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Preface

In recent years methods for analyzing categorical data have matured considerably
in their development. There has been a tremendous increase in the publication
of research articles on this topic. Several books on categorical data analysis have
introduced the methods to audiences of nonstatisticians as well as to statisticians,
and the methods are now used frequently by researchers in areas as diverse as
sociology, public health, and wildlife ecology. Yet some types of methods are
still in the process of development, such as methods for clustered data, Bayesian
methods, and methods for sparse data sets with large numbers of variables.

What distinguishes this book from others on categorical data analysis is its
emphasis on methods for response variables having ordered categories, that is,
ordinal variables. Specialized models and descriptive measures are discussed that
use the information on ordering efficiently. These ordinal methods make possible
simpler description of the data and permit more powerful inferences about popula-
tion characteristics than do models for nominal variables that ignore the ordering
information.

This is the second edition of a book published originally in 1984. At that time
many statisticians were unfamiliar with the relatively new modeling methods for
categorical data analysis, so the early chapters of the first edition introduced gen-
eralized linear modeling topics such as logistic regression and loglinear models.
Since many books now provide this information, this second edition takes a differ-
ent approach, assuming that the reader already has some familiarity with the basic
methods of categorical data analysis. These methods include descriptive summaries
using odds ratios, inferential methods including chi-squared tests of the hypotheses
of independence and conditional independence, and logistic regression modeling,
such as presented in Chapters 1 to 6 of my books An Introduction to Categorical
Data Analysis (2nd ed., Wiley, 2007) and Categorical Data Analysis (2nd ed.,
Wiley, 2002).

On an ordinal scale, the technical level of this book is intended to fall between
that of the two books just mentioned. I intend the book to be accessible to a broad
audience, particularly professional statisticians and methodologists in areas such
as public health, the pharmaceutical industry, the social and behavioral sciences,
and business and government. Although there is some discussion of the underlying
theory, the main emphasis is on presenting various ordinal methodologies. Thus,
the book has more discussion of interpretation and application of the methods than

ix
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of the technical details. However, I also intend the book to be useful to specialists
who may want to become aware of recent research advances, to supplement the
background provided. For this purpose, the Notes section at the end of each chapter
provides supplementary technical comments and embellishments, with emphasis on
references to related research literature.

The text contains significant changes from and additions to the first edition, so
it seemed as if I were writing a new book! As mentioned, the basic introductions to
logistic regression and loglinear models have been removed. New material includes
chapters on marginal models and random effects models for clustered data (Chapters
9 and 10) and Bayesian methods (Chapter 11), coverage of additional models such
as the stereotype model, global odds ratio models, and generalizations of cumulative
logit models, coverage of order-restricted inference, and more detail throughout on
established methods.

Nearly all the methods presented can be implemented using standard statistical
software packages such as R and S-Plus, SAS, SPSS, and Stata. The use of soft-
ware for ordinal methods is discussed in the Appendix. The web site www.stat.ufl.
edu/~aa/cda/software.html gives further details about software for applying meth-
ods of categorical data analysis. The web site www.stat.ufl.edu/~aa/ordinal/ord.html
displays data sets not shown fully in the text (in the form of SAS programs),
several examples of the use of a R function (mph.fit) that can conduct many of
the nonstandard analyses in the text, and a list of known errata in the text.

The first edition was prepared mainly while I was visiting Imperial College, Lon-
don, on sabbatical leave in 1981-1982. I would like to thank all who commented
on the manuscript for that edition, especially Sir David Cox and Bent Jgrgensen.

For this edition, special thanks to Maria Kateri and Joseph Lang for reading a
complete draft and making helpful suggestions and critical comments. Maria Kateri
also very generously provided bibliographic checking and pointed out many rel-
evant articles that I did not know about. Thanks to Euijung Ryu for computing
help with a few examples, for help with improving a graphic and with my LaTeX
code, and for many helpful suggestions on the text and the Bibliography. Bhra-
mar Mukherjee very helpfully discussed Bayesian methods for ordinal data and
case—control methods and provided many suggestions about Chapter 11. Also, Ivy
Liu and Bernhard Klingenberg made helpful suggestions based on an early draft,
Arme Bathke suggested relevant research on rank-based methods, Edgar Brunner
provided several helpful comments about rank-based methods and elegant ways of
constructing statistics, and Carla Rampichini suggested relevant research on ordi-
nal multilevel models. Thanks to Stu Lipsitz for data for Example 9.2.3 and to
John Williamson and Kyungmann Kim for data for Example 9.1.3. Thanks to Beka
Steorts for WinBUGS help, Cyrus Mehta for the use of StatXact, Jill Rietema for
arranging for the use of SPSS, and Oliver Schabenberger for arranging for the use
of SAS. I would like to thank co-authors of mine on various articles for permission
to use materials from those articles. Finally, thanks as always to my wife, Jacki
Levine, for her unwavering support during the writing of this book.
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statisticians around the world. It is to them that I would like to dedicate this book.

ALAN AGRESTI
Gainesville, Florida and Brookline, Massachusetts
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CHAPTER 1

Introduction

1.1 ORDINAL CATEGORICAL SCALES

Until the early 1960s, statistical methods for the analysis of categorical data were
at a relatively primitive stage of development. Since then, methods have been
developed more fully, and the field of categorical data analysis is now quite mature.
Since about 1980 there has been increasing emphasis on having data analyses
distinguish between ordered and unordered scales for the categories. A variable
with an ordered categorical scale is called ordinal. In this book we summarize
the primary methods that can be used, and usually should be used, when response
variables are ordinal.

Examples of ordinal variables and their ordered categorical scales (in paren-
theses) are opinion about government spending on the environment (too high,
about right, too low), educational attainment (grammar school, high school, col-
lege, postgraduate), diagnostic rating based on a mammogram to detect breast
cancer (definitely normal, probably normal, equivocal, probably abnormal, defi-
nitely abnormal), and quality of life in terms of the frequency of going out to have
fun (never, rarely, occasionally, often). A variable with an unordered categorical
scale is called nominal. Examples of nominal variables are religious affiliation
(Protestant, Catholic, Jewish, Muslim, other), marital status (married, divorced,
widowed, never married), favorite type of music (classical, folk, jazz, rock, other),
and preferred place to shop (downtown, Internet, suburban mall). Distinct levels of
such variables differ in quality, not in quantity. Therefore, the listing order of the
categories of a nominal variable should not affect the statistical analysis.

Ordinal scales are pervasive in the social sciences for measuring attitudes and
opinions. For example, each subject could be asked to respond to a statement
such as “Same-sex marriage should be legal” using categories such as (strongly
disagree, disagree, undecided, agree, strongly agree) or (oppose strongly, oppose

Analysis of Ordinal Categorical Data, Second Edition, By Alan Agresti
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2 INTRODUCTION

mildly, neutral, favor mildly, favor strongly). Such a scale with a neutral middle
category is often called a Likert scale. Ordinal scales also occur commonly in
medical and public health disciplines: for example, for variables describing pain
(none, mild, discomforting, distressing, intense, excruciating), severity of an injury
in an automobile crash (uninjured, mild injury, moderate injury, severe injury,
death), illness after a period of treatment (much worse, a bit worse, the same, a
bit better, much better), stages of a disease (I, II, III), and degree of exposure
to a harmful substance, such as measuring cigarette smoking with the categories
(nonsmoker, <1 pack a day, >1 pack a day) or measuring alcohol consumption
of college students with the scale (abstainer, non-binge drinker, occasional binge
drinker, frequent binge drinker). In all fields, ordinal scales result when inherently
continuous variables are measured or summarized by researchers by collapsing the
possible values into a set of categories. Examples are age measured in years (020,
21-40, 41-60, 61-80, above 80), body mass index (BMI) measured as (<18.5,
18.5-24.9, 25-29.9, >30) for (underweight, normal weight, overweight, obese),
and systolic blood pressure measured as (<120, 120-139, 140-159, >160) for
(normal, prehypertension, stage 1 hypertension, stage 2 hypertension).

Often, for each observation the choice of a category is subjective, such as in a
subject’s report of pain or in a physician’s evaluation regarding a patient’s stage
of a disease. (An early example of such subjectivity was U.S. President Thomas
Jefferson’s suggestion during his second term that newspaper articles could be
classified as truths, probabilities, possibilities, or lies.) To lessen the subjectivity, it
is helpful to provide guidance about what the categories represent. For example, the
College Alcohol Study conducted at the Harvard School of Public Health defines
“binge drinking” to mean at least five drinks for a man or four drinks for a woman
within a two-hour period (corresponding to a blood alcohol concentration of about
0.08%); “occasional binge drinking” is defined as binge drinking once or twice in
the past two weeks; and “frequent binge drinking” is binge drinking at least three
times in the past two weeks.

For ordinal scales, unlike interval scales, there is a clear ordering of the levels,
but the absolute distances among them are unknown. Pain measured with categories
(none, mild, discomforting, distressing, intense, excruciating) is ordinal, because a
person who chooses “mild” feels more pain than if he or she chose “none,” but
no numerical measure is given of the difference between those levels. An ordinal
variable is quantitative, however, in the sense that each level on its scale refers
to a greater or smaller magnitude of a certain characteristic than another level.
Such variables are of quite a different nature than qualitative variables, which are
measured on a nominal scale and have categories that do not relate to different
magnitudes of a characteristic.

1.2 ADVANTAGES OF USING ORDINAL METHODS

Many well-known statistical methods for categorical data treat all response vari-
ables as nominal. That is, the results are invariant to permutations of the categories
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of those variables, so they do not utilize the ordering if there is one. Examples are
the Pearson chi-squared test of independence and multinomial response modeling
using baseline-category logits. Test statistics and P-values take the same values
regardless of the order in which categories are listed. Some researchers routinely
apply such methods to nominal and ordinal variables alike because they are both
categorical.

Recognizing the discrete nature of categorical data is useful for formulating
sampling models, such as in assuming that the response variable has a multinomial
distribution rather than a normal distribution. However, the distinction regarding
whether data are continuous or discrete is often less crucial to substantive con-
clusions than whether the data are qualitative (nominal) or quantitative (ordinal or
interval). Since ordinal variables are inherently quantitative, many of their descrip-
tive measures are more like those for interval variables than those for nominal
variables. The models and measures of association for ordinal data presented in
this book bear many resemblances to those for continuous variables.

A major theme of this book is how to analyze ordinal data by utilizing their
quantitative nature. Several examples show that the type of ordinal method used is
not that crucial, in the sense that we obtain similar substantive results with ordinal
logistic regression models, loglinear models, models with other types of response
functions, or measures of association and nonparametric procedures. These results
may be quite different, however, from those obtained using methods that treat all
the variables as nominal.

Many advantages can be gained from treating an ordered categorical variable as
ordinal rather than nominal. They include:

¢ Ordinal data description can use measures that are similar to those used in
ordinary regression and analysis of variance for quantitative variables, such
as correlations, slopes, and means.

¢ Ordinal analyses can use a greater variety of models, and those models are
more parsimonious and have simpler interpretations than the standard models
for nominal variables, such as baseline-category logit models.

» Ordinal methods have greater power for detecting relevant trend or location
alternatives to the null hypothesis of “no effect” of an explanatory variable
on the response variable.

o Interesting ordinal models apply in settings for which standard nominal models
are trivial or else have too many parameters to be tested for goodness of fit.

An ordinal analysis can give quite different and much more powerful results than
an analysis that ignores the ordinality. For a preview of this, consider Table 1.1, with
artificial counts in a contingency table designed to show somewhat of a trend from
the top left corner to the bottom right corner. For two-way contingency tables, the
first analysis many methodologists apply is the chi-squared test of independence.
The Pearson statistic equals 10.6 with df = 9, yielding an unimpressive P-value of
0.30. By contrast, various possible ordinal analyses for testing this hypothesis have
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TABLE 1.1. Data Set for Which Ordinal Analyses Give Very Different Results from
Unordered Categorical Analyses

Column 1 Column 2 Column 3 Column 4
Row 1 8 6 4 2
Row 2 6 8 6 4
Row 3 4 6 8 6
Row 4 2 4 6 8

chi-squared statistics on the order of 9 or 10, but with df = 1, and have P-values
on the order of 0.002 and 0.001.

1.3 ORDINAL MODELING VERSUS ORDINARY REGESSION
ANALYSIS

There are two relatively extreme ways to analyze ordered categorical response
variables. One way, still common in practice, ignores the categorical nature of the
response variable and uses standard parametric methods for continuous response
variables. This approach assigns numerical scores to the ordered categories and then
uses ordinary least squares (OLS) methods such as linear regression and analysis
of variance (ANOVA). The second way restricts analyses solely to methods that
use only the ordering information about the categories. Examples of this approach
are nonparametric methods based on ranks and models for cumulative response
probabilities.

1.3.1 Latent Variable Models for Ordinal Data

Many other methods fall between the two extremes described above, using ordinal
information but having some parametric structure as well. For example, often it
is natural to assume that an unobserved continuous variable underlies the ordinal
response variable. Such a variable is called a latent variable.

In a study of political ideology, for example, one survey might use the categories
liberal, moderate, and conservative, whereas another might use very liberal, slightly
liberal, moderate, slightly conservative, and very conservative or an even finer
categorization. We could regard such scales as categorizations of an inherently
continuous scale that we are unable to observe. Then, rather than assigning scores
to the categories and using ordinary regression, it is often more sensible to base
description and inference on parametric models for the latent variable. In fact, we
present connections between this approach and a popular modeling approach that
has strict ordinal treatment of the response variable: In Chapters 3 and 5 we show
that a logistic model and a probit model for cumulative probabilities of an ordinal
response variable can be motivated by a latent variable model for an underlying
quantitative response variable that has a parametric distribution such as the normal.
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1.3.2 Using OLS Regression with an Ordinal Response Variable

In this book we do present methods that use only the ordering information. It
is often attractive to begin a statistical analysis by making as few assumptions
as possible, and a strictly ordinal approach does this. However, in this book we
also present methods that have some parametric structure or that require assigning
scores to categories. We believe that strict adherence to operations that utilize
only the ordering in ordinal scales limits the scope of useful methodology too
severely. For example, to utilize the ordering of categories of an ordinal explanatory
variable, nearly all models assign scores to the categories and regard the variable
as quantitative—the alternative being to ignore the ordering and treat the variable
as nominal, with indicator variables. Therefore, we do not take a rigid view about
permissible methodology for ordinal variables.

That being said, we recommend against the simplistic approach of posing linear
regression models for ordinal response scores and fitting them using OLS methods.
Although that approach can be useful for identifying variables that clearly affect
a response variable, and for simple descriptions, limitations occur. First, there is
usually not a clear-cut choice for the scores. Second, a particular response outcome
is likely to be consistent with a range of values for some underlying latent variable,
and an ordinary regression analysis does not allow for the measurement error that
results from replacing such a range by a single numerical value. Third, unlike the
methods presented in this book, that approach does not yield estimated probabilities
for the response categories at fixed settings of the explanatory variables. Fourth, that
approach can yield predicted values above the highest category score or below the
lowest. Fifth, that approach ignores the fact that the variability of the responses is
naturally nonconstant for categorical data: For an ordinal response variable, there is
little variability at predictor values for which observations fall mainly in the highest
category (or mainly in the lowest category), but there is considerable variability at
predictor values for which observations tend to be spread among the categories.

Related to the second, fourth, and fifth limitations, the ordinary regression
approach does not account for “ceiling effects” and “floor effects,” which occur
because of the upper and lower limits for the ordinal response variable. Such effects
can cause ordinary regression modeling to give misleading results. These effects
also result in substantial correlation between values of residuals and values of
quantitative explanatory variables.

1.3.3 Example: Floor Effect Causes Misleading OLS Regression

How can ordinary regression give misleading results when used with ordered cat-
egorical response variables? To illustrate, we apply the standard linear regression
model to simulated data with an ordered categorical response variable y based on an
underlying continuous latent variable y*. The explanatory variables are a continuous
variable x and a binary variable z. The data set of 100 observations was generated as
follows: The x values were independently uniformly generated between 0 and 100,
and the z values were independently generated with P(z = 0) = P(z = 1) = 0.50.
At a given x, the latent response outcome y* was generated according to a normal
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distribution with mean
E(y*) = 20.0 + 0.6x — 40.0z

and standard deviation 10. The first scatterplot in Figure 1.1 shows the 100 obser-
vations on y* and x, each data point labeled by the category for z. The plot also
shows the OLS fit that estimates this model.

We then categorized the 100 generated values on y* into five categories to create
observations for an ordinal variable y, as follows:

y=1if y* <20, y=2if20 < y* <40, y=3if40 < y* <60,
y=4if 60 < y* <80, y=5if y*>80.

The second scatterplot in Figure 1.1 shows 100 observations on y and x. At low
x levels, there is a floor effect for the observations with z = 1. When x < 50 with
z =1, there is a very high probability that observations fall in the lowest category
of y.

Using OLS with scores 1, 2, 3, 4, and 5 for the categories of y suggests either (a)
a model with an interaction term, allowing different slopes relating E(y) to x when

0z=0 [¢) 5 0 00
go- Uz=1 o

1111111

T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
X X

Figure 1.1. Ordered categorical data (in second panel) for which ordinary regression suggests interac-
tion, because of a floor effect, but ordinal modeling does not. The data were generated (in first panel)
from a normal main-effects regression model with continuous (x) and binary (z) explanatory variables.
When the continuous response y* is categorized and y is measured as (1, 2, 3, 4, 5), the observations
labeled “1” for the category of z have a linear x effect with only half the slope of the observations
labeled “0” for the category of z.
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z =0 and when z = 1, or (b) a model with a quadratic effect of x on E(y) when
z = 1. The second scatterplot in Figure 1.1 shows the fit of the linear interaction
model, that is, using OLS to fit the model E(y) = a + Bi1x + Bz + B3(x x 2) to
the ordered categorical response. The slope of the line is about twice as high when
z =0 as when z = 1. This interaction effect is caused by the observations when
z =1 tending to fall in category y = 1 whenever x takes a relatively low value.
As x gets lower, the underlying value y* can continue to tend to get lower, but the
observed ordinal response cannot fall below 1.

Standard ordinal models such as those introduced in Chapters 3 to S fit the data
well without the need for an interaction term. Such models can be motivated by
a latent variable model. They allow for underlying values of y* when z =1 to be
below those when z = 0, even if x is so low that y is very likely to be in the first
category at both levels of z. (The data in Figure 1.1 are revisited with such a model
in Exercise 5.2.)

Hastie et al. (1989) showed a real-data example of the type we presented here
with simulated data. They described a study of women in South Africa that modeled
an ordinal measurement y of osteoporosis in terms of x = age and an indicator
variable z for whether the woman had osteoarthritis. At low age levels, a high
proportion of women clustered in the lowest category of osteoporosis, regardless
of osteoarthritis status. Using OLS, for each osteoarthritis group the line relating
age to the predicted osteoporosis score took value at the lowest ordinal level near
a relatively low age level, but the line for the group positive for osteoarthritis had
a significantly greater slope as age increased. In fact, there was also a significant
quadratic effect for that group. When the authors used an ordinal model instead,
they found no evidence of interaction. For other such examples, see McKelvey and
Zavoina (1975, Sec. 4) and Winship and Mare (1984).

1.3.4 Ordinal Methods with Truly Quantitative Data

Even when the response variable is interval scale rather than ordered categorical,
ordinal models can still be useful. One such case occurs when the response outcome
is a count but when standard sampling models for counts, such as the Poisson,
do not apply. For example, each year the British Social Attitudes Survey asks a
sample of people their opinions on a wide range of issues. In several years the
survey asked whether abortion should be legal in each of seven situations, such
as when a woman is pregnant as a result of rape. The number of cases to which
a person responds “yes” is a summary measure of support for legalized abortion.
This response variable takes values between 0 and 7. It is inappropriate to treat
it as a binomial variate because the separate situations would not have the same
probability of a “yes” response or have independent responses. It is inappropriate
to treat it as a Poisson or negative binomial variate, because there is an upper
bound for the possible outcome, and at some settings of explanatory variables
most observations could cluster at the upper limit of 7. Methods for ordinal data
are valid, treating each observation as a single multinomial trial with eight ordered
categories.
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For historical purposes it is interesting to read the extensive literature of about
40 years ago, much of it in the social sciences, regarding whether it is permissible
to assign scores to ordered categories and use ordinary regression methods. See, for
example, Borgatta (1968), Labovitz (1970), and Kim (1975) for arguments in favor
and Hawkes (1971), Mayer (1971), and Mayer and Robinson (1978) for arguments
against.

1.4 ORGANIZATION OF THIS BOOK

The primary methodological emphasis in this book is on models that describe
associations and interactions and provide a framework for making inferences. In
Chapter 2 we introduce ordinal odds ratios that are natural parameters for describing
most of these models. In Chapter 3 we introduce the book’s main focus, presenting
logistic regression models for the cumulative probabilities of an ordinal response.
In Chapter 4 we summarize other types of models that apply a logit link function
to ordinal response variables, and in Chapter 5 we present other types of link
functions for such models.

The remainder of the book deals with multivariate ordinal responses. In
Chapter 6 we present loglinear and other models for describing association
and interaction structure among a set of ordinal response variables, and in
Chapter 7 present bivariate ordinal measures of association that summarize the
entire structure by a single number. The following three chapters deal with mul-
tivariate ordinal responses in which each response has the same categories, such
as happens in longitudinal studies and other studies with repeated measurement.
This topic begins in Chapter 8 with methods for square contingency tables having
ordered rows and the same ordered columns and considers applications in which
such tables arise. Chapters 9 and 10 extend this to an analysis of more general
forms of correlated, clustered ordinal responses. Primary attention focuses on
models for the marginal components of a multivariate response and on models
with random effects for the clusters.

In Chapters 2 to 10 we take a frequentist approach to statistical inference, focus-
ing on methods that use only the likelihood function. In the final chapter we show
ways of implementing Bayesian methods with ordinal response variables, combin-
ing prior information about the parameters with the likelihood function to obtain a
posterior distribution of the parameters for inference. The book concludes with an
overview of software for the analysis of ordered categorical data, emphasizing R
and SAS.

For other surveys of methods for ordinal data, see Hildebrand et al. (1977),
Agresti (1983a, 1999), Winship and Mare (1984), Armstrong and Sloan (1989),
Barnhart and Sampson (1994), Clogg and Shihadeh (1994), Ishii-Kuntz (1994),
Ananth and Kleinbaum (1997), Scott et al. (1997), Johnson and Albert (1999), Ben-
der and Benner (2000), Guisan and Harrell (2000), Agresti and Natarajan (2001),
Borooah (2002), Cliff and Keats (2002), Lall et al. (2002), Liu and Agresti (2005),
and O’Connell (2006).



CHAPTER 2

Ordinal Probabilities, Scores,
and Odds Ratios

In this chapter we introduce ways of using odds ratios and other summary measures
to describe the association between two ordinal categorical variables. The measures
apply to sample data or to a population. We also present confidence intervals for
these measures. First, though, we introduce some probabilities and scores that are
a basis of ways of describing marginal and conditional distributions of ordinal
response variables.

2.1 PROBABILITIES AND SCORES FOR AN ORDERED
CATEGORICAL SCALE

For an ordinal response variable Y, let ¢ denote the number of categories. For n
observations in a sample, ny, ny, ..., n. denote the frequencies in the categories,
with n =} . n;, and {p; = n;/n} denote the sample proportions.

For an observation randomly selected from the corresponding population, let 7
denote the probability of response in category j. Some measures and some models
utilize the cumulative probabilities

Fj:P(YSj):ﬂl-i-----{-ﬂj, j=1,2,...,C.
These reflect the ordering of the categories, with
O<Fi<F<---<F,=1.

2.1.1 Types of Scores for Ordered Categories

How can summary measures utilize the ordinal nature of the categorical scale?
One simple way uses the cumulative probabilities to identify the median response:

Analysis of Ordinal Categorical Data, Second Edition, By Alan Agresti
Copyright © 2010 John Wiley & Sons, Inc.
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namely, the minimum j such that F; > 0.50. With a categorical response, an
unappealing aspect of this measure for making comparisons of groups is its dis-
continuous nature: Changing a tiny bit of probability can have the effect of moving
the median from one category to the next. Also, two groups can have the same
median even when an underlying latent variable has distribution shifted upward for
one group relative to the other.

Alternatively, we could assign ordered scores

V) <V < e <V

to the categories and summarize the observations with ordinary measures for quan-
titative data such as the mean. Doing this treats the ordinal scale as an interval
scale. There is no unique way to select scores, and the key aspect is the choice
for the relative distances between pairs of adjacent categories. For example, with
¢ = 3, comparisons of means for two groups using the scores (1, 2, 3) yields the
same substantive conclusions as using the scores (0, 5, 10) or any set of linearly
transformed scores but possibly different conclusions from using scores such as
(1, 2, 5) or (0, 3, 10). Often, an appropriate choice of scores is unclear. In that case
it is advisable to perform a sensitivity analysis: Choose scores in a few sensible
ways that are not linear translations, and check whether conclusions for the method
that uses those scores depend on the choice.

An alternative approach to selecting scores uses the data themselves to determine
the scores. One such set uses the average cumulative proportions for the ordinal
response variable. For sample proportions {p,}, the average cumulative proportion
in category j is

j—1
1 .
aj=E pk+§pj, ji=12,...,c
k=1

that is, the proportion of subjects below category j plus half the proportion in
category j. In terms of the sample cumulative proportions F; = p; +--- 4+ pj,

ﬁj—]+ﬁj
4G ="

with 13‘0 = 0. Bross (1958) introduced the term ridits for the average cumulative
proportion scores.

The ridits have the same ordering as the categories, a; < a; < --- < a,.. Their
weighted average with respect to the sample distribution satisfies

c c j—1
ijaj = ZP/‘(ZPk + %Pj)
j=1 k=1

j=1

2

2
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The ridits are linearly related to the midranks, which are the averages of the ranks
that would be assigned if the observations in a category could be ranked without
ties. The midrank r; for category 1 is the average of the ranks 1, ..., n; that pertain
to the n; observations in category 1, so ry = (1 4 r;)/2. The midrank for category
21is ry = [(n; + 1) 4+ (n) + n3)]/2. Generally, the midrank for category j is

[(Z{;ll ”i) + 1] + Z{:l n;
> .

Whereas midrank scores fall between 1 and n, ridit scores fall between O and 1.
The linear relationship between them is

rj=

rj—0.5

ri=na;+0.35, aj = -

Ridit and midrank scores take directly into account the way the response is catego-
rized. For example, if two adjacent categories are combined, the ridit (or midrank)
score for the new category falls between the original two scores, with the other
scores being unaffected. If the category ordering is reversed, the ridit score for
category j transforms from a; to | —a;.

Another way to form data-dependent scores assumes a particular distribution for
an unobserved continuous latent variable assumed to underlie Y. This approach
regards the ordinal scale as representing a partition of intervals of values of the
latent variable. For example, suppose that we assume an underlying standard normal
distribution, with cumulative distribution function . Then we could use some
variation of normal scores as applied in some nonparametric statistical methods.
For example, we could let v; be the mean of the truncated normal distribution
falling between —co and ®~!(p,) [where ®~!(p;) denotes the standard-normal
score for which the cumulative probability below it equals p], let v; be the mean
of the truncated normal distribution falling between ®~'(p;) and ®~!(p; + p2),
and so on, up to v, which is the mean of the truncated normal distribution falling
between ®~!(p; + --- + p.—;) and co. More simply, we could let v; = ®~'(a;)
where a; is the ridit score in category j. A very similar score based on the midranks
{riYisv; =& [r;/(n + D].

We used scores in this section to summarize ordinal data, but it is not necessary
to do so. In this chapter we learn about other methods that do not require assigning
scores, and this is also true of most models for ordinal response variables presented
in later chapters.

2.1.2 [Example: Belief in Heaven

Every other year, the National Opinion Research Center at the University of
Chicago conducts the General Social Survey (GSS). This survey of adult Ameri-
cans provides data about the opinions and behaviors of the American public. It is
simple to download results from the surveys.! In this book we use several data sets
from the GSS to illustrate methods.

YThis can currently be done at sda.berkeley.edu/GSS.
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TABLE 2.1. Responses About Belief in Heaven

Does Heaven Exist?
Definitely Probably Probably Not Definitely Not Total

Count 1546 498 205 138 2387
Proportion 0.648 0.209 0.086 0.058 1.0
Ridit score 0.324 0.752 0.899 0.971

Source: General Social Survey.

Table 2.1 shows results of 2387 responses from the GSS to a question about
whether heaven exists. The ridit scores for the counts in this ordinal categorical
scale are

1\ 1546 1546 (1) 498
— (=) 22 o3, =22 () = —07s,
@ (2) 2387 2=t (2) 2387

_Is46+498 (1) 205 _ oo
B= T3g7 2) 2387
1546 + 498 +205 (1) 138
U= %7 (z) g7 = 00T

The ridit scores of 0.90 for “probably not” and 0.97 for “definitely not” are
relatively close. Whenever two adjacent categories both have relatively small pro-
portions, this necessarily happens.

The normal scores based on ridits, v; = d>‘1(aj), are (—0.457, 0.681, 1.277,
1.897), where, for example, ®(—0.457) = a; = 0.32 is the probability that a stan-
dard normal variable falls below —0.457. The very similar normal scores based
on midranks, v; = d>—1[rj/(n + 1], are (—0.457, 0.680, 1.276, 1.894), where, for
example, ®(—0.457) = [(1 + 1546)/2]/2388 = 0.324.

This example illustrates that ridit scores or scores based on them, such as normal
scores, need not represent an underlying scale realistically. For the ridit scores (0.32,
0.75, 0.90, 0.97) for (definitely, probably, probably not, definitely not), the score
of 0.75 for “probably” is closer to the score of 0.97 for “definitely not” than it is to
the score of 0.32 for “definitely.” Yet we would not be likely to regard “probably”
and “definitely not” as closer together than “probably” and “definitely.” Similarly,
note that the normal scores treat “definitely” and “probably” as being nearly twice
as far apart as “probably” and “probably not” or “probably not” and “definitely
not.”

For descriptive summaries of this ordinal scale, such as comparing mean
responses for different groups, it is often more sensible to use fixed scores
instead of ridit scores or normal scores. The scores (1, 2, 3, 4) would treat
(definitely, probably, probably not, definitely not) as equidistant for pairs of
adjacent categories. Scores such as (0, 1, 4, 5) would treat the distance between
“probably” and “probably not” as greater than the distance between “definitely”
and “probably” and the distance between “probably not” and “definitely not.”



PROBABILITIES AND SCORES FOR AN ORDERED CATEGORICAL SCALE 13

2.1.3 Two-Way Contingency Tables with an Ordinal Response

In practice, observations on ordinal response variables are usually accompanied by
observations on explanatory variables and are sometimes accompanied by obser-
vations on other response variables. When the other variables are categorical, a
contingency table can display the frequencies of observations for the various com-
binations of levels of the variables. Each cell in the contingency table shows the
number of observations that have that combination. In this chapter we consider
primarily the case of two categorical variables. We denote the second variable by
X if it is another response variable and by x if it is an explanatory variable. We
let r denote the number of rows and let ¢ denote the number of columns in the
contingency table. Let n;; denote the number of observations in the cell of the table
in row i and column j.

For a two-way cross-classification of an ordinal response variable ¥ with
another categorical response variable X, let {p;;} denote the cell proportions for
the possible values of (X, Y). That is, p;; = n;;/n, where n is the total sample
size. Then }_; 3, pij = 1, and {p;;} is the sample joins distribution. The sample
marginal distributions are the row totals and column totals obtained by summing
the joint proportions. We denote marginal proportions by p;.. for row i and p, ; for
column j. Note that py; =3, pij = 3, nij/nand 3, pyj = 1.

Although the second variable could also be a response variable, more commonly
it is an explanatory variable. Then conditional distributions for the response vari-
able are usually more relevant than joint distributions. We let the columns refer to
the ordinal response variable ¥ and the rows refer to the explanatory variable x.
For the observations in row i, we denote the proportion in category j of Y by pjj;.
Hence, pj; = n;j/n;y, where n;, is the total count in row i and Zj pji =1 for
each i. The values (pyi, paji, . . -, Peji) form a sample conditional distribution. Dif-
ferent levels of x can be compared with respect to the proportions of observations
in the various categories of Y. The sample conditional cumulative proportions,

A

Fji=pyi+---+ pjji» j=12,...,¢c,

specify the proportion of observations classified in one of the first j columns, given
classification in row i.

2.14 Probabilistic Comparisons of Two Ordinal Distributions

Now consider the special case of a 2 x ¢ table, for comparing two groups on an
ordinal response variable Y. Let ¥; and Y, denote the column numbers of the
response variable for subjects selected at random from rows 1 and 2, independent
of each other. A measure that summarizes their relative size is

a=PY1>Y)+3iP(Y1=Y) 2.1

(Kruskal 1957; Klotz 1966). If ¥, and Y, are identically distributed or if they
have symmetric distributions over all ¢ categories, then @ = 0.50. When « > 0.50
(< 0.50), outcomes of Y; tend to be larger (smaller) than outcomes of Y,.
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A related measure that has null value equal to O rather than 0.50 is
A=PY,>Y) - P(Ih>Y)). (2.2)
The measures @ and A are functionally related,

A+1
a=T+, A=2a-1,

with « having range [0, 1] and A having range [—1, 1]. We refer to them as mea-
sures of stochastic superiority, a term introduced by Vargha and Delaney (1998).
In Chapter 7 we present related measures for r x ¢ tables.

With sample data we can estimate « from the conditional distributions by

&= pinp+3Y; pPinpin

J>k

The sample version of A is

A= Zijqu[z - ZZPj!lPkIZ'
j>k i<k

Another useful comparison of P(Y; > Y,) and P(Y, >Y;) is

_P(1>1))
T P(h>1y)

Its sample value is

2.2 >k PilPu2 _ 2>k Mm%

6 = = .
ZZ;« Pjl1 P2 ZZ,‘«”U”Zk

When ¢ = 2, 6 is an odds ratio. For ¢ >2, § is a generalized odds ratio for ordinal
responses (Agresti 1980), which we refer to as an ordinal odds ratio for comparing
two groups. In Section 2.2 we introduce other ways of forming odds ratios for
ordinal responses.

The ordinal odds ratio 6 differs slightly from

@«  PHi>N)+3PYi=1)
l—a  Ph>Y)+iPY =1)

which approximates P (Y] > Y;)/P(Y, > Y;) for an underlying continuous scale.
The measure a/(1 — &) is closer to 1.0 than is 6. Similarly, usually P(Y; > Y3)/
P(Y, > Y1) for the underlying continuous scale is closer to 1.0 than € is for the
observed ordinal scale. This is because observations that are tied on the observed
ordinal scale usually have similar relative frequencies of the two orders for the
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underlying scale. By contrast, we can interpret « or A either for the observed scale
or an underlying continuous scale. For example, suppose that A = 0.40. Then,
in comparisons of the groups with independent observations for the underlying
continuum, we expect a higher response for group 1 about 70% of the time and a
higher response for group 2 about 30% of the time, since 0.70 — 0.30 = 0.40 and
0.70+0.30 = 1.0.

2.1.5 Maeans of Conditional Distributions in Two-Way Tables

Next we consider r x ¢ tables. With ordered scores {v;} for the categories of Y,
in each row we can use the sample conditional distribution to find a sample mean
response. In row i this is

c
Vi = vaﬂi-
i=1

When x is ordinal, we often expect a trend (upward or downward) in {y;} across
the rows.

Alternatively, we could find the means using data-generated scores. For example,
we could use ridit scores for Y calculated from the proportions in its marginal
distribution. For outcome category j,

j-t
a,-=2p+k+%p+j, ji=12,...,c
k=1

The mean ridit for the sample conditional distribution in row i is
[
A=) a;pji.
j=1

The weighted average of the mean ridits satisfies

,
> pirAi =0.50.

i=1

When the data in the full sample are ranked, using midranks {r;}, the mean rank
for the sample conditional distribution in row i is

c
Ri=7) ripju.
j=

Their weighted average over the r rows is (n + 1)/2. The mean ridits and mean
ranks are related by

- R; —0.50
A —_—

i =

n
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Bross (1958) argued that an advantage of ridit scoring is their lack of sensitivity
to the way the ordinal response variable is categorized (e.g., with different numbers
of categories). Two researchers who categorize an ordinal response in different
ways for a particular sample would, nevertheless, obtain similar mean ridits for
the rows.

2.1.6 Mean Ridits and Mean Ranks Relate to Stochastic Superiority
Measures

For 2 x ¢ tables, the sample values of the stochastic superiority measures o =
P(Yy>Y) + %P(Y| = Y;) and A = P(Y; > Y3) — P(Y, > Y}) relate to the mean
ridit scores in the two rows by?

&=(A —A+050) and A =2(A, — Ay).

Vigderhous (1979) presented other connections between mean ridit measures and
ordinal measures of association. In terms of the mean ranks R; and R; in the two
TowS,

. R —-R . 2RI —R

o=P1"R 050 ana A=2RZR)
n n

For r x ¢ tables, let ¥; denote the response outcome for a randomly selected

subject at level i of x, and let Y* denote the response outcome for a randomly
selected subject from the marginal distribution of Y. The sample mean ridit A;
using the marginal ridit scores estimates

P(Y;>Y")+ 1P(Y; = Y*).

In analogy with the terms logit and probit, Bross (1958) chose the term ridit
because A; describes how the distribution of ¥ in row i compares relative to an
identified distribution (in this case, the marginal distribution of Y). The {Ai} or the
corresponding population values can be used to compare each row to an overall
marginal distribution of the response (Kruskal 1952). In some of the literature on
nonparametric statistical methods they are referred to as relative effects.

For underlying continuous distributions, A; estimates the probability that an
observation from row i ranks higher on the ordinal response variable than does
an observation from the marginal distribution of Y. Such a probability inference is
approximate, since besides sampling error, it is unknown how tied observations for
the observed discrete scale would be ordered for an underlying continuum. Also,
the sample marginal distribution of ¥, which determines the ridit scores, reflects the
study design. For some sampling schemes, this need not be close to the population
marginal distribution.

2For fully ranked data, analogous connections exist between Wilcoxon statistics using mean ranks and
Mann-Whitney statistics using pairwise orderings.
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To compare rows i and k in an r x c table, it is tempting to regard (A; — A; +
0.50) as an estimate of [P(Y; > Y) + %P(Y,- = Y} )1, as suggested by Bross (1958).
However, this may be a highly biased estimate, mainly because P(Y; > ¥;) is not
determined by P(Y; > Y*) and P (Y} > Yf). To estimate [P(Y; > Y,) + %P(Y,- =
Y)1, it is more appropriate to find (A; — A, + 0.50) by computing the ridit scores
using rows { and &k alone (Beder and Heim 1990). This is equivalent to estimating
« using data in that pair of rows alone (see also Note 2.2).

2.1.7 Example: Comparing Treatments for Gastric Ulcer Crater

We illustrate these methods for comparing two ordinal categorical distributions
using Table 2.2 from a randomized study to compare two treatments for a gastric
ulcer crater. The response, following three months of treatment, was the change in
the size of the ulcer crater. This was measured with the ordinal scale (larger, less
than % healed, % or more healed, healed).

The sample conditional distributions on the ordinal response are:

Treatment A : (0.19,0.12, 0.31, 0.38).
Treatment B : (0.34,0.25,0.25, 0.16).

For the category scores (1, 2,3, 4), the sample mean responses are y; = 2.875
and y, = 2.219, indicating a tendency for a better response with treatment A. The
sample ridit scores using the response marginal distribution are

a; =0.133, a;=0.359, a3=0.594, a4=0.867.

The sample mean ridits are A; = 0.581 and A, = 0.419. Thus, @ = (A, — A, +
0.50) = 0.661 estimates the probability of a better response with treatment A than
treatment B, for underlying continuous responses. Similarly, A=20 - Ay =
0.322 estimates the difference between the probability that the response is better
with A than B and the probability that the response is better with B than A for the
observed scale or for an underlying continuous scale. The ordinal odds ratio for
the observed scale is

P(Y;>Y))  12(11+8+8) +10(11 + 8) + 4(11)

6= — =
P(Y,>Y) 5(6 +4 + 10) + 8(6 + 4) + 8(6)

= 2.45.

TABLE 2.2. Results of Study Comparing Two Treatments for Gastric Ulcer

Change in Size of Ulcer Crater

Treatment <2 >1

Group Larger Healed Healed Healed Total
A 6 4 10 12 32
B 11 8 8 5 32
Total 17 12 18 17 64

Source: Armitage (1955), with permission of the Biometric Society.
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The sample number of pairs in which treatment A gave the better response equals
2.45 times the sample number of pairs in which treatment B gave the better
response.

2.2 ORDINAL ODDS RATIOS FOR CONTINGENCY TABLES

In the preceding section we introduced an ordinal odds ratio for comparing two
groups on an ordinal response. In this section we present alternative odds ratios
for two-way cross-classifications of ordinal variables. Instead of a single odds ratio
summarizing the entire table, this alternative approach provides a set of odds ratios
for a table which, together with the marginal distributions, fully specifies the joint
distribution.

Let’s first briefly review the odds ratio for 2 x 2 tables. Within row 1, the sample
odds that the response is in column 1 instead of column 2 equals pjj;/p21. Within
row 2, the odds equals pjj2/p2p2. Each odds is nonnegative, with value greater than
1.0 when response 1 is more likely than response 2. The ratio of these odds is the
sample odds ratio,

6 Pu/pa _ nunz
pip/p2p mna

The proportion of subjects that made response 1 is larger in row 1 than in row 2 if
6 > 1, whereas it is smaller inrow 1 if6 < 1.Ina corresponding population, the
two conditional distributions are identical if and only if 8 = 1.0.

2.2.1 Local, Global, and Cumulative Odds Ratios

For r x c tables, odds ratios can use each pair of rows in combination with each pair
of columns. For rows a and b and columns ¢ and d, the odds ratio ng.npq/RpcNad
uses four cells falling in a rectangular pattern. All such odds ratios of this type are
determined by a basic set of (r — 1)(c — 1) odds ratios. One such basic set consists
of the odds ratios

A Nijlrc

0,'j=—, i=l,...,r—1, j=l,...,C—l, (23)
nrjfjc

which use the cell in the last row and the last column as a baseline. Each odds
ratio is formed using the rectangular array of cells determined by rows i and r and
columns j and c (see Figure 2.1). For ordinal variables the odds ratio 61, for the
four corner cells, which describes association with the most extreme categories of
each variable, is often of particular interest. It compares the odds of the highest
instead of the lowest response at the highest and lowest levels of the other variable.
When the two variables have a positive or negative trend, this is often the strongest
of the odds ratios (farthest from 1.0).

The construction for forming a minimal set of odds ratios that determine the
entire set is not unique. A natural basic set of (r — 1)(c — 1) odds ratios for two
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Figure 2.1. Odds ratios defined in (2.3).
ordinal variables is

éilj' _ RijMity1,j+1 (2.4)
i j+10it1,j
fori=1,...,r—1,j=1,...,c— 1. These odds ratios use cells in adjacent rows
and adjacent columns. Their values describe the relative magnitudes of associations
in localized regions of the table. They are called local odds ratios.
A second natural family of odds ratios for ordinal variables is

éG — (Zagi Zhsj nﬂh)(Za>i Zb>j n“b)
Y (Zagi Zh>j "ab)(zpi Zhsj "ab).

These measures are the regular odds ratios computed for the 2x2 tables obtained
from the (r — 1)(c — 1) ways of collapsing the row and column classifications into
dichotomies. They describe associations that are global in both variables, in the
sense that each odds ratio uses all categories of each variable instead of a localized
region. They are called global odds ratios.

The local and global odds ratios treat row and column variables alike. They
are especially useful when both variables are response variables. A family of odds
ratios that distinguishes between rows and columns is

(Xp<jnin)(2Xp»j Mit16)
( Zh>j "ih)( Zhsj "i+1,h)
These odds ratios are local in the row variable but global in the column variable. An

equivalent definition for these odds ratios uses the sample conditional cumulative
distribution functions of ¥ given x,

2.5)

o
b;; =

2.6)

4C — Fji/(1 = Ej)
; = = .
/ Fjliv1/(1 = Fjjiq1)
We refer to them as cumulative odds ratios. These odds ratios are natural when x
is an explanatory variable. They provide a comparison of pairs of levels of x with

@2.7)
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respect to their entire conditional distribution on Y. For 2 x ¢ tables, global and
cumulative odds ratios are identical.

Figure 2.2 illustrates local, global, and cumulative odds ratios. With positive
counts, conversion of the cell counts into the set of odds ratios (2.3), (2.4),

joj+1

i+1

(a

joj+1

-

SNz
B 777/ AN

(b)

[ j+1

i+1

(0

Figure 2.2. Three sets of (r — 1)(c — 1) odds ratios for ordinal variables: (a) Local odds ratios,
(b) cumulative odds ratios, and (c) global odds ratios.
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(2.5), or (2.6) does not result in a loss of information. Given the marginal totals,
the sample joint distribution of cell proportions or cell counts is determined by
these odds ratios. For example, given sample global odds ratio values {95?} and
sample marginal cumulative distribution functions ﬁix =pi++---+ pi+ and

F jy = py1+---+ p4j, the sample estimate of the joint distribution function

Fj=P(X<i,Y<j)is
- 1+O5 = DEX+F) =N+ G- DFEF+FHP-405 05 -1 FXFTY'/2
2005-1)

(2.8)

when ég # 1 and F; = ﬁix F jy when éi(j} = 1. The sample joint distribution deter-
mines the cell proportions.

2.2.2 Example: Happiness and Income

We illustrate odds ratios for ordinal variables with Table 2.3 from the 2006 General
Social Survey. Respondents were asked, “Taken all together, would you say that
you are very happy, pretty happy, or not too happy?” The table cross-classifies
this response with family income, here measured as the response to the question,
“Compared with American families in general, would you say that your family
income is below average, average, or above average?”

Table 2.4 contains the sample values of the ordinal odds ratios. For example,

L_2712x835 L e _
Il 4 w Aeq 1Y 11 =
294 x 454 (294 + 49) x 454

¢ 272 x (835+ 131 + 527 + 208)
n (294 + 49) x (454 + 185)

272 x (835 + 131
x@35+13D _ 6o

D>

D>

=2.11.

These values mean that for those of above-average family income:

» The estimated odds of being very happy rather than pretty happy are
9}‘1 = 1.70 times the corresponding estimated odds for those of average
family income.

TABLE 2.3. Happiness and Relative Family Income

Happiness
Family Income Very Happy Pretty Happy Not Too Happy Total
Above average 272 294 49 615
Average 454 835 131 1420
Below average 185 527 208 920
Total 911 1656 388 2955

Source: 2006 General Social Survey.
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TABLE 2.4. Values of Local, Cumulative, and Global Odds Ratios for Happiness
Data of Table 2.3

Local é"j Cumulative ég Gilobal é,-c-;
Row cut j=1 j=2 j=1 j=2 j=1 j=2
i=1 1.70 0.94 1.69 1.17 2.11 1.96
i=2 1.55 2.52 1.87 2.87 2.20 3.01

¢ The estimated odds of being very happy rather than pretty happy or not happy
are élcl = 1.69 times the corresponding estimated odds for those of average
family income.

¢ The estimated odds of being very happy rather than pretty happy or not happy
are élGl =2.11 times the corresponding estimated odds for those of average
or below-average family income.

All three sets of measures in Table 2.4 indicate that higher family income tends
to be associated with higher happiness, except for é}‘z, which is less than 1. This is
also reflected by other summaries, such as the sample conditional distributions on
happiness. For example, the estimated conditional probability of a “very happy”
response takes value (0.44, 0.32, 0.20) for the family income levels (above average,
average, below average).

2.2.3 Ordinal Odds Ratios Compare Numbers of Concordant
and Discordant Pairs

Ordinal odds ratios provide various ways of dividing the number of concordant
pairs of observations by the number of discordant pairs of observations. A pair
of observations for two subjects is concordant if the subject ranking higher on X
also ranks higher on Y. A pair of observations is discordant if the subject ranking
higher on X ranks lower on Y. Each concordant pair gives evidence of a positive
association, with higher values of X tending to occur with higher values of Y.
Each discordant pair gives evidence of a negative association, with higher values
of X tending to occur with lower values of Y.

For example, consider the global odds ratio, élGl, for Table 2.3. For each variable,
this particular global odds ratio treats the “high” and “low” dichotomy as “category
I’ and *“above category 1.” The 272 observations in the cell that are “high” on both
family income and happiness form concordant pairs when matched with each of the
(835 + 131 + 527 + 208) observations that are “low” on both variables. The (294 +
49) observations that are “high” on family income but “low” on happiness form
discordant pairs when matched with each of the (454 + 185) observations that are
“low” on family income but “high” on happiness. The total number of concordant
pairs is 272 x 1701 = 462,672, the total number of discordant pairs is 343 x 639 =
219,177, and the first global odds ratio is élGl =462,672/219,177 = 2.11.
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Each ordinal odds ratio has a particular identification of “high” and “low” for
forming the concordant and discordant pairs. In Section 7.1 we show alternative
ways of summarizing the two types of pairs that account simultaneously for all the
possible ways of dichotomizing into “high” and “low.”

2.2.4 Corresponding Population Ordinal Odds Ratios

With appropriate randomization in sampling or experiments, these sample ordinal
odds ratios estimate corresponding odds ratios for a population. The population
values can be defined in terms of joint probabilities {x;;} or conditional probabilities
{7 j);}. Joint probabilities are natural when both variables are response variables.
Conditional probabilities are natural when one variable is explanatory.
The population local odds ratios are
9i[} _ Tl _ i/ T j i . 2.9)
Wi 41Tl i1/ T4 1)1

Population cumulative odds ratios relate to the joint probabilities and to the con-
ditional cumulative probabilities by

(Xp<j min) (X Miv1) _ Fui/( = Fy)
(Zb>j77ib)(zb5j Tiv1p)  Fjliet/(— Fjit1)

Because each global odds ratio uses all categories for each variable, this type of
odds ratio makes sense for joint probabilities,

(Zafz’ stj ”ab)(za»' Zb>j”ab)
(Zafi Zb>j ﬂab)(Za>i Zbij ﬂab) ‘

Let (X, Y) denote the row number and column number for an observation from
the joint distribution {m;;}. Then the global odds ratios are

@: (2.10)

05 = (2.11)

P(X <i,Y <j)P(X>i, Y>]))

6S = )
UTPX<i,Y>j))P(X>i, Y <)

By comparison, the local odds ratios are

PX=i,Y=j)PX=i+1,Y=j+1)
PX=i,Y=j+DP(X=i+1,Y =)
CPY=j+1|X=i+)/P¥=j|X=i+])
- PY=j+1|X=0/P¥Y=jlX=10

L _

’

and the cumulative odds ratios are
c_ PX=iLY<j))P(X=i+1,Y>))
OO PX =i, Y>)HPX=i+1,Y <))
PY=<jlX=0/PY>jlX=i)
T PY<jIX=i+)/PO>j|X=i+1)
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Another ordinal odds ratio, less commonly used than the local, global, and
cumulative odds ratios, is the continuation odds ratio,

60 _ PY=jlX=D/PY>j|X=1i)
VT PY = X>D)/PY>jX>i)

A separate and nonequivalent set of continuation odds ratios applies this formula
after reversing the category order for both variables.

2.2.5 Stochastic Orderings of Groups

In comparing two groups, the notion of stochastic ordering is a way to characterize
one group as being higher than the other on a quantitative response variable. The
probability distribution for group 1 is stochastically higher than the probability
distribution for group 2 if the cumulative distribution function (cdf) for group 1
is uniformly below the cdf for group 2. This means that for group 1, relatively
more probability falls at the high end of the response scale. Figure 2.3 illustrates
stochastic orderings for two groups with continuous probability density functions
and cumulative distribution functions.

For an adjacent pair of rows i and i + 1 in a contingency table with ordinal
response variable, the conditional distribution in row i + 1 is stochastically higher
than the conditional distribution in row i if®

Fj|i2Fj|[+l fOI‘j:1,2,...,C—1.
Underlying Underlying
density functions distribution functions
2 1 2

(a)

(b)

Figure 2.3. (a) Distribution 1 stochastically higher than distribution 2. (b) Distributions not stochasti-
cally ordered.

3 At least one inequality should be strict, so the distributions are not identical.
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This is equivalent to cumulative log odds ratios taking values

log 65 > 0 (hence 65 > 1) forj=1,...,c—1.
Row i + 1 is stochastically lower than row i if log 05’7 <OQforj=1,2,...,c— 1.
When the “high” end of the scale is column 1 instead of column ¢, the inequalities
are reversed in these two definitions.

To illustrate, consider the sample cumulative odds ratios shown in Table 2.4.
Treating the high end of the happiness scale as column 1, those of above-average
family income are stochastically higher on happiness than those of average family
income. Similarly, those of average family income are stochastically higher on
happiness than those of below-average family income.

2.2.6 Types of Positive Dependence

For each type of odds ratio, X and Y with joint distribution {m;;} are statistically
independent if all (r — 1)(c — 1) of the population odds ratios equal 1.0, or equiv-
alently, all population log odds ratios equal 0. Consider two ordinal variables that
agree in terms of which end of the scale is regarded as the “high” end (i.e., either
the first row and first column, or the last row and last column). For a given type
of ordinal odds ratio, the association between the variables is called positive when
all the log odds ratios are positive and negative when all the log odds ratios are
negative.

Some definitions of positive (or negative) association are more stringent than
others:

If all log > 0, then all log > 0 and all log 0 >0.
If all log > 0 or if all log 0 > 0, then all log é,? > 0.

For example, the set of tables having uniformly positive local log odds ratios is
contained in the set of tables having uniformly positive cumulative log odds ratios,
and that set is itself contained in the set of tables having uniformly positive global
log odds ratios. The condition of positive association is therefore most stringent
when expressed in terms of the local odds ratios. For a joint distribution ina 2 x ¢
case, when you reverse orientation of the table and consider the distribution of X
given Y, the condition of uniformly positive local log odds ratios is equivalent to
¢ strictly monotone-decreasing probabilities for category 1 of X.

When an association is positive (or negative) for all four ordinal odds ratios,
more localized associations tend to be weaker in terms of log odds ratios being
smaller in absolute value. For example, local log odds ratios tend to be weaker
than cumulative log odds ratios, which tend to be weaker than global log odds
ratios. Table 2.4 shows this behavior except for 0“ = 1.70 and 0“ = 1.69 being
slightly out of order. For odds ratios [such as formula (2.3)] using just four cells in
a rectangular pattern, the values tend to be stronger for less localized odds ratios.
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For example, in Table 2.4 the local odds ratios fall between 0.94 and 2.52, whereas
the sample odds ratio for the four corner cells in the table equals

nin; 272 x 208

= = 6.24.
niznij 185 x 49

See also Note 2.4.

When different researchers may choose different numbers of categories ¢ for an
ordinal response variable, an advantage of ordinal odds ratios that are global in Y
is that their values do not usually depend much on that choice, since in each case
they use the entire response scale. By contrast, each local odds ratio uses more
of the response scale when ¢ is small than when c¢ is large. The local odds ratio
is itself natural, though, when we want to make comparisons in terms of pairs of
outcome categories rather than dichotomized regions of values.

2.3 CONFIDENCE INTERVALS FOR ORDINAL ASSOCIATION
MEASURES

Next we present confidence intervals for ordinal measures. In Chapter 7 we con-
sider this subject for a wider variety of ordinal measures of association. There
we also present significance tests of independence of two ordinal variables for an
alternative hypothesis expressed in terms of positive association for an ordinal log
odds ratio. Tests and confidence intervals are also a by-product of various ordinal
models presented in Chapters 3 and 4 that use these ordinal odds ratios to describe
associations.

Let ¢ denote a generic ordinal measure of association. For n observations its
sample value, Z‘, is a smooth function of sample proportions in the cells of a con-
tingency table. We assume multinomial sampling over the cells of the contingency
table; that is, the cell counts {n;;} have a multinomial distribution with parameters
that are the cell probabilities {m;;}. Then £ has an asymptotic (large-sample) normal
sampling distribution by the delta method (Bishop et al. 1975, Sec. 14.6).

Let SE denote an estimated standard error for {. An approximate 100(1 — )%
confidence interval for ¢ is

¢ & zq/2(SE),

where z,/2 denotes the standard normal percentile with right-tail probability equal
to a/2. For a 95% confidence interval, « = 0.05 and zg.g;5 = 1.96.

Other confidence interval methods exist, discussed in Section 2.3.3, that are
better in the sense that the actual coverage probability of the confidence interval
tends to be closer to the nominal level. However, most software merely reports
sample values of measures of association and their estimated standard errors, so
this interval is simplest to obtain. The quality of the method often depends on the
scale used, so this should be chosen with some care. For example, for odds ratios it
is more sensible to use the asymptotic normality for the log odds ratio rather than
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the odds ratio, because the sample log odds ratio converges much more quickly to
normality as n increases.

2.3.1 Confidence Intervals for Ordinal Odds Ratios

In Section 2.2 we introduced four types of odds ratios for cross-classifications
of ordinal variables: local odds ratios {0,-';}, global odds ratios {93}, cumulative
odds ratios {05}, and continuation-ratio odds ratios {950}. For a particular ordi-
nal odds ratio 6;;, denote the four probabilities that make up the odds ratio by
{Aijs Mig1,j» Aij+1, Aig1,j+1} Each ordinal odds ratio has the form

Aijhitl j+1
Aigl,jhi,j41

For example, for the local odds ratio 0,.'; expressed in terms of joint probabilities,
Aij = Tijy o Aidlj = Tikljs i+l = il Mgl jal = Titl,j41s

whereas for global odds ratio 93,

1] = Zznabs A-i+l.j = Zzﬂabs

a<i b<j a>ib<j
b = Y 1w e =YY 1
a<i b>j a>ib>j

Each type of ordinal odds ratio has the same form as the ordinary odds ratio for
a 2 x 2 table. Ordinary inference for the odds ratio applies, with the probabilities
used in the particular ordinal odds ratio. The estimated standard error for each
ordinal log odds ratio is

1 1 1 !
SE= |+ ——+——+—. @12)
nAij  Mhijyr RAiglj o MRiglj+

When the region of the table covered by an odds ratio increases, the odds ratio has
larger counts in the four cells. Thus, the sample log odds ratio value tends to be
more precise as an estimator of the population value. For example, with standard
sampling schemes, log 653 has smaller standard error than log 655 or log éﬁo, which
have smaller standard errors than log é,-'“-.

A confidence interval for a log ordinal odds ratio is

sample log odds ratio & z4/2(SE). (2.13)

Exponentiating (taking antilogs of) its endpoints provides a confidence interval for
the odds ratio itself. When a sample odds ratio 6 equals O or oo, the confidence
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interval does not exist. When § = 0, a sensible lower limit is 0. When 6 = 00, a
sensible upper limit is oc. The other bound can use the ordinary formula following
some adjustment, such as replacing each ni term that equals 0 in the SE formula
by % A less ad hoc approach forms the confidence interval by inverting score
tests or likelihood-ratio tests about the value of the odds ratio, as discussed in
Section 2.3.3. An alternative method uses a Bayesian approach, which naturally
smooths the data based on prior beliefs and provides positive probability estimates
in empty cells (Section 11.2).

2.3.2 Example: Happiness and Income Revisited

Table 2.3 showed a 3 x 3 table that cross-classified happiness with family income.
Table 2.5 shows the four 2 x 2 tables that are collapsings of the original table
formed to construct global odds ratios. Table 2.6 shows the sample global odds
ratios (which were shown with other ordinal odds ratios in Table 2.4), the log global
odds ratio values, the standard error estimates, and the 95% confidence intervals
for the population global odds ratios. For example, for the first one (élGl =2.11),

1 1 1 1
SE = \/; — + —+ ——= = 0.094,
272 + 343 + 639 + 1698

and the 95% confidence interval is

2.11[exp £1.96(0.094)] = (1.75, 2.53).

This set of confidence intervals suggests that there is a uniformly positive associ-
ation between family income and happiness, as summarized by global odds ratios.
But the association does not seem to be strong.

Here are two further considerations for these data: First, the values of the four
sample global odds ratios are similar. One way to summarize the data further
would be to form a weighted average of these values. This would be the outcome
of fitting a model by which the four population global odds ratios are assumed to

TABLE 2.5. 2 x 2 Tables for Global Odds Ratios Between Happiness® and Relative
Family Income®

Happiness®
Income? VH PH + NH VH + PH NH
AA 272 343 566 49
A + BA 639 1698 2001 339
AA+ A 726 1309 1855 180
BA 185 735 712 208

“AA, above average; A, average; BA, below average.
bVH, very happy; PH, pretty happy; NH, not too happy.
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TABLE 2.6. Global Odds Ratios for Table 2.5 and Corresponding Confidence
Intervals

Odds Ratio Sample Value Log Odds Ratio SE 95% CI

68 2.11 0.745 0.094 (1.75, 2.53)
8, 1.96 0.671 0.160 (1.43, 2.68)
6g 2.20 0.790 0.094 (1.83, 2.65)
6s 3.01 1.102 0.111 (2.42, 3.74)

have identical values. We present such a model in Section 6.6. Second, if we truly
want separate estimates such as those in Table 2.6, it can be useful to adjust the
individual confidence levels so that the overall confidence level is controlled. A
very simple way to do this uses a Bonferroni adjustment. If we want the overall
confidence level to be at least 95% when we form confidence intervals for four
global odds ratios, we would use error probability 0.05/4 for each individual interval
(i.e., confidence level 98.75%).

2.3.3 Score and Profile Likelihood Confidence Intervals

The confidence interval of the form Z’ + z4/2(SE) presented above is called a Wald
confidence interval. 1t is based on inverting the Wald test of Hy: ¢{ = {p against
H,: ¢ # ¢ using the large-sample normal test statistic

& =4
SE

For example, the 95% confidence interval consists of all £y values for which this
test has a two-tailed P-value from the standard normal distribution that is larger
than 0.05.

Wald confidence intervals for proportions or parameters based on proportions
often perform poorly for small to moderate n. The actual coverage probability of
a nominal 95% Wald confidence interval may be quite far from 0.95 unless n is
quite large. This is especially true when ¢ takes values near the boundary of the
parameter space (such as in estimating a proportion that is near O or 1), in which
case C may have a highly skewed sampling distribution. Then it may not be sensible
for ; to be the midpoint of the confidence interval, an extreme case being when C
falls at the boundary.

Alternative confidence intervals that provide results similar to those of Wald
intervals for large n but usually perform better for small to moderate n result from
inverting likelihood-ratio or score tests. The likelihood-ratio test has test statistic

=

—2(Lo — Ly),

where Lo and L, denote the maximized log-likelihood values under the null
hypothesis Hy and under the alternative hypothesis H,. The P-value is the right-tail
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probability beyond the observed test statistic value, using the chi-squared distri-
bution with df = 1. In this context, L; is the multinomial log-likelihood function
evaluated at the sample proportions. The 95% profile likelihood confidence interval
for ¢ is the set of ¢y values for which the P-value > 0.05 for the likelihood-ratio
test of Hy: ¢ = &p.

The score test is based on the derivative of the log-likelihood function and its
standard error, evaluated at the null hypothesis value. The test statistic can often
be expressed in the form

{—4%
SEy

where SEj is the standard error estimated under the constraint that { = . Although
computationally more complex than the Wald method and not always readily
available with software, these methods usually perform better in terms of having
coverage probabilities closer to the nominal level. Lang (2008) provided a unified
approach to fitting profile likelihood and score confidence intervals for contingency
table parameters.*

We discuss this approach in the context of interval estimation of an odds ratio.
Let 6 denote a particular ordinal odds ratio, such as a global odds ratio for a 2 x 2
table of counts {m;;} that results from a particular collapsing of the r x ¢ table
{nij}. A 95% confidence interval based on inverting the likelihood-ratio (or score)
test consists of all 6y values such that the P-value > 0.05 for the likelihood ratio
(or score) test of Hy: 6 = 6y against H,: 6 # 6. For each given 6y value there
are expected frequencies {i;;(fp)} having the same margins as the observed 2 x 2
table {m;;} and having an odds ratio of 6y. The likelihood-ratio statistic for Ho:
6 = 6y has the form

2 _ - mij
G _22,;2/-:"1” log ﬁij(eo)'

The 95% profile likelihood confidence interval consists of the set of 8y values for
which G? is less than the 95th percentile of a chi-squared distribution with df = 1,
which is 3.84 (= 1.962). The score test statistic for Ho: 6 = 6 has the form of a
Pearson chi-squared statistic,

Z Z [mlj PLU(GO)] ‘

PLU o)

The 95% score confidence interval consists of the set of 6y values for which X? <
3.84. Simulations show that the score method works particularly well for estimating
an odds ratio.

More generally, consider any hypothesis for a multinomial model that
corresponds to a goodness-of-fit test. That is, the fitted values for the alternative

*Lang’s R function ci.table can construct such confidence intervals.
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hypothesis are the sample data, so testing the hypothesis corresponds to comparing
fitted values under a null hypothesis to fitted values under an alternative hypothesis
that are merely the sample cell counts. This is the case for the test about an odds
ratio for a 2x2 table. Then the score statistic has the form of the Pearson statistic
just shown (Smyth 2003; Lovison 2005).

Advantages of confidence intervals based on inverting likelihood-ratio tests or
score tests is that unlike the Wald interval, they are not affected adversely when a
sample odds ratio is 0 or 0o and they do not depend on the scale. That is, applying
them to the original scale or applying them to the log scale and then exponentiating
yields the same result. Unfortunately, for some measures of association, standard
statistical software does not yet provide score confidence intervals, but profile like-
lihood intervals are often available when the measure is equivalent to a parameter
in a model. For the odds ratio, the profile likelihood confidence interval can be
obtained with most logistic regression software by fitting a model with a binary
predictor to the 2x2 table.’ Although not readily available with some software, the
score confidence interval for the odds ratio is relatively easy to obtain.®

2.3.4 Example: Comparing Treatments for Shoulder Pain

Table 2.7 comes from a study (Lumley 1996) to compare an active treatment with
a control treatment for patients having shoulder tip pain after laparoscopic surgery.
The two treatments were randomly assigned to 41 patients. The patients rated their
pain level on the fifth day after the surgery.

Consider first the odds ratio for the odds that pain is in one of the first two
categories instead of one of the last three. This is both a global odds ratio and
a cumulative odds ratio. The sample odds ratio is 18.9, the estimated odds of a
relatively low level of pain being much higher for the active treatment than for the
placebo. The ordinary Wald confidence interval is (2.1, 170.4), the profile likelihood
confidence interval is (3.0, 373.8), and the score confidence interval is (2.6, 128.1).
With small samples, different methods can give quite different results. Based on
simulations, we trust the score interval estimator of the odds ratio more than we
do the other methods. With any of the intervals, we infer that the active treatment
works better than the control treatment to reduce shoulder pain.

TABLE 2.7. Shoulder Tip Pain Scores After Laparoscopic Surgery

Pain Score?

Treatments 1 2 3 4 5
Active 19 2 1 0 0
Control 7 3 4 3 2

Source: Lumley (1996), Table 2.
41, low; 5, high.

SFor example, in SAS, using the LRCI option in PROC GENMOD.
SAn R function is available at www.stat.ufl.edu/~aa/cda/software.html.
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2.3.5 Confidence Intervals for Measures Using P(Y; > Y>)

We now consider the stochastic superiority measure o = P(Y; > Y3) +% P(Y,
= Y,) for comparing two groups on an ordinal response. A confidence interval
for « implies a corresponding confidence interval for A= P(Y>13) —
P(Yy>7Y1), since A =2a — 1.

For independent multinomial samples of sizes n| and n; from the two rows,
Halperin et al. (1989) showed that the sample value of the variance of the sample
estimate & is

1 7. ) 1 <
SE? = . [a— (ny+ny —D&* 4+ (na — DC+ (m — HD — ZE :pmm],
i=1

2.14)
where

c—1 c p 2 PcllP22
|2
C=ZP1|1( Z Pj|2+17|) +Tcl,
i=l

J=it+l

c j—1 2 2
pin PP
D=ZP,'12 ZP:’|1+;| +
; , 2 4
Jj=2 i=1
The Wald approach works better by applying it to estimate logit « rather than «.

From the delta method, the 95% Wald confidence interval for logit « is

SE
logit @ + 1.96 ————.
ogtt @ & —a)
Its bounds [LB, UB] induce the interval

[ exp(LB) exp(UB)
1 +exp(LB)’ 1+ exp(UB)

for a. If @ is either O or 1, the interval is undefined, and it is better to use the
interval obtained with the profile likelihood or score method.

Ryu and Agresti (2008) used the result mentioned above about the score test
statistic having the form of the Pearson statistic to construct a score confidence
interval for «. For any given value «p, the product multinomial likelihood can be
maximized subject to the constraint ¢ = g, leading to fitted values that can be
compared to the observed counts with X2. A 95% score confidence interval’ is the
set of g values for which X? < 3.84.

For the shoulder pain data just analyzed, the 95% logit Wald confidence inter-
val for ¢ is (0.621, 0.874). The score confidence interval is (0.633, 0.875). The
imprecision reflects the relatively small sample sizes.

Twww stat.ufl.edu/~aa/cda/software.htm] has R functions by E. Ryu for confidence intervals for c.
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2.3.6 Small-Sample Interval Estimation for Local Odds Ratios

A well-known approach to small-sample inference for some parameters with cat-
egorical data eliminates unknown nuisance parameters by conditioning on their
sufficient statistics. Statistical inference then uses the conditional distribution, which
does not depend on the nuisance parameters. This method can be applied to inter-
val estimation for odds ratios. With a multinomial distribution over the r x c table,
conditioning on row and column totals yields a noncentral hypergeometric distri-
bution that depends on the local odds ratios but not on unknown row and column
marginal probabilities.

In Section 2.2.1 we mentioned that all odds ratios using a rectangular array of
cells in a r x ¢ table are determined by a basic set of (r — 1)(c — 1) odds ratios,
such as the odds ratios

5. _ Rijhpc
ij = —
nrjnic
With full multinomial sampling or independent multinomial sampling within rows
or within columns, conditional on the marginal totals, the distribution of {n;;} is
proportional to
r—1pmc—1pttij
I 152, 6;

I 15 nij !

There is a one-to-one relationship between these odds ratios and the ordinal local
odds ratios {0,-';}. The equivalent expression for this distribution in terms of the
local odds ratios is

i=1 =

I’

i=1

;) 11624 (05)%

c 10
l'Ij=]n,,!

where s;; =3, ; > b<j Nab-

A simple model considered in Section 6.2.2 assumes a common value 8 = log 9,-';.
for the local log odds ratios. In that case, the conditional distribution of the data
is proportional to ef” /TI;T1;n;;!, where T =3, 3" (ij)n;j. For fixed marginal
totals, the maximum likelihood estimate 8 of 8 for this model is a strictly mono-
tone function of T. This suggests basing exact inference for 8 on the conditional
distribution of T'. The statistic T is itself a monotone function of the correlation
between X and Y for equally spaced scores for the rows and columns. As described
in Section 7.6, we can base an exact conditional test on the conditional distribution
of T. This can be done independent of any model for the odds ratios, but we con-
sider a model of uniform local odds ratios here in order to consider a small-sample
confidence interval for an ordinal effect measure.

Let C; denote the sum of (IT;I1;n; ,-!)_l for all tables with the given marginal
totals that have T = t. Assuming a common local log odds ratio 8, the conditional
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distribution of T is (Agresti et al. 1990)

C,eft

P =1 1) )i B) = 5o

To form a confidence interval for 8, we invert exact tests of Hy: 8 = By using this
distribution. For observed value fops for T, an interval having confidence level at
least 1 — o is (B¢, Bu), where B¢ and B, are the solutions to the equations

> PT =t {nisd fnykif) =5 and

12 tobs
o
D P(T =t {nig) (nejh ) = 5.
t=lobs
except that By = —oo when T takes its minimum possible value (for the given

margins) and §, = oo when T takes its maximum possible value. The correspond-
ing confidence interval for each local odds ratio, under the assumption that they
are identical, is (exp(B¢), exp(B.)). Mehta et al. (1992) presented a similar analysis
for stratified 2 x ¢ tables with ordered columns.

When the sample size is very small or the data are unbalanced, with most obser-
vations in a single row or column, the inference can be quite conservative. The
actual confidence level can be much larger than the nominal value. To achieve a con-
fidence level that tends to be closer to the nominal level, although no longer guar-
anteed to be at least that level, invert the test using the mid-P value. That is, in the
tail sums of probabilities just given, include only %P(T = tobs | {nig} {naj}s Bu).
The mid- P interval also has the advantage of being a bit shorter.

For 2 x 2 tables, software can easily obtain small-sample confidence intervals
for the odds ratio by conditioning on the marginal counts. Thus, it is possible to
construct such confidence intervals for any particular ordinal odds ratio introduced
in Section 2.2. Alternatively, an unconditional approach can be used for small-
sample confidence intervals for odds ratios. Agresti (2002, pp. 99-100) has details
and references. However, that method and the mid- P-based conditional method are
not yet available in standard software.

2.3.7 Example: Severity of GVHD in Leukemia Patients

The StatXact manual (2005) reports Table 2.8, from one protocol for a study at the
Dana Farber Cancer Institute. For patients receiving a bone marrow transplant, the
ordinal response was the severity of graft versus host disease (GVHD). Table 2.8
covers a suspected risk factor: whether there was a type of blood incompatibility,
called a MHC mismatch, between the donor and the recipient of the bone marrow.
The sample local odds ratios for the table, calculated as the estimated odds of
the worse of two adjacent outcomes for mismatch divided by the corresponding

estimated odds for match, are
2x3 2x4 1x1 1x2

=0. .0, =0.25,
2x4 0.75, 2 x 1 4.0 2x2 1x0
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TABLE 2.8. Severity of GVHD in Leukemia Patients by Whether Patient Had MHC
Mismatch

Severity of GVHD Toxicity

MHC Status None Mild Moderate Severe Extreme Total
Mismatch 2 2 2 1 2 8
Match 3 4 1 2 0 10
Total 5 6 3 3 2 18

Source: StatXact (2005, p. 633), with permission.

Given the very small cell counts, these estimates are extremely imprecise and can
benefit from smoothing. Under the assumption that the true distributions have a
common value for the four local odds ratios, StatXact reports® a small-sample 95%
confidence interval for that common local odds ratio of (0.58, 3.27). With such a
small sample, it is not possible to estimate that odds ratio very precisely.

2.4 CONDITIONAL ASSOCIATION IN THREE-WAY TABLES

Most applications have more than two relevant variables. The emphasis is often,
then, on analyzing the relationship between the response variable and an explana-
tory variable at fixed levels of other explanatory variables or control variables.
A partial table is a contingency table that displays counts for the relationship
between two categorical variables at fixed levels of another variable (or variables).
In a partial table, the other variable is controlled, in the sense that its value is held
constant.

The association displayed in a partial table can be analyzed using the methods
introduced in this chapter. For example, ordinal odds ratios apply to each partial
table using the cell counts {n;;} in the three-way contingency table that corresponds
to “stacking up” the various partial tables. For the (r — 1)(c — 1) local odds ratios
at level k of the control variable(s), these are

Gy = SMRLALK oy =1, j=1,.c—1 (215
R j+ 1 kP41, jk

The response variable and explanatory variable are conditionally independent, given

the control variable(s), if the population values of these odds ratios all equal 1.

2.4.1 Summary Measures of Conditional Association

If the association as described by an ordinal measure is similar in each partial
table, it can be useful to pool the measure values into a summary measure of

8Using the “permutation with general scores” analysis and choosing scores 1, 2, 3, 4, and 5.
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conditional association. This is also useful for meta-analyses, to combine results
about an association from several studies.

One way to do this forms a weighted average of the sample values, with weights
{wy} satisfying all wx >0 and ), wx = 1. For odds ratio measures, it is sensible to
do this on the log scale. Let Z denote the control variable(s) (or variable identifying
the various studies in a meta-analysis). Let K denote the number of categories of
Z, which is also the number of partial tables. Possible choices for the weights {wy}
include:

» w; = 1/K, equal weight to the sample measure in each table.

s wg = n44x/n, the proportion of observations in the partial table.

o wi = (1/SE2)/ (X, 1/SE2), where SE; is the estimated standard error of
the sample measure in partial table k. The weight is inversely proportional to
the estimated variance. This scheme approximates the measure in the class of
weighted averages that has the smallest variance.

» For measures that are ratios, weights can be applied separately to the numera-
tors and the denominators, such as is done in the Mantel-Haenszel odds ratio
estimate for several 2 x 2 tables (e.g., Liu and Agresti 1996; Liu 2003).

Such summary measures have limited usefulness when there are multiple control
variables. It is then more informative to use a modeling approach, as discussed
starting in Chapter 3. This enables us to check the fit of the assumed association
structure and to compare models of different complexities. For example, some
models assume that the population ordinal odds ratios of a particular type in a
two-way table are identical. If such a model fits each partial table well, we can
analyze whether the extended model that has the same common ordinal odds ratio
in each partial table fits well. If not, we would report the estimated odds ratios
for the separate partial tables or use other ways of describing how the association
varies across those tables.

2.4.2 Example: Association Between Political Views and Party,
by Education

In 2006, the General Social Survey asked about the respondent’s political ide-
ology (liberal, moderate, conservative) and about the respondent’s political party
affiliation (Democrat, Independent, Republican). Table 2.9 summarizes the 4253
observations. Political party affiliation could be treated as nominal or ordinal.
We treat it as ordinal to study whether there is a trend in ideology as one goes
from Democrat to Republican. The sample conditional distributions, also shown in
Table 2.9, suggest a moderately positive trend from liberal to conservative as one
moves across the rows from Democrat to Republican. For a model presented in
Section 6.2.2 that assumes a common value for all the local log odds ratios, the
maximum likelihood estimate of that log odds ratio is 0.746. This corresponds to
a local odds ratio estimate of exp(0.746) = 2.109.
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TABLE 2.9. Political Ideology by Political Party Identification, with Conditional
Distributions on Political Ideology in Parentheses

Political Ideology

Party Liberal Moderate Conservative Total
Democrat 616 (44%) 522 (37%) 262 (19%) 1400
Independent 450 (26%) 821 (47%) 462 (27%) 1733
Republican 94 (8%) 305 (27%) 721 (64%) 1120

Source: 2006 General Social Survey.

TABLE 2.10. Values of Estimated Common Local Log Odds Ratio Between Political
Ideology and Political Party Affiliation, Controlling for Education

Education Sample Size Local Log Odds Ratio
Less than high school 612 0.107
High school 2151 0.686
Junior college 362 0.754
Bachelor 734 1.200
Graduate 394 1.112
Overall 4253 0.746

Can this association be explained by education? For example, if more highly
educated people tend to be more liberal and if more highly educated people tend
to identify more as Democrats, perhaps this might explain the association and we
may find little if any association at fixed levels of education.

Table 2.10 shows the estimated common local log odds ratios for the partial
tables. The strength of association increases considerably across the education lev-
els. There is little association for those with less than a high school education but a
very strong association for those with a bachelor’s or graduate degree. In this case,
it seems better to report the separate values for the partial tables than to report a
summary number for conditional association. Recall that less localized odds ratios
would be stronger yet. For example, the estimated odds ratio using the four corner
cells of Table 2.9 is (616 x 721)/(262 x 94) = 18.0. You can check that the local
odds ratios relate to the corner odds ratio by éhébé&lég. Thus, the model-based
estimate of a common local odds ratio of 2.109 propagates to an estimated corner
odds ratio of 2.109* = 19.8, a very strong positive association.

2.5 CATEGORY CHOICE FOR ORDINAL VARIABLES

Most analyses presented in this book treat the ordinal scale as fixed, typically
predetermined by the researcher who conducted the study. The results of some
analyses may depend greatly, however, on the way the categories were defined.
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In this section we illustrate this point, first for detecting the association between
ordinal variables and then for describing a conditional association when a control
variable is ordinal.

2.5.1 Finer Categorizations Provide More Power for Detecting Associations

With most ordinal variables, there are various possible scales for their measure-
ment. Political ideology, for instance, might be measured with categories (liberal,
moderate, conservative) or with categories (very liberal, liberal, slightly liberal,
moderate, slightly conservative, conservative, very conservative). There are bias
and power advantages to using categorizations having relatively more categories.

Often, it makes sense to imagine a continuous latent variable underlying the
observed ordinal measurement. Then, an advantage of using more categories is
that we get more information about the underlying effects. For example, as the
numbers of rows and columns in a cross-classification of two ordinal variables
are increased, the measurement gets finer. Then fewer pairs of observations are
tied, falling in the same row or in the same column. (In Section 7.1.3 we present
formulas for the various types of tied pairs.) Thus, more pairs of observations
provide concordant or discordant indications that contribute to overall summaries
such as ordinal odds ratio values.

Also, it is advantageous to have as many pairs untied as possible to increase
power for determining the direction of the association. For example, an advantage
of precise measurement of ordinal variables is that significance tests tend to be more
powerful when there are relatively fewer tied pairs of observations. For testing
the hypothesis of independence, the sample size needed to attain a certain power
at a given significance level tends to decrease as r and ¢ increase (Agresti 1976).
This can be demonstrated by redefining categories for a table. We illustrate using
Table 2.11, which is a 2x2 condensation of the 3x3 happiness data of Table 2.3.
The *very happy” and “pretty happy” categories of happiness have been combined
into the single category “happy.” Also, the first and second income categories have
been combined. Table 2.11 has log odds ratio equal to 1.102, with SE = 0.111.
This is one of the global odds ratios of the original table. By comparison, for the
original 3x 3 table, a model considered in Section 6.6 that assumes a common value
for all four global odds ratios has estimated log global odds ratios of 0.856, with
SE = 0.068. With finer measurement, the ratio of the estimate to its SE is larger.

The values of ordinal odds ratios that are local for a variable tend to be more
highly dependent on the categorization than are ordinal odds ratios that are global

TABLE 2.11. Condensation of Table 2.3 Used to
Mustrate Effects of Category Choice

Happiness

Family Income Happy Not Too Happy

Average or above 1855 180
Below average 712 208




CATEGORY CHOICE FOR ORDINAL VARIABLES 39

for that variable. Typically, the local odds ratios tend to be weaker when the
response scale is finer.

Besides depending on the numbers of categories, the values of many measures
of association depend on the marginal distributions of the variables, that is, on the
relative numbers of observations in the different categories. This is the case for the
odds ratios that group categories together. Because of this, it can be risky to com-
pare values of measures calculated in tables having different category definitions or
highly different marginal distributions. Consider, for example, case—control stud-
ies in which each subject who has a severe case of some disease is matched with
someone having a mild case and a set of control subjects who do not have that
disease, with all subjects observed in terms of some exposure that could cause the
disease. The expected values for a summary measure of association would be dif-
ferent for a study that used one control for each pair of cases and a study that used
more than one control for each pair of cases. An exception is the local odds ratio.
It uses pairs of response categories and maintains the usual invariance to marginal
proportions that is a well-known property of the odds ratio for 2 x 2 tables.

2.5.2 Finer Categorizations Describe Conditional Associations Better

Sometimes a control variable is also ordinal. When that variable represents categor-
ical measurement of an underlying continuous variable, it is also advantageous to
choose several categories for it to describe the conditional association adequately.
For example, suppose that for an underlying continuous control variable Z, the
value of a particular ordinal odds ratio between X and Y is identical at each fixed
level of Z. We would want the measure value found with the ordinal categorization
of Z to be relatively near the value that occurs for the underlying continuous mea-
surement of Z. The approximation tends to improve as the number of categories
of the control variable increases, since then Z is held more nearly constant in each
partial table.

To illustrate, suppose that a trivariate normal distribution underlies three ordinal
variables, with correlations pxy = 0.64 and pxz = pyz = 0.80. For this distribu-
tion, the conditional distribution relating X and Y at a fixed level of Z is bivariate
normal with partial correlation pxy.z = 0. Then, for any way of categorizing X and
Y at a fixed single value of Z, any ordinal odds ratio equals 1.0. Now, suppose that
Z is not actually measured continuously but, rather, with K categories. Consider
the value of the global odds ratio for the probabilities in the partial tables, when
X and Y are dichotomized at the means of the underlying variables. Table 2.12
reports the global odds ratio values for those partial tables. These measures tend to
approach 1.0 as the number of categories K of the control variable increases. How-
ever, with small K there can be substantial bias in approximating the underlying
conditional association. We would probably fail to detect the absence of underlying
conditional association if we used relatively few control categories or if one control
category contained a majority of the observations. In this scenario we need K > 5
strata before the middle one has an odds ratio within 10% of the limiting value.

Even with relatively large K, Table 2.12 shows that a considerable conditional
association can occur at the highest and lowest levels of the categorized control
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TABLE 2.12. Global Odds Ratio for Partial Tables from a 2 x 2 x K Table Having
an Underlying Trivariate Normal Distribution with Correlations 0.80 Between X and
Z and Between Y and Z but Zero Partial Correlation Between X and Y

Marginal

K Probabilities for Z Values of Global Odds Ratio

2 (0.1, 0.9) 1.66, 5.00

2 (0.5, 0.5) 2.20, 2.20

3 (173, 1/3, 1/3) 1.87, 1.29, 1.87

4 (0.25, 0.25, 0.25, 0.25) 1.77, 1.20, 1.20, 1.77

5 0.2,0.2,0.2,0.2,0.2) 1.72, 1.15, 1.10, 1.15, 1.72

10 (0.1 each) 1.66, 1.11, 1.05, 1.03, 1.02, 1.02, 1.03, 1.05, 1.11, 1.66
00 1.00 each

variable, when the marginal XY association is very strong. This tendency is not
as severe when the marginal XY association is weaker. For example, suppose that
pxy =0.25 and pxz = pyz = 0.50. Then again, pxy.z =0, and when K = (2,
3, 4, 5, 10), the odds ratio in the partial table for the highest 1/K or lowest 1/K
portion of the conditional distribution equals (1.28, 1.21, 1.19, 1.17, 1.13).

Cochran (1968) showed similar results for cases in which Y is quantitative
and X is binary, in the context of reducing bias in comparing two groups in an
observational study. When a quantitative variable can be measured in an essentially
continuous manner, we are usually better off doing so rather than collapsing the
variable into a few ordered categories. For models for ordinal response variables
considered in this book it is possible to include continuous explanatory variables
and contro] variables without having to categorize them.

2.5.3 Guidelines for Category Choice

Based on our experience, we suggest the following guidelines about category
choice. These guidelines are approximate, and the exact behavior depends on the
particular distributional structure. The guidelines are phrased in terms of measures
of association, but they also apply to parameters describing associations in ordinal
models presented in the remainder of the book.

e Ordinal categorical measures become relatively more efficient at detecting
nonnull associations as r and ¢ increase, since there are fewer tied pairs and
standard errors tend to decrease.

e Measures of conditional association for ordinal categorical variables having
ordinal control variables tend to become less biased in describing the condi-
tional association for underlying continuous variables as more categories are
used for the control variables.

¢ Different ordinal measures of association and ordinal models presented in
the next four chapters typically yield similar conclusions about whether an
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association exists when used in significance tests. However, the results of
these analyses may depend strongly on how the categories are chosen for
those ordinal variables.

CHAPTER NOTES

Section 2.1: Probabilities and Scores for an Ordered Categorical Scale

2.1. Other articles dealing with ridits include Brockett and Levine (1977),
Vigderhous (1979), Semenya et al. (1983), Jansen (1984), Beder and Heim (1990),
and Brunner and Puri (2001). For criticisms of the use of ridit scores, see Borgatta
(1968), Mantel (1979), and Graubard and Korn (1987).

2.2. The stochastic superiority measure ¢ = P(Y; > Y2) + %P(Yl = Y,) is pop-
ular in the nonparametric literature, both for comparing pairs of groups and for
comparing each group to a marginal distribution. In the latter case it is the mean
ridit, often called the relative treatment effect. It is used both for independent
samples and repeated measures, as in Akritas and Brunner (1997), Brunner and
Puri (2001), and Brunner et al. (2002). With G;(y) = [P(Y; < y)+ P(Y; < ¥)1/2,
i = 1,2, the normalized distribution functions, we can express

a=/Gz(y)dGl(}’),

an equation that also holds when ¥, and Y, are continuous rather than ordinal
categorical (Brunner and Munzel 2000). Simonoff et al. (1986) considered various
estimators of A and their estimated variances, showing that a bootstrap method
provides a robust estimated variance. For methods using such measures with several
groups or multiple variables, see Semenya et al. (1983), Brunner and Puri (2001),
Munzel and Hothorn (2001), Ryu and Agresti (2008), and several other articles by
E. Brunner and colleagues summarized in Section 7.7.2. Bamber (1975) showed

that « is the same as the area under a receiver operating characteristic (ROC) curve
(Section 5.5.3).

2.3. Although «; from applying « to compare two groups i and k is not deter-
mined by the o values comparing group i to the marginal distribution of ¥ and
comparing group k to the marginal distribution, models can be specified in which
this type of simplicity occurs. An alternative to models considered in the next three
chapters that use r — 1 parameters to compare r groups on an ordinal response
variable [e.g., models (3.11) and (4.4)] is

logit (o) = T — Tk,
with a constraint such as 7, = 0. Semenya et al. (1983) proposed a weighted least

squares analysis for this model. Kawaguchi and Koch (2010) generalized this model
in the context of crossover studies.
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Section 2.2: Ordinal Odds Ratios for Contingency Tables

2.4. In a 2 x c table with an ordinal response Y, suppose that all ¢ — 1 of the
cumulative log odds ratios take value 8. McCullagh and Nelder (1983, p. 122)
noted that local log odds ratios {log Ob} relate to the uniform cumulative log odds
ratio S by

logf; =p[PY <j+1)—PX <j—-D]+0(h), j=1,...,c—1,

where o(8)/8 — 0 as § — 0. Hence, local log odds ratios are typically smaller
in absolute value than the cumulative log odds ratio 8. For example, for the uni-
form marginal distribution {P(Y = j) = 1/c}, for small |B|, log Gb =~ 28/c. The
discrepancy between the two types of odds ratio tends to increase as ¢ increases.

2.5. For other examples of ordinal odds ratios and for relationships among them,
see Lehmann (1966), Dale (1984), Grove (1984, 1986), Douglas et al. (1990),
Barnhart and Sampson (1994), and Oluyede (1994).

EXERCISES

2.1. Show that the mean ridits for conditional distributions of Y in a two-way
contingency table satisfy Y p; . A; = 0.50.

2.2. For a sample set of counts ny, ..., n., show that the jth midrank r; relates
to the jth ridit a; by r; = na; + 0.5. Show that a; and r;/(n + 1) are very
close for large n.

2.3. Let A;; denote the measure of stochastic superiority (2.2) applied to rows i
and k of a contingency table.

(a) Does Ay = A;; + Aj? Why or why not?
(b) Show by example that it is possible to have A;; >0 and Aj >0, yet
have A;; < 0.

2.4. For the local odds ratios, explain why 6;; > 1, 1 < j <c — 1, implies that
the conditional distribution in row i + 1 is stochastically higher than the
conditional distribution in row i. Explain why the converse is not true.

2.5. For two conditional distributions, the plot of lines that connects succes-
sively the points {(0, 0), (Fiji, Fi2), (Fyi, F2p), (F31, F3p2), .. ., (1.0, 1.0)}
is called a cumulative sum diagram (CSD). See Grove (1980).

(a) Show that a straight line for the CSD corresponds to independence.

(b) Show that a convex CSD corresponds to the condition that all local log
odds ratios for the two rows are nonnegative.

(c) Draw and interpret the sample CSD for the data in Table 2.2.
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2.6.

2.7.

Lehmann (1966) defined two random variables (X, Y), discrete or continuous,
to be positively quadrant dependent if

PX<x,Y<y)>P(X<x)P(Y <y) all x and y
and positively likelihood-ratio dependent if their joint density satisfies

Flxr, y0) f(x2, y2) = f(x1, y2) f(x2, 1)

whenever x; < x2 and y; < y;. He defined Y to be positively regression
dependent on X if

P(Y<ylX=ux) is nonincreasing in x.

(a) Show that the bivariate normal distribution satisfies positive likelihood-
ratio dependence.

(b) For cross-classifications of ordinal variables, explain why positive quad-
rant dependence corresponds to {log ég > 0}, positive likelihood-ratio
dependence corresponds to {log é,]; > 0}, and positive regression depen-
dence corresponds to {log ég > 0}.

Go to sda.berkeley.edu/GSS and cross-classify the variables POLVIEWS and

HAPPY for the latest survey [e.g., enter YEAR(2008) in the selection filter

to obtain results for the year 2008]. Using methods of this chapter, describe
the data.



CHAPTER 3

Logistic Regression Models Using
Cumulative Logits

For binary response variables, in most fields logistic regression has become the
standard model for analyzing the effects of explanatory variables. In Chapters 3
and 4 we present extensions of logistic regression for ordinal response variables. In
Section 3.1 we describe ways of forming logits for an ordinal scale, in Sections 3.2
and 3.3 we present a model for one of these logits which applies to response cumu-
lative probabilities, and in Section 3.4 we discuss model fitting and inference. In
Section 3.5 we present model checking methods, in Section 3.6 introduce more
complex models that sometimes fit better, and in Section 3.7 discuss connections
between inference methods of models for cumulative probabilities and nonpara-
metric rank methods. In Chapter 4 we present analogous models using the other
ways of forming ordinal logits introduced in Section 3.1.

3.1 TYPES OF LOGITS FOR AN ORDINAL RESPONSE

When the response variable is ordinal, how can we form logits in a way that
recognizes the category order? One way is to group categories that are contiguous
on the ordinal scale. For example, we can apply the logit transformation to the
cumulative probabilities.

3.1.1 Cumulative Logits

For ¢ outcome categories with probabilities ny, ..., 7., the cumulative logits are
defined as
: : P(Y <))
logit [P(Y < j)] =log ———————
ogit [P(Y < P =log ;—p
E T e oL

= log j=1,...,c—1 3.1

nj+l+...+nc

Analysis of Ordinal Categorical Data, Second Edition, By Alan Agresti
Copyright © 2010 John Wiley & Sons, Inc.
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This logit equals the ordinary binary logit applied to the collapsing of the response
outcomes into the two results ¥ < j and ¥ > j. Each cumulative logit uses all ¢
response categories.

3.1.2 Adjacent-Categories Logits

The adjacent-categories logits are the log odds for pairs of adjacent categories,

This logit equals the ordinary binary logit applied to the conditional probability of
response outcome in category j, given response outcome in category j or j + 1;
that is,

PY=j|Y=jor¥Y=j+1)

logit[P(Y=j|Y=jorY=j+1)] =log [—P(=j|Y=jorY=jt1)

As a set of logits, the adjacent-categories logits are equivalent to the baseline-
category logits commonly used to model nominal response variables. Those
logits pair each category with a baseline category, typically the last one, as

log(r;/ne), j =1,...,c — 1. The connections are
log = =log —J— +log *L 4 ... 1 jog T (3.2)
¢ Tj+1 Tj+2 e
and
10gL=10gﬂ—lognj+l, j=1,...,c— 1.
Tl e e

Either set is sufficient in the sense that it determines the logits for all (5) pairs of
response categories.

3.1.3 Continuation-Ratio Logits
The continuation-ratio logits are defined as
7j

log ——mM8M8M™—,
g;’tj+l+"'+7fc

j=1,...,c—1 (3.3)

Continuation-ratio logit models are useful when a sequential mechanism determines
the response outcome, in the sense that an observation must potentially occur in
category j before it can occur in a higher category (Tutz 1991). An example is
survival of a person through various age periods. Let w; = P(Y =j | Y > j).
That is,

wj=—>2  j=1,..c—1L (3.4)
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The continuation-ratio logits (3.3) are ordinary logits of these conditional proba-
bilities: namely, logfw;/(1 — w;)].

An alternative set of continuation-ratio logits, appropriate if the sequential mech-
anism works in the reverse direction, is

Tjt1

log —
T

j=1,...,c—1 (3.5)

The two forms of continuation-ratio logits are not equivalent. With ¢ = 3 categories,
for example, the first set (3.3) of sequential continuation-ratio logits is

lo R
Ty + 73 3

while the second set (3.5) is

T
log —2, log .
3| T+

3.1.4 Ordinal Models Use Ordinal Logits Simultaneously

For each type of ordinal logit applied to a c-category response, ¢ — 1 logits can
be formed. Ordinal models incorporate the ¢ — 1 logits into a single model. In
the next section we show that this approach results in more parsimonious and
simpler-to-interpret models than the fitting of ¢ — 1 separate models, one for each
logit.

In this chapter we present models for cumulative logits and in Chapter 4 present
models for the other ordinal logits. We see that each model has its own ordinal odds
ratio for summarizing effects. For example, since the adjacent-categories logits use
pairs of adjacent categories, they are naturally summarized using local odds ratios.

3.2 CUMULATIVE LOGIT MODELS

We now present a model for the cumulative logits, incorporating explanatory vari-
ables. For subject i, let y; denote the outcome category for the response variable,
and let X; denote a column vector of the values of the explanatory variables. The
model simultaneously uses all ¢ — 1 cumulative logits. It has the form

logit [P(Y; < )] =oa;+ B'xi = + Pixi1 + Paxia + -+ - (3.6)

for j=1,...,c— 1, for a column vector B of parameters that describes the effects
of the explanatory variables. For simplicity of notation, unless we need to refer to
particular subjects or to particular values of the explanatory variables, we replace
P(Y; < j | x;) in such equations by P(Y < j), keeping in mind that in the model
this is actually a conditional probability at each fixed value for the explanatory
variables.
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In model (3.6), the logit for cumulative probability j has its own intercept, o;.
The {o;} are increasing in j because P(Y < j) increases in j for each fixed value
of x, and the logit is an increasing function of this probability. The equivalent
model expression for the cumulative probabilities is

. expla; +8'%) . B
P(YSJ)_1+exp(aj+ﬂ’x)’ j=1...,c—1 3.7

For the cell probabilities themselves,

¥ =y SRR BN exp@ 1+ BX)
1+exp(e; +B'x) 1+expej_+B'x)’
with ag = —00 and . = 0o. This formula has the form of a linear combination

of inverse link functions: namely, inverse logit links with coefficients 1 and —1.
The link function for the cell probabilities in such a case is called a composite link
Junction (Thompson and Baker 1981).

In model (3.6), the effects B are the same for each cumulative logit. This results
in a parsimonious model, compared to models such as baseline-category logit mod-
els for nominal responses that have separate parameters for each logit. We’ll see
motivation for this model structure in Section 3.3.2, based on an ordinary regression
model for an underlying latent variable.

3.2.1 Cumulative Logit Model: Continuous Predictor

To help explain the cumulative logit model and its interpretations, let’s first consider
the case of a single continuous predictor x. The model is then

logit [P(Y < j)] =a; + Bx, j=1,...,¢c—1

Figure 3.1 depicts this model for ¢ = 4 outcome categories for Y. For fixed j, the
response curve is an ordinary logistic regression curve for a binary response with
outcomes ¥ < j and Y > j. The common effect 8 for the three cumulative logits
implies that the three response curves for the cumulative probabilities for j =1,
2, 3 have the same shape.

P(Y<1)
P(Y<3)

P(Y<))

P(Y<2)

0

X

Figure 3.1. Depiction of cumulative probabilities in proportional odds version of cumulative logit
model. Each curve has the same effect parameter.
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As in logistic regression, the size of |8] determines how quickly the curves
go up or go down. At any fixed x value, the curves have the same ordering as
the cumulative probabilities, the one for P(Y < 1) being lowest. When the model
holds with 8 = 0, the graph of P(Y < j) as a function of x is a horizontal line
for each j. Then Y is statistically independent of x.

Since the curves for the different cumulative probabilities have the same shape,
any one curve is identical to any other curve shifted to the right or shifted to the
left. For j < k, the curve for P(Y < k) is the curve for P(Y < j) translated by
(ax —a;)/B units in the x direction; that is,

[ . ak—aj]
PlY <k|X=x]=P ng[X=x+T .

The greater the difference oy — «; for a given value of 8, the greater the horizontal
distance between the curves for the two cumulative probabilities. Although we
need the intercept parameters {«;} to fully determine the cumulative probabilities,
in practice the parameter of interest is 8, which describes the effect of x.

Figure 3.1 has B > 0 and Figure 3.2 shows corresponding curves for the category
probabilities, P(Y = j) = P(Y < j) — P(Y < j —1). When 8 < 0, the analogous
curves for Figure 3.1 descend rather than ascend, and the labels in Figure 3.2 reverse
order. The identical shape for the various curves implies that the distributions of
Y at different values of x are stochastically ordered, as defined in Section 2.2.5. If
B >0, each cumulative logit increases as x increases, which means that P(Y < j)

1.0
0.8 —

0.6

j)]

P(Y =

0.4 -

0.2

0.0
X

Figure 3.2. Depiction of category probabilities in proportional odds version of cumulative logit model.
At any particular x-value, the four probabilities sum to 1.
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increases also. This implies that the conditional Y distributions are stochastically
lower at higher levels of x. If 8§ < 0, the conditional Y distributions are stochasti-
cally higher at higher levels of x.

3.2.2 Alternative Parameterization with —8'x Predictor

Often, the cumulative logit model is instead expressed as
logit [P(Y; < )] =a; — B'x;. (3.8)

For this parameterization with a negative sign preceding Byx;; for predictor k, the
sign of B¢ has the usual directional meaning. For example, B¢ > 0 when Y is more
likely to fall at the high end of the scale as x;; increases. Specifically, if 8 >0,
then as x;x increases, each cumulative logit decreases. Hence, the corresponding
cumulative probabilities decrease. Then relatively less probability mass falls at the
low end of the response scale, and Y is less likely to fall at the low end and more
likely to fall at the high end of the scale.

Some software (such as SPSS) uses the linear predictor form «; — B'x;, whereas
other software (such as SAS) uses a; + B'x;. Another way to have the usual sign
interpretation for each effect is to express the model as!

P(Y > j)

=a; + f'x, j=1...,c—1,

with the cumulative probability in the denominator instead of the numerator.

3.2.3 Cumulative Logit Model for Contingency Table:
Quantitative Predictor

Next we consider the cumulative logit model applied to a two-way contingency
table. The rows are levels of a categorical explanatory variable. As in ordinary
regression or logistic regression, if the explanatory variable is qualitative (nominal
scale), indicator variables can represent its categories. The predictor is then a factor
in the model. When the explanatory variable is quantitative with particular scores
for the rows, such as the number of siblings of the subject, it is often sensible,
instead, to represent that variable as a single predictor. Then a slope coefficient
reflects a trend in ¥ as x changes. Similarly, although an ordinal variable can be
treated as a factor, it is often useful to assign numerical scores to its categories and
treat it in a quantitative manner. It is unnecessary to assign scores to the levels of
Y, because the ¢ — 1 cumulative logits within each row are ordered and serve as
the responses.

'with the DESCENDING option, SAS fits the model in this form.
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Consider first the case in which the explanatory variable is quantitative and we
use ordered scores {u1, ..., u,} for its rows. The cumulative logit model (3.6) then
simplifies in terms of the row score u;,

logit [P(Y < )l =a; +Bu;,  j=1,....,c—1. (3.9)

As in ordinary logistic regression, interpretation of 8 can use log odds ratios. For
rows a and b,

logit [P(Y < j | X =up)] —logit [P(Y < j | X = ua)] = B(up — ua).

This is the log odds ratio for the 2 x 2 table obtained using rows a and b and the
binary response with outcomes ¥ < j and Y > j. This log odds ratio is proportional
to the distance between the rows, and for fixed a and b, it is the same for all j for
collapsing the response.

With a =i and b =i + 1, this log odds ratio is the cumulative log odds ratio
estimated in equation (2.7). With unit-spaced row scores such as the row numbers
{u; =i}, the cumulative log odds ratio equals

logit [P(Y < j | X =wuis)] —logit [P(Y < j| X =u)]=8 (3.10)

fori=1,...,r—1, j=1,...,c— 1. Then exp(S) represents the constant value
of the odds ratios {01.(;} for the (r — 1)(c — 1) separate 2x2 tables obtained by
taking all pairs of adjacent rows and all binary collapsings of Y. These cumulative
odds ratios take a uniform value whenever the row scores are equally spaced. We
refer to this model for two-way contingency tables applied with equally spaced row
scores as the cumulative logit uniform association model. Figure 3.3 illustrates the
uniform cumulative odds ratio implied by this model.

3.24 Cumulative Logit Model for Contingency Table: Qualitative Predictor

When the explanatory variable is nominal scale, it enters the model as a factor,
with indicator variables. The model has the form

logit [P(Y < l=oj+1121 + 222 + - + 1,212, i=1...,c-1

1 jooi+1 c
L
X4 A B
11
T
Xp | C D
il

Figure 3.3. Odds ratios AD/BC that are constant for all pairs of adjacent rows and all ¢ — 1 cumulative
probabilities for a cumulative logit uniform association model.
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in which z; = 1 for an observation from row i and z; = 0 otherwise. As usual,
it would be redundant to include an indicator variable for the final category. The
effect terms take the form of row effects. For short, we can express the model in
terms of the effect for an observation in row i as

logit [P(Y < )l=«a;+ 1 for j=1,...,c—1 3.11)

(Simon 1974). For identifiability, {t;} have a linear constraint, such as 7, =0 or
Y, T = 0. The constraint 7, = 0 corresponds to the model expressed above with
indicator variables for each row except the last.

The row effect parameters determine the cumulative odds ratios. For a pair of
rows a and b, the cumulative log odds ratio

logit [P(Y < j | X=b)]—logit [P(Y <j|X =a)]l = Tp — Ta.

For these two rows, this cumulative log odds ratio is the same for all ¢ — 1 of
the 2 x 2 tables obtained for the ¢ — 1 possible collapsings of the response to
binary, ¥ < j and Y > j. If 1, > 1,, the cumulative probabilities are higher in row
b than in row a, so the conditional Y distribution is stochastically lower in row b.
Independence of Y and X is the special case 1) = 1) = --- = 1,.

3.2.5 Example: Astrology Beliefs and Educational Attainment

The 2006 General Social Survey asked subjects, “Would you say that astrology is
very scientific, sort of scientific, or not at all scientific?” Table 3.1 cross-classifies
their responses with their highest degree. The data show evidence of a trend, with
more highly educated people tending to put less credence in astrology.

We treat opinion about astrology as the response variable. First we treat educa-
tional level as quantitative,

logit [P(Y < j)] =a; + Bu;, =12, (3.12)

TABLE 3.1. Education and Opinion About Astrology, with Conditional Distributions
on Opinion in Parentheses

Astrology Is Scientific

Highest Degree Very Sort of Not at All
< High school 23 (11%) 84 (41%) 98 (48%)
High school 50 (5%) 286 (31%) 574 (63%)
Junior college 4 2%) 44 (26%) 122 (72%)
Bachelor 11 (3%) 57 (17%) 268 (80%)
Graduate 1 (1%) 23 (13%) 148 (86%)

Source: 2006 General Social Survey.
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TABLE 3.2. Output for Fitting Cumulative Logit Models to Table 3.1

Standard Like. Ratio 95% Chi-
Parameter DF Estimate Error Conf. Limits Square
Interceptl 1 -2.3138 0.1246 -2.5636 -2.0746 344.77
Intercept2 1 -0.0264 0.0853 -0.1938 0.1408 0.10
degree 1 -0.4614 0.0486 -0.5581 -0.3674 90.09

Standard Like. Ratio 95% Chi-
Parameter DF Estimate Error Conf. Limits Square
Interceptl 1 -4.1236 0.2429 -4.6212 -3.6660 288.28
Intercept2 1 -1.8310 0.2196 -2.2860 -1.4212 69.50
degree 0 1 1.9439 0.2582 1.4524 2.4678 56.69
degree 1 1 1.2942 0.2299 0.8622 1.7673 31.68
degree 2 1 0.8782 0.2770 0.3443 1.4343 10.05
degree 3 1 0.4693 0.2581 -0.0241 0.9915 3.31
degree 4 0 0.0000 0.0000 0.0000 0.0000

using row scores (0, 1, 2, 3, 4), which are the values coded by the GSS. Table 3.2
shows software output for fitting models (as obtained with SAS, PROC GEN-
MOD). The top part of the table shows results for this uniform association model
(3.12). There are two intercept parameter estimates, with @ = —2.3138 and &; =
—0.0264, because the response variable has three categories. The maximum likeli-
hood estimate 3 = —0.4614 reflects the tendency for the cumulative probability to
decrease as the level of education increases. Each increase of a category in the level
of attained education corresponds to a multiplicative impact of e~04614 = 0.63 in
the estimated odds of response “very scientific” (instead of “sort of scientific” or
“not at all scientific), and in the estimated odds of response “very scientific” or
“sort of scientific” (instead of “not at all scientific”). The estimated cumulative odds
ratio comparing “< high school” with “graduate” education is e©~9(-04619) — ¢ 3,

We can substitute the estimated parameters into the model formula to obtain
estimated cumulative logits and then invert the estimated cumulative logits to obtain
estimated cell probabilities. To illustrate, for “graduate” education, for which the
predictor score equals 4,

A

o—23138+4(~0.4614)
P(Y <

b= 1 + e-23138+4(—04614) 0.015,
o—0.0264+4(-0.4614)

P(Y <2)= 1 + o-00264+4(-0.4612) — 0.133.

From these,

P(Y =1)=0.015, P(Y =2)=0.133 —0.015 =0.118,
P(Y =3)=1-0.133 = 0.867.

The corresponding sample proportions are 0.006, 0.134, and 0.860.
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Next, we treat educational level as qualitative (a factor) by fitting the model
with row effects,

logit [P(Y < )=« + 1, j=12.

The second panel of Table 3.2 shows results under the constraint s = 0. The
decrease in {f;} across education categories again reflects the tendency for the
cumulative probability to decrease as education level increases. The effect is strong
for quite different educational levels. For example, the estimated cumulative odds
ratio comparing “< high school” with “graduate” education is e!43°~% = 7.0.

3.3 PROPORTIONAL ODDS MODELS: PROPERTIES
AND INTERPRETATIONS

We introduced cumulative logit models by focusing on simple models with a single
explanatory variable. The property by which a cumulative log odds ratio comparing
two settings of a predictor is identical for each of the ¢ — 1 cumulative probabilities
extends to the more general case (3.6), namely,

logit [P(Y < )] =«a; + B'x, j=1,...,c— 1

3.3.1 Proportional Odds Property
The general model with multiple explanatory variables satisfies
logit [P(Y < j | x))] —logit [P(Y < j | x2)]

P(Y <jIx)/PY >jl|x1)
P(Y <j|x)/P(Y>j|x2)

= B'(x1 — x2).

The odds of making response Y < j at x = X; are exp[B’(x; — X;)] times the odds
at x = x,. The log cumulative odds ratio is proportional to the distance between
x; and x;. The same proportionality constant applies to each of the ¢ — 1 logits.

Because of this property, model (3.6) is often referred to as a proportional odds
model. The name comes from an influential article on modeling ordinal data by
McCullagh (1980). An alternative name used in some fields is ordered logit model .
We prefer to refer to model (3.6) as the proportional odds version of the cumulative
logit model. The term ordered logit is vague, because there are also other types of
logit models for ordinal data, presented in Chapter 4. The term proportional odds
is also vague, because these other logit models for ordinal data can also have a
proportional odds structure.

3.3.2 Latent Variable Motivation

How can we justify the common effect 8 for different logits in the proportional
odds version of the cumulative logit model? One way uses a regression model for
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an unobserved continuous variable assumed to underlie ¥ (Anderson and Philips
1981). Let Y* denote the underlying latent variable. For fixed values of explanatory
variables x, suppose that Y* varies around a location parameter 7, such as a mean,
that depends on x through n(x) = B’x. Specifically, suppose that the conditional
cdf of Y* is

P(Y* < y* %) = G(y* —n) = G(* - B'%).

With the mean as the location parameter, at a given value of x,
Y* =8'x+e¢,
where € has cdf G with E(e) = 0. Suppose that —00 =ap < &) < - -+ < Oy = OO
are cutpoints of the continuous scale, sometimes also referred to as thresholds,
such that the observed response Y satisfies
Y= ifoj_y <Y* <o

That is, Y falls in category j when the latent variable falls in the jth interval of
values. Figure 3.4 depicts this, and Figure 1.1 showed a particular example of a
regression model for a latent variable and the corresponding ordinal categorical
measurement.

Under this latent variable structure,

PY <j|x)=P¥*<«a;|x)=G(x; — B'x).

— PlY=4lx)

- PlY=4ix) 4
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Figure 3.4. Ordinal measurement and underlying regression model for a latent variable.
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So the link function to apply to P(¥ < j | X) to obtain a linear predictor is G,
the inverse of the cdf for Y*. That is,

GT[P(Y <jIW]=a;—B'x.

When G is the cdf of the standard logistic distribution, which is G(¢) = /(1 +
e¢), then G~! is the logit link function. That is, the logistic latent variable model
implies the model for the observed response,

logit [P(Y < j | )] =«a; — B'x.

This is the proportional odds version of the cumulative logit model, which has the
same effects for each cumulative probability. Other underlying distributions imply
different link functions for the cumulative probabilities but maintain the common
effect for all j. In Section 5.1 we discuss the general model form. Most important,
normality for € implies that G~! is the inverse of the standard normal cdf. This is
the probit link for cumulative probabilities. In Section 5.2 we discuss cumulative
probit models.

The derivation above shows that using a cdf of the form G(y* — 8'x) for
the latent variable, with y* values varying around B'x, results in linear predic-
tor ; — B'x rather than «; + Bx. In Section 3.2.2 we introduced this negative
parameterization for the explanatory variables for the special case (3.8) with logit
link. In practice, it does not matter which parameterization we adopt as long as we
interpret effects appropriately.

The latent variable motivation for the model explains why distributions of Y at
different settings of explanatory variables are stochastically ordered. The model is
sensitive to location effects, not effects whereby the variability of Y changes as the
explanatory variables change. The model usually fits poorly if the variability of an
underlying latent variable changes dramatically over the range of observed values,
as explained in Sections 3.6 and 5.4.

The latent variable construction also suggests an interpretation of the model
parameters. A unit increase in x; corresponds to an increase in E(Y*) of B, keep-
ing fixed the other predictor values. The size of the effect depends on the spread of
the conditional distribution of Y* and can be specified in standard deviation units.
When Var(¢) = 02, a 1-unit increase in x corresponds to an increase in E(Y*) of
Bik/o standard deviations. The standard logistic distribution, for which the inverse
gives the logit link function, has ¢ = /+/3. For the example in Section 3.2.5, an
interpretation of § = —0.4614 is that a 1-unit increase in educational level corre-
sponds to an estimated decrease of 0.4614/(m/+/3) = 0.25 standard deviation for
the mean of a hypothetical underlying latent conditional distribution for scientific
belief in astrology.

McKelvey and Zavoina (1975) and Bock (1975, Sec. 8.1.6) suggested the latent
variable representation for the normal case. Aitchison and Silvey (1957) and Ash-
ford (1959) had used it with a single factor or quantitative variable as the predictor.



56 LOGISTIC REGRESSION MODELS USING CUMULATIVE LOGITS

3.3.3 Invariance to Choice of Response Categories

In this derivation using a latent variable model, the same parameters 8 occur for
the effects of the explanatory variables on Y regardless of how the {«} cut up the
underlying continuous scale. This implies that the effect parameters 8 are invariant
to the choice of categories for Y.

For example, suppose that a continuous variable measuring political ideology
has a linear regression with some explanatory variables. Then the same effect
parameters apply to a discrete version of political ideology with the categories
(liberal, moderate, conservative) or (very liberal, slightly liberal, moderate, slightly
conservative, very conservative). This feature makes it possible to compare model
parameter estimates from studies using different response scales.

To illustrate, the cumulative logit uniform association model (3.12) for Table 3.1

has A = —0.461. If we combine the categories “very scientific” and “sort of scien-
tific” for opinion about astrology and fit the binary logistic regression model, we
obtain 8 = —0.456, very similar in value.

3.3.4 Interpretations Comparing Response Probabilities

An alternative way of summarizing effects in cumulative logit models directly
uses the cumulative probabilities for Y. For example, to describe the effect of a
quantitative variable x, we could compare 13(Y < j) [or 13(Y > j)] for a particular
J at different values of x, such as the maximum and minimum values. To describe
effects of a categorical predictor, we compare P(Y < j) for different categories of
that predictor. We can control for other quantitative variables in the model by setting
them at their mean. We can control for other qualitative variables in the model
by making the comparison at each combination of their values. When there are
several qualitative variables, we could, instead, merely set them all at the means of
their indicator variables, mimicking the treatment of quantitative control variables.
Similarly, we can describe effects on the individual category probabilities. Using
the lowest and highest categories of Y, we could report the maximum and minimum
values of P(Y = 1) and P(Y = ¢) over the set of predictor values, reporting the
values of the predictors that provide these extremes.

For example, consider the uniform association model (3.12) applied to Table 3.1.
The estimated probability that astrology is judged to be “very scientific” decreases
from 0.090 for those with less than a high school education to 0.015 for those with
a graduate degree. The estimated probability that astrology is judged to be “not at
all scientific” increases from 0.507 for those with less than a high school educa-
tion to 0.867 for those with a graduate degree. Figure 3.5 portrays the estimated
category probabilities on opinion about astrology at the five education levels. The
height of the lowest portion (darkly shaded) of each bar is the estimated prob-
ability of response “not at all scientific”’; the height of the medium bar is the
cumulative probability for categories “not at all scientific” and “sort of scientific,”
so the middle portion of each bar portrays the estimated probability of response
“sort of scientific.” The more lightly shaded top portion of each bar portrays the
estimated probability of response “very scientific.” With multiple predictors, such
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Figure 3.5. Estimated conditional probabilities for opinion about astrology at five highest degree levels
based on fit of model (3.12). 0, less than high school; 1, high school; 2, junior college; 3, bachelor; 4,
graduate.

a comparison can be made at the maximum and minimum values of each predictor,
with the other predictors set at their means.

For a continuous predictor x, a comparison of probabilities at maximum and
minimum values of x; is not resistant to outliers on x;. When severe outliers
exist, it is often preferable to use the lower and upper quartiles of x; instead. A
comparison of estimated probabilities at the quartiles summarizes an effect over
the middle half of the data (on x;) and is not affected by outliers. Alternatively,
a standard approximation for the rate of change of a probability in the logistic
regression model also applies with ordinal logit models. The instantaneous rate of
change in P(Y < j) as a function of explanatory variable x, at fixed values for
the other explanatory variables, is

aP(Y < j) . .
o = BP < I - PX < ).
Xk
For example, suppose that Bi = 0.150 for the effect of x; = number of years of edu-
cation in a particular application. Then, at predictor values such that PY<j=
0.60, an increase of 1 in x; while keeping fixed the other predictors corresponds
to approximately a 0.150(0.60)(0.40) = 0.036 estimated increase in P(Y < j).
We have seen that interpretations can also focus on standardized effects for the
conditional distribution of an underlying latent response variable Y *. Alternatively,
standardized effects can refer to the marginal distribution of Y*, as is often done
in ordinary regression. This is discussed in Section 5.1.3. Yet another type of
interpretation focuses on standardizing other measures. For example, Joffe and
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Greenland (1995) showed how to convert estimated regression coefficients into
estimates of standardized fitted probabilities, probability differences, and probability
ratios.

3.4 FITTING AND INFERENCE FOR CUMULATIVE LOGIT MODELS

Next we discuss maximum likelihood (ML) fitting for cumulative logit models,
assuming independent multinomial observations. The model of proportional odds
form,

logit [P(Y < j)l=a; + 8%, j=1,....,c—1,

constrains the ¢ — 1 response curves to have the same shape. Because of this, its
fit is not the same as the fits of ¢ — 1 separate binary logistic models, one for each
cumulative logit corresponding to a binary collapsing of the ordinal response.

Some early applications of cumulative logit models used weighted least squares
for model fitting (e.g., Williams and Grizzle 1972). This entails applying the delta
method to the sample proportions in the various categories at each setting of pre-
dictors to obtain a large-sample estimated covariance matrix of all the sample
cumulative logits. Such logits are correlated with nonconstant variance, so ordi-
nary least squares is not efficient. The weighted least squares approach has the
advantage of computational simplicity, as the vector of model parameter estimates
has closed form and does not require iterative methods. However, since the sam-
ple logits are functions of sample cell proportions, this approach is designed for
nonsparse contingency tables and cannot handle continuous predictors. Walker and
Duncan (1967) were the first to present ML model fitting for cumulative logit
models. McCullagh (1980) presented an algorithm for more general models for
cumulative probabilities discussed in Chapter 5.

34.1 Maximum Likelihood Model Fitting

For subject i, let yjy, ..., yic be binary indicators of the response, where y;; = 1 for
the category j in which the response falls; that is, when Y; = j, then y;; = 1 and
yik = 0 for k # j. Recall that x; denotes the values of the explanatory variables
for subject i. Let 7 (x;) denote P(Y; = j | X = x;). For independent observations,
the likelihood function is based on the product of the multinomial mass functions
for the n subjects,

[T|TTme0m |=TT{TTIP <) 1% - P < =11 %)

i=1 | j=1 i=1 | j=1

1'"-[ IC-[ [ exp(e; +B'xi)  exp(ej—1 +B'%:) :lyij
il el R exp(aj + B'x;) 1 +exp(aj—) +8'x;)
3.13)

j=1
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The likelihood function is a function of ({«}, B) after observing {y;;}. Denote
the log-likelihood function by L({;}, B). We obtain each likelihood equation by
differentiating L with respect to a particular parameter and equating the derivative
to zero. For simplicity, we denote

exp(2) exp(2)

G(z) = g = m-

T 14 exp(z)’
Then the likelihood equation for an effect parameter By is
o glaj+ B'xi) — glaj—y + B'x;)
DY vixu 7 o~y =0
Gla; + B'x;) — Glaj_1 + B'x;)

i=1 j=I

Section 5.1.2 shows the full set of equations in the context of a more general model
with a family of link functions. As in ordinary logistic regression, these equations
are nonlinear in the parameters and do not have a closed-form solution.

Iterative methods are used to solve the likelihood equations and obtain the
ML estimates of the model parameters. Walker and Duncan (1967) and McCullagh
(1980) used the Fisher scoring algorithm to do this. This is an iteratively reweighted
least squares algorithm of the type used to fit ordinary generalized linear models.
Each step has the form of weighted least squares, reflecting the nonconstant variance
of the observations. The weights change from step to step as the approximations
for the ML estimates of 8 get closer to the actual ML estimate 8. Convergence of
the iterative method is usually rapid because the log-likelihood function is concave
(Haberman’s discussion of McCullagh 1980; Burridge 1981; Pratt 1981; Kaufmann
1988).

McCullagh (1980) showed that sufficiently large n guarantees a unique maxi-
mum of the likelihood function. However, for finite n, unique estimates may not
exist or may be infinite, for certain patterns of data, as explained in Section 3.4.5.

3.4.2 Estimating Standard Errors

The large-sample estimated covariance matrix for the ML model parameter esti-
mates is the inverse of the information matrix evaluated at the ML estimates. The
information matrix contains the negative second partial derivatives of L({;}, B8)
with respect to the model parameters, that is, describing the curvature of the log-
likelihood function. The more highly curved the log likelihood function at the ML
estimates, the smaller are the standard errors, and the more precise are the ML
estimates of the model parameters. In Section 5.1.2 we show this matrix in the
context of a more general model with a family of link functions.

The information matrix has two possible versions. The observed information
matrix uses the actual second partial derivatives. The element in row a and
column b of the observed information matrix is —82L ({c i}, B)/0Ba 0By, where
Ba and Bp are a pair of parameters from («i,..., &1, 8). By contrast, the
expected information matrix uses the expected values of the second partial
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derivatives. The element in row a and column b of the expected information
matrix is E[—3?L(B)/ 3B, 3Pp]. In either case the information matrix is estimated
by substituting ({&;}, B). The estimated information matrix is inverted to obtain
the estimated asymptotic covariance matrix. For either version of the inverse
estimated information matrix, the estimated standard errors are the square roots of
the main-diagonal entries.

The inverse of the expected information matrix is used in the Fisher scoring
algorithm for obtaining the ML model fit. The corresponding algorithm that,
instead, uses the observed information matrix is the Newton—Raphson algorithm
[e.g., see Simon (1974) for the row effects model]. Results for 8 are identical for
each algorithm, as either algorithm yields the ML solution. For either algorithm,
an estimated asymptotic covariance matrix is a by-product of the algorithm, from
the inverse of the estimated information matrix at convergence. However, standard
error estimates do depend on the algorithm used. For example, in SAS, PROC GEN-
MOD uses the observed information, whereas PROC LOGISTIC uses the expected
information, so their reported standard errors typically differ slightly. (By contrast,
for binary logistic regression and baseline-category logit models, the observed
information and the expected information are identical; see Agresti 2002, p. 149.)
The Fisher scoring algorithm sometimes has better computational stability, because
the weight matrix is positive definite over a larger region of the parameter space.

3.4.3 Inference About Model Parameters and Probabilities

Based on the model fit, we can conduct statistical inference about the model param-
eters using the ML estimates, their standard errors, and the maximized likelihood
function in the usual ways. For example, a 95% Wald confidence interval for a
parameter Sy is

Bk + 1.96(SE),

where SE is the standard error of ,ék- For testing Hy: Br = 0, we can use

or its square, which (under Hp) has an asymptotic chi-squared distribution with
df = 1.

When the sample size is small or a large percentage of the observations fall at
the highest (or lowest) category of the response variable, the distribution of (,ék -
Bx)/SE need not be close to standard normal. Then it is better to use likelihood-
ratio tests and confidence intervals based on the profile likelihood function. The
likelihood-ratio test statistic equals

—2(Lo — L),
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where L is the maximized log-likelihood function under the null hypothesis con-
straint that 8y =0 and L, is the maximized log-likelihood function without that
constraint, that is, evaluated at 8. The 95% confidence interval for B¢ consists of
null-hypothesis values Bio for this parameter for which the P-value exceeds 0.05
for the likelihood-ratio test of Hy: Br = Bro. These inferences are available in some
software.?

For the data on educational level and belief about astrology, Table 3.2 shows that
the uniform association model for cumulative odds ratios has ﬁ = —0.4614 with
SE = 0.0486. The Wald 95% confidence interval for 8 is —0.4614 £ 1.96(0.0486),
or (—0.557, —0.366). The sample size was large, and this is similar to the profile
likelihood confidence interval reported in that table. The corresponding confidence
interval for the cumulative odds ratio for each one-category change in educational
level is (e70357, ¢=0-3) = (0.57, 0.69).

For interpreting effects, we can compare estimated cumulative probabilities or
category probabilities at various settings of explanatory variables. Confidence inter-
vals for the corresponding population probabilities describe the precision of those
estimates. Some software also provides these inferences.>

3.4.4 Example: Mental Health by Life Events and SES

Table 3.3 comes from a study of mental health for a random sample of adult
residents of Alachua County, Florida.* Mental impairment is ordinal, with cate-
gories (well, mild symptom formation, moderate symptom formation, impaired).
The study related ¥ = mental impairment to several explanatory variables, two
of which are shown here. The life events index x; is a composite measure of the
number and severity of important life events that occurred to the subject within
the past three years, such as the birth of a child, a new job, a divorce, or a death
in the family. In this sample, x; has a mean of 4.3 and standard deviation of 2.7.
Socioeconomic status (x; = SES) is measured here as binary.
The cumulative logit model of proportional odds form with main effects is

logit [P(Y < j)] = a; + Bix1 + Brxa.

Table 3.4 shows SAS output. The estimates ﬁl =—0.319 and A, = 1.111 suggest
that the cumulative probability starting at the “well” end of the mental impairment
scale decreases as life events increases and increases at the higher level of SES.
Given the life events score, at the high SES level the estimated odds of mental
impairment below any fixed level are e'!!! = 3.0 times the estimated odds at the
low SES level.

Table 3.5 shows estimated category probabilities that also help us to interpret
the predictor effects. To illustrate, we describe effects by the change in Py = 1)

2For example, in SAS, using PROC GENMOD with the LRCI and TYPE3 options, and in R with the
confint function.

3For example, in SAS, using PROC GENMOD with the OBSTATS option.

“Thanks to Charles Holzer for the background for this study.
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TABLE 3.3. Mental Impairment by SES and Life Events

Mental Life Mental Life
Subject  Impairment  SES®  Events Subject  Impairment  SES?  Events
1 Well 1 1 21 Mild 1 9
2 Well 1 9 22 Mild 0 3
3 Well 1 4 23 Mild 1 3
4 Well 1 3 24 Mild 1 1
5 Well 0 2 25 Moderate 0 0
6 Well 1 0 26 Moderate 1 4
7 Well 0 1 27 Moderate 0 3
8 Well 1 3 28 Moderate 0 9
9 Well 1 3 29 Moderate 1 6
10 Well 1 7 30 Moderate 0 4
11 Well 0 1 31 Moderate 0 3
12 Well 0 2 32 Impaired 1 8
13 Mild 1 5 33 Impaired 1 2
14 Mild 0 6 34 Impaired 1 7
15 Mild 1 3 35 Impaired 0 5
16 Mild 0 1 36 Impaired 0 4
17 Mild 1 8 37 Impaired 0 4
18 Mild 1 2 38 Impaired 1 8
19 Mild 0 5 39 Impaired 0 8
20 Mild 1 5 40 Impaired 0 9
41, high; 0, low.

TABLE 3.4. Output for Fitting Cumulative Logit Model to Table 3.3

Parameter
Interceptl
Intercept?2
Intercept3
life

ses

Estimate
-0.2819
1.2128
2.2094
-0.3189
1.1112

Source
life
ses

std Like. Ratio 95% Chi-
Error Conf. Limits Square Pr > Chisqg
0.6423 -1.5615 0.9839 0.19 0.6607
0.6607 -0.0507 2.5656 3.37 0.0664
0.7210 0.8590 3.7123 9.39 0.0022
0.1210 -0.5718 -0.0920 6.95 0.0084
0.6109 -0.0641 2.3471 3.31 0.0689
LR Statistics
DF Chi-Square Pr > Chisg
1 7.78 0.0053
1 3.43 0.0641

Score Test for the Proportional 0Odds Assumption
Chi-Square DF Pr > ChiSg

2.3255 4 0.6761
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TABLE 3.5. Estimated Probabilities Describing Effect of Life Events and SES on
Mental Impairment

Estimated Probabilities

SES Life Events Well Mild Moderate Impaired

High Min. =0 0.70 0.21 0.05 0.03
Mean = 4.3 0.37 0.35 0.15 0.12
Max. =9 0.12 0.25 0.24 0.39

Low Min. =0 043 0.34 0.13 0.10
Mean = 4.3 0.16 0.30 0.24 0.20
Max. =9 0.04 0.12 0.18 0.66

for the “well” outcome. Its value varies between 0.04, for those with low SES
and nine life events, and 0.70, for those with high SES and zero life events. First,
consider the SES effect. At the mean life events of 4.3, 13(Y = 1) = 0.37 at high
SES (ie.,, xp =1) and 13(Y = 1) = 0.16 at low SES (x; = 0). Next, consider the
life events effect. For high SES, 13(Y = 1) changes from 0.70 to 0.12 between the
sample minimum of zero and maximum of nine life events; for low SES, it changes
from 0.43 to 0.04. Comparing 0.70 to 0.43 at the minimum life events and 0.12 to
0.04 at the maximum provides a further description of the SES effect. The sample
effect is substantial for each predictor.

The precision of such estimates is portrayed by confidence intervals for popu-
lation probabilities. Table 3.6 shows these for describing the life events effect on
the probability of the “well” outcome. For the relatively small sample size of these
data, the probability estimates are rather imprecise.

To illustrate inferential methods about effects of explanatory variables, we con-
sider the effect of life events, controlling for SES. Table 3.4 reports a 95% profile
likelihood confidence interval for f; of (—0.572, —0.092). The confidence inter-
val for the effect on the cumulative odds of a I-unit increase in life events is
(exp(—0.572), exp(—0.092)) = (0.56, 0.91). The corresponding Wald confidence
interval is exp[—0.3189 + 1.96(0.121)] = (0.57, 0.92), where the standard errors
are based on the observed information (with model fitting using PROC GENMOD

TABLE 3.6. Estimates and Confidence Intervals Describing Effect of Life Events on
Probability of “Well” Outcome

SES Life Events Estimated P(Well) 95% Confidence Interval
High 0 0.70 (0.39, 0.89)

9 0.12 (0.03, 0.36)
Low 0 0.43 (0.18, 0.73)

9 0.04 (0.01, 0.19)
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in SAS). The chi-squared values reported in the table opposite the parameter esti-
mates are for the Wald tests. For example, for testing Hy: 81 = 0, the Wald statistic
equals (—0.319/0.121)% = 6.95 with df = 1 (P-value = 0.008). The separate table
for results of the likelihood-ratio tests also shows strong evidence of a life events
effect but weaker evidence of an SES effect.

3.4.5 Infinite Model Parameter Estimates

In practice, with relatively small sample sizes, a large number of model parameters,
or highly unbalanced data, one or more of the model parameter estimates may be
infinite. An estimate f; = oo if the log-likelihood function continues to increase as
Bx increases unboundedly, and Br = —o0 if the log-likelihood function continues to
increase as f; decreases unboundedly. This happens most commonly with certain
patterns of empty cells in contingency tables.

From binary logistic regression, we know that an estimate does not exist or is
infinite when there is quasi-separation, that is, no overlap in the sets of explanatory
variable values having y = 0 and having y = 1. A hyperplane passing through the
space of predictor values can separate those with y = 1 from those with y =0.
For a cumulative logit model, this is the case if such separation occurs for each of
the ¢ — 1 collapsings of the ordinal response to a binary response.

For example, consider the quantitative predictor model (3.12), which is

logit [P(Y < j)] =a; + Bu;

with ordered scores {u;} for the rows. The estimate of 8 is infinite whenever either
no pairs of observations are concordant or no pairs are discordant. One such case is
a contingency table for which all observations fall in r + ¢ — 1 cells consisting of
one row and one column, with each at the highest or lowest level of the variable.
Another case is when all observations fall on a diagonal of the table, such as an
r x r table having n;; >0 for all i and n;; =0 for i # j.

Next, consider the qualitative predictor model (3.14) for an r x ¢ table, which
in terms of row effects {7;} is

logit [P(Y < )l=0a; +

with 7, = 0. Infinite estimates exist if there is a pair of rows for which all observa-
tions in one row never fall above any observations in the other row. For example,
7; = oo if all observations in row i fall in the first column and 7; = —oo if all
observations fall in the last column, when this does not happen for row r.

Whenever an infinite estimate exists for a given model, more complex models
also have this property. For example, if ﬁ is infinite in the quantitative predictor
model (3.12), finite effect estimates will not exist in the qualitative predictor model
(3.11).

When infinite effect estimates occur, one solution is to use a simpler model
for which all effect estimates are finite, such as by eliminating any predictor or
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interaction term from the model that has an infinite estimate. Interpretations must
then take this into account, and this is not a sensible solution if the simpler model
fits poorly. Or, you can just use the model with an infinite estimate, realizing that
this does not invalidate inference and prediction using methods other than Wald
tests and confidence intervals. For example, suppose that S is a parameter for
which ﬁk = £00. Then the model still has a finite maximized log likelihood in
the limit as ﬁk grows unboundedly, which software should report. So it is still
possible to test Hy: Bx =0 by comparing double the maximized log likelihood
to its value for the simpler model. Similarly, it is still possible to obtain a profile
likelihood confidence interval for 8 having form (L, co) when ﬁk = o0 and having
form (—o0, U) when ﬁk = —00. Finally, another solution is to fit the model with a
Bayesian approach, which naturally shrinks model parameter estimates away from
boundary values.

Most software does not recognize when |Bx| = co. An indication of a likely
infinite estimate is when a |f| reported is unusually large and the corresponding
standard error is enormous. The iterative fitting process has then determined that it
has reached the maximum of the log-likelihood function, and the relative flatness of
the log-likelihood function at the point of convergence results in the extremely large
SE value. If you are unsure, you can fit the corresponding binary logistic model for
all possible binary collapsings of Y using software (such as PROC LOGISTIC in
SAS) that can recognize when quasi-separation occurs and estimates are infinite.

3.4.6 Summarizing Predictive Power of Explanatory Variables

How can we summarize how well the response can be predicted using the fit of
the model chosen? One way is with an index of predictive power called the con-
cordance index. Consider all pairs of observations that have different response
outcomes. The concordance index estimates the probability that the predictions
and the outcomes are concordant, that is, that the observation with the larger y-
value also has a stochastically higher set of estimated probabilities (and hence, for
example, a higher mean for the estimated conditional distribution). The baseline
value of 0.50 for the concordance index corresponds to its expected value from
randomly guessing the response. A value of 1.0 results when knowing which obser-
vation in an untied pair has the stochastically higher estimated distribution enables
us to predict perfectly which observation has the higher actual response. The higher
the value of the concordance index, the better the predictive power.

Table 3.7 reports estimated concordance index values for some cumulative logit
models fitted to the mental impairment data in Table 3.3. For the main effects model
fitted above, for 70.5% of the untied pairs, the observation with the higher response
outcome also had a stochastically higher estimated distribution. The predictive
power was better than for models with a single predictor, but adding an interaction
term provided no substantive improvement.

An alternative approach adapts standard measures for quantitative response vari-
ables, such as the multiple correlation and R-squared. For example, suppose that
we assign scores {v;} to the outcome categories. Then we could find the correla-
tion between the observed responses and the estimated means of the conditional
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TABLE 3.7. Summary Measures of Predictive Power for Cumulative Logit Models
Fitted to Mental Impairment Data of Table 3.3

Predictors in Model Concordance Index Multiple Correlation
SES 0.586 0.230
Life events 0.679 0.389
SES, life events 0.705 0.484
SES, life events, interaction 0.706 0.503

distributions from the model fit. This mimics the multiple correlation in multiple
regression modeling. Or we could find the proportional reduction in variance when
comparing the marginal variation to the conditional variation, which mimics R-
squared (Agresti 1986). A related approach estimates R-squared for the regression
model for an underlying latent response variable. McKelvey and Zavoina (1975)
suggested this for the corresponding model with probit link function.

To illustrate, consider the no-interaction model with the mental impairment data
in Table 3.3. The first subject in the sample has response in the first category
(“well”) and values 1 for life events and 1 for SES. From the prediction equation

logit [P(Y < j)] = &; —0.319x; + 1.111x,,

with & = —0.282, &, = 1.213, and &3 = 2.209, the estimated probabilities are
(0.625, 0.256, 0.071, 0.047) for the four response categories. With scores (0, 1, 2,
3) for the categories (well, mild symptom formation, moderate symptom formation,
impaired) of mental impairment, the observed response is 0 and the estimated
mean response is 0(0.625) + 1(0.256) + 2(0.071) + 3(0.047) = 0.541. For all 40
observations, the estimated correlation is 0.484 between the observed response and
the predicted response given by the estimated conditional mean. Table 3.7 shows
results with other models. Again, using both predictors provides improvement over
a single predictor, but it does not help much to add an interaction term.

3.4.7 Classifying Observations into Ordered Categories

Some applications have values of several explanatory variables for a sample and
require predictions for the category of an ordinal response that is not observed.
For example, Marshall (1999) showed how to use explanatory variables such as
body mass index, cholesterol levels, hypertension, and ethnicity to predict potential
diabetes using the ordinal scale (normal, impaired glucose tolerance, diabetes). The
standard test used to provide observations on this scale requires fasting and a blood
test after a two-hour glucose load and is impractical for routine use as a screening
instrument. Thus, a classification rule was considered useful for predicting the
ordinal response based on the explanatory variables alone.

One approach to classification uses existing data for which the response is also
observed to find an ordinal model that fits well, and then use the prediction equation



CHECKING CUMULATIVE LOGIT MODELS 67

to generate estimated response probabilities. The classification rule would then pre-
dict the response category that has the highest estimated probability. In cases in
which one outcome is much more likely than the others, this can result in always
or nearly always predicting that category. Instead, Marshall (1999) classified using
the category having the maximum estimated probability of the category divided
by a prior probability for the category. He used this approach with the cumulative
logit mode] as well as a classification tree approach and a search partition analy-
sis method that was applied repeatedly to binary outcomes formed by collapsing
adjacent categories of the ordinal scale. An evaluation of the methods indicated
that the tree-based method had the largest overall misclassification rate and that
classifications using the cumulative logit model performed well. See Note 3.6 for
other literature on this topic.

3.5 CHECKING CUMULATIVE LOGIT MODELS

Having considered ML fitting and inference for cumulative logit models, we next
present ways of checking the adequacy of the model fit. Methods include global
goodness-of-fit tests as well as more narrowly directed methods such as model
comparisons and residual analyses.

3.5.1 Testing Model Goodness of Fit for Contingency Tables

For nonsparse contingency tables, it is possible to conduct a goodness-of-fit test
of the null hypothesis that the model holds against the alternative hypothesis that
it does not. The alternative is equivalent to the saturated model, which fits the
data perfectly. The test statistics compare the observed counts in the cells of the
contingency table to expected frequency estimates based on the model fit.

At a particular setting x; of the explanatory variables for which the observed
multinomial sample has n; observations, let {n;;, j = 1, ..., c} denote the observed
cell counts for the ¢ response categories. Under the null hypothesis that the model
holds, the corresponding expected frequency estimates based on the model estimates
of {P(Y = j | x;)} equal

pj=mP@=jlx), j=1...c

The Pearson statistic for testing goodness of fit is
(nij — fij)*
X2 — i — Hi)”
Sy
J
The corresponding likelihood-ratio (deviance) statistic is

G*=2)"Y njlog
i

n,~j
Mij
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Under the null hypothesis that the model holds, X? and G2 have large-sample chi-
squared distributions. Their degrees of freedom equal the number of cumulative
logits modeled minus the number of model parameters. The number of cumulative
logits modeled equals the number of multinomial parameters in the saturated model:
namely, ¢ — | times the number of settings of the explanatory variables.

For example, a r x ¢ contingency table has ¢ — 1 multinomial parameters in
each row, for a total of r(c — 1) parameters. This is the number of parameters in
the saturated model, for which the expected frequency estimates are merely the
cell counts. The model (3.9) that treats the explanatory variable as quantitative,

logit [P(Y < /)] =a; + Bui,

has a single association parameter (8) and ¢ — 1 intercept parameters (the {a;}) for
the ¢ — 1 logits, a total of ¢ parameters. So the residual df for testing goodness of fit
are df =r(c — 1) —c =rc —r —c. This is one less than the df = (r — 1)(c — 1)
for the independence model, which is the special case of this model with 8 = 0.
Model (3.14), which treats the explanatory variable as qualitative with row effects,

logit [P(Y < )]l =a; + T,

has (¢ — 1)+ (r — 1) parameters. Its residual df =r(c— 1) —[(c— 1)+ (r —
1)] = (r — 1)(c — 2), as noted by Simon (1974).

When the data are sparse or the model contains at least one continuous predictor,
these global goodness-of-fit tests are not valid. Lipsitz et al. (1996) proposed an
alternative goodness-of-fit test for such cases. It generalizes the Hosmer—Lemeshow
test for binary logistic regression, which constructs a Pearson statistic comparing
observed and fitted counts for a partition of such values according to the estimated
probabilities of “success” using the original ungrouped data. This method does not
seem to be available in current software. Pulkstenis and Robinson (2004) suggested
an alternative approach. This is an area that still deserves serious research atten-
tion, to evaluate proposed methods and possibly develop others, such as normal
approximations for chi-squared statistics when the data are very sparse.

3.5.2 Example: Astrology Beliefs and Education Revisited

For Table 3.1 on education and belief about astrology, in Section 3.2.5 we reported
the fit of the uniform association model (3.12). For testing its goodness of fit,
software (SAS, PROC LOGISTIC) reports

Criterion Value DF Value/DF Pr > ChiSg
Deviance 5.8798 7 0.8400 0.5539
Pearson 5.6081 7 0.8012 0.5862

The test statistic values X? = 5.6 and G2 = 5.9 have df = 7 because the 10 multi-
nomial parameters (two in each of the five rows of the table) are described by three
parameters in the cumulative logit model (3.12). The model seems to fit well.
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The more complex model (3.14) treats education as qualitative, using separate
row effects. It has X? = 3.7 and G? = 4.1 with df = 4. The change in deviances
compared to the simpler uniform association model, 5.9 — 4.1 = 1.8 with df =
7 — 4 = 3, also indicates that the more complex model does not give a significantly
better fit. The null hypothesis that the uniform association model holds is equivalent
to stating that the qualitative predictor model holds with a linear trend in {z;}.

3.5.3 Model Checking by Comparing Nested Models

If a model fails a goodness-of-fit test, various things could be wrong. Perhaps an
important term is missing, such as an interaction term. Perhaps response distribu-
tions at different predictor values differ substantially in variability. Or perhaps, if
the sample size is large, it is merely a matter of statistical significance without
practical significance.

As with ordinary logistic regression, one way to check the model fit is to add
terms and analyze whether the fit improves significantly. This approach is par-
ticularly useful when at least one explanatory variable is continuous or there are
multiple predictors, because the goodness-of-fit tests presented above are invalid
for data that are not contingency tables with reasonably sized counts. For a quan-
titative predictor, we could add a quadratic term or treat the predictor as a factor
if it is categorical to allow for the effect to vary in a nonmonotone manner. For a
multiple-predictor model, we could add interaction terms to the main effects. Com-
paring the working model to the more complex model can be done with a formal
significance test. The likelihood-ratio test statistic equals —2(Lg — L;), where Lg is
the maximized log likelihood under the simpler model. The df for the large-sample
chi-squared distribution equals the number of extra parameters in the more com-
plex model. Compared to conducting an overall goodness-of-fit test, an advantage
of comparing the model to a more general model is that a small P-value suggests
that the more general model be used as a new working model.

Alternatively, the comparison of models can use a criterion that summarizes how
close the model’s estimated cumulative probabilities are likely to fall to the true
population values. The most popular such measure is AIC, the Akaike information
criterion (see Section 3.5.9), which many software packages provide. As usual,
compared to a more complex model, a more parsimonious model has benefits
when the extra bias that the simpler model has is relatively small. The benefits
include simplicity of description and possibly more precise estimation.

3.5.4 Example: Mental Health Modeling Revisited

In Section 3.4.4, using a cumulative logit model with main effects, we described
how mental impairment (Y) depends on a quantitative life events index x; and a
binary measurement of socioeconomic status (SES) x2 (I = high, 0 = low). We
can check the fit by comparing the model to more complex models. Permitting
interaction yields a model with ML fit,

logit [13(Y < )1 =a&; —0.420x; + 0.371x; + 0.181x;x;.



70 LOGISTIC REGRESSION MODELS USING CUMULATIVE LOGITS

The coefficient 0.181 of x;x2 has SE = 0.238. The estimated effect of life events is
—0.420 for the low-SES group (x3 = 0) and (—0.420 + 0.181) = —0.239 for the
high-SES group (x; = 1). The impact of life events seems more severe for the low-
SES group, but the sample size was relatively small and the estimates are imprecise.
The likelihood-ratio statistic for testing Hy: B3 = O for a lack of interaction is only
0.59 with df = 1 (P-value = 0.44). So the difference in effects is not significant,
and the simpler model without an interaction term seems adequate.

3.5.5 Testing the Proportional Odds Assumption

Some software (such as PROC LOGISTIC in SAS) reports a score test of the
proportional odds property (Peterson and Harrell 1990). This tests whether the
effects are the same for each cumulative logit against the alternative of separate
effects. It compares the proportional odds version of the model,

logit [P(Y < j)l =«; + B'x, j=1,...,c—1,
which has one parameter for each predictor, to the more complex model,
logit [P(Ysj)]:aj+ﬂ’jx, j=1,...,c—1 3.14)

With a single predictor, the proportional odds version of the model has one 8, the
more general model has ¢ — 1 parameters {f;}, and the large-sample chi-squared
distribution for the score test has df = (¢ — 1) — 1 = ¢ —2. With p predictors,
df = p(c - 2).

The more complex model has the structural problem that cumulative probabilities
can be out of order at some settings of the predictors. Because of this, it is often
not feasible to maximize the likelihood function for model (3.14). Thus, the score
test comparing the models is more widely applicable than a likelihood-ratio test or
a Wald test, because the score test evaluates the rate of change of the log likelihood
only at the null hypothesis, under which 8, = 8, =--- = $,._,. By contrast, the
Wald and LR tests use the likelihood function maximized under the alternative
hypothesis. When the more general model can be fitted, such tests can also be
used, such as Wald tests proposed by Brant (1990) comparing separate estimates
{B;} for each predictor.

To illustrate, Table 3.4 shows the result of this score test for the model fitted
to the mental impairment data in Section 3.4.4 (using PROC LOGISTIC in SAS).
This test compares the model with one parameter for x; and one for x to the more
complex model with three parameters for each, allowing different effects for logit
[P(Y < 1)], logit [P(Y < 2)], and logit [P(Y < 3)]. The test statistic equals 2.33.
It has df = 4, because the more complex model has four additional parameters.
The more complex model does not fit significantly better (P = 0.68).

Unfortunately, this score test itself has limitations. First, Peterson and Harrell
(1990) noted that the test may perform poorly for sparse data, such as when rela-
tively few observations fall in one of the outcome categories or some explanatory
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variables are continuous. Second, when the data are not sparse, its performance
tends to be too liberal: P-values tend to be too small, and actual type I error rates
tend to be greater than the nominal value.

Even if a model with nonhomogeneous effects for the different cumulative logits
fits better over the observed range of X, for reasons of parsimony a simple model
with proportional odds structure is sometimes preferable. One such case is when
{B;} for different logits with model (3.14) are not substantially different in practical
terms. With a large sample size, a small P-value in the test of proportional odds
may merely reflect statistical significance rather than practical significance. An
analogy is with ordinary regression modeling using

EX)=a+ Bix1+ Baxa+---.

This model often is useful for describing the linear component of the effect of a
quantitative predictor, even though almost certainly the true relationship is more
complex than linear. Similarly, the cumulative logit model with proportional odds
structure often is effective in capturing the essence of the location effects even
when the model has lack of fit, as illustrated by the example in Sections 3.5.6, 3.5.8,
and 3.6.3.

For this reason, when the P-value is small in the test of proportional odds, it is
useful to fit the model with nonhomogeneous effects or the ordinary binary logistic
regression model for each of the ¢ — 1 collapsings of the response. Compare the
¢ — | estimated effects for each predictor to check whether some estimated effects
vary greatly, such as changing direction in some cases. Then the more complex
model may be useful. Alternatively, Kim (2003) suggested plotting estimated prob-
abilities obtained under the proportional odds structure against the corresponding
estimated probabilities found allowing different effects. In practical terms, the lack
of fit is not severe if the pairs of estimated probabilities fall close to the line with
intercept 0 and slope 1.

As explained in Section 3.6.1, biased effect estimators from the simple model
may even have smaller mean-squared error than estimators from a more complex
model, especially when the more complex model has a large number of additional
parameters. So even if a test of proportional odds has a small P-value, we do not
automatically reject the proportional odds form of the model.

3.5.6 Example: Religious Fundamentalism by Region

Table 3.8 cross-classifies subjects in the 2006 General Social Survey by the region
in which they live and by whether they consider themselves fundamentalist,
moderate, or liberal in their religious beliefs. Since region is of nominal scale
type, we create indicator variables for its categories and consider the model (3.14)
that treats it as a factor,

logit [P(Y < Dl=a;+7, j=1,2

This model implies that the regions are stochastically ordered with respect to their
distributions on religious beliefs. Table 3.8 also displays the sample conditional
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TABLE 3.8. Data on Region of Residence and Religious Beliefs, with Conditional
Distributions on Religious Beliefs in Parentheses

Religious Beliefs

Region Fundamentalist Moderate Liberal

Northeast 92 (14%) 352 (52%) 234 (34%)
Midwest 274 (27%) 399 (40%) 326 (33%)
South 739 (44%) 536 (32%) 412 (24%)
West/Mountain 192 (20%) 423 (44%) 355 (37%)

Source: 2006 General Social Survey.

distributions. They show that each of the six pairs of regions are stochastically
ordered except for (Northeast, West/Mountain). For that pair, in each extreme
religious belief category (fundamentalist and liberal) the sample percentage is
higher for West/Mountain than for Northeast.

Table 3.9 shows some SAS output from fitting the model. With the constraint
74 = 0, the ML estimates of row effects are 7| = —0.07, 7, = 0.27, 73 = 0.89.
These show a tendency for fundamentalism to be much more common for subjects

TABLE 3.9. Output for Fitting Cumulative Logit Model of Proportional Odds Form
to Table 3.8 on Residence and Religious Beliefs

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSag
Intercept 1 1 -1.2618 0.0640 388.3248 <.0001
Intercept 2 1 0.4728 0.0611 59.8968 <.0001
region 1 1 -0.0702 0.0930 0.5687 0.4508
region 2 1 0.2688 0.0835 10.3531 0.0013
region 3 1 0.8896 0.0757 138.0873 <.0001

Score Test for the Proportiocnal Odds Assumption
Chi-Square DF Pr > ChiSq
93.0162 3 <.0001

CELL-SPECIFIC STATISTICS

Observed Fitted Stand. Resid.
vl 92 141.62 -7.788
y2 352 264.78 7.788
v3 234 271.60 -7.788
vé 274 270.04 0.567
v5 399 406.63 -0.567
y6 326 322.33 0.567
y7 739 688.34 7.902
v8 536 654.80 -7.902
v9 412 343.86 7.902
y1l0 192 214.04 -3.036
v1l 423 383.54 3.036

yl2 355 372.42 -3.036
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in the South. The Northeast and West/Mountain states are similar but slightly less
fundamentalist than the Midwest.

The score test of the proportional odds assumption compares this model with
the more complex model having separate {f;} for the two logits, that is, three extra
parameters. From Table 3.9, the score test statistic equals 93.0 (df = 3), giving
extremely strong evidence of lack of fit. The model with separate {f;} for the
two logits is saturated, so this test is an alternative to the Pearson and deviance
statistics (not shown in the output table) for testing the model goodness of fit. Those
statistics equal X? = 97.5 and G2 = 98.0 (df = 3). In Sections 3.5.8 and 3.6.3 we
investigate the nature of the lack of fit and whether it is substantively important.

3.5.7 Residuals to Detect Specific Lack of Fit

Global goodness-of-fit tests such as provided by the deviance have disadvantages.
First, they do not apply with sparse contingency tables or when any explanatory
variables are continuous. Second, even when the P-value is small, the test result
gives no information about what’s wrong with the model. The test of the pro-
portional odds assumption that compares the model with the more general model
replacing B by B; is more directed than the global goodness-of-fit test when the
more general model is not saturated.

An alternative way of checking for more specific types of lack of fit is to form
residuals. For a contingency table with cell count #;; and fitted value fi;; at setting
i of the explanatory variables and response category j, the standardized residual is

Rij — Mij

"= TSE

The SE term is the estimated standard error of n;; — fi;; under the presumption that
the model holds. Lang (1996) provided an expression for SE. It uses an analog of
the *“hat” matrix for a class of generalized loglinear models, presented in Section
6.6.4, that contains cumulative logit models as a special case.

When the model holds, standardized residuals have approximate standard normal
distributions. So relatively large values, such as exceeding about 3 in absolute
value, indicate lack of fit in that cell. McCullagh (1980) suggested first finding
the contribution provided to the deviance for each multinomial sample and then
inspecting cell-specific residuals for those cases that have large contributions. In
some cases, this may indicate that a model fits the data well except for one or two
combinations of explanatory variable values.

It can also be informative to form residuals using cumulative totals rather than
cell counts. A standardized residual for a cumulative total at response category j
for setting i of the explanatory variables divides (Zi=1 ik — Zi:l itix) by its SE.
More simply, a Pearson-type residual has the form

D e Pik — Xpey ik _ Yiink—mP¥ <jlx;)

JrPO < Il — PO < 1x)] JmPO <%0l — BQY < j %))
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where the denominator is the estimated standard deviation of Z,’(=1 n;; based on
the model fit. However, this residual does not have the standard normal as its
reference distribution because it does not account for Z,’(=1 Wi being estimated
in the numerator. Or, we could informally inspect cumulative sums of the cell-
specific standardized residuals defined above. Liu et al. (2009) proposed graphical
diagnostics based on cumulative sums of residuals to diagnose misspecification
for the proportional odds version of the cumulative logit model. Pruscha (1994)
proposed partial residuals. Bender and Benner (2000) proposed various graphics,
including smoothed partial residual plots.

3.5.8 Example: Religious Fundamentalism by Region Revisited

Let’s now investigate the nature of the lack of fit of the row effects model to
Table 3.8. We first consider the contribution to the deviance of each row. In a
given row i, this contribution

s
2Zn,-j log —~
7 Hij

equals 51.4 in row 1, 0.2 in row 2, 39.3 in row 3, and 7.1 in row 4. Rows 1 and
3 both contribute strongly to the overall lack of fit.

Next we inspect the cellwise standardized residuals for the fit of the model, r;; =
(nij — fi;;)/SE, focusing on rows 1 and 3. Table 3.9 also shows the fitted values
and the standardized residuals.’ With residual df = 3, there are many redundancies
among their values, and each row has only one bit of information about lack of
fit. From these, we clearly see the nature of the lack of fit. The Northeast (and
West/Mountain states) has more people in the moderate category and fewer in
the other two categories than the model predicts; by contrast, the South has fewer
people in the moderate category and more in the other two categories than the model
predicts. This residual analysis suggests that the groups differ in dispersion as well
as location, with relatively more dispersion in the South. Section 5.4 presents a
cumulative logit model that allows dispersion as well as location effects.

Nonetheless, the estimates from the proportional odds form of mode] are useful
for describing overall location tendencies of the four regions. The estimates convey
the fact that fundamentalism is considerably more likely in the South than in other
regions and also somewhat more likely in the Midwest than in the Northeast or
West/Mountain states.

3.5.9 Model Selection Issues

For a candidate set of potential models, how should we select one? The usual
approaches for model selection are available. For example, at the start of a study,
we could formulate certain hypotheses to be tested that correspond to comparing

3Obtained using the mph.fit R function discussed in the Appendix as shown at www stat.ufl.edu/~aa/
ordinal/ord.html.
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pairs of nested models. A very small P-value in a test comparing two models
suggests rejecting the simpler model in favor of the more complex model, subject
to the usual caveat about whether a statistically significant result is also practically
significant.

Other criteria besides significance tests can help select a good model. The best
known is the Akaike information criterion (AIC). It judges a model by how close
its fitted values tend to be to the true outcome probabilities, as summarized by
a certain expected distance between the two. The estimated optimal model for
providing the best estimates is the model that minimizes

AIC = —2(log likelihood — number of parameters in model).

The AIC penalizes a model for having many parameters. Even though a simple
model is farther than a more complex model from the true relationship, for a sample
the simple model may provide better estimates of the true expected values.

For Table 3.1 the AIC values are 2664.2 for the quantitative predictor (uniform
association) model (3.12) and 2668.4 for the qualitative predictor model (3.14).
This criterion favors the simpler model (3.12).

3.6 CUMULATIVE LOGIT MODELS WITHOUT PROPORTIONAL
ODDS

A notable feature of the proportional odds form of cumulative logit model is the
assumption that the effect of each explanatory variable is the same for the logits
for the different cumulative probabilities. An advantage of this model is that effects
are simple to summarize and interpret, requiring only a single parameter for each
predictor.

In Section 3.3.2 we showed that the proportional odds form of model is implied
by a latent variable structure in which an underlying continuous response variable
having a logistic conditional distribution satisfies an ordinary regression model with
the same dispersion at all predictor values. When this ordinal model fails, the latent
variable model usually fails also. Often, this is because either the linear predictor
is inadequate (e.g., lacking an important interaction term) or because the dispersion
varies substantially among the predictor values.

3.6.1 Cumulative Logit Models with Separate Effects for Each Logit

The generalized model (3.14) that permits different effects of the explanatory vari-
ables for the different cumulative logits is

logit [P(Y < )] =, + B'x, ji=1...,c—1

As in the baseline-category logit model, each predictor has ¢ — 1 parameters. This
model implies nonparallelism of the lines for the different cumulative logits and of
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the curves for the different cumulative probabilities. Therefore, curves for different
cumulative probabilities can cross for some X values. Such curves then violate the
proper order for cumulative probabilities. So although this more general model can
be useful, it can hold only over a limited range of predictor values. In practice, it
is more useful for contingency tables with at most a few variables than for data
sets with several predictors, of which some are continuous. (This limitation does
not apply to the ordinal logistic models introduced in Chapter 4, which are valid
even when different logits have different effects.)

Because cumulative probabilities may be out of order at some settings of the
predictors, model fitting can fail for this model. That is, it may not be feasible to
maximize the multinomial likelihood function that considers this model simultane-
ously for all j. When we impose constraints on the cumulative probabilities, model
fitting becomes considerably more complex. We can fit the model separately for
the different j, but this does not provide an overall maximized likelihood function.

This more general model also has other disadvantages. Although the bias dimin-
ishes in estimating the population response proportions at the various predictor
settings, the model is much less parsimonious because of the possibly large increase
in the number of parameters. The mean-squared errors of the estimates of the pop-
ulation response proportions may even tend to be larger. These comments reflect
the trade-off in statistical analysis between bias and variance, both of which con-
tribute to mean-squared error. Simpler models have greater bias, yet may provide
better estimates in terms of a criterion such as mean-squared error because of the
decreased variance of estimation that results from their parsimony.

3.6.2 Example: Mental Health Modeling Revisited

The example in Section 3.4.4 modeled mental impairment with four response cat-
egories as a function of a quantitative life events index and a binary SES indicator
(1 = high, 0 = low) using the cumulative logit model with proportional odds
structure,

logit [P(Y < j)] = o + Bix1 + Baxa, Jj=12,3.
The more general model with separate effects for each logit is
logit [P(Y < )] =aj+ Bjixt + Bjz2x2, j=12,3.

Table 3.10 shows the parameter estimates for this model obtained by fitting an ordi-
nary logistic regression model separately for j = 1, 2, 3. The estimated life events
and SES effects are substantively similar for the three logits, suggesting that it is
simpler to use the proportional odds form of model. The final column of Table 3.10
shows the estimates of parameters for that model. Comparing the standard errors
for this model with the other models illustrates the efficiency benefit of using the
entire four-category response instead of collapsing it to a binary response.
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TABLE 3.10. Estimates for Cumulative Logit Modeling of Mental Impairment Data
of Table 3.3 Allowing Different Effects for Each Logit

Parameter Logit 1 (SE) Logit 2 (SE) Logit 3 (SE) Prop. Odds (SE)
Intercept —0.173 (0.748) 0.9251 (0.723) 2.595 (0.975)

Life events  —0.328 (0.164)  —0.3099 (0.148)  —0.376 (0.166) —0.319 (0.121)
SES 1.006 (0.784) 1.6297 (0.781) 0.947 (0.868) 1.111 (0.611)

3.6.3 Example: Religious Fundamentalism by Region Revisited

In Table 3.8 we cross-classified subjects by region (Northeast, Midwest, South,
West/Mountain) and by whether they consider themselves fundamentalist, moder-
ate, or liberal in their religious beliefs. Since region is nominal scale, we created
indicator variables for its categories and used the model

logit [P(Y < j)] =0aj + 1,

with 74 = 0. The score test of the proportional odds assumption (Table 3.9) showed
that this model fits poorly. For the more general model with separate effects for
each logit, fitting the model separately for each logit gives estimates of (ty, 12, 73)
equal to (—0.45, 0.43, 1.15) for the first logit and (0.09, 0.18, 0.58) for the second
logit. The change in the sign of 7; reflects the lack of stochastic ordering of the first
region (Northeast) and the fourth region (West/Mountain). A Northeast resident is
less likely to be fundamentalist, reflected by 7, = —0.45 < 0 for the first logit, but
slightly more likely to be fundamentalist or moderate and hence slightly less likely
to be liberal, as reflected by 7; = 0.09 > 0 for the second logit. Inspection of the
conditional distributions in Table 3.8 shows less dispersion in the Northeast than
the other regions. The {f;, 73} estimates also differ by a fair amount for the two
logits, but the direction of the effect is preserved.

In summary, the proportional odds version of the cumulative logit model does
not fit these data well. Its summary estimates of (ty, 12, 73) of (—0.07, 0.27, 0.89)
are rather severe summaries of the estimates (—0.45, 0.43, 1.15) for the first logit
and (0.09, 0.18, 0.58) for the second logit. In fact, even if the Northeast or
West/Mountain region were dropped from the data set, so that the three groups
remaining in the sample are stochastically ordered, the test of proportional odds
would show lack of fit. However, we’ve seen that the estimates from that sim-
ple model convey the basic information about location: Residents of the South
are considerably more likely to be fundamentalist, and there is also somewhat
more of a tendency for fundamentalism in the Midwest than in the Northeast or in
West/Mountain states. Even though the proportional odds form of model has lack
of fit, it is still useful for summarizing overall location effects in the data.

3.6.4 Partial Proportional Odds

Peterson and Harrell (1990) proposed a model that falls between the proportional
odds version of the cumulative logit model and the more general model (3.14). In
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this model, some predictors in the set x have a proportional odds structure, but
others do not. Denote the subset of predictors that do not have it by w. The partial
proportional odds model is

logit [P(Ysj)]:aj+ﬂ’x+y’ju, j=1,...,c—1 (3.15)

For identifiability, one of the y ;, say y,, equals 0.

For a predictor x; having proportional odds, the parameter S; has the ordinary
cumulative log odds ratio interpretation that holds for each of the ¢ — 1 cumulative
probabilities. For a predictor x; not having proportional odds, B is the log odds
ratio only for the first cuamulative probability. Denote by u; the element of u that is
also x;. Then the conditional log odds ratio between Y and xi, controlling for the
other variables, is By + yx; for j between 2 and ¢ — 1. The ordinary proportional
odds model is the special case in which

V==V =0

Peterson and Harrell (1990) also proposed special cases of this model in which
the parameters for the nonproportional odds part of the model satisfy certain con-
straints. For example, suppose that predictor x; is the only one with nonproportional
odds, and suppose that the conditional log cumulative odds ratio between Y and xi
changes linearly as the cutpoint changes from 1 to ¢ — 1. Let y; denote the incre-
ment to the effect B; of x; for cumulative probability j. Then we could consider
the special case of this model in which y; = (j — 1)y. The advantage of such a
model is that it has only one more parameter than the proportional odds version of
the model.

3.6.5 Example: Coronary Heart Disease and Smoking

Table 3.11 from Peterson and Harrell (1990) shows the relationship between the
degree of coronary heart disease and smoking status in a study at Duke University
Medical Center. Let x be an indicator for smoking status (x = 1 smoker, x =0
nonsmoker). The proportional odds form of cumulative logit model,

logit [P(Y < j)] =a; + Bx,

has /§ = —0.737 (SE = 0.082). The estimated common cumulative odds ratio is
e~0737 = 0.48. However, the model fits poorly, with the goodness-of-fit tests having
X2 =40.3 and G? = 40.5 and the score test of the proportional odds assumption
having test statistic 44.8 (df = 3). These tests all have an alternative hypothesis
corresponding to the general model with three additional parameters (i.e., B replaced
by B;), which is saturated.

The lack of fit is reflected by the four sample cumulative log odds ratios, which
equal —1.04, —0.65, —0.46, and —0.07. In other words, a strong association occurs
when the outcome is measured as “no disease” versus “some disease,” but the
association weakens progressively to nearly no association when the outcome is
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TABLE 3.11. Smoking Status and Degree of Heart Disease, with Percentages for
Degree of Heart Disease in Parentheses

Smoking Degree of Coronary Heart Disease®
Status 0 1 2 3 4
Smoker 350 (22.6%) 307 (19.8%) 345 (22.3%) 481 31.0%) 67 (4.3%)

Nonsmoker 334 (45.2%) 99 (13.4%) 117 (15.8%) 159 (21.5%) 30 (4.1%)

Source: Peterson and Harrell (1990), with permission.
20, no disease; 4, very severe disease.

measured by contrasting the most severe disease category with the others. There
seems to be roughly a decreasing linear trend in these cumulative log odds ratios.
We consider next the model

logit [P(Y < )l =a; + Bix + (j — D)Bax.

This is not a proportional odds model, because the effect of x depends on j. The
cumulative log odds ratio contrasting outcomes ¥ < j and Y > j is

logd = B1, logb; =i+ B2, logh =1 +2B,, logdf = pi + 3B

This model has a much better fit (X? = 3.45, G2 =3.43, df =2, P-value =
0.18). The ML estimates of the effect parameters® are ,31 = —1.017 (SE = 0.094)
and ,32 = 0.298 (SE = 0.047). The corresponding estimated cumulative log odds
ratios are

logfS = —1.02, loghS = —0.72, 1logh§G = —0.42, loghG = —0.12.
11 12 13 14

These represent well the sample values of —1.04, —0.65, —0.46, and —0.07.

3.6.6 Other Approaches When Proportional Odds Fits Poorly

When a proportional odds model does not fit adequately, what are the remedies? We
have seen two possibilities: using a more general model such as the nonproportional
odds model (3.14) or the partial proportional odds model (3.15). Sometimes we
can continue to use the proportional odds model for describing the essence of the
location effects, as shown for the example in Section 3.6.3. We list some other
options here briefly and discuss them further in subsequent chapters.

Most options involve other types of models having additional parameters. These
options include (1) using a link function for which the response curve is nonsym-
metric (Section 5.3); (2) adding additional terms, such as interactions, to the linear
predictor; (3) adding dispersion parameters (Section 5.4); (4) fitting logistic models

50Obtained using the mph.fit R function described in the Appendix as shown at www.stat.ufl.edu/~aa/
ordinal/ord.html.
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that have separate parameters for each logit; and (5) letting the cutpoint parameters
{a;} depend on covariates through a linear model (Terza 1985).

Option 2 is usually worth investigation because the variability across the ¢ — 1
cumulative logits for the effect of a particular predictor may reflect an interaction
between that predictor and another one. Failure of the proportional odds model often
reflects nonconstant variability of the response variable, but in practice, option 3 has
seen relatively little use. For option 4, other than fitting an ordinary logistic regres-
sion model separately to each cumulative logit, one could use a different type of
ordinal logit. For example, Section 4.2 presents the continuation-ratio logit model.
This model utilizes the ordinal nature of Y but can have different effects for each
of the ¢ — 1 logits. Section 4.1 presents the adjacent-categories logit model, which
in its most general form is equivalent to a standard baseline-category logit model
(Section 4.1.3). This general form treats the response variable as nominal, but one
can use the ordinality in an informal way in interpreting the effects and how they
may tend to increase or decrease across the ¢ — 1 adjacent-categories logits. An
advantage of these types of logits is that the ML fit of a model permitting heteroge-
neous effects, found simultaneously for all ¢ — | logits, exists much more generally
that it does for the cumulative logit model (3.14) with heterogeneous effects.

3.7 CONNECTIONS WITH NONPARAMETRIC RANK METHODS

We’ve seen that the effect of an explanatory variable on an ordinal response variable
can be tested by constructing a cumulative logit model and testing the hypothesis
that a certain parameter or set of parameters equals zero. When the model has a
proportional odds structure, such tests have connections with nonparametric tests
using ranks or rank-based scores for the response variable.

3.71 Connections with Comparing Groups Using Mean Ranks

Consider the comparison of two groups on an ordinal response Y. The Wilcoxon test
is a nonparametric method for comparing two groups by ranking all the observations
on the response variable and comparing the mean ranks. In Section 7.4.1 we show
that the Wilcoxon test generalizes to allow tied observations, as occur with ordered
categorical data. The data are summarized in a 2 x ¢ contingency table of counts
{n;;} with ordered columns, such as for Table 3.11 on smoking status and ¥ =
degree of coronary heart disease. The test compares means using midrank scores
{rj} or corresponding ridit scores {a;} based on the marginal proportions {p; =
(n1; + n2j)/n} of Y, as defined in Section 2.1.1. The null hypothesis of identical
response probabilities for the two groups is tested by comparing the mean ranks
for the two groups, relative to the variability expected under the null hypothesis.

The Wilcoxon test has a connection with a cumulative logit model—based test.
For 2 x ¢ tables with ordered columns, we regard the data as two independent
multinomial observations, with sample sizes n; and n; for the two rows. The
model with proportional odds structure is

logit [P(Y < j)]l =a; + Bx;, (3.16)
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where x; is an indicator variable for the groups (rows) that equals 1 in row 1
(i =1) and O in row 2 (i = 2). We can test the hypothesis of identical response
distributions for the two rows by a Wald, likelihood-ratio, or score test of Hp:
B = 0. The score test is based on the derivative of the log likelihood with respect
to B evaluated at the ML estimates under the constraint 8 = 0. This derivative is

proportional to
2 c
Z Z (nij — nipj)xirj
i=l j=1

(McCullagh and Nelder 1989, p. 188). This is the difference between the sum of
rank scores in group | and its null expected value for the two groups. Equivalently,
it can be expressed in terms of the difference between the mean ranks for the two
groups. In fact, the score test is equivalent to the discrete version of the Wilcoxon
test. Such a test is locally most powerful for the one-sided alternative hypothesis
(McCullagh 1980, Sec. 4.3). Pettitt (1984a) considered connections for underlying
distributions other than the logistic.

The more general qualitative predictor model (3.14) for comparing r groups in
ar xc table is

logit [P(Y < )l =«a; + 1, j=1...,c—1

The score test of Hp: 7y = 1, = - -- = 1, compares the mean ranks of the r rows,
with df =r — 1. It is equivalent to the generalized Kruskal-Wallis test for an
ordered categorical response presented in Section 7.4.3.

Finally, for an arbitrary cumulative logit model of proportional odds form,
consider a particular explanatory variable £ with value x; for setting i of the
explanatory variables and parameter B;. Then the derivative of the log-likelihood
function with respect to B uses the data in terms of Zi(Zj xiknijrj), where n;j is
the number of observations in response category j at setting i of the explanatory
variables. For example, if explanatory variable k is binary and its indicator values
are +1 and —1, inference about the effect of that predictor essentially uses the
difference between the mean ranks for the two levels of the predictor.

3.7.2 Sample Size and Power for Comparing Two Groups

Whitehead (1993) presented sample-size formulas for achieving a desired power in
comparing two groups on an ordered categorical response using the proportional
odds version (3.16) of the cumulative logit model with a binary indicator predictor.
Let 1 — B denote the power for an a-level test for detecting an effect of size Sy for
the cumulative log odds ratio in that model. Suppose that the plan is to allocate the
sample size to the two groups in the ratio A to 1, and 7; denotes the guess for the
marginal probability in response category j. Based on large-sample approximations,
the sample size required for a two-sided test is approximately

L, A+ 12 Gap +2p)°
ABRA -7
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This requires anticipating the marginal probabilities and the size of the effect.
Alternative approximations are mentioned in Note 3.9.

Setting {r; = 1/c} provides a lower bound for n. Whitehead showed that the
sample size does not depart much from this bound unless a single dominant
response category occurs. With {mw; = 1/c}, the needed n depends on c through
the proportionality constant (1 — 1/c?)~!. In this sense, relative to a continuous
response (c = 00), using c¢ categories provides efficiency (1 — 1/¢2); for ¢ = (2,
3,4, 5, 10), this is (0.75, 0.89, 0.94, 0.96, 0.99). The loss of information from
collapsing to a binary response is substantial, but there is little gain from using
more than four categories. The ratio of the sample size n(c) needed for ¢ categories
relative to the sample size n(2) needed when ¢ =2 is

However, this assumes equal dispersion among the categories, which is not usual
in practice.

3.7.3 Testing Conditional Independence in Three-Way Tables

As we discussed in Section 2.4, in practice we usually study the effect of an
explanatory variable on a response variable while controlling for other variables.
Models provide a natural way to do this. For an ordinal response variable, we
can construct a model for which conditional independence between an explanatory
variable and the response corresponds to a value of O for a model parameter. The
test of the hypothesis then uses standard methods for testing that a parameter (or
set of parameters) equals 0.

For cumulative logit modeling of Y, we consider two cases, differing in terms
of whether the explanatory variable X is treated as quantitative (i.e., interval scale,
or ordinal scale with monotone scores) or as qualitative (nominal scale). In each
case, the control variable Z, which could be multivariate, is treated as nominal.
A partial table relates X and Y at each level of Z. When the XY association is
similar in the partial tables, the power benefits from basing a test statistic on a
model of homogeneous conditional association. Alternatively, in Section 6.4.5 we
present score tests that generalize the Cochran—Mantel—Haenszel (CMH) test for
sets of 2x2 tables to sets of r x ¢ tables.

X Quantitative  Let {u;} be ordered scores for the rows of a contingency table.
The model

logit [P(Y < j | X =i, Z =k)]= o, + Bu; + B (3.17)
and the more general model with ; + BZ replaced by «jx have the same linear

trend B for the effect of X in each partial table. The models also apply when X is
continuous, in which case u; is the value of X at its ith level. For these models, XY
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conditional independence is Hy: 8 = 0. Likelihood-ratio, score, or Wald statistics
for Hyp provide large-sample chi-squared tests with df = 1 that are sensitive to the
trend alternative. The score test cumulates correlation-type information across the
partial tables, with scores {u;} for the rows and midrank scores (or, equivalently,
ridit scores) for Y.

X Qualitative  Alternatives to conditional independence that treat X as a
nominal-scale factor are

logit [P(Y <j|X=iZ=k]l=a;+ B +8E,

and the more general model with o; + ﬂkz replaced by « j;. The effect parameters
have a constraint such as 8X = 0. For these models, XY conditional independence
is Ho: B = ... = BX. Large-sample chi-squared tests have df = r — 1. The score
test cumulates information about the common variability among the row mean
ranks on Y across the partial tables, with average rank scores for Y. It is a stratified
version of the Kruskal—Wallis test (Section 7.4.3).

3.7.4 Example: Political Ideology and Evolution, by Religiosity

The 2006 General Social Survey shows a moderate association between politi-
cal ideology (measured on a scale of 1 to 7, from extremely liberal to extremely
conservative) and whether one believes that human beings evolved from earlier
species of animals. Using an indicator variable for belief in evolution (1 = yes, 0
= no), model (3.16) with political ideology as the response variable has B =0.908
(SE = 0.094). The estimated common cumulative odds ratio is exp(0.908) = 2.48,
those who believe in evolution being relatively more liberal. Could this associa-
tion be explained by religiosity, with more religious subjects tending to be more
conservative and also less likely to believe in evolution? We'll use this GSS to test
conditional independence.

Table 3.12 cross-classifies these three variables. Using two indicator variables
for the religiosity effect, model (3.17) has 8 = 0.697 (SE = 0.100). The association
seems somewhat weaker than when religiosity is ignored, but the likelihood-ratio
statistic for testing Ho: § = 0 equals 49.7 (df = 1). There is very strong evidence
that belief in evolution tends to be associated with more liberal political beliefs,
even after controlling for religiosity.

For the rehglosny effect, the likelihood-ratio statistic equals 43.2 (df = 2). For
coding that sets Z = 0, model (3.17) has AZ = 0.754 and BZ = 0.519. Lower
religious attendance tends to be associated with a tendency toward more liberal
views, for given beliefs about evolution. Using, instead, a linear trend for religiosity,
for scores (1, 2, 3) for religiosity, the estimated coefficent for the religiosity effect
is —0.369 (SE = 0.058), and the likelihood-ratio statistic for that effect is 41.4
df=1).

These models assume a lack of interaction between religiosity and belief in
evolution in their effects on political ideology. Adding an interaction term to the
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TABLE 3.12. Data on Political Ideology and Belief in Evolution, by How Often
Attend Religious Services

Political Ideology®

Religiosity? Evolution 1 2 3 4 5 6 7
1 Yes 23 83 66 161 67 33 9
No 8 22 16 108 24 34 4
2 Yes 8 34 30 68 36 24 1
No 4 15 19 64 30 38 5
3 Yes 5 15 15 48 19 18 3
No 4 17 36 113 51 113 37

41, extremely liberal; 2, liberal; 3, slightly liberal; 4, moderate; 5, slightly conservative; 6, conservative;
7, extremely conservative.

b1, at most once a year; 2, several times a year to two or three times a month; 3, nearly every week or
more.

model having two indicator variables for religiosity gives two extra parameters.
The evidence of interaction is not strong (likelihood-ratio statistic = 4.51, df = 2,
P-value = 0.10).

Incidentally, these models all show some lack of fit. For example, model (3.17)
with no interaction term has X? = 56.8 and G? = 57.2 for testing goodness of fit
(df =27, P-value = 0.001). Nonetheless, they are adequate for providing strong
evidence of effects. As Mantel (1963) argued in a similar context: “that a linear
regression is being tested does not mean that an assumption of linearity is being
made. Rather it is that a test of a linear component of regression provides power
for detecting any progressive association which may exist.” To illustrate, if we
fit the more general version of model (3.17) with «; + BZ replaced by ajy, the
model fits somewhat better, with X*> = 31.2 and G? = 32.0 for testing goodness of
fit (df = 17). However, the amount of evidence about the evolution effect is very
similar, as ;‘3 = 0.692 (SE = 0.100) and the likelihood-ratio statistic for testing Hy:
B = 0 equals 48.8 (df = 1). In this case, the statistics detect the tendency of those
who believe in evolution to be more liberal and for those who are more religious
to be less liberal.

CHAPTER NOTES

Section 3.1: Types of Logits for an Ordinal Response

3.1. McCullagh (1978) defined a statistical method to be palindromic invariant
if the results are invariant under a complete reversal of order of categories (except
for the sign of the estimates) but not under general permutations of categories.
Most methods discussed in this book, such as cumulative logit modeling, have this
property for ordinal variables. A reversal of the categories of ¥ changes the sign of
parameter estimates but does not alter the maximized log-likelihood or substantive
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conclusions. Models presented in Section 4.2 using continuation-ratio logits are not
palindromic invariant.

3.2. This book focuses on methods for ordinal response variables. Other meth-
ods are designed specially for ordinal explanatory variables, for various types of
response variables (see Sections 7.4.8 and 7.5.1). The first of these sections presents
the Cochran—Armitage trend test for a binary response. It assigns scores to the cat-
egories of an ordinal explanatory variable as the basis of a chi-squared statistic with
df = 1 for detecting evidence of a trend in the probability of a particular outcome
(Armitage 1955; Cochran 1954, 1955).

Section 3.2: Cumulative Logit Models

3.3. Cumulative logit models were proposed for contingency tables by many
authors, including Snell (1964), Bock and Jones (1968), Samejima (1969), Tukey
(1971), Williams and Grizzle (1972), Simon (1974), Clayton (1974), and Bock
(1975, pp. 544-546). McCullagh (1980) popularized the proportional odds case.
His influential article and the subsequent discussion gave an interesting exposi-
tion of issues related to modeling ordinal data. McCullagh also presented more
general models with arbitrary link functions and/or dispersion terms (Sections 5.1
and 5.4). Later articles about cumulative logit models include McCullagh (1984),
Snapinn and Small (1986), Stram et al. (1988), Hastie et al. (1989), Tutz (1989),
Brant (1990), Peterson and Harrell (1990), Holtbriigge and Schumacher (1991),
Agresti and Lang (1993a), Joffe and Greenland (1995), Scott et al. (1997), and
Marshall (1999). See also Sections 8.2.1, 8.2.4, 8.6.1, 8.4.2, 10.1.1, 10.3, and notes
in Chapters 8, 9, and 10 for their use in models for clustered observations, such as
in longitudinal studies, and Section 11.3 for a Bayesian approach. In the context
of survival modeling, see Clayton (1976), Bennett (1983), Pettitt (1984b), Rossini
and Tsiatis (1996), and Hedeker et al. (2000). For smoothing and semiparametric
structuring using cumulative logit models, see Hastie and Tibshirani (1987), Yee
and Wild (1996), Fahrmeir and Tutz (2001), Kauermann and Tutz (2003), and Tutz
(2003). For example, in Kauermann and Tutz (2003), some explanatory variables
enter the model linearly, whereas others have unspecified but smooth functions.

Section 3.4: Fitting and Inference for Cumulative Logit Models

3.4. Kaufmann (1988) discussed existence and uniqueness of ML estimates for
ordinal response models, including cumulative logit models and continuation-ratio
logit models and models with other link functions. When all cell counts are positive,
he showed that the ML estimates exist and they are unique if all parameters are
identifiable.

3.5. With highly stratified data, the number of parameters can be large relative to
the sample size, and unconditional ML estimates may perform poorly. A standard
approach with canonical-link GLMs such as binary logistic regression conditions on
sufficient statistics for nuisance parameters, thus eliminating those parameters from
the conditional likelihood function. This approach does not work for cumulative
logit models, because baseline-category logits rather than cumulative logits are
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the canonical link for a multinomial distribution. McCullagh (1984) proposed a
type of sequential conditioning as a way of eliminating nuisance parameters from
cumulative logit models.

3.6. For other articles about ordinal classification, see Larichev and Moshkovich
(1994), Rudolfer et al. (1995), Coste et al. (1997), Feldman and Steudel (2000),
Tutz and Hechenbichler (2005), Horvath and Vojtas (2006), and Piccarreta (2008).
Tutz and Hechenbichler (2005) used variants of bagging and boosting methods
that make use of the ordinality, showing how predictive power improves with
appropriate aggregation. In the context of machine learning, see also Herbrich et
al. (1999), Frank and Hall (2001), Shashua and Levin (2003), Chu and Ghahramani
(2005), Chu and Keerthi (2007), and Waegemana et al. (2008).

Section 3.6: Cumulative Logit Models Without Proportional Odds

3.7. Cumulative logit models without the proportional odds structure were pro-
posed by Williams and Grizzle (1972), who used weighted least squares for model
fitting. Other articles that considered models with different effect parameters for
different logits include Cox and Chuang (1984), Brant (1990), Peterson and Harrell
(1990), Cox (1995), Ananth and Kleinbaum (1997), Bender and Groven (1998),
Lall et al. (2002), and Cole et al. (2004). For alternative tests of the proportional
odds property, see Brant (1990) and Stiger et al. (1999). For further discus-
sion of the partial proportional odds form of model, see Peterson and Harrell
(1990), Stokes et al. (2000, Sec. 15.13), Lall et al. (2002), and criticism by Cox
(1995).

3.8. Tutz (1989) proposed a compound model of hierarchical form defined on a
partition of the response categories into sets. The first part of the model describes
the mechanism for classification in those sets, and the second part of the model
describes classification into categories within sets. This is useful when groups
of categories are relatively homogeneous. For instance, with ¢ =7 categories, a
cumulative logit model might describe effects of explanatory variables on whether
the response is in category set 1-2, 3-5, or 67, and then logistic and cumula-
tive logit models with different parameter values might describe the effects of
explanatory variables conditional on the response being in a particular set of
categories.

Section 3.7: Connections with Nonparametric Rank Methods

3.9. For determining sample size for comparing two groups, Kolassa (1995)
provided methods based on a Cornish—Fisher approximation to the null distribution
and an Edgeworth approximation for the power. Hilton and Mehta (1993) provided
another approach, based on evaluating the exact conditional distribution with a
network algorithm, or simulating that distribution. Rabbee et al. (2003) presented
simpler approximations for exact methods. Lee et al. (2002) evaluated methods and
claimed that Whitehead’s formula is adequate when the sample size is moderately
large.
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EXERCISES

3.1

3.2,

33.

34.

3.5.

3.6.

Is a cumulative logit model a special case of a baseline-category logit model?
Why not?

For the model, logit [P(Y < j)] = «; + B;x, explain why cumulative prob-
abilities may have an inappropriate order for some x values.

A response scale has the categories (strongly agree, mildly agree, mildly
disagree, strongly disagree, don’t know). One way to model such a scale
uses an ordinary binary logistic model for the probability of a don’t know
response and uses a separate ordinal model for the four ordered categories
conditional on response in one of those categories. Explain how to construct
a likelihood function to do this simultaneously. See also Note 3.8.

Consider the 2 x 3 x 2 contingency table relating a binary x; to an ordinal
Y, by row, of (10, 10, 10; 0, 0, 30) at the first level of x, and (10, 10, 10;
10, 10, 10) at the second level of x,. Explain why a cumulative logit model
with main effects has finite estimates for the effects of x; and x, but a model
that also has an interaction term does not. Observe what happens when you
fit these models with software.

Table 3.13 shows data cross-classifying job satisfaction and income, stratified
by gender, for black Americans. The data are analyzed in Agresti (2002,
Chap. 7).

(a) Analyze the conditional association between job satisfaction and income,
treating the variables as nominal.

(b) Analyze the conditional association between job satisfaction and income,
treating the variables as ordinal.

{(c) Compare the analyses in parts (a) and (b) in terms of simplicity of descrip-
tion and power for detecting an association.

TABLE 3.13. Job Satisfaction and Income by Gender

Females’ Job Satisfaction® Males’ Job Satisfaction®
Income? 1 2 3 4 1 2 3 4
1 1 3 11 2 1 1 2 1
2 2 3 17 3 0 3 5 1
3 0 1 8 5 0 0 7 3
4 0 2 4 2 0 1 9 [

Source: General Social Survey.
41, very dissatisfied; 2, a little satisfied; 3, moderately satisfied; 4, very satisfied.
b1, lowest; 4, highest.

Refer to Exercise 2.7. Analyze these data using methods of this chapter.



CHAPTER 4

Other Ordinal Logistic Regression
Models

In Chapter 3 we modeled ordinal responses using logits for cumulative proba-
bilities. In this chapter we present alternative logit models using the adjacent-
categories logits and the continuation-ratio logits introduced in Section 3.1. Such
models have interpretations that can use individual categories rather than the cumu-
lative probabilities. Like the proportional odds version of the cumulative logit
model, the proportional odds versions of the adjacent-categories logit model and
the continuation-ratio logit model account for ordinality by assuming that explana-
tory variables have the same effects for each of the ¢ — 1 logits for a c-category
response variable. More generally, models with these types of logits, unlike cumula-
tive logit models, have a valid structure (e.g., cumulative probabilities maintaining
the appropriate order) even when used with separate effect parameters for each
logit.

In Section 4.3 we present a more general type of proportional odds model
for adjacent-category logits or corresponding baseline-category logits. Called the
stereotype model, it estimates scores for the response categories as a way of per-
mitting more general structure for the effects while maintaining a similar effect
structure for each logit. It differs from other models considered so far in having a
predictor form that is multiplicative rather than linear in the parameters.

4.1 ADJACENT-CATEGORIES LOGIT MODELS

For multinomial probabilities {r;}, the adjacent-categories logits are

logit [P(Y =j | Y =jor Y = j + 1)] = log —— j=1,...,c—1

i
Tj+l

Analysis of Ordinal Categorical Data, Second Edition, By Alan Agresti
Copyright © 2010 John Wiley & Sons, Inc.
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With a set of explanatory variables X, the general adjacent-categories logit
model has the form
(x)
7j41(X)

=aj+ﬂ/jX! j=1...,c—1. 4.1

Because such models use pairs of adjacent categories, the effects are naturally
described with local odds ratios rather than the cumulative odds ratios that naturally
apply with cumulative logit models. Unlike the corresponding cumulative logit
model (3.14) with nonproportional odds presented in Sections 3.5.5 and 3.6.1, this
model provides valid probabilities regardless of predictor values.

4.1.1 Proportional Odds for Adjacent-Categories Logit Models

The construction of the adjacent-categories logits recognizes the ordering of the
categories of Y. To benefit from this in model parsimony by truly exploiting the
ordinality of Y, however, we must use a simpler specification for the linear pre-
dictor. If an explanatory variable has a similar effect for each logit, the usual
advantages of model parsimony accrue from using a single parameter instead of
¢ — 1 parameters to describe that effect. The model is then

7 (x)
Tjip1(x)

=a; + f'x, j=1,...,c—1. (4.2)

For predictor k, the estimated odds of the lower instead of the higher of two
adjacent response categories multiply by exp(B) for each l-unit increase in xj.
This odds ratio is the same for all adjacent pairs, that is, not dependent on j. The
corresponding model for the category probabilities is

) /
mi(x) = exple; + B x) i=1,2,...,c— 1.

1+ 22;11 exp(y + B'x)’

Model (4.2) has proportional odds structure, much like the corresponding cumu-
lative logit model (3.6). These two types of model fit well in similar situations. One
reason for this is that they both imply stochastically ordered distributions for Y at
different predictor values. A model more general than this but simpler than model
(4.1) permits partial proportional odds, having simpler structure for some but not
all explanatory variables. Such a model is an analog of the partial proportional
odds model (3.15) for cumulative logits.

For the parameterization (4.2), a value for B; >0 means that as x; increases,
Y is more likely to fall at lower values. For the sign of 8; to have the usual
interpretation by which a positive value means a positive conditional effect of x;
on Y, the model can instead be expressed as

T
”j+1(X)_aj Ax.
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This parallels the parameterization logit P(Y < j) = a; — p'x often used for the
proportional odds version of the cumulative logit model [see equation (3.8)].
Another way to have such an interpretation for f; is to express the model in
terms of log[m;(x)/m;(x)], with the probability for the higher category in the
numerator instead of the denominator.

4.1.2 Parallel Log Odds Models for r x ¢ Tables

Consider an r x ¢ contingency table with an ordinal response variable Y. Denote
the conditional probabilities {r;; = P(Y = j | X = i)}.

First, suppose that X is a quantitative or ordinal explanatory variable. Let {u;}
denote ordered row scores for X. A model of proportional odds form that utilizes
the ordering of the rows is

]Og—ni=aj+ﬂui, j=1,...,c—1 4.3)
Tj+10i

For this model, the local log odds ratio satisfies
log 6} = Blu; — uity).

For equally spaced scores, the model satisfies uniform association for the local
odds ratio. When all u; — u;, = 1, the uniform local odds ratio equals exp(B).
Cumulative logit model (3.9) is a corresponding uniform association model for
cumulative odds ratios.

For a nominal explanatory variable, we replace the ordered {Su;} by unordered
parameters {7;}. This results in the more general row effects model, proposed by
Simon (1974),
log T

=a; + 1, j=1...,c—1, “4.4)
Tj+1)i

with a constraint such as 7, = 0. The local log odds ratio satisfies
log% =T — Ti}].

For a given pair of rows i and k, the ¢ — 1 log odds ratios that are local in the
response variable are identical,
logm=ri—rk, ji=12,...,c—1
i/ T+ 11k
This model is also useful when the explanatory variable is ordinal but we do not
expect an overall positive trend or negative trend for the association.

For the quantitative predictor model (4.3) with fixed j, the r logits {log(m;;/
mitni),i =1,...,r}) plotted against {u;, i =1, ..., r} follow a straight line with
slope 8. Forming such a plot for each of the ¢ — 1 possible values of j yields
¢ — 1 parallel lines. By contrast, for the row effects model (4.4), {log(m;j; /7 j411:),
i=1,...,r} plotted against {i = 1, ..., r} are parallel for different j but do not
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follow a straight line. Goodman (1983) referred to this model as a parallel log-odds
model.

4.1.3 Connection with Baseline-Category Logit Models

For nominal-scale response variables, the standard logits are the baseline-category
logits. The order of the response categories is then irrelevant, and we contrast an
arbitrary baseline category against each of the other categories. When category ¢
is the baseline category, these logits are

Te—1

T T
log —,log —,...,log
e e e
As noted in Section 3.1.2, the adjacent-categories logits are a basic set of logits
that are equivalent to the baseline-category logits. For baseline category c,
Te—1

log 2 = log - 4 log TIL 4 ... 4 1og T2t 4.5)
T TTj+1 Tj+2 Te

Models using adjacent-categories logits can be expressed as baseline-category logit
models. For the general adjacent-categories logit model,

7i(x)

lo
® 2 )

=ozj+ﬂ’jx, j=1,...,¢c—1,

from adding ¢ — j terms as in (4.5), the equivalent baseline-category logit model is

c—1 c—1
mi(x
log j()=2ak+ Zﬂ’j X, j=1,...,c—1
7o (X) oy oyt

=a}(+ﬂ7/x, j=1...,¢c—-1

This model has the form of an ordinary baseline category logit model. Because
it does not assume a common effect for each j, this model does not utilize the
ordinality of Y.

Of greater interest for ordinal responses is the proportional odds form of the
adjacent-categories logit model, with common effect g for each logit,

7 j(x)
7it1(x)

=qa; + p'x, j=1,...,c—1
The equivalent baseline-category logit model is
pu (X) c—1
log =L=- = ap + (¢ — Hf'x, i=1,...,c—1 (4.6)
8 ; ! HB j

=af + f'u, j=1,...,¢c—1, 4.7
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with u; = (¢ — j)x. So the adjacent-categories logit model corresponds to a
baseline-category logit model with an adjusted model matrix. That model accounts
for the ordinality of ¥ by using a single parameter for each explanatory variable
and by letting the explanatory variable itself incorporate a distance measure ¢ — j
between each category j and the baseline category c.

The connection between adjacent-categories logits and baseline-category logits
is useful because software is more readily available for fitting baseline-category
logit models. For example, since

e o mi(x) o wjgi(X)
Tj41(X) 7 (X) e (x)

log =1,...,c—1,

we can obtain the ML estimate ﬂ j of ﬂ j in the general adjacent-categories logit

model (4.1) by obtaining estimates {ﬂ } for the ordinary baseline-category logit
model and then finding that

where ﬁ: =0.

Similarly, with some software it is possible to fit the proportional odds form of
mode] (4.2). This requires being able to fit the equivalent baseline-category logit
model (4.7) that constrains {8} to be identical.!

4.1.4 Likelihood Function for Adjacent-Categories Logit Model

The baseline-category logits are the canonical link functions for a multinomial
distribution. Unlike models with other link functions, such as cumulative logits
and probits, models using them or adjacent-categories logits have reduced sufficient
statistics and relatively simple likelihood equations.

For subject i, let y;; denote the binary indicator for whether the response is in
category j (1 = yes, 0 = no), and let x;; denote the value of explanatory variable
k, with x; = (x;1, x;2, .. .)’. Assuming » independent multinomial observations, the
contribution of subject i to the log-likelihood function is

c—1

c c—1
tog | [ [ [ = yijlogmj(x) + | 1= ij | logme(xi)

j=1 j=1 j=1
c—1
i (x;)
= Zy,j (o) EA )
j=1 ”c(xi)

and B for logit j, the

For the baseline-category logit model with parameters o}

log-likelihood function incorporating all n observations is

!For example, using PROC CATMOD in SAS or the mph.fit R function, as the Appendix shows.
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log ﬁ I:ﬁ ”j(xi)yij]
i=1 " j=I

c—1

n c~-1
=2 { > vise; + By%) —log[l + 3 exp(@] +ﬂ3‘-’x")“

i=1 Ui j=1
c—1 n n
= Z [af<2)’ij> + Zﬂfk<zxik}’ij>:|
=1 i=1 k i=1
n c—1
_ Zlog [1 + Z exp(a} + ﬂ;‘-'x,-)].
i=1

j=1

Now, for the adjacent-categories logit model (4.2) of proportional odds form,
because of the connection (4.7) with baseline-category logit models, the log-
likelihood function simplifies to

c—1 rc—1 n n
L(a,B) = Zl: ak(Z}’ij) +Z(C_j)ﬂk<zxik)’ij>]
j=1Yk=j  Ni= k i=1

n c—1 c—1
- Zlog{l + Zexp [Zak +(c— j)(ZﬂkL‘k)“-
i=1 Jj=1 k=j k

The sufficient statistic for a; is Y7, Y7, vix. This equals the jth cumulative
marginal total for Y. The sufficient statistic for B¢ is Y, Y jXik(c — j)yij. For
example, suppose that there is a single explanatory variable x that is ordinal and we
apply model (4.3) having the same linear trend for each pair of adjacent categories
to a contingency table of counts {n;}. Then for the equally spaced row scores
{up = h} for x, the sufficient statistic for g reducesto Y , Y i h(c — j)np;. Since
the row marginal totals on x are fixed by the multinomial sampling design, it is
equivalent to know }_, 3" .(hj)ny;. For fixed row and column marginal totals, there
is a one-to-one relationship between this sum and the correlation, for the integer
scoring of X and Y. That is, the correlation between the variables summarizes the
information the data provide about the effect of X on Y.

The likelihood equations equate the sufficient statistics to their expected val-
ues. In particular, the likelihood equations for {a;} imply that the fitted marginal
counts for Y are the same as the sample marginal counts. This is not the case for
cumulative logit and probit models. The log-likelihood function is concave, and the
Newton—Raphson iterative method yields the ML estimates of model parameters.
The estimators have large-sample normal distributions and their asymptotic SE val-
ues are square roots of diagonal elements of the inverse information matrix. For
models with these logits, the observed and expected information matrices are the
same, so the Fisher scoring fitting algorithm is equivalent to the Newton—Raphson
algorihm.
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When the data are a nonsparse contingency table, goodness-of-fit tests can use
the Pearson or deviance statistics to compare the observed cell counts to the model
fitted values. When a model of proportional odds form fits poorly, we can try adding
additional terms to the model, such as interactions. Or, we can use the more general
model (4.1) or use a model presented in Section 4.3 that nests between the general
model and the simple model of proportional odds form.

4.1.5 Example: Opinion on Stem Cell Research and Religious
Fundamentalism

Table 4.1 from the 2006 General Social Survey shows the relationship in the United
States between opinion about funding stem cell research (Y) and the fundamental-
ism/liberalism of one’s religious beliefs, stratified by gender. For simplicity, we use
scores x = (1, 2, 3) for religious beliefs. For gender g(1 = females, 0 = males), the
model

log—”—’—:aj+ﬁ1x+ﬁ2g, j=123,
Tjt1
describes simultaneously the odds that opinion is “definitely fund” instead of “prob-
ably fund,” “probably fund” instead of *“probably not fund,” and “probably not
fund” instead of “definitely not fund.”
This model is equivalent to the baseline-category logit model

T . .
10g”—j1 =ai+pd~Nx+p@E-jg =123

The value of the first predictor in this model is set equal to 3x in the equation for
log(sr1/m4), 2x in the equation for log(sry /74), and x in the equation for log(ms/m4).
For example, for the liberal category of religious beliefs, the values in the model
matrix for the religious beliefs predictor are 9, 6, 3 for each gender, whereas the
values for the gender predictor are 3, 2, 1 for females and 0, 0, O for males. With

TABLE 4.1. Data on Opinions About Stem Cell Research and Religious Beliefs by
Gender, with Conditional Distributions on Stem Cell Research in Parentheses

Stem Cell Research

Religious Definitely Probably Probably Definitely
Gender Beliefs Should Fund Should Fund Not Fund Not Fund
Female Fundamentalist 34 (22%) 67 (43%) 30 (19%) 25 (16%)
Moderate 41 (25%) 83 (52%) 23 (14%) 14 (9%)
Liberal 58 (39%) 63 (43%) 15 (10%) 12 (8%)
Male Fundamentalist 21 (19%) 52 (46%) 24 (21%) 15 (13%)
Moderate 30 (27%) 52 (47%) 18 (16%) 11 (10%)
Liberal 64 (45%) 50 36%) 16 (11%) 11 (8%)

Source: 2006 General Social Survey.
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TABLE 4.2. Output for Fitting Adjacent-Categories Logit Model to Table 4.1 on
Funding Stem Cell Research

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChisSg
Interceptl 1 -0.5001 0.3305 2.29 0.1302
Intercept? 2 0.4508 0.2243 4.04 0.0444
Intercept3 3 -0.1066 0.1647 0.42 0.5178
Religion 4 0.2668 0.0479 31.07 <.0001
Gender 5 -0.0141 0.0767 0.03 0.8539

some software (e.g., PROC CATMOD in SAS; see Table A.2 in the Appendix), we
can enter a row of a model matrix for each baseline-category logit at each setting
of predictors. Then, after fitting the baseline-category logit model that constrains
the effects to be the same for each logit, the estimates of the regression parameters
are also the estimates of parameters for the adjacent-categories logit model.

Table 4.2 shows output for this model. For moderates, the estimated odds
of opinion “definitely should fund” instead of “probably should fund” are
exp(0.267) = 1.3 times the estimated odds for fundamentalists, whereas the
estimated odds of opinion “definitely should fund” instead of “definitely should
not fund” are exp[3(0.267)] = 2.2 times the estimated odds for fundamentalists
(for each gender). For this model, the strongest association results from the
extreme categories of each variable. That is, for liberals, the estimated odds
of opinion “definitely should fund” instead of “definitely should not fund” are
exp[2(3)(0.267)] = 5.0 times the estimated odds for fundamentalists (for each
gender). In this sense, the estimated association is relatively strong. Table 4.2
shows that the association is also statistically significant according to a Wald test,
with test statistic 31.1 (df = 1) having P-value < 0.0001. The effect of gender is
not significant.

The model describes 18 multinomial probabilities (three for each religion x
gender combination) using five parameters. The deviance is G* = 12.0, with
df = 13 (P-value = 0.53). This model with a linear trend for the religious beliefs
effect and a lack of interaction between it and gender seems adequate.

Similar substantive results occur with a cumulative logit model. Its deviance is
G* = 7.5 with df = 13. The religious beliefs effect is larger (}§1 = 0.488, SE =
0.080), since it refers to the entire response scale rather than only adjacent cate-
gories. However, statistical significance is similar, with (}§1 /SE) > 5 for each model.

4.1.6 Paired-Category Versus Cumulative Logit Models

For the proportional odds form of model, how can we choose between the adjacent-
categories logit form and the cumulative logit form? Since the two types of model
tend to fit well in similar situations, the choice cannot usually be based on goodness
of fit. One criterion is whether you prefer effects to refer to individual response
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categories or instead to groupings of categories using the entire scale or an underly-
ing latent variable. Adjacent-categories logit models describe effects with pairs of
individual categories and cumulative logit models describe effects with groupings
of categories: namely, cumulative probabilities. In the next section we present yet
another possibility, in which effects refer to an individual category relative to a set
of categories above that category.

Since effects in cumulative logit models refer to the entire scale, they are usu-
ally larger than effects in analogous adjacent-categories logit models. (Recall the
discussion in Section 2.2.6 about sizes of effects. Note 2.4 at the end of Chapter 2
showed an approximate relationship, when the effects are weak, between cumula-
tive log odds ratios and local log odds ratios.) The ratio of estimate to standard
error, however, is usually similar for the two model types. So one model does not
usually have greater power than the other for detecting effects. An advantage of
the cumulative logit model is the approximate invariance of effect estimates to the
choice and number of response categories, explained in Section 3.3.3. This does
not happen with the adjacent-categories logits.

As we discuss in Section 4.3.11, paired-category logit models have the advantage
that with retrospective studies (i.e., sampling X at each given value of y), the effects
are the same and can still be estimated. Paired-category logit models also have the
advantage of being in the exponential family. Hence, reduced sufficient statistics
exist, and conditional likelihood methods apply. For example, we can conduct
exact small-sample inference for a parameter by eliminating the other “nuisance”
parameters from the likelihood function by conditioning on their sufficient statistics.

4.2 CONTINUATION-RATIO LOGIT MODELS

We next present models for continuation-ratio logits. There are two types. One set
forms the log odds for each category relative to the higher categories,

T

log ———4——,
T

j=1,....,c—1 (4.8)

The other set forms the log odds for each category relative to the lower
categories,
Tj+1

log ——, i=1,...,c—1. 49
gm+---+7tj J “3)

4.2.1 Logit Models for Sequential Processes

A model using the first type of continuation-ratio logit is useful when a sequential
process determines the response outcome. This is the case with duration and devel-
opment scales, in which a subject passes through each category in order before the
response outcome is determined. Examples are survival after receiving a particular
medical treatment (<1 year, 1 to 5 years, 5 to 10 years, >10 years), educational
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attainment (less than high school, high school, college, postgraduate), and child
development through different stages. Let
]

wj=P(Y=jIYzj)=m’
j c

j=1,...,c—1. (410

The continuation-ratio logits (4.8) are ordinary logits of these conditional proba-
bilities: namely, loglw;/(1 — w;)]. We refer to them as sequential logits.

With explanatory variables, continuation-ratio logit models using sequential log-
its have the form

logit [a)j(x)]zaj+ﬂ'jx, j=1,...,c—1. (4.11)
Unlike the cumulative logit model (3.14) having separate effects for each logit, this
model provides valid probabilities regardless of predictor values. A simpler model
with proportional odds structure is

logit [w;(x)] = &; + B'x, j=1,...,c—1, (4.12)
in which the effects are the same for each logit (McCullagh and Nelder 1989,

p. 164; Tutz 1991). Models with partial proportional odds structure are also possible
(Cole and Ananth 2001).

4.2.2 Latent Variable Motivation for Sequential Model
Tutz (1991) provided a latent variable model that induces sequential continuation-
ratio logit models. For the model (4.12) of proportional odds form, latent variables
Yi, Yy, ..., YY) are assumed to satisfy
Yi=B'x+¢;,
where {¢;} are independent from some cumulative distribution function G. Then,
for a set of thresholds {«}, there is a process such that the observed categorical
outcome
Y=1 ifY} <ay,

and if Y} > @, then

Y=2, givenY >2, ifY) <a,
and so on, with, generally,

Y =], givenY > j, if Yj’-k <aj.

A transition from category j — 1 to category j takes place only if the latent variable
that determines the transition is above a threshold that is characteristic of the
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category under consideration. The sequential mechanism assumes a binary decision
at each step. Only the final resulting category is observable.
This construction leads directly to the model

P(Y=j|Y2j)=Ga; - f).

When the underlying distribution for the latent variables is logistic, the link function
G~! is the logit link. The resulting model is (4.12), with the sign of each element
of B changed. An analogous construction with different {8 ;1 yields model (4.11).
However, as Maddala (1983, p. 51) noted, it is sometimes unrealistic that the
random factors that influence responses at the various stages of the sequential
process would be independent.

4.2.3 Multinomial Factorization with Sequential Probabilities

For subject { with explanatory variable values x;, let {y;;, j =1,...,c} denote
the response indicators. That is, y;; = 1 when the response is in category j and
yij = 0 otherwise, so 3 jYij = 1. Let b(n, y; ) denote the binomial probability
of y successes in n independent trials when the probability of success for each
trial is w, with 5(0,0; w) = 1. From the expression of the multinomial proba-
bility for y;1,..., yic in the form p(yi)p(yiz | ¥i1) -+ - POvic | Yits - .+, Yie—1), the
multinomial mass function for a single observation has factorization

bll, yit; w1(x)]
b1 — yi1, yiz; wa(X)]---b[1 — yit — -+ - — Yiem2, Yie—1; We—1(X)].  (4.13)

The full likelihood function for all subjects is the product of such multinomial
mass functions from the n subjects. The log likelihood is a sum of terms such that
different w; enter into different terms.

Let ny, na, ..., n. denote the marginal numbers of observations on Y falling in
the ¢ response categories. Let S denote the set of n} = n; +--- +n. subjects
who make a response in the set of categories j, ..., c. The likelihood function is a
product of ¢ — 1 terms. Term j refers to subjects in S; and looks like the ordinary
likelihood function for logistic regression with nj. binary outcomes (j vs. j + 1
through ¢ combined), such that subject i in group S; has probability w;(x;) of
response in category j.

Suppose that parameters in the sequential model specification for logit w; are
distinct from those for logit w; whenever j # k [i.e., case (4.11)]. Then a separate
set of likelihood equations applies for each sequential binary split for forming the
continuation-ratio logits, with separate parameters in each set of equations. Thus,
maximizing each set of equations separately maximizes the full log likelihood.
That is, separate fitting of models for the various sequential continuation-ratio
logits gives the same results as simultaneous fitting. Because these logits refer
to a binary response in which one category combines levels of the original scale,
separate fitting can use methods and software for binary logistic regression models.
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Similarly, overall goodness-of-fit statistics are the sum of goodness-of-fit statistics
for the separate fits. For example, consider categorical predictors in model (4.11)
and a nonsparse contingency table. The sum of the ¢ — 1 separate deviance statistics
provides an overall goodness-of-fit statistic pertaining to the simultaneous fitting
of ¢ — 1 models.

For the proportional odds form of the model (4.12), the likelihood equations
from the separate sequential binary splits combine to form a single set of likelihood
equations. We discuss this case in Section 4.2.5. Similar remarks about types of
models and factorization apply to the other type of continuation-ratio logits, in
formula (4.9). However, models with those logits do not give results equivalent to
those for models with sequential continuation-ratio logits.

4.2.4 Partitioning Chi-Squared for Independence in Two-Way Tables

A useful application of the multinomial factorization with sequential probabilities
relates to testing the hypothesis of independence in a two-way contingency table.
Let w;j = P(Y = j | Y = j, x = i). The hypothesis of independence corresponds
to the model

lOgit(a),'j)=Olj, j=l,...,c—l

fori=1,...,r.

First, consider a 2 x ¢ table. The likelihood-ratio statistic G for testing indepen-
dence, which has df = ¢ — 1, partitions into ¢ — 1 components. The jth component
is G for a 2 x 2 table where the first column is column j and the second column
is columns j + 1 through ¢ of the full table. Each component statistic has df = 1.
For the second type of continuation-ratio logit (4.9), the components are likelihood-
ratio statistics for the first two columns, for combining the first two columns and
comparing them to the third column, and so on, up to combining the first ¢ — 1
columns and comparing them to the last column.

For an r X ¢ table and a particular type of continuation-ratio logit, each of
the ¢ — | likelihood-ratio statistics relates to a r x 2 table and has df =r — 1.
More refined partitions contain (r — 1)(c — 1) statistics, each having df = 1. See
Note 4.3.

4.2.5 Likelihood Equations for Sequential Proportional Odds Model

Let’s consider now the proportional odds form (4.12) of the model using the sequen-
tial logits. For subject i, the conditional probability w;(x;) of response in category
J» given response in category j or above, is assumed to satisfy

logit [w;(X;)] = aj + Bixi1 + Paxiz +- -

in which {B;) are the same for each j. We exploit the product binomial fac-
torization (4.13) of the multinomial mass function. For component j, the standard
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log-likelihood function for the logistic regression model for the Ly

subjects in the group S; of subjects who make response in category j or above is
Lj= (Z Yij)af +2 (Z y,-jx,-k)ﬂk -2 log [1 +exp ("‘f +2 ﬂkx“‘)]’
S, kNS S; k

where ) ¢ denotes the sum over subjects i in group S;. The log-likelihood function
for the full model is

=n;j+---+nc
2

L,B)=Li+La+ -+ L.

From the expression for the log-likelihood function, the sufficient statistic for
ajis ) s; Yij =nj. So the total counts in the various response categories for ¥
are sufficient statistics. The sufficient statistic for Br 1s

Z)’ilxik + Zyizxik +--t Z Yie—1%Xik = Z()’il + Yiz + -+ Yie—1)Xik,
i

S S

where the sum on the right-hand side is over all n subjects. This is the same as
the sufficient statistic for f; for the logistic regression model for the binary split
(1 through ¢ — 1 combined vs. ¢).

Differentiating the log-likelihood function with respect to «; yields the likeli-
hood equation

exp(erj + D BrXix)
Yij =
%: =

5 1 +expla; + Y, Bexik)
J

The term on the left-hand side is n; and the term on the right-hand side is
Y 5; @) (x;). This equation implies that the marginal counts for ¥ equal their fitted
values as in adjacent-categories logit models.

Differentiating the log-likelihood function with respect to f; yields the likeli-
hood equation

c=1 c—1
T explej + 3y Bixi)Xik )
Z (Zyljxlk) = (SZ 1+ exp(aj T Zk ﬂkxik) .

j=1 N §; j=1

The term on the right-hand side is
Z ( Z wj (x; )xlk)
j=1

The likelihood equation for S equates the sufficient statistic for i to its expected
value. The equation is not quite the same as the equation for 8; for the logistic

2Ror example, see the derivation for equation (5.16) in Agresti (2002).
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regression model for the binary split (1 through ¢ — 1 combined vs. ¢), which has
the same left-hand side but a different right-hand side. Thus, the ML estimates
differ.

We can fit the model using ordinary logistic regression software, by entering a
data file that provides the separate binomials that factor to give the multinomial
and fitting a model that assumes the same effect for each logit. For example, for a
2 x c table with an indicator x for two groups, consider the model

logit [w;(x)] = o + Bx, j=1,...,c—1

There is one table for each sequential continuation-ratio logit, and each table has
the two groups as its rows. The first 2x2 table has response outcome 1 in column
1 and response outcomes 2 to ¢ grouped together in column 2, the second 2 x 2
table has response outcome 2 in column 1 and response outcomes 3 to ¢ grouped
together in column 2, and so on. We can fit the continuation-ratio logit model
by fitting to the ¢ — 1 stratified 2 x 2 tables the ordinary logistic regression model
having a common treatment effect. See Table A.3 in the Appendix for the following
example, and also see Cox (1988).

4.2.6 Example: Tonsil Size and Streptococcus

We illustrate continuation-ratio logits using Table 4.3. It cross-classifies a sample
of children by their tonsil size and by whether they were carriers of Streptococcus
pyogenes, a bacterium that is the cause of group A streptococcal infections. The
response has three ordered outcomes (not enlarged, enlarged, greatly enlarged).
From the conditional distributions shown in Table 4.3, the response distribution
is stochastically higher for the carriers. The data have been analyzed by many
statisticians, including Tutz (1991), who used continuation-ratio logits with the
proportional odds structure.

Tutz (1991) argued that sequential continuation-ratio logits are natural for these
data, because of the sequential process by which a subject can develop greatly
enlarged tonsils. The tonsils start in the not enlarged state and may become enlarged,
perhaps explained by some explanatory variable. If the process continues, the tonsils
may become greatly enlarged. The underlying process starts in category 1 (not
enlarged) and may transition successively to higher categories until the process

TABLE 4.3. Tonsil Enlargement by Whether a Carrier of Bacteria, with Estimated
Conditional Distributions on Tonsil Size in Parentheses

Tonsil Size

Carrier Not Enlarged Enlarged Greatly Enlarged
Yes 19 (26%) 29 (40%) 24 (33%)
No 497 (37%) 560 (42%) 269 (20%)

Source: M. Holmes and R. Williams, J. Hyg. Cambridge, 52: 165—179 (1954), with permission.
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stops. The latent variable model described in Section 4.2.2 seems plausible. Thus,
Tutz used sequential continuation-ratio logits to model (1) the probability 7, of
nonenlarged tonsils, and (2) the conditional probability m,/(w; + 73) of enlarged
tonsils, given that the tonsils were enlarged or greatly enlarged.

Let x indicate whether a child is a carrier of Streptococcus pyogenes (1 = yes,
0 = no). The sequential proportional odds model is

7y (x) _ 72(x)
8 To(x) + m3(x) o+ px, log m3(x)

=+ Bx.

To fit the model using ordinary logistic regression model software, we create a data
file with the four independent binomials, such as by

stratum carrier success failure;

1 1 19 53
1 0 497 829
2 1 29 24
2 0 560 269

Entering the stratum indicator variable in the model, as shown in Table A.3, pro-
vides the separate intercept terms for the two logits.

The sample odds ratios for the two strata of binomials to which the continuation-
ratio logit model applies are

19 x 829 29 x 269
3x297 0.598, 24 %560 0.580.

These are very similar. In each case, the more desirable outcome is less likely for
the carriers of the bacteria. The ML estimate of the carrier effect for the sequential
proportional odds model is 8 = —0.5285 (SE = 0.198), for which exp(8) = 0.59.
For example, given that the tonsils were enlarged, the estimated odds for carriers of
having enlarged rather than greatly enlarged tonsils were (.59 times the estimated
odds for noncarriers. The model fits the data very well, with deviance 0.01 (df = 1).

For this model, exp(f?) = 0.59 estimates an assumed common value for a cumu-
lative odds ratio from the first part of the model and a local odds ratio from the
second part of the model. By contrast, the cumulative logit model of proportional
odds form estimates a common value of exp(—0.6025) = 0.55 for each cumulative
odds ratio (model deviance = 0.30, df = 1), and the adjacent-categories logit model
of proportional odds form estimates a common value of exp(—0.429) = 0.65 for
each local odds ratio (model deviance = 0.24, df = 1). As we would expect, the
size of the estimated odds ratio for the continuation-ratio model falls between those
for the other two models. According to the deviance, any of these three models is
plausible.

The data provide strong evidence of an association. For testing Hp: B = 0 against
H,: B # 0, the Wald statistic equals (—0.5285/0.198)% = 7.13 and the likelihood-
ratio statistic equals 7.32. The P-values, from the chi-squared distribution with
df = 1, are 0.008 and 0.007.



STEREOTYPE MODEL: MULTIPLICATIVE PAIRED-CATEGORY LOGITS 103

4.2.7 Sequential Models for Grouped Survival Data

In the modeling of survival times with a probability density function f and cumula-

tive distribution function F, the ratio A(¢) = f(¢)/[1 — F(#)] is called the hazard
function. Often, survival times are measured with discrete categories, with the
response grouped into a set of categories, such as (less than 1 month, 1 month to
I year, 1 to 3 years, 3 to 5 years, more than 5 years). The ratio f(¢)/[1 — F(?)]
is analogous to the ratio (4.8) used in sequential continuation-ratio logits. Hence,
sometimes continuation-ratio logits are interpreted as log hazards and applied to
grouped survival data.

For comparing two groups with grouped survival data, the data are counts in a
2 x ¢ table with the grouped survival times as response categories. For such data we
noted at the end of Section 4.2.5 that we can fit the model, logit w;(x) = a; + Bx,
by fitting a standard binary logistic model to a set of ¢ — 1 separate 2x2 tables.
The hypothesis Hp: 8 = 0 of identical response distributions for the two groups is
equivalent to the condition that each of these 2 x 2 tables has a population odds
ratio equal to 1.0.

For this application, since the binomials in the separate 2x2 tables are inde-
pendent, we can apply the Cochran—Mantel—-Haenszel test for testing conditional
independence in stratified 2 x 2 tables (e.g., Agresti 2002, Sec. 6.3.2). That test
is the score test of Hy: B = 0 for the model for the stratified tables. In this con-
text, the test is usually referred to as the logrank test or the Mantel—-Cox test. The
test can accommodate censored observations, which may occur in some of these
2 x 2 tables but not others. For Table 4.3 this approach gives a chi-squared test
statistic of 7.23 (df = 1), similar to the test statistic values given above for Wald
and likelihood-ratio tests. The P-value is 0.007 for H,: 8 # 0. See Prentice and
Gloeckler (1978) for related analyses for grouped survival data and Note 4.2 for
related references.

4.3 STEREOTYPE MODEL: MULTIPLICATIVE PAIRED-CATEGORY
LOGITS

When a proportional odds model using adjacent-categories logits, continuation-
ratio logits, or cumulative logits fits poorly, we can check whether the fit improves
by adding other terms, such as interactions. Another approach analyzes whether
the fit improves by letting some or all predictors have nonproportional odds form.
When all variables have a practical degree of nonproportional odds, with adjacent-
categories logits we are left with the general model (4.1) having separate effects
for each pair of adjacent categories. But this general model is equivalent to the
standard baseline-category logit model,

7 (X)
L)

The disadvantage of this model, which treats the response as of nominal scale type,
is the lack of parsimony. It has ¢ — 1 parameters for each predictor x; instead of

=a;j+8x  j=1..,c-1L (4.14)
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a single parameter. The number of parameters can be large when either ¢ or the
number of predictors is large.

4.3.1 Stereotype Model

Anderson (1984) proposed a paired-category logit model that is nested between
the adjacent-categories logit model (4.2) with proportional odds structure and
the general model (4.1) for adjacent-category logits and, equivalently, (4.14) for
baseline-category logits. For the baseline-category logits, Anderson’s model is
og 7 j(X)
7 (X)
Anderson referred to the model as the stereotype model. In terms of the response
probabilities, the stereotype model is

exp(ej + ¢;B'x)
> i explog + duB'x)’

=a;+¢;fx,  j=1,....c—1 (4.15)

wi(X) = j=12,...,¢c
with o, = ¢, = 0.

For logit j, the explanatory variable x; has coefficient ¢ ;8i. This represents the
log odds ratio for categories j and ¢ of Y with a unit increase in x;. That is, when
xr = u + 1, the odds of response j instead of ¢ are exp(¢; fx) times the odds when
x; = u. By contrast, the general baseline-category logit model (4.14) has odds ratio
exp(Bx) for this effect. That model requires many more parameters for describing
all the effects.

The {¢;} parameters in the stereotype model (4.15) can be regarded as scores
for the outcome categories. Since ¢;8 = (¢;/C)CB for any nonzero constant C,
these parameters are not identifiable unless we impose a constraint on {¢;}, such
as ¢; = 1. With this constraint, the coefficient 8; of x; represents the effect of a
unit increase in x; on the log odds of response in category 1 instead of category c.

Given the scores {¢;}, like proportional odds models, the stereotype model
has the advantage of requiring only a single parameter to describe the effect of
a predictor. So it is more parsimonious than the ordinary baseline-category logit
model. We illustrate for the case of four explanatory variables and ¢ = 3 outcome
categories for Y. The stereotype model for the two baseline-category logits is

log mx) _ a1 + @1 (Bix1 + Boxa + Baxs + Baxa),
m3(X)

og m00 _ oy + ¢2(Bix1 + Bax2 + B3xs + Baxa),
m3(X)

with ¢ = 1. By contrast, the general baseline-category logit model is

m1(X)
222 = o) + Buixs + Biaxa + Biaxs + Biaxa,
73(X)
72(X)
log =z + Boix; + Bazxz + Bazxz + Bauxs.

73(X)



STEREOTYPE MODEL: MULTIPLICATIVE PAIRED-CATEGORY LOGITS 105

It has three more parameters. The stereotype model achieves the parsimony of
a single parameter to describe a predictor effect by using the same scores for
each predictor. This may or may not be realistic. Using different scores for
each predictor increases flexibility but yields a model equivalent to the general
model (4.14).

4.3.2 Stereotype Model for Adjacent-Category Logits

The stereotype model can be expressed in terms of adjacent-categories logits,
as

7 (x)
7jp1(X)

=aj+vjﬂ/x, ji=1...,c—1 (4.16)

The {v;} scores in this model relate to the {¢;} in the baseline-category logit form
of the model (4.15) by

Vi =0 — dj41, i=1...,¢c—-1,

and
¢j=vj+vjr1+-+ve, j=1....c-1

The discussion at the end of Section 4.1.3 showed how the proportional odds
version (4.2) of the adjacent-categories logit model is a special case of a baseline-
category logit model with effects (c — j)B8. Therefore, that adjacent-categories logit
model is the special case of the stereotype model (4.15) in which {¢; = c — j},
so that {v; = 1} in (4.16); that is, the {¢;} scores are fixed and equally spaced.
Equivalently, the scores could be any set of constants that are equally spaced, such
as {¢; = (c — j)/(c — 1)} for the constraints ¢; = 1 and ¢. = 0 often used with the
stereotype model. Thus, if the stereotype model holds and {¢;} are equally spaced
for the baseline-category logits and equivalently, {v;} are identical for the adjacent-
categories logits, then necessarily the simpler proportional odds adjacent-categories
logit model (4.2) holds.

It is often sensible to conduct a likelihood-ratio test comparing the stereotype
model with score parameters {¢;} to the special case with fixed, equally spaced
{¢;}, corresponding to the proportional odds version (4.2) of the adjacent-categories
logit model. Such a test analyzes whether {¢;} may depart significantly from being
equally spaced. If the simpler model is adequate, it is preferable to use it because of
the advantages of model parsimony. When (¢;} depart significantly from equally
spaced but two adjacent scores are similar, it may be sensible to constrain those
adjacent scores to be equal and refit the model. This corresponds to collapsing the
response scale by combining those two categories. The example in Section 4.3.7
considers these two strategies.
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4.3.3 Stereotype Model with Ordered Scores

Nothing inherent in the stereotype model

7j(X)
7Te(X)

log =a; +¢;p'x, j=1,...,c—1,

treats the response variable Y as ordinal. But we’ve seen that when (¢;} are a
linear function of the category number, the stereotype model is equivalent to an
ordinal model: namely, the proportional odds version of the adjacent-categories
logit model. Anderson (1984) also proposed an ordered stereotype model having
the constraint

With such monotone scores, the ordered stereotype model treats ¥ as ordinal. For a
unit increase in a particular predictor x, the log odds ratio ¢; 8« for categories j and
c of Y is then larger in absolute value when category j is farther from category c.

The baseline-category ordered stereotype model corresponds to the adjacent-
categories stereotype model

7 (X)
7j+1(x)

=aj +v;f'x, j=1,...,c—1,

having the constraint
v; >0, j=1,...,c—1

This implies that the direction of the effect of a predictor x; is the same for each
pair of adjacent categories. For example, a given predictor has either uniformly
positive or uniformly negative local log odds ratios with Y.

For the ordered stereotype model, Anderson (1984) noted that the conditional
distributions of ¥ are stochastically ordered according to the values of 8’x. Specif-
ically, the higher the value of B'x, the more the distribution of ¥ tends to move
toward the low end of the response scale. So, for a particular predictor x;, a value
of Bx >0 means that the distribution of Y tends to move toward lower values as
xi increases. For the sign of 8; to be such that a positive value means a positive
effect, the stereotype models can instead be expressed as

rrj(x) _
me(x)

7j(x) _
j+1(X)

aj —¢p;iB'x or log aj —v;p'x.

This parameterization parallels the parameterization logit P(Y < j) =« — B'x
used in cumulative logit models [equation (3.8)] for the same purpose.

In practice, even if {¢;} are monotone in the stereotype model, pairs of {(3 i)
in fitting the ordinary model are often out of order because of sampling error. For
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example, the standard error of qAb 4+l — qAb ; may be on the same order of size as the
difference ¢;4+1 — ¢; unless the sample size is quite large. This is not uncommon
for pairs of adjacent categories, which have relatively small distances between
scores in the ordered stereotype model.

4.3.4 Motivation for Stereotype Form of Model

The stereotype model is an appealing way of obtaining model parsimony, yet
permitting a more general model than the proportional odds form of adjacent-
categories logit model. But is there any way to motivate this model by a model for
underlying latent variables?

Anderson (1984) generalized a construction used to motivate binary logistic
regression. Suppose that the conditional distribution of X, given that ¥ = j, is
multivariate normal with the same covariance matrix for each j, that is, N (g js ).
Then, by applying Bayes’ theorem, conditional on X, the distribution of ¥ follows
the baseline-category logit model with effects for logit j being

B =m;—n)T "

If the means follow a linear trend for some set of scores, possibly even nonmono-
tone, then (u; — p.)’ %! has the form ¢ ; B’ for certain scores. Then the stereotype
model holds. If the linear trend has means with the same ordering as the indices,
the ordered stereotype model holds.

In proposing the stereotype model as an alternative to standard proportional odds
models, Anderson (1984) argued that many ordinal scales are highly subjective
and do not result from categorization of a univariate underlying latent variable, but
rather, result from a subjective merging of several factors. For example, a physician
who diagnoses the severity of a particular illness of a patient, with a scale such
as (no illness, mild case, moderate case, severe case), probably takes into account
many aspects of a physical examination and available medical tests in applying his
or her stereotype of what it means for a patient’s condition to be at each category of
this scale. Anderson claimed that the stereotype model has greater flexibility than
proportional odds models for capturing an inherently multidimensional response,
and he proposed even more general stereotype models that are multidimensional.

4.3.5 Interpreting Scores and Checking for Indistinguishability

For the stereotype model (4.15), the log odds ratio comparing values # and u + 1
of an explanatory variable x; in terms of whether the response occurs in category
h or j equals

PY=h|x, xxk,=u+1)/PY¥=j|%x, xx=u+1)

log -
PY=h|X, i, =u)/P(Y =j|X, xx, = u)

= (¢n — ¢))Bx.

Hence, the association for these outcome categories is stronger when ¢ and ¢;
are farther apart. Equally spaced {¢;} implies uniform local conditional association
for the various adjacent pairs.
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When the stereotype model holds with ¢, = ¢;, the pair of outcome cate-
gories h and j is said to be indistinguishable. This means that X is not predictive
between the two categories, in the sense that log odds ratios equal 0 using those
two categories and any pair of x values. Specifically, when ¢, = ¢;, from (4.15),
log[my(x)/7;(x)] = o, — a; is a constant not dependent on x. In that case, the
model still holds with the same {¢;} if the response scale is collapsed by combin-
ing those two categories. Indistinguishability of categories & and j in the general
baseline-category logit model (4.14) corresponds to 8, = B;.

The stereotype model estimates how “close™ adjacent response categories j and
j + 1 are, based on how close ¢; j and ¢ j+1 are. This is information not evaluated
with cumulative logit models. For those models, the distance between {a;} param-
eters merely reflects the relative numbers of observations in the various categories.

4.3.6 Stereotype Model for Two-Way Contingency Tables

Let’s look at what the stereotype model implies for two-way contingency tables.
First, suppose that the single explanatory variable is binary. The model then applies
to a 2 x ¢ contingency table. Let x =1 for row 1 and x = 0 for row 2. The
stereotype model (4.15) then simplifies to

i(x)
(%)

log =aj+¢jﬂx, j=1,...,c—1,

where ¢ = 1 for identifiability. The model has ¢ — 1 {«a;} parameters, c — 2 {¢;}
parameters, and the B parameter, for a total of 2(¢c — 1) parameters. This equals
the number of multinomial parameters for the two rows (¢ — 1 for each row).
Thus, without any restrictions on {¢;}, the model is saturated. The model has the
same number of parameters as two multinomial distributions having unrestricted
probabilities, so the model perfectly fits any 2xc contingency table.

For this model, the log odds ratio for outcome categories j and c satisfies

ri(h/r(1)
o8 O/ - PP

Consider now the ordered stereotype special case, for which l = ¢ = ¢ > --- >

¢. = 0. For it, the log odds ratio is monotone in j and the model is no longer
saturated. The local log odds ratio for outcome categories j and j + 1 equals

7D/ (1)
og ——————— = (¢; —¢j+1)B.

%) /mia ) Y
Thus, for the ordered stereotype model, all the local log odds ratios have the same
sign as B. The model then is equivalent to the condition under which there is a
uniformly positive association or a uniformly negative association for all the local
log odds ratios.
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Next suppose that the explanatory variable has r categories. When it is quanti-
tative, or ordinal with fixed scores {x;}, the stereotype model is

7i(x;) .
=a;+¢;Bx;, =1,...,c—1.
Sl TR
When x; =i represents the row number, the log odds ratio for the 2 x 2 table

consisting of the cells in rows a and b and columns d and e equals

B(@d — ¢c)(a — b),

where ¢, = 0. The residual df = ( — 2)(¢ — 1) and the model is unsaturated when
r > 2. With equally spaced {¢;}, the model then implies uniform local odds ratios.

When the explanatory variable is nominal, a set of » — 1 dummy variables can
represent its categories, such as x; = 1 for observations from row { and x; =0
otherwise. The stereotype model is then

op (x)
8 ™)

=a;+¢;j(Bix1 + -+ Br-1X-1), j=L..,c-1L

For this model, the log odds ratio for the 2x2 table consisting of the cells in rows
a and b and columns 4 and e equals

(bd — ¢e)(Ba — Bp).

The strength of this association depends on the distance between the scores for the
Y categories and the distance between the row effects for the X categories. The
residual df = (r — 2)(¢c — 2) and the model is unsaturated when r > 2 and ¢ > 2.
This model with multiplicative form for the log odds ratios is equivalent to an
association model for two-way contingency tables, called the RC model, presented
in Section 6.5.

4.3.7 Example: Boys’ Disturbed Dreams by Age

Anderson (1984) used the stereotype model to analyze Table 4.4, from a study that
cross-classified boys by their age and by the severity of their disturbed dreams.
Let x; be the age for row i, using the midpoint scores (6, 8.5, 10.5, 12.5, 14.5).
Consider the model

7;(x;)

0 =a;+ ¢;Bxi, i=1,2,3,
gﬂ4(xi) ! e /

setting ¢; =0 and ¢4 = 1. The model has six parameters (¢, a2, ¢3, 2, ¢3, 8)
for the 15 multinomial probabilities. The deviance goodness-of-fit statistic is 9.7
(df = 9), compared to 32.5 for the independence model (df = 12).
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TABLE 4.4. Degree of Suffering from Disturbed Dreams, by Age

Degree of Suffering

Age Not Severe (1) 2) 3) Very Severe (4)
5-17 7 4 3 7
8-9 10 15 11 13
10-11 23 9 11 7
12-13 28 9 12 10
14-15 32 5 4 3

Source: A. E. Maxwell, Analysing Qualitative Data, Methuen, New York, 1961, p. 70.

Anderson reported estimates for score parameters of

$1 =10, ¢ =0.19 (SE=0.25), 3 =0.36(SE=0.24), ¢ =0.0,

and we find B = 0.31. Estimates <132 and <133 are out of order, relative to the ordering
for the ordered stereotype model. Those two estimates are not far from ¢, relative
to their SE values. Anderson also considered the simpler model that constrains

&2 = ¢3 = ¢a.

This simpler model has deviance 11.4 (df = 11), 1.7 higher than the model with
unconstrained score estimates but with two fewer parameters. The ML estimate
of B for this model is identical to the ML estimate of 8 for the binary logistic
regression model

o 71 (x;)
B 72(x) + 30x) + ma(x)

=+ Bx;.

That model has ,3 = 0.251 (SE = 0.058), indicating that the probability that a
disturbed dream is not severe increases with age.

Alternatively, we consider the special case of the stereotype model with equally
spaced {¢;} severity scores. This is equivalently the adjacent-categories logit model

i (x;)

log ———
7ie1(x;)

=aj+ﬂ-xlv j=1v2v3v

with proportional odds form and a linear effect in the age scores. The deviance
is 14.6 (df = 11), 4.9 higher (with two fewer parameters) than for the stereotype
model with unconstrained score estimates. The model fit has B =0.097 (SE =
0.024). The estimated odds of outcome in the less severe rather than the more
severe of two adjacent categories multiplies by ¢*%7 = 1.10 for each increase
of a year in age. The estimated odds ratio comparing the not severe and very
severe categories for a 1-unit increase in age is exp[3(0.097)] = 1.34, compared
to exp(0.251) = 1.29 for the constrained model of the preceding paragraph.

By comparison, the cumulative logit model of proportional odds form with a
linear trend using the same age scores has deviance 12.4 (df = 11). The age effect
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is ﬁ = 0.219 (SE = 0.050). The estimated odds of outcome at the less severe end
of the scale multiplies by ¢%%!° = 1.24 for each additional year of age. If we do not
assume a linear trend for the cumulative logits but, instead, use dummy variables for
the categories of age (treating age as nominal scale), the resulting row effects type of
model has deviance 7.1 (df = 8). The estimated row effects, using constraints that
set the final estimate to be 0, are (—1.82, —1.92, —1.12, —1.14, 0). This suggests
an alternative way to collapse categories, this time for the age variable using age
ranges of 5 to 9 (rows 1 and 2), 10 to 13 (rows 3 and 4), and 14 to 15 (row 5).

4.3.8 ML Fitting of the Stereotype Model

Although the stereotype model has the advantage of being more parsimonious than
the ordinary baseline-category logit model with separate effects for each logit, a
disadvantage is that it is multiplicative rather than linear in the parameters. That
is, the predictor expression has ¢; and f multiplied together. Because the pre-
dictor is not linear in the parameters, we cannot directly fit the stereotype model
with standard software for generalized linear models. Complications also occur in
conducting inference for the model parameters, as we discuss in Section 4.3.9.

When {¢;} are fixed, the model is linear in the parameters. This suggests an
iterative two-step approach for fitting nonlinear versions of the model (Goodman
1979a; Greenland 1994): Begin by selecting fixed values for {¢;}. Then estimate 8
(and {c;}) using ordinary ML fitting for baseline-category logit models, by taking
predictor & in the model to equal ¢;x;. If you start with the equally spaced values
{¢; = (c — j)/(c — 1)}, this corresponds to the fit of the proportional odds version
of the adjacent-categories logit model. At the second step, treating the estimate f?
of B from the first stage as fixed and treating {¢;} as unknown parameters, refit the
model to estimate {¢;}. The predictor in the model is now [S/x. This completes the
first cycle of the iterative process. In the next cycle you treat the estimates {q§ } from
the end of the preceding cycle as fixed and again estimate 8, and then treat that
estimate of B as fixed to estimate {¢;}. Iterations continue in this way, alternating
between a step estimating {¢;} and a step estimating B, until convergence occurs.
This process is not guaranteed to converge to the ML estimates, but it seems to do
so when the model fits reasonably well.

A disadvantage of this two-step fitting approach is that the standard errors that
software reports at the final iteration for the estimates 8 of 8 are not valid. They
treat {¢;} as fixed, whereas {¢;} were also estimated in one step of each cycle.
Another approach fits the model, recognizing directly both 8 and {¢;} as parame-
ters by using an iteratively reweighted least squares algorithm that generates ML
estimates (e.g., Holtbriigge and Schumacher 1991).

Various software macros can fit the stereotype model. A useful one is the gnm
add-on function to R for nonlinear models mentioned in the Appendix.

4.3.9 Inference with the Stereotype Model

The multiplicative nature of the stereotype model makes inference awkward. To
illustrate, let’s apply the model to r x ¢ contingency tables. When the predictor is
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quantitative or ordinal with row scores {x;}, the model is

7i(x;)

Ognc(Xi)=dj+¢jﬂxi, j=1,...,¢c—1

The null hypothesis of independence is Hy: B = 0. When the predictor is nominal
with indicator variables {z;} for the rows, the model is

0t ™Y i h Bir et Boizre)s  j=l.c—1
gnc(x) j i\P121 r—12r—1J), J=1... .
The null hypothesis of independence is Hy: 1 = B2 =--- = B,—1 = 0. In both

cases, the {¢;} score parameters are not identifiable under Hp. Because of this,
the standard conditions for likelihood-ratio test statistics to have approximate chi-
squared distributions are not satisfied. In fact, Haberman (1981) showed that the
asymptotic null distribution of the likelihood-ratio statistic for testing independence
in the case of the nominal model is the same as the distribution of the largest
eigenvalue from a matrix having a Wishart distribution.

For the stereotype model with 8 # 0, it is possible to use ordinary methods
to test the indistinguishability hypothesis for a subset of s < ¢ categories, such as
Hy : ¢» = ¢; for s = 2. The likelihood-ratio statistic has an asymptotic null chi-
squared distribution with df = s — 1. It is also possible to use a likelihood-ratio test
to compare the model to its special case in which the scores are fixed. An example
is comparing the stereotype model to the special case with equally spaced scores,
which corresponds to the adjacent-categories logit model of proportional odds form.
We conducted both these types of inference for the example in Section 4.3.7. It is
also possible to compare the model to the general baseline-category logit model
(4.14), when that model is unsaturated, to check whether the fit is poorer in using
the more parsimonious stereotype model. The following example illustrates.

4.3.10 Example: Back-Pain Prognosis

Anderson (1984) used the stereotype model to analyze a back-pain study with 101
subjects. The response variable was the assessment of back pain after three weeks
of treatment using the six ordered categories (worse, same, slight improvement,
moderate improvement, marked improvement, complete relief). The three explana-
tory variables observed at the beginning of the treatment period were x; = length
of previous attack (0 = short, 1 =long), x, = pain change (three ordered cat-
egories scored 1 = getting better, 2 = same, 3 = worse), and x3 = lordosis, an
inward curvature of a portion of the vertebral column (0 = absent/decreasing,
1 = present/increasing). Table 4.5 shows the 2 x 3 x 2 x 6 contingency table.
The stereotype model for the five baseline-category logits is

o 7 j(x)
8 76(X)

=aj +¢;(Bix1 + Baxz + fax3), j=1....5
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TABLE 4.5. Counts on y = Back Pain by x; = Length of Previous Attack, x; = Pain
Change, and x3 = Lordosis

x1=0 Back Pain? x =1 Back Pain?

X7 X3 1 2 3 4 5 6 X, X3 1 2 3 4 5 6
1 0 0o 1 0 0 2 4 1 0 0 0 3 0 1 2
1 1 0 0 0 1 3 0 1 1 0 1 0 0 3 0
2 0 0 2 3 0 6 4 2 0 0 3 4 5 6 2
2 1 0o 1 0 2 O 1 2 1 1 4 4 3 0 1
3 0 0O 0 0 0 2 2 3 0 2 2 1 5 2 0
3 1 0 0 1 1 3 0 3 1 2 0 2 3 0 0

Source: Anderson (1984).
“From 1, worse to 6, complete relief.

Table 4.6 shows the ML parameter estimates reported by Anderson. The {¢; ;) are
not monotone, but given the large SE values, it is not implausible that {¢;} are.
In considering the indistinguishability of categories, Anderson grouped the score
parameters into three values, ¢; = I, ¢2 = ¢p3 = ¢4, and ¢ps = ¢¢ = 0, essentially
reducing them to a single unknown score parameter that has an ML estimate
of 0.30 with SE = 0.13. For this simpler model, Table 4.6 also shows the ML
estimates of the effect parameters. Since ¢; = 1 and ¢5 = ¢ = 0, exponentiat-
ing a Bi value gives an estimated odds ratio for the odds of response “worse”
instead of “marked improvement” or “complete relief.” For example, for lordo-
sis present or increasing and fixed values of length of previous attack and pain
change, the estimated odds of the response “worse” instead of “marked improve-
ment” or “complete relief” were exp(1.05) = 2.86 times the estimated odds for
lordosis absent or decreasing. The estimate is very imprecise, as the correspond-
1ng Wald 95% confidence interval is exp[1.05 £ 1. 96(0 47)], or (1.14, 7.18). Since
¢2 ¢3 ¢4 =0.30 and ¢5 = ¢ = 0, exp(0. 30f3k) is an estimated odds ratio for
the odds of the response “same,” “slight improvement,” or “moderate improvement”
instead of the response “marked improvement” or “complete relief.” For example,
for lordosis present or increasing and fixed values of the length of the previous
attack and pain change, the estimated odds of the response “same,” “slight improve-
ment,” or “moderate improvement” instead of the response “marked improvement”

TABLE 4.6. ML Estimates for Stereotype Models Fitted to Back-Pain Data of
Table 4.5

Ordinary model ¢ 2 ¢35  da s b B B Bs
Estimate 1 0.31 0.35 0.51 0.14 0 2.63 2.15 1.31
SE — 0.13 0.14 0.17 0.10 — 0.93 0.75 0.51

Simpler model®
Estimate 1 0.30 0.30 0.30 0 0 2.79 1.80 1.05
SE — 0.13 0.13 0.13 — — 1.31 0.74 0.47

“Sets ¢2 = ¢3 = ¢4 and ¢s = ¢s.
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or “complete relief” were exp[0.30(1.05)] = 1.37 times the estimated odds for lor-
dosis absent or decreasing.

Anderson and Phillips (1981) also fitted the cumulative logit model of propor-
tional odds form

T (X) + -+ 7 (%)
Tjp1(X) + - + 7me(X)

=aj + Bix1 + Baxz + B3x3, j=1,...,5

The effect estimates are ﬁ, = 1.515 (SE = 0.402), ﬁz = 0.486 (SE = 0.265), and
B3 = 0.866 (SE = 0.374), with SE values based on the observed information
matrix. According to this fit, for lordosis present or increasing and fixed values
of the length of the previous attack and pain change, the estimated odds of the
response “worse” instead of “same” or “improvement” or “complete relief” were
exp(0.866) = 2.38 times the estimated odds for lordosis absent or decreasing.
The model has one fewer parameter than the simpler stereotype model (with
¢2 = ¢3 = ¢4 and ¢s = ¢s). According to a fit criterion such as AIC, the simpler
stereotype model is preferred to this cumulative logit model. The maximized
log-likelihood values are —159.0 for the cumulative logit model and —154.4 for
the simpler stereotype model having only one additional parameter. However,
this comparison must take into account that the simpler stereotype model was
suggested by the fit of the ordinary stereotype model. That stereotype model is
also preferred to the cumulative logit model according to AIC, as its maximized
log likelihood is —151.6 with four more parameters (the difference being larger
than the number of parameters).

Another possible model is the simpler stereotype model with equally spaced
{¢;}, which is equivalent to the adjacent-categories logit model of proportional
odds form

7;(X)
i1 (X)

=aj + Bix1 + frxz + B3x3.

The quality of fit is similar to the cumulative logit model, with a maximized log
likelihood of —160.1. The effect estimates are f; = 0.605 (SE = 0.180), , =
0.217 (SE = 0.116), and B3 = 0.320 (SE = 0.162). The estimates and SE values
are on the order of 40% of the size of those for the cumulative logit model.
According to this fit, for lordosis present or increasing and fixed values of the
length of the previous attack and pain change, the estimated odds of response in
the worse instead of the better of two adjacent categories were exp(0.320) = 1.38
times the estimated odds for lordosis absent or decreasing.

Any of these models are much more parsimonious than a full baseline-category
logit model having separate parameters for each logit (i.e., treating the response as
nominal). Such a model has four parameters for each logit, a total of 20 parameters,
compared to eight parameters for the cumulative logit or adjacent-categories logit
model of proportional odds form (five «; and three B¢), nine parameters for the
simpler stereotype model, and 12 parameters for the ordinary stereotype model. The
full baseline-category logit model does not give a significantly better fit than the
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two stereotype models, as its maximized log likelihood of —149.5 is only slightly
higher.

4.3.11 Using Paired-Category Logit Models with Retrospective Studies

Some studies, such as retrospective studies in epidemiology, sample X conditional
on y instead of ¥ conditional on x. Such studies take subjects with certain values
on y (such as having stage II of a certain cancer, stage I of the cancer, or no
disease) and then observe x values that measure subject characteristics such as past
smoking behavior. The sampling is then outcome-dependent sampling instead of
independent multinomial sampling on Y. With outcome-dependent sampling, the
effects are preserved and can be estimated for paired-category logit models, such
as adjacent-categories logit models and stereotype models. That is, we can use the
same estimates and SE values as we would obtain by treating the data as ordinary
independent multinomial observations on Y.
To illustrate, for the stereotype model,

7;(X)
7T (X)

= exp(a; + ¢;B'x), j=1...,c—1,

suppose that the sampling fractions from the various categories of y are { fi, f2, ...,
[¢}. For the sampled population, the odds in terms of pairs of categories of ¥ are

P(Y =j|x, sampled) _ fjexp(a; + ¢;B'%)/ 3, explox + i B'%)
P(Y = c | x, sampled) fe/ Xpexplag + ¢ B'x)

= exp(@} + ¢, 8'),

where a}‘ = a; +log(f;/fc). The parameters for the effects of the predictors are
preserved. Those effect parameters can be estimated consistently with outcome-
dependent data (but the intercept terms cannot be). This is not the case with
models, such as cumulative logit models, that group outcome categories together.
Mukherjee and Liu (2008) presented necessary and sufficient conditions for the
link functions that allow for the equivalence of prospective and retrospective infer-
ence for multinomial models. They showed that the equivalence does not hold
beyond paired-category logit models. For related work, see Greenland (1994) and
Mukherjee et al. (2007, 2008).

CHAPTER NOTES

Section 4.1: Adjacent-Categories Logit Models

4.1. Adjacent-categories logit models or models equivalent to them have been
presented by Simon (1974), Andrich (1978, 1979), Goodman (1979a, 1983, 1991),
Masters (1982), and Magidson (1996). See also Agresti (1992b) and Bckenholt
and Dillon (1997) for modeling paired comparison data, Hirji (1992) for exact
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small-sample inference, Lipsitz et al. (1996) for a test of fit patterned after the
Hosmer—Lemeshow test for binary logistic regression, Sobel (1997) for specialized
structure when there is a middle category, Hartzel et al. (2001a,b) for random effects
models, and Agresti and Lang (1993b) and DeSantis et al. (2008) for latent class
models.

Section 4.2: Continuation-Ratio Logit Models

4.2. Thompson (1977) used continuation-ratio logits in modeling discrete
survival-time data. When the lengths of time intervals approach zero, his model
converges to the Cox proportional hazards model. See also Section 5.3.3, Prentice
and Gloeckler (1978), Fienberg and Mason (1979), Aranda-Ordaz (1983), Berridge
and Whitehead (1991), Ten Have and Uttal (1994), Heagerty and Zeger (2000a),
Hedeker et al. (2000), Albert and Chib (2001) for a Bayesian approach, Fahrmeir
and Tutz (2001, Chap. 6.5), Tutz and Binder (2004), and Grilli (2005). For other
applications of continuation-ratio logits, see Fienberg (1980, pp. 114-116), Cox
and Chuang (1984), Lidri and Matthews (1985), Cox (1988), Armstrong and
Sloan (1989), Tutz (1989, 1990, 1991), Berridge and Whitehead (1991), Ryan
(1992), Barnhart and Sampson (1994), Greenland (1994), Joffe and Greenland
(1995), Smith et al. (1996), Yee and Wild (1996), Lindsey et al. (1997), Scott et
al. (1997), Coull and Agresti (2000), Guisan and Harrell (2000), Dos Santos and
Berridge (2000), Kvist et al. (2000), Ten Have et al. (2000), Hemker et al. (2001),
and Fu and Simpson (2002).

4.3. The continuation odds ratios defined in Section 2.2.4 apply to a set of 2 x 2
tables for which the likelihood-ratio (LR) statistic for testing independence in the
r X c table partitions exactly into a sum of (r — 1)(c — 1) components. Each com-
ponent is the LR statistic computed for a 2 x 2 table. The (r — 1)(c — 1) separate
2 x 2 tables are

n;; Z Nip
b>j

2 ngi | 2 X Nab

a>i a>ib>j

fori=1,...,r—1land j=1,...,c — 1 (Lancaster 1949). Such partitionings do
not apply to the other ordinal odds ratios presented in Section 2.2.

Section 4.3: Stereotype Model: Multiplicative Paired-Category Logits

4.4. The stereotype model has been discussed by Anderson (1984), Greenwood
and Farewell (1988), DiPrete (1990), Holtbriigge and Schumacher (1991), Green-
land (1994), Joffe and Greenland (1995), Ananth and Kleinbaum (1997), Guisan
and Harrell (2000), Lall et al. (2002), and Kuss (2006). See also references for
the related multiplicative RC model for two-wdy contingency tables in Section
6.5.2 and Note 6.7. Cox and Chuang (1984) proposed similar multiplicative logit
models for contingency tables using baseline-category logits and cumulative logits.
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Greenland (1994) described underlying processes for which he believed stereotype
models are more natural than cumulative logit models. Johnson (2007) used it for
discrete choice modeling of an ordinal response. Greenland (1994) suggested using
the bootstrap to estimate valid standard errors. Kuss (2006) used PROC NLMIXED
in SAS to fit the model with a quasi-Newton maximization method that uses finite-
difference methods for the first derivatives. This method gradually builds up an
approximation to the matrix of second partial derivatives as the iterations proceed,
and at convergence its inverse gives a valid estimate for the asymptotic covariance
matrix. Yee and Hastie (2003) suggested another approach.

EXERCISES

4.1. For the row effects model (4.4), show that the sufficient statistics for {z;}

are sample means computed within the rows, using the column scores
(1,2,...,0).

4.2. If cumulative logit and adjacent-categories logit models with proportional
odds structure both fit a data set well, explain why the parameter estimates
from the cumulative logit model would probably be larger. Does this imply
that it is easier for effects to achieve statistical significance with that model?
Explain.

4.3. Prove factorization (4.13) for the multinomial distribution.

4.4. Summarize some advantages and disadvantages of the stereotype model com-
pared to the ordinary multinomial logit model using baseline-category logits.

4.5. Analyze Table 4.1 with (a) a cumulative logit model and (b) a continuation-
ratio logit model. Compare and contrast results to those obtained in

Section 4.1.5 using adjacent-categories logit models.

4.6. Refer to Exercise 2.7. Analyze these data using methods of this chapter.



CHAPTER 5

Other Ordinal Multinomial
Response Models

In Chapters 3 and 4 we presented several multinomial models for ordinal response
variables that use the logit link function. Among these, most commonly used are
the models for logits of cumulative probabilities in Chapter 3 that have proportional
odds structure.

For binary data, models can use link functions other than the logit. Best known
of these is the probit model. Similarly, in the ordinal response case, other link
functions are possible. In Section 5.1 we present a general model with a family of
link functions for cumulative probabilities. Sections 5.2 and 5.3 cover two important
special cases, with the probit link function and a log-log link function. In Section 5.4
we present a further generalization to allow explanatory variables to have dispersion
effects as well as location effects. In Section 5.5 we show how to apply such models
to construct receiver operating characteristic (ROC) curves as a way of assessing
diagnostic tests.

Models using nonlinear link functions, such as the logit and probit, have the
disadvantage that they can be difficult for nonstatisticians to understand and to
interpret. In Section 5.6 we consider a simpler model for ordinal responses that
assigns scores to the outcome categories and models the mean response directly as
a linear function of the predictors.

5.1 CUMULATIVE LINK MODELS
Let 7 denote an arbitrary link function. The model
h[P(Y < D]l =a; + B'x, ji=1...,¢c-1, (5.1

links the cumulative probabilities to a linear predictor. As in the proportional
odds model (3.6), the effects of x in (5.1) are the same for each cumulative
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probability, j = 1,...,c — 1. We refer to this class of models as cumulative link
models.

In Section 3.3.2 we showed that the homogeneous effects assumption holds
when a linear regression holds for a continuous latent variable Y*. Specifically,
model (5.1) with —B rather than +8 in the linear predictor results when Y is a
discrete measurement of a latent variable Y* that satisfies the regression model

Y*=f'x+e,

with € having a cdf of some standard form G. The link function A relates to G
by A(u) = G~ (), that is, the inverse of the continuous cdf G. For example, the
logit link function A (u) = log[u/(1 — u)] is the inverse of the standard logistic cdf.
Assuming that Y'* has, conditional on x, a logistic distribution with constant vari-
ance leads to the cumulative logit model of proportional odds form. The parameters
{ar;} are category cutpoints on a standardized version of the latent scale. In this
sense, cumulative link models are regression models, using a linear predictor g'x
to describe effects of explanatory variables on ordinal categorical measurement Y
of Y*. Using + rather than —$ in the linear predictor simply results in a change
of sign of 8.

5.1.1 Common Link Functions for Cumulative Link Models

After the logit, the most commonly used link function for cumulative link models
is the probit, which is the inverse of the standard normal cdf. Cumulative link
models using the probit link function are called cumulative probit models. We
study this model in Section 5.2. It results directly when the latent variable model is
the standard regression model for which the conditional distribution of Y*, given
the predictors, is normal with constant variance.

Another useful link function is the complementary log-log link, log{— log[1 —
P(Y < ]}, and the related log-log link, log{—log[P (Y < j)]}. Unlike the logit
and probit links, these link functions are not symmetric. With a continuous predictor
x, for example, P(Y < j) approaches O at a different rate than it approaches 1.
These cumulative link models are presented in Section 5.3.

Another symmetric link function, less commonly used, is the inverse of a
Cauchy cdf, sometimes called the cauchit link. The Cauchy distribution has
much thicker tails than the normal or the logistic. So this link function is
appropriate when the conditional distributions of an underlying latent variable
have a substantial chance of extreme values for y*, in either direction. This link
function is tan{m[P(Y < j) — 0.5]} for the mathematical constant 7.

5.1.2 ML Estimation for Cumulative Link Models

For subject i, let y;; = 1 if y; = j and let y;; = 0 otherwise, i = 1,...,n. Then
E(Y;j) = mj(x;), the probability that observation i with explanatory variable values
x; falls in category j. McCullagh (1980) and Fahrmeir and Tutz (2001, pp. 76,
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88-89) treated cumulative link models as multivariate GLMs: The multivariate
distribution is the multinomial, and the link function / applies to a vector of means
(m(X;), ..., m:(x;)). As we explained in Section 3.2, we can also view this in
terms of a composite link function.

Let G = h~! denote the inverse link function for the cumulative link model,
such as the standard normal cdf for the cumulative probit model. With independent
observations, we obtain the likelihood function by substituting G(et; + B'x;) for
P(Y < j | x;) in the product of multinomial probability mass functions,

ﬁ[ﬁﬂj(xi)y”]=ﬁ[ﬁ[P(YiSHXi)—P(YiSj—l|Xi)]yij]-
i=1 L j=1 i=1 Uj=1

The log-likelihood function is

L(a, B) = ZZ)’U log[G(a; + B'x;) — G(aj—1 + B'x)].

i=1 j=I

Let g denote the derivative of G, that is, the probability density function corre-
sponding to the cdf G, and let §;; denote the Kronecker delta, §;; =1 if j =k
and §j; = 0 otherwise. Then the likelihood equations are

Gaj + B'x;) — Glaj_1 + B'xi)

]

oL _ Zn:ir*k glaj + B'xi) — glaj-1 + B'x)
- ijAri

B o j=1

L . djeglej + B'xi) — 8 1x8(ej1 + B'Xi)
Py Z Z Yij 7 7 =0.
o 11 Glaj + B'x;) — Glaj—1 + Bx;)

McKelvey and Zavoina (1975) derived the information matrix for the cumulative
probit model. Substituting G in place of their standard normal cdf yields this matrix
for the general cumulative link model. Denote z;; = a; + 'x;. Then the second
partial derivatives are

L . |G (@) — Gz j-1)1[8(zi, j-1)zi, -1 — 8(2ij)Zij]
o~ 2o 2 ”"”‘""[ [G(zij) — Gz, —)P
B [g(zi j-1) — 8(zij)]? ]
[G(zij) — G(zi,j-D1 )’
3L _ < 8z i-1) — 8(zij)1[g(zij)8 e — 8(zi,j-1)8j-1.e]
B das 2 Zy”""‘[ [G(zij) — Gz, j—1)P

_ [6Gij) = G(zij-1)]8(zij)zijdje — 8(zi,j-1)2ij—18;-1.¢] ]
[G(zij) — G(zi,j-1)]? ’

i=1 j=1

i=1 j=1
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doy dorg ZZ
i=1 j=1
[ [G(zij) — G(zi,j-1)[8(zi.j—1)Zi,j—18j 1,48 1,6 — £(2ij)Zij8 kb j¢]
Y [G(zij) — G(zij—D)]
_ [8€zij)8jk — 8(zi,j—1)8j-14)(8(2ij)8 ¢ — 8(zi,j—18-1,e] }
[G(zij) — G(zi,j—1))? '

Replacing y;; in these terms by E(Y;;) = [G(z;;) — G(z;,j-1)] (i.e., the probability
of category j for subject i) and taking negatives yields the expected information
matrix. The inverse of this matrix, with parameters replaced by their ML estimates,
is the estimated asymptotic covariance matrix of the parameter estimates.

Unlike models using paired-category logits such as adjacent-categories logit
models, the model does not have reduced sufficient statistics. Similarly, the likeli-
hood equations do not have the simple form of equating sufficient statistics to their
expected values. For example, unlike adjacent-categories logit models, cumulative
link models need not have fitted marginal counts for Y that are the same as the
sample marginal counts. McCullagh presented a Fisher scoring algorithm for ML
estimation. A unique maximum of the likelihood function occurs with sufficiently
large n. Burridge (1981) and Pratt (1981) showed that the log-likelihood function
is concave for many cumulative link models, including the models with logit, pro-
bit, and complementary log-log link functions. Because of the concavity, iterative
algorithms converge rapidly to the ML estimates unless any estimates are infinite
or do not exist. Remarks in Section 3.4.5 about infinite estimates for cumulative
logit models also apply to the corresponding cumulative link models.

5.1.3 Interpreting Effects on an Underlying Latent Response

The interpretation of the effects 8 in a cumulative link model depends on the link
function A. For the logit link, for instance, Section 3.3.1 showed that B; is the
effect of a unit increase in x; on the log odds for each cumulative probability,
controlling for the other predictors; thus, exp(8x) is a cumulative odds ratio using
any collapsing of the ordinal response for values of x; that differ by 1.

Regardless of the link function, an alternative interpretation refers to the under-
lying latent variable model, for which

Y*=8'x+e¢,

where € has a cdf of some standard form G. A unit increase in x; corresponds
to an increase in E(Y™) of B, keeping the other predictor values fixed. The size
of the effect is relative to the spread of the conditional distribution of Y*, which
depends on the standard deviation of the cdf G. When Y* is scaled such that ¢ has
standard deviation g, a 1-unit increase in x; corresponds to an increase in E(Y*) of
Bi/o standard deviations of the conditional distribution of Y*. Common values are
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o = m/+/3 for the standard logistic distribution for € and ¢ = 1 for the standard
normal distribution.

Alternatively, standardized effects can be expressed as multiples of the uncondi-
tional standard deviation of Y*, as is often done in ordinary regression. Assuming
that € and the explanatory variables X are uncorrelated, the unconditional variance
of ¥* is

B'Var(X)B + Var(e),

where Var(X) denotes the covariance matrix of X. So the standardized coefficient
is (Winship and Mare 1984)

Bi
VB VarX)B + Var(e)

Multiplying this standardized coefficient by the standard deviation of X gives a
fully standardized coefficient for which effects refer to a standard deviation change
in Xx. Such fully standardized coefficients can be useful for comparing effects of
predictors having different units of measurement.

Bi =

5.2 CUMULATIVE PROBIT MODELS

Denote the cdf of the standard normal distribution by ®. This has an appearance
very similar to the symmetric S-shape of the cdf for the logistic distribution with
mean O and standard deviation 1. The cumulative probit model is

O-UPY < Hl=a; +B'x, j=1,...,c—1. (5.2)

Some fields call it the ordered probit model. As in the proportional odds model
with the logit link, the effect 8 is the same for each cumulative probability. But
it is not appropriate to call this model a “proportional odds” model because probit
model interpretations do not apply to odds or to odds ratios.

The cumulative probit model describes the cumulative probabilities directly as

PY <j)=0(;+8%, j=1,....c—1

For example, P(Y < j | x) = % for x values such that «; 4+ 8'x = 0, since ®(0) =
% is the probability that a standard normal random variable falls below 0. Similarly,
since the central 68% of a standard normal distribution falls between —1 and 1,
P(Y < j | x) =0.16 for x values such that o; + 8'x = —1, and P(Y < j | x) =
0.84 for x values such that «; + g'x = 1.

In some fields that place strong emphasis on latent variable models, particularly
econometrics, the cumulative probit model is more popular than the cumulative
logit model. McKelvey and Zavoina (1975) gave expressions for the information
matrix for the model.
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5.2.1 Interpreting Parameters in Cumulative Probit Models

The cumulative probit model (5.2) generalizes the binary probit model to ordi-
nal responses. It is implied by a model in which an underlying continuous latent
variable Y* satisfies an ordinary regression model Y* = B'x + € in which € has
a normal distribution with mean 0 and constant standard deviation. The observed
ordinal scale provides no information about variability for the underlying latent
variable. So without loss of generality we can let the standard deviation of € be 1.
(Recall that this latent variable model actually generates the cumulative link model
with linear predictor «; — B'x rather than «; + B'x.)

How can we interpret parameters in terms of a latent variable Y*? Having the
inverse standard normal cdf as the link function corresponds to a standard deviation
for € that equals 1. This is also the conditional standard deviation for Y*. So for
coefficient B¢ of xi, a unit increase in x; corresponds to an increase in E(Y*) of
Bk conditional standard deviations of Y*, keeping the other predictor values fixed.

5.2.2 Comparison of Cumulative Logit and Cumulative Probit Models

Because logistic and normal cdf’s having the same mean and the same standard
deviation look so similar, cumulative probit models and the corresponding cumu-
lative logit models fit well in similar situations. Whereas the standard normal
distribution has mean 0 and standard deviation 1, however, the standard logis-
tic distribution has mean 0 and standard deviation /+/3 = 1.81. Because of this,
their ML estimates are not on the same scale. The standard normal cdf at a point z
is well approximated by the standard logistic cdf at the point (157/16+/3)z = 1.7z.
Typically, ML estimates from cumulative logit models are about 1.6 to 1.8 times
the ML estimates from cumulative probit models.

The coefficient B¢ of x; in the cumulative logit model with linear predictor
o — B'x has the interpretation that a unit increase in x; corresponds to an increase
in E(Y*) of By, keeping the other predictor values fixed, when Y* has standard devi-
ation 7/+/3. Thus, a unit increase in xx corresponds to an increase of Bi/(/v/3)
standard deviations in the underlying response scale. For example, if 8 = 0.345
with a single quantitative predictor, as in the following example, a 1-unit increase
in x corresponds to an increase of 0.345/ (7 /+/3) = 0.19 conditional standard devi-
ation in the mean of the underlying latent response.

5.2.3 Example: Religious Fundamentalism by Educational Degree

Table 5.1 cross-classifies subjects by their highest educational degree and by
whether they are fundamentalist, moderate, or liberal in their religious beliefs.
The table contains data from every GSS since 1972. (We use all the years in order
to show some effects of having a very large sample size, n = 49,040.)

Consider the cumulative link model with link function 4,

RIP(Y < Pl=waj+ Bxi, i=12
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TABLE 5.1. Data on Highest Educational Degree and Religious Beliefs, with
Conditional Distributions on Religious Beliefs in Parentheses

Religious Beliefs

Highest Degree Fundamentalist Moderate Liberal

Less than high school 4,913 (43%) 4,684 (41%) 1,905 (17%)
High school 8,189 (32%) 11,196 (44%) 6,045 (24%)
Junior college 728 (29%) 1,072 (43%) 679 (27%)
Bachelor 1,304 (20%) 2,800 (43%) 2,468 (38%)
Graduate 495 (16%) 1,193 (39%) 1,369 (45%)

Source: General Social Survey.

using scores {x;} for the rows to treat educational degree in a quantitative man-
ner. Using the row numbers as the scores, f} = —0.206 (SE = 0.0045) with the
probit link and —0.345(SE = 0.0075) with the logit link. From the logit model
estimate, for each of the two cutpoints for the response variable, the estimated
odds of response in the fundamentalist rather than the liberal direction multiply by
exp(—0.345) = 0.71 for each category increase in highest degree. So the estimated
cumulative odds ratio for comparing those with a graduate degree to those with less
than a high school degree is exp[4(—0.345)] = 0.25. For example, the estimated
odds of response fundamentalist rather than moderate or liberal for those with less
than a high school education are 1/0.25 = 4.0 times the estimated odds for those
with a graduate degree.

Next we consider effects in terms of an underlying continuous latent variable
for religious beliefs, with higher values corresponding to responses that are more
liberal. The B values for the logit and probit links with the j — Bx; parameteriza-
tion are positive. From the probit model estimate of f} = 0.206, for each category
increase in highest degree, the mean of the latent response on religious beliefs is
estimated to increase by about 0.21 conditional standard deviation of that underly-
ing scale. Similarly, since f} = 0.345 for the logit link, for each category increase
in highest degree, the mean of the latent response on religious beliefs is estimated
to increase by about 0.345/(rr/~/3) = 0.19 conditional standard deviation of that
underlying scale.

For the unit-spaced scores for highest degree, the estimated standard deviation
of that explanatory variable is s, = 1.144. The estimated unconditional standard
deviation of the latent response variable is

v (Bsx)? + Var(e).

This equals 1.11 for the probit link and 1.92 for the logit link. So the standardized
effects of highest degree in terms of the unconditional variability of the latent
response are (0.206)/1.11 = 0.185 for the probit link and (0.345)/1.92 = 0.180
for the logit link. The estimated effect is similar for the two models.

According to formal goodness-of-fit tests, both models show lack of fit. The
deviance is 48.7 for the cumulative probit model and 45.4 for the cumulative
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logit model (df = 7 for each, P < 0.0001). With such an enormous sample size,
however, we expect a test of nearly any hypothesis to be statistically significant.
We address below whether the lack of fit is also practically significant.

The more general model that has row effects rather than a linear trend for the
effect of educational degree,

RIP(Y < Dl=aj+ 1, j=12,

treats educational degree as a qualitative factor. Even with such a large n, this
model fits adequately according to goodness-of-fit tests, with deviance 5.2 for the
cumulative probit model and 2.4 for the cumulative logit model (df = 4). With the
constraint 75 = 0, the ML estimates of the row effects are

71 =0.83, =056, 13=046, 17,=0.17, t5=0
for the cumulative probit model, and
71=139, =094, =078, 17,=029, 75=0

for the cumulative logit model. For example, the estimated odds of response fun-
damentalist rather than moderate or liberal for those with less than a high school
education are exp(1.39) = 4.0 times the estimated odds for those with a graduate
degree. From the probit estimates, the mean of the underlying latent response on
religious beliefs is estimated to be about 0.83 (conditional) standard deviation of
that underlying scale lower (i.e., more fundamentalist) for those with less than a
high school education than for those with a graduate degree.

For the row effects model and the linear trend model, the estimates provide
similar information. The estimates for the cumulative logit model are about 70%
larger than those for the cumulative probit model. Even with such a huge sample
size, the deviances cannot discriminate between the models and indicate that one fits
and the other does not. The {;} for the row effects model are monotone decreasing
for each link function but depart slightly from a linear trend as a function of the
row numbers. Of the four pairs of adjacent categories for educational degree, the
effects are a bit greater comparing less than high school and high school categories
and comparing junior college and bachelor categories than comparing the other
two pairs. In practical terms, though, the departure from a linear trend is not great.
For simplicity, it is adequate to use the linear trend model even though it exhibits
some lack of fit.

5.3 CUMULATIVE LOG-LOG LINKS: PROPORTIONAL HAZARDS
MODELING

The type I extreme value distribution, sometimes called the Gumbel distribution,
has cumulative distribution function

G(y) = exp [—exp (—y;“)],
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where a is a location parameter and b > 0 is a scale parameter. Its mode is a (the
mean is a + 0.577b) and the standard deviation is 1.283b. The term extreme value
refers to this being the limit distribution of the maximum of a sequence of inde-
pendent and identically distributed continuous random variables. The distribution
is often used to model extremes, such as the highest level of a river at a particular
location over a year period.

The shape of the probability density function corresponding to this cdf is highly
skewed to the right. Thus, the cdf approaches 1 at a much slower rate than it
departs from 0, whereas the complement of the cdf approaches 1 at a much faster
rate. The inverse of this cdf is the log-log link function.

5.3.1 Complementary Log-Log Link Function

An underlying extreme value distribution for a latent variable Y* implies a cumu-
lative link model for the observed ordinal response Y of the form

log{—log[1 — P(Y < j)l} =a; + B'x. (53)

This model applies the log(— log) link function to the complement of the cumu-
lative probabilities. The link function for the cumulative probability is called the
complementary log-log link.

With this link function, P(Y < j) approaches 1.0 at a faster rate than it
approaches 0.0. This differs from models that use the probit or logit link function.
For them, the link function h(u) is symmetric: For any 0 < P(Y < j) < 1, the
link function applied to the cumulative probability satisfies

h[P(Y < 1= —h[1 - P(Y < j)],
and P(Y < j) approaches 1.0 at the same rate as it approaches 0.0. For the related
log-log link, which is log{— log[ P(Y < j)]}, P(Y < j) approaches 1.0 at a slower
rate than it approaches 0.0. It is appropriate when the complementary log-log link

holds for the categories listed in the reverse order.
The model (5.3) with complementary log-log link function has the property

P(Y > j[x)) = [P(Y > jix)JXPE =),

For example, suppose that X is identical to x, except that x; is increased by 1.
Then

P(Y>j|xwithx; =x + 1) = P(Y > j | x with x; = x)®PB0),
As x; increases with fixed values for other predictors, P(Y > j) increases or
decreases according to whether S is negative or positive. The latent variable model

actually implies that the model for Y has the form

log{—log[1 — P(Y < )} =«a; - B'x.
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The sign of B then reverses, so that positive B; corresponds to increasing values
of P(Y > j), as in the usual sense of a positive association.

5.3.2 Example: Life Table for Gender and Race

Table 5.2 shows the life-length distribution for U.S. residents in 2004, by race and
gender. Life length uses five ordered categories. The underlying continuous cdf
of life length increases slowly at small to moderate ages but increases sharply at
older ages. This suggests the complementary log-log link function. This link also
results from assuming that the hazard rate increases exponentially with age, which
happens for an extreme value distribution. The distributions shown are estimated
population distributions based on census data. Sample sizes were unspecified and
the samples were probably not simple random samples, so we will not use formal
inference methods.

For gender g (1 = female; 0 = male), race r (1 = black; 0 = white), and life
length Y, Table 5.2 also contains fitted distributions for the model

log{—log[1 — P(Y < )]} =«a; + f1g + Bor.

We obtained these by fitting the model to the estimated population distributions
shown in the table. The model describes well the four distributions, as indicated by
the closeness of the fitted distributions shown in Table 5.2. One way to summarize
the difference between two such distributions is with the dissimilarity index, which
is half the sum of absolute differences between the fitted and estimated population
distributions. This index takes values 0.004, 0.003, 0.0035, and 0.005 for the four
groups. Another indication of the good fit is that if the model had been fitted to
multinomial samples of size 1000 for each of the four groups that had the same
percentages as Table 5.2 shows, the deviance would equal 2.1.

The fitted values correspond to model parameter values of B; = —0.538 and
B2 = 0.611. To interpret the gender effect, we note that the fitted cdf’s satisfy

P(Y>j|G=0,R=r)=[P(Y>j|G=1,R =r)]*P03¥,

Given race, the proportion of men living longer than a fixed time equaled the
proportion for women raised to the power of exp(0.538) = 1.71. Given gender,

TABLE 5.2. Observed and Fitted (in Parentheses) Life-Length Distributions of U.S.
Residents, as Percentages

Life Length
Gender Race 0-20 20-40 40-50 50-65 > 65

Female Black 1.8 (1.6) 24 (27) 3.7(3.5) 12.9 (13.1) 79.2 (79.1)
White 0.9 (0.9) 1.3 (1.5) 1.9 (1.9) 8.0 (7.6) 87.9 (88.0)
Male Black 26 (2.7) 4.9 (4.6) 5.6 (5.7) 20.1 (20.1) 66.8 (66.9)
White 1.3 (1.5) 2.8 (2.5) 3.2(3.3) 12.2 (12.3) 80.5 (80.4)

Source: 2008 Statistical Abstract of the United States, U.S. Census Bureau, Washington, DC.
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the proportion of blacks living longer than a fixed time equaled the proportion of
whites raised to the power of exp(0.611) = 1.84. The 8, and B8, values (and the
corresponding fitted distributions in Table 5.2) indicate that white men and black
women had similar life-length distributions, that white women tended to have the
longest lives, and that black men tended to have the shortest lives. If the probability
of living longer than some fixed time equaled A for white women, that probability
was about A!® for white men and black women and about A3 for black men.

The cumulative logit model of proportional odds form also fits this life table well.
(The deviance equals 2.4 when the model is fitted to counts having the estimated
population distributions and a sample size of 1000 for each group.) Its gender effect
is —0.604 and its race effect is 0.685. So if 2 denotes the odds of living longer
than some fixed time for white women, the estimated odds of living longer than
that time are exp(—0.604)2 = 0.5592 for white men, exp(—0.685)Q2 = 0.50$2 for
black women, and exp(—0.604 — 0.685)2 = 0.28%2 for black men.

5.3.3 Proportional Hazards Model for Grouped Survival Times

In studies of survival, sometimes the survival-time response is measured by
grouping the time scale into ordered categories. In Section 4.2.7 we noted that
continuation-ratio logit models can describe hazards functions for grouped survival
data. A certain model using the complementary log-log link function is also useful
for such data. In fact, models using that link function are sometimes referred to
as proportional hazards models, because the model results from generalizing the
proportional hazards model for survival data to handle grouped survival times.

When a continuously measured survival time has probability density function f
and cumulative distribution function F, the hazard function h; = f(¢)/[1 — F (1)}
is the instantaneous risk function. Incorporating explanatory variables, denote
the hazard function by #, when x =0 and by #4,(x) otherwise. The proportional
hazards model is

h:(x) = h; exp(8'x).

Equivalently, in terms of the survival functions §; =1 — F(¢) when x = 0 and
S; (x) otherwise,

S,(x) = Se"P(ﬂ’X)
=S, .
Now, for discretely measured survival, let §; = P(Y > j). As in Section 4.2, let

S
w=P¥=jlY>)=1-2 " j=1..,¢c-1
Sj
Incorporating explanatory variables and letting w; and §; without arguments refer
to x = 0, for the proportional hazards model,

exp(B'x)
_Sj+1(x)_ D)+l 1 (1 _ .. \EXP(B'X)
= —=1-(0-w)) .
Sj (x) ngp(ﬂ X)
J

w;j(x) =1
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It follows that
log[—log(l — w; (x))] = B'x + log[— log(l — w,;)] = & + B'x

with a; =log[—log(l — w;)]. That is, the model applies the complementary
log-log link to the conditional probabilities used in continuation-ratio logits. For
further details and related results, see Thompson (1977), Prentice and Gloeckler
(1978), McCullagh (1980), and Aranda-Ordaz (1983). Perhaps surprisingly, this
model for the conditional probabilities {w;} is equivalent to one using the same
link function but with cumulative probabilities (Li#rd and Matthews 1985).

5.3.4 Generalized Link Function Including Probit and Log-Log Links

Genter and Farewell (1985) introduced a generalized link function that permits
comparison of fits provided by various cumulative link functions. Their generalized
link function corresponds to the inverse cdf for a log-gamma density, which depends
on a parameter g such that the density is positively skewed when g < 0, negatively
skewed when ¢ > 0, and is the standard normal density when ¢ = 0. Special cases
of the link function include the probit (g = 0), the complementary log-log (g = 1),
and the log-log (¢ = —1).

The estimate g that maximizes the multinomial log-likelihood function provides
an estimate of the best-fitting link function out of this generalized family. The test
statistic for testing the adequacy of a particular link function equals double the
difference between the maximized log-likelihood for the link function correspond-
ing to the ML estimate § of ¢ and the maximized log-likelihood for the chosen
link function. Because the model with particular g is a special case of the model
with unspecified g, this statistic has a null asymptotic chi-squared distribution with
df = 1. As long as observations do not fall mainly in only one or two categories,
Genter and Farewell (1985) found that Var(q) tends to decrease as the number
of outcome categories ¢ increases and as the effect size increases, thus making it
easier to discriminate among the various link functions.

Suppose that we want to compare a particular pair of link functions, such as the
probit and complementary log-log. The two models are not nested, so they cannot
be compared with standard methods. However, if twice the difference between their
maximized log likelihoods exceeds the appropriate percentile of the X12 distribution,
we can conclude that the link with the smaller maximized likelihood fits more
poorly. This is because the likelihood-ratio statistic comparing that link to the link
corresponding to ¢ would have an even larger test statistic. Thus, using the X12
distribution for this evaluation is conservative.

Unfortunately, the logit link is not a special case of this generalized link family.
It is closely approximated by the probit link in this family. Lang (1999) proposed an
alternative parametric family of link functions that includes the logit, log-log, and
complementary log-log. He accomplished this by letting the cdf for the inverse link
function be a mixture of the cdf’s corresponding to these three link functions. He
also considered a Bayesian analysis with this approach in which prior beliefs about
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an appropriate link function could be combined with the data to obtain posterior
information about an appropriate link function.

54 MODELING LOCATION AND DISPERSION EFFECTS

The cumulative link models studied so far in this chapter have the same effect for
each cumulative probability. For this structure, settings of the explanatory variables
are stochastically ordered on the response (recall Section 2.2.5): For any pair x| and
Xy, either P(Y < j | x)) < P(Y < j|xp)forall jor P(Y <j|x1)>P(Y <j|
xp) for all j. This is not surprising, because the latent variable construction showed
that the model holds when an underlying continuous response has the usual regres-
sion model structure with a constant variance. In that case, the distribution of the
response at different predictor values differs in terms of location but not dispersion.

5.4.1 Adding Dispersion Effects to the Cumulative Link Model

When a cumulative link model fits poorly, often it is because the dispersion changes
considerably at different predictor values. For instance, perhaps responses tend to
concentrate around a similar location for Y at x; as at X, but more dispersion occurs
at x;. In other words, at x; the responses concentrate more at the extreme categories
than at x;. Then it would not be surprising if P(Y < j | x;)> P(Y < j | x2) for
small j but P(Y < j | x1) < P(Y < j | xp) for large j.

McCullagh (1980) generalized the cumulative link model to incorporate disper-
sion as well as location effects. With link function 4, the model is

aj—ﬂ’x

WP < Y=L,

(5.4

The denominator contains scale parameters y that describe how the dispersion
depends on x. This model arises from a latent variable model in which the distri-
bution of the latent variable has shape determined by h, such as normal for the
probit link and logistic for the logit link. The latent variable has mean 8'x and
standard deviation exp(y’x) that varies as x does. (We use the negative coefficient
for the 8'x term here to emphasize the connection between 8'x and the mean for
the underlying latent variable model.)

The ordinary cumulative link model (5.1) is the special case of model (5.4) with
y = 0. Otherwise, at setting x, the cumulative probabilities tend to shrink toward
their average when y’x > 0. This creates higher probabilities in the end categories
for ¥ and overall greater dispersion. The cumulative probabilities tend to move
apart, creating less dispersion, when y'x < 0.

54.2 Comparing Two Groups with Location and Dispersion Effects

Let’s see how the cumulative link model for comparing two groups on an ordinal
scale generalizes to permit dispersion effects. For this application, x consists of
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a single binary predictor x represented by an indicator variable taking values O
and 1. Model (5.4) with link function h simplifies to

h[P(ij)]=otj, x =0,
aj - ﬂ

, x =1
exp(y)

h[P(Y < )] =

The parameter B represents the difference between the means on the latent scale.
The parameter exp(y) represents the ratio of standard deviations for the two groups
on the latent scale. When y > 0, the group labeled x = 1 has more dispersion on
Y than the group labeled x = 0.

To illustrate, consider the cumulative logit link. The case ¥ = 0 is the propor-
tional odds form of the model, in which B is a location shift that determines a
common cumulative log odds ratio for all 2x2 collapsings of a 2xc table. When
y # 0 the difference between the logits for the two groups, and hence the cumu-
lative odds ratio, varies as j does.

Fitting model (5.4) is not straightforward, because it is not linear in the param-
eters. We can form the multinomial likelihood function by replacing response
category probabilities by differences of cumulative probabilities, as in equation
(3.13), then substituting 7~ [(« = B’x)/ exp(y’x)] for the cumulative probabilities.
The appendix to McCullagh (1980) derived likelihood equations and the informa-
tion matrix. ML estimates can be obtained by using a nonlinear regression program
to maximize the log likelihood, such as an iteratively reweighted Gauss—Newton
algorithm (Cox 1995).

5.4.3 Example: Coronary Heart Disease and Smoking

In Section 3.6.5 we analyzed data on the relationship between the degree of coro-
nary heart disease and smoking status. Table 5.3 shows the data again. The rows
are stochastically ordered, but a cumulative logit model of proportional odds form
fits poorly (deviance = 40.5, df = 3). In Section 3.6.5 we found that a nonpropor-
tional odds model for which the cumulative log odds ratio changes linearly across
the response categories fits much better (deviance = 3.4, df = 2). That model esti-
mated the cumulative log odds ratios as —1.02, —0.72, —0.42, and —0.12, close to
the sample values of —1.04, —0.65, —0.46, and —0.07.

TABLE 5.3. Smoking Status and Degree of Coronary Heart Disease, with
Percentages for Response in Parentheses

Degree of Coronary Heart Disease®

Smoking
Status 0 1 2 3 4
Smoker 350 (22.6%) 307 (19.8%) 345 (22.3%) 481 (31.0%) 67 (4.3%)

Nonsmoker 334 (45.2%) 99 (13.4%) 117 (15.8%) 159 (21.5%) 30 (4.1%)

Source: Peterson and Harrell (1990), with permission.
40, no disease; 4, very severe disease.
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The varying cumulative log odds ratios also reflect differing dispersion for
the two groups. The cumulative logit model having both location and disper-
sion effects with indicator x = 1 for smokers has f} = 0.657 (SE = 0.077) and
7 = —0.308(SE = 0.054). Compared to nonsmokers, responses for smokers tend
to be located more toward the severe end of the response scale and show somewhat
less dispersion. This model has deviance = 6.8 (df = 2), a decrease of 33.7 from
the model having only a location effect, for which 8 = 0.737.

54.4 Example: Vision Quality for Men and Women

Table 5.4 from Stuart (1953) shows data on assessment of right-eye vision for men
and for women. From the percentages shown, men and women are not stochastically
ordered. Relatively more men tend to fall at both the highest and lowest levels.
Hence, a model having only a location parameter fits poorly. The cumulative logit
model of proportional odds form with a binary indicator variable for gender has
deviance = 128.4(df = 2). Its location parameter estimate of 0.038(SE = 0.039)
seems to suggest a lack of difference between the groups.

McCullagh (1980) and Cox (1995) analyzed the data with location and scale
models. The special case of the cumulative logit model with a dispersion effect
but with location effect 8 = 0O fits well (deviance = 2.6, df = 2). With an indicator
variable that equals | for females, the estimate y = —0.271 (SE = 0.025) reflects
the smaller dispersion for the female responses. For an underlying continuous dis-
tribution of right-eye quality, the means seem to be similar for women and men,
but the ratio of standard deviations is estimated to be exp(—0.271) = 0.76.

5.5 ORDINAL ROC CURVE ESTIMATION

Diagnostic tests are used to detect many undesireable medical conditions, such as
a disease of a particular type. For example, some diagnostic tests use x-rays or
other imaging devices such as the mammogram (for diagnosing breast cancer) and
the MRI body scan. A diagnostic test result is called positive if it states that the
disease is present and negative if it states that the disease is absent. The accuracy
of a diagnostic test is often assessed by two conditional probabilities:

sensitivity = P(positive result | disease present),

specificity = P(negative result | disease absent).

TABLE 5.4. Quality of Right-Eye Vision by Gender, with Conditional Distribution of
Vision Quality in Parentheses

Quality of Right-Eye Vision

Gender 0 (Highest) 1 2 3 (Lowest)
Males 1053 (32.5%) 782 (24.1%) 893 (27.5%) 514 (15.9%)
Females 1976 (26.4%) 2256 (30.2%) 2456 (32.8%) 789 (10.6%)

Source: Stuart (1953), with permission of the Biometrika trustees.
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The higher these two probabilities, the better the diagnostic test. A false positive
occurs when the subject does not have the disease but the test is positive, which
happens with rate

false positive rate = P(positive result | disease absent) = 1 — specificity.

5.5.1 Ordinal Sensitivity and Specificity

Often, a diagnostic rating ¥ has an ordinal scale, such as 1 = definitely normal,
2 = probably normal, 3 = equivocal, 4 = probably abnormal, and 5 = definitely
abnormal. Let x be the indicator of actual disease status, with x = 1 when the
disease is present and x = O when the disease is absent. If we regard outcome
Y > j on the ordinal scale as being a positive response, then

specificity = P(Y < j | x = 0), sensitivity = P(Y > j | x = 1).

A receiver operating characteristic (ROC) curve is a graphical way to summa-
rize the performance of a diagnostic test. For various criteria for calling a diagnostic
test result positive, the curve plots the false positive rate on the horizontal axis and
the sensitivity on the vertical axis. For an ordinal response, the point on the ROC
curve corresponding to the definition ¥ > j for a positive outcome has coordinates

[1 — specificity, sensitivity] = [P(Y > j |x =0), P(Y>j |x =1)].

The ROC curve is constructed by plotting these points for j =0, 1,...,c. The
curve connects the point (0, 0), which occurs for j = ¢, with the point (1, 1),
which occurs when j = 0. For j between 1 and ¢ — 1, the points usually all fall
above the straight line connecting the points (0, 0) and (1, 1). If a point falls below
that line, then for some definition of “positive,” predictions are better by guessing
randomly than by using the diagnostic test.

5.5.2 Cumulative Link Models and ROC Curves

Suppose that we use a cumulative link model
h[P(Y < j)l=aj — Bx

to describe the impact of x on Y, using data for which we can measure both
variables. We use the negative coefficient for the Sx term here so that 8 > 0 cor-
responds to having a greater likelihood of a positive response when the disease is
present than when it is absent.

Based on the model fit, the point for the ROC curve that is plotted when category
Jj is the cutoff point for a positive outcome is

[P(Y>jlx=0), PA>j|x=D1=[1-h""a), 1-h" ;- Bl
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For the logit link, for example, exp(ﬁ) is the estimated odds of a positive response
for a diseased patient divided by the estimated odds of a positive response for
a nondiseased patient. This is true for each possible cutoff point for a positive
outcome. Based on the model fit, the point for the ROC curve that is plotted when
category j is the cutoff point for a positive outcome is

A N 1 1
(P> 71x=0 P(Y>“x=1)]=[1+exp(&-)‘ I+ exp(@ ﬁ)]'
J j =

For the probit link,
[B(Y>jlx=0), P>jlx=1]=[l-d@), 1@ —ph)l

In practice, rather than plotting only the ¢ — 1 pairs of these estimated prob-
abilities for j =1,...,c — 1, a smooth curve is constructed by letting &; vary
continuously over the real line for the given . With a symmetric link function
such as the probit or logit, for which A[P(Y < j)] = —h[1l — P(Y < j)], the ROC
curve has a symmetric appearance. The curve approaches the point (1,1) with the
same shape as it approaches the point (0,0), that is, symmetry about the line drawn
from the top left to the bottom right of the graph. For the cumulative logit model
of proportional odds form or the corresponding cumulative probit model, the ROC
curve is necessarily concave when B>0.

Figure 5.1 shows the ROC curve for the cumulative probit model for four
possible values of B. For example, let @; = 0.0, for which the false positive rate
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Figure 5.1. ROC curves for cumulative probit model with four different disease indicator effects B.
(From Tosteson and Begg (1988), with permission of Sage Publications.)
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on the horizontal axis is 1 — ®(0) = 0.50. Then the true positive rate on the vertical
axis is 1 — ®(—f) = ®(B), which for § = (0.0, 0.5, 1.0, 2.0) equals (0.50, 0.69,
0.84, 0.98). As ﬁ increases, reflecting a better diagnostic process, the area under
the ROC curve increases.

In addition to the disease indicator x, the model for the diagnostic rating ¥ can
contain other explanatory variables that may have effects on the diagnosis, such as
whether or not the patient has certain symptoms. Tosteson and Begg (1988) showed
that the same ROC curves then result as when the model does not contain such vari-
ables, because the extra terms can be absorbed into the intercept term. Changing lev-
els for an additional predictor corresponds to movement along the ROC curve rather
than creation of a new curve. For example, if a binary predictor is an indicator for
two different raters, the effect of its coefficient is merely to translate by that constant
the cutpoints for one rater relative to the other one. However, when the additional
predictors include an interaction between an explanatory variable and the disease
status variable, a different ROC curve occurs at each setting of those variables.

5.5.3 Dispersion Effects and Area Under the ROC Curve

More generally, the ROC curve can be based on a model that also includes disper-
sion effects, such as model (5.4), which is

aj—ﬂ'x

WP < )= Lors

Tosteson and Begg (1988) suggested that this generalized model produces shapes
for ROC curves that better resemble sample ROC plots often seen in practice,
such as curves that are not symmetric or even concave. They noted that for such a
model fitted to radiologic data, the estimated dispersion term exp(p'x;) for those
with the disease often exceeds 1. That is, the spread of responses for diseased
subjects (actual disease status x = 1) is greater than that for nondiseased subjects
(disease status x = 0). This may reflect the fact that healthy physiology does not
vary as much in its radiologic image as does abnormal physiology.

Consider the special case of the generalized model with the probit link function
and with the disease status indicator as the only predictor in both portions of the
model, with location effect S and dispersion effect y. Then the area under the ROC
curve is

area =<I>(L).
~1+e2r

See Tosteson et al. (1994), who also derived a standard error for its ML estimate.
When y = 0, the area is ®(8/+/2). When B = 0 also, the ROC curve is the line
with intercept 0 and slope 1, and the area under the curve is 0.50. For fixed y,
the area under the ROC curve is monotone increasing in 8, with limiting value 1
as f — oo. For fixed B, the area under the ROC curve is monotone decreasing
in y, with limiting value 0.50 as y — oo. Let ¥} denote a random observation
for a subject with the disease and Y a random observation for a subject without
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the disease. Then the area under the ROC curve equals the value of the stochastic
superiority measure ¢ = P(Y| > Y3) + %P (Y1 = Y») introduced in Section 2.1.4
(Bamber 1975).

Including a covariate term in the dispersion part of the model has the effect of
either raising the ROC curve or lowering it. Including interaction terms with the
disease status and explanatory variables provides the flexibility of different shapes
for the ROC curve.

5.5.4 Example: Ultrasonography Cancer Detection

Table 5.5, based on an example discussed by Tosteson and Begg (1988), refers
to the use of ultrasonography in detecting the presence or absence of hepatitic
metasteses in patients with primary cancers of either the breast or the colon. Let
x1 be the indicator of hepatic metasteses (1 = yes, 0 = no) and let x; indicate the
type of cancer (1 = breast, 0 = colon). The cumulative probit model

aj — Bix1 — Baxa — Ba(x1x2)
explyixi + yax2 + y3(x1x2)]

Q[P(Y < )] =

has the estimates shown in Table 5.6. Figure 5.2 shows the ROC curves for the
two types of cancer corresponding to these estimates. The curve for breast cancer

TABLE 5.5. Example of Ultrasound Rating Data for
Breast Cancer and Colon Cancer

Ultr Rati
Hepatic  Tumor asonography Rating

Metasteses  Site 1 2 3 4 5
No Colon 47 17 2 0 0
Yes Colon 4 1 2 2 13
No Breast 6 5 2 1 0
Yes Breast 0 2 0 2 5

Source: Based on an example described in Tosteson and Begg
(1988).

TABLE 5.6. ML Estimates for Cumulative Probit Models Fitted to Ultrasonography
Data

B B2 Bs 7 7 Vs
Original model
Estimate 2.64 0.23 —-0.74 1.81 0.42 —1.28
SE 0.85 0.24 1.02 0.54 0.38 0.69
Reduced model?
Estimate 2.18 — — 1.26
SE 0.47 — — 0.44

“Reduced model has location and dispersion effect only for hepatic metasteses indicator.
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Figure 5.2. Estimated ROC curve for colon and breast cancer metasteses, based on cumulative pro-
bit model, including dispersion effect. (From Tosteson and Begg (1988), with permission of Sage
Publications.)

suggests that when its false positive rate is high, that rate may even exceed the
true positive rate.

The standard errors for the coefficients of x, and x;x, in the location and scale
parts of the model suggest that it may be adequate to use a simpler model with
x) alone in both parts, thus using the same curve for each type of cancer. This
is verified by the likelihood-ratio statistic comparing the model fits, which equals
6.5 with df = 4. The simpler model has deviance = 11.55 (df = 10), ﬁl =2.18
(SE =0.47), and y = 1.26 (SE = 0.44). The positive y estimate suggests that
greater dispersion exists when hepatic metastases are present.

5.6 MEAN RESPONSE MODELS

In Chapters 3 to 5 we have introduced a variety of models for the outcome
probabilities of an ordinal response. Cumulative link models apply link functions
to cumulative probabilities. Adjacent-categories models and the stereotype model
apply link functions to conditional probabilities, given occurrence in a pair of cate-
gories. Continuation-ratio models apply link functions to conditional probabilities,
given occurrence above some category or given occurrence below some category.
In this section we present a model that differs from models studied previously
in that it describes a single summary of the outcome probabilities, the expected
response, rather than the outcome probabilities themselves. The formula for the
expected response resembles the ordinary regression formula for a quantitative
response variable.
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The model requires assigning monotone scores vy < vz < --- < v, to the out-
come categories. At each fixed setting of explanatory variables x, let

px) =y vjm(x)
j

denote the mean response on Y for those scores. The model
ux)=a+ p'x (5.5)

assumes a linear relationship between the mean and the explanatory variables. We
refer to this class of models as mean response models.

5.6.1 Fitting Mean Response Models

Assume that the observations on Y at different values of x; are independent multino-
mial samples. Bhapkar (1968) and Grizzle et al. (1969) used weighted least squares
(WLS) to fit mean response models. Since the outcome probabilities change as x
changes, so does the variance of Y, and the WLS approach weights each sample
mean by the inverse of its estimated variance. This requires all explanatory vari-
ables to be categorical, because many observations must occur at each predictor
value in order to estimate the variance. In practice, this means that the overall
sample size must be relatively large and the data cannot be sparse.

The ML approach for maximizing the product multinomial likelihood is more
general than WLS. It applies for either categorical or continuous explanatory vari-
ables, and it does not require a large sample. Haber (1985), Lipsitz (1992), and
Lang (2004, 2005) presented algorithms for ML fitting of families of models that
include mean response models. The fitting process is somewhat complex, because
the probabilities in the multinomial likelihood function are not direct functions
of the parameters in model (5.5). The ML fit produces estimated response prob-
abilities at each setting for the explanatory variables that maximize the product
multinomial likelihood function under the constraint that they satisfy the model.
Specialized software is available' that can fit a very broad class of models that
includes mean response models.

5.6.2 Example: Political Ideology by Political Party and Gender

We illustrate the mean response model using Table 5.7, from the 2006 General
Social Survey. We model the mean of Y = political ideology using gender and
political party identification. For simplicity, we use political ideology scores that
are the category numbers. The sample means for the three party identifications
(Democrat, Independent, Republican) are (3.54, 3.98, 4.96) for females and (3.52,
4.01, 5.14) for males. For each gender, responses tend to be more conservative for
Republicans than for the other two party IDs.

I'The mph.fit R function described in the Appendix, as illustrated at www stat.ufl.eduw/~aa/ordinal/ord.
html.
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TABLE 5.7. Political Party Identification and Political Views

Political Views?

Party ID 1 2 3 4 5 6 7 Total

Females Democrat 42 201 136 320 83 63 18 863
Independent 33 87 107 459 123 92 19 920

Republican 5 19 29 177 121 183 52 586

Males Democrat 28 120 89 202 51 37 10 537
Independent 20 79 124 362 120 90 18 813

Republican 3 12 26 128 107 211 47 534

Source: 2006 General Social Survey.
41, extremely liberal; 2, liberal; 3, slightly liberal; 4, moderate; 5, slightly conservative; 6, conservative;
7, extremely conservative.

Let g be an indicator variable for gender (1 = females, 0 = males) and let
p1 and p; be indicator variables for political party identification (p; =1 for
Democrats and 0 otherwise, p; = 1 for Independents and 0 otherwise, p; = p» =0
for Republicans). The mean response model with main effects but no interaction
has ML fit,

i = —5.081 — 0.063g — 1.513p; — 1.049p,.

For a given political party, there seems to be essentially no difference in mean
political ideology for males and females. For a given gender, the mean political
ideology for Republicans is estimated to be about one category more conserva-
tive than for Independents and about 1.5 categories more conservative than for
Democrats.

The goodness-of-fit statistics are G? =4.18 and X? =4.17. Since sample
means occur at six party ID x gender combinations and the model has four
parameters, the residual df = 2. The fit seems adequate (P-value = 0.12). The SE
values are 0.040 for the g effect, 0.052 for the p; effect, and 0.048 for the p;
effect. In the population, we can be 95% confident that the difference between the
mean political ideology for Democrats and for Republicans falls in the interval
—1.513 £ 1.96(0.052) for each gender. This rounds to (—1.6, —1.4), quite close
to 1.5 categories more liberal for Democrats.

5.6.3 Advantages and Disadvantages of Mean Response Models

Treating ordinal variables in a quantitative manner is sensible if their categorical
nature reflects crude measurement of an inherently quantitative variable. In fact,
we have seen that ordinal cumulative link models result from latent variable mean
response models. Mean response models for ordinal categorical response variables
provide yet another way of approximating ordinary regression models for latent
response variables that we would ideally like to observe.
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With ¢ = 2, without loss of generality we can take v{ =0 and v; = 1. The
model then specifies that the probability in a particular outcome category is a linear
function of the predictor variables. For binary outcomes, that model is called the
linear probability model. With multiple predictors, such a model is rarely adequate,
because of the restricted [0, 1] range for probabilities. Often, ordinary ML fitting
fails, because the iterative process generates an estimated probability outside the
[0, 1] range for at least one predictor value.

With ¢ > 2, ML fitting of the mean response model can also have difficulties,
because the mean response must fall between v; and v.. In addition, the example
in Section 1.3.3 illustrated that having upper and lower bounds for the observed
response can cause floor effects and ceiling effects that bias the results. This tends
to be less problematic as ¢ increases and there is reasonable dispersion of responses
over the c categories throughout the domain of interest for the explanatory variables.
Fitting is most likely to encounter problems when a relatively high proportion of
observations falls in category 1 or in category c of Y.

With ¢ > 2, the mean response model does not specify the response probabilities
structurally but merely describes the dependence of the mean on x. That is, unlike
models considered previously, specifying parameters for a mean response model
does not uniquely determine cell probabilities. Thus, mean response models do not
directly specify structural aspects, such as stochastic orderings. These models do not
represent the categorical response structure as fully as do models for probabilities,
and conditions such as independence do not occur as special cases.

Although mean response models have these severe limitations, they have the
advantage of providing simple descriptions. Effects are described by slopes or dif-
ferences between means instead of by odds ratios or parameters in cumulative link
models. As ¢ increases, mean response models also interface with ordinary regres-
sion models for quantitative response variables. For moderate to large c, the mean
response model approximates results for the regression model that would be appro-
priate if we could measure Y in a truly quantitative manner, with ungrouped data.

CHAPTER NOTES

Section 5.1: Cumulative Link Models

5.1. Other articles that discussed cumulative link models include Cowles (1996),
Ishwaran and Gatsonis (2000), and Chen and Dey (2000) using MCMC meth-
ods for Bayesian model fitting. For latent variable modeling with a set of ordinal
response variables for various link functions, see Bartholomew (1983) for an early
review and Moustaki (2000) for later work. An alternative latent variable approach
to deriving an ordinal model is based on maximizing random utility. Small (1987)
presented this approach in the context of discrete choice modeling. Yee and Wild
(1996) defined generalized additive models for ordinal responses. Such models are
especially useful for smoothing ordinal response data having continuous explana-
tory variables without assuming linearity of effects. In Note 11.2 we refer to other
ways of smoothing ordinal data.
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Section 5.2: Cumulative Probit Models

5.2 Early uses of the cumulative probit model were by Aitchison and Silvey
(1957), Ashford (1959), Gurland et al. (1960), Bock and Jones (1968, Chap. 8.1),
and Samejima (1969). Bock (1975, Sec. 8.1.6) and McKelvey and Zavoina (1975)
motivated the model by the regression model for an underlying normal latent vari-
able, extending models of Aitchison and Silvey (1957) and Ashford (1959) for
a single predictor. Later uses include Muthén (1984) for latent variable models,
Tosteson et al. (1989) for a measurement error model, Agresti (1992a) for paired
preference data, Becker and Kennedy (1992) for a graphical exposition, Hausman
et al. (1992) for modeling transaction stock prices, Weiss (1993) and Kim (1995)
for modeling a bivariate response, Saei et al. (1996) for modeling repeated mea-
sures of count data, Cowles (1996) using MCMC methods, Ronning and Kukuk
(1996) for multivariate modeling assuming an underlying joint normal distribution,
and Glewwe (1997) for a test of the normality assumption for the latent variable
model. The notes for Chapters 10 and 11 list several references that deal with
multivariate cumulative probit models.

Section 5.3: Cumulative Log-Log Links: Proportional Hazards Modeling

5.3 Farewell (1982) generalized the complementary log-log model to allow vari-
ation among the sample in the category boundaries for the underlying scale by
letting exp(a;) vary among the sample according to a gamma distribution, with
aj — o) the same for all subjects. This type of model relates to random effects
models having random intercepts (Section 1.3) for which the variance component
describes subject heterogeneity. Other articles in which proportional hazards mod-
els were discussed include Ladrd and Matthews (1985), Nandram (1989), Barnhart
and Sampson (1994), Crouchley (1995), Cowles (1996), Ten Have (1996), Hedeker
et al. (2000), and Grilli (2005).

Section 5.4: Modeling Location and Dispersion Effects

5.4 Other articles in which modeling dispersion as well as location were con-
sidered include Nair (1987), Tosteson and Begg (1988), Tutz (1989), Hamada and
Wu (1990), and Williams (2009). Cox (1995) presented a general model that con-
tains as special cases the cumulative logit model having dispersion effects and the
cumulative logit model (3.15) allowing partial proportional odds. Cox proposed ML
estimation with a nonlinear regression program using the Gauss—Newton method
(such as PROC NLIN in SAS), employing constraints so that estimated cumula-
tive probabilities are not out of order. He presented several examples, including an
alternative analysis of Table 5.3.

Section 5.5: Ordinal ROC Curve Estimation

5.5 For more details about using cumulative link models with location and dis-
persion terms to construct ROC curves, see Tosteson and Begg (1988) and Tosteson
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et al. (1994). Lui et al. (2004) proposed methods for testing equality between two
diagnostic procedures with paired-sample ordinal data that can be stratified by
cases and noncases. One method is based on correctly identifying the case for a
randomly selected pair of a case and a noncase, and the other is based directly
on the sensitivity and specificity. Toledano and Gatsonis (1996) and Ishwaran and
Gatsonis (2000) extended ordinal ROC curve analysis for data in which several
raters analyze the same cases. Waegemana et al. (2008) discussed ROC analysis in
a machine learning context.

Section 5.6: Mean Response Models

5.6 Articles that discussed mean response models for ordered categorical
response variables include Yates (1948), Bhapkar (1968), Grizzle et al. (1969),
Koch and Reinfurt (1971), Williams and Grizzle (1972), Koch et al. (1977),
Meeks and D’Agostino (1983), Haber (1985), Agresti (1986) for an R? measure,
Agresti (1992), Lang et al. (1999) for comparing mean responses of multivariate
ordinal data, and Haber (1985), Lipsitz (1992), and Lang (2004, 2005) for ML
fitting.

EXERCISES

5.1. For the cumulative probit model ®~![P(Y < j)] = aj — B'x, explain why a
1-unit increase in x; corresponds to a S standard deviation increase in the
expected underlying latent response, controlling for other predictors.

5.2. Refer to the example in Section 1.3.3. Generate 100 observations from the
given latent variable model, which has E(y*) = 20 + 0.60x — 40.0z.

(a) Plot the data and fit the model using OLS.

(b) Categorize y* into y using five categories, as in that example. Now
using y as the response, fit the same model as well as the extended
model allowing interaction, using OLS with the scores (1, 2, 3, 4, 5). In
the interaction model, compare the slopes for the two levels of z.

(c) Fit the ordinal probit model to y. Show how results compare to those
for the model for y*, and show that there is actually no need for an
interaction term.

5.3. For cumulative link model (5.1), show thatfor 1 < j <k <c¢—1,P(Y <k |
x) = P(Y < j | x*), where x* is obtained by increasing the ith component
of x by (ax — a;)/B;. Interpret.

5.4. A cumulative link row effects model for an r x ¢ contingency table with a
qualitative predictor is

RPY < Pl=aj+ 1, ji=1...,c—-1
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5.5.

5.6.

5.7.

5.8.

(a) Show that the residual df = (r — 1)(c — 2).
(b) When this model holds, explain why independence corresponds to 7, =
--- =1, and the test of independence has df =r — 1.

(c) When this model holds, explain why the rows are stochastically ordered
onY.

Let Fi(y) =1 —exp(—Xy) for y>0 be a negative exponential cdf with
parameter A, and let F,(y) = 1 — exp(—uy) for y > 0. Show the difference
between the cdf’s on a complementary log-log scale is identical for all y. Give
implications for data analysis with an ordered categorical response variable.

For a link function A, consider the model of form presented in Section 4.2,
hlw X)) =a; + B'x where w; = S
J J j™ J m; + .-+ 7. )
(a) Explain why the fit of this model is the same when fitted separately for
Jj=1,...,c—1 or when fitted simultaneously.
(b) For the complementary log-log link, show that this model is equivalent

to one using the same link function for cumulative probabilities (Ladra
and Matthews 1985).

Using the logit link, fit the model (5.4) with location and dispersion terms
to Table 3.8 from Section 3.5.6 in Chapter 3, for which the cumulative logit
model of proportional odds form has lack of fit. Interpret.

Table 5.8 summarizes observations of passengers in autos and light trucks
involved in accidents in Maine in one year. The table classifies passengers

TABLE 5.8. Passenger Observations

Extent of Injury®

Gender Location Seat Belt Use 1 2 3 4 5
Female Urban No 7,287 175 720 91 10
Yes 11,587 126 577 48 8
Rural No 3,246 73 710 159 31
Yes 6,134 94 564 82 17
Male Urban No 10,381 136 566 96 14
Yes 10,969 83 259 37 1
Rural No 6,123 141 710 188 45
Yes 6,693 74 353 74 12

Source: Cristanna Cook, Medical Care Development, Augusta, Maine.

“1, not injured; 2, injured but not transported by emergency medical services; 3, injured and transported
by emergency medical services but not hospitalized; 4, injured and hospitalized but did not die; 5,
injured and died.
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by gender, location of accident, seat belt use, and extent of injury. Find a
cumulative link model that describes these data well. Describe the effects

using estimated parameters from the model.

5.9. Refer to Exercise 2.7. Analyze these data using methods of this chapter.



CHAPTER 6

Modeling Ordinal Association
Structure

Our focus so far in this book has been on modeling a single ordinal response
variable. The remainder of the book deals with bivariate and multivariate ordi-
nal responses. We focus next on the analysis of association between response
variables, in this chapter using models and in Chapter 7 using non-model-based
summary measures. When each response variable has the same categories, such as
in longitudinal studies that measure a variable repeatedly over time, it is often of
interest to compare and model the marginal distributions. In Chapter 8 we present
ways of doing this and in Chapters 9 and 10 extend the analyses to more general
models (such as including random effects), with emphasis on effects of explanatory
variables.

For joint distributions of categorical response variables, loglinear models
describe the dependence structure. For example, loglinear modeling can analyze
whether the association between a pair of variables is homogeneous across the
categories of other variables, and if so, whether those variables are conditionally
independent. In this chapter we assume familiarity with standard loglinear models
for contingency tables. We introduce specialized loglinear models for ordinal
response variables as well as other models not having loglinear structure that can
describe ordinal association, such as models for global odds ratios. We refer to
the models of this chapter as association models.

6.1 ORDINARY LOGLINEAR MODELING

Most of this chapter deals with modeling two-way contingency tables. Denote
the observed cell counts by {n;;} and the expected cell counts by {u;;}. We
assume a multinomial sample over the cells, with fixed sample size n and multino-
mial probabilities 7;; = i/}, D", hap) = pij/n. The ML estimates of loglinear

Analysis of Ordinal Categorical Data, Second Edition, By Alan Agresti
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association and interaction parameters are identical to the ML estimates under the
assumption that the cell counts are independent Poisson variates with expected
values {u;;}. Similarly, for inferential analyses about model effect parameters,
equivalent results occur under the Poisson and multinomial sampling assumptions.

6.1.1 Loglinear Models of Independence and of Association

The loglinear model of statistical independence for an r x ¢ table is
_ X,
loguij =2 + A7 +4;.

For identifiability, the row and column terms satisfy constraints suchas AX = 1} =
0. This model has residual df = (r — 1)(c — 1). The general loglinear model that
permits association is

log pij = A +AF + 1) + 18"

There are (r — 1)(c — 1) linearly independent Aﬁy terms. For example, with the
constraints that these association parameters equal 0 in the last row and in the last
column, these parameters are log odds ratios for the 2x2 rectangular patterns of
cells that use the cell in the last row and last column as a baseline,

Ai)§ Y= log M

Hiclhrj

This model is saturated, having as many parameters as cell count observations.
Because of this, its residual df = 0 and {{i;; = n;;}.

This loglinear model and ordinary loglinear models for multiway contingency
tables have a serious limitation—they treat all classifica