significant loss of input to

GPi. The data of Waeber and Palacios (1989) on 5HT-1 receptors in Grade 3 HD

pallidum are also consistent with this conclusion. By Grade 4, these various

receptor markers, as well as such intracellular signaling markers as calcineurin,

are all greatly reduced in striatum and its targets (Goto et al., 1989b; Glass et al.,

2000; Richfield and Herkenham, 1994). This is consistent with near total loss in all

striatal projection systems by Grade 4, as well as the neuropathological evidence of

severe striatal neuron loss by this grade (Vonsattel et al., 1985).

The attributes that make striato-GPi neurons more resistant than striato-GPe

and striatonigral neurons is not known, although considerable attention has

focused on the role of glutamate receptor subunit configuration, free radical

defenses, calcium sequestering, and anti-apoptotic mechanisms (Beal et al., 1991;

Calabresi et al., 1998; Chen et al., 1996, 1998; DiFiglia, 1990; Figueredo-Cardenas

et al., 1998; Gervais et al., 2002; Hackham et al., 2000; Hedreen and Folstein, 1995;

Huang et al., 1995; Medina et al., 1996; Zeron et al., 2002). Regardless, of their

basis, the differential loss explains the progression of HD symptoms (Fig. 9). The

early loss of striato-GPe and perhaps striato-SNc neurons accounts for the chorea

seen commonly in early HD, according to the now standard direct-indirect path-

waymodel of basal ganglia function (Albin et al., 1989; Crossman, 1987; Deng et al.,

2004; Hedreen and Folstein, 1995). Given that each type of striatal projection

neuron is organized into microzones that interweave with other types within

striatum (Flaherty and Graybiel, 1993; Gimenez-Amaya and Graybiel, 1991),
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FIG. 9. Schematic illustration of the preferential loss of ENK+ striato-GPe neurons compared to

SP+ striato-GPi neurons during the progression of HD, and the relation of this differential loss to

HD symptoms. In brief, the early loss of striato-GPe neurons, which suppress unwanted movements,

explain the early appearance of chorea in HD, while the later loss of the striato-GPi neurons, which

promote desiredmovement, explain the appearance of akinesia as a later symptom. (For color version of

this figure, the reader is referred to the web version of this book.)
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the preferential loss of some types of striatal projection neurons in early HDmay be

why diverse striatal projection neuron markers show patchy loss from striatum

(Augood et al., 1996, 1997; Glass et al., 2000; Goto et al., 1989a; Richfield et al.,

1991, 1995; Richfield and Herkenham, 1994). Loss of striato-SNr neurons by

Grade 1may cause the saccade abnormalities in early HD since SNr plays a role in

saccadic eyemovements (Hikosaka, 1989). ByGrade 3, considerable loss of striato-

GPi neurons appears to occur, and this loss may contribute to the bradykinesia that

develops late in HD, while the near complete loss of this projection system by

Grade 4 is likely to explain the akinesia in terminal Grade 4HD (Albin et al., 1989).

The functional implications of striato-SNc neuron loss are uncertain, but Tippett

et al. (2007) indicate that loss of these neurons is associated with mood abnormal-

ities in HD patients. Although differential loss is evident for the four main striatal

projection systems, imaging studies assessing brain volume, glucose metabolism,

or receptors on striatal projection neurons or their terminals emphasize that

neither the striatum itself nor any striatal projection neuron type is completely

normal even in premanifest HD (Antonini et al., 1996; Augood et al., 1996, 1997;

Aylward et al., 1994,1996; Glass et al., 2000; Grafton et al., 1992; Kuwert et al.,

1993; Weeks et al., 1996).
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B. STRIATUM – INTERNEURONS

Striatal interneurons include (1) very large aspiny cholinergic neurons (Bennett

et al., 2000; Kawaguchi et al., 1995); (2) large aspiny neurons that contain GABA

and parvalbumin (PARV) (Kawaguchi et al., 1995; Kita et al., 1990); (3) medium-

sized aspiny neurons that contain GABA, somatostatin (SS), neuropeptide Y

(NPY), and nitric oxide synthase (NOS) (Figueredo-Cardenas et al., 1996a;

Kawaguchi et al., 1995); (4) medium-sized aspiny neurons that contain GABA

and calretinin (CALR) (Bennett and Bolam, 1993; Cicchetti et al., 2000; Figueredo-

Cardenas et al., 1996b; Kawaguchi et al., 1995; Kubota et al., 1993). While the roles

of the SS+ and CALR+ interneurons are uncertain, cholinergic and PARV+

interneurons are known to modulate striatal projection neurons (Kawaguchi,

1993; Kawaguchi et al., 1995; Kita et al., 1990; Koos and Tepper, 1999). Choli-

nergic neurons mediate reward-related (i.e., dopamine-release related) alterations

in projection neuron firing, while PARV+ interneurons inhibit striatal projec-

tion neurons in a feed-forward manner as part of the process of switching

from one movement to the next in a sequence (Berke, 2008; Gage et al., 2010).

Cholinergic, SS + , and medium-sized calretinergic striatal interneurons are

resistant in HD and survive even late into the disease (Fig. 10) (Albin et al., 1990a;

Beal et al., 1986, 1991; Cicchetti and Parent, 1996; Cicchetti et al., 2000; Dawbarn

et al., 1985; Ferrante et al., 1985, 1986, 1987a, Ferrante et al., 1987b; Hawker and

Lang, 1990; Kowall et al., 1987; Massouh et al., 2008; Norris et al., 1996; Richfield

et al., 1995; Sapp et al., 1995). Existing published data, although limited, suggest that

PARV+ interneurons may be lost from the striatum as HD progresses (Ferrer et al.,

1994; Harrington and Kowall, 1991). This loss may contribute to the worsening

motor dysfunction evident as HD progresses. Although SS+ neuron abundance

does not decline in HD striatum, expression of NOS and SS in these neurons is

progressively diminished (Norris et al., 1996). Similarly, the preservation of cholin-

ergic interneurons in HD striatum is nonetheless accompanied by diminished

expression of such cholinergic neuron markers as choline acetyltransferase

(Aquilonius et al., 1975; Massouh et al., 2008) and the vesicular acetylcholine trans-

porter (Smith et al., 2006).
C. GLOBUS PALLIDUS

In HD, significant progressive atrophy occurs in GPe and GPi, with greater

atrophy and gliosis inGPe thanGPi (Halliday et al., 1998;Douaud et al., 2006;Roos,

1986; Vonsattel, 2008; Vonsattel and DiFiglia, 1998). The atrophy and gliosis are

evident byGrade 3, and prominent by Grade 4 (50%). The shrinkage appears to be

due to both neuron loss and loss of striatal input (Lange et al., 1976). Of interest,

pallidal shrinkage seems more diagnostic of symptom onset than does striatal
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FIG. 10. Camera lucida reconstructions of the distributions of neuropeptide Y-immunoreactive

(NPY +) neurons at comparable levels of the basal ganglia, of a normal individual (A), a choreic

Grade 3HD case (B), and a rigid Grade 4 HD case (C). Although the number of NPY+ perikarya in

putamen is similar, shrinkage of the putamen greatly elevates the packing density of these neurons in

Grades 3 and 4HD.Note also the progressive shrinkage ofGPe andGPi in theHDcases.GPe = external

globus pallidus; GPi = internal globus pallidus. This illustration is Fig. 2 from Albin et al. (1990a).
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shrinkage since imaging studies show that striatal shrinkage occurs well before

symptoms are manifest, but pallidal shrinkage more immediately precedes symp-

tom appearance (Aylward et al., 1996). The pathophysiological contribution of these

pallidal changes is uncertain. In principle, preferential loss of GPe neurons would

disinhibit the subthalamic nucleus and contribute to akinesia and possibly rigidity.
XII. Other Telencephalic Areas in HD
A. CEREBRAL CORTEX

Cerebral cortex undergoes cell loss, gliosis, and shrinkage in HD, but less so

and more slowly than does striatum (Byers et al., 1983; Cudkowicz and Kowall,
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1990; De LaMonte et al., 1988; Passani et al., 1997; Selemon et al., 2004; Vonsattel

et al., 1985). The loss occurs mainly in Layers 3, 5, and 6, is evident over Grades

2–4, and is prominent in Grade 4 (Sotrel et al., 1991). For example, Hedreen et al.

(1991) noted 57% loss in Layer 6 and 71% loss in Layer 5 in Grade 4 HD. The

cortical neuron loss appears to involve the pyramidal projection neurons of cere-

bral cortex, but not interneurons (MacDonald and Halliday, 2002). For example,

neither nNOS nor somatostatin mRNA are significantly decreased in the senso-

rimotor cortex in HD (Norris et al., 1996), indicating survival of this interneuron

class in HD cortex. MRI and fMRI studies show that the cortical thinning is

related to disease progress and to CAG repeat length (Kassubek et al., 2004b;

Jech et al., 2007), and seems to yield loss of input to striatum (Kl€oppel et al., 2008;
Wolf et al., 2008).

Differences in regional neuron loss and thinning in cerebral cortex occur in

HD, and have been described by various authors. Primary motor and premotor

cortices both consistently show 40–50% pyramidal neuron loss in late HD

(MacDonald and Halliday, 2002). On the other hand, Selemon et al. (2004)

reported that prefrontal cortex area 9 showed neuron loss but not prefrontal cortex

area 46, but both showed shrinkage. Sotrel et al. (1993) reported that surviving

pyramidal neurons of Layers 3 and 5 in prefrontal cortex showed dendritic

augmentation, reflecting perhaps compensation for the loss of other neurons from

those layers. MRI and CT imaging studies show results similar to these, revealing

that the sensorimotor, insular, and opercular cortices show the most thinning,

while frontal and temporal cortices show relatively less (Douaud et al., 2006;

Kassubek et al., 2004b; M€uhlau et al., 2007; Rosas et al., 2003), with thinning in

these areas manifest even before overt HD motor symptoms and associated with

decline in cognitive function as measured by the UHDRS (Rosas et al., 2005).

Heterogeneity in HD inmotor versus mood symptoms appears in part attributable

to regional variation in cortical neuron loss since a significant association between

motor dysfunction and neuronal loss in primarymotor cortex is seen inHD, as well

as between mood disturbance and neuronal loss in anterior cingulate cortex (Thu

et al., 2010). Braak and Braak (1992) reported loss of entorhinal cortex neurons in

advanced HD, suggesting a basis for memory deficits in late HD.

Functional alterations in neurotransmitter release also occur for neurons of

cerebral cortex, and may underlie HD symptoms. For example, a loss of various

presynaptic proteins, such as the soluble N-ethylmaleimide-sensitive factor attach-

ment protein receptor (SNARE) protein, synaptosome-associated protein 25

(SNAP 25), and the vesicle docking and recycling protein rabphilin 3a, occurs in

frontal cortex in HD Grades 1–4 (Morton et al., 2001; Smith et al., 2007). These

losses are not due to a general loss of synapses in HD cortex (Smith et al., 2007).

Similarly, Zucker et al. (2010) showed that Layer 5 motor cortex neurons in HD

make less Lin7 homolog b (Lin7b, also known as veli-2 and mals2), which is a

scaffold protein implicated in synaptic plasticity and neurite outgrowth. These
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types of changes could impair synaptic function within cortex and between cortex

and striatum. In HD, uptake of glutamate was found to be reduced by 43% in

prefrontal cortex, with the defect increasing in severity with CAG repeat expan-

sion; impairment of glutamate uptake may contribute to neuronal dysfunction and

pathogenesis in HD (Hassel et al., 2008).
B. AMYGDALA

The amygdala comprises pallial and subpallial subdivisions. Significant amyg-

dala shrinkage has been reported in HD, based on MRI and CT (Douaud et al.,

2006; Rosas et al., 2003), and Kipps et al. (2007) reported declining emotion recog-

nition in others with amygdala volume loss in HD, possibly contributing to HD

affective symptoms. Zech et al. (1986) reported that the central nucleus of the

subpallial amygdala in one choreiform HD case was markedly shrunken, with

considerable attenuation of immunolabeling for VIP, ENK, neurotensin, andNPY.
XIII. Brainstem Areas in HD
A. THALAMUS

Thalamus and the subthalamic nucleus undergo shrinkage and cell loss in HD

(Byers et al., 1973; Douaud et al., 2006; Mann et al., 1993; Vonsattel et al., 1985).

The centre median, for example, shows evident neuronal loss and astrogliosis by

Grade 3 (Vonsattel, 2008), and together the centromedian/parafascicular nucleus

complex shows about a 25% volume loss and 50% neuron loss in advanced HD

(Heinsen et al., 1996), while only 15% neuron and volume loss is seen in medio-

dorsal nucleus (Heinsen et al., 1999). Up to 25% volume loss is observed in

subthalamic nucleus by Grade 4 (Lange et al., 1976). It is uncertain if this reflects

neuron loss or loss of GPe input. Ventrobasal thalamus also shows atrophy (Dom

et al., 1976). Imaging studies indicate that thalamic nuclei projecting to frontal

cortex and/or striatum (dorsomedial, centre median, parafascicular, and ventro-

basal) undergo considerable atrophy in HD, and their atrophy is associated with

affective symptoms (Kassubek et al., 2004a).
B. HYPOTHALAMUS

Many of the nonmotor symptoms of HD, such as weight loss, sleep abnormal-

ities, hypometabolism, andmuscle atrophy are unexplained. Given the central role
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of hypothalamus in these functions, attention has recently focused on the impact of

HD on hypothalamus. Studies using voxel-based morphometry of MR images or

CT have shown hypothalamic atrophy in early HD patients (Douaud et al., 2006;

Kassubek et al., 2004a,b), and significant hypothalamic atrophy (as reflected in

ventricular expansion) is evident even 10 years before estimated symptom onset

(Soneson et al., 2010). Among specific nuclei, atrophy of the lateral tuberal nucleus

(Kremer et al., 1990), reflecting loss of somatostatinergic neurons (Timmers et al.,

1996), has been seen in HD. Notably with regard to sleep disorders in HD, a 28%

loss and a 27% atrophy of neurons expressing the neuropeptide orexin has been

noted in the lateral hypothalamic area of HD patients (Peters�en et al., 2005). The

lateral hypothalamus contains neuronal populations important for regulation of

sleep and wakefulness, and feeding (DiLeone et al., 2003). As loss of orexinergic

neurons is associatedwith narcolepsy and obesity (Kok et al., 2003), their loss inHD

is unlikely to be involved in HD-related weight loss but may be contributory to the

sleep defects. Given that the somatostatin and orexin cell populations are small,

and atrophy of the hypothalamus is prominent in HD, diverse hypothalamic

populations are likely to be affected in HD. Since oxytocin and vasopressin

neurons were decreased by 45% and 24%, respectively, in advanced HD, it seems

likely that paraventricular and supraoptic nucleus loss contributes to HD hypo-

thalamic shrinkage (Gabery et al., 2010). The numbers of NPY neurons (many of

which are involved in feeding suppression) is, however, unchanged (Gabery et al.,

2010). Detailed characterization of hypothalamic neuropathology in HD, its pro-

gression, and its relation to the nonmotor symptoms of HD is still, however,

limited.
C. SUBSTANTIA NIGRA

Substantia nigra undergoes cell loss and shrinkage in HD, but less so than does

striatum (Byers et al., 1983; Cudkowicz and Kowall, 1990; De La Monte et al.,

1988; Sharp and Ross, 1996; Vonsattel et al., 1985). Shrinkage of substantia nigra

as detected by CT has also been reported, which could stem from both striatal

input loss and nigral neuron death (Douaud et al., 2006). Loss of both SNr

GABAergic neurons, and SNc dopaminergic neurons is evident in HD

(Vonsattel, 2008), and Oyanagi et al. (1989) have reported 40% loss in both

populations. Yohrling et al. (2003) reported that in Grade 4 HD tyrosine hydrox-

ylase expression by dopaminergic neurons, as detected by in situ hybridization, was

decreased by 46% per surviving dopaminergic neuron. Moreover, the dopami-

nergic neurons were 33% smaller than normal. Neuron counts were not, however,

performed to assess dopaminergic neuron loss in that study. Consistent with

the reduced tyrosine hydroxylase expression, Yohrling et al. (2003) additionally

found that tyrosine hydroxylase protein in the nigra was reduced by 32%. They
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attributed the reduced tyrosine hydroxylase expression to an effect of mutant

huntingtin on the tyrosine hydroxylase promoter. As would be predicted from loss

of nigral dopaminergic neurons and reduced tyrosine hydroxylase expression,

terminals containing tyrosine hydroxylase appear to be reduced in abundance

in advanced HD striatum (Ferrante and Kowall, 1987). Dopamine and its metab-

olite HVA, and VMAT2 have also been reported to be reduced in HD striatum by

some authors (Bohnen et al., 1986; Bohnen et al., 2000; Kish et al., 1987; Reynolds

and Garrett, 1986). Loss of dopamine input could contribute to akinesia in HD, as

it does in Parkinson’s disease.
D. CEREBELLUM

Volumetric loss and sporadic Purkinje cell loss is evident in HD Grades 3 and

4, notably in juvenile onset victims (Castaigne et al., 1976; Hattori et al., 1984; Jeste

et al., 1984; Rodda, 1981; Vonsattel, 2008). Amino acid and neuropeptide neuro-

transmitter levels, and GABA receptor levels appear to be largely normal in HD

cerebellum (Beal et al., 1988; Kish et al., 1983).
E. BRAINSTEM

Significant loss of neurons from diverse brainstem regions and overall brain-

stem shrinkage has also been reported in HD (Hattori et al., 1984). For example,

Koeppen (1989) reported about 30% loss from the midline pontine region con-

trolling saccades, and linked this loss to saccadic defects in HD.
XIV. HD and Neurogenesis
In response to striatal injury, the subventricular zone (SVZ) of the caudate

increases the production of progenitor cells that migrate toward the site of the

injury where they can differentiate into mature neurons and glia as part of a

restorative process (Curtis et al., 2007). Curtis et al. (2003) showed an increase in

cell proliferation in the SVZ in HD caudate, progressive with HD grade and CAG

repeat, using the cell cycle marker proliferating cell nuclear antigen (PCNA).

Proliferating cells were shown to express the neuronal marker beta III-tubulin

or the glial cell marker GFAP, demonstrating generation of neurons and glial cells

in the SVZ of HD caudate. The SVZ of HD caudate is 2.8-fold thicker than

normal at Grade 2/3, with thickness increasing with grade. An increase in glial
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cells is mainly responsible for the large increase, but neuroblasts and progenitor

cells are also increased in abundance (Curtis et al., 2005a,b).
XV. Neuroinflammatory Neuropathology in HD
Microglial activation and the associated neuroinflammation appear to be a

prominent pathological feature of HD, evident from early in the disease process

(Tai et al., 2007). For example, activatedmicroglia are greatly increased in abundance

in HD cortex, striatum, and globus pallidus, and their abundance increases with

grade and neuron loss (Pavese et al., 2006; Sapp et al., 2001a). Similarly, the expression

of the neuroinflammationmediators, CCL2 and IL-10, is increased specifically in the

striatum in HD, presumably in activated microglia, but not in cortex or cerebellum

(Silvestroni et al., 2009). By contrast, an upregulation of the neuroinflammation

mediators IL-6, IL-8, andMMP9 is seen in cortex and the cerebellum. The activated

microglia may be neurotrophic and act to combat the HD pathogenic process, or

their sustained activation may exacerbate the HD injury process (M€oller, 2010).
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Huntington’s disease (HD) is an autosomal dominant, progressive

neurodegenerative disorder presenting in midlife. Multiple pathogenic

mechanisms which hypothesise how the expanded CAG repeat causes manifest

disease have been suggested since the mutation was first detected. These

mechanisms include events that operate at both the gene and protein levels. It has

been proposed that somatic instability of the CAG repeat could underlie the

striatal-specific pathology observed in HD, although how this occurs and what

consequences this has in the disease state remain unknown. The form in which the

Htt protein exists within the cell has been extensively studied in terms of both its

role in aggregate formation and its cellular processing. Protein-protein

interactions, post-translational modifications and protein cleavage have all been

suggested to contribute to HD pathogenesis. The potential downstream effects of

the mutant Htt protein are also noted here. In particular, the adverse effect of the

mutant Htt protein on cellular protein degradation, subcellular transport and

transcription are explored, and its role in energy metabolism and excitotoxicity

investigated. Elucidating the mechanisms at work in HD pathogenesis and

determining when they occur in relation to disease is an important step in the

pathway to therapeutic interventions.
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I. Introduction
Multiple pathogenic mechanisms have been suggested to underlie Huntington’s

disease (HD). Some were postulated before the gene was cloned in 1993

(Huntington’s Disease Collaborative Research Group, 1993) and many more have

been suggested since (Bates et al., 2002; Shao and Diamond, 2007). There is sub-

stantial evidence that many of these mechanisms occur as part of the disease or are

seen in diseasemodels. As yet, however, there is no complete picture of themolecular

events and pathogenic mechanisms that mediate how the expanded CAG repeat in

theHTT gene manifests the complex symptoms of the disease. It is entirely possible

that multiple mechanisms are involved in initiating and propagating HD.

Elucidating the mechanisms central in disease manifestation and progression is

important in enabling targetted clinical trials of HD treatments to take place.

HD is one of a series of diseases caused by expandedCAG repeats in a gene that

are translated to glutamine in the encoded proteins. All are neurodegenerations and

their different signs and symptoms are most likely the result of the context of the

protein in which the expanded glutamine tract resides and the tissue and cellular

expression pattern of the genes (Orr and Zoghbi, 2007; Shao and Diamond, 2007;

Truant et al., 2007). The mechanisms that might underlie HD discussed here

include the role of somatic instability and HTT RNA in HD, events that operate

on the huntingtin (Htt) protein itself and events that are downstream of the Htt

protein including transcriptional dysregulation, transport defects, energy metabo-

lism, and mitochondrial dysfunction and excitotoxicity.
II. The HTT Gene Product
The huntingtin mRNA and protein produced from the gene give rise to the

disease symptoms of HD. The RNA is very widely expressed and has been found in

most tissues examined (Huntington’s Disease Collaborative Research Group, 1993).

Two major mRNA species are produced with different 30 UTRs but the same

protein product encoded (Huntington’s Disease Collaborative Research Group,

1993). It is possible that the expansion carrying RNA contributes to the disease,

by a mechanism similar to that operating in myotonic dystrophy (DM) where the

CUG-containing RNA is retained in the nucleus and alters alternative splicing (Orr

and Zoghbi, 2007; Todd and Paulson, 2010). This is made more likely by the

observation of somatic expansion of the HTT CAG repeat in many cell types,

especially those most affected in the disease. Somatic expansion of the CAG repeat

may also lead to longer repeats being present in susceptible cells than are seen in the

blood, with concommitantly more severe toxic effects in those cells.

If there is no gene product there is no disease: perhaps the most important

experimental evidence to indicate that HD may be amenable to therapy is that
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produced by silencing the mutant gene. Yamamoto et al. (2000) used a tetracyline

inducible system to switch off the expression of a 90Q exon1 mutantHtt (mHtt)

fragment in mice. When the gene was switched off the mice recovered behaviorally

and the mHtt-positive inclusions that could be observed in the brain before the gene

was switched off disappeared. This implies that provided neurons are still present in

the brain, removing the toxic insult of mHtt allows them to recover functionally.

More recent evidence using RNA-silencing methods is consistent with this result

(Boudreau et al., 2009; DiFiglia et al., 2007; Drouet et al., 2009; Harper et al., 2005;

Pfister et al., 2009). Such silencing therapies, which prevent the mutant gene from

expressing its toxic effects, if successful, may well preclude the need to understand all

of the functional consequences of themutation. They also imply that at riskHDgene

carriers would ideally need to be treated before the onset of the disease at which

point substantial brain atrophy has occurred and neurons have been lost (Tabrizi

et al., 2011; Vonsattel et al., 1985). However, it is not clear that adequate gene

silencing can be achieved either technically nor what the physiological side-

effects of such silencing might be (Davidson and Boudreau, 2007; Harper, 2009;

Pfister and Zamore, 2009). Reduction of normal Htt expression in mice to

below 50% gave rise to severe neurological abnormalities (Auerbach et al.,

2001). Any silencing therapy is likely to take some time to come into routine

clinical use, may not deal with all of the symptoms and in addition there are

always likely to be people who manifest the disease without knowing they are at

risk, the so-called new mutations (Falush et al., 2001; Semaka et al., 2010), thus

understanding the pathogenic mechanisms in HD is essential.
A. SOMATIC EXPANSION OF THE HTT GENE

The instability of the CAG repeat in HTT was noted when the gene was first

cloned (Huntington’s Disease Collaborative Research Group, 1993) and this

observation has been confirmed both in the germline (Telenius et al., 1994) and

in somatic cells (Aronin et al., 1995; Cannella et al., 2009; Gonitel et al., 2008;

Kahlem and Djian, 2000; Swami et al., 2009; Veitch et al., 2007) in HD patients

and also in mouse models of the disease (Gonitel et al., 2008; Ishiguro et al., 2001;

Lloret et al., 2006; Kennedy et al., 2003; Kennedy and Shelbourne, 2000;

Shelbourne et al., 2007; Vatsavayai et al., 2006). The inverse correlation of the

CAG repeat length, usually measured in blood, with the age of onset of HD

(Langbehn et al., 2004, 2010) demonstrates that increased length of the CAG

repeat and its translated glutamine tract are central to disease pathogenesis so

somatic expansion could be important in disease onset and progression.

How does somatic expansion of repeats in theDNA of terminally differentiated

cells occur? DNA undergoes a number of processes that involve cutting, unwind-

ing, and replication of sections of DNA, including transcription and repair. The

mechanisms underlying the expansion of the CAG repeat in somatic cells appear
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to be mediated by DNA repair and in dividing cells also by replication (see

McMurray, 2010 for a detailed explanation). Both base-excision repair (BER)

and mismatch repair (MMR) have been implicated in in vivo somatic expansion

in mouse model brains (Dragileva et al., 2009; Kovtun et al., 2007; Kovtun and

McMurray, 2001; Manley et al., 1999; Wheeler et al., 2003).

The most extreme somatic expansions of HTT occur in the striatum in both

human HD brain and mouse model brain (Gonitel et al., 2008; Goula et al., 2009).

Greater somatic expansion of the repeat in the cortex of HD subjects was associ-

ated with earlier disease onset (Swami et al., 2009) indicating that factors contrib-

uting to somatic expansion are likely to be important in disease manifestation.

Kovtun et al. (2007) showed that the somatic expansion seen in R6/1 mice was at

least partly dependent on the base excision repair enzyme 7,8-dihydro-8-oxogua-

nine-DNA glycosylase (OGG1). This enzyme is involved in the repair of DNA

damaged by oxidative processes and removes lesions and in the mice such damage

accumulated as the mice aged and correlated well with the increase in somatic

expansion of the CAG repeat in the Htt gene. As all tissues show oxidative DNA

damage, Goula et al. (2009) showed that the tissue specificity of the expansions

might be a result of the relative expression of Flap endonuclease-1 (FEN1) which is

involved in Okazaki fragment processing during base excision repair of DNA. The

mouse mismatch repair genesMsh2 andMsh3 both contributed to somatic expan-

sion in the HD knock in mouse line HdhQ111 (Wheeler et al., 2003) and Msh6

contributed to germline changes in CAG length.

HD is not the only repeat expansion disease and the context of the repeats in

which the expansions lie is likely to be important. It seems that processes that

operate on DNA mediate the expansion of the CAG repeat in both germline and

somatic cells. These are likely to be different in different cell types but the under-

lying mechanisms are not yet clear. However, the evidence suggests that these

expansions may be an important contributor to disease manifestations. It is not

clear whether one mechanism predominates in specific cells or whether multiple

mechanisms can occur. The different lengths of expansion could well be mediated

in different ways. It is possible that some of the proteins implicated in repair might

be involved in multiple pathways (McMurray, 2010). It is also important to

elucidate whether the expanded repeats in cells are transcribed to RNA, and

whether the expansion affects the efficiency of this process and whether the

RNA is subsequently processed normally and translated into protein with somat-

ically expanded polyglutamine repeat lengths. There is evidence in juvenile

patients for expanded mHtt consistent with somatically expanded Htt mRNA

being translated into protein (Aronin et al., 1995).

B. THE HTT PROTEIN AND ITS PROCESSING

The full native folded form of either mutant or wild-type Htt protein remains

unknown, but studies have revealed some clues to its three-dimensional structure and
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thesemay inform our understanding of its functions. It is known to be a stable protein

with a relatively long half-life probably in excess of 24 h (Persichetti et al., 1996).

Comparedwith thewild-type protein,mHtt fragments have a longer half life and are

more susceptible to accumulating in the cell (Kaytor et al., 2004). The N-terminus of

Htt is thought to have an external loop structure (Atwal et al., 2007; Li et al., 2006).

There are two consecutive polyproline repeat regions immediately following the

polyglutamine repeat, a motif often found in transcriptionally active proteins

(Huntington’s Disease Collaborative Research Group, 1993). Much of the rest of

the protein appears to contain a series of four HH-HEAT repeats (Li et al., 2006;

Takano and Gusella, 2002; Xia et al., 2003): this motif is thought to be important in

mediating protein–protein interactions (Neuwald and Hirano, 2000). In addition,

there are proteolytically susceptible PEST domains (Schilling et al., 2006).

Htt is observed in the nucleus and the cytoplasm and it has been suggested that

it functions as a nucleocytoplasmic shuttle protein, like many of the proteins that

carry glutamine tracts and cause polyglutamine diseases (Truant et al., 2007). A

nuclear export signal has been demonstrated toward the C-terminus of the protein

(Xia et al., 2003) though no nuclear localization signal has been detected. There has

long been a debate about the localization of Htt and its cleavage products but it is

now clear that both Htt and mHtt proteins can be observed in the cytoplasm and

nucleus of cells (DiFiglia et al., 1997; Kegel et al., 2002). N-terminal fragments of

normal and mutant Htt appear to be at higher concentration in the nucleus than

the full length protein: this may be due to the NES being relatively C-terminal and

inhibiting nuclear export (Truant et al., 2007). Benn et al. (2005) demonstrated that

directing exon 1 of human mHtt to the nucleus generated a more severe and rapid

phenotype than directing it to the cytoplasm, but that even the extranuclear forms

of the mutant protein caused neurodegeneration and features such as dystrophic

neurites characteristic of HD.

Many protein interactions with the N-terminus of both Htt and mHtt have

been published but very few have been detected with the more C-terminal regions

of Htt. This may be because there are fewer such interactions, but Htt is a large

protein and many of the systems used to detect such interactions would require

sections of Htt to be used and as its three dimensional structure is unknown, this

renders the use of physiologically relevant fragments difficult. In addition, Htt is

known to be cleaved (see section, II E) and thus many studies have only used

various N-terminally truncated fragments to look for interacting proteins.
C. HTT AGGREGATION AND INCLUSIONS

It has been well established that the mutant Htt protein containing an

expanded polyglutamine repeat has the propensity to misfold and form aggregates

(Davies et al., 1997). This is also a property of other polyglutamine-repeat contain-

ing proteins (reviewed in Orr and Zoghbi, 2007).
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Evidence of inclusions was initially presented in the 1970s (Roizin et al., 1979)

and studied in more detail following the development of the first HDmouse models

which contained human exon 1 of HTT with around 115 (R6/1) or 150 (R6/2)

CAG repeats (Mangiarini et al., 1996). The immunohistochemical study of the HD

R6 transgenic mouse lines demonstrated the presence of a single nuclear inclusion

(NII) in most striatal neurons, which were human Htt and ubiquitin-positive, yet

devoid of the normal endogenous mouse Htt. Inclusions were also noted in neurons

of cerebral cortex, cerebellum, and spinal cord (Davies et al., 1997). Table I sum-

marizes neuropathological inclusion findings in multiple mouse models of HD.

These findings were swiftly followed by the observation of similar mHtt con-

taining structures in human post-mortem brain tissue from HD patients (Becher

et al., 1998; DiFiglia et al., 1997; Gourfinkel-An et al., 1998; Gutekunst et al., 1999;

Maat-Schieman et al., 1999). The frequency (Becher et al., 1998) and rate of

formation of such aggregates (Scherzinger et al., 1999) were shown to be poly-

glutamine repeat length dependent (Lakhani et al., 2010). Aggregate size also

appears to increase with duration of disease (Gutekunst et al., 1999). In the brains

of juvenile and adult-onset HD cases, nuclear inclusions were detected in the

cortex and striatum but were absent from the globus pallidus and cerebellum

(DiFiglia et al., 1997). In addition to NIIs, inclusions were also demonstrated in

dystrophic neurites of the striatum and cortex (DiFiglia et al., 1997). The inclusions

were shown to be composed primarily of N-terminal mHtt fragments (DiFiglia

et al., 1997; Hackam et al., 1998;Maat-Schieman et al., 1999;Martindale et al., 1998).

Since these initial findings mHtt aggregates have been observed in many other

animal models including Drosophila melanogaster (Warrick et al., 1998) and C. elegans

(Faber et al., 1999; Parker et al., 2001). Many HD cellular models have also

demonstrated mHtt-positive inclusions (Carmichael et al., 2000; Ho et al., 2001;

Lunkes and Mandel, 1998; Ratovitski et al., 2007; Saudou et al., 1998).

MHtt inclusions have been observed not only in CNS but in peripheral tissues

in mouse models and in people (Tabrizi et al., 2000). In both the R6/2 mice

(Sathasivam et al., 1999) and the Q150 mice (Moffitt et al., 2009) inclusions were

detected in a wide range of tissues including skeletal muscle, heart, liver, adrenal

glands, pancreas, kidney, stomach wall, and duodenum at late stages of phenotype

development.

Structurally, inclusions appeared as a mixture of granules, filaments, and fibrils

andwere not separated from their surroundings by amembrane (DiFiglia et al., 1997).

GST-fusion proteins of mHtt exon 1 were cleaved and subsequently formed protein

aggregates that resembled amyloidwith a b-pleated sheet structure (Scherzinger et al.,
1997). This was consistent with the b-pleated sheet structure formed by poly-L-

glutamines which indicated that expanded polyglutamine may act as polar zippers

(Perutz, 1996; Perutz et al., 1994). ThemHtt fibrils have been shown to have extensive

branched morphologic features which become more advanced at the later stages of

degeneration (Dahlgren et al., 2005).



Table I

NEUROPATHOLOGY IN HUNTINGTON’S DISEASE MOUSE MODELS

Mouse Model Nature of Model Location of Neuronal

Inclusions

Reference

R6/1, R6/2, R6/5

(Q115, 150)

Transgenic, human

exon 1 Htt

striatum, cortex,

cerebellum, spinal cord

Mangiarini et al., 1996

Davies et al., 1997

N171-82Q Transgenic, human

truncated Htt

striatum, cortex,

hippocampus, cerebellum

Schilling et al., 1999

YAC72 Transgenic, human FL

Htt

striatum Hodgson et al., 1999

HD48, HD89 Transgenic, human FL

Htt

striatum, cortex,

hippocampus, thalamus,

cerebellum

Reddy et al., 1998

BACHD

(97Q)

Transgenic, human FL

Htt 97Q

cortex and striatum Gray et al., 2008

HD46, HD100 Transgenic, human

truncated Htt

striatum and cortex Laforet et al., 2001

HdhQ92, HdhQ111 Knock-in striatum, cortex, olfactory

tubercle/bulb, nucleus

accumbens, cerebellum,

hippocampus, septum

Wheeler et al., 2000

HD knock-in mice

(72-80 CAG)

Knock-in striatum Li et al., 2001

Shelbourne et al.,

1999

Hdh(CAG)150 Knock-in striatum, cortex, nucleus

accumbens,

hippocampus, cerebellum

Lin et al., 2001

HD94 Knock-in striatum Menalled et al., 2002

HD140 Knock-in striatum, nucleus

accumbens and olfactory

tubercle

Menalled et al., 2003

HdhQ200 Knock-in striatum and cortex Heng et al., 2010

HD[CAG]94

(conditional)

Transgenic, human

exon 1 Htt, inducible

striatum and cortex Yamamoto et al., 2000

PrP-tTA-6/iFL23Q-1

and 148Q-69

Transgenic, human FL

Htt 148Q, inducible

cortex, striatum,

hippocampus, cerebellum

Tanaka et al., 2006

Numbers of CAG repeats or glutamines (Q) in translatedmutant protein given if not contained inmouse

name. FL = full length.
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Intranuclear and extranuclear inclusions are structurally different with extra-

nuclear inclusions appearing more diverse in shape and size in R6/2 mice

(Morton et al., 2000). Formation of NIIs was followed by nuclear membrane

invagination and an increase in the density of nuclear pores (Davies et al., 1999)

and inclusions in dystrophic neurites formed after NIIs in R6/2 mice. Lipofuscin
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then accumulates in the cytoplasm (Davies et al., 1997; Vonsattel and DiFiglia,

1998) and neurodegeneration results (Turmaine et al., 2000).

The dynamics of inclusion formation have been studied in an attempt to

elucidate how the protein transforms from a monomeric state into oligomeric

compounds and then aggregates (Colby et al., 2006; Olshina et al., 2010;

Ramdzan et al., 2010; Sathasivam et al., 2010; Thakur et al., 2009). The identity

of the toxic species in HD and its link with pathogenesis remain to be defined and

soluble oligomers rather than frank aggregates have been suggested to be the toxic

moiety (Caughey and Lansbury, 2003). The possible relationship of the aggregat-

ing protein to toxicity is outlined in Fig. 1 and evidence supporting their role inHD

pathogenesis is summarized in Table II. Aggregates could be harmful in HD as

they sequester proteins such as those involved in cellular transport, transcription

factors, UPS components, and wild-type Htt (all discussed below). By contrast,

aggregates could be protective through the sequestration of the putative soluble

toxic Htt moiety or other cellular proteins, for instance mTOR, which stimulate

mutant Htt clearance (Ravikumar et al., 2004). However, as Htt inclusions are

exclusive to HD tissues, it is reasonable to study their involvement in the patho-

genesis of HD.

[(Fig._1)TD$FIG]

FIG. 1. The potential dynamics of mHtt aggregation. (A) shows the potential aggregation pathway of

mHtt. Themonomer binds into aggregates in a reversible fashion. Once aggregation starts to occur this

will drive the entire reaction to the right, and remove monomers from solution. Many parameters are

likely to influence this including the absolute concentration of mHtt: there is likely to be a mass action

effect. (B) shows events that might influence the propensity of this reaction to cause aggregates including

cleavage of mHtt and the binding of interacting proteins.



Table II

HUNTINGTIN AGGREGATES AND HD PATHOGENESIS

Huntingtin Inclusions are Harmful

Inclusion formation coincides with behavioral changes in

R6/2 mice

Morton et al., 2000

Switching off mHtt in an inducible HD mouse model results

in aggregate clearance and reversal of phenotype

Yamamoto et al., 2000

Chaperone activity can decrease the toxicity induced by

expanded polyglutamine

Chai et al., 1999

Glial cells have no inclusions and do not degenerate in HD Gourfinkel-An et al., 1998

Compounds capable of interfering with aggregate formation

can rescue toxicity in HD

Colby et al., 2004

Ehrnhoefer et al., 2006

Nuclear and cytoplasmic inclusions form prior to the onset of

cell toxicity in an inducible PC12 HD cell model

Ratovitski et al., 2007

Bacterial and yeast chaperones can reduce aggregate

formation and cell death in mammalian models of HD

Carmichael et al., 2000

Inclusion formation is correlated with enhanced apoptosis Lunkes and Mandel, 1998

Polyglutamine aggregates introduced into cells in culture

cause cell death

Yang et al., 2002

Huntingtin Inclusions are Incidental

Inclusions are less common in the striatum, where most

neurodegeneration occurs in HD, than in the cortex

Gutekunst et al., 1999

Htt inclusions detected after the initial onset of motor and

cognitive dysfunction and neuronal loss

Menalled et al., 2003

Slow et al., 2003

Neurodegeneration can occur in the absence of aggregates Hodgson et al., 1999

Inclusions form in the absence of cell death Wheeler et al., 2000

Caspase inhibition reduced inclusions but did not increase

cell survival

Kim et al., 1999

RNA levels were reduced in R6/2 striatal neurons with and

without inclusions

Sadri-Vakili et al., 2006

Huntingtin Inclusions are Protective

R6/2 crossed with tissue transglutaminase knock-out mice

rescued brain and body weight loss and early mortality but

increased inclusions

Mastroberardino et al., 2002

Neurons containing htt inclusions had reduced mutant htt

levels elsewhere in the neuron and improved survival

Arrasate et al., 2004

Htt inclusions sequester mTOR which promotes autophagy

and enhances mt htt clearance from the cell

Ravikumar et al., 2004

Inclusions more common in striatal interneurons spared in

HD compared with spiny neurons that degenerate

Kuemmerle et al., 1999

Suppressing inclusion formation enhanced cell death Saudou et al., 1998

Aggregates found in brain regions spared in HD Reddy et al., 1998

An inverse correlation was shown between aggregate

formation and cell toxicity

Kaytor et al., 2004

Reducing inclusion formation increased cell death of neurons

expressing mutant htt

Okamoto et al., 2009
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D. POST-TRANSLATIONAL MODIFICATION

Htt is subject to a number of post-translational modifications, some of which

are mediated by glutamine length and have been associated with pathogenesis.

Post-translational modifications involve the addition of other molecular moieties

to proteins which can often change their localization and function (Appella and

Anderson, 2001; Hunter, 2007). Sumoylation, acetylation, palmitoylation, phos-

phorylation, and ubiquitination have all been demonstrated to occur at different

points along Htt and to alter its localization and function.

Htt is phosphorylated at multiple sites (Aiken et al., 2009; Humbert et al., 2002;

Schilling et al., 2006; Thompson et al., 2009) andmodulation of phosphorylation can

alter the toxicity of mHtt (Aiken et al., 2009; Gu et al., 2009; Humbert et al., 2002;

Luo et al., 2005; Metzler et al., 2010; Rangone et al., 2004; Thompson et al., 2009).

Humbert et al. (2002) detected an Akt-mediated phosphorylation of Htt at Ser421

(S421) that ameliorated neurotoxicity ofmHtt in cultured cells, but did not appear to

affect cleavage. Intracellular transport is affected by reduced phosphorylation of

S421 in mHtt (Colin et al., 2008; Gauthier et al., 2004) potentially reducing trophic

support, and phosphorylation of S421 is reduced byNMDA stimulation in YAC128

primary neurones (Metzler et al., 2007, 2010). This dephosphorylation is mediated

by the protein phosphatases PP1 and PP2A. Conversely, increased phosphorylation

of S421 is protective to cells (Pardo et al., 2006). Again in cell cultures transfected

with full length huntingtin with normal (23) and expanded (148) glutamine tracts,

Htt was shown to be constitutively phosphorylated at a number of other more

C-terminal Ser residues, of which three were ERK1 mediated, rendered S533

incapable of phosphorylation and reduced mHtt toxicity, most likely by reducing

calpain cleavage of the protein (Schilling et al., 2006).

The N-terminal phosphorylations of Htt, in the 17 amino acids before the

glutamine tract, have also been studied. S13 and S16 were mutated in BAC-HD

mutant mice to mimic constitutive phosphorylation at both residues and this

ameliorated the HD phenotype of these mice (Gu et al., 2009). The S13 phosphor-

ylation was mediated by IKKa and b though it was not clear how the S16

phosphorylation was modulated (Thompson et al., 2009). These N-terminal phos-

phorylations appear to target Htt for degradation (Thompson et al., 2009). T3

phosphorylation, the most frequent N-terminal modification observed, also alters

toxicity of the exon 1 fragment of mHtt: mutations which mimic constitutive

phosphorylation (T3D) and which are incapable of phosphorylation (T3A) both

reduce cell death (Aiken et al., 2009). The mechanisms of protection are likely to be

different though as T3D increases and T3A reduces aggregation of mHtt. Exon 1

Htt protein carrying the expanded glutamine was less heavily phosphorylated than

the wild-type exon 1 protein. So Htt is phosphorylated at multiple sites and the

phosphorylations are important in the fate of the mutant protein. It remains

unclear exactly how the expanded glutamine tract affects all of the
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phosphorylations and which phosphorylations occur early in the modification

program of Htt. However, phosphorylation of mHtt generally seems to protect

cells against the toxic effects of the protein.

The phosphorylations ofHtt also seem to promote othermodifications including

ubiqutination, SUMOylation, and acetylation of the N-terminal lysines

(Thompson et al., 2009). Both K6 andK9 could be SUMOylated and ubiquitinated.

SUMOylation reduced the ability of N-terminal Htt to form aggregates in cell

culture and promoted transcriptional repression (Steffan et al., 2004) but in the

Htt exon 1 Drosophilamodel of HD, SUMOylation exacerbated neurodegeneration

whereas ubiquitination proved protective. TheN-terminus ofHtt is acetylated atK9

and there is a further acetylation at K444: the K444 acetylation mediates trafficking

of Htt to autophagosomes and mutant Htt mutated at K444 to prevent acetylation

leads to accumulation and neurodegeneration both in cultured neurons and mouse

brain (Jeong et al., 2009). It is possible that histone deacetylase inhibitors exert their

protective effects by directly increasing mHtt acetylation and degradation.

Htt is also modified by the fatty acid palmitate (Yanai et al., 2006).

Palmitoylation of Htt at C214 by huntingtin interacting protein 14 (HIP14), a

palmitoyl transferase, is reduced through a decreased interaction with mutant Htt

compared with wild-type Htt. Prevention of the palmitoylation by mutating C214

increases mHtt inclusion formation.

Multiple post-translational modifications affect Htt. These are often altered in

the mHtt, thoughmost experiments have been conducted using short Htt fragments

or in model systems with very long mHtt repeats. It is therefore difficult to know

which of these modifications are likely to be relevant to the majority of HD patients

who have glutamine tracts of 40–50 residues. Some of the modifications have been

confirmed as altered in tissue from HD brains: the K444 acetylation (Jeong et al.,

2009) and the phosphorylation of S421 (Warby et al., 2005). The normal physiolog-

ical effect of the modifications is not always clear though many appear to affect Htt

clearance (see below in autophagy and proteasomal clearance). It remains to be

determined which of these modifications are physiologically relevant to HD in

people, though they provide a number of potentially exciting drug targets.
E. CLEAVAGE

Proteolytic cleavage of Htt is one proposed pathogenic mechanism in HD and

other neurodegenerative disorders (Wellington and Hayden, 2000). Levels or

activity levels of certain proteases for which Htt is a substrate, in particular

caspases, calpains, cathepsins, and matrix metalloproteinases (MMP) are

increased in HD (Gafni and Ellerby, 2002; Gafni et al., 2004; Hermel et al.,

2004; Miller et al., 2010; Qin et al., 2003; Sanchez Mejia and Friedlander, 2001;

Silvestroni et al., 2009). The cleavage products for the proteolytic cleavage sites
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FIG. 2. Htt cleavage sites and resultant cleavage products. Mapped cleavage sites on the full length

Htt protein. Note that there are more huntingtin fragments thanmapped cleavage sites (for instance see

Landles et al., 2010)
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found in Htt are shown in Fig. 2. Htt is also a substrate for a wider group of

proteases including the aspartyl protease signal peptide protease-like IMP5, amino

terminal signal peptide protease (SPC18), members of the secreted serine-protease

kallikrein family KLK10 and KLK11, transmembrane-E3-ubiquitin ligase

RNF128, and MMP2 interacting integrin ITGA2B (Miller et al., 2010).

Consistent with proteolytic cleavage of Htt being a significant event in HD

pathogenesis are the reports of mHtt fragments detected in cell models of HD

(Lunkes and Mandel, 1998; Ratovitski et al., 2007). Mouse models expressing full

length mHtt have shown similar results (Gray et al., 2008; Hodgson et al., 1999;

Tanaka et al., 2006). MHtt fragments were detected in the brain of both HdhQ150

and control mice at all ages with the three smallest fragments exclusive to mutant

mice (Landles et al., 2010). It is worthy to note that the pattern of fragments was

similar in all brain regions although the relative intensity of each was found to differ

(Landles et al., 2010). Small N-terminal Htt fragments were also shown in HD

brains and in the cortex, striatum, and cerebellum of HD and control brain

(Lunkes et al., 2002). The latter fragments were compatible with caspase 3 cleaved

products and could be further cleaved by calpain (Kim et al., 2001).

N-terminal mHtt fragments are thought to be the toxic species in HD

(Goffredo et al., 2002). Nuclear inclusions can be detected with antibodies to the

N-terminus of Htt only (DiFiglia et al., 1997) and smaller mHtt fragments aggre-

gate more readily (Martindale et al., 1998). They are also more toxic to the cell



PATHOGENIC MECHANISMS IN HUNTINGTON’S DISEASE 385
(Cooper et al., 1998; Hackam et al., 1998; Igarashi et al., 2003; Martindale et al.,

1998). In vivo, transgenic mice expressing N-terminal mHtt tend to exhibit an

earlier and more severe pathology and behavioral phenotype than those expres-

sing full length mHtt (Woodman et al., 2007 and reviewed in Ferrante, 2009).

There is evidence that cleavage occurs before cell toxicity (Ratovitski et al., 2007;

Wellington et al., 2002) and examination of gene expression profiles demonstrates

that although mice with full-length mHtt take much longer to show a phenotype

than the truncated models, such as R6/2, the profiles of downregulated genes are

very similar, implying the same pathogenic process is potentiated by mHtt trun-

cation (Kuhn et al., 2007).

To gain more insight into the significance of Htt proteolysis in vivo, mice were

generated that expressed either caspase 3 or caspase 6 resistant full length mHtt

(Graham et al., 2006). While no effect was shown for caspase 3, the caspase 6-

resistant mice appeared to maintain normal neuronal function were devoid of

striatal neurodegeneration and were spared from motor dysfunction. This implies

that caspase 6 cleavage of mHtt is a potentiating event in HD pathogenesis.

Translocation of N-term mHtt fragments into the nucleus has been shown to

enhance toxicity (Peters et al., 1999; Saudou et al., 1998) which implies that the

subcellular localization of the fragments is important in HD pathogenesis. In HD

patient lymphocytes, caspase cleavage occurred in the cytoplasm and the mHtt

fragments sorted to perinuclear sites prior to translocation to the nucleus

(Sawa et al., 2005). In accordance with this, shorter mHtt fragments formed intra-

nuclear and perinuclear aggregates, different from the exclusively perinuclear

aggregates reported with longer mHtt fragments (Hackam et al., 1998).

Warby et al. (2008) observed that cleavage of htt by caspase 6 at aa586 occurred

primarily in the nucleus but fragments cleaved by capase 2/3 at aa552 localized

at the perinuclear region of the cell. They proposed that either the fragments are

trafficked to their distinct subcellular locations after cleavage or, more likely, that

the cleavage events occur at two different sites. Landles et al. (2010) found

N-terminal fragments in the cytoplasm but not the nucleus of HdhQ150 mouse

brain. So it seemsHtt can enter the nucleus, but only remain there if sequestered into

detergent-insoluble complexes that interfere with its nuclear export signal function

or if then truncated so its nuclear export signal is removed (Truant et al., 2007).

The post-translational modifications of Htt are likely to influence both its

location and its susceptibility to proteolysis. Cdk5 phosphorylates Htt at Ser434

and this reduces its cleavage by caspase 3 at aa513 thereby attenuating aggregation

and toxicity in a cell model of HD (Luo et al., 2005). Cdk5 activity has been shown

to be reduced in at least one HD transgenic mouse model (Schilling et al., 1999).

This leads to a lower level of Htt phosphorylation and therefore the protection

against cleavage is lost. They postulate that the negative charge and possible

altered structure afforded by phosphorylation could inhibit the accessibility of

the caspase sites to the caspases (Luo et al., 2005).
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The various processes acting on the mHtt protein, post-translational modifica-

tions, cleavage, and aggregation, are clearly interlinked. We do not yet have a full

picture of how these processes interact with each other, nor how that potentiates

the downstream neurodegeneration of the disease. We do not understand what the

toxic species of mHtt are. It is, however, clear that influencing the processes acting

on mHtt such that the production of the toxic moiety is ablated is likely to be a

productive pathway for therapeutic interventions.
III. The Mutant Htt Protein and its Downstream Effects
A. PROTEASOMAL DYSFUNCTION

There are two pathways for the degradation of proteins within cells. Firstly, the

autophagy pathway which degrades protein complexes and organelles which

would otherwise be too large for the proteasome pore (Backues and Klionsky,

2010) and secondly, the ubiquitin–proteasome system (UPS) which degrades

ubiquitin-labeled short-lived, mislocated, misfolded and denatured nuclear and

cytosolic proteins (Schwartz and Ciechanover, 2009). Not only is UPS dysfunction

thought to play a role in neurodegenerative disease but has also been widely

implicated in the pathogenesis of inflammatory disease, muscle wasting disorders,

various cancers, and in hypoxia (Schwartz and Ciechanover, 2009). The possible

intersection of these two processes on mHtt is shown in Fig. 3.

UPS involves a three-step process whereby a target protein is covalently conju-

gated to a polyubiquitin chain, recognized by the proteasome and degraded within

its core (Schwartz and Ciechanover, 2009). Ubiquitin is a 76 amino acid protein

conjugated to proteins by several ubiquitinating enzymes (Hochstrasser, 1996;

Ortega et al., 2007). hE2-25K, a ubiquitin conjugating enzyme, interacts with the

first 540 amino acids of mHtt, suggestive of it being a substrate for degradation by

the UPS (Kalchman et al., 1996). Furthermore, a novel 5 amino acid proteasome

targeting motif (FQKLL) was found within the Htt protein (Chandra et al., 2008).

The observation that mHtt aggregates colocalize with ubiquitin in HD patients

(DiFiglia et al., 1997; Sieradzan et al., 1999), HD mouse models (Davies et al., 1997)

and HD cellular models (Jana et al., 2001; Saudou et al., 1998) has implicated

disruption of the UPS in HD pathogenesis. Components of the proteasome and

molecular chaperones such as subunits of the 26S proteasome, HSP40, HSP70,

BiP/GRP78, the RNA binding protein TIA-1, the potential chaperone 14-3-3 and

a-synuclein have also been found in Htt inclusions and UPS disruption is seen in

cellular HDmodels (Jana et al., 2001;Waelter et al., 2001a, 2001b;Wyttenbach et al.,

2000). In primary neurons established from Tet inducible HD94 mice

(Yamamoto et al., 2000), the truncated mHtt protein formed ubiquitin-positive
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FIG. 3. MHtt may interfere with protein degradation systems and cellular transport
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inclusions rapidly: upon transgene suppression, these aggregates disappeared but

proteasome inhibition prevented aggregate clearance (Martin-Aparicio et al., 2001).

Similarly, expression of a mutant form of ubiquitin along with mHtt in cells in

culture (de Pril et al., 2004) and in a transgenic mouse model (de Pril et al., 2010)

enhancedHtt aggregate formation, though any effect on behavior or longevity of the

mice was not reported. More direct evidence that the UPS is impaired in HD has

come from various cellular models (Bence et al., 2001; Bennett et al., 2005;

Duennwald and Lindquist, 2008; Hunter et al., 2007; Jana et al., 2001; Maynard

et al., 2009; Mitra et al., 2009; Seo et al., 2007), HD animal models (Bennett et al.,

2007; Wang et al., 2008) and human tissue (Bennett et al., 2007; Seo et al., 2004).

Despite all the evidence supporting a dysfunctional UPS in HD, it should not

be ignored that some studies have actually shown an increased UPS activity in HD

(Bett et al., 2006; Diaz-Hernandez et al., 2003; Seo et al., 2008) while others show no

change (Bowman et al., 2005; Ding et al., 2002; Maynard et al., 2009). This may be

partly due to technical differences. In theory, mHtt could exert its effects on the

UPS at any stage of the process. Firstly, the ubiquitination stage could be affected.

Increased polyubiquitin levels and changes in ubiquitin linkages were noted in HD

patient brains, transgenic mouse brain, and in HD cellular models (Bennett et al.,

2007). Levels of ubiquitin conjugates were also found to be elevated inR6/2mouse

brain though this increase in polyubiquitinated material could represent changes

in cellular processes unrelated to the UPS (Maynard et al., 2009). Alternatively, the

UPS could become overloaded with mHtt (Bence et al., 2001) or become physically

obstructed by the large aggregates (Venkatraman et al., 2004) (Fig. 3). It would
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therefore have a reduced capacity to degrade other cellular proteins. MHtt levels

would also build up within the cell, leading to a vicious cycle of UPS dysfunction.

Another possibility is that mHtt aggregates sequester components of the UPS so

that their availability for normal cellular functions is diminished (Jana et al., 2001;

Waelter et al., 2001a; Wyttenbach et al., 2000). The pro-apoptotic protein BimEL

has been suggested as a link between impairedUPS andmHtt induced cell death as

it was found to be upregulated and phoshorylated in cells expressing N-terminal

mHtt (Leon et al., 2010), consistent with findings in model mice (Garcia-Martinez

et al., 2007; Kong et al., 2009; Zhang et al., 2003).

It was shown that the proteasome activator, Pa28g, could increase UPS

activity in rat HD striatal cells and this appeared to promote cell survival

(Seo et al., 2007), making increasing UPS activity a possible therapeutic option

in HD. If enhancing UPS function proved difficult, redirecting mHtt into the

autophagy pathway could be explored as the two pathways could be linked

(reviewed inKorolchuk et al., 2010). Ubiquitin can target proteins to the autophagy

pathway as well as to the UPS (Yao, 2010).

Does impaired UPS activity lead to mHtt accumulation, or is impaired UPS

activity a consequence of mHtt accumulation? In single neurons tracked over their

lifetime, UPS activity is more impaired in neurons that go on to form inclusions

than those that do not and UPS impairment is lower in cells after inclusion

formation than in those with no inclusions. Taken together, this suggests that

inclusions may play a protective role in cells expressing mHtt (Mitra et al., 2009)

and that this is mediated by their effect on the UPS.
B. AUTOPHAGY

In autophagy, portions of the cytoplasm are sequestered within double mem-

brane-bound structures called autophagic vacuoles, thought to originate from the

endoplasmic reticulum (Hayashi-Nishino et al., 2009), mitochondria (Hailey et al.,

2010), or plasma membrane (Ravikumar et al., 2010). They are delivered via

microtubular transport to lysosomes, where subsequent fusion leads to degradation

of the autophagic vacuole contents by luminal acidification, proteinase B, and the

lipase, Cvt17 (Klionsky and Emr, 2000). Autophagy is a regulated process, affected

by many moieties including mToR, class III phosphatidylinositol-3-kinase (Sarkar

and Rubinsztein, 2008), p53 (Tasdemir et al., 2008) and ubiquitin (Yao, 2010).

Autophagy has been associated with normal brain aging as well as late-onset

neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease,

spinocerebellar ataxias, motor neuron disease, prion disease, and HD (Ventruti

and Cuervo, 2007). A feature common to all these disorders is a misfolded and

aggregatedmutant protein, and it is thought that autophagymay be a key player in

the clearance of such aggregate-prone proteins from the cell (Ravikumar et al.,
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2008). The knock down of autophagy genes Atg5 and Atg7 in mice resulted in

progressive motor deficits, cytoplasmic aggregates, and neurodegeneration (Hara

et al., 2006; Komatsu et al., 2006). It is therefore possible that the autophagic

clearance of the mHtt protein could play a part in the underlying pathogenesis

of HD. There is an expansion of autophagic compartments in an HD cellular

model and Htt partially colocalizes with autophagic vacuoles (Atwal and Truant,

2008; Kegel et al., 2000). In addition, work in a novel HD knock-in mouse

(HdhQ200) demonstrated that the autophagy-associated proteins LC3-II and

p62 were increased early in the disease process (Heng et al., 2010). Deletion of

the polyglutamine tract from themouseHtt protein enhances autophagy, implying

that as well as being a substrate (Ravikumar et al., 2002) Htt may have a modu-

latory role in the degradation pathway (Zheng et al., 2010).

Consistent with these findings are the results from experiments pharmaco-

logically inhibiting autophagy in HD cell models, reporting enhanced Htt

aggregate formation and increased cellular toxicity (Ravikumar et al., 2002). It

is therefore not surprising that the converse is true when autophagy is enhanced.

Stimulation of autophagy by rapamycin (inactivator of mTOR and thus an

inducer of autophagy) enhanced clearance of mHtt fragments, reduced aggre-

gates, and toxicity in a cellular model of HD (Ravikumar et al., 2002). Similarly,

rapamycin was shown to reduce neurodegeneration in a N171-120Q Drosophila

model of HD and the rapamycin analog, CCI-779, was able to attenuate the

phenotype in the N171-82Q mouse model of HD when administered presymp-

tomatically. mTOR was shown to be sequestered into polyglutamine aggregates

in HD cell models, transgenic mice, and patient brains which led to reduced

mTOR activity and the subsequent induction of autophagy (Ravikumar et al.,

2004). This could explain the increased autophagosome-like structures seen in

the brains of HD patients (Sapp et al., 1997). Aggregates could therefore be

protective, acting with mTOR to induce autophagy for self-destruction of mHtt

(Sarkar and Rubinsztein, 2008).

How does mHtt interfere with the normal process of autophagic clearance

within the cell? MHtt is post-translationally modified at K444 by acetylation

and this has been shown to enhance the trafficking of mHtt into autophagic

vacuoles thereby improving its clearance and reversing its toxic effects

(Jeong et al., 2009). By contrast, mHtt resistant to acetylation accumulated,

resulting in neurodegeneration in cultured neurons and mouse brain. These

findings suggest that acetylation of Htt is necessary for its autophagic degrada-

tion and that this is enhanced for the mutant form (Jeong et al., 2009). More

recently it was shown that Mhtt may interfere with the loading of cargo into

autophagic vacuoles (Martinez-Vicente et al., 2010)

As autophagy appears to be an integral pathway in the pathogenesis of HD, it is

a potential therapeutic target for the mitigation of the adverse effects mediated by

the mHtt protein on the cell. Autophagy is induced by physiological stress such as
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starvation (Klionsky and Emr, 2000) and it is well established that Rapamycin is a

chemical inducer of autophagy (Yang et al., 2005) although the side effects it can

have over long term use has triggered the search for other enhancers of mamma-

lian autophagy. Such regulators of autophagy may prove useful in the treatment of

neurodegenerative disease (Sarkar and Rubinsztein, 2008).

Furthermore, chaperone-mediated autophagy (CMA) is a selective type of

autophagy that channels specific proteins labeled with HSC70 to the surface of

lysosomes. It is suggested that mHtt is directed to the CMA pathway for degra-

dation, reducing aggregates, and ameliorating symptoms in R6/2 mice

(Bauer et al., 2010). It may therefore be possible to search for more specific ways

to selectively enhance clearance of mHtt from the cell.
C. TRANSCRIPTIONAL DYSFUNCTION

Alterations in the levels of mRNAs inHD brain have been observed overmany

years (Arzberger et al., 1997; Augood et al., 1996, 1997; Norris et al., 1996; Richfield

et al., 1995) and it has become clear that alterations in transcriptional regulation are

an early pathogenic consequence of the expanded mutant HTT (Cha, 2007). The

early in situ hybridization studies mentioned above suffered from the potential

confounding effects of cell loss: it was difficult to be clear that the observed

reductions in mRNAs were attributable to reduced mRNA levels rather than loss

of the cells that contain those RNAs: even in early grade HD brain with very little

overt pathology substantial cell loss has occurred, especially in the caudate and

putamen (Vonsattel et al., 1985). However, subsequent studies have confirmed

substantial reductions in specific mRNAs in human brain (Hodges et al., 2006) and

mouse model brain (Luthi-Carter et al., 2000, 2002a, 2002b) (Kuhn et al., 2007;

Thomas et al., 2011). What all of these studies examine is the steady state level of

specific RNAs in the brain and this is a reflection of dynamic processes affecting

RNA: synthesis, stability, and degradation. Inmost cases, we do not knowwhich of

these processes acting on RNA are important in mediating the altered levels

observed, but possible molecular mechanisms that might underlie these observa-

tions have also been the subject of a detailed study (Cha, 2007).

Subsequent to a number of candidate gene expression analyses in mouse

models (see Cha, 2007), the advent of whole genome microarray analysis to

analyze all RNAs from a cell or tissue in parallel allowed a global overview of

gene expression changes in HD models and in HD brain, usually referred to as

expression profiling (Chan et al., 2002; Hodges et al., 2006; Luthi-Carter et al., 2000,

2002a, 2002b; Kuhn et al., 2007; Thomas et al., 2011; Zucker et al., 2005). These

studies confirmed the initial view that transcriptional changes were an early event

in the disease and showed that the changes in a number of different mouse model

striata looked very like those in human caudate (Kuhn et al., 2007). While these
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studies are also affected by the issue of cell loss, laser capture microdissection has

demonstrated in HD brain (Hodges et al., 2006) and in mouse brain (Sadri-Vakili

et al., 2006; Zucker et al., 2005) that downregulated gene expression is cell auton-

omous and reflects mRNA complements of neurons rather than other cell types.

Expression profiling in cell culture models also supports this conclusion (Kita et al.,

2002; Runne et al., 2008; Sipione et al., 2002).

There is a greater concordance in the genes with lowered expression in HD

across humanHD caudate andmousemodel striata (Hodges et al., 2006; Kuhn et al.,

2007) than in the upregulated genes. There is also a significant overlap of genes

altered in expression between brain regions (Hodges et al., 2006). Many of the

pathways implicated by mRNA changes in caudate relate to neuronal signaling

and homeostasis (Hodges et al., 2006; Luthi-Carter et al., 2000). The majority of

changes in these categories have lower expression inHD. Themost significant group

of mRNAs showing changed expression in the caudate encode metabotropic and

ionotropic receptor subunits and those conveying signals from different transmitters,

including excitatory amino acids, GABA, dopamine, and cannabinoids.

The transcriptional changes seen in brain are also reflected in other tissues,

implicating this as a fundamental property of cells expressing mHtt. Muscle from

both HD subjects and several mouse lines (Luthi-Carter et al., 2002b; Strand et al.,

2005) show a similar altered gene expression signature, which indicated a switch

from fast twitch to slow twitch muscle fibers.

The mechanism by which these alterations in mRNA levels occur has been

investigated extensively. Htt interacts with a number of transcriptionally active

proteins: the nuclear receptor repressor NCoR (Boutell et al., 1999), CREB-bind-

ing protein (CBP) (Nucifora et al., 2001; Steffan et al., 2000), TATA-binding protein

(TBP) (Huang et al., 1998), TAFII130 (Dunah et al., 2002; Shimohata et al., 2000),

p53 (Bae et al., 2005; Steffan et al., 2000), Sp1 (Dunah et al., 2002; Ravache et al.,

2010), repressor element 1 transcription factor REST (Zuccato et al., 2003). In

addition, mHtt binds the promoter of the peroxisome proliferator activated recep-

tor g coactivator 1 a (PPARg) PGC-1a preventing CREB/TAF4 activation and

thus inhibits its expression (Cui et al., 2006) which may explain some of the

mitochondrial effects seen in HD (see below). Although some of these interacting

proteins have been detected in the Htt-positive inclusions, this does not appear to

be the mechanism by which they mediate alterations in mRNA levels: cells with

and without inclusions demonstrate reduced RNA levels in R6/2 striatal neurons

(Sadri-Vakili et al., 2006).

Expression profiles are one way of examining the effect of treatments in

disease. This is most helpful if accessible tissues can be profiled but profiles in

blood of HD patients have so far proved to be inconsistent (Borovecki et al., 2005;

Runne et al., 2007) so using them as a biomarker for treatment trials is not currently

feasible. Some preclinical treatment studies in HDmice that have examined brain

gene expression after treatment have found that the gene expression changes have
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been reversed (Hockly et al., 2003; Morton et al., 2005; Pallos et al., 2008; Steffan

et al., 2001; Thomas et al., 2008). Some of these treatments were histone deacetylase

inhibitors which would be expected to target repression of transcription directly

but treatments that would not be predicted to have this effect also demonstrate

gene expression changes that appear more like controls (Morton et al., 2005).

As gene expression profiling reveals steady state mRNA levels the dynamics of

mRNA synthesis and degradation remain unclear. The transport and local trans-

lation of mRNAs in dendrites close to synapses have been shown to be affected by

Htt (Savas et al., 2010) and this too may alter the concentrations of RNA by

increasing or reducing the stability and longevity of specific RNAs.
D. TRANSPORT DEFECTS

The movement of cargo along cytoskeletal tracks forms the basis of the cellular

transport system. In general, actin is used for short-range transport and microtu-

bules are involved in more long-range transport (Caviston and Holzbaur, 2009).

Neurons are polarized cells with transport away from and toward the cell body

defined as anterograde and retrograde transport, respectively. The motor proteins

dynein and kinesins are involved with microtubule-mediated transport, whereas the

myosins associate with actin filaments. Dynein is involved in retrograde transport

and the kinesins are key in anterograde transport. These trafficking processes are

required for neuronal differentiation and survival, hence the described association

between defective motor proteins and neurological disease (Salinas et al., 2008).

The first suggestion of a role for Htt in vesicular trafficking came from bio-

chemical studies showing that wild-type Htt was associated with vesicle-rich frac-

tions (DiFiglia et al., 1995). Since then, a growing body of evidence has further

supported this notion. Htt interacts with several proteins involved in vesicular

trafficking. These include HAP1 (Li et al., 1995), HIP1 (Kalchman et al., 1997;

Wanker et al., 1997), HIP14 (Singaraja et al., 2002), HAP40 (Peters and Ross,

2001), PACSIN1 (Modregger et al., 2002), and proteins involved in SNARE-

mediated vesicle fusion (Kaltenbach et al., 2007). Most of these were shown to

have altered interaction with the mutant protein. The expression of several traf-

ficking proteins was found to be affected in early HD as shown by microarray

analysis of Htt-inducible striatal cells (Sipione et al., 2002), and pathways revealed

by gene profiling in human HD cortex included microtubule-based movement

and vesicle transport (Hodges et al., 2006). Direct experimental evidence in vitro and

in vivo demonstrates perturbed axonal transport by mHtt (Gunawardena et al.,

2003; Sinadinos et al., 2009; Szebenyi et al., 2003). Aggregates of mHtt were

reported in the cytoplasm and neuronal processes of a transgenic HD Drosophila

model which increased over time and were shown to block axonal transport

(Lee et al., 2004). Axonal transport defects in Drosophila were not exclusive to
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Htt, but also seen for other pathogenic polyglutamine proteins and were shown to

be polyglutamine-length dependent (Gunawardena et al., 2003).

Htt binds directly to dynein and facilitates vesicle motility along microtubules

(Caviston and Holzbaur, 2009) and the organization of the Golgi apparatus was

dependent on wild-type Htt with its dynein and HAP1 interacting domains intact

(Pardo et al., 2010). Htt also enhances vesicular transport of BDNF along micro-

tubules in neuronal cell lines from knock-in Q109/Q109 HD mice in association

with HAP1 and the p150glued subunit of dynactin (Gauthier et al., 2004).

Trafficking defects have also resulted from reducing levels of wild-type Htt.

Depletion of endogenous Htt disrupted both anterograde and retrograde axonal

transport of amyloid precursor protein (APP) in primary mouse cortical neurons

(Her and Goldstein, 2008) and attenuated BDNF transport in mouse neuronal

cells (Zala et al., 2008). Reduction of endogenous wild-type Htt to less than 50%

of normal levels caused trafficking defects in mouse striatal neurons and inter-

estingly, mHtt could partially restore this defect (Trushina et al., 2004).

Transport defects defined by organelle accumulation were revealed in

Drosophila expressing reduced levels of Htt (Gunawardena et al., 2003). These

findings might explain the neurological phenotypes seen in mice with reduced

levels of normal Htt (Auerbach et al., 2001).

When primary embryonic striatal neurons were isolated from control and

transgenic mice expressing full length Htt with either 16Q or 72Q, the speed of

vesicular transport was found to be reduced in the mutant neurons. In partic-

ular, mitochondria moved more slowly and stopped more frequently along their

course in mHtt-expressing neurons (Trushina et al., 2004). The impaired traf-

ficking was recapitulated in vivo, in 5-month old transgenic mice expressing full

length Htt with 72Q, prior to the onset of symptoms. BDNF transport was found

to be attenuated in neuronal cells derived from HD knock-in mice

(Gauthier et al., 2004). Similarly, APP and BDNF transport was impaired in

Q150 presymptomatic mice (Her and Goldstein, 2008). It was also shown that

while mHtt was not capable of stimulating BDNF-labeled vesicles in mouse

neuronal cells, this dysfunction could be rescued by phosphorylating Htt at Ser

421 (Zala et al., 2008). Phosphorylation at Ser421 can act as a “directional

switch” resulting in a net change in direction from retrograde to anterograde

transport of vesicles along microtubules caused by the phosphorylated form of

Htt recruiting more kinesin to vesicles (Colin et al., 2008).

How might mHtt interfere with cellular transport? MHtt aggregates could

directly block axonal transport due to their sheer size, as electron and confocal

microscopy have revealed aggregates large enough to occupy the entire cross-

section of the axon (Lee et al., 2004; Li et al., 2003a). Indeed, mHtt aggregates have

been likened to “physical roadblocks” for mitochondria transport in cortical

neurons (Chang et al., 2006). Another possibility is that aggregated Htt sequesters

proteins required for vesicle transport, depleting the soluble pools of these proteins



394 LESLEY JONES AND ALIS HUGHES
and rendering them unavailable (Caviston and Holzbaur, 2009; Gunawardena

et al., 2003; Qin et al., 2004; Trushina et al., 2004) (Fig. 3).

Aberrant Htt interactions could play a role in defective transport. Htt

associates with microtubules and reduces transport efficiency (Gutekunst et al.,

1995; Hoffner et al., 2002; Smith et al., 2009; Trushina et al., 2003). HAP40 is an

Htt-interacting protein implicated in endosome motility and the interaction

appears to mediate a shift from long-range microtubule-based transport to

short-range actin-based transport (Pal et al., 2006). MHtt is palmitoylated by

HIP14 (Singaraja et al., 2002), but palmitoylation of the mutant form is reduced

potentially leading to disruption of trafficking processes in the cell (Yanai et al.,

2006). The interaction between mHtt and HAP1 disrupted the development of

trafficking complexes which could contribute to the trafficking defects observed

in HD (Gauthier et al., 2004). Htt may also inhibit fast axonal transport indi-

rectly through upregulation of cJun N-terminal kinase 3 (JNK3) activity. JNK3

phosphorylates Ser176 of kinesin heavy chain which inhibits its binding to

microtubules, thus suggesting an explanation for the impaired fast axonal trans-

port reported in HD (Morfini et al., 2009).

Trafficking defects could affect the cell in several ways. They could lead to loss of

neurotrophic support for the cell due to defective BDNF transport (Gauthier et al.,

2004) and alter neurite outgrowth andmaintenance (Trushina et al., 2004). Aberrant

trafficking of mitochondria could affect cell survival through an inability to meet the

energy demands of the cell, disruption to calcium signaling, and the accumulation of

damaged mitochondria that would have otherwise been transported to their site of

degradation in the cell (Chang et al., 2006). GABA(A) receptors are trafficked to

synapses by kinesin motor protein 5 (KIF5) via HAP1. MHtt reduces GABA(A)

receptor transport with a consequent reduction in inhibitory synaptic currents in

neuronal cells derived from 109Q/109Q knock-in mice (Twelvetrees et al., 2010).

The functional consequence of this could be that impaired traffickingmight enhance

neuronal excitability, a well-documented feature of HD (Cepeda et al., 2007).
E. ENERGY METABOLISM

Defective energy metabolism has been suspected of a role in HD pathogenesis

for several decades because of the progressive weight loss (Djousse et al., 2002;

Mahant et al., 2003) and the metabolic alterations that can be seen in both brain

(Jenkins et al., 1993; Reynolds et al., 2005; Sanchez-Pernaute et al., 1999) and

muscle (Lodi et al., 2000) in patients. These observations have been followed up

by investigations of specific energy pathways in cell and animal models (see

Oliveira, 2010 for a recent review) and by more detailed studies in patients,

including therapies aimed at correcting energy metabolism deficiencies

(Huntington Study Group, 2001).
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Various imaging modalities have implicated altered energy metabolism in HD

brain. Low resolution 1H magnetic resonance spectroscopy (MRS) studies have

shown increased N-acetyl aspartate (NAA) in HD basal ganglia (Reynolds et al.,

2005; Sanchez-Pernaute et al., 1999): NAA is thought to mark mitochondrial loss

or neuronal dysfunction (Clarke et al., 1998). More directly related to energy

metabolism, raised lactate and decreased creatine levels have been observed in

HD brain (Jenkins et al., 1993; Reynolds et al., 2005). 18Fluoro-deoxyglucose

positron emission tomography (PET) studies have also identified defects in energy

metabolism in the striata of both symptomatic and presymptomatic HD patients

(Kuwert et al., 1990, 1993; Martin et al., 1992). All of these observations are

compromised to some extent by the neuronal atrophy known to occur in HD

(Vonsattel et al., 1985) which may interfere with the imaging results. Recent

detailed morphometric imaging studies have demonstrated that atrophy of the

caudate in presymptomatic HD gene-positive subjects more than 10 years before

estimated clinical onset of disease (Tabrizi et al., 2011).

However, examination of energy metabolism in more easily accessible patient

tissues and in post-mortem brain, have also demonstrated defects in HD. Muscle,

lymphoblasts and platelets have shown altered oxidative phosphorylation (Arenas

et al., 1998; Parker et al., 1990; Sawa et al., 1999; Turner et al., 2007) with the most

consistent evidence pointing to a defect in mitochondrial complex II/III activity.

Studies in HDmouse models and cell lines have provided some partial support for

these hypotheses though there are many inconsistent data.

Complex IV activity was altered in symptomatic R6/2 striatum and cortex

(Tabrizi et al., 2000) but no such defects in mitochondrial oxidative phosphoryla-

tion were detected in the brains from a series of genetic mouse models of HD, all

with longer time courses to phenotype development than R6/2, assayed both

before and after the development of any phenotype (Browne, 2008; Guidetti

et al., 2001; Lee et al., 2007; Milakovic and Johnson, 2005). Cell lines and striatal

tissue from the HdhQ111 animal models have demonstrated altered cAMP

(Gines et al., 2003) and ATP (Gines et al., 2003; Milakovic and Johnson, 2005;

Seong et al., 2005) levels though these appear to be a result of alteredmitochondrial

Ca2+ fluxes rather than direct effects on the electron transport chain (Choo et al.,

2004; Milakovic and Johnson, 2005; Panov et al., 2002; Seong et al., 2005). The

reduced mitochondrial Ca2+ has been shown to lead to activation of the mito-

chondrial transition pore with an increased permeability of the inner membrane to

small ions and a collapse of the membrane potential which prevents ATP produc-

tion (Panov et al., 2002). In vitro incubating mHtt with mitochondria also produces

this effect (Choo et al., 2004; Panov et al., 2002). In addition, proteomic analysis in

knock in mouse lines also gave more changes in mitochondrial proteins than was

expected and as these included both increases and decreases in individual proteins

of the mitochondria this implies a shift in mitochondrial metabolism rather than a

straightforward alteration in mitochondrial numbers (Deschepper et al., 2011).
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Oliveira (Oliveira, 2010; Oliveira et al., 2007) notes that the precise experimental

technique used can influence observations of the respiratory chain and may well

account for some of the contradictory results of these experiments.

One of the transcriptional defects seen in models of HD, as noted above, is a

reduction in levels of the transcriptional coactivator PGC-1a mRNA (Cui et al.,

2006): PGC-1a regulates mitochondrial biogenesis, respiration, and density in

neurons (Leone et al., 2005; Lin et al., 2002; Wareski et al., 2009). HD mutant mice

show altered thermoregulation and both the mice and patients had reduced

expression of PGC-1a target genes in the striatum (Chaturvedi et al., 2009;

Weydt et al., 2006). Sequence variants in PPARGC1A, the gene encoding PGC-

1a, are also associated with altered age-at-onset of HD further implying a role for

mitochondrial events in HD development (Che et al., 2011; Weydt et al., 2009).

Defects in energy metabolism are clearly part of the clinical phenotype of HD.

Dissecting the molecular origins of the effects seen by brain imaging in people has

not provided a clear mechanism as to the nature of these defects. It seems most

likely that these changes in energy metabolism are secondary to other molecular

events in HD, but if they are important in pathogenesis, ameliorating them should

be therapeutically beneficial and there is some evidence in models and in HD

patients that this might be the case.
F. EXCITOTOXICITY

Excitotoxicity refers to the death of neurons after overstimulation by excitatory

neurotransmitters and has been proposed as a toxic mechanism in HD for several

decades (Coyle and Schwarcz, 1976; McGeer and McGeer, 1976). The most

vulnerable cells in HD are the medium spiny neurons of the caudate and putamen

and these cells’ main input is of excitatory glutamate from the cortex. It has been

known for some time that these cells are particularly susceptible to excitation and

that the disease could be mimicked using glutamate analogues in the striata such as

quinolinic and kainic acid (McGeer andMcGeer, 1976; Schwarcz et al., 1984). It is

not clear how excitotoxicity is mediated by processes, discussed above, that are

affected by mHtt, but there is some evidence indicating that excitotoxicity does

occur and that it may well be important in the final fate of neurons, particularly in

the striatum (see for instance Estrada Sanchez et al., 2008 for a detailed review).

Remacemide, an NMDA receptor antagonist, has beneficial effects on the phe-

notype of the R6/2 mice (Ferrante et al., 2002) and various NMDA receptor

antagonists have been used in other mouse models (Beal and Ferrante, 2004;

Schiefer et al., 2002) and in HD subjects (Mestre et al., 2009).

Glutamate activates a number of neurotransmitter channels that allow ion influx,

including NMDA, AMPA, and kainic acid receptors as well as a series of metabo-

tropic receptors that activate intracellular G-protein signaling cascades. NMDA

receptors transport Ca2+ ions and AMPA receptors Na+ ions. Glutamate levels are
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controlled by a series of glutamate transporters found onboth neuronal and glial cells,

which rely on the cells’ Na+/K+ gradient, and are therefore heavily dependent on

oxidative energy production to maintain the K+ gradient inside the cells through

Na+/K+ ATPase (Estrada Sanchez et al., 2008). The observed excitotoxicity is medi-

ated by the rise in Ca2+ transported into cells through the overstimulated NMDA

receptors which in turn activates a series of enzymes that lead eventually to cell death.

Thus, the alterations in energy metabolism discussed above might well predispose

neurons to excitotoxic cell death in HD, and the glutamate input would explain the

specific susceptibility of the striatal medium spiny neurons to such damage.

NMDA expressing neurons are lost from human HD striatal tissue early in

disease (Albin et al., 1990; Young et al., 1988). In human HD brain, the expression

of the NMDA subunits NR1 and NR2A is substantially downregulated in the

caudate but not in cerebellum or cortex and the AMPA receptor subunits GluR1,

GluR2, and GluR3 are all similarly downregulated in the caudate (Hodges et al.,

2006). Of the kainate receptors, only Gria2 and 5 are downregulated in caudate

and the metabotropic glutamate receptors are much less significantly downregu-

lated. This may be a result of shifts in the cell populations asmedium spiny neurons

die in the caudate, though LCM and cellular models indicate that some of these

changes are cell autonomous (Hodges et al., 2006; Runne et al., 2008). Examination

of similar studies in mouse models also show some concordant changes in striata

(Ali and Levine, 2006; Hodges et al., 2008; Luthi-Carter et al., 2000, 2002a, 2002b).

Dissociated striatal neurons from R6/2 mice had a decreased proportion of cells

expressing the NR2A subunit which would potentially account for its reduced

expression (Ali and Levine, 2006).

However, the most compelling evidence that excitotoxicity is relevant to HD

pathology comes from mouse model studies using NMDA receptor agonists or

showing increased NMDA currents (Cepeda et al., 2001; Chen et al., 1999; Fan and

Raymond, 2007; Levine et al., 1999; Li et al., 2003b, 2004; Milnerwood et al., 2010;

Shehadeh et al., 2006; Zeron et al., 2001, 2002, 2004). Enhanced NMDA-mediated

Ca2+ currents were observed in striatal neurons of both R6/2 and YAC72 mice

(Cepeda et al., 2001; Li et al., 2004) and this is linked to apoptosis of YAC72

dissociated medium spiny neurons (Shehadeh et al., 2006). Potentiation of the

NMDA-induced Ca2+ current had a greater effect on subsequent excitotoxicity

in these cells than induction of mitochondrial stress (Shehadeh et al., 2006).

However, it has also been found that the R6/1 and R6/2 lines of HD mutant

mice are more resistant to excitotoxic insults than wild-type mice (Hansson et al.,

1999;MacGibbon et al., 2002;Morton and Leavens, 2000). Why this should be the

case is unknown but indicates the importance ofmore research to elucidate the role

of excitotoxicity as a final mechanism of cell death in HD.

Quinolinic acid, an excitotoxin used to produce rodent models that mimic

HD, is a metabolite in the catabolism of tryptophan (see Schwarcz et al., 2010). In

yeast, a disabling mutation of the gene encoding kynurenine 3-monooxygenase

(KMO), an enzyme in the tryptophan catabolic pathway, was found to suppress
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the toxic effects of a mHtt fragment (Giorgini et al., 2005). 3-Hydroxykynurenine

(3-HK), the immediate product of KMO and quinolinate, further down the

catabolic pathway, was absent in this yeast strain. 3-HK and quinolinate were

found to be raised in low grade HD brain (Guidetti et al., 2004) and in several

different mouse models one or both of these metabolites were also raised, though

fairly late in phenotype development (Guidetti et al., 2006; Giorgini et al., 2008).

These results make KMO a therapeutic target in HD and a kynurenic acid analog

ameliorated the behavioral phenotype and extended the lifespan of an N-terminal

mHtt mouse model (Zadori et al., 2011) indicating that this avenue is well worth

further exploration as a drug target.
IV. Conclusions
There are multiple possible pathogenic pathways operating in HD. It is unclear

which of those are most important in precipitating disease, though clearly work

modifying the mutant RNA and protein offers a path to treatments that might

preclude the need to understand all the downstream effects of the mutation.

However, factors operating on the mutant protein itself, such as cleavage, post-

translational modification, and other factors that lead to conformational changes

and possibly aggregation are likely to be important in pathogenesis and it is not clear

when those modifications occur in people carrying a mutantHTT gene. The down-

streampathways affected bymHtt are alsomanifold and there is substantial evidence

to support roles in pathogenesis for each of them. While this renders it difficult to

know the most important pathogenic pathways in disease manifestation and pro-

gression, it does provide a number of potential avenues for possible treatments.HD is

caused by essentially a single mutation in all sufferers, but nevertheless the relation-

shipbetween thatmutation and thedownstreamconsequences has still to be clarified.
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Huntington’s disease (HD) is an autosomal dominant, progressive, and fatal

neurodegenerative disorder caused by an expanded polyglutamine cytosine–

adenine–guanine repeat in the gene coding for the protein huntingtin. Despite

great progress over the past two decades since the identification of the gene

mutation, a direct causative pathway from the HD gene mutation to neuronal

dysfunction and death has not yet been established. One important advance in

understanding the pathogenic mechanisms of this disease has been the
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development of experimental mouse models that replicate many of the clinical,

neuropathological, and molecular events in HD patients. These murine models

have played a critical role in providing accurate and experimentally accessible

systems to study multiple features of disease pathogenesis and to test potential

therapeutic strategies. A better understanding of the pathophysiological

mechanisms of disease and how they interrelate has become important in

identifying a treatment for HD and in the design of human clinical trials. In this

chapter, we review the current state of HD mouse models and their successes in

elucidating disease pathogenesis and in developing pharmacotherapies. There is

no clinically proven treatment for HD that can halt or ameliorate the inexorable

disease progression. As such, a guide to assessing studies in mouse models and

salient issues related to translation from mice to humans are included.
I. Introduction
Huntington’s disease (HD) is an inherited autosomal dominant neurodegen-

erative disorder that is characterized clinically by progressive cognitive and mem-

ory impairments, heightened irritability, depression, weight loss, and choreic

motor abnormalities (Huntington, 1872). HD occurs worldwide in all races and

ethnicities with a prevalence of 5–10 per 100,000. In the United States, �30,000

individuals are affected, and an additional 150,000 are genetically at risk for

developing the disease. The age of onset is typically within the fourth decade;

however, the disease can manifest at any age from infancy to the ninth decade

(Kremer et al., 1994). The juvenile form of the disease (Westphal variant), found in

2% of the diseased population, occurs in patients younger than 20 years of age and

represents a distinct clinical entity of HD characterized by a rapidly coursing

hypokinetic syndrome (Jervis, 1963). Once symptomatic, individuals affected with

adult onset HD experience early functional decline and require increasing care

and supervision for another 15 to 25 years with pneumonia and hypertrophic

cardiomyopathy as the most frequent causes of death. As such, HD dispropor-

tionately consumes medical, social, and family resources (Helder et al., 2001).

While HD was initially suggested to be chronic encephalitis, in 1872 George

Huntington gave a detailed description of the disease, based on the description of

affected patients from his father’s and grandfather’s practice in East Hampton,

Long Island, NY. These HD patients could be traced from a small number of

individuals having emigrated from Suffolk, England, in 1630 (Bruyn et al., 1979). In

1908, Jergelsma first described the characteristic neuropathological alterations

within the basal ganglia (Jergelsma, 1908). It was not until 1985 that a thorough

description of the anatomical and histopathological changes was reported by
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Vonsattel and colleagues, topographically grading gross atrophy and the severity

of striatal neuron loss and increased astrogliosis within the neostriatum

(Vonsattel et al., 1985). Basal ganglia neurodegeneration has been the most thor-

oughly characterized pathological event of HD and has been central to both the

development of animal models and the formation of hypotheses involving chorea

and potential mechanisms of neuronal death. Although neuropathological

changes are seen prior to symptomatic clinical manifestation, they are specific to

the subcortical white matter (Rosas et al., 2006, 2008). While many brain regions

are affected byHD, themost prominent neuropathological feature of manifest HD

is marked gross atrophy of the neostriatum with concomitant neuronal degener-

ation and astrogliosis within the caudate nucleus and putamen. There is a topo-

graphic progression of neuronal loss and astrogliosis, which is first observed in the

dorso-medial aspect of the striatum that progresses ventro-laterally, with relative

sparing of the ventral striatum (Vonsattel et al., 1985). The hallmark of HD is

selective neuronal degeneration in which medium-sized spiny, gamma aminobu-

tyric acid striatal projection-neurons are affected early and most severely, while

large cholinergic neurons and medium-sized nicotinic adenine dinucleotide phos-

phate (NADPH)-diaphorase aspiny neurons are relatively spared (Ferrante et al.,

1985, 1986, 1987). Additionally, there is a reduction in striatal neurochemicals

associated with select neuronal subtypes that parallels the observed striatal neu-

rodegeneration (Bird and Iversen, 1974), with enkephalin-expressing striatal pro-

jection neurons appearing more vulnerable in comparison to substance-P striatal

neurons (Reiner et al., 1988). HD is a noncell autonomous disease. Despite the fact

that medium-sized spiny neurons are the primary neostriatal target in HD, astro-

glia may also play a significant role in neuronal loss. It had been long suggested that

glia, mainly astrocytes, reflect a response to neuronal dysfunction and death. It has

been recently reported that astroglia in HD, via alterations in their glutamate

transporters, may contribute to the pathogenesis of the disease (Faideau et al.,

2010).

The gene responsible for HD was identified and cloned in 1993

(MacDonald et al., 1993). Although there has been great progress in understanding

the clinical and molecular phenomena associated with HD, a direct causative

pathway from the HD gene mutation to neuronal dysfunction and death has not

yet been established in the subsequent 18 years. This gene normally codes for

huntingtin (Htt), a large, highly conserved protein whose normal function is thought

to be involved in fast axonal transport, specifically enhancing vesicular transport of

brain-derived neurotrophic factor along microtubules (Gauthier et al., 2004). HD

patients have an expanded polymorphic trinucleotide cytosine-adenine-guanine

(CAG) repeat near the 5’ end of on the short arm of chromosome 4, producing

mutant Huntingtin (mHtt). Individuals with HD express both the normal and the

mutant alleles. Normal individuals have 17–29 CAG repeats, while individuals with

HD have more than 38 repeats. Once expanded into the pathogenic range, the
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number of repeats has an inverse relationship with the age of onset and the severity

of the disease (Djousse et al., 2003). Mutant Htt expression is observed throughout

the body and in all areas of the brain within both neurons and astrocytes (DiFiglia

et al., 1995, 1997, Kuemmerle et al., 1999) and is cleaved during proteolysis,

releasing an N-terminal fragment containing the expanded polyglutamine amino

acid sequence. This fragment forms aggregates with itself that accumulate in both

the cytoplasm and the nucleus, as well as neuronal arbors (Kuemmerle et al., 1999).

The pathogenic significance of cytosolic and nuclear mutant huntingtin aggre-

gation remains unclear. Ongoing debate continues, as with other neurodegener-

ative disorders in which protein aggregates are a hallmark of disease, questioning

whether inclusions formed by the aggregated N-terminal truncation of huntingtin

cause neuronal death through alterations of nuclear transport or DNA arrange-

ments affecting transcription (Cha, 2000), or whether they represent the seques-

tration of the mutant protein impeding polyglutamine-induced neurotoxicity

(Klement et al., 1998; Kuemmerle et al., 1999; Ordway et al., 1997; Rosas et al.,

2006; Saudou et al., 1998). There is evidence supporting both sides. In transgene

models, nuclear huntingtin and ubiquitin aggregation is present prior to the

formation of neurological deficits, implicating aggregation in neuronal dysfunction

and subsequent neuronal death (Davies et al., 1998), (Meade et al., 2002). On the

other hand, “shortstop” YAC transgenic mice have widespread nuclear huntingtin

inclusions, but do not demonstrate a significant HDphenotype (Slow et al., 2005), a

finding that supports the cytoprotective hypothesis (Zhang et al., 2008). As such,

huntingtin inclusions may not be a key player in the pathogenic events leading to

selective neuronal death nor a predictor of neuronal death. It may well be that

soluble mHtt fragments cause the pathological interactions and subsequent neu-

ronal death, although it seems logical to reason that the many pathophysiological

events that result from protein aggregation, including the sequestration of essential

cellular transcription factors and neuronal proteins resulting in decreased function

(Nucifora et al., 2001), altered proteosomal functions (Bence et al., 2001), and the

localization of mHtt aggregates to organelles such as mitochondria (Panov et al.,

2002a), have deleterious effects on the cell. The mass effect of mtHtt aggregates

may also physically impede mitochondrial dynamics of fusion and fission

(Kim et al., 2010a). In further support of this, therapies that reduce huntingtin

aggregates have been shown to significantly ameliorate the behavioral and neu-

ropathological phenotype when administered in HD mouse models (Beal and

Ferrante, 2004; Stack and Ferrante, 2007).

There is no proven therapy to either delay the onset or slow the progression of

HD. Current clinical treatment focuses on symptom management and includes a

number of drug agents used to treat the motor and behavioral changes associated

withHD.While great strides have beenmade in understanding the pathogenesis of

HD, there is still an incomplete understanding of the disease mechanisms. Animal

toxin and genetic models that closely mimic the neurobiological and clinical
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symptoms of the disease may provide an alternative approach for the study of HD

molecular pathogenesis, in the development of existing treatments and novel

therapeutic strategies for HD, and in providing insight into peripheral and central

nervous system biomarkers of disease. Therefore, animal models are a crucial part

of the rapidly advancing field of HD research. In this chapter, we review exper-

imental models of HD and their varied utilities for understanding the disease

mechanisms and associated therapeutic strategies related to translation from mice

to humans.
II. Mouse Models of HD
A. TOXIN MODELS OF HD

1. Excitotoxin lesions in animals

Suitable animal models of HD must at least replicate the neuropathological

features of the disorder. There is increasing evidence suggesting that excitotoxicity

plays a prominentrole in both acute and chronic neurological diseases. As such,

one of the earliest experimental murine models established for HD included the

direct administration of excitatory agonists into the central nervous system. The

first observations arguing that excitotoxicity may play a role in HD were made by

the McGeers and Coyle and Schwarcz (Coyle and Schwarcz, 1976; McGeer and

McGeer, 1976). Each group of investigators showed that injections of the excit-

atory glutamate-type neurotoxin, kainic acid, produced degeneration of striatal

GABAergic projection neurons with preservation of striatal afferents, resembling

the neuropathological findings in HD. Subsequent use of N-methyl-D-aspartate

(NMDA)-type excitotoxins, including quinolinic acid, refined the model. While

kainic acid did not selectively affect striatal neurons, quinolinic acid that showed

differential sparing of striatal neurons. Quinolinic acid alters both GABAergic and

substance P-containing neurons, with relative sparing of NADPH-diaphorase and

cholinergic neurons, that latter of which are known to be spared in HD (Ferrante

et al., 1985, 1987). Quinolinic acid administration also results in an age-dependent

decrease in enkephalin neuron vulnerability in contrast to substance P striatal

neurons (Sun et al., 2003) and produces a more accurate model of HD (Beal et al.,

1991a; Ferrante et al., 1993). Other NMDA agonists also reproduce relative

sparing of NADPH-diaphorase neurons (Beal et al., 1988). Chronic quinolinic acid

lesions, where months have passed to allow resorption of the necrotic injection site,

closely reproduce the patterns of selective neuronal sparing in the rat striatum and

cerebral cortex observed in human HD patients (Beal et al., 1991b). In addition,
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quinolinic acid lesions in the monkey provide an experimental primate model that

closely resembles the neuropathological, neurochemical, and clinical features of

human HD, showing a disproportionate involvement of the matrix compartment

similar to that seen in HD patients (Ferrante et al., 1993). These changes were

accompanied by behavioral alterations, suggesting a hyperkinetic movement dis-

order. Dopaminergic agonist-inducible chorea was observed in the primates and

was indistinguishable from that seen in HD subjects (Storey et al., 1994).

Ultrastructural analysis confirmed axon-sparing lesions with neuronal loss and

astrogliosis. These animal models demonstrate a characteristic profile consistent

with the features of HD and strongly support the hypothesis that excitotoxicity

plays a role in the pathogenesis of HD.

While excitotoxic lesions in the striatum are dependent upon corticostriatal

glutamatergic inputs (Biziere and Coyle, 1979; McGeer et al., 1978), there is also

substantial evidence showing that striatal excitotoxic lesions are dependent on

substantia nigra dopaminergic inputs (Biziere and Coyle, 1979; McGeer et al.,

1978; Meldrum et al., 2001). Nigrostriatal dopaminergic neurotransmission is

altered in HD and may contribute to striatal vulnerability, as released dopamine

can act as a stressor against striatal neurons through oxidative mechanisms, as well

as modulate glutamate release (Jakel and Maragos, 2000; Reynolds et al., 1998;

Maragos et al., 1998). It is possible that both cortical and nigral afferent inputs may

be responsible for the regional selectivity of neuronal degeneration observed in

HD (Stack et al., 2007a). Interestingly, deafferentation of both the corticostriatal

and nigrostriatalpathways mitigate striatal stress and neurodegeneration in the

R6/2 HDmouse model (Stack et al., 2007a). Both surgical and chemical lesions of

the corticostriatal and nigrostriatal pathways, respectively, improved the behav-

ioral, neuropathological, and biochemical phenotype inR6/2 transgenic mice and

extend survival (Stack et al., 2007a). Decortication ameliorated hindlimb clasping,

striatal neuron atrophy, and huntingtin-positive aggregates, improving N-acetyl

aspartate/creatine levels, reducing oxidative stress, and significantly lowering

striatal glutamate levels. In addition, 6-hydroxydopamine-lesioned R6/2 mice

show extended survival along with a significant reduction in striatal glutamate.

2. Defective energy metabolism toxin models

While an increased endogenous excitotoxin or an abnormality affecting the

NMDA receptor could be responsible for HD, candidate endogenous neurotoxins,

however, are not increased in HD. One hypothesis explaining the pattern of

degeneration in HD suggests that impaired cellular energy is involved in the

degenerative process (Albin and Greenamyre, 1992; Beal, 1992). The initial and

relevant observations showed that partial membrane depolarization produces

NMDA receptor-mediated excitotoxicity by removing the voltage-dependent

magnesium block of the NMDA-linked calcium channel (Novelli et al., 1988;
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Olney, 2011). The open calcium channel allows normal amounts of endogenous

glutamate to induce NMDA receptor-mediated neurotoxicity. It has been

reported that energy depletion producing partial membrane depolarization also

results in NMDA-type excitotoxiclesions (Novelli et al., 1988; Zeevalk and Nicklas,

1991). A proton gradient generated by the electron transport chain stores potential

energy for the synthesis of ATP along with reducing oxygen to water. As such,

energy failure may be the consequence of impaired electron transport chain

function, with subsequent reduced ATP stores, resulting in membrane depolari-

zation, removal of magnesium from the NMDA-linked calcium channel, and

subsequent excitotoxic injury.

A number of electron transport chain enzymes that have been reported to be

altered in HD. Studies of platelets from HD patients suggest that Complex I

activity may also be selectively decreased in HD patients, although Complex l

activity is normal in at-risk family members (Parker et al., 1990). It is of interest to

note that other electron transport chain complexes, including Complex II (succi-

nate ubiquinol oxidoreductase), Complex III (ubiquinol cytochrome c reductase),

and Complex IV (cytochromeoxidase) are normal in blood platelets (Parker et al.,

1990). Selective decreased activity of Complex II/III of the electron transport

chain is present in the caudate nucleus, but not in other brain areas in HD

(Mann et al., 1990). While there is a reduction in Complex II–III activity in the

caudate nucleus, there is a significant increase in Complex I activity in the frontal

cortex, that latter of which may be compensatory (Browne and Beal, 1994). While

cytochrome oxidase (Complex IV) abnormalities have been described in

HD caudate nucleus (Brennan et al., 1985), the loss of cytochrome oxidase in

damaged brain areas may be a consequence of neuronal loss rather than a causal

event. It is possible, however, that the gene mutation in HD affects a nuclear-

encoded component of Complex II, Complex I, or the process of protein translo-

cation into mitochondria.

Animal studies show that striatal injections of mitochondrial toxins produce

differential neuronal toxicity identical to that produced by NMDA receptor ago-

nists (Beal et al., 1991c; Schulz et al., 1995a; Storey et al., 1992). Several specific

inhibitors, such as malonateand 3-nitropropionic acid (3-NP), act at various com-

plexes of the electron transport chain. A naturally occurring plant toxin and

mycotoxin, 3-NP, is an irreversible inhibitor of succinate dehydrogenase that

inhibits both the Krebs cycle and Complex II activity of the electron transport

chain. Ingestion in cattle causesdyspnea, hindlimb weakness, and motor abnor-

malities (Alston et al., 1977; Ludolph et al., 1991). In China, accidental human

systemic ingestion of 3-NP from contaminated sugarcane has resulted in neuro-

logical sequelae that include encephalopathy with stupor and subsequent coma,

delayed-onsetnonprogressive dystonia with jerk-like movements, and facial grima-

cingin recovering patients. Brain imaging identified bilateral damage to the basal

ganglia, particularly, the putamen. 3-NP reduces cellular levels of ATP and causes



426 JINHO KIM ET AL.
neuronal damage by an excitotoxic mechanism (Ludolph et al., 1992). Systemic

3-NP administration in rats and primates produce selective striatal lesions that are

a consequence of secondary excitotoxic mechanisms (Beal et al., 1993; Brouillet

et al., 1993). The selesions accurately replicate motor and neuropathological

symptoms observed in HD patients, resulting in differential sparing of striatal

NADPH-diaphorase and large cholinergicneurons with a significant loss of striatal

GABAergic neurons, consistent with findings in HD patients. Bothenkephalin and

substance P striatal neurons, however, are equally affected by 3NP, a finding that is

inconsistent with those present inadult-onset HD (Sun et al., 2002). 3-NP also

shows an age-dependent neurotoxicity. Both freeze-clamp measurements and

chemical shift magnetic resonance spectroscopy show that 3-NP impairs energy

metabolism in the striatum in vivo. While intrastriatal injection of 3-NP results in

striatal neuronal death in rats, neurochemical and histologic evaluation shows that

markers of both spiny projection neurons (GABA, substance P, calbindin) and

aspiny interneurons (somatostatin, neuropeptide Y, NADPH-diaphorase) are

equally affected by intrastriatal injections (Beal et al., 1993). Interestingly, the

lesions produced by intrastriatal injection orsystemic administration of 3-NP are

blocked by prior decortication, suggesting that intact corticostriatal glutamatergic

innervation plays an important role in striatal degeneration. As indicated above,

deafferentation of the substantia nigra and cortex is neuroprotective in transgenic

HD mice (Stack et al., 2007a). Since glutamate is a central tenant in provoking

excitotoxic cell death in striatal neurons already weakened by the collective molec-

ular events occurring in HD, it is of interest to note that the modulation of other

neurotransmitters, such as dopamine, can contribute to the neurodegeneration in

HD. In addition, the modulation of A2a receptors can ameliorate 3-NP-induced

neuronaldamage (Blum et al., 2002). In primates, chronic 3-NP administration

produces selective bilateral striatal lesions characterized by a depletion of calbin-

din neurons with sparing of NADPH-diaphorase neurons, and proliferative

changes in the dendrites of spiny neurons.

Lesion approaches in experimental animals using selective neurotoxins have

made it possible to clarify the mechanisms that underlie the hyperkinesis

(Crossman et al., 1987, 1988; DeLong, 1990). It has been suggested that there is

a shift in the pathways of the basal ganglia/thalamocortical circuit in HD

(DeLong, 1990). Animals also show both spontaneous and apomorphine inducible

choreiform movement disorders resembling those in HD. These findings clearly

associate metabolic stress and striatal neuronvulnerability. The differences in the

periodicity of excitotoxin injections and total dosing levels result in the reported

differences in susceptibility. Acute treatments consisting of a single i.p. dose of

3-NP rapidly lead to striatal degeneration within 6–12 h after injection (Alexi et al.,

1998; Bizat et al., 2003; Brouillet et al., 1998). Subacute treatments consisting of

daily repeated intraperitoneal injections lead to striatal degeneration over a few

days (Beal et al., 1993; Guyot et al., 1997a; Schulz et al., 1995b). The degree of
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toxicity in rodents is also dependent upon the strain and gender of experimental

animal used (Brouillet et al., 2005). Systemic administration of 3-NP, however, is

not specific to the CNS alone. There is now strong evidence to suggest that 3-NP

has severe cardiotoxic effects in addition to neurotoxicity (Gabrielson et al., 2001)

and, as such, the underlying cause of the mortality and clinical phenomena

observed in 3-NP toxicity are questioned. Peripheral cardiac damage may con-

tribute to the clinical and neuropathological outcome measures from hypoxia. As

such, postmortem analysis of somatic organs, especially the heart, in assessing

pathological involvement is critical in determining the involvement of systemic

and neurological contributions to CNS damage using 3-NP. While 3-NP toxicity

replicates a number of the cell death mechanisms associated with HD, genetic

mutant huntingtin rodent models may provide the best possible molecular and

pathophysiological correlation to humans with HD. Although toxin models do not

help to advance our understanding of the pathogenicity of expanded polygluta-

mine tracts, this is not to suggest that the 3-NP model is not without merit, as it

continues to enrich our understanding of specific pathophysiological phenomena

in HD associated with excitotoxicity and mitochondrial dysfunction.
B. GENETIC MODELS OF HD

Genetic models have revolutionized the study of human neurological diseases

by providing accurate and experimentally accessible systems in which to study

molecular pathogenesis. Genetic models also provide an opportunity to test poten-

tial treatments and explore their promise for translation to humans experiencing

these diseases. This is perhaps greatest in inherited diseases, such as HD, which

affect single genes. It must be said, however, that even the genetic models of HD

are not perfect since there are subtle differences in the huntingtin gene from the

human orthologue along with dissimilar promoters. It has also been suggested that

since the length of polyglutamine repeats in some genetic models represents the

more fulminant juvenile form of HD with little resemblance to adult onset HD.

The degree of overexpression of mutant protein plays a significant role in the

phenotype observed in mice. The gold standard is the human condition and no

genetic model replicates all of the findings in HD patients. Each model, however,

has valid and useful experimental outcomes that can be used to provide a greater

understanding of the disease process in humans and especially in identifying

potential therapeutic strategies.

Different genetic mouse lines have been generated with varying phenotypes as

a product of how the mutant huntingtin was incorporated into the mouse genome.

They fall into three broad categories: (1) mice that express exon-1 or exon-1 and 2

of the human huntingtin (htt) gene containing polyglutamine mutations (in addi-

tion to both alleles of murine wild-type huntingtin, Hdh) (Jenkins et al., 1999;
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Laforet et al., 2001; Mangiarini et al., 1996); (2) mice with pathogenic CAG repeats

inserted into the existing CAG expansion in murine Hdh (knock-in mice) (Heng

et al., 2007; Lin et al., 2001; Menalled et al., 2003; Shelbourne et al., 1999; White

et al., 1997; Wheeler et al., 1999, 2000); and (3) mice that express the full-length

human HD gene (plus murine Hdh) (Hodgson et al., 1996; Reddy et al., 1998).

Although all of these models share features with humanHD, the phenotype of full-

length huntingtin mutation models develops gradually over many months and

may not have a sufficient expression of disease to use progressive morbidity and

survival as endpoints. HD progresses over many years in patients and the exact

expression of the clinical and pathological phenomena observed in patients may

not be present in short-lived animal. While the full-length models are genetically

more accurate, the fragment models have a rapidly coursing robust phenotype,

well-defined neurobehavioral and neuropathological findings, and die between 3

and 5months of age. It has been a common practice to use the fragmentmodels for

therapeutics research because the outcomes are more clearly established and trials

are more easily conducted (Hersch and Ferrante, 2004). The ideal transgenic

mouse model should have a moderate disease onset and progression, well-defined

behavioral abnormalities, and neuropathological features, all of which accurately

replicate human HD.

1. Fragment/Segment Genetic Murine Models of Human HD

In the fragment models of HD, affected mice express N-terminal fragments of

human HD along with both alleles of murine Hdh. Not surprisingly, the degree of

similarity to human HD increases the closer the model reproduces the exact

neuropathological and molecular conditions for HD. However, as indicated

above, the more genetically accurate the model is, disease phenotype is less

fulminant and rapidly coursing. Thus, it has so far been much more feasible to

use the fragment models for therapeutic research because the outcomes are more

prevalent and definable without great variability in diagnostic criteria. This cat-

egory of genetic mice expresses N-terminal fragments of human HD and includes

the R6/2, R6/1, and N171-82Q lines. They show a relatively rapid onset and

progression of a phenotype that includes weight loss, motor performance abnor-

malities, neuropathological sequelae, and a shortened lifespan.

2. R6/2 Transgenic Mice

The R6 line was developed in the laboratories of Gill Bates from a pronuclear

injection of a 1.9 kb Sacl-EcoRI fragment using the 5’ end of the human HD gene

derived from anHD patient. It is composed of�1 kb of 5’UTR sequences, exon 1

carrying CAG repeats of �130 units, and the first 262 bp of intron 1. The R6/2

line was the first transgenic mouse model of HD. It has a peak size of 144–150



EXPERIMENTALMODELSOFHDANDREFLECTIONONTHERAPEUTIC STRATEGIES 429
repeat units at exon 1 (Mangiarini et al., 1996). It is one of the most widely

employed genetic models of HD. The R6/2 model exhibits a progressive homo-

geneousHD-like phenotype, with survival ranging from 14 to 21 weeks, depending

on housing and facility conditions. Differences in survival duration may be the

result of variations in housing, handling, environmental enrichment, and the

allowable presence of viral and bacterial symbionts, in addition to other factors.

Given that enriched environments can alter the progression of behavioral pheno-

type in R6/2 mice (Hannan, 2004), it stands to reason that differences between

laboratories may well alter the R6/2 phenotype. R6/2 mice presently available in

commercial vivaria have a much lower CAG repeat than those previously used in

experimental studies. The above issues mandate that, within any colony of R6/2

mice, CAG repeat size is critical to any findings and a repeatable measurement of

survival and other phenotypic outcome measures are paramount for each succes-

sive “f”generation for comparison to other studies.

Behavioral analyses of the R6/2 mouse showage-related impairments in dys-

tonic movements, motor performance, grip strength, and body weight that progres-

sively worsen until death. R6/2 mice are prone seizure activity (status epilepticus)

and sudden death, particularly in end-stage disease, although seizures may occur as

early as 60 days. Overhandling and other stressors exacerbate seizure activity.

Neuropathological sequelae which include increasing marked reductions in brain

weight, are present from 30 days, whereas decreased brain volume and hyperven-

tricular enlargement is present from 60 days, both a hallmark of the human disease.

In addition, decreased neostriatal volume, striatal neuron atrophy, increased astro-

gliosis, and a reduction in striatal neuron number, are present at 90 days of age

(Stack et al., 2005). In addition, consistent with early adult-onset HD, enkephalin

striatal neurons are reduced in comparison to substance-P striatal projection neu-

rons (Sun et al., 2002) with equal preservation of enkephalin and substance-P

striatonigral projections. Huntingtin-positive aggregates are present at postnatal

day 1 and increase in number and size with age, suggesting that disease onset

and progression occur before the presence of clinical phenomena (Stack et al.,

2005). The huntingtin inclusions are extensive and found throughout the brain in

great numbers, a phenomenon that is inconsistent with that observed in HD

patients. It has been suggested that the latter may be the result of using only a

portion of the HD gene, transgene effects, and/or the use of foreign promoters that

increase expression levels. There does not appear to be any gender differences in the

pathological phenotype. There is parallelism between the reported mechanisms of

disease pathogenesis observed in HD patients and those found in the R6/2 mice,

which include altered proteolysis and proteosomal activities, increased protein

crosslinking, induced chaperone expression, and defects in vital cellular processes

that comprise endocytosis, intraneuronal trafficking, transcriptional regulation,

postsynaptic signaling, apoptotic cascades, and alterations in bioenergetic metabo-

lism and mitochondrial function (Beal and Ferrante, 2004; Ryu et al., 2005; Stack
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and Ferrante, 2007). While the R6/2 model has many of the clinical and neuro-

pathological features observed in HD patients, it is not an exact genetic and

neuropathological match with HD patients. Nevertheless, the R6/2 model has a

well-characterized progressive phenotype with moderate variability, such that

experimental groups can contain as few as 10 mice and provide the power to detect

differences in many outcome measures. It is possible to perform survival studies, an

important potential surrogate indicator for neuroprotection, in approximately

3 months from birth. The efficiency and clear experimental endpoints of the

R6/2 mice remain a major advantage.

There can be great variability in phenotype presentation, which is dependent

on CAG repeat size. The number of CAG repeats in the R6/2 line is 148–153 with

500–550 bp, as determined by PCR analysis (Stack et al., 2005). An increased

number of base pairs >550 results in a moderation of the R6/2 phenotype

severity. With increasing base pair numbers, there is a concomitant increase in

CAG repeat size. Base pairs ranging between 600 and 800 have CAG repeat sizes

between 175 and 192 in R6/2 mice and the average survival extension signifi-

cantly increases to approximately 131 days, in contrast to 500–550 bp at 98 days.

Base pair numbers of 1000 and above have CAG repeat sizes consistently above

200, with a mean survival of 148 days. The variability in survival and the amelio-

ration of the behavioral and neuropathological phenotype in R6/2 mice with

increased base pair number and CAG repeat size may reduce their utility in

therapeutic trials and may confound experimental results (Stack et al., 2005).

Although great variability in clinical measures is common in human trials, min-

imizing measurement variability increases the power to detect differences, partic-

ularly in mouse drug trials. Thus laboratories using these mice should ensure that

genetic variability is reduced, providing a relatively homogeneous population of

mice within experimental cohorts.

3. R6/1 Transgenic Mice

The R6/1 mice were developed along with the R6/2 mice and express exon 1

of the human HD gene with approximately 116 CAG repeats. The R6/1 mice

have not been as well studied as the R6/2 mice (Mangiarini et al., 1996). The R6/1

line has a later age of onset and a slower disease progression and may be the result

of the reduced CAG repeat size. Body weight loss occurs after 22 weeks

(Naver et al., 2003). They exhibit motor performance abnormalities, as limb

clasping, at 4–5 months. There is a significant decline in rotarod performance

between 14 and 20 weeks. This behavioral change correlates with the presence of

huntingtin aggregates in striatal neurons. Gait abnormalities and hindlimb clasp-

ing are similar to the R6/2 mice, although their life span is beyond 12 months.

Brain volume is significantly reduced by 18 weeks with striatal neuron atrophy.

There is, however, no neuronal loss, as identified by neuron-specific nuclear
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protein NeuN or met-enkephalin immunostaining in the striatum (Naver et al.,

2003). Huntingtin aggregates are present by 2 months of age. While both R6/1

and R6/2mice are resistant to excitotoxic lesions produced by quinolinic acid and

malonate (Hansson et al., 1999, 2001a), it is possible that the latter may be

attributable to a reduction in dopamine levels in the R6/1 mice and R6/2 mice

(Hickey et al., 2002), (Petersen et al., 2002a). In the R6/1 mice, extracellular

dopamine levels are reduced by 70% and intrastriatal administration of malonate

in these mice results in significantly smaller lesion size (Petersen et al., 2002b). In

contrast, R6/2 mice are more susceptible to the mitochondrial toxin 3-NP

(Bogdanov et al., 1998). It may well be that differences in the periodicity of

excitotoxin injections and in total dosing levels between reporting laboratories

result in the published differences in susceptibility of 3-NP. Equally, background

strain may also play a role in resistance (McLin et al., 2006). In addition, reduced

sensitivity to excitotoxins may be dependent upon age and CAG repeat length

(Hansson et al., 2001b).

4. N171-82Q Transgenic HD Mice

N171-82Q mice, developed by David Borchelt, have an N-terminal fragment

of huntingtin incorporating both exon 1 and exon 2 of the huntingtin gene, with 82

polyglutamines (Jenkins et al., 1999). The N-terminal fragment is driven by the

mouse prion promoter and expression is restricted to neurons and no other cells in

the CNS. The mice contain two wild-type copies of the gene along with one

mutant copy. The phenotype of N171-82Q mice is similar to, but less severe than

that present in the R6/2 mice. The first abnormality observed is weight-gain

failure with a significant body weight loss over the last 6 weeks of life. In contrast

to the R6 lines of HDmice, seizure activity and hyperkinesis are not present in the

N171-82Q mice. They do, however, show deficits in the radial arm water maze

test of working and reference memory at 14 weeks (Ramaswamy et al., in press).

The life span is variable, ranging from 130 to180 days. The neuropathological

features of the N171-82Q mouse models are similar to the R6 mice in that they

show striatal atrophy, hyperventricular enlargement, striatal neuron loss, and

astrogliosis (McBride et al., 2006; Yu et al., 2003). Huntingtin and ubiquitin-positive

inclusions are found as early as 16 weeks and continue to increase in number

through end-stage disease, particularly in the pyriform cortex. The phenotype of

N171-82Qmice, however, is more variable than that of R6/2 mice and, as such, a

greater number of N171-82Q mice (n = 20) are necessary for experimental trials.

5. Murine Hungtintin Homolog Knock-In Mice

While this group of HD mice represents a more precise genetic model of HD,

the knock-in mice models present with a mild and protracted behavioral and
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neuropathological phenotype with a normal lifespan, in contrast to the fragment

models. An expanded CAG repeat is inserted into the murine huntingtin homolog

and, therefore, the mutation is genomically correct and under the endogenous

Hdh promoter. The mice can be homozygous or heterozygous for the mutation.

While multiple knock-in models have been created, four are most widely used and

include the HdhQ111, the Hdh/Q72-80, the CAG140, and the CAG150 HD

mice. The chimeric HdhQ lines were developed by a mutated exon 1 containing

either 111 or 92 CAG repeats. These large polyglutamine repeats cause a CAG

repeat instability, predisposing them to subsequent increases in CAG repeat,

resulting in a more fulminant disease process (Wheeler et al., 1999). Huntingtin-

positive puncta are present in neuronal nuclei by 4 and a half months along with an

increase in gliosis by 24 months in both lines (Wheeler et al., 2000). Mitochondria

undergo compensatory changes in calcium sensitivity in both the Q92 and Q111

mice (Brustovetsky et al., 2005). A knock-in Hdh mouse with 72–80 CAG repeats

shows aggressive behavior, rotarod impairment, and neuropil aggregates, but no

gliosis or neuronal loss (Shelbourne et al., 1999).

The HdhQ111 knock-in mice have 111 CAG repeats inserted into the murine

HD gene (Wheeler et al., 2000) and develop a progressive neuropathological

phenotype, consisting of nuclear localization of the full-length huntingtin protein

in medium striatal spiny neurons, and subsequent formation of N-terminal inclu-

sions and insoluble aggregates. They develop a late-onset neurodegeneration and

gait deficit at 24 months of age (Wheeler et al., 2002). While no differences in

rotarod abnormalities are present, paw-clasping, tunnel walk, and stride length

outcome measures reveal a ‘subtle’ gait deficit. Reactive gliosis and toluidine-blue

stained striatal neurons were present at 24 months. These neurons are negative for

TUNNEL staining, again suggesting a very “subtle” disease progression as

reported by the authors.

A knock-in mouse with 94 CAG repeats has increased rearing at night at

2 months of age, decreased activity at 4 and 6 months, but a normal lifespan.

Nuclear microaggregates are present at 4 months and are widely distributed at

6months of age in thesemice. Inmice developed by the same groupwith 140CAG

repeats, a similar pattern of motor abnormalities is present (Menalled et al., 2003).

Disease onset in the 140 CAGmice occurs much earlier than in the 94 CAGmice,

consistent with the same phenomena in HD patients, as the onset of symptoms in

HD patients occurs at a younger age with greater CAG repeat size. In addition,

there is increased motor activity and rearing at 1 month of age, hypoactivity at 4

months of age, and a reduction in stride length at 12 months of age. No significant

weight loss is reported up to 1 year of age. Further analysis, however, has shown a

much wider range of motor and behavioral dysfunction (Hickey et al., 2008). Open

field analyses in 140 CAG mice of distance traveled, ambulatory counts, resting

time, and ambulatory time showed significant differences from only the 3-month

time point onward, in comparison to littermate control mice, suggesting that the
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2-month time point may be a clinically premanifest time point (Kim et al., 2010b).

While neuronal loss and reactive astrogliosis are not observed in the 94 CAG, they

are present in the 140CAGmice. The 140CAGmice show decreases in dopamine

and cAMP-regulated phosphoprotein of 32 kDa (DARPP32) (a marker of striatal

projection neurons) at 12 months, and neuronal loss at 2 years of age (Hickey et al.,

2008). Huntingtin aggregates are present in both the 94 CAG and 140 CAGmice.

With age, there is a more global presence of huntingtin aggregates throughout the

CNS. There is a derangement in bioenergetic mechanisms, increased oxidative

stress, and factors associated with transcription regulation in the 140 CAG mice,

with reduced ATP brain levels, increased 8-hydroxy 2’-deoxyguanosine (a marker

of DNA oxidation in both brain and urine), hypoacetylation of histone activities

(Foran et al., 2006), and a reduction in creatine kinase activity in blood and brain

(Kim et al., 2010b). The 140 CAG mice may be useful in premanifest and symp-

tomatic HD investigations, as well as for therapeutic evaluation.

The 150 CAG repeat knock-in mouse model has late-onset gait abnormalities

and develops neuronal intranuclear inclusions predominantly in the striatum

(Heng et al., 2007; Lin et al., 2001; Tallaksen-Greene et al., 2005). There is an

age-dependent late-onset behavioral phenotype with significant motor abnormal-

ities at 70 and 100 weeks of age measured by rotarod, balance beam, and clasping

(Heng et al., 2007). At 100 weeks, the mice exhibit resting tremor, unsteady move-

ments, and staggering gait. No significant gender differences have been observed.

There is significant weight loss by 70 weeks with continued weight reduction with

age. Gliosis is significantly increased by 14 months. Further analysis of this model

shows that striatal nuclear huntingtin and ubiquitin-positive inclusions are asso-

ciated with thematrix compartment by 27 weeks, the topographic striatal area first

thought to be involved in HD patients (Guyot et al., 1997a). In older animals,

nuclear inclusions are distributed evenly in both the striatal patch and matrix

compartments by �2 years, nuclear inclusions are present in most brain areas.

Measurements of dopamine D1 and D2 receptor binding sites are reduced by at

70- and 100-week time points. Striatal neuron loss is present at 100 weeks, with a

50% loss in striatal perikarya and a 40% reduction in striatal volume. Recent

evidence shows NMDA receptor-mediated excitotoxicity in this mouse line, pro-

viding additional proof that the interaction of huntingtin with NMDA receptors

may be an early event in neuronal death in HD (Heng et al., 2007). Further

longitudinal analysis of the behavioral phenotype in these mice shows early and

progressive cognitive deficits along with impaired motor performance

(Brooks et al., 2010). As with the 140 CAG HD mice, the Hdh-150 mice may be

useful in identifying early disease mechanisms and premanifest biomarkers of HD.

While the knock-in mouse lines do not have a rapid and fulminant disease

progression to use early morbidity and survival as outcome benchmarks, they do

have a number of measurable neuropathological and behavioral phenotypes that

can be validated as potential endpoints in therapeutic studies and may be useful as
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both a primary model, as well as a secondary model for confirmation. A greater

investigation into the pathophysiological phenomena of these mice is ongoing.

6. Full-length Human HD Gene Transgenic Mouse Models

Transgenic mice with full-length huntingtin containing 48 or 89 CAG repeats

have been described and are reported to have behavioral abnormalities along with

neuronal loss (Reddy et al., 1998). A yeast artificial chromosome (YAC) mouse

model of HD with the full human huntingtin gene and containing 128 CAG

repeats (YAC 128) develops motor abnormalities consisting of hyperactivity fol-

lowed by abnormalities in walking from 6 to 12 months, with subsequent hypokin-

esis (Hodgson et al., 1999; Slow et al., 2003). There are other significant declines in

motor performance starting as early as 3 months and include circling behavior,

hindlimb clasping, and gait abnormalities. In addition, rotarod and open field

abnormalities are present at 4 and 2 months, respectively (Van Raamsdonk et al.,

2007). While there is marked body weight loss in the YAC72 mice, there is an

increase in body weight in the YAC128mouse by 2months (VanRaamsdonk et al.,

2007). Cognitive dysfunction, measured by the swim test for procedural learning,

has been compared to the perseveration observed in HD patients. The motor

deficit in the YAC128 mice correlates with striatal and cortical neuron loss,

providing a structural correlate for the behavioral changes observed in these mice

(Slow et al., 2003). Neuropathological examination shows the presence of hunting-

tin immunostaining at 1–2 months, huntingtin macroggregates starting at 12

months and increasing in number by 18 months, with decreased striatal and

cortical volume and reduced striatal neuron area and number by 12 months in

the YAC128 model (Van Raamsdonk et al., 2007). The YAC 128 model has been

used extensively to investigate pathogenic mechanisms of HD andmost recently to

identify therapeutic strategies. Medium-sized spiny striatal neurons are more

vulnerable to NMDA receptor-mediated death in the YAC transgenic mouse

model of HD expressing full-length mutant huntingtin (Zeron et al., 2002). Both

mitochondrial and apoptotic pathways are altered in these mice (Fernandes et al.,

2007). The neuropathology in the YAC mice has excellent fidelity with human

HD. Recent studies have shown poly Q length-dependent enhancement of peak

NMDA receptor current density and NMDA receptor trafficking, along with

enhanced NMDA-induced apoptosis (Fan et al., 2007; Fernandes et al., 2007).

Transgenic mice using a bacterial artificial chromosome (BAC) look promising

(Gray et al., 2008). These mice have a 240 kb BAC that contains the entire 170 kb

human huntingtin locus. These mice show progressive motor deficits, exhibiting a

significant reduction in rotarod performance at 2 months with worsening behavior

through 12 months. The BACHD mice also show a significant gain in body

weight, similar to the YAC 128 mice, that plateaus at 12 months. By 12 months,

there is marked gross brain atrophy and brain weight loss, with significant
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decreases in both cortical and striatal volume. Degenerating dark neurons were

present in the striatum at 12 months without significant neuronal loss. Huntingtin

inclusions were detected starting at 12 months and are present almost entirely

within the cortex withsome inclusions in the stritum. Electrophysiological studies

show that spontaneous excitatory transmission is significantly reduced in the

BACHDmice, suggesting early abnormalities in cortical input to striatal neurons.

Although these mice have not yet been used in a published therapeutic discovery

experiment, there are efforts underway.

AHD transgenic rat model has been developed that expresses 51 human CAG

repeats (von Horsten et al., 2003). Expression of the gene is under an endogenous

rat promoter. While normal at birth, there is a progressive reduced performance

on rotarod after 2 months, gait abnormalities and head dyskinesias starting at

10 months, cognitive deficits by 12 months, and significant body weight loss by

24 months (Nguyen et al., 2006).The neuropathological sequelae include hyper-

ventricular enlargement, along with huntingtin inclusions throughout the brain.
C. LENTIVIRAL-MEDIATED MUTANT HUNTINGTIN MODEL

A lentiviral delivery of mutant huntingtin has been developed in a rat model

using 44, 66, and 82 repeat fragments (de Almeida et al., 2002). There is increased

expression of ubiquitinated htt aggregates starting 1 week after injection with great

numbers of inclusions by 4 weeks. Striatal neuron degeneration, loss of DARPP-32

staining, and cell death occur by 6 months. The neurodegeneration is specific to

spinal striatal GABAergic neurons, with little or change in striatal interneurons.

These findings are consistent with observations in HD patients.
D. NON-HUMAN PRIMATE MODELS OF HD

While 3-NP toxin lesions have been used as an experimental model of HD in

primates and closely parallel the neuropathological, neurochemical, and clinical

features of HD, a transgenic HD rhesus monkey model has been developed that

expresses expanded huntingtin polyglutamine. These primates show clinical

symptoms that include dystonia and chorea similar to the clinical phenomena

observed in HD patients (Yang et al., 2008). Although huntingtin aggregates are

present in the brains of these monkeys, no striatal neuron degeneration has been

found. As HD is a slowly progressive disorder, it may be years before these

monkeys show a full HD neuropathological phenotype. Clinical follow-up con-

tinues with surviving monkeys. The availability of nonhuman primates with HD

could be valuable in any final analysis evaluating the most promising therapeutic

candidates for HD patients.
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III. Methodological Considerations for Mouse Therapeutic Trials
While the design of this chapter was not meant to review in detail the meth-

odologies used in preclinical trials to help determine potential translation of

therapies to patients with HD, it is worthwhile to mention the importance of the

basic guidelines that are vital to ensure that animal trials are reproducible and

valid. Althoughmaking the therapeutic leap from genetic models to humans fulfills

one of the promises ofmolecularmedicine, it also brings risk to human subjects and

expends human and financial resources. Thus, how data from experiments using

experimental models are used to inform choices about clinical trials requires

reflection and examination. Among the important issues are what constitutes an

informative genetic model, what principals should be followed in designing experi-

ments using thesemodels, what body of evidence is desirable to fully inform clinical

decision making, and what factors contribute to the equipoise in determining

whether preclinical information about a therapy makes human study warranted.

There is a growing body of evidence suggesting that the phenotypes from

mouse models of neurological diseases closely correlate with human diseases

and may validate known CNS drug targets in a therapeutically relevant manner.

The strengths of the HD mouse models are in their utility to provide parallel

pathophysiological targets that are present in HD patients, in their potential as

sensitive predictors for therapeutic intervention, and their promise in the devel-

opment of novel drug agents. While drug trials in mice confirm therapeutic

direction, the challenge is in determining what dose might be of value in patients

since the pharmacokinetics of mice and man is dissimilar. The lack of any proven

neuroprotective therapy for HD also affects the equation by keeping the level of

urgency high. Unfortunately, it has not yet been confirmed that experiments

demonstrating improved phenotype in HD mice are predictive of benefits in

humans. There have been, however, recent studies showing significant parallels

in biomarkers of disease pathogenesis and treatment efficacy from both HD

patients and HD mice (Foran et al., 2006; Hersch et al., 2006; Kim et al., 2010b).

Similarly, it is unknown whether the magnitude of benefit in mice predicts the

magnitude of benefit in humans. At the moment, the findings using bioenergetics

compounds, such as creatine and coenzyme Q10, in HD patients and HD mice

have provided intriguing information that lends promise to this issue. There is

every belief that the current high-dose creatine trial in HD subjects will bring to

light the value of mouse clinical trials.

While toxin models play a role in understanding mechanisms of excitotoxicity

and mitochondrial dysfunction in HD, they fall short as a reliable model of an

autosomal dominant genetic disease characterized by the misfolding of the mutant

huntingtin protein. Genetic animal models of inherited neurological diseases

provide an opportunity to test potential treatments and explore their promise
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for translation to humans experiencing these diseases. Therapeutic trials con-

ducted in genetic mouse models of HD have identified a growing number of

potential therapies that are candidates for clinical trials and have been reviewed

in multiple publication venues (Beal and Ferrante, 2004; Stack and Ferrante,

2007). There is a need, however, to begin to prioritize the many leads emerging

from transgenic mouse studies. This can only happen if there is some standardi-

zation of experimental methodologies and outcome measures in transgenic mouse

models of HD. To date, it has been very difficult to compare results between

compounds and laboratories and there are also many additional factors that can

affect translation to humans. As such, the use of appropriate methodology in

human clinical trials and in mouse trials to determine outcomes should have the

same considerations apply to both, but are not always considered in mouse trials.

While there are many different outcomes that could be used in characterizing drug

efficacy, the following minimum guideline criteria are essential to strengthen the

evidence for drug translation to patients.

Pharmacokinetic analysis of the study compound, its metabolites, or of mole-

cules expected to be affected by the treatment, help to insure that the compound

reaches the brain and performs as expected. Additionally, understanding effective

doses in mice, along with blood and brain levels, can set the stage for asking

whether such doses and levels can be achieved in humans. HPLC with electro-

chemical detection along with spectrometric analysis are the methods of choice

(Dedeoglu et al., 2002, 2003). Because pharmacokinetic studies provide critical

information regarding optimal dosing, maximum-tolerated-dose studies are

important to determine the LD50 dose starting at a minimum tolerated dose

and increasing the dose onefold b.i.d. each administration over the course of

14 days or until LD50 is reached. Latency as a time-concentration curve in blood

and brain provides information regarding dose frequency. These experimental

studies are completed in both wild-type and mutant mice prior to a drug trial in

mice and allow a determination of the optimal pharmacokinetic parameters for

dosing the mice. In addition to pharmacokinetic studies, it can be very helpful to

perform pharmacodynamic studies aimed at determining whether a compound’s

expected mechanism of action is actually working.

Blinding of study personnel about the treatment condition of the animals

they are studying should be standard practice. A priori power analysis is essential

to establish whether the study has sufficient numbers of mice for each endpoint.

An estimation of the sample size is a critical first step. The numbers of mice for

preclinical studies must be carefully considered and reflect the different outcome

measures to be analyzed. Whereas in human trials enormous variability is a

given, in mouse trials it is possible to minimize the variability and thereby

increase the power to detect smaller differences in smaller groups. It is impor-

tant to understand the genetic, physical, and environmental sources of variabil-

ity to take advantage of this.
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As in human clinical research, it is important to have inclusion and exclusion

criteria, which should be predetermined. For example, there is good reason to

consider excluding “runts” by weight, mice with injuries, mice in which CAG

repeat length is out of the median range. CAG repeat must be monitored in the

experimental colony within the laboratory vivarium or verified through the source

of purchase. Treatment groups should be physically and genetically comparable.

There should be an assignment of mice into experimental cohorts to prevent over-

representation of sibs within any group. The environment in which these mice are

housed and treated also needs to be uniform since environmental enrichment

slows disease progression in HD mice and may be considered a therapeutic

treatment in and of itself (Hockly et al., 2002). Another important consideration

is the onset and duration of treatment in mouse trials. Initiation of treatment after

weaning, as has been most common, is analogous to treating presymptomatic

patients. Beginning treatment once a clinical phenotype, such as motor deficits,

is present would be analogous to most current human trials for HD.

There are many potential outcome measures that can be used in mouse

therapeutic trials. These bear close examination because they can differ enor-

mously in relevance with some clearly being much more informative and specific

than others. For clarity, in neurodegenerative disease research neuroprotection is

of the greatest importance, which at its most basic level is the preservation of

neuronal processes, somata, and function. Measures that assess these directly

(brain weight, gross atrophy, cellular atrophy, neuronal counts, gliosis, and volu-

metric imaging) should be considered the primary outcome measures. While it

may also be possible to model the treatment of clinical symptoms in genetic models

and it may also happen that improving behavioral symptoms corresponds to

neuroprotection, assessments of clinical symptoms should be considered secondary

outcome measures. These include survival, body weight, performance on motor

and cognitive tasks, and laboratory studies examining toxicity or putative mechan-

isms of action. Clinical symptoms can be modified without affecting neurodegen-

eration. This distinction is important to keep in mind when considering how

informative the results of a mouse therapeutic trial might be for translation to

humans. Of those secondary measures that have been most useful, survival, or

extension of life, is the most meaningful. Survival, or a surrogate for mouse

survival, which are usually criteria for advanced morbidity that agrees with an

institution’s animal care policies and triggers euthanasia, is an especially useful

secondary outcome measure. Besides generally correlating well with neuropathol-

ogy, it provides a relevant measure of the magnitude of benefit that is both

understandable and enables ready comparison with other therapies. A dose versus

survival study is recommended, using at least three doses, to decide whether

therapeutic benefits stabilize (saturate) or decline past the optimum dose deter-

mined by pharmacokinetic studies. In addition, laboratories should use positive

control compounds to help place their results in context. For example, several labs
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have replicated benefits with cystamine, so including a cystamine treatment cohort

in trials of more novel therapeutics could help calibrate results (Stack and Ferrante,

2007). A treatment cannot be considered to be neuroprotective in mice in the

absence of neuropathological evidence that brain atrophy, cellular atrophy, or

neuronal loss has been prevented. The quality of neuropathology in mouse ther-

apeutic trials is thus of foremost importance. Standardization of tissue processing is

critical to the analysis. And quantitative methods are essential as observation alone

can only detect large differences and semi-quantitativemethods are prone tomany

types of errors. It should also bementioned that other neuropathological measures,

such as protein aggregate load or the expression of molecules of interest, are only

meaningful if brain atrophy, cellular atrophy, or neuronal loss are measured to

provide a context for interpreting them. Lastly, the use of both fragment and full-

length HD mouse models in preclinical drug trials and confirmation of the exper-

imental findings in at least one independent laboratory that is familiar with animal

trials are important once the potential of a compound has been established.
A. BIOMARKERS OF HD

A major goal of current clinical research in HD is to improve early detection of

disease and premanifest detection of neuronal dysfunction with translation to ther-

apeutic trials. Biomarkers are urgently needed for diagnosis, disease progression,

and for potential disease-modifying therapies that are being developed and evalu-

ated in clinical trials, especially at the preclinical stage. The development of early

premanifest biomarkers is of great importance, as these may improve the power and

cost-effectiveness of drug trials. As the mechanism of pathogenesis in HD is not yet

clear, biomarkers will be required at all stages of disease and will necessitate multiple

combinations of detection methods. One complementary research strategy has been

to perform parallel correlative biomarker studies in HD patients and animal models

of HD and make comparisons. This approach takes advantage of advances being

made in animal models to best understand the most effective therapeutic strategies.

While many different approaches have been undertaken to identify biomarkers,

profiling objective biomarker measurements of HD has proven somewhat difficult

at the present time. The optimal biomarker would be easily measured, repeatable

and reliable, be present at all stages of disease, progress linearly with disease, and

correlate between mouse and man. The ideal biomarker would reflect, in a periph-

eral body fluid or tissue sample, disease in the central nervous system. The most

useful biomarkers measure a primary outcome of the disease; however, secondary

outcomes also reflect changes and can therefore be of use.

Neuroimaging provides a noninvasive, reproducible, and reliable measure

with which to track the progression of HD, however, changes in structure tend

to progress more slowly and can thus limit the usefulness of neuroimaging as a
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biomarker. Imaging techniques such as MRI, fMRI, PET, and DTI have all been

used to study changes in structure and connectivity in the HD brain. Such imaging

has revealed changes in the presymptomatic and early-onset HD brain. There is

selective white matter abnormalities in premanifest HD and are correlated with

cognitive and clinical manifestations using DTI (Rosas et al., 2006). MRI mor-

phometry has been used as a potential biomarker of disease progression, showing

selective topographical associations of cortical thinning with clinical features of

HD (Rosas et al., 2008) TRACK-HD, an ongoing multinational, observational

study of HD designed to study longitudinal changes in the premanifest brain, has

found that there is significant whole-brain atrophy and caudate atrophy in pre-

manifest and early manifest disease brains as compared to controls over the course

of a year. They have also found changes in cortical and subcortical gray and white

matter atrophy over the course of a year (Tabrizi et al., 2010). Cortical thinning has

also shown promise as a biomarker. Cortical thinning has been found to be present

in premanifest brains, showing changes over the course of a year (Rosas et al.,

2002), and these findings correlate with disease stage (Rosas et al., 2008) and

cognitive test results. Based on these promising results, a 3-year study involving

more than 600 patients has begun to confirm these results.

It has also been shown that biomarkers of protein crosslinking are significantly

elevated in both HD patients and in HDmice. Both transglutaminase and gamma

glutamyl lysine activities are significantly increased in brain samples in a disease-

dependent manner (Dedeoglu et al., 2002). There is evidence that biomarkers of

nucleosomal and bioenergetic dysfunction are present in both HD mice and HD

patients, representing biomarkers as predictors of disease onset and progression

(Stack and Ferrante, 2007). In addition, 8-hydroxy-2-deoxyguanosine, a marker of

DNA oxidation, is significantly increased in brain and urine from HD patients

and HD mice (Foran et al., 2006; Hersch et al., 2006). Of great interest are

studies using high-dose creatine in HD patients and in HD mice, showing

parallelism in biomarkers of disease pathogenesis and treatment efficacy.

Creatine treatment significantly improves brain creatine levels and reduces

urine levels of 8-hydroxy-2-deoxyguanosine, a marker of DNA oxidation, in

both HD patients and mice (Foran et al., 2006; Hersch et al., 2006). While it has

not yet been confirmed that therapeutic experiments demonstrating improved

phenotype in HD mice are predictive of benefits in humans, the above evidence

demonstrates that mice do provide value.

Recent studies have shown that the brainisoenzyme of creatine kinase, an

enzyme important in buffering energy stores, was significantly reduced in pre-

symptomatic and manifest disease in brain and blood buffy coat specimens in HD

mice and HD patients (Kim et al., 2010b). Correlative biomarker analysis in both

mice and man will provide a more rapid and desirable body of evidence to fully

inform clinical decision making. While the efficiency and clear experimental end-

points of the R6/2 mice remain a major advantage, the fulminant and early
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expression of disease in these mice may not allow for premanifest and early

symptomatic identification of biomarkers. Full-length knock-in HD mice, how-

ever, may provide the best possible molecular and genetic comparability to human

HD and strengthen the ability to confirm the detection of biomarkers, especially

prior to disease onset, given their slow disease progression.
IV. Existing Clinical Management
Existing medical care primarily focuses on symptom management, optimizing

functions that are in continual decline, and the provision of ever-increasing levels

of assistance. Symptomatic therapies using existing medications can help specific

symptoms, such as depression, emotional dyscontrol, obsessive thinking, psychosis,

chorea, rigidity, dysphagia, and weight loss. Nonpharmacological therapeutics are

also very important and include occupational therapy, physical therapy, speech

pathology, clinical nutrition, social services, genetic counseling, psychotherapy,

and long-term care. All of these different medical, counseling, and rehabilitative

modalities can ameliorate symptoms and help make HD more manageable for

patients and their families. Although optimal care significantly improves the

quality of life for HD patients, there is no evidence that it appreciably slows the

progression of the disease.

Antipsychotic agents have been used to manage the depression, anxiety, and

other psychiatric disturbances associated with HD. Selective serotonin uptake

inhibitors such as sertraline and fluoxetine along with benzodiazepines such as

clonazepam, diazepam, risperidone, and sulpiride have all been employed in the

clinical setting (Ramaswamy et al., 2007). However, no study has been conducted

that provides significant evidence that any antipsychotic drug is more effective in

the treatment of HD symptoms than any other. The use of other anxiotylics, such

as Zyprexa and Seroquel, are gaining favor in HD. Both of these drugs have a

secondary effect in improving weight gain, which is important in HD patients.

Although multiple drug agents have been employed to treat chorea, the

dopamine inhibitor tetrabenazine is the most promising drug available and the

only drug to be approved by the FDA for HD and was championed by Dr. Nancy

Wexler (Fasano et al., 2008; Group, 2006). Tetrabenazine works by reversibly

inhibiting the central vesicular monoamine transporter type 2 (VMAT2) that

causes dopamine depletion without greatly affecting norepinephrine levels. The

site and action of binding makes tetrabenazine more useful than other dopamine

depleting drugs for the treatment of chorea. Other dopamine depleting drugs such

as reserpine bindVMAT1 in addition to VMAT2 and as VMAT1 is also present in

the peripheral nervous system, reserpine causes adverse effects, such as orthostatic
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hypotension. Tetrabenazine has the highest binding density in the areas most

affected by HD, including the nucleus acumbens, the putamen, and the caudate

nucleus. Because it binds reversibly, the monoamine depletion lasts only hours and

is therefore not modified by long-term treatment. Adverse side effects include

drowsiness, insomnia, depressed mood, agitation, akathisia, and hyperkinesia,

but these effects disappear once patients reach the maximum dose. In addition

to dopamine depleting agents, dopamine agonists, glutamate antagonists, and

antiseizure medications are just a few of the other types of therapies that have

been employed to treat chorea.
A. THERAPEUTIC STRATEGIES

Many potential therapies have now been tested in genetic models of HD and

some have been demonstrated to be neuroprotective in HD transgenic mice.

Efficacy in mouse trials has provided the rationale for a number of clinical trials

that have already occurred or are planned. These include coenzymeQ10, creatine,

remacemide, riluzole, minocycline, ethyl-epa, phenylbutyrate, and cysteamine

(Stack and Ferrante, 2007). Most of these have been early-phase clinical trials,

so the predictive value of mouse therapeutic trials are not yet known. However,

because these are actually very good models at many levels of analysis, it would be

surprising if some compounds benefiting themousemodels did not prove to benefit

humans with HD. Since clinical trials may be expensive, effortful, and years in

length depending on the type, there is growing discussion within neurodegenera-

tive disorder clinical trials organizations, such as the Huntington Study Group and

sponsors, about howmuch preclinical information is enough and how to prioritize

amongmany efficacious compounds. Of course, the bar should be higher for later-

phase trials and higher when the interventions have greater potential for risks to

human subjects. The impact therapeutic trials in genetic models can have on

selecting compounds for clinical trials in humans depends onmany factors relating

to the quality and breadth of the preclinical data, as well as on the potential risks

and benefits to performing the human clinical trials.
V. Mechanisms of Cell Death and Potential Therapeutic Targets in HD
A. MUTANT HUNTINGTIN AGGREGATION (MHTT)

While the gene responsible for HD was discovered 18 years ago (A, 2011), the

relationship between mHtt and the multiple molecular pathways that appear to
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mediate neuronal death in HD remain to be clarified. There is a dynamic expan-

sion of polyglutamine proteins from monomers to oligomers, with the latter

thought to be pathogenic structures. These oligomers exist in both soluble form

and as mHtt aggregates. These aggregates contain amyloid fibers and amorphous

aggregates along with other proteins involved in the ubiquitin-proteasome and

molecular chaperone system. Both the soluble and aggregate form have been

suggested to cause neuronal dysfunction and cell death. While transglutaminase

activity has been proposed tomediatemHtt aggregation (Zainelli et al., 2005), there

is ample evidence regarding transglutaminase expression in HD (Hoffner et al.,

2002; Karpuj et al., 1999; Lesort et al., 1999) and a role for transglutaminase in HD

pathogenesis is now well accepted.

Interestingly, proteins containing polyglutamine expansions, such as mHtt, are

degraded in a limited context by the ubiquitin-proteosome system (UPS)

(Holmberg et al., 2004). However, recent data suggests that the proteosome may

not cleave polyglutamine sequences within the mutant protein (Holmberg et al.,

2004). Ongoing debate continues, as with other neurodegenerative disorders in

which protein aggregates are a hallmark of disease, questioning whether inclusions

formed by the aggregated N-terminal truncation of mHtt cause neuronal death

through alterations of nuclear transport or DNA arrangements affecting transcrip-

tion. Recent studies have suggested a protective role for aggregation (Arrasate et al.,

2004; Kuemmerle et al., 1999; Taylor et al., 2003). Through the use of an auto-

mated microscopy technique to assess the time frame in which neurons expressing

mHtt expire, improved survival is seen in neurons that contain mHtt aggregates

(Arrasate et al., 2004). It is difficult, however, to reason that such factors as the mass

effect of cytosolic and nuclear huntingtin aggregate burden, the sequestration of

critical transcription factors and neuronal proteins that are essential for neuronal

survival by huntingtin aggregates and their subsequent reduced activity, altered

proteosomal function, and the localization of mutant huntingtin aggregates to

cellular organelles such as mitochondria, do not have a deleterious effect on

neuronal function and cell survival. One partial explanation put forth, however,

is that a number of these deleterious effects may be caused by the dysregulation of

the ubiquitin-proteasome dependent protein degradation pathway in response to

polyQ-expanded huntingtin (Bence et al., 2001). In defense of the latter, it has been

reported that primary cortical neurons expressing full-length mutant Htt physi-

cally impede mitochondrial transport and that this is an early pathological event

(Chang et al., 2006). Immobilized mitochondria may result in reducing energy

needs throughout the neuron, especially in striatal projection neurons. It is intrigu-

ing to suggest that the improved behavioral and neuropathological phenotype in

HD mouse models by the administration of select therapies that reduce Htt

aggregates (Beal and Ferrante, 2004) may be the result of, at least in part, improved

mitochondrial dynamics and trafficking. One issue that remains unclear is the

relation of mHtt aggregation to selective neuronal degeneration. In HD, a select
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population of striatal neurons is affected while others are spared. As mutant

huntingtin is present throughout the CNS, the hypothesis that mHtt causes cell

death is insufficient to explain the selective degeneration.One possible explanation

is that if cell death is dependent on the amount of soluble protein present in the cell,

cells with higher levels of unaggregated mHtt will be more vulnerable (Arrasate

et al., 2004; Sisodia, 1998). It has also been suggested that amino acid residues

outside of the expanded polyglutamines are responsible for selective toxicity

(Gatchel and Zoghbi, 2005). Whether the formation of mHtt aggregates is pro-

tective or toxic, it is clear that coincident with mHtt aggregation, there are

additional pathogenic cascades at work in HD.

As such, the inhibition and degradation of mHtt is a potential therapeutic

target in HD. In normal neurons, organelle and protein turnover is a critical

feature that promotes health and function. Altered proteolysis may result in

aberrant protein changes in denaturation or misfolding. Two distinct routes medi-

ating proteolysis in neurons are the ubiquitin-proteosomal pathway and the lyso-

somal pathway. Proteins destined for degradation mediated by the UPS must be

tagged for degradation. In general, the UPS is responsible for the degradation of

transiently expressed proteins (Ciechanover, 2006) and must be sufficiently

unfolded to fit through the narrow opening of the proteosome (Pickart and

VanDemark, 2000). In addition, degradation of proteins and organelles in bulk

is accomplished through the lysosomal pathway, in a process termed autophagy

(Rubinsztein, 2006). Through this pathway, cellular components destined for

degradation are enveloped in double membrane bound vesicles, called autopha-

gosomes, which fuse with lysosomes. Once fused, hydrolytic lysosomal enzymes

degrade the contents. While the mechanisms regulating autophagy are not

completely characterized, it is a process regulated by protein kinases, including

the well-characterized mammalian target of rapamycin (mTOR) (Schmelzle and

Hall, 2000). Phosphorylated mTOR is linked with protein synthesis, whereas

dephosphorylation of mTOR induces autophagy (Somwar et al., 1998).

Furthermore, mTOR-mediated autophagy has been linked to glucose levels, with

increased glucose stimulating autophagy and enhanced mHtt clearance through

reduced mTOR phosphorylation (Ravikumar et al., 2003). It is worth noting that

autophagy can be induced through activity of the insulin receptor substrate-2,

independent of mTOR activity (Yamamoto et al., 2006). This results in a signifi-

cant reduction of mHtt aggregation in vitro and is dependent on normal autopha-

gosome formation mediated by Beclin1 and hVps34.

Notwithstanding, with the importance of mTOR in autophagy and the role of

autophagy in HD, compounds that can interact with mTOR to promote autop-

hagy may prove exceptionally beneficial in HD. The chemical induction of

autophagy in reducing mutant aggregate proteins has been supported by the work

of David Rubinsztein (Sarkar and Rubinsztein, 2008). Using specific inhibitors of

autophagy 3-methyladenine or N6, N6-dimethyladenosine, the number and size
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of mHtt aggregates increases (Ravikumar et al., 2002). In contrast, induction of

autophagy by rapamycin resulted in a significant reduction in mHtt aggregation.

Rapamycin, a macrolide antibiotic, is approved for use in human patients.

Employed in several clinical contexts, recent effectiveness has been demonstrated

in cancer chemotherapy (Wendel et al., 2004). More recent evidence demonstrated

that rapamycin significantly improved neuronal survival, compared to wild-type

flies. In addition, the rapamycin ester CCI-779 significantly improved motor

performance and striatal neuropathology in the N171-82Q murine model of

HD (Ravikumar et al., 2004). In contrast, however, an inhibitor of autophagy,

everolimus, had little effect in reducing mHtt levels, nor did it provide neuropro-

tection in the R6/2 HD mouse model (Fox et al., 2010).

A screen of small molecules capable of modulating autophagy independent of

mTOR has revealed a dozen small molecule enhancers of autophagy (SMERs),

from which three positive hits (SMER 10, 18, and 28) were shown to reduce mHtt

aggregation in vitro. was performed (Sarkar et al., 2007). Further analysis demon-

strated significant protection against mHtt toxicity in HD mice. While the precise

therapeutic mechanism of SMERs remains unknown, an analysis of phosphory-

lation status in targets of mTOR showed no SMER-induced effects, suggesting the

SMERs act downstream of mTOR to induce autophagy.

Interestingly, lithium has also been identified as a potential inducer of

autophagy acting independently of mTOR, Lithium significantly has been

shown to reduce clearance of mHtt and mHtt-induced cell death in vitro

(Sarkar et al., 2005). A similar mood stabilizing drug, carbamazepine, has also

been shown to reduce mHtt-induced cell death and mHtt aggregation in vitro.

The in vitro lithium-induced clearance of mHtt mediated by autophagy is inde-

pendent of mTOR activity and dependent on inositol monophosphatase 1

(IMPase) activity, and the stimulatory effect is blocked with subsequent addition

of inositol triphosphate. Interestingly, combined inhibition of mTOR and

IMPase, by rapamycin and lithium, respectfully, resulted in additive clearance

of mHtt in vitro (Sarkar et al., 2005).

While strategies targeting enhanced clearance may promote improved neuro-

nal survival, therapeutic attenuation of mutant protein aggregationmay also prove

therapeutically valuable in treating HD. In this regard, cystamine may hold

significant promise. Cystamine is a disulfide-containing compound that possesses

multiple modes of action, from antioxidant properties (Revesz and Modig, 1965),

to inhibition of transglutaminase (Lorand et al., 1978). Indeed, recent preclinical

data frommultiple laboratories has demonstrated the potential therapeutic benefit

of cystamine in treating polyglutamine disorders, including HD (Dedeoglu et al.,

2002; Igarashi et al., 1998; Karpuj et al., 2002). More recently, the dimer of

cystamine, cysteamine, a product of cystamine reduction, has completed Phase I

human trials determining maximum dose tolerability and safety (Dubinsky and

Gray, 2006). These data, in concert with previous clinical use of cysteamine for
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treatment of cystinosis (McDowell et al., 1998), demonstrate the unique potential of

cystamine and its analogs in the treatment of HD.

Another approach in reducing huntingtin aggregation has been to use congo

red. Congo red can inhibit huntingtin oligomerization and disrupt preformed

oligomers, which prevents ATP depletion and caspase activation in vitro

(Sanchez et al., 2003). Intraperitoneal administration of congo red to R6/2 mice

from 7 weeks of age improved survival by 16.4%. While a similar approach would

be to use benzothiazoles, which prevent huntingtin aggregation in vitro (Heiser et al.,

2002), the in vivo efficacy of these compounds is yet to be established.

Huntingtin aggregates are a hallmark of both humanHDandmousemodels of

HD and have been implicated as a plausible cause of neuronal death in HD. High

throughput screening has identified a number of small molecule inhibitors of Htt

aggregation, yielding a sulfobenzoic acid derivatives, C2-8, as a potential thera-

peutic lead (Chopra et al., 2007). C2-8 has been shown to inhibit polyglutamine-

mediated aggregation in cell culture and brain slices, and rescue photoreceptor

degeneration in a Drosophila model of HD, while improving motor performance,

reducing Htt aggregates, and ameliorating neuronal atrophy in R6/2 HD mice

(Chopra et al., 2007; Zhang et al., 2005). ADMET profiling of 02-8 has been

consistent with excellent drug-like properties. We have preliminary data showing

that C2-8 significantly extends survival and reduces striatal neuron loss in R6/2

HD mice, while slowing motor dysfunction and Htt aggregate formation in the

full-length 140 CAG HD mice throughout disease progression.

Lastly, it is of interest to note that therapeutic compounds not specifically

directed at inhibiting mHtt have been shown to reduce mHtt aggregates

(Dedeoglu et al., 2003; Ferrante et al., 2000, 2002; Gardian et al., 2005; Klivenyi

et al., 2003; Stack et al., 2006; Smith et al., 2006; Wang et al., 2003). These findings

are largely the consequence of ameliorating disease progression. In contrast, there

are agents that extend survival well beyond that reported in the above-mentioned

studies, yet have little effect onHtt aggregates (Ferrante et al., 2004). The antibiotic,

mithramycin, is one such compound, extending survival almost 30% in the R6/2

HD mice.
B. TRANSCRIPTIONAL DYSREGULATION

Another profound aspect of disease pathology in HD is the alteration in gene

transcription (Sugars and Rubinsztein, 2003). While the precise molecular basis for

transcriptional dysregulation is unknown, there is significant evidence to suggest a

direct interaction between the mHtt protein and transcription factors (Dunah et al.,

2002; Rubinsztein, 2003). Through sequestration of transcription factors into mHtt

aggregates, it is thoughtmHtt brings about alterations in gene expression as observed

in both human HD and murine models of HD (Augood et al., 1997; Borovecki et al.,
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2005; Cha et al., 1999). Of great interest, transcriptional alterations associated with

mHtt appear presymptomatically, suggesting such dysregulation is not an epiphe-

nomenon. As such, there is now strong evidence that transcriptional dysfunction is

related to histone hypoacetylation and hypermethylation in HD (Hake and Allis,

2006; Strahl and Allis, 2000). Experimental studies in murine models have demon-

strated significant hypoacetylation of histone H4 (Ferrante et al., 2003, 2004; Stack

et al., 2007b), while hypermethylation of histone H3 is observed in HD patients and

HD mice (Ferrante et al., 2004; Stack et al., 2007b; Ryu et al., 2006)

The transcriptional repression observed inHD likely results from alterations in

chromatin packaging associated with epigenetic modifications of histone proteins.

In general, therapeutic manipulation of transcription may offer significant benefit

in treating HD, as well as other neurodegenerative disorders. In particular, phar-

macological targeting of histone methylation and acetylation status may be a

uniquemethod by which to achieve transcriptional homeostasis, and by extension,

neuroprotection in HD. Several preclinical trials with compounds directed toward

altered histone profiles in HD have been performed. One strategy has been to

target histone acetylation, by administering histone deacetylase inhibitors

(HDACi) (Ferrante et al., 2003; Steffan et al., 2001).

The HDACi’s sodium butyrate or suberoylanilide hydroxamic acid (SAHA)

provide significant neuroprotection in a drosophila model of HD (Steffan et al.,

2001). These results were supported by in vitro analyses that demonstrated mHtt-

induced inhibition of the histone acetyltransferase proteins CBP and p300 and

improved the acetylation profile of histone H4 after sodium butyrate. Sodium

butyrate and SAHA were also shown to provide neuroprotection in the R6/2

murine model of HD (Ferrante et al., 2003; Hockly et al., 2003). Sodium butyrate

and SAHA improved motor performance, and while not reported for SAHA,

sodium butyrate significantly improved survival (Ferrante et al., 2003). Both com-

pounds also markedly improved striatal morphology. Importantly, both sodium

butyrate and SAHA improved acetylation of histone H4. Improvements in H4

acetylation mediated by sodium butyrate were concomitant with transcriptional

improvements in R6/2 striatum, assessed by microarray gene profiling, resulting

in improved mRNA expression (Ferrante et al., 2003).

Confirming and expanding these data, the administration of the HDACi

phenylbutyrate in the N171-82Q murine model of HD resulted in significant

neuroprotection as well (Gardian et al., 2005). Of interest, in addition to phenyl-

butyrate-mediated improvements in H4 acetylation, there was also a significant

reduction in methylation of H3 within the striatum. Together, these data clearly

link HDACi treatment with improved transcription. With the prospect of HDACi

compounds offering therapeutic benefit in the treatment of HD, a dose-finding

study using sodium phenylbutyrate recently demonstrated that doses ranging from

12 to 15 g/d were safe and well tolerated (Hogarth et al., 2007). Our own prelim-

inary data using 15 g/d in a safety and tolerability trial inHDpatients confirms the
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above study and, in addition, showed that sodium phenylbutyrate was therapeu-

tically salient in significantly improving hypoacetylation levels in blood buffy-coat

specimens in the trial subjects.

In addition to compounds that directly interact with histone deacetylases,

another class of potential HD therapeutics exist that interact directly with DNA

and may potentially influence transcriptional activity in HD. Two such com-

pounds are mithramycin and chromomycin, anthracycline antibiotics that act

through modulating gene transcription. By binding to guanine-cytosine-rich

regions within gene promoters, anthracyclines displace transcriptional elements

that activate and repress transcription (Chakrabarti et al., 2000). Importantly,

anthracyclines have been reported to interact directly with histones H3 and H4

(Rabbani et al., 2004). This has lead to several preclinical studies investigating the

potential utility of mithramycin or chromomycin in murine models of HD

(Ferrante et al., 2004; Ryu et al., 2006; Stack et al., 2007b). Mithramycin adminis-

tration in R6/2 HD mice resulted in the largest significant extension in survival

(29.1%) compared with any other preclinical therapeutic trial in HD to date

(Ferrante et al., 2004). The mithramycin-mediated improvement in survival was

concomitant with significant improvements in motor performance and striatal

morphology. Notably, mithramycin induced a significant decrease in methylated

H3. In a follow-up study, mithramycin-mediated improvements were found in the

methylation and acetylation profile of H3 and H4 within the striatum of N171-

82Q mice (Stack et al., 2007b). Treatment with chromomycin or mithramycin in

R6/2 and N171-82Q HD mice significantly increased acetylation of H4, and

significantly reduced trimethylation of H3 at lysine 9. Additional analyses of H3

revealed an anthracycline-mediated shift toward greater acetylation and reduced

methylation compared with untreated controls. This latter finding may be of

particular importance given that methylation of H3 at lysine 9 is thought to be a

dominant marker of transcriptional repression, and the balance between methyl-

ation and acetylation of H3 at lysine 9 is believed to play an important role in the

transcriptional disruption observed in HD (Ryu et al., 2006).

While it may seem incongruous that cytotoxic antitumor compounds play a

positive role in neurodegenerative disorders, parallels between cancer and neuro-

degenerative disorders have been suggested. However, if cellular stresses and tran-

scriptional signals elicit different responses in dividing cells versus cells that are

terminally differentiated (leading to oncogenesis in the former and neurodegenera-

tion in the latter), then different pathogenic mechanisms may underlie each.

Importantly, previous clinical use of these compounds has been associated with

negative side effects, including fever, nausea or vomiting, fatigue, and depression.

Both agents cross the blood–brain barrier and mithramycin has been used chron-

ically in a number of human conditions. The preclinical mithramycin and chro-

momycin data provide a rationale for clinical trials of these approved anthracyclines

to test for efficacy in the treatment of HD.
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C. OXIDATIVE STRESS AND MITOCHONDRIAL DYSFUNCTION

In disease-free neurons, the generation of reactive oxygen species is a normal

byproduct of cellular respiration that is mediated by mitochondria. Accumulation

of reactive oxygen species in neurons and subsequent oxidative stress is blocked by

free radical scavengers, such as glutathione and superoxide dismutase, preventing

subsequent damage (Beal, 1998, Beal, 1999; Calabrese et al., 2006; Mancuso et al.,

2007). InHD, the generation of reactive oxygen species and the resulting oxidative

stress is thought to play a central role in the neurodegeneration observed (Beal,

1992; Browne et al., 1997; Ferrante et al., 1994; Grunewald and Beal, 1999; Ross

and Poirier, 2004). There are multiple lines of evidence implicating oxidative stress

in the etiology of neuronal death in HD (Grunewald and Beal, 1999). Studies from

postmortem human HD brain show increased levels of oxidative damage. These

include increased cytoplasmic lipofuscin, DNA strand breaks, and the accumula-

tion of oxidative markers in DNA bases, along with other cellular macromolecules

associated with protein nitration and lipid oxidative damage.

Lipofuscin is an aging wear-and-tear pigment and is the product of unsaturated

fatty acid peroxidation that is increased at a greater rate under oxidative stress

(Sohal and Brunk, 1989; Terman and Brunk, 1998). There is an abnormal accu-

mulation of lipofuscin in HD patients within both cortical and striatal neurons in

HDpatients (Braak and Braak, 1992; Browne et al., 1999; Tellez-Nagel et al., 1974),

with little or no presence of lipofuscin in spared NADPH-diaphorase neurons in

the caudate nucleus (Browne et al., 1999). Mutant proteins are processed through

lysosomes and, as such, the lipofuscin accumulation has been suggested to impair

lysosomal function, resulting in selective neuronal damage.

DNA strand breaks are related to free radical damage (Driggers et al., 1997)

and have been reported to be increased in HD patients, correlating with CAG

repeat length (Browne et al., 1999; Butterworth et al., 1998; Dragunow et al., 1995;

Portera-Cailliau et al., 1995). Using in situ end labeling, which identifies DNA

fragmentation in apoptotic ornecrotic nuclei, significant increases in DNA frag-

mentation in both striatal and cortical neurons in HD patients, relative to levels of

DNA fragmentation in age-matched control brains (Browne et al., 1999). In addi-

tion, it may be that mitochondrial DNA is more susceptible than nuclear DNA to

fragmentation since there is less in situ end labeling detected within cell nuclei.

The oxidation of either nuclear or mitochondrial DNA results in the formation

of the metabolite 8-hydroxy-2’-deoxyguanosine (OH8dG) and is a direct result of

free radical activity (Browne et al., 1997; Dragunow et al., 1995; Polidori et al.,

1999). Significant increases in OH8dG levels from nuclear DNA occur in the

caudate nucleus in postmortem tissue from HD patients (Browne et al., 1997), as

well as in mitochondrial DNA from parietal cortex (Polidori et al., 1999). In

addition, OH8dG levels are markedly elevated in serum from HD patients

(Hersch et al., 2006) and, as such, provide a peripheral biomarker as an indicator
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of therapeutic response (Hersch et al., 2006). These findings are consistent with

elevations of OH8dG levels that occur in other neurodegenerative diseases in

which oxidative damage has been implicated as a pathogenic mechanism

(Ferrante et al., 1997; Mecocci et al., 1993). Others, however, have not observed

changes in nuclear DNA in HD patients (Alam et al., 2000).

In parallel, additional markers of oxidative damage, including heme oxyge-

nase, 3-nitrotyrosine and malondialdehyde are all elevated in both HD striatum

and cortex (Browne et al., 1999), (Ferrante et al., 1996). The extent and intensity of

these markers mirror the dorsal-ventral pattern of progressive neuronal loss in the

neostriatum, with increased immunoreactive expression in the dorsal striatum, in

comparison to the less severely involved ventral striatum. Consonant with the

immunohistochemical data, analysis of colorimetric assays in HD patients show

significant increases in malondialdehyde and 4-hydroxynononeal brain levels,

almost eightfold greater than in control subjects (Stoy et al., 2005).

Many of the oxidative alterations observed in human HD are recapitulated in

genetic murine models of HD, making them ideal vehicles in which to study

pathogenesis and therapeutic potential. In the R6/2 transgenic model of HD,

which expresses the N-terminal fragment of mHtt containing the CAG repeat

(Mangiarini et al., 1996) and shows striatal neuronal loss (Stack et al., 2005), there is

a significant increase in brain and urinary OH8dG levels (Stack et al., 2005),

(Bogdanov et al., 2001), arguing that oxidative stress may be the consequence of

mHtt expression. In addition, it has been shown that there are increases in lipid

peroxidation that worsen with disease progression in these mice (Browne and Beal,

2006). Malondialdehyde, 4-hydroxynonenal, and the isoprostane, 8-iso-prosta-

glandin, are all elevated in R6/2 mice at disease onset and increase with disease

progression (Browne and Beal, 2006), along with increased immunostaining for

inducible nitric oxide synthase and nitrotyrosine (Tabrizi et al., 2000). In the less

fulminant R6/1 transgenic HDmice, there is a progressive increase in striatal lipid

peroxidation that parallels the progression of the neuropathological phenotype

(Perez-Severiano et al., 2000). Additional evidence of alterations in oxidative stress

come from studies in 140CAG full-length knock-in mice (Menalled et al., 2003). In

contrast to segment models of HD,mice containing the full-length huntingtin gene

provide the best possible molecular genetic comparison to human HD. We have

evidence that OH8dG urine and brain levels are significantly elevated in the

140CAG mice. As in human HD, the mouse data provide a direct link between

mHtt expression, metabolic dysfunction, and the generation of reactive oxygen

species and oxidative stress.

The primary source of reactive oxygen species in neurons is mitochondria and,

as such, mitochondrial dysfunction in HD is intimately associated with oxidative

stress. Mitochondria are a vital component of the cell, generating energy for all

molecular processes and regulating cellular function (Benard et al., 2007).

Impairment of mitochondria leads to a cascade of events that include increased
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production of reactive oxygen species, reduced ATP production, altered calcium

homeostasis, and cytochrome c release and apoptosis that subsequently lead to

neuronal death (Lee and Wei, 2000; Wang et al., 2009). Neurons are especially

vulnerable to mitochondrial abnormalities as they have a high metabolic demand

and extraordinarily high energy requirements (Kann and Kovacs, 2007). There is

strong evidence from morphologic and biochemical studies that mitochondrial

dysfunction plays a prominent role in the pathogenesis of HD (Kim et al., 2010a;

Lin and Beal, 2006). Biochemical analysis of the HD brain reveals reduced glucose

metabolism, reduced striatal glucose utilization proceeding tissue loss (Jenkins et al.,

2000; Kuhl et al., 1982), decreased mitochondrial complex activity, and increased

lactate concentration (Koroshetz et al., 1997). In addition, mitochondria from HD

patients have been shown to have lower membrane potentials and to require lower

calcium loads for depolarization (Panov et al., 2002). In conjunction with this,

biomarkers of oxidative stress have been found to be elevated in HD human and

mouse brain and serum including markers of DNA oxidative modification, strand

breaks (Bogdanov et al., 2001, Hersch et al., 2006, Mecocci et al., 1993) and

deletions in mitochondrial DNA (Polidori et al., 1999).

Mutant huntingtin protein is thought to be directly involved in mitochondrial

dysfunction by means of transcriptional dysregulation of nuclear-encoded mito-

chondrial genes. Mutant Htt causes transcriptional dysregulation of TATA-bind-

ing proteins and Sp1 that results in an alteration of nuclear-encodedmitochondrial

genes. Support for this comes from studies on peroxisome proliferator-activated

receptor- gco-activator (PGC-1a), a transcriptional co-activator that regulates

mitochondrial gene expression, the production of antioxidant enzymes, mitcho-

chondrial uncoupling proteins, and is important in the regulation of ATP (Lin et al.,

2004, 2005; Rohas et al., 2007). PGC-1a is repressed by mHtt leading to mito-

chondrial dysfunction (Cui et al., 2006). There is recent evidence showing signif-

icant reductions of PGC-1a and the nuclear-encoded transcription factor TFAM

in muscle biopsies and myoblast cultures from HD patients (Chaturvedi et al.,

2009). Additionally, we have recently shown a grade-dependent reduction of both

PGC-1a and TFAM in the brain lysates of HD patients. Further evidence support-

ing PGC-1a’s role in mitochondrial impairment comes from studies done in R6/2

mice where reduced levels of PGC-1a result in striatal neurodegeneration and

motor abnormalities in HD mice, along with increased sensitivity to oxidative

stressors. The delivery of lentiviral-mediated PGC-1a expression into the striatum
of R6/2 mice significantly improved the pathological phenotype.

Finally, there is evidence of morphological and biochemical alterations in

mitochondrial fission and fusion. Mitochondria are distributed throughout the

cells forming individual units or interconnected networks. The distribution of

mitochondria is dynamic and mitochondria are trafficked throughout the cell by

modulating their shape and size through mechanisms of fission and fusion. In a

normal cell, there is an equilibrium between fission and fusion; however, any
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alteration in this dynamic leads tomitochondria dysfunction andmitophagy (Chen

and Chan, 2009) and therefore may trigger cell death. There is experimental

evidence that this dynamic may be altered in HD. Drp1 and Fis1 are the principal

arbiters of mitochondrial fission and fusion proteins. Altered levels of these pro-

teins have been reported in HD caudate nucleus lysates, consistent with altered

mitochondrial dynamics, mitochondrial distribution, and trafficking in HD and

confirmed by histopathological analysis (Kim et al., 2010a). These findings suggest

that altered fission and fusion dynamics may be an important mechanism leading

to mitochondrial dysfunction and subsequent neuronal loss in HD (Knott and

Bossy-Wetzel, 2008).

Given the role of oxidative stress associated with mitochondrial dysfunc-

tion, several preclinical antioxidant strategies have been employed with prom-

ising success. First, among these is the guanidine compound creatine which,

while produced endogenously, is also obtained from the diet (Ryu et al., 2005).

In addition to its antioxidant capacity, creatine also buffers intracellular energy

reserves, stabilizes intracellular calcium, and inhibits activation of the mito-

chondrial transition pore (O’Gorman et al., 1997). In neurons, creatine can

exist as free substrate, or phosphocreatine (PCr). According to the PCr shuttle

hypothesis, sites of energy production are connected with sites of energy

consumption when creatine kinase mediates the transfer of a phosphoryl group

from PCr to ADP, creating ATP (Bessman and Geiger, 1981). In HD, there is a

significant shift in the ratio of PCr to phosphate (Koroshetz et al., 1997). Thus,

creatine administration may be able to restore normal metabolic activity. To

this end, several preclinical studies have provided ample evidence of the

neuroprotective benefit of creatine in chemical and animal models of neuro-

degenerative disease, including HD (Andreassen et al., 2001; Dedeoglu et al.,

2003; Ferrante et al., 2000; Klivenyi et al., 1999; Matthews et al., 1998a, 1999;

Zhu et al., 2004).

In the R6/2 mouse, creatine significantly improves survival and motor per-

formance, ameliorates brain and striatal atrophy, and reduces striatal mHtt aggre-

gation in a dose-dependent manner. Oral creatine administration also increases

brain levels of creatine. This effect has been confirmed in another animal model of

HD (Andreassen et al., 2001), suggesting the significant promise of creatine admin-

istration in the treatment of HD. Several clinical trials show safe and tolerable

doses of creatine in HD patients ranging from 5 to 10 g/d (Bender et al., 2005;

Hersch et al., 2006; Tabrizi et al., 2005; Verbessem et al., 2003). Creatine treatment

in human HD resulted in a significant reduction in brain glutamate (Bender et al.,

2005) and oxidative stress, as measured by 8-hydroxy-2’-deoxyguanosine

(8OH2’dG) (Hersch et al., 2006). The 8OH2’dG findings are the first instance

of parallel efficacy using a common peripheral biomarker in the administration of

a therapeutic agent in HDmice and HD patients. No studies, however, have been

sufficiently powered to detect a significant slowing of progression or improvement
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in clinical measures. Although in a 1-year open-label pilot study, creatine (10 g/d)

administered for 12 months resulted in unchanged Unified Huntington Disease

Rating Scale (UHDRS) scores, suggesting that creatine may be effective in stabi-

lizing disease progression (Tabrizi et al., 2003). Although the optimal dose of

creatine is not yet certain, it is possible that the dose of creatine supplementation

in the above studies may have been underestimated.

The effects of a high-dose creatine administration inmultiple murinemodels of

HD has recently been studied (Foran et al., 2006). High-dose creatine administra-

tion was well tolerated by bothR6/2 and 140CAGmice, and at dosages>200% of

previously successful preclinical dosing strategies (Ferrante et al., 2000), we dem-

onstrated significant improvement in survival and motor performance. Further

analysis revealed significant improvements in striatal neuropathology, with con-

comitant reductions in both mHtt aggregation and 8OH2’dG levels. In addition,

there was a significant creatine-mediated improvement in striatal ATP levels.

While drug trials in mice confirm therapeutic direction, the challenge is in deter-

mining what dose might be of value in patients since the pharmacokinetics of mice

and man is dissimilar. As such, a much higher dose may be feasible for humans. In

this regard, a dose escalation study up to 40 g/d to determine whether there is a

maximally tolerated dose in HD, as well as whether there are doses at which serum

and brain levels of creatine are maximized, has been initiated. Preliminary results

suggest that creatine (20–30 g/d) is effective in slowing disease progression.

Another antioxidant compound that has demonstrated preclinical efficacy in

multiple murine models of HD is coenzyme Q10 (Beal et al., 1994; Ferrante et al.,

2002; Schilling et al., 2001; Stack et al., 2006). Coenzyme Q10 (CoQ10), also known

as ubiquinone, is a lipid-soluble benzoquinone that possesses significant antioxi-

dant properties when reduced to ubiquinol, or through a CoQ10-induced increase

in alpha-tocopherol (Beal and Ferrante, 2004). It is located in the inner mitochon-

drial membrane and is essential for Complex I and II electron transfer activities

during oxidative phosphorylation (Chan et al., 2004), playing a vital role in ATP

production. Importantly, CoQ10 administration has been demonstrated to signif-

icantly increase brain mitochondrial CoQ10 concentrations (Matthews et al.,

1998b). Initial preclinical therapeutic trials using CoQ10 in a striatal lesion model

of HD demonstrated significant neuroprotection (Beal et al., 1994). Malonate-

induced lesions within the striatum were significantly reduced by CoQ10.

Expanding these results, others and we conducted preclinical therapeutic trials

using CoQ10 in murine models of HD (Ferrante et al., 2002; Schilling et al., 2001).

CoQ10 treatment significantly extends survival and delays the typical decline in

weight loss and motor performance as assessed on the rotarod. In addition, CoQ10

administration significantly attenuates brain weight loss, gross brain atrophy and

ventricular enlargement, and striatal neuron atrophy. These data have given way

to several human safety and tolerability trials using CoQ10 (Feigin et al., 1996;

Huntington Study Group, 2001; Koroshetz et al., 1997).
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In all instances, CoQ10 has been found to be both safe and tolerable in HD

patients. CoQ10 treatment has resulted in a significant decrease in cortical lactate

(Koroshetz et al., 1997), as well as a nonsignificant trend toward slowing in total

functional capacity decline over 30 months (Huntington Study Group, 2001). In

addition, there were significant beneficial effects on cognitive function, including

Stroop color naming and word reading tasks (Huntington Study Group, 2001).

Since the single target dose, however, did not provide significance in the specified

primary outcome of the trial, it remains unclear whether a higher CoQ10 dose

would provide greater efficacy in HD patients. A number of studies in other

neurodegenerative diseases suggest that a higher CoQ10 dose is possible. A dou-

ble-blind, randomized, controlled trial in Parkinson’s disease (PD) patients, using

CoQ10 at 1200 mg/d, slowed the rate of deterioration in the Unified PD Rating

Scale score (Shults et al., 2002). Follow-up studies in both PD and amyotrophic

lateral sclerosis patients have demonstrated safe and tolerable doses up to

3000 mg/d (Ferrante et al., 2005; Shults et al., 2004).

Addressing this, a high-dose trial using CoQ10 in R6/2 mice has been per-

formed (Smith et al., 2006), with dosages 10 times those previously reported (Beal

et al., 1994; Ferrante et al., 2002). High-dose CoQ10 treatment in R6/2 resulted in

significant survival extension with significant improvements in motor perfor-

mance. As with previous preclinical trials using CoQ10, high-dose CoQ10 treat-

ment in R6/2 resulted in improved neuropathology, with marked reductions in

striatal mHtt aggregation. Coupled with significant improvement in brain ATP

levels and a reduction in brain 8OH2’dG, these results demonstrate the pluripo-

tent efficacy of high-dose CoQ10 in the treatment of HD. A multicenter Phase II-

III clinical trial using high-dose CoQ10 has been initiated.

Therapies targeting alternative aspects of mitochondrial function may also be

effective. In this regard, the n-3 fatty acid eicosapentaenoic acid (EPA) possesses

hypotriglyceridemic activity, shown to occur through EPA interactions with mito-

chondria (Froyland et al., 1997), acting as a mitochondrial proliferator. EPA-

induced hippocampal neuroprotection has been observed in rats treated with

whole body g-irradiation (Lonergan et al., 2002), by significantly reducing reactive

oxygen species, cytochrome c translocation, and caspase-3 activation. Importantly,

mitochondrial dysfunction in HD mediated by mHtt has been shown to promote

altered calcium permeability and associated cytochrome c release (Choo et al.,

2004). The ability of EPA to interact with and promote mitochondrial fitness has

stimulated interest in EPA as a potential therapy for the treatment of HD.

Using a purified derivative of EPA known as Miraxion or ethyl-EPA, an

animal trial in the R6/1 murine model of HD showed significant improvements

inmultiple motor and behavioral abnormalities (Clifford et al., 2002). A subsequent

6-month clinical trial using ethyl-EPA in advanced HD patients demonstrated

significant improvement in several orofacial aspects of the UHDRS (Puri et al.,

2002). The improvements in the UHDRS were concomitant with improved
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neuropathology, assessed throughMRI.More recently, however, ethyl-EPA treat-

ment in HD patients was reported to have no effect on the UHDRS (Puri et al.,

2005). While secondary analysis revealed ethyl-EPA-induced improvements in

motor function, further studies will be required to determine the therapeutic

potential of ethyl-EPA.

The antihistamine Dimebon (2,3,4,5-tetrahydro-2,8-dimethyl-5-(2-(6-methyl-

3-pyridyl)ethyl)-1H-pyrido(4,3-b) indole), is an orally active small molecule that

has multiple mechanisms of action. It may exert a neuroprotective effect by inter-

acting with the mitochondrial permeability transition pore and preventing the

calcium-induced opening of the pore (Bachurin et al., 2003). Studies of Dimebon

in animal models of Alzheimer’s disease have showed improved cognitive ability,

while inhibiting beta-amyloid (Bachurin et al., 2001). Preliminary results in

Alzheimer’s disease patients have also been promising. That Dimebon may also

regulate calcium homeostasis and reduce the excitotoxicity (below), there may be

potential benefit in administering Dimebon to HD patients. As such, a Phase II

clinical trial using Dimebon (latrepirdine) in HD patients showed no significant

treatment effects on the UHDRS or the ADAS-cog (Kieburtz et al., 2010).
D. EXCITOTOXICITY

In HD, excessive glutamatergic input to the striatum is hypothesized to con-

tribute to the striatal neurodegeneration observed. Evidence supporting the exci-

totoxic hypothesis stems from observations of similarities between kainic, glutamic,

and quinolinic acid lesions and the striatal pathology observed in rodent and

primate models of HD (Beal et al., 1991b; Coyle and Schwarcz, 1976; Ferrante

et al., 1993; McGeer and McGeer, 1976). Increases in striatal glutamate in the

brains of HD patients (Taylor-Robinson et al., 1996) as well as alterations in

presynaptic glutamate receptors in the R6/2 murine model of HD (Cha et al.,

1999) lend additional support to the role of aberrant glutamate excitotoxicity in

HD pathogenesis. Given the fact that increased levels of excitatory amino acids are

not elevated in HD, the concept of slow excitotoxicity in HD was suggested by

Albin and Greenamyer, and Beal as an alternative excitotoxic hypothesis in which

normal circulating levels of glutamate could result in neuronal dysfunction and

death (Albin and Greenamyre, 1992; Beal, 1992). It is of interest to note, as

discussed above, both surgical and chemical lesions of the corticostriatal and

nigrostriatal pathways, improve the pathological phenotype in R6/2 transgenic

mice and extend survival in this HD mouse model (Stack et al., 2007a).

Given extensive evidence in support of an excitotoxic hypothesis for HD,

compounds that counter excessive glutamate release may therefore be candidates

for therapeutic intervention in HD. One such FDA-approved compound is riluzole

(2-amino-6-trifluoromethoxy benzothiazole), a potent anti-glutamatergic agent,
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attenuates glutamate release through its ability to inhibit voltage-dependent sodium

channels (Urbani and Belluzzi, 2000). In HD, the potential benefit of riluzole was

first suggested by preclinical studies in rats and nonhuman primates, using the

3-nitroproprionic (3-NP) chemical model of HD (Guyot et al., 1997b; Palfi et al.,

1997). In the 3-NP model of HD, riluzole offers significant improvements in motor

performance, with significant neuroprotection observed. Expanding these findings,

riluzole was found to significantly increase survival in R6/2 mice concomitant with

significant improvements in motor behavior (Schiefer et al., 2002). There was also a

marked riluzole-mediated reduction in ubiquitin-positive mHtt aggregates within

the striatum. Riluzole was also found to protect medium spiny neurons against

glutamate-induced apoptosis in vitro (Wu et al., 2006). The aberration in corticos-

triatal function resulting in excessive glutamate release is widely thought to con-

tribute to the selective striatal pathology observed in HD (Beal, 1992; Olney, 2011).

Interestingly, riluzole administration significantly reduces aberrant excitatory post-

synaptic currents in R6/2 mice, lending further support for riluzole therapy in HD

(Cepeda et al., 2003). As such, several clinical trials in human HD have been

conducted. In a 6-week safety and tolerability trial with riluzole that assessed motor

performance and brain lactate levels (Rosas et al., 1999), riluzole was found safe and

well tolerated, with a nonsignificant trend toward lower basal ganglia lactate levels.

Analysis of motor function demonstrated a significant decrease in chorea, as

measured via the UHDRS; however, subsequent studies have shown this effect

to be transient (Rosas et al., 1999; Seppi et al., 2001). A Phase III study was recently

conducted in Europe based on data suggesting that riluzole upregulated levels of

neuroprotective factors. The study, conducted over 3 years recruited 400 early

symptomatic patients (Mizuta et al., 2001) and found riluzole to have no beneficial

effect on symptoms or neuroprotection, nor did it halt or slow progression of disease

(Landwehrmeyer et al., 2007). A more recent study of riluzole in HD, however,

reported reduced gray matter volume loss and brain glucose hypometabolism,

along with increasing neurotrophin production, providing evidence in support of

riluzole (Squitieri et al., 2009). Interestingly, the efficacy of other glutamatergic

NMDA antagonists, amantadine (Verhagen Metman et al., 2002), and memantine

(Ondo et al., 2007) has had mixed results (Heckmann et al., 2004; Lipton, 2004;

Lucetti et al., 2003; O’Suilleabhain and Dewey, 2003). Each of these drug agents is

associated with significant side effects. Memantine, a glutamatergic NMDA antag-

onist, may hold more promise. Memantine blocks NMDAR and reduces striatal

cell death in chemical models of HD (Lee et al., 2006). An open-label study

suggested that memantine may slow down disease progression and anecdotal

reports have suggested that it may lead to improvements in cognition

(Cankurtaran et al., 2006). Based on these results and the beneficial effects of

memantine in other dementing conditions, a Phase IV clinical study has been

initiated to determine the effect of memantine on memory, cognition, and behavior

in HD patients.
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E. APOPTOSIS

Alterations in apoptotic signaling cascades have been shown to play a role in

the pathogenesis of HD. In apoptotic-induced cell death, signaling cascades acti-

vate proteases that destroy proteins essential for survival and concurrently activate

genes involved in cell suicide. The primary constituents of the apoptotic cascade

are caspases, a class of cystenine proteases. There are four initiator caspases and

three effector caspases including caspase-3, -6, and -7 (Friedlander, 2003). One

important event in the apoptotic cascade is the release of cytochrome c by mito-

chondria into the cytoplasm which activates caspase-9, leading to the subsequent

activation of down-stream executioner caspases and eventual cell death

(Chen et al., 2000).

In vitro and in vivo studies have shown that wild-type huntingtin has an anti-

apoptotic role. In one experiment, brain-derived cells overexpressing wild-type

huntingtin were found to be less sensitive to toxic stimuli (Rigamonti et al., 2001,

2007a). In another study, primary striatal neurons from YAC18 mice overexpres-

sing full-length wild-type huntingtin were shown to be protected from apoptosis

compared to littermate wild-type controls and YAC72 mice expressing mutant

huntingtin (Leavitt et al., 2006). Finally, cells with lower levels of wild-type hun-

tingtin were shown to be more sensitive to apoptotic cell death and had increased

levels of caspase-3 activity (Zhang et al., 2006). Although the exact mechanism by

which wild-type huntingtin exerts its antiapoptotic effects is unknown, experimen-

tal evidence has suggested that wild-type huntingtin blocks the formation of a

functional apoptosome complex thereby preventing subsequent activation of cas-

pase-3 and caspase-9 (Rigamonti et al., 2001, 2007b). Additionally, evidence

suggests that wild-type huntingtin physically interacts with active caspase-3, inhi-

biting its proteolytic activity (Zhang et al., 2006). Intracellular calcium dysfunction

has been found to contribute to apoptosis induced cell death in HD. One mech-

anism of this dysfunction is mutant huntingtin’s interaction with the NMDA

receptor (NMDAR) resulting in its overactivation. Increased activation of

NMDAR leads to increased calcium levels in the cytosol resulting inmitochondrial

calcium overload causing mitochondrial swelling and the release of cytochrome c

and other proapoptotic factors into the cytoplasm. In addition to enhancing

NMDAR function, mutant huntingtin binds to the type 1 inositol 1,4,5-triphos-

phate receptors (InsP3R1) making it more sensitive to IP3 and causing more

calcium to be released. Additionally, mutant huntingtin acts on the mitochondrial

transition pore to decrease the calcium threshold needed to trigger the pore

opening.

As increased caspase activity has been shown to contribute to the pathogenesis

of HD, compounds that inhibit caspases have been tested as therapeutic candi-

dates. One such compound is minocycline, a second-generation tetracycline anti-

apoptotic compound that inhibits caspase-1 and caspase -3 activity and expression
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levels, the release of apoptogenic factors from mitochondria, and caspase-inde-

pendent neuronal cell death pathways. Additionally, it may inhibit iNOS activity

and reactive microgliosis, both of which have been found to be present in HD

patients and HD mice and have been implicated in disease pathogenesis

(Friedlander, 2003). Previous research has found minocycline to be neuroprotec-

tive in multiple experimental models of neurodegeneration including brain

trauma, cerebral ischemia, amyotropic lateral sclerosis, and Parkinson’s disease

(Chen et al., 2000; Du et al., 2001; Sanchez et al., 2003; Tikka et al., 2001; Wu et al.,

2002; Yrjanheikki et al., 1998; Zhu et al., 2002). Importantly, it is able to cross the

blood–brain barrier and has been found to be safe for chronic administration

(Domercq and Matute, 2004).

Among anti-apoptotic drug candidates, the tetracycline antibiotic minocycline

has emerged as a potentially beneficial therapeutic intervention for treatment in

HD. Minocycline possesses potent anti-apoptotic capacity through inhibitory

effects on caspases –1 and –3. In addition, minocycline also attenuates disruptions

in mitochondrial function, including the release of cytochrome c (Chen et al., 2000;

Zhu et al., 2002). Importantly, minocycline also readily crosses the blood–brain

barrier. Clinically, chronic administration of minocycline has yielded a good safety

record (Domercq andMatute, 2004). From a therapeutic standpoint, minocycline

has shown significant improvement in multiple models of neurodegeneration,

including brain trauma, spinal cord injury, PD, and HD (Chen et al., 2000; Du

et al., 2001; Stack et al., 2006; Teng et al., 2004; Wang et al., 2003; Yrjanheikki et al.,

1998).

In preclinical trials using minocycline in murine models of HD, several studies

have demonstrated a significant neuroprotection. Minocycline significantly inhib-

ited caspase-1 and caspase-3 activation in R6/2 mice (Chen et al., 2000).

Minocycline also significantly reduced mHtt cleavage. In addition to their role

in apoptotic signaling cascades, caspases also play a role in cleaving mHtt, yielding

the toxic fragment (Sawa et al., 2005). Inhibition of caspase activity was associated

with improved survival and motor behavior in R6/2 mice. Extending these find-

ings, minocycline has been shown to significantly inhibit both initiator and effector

caspases, including caspase-1, -3, -8, and -9, as well as the pro-apoptotic Bid

cleavage (Wang et al., 2003). In addition, minocycline also inhibited both the

release of cytochrome c and Smac/Diablo from mitochondria in R6/2 mice,

indicating that mitochondria are a direct target of minocycline-mediated neuro-

protection (Teng et al., 2004; Wang et al., 2003; Zhu et al., 2002).

These preclinical minocycline studies have given way to pilot clinical trials

assessing safety and tolerability in human HD. At doses of 100 and 200 mg/d,

minocycline was well tolerated by patients (Huntington Study Group, 2004). In

terms of cognitive outcomes, there were no clinically relevant differences in cog-

nition assessed by UHDRS. Similar results in pilot trials using minocycline at

100 mg/d over 6 months have been reported (Bonelli et al., 2003), (Thomas et al.,
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2004). There is excellent safety and tolerability data for minocycline treatment in

HD patients. While a clinical trial in amyotrophic lateral sclerosis using 400 mg/d

showed no efficacy (Traynor et al., 2006), it has been suggested that the target dose

was too great, resulting in the negative findings. Nevertheless, a recent futility study

using minocylcine (200 mg/d) in HD patients suggested that further study of

minocycline in HD was not warranted (Huntington Study Group DOMINO

Investigators, 2010). While the initial analysis indicated that futility was not

declared, a secondary analysis showed futility. These findings, however, used a

25% threshold compared to a fixed value from a historical database.

In addition to minocycline-mediated caspase inhibition, a recent report dem-

onstrated a novel reversible inhibitor of caspase-3 that was shown to provide

significant neuroprotection in a chemical rat model of HD (Toulmond et al.,

2004). In a preclinical proof-of-principle trial, M826, a pyrazinone mono-amide,

demonstrated significant protection against malonate lesions, with a pharmacoki-

netic profile indicating the ability of M826 to inhibit capsase-3 6 h postadminis-

tration. Striatal lesion volumes were significantly reduced following M826 admin-

istration, and the number of neurons expressing active caspase-3 was also

significantly reduced. While these results demonstrate significant neuroprotective

potential, the route of administration (intracerebral injection) will require addi-

tional study to improve and assess both M826 solubility and brain penetration in

vivo (Han et al., 2005; Toulmond et al., 2004).

There are several other therapeutic approaches that may prove beneficial in

treating HD, and thus deserve mention here.
F. RNA INTERFERENCE (RNAI)

RNAi is one such therapy that takes advantage of a functionally conserved

pathway present in all eukaryotes (Sah, 2006). The molecular machinery mediat-

ing RNAi activity includes both micro RNA (miRNA) and short interfering RNA

(siRNA). Through associations between various proteins, including Argonaute-2

and individual RNAi molecules, a functional complex is formed that can then

target homologous mRNA. Once bound to the homologous mRNA species,

Argonaute-2 cleaves, and thus inactivates, the homologous mRNA (Liu et al.,

2004). Both miRNA and siRNA can prevent translation of homologous mRNA

when each possesses a limited number of mismatches (Zeng et al., 2003). Through

this mechanism, RNAi could be manipulated to reduce expression of protein

products known to cause disease. In the case of HD, the ability to effectively target

and down regulate mHtt expression may hold significant promise. HD is an

especially good candidate for gene silencing therapy because the mutant gene

causes production of a presumably single toxic molecule that causes the disease

phenotype.
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In this regard, several preclinical studies have shown the potential promise of

RNAi therapy in HD. Using an adeno-associated viral vector (AAV) expressing a

short hairpin RNAprecursor targeting theHtt gene, mHtt expression is reduced in

the striatum of N171-82Q mice (Harper et al., 2005). RNAi targeting mHtt also

improved motor behavior, with improved gait and rotarod performance. Similar

results were also obtained in the R6/1 murine model of HD (Rodriguez-

Lebron et al., 2005). Although the success seen in these experiments is very

promising, there are remaining concerns before tRNAi therapy can be translated

to humans. First, is the inability to silence mutant huntingtin without also affecting

wild-type huntingtin. Attempts have been made to selectively silence mutant

huntingtin by targeting the expanded polyglutamine sequences; however, this

method has proven ineffective. Studies in knock-in models of mice, however, have

shown a reduction in the expression levels of mutant and wild-type huntingtin

without deleterious effects (McBride, 2008). Future work may target the reduction

level in both mutant and wild-type Htt that provides the greatest efficacy on

symptoms, while maintaining the neuroprotective effects of wild-type Htt. A

second concern using RNAi therapy is the method of delivery. While intracerebral

infusion may be applicable in experimental animals, safe and effective delivery of

RNAi molecules to humans has yet to be firmly established.

Another method of gene silencing is antisense oligonucleotide gene inactivation.

Similar to RNAi, this method inactivates mRNA, therefore preventing the transla-

tion of proteins. The mechanism of inactivation, however, is different. Synthetic

single strands of 15–25 oligonucleotides are engineered to have a sequence com-

plimentary to the mHtt mRNA and injected into the cell. Once in the cell, the

oligonucleotides bind the mRNA and inhibit production of the protein by either

physically blocking translation or by recruiting the enzyme RNase H to degrade the

mRNA. One advantage of antisense gene therapy over RNAi is that oligonucleo-

tides are smaller than RNAis, being single stranded instead of double stranded, and

are therefore easier to get into the cell. However, the method of delivery to the CNS

remains difficult, as oligonucleotides are unable to cross the blood-brain barrier.

One possible method of delivery is through a pump inserted in the chest and

connected to the brain by a catheter. In 2007, a nonprofit dedicated to finding a

cure for HD donated 9.9 million dollars toward developing an antisense drug for

HD. To date, antisense gene therapy has been successfully used to inhibit huntingtin

production in cells, and is currently being tested in transgenic mice.
G. STRIATAL NEURON TRANSPLANT

Striatal tissue graft or dissociated striatal suspension has also been suggested to

hold promise as a therapeutic intervention in HD. The rationale for neural

transplantation arises from the fact that neurodegeneration eliminates specific
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neuronal populations, which can theoretically be replaced with the addition of

new neurons, akin to organ transplant. In this system, it is proposed that

transplanted neuronal tissue would reestablish the anatomical and functional

aspects of the damaged and lost neurons (Dunnett and Rosser, 2007). Several

preclinical and clinical studies in PD have provided proof-of-principle data

suggesting the potential benefit of transplantation in the treatment of PD

(Brundin et al., 1986; Perlow et al., 1979).

Initial studies using rodent chemical lesion models of HD have demonstrated

successful striatal transplant survival, including dopamine terminal innervation of

the transplant, and a recovery of striatal choline acetyltransferase and glutamic acid

decarboxylase (Schmidt et al., 1981). Subsequent studies have demonstrated func-

tional recovery of motor behaviors after striatal transplantation (Deckel et al., 1983).

Similar studies in a nonhuman primate chemical lesion model of HD have dem-

onstrated successful stereotaxic implantation of cross-species striatal neuronal grafts

(rat to baboon) into the caudate-putamen (Isacson et al., 1986). Post-transplant

analyses revealed graft survival, with expression of striatal markers evident.

Additional studies in nonhuman primates confirmed that grafting of striatal tissue

into lesioned caudate ameliorated motor and behavioral alterations, demonstrating

improved functional capacity (Schumacher et al., 1992).

Using recommendations for trial criteria from the Core Assessment Program

for Intracerebral Transplantation in HD (Quinn et al., 1996), an initial pilot

grafting paradigm was employed where three HD patients received bilateral

transplantation of fetal striatal tissue into the caudate and putamen

(Kopyov et al., 1998). Graft survival was determined through comparison of pre

and 1-year postsurgical MRI, with marked improvement in signal, consistent with

graft survival. In all three patients, striatal tissue transplantation resulted in

improved motor behavior as assessed by the UHDRS. In a subsequent safety

and tolerability trial employing fetal striatal tissue transplants into the caudate

and putamen (Bachoud-Levi et al., 2000), several HD patients showed marked

improvement in UHDRS scores. However, complications in the use of immuno-

suppressant therapies postoperatively were observed, making analyses impossible.

Additional trials with cross-species striatal transplantation were performed using

porcine fetal tissues in human HD patients (Fink et al., 2000). Even with therapy to

suppress immunological xenograft rejection, no surviving striatal transplants were

observed, and no functional improvements noted. Together, these latter trials

represent the difficulties of treating human HD with clinical striatal transplants.

While completed clinical trials demonstrate safety and tolerability, with ade-

quate surgical procedures to perform the tissue transplants, certain aspects of tissue

or cell preparation and delivery for surgical implantation remain unresolved.

Furthermore, given ethical concerns regarding the use of fetal tissue, or the use

of alternative cells such as porcine fetal grafts, issues arise regarding immunological

function and management of tissue rejections (Barker and Widner, 2004). Finally,
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while striatal cell transplant may hold promise for the treatment of HD, one caveat

that remains is the significant gross neuropathology observed as disease progresses,

with extra-striatal neuropathology present. Indeed, cortical neuropathology in

HD likely contributes to many of the behavioral and cognitive disruptions associ-

ated with advanced disease. Since previous studies have not examined behavioral

and motor performance beyond 1 year postoperatively, it remains to be seen

whether striatal transplantation will have a long term, broad therapeutic benefit.
H. IMMUNIZATION

Immunization using vaccines has beenmoderately successful in animal models

of Alzheimer’s disease and ALS, but it is not clear whether this approach will be

applicable to HD. DNA vaccination against toxic intracellularproteins conferred

some therapeutic benefit on R6/2mice129 and ameliorated the diabetic pheno-

type of this mouse model of HD. Specifically targeting intracellular and particu-

larly intranuclear huntingtin is quite adaunting challenge. The likelihood of the

occurrence of serious side effects, like those recently reported in a Phase II clinical

trial for Alzheimer’s disease (Greenberg et al., 2003; Nicoll et al., 2003), which

included encephalitis, must be considered before progressing with this therapeutic

regimen.
VI. Conclusion
The search for effective strategies aimed at halting or reversing the neurode-

generative process in HD will require extensive preclinical and clinical validation

to provide the necessary safety and tolerability data for effective clinical use. While

many of the compounds in this review have demonstrated significant potential in

preclinical trials involving mice, it will take substantial effort to determine whether

they are efficacious inHD subjects. The development of genetic models has greatly

expanded our understanding of HD pathogenesis. These models also provide

complex, yet accessible, biological systems with which candidate therapeutic

compounds can be tested for efficacy and mode of action. While such models

greatly enhance the discovery potential, it is important to understand the difficulty

inherent in predicting the transference of success from mouse to man.

Interestingly, recent evidence shows a parallel in efficacy in both HD patients

and murine models of HD using antioxidant therapies in reducing peripheral

oxidative stress levels of 8OH2’dG (Hersch et al., 2006; Smith et al., 2006). Early

detection of disease will be of great importance in HD. Correlation of disease
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biomarkers in both mouse and man will provide a powerful means to assess

therapeutic treatments to humans experiencing HD and to predict the potential

magnitude of benefits in these patients. Difficulties notwithstanding, preclinical

therapeutic trials with murine models provide perhaps the best foundation on

which to base human clinical trials. Importantly, data from preclinical trials using

multiple models is likely to be most informative when assessing potential benefit in

human HD.
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In experimental rats, mice, and monkeys, transplantation of embryonic striatal cells

into the striatum can repair the damage and alleviate the functional deficits caused by

striatal lesions. Such strategies have been translated to striatal repair by cell

transplantation in small numbers of patients with progressive genetic striatal

degeneration in Huntington’s disease. In spite of some encouraging preliminary

data, the clinical results are to date neither as reliable nor as compelling as the broad

extend of recovery observed in the animal models across motor, cognitive, and skill

and habit learning domains. Strategies to achieve immediate and long-term

improvements in the clinical applications include identifying and limiting the causes

of complications, standardization and quality control of preparation and delivery,

appropriate patient selection tomatch the cellular repair to specific profiles of cell loss

and degeneration in individual patients and different neurodegenerative diseases,

and improving the availability of alternative sources of donor cells and tissues.
I. Introduction
Following the success of the first clinical trials of cell transplantation in

Parkinson’s disease (Dunnett and Rosser, 2007; Lindvall et al., 1990), trials have

been extended to apply a similar strategy in other neurodegenerative disorders,
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such as Huntington’s disease (HD) (Rosser and Dunnett, 2007), multiple sclerosis

(Uccelli and Mancardi, 2010), amyotrophic lateral sclerosis (Mazzini et al., 2010),

spinal cord injury (Anderson, 2002; Ram�on-Cueto and Mu~noz-Quiles, 2011) and

stroke (Kondziolka et al., 2000). Of these, transplantation in HD has proved

particularly informative about the potential of cell transplantation for alleviating

both simple and complex motor deficits. The present review addresses the exper-

imental foundations for cell transplantation in HD; the empirical extent (and

limitations) of functional recovery; and the mechanisms by which grafts exert their

functional effects. We highlight how a translational approach has revealed unan-

ticipated consequences of restoring neural substrates of motor learning, first

discovered as theoretical principles in experimental animals, which inform the

practical day-to-day management of rehabilitation in patients.

The basic methods and principles that determine effective engraftment turn

out to be rather similar, whatever the disease application. First and foremost, the

state of plasticity of the cells at the time of transplantation is critical. To survive the

transplantation process and to integrate into the host brain, neurons need to be

implanted when they are immature; they are about to or have just undergone final

cell division, their fate is determined, and they are entering an active growth phase.

At the present stage of neural transplantation technology, this condition is most

readily met by harvesting embryonic neurons for grafting during a precise window

of ontogenetic development at the stage of their final mitosis (Dunnett and

Bj€orklund, 2000b; Olson et al., 1983), which may be determined from anatomical

studies of development (with birth dating using 3H-thymidine or bromodeoxyur-

idine), and validated by empirical studies of survival and phenotypic differentiation

either following dissociated cell culture in vitro or following transplantation in vivo.

At that stage in development, the endogenously encoded growth program allows

newly born neurons to undergo final phenotypic differentiation, extend neurites,

and establish reciprocal connections with cells of the host environment. Alternative

sources of pluripotent cells with a similar capacity for survival, neuronal differen-

tiation, and integration following transplantation are an active topic of current

research, predominantly from embryonic (ES) and induced pluripotential (iPS)

stem cell sources (Kim and De Vellis, 2009; Koch et al., 2009). However, these

alternatives have not yet reached systematic functional evaluation and the present

review of the impact of cells on motor capacity in HD will focus on the well-

established protocols for allografting fetal donor cells.

A second general feature required for effective cell transplantation is that the

cells must be placed into a suitable environment. On the one hand, this involves the

requirement that the host tissue environment has an appropriate cellular and

microvascular composition that can support and sustain the implanted cells

(Dunnett and Bj€orklund, 2000a; Stenevi et al., 1976), in particular in the critical

period of several days following transplantation until the grafted cells are fully

incorporated into the host microenvironment. The implanted neurons will be
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dependent upon the trophic and glial environment of the host for their survival,

terminal differentiation, and the stimulation and direction of neurite outgrowth.

Embryonic neurons target neurite outgrowth to appropriate and specific dener-

vated proximal targets; long-distance outgrowth is critically dependent upon

appropriate guidance substrates although the capacity for long-distance axon

growth from embryonic neurons in the adult brain (Bj€orklund et al., 1976;

Thompson et al., 2009; Wictorin et al., 1990) is clearly greater than the classical

perception that endogenous axon regeneration in the adult mammalian CNS is

invariably abortive (Cajal, 1928).

The third concern of all transplantation programs, that grafts will be rejected

by the host immune system, is less critical where allografts of fetal neurons in the

brain are generally well-tolerated immunologically, by virtue both of their low

immunogenicity and of the relative immunological privilege of the host CNS

environment (Lund and Bannerjee, 1992; Widner, 1998). An ongoing low-grade

immunological response has been reported in several postmortem cases of neuro-

nal transplantation in both PD and HD, in terms of infiltration of microglia and

inflammatory cells (Capetian et al., 2009; Keene et al., 2007; Mendez et al., 2005),

although such responses are typically insufficient to lead to outright rejection.

Since the issues of allograft response in human brain remains poorly understood,

prophylactic immune suppression (typically with cyclosporine, prednisolone, and

azathioprine, in various combinations) is typically administered for 6–24 months

in most clinical transplantation programmes (Bachoud-L�evi et al., 2000a; Hauser

et al., 2002; Kopyov et al., 1998; Rosser et al., 2002), although others argue that

evidence for the necessity of such treatments remain lacking (Freed et al., 2003).
II. Present Status
A. GRAFT-DERIVED RECOVERY IN SIMPLE MOTOR (AND COGNITIVE)

TASKS IN ANIMALS

Injections of excitotoxic amino acids (such as kainic, ibotenic, or quinolinic

acids) into the striatum of rats induce selective degeneration of intrinsic striatal

neurons (in particular the medium spiny projection neurons, MSNs), along with

marked striatal atrophy and expansion of the lateral ventricles, whilst sparing

intrinsic glial cells and myelinated axons of the internal capsule (Coyle and

Schwarcz, 1976; Schwarcz et al., 1979, 1983). This profile mimics the core neu-

ropathology ofHD, and provided the first viable experimental model of the disease

in animals. Moreover, rats, mice, or monkeys with excitotoxic striatal lesions

exhibit marked behavioral deficits in both motor and cognitive domains, again

reflecting the functional pathology of the human disease (Sanberg and Coyle,
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1984). Embryonic striatal neurons implanted into the lesioned striatum survive

(Isacson et al., 1986; Schmidt et al., 1981), differentiate to replace all major neuronal

types of the striatum within the grafts (Clarke et al., 1994; Helm et al., 1990), restore

many of the neuronal neurochemical markers of the normal striatum (Isacson et al.,

1985), and establish basic afferent and efferent connections with the host brain

(Wictorin, 1992). Thus, grafted cells stimulate sprouting and innervation from

relevant populations of host axons that have lost their normal striatal targets, and

axons of the grafted neurons have the capacity to reinnervate appropriate targets

in the host brain (Wictorin, 1992) (see Fig. 1). Both in-growing host axons and out-
[(Fig._1)TD$FIG]

FIG. 1. Schematic illustration of graft derived reconstruction of the neostriatum following striatal

lesions in experimental animals or in Huntington’s disease in man. (A) Striatal dissection of ganglionic

eminence in fetal brain. (B) Implantation into adult host striatum. (C) Alternative sources of cells derived

from neuronal differentiation of embryonic stem cells. (D) Basic corticostriatal circuitry of the normal

mammalian brain, indicating excitatory glutamatergic projections (red), inhibitory GABAergic con-

nections (purple) and the regulatory nigrostriatal dopaminergic projection (green). (E) Loss of

GABAergic medium spiny projection neurons following striatal lesion or in HD results in complete

disconnection of corticostriatal circuits. (F) Reconstruction of corticostriatal circuitry by striatal grafts.

See the text for details. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this book.).
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growing graft-derived axons are seen to establish morphologically appropriate

synaptic connections with their appropriate targets in the grafts and host brain,

respectively (Clarke and Dunnett, 1993). Thus, grafted neurons have the capacity

to reconstruct the cardinal features of the damaged corticostriatal loop circuitry, at

least qualitatively – the essential definition of “brain repair” (Dunnett, 1995).

However, is the local organization, with or without intrinsic plasticity in the newly

forming connections, sufficient to impact on host function to yield functional

recovery alongside the structural repair?

Yes. Early studies used animals with bilateral lesions, the most obvious feature

of which is locomotor hyperactivity. Striatal grafts alleviate the hyperactivity

syndrome, in particular during the nocturnal period and under food deprivation

when the levels of arousal are most marked (Deckel et al., 1986; Giordano et al.,

1990; Isacson et al., 1986). These first studies also showed that deficits in simple

cognitive tests of spatial learning and passive avoidance memory, characteristic of

the “fronto-striatal” impairment of striatal lesioned animals, were also alleviated

by the grafts (Deckel et al., 1986; Isacson et al., 1986; Pi~na et al., 1994). More

detailed analysis of the motor deficits have been undertaken in unilateral lesioned

rats, in which spontaneous and drug induced rotation, contralateral neglect,

turning biases in choice responding, and impairments in skilled forepaw use in

reaching tasks, are all significantly alleviated by the transplants (Dunnett et al.,

1988b; Fricker et al., 1997; Kendall et al., 1998; Mayer et al., 1992; Montoya et al.,

1990). All these results indicate that striatal grafts can provide an effective recovery

of both simple motor deficits and more complex features of motor selection and

action in animals with striatal lesions that mimic the primary neuropathology of

human HD.

Nevertheless, excitotoxic lesions do not reproduce the core pathogenic process

of HDwhich is of essence a slowly progressive autosomal dominant genetic disease

arising from a single gene mutation involving a CAG triplet expansion in the

huntingtin gene, located on the distal arm of chromosome 4 (Huntington’s Disease

Collaborative Research Group, 1993). Transgenic and knock-in models are now

well established that reproduce this single genemutation inmice (Heng et al., 2008;

Mangiarini et al., 1996), and have revealed important features of the pathogenic

process in HD, notably the affinity of fragments of mutant huntingtin to aggregate

and form protein inclusions in the nuclei and cytoplasm of affected neurons

(Davies et al., 1997). Although the different transgenic lines have proved valuable

in evaluating a range of pharmaceutical and neuroprotective strategies to inhibit

inclusion formation, slow cell death, and prolong life (Chen et al., 2000; Ferrante,

2009; Karpuj et al., 2002; Ramaswamy et al., 2009; Rose et al., 2010; Wang et al.,

2010), they have so far proved less informative in evaluating the functional efficacy

of cell therapies. A major reason for this is that the inclusion pathology in most

transgenic lines which exhibit rapidly progressing motor and cognitive phenotypes

is very widespread (much more so than seen in the vast majority of HD
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postmortem cases), affecting all areas of brain, and not restricted to the striatum as

would be required to actually test a striatal repair strategy. Consequently, although

transplanted striatal cells have been seen to survive in the HD transgenic brain,

and exhibit minor benefits at the time of onset of motor pathology, they do not halt

the widespread progression of disease or the associated multi-system syndrome

and early death (Dunnett et al., 1998). The more recent development of knock-in

lines that exhibit more focal striatal pathology are only now being characterized

behaviorally, and the associated motor syndrome is typically mild, slowly progres-

sing, and only detectable relatively late in a life span (Brooks et al., 2011a, 2011b).

As a result, none of these models have yet been used for systematic evaluation of

novel therapeutics whether neuroprotective or reconstructive. With the presently

available tools, the excitotoxic lesion remains the best model for systematic eval-

uation of the transplantation technologies for striatal repair; and their relevance for

clinical application can ultimately only be evaluated in well designed trials in

patients (see Section II C).
B. GRAFT-DERIVED RECOVERY AND CIRCUIT RECONSTRUCTION

A notable feature of striatal grafts in the striatal lesioned brain is that they

appear capable of establishing both afferent and efferent connections with the host

brain, replacing an essential component in the corticostriatal circuitry. However,

just because grafted cells appear anatomically to reconstruct a damaged circuit

does not necessarily mean that that is the basis or mechanisms of the functional

recovery (Dunnett, 1995; Dunnett et al., 2000). Indeed, for nigral grafts in animal

models of PD, the grafts do provide a dopaminergic reinnervation of the dopa-

mine-depleted striatum, but theymust be placed into the ectopic striatal target sites

directly in order to do so (Bj€orklund et al., 1987). A nigral graft placed into the area

of intrinsic cell loss in the host substantia nigra, showing very little capacity for

long-distance axon growth back to the striatum, certainly does not reconstruct the

damaged circuits and has very limited functional impact on the motor capacity of

the host (Bj€orklund et al., 1983; Dunnett et al., 1983). Similarly, adrenal medulla

grafts implanted into the dopamine-depleted striatum of parkinsonian rats, turn

out to largely influence function not by local secretion of the deficient endogenous

neurotransmitter, as first thought, but by secreting a range of trophic molecules

(most likely including GDNF and BDNF) that stimulated sprouting of host dopa-

mine terminals spared by making partial lesions (Bohn et al., 1987). Thus, it is now

apparent that grafts can theoretically, and do in practice, exert functional influence

over host behavior (including, but more than, recovery of function after lesion) by a

variety of mechanisms (Bj€orklund et al., 1987; Dunnett, 2009) that include
(i)
 nonspecific: effects of surgery rather than of the cell replacement per se;
(ii)
 neuroprotective: release of factors that slow lesion or disease progression;
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(iii)
 trophic: release of factors that stimulate host plasticity, compensation and

sprouting;
(iv)
 target support: provision of alternative targets of target deprived axons;
(v)
 bridges: provision of glial substrates for host axon regeneration;
(vi)
 pharmacological: replacement of deficient neurochemicals and neuro-

transmitters;
(vii)
 reinnervation: tonic local reinnervation allowing target reactivation;
(viii)
 circuit reconstruction: afferent and efferent integration of grafted cells into host

neuronal circuit;
(ix)
 full repair: complete and appropriate reorganization of grafted cells to

restore an intact, appropriately regulated, and fully functional host neu-

ronal network.
What has become apparent over the last two decades is that there is not a single

answer to the question “how do grafts work?” Different cells can influence behav-

ior by quite different mechanisms even in the same model. For example, in the

Parkinson’s disease model rat, mechanisms (i), (ii), (iii), (v), (vi), and (vii) have all

been evidenced with different cell types and surgical approaches (Bj€orklund et al.,

1987; Dunnett and Bj€orklund, 2010).
Moreover, different behavioral tests or classes of symptom may require differ-

ent levels of repair and mechanisms of recovery to alleviate the deficits and restore

function. This is well illustrated for the comparison between rotation and skilled

paw reaching in animals with unilateral dopamine or striatal lesions. First, the graft

must be appropriate to the lesion: only nigral grafts implanted into the striatumwill

restore motor asymmetries in dopamine depleted rats, whereas only striatal grafts

implanted into the same striatal site will restore deficits in striatal lesioned rats

(Dunnett et al., 1988a; Montoya et al., 1990). Second, nigral grafts (in PD rats) will

alleviate unilateral deficits in rotation and neglect but not the impairments in

skilled paw reaching (Dunnett et al., 1987b), whereas striatal grafts (in HD rats)

are extremely proficient in also restoring skilled reaching with the contralateral

paw (Dunnett et al., 1988b; Montoya et al., 1990). We have hypothesized that the

major difference between the two models is that nigral grafts are ectopic, restoring

dopamine activation at striatal targets but not reconstructing the lost nigrostriatal

pathway, whereas striatal grafts are homotopic, replacing the lost striatal cells and

observed to actually reconstruct the disconnected corticostriatal circuitry

(Dunnett, 1995; Dunnett et al., 1987b; Montoya et al., 1990). Indeed, although

circuit reconstruction is rarely sustainable as the leading hypothesis for the mech-

anism of recovery in most transplantation models of disease, we have argued that

the best evidence where reconstruction at this level of repair is actually achieved is

for striatal repair by striatal grafts in this animal model of HD (Dunnett, 1995). A

number of lines of evidence support this conclusion. Firstly, striatal lesions induce

clear cognitive deficits as well as motor deficits, and the profile of deficits reflects
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the topography of corticostriatal projections, such that the consequences of a

striatal lesion are to “disconnect” the essential corticostriatal pathway (“loop”)

involved in the translation of plans into actions (Divac et al., 1967; Dunnett et al.,

2005). An essential feature of such functional systems is that performance is

disrupted by lesions in any component of the circuit, including the fiber connec-

tions as well as intrinsic processing nuclei (Rosvold, 1972). More relevant to the

present argument, function can only be restored by re-establishing the damaged

circuit. Striatal grafts do indeed restore performance on prototypical frontal cog-

nitive tasks such as delayed spatial alternation, both in mazes (Isacson et al., 1986)

and in operant lever pressing tasks (Dunnett and White, 2006). Not only do such

striatal grafts replace lost MSNs where they belong in the circuit, but the ultra-

structural studies alluded to in Section II A include the demonstration that host

cortical axons synapse onto the heads of spines of grafted MSNs that project

onward to the host globus pallidus, and which receive intrinsic regulation from

host dopaminergic inputs making synaptic contacts onto the necks of the spines

of the same grafted MSNs (Clarke and Dunnett, 1993; Clarke et al., 1988).

Thus, functional recovery is seen in animals in which the essential components

of the corticostriato-pallidal circuit under dopaminergic regulation is recon-

structed on complex tasks which specific disconnection lesions have shown to be

dependent upon the integrity of that of the frontal cortical circuit. In addition, both

electrophysiological (Rutherford et al., 1987;Wilson et al., 1990; Xu et al., 1991) and

in vivo neurochemical (Campbell et al., 1993; Sirinathsinghji et al., 1988, 1993)

recordings have demonstrated functional graft–host and host–graft signalling.

Nevertheless, in view of the reduced density of connections, local collateral sig-

naling, and feedback may be less than that observed in the normal striatum

(Xu et al., 1991).
C. GRAFT-DERIVED RECOVERY IN HD PATIENTS

Eight centers have now reported on the feasibility and safety of striatal cell

transplantation in HD in 29 patients (Bachoud-L�evi et al., 2000b; Gallina et al.,

2008; Hauser et al., 2002; Kopyov et al., 1998; Madrazo et al., 1993; Reuter et al.,

2008; Rosser et al., 2002; Sramka et al., 1992), and there are approximately 70–80

further patients known to have received grafts but not yet reported in published

studies (Freeman et al., 2011; Rosser et al., 2011). The most compelling evidence that

the grafts can not only survive but alleviate some of the functional impairments of the

human disease is provided by a series of reports on the first five patients from the

French series coordinated by Marc Peschanski and Anne-Cath�erine Bachoud-L�evi
(2000b; Bachoud-L�evi et al., 2000a, 2006; 2009). Three of the five patients exhibited
surviving grafts in the functional imaging and a stabilization of the UHDRS motor

scale was noted in the same three patients; a fourth showed temporary improvement
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associated with a surviving graft, but following an acute episode where the graft

appeared to be lost the recovery also relapsed; and the fifth patient showed no clear

surviving grafts from the outset and never exhibited any functional improvement.

Correlating with both imaging and neurological data, the three patients seen to

benefit from the graft also exhibited objective improvements in electrophysiological

measurements of somatosensory evoked potentials and in video tracking of sequence

tapping (Bachoud-L�evi et al., 2000b). These same patients were seen to show a

stabilization of benefit over a period of up to 6 years following transplantation

(Bachoud-L�evi et al., 2006).
In other centers, a similar marked benefit has been documented in one of two

patients operated at Kings College London, and striatal like tissue was seen to

survive in the graft in [11C]-raclopride PET imaging in this patient (Reuter et al.,

2008). There have also been clinical reports of functional improvement in both

neurological and neuropsychological measures in several patients from the Los

Angeles series (Kurth et al., 1996; Philpott et al., 1997). Conversely, in a series of

seven patients operated at theUniversity of Florida, six appeared to show improve-

ment over the first year, but one patient deteriorated markedly so that the change

in comparison to baseline was overall not significant (Hauser et al., 2002) and was

accompanied by marked surgical complications involving subdural hematomas in

three patients. In our own series of five patients, operated in Cambridge, striatal

cell transplantation has been found to be safe (Rosser et al., 2002) but the comple-

tion of the series has been temporarily suspended pending achieving compliance

with revised European regulations for medicinal grade processing of tissues for

human application (European Parliament and Council, 2004). Finally, a recent

report from Italy suggests detectable short-term alleviation of some motor scores

(Gallina et al., 2010), but with significant expansion of the grafts that may suggest

an atypical overgrowth of the transplants (see Section D, below).

Thus, to summarize, we now have clear data that striatal cell transplantation in

HD is feasible and that the grafts can survive transplantation. Recovery was seen in

some but not all patients in several centers, and functional benefit appeared to be

contingent upon survival of the grafts as determined byMRI and/or PET imaging

(Freeman et al., 2011; Rosser et al., 2011). Conversely, there have been several

reports of side effects that may complement our views on the safety and long-term

stability of (at least some of) the present protocols.
D. LIMITATIONS AND COMPLICATIONS AFTER STRIATAL CELL TRANSPLANTATION

The complications that have arisen in the first clinical trials fall into four main

categories of concern.

Firstly, one center has reported subdural hematomas in a total of three HD

patients (Hauser et al., 2002), a problem which was notably absent in nigral
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transplantation surgeries in PD from the same centre (Olanow et al., 2003),

although other side effects involving the emergence of graft-induced dyskinesias

in several patients was noted in that study. A survey of the patients operated in the

different centers suggests that the HD patients selected for this trial were at a

relatively advanced stage of disease in comparison to patients selected for opera-

tion elsewhere. The greater cortical atrophy that is expected in more advanced

patients is a clear risk factor for surgical bleeds, and these observations caution that

more advanced disease involving extensive cortical atrophy should be a clear

exclusion factor in future trials. Particular attention will need to be paid to surgical

routes of approach determined from surgical MRI that allow clear traverse of the

cortical gyri with the injection needles, without risk of damaging the walls of the

cortical sulci.

Secondly, whereas several post mortem studies have now reported appropriate

differentiation of human striatal grafts into discrete striatal-like zones rich in

DARPP-32 positive neurons (Capetian et al., 2009; Cicchetti et al., 2009;

Freeman et al., 2000; Keene et al., 2007), there have now been at least two occasions

of marked tissue overgrowth in individual HD patients (Gallina et al., 2010; Keene

et al., 2009). This factor was a concern in the design of early trials since individual

rats bearing human fetal striatal xenografts were seen to exhibit significant graft

expansion so as to cause space occupying lesions in the host brain (Aubry et al.,

2008; Brundin et al., 1996). With further experience in the xenografts models it has

generally been concluded that xenografts overgrowth primarily reflects the very

growth capacity of human striatal tissue in the much smaller rat brain; no similar

overgrowth has been seen in rat-to-rat, mouse-to-mouse, or primate-to-primate

allografts, and so this concern about human striatal allografts in man has generally

waned. In the first clear case of tissue overgrowth in the clinical application of

striatal transplantation, an HD patient came to post mortem with marked cyst

formation and large expansion of non-neuronal tissues within the graft mass

(Keene et al., 2009); this clearly suggested that the graft comprised epithelial tissues

as well as fetal brain and suggested mis-dissection of the donor tissues taken for

implantation (Freeman et al., 1999; 2010). More recently, several patients in a

recent series have exhibited massive expansion of the graft tissue, when visualized

in MRI, from the striatal site of implantation both back along the trajectory of

implantation into the overlying neocortex and more ventrally into the ventral

striatum (Gallina et al., 2010). As yet, these patients have shown no specific adverse

effects, and the authors themselves view these grafts as a positive sign of migration,

differentiation and integration. However, the observations have been considered

by others to exhibit worrying features of overgrowth, and potentially to reflect a

similar mis-dissection to include non-neuronal tissues (Freeman et al., 2011),

requiring careful monitoring and follow-up. Together these observations do not

change our view that implantation of embryonic striatal tissues can be as safe in

man as in animals, but they do indicate that particular attention needs to be paid to
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experience, training, and quality control (including maintaining archives of all

tissues implanted clinically) to ensure that we know exactly what tissue is being

implanted. In the light of the intrinsic variability of quality of fetal tissues derived

from elective abortions, especially when derived from a surgical aspiration proce-

dure, so maintaining an accurate and reproducible tissue dissection will always

prove difficult. However, improved standardization may be achieved using fetal

tissues derived from better preserved medical terminations (Kelly et al., 2011), and

even more so when using long-term expanded cell lines derived from pluripotent

ES and iPS sources which have far better prospect for extensive quality control in

vitro prior to use.

Thirdly, the presence of an ongoing immune response, even in the presence of

immunoprotective ‘triple’ therapy, cannot be excluded. One patient in the first

French series has shown loss of graft and functional relapse following an apparent

infection, suggestive of graft rejection, and 4 of 13 patients in the second series have

exhibited circulating antibodies indicative of alloimmunization against the

grafts although not at a level to precipitate acute rejection or loss of the grafts

(Krystkowiak et al., 2007). Similarly, in several post mortem cases from the Florida

series, detailed histochemical analysis has indicated the presence of a low level

inflammatory response and invasion of microglia at the transplantation site

(Cicchetti et al., 2009). Similar responses have been seen to nigral grafts in the

PD brain up to 18 years following transplantation (Kordower et al., 1997; Olanow

et al., 2003). The functional significance of such on-going low-level immunological

responses effects is not understood – it appears to be insufficient to lead to graft

rejection even over an extended time period, but may nevertheless lead to some

long-term compromise of graft function, and cannot be ignored until better

understood.

Finally, whereas neurological and neuropsychological changes appear to

improve, if they change at all, there has been the suggestion from the French

series that grafted patients may nevertheless exhibit an exacerbation of psychiatric

signs. This has not been systematically evaluated, and psychiatric problems are a

major feature of disease progression in HD, but several of these patients were

considered to exhibit an increase in irritability and emotional lability, and may

have contributed to difficulties across the group in maintaining stability in taking

their immunoprotective drugs.
E. MOTOR LEARNING AND BEHAVIORAL PLASTICITY IN ANIMALS AND MAN

One feature of the preclinical experimental studies may bear important rele-

vance to optimization of the design and conduct of the clinical trials, namely that

training and experience canmarkedly enhance the functional efficacy of the grafts.

This realization arose from studies designed initially to assess the effects of striatal
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grafts in more complex forms of motor learning and habit formation in rats, over

and above their demonstrated efficacy on direct motor control.

We have used a “9-hole box” operant test apparatus to train rats to make rapid

lateralized responses to briefly presented light stimuli occurring in a horizontal

array of holes, similar to touch screen vigilance and reaction time tests in man

(Fig. 2). Striatal lesions disrupt the speed and accuracy of responding to stimuli

presented on the side contralateral to the lesion (Brasted et al., 1997; Mittleman
[(Fig._2)TD$FIG]

FIG. 2. (A) Schematic illustration of the 9-hole box operant chamber. (B) Illustration of the presen-

tation of lateralized stimuli to which the rat must attend and respond in the choice lateralized reaction

time task. In the “SAME version, a response in the hole on the same side of the stimulus light is

rewarded, and a response in the opposite hole punished, and vice versa for the “OPPOSITE” version of

the task. (C) Schematic illustration of task acquisition, disruption of performance following lesion, and

relearning of accurate task performance following striatal transplantation that underlies the “learning to

use the transplant” hypothesis. See the text for details. (For color version of this figure, the reader is

referred to the web version of this book.).
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et al., 1988), a deficit which can be almost completely alleviated following implan-

tation of striatal grafts (Brasted et al., 1999a, 1999b, 2000; D€obr€ossy and Dunnett,

1998; Mayer et al., 1992). However, the time frame of recovery is informative.

Normal rats require approximately 6 weeks of daily training to learn accurate

lateralized responding to an asymptotic level of performance. Following lesion,

performance is immediately and profoundly disrupted on the side of the body

contralateral to the lesion, whereas they continue to respond rapidly and accurately

on the ipsilateral side (where response selection is under the control of the intact

striatum). Animals are typically left for 3–4 months following transplantation, to

allow full growth of the implanted striatal cells and their integration into the host

neuronal circuitry, before testing. First the grafted animals are as deficient as rats

with long-term lesions, but they then relearn to perform rapidly and accurately on

the contralateral side also, over a similar period of 6–8 weeks as required to learn the

task de novo (Brasted et al., 1999a, 1999b, 2000). The grafted cells are not simply

enabling the rats to perform the motor response per se; rather, these results clearly

suggest that the grafted cells are restoring the essential neuronal substrate for new

motor learning de novo, a phenomenon which we have described as “learning to use

the transplant” (D€obr€ossy and Dunnett, 2001; Mayer et al., 1992).

At the theoretical level, this phenomenon suggests not only that the grafted

striatal cells repair the normal corticostriatal circuitry, but reconstruct the normal

striatal substrate for learning motor skills and habits (D€obr€ossy and Dunnett,

2001). Thus, we have used a transfer of training paradigm to provide further

direct evidence that relearning the specific stimulus-response associations under-

lying lateralized reaction time performance takes place within the grafted striatal

circuits (Brasted et al., 1999a). More recently, we have used electrophysiological

recording in tissue slices to demonstrate that the normal plasticity in the form of

long-term depression at the direct corticostriatal synapse is reproduced under

similar conditions at the reformed synapses made between afferent corticostriatal

axons and the spines of grafted MSNs (Mazzocchi-Jones et al., 2009).

At the applied level these data indicate that functional recovery is not simply

dependent upon the anatomical reconstruction achieved by the grafted cells. In

addition, the animal (or patient) must relearn the skills and habits previously

acquired through a lifetime of experience but lost through the lesion or disease

using the graft-derived replacement striatal circuits (D€obr€ossy andDunnett, 2001).

In experimental animals, we have used forced exercise and different forms of

reaching tests to demonstrate that the transfer of training is relatively task-specific

(D€obr€ossy and Dunnett, 2003, 2005), and is associated with specific structural as

well as physiological changes, for example in spine density of MSNs within the

grafts (D€obr€ossy and Dunnett, 2004, 2006, 2008). In the clinical context, these

data strongly suggest that the fate of HD patients in transplantation programs will

be markedly enhanced if combined not simply with neurological and neuropsy-

chological assessment, but also with the provision of a systematic physiotherapy
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program of training in a broad range of motor skills and habits relevant to the

activities of daily living (D€obr€ossy and Dunnett, 2001; D€obr€ossy et al., 2010). Such
training programs have recently been shown to be beneficial for normal patients

(Busse et al., 2008; Busse and Rosser, 2007), and may be expected to be doubly

valuable following a reconstructive surgical cell therapy.
III. Future Developments
A. IMPROVEMENTS IN STRIATAL REPAIR

We conclude from the preceding description that striatal grafts can work well to

reconstruct the damage and alleviate a range of motor and cognitive deficits in

experimental animals with specific striatal lesions, and that these results provide

preliminary encouragement for development in clinical applications in HD. We

consider that the major side effects and complications that have been reported can

be eliminated by better patient selection and adoption of improved cell preparation

and surgical protocols. However, the variable and incomplete recovery observed in

most patient series raises further concerns, that may only partly be addressed by

identifying improved sources of donor cells, by optimizing protocols for preparation

of tissues and their surgical delivery; and by better patient selection and manage-

ment. We also need to consider the extent to which extra-striatal features of the

human disease limit the extent to which striatal repair can address major compo-

nents of the disease syndrome, and seek to extend the profile of protection and

reconstruction to other affected systems of the brain. Conversely, if not HD, are

there other more focal striatal syndromes (such as specific forms of striatal infarct or

ischemia), that might be more amenable to the transplantation approach to striatal

reconstruction that has proved so effective in experimental animals?

First and foremost, the neural transplantation field, along with other areas of

cell therapy, has undergone significant transformation in the last decade with the

enactment of national and regional regulation requiring adoption of standard

operating principles, quality control, and preparation under strict compliance

with “good manufacturing practice” and sterile environment (European

Parliament and Council, 2004). This will certainly ensure a degree of standardi-

zation in methods. In addition, an emphasis on documented training and valida-

tion of protocols has the prospect of reducing the incidence of poor dissection

resulting in implantation of inappropriate non-neuronal tissues, whether or not

associated with a marked capacity for proliferation and uncontrolled growth.

Nevertheless, the rigors of operating to GMP can introduce constraints to proto-

cols that are demonstrably suboptimal in terms of their biological efficacy simply to

meet standards of compliance, for example aiming to use only using reagents that
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are traceable, carry legal audit certification, and involve entirely synthetic or

nonanimal derived products.

More problematic is the quality of supply of donor tissues. Tissue from surgical

(aspiration) terminations of pregnancy is typically fragmented, making accurate

identification of forebrain features and precise dissection extremely difficult to

standardize, even with considerable experience. Determination of fetal age/stage

of development when based on clinical records, ultrasound notes and morpho-

metric measurement can be quite variable. Nor can such tissues ever even

approach sterility, requiring systematic and thoroughly validated washing proto-

cols with microbiological monitoring an essential quality requirement. Even with

the use of a hibernation protocol to extend the period of tissue viability for

5–7 days from collection to transplantation (Hurelbrink et al., 2003; Sauer and

Brundin, 1991), the time to complete assays of maternal donor blood and tissue

products for viral and microbiological contamination is limited, and some testing

(such as for prion disease) is essentially excluded. Fetal tissues derived frommedical

terminations of pregnancy have recently been shown to have comparable viability

for cell transplantation (Kelly et al., 2011), and this source may provide significant

improvements in the reliability of supply, the integrity of the fetal brain allowing

more accurate dissection, and the relative cleanliness of donated tissues within the

placental sack, but the variability of age, limited time window of utilization, and

impossibility of standardization remain. For these reasons, attention is increasingly

turning to pluripotent ES and iPS sources of cells for transplantation.

Stem cells are characterized by their capacity to be expanded for prolonged

periods in vitro, and to subsequently differentiate (under appropriate conditions)

into any cell type of the body (Zietlow et al., 2008). In principle, validated stem cell

lines offer the prospect of providing an unlimited supply of standardized and

quality assured cells for transplantation, ‘off the shelf’ as and when required.

There are a number of published protocols now available for the neuralization

of ES-derived cells (Gaspard and Vanderhaeghen, 2010), and protocols are being

developed for the differentiation of a number of specific neuronal phenotypes

(Peljto and Wichterle, 2011). The phenotype for which most progress has been

made at the time of writing, largely by attempts to recapitulate developmental

signals, is probably the midbrain A9 dopaminergic neuron (Kriks and Studer,

2009; Pruszak and Isacson, 2009; Thomas, 2010). There are numerous reports of

dopamine cells with properties consistent with an A9 dopamine phenotype in vitro

although reports of the survival and differentiation of such cells following trans-

plantation has been much less consistent. Preliminary protocols for derivation of

striatal-like MSNs, using DARPP-32 positivity as a primary marker, are also

beginning to appear (Aubry et al., 2008). However, at present the optimal protocols

are yet to be determined, and yield amixed variety of cell types rather than reliably

and exclusively developing neurons of the specific target phenotype. As for the

dopamine neurons, the survival and stability of a differentiated phenotype
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following CNS transplantation has been far less reliable than is typically achieved

using newly differentiated primary fetal neurons, and they have quite different

capacities for migration, neurite outgrowth, physiological function, and connec-

tivity with the host. In summary, although rapid progress is being made, our ability

to control and direct differentiation of stem cells, whether of ES, iPS or adult

somatic origin, remains incomplete and we remain a long way from being able to

provide a replacement for developing fetal neurons with a similar capacity for

phenotypic specificity, integration and reconstruction of damaged adult neuronal

circuitry.

In addition, reflecting their capacity for expansion in an undifferentiated state,

all stem cell sources have a capacity to form tumors. Notwithstanding active

research both into ways to ensure complete in vitro differentiation into a nonpro-

liferative state and alternative strategies such as the introduction of suicide genes

for regulated elimination in case of adverse overgrowth, the outstanding concerns

for safety have yet to be fully resolved. Thus, although they offer a compelling

opportunity for resolution of the current limitations on availability of supply,

standardization and quality control, no stem cell source is yet close to readiness

for legitimate clinical application. Which is not to say that such clinical translation

of stem cell programs are not already proceeding, rather that in our opinion they

are seriously premature on grounds both of safety and of efficacy (for which neither

theoretical nor empirical evidence is compelling).
B. PATIENT SELECTION AND DISEASE

As noted above, we also need to consider the extent to which extra-striatal

features of HD influences the extent and limitation of recovery following striatal

transplantation. Although HD has traditionally been considered a striatal disease,

and striatal cell loss and atrophy are certainly the earliest appearing and most

marked features of the neuropathology (Vonsattel et al., 1985), as the disease

progresses, the neocortex and other output nuclei of the basal ganglia, along with

other brain nuclei such as hypothalamus, and peripheral organs also become

progressively affected (Gutekunst et al., 2002). While we remain unclear about

the mechanisms whereby the genetic mutation that is expressed in all cells is

translated into cellular dysfunction and cell death in some cell types and anatom-

ical systems, but not in others, it remains amatter of dispute the extent to which the

above temporal profile reflects either (i) an anatomical cascade of pathogenic

influence originating in the striatum versus (ii) independent manifestations of the

disease process in striatal, cortical, and other areas. Nevertheless, the answer to this

issue will profoundly influence the potential long-term benefit that could be

expected following an effective reparative striatal cell therapy. If (i), then alleviating

the striatal degeneration by striatal cell replacement might provide effective
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trophic and target support for cortical afferents and downstream basal ganglia

efferents, halting the progressive spread of the disease. Conversely, if (ii), then no

amount of striatal repair will alleviate the ongoing cortical decline which almost

certainly (along with the striatal degeneration) contributes to the major cognitive

and psychiatric features of the disease. In this circumstance, then whereas early

striatal transplantation may provide an effective remission of symptoms, long-

term benefits are likely to be limited. Certainly there are those that argue that

the second possibility is the more likely and consequently, further trials of striatal

transplantation should not continue (Albin, 2002). We believe that this is overly

bleak, and while we do not know the causative relationship, cutting off one

promising line of investigation might be considered foolhardy. On the other

hand, throughout the course of the disease the striatal degeneration precedes

and is more marked than cell loss and atrophy in other areas, and since striatal

circuits as a core component of functional frontal systems are involved in

cognitive and behavioral as well as motor symptoms we consider that effective

striatal repair is likely to provide benefit across the functional domains, even in

advanced disease. At the same time, we would not wish to argue that any

therapeutic strategy should be pursued in isolation. Almost certainly, patients

will best be served by judicious combination of symptomatic, neuroprotective

and reparative therapies rather than rigid pursuit on theoretical grounds of one

approach to the exclusion of others.

Nevertheless, a cautionary word is required against the assumption that if cell

transplantation works for striatal repair, then why not adopt a similar approach for

cortical, pallidal or other regions of degeneration also. As described above (Section

II B), different grafts influence host behavior via a variety of different mechanisms,

and there are different functional demands dependent upon the behavioral class

and anatomical system transplanted. The striatum is uniquely suited to such circuit

reconstruction by virtue of its anatomical location at the point of convergence of

diverse cortical inputs and yet it retains into adulthood an internal plasticity

appropriate to the adaptation of motor skills and habits to experience throughout

life. The neocortex appears to be a far more complex target for functional recon-

struction. Thus, a precise columnar and laminar organization is critical to cortical

processing of afferent information, and plans for action are distributed via long-

distance projections of cortical outputs that are precisely organized at a topograph-

ical level. Although it has proved possible to restore a functional circuitry with

repositioning of circumscribed slabs of barrel cortex into the precisely correspond-

ing area in developing brain (Andres and Van der Loos, 1985), more general

reorganization following more diffuse lesions has proved far more difficult to

reconstruct, without precise long-distance connectivity being restored to and from

for example, the thalamus, and without effective functional recovery (Dunnett

et al., 1987a; Sofroniew et al., 1990). Although cortical repair has been investigated

in far less detail than in the striatum, coherent additive recovery of function by
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combination of transplants in multiple systems appears beyond reach, at least at

the present state of knowledge.

Rather, our consideration of the experimental basis and principles of striatal

repair suggests that we should instead seek to determine whether some rather than

other aspects of the symptom profile of HD, or particular stages of disease progres-

sion, might be preferentially amenable to striatal repair. Future trials are likely to

select earlier stage patients for safety reasons (see Section II D), and this choice is

likely to be endorsed by the stage when degeneration is still primarily restricted to the

striatum. Also, systematic comparison of individual patient data is likely to indicate

certain classes of HD symptoms (e.g., formation and adaptation of motor skills and

habits with experience) are more responsive to transplantation than others, suggest-

ing a greater dependence of such functions on the core striatal pathology, as has

already proved the case in comparisons in the course of the preparations for a new

nigral transplantation program in PD (unpublished data, EU Transeuro consor-

tium). Alternatively, other neurological syndromes might be more suitable for cell

transplantation based upon a more selective striatal profile of neurodegeneration –

such as certain rare focal ischemias, but in such case the lateralized nature of the

disorder with predominant unilateral motor symptoms and little cognitive and

psychiatric impairment is unlikely to warrant such speculative surgical intervention.
IV. Conclusion
In conclusion, striatal grafts can work well to reconstruct the damage and

alleviate a range of motor and cognitive deficits in experimental animals with

specific striatal lesions. These results provided encouragement for development of

a clinical application in HD, and clinical trials in several centers in Europe and

North America provide evidence of safety and preliminary data on efficacy.

Nevertheless recovery in patients has so far not been seen as reliable or reproduc-

ible as has been achieved inmany laboratory studies in animals. In part this reflects

variability and lack of standardization of clinical protocols, the limited availability

of high quality human fetal donor tissue, and the need to develop alternative cell

sources for transplantation. However, in part it may also reflect the fact that

human HD involves a broader range of pathology than the striatal degeneration

that is repaired by striatal transplantation alone. The present chapter illustrates

how the critical analysis of the principles and mechanisms for functional recovery

may guide patient selection and management, along with optimization of different

transplantation methods, which might be expected to maximize the benefits to be

achieved by cell transplantation as an important component in an integrated

treatment plan designed to meet individual patient needs in this complex neuro-

degenerative disorder.
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Dystonia is defined as a motor syndrome characterized by sustained muscle

contractions, usually producing twisting and repetitive movements or abnormal

postures. Dystonia can be present at rest or worsened by action. Dystonia is

commonly classified according to age at onset (childhood, adolescent type, and

adult type), etiology (idiopathic, and symptomatic), and distribution (focal

dystonia, segmental dystonia, generalized dystonia, multifocal dystonia and

hemidystonia). The different subtypes of focal and segmental dystonias may have

different clinical features. Neuropsychiatric disorders may be present in dystonia.
I. Historical Review
The first observations of dystonia date back to the beginning of the 20th

century. The German physician Oppenheim coined the term dystonia in

1911, describing six patients characterized by clinical features compatible

with early-onset generalized dystonia (Oppenheim, 1911). Oppenheim used

the term “dystonia” to indicate that “the muscle tone is in certain moments

hypotonic, whereas in others it is subject to muscle spasms that are usually

induced by voluntary movements.”
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He hypothesized that dystonia was an organic disease and enriched the

semeiological description with other characteristic signs of this condition: twisted

posture of the limbs and the trunk associated with spasms, bizarre gait alterations

with bending, flexion, and twisting of the trunk, and rapid and rhythmic jerking

movements; he also stated that symptoms tended to evolve into fixed postural

deformities. By using two definitions in Latin, he highlighted two main aspects of

this disease: dysbasia lordotica progressiva was used to refer to the evolutionary nature

of the disease with the presence of a pronounced gait alteration (also named

dromedary gait) and postural abnormalities of the trunk, while distonia musculorum

deformans was used to refer to the presence of muscle tone alterations leading to

long-term trunk and limb postural abnormalities.

However, in subsequent decades, themajority of dystonia cases continued to be

considered as patients affected by a conversion reaction (Lesser and Fahn, 1978);

only late in the 20th century was an organic framework for dystonia firmly estab-

lished through the identification of genetic mutations in families with generalized

dystonia (Ozelius et al., 1992) and the demonstration that the contralateral basal

ganglia are often damaged in patients with acquired hemidystonia (Marsden et al.,

1985). At about the same time, it was finally clarified that even some isolated and

relatively benign hyperkinetic disorders that occur in adult life (including blepha-

rospasm, oromandibular dystonia, dystonic writer’s cramp, torticollis and axial

dystonia) are also forms of dystonia, and that there is a continuum from the more

severe generalized type to the more benign, strictly focal forms (Marsden, 1976a).

Dystonia is now viewed as an organic brain abnormality whose pathogenesis is

increasingly being investigated by means of functional brain imaging and electro-

physiological and genetic techniques (Berardelli et al., 1988; Colosimo et al., 2005;

Perlmutter et al., 1997; Tinazzi, Squintani, and Berardelli, 2009).
II. Definition and Classification
In 1984, an Ad Hoc Committee of the Dystonia Medical Research Foundation devel-

oped a definition of dystonia and classification of dystonic movements that is still

widely accepted (Fahn, 1987). Dystonia was defined as a motor syndrome charac-

terized by sustained muscle contractions, usually producing twisting and repetitive

movements or abnormal postures. It was noted that dystonia is usually precipitated by

action, and that almost all dystonic movements share a directional quality that is

typically sustained, sometimes even only briefly. The committee classified dystonia

according to threemain features: age at onset, etiology, and distribution (Fahn, 1987).

The age at onset of dystonia was divided into the childhood type (0 to 12 years),

adolescent type (13 to 20 years), and adult type (over 21 years). Age is the most

important feature in predicting clinical outcome, with earlier age at onset being



Table I

MAIN PROGNOSTIC DETERMINANTS IN DYSTONIA.

* Age at onset

* Etiology

* Body distribution (focal, segmental, hemidystonia, generalized)

* Severity (abnormal postures, jerks, tremor)
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associated with both a more extensive spread to other body regions and a more

severe clinical picture (Table I).

The etiology of dystonia was divided into two main categories: idiopathic,

when no exogenous cause or brain lesions are identified, and symptomatic, when

an exogenous cause that may be ascribed to a variety of origins (e.g. structural

lesions, drugs/toxins, and metabolic disorders) is identified (Table II). Recent

advances in genetics have, however, demonstrated that many forms of idiopathic

dystonia are genetic in nature. Idiopathic dystonia should therefore be renamed

“primary” and symptomatic dystonia “secondary.” A subcategory of complex
Table II

ETIOLOGY OF DYSTONIA.

Primary (idiopathic)

Sporadic

Familial

Secondary (symptomatic)

Dystonia-plus

Dopa-responsive dystonia (Segawa’s syndrome)

Rapid-onset dystonia parkinsonism

Myoclonus-dystonia

Heredodegenerative dystonia

Autosomal dominant (e.g. HD, SCA3, DRPLA)

Autosomal recessive (e.g. Wilson disease, GM1, and GM2 gangliosidosis, homocystinuria)

X-linked (e.g. X-linked dystonia parkinsonism/Lubag)

Acquired causes

Drug-induced (e.g. tardive dystonia)

Basal ganglia lesions (particularly the putamen) due to stroke, tumor, vascular malformations,

demyelination, etc.

Intracranial or peripheral trauma

Unknown etiology

Parkinson’s disease

Corticobasal degeneration

Multiple system atrophy

Progressive supranuclear palsy
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secondary dystonic syndromes, the so-called dystonia-plus, have also been identi-

fied (Table III). These forms are characterized by other neurological features in

addition to dystonia (e.g. parkinsonism and spasticity in DOPA-responsive dysto-

nia, or myoclonus in myoclonic dystonia linked to mutations in the epsilon-sarco-

glycan gene), though without any apparent neurodegeneration, and need to be

differentiated from other dystonic syndromes (Kurlan et al., 1988; Quinn,

Rothwell, and Thompson, 1988; Segawa, 2010).

The classification of dystonia by distribution was based on the following

categories: focal dystonia, segmental dystonia, generalized dystonia, multifocal

dystonia, and hemidystonia (Table IV). The term focal dystonia refers to the
Table IV

CLINICAL CLASSIFICATION OF DYSTONIA BY AFFECTED BODY PART.

Type of Dystonia Affected Part

Focal [A single body part is affected]. Examples:

Eyelids (blepharospasm)

Mouth (oromandibular dystonia, embouchure dystonia)

Larynx (spasmodic dysphonia)

Neck (cervical dystonia)

Hand and arm (including occupational cramps)

Segmental Cranial (two or more parts of cranial and neck musculature)

Axial (neck and trunk)

Brachial (one arm and axial; both arms W neck W trunk)

Crural (one leg and trunk; both legs W trunk)

Generalized A combination of segmental crural and any other segment

Multifocal Two or more noncontiguous parts

Hemidystonia Arm and leg on one side

Table III

COMBINATION OF PHYSICAL SIGNS OBSERVED IN DIFFERENT DYSTONIA SYNDROMES.

Dystonia Syndromes Physical Signs Observed

Primary (or idiopathic) dystonias Dystonia

Dystonia plus syndromes Dystonia, parkinsonism, myoclonus

Paroxysmal dystonias Dystonia, chorea, myoclonus

Heredodegenerative dystonias Dystonia, parkinsonism, chorea, myoclonus, spasticity,

cerebellar features, dysautonomia, cognitive impairment,

epilepsy

Symptomatic dystonias Same as for heredodegenerative dystonias plus focal

neurological signs, if present

From: Albanese and Lalli (2009).
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involvement of a single body part. Blepharospasm, oromandibular dystonia, spas-

modic dysphonia, spasmodic torticollis, and writer’s cramp are all forms of focal

dystonias. Segmental dystonia is characterized by the involvement of two or more

contiguous regions of the body. The segmental forms are subdivided into regional

categories: cranial, axial, brachial, and crural (Fahn, 1987; Marsden, 1976b).

Cranial dystonia is characterized by the involvement of any combination of

musculature in the head and neck region, though the neck and mandible do not

belong to the cranium anatomically speaking. It may thus be more appropriate to

classify blepharospasm, masticatory dystonia, and cervical dystonia (CD) as

“craniocervical” dystonia as opposed to “cranial” dystonia (Colosimo et al.,

2010). Generalized dystonia, which is the most severe form of dystonia, consists

of segmental crural dystonia and dystonia in at least one additional body part

(Marsden and Harrison, 1974).

Childhood onset dystonia tends, unlike the adult onset form of this disorder, to

progress into generalized dystonia. In addition, familial aggregation is more com-

mon in early-onset forms, whereas late-onset primary dystonia is often sporadic

and tends, at least initially, to remain focal or segmental in distribution (Defazio,

Berardelli, and Hallett, 2007). The classical example of childhood-onset general-

ized dystonia is the disease due to the DYT1 gene mutation, which is also referred

to as Oppenheim’s dystonia. DYT1 dystonia is an autosomal-dominant disorder

that is caused, in the vast majority of cases, by a GAG deletion in the TOR1A gene

(whose final product is Torsin A) and is typically characterized by early onset in a

limb, generalization, and a tendency to spare the cranial-cervical muscles

(Ozelius et al., 1992). Patients with this disease have symptom onset before the

30 years of age and normal cognitive function. The functional prognosis in chil-

dren with this form is usually severe (Fig. 1), with a considerable proportion of
[(Fig._1)TD$FIG]

FIG. 1. Image of a patient affected by severe DYT-1 generalized dystonia. Courtesy of Dr. AR

Bentivoglio, Rome.
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patients becoming wheelchair-bound or requiring walking aids before they reach

adult age (Anca et al., 2003). Fortunately, therapies that have been developed over

the last decade and are based on a combination of drugs, botulinum toxin, and

functional neurosurgery now allow patients with Oppenheim’s dystonia to be

more independent and to have a better quality of life than was previously possible.

A few exceptions to this typical presentation have been reported, describing

mutation carriers from DYT1 families who present with focal or segmental dys-

tonia of adult onset (Edwards et al., 2003). Family studies have also assessed that the

penetrance of DYT1 dystonia is only around 30%.Conversely, patients with early-

onset primary dystonia not caused by the DYT1 gene tend to have later age at

onset, less commonly limb onset, and overall a slower progression than DYT1

primary dystonia cases (Albanese et al., 2011).

Multifocal dystonia is characterized by the involvement of two or more non-

contiguous parts. Hemidystonia is a syndrome involving only half of the body, and

is usually due to a structural lesion with various etiologies in the contralateral basal

ganglia (Factor, Troche-Panetto, and Weaver, 2003; Marsden et al., 1985;

Pettigrew and Jankovic, 1985): hemiparesis and pyramidal signs are not uncom-

mon, though the clinical course of this unusual disorder is nonprogressive.

The risk of mistaking some cases of adult-onset dystonia with arm tremor,

including a rest component and reduced arm swing on the affected side, for

Parkinson’s disease (PD) may be high. Clinicians should consequently be aware

that primary adult-onset dystonia may present with an asymmetric resting arm

tremor, impaired arm swing and sometimes facial hypomimia or jaw tremor,

though without evidence of true bradykinesia (i.e., with progressive fatiguing).

Given the serious consequences of misdiagnosing such cases as PD patients,

functional imaging with a dopamine transporter tracer should always be per-

formed in cases in which the diagnosis is uncertain (Schneider et al., 2007). Since

the result of this examination in dystonia patients is negative, dystonic tremor in

cases suspected of being affected by PD should always be considered as a possible

cause of the so-called Scans Without Evidence of Dopaminergic Deficit (SWEDDs).

Dystonia is also one of the most common presentations of psychogenic move-

ment disorders (PMD). The term “psychogenic” is used to describe disorders that

cannot be attributed to a known underlying organic cause. The identification of

such cases still poses a major challenge in neurological practice. Although PMD is

traditionally diagnosed by excluding other diseases, recent clinical and physiolog-

ical advances have led to the establishment of some diagnostic criteria for this

disease (Gupta and Lang, 2009). The diagnosis of PMD is definite when symptoms

resolve following suggestion therapy, psychotherapy, physiotherapy, or the admin-

istration of a placebo, or when the patient’s symptoms disappear upon being left

alone and unobserved (Fahn andWilliams, 1988). Unfortunately, the prognosis of

psychogenic dystonia remains disappointing, with the majority of patients suffer-

ing significant long-term disability.
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Lastly, dystonia may present in the form of primary paroxysmal disorders.

These rare disorders are classified as idiopathic (often familial) or symptomatic and

they may be ascribed to a variety of causes (Albanese et al., 2011). Three main

forms with different triggering factors are known: in paroxysmal kinesigenic dys-

tonia attacks are induced by sudden movement, in paroxysmal exercise-induced

dystonia by intense exercise, such as walking or swimming, and in the nonkinesi-

genic form by alcohol, coffee, or tea drinking.

To sum up, dystonia is a disease whose severity at onset, natural history and

impact on the patient’s quality of life may vary; consequently, several factors need

to be taken into consideration when a prognosis of functional impairment is made

in a newly diagnosed patient.
III. Clinical Features in Different Subtypes of Focal and Segmental Dystonia
A. BLEPHAROSPASM

Blepharospasm is a common adult-onset focal dystonia, characterized by

involuntary contractions of the periocular muscles resulting in forceful eye closure,

which impairs normal opening and closing of the eyes (Fabbrini et al., 2009;

Grandas et al., 1988; Jankovic and Orman, 1984; Marsden, 1976a). The muscle

invariably involved in blepharospasm is the orbicularis oculi (Berardelli et al.,

1985). The orbicularis oculi, a sphincter muscle around the eye, is composed of

orbital, preseptal, and pretarsal parts. These parts play different roles in the

mechanism of eye closure. Blepharospasm may also involve other muscles, such

as levator palpebrae superioris, corrugator, procerus, and frontalis.

Blepharospasm is primary in the majority of cases, and secondary in the few

cases in which it is due to structural brain lesions or is drug induced (Jankovic,

2006; Tolosa, 1993). The severity of blepharospasm may vary from repeated

frequent blinking, which causes only minor discomfort, to persistent forceful

closure of the eyelids, which leads to functional blindness (Fig. 2). The charac-

teristic features of blepharospasm include sensory tricks that patients use to

relieve their symptoms (geste antagoniste), such as rubbing of the eyelids, and

frequent ocular symptoms (related to diseases of the anterior ocular segment,

for example, blepharitis and keratoconjunctivitis) that occur either before or at

the onset of the spasm (Calace et al., 2003; Marsden, 1976b). Blepharospasm

may be associated with levator palpebrae superioris muscle inhibition (eyelid

opening apraxia) or involuntary movements in the lower face or jaw muscles

(Meige syndrome). Blepharospasm and eyelid opening apraxia may be associ-

ated with specific neurodegenerative conditions, such as progressive
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FIG. 2. Images of a patient affected by blepharospasm. (a) and (b) show different phases of an

involuntary bilateral orbicularis oculi muscle contraction. From: Fabbrini et al. (2009).
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supranuclear palsy and corticobasal degeneration (Colosimo et al., 2011;

Defazio, Berardelli, and Hallett, 2007).

Differences in the risk of spread between the various forms of focal dystonia

over time and the influence of age at dystonia onset on the risk of spread are not

well established. In an Italian multicenter survey, age at dystonia onset, age at

initial spread and the risk of initial spread were found to be significantly higher

in blepharospasm patients than in patients with onset in the neck or upper

extremities, whereas the time elapsing from onset to initial spread was signifi-

cantly lower (Abbruzzese et al., 2008). The increased risk of spread in the

blepharospasm group was most evident in the first 5 years following onset, after

which it declined and became similar to that of patients with CD or limb

dystonia.
B. MEIGE’S SYNDROME

In 1910, the French neurologist Henri Meige described ten patients with

involuntary closure of the eyelids (Meige, 1910). Blepharospasm in one of these

patients was associated with involuntary contractions of the jaw muscles. This

eponym became popular a few decades later and the possibility that the path-

ophysiology of blepharospasm and oromandibular dystonia is shared was

hypothesized (Paulson, 1972). In 1976, David Marsden first drew attention to

“De Gaper” (“The Yawning man”, Mus�ees Royaux des Beaux-Arts, Bruxelles),
a work of art by the celebrated painter Pieter Brueghel the Elder, in an article on

blepharospasm and oromandibular dystonia (Marsden, 1976a), despite the fact

that Brueghel’s vivid painting of a yawning subject has nothing to do with

dystonia. It has been suggested that the essential sign of the Brueghel syndrome
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is “a widely and dystonically opened jaw.” However, although jaw-opening

dystonia has been associated with blepharospasm, it may otherwise occur in

the setting of segmental, multifocal, or generalized dystonia (Fabbrini et al.,

2009). Indeed, the application of the Brueghel syndrome to all these cases

should be considered misleading and confusing. Consequently, while the

eponymic term “Meige’s syndrome” is still used, the term Brueghel syndrome

has now become obsolete (LeDoux, 2009).
C. OROMANDIBULAR DYSTONIA

Dystonic spasms may affect the lower facial and jaw muscles (oromandibular

dystonia, OMD) and are often associated with blepharospasm (Marsden, 1976b).

OMD most often manifests itself as closing dystonia, though it may also be

characterized by opening jaw dystonia (also called Brueghel syndrome, see the

previous paragraph) or deviation and retraction of the jaw, or a combination of

these movements (Fabbrini et al., 2009). OMD is, on rare occasions, unilateral,

causing deviation of the jaw to one side. The spasms frequently also involve

muscles of themouth and tongue. OMDmay arise spontaneously or during eating,

chewing or speaking, and render communication and nutrition difficult.

Examination may disclose a variety of antagonist maneuvers or sensory tricks,

including touching the lips or chin, chewing gum, or biting on a toothpick. OMD is

often a socially embarrassing and disfiguring condition. Embouchure dystonia is a

task-specific cranial dystonia typical of musicians. It involves the muscles used to

initiate and control the amplitude and force of airflow into the mouthpiece of a

woodwind or brass instrument. The most common phenotype is involuntary, task-

specific tremor of the lips, while less common patterns include involuntary lip

movements and jaw closure (Fabbrini et al., 2009). This rare disordermay be severe

enough to hinder the career of some professional musicians.
D. LINGUAL DYSTONIA

Primary focal lingual dystonia is a rare disorder that manifests itself in the form

of action dystonia during speech or through paroxysmal episodic lingual spasms

(Fabbrini et al., 2009). It may be so severe as to interfere with speech, swallowing

and breathing. Tardive lingual dystonia, secondary to the use of dopamine recep-

tor blocking agents, maymanifest itself in a relatively isolated form (Schneider et al.,

2006). Severe tongue protrusion, particularly during eating, is characteristic of

neuroacanthocytosis (Bader et al., 2010) but may also be seen in other rare and fatal

neurodegenerative diseases, such as pantothenate kinase-associated neurodegen-

eration and Lesch–Nyhan syndrome (Schneider et al., 2006).
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E. LARYNGEAL DYSTONIA

Laryngeal dystonia (also commonly referred to as spasmodic dysphonia) is a

neurological voice disorder characterized by involuntary adductor (towards the

midline) or abductor (away from the midline) vocal fold spasms during phonation,

which result in phonatory breaks and consequent articulatory speech disorder

(Marsden, 1976a). The most common form of laryngeal dystonia is adductor

spasmodic dysphonia. Some patients also have a mixed form of this disorder.

Laryngeal dystonia often begins late in life and may be either mild or severely

disabling; the latter form leads to enduring impairment in verbal communication

and reduced quality of life (Murry et al., 1994).
F. CERVICAL DYSTONIA

CD (also called spasmodic torticollis) is the most common form of focal dys-

tonia, its prevalence being approximately 6 per 100,000 (Nutt et al., 1988). The

mean age at onset is in the fifth decade. Cervical dystonia is a lifelong chronic

disorder with a varying clinical presentation and progression (Lowenstein and

Aminoff, 1988), though longitudinal studies have unequivocally shown that spon-

taneous remission rarely occurs, and tends to be transient when it does (Jayne, Lees

and Stern, 1984). Cervical dystonia is characterized by involuntary postures of the

head due to involuntary spasms, jerks or tremors (or all three combined) and is

frequently associated with neck pain (Hughes, Lees and Marsden, 1991). A

common clinical classification of CD is based on the type of movement and

position of the head in affected patients, the most common type being rotational

torticollis (>50%). Other relatively common patterns include laterocollis (i.e.,

lateral flexion) and retrocollis (i.e., posterior flexion), whereas anterocollis

(i.e., anterior flexion) and complex forms of CD (in which no predominant com-

ponent can be identified) are less common (Colosimo et al., 2010). Most patients,

however, display a combination of various abnormal patterns, even when a main

component is identified. Interestingly, there is no significant preponderance of

right or left deviation. Moreover, abnormal posture is present most of the time in

CD patients, though it may change markedly during the illness and may even

rapidly reverse direction (Chan et al., 1991). CD commonly involves several neck

muscles, including the sternocleidomastoid, splenius, trapezius, levator scapulae,

scalenii, and semispinalis muscles. Various sensory tricks, such as touching the

face contralaterally or ipsilaterally to the direction of head rotation (Fig. 3), may

reduce the involuntary neck movements, albeit temporarily. As in other forms of

focal dystonia, stress exacerbates while relaxation improves the symptoms of

CD. With the introduction of botulinum toxin therapy, many of the severe long-

term complications of CD, such as contractures, radiculopathies, and
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FIG. 3. Images of a patient affected by cervical dystonia (rotational type). Note the hypertrophy of the

sternocleidomastoid muscle contralateral to the head rotation (a), and a typical sensory trick (b).
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compressive cervical myelopathy, have become less common (Jankovic and

Orman, 1987; Ward et al., 2006). Cervical dystonia is usually primary in nature

(in which case all investigations, including brain neuroimaging, are normal),

though rare cases secondary to basal ganglia brain lesions have may occur.
G. LIMB DYSTONIA

The legs are frequently involved in early-onset generalized dystonia,

whereas the limbs in general are rarely affected in adults with focal or segmental

dystonia. Adult forms usually first manifest themselves as action dystonia, being

only occasional the secondary cases of limb dystonia that start as dystonia at rest.

During a volitional movement of the affected limb is also noticeable another

characteristic feature of dystonia, the “overflow”’ of contractions to adjacent or

remote muscles.

Task-specific, focal limb dystonia is often seen in occupational cramps

(Roze et al., 2009). This type of focal limb dystonia occurs in associations with

specific repetitive actions such as writing, typing, feeding, in some sports (e.g., golf)

and when musical instruments are being played, particularly by professional

musicians who are subjected to particularly long training sessions. Primary lower

limb dystonia is a rare and often misdiagnosed condition: results from a recent

multicenter study, based on a series of consecutive out-patients with adult-onset
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primary dystonia attending nine Italian teaching hospitals, showed that out of the

579 patients assessed, only 11 (1.9%) had lower limb dystonia (Martino et al., 2010).
H. AXIAL DYSTONIA

Axial or trunk dystonia is a rare dystonic disorder that can result in scoliosis,

lordosis, kyphosis, tortipelvis, and opisthotonic posturing (or a combination of

these abnormalities). This is a severe disorder that may start as action dystonia

(e.g. seen only in walking or running), and later progress to a fixed deformity that

persists even when the patient is at rest (Bhatia, Quinn andMarsden, 1997). These

patients generally share a number of clinical features with other types of adult onset

primary dystonias. They have no family history of dystonia and tend to remain

focal, although some contiguous spread may occur. If spread does occur, involve-

ment of the head, neck, and arms is mild in comparison with the severe trunk

dystonia. Since treatment response to various drugs and to botulinum toxin is

generally poor, the functional prognosis is consequently also poor, and severe

depression may affect a significant number of these patients, owing mainly to

the negative personal image resulting from such a disfiguring disease.
IV. Neuropsychiatric Features of Dystonia
It has now become clear that dystonia is not merely a motor system disorder.

Indeed, the association between depression and obsessive-compulsive behavior

and various forms of dystonia has been the subject of numerous studies conducted

by research groups throughout the world. In a study performed by one centre in

Austria, 14% of the patients with CD were found to have moderate to severe

depression (according the Beck depression index), which improved significantly

after botulinum toxin treatment (M€uller et al., 2002). The occurrence of frequent
psychiatric disorders with various forms of focal dystonia (including blepha-

rospasm and CD) was confirmed in a recent study on 89 patients conducted by

our group (Fabbrini et al., 2010). When patients were assessed by means of a

structured clinical interview for DSM-IV (SCID-I) and other standardized psy-

chiatric scales, we found that depressive disorders were more frequent in the

blepharospasm and CD groups than in healthy controls, whereas the frequency

of anxiety and obsessive-compulsive or adjustment disorders was comparable to

that of healthy subjects. Findings from a series of noteworthy studies by Jahanshahi

andMarsden (1988 and 1990a) also support the concept that depression in patients

affected by dystonia is largely related to a negative body image, due to abnormal

postures of the head and other body parts (Jahanshahi and Marsden, 1990b).

Indeed, perceived stigma and consequent social avoidance behaviur are well-
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known psychosocial features of CD that very likely contribute to the development

of depression (Papathanasiou et al., 2001).
V. Conclusions
Dystonia is a term used to refer to a common movement disorder in humans

and to identify a heterogeneous group of primary (idiopathic) and secondary

(symptomatic) disorders of this kind. Diagnosing dystonia may be difficult owing

to the variability of its clinical presentation, unclear recognition of its clinical

signs, the wide range of etiological factors and the coexistence of other move-

ment disorders. The main difficulties encountered in the diagnostic assessment

of dystonia are often due to the confusion that arises between this disorder and

other organic movement disorders or psychogenic syndromes. The movement

disorders that may most commonly be mistaken for dystonia are essential

tremor, PD, myoclonus, chorea, tics, and conversion reactions. Specific diag-

nostic algorithms, together with genetic and laboratory tests, are essential to

recognize the clinical signs of dystonia, as recommended in recent international

consensus guidelines (Albanese et al., 2011). Because of the lack of specific

diagnostic tests, careful clinical observation is always recommended, whereas

appropriate investigations are required if the initial presentation or the natural

history of the disease suggests heredodegenerative or secondary (symptomatic)

dystonia.
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Dystonia consists of involuntary repetitive twisting (torsion) or directional

movements, sometimes leading to sustained postures. The movements are

stereotyped and characterized by co-contraction of agonist and antagonist

muscles. There is a broad clinical spectrum of dystonia which derives in part from

the differential distribution of involvement. Dystonia may be localized, affecting a

single body region, or generalized, affecting multiple extremities along with the

trunk. Intermediate dystonic involvement can be described as segmental,

designating two affected contiguous body regions, ormultifocal, designating two or

more noncontiguous affected body regions. Hemidystonia refers to dystonia

affecting only one side of the body.

Dystonia can also be categorized by age of onset and etiology. Early onset

dystonia, occurring in childhood or adolescence (in some studies younger than 26

years old), is associated with more progressive disease [Greene et al. (1995). Mov.

Disord. 10, 143]. In this age group, dystonia usually first appears in a limb and then

spreads to involve other limbs and axial muscles; some early-onset patients may

have involvement of laryngeal and other cranial muscles. Adult or late-onset

dystonia typically begins in the neck, arm, or cranial muscles. Compared to early-

onset dystonia, the area of involvement is more likely to remain focal or segmental.

Dystonia can be considered either primary or nonprimary. Primary torsion

dystonia (PTD), historically called dystonia musculorum deformans and

Oppenheim’s dystonia, describes dystonia in isolation, excepting tremor, without

brain degeneration and without an identified acquired cause. Nonprimary or

secondary dystonia encompasses a heterogeneous group of syndromes and

etiologies including inherited (with or without brain degeneration), acquired, and

complex neurological disorders.
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Monogenic forms of dystonia are labeled DYT and enumerated in the order in

which they were discovered. The current 20 DYT loci comprise a heterogeneous

group of disorders. (Table I) They can be divided into PTDs, dystonia-plus syndromes

without brain degeneration, dystonia-parkinsonism with brain degeneration

(i.e. DYT3), and paroxysmal dyskinesias. There are many neurodegenerative genetic

disorders that share dystonia as a common feature of disease (Table II). This chapter

will review the genetics of PTD, dystonia-plus syndromeswithout brain degeneration,

and X-linked dystonia-parkinsonism. Other genetic dystonia-parkinsonism

syndromes and the paroxysmal dyskinesias will not be discussed.
I. Primary Torsion Dystonia
In early-onset PTD, symptoms typically first appear in a leg or arm, spread to

other limbs and the trunk, and culminate in generalized or multifocal muscle

involvement. A large proportion of early-onset PTD is attributable to a heterozy-

gous mutation in TOR1A (DYT1). DYT2, another familial form of PTD with a

phenotype similar to DYT1, has been identified. DYT2, which has been described

in a limited number of families, is inherited in an autosomal recessive fashion and

its locus has not been mapped.

In a less common early-onset PTD phenotype, dystonia tends to begin in the

arm, neck, or cranial muscles, before becoming generalized or multifocal. Unlike

DYT1 there is often significant speech impairment due to cranial muscle involve-

ment. The combination of early onset and a tendency for the cranial and cervical

muscles to be affected, like late-onset PTD, led to the designation of a mixed or

intermediate phenotype. Three gene loci, DYT6, DYT13, andDYT17, have been

identified in families with a predominant intermediate phenotype. Although late-

onset focal cervical and cranial dystonia are the most common forms of PTD,

about 9–10 times more prevalent than generalized PTD, only one locus for this

phenotype has been identified, DYT7.
1. DYT1 Dystonia

The most common known genetic cause of PTD, DYT1 dystonia, is inherited

in an autosomal dominant pattern with approximately 30% penetrance and

variable expression. Common clinical characteristics have been described across

ethnic groups (Bressman et al., 2000). The majority of manifesting mutation

carriers presents between the ages of 3 and 26 with arm or leg symptoms. In some

cases, the dystoniamay be jerky or tremulous, mimicking tremor. Dystonia spreads

over 5 to 10 years, with about 70% progressing to generalized or multi-focal

dystonia, while the rest continue to have focal (20%) or segmental dystonia



Table I

MOLECULAR CLASSIFICATION OF DYSTONIA.

Designation Dystonia Type Inheritance Gene

Locus

Gene/Product OMIM

Number

DYT1 Early-onset generalized

primary torsion dystonia

(PTD)

AD 9q GAG deletion in

DYT1 coding for

torsinA

128100

DYT2 Autosomal recessive PTD AR Unknown Unknown 224500

DYT3 X-linked dystonia

parkinsonism; “lubag”

XR Xq TAF1/DYT3 314250

DYT4 “Non-DYT1” PTD with

whispering dysphonia

AD Unknown Unknown 128101

DYT5/

DYT14

Dopa-responsive dystonia;

Segawa syndrome

AD 14q GCH1/GTP-

cyclohydrolase

128230

AR 11p Tyrosine hydroxylase

DYT6 Adolescent-onset “mixed”

type PTD

AD 8p THAP1 602629

DYT7 Adult-onset focal PTD AD 18p Unknown 602124

DYT8 Paroxysmal

nonkinesigenic dyskinesia

(PNKD)

AD 2q Myofibrillo-genesis

regulator 1

118800

DYT9

(DYT18)

Paroxysmal

choreoathetosis with

episodic ataxia and

spasticity

AD 1p GLUT1/SLC2A1 601042

DYT10 Paroxysmal kinesigenic

dyskinsia/choreoathetosis

(PKD)

AD 16p-q Unknown 128200

DYT11 Myoclonus-dystonia AD 7q SGCE/epsilon-

sarcoglycan

159900

DYT12 Rapid-onset dystonia-

parkinsonism

AD 19q ATP1A3/Na/K

ATPase alpha 3

128235

DYT13 Early-onset Multifocal/

segmental PTD

AD 1p Unknown 607671

DYT15 Myoclonus-dystonia AD 18p Unknown 607488

DYT16 Dystonia-Parkinsonism AR 2q31 PRKRA 612067

DYT17 Adolescent onset mixed

PTD

AR 20p11.22-

q13.12

Unknown 612406

DYT18 Paroxysmal exercise -

induced dystonia (PED)

AD 1p35-31.3 GLUT1/SLC2A1 612126

DYT19 Episodic kinesigenic

dyskinesia 2

AD 16q Unknown 611031

DYT20 Paroxysmal

nonkinesigenic

dyskinesia 2

AD 2q Unknown 611147
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(10%). When the final distribution of dystonia is analyzed, one or more limbs are

almost always affected with over 95% having an affected arm. The trunk and neck

may also be affected (25–35%) and may cause the greatest disability. The cranial

muscles are less likely to be involved (<20%), and in one study of early-onset

PTD, cranial involvement was the best clinical predictor of non-DYT1 status

(Fasano et al., 2006).

Rarely, DYT1 family members have been identified with late-onset dystonia.

These individuals generally have focal disease, are identified in the course of family

studies, and often do not seek medical attention. Although the arm is the body

region most commonly affected in those with focal disease, the neck or cranial

muscles have been reported as isolated affected sites (Bressman et al., 2000; Leube

et al., 1999; Tuffery-Giraud et al., 2001). Isolated cervical or cranial dystonia from

DYT1 mutations, however, is quite rare. Indeed, one study of patients with early-

onset cervical dystonia failed to find any DYT1 mutations (Koukouni et al., 2007),

and another study found that DYT1 mutations are very rarely associated with

adult focal dystonia (Jamora et al., 2006).

The causative gene, TOR1A, maps to chromosome 9q34, and encodes the

protein torsinA, a 332 amino acid protein (Ozelius et al., 1997). There is one

common pathogenic TOR1A mutation, a GAG deletion in exon 5. The deletion

results in loss of a glutamic acid residue at amino acid position 302 or 303. Other

coding variations in DYT1 have been found, but their pathogenicity is unclear: an

18-bp deletion (966_983del) in a single atypical family that also harbored a

mutation in epsilon sarcoglycan (Leung et al., 2001); a 4-base pair deletion

(934_937delAGAG) which causes a frameshift and truncation starting at residue

312 identified in a single control blood donor not examined neurologically

(Kabakci et al., 2004); and G>A transition at position 863 (G863A) resulting in

substitution of arginine for glutamine in a single patient with severe fixed dystonia,

facial palsy, and long tract signs, with symptoms beginning in infancy (Zirn et al.,

2008). There is stronger evidence for two other variants that produce coding

changes. One is a SNP that results in the substitution of an aspartate with a

histidine (D216H) in exon 4; this change appears to modify penetrance of

DYT1 (see below). The other is a missense change is exon 3 that results in a

change of isoleucine to phenylalanine (c.613T>A, p.F205I). This change was

identified in a man with bipolar disease who presented with orobulbar dystonia

in his forties. His clinical picture was complex as he was taking lithium and had a

history of neuroleptic exposure; further, on examination, there was cogwheeling

and an action tremor without rest tremor. The effect of themutation was tested in a

cellular assay and produced intracellular inclusions, similar to those seen with

GAG deletions (Calakos et al., 2010).

Owing to a founder effect and genetic drift, the DYT1 GAG deletion accounts

for about 80% of early-onset generalized PTD in those with Ashkenazi ancestry

compared to 16–53% in non-Jewish populations. The gene frequency of the
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DYT1 GAG deletion among Ashkenazi Jews was estimated in one study to be

1/2000 –1/6000 (giving a carrier frequency of 1/1000–1/3000) (Risch et al., 1995);

based on a penetrance of 30%, this translates into a disease frequency of 1/3,000–

1/9,000. A recent study from southeastern France, using direct genotyping of

12,000 newborn dried blood samples, identified one disease allele (Frederic et al.,

2007). This carrier incidence of 1/12,000 is consistent with the approximately

fivefold increased frequency of early-onset PTD in Ashkenazim compared to

non-Jews advanced in older studies, prior to gene identification (Zeman and

Dyken, 1967). These studies also imply that a significant proportion of early-onset

PTD cases, especially among non-Ashkenazim, are not due to DYT1 mutations.

TorsinA is a member of the AAA+ superfamily (ATPases associated with a

variety of cellular activities). These proteins are characterized byMg++-dependent

ATPase activity and typically form six-membered, homomeric ring structures.

Many serve as chaperones that mediate conformational changes in target proteins.

They are associated with a variety of functions including protein folding and

degradation, cytoskeletal dynamics, vesicle recycling, and membrane trafficking

(Vale, 2000). TorsinA is widely distributed in the brain but restricted to neurons.

Although most pathological studies of DYT1 brains have not detected specific

morphological changes, one study of 4 DYT1 brains found perinuclear inclusion

bodies in the midbrain reticular formation and periaqueductal grey matter, inclu-

ding cholinergic neurons of the pedunculopontine nucleus (McNaught et al.,

2004).

Most of the wild-type torsinA protein appears to be located in the lumen of the

endoplasmic reticulum (ER) and shuttles between the ER and the nuclear enve-

lope (NE), while the mutant protein is more often associated with the NE

(Goodchild and Dauer, 2004; Hewett et al., 2006; Naismith et al., 2009). In cellular

models of mutant torsinA, the NE displays abnormal morphology with thickening

andwhorledmembrane inclusions that appear to “spin off” the ER/NE. It has also

been shown that mutant torsinA interferes with the linkage between the ER/NE

membranes and the cytoskeleton. This may ultimately result in dysfunctional

neurite growth (Hewett et al., 2006, 2007; Kamm et al., 2004; Nery et al., 2008).

Other cellular effects of the mutation include impaired interactions with major

binding partners (Naismith et al., 2009).

Mutant torsinA’s impaired protein interactions and aberrant localization may

alter synaptic vesicle and dopamine transporter trafficking, dopamine uptake, and

dopamine release (Granata et al., 2008; Misbahuddin et al., 2005; Torres et al.,

2004). This is supported by DYT1 mouse models (see below) that point to abnor-

malities in dopamine transport and dopamine signaling (Hewett et al., 2010).

TorsinA mutations may also affect dopamine synthesis with neuronal models

showing sequestration of tyrosine hydroxylase in inclusions and altered enzyme

activity (O’Farrell et al., 2009). How these abnormalities relate ultimately to

human disease expression is unclear, as levodopa and dopamine agonists do not
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have a robust therapeutic effect in DYT1 patients; however, a functional defect in

dopamine signaling is consistent with the efficacy of GPi DBS and anticholinergic

medications.

In addition to cellular models there are several mouse models of DYT1

dystonia. These include transgenic models overexpressing mutant human

torsinA and knock-in mouse models with modified endogenous expression. In a

transgenic model, about 40% of the mice showed motor hyperactivity, with

circling and abnormal movements (Shashidharan et al., 2005). The mouse brains

demonstrated abnormal levels of dopamine metabolites and brainstem aggregates

similar to those reported in DYT1 human brains. Another transgenic model

expressing human mutant torsinA was associated with impaired motor sequence

learning on the rotorod but no overt movement disorder (Sharma et al., 2005).

Knock-in (KI) mice bearing the three base pair deletion in the heterozygous state

manifest hyperactivity in the open field, difficulty in beam walking, but no overt

dystonic posturing (Dang et al., 2005). The knock-down (KD) mouse model, in

which a reduced level of torsinA protein is expressed, displays a phenotype very

similar to the heterozygous KI mice. Both models show decreased dopamine

metabolite levels (Dang, Yokoi et al., 2006).

In contrast, mice with a homozygous KI deletion and torsinA null mice die at

birth with apparently normal morphology. Their postmigratory neurons, how-

ever, show NE abnormalities (Goodchild et al., 2005). The fact that both the

torsinA null and homozygous KI animals display the same lethal phenotype and

that the KD and heterozygous KI display a similar phenotype suggests that DYT1

dystonia results from a loss of function of the torsinA protein. The loss of function

could result from a dominant negative effect whereby themutant protein interferes

with or otherwise diminishes the wild-type protein. This is supported by cellular

studies that demonstrate inhibition of wild-type protein by mutant torsinA (Torres

et al., 2004; Hewett et al., 2006). It has also been shown that mutant torsinA

destabilizes wild-type protein leading to premature degradation through the

macroautophagy pathway and by the proteasome (Giles et al., 2008; Naismith

et al., 2009).

The transgenic mouse model has also yielded insights into possible pathophys-

iologic mechanisms of disease. A study examining dopamine D2 receptor (D2R)

transmission demonstrated a link between the TOR1A mutation and D2R dys-

function and found that pharmacological blockade of adenosine A2A receptors

restored the abnormal plasticity seen in DYT1 mice. This suggests that antago-

nism of A2A receptors can counteract abnormal D2R-mediated transmission in

mutant mice (Napolitano et al., 2010). Investigation of cholinergic interneurons in

the same mutant mouse model showed that activation of D2R was associated with

a paradoxical excitatory response which likely resulted in increased acetylcholine

release (Pisani et al., 2006). This finding may correspond to the benefit observed

clinically from anticholinergic medications.
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As stated above, DYT1 dystonia has only 30%penetrance for clinically evident

dystonia. With the identification of the disease gene, it is now clear that unaffected

TOR1A mutant gene carriers may have disease expression in the absence of overt

motor signs. Comparing nonmanifesting family members to their noncarrier

family members as well as those manifesting dystonia, it was found that both

manifesting and nonmanifesting gene carriers had the same increased risk for

early onset recurrent major depression when compared to their noncarrier related

family members but no differences in OCD frequency (Heiman et al., 2004;

Heiman et al., 2007).

Subclinical expressions of DYT1, or endophenotypes, have been investigated

using various imaging and neurophysiological approaches with the goal of illumi-

nating pathophysiologic mechanisms that take a gene carrier from

“nonmanifesting” to manifesting. Nonmanifesting gene carriers show deficits in

specific motor sequence learning paradigms (Ghilardi et al., 2003), and imaging

studies reveal microstructural changes involving cerebellothalamocortical fiber

tracts (Argyelan et al., 2009; Carbon et al., 2004, 2009), decreased striatal D2

receptor availability (Asanuma et al., 2005; Carbon et al., 2009), and altered

metabolism in specific brain regions (Eidelberg et al., 1998). Electrophysiological

analyses have also identified genotype-associated abnormalities, namely reduced

intracortical inhibition and a shortened cortical silent period (Edwards et al., 2003)

as well as higher tactile and visuo-tactile temporal discrimination thresholds and

temporal order judgments (Fiorio et al., 2007). These subtle abnormalities in brain

physiology, together with findings of no apparent neurodegeneration in the brains

of affected DYT1 patients (Hedreen et al., 1988; McNaught et al., 2004; Rostasy

et al., 2003), suggest that neurodevelopmental differences in brain circuitry in

TOR1A mutant gene carriers may underlie susceptibility to the dystonic pheno-

type. Factors contributing to penetrance are presumed to involve co-inheritance of

genetic variants or environmental insults including drug exposure, peripheral

injury, and viral infection (Edwards et al., 2003; Saunders-Pullman et al., 2004).

Although none of these environmental causes have been proven, geneticmodifiers,

and specifically a variant in theTOR1A gene, D216H, which alternatively codes for

aspartic acid (D) or histidine (H), has been associated with penetrance (Risch et al.,

2007).

In cellular models, when the 216H allele is overexpressed, ER/NEmembrane

inclusions are observed, similar to those seen when mutant torsinA is overex-

pressed (Kock et al., 2006). However, when the H allele is co-overexpressed with

a construct carrying the GAG deleted torsinA, fewer inclusions are formed than

observed with GAG deletion only. This suggests that the two alleles jointly have a

canceling effect. The D216H variant was studied in DYT1 families to assess its

effect on penetrance. One hundred nineteen GAG deletion carriers “manifesting”

dystonia were assessed, along with 113 “nonmanifesting” carriers and 197 con-

trols. There was an increased frequency of the 216H allele in nonmanifesting
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deletion carriers and a decreased frequency in manifesting carriers compared to

the controls (Risch et al., 2007). Analysis of haplotypes demonstrated a highly

protective effect of the H allele when in trans with the GAG deletion, while

evidence suggested that the D216 allele in cis was required for disease penetrance.

These results, confirmed in one study, support the D216H variant as a potent

intragenic modifier (Kamm et al., 2008). Functional confirmation of this genetic

association was observed in FDG PET imaging studies that showed differential

effects of the D216H SNP in DYT1 nonmanifesting carriers (Carbon and

Eidelberg, 2009).

Since the H allele is uncommon, present in only about 12% of the population,

it only explains a small proportion of the reduced penetrance.Whether the D216H

single nucleotide polymorphism alone plays a causative role in focal dystonia has

also been investigated. One study found an association in various forms of familial

focal/segmental dystonias (Br€uggemann et al., 2009); other studies of primarily

sporadic cases however have failed to find an association (Kamm et al., 2006;

Sibbing et al., 2003).

2. DYT6 Dystonia

DYT6 maps to chromosome 8p and mutations are inherited in an autosomal

dominant pattern with reduced penetrance (Almasy et al., 1997). The gene for

DYT6, THAP1, was first identified in Amish Mennonite families (Fuchs et al.,

2009), whose causative mutation is a 5-base pair (GGGTT) insertion followed

by a 3-base pair deletion (AAC) (c.135_139delinsGGGTTTA) in exon 2. This

mutation results in a frame shift at amino acid 44 and a premature stop codon at

position 73. THAP1 mutations as a cause of PTD were initially thought to be

restricted to related Amish Mennonite families, but different THAP1 mutations in

families with diverse ancestries have now been identified (Bonetti et al., 2009;

Bressman et al., 2009; Djarmati et al., 2009; Houlden et al., 2010; Schneider

et al., 2009). In a clinically restricted group of non-DYT1 families with early-onset

nonfocal PTD, 25% were found to have a THAP1mutation (Bressman et al., 2009;

Djarmati et al., 2009; Schneider et al., 2009). However, only 4.5% of a Dutch

dystonia cohort with early-onset PTD and 2.5% of a British dystonia cohort with a

variety of phenotypes were found to have THAP1 mutations (Groen et al., 2010;

Ritz et al., 2010). In addition to generalized dystonia, a small number of adult-onset

focal cervical and laryngeal dystonia patients were found to have THAP1 single

base-pair substitutions (Xiao et al., 2010).

Despite the diversity of mutations and ancestries, there is phenotypic similarity

among cases. DYT6 dystonia usually begins in an arm, the neck, or other cranial

muscles with two thirds eventually having involvement of the cranial muscles and

impairment of speech. Symptom onset is typically early, but a significant propor-

tion has symptoms begin after age 18 years.
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THAP1 contains a highly conserved THAP domain at the N-terminus and a

nuclear localization domain at its C-terminus. THAP domains are atypical zinc

fingers responsible for sequence-specific DNA binding, and THAP1 regulates

many proteins involved in endothelial cell proliferation (Cayrol et al., 2007).

Two recent studies demonstrated that THAP1 also interacts with the TOR1A

promoter region. Thus, THAP1mutations may lead to dystonia by transcriptional

dysregulation of TOR1A. This interaction suggests that DYT1 and DYT6 dystonia

share a common pathogenetic pathway (Gavarini et al., 2010; Kaiser et al., 2010).

3. Other Generalized Primary Torsion Dystonias (DYT2, DYT4, DYT13, DYT17)

In addition to DYT1 and DYT6, four other loci associated with early-onset or

nonfocal PTD have been described. An autosomal recessive form of dystonia,

DYT2, phenotypically resembling DYT1 dystonia, has been reported in five

consanguineous families: three Spanish gypsy families (Gimenez-Roldan et al.,

1988), a Sephardic Jewish family (Khan et al., 2003a, 2003b), and a family of

Arabic descent (Moretti et al., 2005). Dystonia presented early in all cases, typically

beginning in the limbs and rapidly generalizing. To date, no linkage or mapping

studies have been reported in these families.

In 1985, DYT4 dystonia was described in 20 members of a single large

Australian family (Ahmad et al., 1993; Parker, 1985). Dystonia typically began

in the third decade and was focal to generalized with prominent whispering

dysphonia. Disease transmission followed an autosomal dominant pattern with

reduced penetrance. Linkage to a chromosomal locus has not been established.

The DYT13 locus (chromosome 1p36) was reported in a single large Italian

family with early-onset autosomal dominant transmission with reduced pene-

trance (Valente et al., 2001). Most cases had early onset (mean 16 years, range

5–43 years); the distribution of dystonia usually remained segmental with prom-

inent craniocervical involvement; but 2 of 11 individuals also hadmild leg dystonia

(Bentivoglio et al., 2004). Unlike DYT6, less speech involvement was reported. At

present, no other families have been linked to this locus.

DYT17, an autosomal recessive form of PTD, was mapped to chromosome 20

in three affected siblings from a consanguineous Lebanese family (Chouery et al.,

2008). Dystonia began in adolescence with cervical muscle involvement, and like

DYT6, progression was associated with severe dysphonia and dysarthria.

4. Late-onset focal and segmental PTD (DYT7)

Late- or adult-onset PTD, compared to early-onset PTD, is more likely to start

in cervical or cranial muscles; the arm also is a common site of PTD onset in adults

as it is in children. However, unlike early-onset PTD, late-onset PTD, regardless of

muscles first involved, is much less likely to generalize. Based on the increased risk
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of PTD observed in first degree relatives of individuals with focal PTD, autosomal

dominant inheritance with reduced penetrance (about 12–15% compared to 30%

for early-onset) has been proposed (Defazio et al., 1993; Waddy et al., 1991).

Linkage studies in a large family from northwest Germany with seven affected

members resulted in the mapping of the DYT7 locus to chromosome 18p

(Leube et al., 1996). Most affected members had adult-onset cervical dystonia

(mean 43 years; range 28–70 years) although some also had brachial and cranial

involvement. Three Bulgarian brothers with late-onset writer’s cramp also

mapped to chromosome 18p (Bhidayasiri et al., 2005). Other clinically similar

families have been excluded from linkage to DYT7, suggesting that there are

other yet unidentified loci for adult-onset focal PTD (Jarman et al., 1999).

Because the majority of adult-onset dystonia patients do not have affected rela-

tives, association studies using cases and controls have been employed to find genetic

risk factors. This method has been used to investigate the role of D5 dopamine

receptor (DRD5), brain-derived neurotrophic factor (BDNF), THAP1 (DYT6), and

TOR1A (DYT1) in adult-onset dystonia. Since dopamine signaling is thought to be

impaired in at least some forms of dystonia, several studies assessed a polymorphism

in DRD5: two studies found an association between this polymorphism and adult-

onset torticollis and blepharospasm (Misbahuddin et al., 2002; Placzek et al., 2001).

V66M, a functional SNP in BDNF, has been shown to modulate human cortical

plasticity (Cheeran et al., 2008), and abnormal synaptic plasticity has been implicated

in the pathogenesis of dystonia (Quartarone et al., 2008). Investigations into whether

the V66M SNP is associated with dystonia have reported contradictory results: one

group found no association in a cohort of Italian patients with cranial and cervical

dystonia (Martino et al., 2009); and a second team found a two fold increase in V66M

heterozygotes among cervical dystonia patients (Cramer et al., 2010).

A number of studies have examined the influence of various SNPs in the PTD

genes TOR1A and THAP1 on the development of adult-onset PTD. Several non-

coding SNPs in THAP1 were identified in screening studies that included focal/

segmental PTD patients, suggesting these variants might contribute to risk of focal

dystonia (Djarmati et al., 2009; Houlden et al., 2010; Schneider et al., 2009; Xiao

et al., 2010). However, the associated variants identified in these studies were not

consistent between studies.

There has been more extensive examination of the TOR1A gene. As described

above, results from association studies of the D216H SNP with dystonia have

conflicted, whichmay reflect differences in case ascertainment. Several SNPs from

the 30 untranslated region of TOR1A have been implicated in focal dystonia in

Icelandic and Italian patients (Clarimon et al., 2005; Clarimon et al., 2007) and in

the risk of spread of blepharospasm in Italian and US cohorts (Defazio et al., 2009).

Two other studies, one in an Austrian and German population with focal dystonia

(Kamm et al., 2006) and the other in a mixed European cohort with focal and

segmental dystonia (Sharma et al., 2010), showed an association with 30 SNPs, but
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in both cases, rather than being a risk haplotype, the SNPs showed a strong

protective effect. Finally, two studies fromGermany failed to show any association

between SNPs in the TOR1A gene and focal dystonia (Hague et al., 2006; Sibbing

et al., 2003). Thus, the results of association studies remain inconclusive. This may

be due in part to limited sample size and the clinical and ethnic heterogeneity

among PTD patients. Genome wide association studies of large clinically homo-

geneous groups or next generation analyses of select families or subtypes are

needed to clarify genetic risk factors for late-onset PTD.
II. Dystonia-Plus Syndromes without Brain Degeneration
Neither dystonia-plus syndromes nor PTD are associated with brain degener-

ation. Dystonia-plus syndromes are distinguished by having clinical features in

addition to dystonia, specifically parkinsonism and myoclonus. This group

includes four discrete disorders, dopa-responsive dystonia (DYT5, DYT14), myoc-

lonus-dystonia (DYT11, DYT15), rapid-onset dystonia-parkinsonism (DYT12),

and dystonia-parkinsonism (DYT16).

1. Dopa-responsive dystonia (DYT5, DYT14)

Typically, dopa-responsive dystonia (DRD) begins in childhood with gait

abnormalities. Dystonia is often diurnal, worsening as the day progresses and

improving after sleep. Arm dystonia, hyperreflexia, and parkinsonism – bradyki-

nesia, hypomimia, and postural instability – are also common features

(Nygaard et al., 1992). In one recent series, dystonia also involved cervical and

cranial muscles, including the upper face, lower face, and larynx (Trender-

Gerhard et al., 2009). Over the years the clinical spectrum of this disorder has

been broadened to include adult-onset parkinsonism, action tremor, psychiatric

features of major depression, obsessive compulsive disorder, sleep disorders

(Van Hove et al., 2006), adult-onset oromandibular dystonia (Steinberger et al.,

1999), developmental delay with spasticity mimicking cerebral palsy (Nygaard et al.,

1994), scoliosis (Furukawa et al., 2000), and generalized hypotonia with proximal

weakness (Kong et al., 2001). The hallmark of all clinical subtypes of DRD is a

dramatic and sustained response to low-dosage levodopa although rarely the dosage

requiredmay be substantial, especially in those with compound heterozygous muta-

tions or symptom onset during adulthood.

The genetic cause for themajority of cases of DRD is an autosomal dominantly

inherited mutation in GTP cyclohydrolase 1 (GCH1) (Hagenah et al., 2005;

Ichinose et al., 1994; Ichinose et al., 1999). GCH1 is the first and rate-limiting

enzyme in the synthesis of tetrahydrobiopterin, an essential cofactor for tyrosine
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hydroxylase (TH), the enzyme that converts tyrosine to L-dopa (Ichinose et al.,

1999). New mutations appear to occur commonly, and some mutations are dele-

tions not detectable by qualitative screening. There is reduced penetrance in

examined families, and for unclear reasons, women are more likely to manifest

symptoms than men (Furukawa et al., 1998).

In addition to heterozygous GCH1 mutations, DRD may be caused by

compound heterozygous mutations in GCH1 and homozygous, compound hetero-

zygous, and heterozygous mutations in other enzymes involved in dopamine

synthesis. The genes for TH (DYT14) (van den Heuvel et al., 1998), 6-pyruvoylte-

trahydropterin synthase (Hanihara et al., 1997), and sepiapterin reductase (Clot et al.,

2009) have all been implicated in DRD. Unlike DRD due to mutations in GCH1,

these genetic forms of DRD often have a more complex phenotype that includes

mental retardation, oculogyria, hypotonia, severe bradykinesia, drooling, ptosis,

miosis, and seizures (Clot et al., 2009; Steinberger et al., 2004). However, symptoms

may be mild and limited to typical DRD signs, mild spastic paraplegia, or exercise-

induced stiffness which resolve with administration of levodopa (Furukawa et al.,

2001). Individuals with homozygous PRKN mutations may present with a syndrome

that mimics DRD (Khan et al., 2003a, 2003b; Tassin et al., 2000). Although these

patients will respond similarly to levodopa, they can usually be differentiated from

DRD by early parkinsonism and significant medication-induced dyskinesia.

2. Myoclonus–Dystonia (DYT11, DYT15)

It was recognized in early descriptions of dystonia that some patients have

jerks of short duration, about 100 ms, which resemble myoclonus. This may

occur in DYT1 and other forms of primary dystonia (Obeso et al., 1983), but it

may also be the only movement disorder (Mahloudji and Pikielny, 1967). In

families with myoclonus-dystonia (M-D), affected individuals have myoclonus

with or without dystonia, which is usually mild. Rarely dystonia is the only

feature (Kyllerman et al., 1990). The myoclonus may be isolated jerks at rest as

well as complex oscillatory or pseudo-rhythmic bursts, especially as an overflow

phenomenon. Neurophysiological studies support a subcortical origin for the

myoclonus (Marelli et al., 2008).

Symptom onset is typically in the first or second decade, and the disorder tends

to plateau in adulthood. The neck and arms are most commonly involved, fol-

lowed by the trunk and bulbar muscles. The legs are less commonly involved.

Affected adults often report that muscle jerks respond dramatically to alcohol. An

excess of psychiatric symptoms, anxiety, depression, panic attacks, and OCD, has

been reported in family members, even those not affected with motor signs ofM-D

(Foncke et al., 2009; Hess et al., 2007).

In familial M-D, the pattern of inheritance is autosomal dominant with

reduced penetrance. An M-D locus on chromosome 7q21 (DYT11) was first
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mapped in a North American family with 10 affected individuals with typical M-D

clinical features (Nygaard et al., 1999). In 2001, the gene was identified as epsilon-

sarcoglycan (SGCE) based on different loss of function mutations in six families

(Clarimon et al., 2007). Large exon deletions have been shown to account for some

of the cases originally thought to be mutation-negative (Asmus et al., 2007;

Grunewald et al., 2008). In patients with heterozygous deletions of the entire

SGCE gene, the deletion may also involve adjacent genes accounting for additional

characteristics, such as skeletal abnormalities due to a deletion of the neighboring

COL1A2 gene.

SGCE is maternally imprinted via methylation of CpG sites in the promoter

region, which effectively silences the maternal allele. Thus, clinically evident M-D

is usually inherited from the father, who may or may not be affected depending on

the sex of his transmitting parent (Grabowski et al., 2003). However, in 10% of

M-D patients, penetrance does not follow the expected pattern. RNA expression

studies have revealed expression of only the mutated allele in affected individuals

and expression of the normal allele in unaffected mutation carriers (Grabowski

et al., 2003; Muller et al., 2002). In one M-D patient, partial loss of methylation at

several CpG dinucleotides, was shown to be associated with bi-allelic expression of

the SGCE gene (Muller et al., 2002). Maternal uniparental disomy, resulting in two

silenced SGCE alleles, has been identified as a cause of M-D and coincident

Russell–Silver Syndrome (Guettard et al., 2008).

Alpha, beta, gamma, and delta sarcoglycan are all components of the

dystrophin–glycoprotein complex. Homozygous or compound heterozygous

mutations in these sarcoglycans result in limb-girdle dystrophy. The normal

function of epsilon sacrcoglycan remains unknown. It is widely expressed in

neurons where it localizes to the plasma membrane. A recent study charac-

terizing different SGCE isoforms in the human brain found that that a major

brain-specific isoform was differentially expressed: there was high expression

in the cerebellar Purkinje cells and neurons of the dentate nucleus, low

expression in the globus pallidus, and moderate to low expression in the

caudate nucleus, putamen, and substantia nigra. This suggests that the

primary area of dysfunction in M-D is in the cerebellum (Ritz, et al.,

2010). Interestingly a KO mouse model demonstrated alteration in brain

levels of dopamine, dopamine metabolites, and serotonin metabolites

(Dang et al., 2006; Yokoi).

SGCE mutations do not account for all familial M-D and probably are not

responsible for most sporadic M-D. The proportion of M-D and clinically related

phenotypes due to SGCEmutations is debated and depends on the clinical criteria

used to select subjects for screening (Ritz et al., 2009). A second M-D locus, 18p11

(DYT15), was mapped in a large Canadian family in 2002. The responsible gene

has not yet been identified (Grimes et al., 2002; Han et al., 2007).
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3. Rapid-onset dystonia-parkinsonism (DYT12)

Rapid-onset dystonia-parkinsonism (RDP) is a rare dystonia-plus syndrome

that starts in childhood or early adulthood. It is characterized by the emergence of

dystonia and parkinsonism over hours to days. However, symptoms may begin

insidiously and later be followed by a period of rapid worsening. After the period of

acute worsening, symptoms tend to stabilize and improvement may even occur

(Brashear et al., 2007; McKeon et al., 2007). The phenotype resembles the dystonia

and parkinsonism of Wilson’s disease with prominent bulbar signs (including risus

sardonicus), sustained dystonic limb posturing, waxy effortful rapid successive

movements, and postural instability.

Inheritance is autosomal dominant but de novo mutations have been observed.

The responsible gene, ATP1A3, maps to chromosome 19q13 (DYT12) and codes

for Na+/K+-ATPase alpha3, a catalytic subunit of the sodium-potassium pump

(de Carvalho Aguiar et al., 2004). Missense mutations, the only type currently

identified, result in dysfunctional Na+/K+-ATPase and reduced cellular ion trans-

port. The ability of the haploinsufficient cell to compensate may be overwhelmed

during times of physiological stress.
4. Dystonia-parkinsonism (DYT16)

Dystonia-parkinsonism (DYT16) was first described in three Brazilian families.

Affected individuals exhibited early-onset dystonia with generalization, and sim-

ilar to DYT6, they had prominent bulbar involvement with dysphonia, dysarthria,

and dysphagia. Four of the seven exhibited parkinsonism. The syndrome was

attributed to homozygous missense mutations (P222L) in PRKRA (protein kinase,

interferon-inducible double-stranded RNA-dependent activator) on chromosome

2q31.2 (Camargos et al., 2008). Subsequently, a patient with early-onset general-

ized dystonia was reported to have a heterozygous frameshift mutation in PRKRA

(Seibler et al., 2008). Although the first cases were recessively inherited, the subse-

quent case suggests that heterozygous mutations may produce disease. Little is

known about the function of the PRKRA protein.
III. Dystonia as a Feature of Degenerative Genetic Syndromes
There are many neurodegenerative genetic diseases with dystonia as a com-

mon feature. (Table II) These include X-linked dystonia-parkinsonism (DYT3),

which is discussed below, and two rare recessively inherited causes of dystonia-

parkinsonism in which parkinsonism is a dominant feature. The loci are



Table II

NEURODEGENERATIVE INHERITED DISEASES WITH DYSTONIA AS A FEATURE OF DISEASE.

Autosomal dominant Huntington’s disease (HD)

Machado-Joseph’s disease/SCA3 disease

Other SCA subtypes (e.g. SCA 2, 6, 17)

Familial basal ganglia calcifications (Fahr’s)

DRPLA

Neuroferritinopathy

Autosomal recessive Juvenile parkinsonism (Parkin)

Wilson’s

Glutaric acidemia

PKAN/Hallervorden–Spatz disease

Lysosomal diseases (GM1, GM2, Neimann Pick type C (NPC1),

metachromatic leukodystrophy, ceroid–lipofuscinosis)

Homocystinuria

Propionic acidemia

Methylmalonic aciduria

Ataxia–telangiectasia (AT)

Ataxia with Vitamin E Deficiency

Recessive Ataxia with Ocular Apraxia (AOA1, AOA2)

Neuroacanthocytosis

Neuronal intranuclear inclusion disease (NIID),

Hemachromatosis

Aceruloplasminemia

X-linked recessive Lubag (X-linked dystonia-parkinsonism, DYT3)

Lesch–Nyhan

Deafness/Dystonia Syndrome

Pelizaeus-Merzbacher Disease

Mitochondrial MERRF/MELAS

Leber’s disease
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designated PARK14 and PARK15, corresponding to the genes PLA2G6 and

FBXO7, respectively (Schneider et al. 2009).

1. X-linked dystonia-parkinsonism (DYT3)

Lubag disease is an adult-onset X-linked form of dystonia and parkinsonism

observed among Filipino males, primarily from the island of Panay. Affected

individuals can present with either dystonia or parkinsonism but all patients

eventually develop parkinsonism (Lee et al., 1976). Isolated parkinsonism is

considered a more benign phenotype (Evidente et al., 2002a, 2002b).

Neuropathological studies show degeneration and gliosis of the caudate and lateral

putamen (Waters et al., 1993a, 1993b). The phenotypic spectrum has been broad-

ened to include tremor, myoclonus, chorea, and myorhythmia (Evidente et al.,
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2002a, 2002b). Likewise, heterozygous females have been reported who have mild

dystonia or chorea (Evidente et al., 2004; Waters et al., 1993a, b).

Owing to a founder effect, all cases of Lubag disease are attributed to a retro-

poson insertion in one of the introns of TAF1 at Xq13.1, resulting in decreased

expression of theTAF1 transcript in the caudate (Makino et al., 2007). Three Italian

siblings with early-onset dystonia and a shared haplotype at the DYT3 locus,

different from the Filipino haplotype, indicate a possible second causative muta-

tion. (Fabbrini et al., 2005). How mutant TAF1 leads to dystonia and parkinsonism

is unknown.
IV. Treatment of Dystonia
Treatment for most forms of dystonia is empiric and directed toward

improvement of dystonic movements, daily function, pain relief, and psychiatric

symptoms if present. There are currently no gene-directed therapies; however,

several dystonia subtypes have effective treatments that target underlying caus-

ative mechanisms. These include DRD (discussed below), Wilson’s disease, and

DYT18 dystonia due to GLUT1 deficiency. Aside from these disorders, main

dystonia treatment options consist of oral medications, pallidal deep brain

stimulation (DBS) and botulinum toxin injections. Application of the latter

two approaches over the last 20 years has led to tremendous progress in improv-

ing symptoms of dystonia.

Oral medications are still commonly used in childhood and adolescent-onset

dystonia especially when there is widespread muscle involvement. Multiple med-

ications with different mechanisms of action are usually required to achieve

improvement in symptoms. Objective data regarding treatment response is limited

by the heterogeneity of clinical expression, often unknown etiologies, limited

sample size, and imperfect outcome measures. Indeed, there is very little

placebo-controlled data to support pharmacological treatment.
A. PHARMACOLOGICAL TREATMENT

1. Dopaminergic and antidopaminergic drugs

To exclude DRD, all patients with early onset dystonia should receive a trial of

levodopa combined with carbidopa for up to 1 month. Most patients with DRD

respond dramatically to low doses of levodopa (100–300 mg of levodopa per day

combined with carbidopa in divided doses) and do not develop a fluctuating

response or dyskinesias. Modest improvement with levodopa therapy has also
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been reported in some patients with other types of dystonia, including myoclonus-

dystonia (Luciano et al., 2009) and secondary dystonia (Bernard et al., 2010; Head et

al., 2004; Neubauer et al., 2005). In addition to levodopa, patients with DRD may

also receive benefit from anticholinergic medications (Jarman et al., 1997), dopa-

mine agonists, and carbamazepine.

Because of limited effectiveness and the possibility of drug-induced parkinson-

ism and tardive dyskinesia, neuroleptic drugs are not commonly used for the

treatment of primary dystonia. Clozapine, an atypical neuroleptic not associated

with drug-induced parkinsonism or tardive syndromes, was shown to provide

moderate benefit for segmental and generalized dystonia in a small, open-label

trial (Karp et al., 1999). However, its usefulness is limited by the potential serious

side effect of agranulocytosis.

Tetrabenazine has proven beneficial in some patients with dystonia, in par-

ticular those with tardive dystonia (Kenney et al., 2007), and it is now approved in

the United States for treatment of chorea in Huntington’s disease. As an inhibitor

of vesicular monoamine transporter 2, it does not cause tardive dyskinesia but can

cause transient acute dystonic reaction, parkinsonism, and depression (Kenney

and Jankovic, 2006).

2. Anticholinergic drugs and muscle relaxants

Anticholinergic drugs, such as trihexyphenidyl, are widely used in the treat-

ment of segmental and generalized dystonia (Burke et al., 1986; Greene et al., 1988).

They are usually tolerated in children and are the pharmacological treatment of

choice for childhood-onset generalized PTD. Initial doses should be low and

increased slowly to minimize sedation, confusion, memory difficulty, and halluci-

nations, which may occur at higher doses. Target doses can range from 25 to

45 mg a day, depending on age and weight, and doses up to 60 to 100 mg a day

have been used. Significant peripheral anticholinergic side effects can usually be

mitigated with small doses of an acetylcholinesterase inhibitor such as

pyridostigmine.

Baclofen is a presynaptic GABA-receptor agonist that can be administered

orally or intrathecally in severe cases of spastic dystonia with good results

(Woon et al., 2007). Cyclobenzaprine and tizanidine have been used with variable

success. Benzodiazepines, such as diazepam, lorazepam and clonazepam are often

used for their muscle-relaxant properties. Clonazepam is especially useful in

blepharospasm and M-D (Zimprich et al., 2001).

3. Other pharmacological treatments

Sodium oxybate (Xyrem) has been shown to improve myoclonus in alco-

hol-responsive M-D in a single-blind, open-label trial (Frucht et al., 2005).
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There are several other agents that have been tried with varying results for

alleviating symptoms of dystonia, including morphine sulfate and mexiletine.

Due to side effects and limited efficacy, these treatments are rarely used today.

There are isolated reports that zolpidem might be helpful in certain types of

dystonia (Evidente, 2002). A number of antiepileptic drugs have been used in

the treatment of dystonia. While there are case reports of benefit from topir-

amate and levetiracetam, (Papapetropoulos and Singer, 2006; Sullivan et al.,

2005; Zesiewicz et al., 2004), there have been no randomized studies or large

case series.

4. Dystonic Storm and its treatment

Rarely, patients can experience “dystonic storm,” or dystonic status, with

severe dystonia and extreme posturing that may compromise breathing or cause

life-threatening hyperthermia and rhabdomyolysis (Manji et al., 1998). Dystonic

storm may represent the natural course of severe dystonia or be triggered by

infection or drug withdrawal (Manji et al., 1998; Mariotti et al., 2007).

Therapeutic intervention should be prompt and usually requires admission to

an intensive care unit. One algorithm suggests initial treatment with intrave-

nous benzodiazepine and anesthetic agents; GPi deep brain stimulation and

intrathecal baclofen pump may be required in refractory cases (Mariotti et al.,

2007).
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Dystonia is a disabling movement disorder characterized by involuntary, sustained

muscle contractions, with repetitive twisting movements and abnormal postures. It is

clinically classified as primary, either sporadic or genetic, or secondary, following

focal brain lesions. The recent past has witnessed remarkable progress in finding

genes for dystonia. However, translating the findings from genetics into concrete

changes for dystonic patients is not immediate, as it requires extensive exploration of

the consequences of gene defects on motor behavior, protein biochemistry, and cell

physiology. Thus, in the last decade, a number of animal models have been

generated and, to some extent, characterized. These include distinct species, ranging

from invertebrates, such as Caenorhabditis elegans and Drosophila melanogaster, to rodents

and nonhuman primates. The mouse is the average choice of mammalian models in

most laboratories, particularly when manipulations of the genome are planned.

Investigations of animals provide results that do not always reproduce the clinical

features of human dystonia. Indeed, most of the mouse models of inherited dystonia

do not exhibit overt dystonia although they do have subtle motor abnormalities and

well-characterized neurochemical and neurophysiological alterations. Conversely,

spontaneousmutantmodels display a clear phenotype, but in some cases the origin of

the mutation is unknown. In spite of such limitations and apparent contradictory

evidence, there is general consensus on the notion that a useful animal model has to

be judged by how reliably and effectively it can be used to explore novel aspects of

pathophysiology and potential treatments. In the present work, we briefly describe

themost commonly utilizedmodels for the study of dystonia and the results obtained,

in attempt to provide a comprehensive overview of the current, available models.
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I. Introduction
The dystonias are a clinically and genetically heterogeneous group of move-

ment disorders, characterized by involuntary muscle contractions that cause

repetitive movements and/or abnormal postures (Fahn, 1988). These motor def-

icits may be the sole clinical manifestation or occur as secondary symptoms due to

other underlying disease processes.

Advances in neurogenetics have allowed the identification of �20 forms of

inherited dystonia associated with specific mutations, but the mechanisms by

which these mutations lead to disease are not entirely clear (Br€uggemann and

Klein, 2010). The lack of any characteristic neuropathology led to hypothesize that

the pathophysiology of dystonia can be envisioned as a multistep pathway that

begins with a “trigger” event or risk factor that induces multiple downstream

consequences and ultimately alters motor system resulting in symptom generation.

More recently, data obtained from imaging studies suggest to define dystonia as a

neurodevelopmental circuit disorder, highlighting the relevance of an underlying

network distortion (Argyelan et al., 2009).

In the past decade, there has been much effort in the development of animal

models, and particularly rodent models of inherited dystonia (LeDoux, 2010;

Raike et al., 2005), in attempt to elucidate its pathogenesis, and to facilitate the

discovery of potential novel treatments. Multiple animal models for dystonia have

now been generated and characterized. Studies of these models have produced

experimental data that, to some extent, lead in different directions, in part because

the different models target distinct aspects of a very heterogeneous disorder

(Breakefield et al., 2008; Tanabe et al., 2009). On the other hand, clinical and

experimental observations converge to suggest the existence of some common

pathogenic features, such as the involvement of basal ganglia and the prominent

role of dopamine signaling (Augood et al., 2004; Perlmutter andMink, 2004; Pisani

et al., 2006; Wichmann, 2008; Zhao et al., 2008).

The selection of a suitable animal model is complex, and many factors should

be considered, such as (1) convenience, (2) appropriateness, (3) transferability of

information, (4) genetic uniformity of organisms where applicable, (5) background

knowledge of biological properties, (6) adaptability to experimental manipulation,

and (7) ethical considerations (Davidson et al., 1987). It is implicit that the available

models may meet some but certainly not all of the considerations set. Although

rodents may be considered less attractive than nonhuman primates as models for

human disease, it is comprehensible that, for a number of reasons, the rodent

models offer opportunities that are not realistic with other species.

In the present review, we tried to concisely and critically analyze the most

commonly utilizedmodels for the study of dystonia. Although there may be different

ways of classifying these models, here they were categorized into: (i) genetic models;

(ii) spontaneous mutants; and (iii) pharmacological and neural lesion models.
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II. Models of Genetic Engineering
A. INVERTEBRATES

Drosophila melanogaster and Caenorhabditis elegans are extremely simple organisms

and they represent a reliable tool to study the function of specific genes. Many

advantages can result from the use of invertebrates as a substrate for the creation of

genetic models of human disease. These organisms reproduce quickly and in large

numbers, and can be easily reared in the laboratory.Moreover, they possess a very

simple and completely sequenced DNA, and gene mutation can be produced

artificially or may appear spontaneously (C. Elegans Sequencing Consortium,

1998). These simple organisms have also different molecular pathways conserved

during the evolution process. For example, C. elegans can be used to study the

mechanisms involved in the packaging, processing, and transport of proteins

(Harrington et al., 2010).

On such basis, some invertebrate models of dystonia have been generated,

with a specific focus on DYT1 dystonia (Table I). A 3bp mutation of the protein

torsinA causes early-onset DYT1 dystonia in humans although the precise mech-

anism by which this genetic alteration leads to the onset of the disease is to date
Table I

INVERTEBRATE MODELS
a.

Disorder(s) Protein Model Results References

DYT1 torsinA C. elegans-transgenic

overexpression of

human TA

Reduction in polyglutamine

repeat-induced protein

aggregation

Caldwell et al.,

2003

C. elegans-transgenic

overexpression of DE
human TA/WT

human TA

TA reduces stress RE and

maintaining cellular

homeostasis

Chen et al.,

2010

Identify two classes of

antibiotics, which enhance

the properties of WT TA

Cao et al.,

2010

DYT1 torsinA Drosophila-transgenic

overexpression

DE human TA

Enlarged boutons

neuromuscular junction,

abnormality of TGF-b
signaling

Koh et al.,

2004

DYT1 torsinA Drosophila-RNAi

downregulation of

torp4A

Progressive retinal

degeneration

Muraro &

Moffat, 2006

a Abbreviations: WT, wild-type; ER, endoplasmic reticulum; TA, torsinA; DE TA, mutant torsinA;
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unclear (Ozelius et al., 1997). Herein, we will refer to this mutant protein as

DETorsinA. TorsinA belongs to the AAA+ (ATPases associated with a variety of

cellular activities) superfamily of chaperone-like proteins, assisting in protein traf-

ficking, membrane fusion, and participating in secretory processing (Goodchild

et al., 2005; Granata et al., 2008; Hewett et al., 2007; Tanabe et al., 2009). Recent

evidence suggests that torsinA disassembles protein complexes or otherwise changes

the conformation of proteins in the endoplasmic reticulum as well as in the nuclear

envelope (Chen et al., 2010; Tanabe et al., 2009).

In contrast tomammals, which express fourmembers of the torsin superfamily,

D. melanogaster contains only a single member based on homology in the genome

sequence (Ozelius et al., 1999). In D. melanogaster., the homologue gene is called

torp4a and shows a 34% homology to human torsinA (Muraro and Moffat, 2006).

By means of RNA interference (RNAi), these authors demonstrated that down-

regulation of torp4a caused degeneration of the retina, whereas its over-expression

was able to protect the retina from age-related neural degeneration, a phenome-

non which is known to be dependent on lysosome activity. These results were

indicative of a role of torp4a in transport and function of lysosome-related orga-

nelles (Muraro and Moffat, 2006) (Table I).

In addition, expression of human DETorsinA in D. melanogasterwas reported to

cause abnormal motor behaviors in the fly (Koh et al., 2004) (Table I).

Three torsin-related genes OOC-5, Y37A1B.12, Y37A1B.13 have been iden-

tified in the nematode model organism C. elegans (Ozelius et al., 1999). Consistent

with a role for torsinA in neuronal survival, overexpression of human DE torsinA

in C. elegans was able to prevent 6-hydroxy-dopamine-induced degeneration in

dopaminergic neurons (Cao et al., 2005) and to protect COS-1 and PC-12 cells

against oxidative stress (Kuner et al., 2003).

By using such nematode model, Caldwell and coworkers investigated human

mutations associated with dystonia for their functional impact on endoplasmic

reticulum stress, a cellular response to aberrant protein trafficking and folding

(Chen et al., 2010). These data indicate that a normal function of torsinA is to

prevent the onset of intracellular stress that ensues when this process is impaired,

and that deficits in torsinA activity at luminal level, perhaps caused by mislocaliza-

tion of torsinA to the nucleus, sensitizes cells to intracellular stress caused by

protein misfolding at the endoplasmic reticulum (Chen et al., 2010). Together,

these findings suggest a functional role for torsinA in maintaining intracellular

homeostasis that is altered in DYT1 dystonia.
B. VERTEBRATES

Among vertebrates, the mouse is the most common species utilized for genetic

manipulation (Metzger and Feil, 1999). Rodents, in fact, display several advantages
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as compared to other vertebrate species. These animals reproduce in large num-

bers, and they are easy to breed with a relative low cost. Several genetic engineer-

ing mouse models are now available, particularly for the study of DYT1 dystonia.

In some models, the human TOR1A gene is inserted randomly in the mouse

genome, while in other lines the mouse locus TOR1A has been manipulated in

different ways either through gene modification (knock-in, KI), gene expression

reduction (knock-down, KD), or through the total gene inhibition (knock-out, KO)

(Tables II and III).

Four transgenic mouse models have been created through over-expression of

human mutated torsinA protein (DETorsinA), utilizing different promoters in the

mouse genome (Grundmann et al., 2007; Page et al., 2010; Sharma et al., 2005;

Shashidharan et al., 2005) (Table II). In these models, the quality of temporal and

spatial transgene promoter expression depends on the design construct and the

insertion site (Zhao et al., 2008).

In the transgenic mouse generated by Shashidharan and coworkers (2005),

human DETorsinA protein was overexpressed using a neuron-specific enolase

(NSE) promoter. About 40% of these mice showed hyperactivity and abnormal

movements. Conversely, Grundmann and collaborators developed a transgenic

mouse using the murine prion protein promoter (Grundmann et al., 2007).

These animals showed impaired motor performance. Both models presented

abnormal levels of dopamine (DA) metabolites (Grundmann et al., 2007;

Shashidharan et al., 2005). Immunohistochemistry experiments also demon-

strated some perinuclear inclusions and aggregates that stained positively for

ubiquitin and torsinA (Grundmann et al., 2007; Shashidharan et al., 2005). In

addition, autoradiographic studies showed a decreased density of striatal D2 DA

receptors, with no difference in D1 receptors or DA transporter (DAT) binding

in transgenic mice over-expressing human DETorsinA under the NSE promoter

(Giannakopoulou et al., 2010).

In the transgenic mouse developed by Sharma and colleagues (2005), human

mutant torsinA was over-expressed under a cytomegalovirus promoter (CMV).

These mice showed no overt dystonic behavior, but exhibited motor learning

impairments (Sharma et al., 2005; Zhao et al., 2008). No cytoplasmic torsinA

and ubiquitin-positive inclusions were found in this model (Zhao et al., 2008). In

addition, these mice did not show any alteration of basal striatal DA level, but

showed a significantly reduced amphetamine-evoked DA release (Balcioglu et al.,

2007), an effect that has been ascribed to a deficient DAT activity (Hewett et al.,

2010). Moreover, the concentration of DA metabolites, homovanillic acid (HVA)

and 3,4-dihydroxyphenylacetic acid (DOPAC) was altered, indicative of an

increased DA turnover (Zhao et al., 2008). Cell physiology has been extensively

characterized in this same mouse model, and the experimental data collected

suggest a profound alteration of both striatal dopaminergic and cholinergic

systems. Most striatal neurons are medium spiny projection neurons (MSNs),



Table II

TRANSGENIC MODELS
A.

Disorder(s) Protein Model Results References

DYT1 torsinA DE human TA

under neuron-

specific enolase

(NSE) promoter

Hyperkinesias; self- clasping; rapid bi-

directional circling; TA and ubiquitin

positive inclusions in PPN, pons and

PAG; decreased DA; decreased

DOPAC/DA;

Shashidharan

et al., 2005

Peak single-pulse evoked extracellular

DA concentration was significantly

lower in phenotype-positive mice

Bao et al., 2010

Decrease of D2-dopamine receptors Giannakopoulou

et al., 2010

DYT1 torsinA DE human TA/

WT human TA

under

cytomegalovirus

immediate early

promoter

DE mice have reduced learning motor

skill on rotarod; no evidence of

inclusions;

Sharma et al.,

2005

Striatal cholinergic interneurons in the

presence of quinpirole show an increase

of firing mediated by inhibition of N-

type calcium currents

Pisani et al., 2006

Impaired release of DA upon treatment

with amphetamine; no difference in

level of DA metabolites, DAT,

VMAT2 and D1 D2 post-synaptic

receptors.

Balcioglu et al.,

2007

DE mice with abnormal motor

phenotype in raised-beam analyses;

higher DOPAC/DA; HVA/DA; no

difference in DA level

Zhao et al., 2008

Altered GABAergic input onto striatal

medium spiny neurons

Sciamanna

et al., 2009

Alterations of corticostriatal synaptic

plasticity, with a significant increased

LTP and the lost of LTD

Martella et al.,

2009

Normal responsiveness to D2-

autoreceptor function in nigral

dopaminergic neurons. Blockade of

adenosine A2A receptors fully restored

the impairment of synaptic plasticity

observed in DE mice; reduction of

striatal D2R protein, Haloperidol

induce a reduced cataleptic response in

DE mice

Napolitano

et al., 2010

(continued )
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Table II (continued )

Disorder(s) Protein Model Results References

Altered DAT function Hewett

et al., 2010

DYT1 torsinA DE human TA/

WT human TA

under murine

prion protein

promoter

Hyperactivity and defects on rotarod

testing; TA laminin and ubiquitin

positive inclusions in the brainstem,

nuclear envelope bleb formation;

decreased DA, and serotonin

Grundmann

et al., 2007

a Abbreviations: TA, torsinA; PPN, pedunculopontine nucleus ; PAG periaqueductal gray LTP, long

term potentation; LTD, long-term depotentation; DA, dopamine; DOPAC, 3,4-

dihydroxyphenylacetic acid; DAT, DA transporter; VMAT2, vesicular monoamine transporter

protein.
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constituting nearly 95% of the entire neuronal population. The remaining

striatal neurons are interneurons. Among these, cholinergic interneurons are

giant aspiny interneurons with richly arborizing axons with large terminal fields,

leading to high striatal levels of markers of cholinergic signalling, such as
Table III

OTHER GENETIC ENGINEERING MODELS
A.

Disorder(s) Protein Model Results References

DYT1 torsinA Dyt1 DGAG knockin Deficiency on beam-walking

test; hyperactivity; TA and

ubiquitin positive inclusions in

PPN. Decreased of HA

Dang et al.,

2005

DYT1 torsinA Dyt1 DGAG knockin Homozygous is lethal; NE

abnormalities

Goodchild

et al., 2005

DYT1 torsinA Dyt1 knockdown Homozygous is lethal; NE

abnormalities

Goodchild

et al., 2005

DYT1 torsinA Dyt1 knockdown Deficiency in beam-walking;

hyperactivity; decreased

DOPAC

Dang et al.,

2006

DYT1 torsinA Cortex-specific Dyt1

conditional knockout

mice

Deficiency on beam-walking

test; hyperactive; no alteration

in striatal DA

Yokoi et al.,

2008

DYT1 torsinA TH promoter to direct

transgene expression

specifically to

dopaminergic neurons

Basal hypoactivity; deficit

beam walking test; striatal

imbalanced DA release

Page et al., 2010

a Abbreviations: PPN, pedunculopontine nucleus; NE, nuclear envelope; DOPAC, 3, 4-

dihydroxyphenylacetic acid; TH, tyrosine hydroxylase; DA, dopamine.
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choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and the vesic-

ular acetylcholine transporter (VAChT) (Bolam et al., 1984). Cholinergic inter-

neurons are solely found in regions with a dense dopaminergic innervation,

such as the dorsal striatum. In these regions, dopaminergic afferents exert a

powerful control over cholinergic transmission. Several lines of experimental

and clinical evidence point to the striatum, where DA and acetylcholine (ACh)

interact, as a principal locus of the pathophysiological changes in brain func-

tion underlying dystonia (for rev. see Pisani et al., 2007). Our studies identified

a fundamental change in striatal cholinergic signaling. Striatal cholinergic

interneurons exhibit autonomous pacemaker activity, providing a constant

ACh tone in the striatum. Maintenance of ACh levels is regulated by ACh

degrading enzymes, by muscarinic M2/M4 autoreceptors and by an inhibitory

D2 receptor action. Normally, activation of DA D2 receptors reduces the

activity of cholinergic interneurons (Pisani et al., 2000). However, in interneur-

ons from transgenic mice with the DYT1 mutation, D2 receptor activation

dramatically increased, rather than decreased spike rate, thereby causing an

elevation of ambient ACh (Pisani et al., 2006). Of note, striatal MSNs exhibited

significant abnormalities of long-term synaptic plasticity. Indeed, MSNs of these

mice lack long-term depression (LTD) and synaptic depotentiation (SD), while

conversely, they express an enhanced long-term potentiation (LTP)

(Martella et al., 2009). The inability to revert synaptic strength from the poten-

tiated state to pre-LTP levels may indeed result in the loss of a “surround

inhibition,” and therefore the loss of the skill to select from competing motor

patterns, which is consistent with the main pathogenic features of dystonic symp-

toms. Our results demonstrated that an enhanced cholinergic tone, through

activation of muscarinic M1 receptors is responsible for corticostriatal plasticity

deficits in mice with mutant torsinA. Both LTD and SD, in fact, were restored

either by lowering striatal ACh with drugs preventing ACh resynthesis or by

antagonizing M1 receptors (Martella et al., 2009).

Rodent models have also been engineered to address the role of specific brain

regions in DYT1 dystonia. Yokoi and coworkers (2008) developed cerebral cortex-

specific DYT1 conditional KO mice. The conditional KO mice showed normal

development of somatosensory cortex, hyperactivity and impairment of beam-

walking test. More recently, Page and collaborators generated a novel mouse, by

using a tyrosine hydroxylase (TH) promoter to selectively induce DtorsinA expres-

sion in dopaminergic neurons (Page et al., 2010). These mice present only a basal

hypoactivity and deficit in motor coordination during the beam walking test.

Striatal basal DA levels did not show any change, but voltametric measurements

after treatment with cocaine demonstrated an imbalanced striatal DA release

(Page et al., 2010).

Homozygous KI of the DGAG mutation or KO of torsinA are both lethal at

birth, whereas heterozygous KI mice showed hyperactivity in the open field test
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and an altered learning ability during beam walking (Dang et al., 2005; Goodchild

et al., 2005). Mutant mice present also abnormal levels of DA metabolites, and in

the pontine nuclei torsinA-ubiquitin positive inclusions have been reported

(Dang et al., 2005) (Table III).

The KD mouse model expresses a reduced level of torsinA protein. Their

phenotype appears very similar to that of KI heterozygous mice, with altered levels

of DA metabolites (Dang et al., 2006).

It is worth noting that some relevant commonalities exist among the different

models described. First, in all the models a significant impairment of motor learning

is observed. This is of relevance, as it implies a disruption of synaptic plasticity

processes. Secondly, most of these mice exhibit an alteration of DA neurotransmis-

sion, specifically in the striatal region, a result which is consistent with compelling

clinical evidence. However, it appears evident that these mouse models exhibit also

considerable differences, at multiple levels. The behavioral, biochemical, molecular

characteristics of each model may be attributed either to the distinct types of

promoter used or to the differential inherent genetic background.
III. Spontaneous Mutants
Within the group of vertebrates several spontaneous genetic mutations are

related to the appearance of dystonic symptoms (Table IV). Unlike genetic engi-

neering models, the presence of spontaneous mutations provides a useful tool to
Table IV

SPONTANEOUS MUTANTS.

Disorder(s) Model Gene Protein References

Generalized

Dystonia

dtSZ hamster Unknown Unknown Richter et al.,

1991

Generalized

Dystonia

dt rat ATCAY human caytaxin

homologous

Lorden et al.,

1984

Dystonia

musculorum

mouse

Dystonia

musculorum mouse

BPAG1 Neural isoform

bullous pemphigoid

antigen

Brown et al.,

1995

SCA6, FHM,

EA-2

Tottering mouse CANCA1A a1A calcium channel

calcium channel

Fureman et al.,

2002

DYT12 Myshkin (Myk)

mouse

ATP1A3 Na+-K+-ATPase a3
isoform

Clapcote et al.,

2009

DYT5 hph-1 mouse Unknown GTP cyclohydrolase

type 1

Hyland et al.,

2003
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the study of dystonia, because spontaneous mutant dystonic animals (SMDA)

generally exhibit severe motor disturbances that, at least in part, resemble the

clinical and characteristics of human dystonia (Hess and Jinnah, 2005; Neychev

et al., 2008). Among SMDA, it is worth mentioning the dt rat, which develops a

dystonic motor syndrome by postnatal day (PND) 12, involving both limbs and

trunk muscles, dies before PND 40. The mutation has been identified in the gene

encoding a protein having a high homology with human caytaxin (LeDoux, 2010).

This protein plays an important role during development of the cerebellar cortex

suggesting its involving in dystonia and ataxia (LeDoux, 2010). Indeed, deficiency

of caytaxin disrupts phophatidylinositol signaling pathways, calcium homeostasis,

and extracellular matrix interactions (Xiao et al., 2007). Histological examination

of the striatum, cerebellum, and deep cerebellar nuclei (DCN) revealed no anom-

alies and no loss in cell number (Lorden et al., 1984, 1992; LeDoux, 2010;McKeon

et al., 1984). However, several neurochemical abnormalities were observed within

the cerebellum. First, the GABA concentration is significantly elevated in dt rat

Purkinje cells, but not in the basal ganglia (Lutes et al., 1992; Oltmans et al., 1984),

while cells of the DCN show a substantial reduction in glutamic acid decarboxylase

(GAD) activity and GABA receptor density (Beales et al., 1990; Oltmans et al.,

1984). Moreover, electrophysiological experiments in dt rat revealed the presence

of a defect in climbing fiber input to cerebellar Purkinje cells, through a reduced

rate of complex spiking and abnormal patterns of simple spike bursting (LeDoux

and Lorden, 2002). Surgical treatment as cerebellectomy (CBX) or lesions of the

DCN are able to relieve the symptoms in dt rats (LeDoux et al., 1993, 1995).

Together, these results support a primary role of the cerebellum in motor dys-

function of dt rats.

Hamster dtSZ is another model implying spontaneous mutation, which has

been extensively characterized (Table IV). Genetic screening has not identified the

gene that may cause motor dysfunction although it is transmitted as a single

autosomal recessive trait (Richter and Loscher, 1993). The dystonic attacks are

induced by stressful episodes, and they can last for hours with a large spectrum of

severity (Loscher et al., 1989). Although histological examination of the entire brain

appears normal, hamster dtSZ exhibit a reduction in striatal parvalbumin-immu-

noreactive neuron numbers suggestive of an altered GABAergic transmission

(Gernert et al., 2000; Hamann et al., 2007). Conversely, the number of other classes

of striatal interneurons is unaffected (Gernert et al., 2000).

The hypothesis that an intrinsic deficit in neuronal function underlies dystonia

in hamsters has been confirmed through the application of GABA receptor

antagonists that worsen dystonic attacks. Conversely, GABA receptor agonist

application reduces motor abnormalities (Fredow and Loscher, 1991; Hamann

and Richter, 2002; Sander et al., 2009). Together, electrophysiological experi-

ments and pharmacological data demonstrate an overactivity linked to decreased

GABAergic inhibition, resulting in profound effects on the processing of basal
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ganglia output (Gernert et al., 1999, 2002; Hamann et al., 2010; Kohling et al.,

2004). In addition, the administration of dopamine receptor antagonists prevents

dystonic attacks, suggesting a dopaminergic dysfunction, but only during the

dystonic attacks, since the interictal levels are normal (Hamann and Richter,

2004; Rehders et al., 2000).

The tottering mouse model presents a mutation in the CACNA1A gene that codes

the pore-forming a12.1 subunit of voltage-dependent Cav2.1 calcium channels

(Ophoff et al., 1996; Zhuchenko et al., 1997). These animals belong to a larger

dystonic rodent group showing alteration in calcium channels, termed Cav2.1

calcium channels mouse mutants (CCMM) (Raike et al., 2005). The mutation is

recessive, and the motor dysfunction, also associated with mild ataxia, is transient

and precipitated by stressors (i.e., caffeine or ethanol administration) (Fureman et al.,

2002). Although CCMM do not show any evident neurodegeneration, the total

volume of the cerebellum is significantly lower (Isaacs and Abbott, 1995). CCMM

animals present a decline of the density of Purkinje cells, with a diminished Cav2.1

activity associated with a decrease in the expression of calcium-binding proteins

(Dove et al., 2000; Herrup and Wilczynski, 1982). In CCMM, dystonia appears to

be linked to the activation of c-fos expression within the entire olivocerebellar

network, but not within the basal ganglia (Campbell and Hess, 1998).

The description of spontaneous mutants highlights the existence of a largely

variable spectrum of behavioral, neurochemical, and histological abnormalities.

Such heterogeneity appears to reflect the intimate, region-specific, consequences

of the mutation.
IV. Pharmacological and Neural Lesion Models
A. NONHUMAN PRIMATES

Different nonhuman primate (NHP, mostlyMacaca Mulatta, Cebus Apella) mod-

els of dystonia have been developed in the past. These models were obtained by

lesioning specific brain regions or by pharmacological manipulations within var-

ious basal ganglia areas, and for this reason they are still of great interest since they

allowed a fine exploration of the neural pathways underlying dystonia (Table V).

NHP models allow investigation of some aspects of dystonia pathophysiology that

are inaccessible with the noninvasive techniques used in human patients. Thus, in

principle, NHP represent the most reliable animal species to model neurological

disorders, such as dystonia. Indeed, primates are typically employed for preclinical

testing of novel pharmacological agents, or neuromodulatory devices. However,

several factors limit their extensive use. NHP, in fact, breed very slowly and in a few



Table V

PRIMATES, PHARMACOLOGICAL, AND NEURAL LESION MODELS.

Disorder(s) Species Treatment Symptoms References

Cervical

dystonia

Macaca mulatta Electrolytic lesions-

medial midbrain

tegmentum

Contraversive

torticollis

Foltz et al., 1959

Cervical

dystonia

Cercopithecus sabaeus

and Macaca mulatta

Lesions of

mesencephalic

tegmentum

Ipsiversive torticollis Battista et al.,

1976

Cervical

dystonia

Macaca fascicularis Microstimulation

(muscimol) interstitial

nucleus of Cajal

Ipsiversive head

rotation

Klier et al., 2002

Cervical

dystonia

Monkey 6-OHDA nigrostriatal

lesion

Ipsiversive torticollis

that resolved with

apomorphine

Sambrook et al.,

1979

Cervical

dystonia

Macaca fascicularis Bicuculline in globus

pallidus pars internalis

Limbs dystonia Burbaud et al.,

1998

Multifocal

dystonia

Macaca fascicularis Bicuculline in

thalamic relay of

pallidal inputs

Tonic hemidystonia Macia et al.,

2002

Occupational

dystonia

Monkey Intensive sensorimotor

training

Hand-forearm

dystonia

Byl et al., 1996
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numbers, resulting in a limited available sample number, and their maintenance

requires expensive and specific facilities. In addition, primates are potential

holders of a number of diseases including retroviral zoonoses, which have had a

history of jump host species (Weiss, 1998). Furthermore, ethical issues also con-

tribute to the limited use of these models.

Compelling evidence suggests that dysfunction of the basal ganglia circuit plays

a pivotal role in the pathophysiology of dystonia, in agreement with neuroimaging

studies (Asanuma et al., 2005; Augood et al., 2004; Carbon and Eidelberg, 2009), as

well as with the observation that secondary dystonia occurs in patients with focal

lesions of basal ganglia, especially caudate and putamen (Bhatia and Marsden,

1994). Accordingly, experimental evidence collected from NHP models focused

primarily on the role of basal ganglia in the pathophysiology of dystonia although

other subcortical nuclei have been involved in focal dystonia (Guehl et al., 2009).

Regional lesions and pharmacological manipulation of the basal ganglia of NHP

have been shown to produce dystonic symptoms (Breakefield et al., 2008; Guehl

et al., 2009; Jinnah et al., 2008). The typical phenotype of NHP dystonic model

includes torticollis, forced jaw opening and abnormal postures of the limbs, man-

ifestations that closely resemble the clinical syndrome seen in human patients

(Guehl et al., 2009; Sassin, 1975).
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Acute dystonic reactions are commonly observed in patients undergoing neu-

roleptic treatment, especially haloperidol (Marsden and Jenner, 1980). In the

1970s, it was shown that such reactions were inducible in primates, producing a

clinical syndrome very similar to that reported in human subjects (Bedard et al.,

1977). Moreover, as in humans, tardive dystonia can be induced in monkeys by

chronic treatment with neuroleptics such as haloperidol (Barany et al., 1983;

Kistrup and Gerlach, 1987; Klintenberg et al., 2002). Dystonic manifestations

could also be induced by chronic treatment with levodopa in MPTP-treated

monkeys (Mitchell et al., 1990). The clinical pharmacology of these dystonic

phenomena indicates that they are closely linked to an aberrant striatal dopami-

nergic signaling (Marsden and Jenner, 1980; Wichmann, 2008). Consistently, as

for acute dystonia, drugs that prevent dopamine storage (reserpine) or synthesis

(a-methyl-p-tyrosine) decrease tardive dyskinesias and dystonia (Chase, 1972).

Other pharmacological models of dystonia in NHP were developed by

manipulating the GABAergic system within the basal ganglia. Accordingly,

injections of bicuculline, a selective antagonist of GABAA receptors either in

the globus pallidus internalis (GPi) or in the substantia nigra pars reticulata,

were able to cause dystonic postures in contralateral limbs or axial symptoms,

respectively (Burbaud et al., 1998) (Table V). Conversely, microinjections of

muscimol, a GABAergic agonist into the GPi, caused co-contraction of wrist

muscles (Mink and Thach, 1991).

Although the role of motor thalamus is still poorly characterized, it certainly

represents a crucial relay area for sensorimotor integration. There is robust evidence

to suggest that aberrant neuronal activity in thalamic nuclei is related to dystonic

movements (Carbon et al., 2009; Lenz and Byl, 1999). Accordingly, abnormalities

in the integration between sensory inputs and motor function are considered to

play a primary role in the pathogenesis of this disorder (Tinazzi et al., 2009).

Pharmacological manipulation of the thalamus lead to distinct phenotypes, accord-

ing to the specific nucleus involved. In fact, bicuculline injection into the rostral part

of the thalamus induced contralateral dystonia with muscle co-contractions,

whereas injection in the caudal region caused myoclonic dystonia (Guehl et al.,

2000; Macia et al., 2002). These same authors demonstrated that bicuculline was

able to increase the discharge frequency of thalamic neurons (Macia et al., 2002).

Taken together these results suggest, as predicted by traditional archetypes of

basal ganglia dysfunction, an hyperexcitability of the thalamo-cortical pathway

(DeLong, 1990), since focal inactivation of output basal ganglia regions impairs the

capability to select between competing motor patterns, thereby interfering with

voluntary movements (Mink, 1996).

More recently, models of secondary dystonia were developed in NHP.

Primates were chronically treated with 3-nitropropionic acid, a selective mito-

chondrial complex II toxin, which has been shown to inducemotor disturbances in

humans (Ludolph et al., 1991). After several weeks, animals developed a dystonic
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syndrome, initially confined to lower limbs, but showing a slow and progressive

tendency to diffuse to other body parts (Palfi et al., 2000) A plausible interpretation

of these effects can reside in the specific capacity of 3-NP to affect energy metab-

olism of MSNs, ultimately leading to neural dysfunction, and eventually to cell

death (Calabresi et al., 2001).
B. RODENTS

Pharmacological models of dystonia have been developed also in wild-type

rodents. Both generalized and focal dystonia can be induced through manipula-

tions of different brain regions, such as basal ganglia, cerebellum, and red nucleus

(Table VI).

In rats, systemic administration of 3-nitropropionic acid (3-NP) produced gen-

eralized motor disturbances consisting of hindlimb clasping and dystonia, truncal

dystonia, bradykinesia, and impaired postural control. Histopathologically, there

were discrete lesions of the dorsolateral striatum together with a reduction of

striatal volume (Fernagut et al., 2002). However, striatal neuronal loss was accom-

panied also by significant dopaminergic cell damage within the substantia nigra

pars compacta, suggesting that a combined dopaminergic denervation was nec-

essary for the dystonic symptoms to occur (Fernagut et al., 2002).

In another study, a single systemic injection of 3-NP in rats caused hindlimb

dystonia early after 3-NP injections, and rats performed poorly on balance beam
Table VI

RODENTS, PHARMACOLOGICAL, AND NEURAL LESION MODELS.

Disorder(s) Species Treatment Symptoms References

Generalized

dystonia

Mouse/rat Systemic 3-nitropropionic

acid

Mild dystonia Akopian et al.,

2008

Generalized

dystonia

Mouse/rat Systemic 3-nitropropionic

acid

Dystonia,

bradykinesia

Guyot et al.,

1997

Generalized

dystonia

Mouse Injection of kainic acid

into cerebellar cortex

Severe truncal and

appendicular dystonia

Pizoli et al.,

2002

Generalized

dystonia

Mouse Systemic administration of

L-type calcium channel

agonists

Severe truncal and

appendicular dystonia

Jinnah et al.,

2000

Generalized

dystonia

Rat Injection of sigma receptor

ligands into the red

nucleus

Cervical and truncal

dystonia

Walker et al.,

1988

Generalized

dystonia

Rabbit Fetal hypoxia-ischemia Mixed dystonia-

spasticity

Derrick et al.,

2004
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and rotarod motor tests 24 h later (Akopian et al., 2008). Electrophysiological

recordings from striatal slices showed an increase in NMDA receptor-dependent

LTP at corticostriatal synapses, 24 h after injection (Akopian et al., 2008). These

alterations were not due to an increment of NMDA receptor numbers but were D1

DA receptor dependent and were reverted by exogenous addition of dopamine or

a D2 DA receptor agonist. Additionally, HPLC and fast-scan cyclic voltammetry

revealed a decrease in DA content and release in rats injected 24 h earlier with

3-NP, further supporting a role for dopaminergic innervations of striatal neurons

in the pathogenesis of the motor sequelae induced by 3-NP. Furthermore, immu-

nohistochemical analysis showed no evidence of both striatal and nigral cell loss

(Akopian et al., 2008).

Another rodent model has been developed by Pizoli and collaborators in

2002, through microinjections of the AMPA-glutamate receptor agonist kainate

in the cerebellar vermis. Dystonic movements started from the hindlimbs and

spread to the trunk and forelimbs in about 10–20 min after drug injection. The

dystonic effects seem causally linked to a cerebellar dysfunction, since kainate

microinjection in the basal ganglia did not lead to any apparent motor dysfunc-

tion (Pizoli et al., 2002).

In summary, whereas initial clinical studies implicated basal ganglia as the

principal source of idiopathic and acquired dystonias, substantial evidence iden-

tifies cerebellar dysfunction as another common cause of this disorder.

Undoubtedly, the heterogeneity observed in human dystonia is represented in

animal models of the disorder. Some studies provide demonstration that dysfunc-

tional output from the basal ganglia can result in dystonia. In these models,

abnormal nigrostriatal dopaminergic neurotransmission and impairment of bidi-

rectional synaptic plasticity at corticostriatal synapses predict distorted thalamo-

cortical pathway thatmay drive the dystonia (Martella et al., 2009;Quartarone and

Pisani, 2010;Wichmann, 2008). In contrast, themodels of dystonia implicating the

cerebellum predict abnormal cerebellar signaling. Considering that both systems

serve to modulate motor activity, the notion that simultaneous dysfunction of basal

ganglia and cerebellum may be involved in different manifestations of dystonia is

not unreasonable.
V. Conclusions
The past decade has witnessed an important effort in the generation of exper-

imental models for the study of dystonia. The mouse has received considerable

attention because of the ease with which genetically defined mutations can be

introduced. A major goal in studying these models is to identify the anatomical,
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physiological, or biochemical processes involved in the expression of the motor

deficits. Extensive characterization of both “genotypic” and “phenotypic” models

of dystonia often led to very different results, and as a consequence, generated

some skepticism concerning the relevance of studies on rodent to human disease.

For instance, many human studies show that basal ganglia, and more in par-

ticular the neostriatum, are central to the origins of dystonia (Bhatia and Marsden,

1994; Breakefield et al., 2008; Perlmutter and Mink, 2004; Quartarone and Pisani,

2010). This region has indeed been implicated in the expression of dystonia in the

dtsz hamster as well as in different rodent models of DYT1 dystonia. On the other

hand, the cerebellum has been repeatedly implicated in several rodent models,

including the dt rat and tottering mice.

These diverging experimental data, however, should not be used as evidence to

dismiss the models as irrelevant. Conversely, the disputes could be resolved by

further investigations of their relevance in human dystonia. In conclusion, the

expectation for an animal model to mimic its human counterpart in all respects,

from the causative event through the final motor syndrome is increasingly

recognized as unrealistic. Indeed, research involving animal models, including

invertebrates, suggest that the value of a given model does not rely in how closely

it can mimic the human condition. Rather, a useful animal model is judged by

how successfully it can be used to explore novel aspects of pathophysiology and

therapy.
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Dystonia is a neurological condition characterised by abnormal muscle

contractions, often causing repetitive twisting movements or abnormal postures.

Varying forms of surgical intervention, for dystonia unresponsive to medical

therapy, have evolved over the years and have often been associated with poor

outcomes and high morbidity. The advent of stereotactic neurosurgery and the

success of deep brain stimulation in treating a number of movement disorders have

revolutionized the surgical treatment for dystonia. This chapter reviews the

literature concerning the surgical treatment dystonic conditions, from historical

origins to the current use of modern functional neurosurgical techniques.
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I. Background
A. HISTORY OF DYSTONIA

One of the earliest descriptions of dystonia was recorded by Gowers in 1888

(Kandel et al., 1989), whilst Destarac in 1901 used the term “torticollis

spasmodique” to describe the twisting neck movements observed in a 17-year girl.

Dystonic conditions were identified as distinct from other hyperkinesias by

Schwalbe in 1908; however, because of the bizarre nature of the movements,

dystonias were originally considered a form of “hysterical neurosis.”

The term “dystonia” was first coined by Oppenheim in 1911, who was the first

to correctly identify the organic nature of dystonia (Goetz et al., 2001). Focal

dystonias however, unlike the generalized condition, have been recognized for

centuries. For example, the first recorded case of surgery for spasmodic torticollis

was performed in 1641 by German physician Minnius who sectioned the sterno-

cleidomastoid muscle (Kandel et al., 1989).

In 1944 Herz revived the concept of dystonia being an organic disease; how-

ever because of failures to identify any specific brain lesions in dystonia, arguments

for an organic basis to the condition were not recognized until the 1980s following

Marsden’s work on cases of hemidystonia (Marsden et al., 1985). In the 1980s and

1990s investigation into generalized dystonia, particularly amongst Jews of

Ashkenazi descent, led to the discovery of the DYTI gene mutation at the 9q34

locus. Since then continued research has led to the awareness of a complex array of

aetiological causes underlying dystonia.

B. PREVALENCE ESTIMATES

Dystonic conditions are not rare. Epidemiological surveys estimate that dys-

tonia is the third most common movement disorder after Parkinson’s disease and

Essential Tremor (Fahn et al., 1998b), more prevalent than a number of better

known neurological conditions such as myotonic dystrophy, myasthenia gravis,

and motor neuron disease. In contrast to many other conditions, however, there

have been few published epidemiological studies of dystonia. Differences in study

design have further confused prevalence estimates, making it difficult to extrapo-

late data from certain studies to the general population.One of the most compre-

hensive examinations of prevalence estimates currently available was provided by

the Epidemiological Study of Dystonia in Europe (ESDE) collaborative group

(ESDE group, 2000). Data pooled from eight countries revealed a prevalence rate

of 152 per million for primary dystonia. The highest subcategory prevalence was

117 per million for focal dystonia with segmental dystonia constituting 32 per

million and multifocal dystonia 2.4 per million. The commonest form of focal
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dystonia was cervical dystonia (57 per million). However, true prevalence is

unknown, with many authors suggesting that estimates in published reports are

considerably lower than the actual prevalence (Jankovic et al., 2007) due to signif-

icant numbers of undiagnosed cases within the community.
II. Classification
The term dystonia is employed to describe a syndrome characterized by sus-

tainedmuscle contractions, often causing repetitive twistingmovements or abnormal

postures. These involuntarymovements are caused by co-contractions of agonist and

antagonist muscles and are often exacerbated during action but improve with rest,

sleep, or sensory tricks (geste antagoniste) such as touching the chin to improve

cervical dystonia. Some dystonic movements (e.g., writer’s cramp) appear only with

specific actions and are referred to as task-specific dystonias. Dystonic conditions are

many and varied and can be described either aetiologically or descriptively.
A. AETIOLOGICAL CLASSIFICATION

An important aspect of the clinical evaluation of dystonia is the aetiological

classification of the condition. This helps in formulating treatment strategies, decid-

ing on the need for genetic counselling and may also aid our understanding of the

underlying pathophysiology of the illness. In order to assist the aetiological classi-

fication of dystonic conditions, a similar system for the classification of parkinsonism

has been adopted by many (Fahn et al., 1998a) to include the subcategories of

primary dystonia, dystonia-plus syndromes, secondary dystonia, and heredodegen-

erative diseases in which dystonia is the prominent feature. The molecular classi-

fication of dystonia includes several genetic loci. Currently at least 19 gene loci have

been described (Kamm, 2009; Schmidt and Klein, 2010); although it is likely that

there are many more dystonia genes that have yet to be discovered.
B. DESCRIPTIVE CLASSIFICATION

1. Age at Onset

Dystonia can be subdivided into two groups on the basis of age at onset of

symptoms. The term early-onset dystonia is often employed when symptoms begin

before the age of 26 years, whereas after this age, they are classified as late-onset

dystonia. The earlier dystonic symptoms appear, the more likely the condition will
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progress to become generalized, whilst in the older onset individuals, it is more

likely to remain focal.

2. Distribution of Affected Body Regions

When dystonia is classified according to body distribution, it can be described as

focal, segmental, multifocal, or generalized. In focal dystonia, a single body region is

affected, such as the arm in writer’s cramp, the eyes in blepharospasm, the neck in

spasmodic torticollis, or the laryngeal muscles in spasmodic dysphonia. In segmental

dystonia, two or more contiguous body regions are affected, for example cranial–

cervical dystonia or crural dystonia (one leg plus trunk or both legs). If two or more

noncontiguous body parts are affected, the disorder is termed multifocal dystonia.

Generalized dystonia refers to crural dystonia with at least one other body part

involved.When dystonia is confined to one side of the body, it is called hemidystonia.

The site of the first dystonic symptom is also a valuable prognostic indicator.

90% of patients with onset in the lower limbs will develop symptoms in other parts

of the body. Their symptoms are also more likely to become generalized

(Greene et al., 1995), compared to those who present with cervical dystonia, of

which only a minority will have disease spread to other body parts. Hemidystonia

is almost always symptomatic regardless of its age of onset (Marsden et al., 1985).
III. Medical Treatment of Dystonia
One of the first general considerations in approaching the treatment of a

patient with dystonia is to differentiate between the primary and secondary dysto-

nias. In a minority of patients with secondary dystonia, for example Wilson’s

disease, drug-induced dystonia or dopa-responsive dystonia (DRD), benefit can

be gained from specific treatments (Jankovic, 1998). For example, all patients with

childhood onset dystonias should receive a trial of L-Dopa, as this may bring about

dramatic improvement after a short period of time in those with DRD. For other

patients, therapy is directed at controlling the symptoms rather than the cause,

with different management strategies employed for generalized as opposed to focal

conditions. As a general rule, in patients with generalized and multifocal diseases,

oral pharmacotherapy constitutes the mainstay of treatment.

Unfortunately the treatment of dystonia with oral agents is often unsatisfactory.

In addition to L-Dopa, other established medications include anticholinergics,

benzodiazepines, and baclofen. Except in the case of DRD, anticholinergic medica-

tions such as trihexyphenidyl are arguably the most effective pharmacotherapy for

dystonia (Bressman and Greene, 2000); although effective treatment is sometimes

limited by the development of side effects. Although considered less effective than
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anticholinergics, baclofen has proved efficacious in children (Greene, 1992; Greene

and Fahn, 1992). Benzodiazepines are also often employed, such as clonazepam,

and are particularly useful in the treatment of myoclonic dystonia (Das and

Choudhary, 2000). The dopamine depleting drug tetrabenazine is considered to

be effective in the treatment of some patients with tardive dystonia. Other anti-

dopaminergics such as haloperidol, may be effective but may also worsen symptoms

or induce tardive dyskinesia and hence are not recommended. Although atypical

neuroleptics such as clozapine have been suggested for the treatment of tardive

dystonia, their effectiveness in treating other forms of dystonia remains question-

able. Several other forms of pharmacological therapy have been reported to be

beneficial in individual cases of dystonia; however their role in treating dystonia has

yet to be fully established.In contrast, patients with focal dystonia tend to benefit

most from treatment with botulinum toxin (BTX) injection. BTX is often the

treatment of choice for the majority of focal dystonias, particularly cervical dystonia,

and has been the most comprehensively investigated therapy for treatment of this

patient group. Injections in the most severely affected muscle groups can also be

employed in association with other treatments. BTX produces chemodenervation

and hence local muscle paralysis at the neuromuscular junction and also appears to

improve reciprocal inhibition by altering sensory inflow through muscle afferent

fibres (Priori et al., 1995). There are several serotypes of BTX although currently

only types A and B are available for use in clinical practice. The duration of effect

for BTX is variable but on average lasts for two to threemonths. Lack of response to

BTX injection may occur if there is long-standing disease with contractures or the

development of antibodies. Resistance associated with neutralizing antibodies may

occur after repeated injections in 5–10% of cases (Hanna and Jankovic, 1998).

Both BTX A and B have been shown to be efficacious in placebo-controlled

trials (Comella et al., 2000; Sycha et al., 2004) with improvements of 80–90%

observed in cervical dystonia (Adler, 2000). There are various injection strategies

that have been used including the use of EMGs to guide selection of the appro-

priate muscle groups requiring treatment (Childers, 2003). It is usually a safe

treatment that can be performed repeatedly; however side effects including dys-

phagia, pain at the injection site, dry mouth, flu-like symptoms, and dysphonia

have been reported (Dauer et al., 1998). Themajority of patients report satisfactory

benefit from BTX treatment, however if this and other conservative measures fail,

patients should then be considered for surgical intervention.
IV. Surgical Treatment of Dystonia
More than two centuries after Minnius’ operation for torticollis, the Russian

surgeon Buyalsky (1850) performed the first spinal accessory nerve section for
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spasmodic torticollis, followed by Morgan in 1867 and Collier in 1890

(Kandel et al., 1989). Spinal cord root section to treat spasmodic torticollis was

first proposed over a century ago by Keen (Keen, 1891) who suggested unilateral

section of the first three anterior cervical roots. Cervical rhizotomy procedures

were further refined by surgeons such as Dandy in 1928, who combined cervical

root and accessory nerve sectioning. Bertrand provided extensive data based upon

experience with a wide range of procedures derived from Keen’s original opera-

tion (Bertrand et al., 1978; Bertrand and Molina-Negro, 1988). By 1979 variations

of this procedure were still considered the operation of choice for cervical dystonia

refractory to medical therapy, although long-term follow-up disputed the effec-

tiveness of these techniques (Meares, 1971). The issue of long-term efficacy,

together with the high incidence of denervation related complications, has led to

the virtual abandonment of these techniques. Microvascular decompression of the

accessory nerve, peripheral facial neurectomy, and cervical cord stimulation are

further examples of procedures employed that have also fallen out of favor.

Although satisfactory results have been reported for extensive muscle resections

performed in patients with cervical dystonia, the extreme nature of this surgery has

prevented it from being widely used (Chen et al., 1991; Xinkang, 1981).
V. Deep Brain Stimulation (DBS) for Dystonia
A. DEVELOPMENT

The development of DBS treatment for dystonia dates back to the 1950s, when

Hess and Hassler constructed an elaborate animal model to explain both the

physiology and pathophysiology of cervical dystonia (Hassler and Dieckmann,

1970). In clinical practice, however, ablative thalamic surgery for dystonia was

used almost exclusively for decades (Ondo et al., 2001; Tasker, 1998). Reported

results were very variable with about 50% of patients experiencing some degree of

benefit. In 1977 whenMundinger reported his early results with thalamic DBS for

dystonia, there was little initial interest in his studies (Mundinger, 1977).

The globus pallidus internus (GPi) was suggested to be a suitable target for

dystonia based upon the discovery that ablative pallidal surgery brought about

marked improvement in the dystonic dyskinesias of Parkinson’s disease. Since then,

pallidotomy has been reported to be effective in various dystonic disorders

(Hutchison et al., 2003; Lozano et al., 1997; Ondo et al., 1998; Yoshor et al., 2001);

although it has carried with it the risks of speech and cognitive impairment, as well as

a partial recurrence of dystonic symptoms over time. Since its introduction, DBS has

replaced ablative surgery for the treatment of dystonia inmany neurosurgical centers

throughout the world. Initial studies of DBS in dystonia targeted nuclei within the
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thalamus with variable outcome. GPi DBS, inspired initially by the success obtained

with pallidotomy, is currently the most popular surgical target for dystonia.

Thalamic targets can still be considered in patients with secondary dystonias with

pathological changes in the pallidum or where GPi stimulation has been unsuccess-

ful. More recently Subthalamic nucleus stimulation has been reported to be effective

in focal and segmental dystonia (Kleiner-Fisman et al., 2007).
B. PREOPERATIVE ASSESSMENT

Prior to consideration for surgery all patients should be evaluated to assess the

severity of dystonia, the level of disability and to screen for secondary causes of

dystonia. As well as a thorough neurological assessment, a cognitive and psychi-

atric assessment is often undertaken to evaluate for cognition and mood disorders

that may affect the outcome. A preoperative MRI is required to rule out any

structural lesions in the basal ganglia that may interfere with surgical treatment. A

preoperative MRI of the cervical spine may also be indicated in order to assess the

contribution of degenerative cervical spine disease in those with cervical dystonia.

A valid rating scale should also be employed for evaluating the clinical state of a

patient with dystonia and should accurately represent the extent of the disease

severity as well as the disability caused in relation to activities of daily living.

Burke, Fahn and Marsden produced a rating scale, initially for the therapeutic

trial of trihexyphenidyl in the treatment of dystonia. This clinical assessment scale,

the Burke-Fahn-MarsdenDystoniaRating Scale (BFMDRS) (Burke et al., 1985), was

later developed further for the assessment of primary torsion dystonia. By document-

ing serial scores, the BFMDRS has been used extensively for following the clinical

course and response to therapy of dystonia patients. It is arguably the most widely

accepted rating scale for generalized dystonia and hence has improved comparison

of dystonia patient data amongst clinicians by providing comparable quantitative

information. Although originally designed for assessment of primary generalized

dystonias, the scale has also been used to assess secondary and focal dystonias.

There is probably less consensus, compared with other dystonias, as to which

outcome measure best monitors response to treatment in patients with cervical

dystonia. Several different rating scales have been proposed, including the

Columbia rating scale (Greene et al., 1990), Tsui rating scale (Tsui et al., 1986),

and Jankovic rating scale (Jankovic, 1982). These scales however have not been

validated as extensively as the Toronto Western Spasmodic Torticollis Rating

Scale (TWSTRS), a scoring system employing a video protocol, which has been

used in many clinical reports. Although TWSTRS has its limitations, the presence

of a specific videotape protocol helps ensure that patients are assessed in a more

consistent manner, hence why TWSTRS has been chosen by most as the rating

scale to evaluate patients with cervical dystonia.
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FIG. 1. Fused axial CT and MRI scans following insertion of DBS leads. Stimulator electrodes

traversing the GPi are displayed. (For color version of this figure, the reader is referred to the web

version of this book.).
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C. SURGICAL CONSIDERATIONS AND TECHNIQUES

The target we employ for dystonia is located in the posteroventral lateral GPi

and is the same as that used for pallidal DBS in PD. Our operative technique has

been published elsewhere in more detail (Joint et al., 2002). Most patients with

dystonic conditions have bilateral stimulation, and the two electrodes are usually

implanted in the same surgical session under general anaesthesia (Fig. 1). These

electrodes are then connected to a subcutaneous programmable pulse generator

usually implanted in the subclavicular tissue. An alternative surgical method

employs the use of microelectrode recordings; however this is not routinely applied

for stereotactic operations in our centers.

D. POSTOPERATIVE DBS PROGRAMMING AND PATIENT MANAGEMENT

Improvements following pallidal stimulation may be delayed, and it can take

several months before the full benefit is evident (Yianni et al., 2003). The initial

stimulation settings are based on a bipolar stimulation mode in accordance with

the standard practice at the authors units. Initial stimulator parameters aim for
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settings in the region of: 2.0–4.0 V, 130–180 Hz, and 90–240 ms as tolerated by

the individual patient with progressive adjustment of electrical parameters at

each follow-up visit. Beneficial results have also been achieved with differing

parameter settings, particularly with lower frequency stimulation at 60 Hz

(Alterman, Miravite et al. 2007). This strategy differs slightly to methods

employed by other groups who advocate the use of monopolar electrode settings

with a maximum of two electrodes (Coubes, Roubertie et al. 2000).

During the next fewmonths, the intensity of stimulation is gradually increased,

although usually only modest adjustments are required. Side effects of stimulation

are reversible upon adjustment of DBS settings. The threshold for undesired

effects, such as perioral tightness, dysarthria, dizziness, and paraesthesias, tends

to change during progressive adjustments of stimulation amplitude. Weight gain is

observed in some patients, but is nonspecific and has also been observed in pallidal

surgery for other movement disorders (Krauss, Yianni et al. 2004).

DBS has the advantages over lesional surgery of being reversible and adapt-

able. It avoids concern about the effects of lesioning on the developing brain in

children and allows bilateral surgery to be undertaken more safely because of the

reduced level of morbidity involved when compared to lesioning. However, DBS is

not without its problems, which include hardware failure, high costs, time-con-

suming follow-up as well as the peri-operative risks of infection and possible

intracranial hemorrhage (Joint et al., 2002; Rowe et al., 1999). The overall rate

of hardware-related problems reported is very variable ranging from 8–65%, and

perhaps reflects differences in surgical technique (Hariz, 2002; Joint et al., 2002;

Lyons et al., 2001).

Failure of chronic GPi stimulation may result in a medical emergency such as

the rapid and potentially serious reappearance of dystonic symptoms known as

“status dystonicus” (Manji et al., 1998; Teive et al., 2005).More often in our groups’

experience, hardware failure caused by unilateral lead dysfunction results in a

more gradual and progressive recurrence of symptoms, perhaps accounted for by

the presence of the retained contralateral stimulation.

So far most studies suggest that GPi DBS does not have a significant adverse

effect on cognition or mood although, although to date two suicides have been

reported after GPi DBS for dystonia (Foncke et al., 2006).
VI. DBS for Dystonia—Clinical Overview
Several studies have now shown that DBS, in particularly pallidal DBS, is

reasonably safe and efficacious in a variety of dystonic disorders. However, until

recently the majority of evidence supporting GPi DBS as an effective treatment
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was provided by pilot data comprising a number of case series or case reports. The

evidence from these studies has now more recently been strengthened following

the results of a number of trials detailing improvements in segmental, generalized

and cervical dystonia (Kupsch et al., 2006; Morgan and Sethi, 2008; Mueller et al.,

2008). A number of studies with blinded outcome assessments have also been

performed which have further added to the evidence base (Diamond et al.,

2006; Kiss et al., 2007; Pretto et al., 2008; Vidailhet et al., 2007). Verification of

the continued benefit of this treatment has also been provided by recent long-term

studies conveying the sustained improvements experienced by patients several

years after their initial surgery (Cersosimo et al., 2008; Hung et al., 2007; Isaias

et al., 2009; Loher et al., 2008).

Age is generally not a contraindication to dystonia surgery as patients from

ages of 8 to 75 years of age have been successfully operated on. Whilst it is still

debatable as to whether age of onset of dystonia influences outcome

(Vasques et al., 2009a), the overall duration of dystonia has been reported to

negatively correlate with poorer post-operative outcomes in a few studies

(Isaias et al., 2008). Thus DBS should be considered earlier rather than later

in the disease course, in order to prevent secondary fixed deformity that may

compromise rehabilitation.

The overall costs of chronic pallidal stimulation are relatively high for patients

with dystonia (Yianni et al., 2005). This is partly due to the relatively younger age of

patients treated for dystonia compared to those with Parkinson’s disease but also

due to the comparatively higher energy required for chronic stimulation.

Strategies to help address this cost issue have included the development of

rechargeable pulse generator batteries.
A. CERVICAL DYSTONIA

Since cervical dystonia is the most frequent dystonic movement disorder

DBS might be of considerable interest particularly to those patients who do not

respond satisfactorily to conservative interventions. Since the first patients with

cervical dystonia have been treated by GPi DBS in the late 1990s, beneficial

results have been reported by a number of centers. Bilateral pallidal stimulation

produces both symptomatic and functional improvement including marked and

sustained relief of pain in patients with cervical dystonia (Krauss et al., 1999).

The gradual amelioration of symptoms over months was reflected in our data by

improvement of a modified TWSTRS scale on subsequent follow-up examina-

tions, and the mean scores were better at 1 year after surgery than at 3 months

postoperatively (Fig. 2). In the patients from our unit, formal follow-up evalu-

ation has demonstrated sustained improvements in the region of 60–65% in

overall patient TWSTRS scores. In some patients, relief of pain preceded
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FIG. 2. Effect of GPi DBS on TWSTRS scores of patients with cervical dystonia. Regression curve

displays overall change in TWSTRS total scores.

SURGICAL TREATMENT OF DYSTONIA 583
improvements observed in the other aspects of the TWSTRS scale. The liter-

ature also reports patients in whom relief of pain was the most prominent

feature (Kulisevsky et al., 2000).

A further benefit of GPi DBS in this patient group has been its use as an adjunct

in patients with cervical dyskinesias and secondary cervical myelopathy prior to

performing spinal surgery or spinal stabilization (Krauss et al., 2002).
B. GENERALIZED DYSTONIA

The most beneficial results with pallidal DBS were reported in children with

genetic DYT1-positive generalized dystonia. In their first publication on this

subject, Coubes and colleagues described a mean improvement of 90% in the

BFMDRS at a follow-up of at least 1 year after surgery in seven patients (mean age

of 14 years at operation) (Coubes et al., 2000). Improvement was gradual occurring

months after implantation of the electrodes. Six children managed to walk without

assistance after surgery and became functionally normal. Drugs were reduced in

all patients resulting in improvement of alertness. All children returned to school.

More recently, beneficial long-term results for a larger number of patients have

also been reported by theMontpellier group (Vasques et al., 2009b). Adverse effects

have been minimal and several other groups have reported similarly favorable

results. Nevertheless, single cases have been reported of patients who did not

achieve this expected dramatic postoperative benefit.
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FIG. 3. Regression curve displaying reduction in BFMDRS total scores following pallidal stimulation

in patients with generalized dystonia.
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It also appears that in adult patients with primary generalized dystonia remark-

able benefit is also achieved with bilateral pallidal DBS. Meta-analysed data

indicates that a greater than 50% mean improvement in dystonia severity follow-

ing DBS would be expected in patients with primary dystonias, myoclonus dysto-

nia, certain types of heredo-degenerative dystonia and tardive dystonia

(Andrews et al., 2010). In two adult patients with a positive family history of

dystonia, BFMDRS motor scores improved by 74% after 2 years and disability

scores by 67% (Krauss et al., 2003). In our group 12 patients with generalized

dystonia achieved a mean improvement of 48% in the BFMDRS severity scores,

and 38% in the disability scores (Yianni et al., 2003) (Fig. 3).

The lesser improvement in our group was most likely the consequence of

several factors including greater variability in clinical background, the effect of

treatment duration, and the duration of disease onset to treatment, which was on

average more than 12 years. It is important to treat generalized dystonia at an

early stage (Andrews et al., 2010), particularly before improvement is limited by

permanent neurological deficits due to cervical myelopathy, spine deformities or

musculoskeletal injury. The response of generalized dystonia to pallidal DBS also

relates to the underlying aetiology of the dystonic condition. In general, patients

with primary dystonia, particularly DYT1 dystonia appear to respond well

(Andrews et al., 2010). Patients with secondary dystonia respond less well (see

below), and poorer results are expected in patients with secondary dystonia with

structural lesions (Alkhani and Lozano, 2001).



SURGICAL TREATMENT OF DYSTONIA 585
C. SEGMENTAL AND FOCAL DYSTONIA

Similar to the results for generalized dystonia substantial benefit has been

described in patients with primary segmental dystonia. Improvement of cranial

dystonias has also been reported in patients with segmental or generalized dystonia

(Bereznai et al., 2002; Muta et al., 2001; Vercueil et al., 2001). In a pilot study,

bilateral pallidal DBS was performed in a 60-year-old woman with medically-

refractory Meige syndrome. At two year follow-up BFMDRS subscores had

improved by 92% for eyes, by 75% for mouth, and by 33% for speech and

swallowing (Capelle et al., 2003). A further exploration of the use of Pallidal

DBS for Meige syndrome and other focal dystonias might be of future interest.
D. SECONDARY DYSTONIA

The outcomes of DBS for the treatment of secondary dystonia appear to be

more complex and less predictable than those for primary dystonia (Andrews et al.,

2010). Although overall it appears to be less effective in secondary dystonia,

pallidal stimulation has been reported as successful in some individual cases

(Vercueil et al., 2001). Thalamic DBS has been suggested to be more useful in

such cases. Before the routine use of GPi DBS for dystonia, patients with medi-

cally-intractable dystonia whowere treated inGrenoble underwent thalamic DBS.

Approximately half of the patients treated achieved a good functional result, with

some improvements also noted in patients with post-traumatic hemidystonia, and

postanoxic dystonia with basal ganglia necrosis.

Treatment of choreoathetosis secondary to cerebral palsy is problematic.

Bilateral pallidotomies have yielded limited benefit in such patients with objective

improvement of up to 42%, but with a high rate of persistent complications

(Lin et al., 1999). More promising results have been described in two case reports

using GPi DBS (Angelini et al., 2000; Gill et al., 2001). In a 13-year-old boy with

cerebral palsy, who presented with a life-threatening “dystonic storm” requiring

artificial respiration and continuous sedation, bilateral pallidal DBS resulted in

dramatic improvement with restoration of the ability to walk and a less severe

degree of residual dystonia seven months after the operation.

Hemidystonia is a typical manifestation of secondary dystonia. In the past,

hemidystonia was shown to respond well to thalamotomies, while pallidotomies

yielded less consistent improvement (Alkhani and Lozano, 2001; Krauss and

Jankovic, 2002). The results with pallidal DBS are rather heterogeneous. While

little or no improvement has been reported in some studies (Yianni et al., 2003),

unilateral DBS contralateral to the hemidystonia has resulted in improvement of

dystonia-associated pain, movements, posture and functional benefit in other

patients (Loher et al., 2000).
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VII. Conclusion
GPi DBS is becoming the mainstay of surgical treatment for disabling and

medically refractory dystonia. The outcomes following this treatment are often

impressive, however cost and availability have been limiting factors for the more

widespread use of this technology. Future developments may include the creation

of new technologies and the development of carefully conducted studies exploring

differing and new surgical targets.
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Dopamine-agonist drugs, 173
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Dopamine depleting agents, 305

Dopamine D2 receptor (DRD2), 96, 216, 236
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Dopamine D3 receptor (DRD3), 98, 217, 240

Dopamine D4 receptor (DRD4) gene, 240

Dopamine dysfunctions, 236
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Dopamine receptor antagonist, 43

Dopamine receptor supersensitivity, 266

Dopaminergic agonist-inducible chorea, 422

Dopaminergic feedback systems, 74

Dopaminergic neurons

6-hydroxy-dopamine-induced degeneration,

552
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Dopa-responsive dystonia (DRD), 5, 533, 574
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DRD2Taq1A polymorphism, 11

Dromedary gait, 508

Drosophila expressing, 391

Drosophila melanogaster, 376, 549, 551

human DETorsinA, expression of, 552

D1R/PKA signaling pathway, 99

Drug-induced movement disorders,
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DSM-IV, 188
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Dyskinesia model, 72
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development of, 94

dopaminergic therapy, role of, 124
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jumpy stumps, 7
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myokymia, 14
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risk factors, 32
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topiramate, effect of, 43
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Dyskinesia therapy, 45

Dyskinesiogenic potential, 72
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533–534

dystonia-parkinsonism (DYT16), 536

myoclonus–dystonia (DYT11, DYT15),

534–535
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cervical, 516–517

laryngeal, 516
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genetics/pharmacological treatment, 523
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primary torsion, 524, 531

PTD/DYT1, 524–530

historical review, 507–508

molecular classification of, 525

neural pathways, 559

neuropsychiatric features of, 518–519

pharmacological models of, 562
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treatment of
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dystonic storm, 540

pharmacological treatment, 538

pharmacological treatments, 539–540

Dystonia, experimental models of, 549

genetic engineering, models of, 551
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vertebrates, 552–557
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nonhuman primate (NHP), 559–562
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Dystonia-Improvement-Dystonia (D-I-D), 30

Dystonia-parkinsonism (DYT16), 536

Dystonia plus syndromes, 5, 533

Dystonia, surgical treatment of, 571, 575–576

classification of, 573
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descriptive, 573–574

contraindication, 580

deep brain stimulation (DBS)

clinical overview, 579–583

development of, 576–577
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Dystonic movements, 563

Dystonic storm, 540

Dystonic symptoms

spontaneous genetic mutations, 557

Dystonic tics, 17, 18

Dystonic tremor, 7

Dystrophin–glycoprotein complex, 535

DYT1 brains, pathological studies of, 527

DYT4 dystonia, 531

DYT1 dystonia, invertebrate models of, 551
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DYT13 locus, 531

DYT1 mouse models, 527

DYT1 mutations, 526

E

Eicosapentaenoic acid (EPA)

possesses, 452

Embryonic (ES), 482
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Endoplasmic reticulum (ER), 527

Endothelial cell proliferation, 531

Enhanced dopamine metabolism, 266

Enkephalin (ENK), 338

ENK/GAD+ terminals

immunohistochemical studies, 339

ENK+ striato-GPe neurons

preferential loss, schematic illustration of, 345

Epidemiological Study of Dystonia in Europe

(ESDE), 572

Epidemiological surveys, 572
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Epigenetic effects, 250

ER/NE membrane, 529

ES-derived cells
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injections of, 483
Extracellular signal-regulated protein kinase 1

and 2 (ERK) cascade, 100
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Extra pyramidal symptoms (EPS), 222

Extrapyramidal syndrome, acute, 265

F

Fatty acid amide hydrolase (FAAH) inhibitors,

107, 139

Fetal cells, allogeneic transplantation of, 173

First-generation antipsychotics (FGAs), 187, 230

Flap endonuclease-1 (FEN1), 374

Florid panniculitis, 41

Flumazenil, 276

Focal limb dystonia, type of, 517

Forelimb-facial stereotypy, 176

FosB-dependent effects, 102

Free radical generation, 266

Functional normalization, 159

G

GABA. See Gamma-aminobutyric acid

GABAergic compounds, 195

GABAergic hypofunction, 278

GABAergic inhibition, markers of, 159

GABAergic inhibitory, 275

GABAergicmedium spiny neurons

(MSNs), 95

GABAergic neurones, 132

GABAergic neurons, 264

GABAergic neurotransmission, 273

GABAergic pathway, 135

GABAergic tone, 139

GABAergic transmission, 558

DGAG mutation

homozygous KI of, 556

Gamma-aminobutyric acid, 192

biochemical studies, 342

insufficiency, 230

Gene expression profiling, 390

Genome-wide association study (GWAS), 230,
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Geste antagoniste, 513, 573

GID. See Graft-induced dyskinesia

GLI family zinc finger 2 (GLI2) gene, 248

Global non-human primate dyskinesia rating

scale (GPDRS), 60

Globus pallidus (GPe), 132, 338
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images of, 340

neurons, 157
firing rate of, 153
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stimulation, 157
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failure of, 579

striato-GPi neurons, 344

Glutamatergic neurotransmission, 271

Glutamatergic receptor, 134

Glutamic acid decarboxylase (GAD), 279, 339,
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Glutathione S-transferases (GSTs), 234

Glycogen synthase kinase 3 gene, 247

GPCR kinases (GRK), 97

GPi. See Globus pallidus interna

G-protein-coupled receptors (GPCRs), 95

G-protein signal transduction process, 245

G-protein, with guanine diphosphate (GDP), 193

Graft-induced dyskinesia, 171–173
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strategies for dealing, 179–180

Tampa-Mt Sinai cohort of, 176

Graft survival, 459

GTP-cyclohydrolase restores motor function, 140

GWASS, 248

genes with TD, 249
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Haloperidol-induced TD model, 271
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Hdh promoter, 430

HdhQ111 knock-in mice, 430

HD Society of America (HDSA), 303
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Hemidystonia, 512, 583

Hemiparkinsonian rats, 108

Heparan sulfate proteoglycan 2 (HSPG2) gene, 248

Histone deacetylase inhibitors (HDACi), 445
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Host–graft signalling, 488

5-HT2A receptors, 137
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Htt/mHtt

Akt-mediated phosphorylation of, 380
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cleavage sites, 382
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genetic engineering models, 555
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Huntingtin (Htt), 419
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post-translational modifications of, 383
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Huntingtin-associated protein 1 (HAP1), 330

Huntingtin-containing perikarya, 332

Huntingtin (HTT) gene, 296, 372

Huntingtin interacting protein 14 (HIP14), 381

Huntington’s chorea, 198, 296

Huntington’s disease, 4, 16, 295, 297, 324, 417

advanced disease, 317–318

animal models, analyses of, 330
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atypical phenotype, including juvenile,

316–317

basal ganglia, 337

CAG
correlation, 300
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motor disorder, 303
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clinical presentation and genetics, 296

cognitive disorder, 307
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executive dysfunction, 308
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psychomotor symptoms, 308
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communication, 313–316

disease-producing mutation, 332

Drosophila model of, 444

end of life issues, 317–318
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fragment models of, 426
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genetic mouse models of, 435
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neuropathology of)
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reproductive options, 297–298

graft derived reconstruction of, 484
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304

motor symptoms of, 303
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management of, 302
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neuropathological phenotype, 433

neuropathological severity, 337

neuropathology of, 323

neuropsychiatric symptoms, frequency of, 310

3-nitroproprionic (3-NP) chemical model of, 454

nonmotor symptoms of, 349
3-NP toxin lesions, 433

N171-82Q mouse model of, 387
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progression of, 299
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psychotic symptoms, 313
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management of, 311
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sleep disturbance, 315
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transcriptional defects, 394
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model, 432
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limitations and complications, 489–491
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cerebellum, 351

hypothalamus, 349–350

substantia nigra, 350–351

thalamus, 349

CAG repeat instability, 328

genetic modifiers of, 328–329

CAG repeat length

disease onset and progression, 327
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effect of, 40
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Knock-down (KD) mouse model, 528, 557
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ON–OFF phenomenon, 54
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D2Rs transmission, 105
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LID, ERK signaling, 100
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immediate early gene expression, changes,
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PD/LID, Cav1.3 L-type Ca2+ channels,

105–106

regulatory GPCR signaling protein 9-2
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LID treatment, 162
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Long-term depression (LTD), 556
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Mammalian target of rapamycin complex 1
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administration of, 56
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MPTP-treated primates, 140

Multifocal dystonia, 512, 574

Mutant huntingtin (mHtt), 419

aggregation, 440
potential dynamics of, 378
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Neurodegenerative inherited diseases

with dystonia, 537
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Nonpharmacological therapeutics, 439

Nonprotein thiols (NPSH), 274

Noradrenaline, 74

Noradrenergic cells, 138

N171-82Q mice, 429

phenotype of, 429

N-terminal mHtt fragments, 382

Nuclear inclusion (NII), 376

Nuclear/mitochondrial DNA

oxidation of, 447

Nullizygous mutant mice, 325

O

Obsessive-compulsive symptomatology, 19

Obsessive-compulsive thoughts, 313

Oculomasticatory myorhythmia, 15

OFF dystonia, 31

Off-period dystonias, 9

Olanzapine, 44, 306, 313

Opioid receptors, 34

Oppenheim’s dystonia, 507, 511, 512, 523

Oral contraceptives, 192

Oral creatine administration, 450

Oral medications, 538

Orbicularis oculi, 513

Orofacial dyskinesia, 189

Oromandibular dystonia (OMD), 511, 515

Orthostatic tremor, 20

Oxidative-stress pathway-related enzymes, 244

Oxidative-stress-related genes, 245

Oxidative stress, role of, 450

Oxytocin neurons, 350

P

Palatal myoclonus, 14

Pallidothalamic pathway, 152
Paradoxical dystonia, 6

Parkinson Disease Dyskinesia Scale-26, 39

Parkinsonian phenotype, 306

Parkinsonian side effects, 306

haloperidol, 306

Parkinsonian symptoms, 153

Parkinsonian tremor, 155

Parkinson medication, 11

Parkinson Mobility Scale, 42

Parkinson’s disease, 53, 121, 288, 452, 580

cardinal symptoms of, 158

chronic treatment of, 57

dyskinesia, development of, 128

dystonic dyskinesias of, 576

L-dopa for, 149

levodopa-induced dyskinesias, 7–9, 11

LID, treatment, 123

management of, 29

modeling dyskinesia, 55

motor symptoms of, 172

stem cell therapy for, 180

Parkinson’s rest tremor, 20

PCR analysis, 428

PD. See Parkinson’s disease

Peak-dose dyskinesia, 8

Perioral movements, 265

Peripheral facial neurectomy, microvascular

decompression of, 576

Pharmacogenetic microarray-based test

(AmpliChip), 234

Pharmacological isomorphism, 264

Phonic stereotypies, 15

Phosphocreatine (PCr), 450

Physiotherapy, 305

Pituitary homeobox-3 (PITX3), 76

PKA/DARPP-32 signaling, 99

PolyQ-expanded huntingtin, 441

Poor metabolizers (PMs), 232

Posteroventral lesions, 156

Postural tremor, 20

Pregnenolone sulfate (PS), 271

Preimplantation genetic diagnosis (PGD), 298

Prenatal testing, 298

Preprotachykinin (PPT), 342

Primary torsion dystonia (PTD), 523

Progabide, 273

ProSavin restores motor function, 140

Prostaglandins (PGs), 275

Protein phosphatase-1 (PP-1), 99

Protein–protein interactions, 375
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dose-related SNPS, 215
catechol-O-methyltransferase (COMT), 216

CYP1A2, 216

CYP2A6, 216

dopamine 2 receptor (DRD2), 216–217

dopamine 3 receptor (DRD3), 217

manganese superoxide dismutase

(MnSOD), 217

mixed psychiatric populations, 220–223

non-therapeutic risk factors for, 214–215

persistence rates of, 214

prevalence rates, 213

risk factors, with pharmacogenetics, 215

schizophrenia, prevalence rates of, 211–212

TD, course of, 213–214

TD, with antipsychotics

chronic patients, 212–213

first episode, 212

incidence rates of, 212

mixed populations, 213

Psychogenic movement disorders (PMD), 191,

512

Q

Quercetin (QUR), 277

chronic administration, effect of, 278

Quetiapine, 44

serotonergic agents, 137

Quinolinic acid, 395, 421

Quinolinic acid lesions, chronic, 421

R

Radioimmunoassay (RIA), 342

Randomized Controlled Trials (RCTs), 43, 194

Rapid-onset dystonia-parkinsonism (RDP), 536

Ras-guanyl nucleotide releasing factor 1 (Ras-

GRF1), 100, 140

Rats

haloperidol-induced TD
proposed mechanisms, 267
Reactive oxygen species (ROS), 243

in neurons, 448

Regulator of G-protein signaling (RGS9) gene,

245

Regulatory GPCR signaling protein 9-2

(RGS9-2), 105
Reserpine-induced dyskinetic movements, 276

Respiratory dyskinesia, 190, 192

Respiratory dyskinesias, 10

R6/2 HD mice

mithramycin administration in, 446

Risperidone, 306

R6/1 mice, 428

R6/2 mice, 450

motor behavior, 456

RNA interference (RNAi), 552

RNA-silencing methods, 373

Rodent models, 556

Runner’s dystonia, 6

Rush Dyskinesia Rating Scale (RDRS), 12, 39

Rutin, 275

S

Safinamide, 45

ScansWithout Evidence of Dopaminergic Deficit

(SWEDDs), 512

Schizoaffective, 190

Schizophrenia, 220, 221, 223

biological origin of, 221

medications, 251

prevalence rates of, 211–212

spontaneous dyskinesia in, 221
biological basis of, 220

symptom of, 221

TD, discussion, 217–223

Schizophrenia Outpatient Health Outcomes

study, 15

Schizophrenia stereotypies, 190

Second-generation antipsychotics (SGAs), 187

Segawa disease, 5

Semi-voluntary movements, 2

Serotonergic neuron contamination, 177

Serotonin 2C receptor, 241

Serotonin inhibits dopamine function, 241

Severe DYT-1 generalized dystonia

patient image, 511

Severe tongue protrusion, 515

SGCE gene

bi-allelic expression of, 535

SGCE mutations, 535

Short interfering RNA (siRNA), 457

Silencing therapy, 373

Single nucleotide polymorphisms (SNPs), 33, 215,

330

Skin nodules, histological examination of, 41
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Spasmodic dysphonia, 511, 516
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Speech and language therapy (SALT), 314

Spinal myoclonus, 14

Spiny projection neurons, 424

Spontaneous dyskinesia, 220

Spontaneous mutant dystonic animals (SMDA),

558

Stabilized psychiatric disorders, 290

Stem cells, characterization, 495

Stereotypies, etiologies of, 15

STN. See Subthalamic nucleus

Striatal cell replacement, 496

Striatal degeneration, 497

Striatal interneurons, 346

Striatal lesions, 70, 492

animals, fronto-striatal impairment of, 485

brain, striatal grafts, feature of, 486

Striatal tissue graft, 458
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Structured clinical interview for DSM-IV

(SCID-I), 518
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Substantia nigra pars compacta (SNc), 94, 339

Substantia nigra pars reticulata (SNr), 339

Subthalamic nucleus, 40, 55, 150, 349

deep brain stimulation (DBS), 40, 161

lesioning, anti-dyskinetic effect of, 158
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stimulation, 577
efficacy of, 292
Subventricular zone (SVZ), 351

Sulpiride, 306

Superoxide dismutase (SOD), 243

Supplementary motor area (SMA), 153

Surface electromyographical studies, 9
Swallowing problems, 314

Sydenham’s chorea, 3, 4

Sydney multicenter study, 31

Symptomatic therapies, 439

Synaptic depotentiation (SD), 556

T

TaqIA polymorphism, 34

Tardive dyskinesia, 15, 185, 186, 218, 575
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animal model of, 265, 281

in antipsychotic naı̈ve patients, 218
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antipsychotic-naı̈ve populations, 186

with antipsychotics, 186–187, 214

chronic patients, 212–213

first episode, 212

incidence rates of, 212
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clinical features, 188

limb-truncal dyskinesia, 189

orofacial dyskinesia, 189

respiratory dyskinesia, 190

clinical practice, 199–202

clinical presentation and treatment, 185

CYP genes, 235

deep brain stimulation, efficacy of, 290, 291

differential diagnosis, 190–192

dopamine-and serotonin-related genes,

237–239

DRD2 polymorphisms for, 236

efficacy of lesioning surgery on, 289

epidemiology and risk factors for, 209

extrapyramidal syndrome, acute, 265

FK-506, 276

genetic factors, 231
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mechanism of, 292

homologous model of, 264
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of, 212

mouth movements of, 16

movement disorder, 210, 263

neuropathogenesis of, 264

neurotoxic hypothesis of, 198

oxidative stress–related genes, 246

pathophysiology of, 192

dopamine supersensitivity theory, 193–194

neurotoxicity hypothesis, 194–195
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change of medication, 201
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regular systematic screening for, 200
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problem solving, 187–188

risk factors for, 209

scales and measuring, 219–220

in schizophrenia, discussion, 209, 217–223

side effects of medications, 210

symptoms, 266

treatments of, 203–204

anticholinergic drugs, withdrawal of,

197–198

antioxidants, addition, 198
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of, 195–196
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botulinum toxin, 199

cholinergic medication, 197

clozapine, 196–197

deep brain stimulation, 199

SGA, switching to, 196–197

switching to clozapine, 196

tetrabenazine, 198–199

vs. spontaneous dyskinesia, 210–211

in psychiatry, 211–217

Tardive dyskinesia (TD), animal models

of, 263

characteristics, 265

chlorpromazine, 278–279

haloperidol, 266–276
adenosine reuptake inhibitors, 274–275

anti-inflammatory drugs, 275–276

calcium channel blockers:, 268–271

curcumin, 273–274

lazaroids (21-aminosteroids), 272

neurosteroids, 271–272

N-methyl-d-aspartate (NMDA) receptor

antagonists, 272–273

rutin, 275

serotoninergic modulators, 273

zolpidem, 274

isoniazid, 279–280

limitations of, 282

movement disorder, 263

neuropathogenesis of, 265

pathophysiology of, 264

primate model of, 280–284
reserpine, 276–278

GABAergic drugs, 278

melatonin, 276–277

quercetin, 277

valproic acid, 277–278

withania somnifera, 277

symptoms of, 265

Tardive dyskinesia (TD), genetics of, 229

adverse side effect, 230

BDNF, 247

copy-number variations (CNVs), 248–250

estrogen receptor, 245

genome-wide association approach, 247–248

G-protein signaling gene, 245–246

melatonin receptor genes (MTNR1A/

MTNR1B), 247

opioid receptor, 245

oxidative-stress-related genes, 243–245

pharmacodynamics, genes involvement
dopamine D2 receptor (DRD2) gene,

236–240

dopamine D3 receptor (DRD3) gene, 240

dopamine D4 receptor (DRD4) gene, 240

dopamine-related genes, 236

GABA-related genes, 242

glutamatergic genes, 243

serotonin 2A receptor gene (HTR2A), 241

serotonin 2C receptor (HTR2C), 242

serotonin-related genes, 241

serotonin-transporter-linked promoter

region, 242

pharmacokinetics, genes involvement

phase I enzymes (CYP family), 232–234

phase II enzymes, 234–235

as phenotype, 250–251

schematic presentation of, 231

Tardive dyskinesia (TD), surgery, 287

deep brain stimulation, 292–294

lesioning surgery, 288–289

TATA-binding protein, 389

mutant Htt causes transcriptional

dysregulation of, 449

TBP. See TATA-binding protein

TD. See Tardive dyskinesia

Tetrabenazine, 305, 439, 440, 539

dopamine receptor blocker, 198

monoamine depletor, 198

Tetrahydroisoxazolopyridine (THIP), 278

Thalamo-cortical pathway, hyperexcitability of,

561
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THAP1 mutations, 530

Tizanidine, 539

Tongue protrusions (TP), 265

Tonic tics, 17

Topiramate, 134

TOR1A gene, 532

TOR1A mutation, 526

Toronto Western Spasmodic Torticollis Rating

Scale (TWSTRS), 577, 580

GPi DBS, effect of, 581

TorsinA mutations, 527, 552

Tottering mouse model, 559

Tourette’s disease, 17, 19, 266

Transgenic mouse model, 528

Transient receptor potential vanilloid type-1

(TRPV1) receptors, 107

Tryptophan catabolic pathway, 395

Tumor necrosis factor-alpha, 267

Type 1 cannabinoid (CB1) receptors, 107

Type 5 metabotropic glutamate receptor

(mGluR5), 98

Tyrosine hydroxylase (TH), 534

expression, 350

protein, 350

U

Ubiquitin-proteosome system (UPS),

384, 441

disruption, 384

Ultrarapid metabolizers (UMs), 232

Unified Dyskinesia Rating Scale (UDysRS),

39, 60

Unified Huntington Disease Rating Scale

(UHDRS), 301, 451

motor scale, 488

motor score, 336

Unified Parkinson Disease Rating Scale

(UPDRS), 12, 59, 161

motor scores, 40, 43

Movement Disorder Society (MDS), 12

Unvoluntary movements. See Semi-voluntary

movements
V

Vacuous chewing movement (VCM), 243, 264,

265, 268–270, 282

in rats, melatonin effect, 277

Val–Met genotype, 216

Valproic acid, 277

Variable number of tandem repeat (VNTR)

polymorphisms, 240

Vasopressin neurons, 350

Ventrobasal thalamus, 349

Vesicular acetylcholine transporter (VAChT),

556

Vesicular monoamine transporter 2 (VMAT2),

108

VIM thalamotomy, 154

VOA/VOP complex, 155

W

Westphal variant, 418

Whipple disease, 15

Wilson’s disease, 191

Withania somnifera, 276

X

Xenografts overgrowth, 490

Y

YAC. See Yeast artificial chromosome

YAC72 mice expressing, 455

YAC128 primary neurones

NMDA stimulation, 380

Yeast artificial chromosome

mouse model, 432

transgenic mice, 420

Z

zif268 mRNA, 102

Zif268 promotes, 102

Zolpidem, 274
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David Školoud�ık and Uwe Walter

Transcranial Sonography—Anatomy

Heiko Huber

Part II: Transcranial Sonography in Parkinsons

Disease

Transcranial Sonography in Relation to SPECT

and MIBG

Yoshinori Kajimoto, Hideto Miwa and Tomoyoshi

Kondo

Diagnosis of Parkinson’s Disease—Transcranial

Sonography in Relation to MRI

Ludwig Niehaus and Kai Boelmans

Early Diagnosis of Parkinson’s Disease

Alexandra Gaenslen and Daniela Berg

Transcranial Sonography in the Premotor Diag-

nosis of Parkinson’s Disease

Stefanie Behnke, Ute Schroder and Daniela Berg

Pathophysiology of Transcranial Sonography

Signal Changes in the Human Substantia Nigra

K. L. Double, G. Todd and S. R. Duma
Transcranial Sonography for the Discrimination

of Idiopathic Parkinson’s Disease from the Aty-

pical Parkinsonian Syndromes

A. E. P. Bouwmans, A. M. M. Vlaar, K. Srulijes,

W. H. Mess AND W. E. J. Weber

Transcranial Sonography in the Discrimination

of Parkinson’s Disease Versus Vascular

Parkinsonism

Pablo Venegas-Francke

TCS inMonogenic Forms of Parkinson’s Disease

Kathrin Brockmann and Johann Hagenah

Part III—Transcranial Sonography in other

Movement Disorders and Depression

Transcranial Sonography in Brain Disorders

with Trace Metal Accumulation

Uwe Walter

Transcranial Sonography in Dystonia

Alexandra Gaenslen

Transcranial Sonography in Essential Tremor

Heike Stockner and Isabel Wurster

VII—Transcranial Sonography in Restless Legs

Syndrome

Jana Godau and Martin Sojer

Transcranial Sonography in Ataxia

Christos Krogias, Thomas Postert and Jens Eyding

Transcranial Sonography in Huntington’s Disease

Christos Krogias, Jens Eyding and Thomas Postert

Transcranial Sonography in Depression

Milija D. Mijajlovic

Part IV: Future Applications and Conclusion

Transcranial Sonography-Assisted Stereotaxy

and Follow-Up of Deep Brain Implants in

Patients with Movement Disorders

Uwe Walter

Conclusions

Daniela Berg

INDEX

Volume 91

The Role of microRNAs in Drug Addiction: A

Big Lesson from Tiny Molecules

Andrzej Zbigniew Pietrzykowski



CONTENTS OF RECENT VOLUMES 639
TheGenetics of Behavioral Alcohol Responses in

Drosophila

Aylin R. Rodan and Adrian Rothenfluh

Neural Plasticity, Human Genetics, and Risk for

Alcohol Dependence

Shirley Y. Hill

Using Expression Genetics to Study the Neuro-

biology of Ethanol and Alcoholism

Sean P. Farris, Aaron R. Wolen

and Michael F. Miles

Genetic Variation and Brain Gene Expression in

Rodent Models of Alcoholism: Implications for

Medication Development

Karl Bj€ork, Anita C. Hansson

and Wolfgang H. Sommer

Identifying Quantitative Trait Loci (QTLs) and

Genes (QTGs) for Alcohol-Related Phenotypes

in Mice

Lauren C. Milner and Kari J. Buck

Glutamate Plasticity in the Drunken Amygdala:

The Making of an Anxious Synapse

Brian A. Mccool, Daniel T. Christian,

Marvin R. Diaz and Anna K. L€ack

Ethanol Action on Dopaminergic Neurons in the

Ventral Tegmental Area: Interaction with Intrin-

sic Ion Channels and Neurotransmitter Inputs

Hitoshi Morikawa and Richard A. Morrisett

Alcohol and the Prefrontal Cortex

Kenneth Abernathy, L. Judson Chandler

and John J. Woodward

BK Channel and Alcohol, A Complicated Affair

Gilles Erwan Martin

A Review of Synaptic Plasticity at Purkinje

Neurons with a Focus on Ethanol-Induced

Cerebellar Dysfunction

C. Fernando Valenzuela, Britta Lindquist

and Paula A. Zflmudio-Bulcock

INDEX

Volume 92

The Development of the Science of Dreaming

Claude Gottesmann

Dreaming as Inspiration: Evidence from Religion,

Philosophy, Literature, and Film

Kelly Bulkeley
Developmental Perspective: Dreaming Across

the Lifespan and What This Tells Us

Melissa M. Burnham and Christian Conte

REM and NREM Sleep Mentation

Patrick Mcnamara, Patricia Johnson, Deirdre

McLaren, Erica Harris,Catherine Beauharnais and

Sanford Auerbach

Neuroimaging of Dreaming: State of the Art and

Limitations

Caroline Kuss�e, Vincenzo Muto, Laura Mascetti,

Luca Matarazzo, Ariane Foret, Anahita Shaffii-Le

Bourdiec and Pierre Maquet

Memory Consolidation, The Diurnal Rhythm of

Cortisol, and The Nature of Dreams: A New

Hypothesis

Jessica D. Payne

Characteristics and Contents of Dreams

Michael Schredl

Trait and Neurobiological Correlates of Individual

Differences in Dream Recall and Dream Content

Mark Blagrove and Edward F. Pace-Schott

Consciousness in Dreams

David Kahn and Tzivia Gover

The Underlying Emotion and the Dream: Rela-

ting Dream Imagery to the Dreamer’s Underly-

ing Emotion can Help Elucidate the Nature of

Dreaming

Ernest Hartmann

Dreaming, Handedness, and Sleep Architecture:

Interhemispheric Mechanisms

Stephen D. Christman and Ruth E. Propper

To What Extent Do Neurobiological Sleep-

Waking Processes Support Psychoanalysis?

Claude Gottesmann

The Use of Dreams in Modern Psychotherapy

Clara E. Hill and Sarah Knox

INDEX

Volume 93

Underlying Brain Mechanisms that Regulate

Sleep-Wakefulness Cycles

Irma Gvilia

Changes In EEG Pre and Post Awakening

Ursula Voss



640 CONTENTS OF RECENT VOLUMES
What Keeps Us Awake?—the Role of Clocks and

Hourglasses, Light, and Melatonin

Christian Cajochen, Sarah Chellappa and Christina

Schmidt

Suprachiasmatic Nucleus and Autonomic

Nervous System Influences on Awakening

From Sleep

Andries Kalsbeek, Chun-xia Yi, Susanne E. la Fleur,

Ruud m. Buijs, and Eric Fliers

Preparation for Awakening: Self-Awakening Vs.

Forced Awakening: Preparatory Changes in the

Pre-Awakening Period

Mitsuo Hayashi, Noriko Matsuura and

Hiroki Ikeda

Circadian and Sleep Episode Duration Influen-

ces on Cognitive Performance Following the

Process of Awakening

Robert L. Matchock

The Cortisol Awakening Response in Context

Angela Clow, Frank Hucklebridge and Lisa

Thorn

Causes and Correlates of Frequent Night Awa-

kenings in Early Childhood

Amy Jo Schwichtenberg and Beth Goodlin-Jones

Pathologies of Awakenings: The Clinical Problem

of Insomnia Considered From Multiple Theory

Levels

Douglas E. Moul

The Neurochemistry of Awakening: Findings

from Sleep Disorder Narcolepsy

Seiji Nishino and Yohei Sagawa

INDEX

Volume 94

5-HT6 Medicinal Chemistry

Kevin G. Liu and Albert J. Robichaud

Patents

Nicolas Vincent Ruiz and Gloria Oranias

5-HT6 Receptor Charactertization

Teresa Riccioni

5-HT6 Receptor Signal Transduction: Second

Messenger Systems

Xavier Codony, Javier Burgueño, Maria Javier

Ram�ırez and Jos�e Miguel Vela
Electrophysiology of 5-HT6 Receptors

Annalisa Tassone, Graziella Madeo, Giuseppe

Sciamanna, Antonio Pisani and Paola Bonsi

Genetic Variations and Association

Massimo Gennarelli and Annamaria Cattaneo

Pharmacokinetics of 5-HT6 Receptor Ligands

Angelo Mancinelli

INDEX

Volume 95

Introductory Remarks: Catechol-O-Methyltrans-

feraseInhibition–An Innovative Approach to

Enhance L-dopa Therapy in Parkinson’s Disease

with Dual Enzyme Inhibition

Erkki Nissinen

The Catechol-O-Methyltransferase Gene: its

Regulation and Polymorphisms

Elizabeth M. Tunbridge

Distribution and Functions of Catechol-O-

Methyltransferase Proteins: Do Recent Findings

Change the Picture?

Timo T. My€oh€anen and Pekka T. M€annist€o

Catechol-O-Methyltransferase Enzyme: Cofac-

tor S-Adenosyl-L-Methionine and Related

Mechanisms

Thomas M€uller

Biochemistry and Pharmacology of Catechol-

O-Methyltransferase Inhibitors

Erkki nissinen and Pekka T. M€annisto

The Chemistry of Catechol-O-Methyltransferase

Inhibitors

David A. Learmonth, L�aszló E. Kiss,
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