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Preface 

In recent years methods for analyzing categorical data have matured considerably 
in their development. There has been a tremendous increase in the publication 
of research articles on this topic. Several books on categorical data analysis have 
introduced the methods to audiences of nonstatisticians as well as to statisticians, 
and the methods are now used frequently by researchers in areas as diverse as 
sociology, public health, and wildlife ecology. Yet some types of methods are 
still in the process of development, such as methods for clustered data, Bayesian 
methods, and methods for sparse data sets with large numbers of variables. 

What distinguishes this book from others on categorical data analysis is its 
emphasis on methods for response variables having ordered categories, that is, 
ordinal variables. Specialized models and descriptive measures are discussed that 
use the information on ordering efficiently. These ordinal methods make possible 
simpler description of the data and permit more powerful inferences about popula-
tion characteristics than do models for nominal variables that ignore the ordering 
information. 

This is the second edition of a book published originally in 1984. At that time 
many statisticians were unfamiliar with the relatively new modeling methods for 
categorical data analysis, so the early chapters of the first edition introduced gen-
eralized linear modeling topics such as logistic regression and loglinear models. 
Since many books now provide this information, this second edition takes a differ-
ent approach, assuming that the reader already has some familiarity with the basic 
methods of categorical data analysis. These methods include descriptive summaries 
using odds ratios, inferential methods including chi-squared tests of the hypotheses 
of independence and conditional independence, and logistic regression modeling, 
such as presented in Chapters 1 to 6 of my books An Introduction to Categorical 
Data Analysis (2nd ed., Wiley, 2007) and Categorical Data Analysis (2nd ed., 
Wiley, 2002). 

On an ordinal scale, the technical level of this book is intended to fall between 
that of the two books just mentioned. I intend the book to be accessible to a broad 
audience, particularly professional statisticians and methodologists in areas such 
as public health, the pharmaceutical industry, the social and behavioral sciences, 
and business and government. Although there is some discussion of the underlying 
theory, the main emphasis is on presenting various ordinal methodologies. Thus, 
the book has more discussion of interpretation and application of the methods than 

ix 
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of the technical details. However, I also intend the book to be useful to specialists 
who may want to become aware of recent research advances, to supplement the 
background provided. For this purpose, the Notes section at the end of each chapter 
provides supplementary technical comments and embellishments, with emphasis on 
references to related research literature. 

The text contains significant changes from and additions to the first edition, so 
it seemed as if I were writing a new book! As mentioned, the basic introductions to 
logistic regression and loglinear models have been removed. New material includes 
chapters on marginal models and random effects models for clustered data (Chapters 
9 and 10) and Bayesian methods (Chapter 11), coverage of additional models such 
as the stereotype model, global odds ratio models, and generalizations of cumulative 
logit models, coverage of order-restricted inference, and more detail throughout on 
established methods. 

Nearly all the methods presented can be implemented using standard statistical 
software packages such as R and S-Plus, SAS, SPSS, and Stata. The use of soft-
ware for ordinal methods is discussed in the Appendix. The web site www.stat.ufl. 
edu/~aa/cda/software.html gives further details about software for applying meth-
ods of categorical data analysis. The web site www.stat.ufl.edu/~aa/ordinal/ord.html 
displays data sets not shown fully in the text (in the form of SAS programs), 
several examples of the use of a R function (mph.fit) that can conduct many of 
the nonstandard analyses in the text, and a list of known errata in the text. 

The first edition was prepared mainly while I was visiting Imperial College, Lon-
don, on sabbatical leave in 1981-1982. I would like to thank all who commented 
on the manuscript for that edition, especially Sir David Cox and Bent J0rgensen. 

For this edition, special thanks to Maria Kateri and Joseph Lang for reading a 
complete draft and making helpful suggestions and critical comments. Maria Kateri 
also very generously provided bibliographic checking and pointed out many rel-
evant articles that I did not know about. Thanks to Euijung Ryu for computing 
help with a few examples, for help with improving a graphic and with my LaTeX 
code, and for many helpful suggestions on the text and the Bibliography. Bhra-
mar Mukherjee very helpfully discussed Bayesian methods for ordinal data and 
case-control methods and provided many suggestions about Chapter 11. Also, Ivy 
Liu and Bernhard Klingenberg made helpful suggestions based on an early draft, 
Arne Bathke suggested relevant research on rank-based methods, Edgar Brunner 
provided several helpful comments about rank-based methods and elegant ways of 
constructing statistics, and Carla Rampichini suggested relevant research on ordi-
nal multilevel models. Thanks to Stu Lipsitz for data for Example 9.2.3 and to 
John Williamson and Kyungmann Kim for data for Example 9.1.3. Thanks to Beka 
Steorts for WinBUGS help, Cyrus Mehta for the use of StatXact, Jill Rietema for 
arranging for the use of SPSS, and Oliver Schabenberger for arranging for the use 
of SAS. I would like to thank co-authors of mine on various articles for permission 
to use materials from those articles. Finally, thanks as always to my wife, Jacki 
Levine, for her unwavering support during the writing of this book. 
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A truly wonderful reward of my career as a university professor has been the 
opportunity to work on research projects with Ph.D. students in statistics and with 
statisticians around the world. It is to them that I would like to dedicate this book. 

ALAN AGRESTI 
Gainesville, Florida and Brookline, Massachusetts 

January 2010 



C H A P T E R 1 

Introduction 

1.1 ORDINAL CATEGORICAL SCALES 

Until the early 1960s, statistical methods for the analysis of categorical data were 
at a relatively primitive stage of development. Since then, methods have been 
developed more fully, and the field of categorical data analysis is now quite mature. 
Since about 1980 there has been increasing emphasis on having data analyses 
distinguish between ordered and unordered scales for the categories. A variable 
with an ordered categorical scale is called ordinal. In this book we summarize 
the primary methods that can be used, and usually should be used, when response 
variables are ordinal. 

Examples of ordinal variables and their ordered categorical scales (in paren-
theses) are opinion about government spending on the environment (too high, 
about right, too low), educational attainment (grammar school, high school, col-
lege, postgraduate), diagnostic rating based on a mammogram to detect breast 
cancer (definitely normal, probably normal, equivocal, probably abnormal, defi-
nitely abnormal), and quality of life in terms of the frequency of going out to have 
fun (never, rarely, occasionally, often). A variable with an unordered categorical 
scale is called nominal. Examples of nominal variables are religious affiliation 
(Protestant, Catholic, Jewish, Muslim, other), marital status (married, divorced, 
widowed, never married), favorite type of music (classical, folk, jazz, rock, other), 
and preferred place to shop (downtown, Internet, suburban mall). Distinct levels of 
such variables differ in quality, not in quantity. Therefore, the listing order of the 
categories of a nominal variable should not affect the statistical analysis. 

Ordinal scales are pervasive in the social sciences for measuring attitudes and 
opinions. For example, each subject could be asked to respond to a statement 
such as "Same-sex marriage should be legal" using categories such as (strongly 
disagree, disagree, undecided, agree, strongly agree) or (oppose strongly, oppose 
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2 INTRODUCTION 

mildly, neutral, favor mildly, favor strongly). Such a scale with a neutral middle 
category is often called a Liken scale. Ordinal scales also occur commonly in 
medical and public health disciplines: for example, for variables describing pain 
(none, mild, discomforting, distressing, intense, excruciating), severity of an injury 
in an automobile crash (uninjured, mild injury, moderate injury, severe injury, 
death), illness after a period of treatment (much worse, a bit worse, the same, a 
bit better, much better), stages of a disease (I, II, III), and degree of exposure 
to a harmful substance, such as measuring cigarette smoking with the categories 
(nonsmoker, <1 pack a day, >1 pack a day) or measuring alcohol consumption 
of college students with the scale (abstainer, non-binge drinker, occasional binge 
drinker, frequent binge drinker). In all fields, ordinal scales result when inherently 
continuous variables are measured or summarized by researchers by collapsing the 
possible values into a set of categories. Examples are age measured in years (0-20, 
21-40, 41-60, 61-80, above 80), body mass index (BMI) measured as (<18.5, 
18.5-24.9, 25-29.9, >30) for (underweight, normal weight, overweight, obese), 
and systolic blood pressure measured as (<120, 120-139, 140-159, >160) for 
(normal, prehypertension, stage 1 hypertension, stage 2 hypertension). 

Often, for each observation the choice of a category is subjective, such as in a 
subject's report of pain or in a physician's evaluation regarding a patient's stage 
of a disease. (An early example of such subjectivity was U.S. President Thomas 
Jefferson's suggestion during his second term that newspaper articles could be 
classified as truths, probabilities, possibilities, or lies.) To lessen the subjectivity, it 
is helpful to provide guidance about what the categories represent. For example, the 
College Alcohol Study conducted at the Harvard School of Public Health defines 
"binge drinking" to mean at least five drinks for a man or four drinks for a woman 
within a two-hour period (corresponding to a blood alcohol concentration of about 
0.08%); "occasional binge drinking" is defined as binge drinking once or twice in 
the past two weeks; and "frequent binge drinking" is binge drinking at least three 
times in the past two weeks. 

For ordinal scales, unlike interval scales, there is a clear ordering of the levels, 
but the absolute distances among them are unknown. Pain measured with categories 
(none, mild, discomforting, distressing, intense, excruciating) is ordinal, because a 
person who chooses "mild" feels more pain than if he or she chose "none," but 
no numerical measure is given of the difference between those levels. An ordinal 
variable is quantitative, however, in the sense that each level on its scale refers 
to a greater or smaller magnitude of a certain characteristic than another level. 
Such variables are of quite a different nature than qualitative variables, which are 
measured on a nominal scale and have categories that do not relate to different 
magnitudes of a characteristic. 

1.2 ADVANTAGES OF USING ORDINAL METHODS 

Many well-known statistical methods for categorical data treat all response vari-
ables as nominal. That is, the results are invariant to permutations of the categories 
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of those variables, so they do not utilize the ordering if there is one. Examples are 
the Pearson chi-squared test of independence and multinomial response modeling 
using baseline-category logits. Test statistics and P-values take the same values 
regardless of the order in which categories are listed. Some researchers routinely 
apply such methods to nominal and ordinal variables alike because they are both 
categorical. 

Recognizing the discrete nature of categorical data is useful for formulating 
sampling models, such as in assuming that the response variable has a multinomial 
distribution rather than a normal distribution. However, the distinction regarding 
whether data are continuous or discrete is often less crucial to substantive con-
clusions than whether the data are qualitative (nominal) or quantitative (ordinal or 
interval). Since ordinal variables are inherently quantitative, many of their descrip-
tive measures are more like those for interval variables than those for nominal 
variables. The models and measures of association for ordinal data presented in 
this book bear many resemblances to those for continuous variables. 

A major theme of this book is how to analyze ordinal data by utilizing their 
quantitative nature. Several examples show that the type of ordinal method used is 
not that crucial, in the sense that we obtain similar substantive results with ordinal 
logistic regression models, loglinear models, models with other types of response 
functions, or measures of association and nonparametric procedures. These results 
may be quite different, however, from those obtained using methods that treat all 
the variables as nominal. 

Many advantages can be gained from treating an ordered categorical variable as 
ordinal rather than nominal. They include: 

• Ordinal data description can use measures that are similar to those used in 
ordinary regression and analysis of variance for quantitative variables, such 
as correlations, slopes, and means. 

• Ordinal analyses can use a greater variety of models, and those models are 
more parsimonious and have simpler interpretations than the standard models 
for nominal variables, such as baseline-category logit models. 

• Ordinal methods have greater power for detecting relevant trend or location 
alternatives to the null hypothesis of "no effect" of an explanatory variable 
on the response variable. 

• Interesting ordinal models apply in settings for which standard nominal models 
are trivial or else have too many parameters to be tested for goodness of fit. 

An ordinal analysis can give quite different and much more powerful results than 
an analysis that ignores the ordinality. For a preview of this, consider Table 1.1, with 
artificial counts in a contingency table designed to show somewhat of a trend from 
the top left corner to the bottom right corner. For two-way contingency tables, the 
first analysis many methodologists apply is the chi-squared test of independence. 
The Pearson statistic equals 10.6 with df = 9, yielding an unimpressive />-value of 
0.30. By contrast, various possible ordinal analyses for testing this hypothesis have 
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TABLE 1.1. Data Set for Which Ordinal Analyses Give Very Different Results from 
Unordered Categorical Analyses 

Row 1 
Row 2 
Row 3 
Row 4 

Column 1 

8 
6 
4 
2 

Column 2 

6 
8 
6 
4 

Column 3 

4 
6 
8 
6 

Column 4 

2 
4 
6 
8 

chi-squared statistics on the order of 9 or 10, but with df = 1, and have P-values 
on the order of 0.002 and 0.001. 

1.3 ORDINAL MODELING VERSUS ORDINARY REGESSION 
ANALYSIS 

There are two relatively extreme ways to analyze ordered categorical response 
variables. One way, still common in practice, ignores the categorical nature of the 
response variable and uses standard parametric methods for continuous response 
variables. This approach assigns numerical scores to the ordered categories and then 
uses ordinary least squares (OLS) methods such as linear regression and analysis 
of variance (ANOVA). The second way restricts analyses solely to methods that 
use only the ordering information about the categories. Examples of this approach 
are nonparametric methods based on ranks and models for cumulative response 
probabilities. 

1.3.1 Latent Variable Models for Ordinal Data 

Many other methods fall between the two extremes described above, using ordinal 
information but having some parametric structure as well. For example, often it 
is natural to assume that an unobserved continuous variable underlies the ordinal 
response variable. Such a variable is called a latent variable. 

In a study of political ideology, for example, one survey might use the categories 
liberal, moderate, and conservative, whereas another might use very liberal, slightly 
liberal, moderate, slightly conservative, and very conservative or an even finer 
categorization. We could regard such scales as categorizations of an inherently 
continuous scale that we are unable to observe. Then, rather than assigning scores 
to the categories and using ordinary regression, it is often more sensible to base 
description and inference on parametric models for the latent variable. In fact, we 
present connections between this approach and a popular modeling approach that 
has strict ordinal treatment of the response variable: In Chapters 3 and 5 we show 
that a logistic model and a probit model for cumulative probabilities of an ordinal 
response variable can be motivated by a latent variable model for an underlying 
quantitative response variable that has a parametric distribution such as the normal. 
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1.3.2 Using OLS Regression with an Ordinal Response Variable 

In this book we do present methods that use only the ordering information. It 
is often attractive to begin a statistical analysis by making as few assumptions 
as possible, and a strictly ordinal approach does this. However, in this book we 
also present methods that have some parametric structure or that require assigning 
scores to categories. We believe that strict adherence to operations that utilize 
only the ordering in ordinal scales limits the scope of useful methodology too 
severely. For example, to utilize the ordering of categories of an ordinal explanatory 
variable, nearly all models assign scores to the categories and regard the variable 
as quantitative—the alternative being to ignore the ordering and treat the variable 
as nominal, with indicator variables. Therefore, we do not take a rigid view about 
permissible methodology for ordinal variables. 

That being said, we recommend against the simplistic approach of posing linear 
regression models for ordinal response scores and fitting them using OLS methods. 
Although that approach can be useful for identifying variables that clearly affect 
a response variable, and for simple descriptions, limitations occur. First, there is 
usually not a clear-cut choice for the scores. Second, a particular response outcome 
is likely to be consistent with a range of values for some underlying latent variable, 
and an ordinary regression analysis does not allow for the measurement error that 
results from replacing such a range by a single numerical value. Third, unlike the 
methods presented in this book, that approach does not yield estimated probabilities 
for the response categories at fixed settings of the explanatory variables. Fourth, that 
approach can yield predicted values above the highest category score or below the 
lowest. Fifth, that approach ignores the fact that the variability of the responses is 
naturally nonconstant for categorical data: For an ordinal response variable, there is 
little variability at predictor values for which observations fall mainly in the highest 
category (or mainly in the lowest category), but there is considerable variability at 
predictor values for which observations tend to be spread among the categories. 

Related to the second, fourth, and fifth limitations, the ordinary regression 
approach does not account for "ceiling effects" and "floor effects," which occur 
because of the upper and lower limits for the ordinal response variable. Such effects 
can cause ordinary regression modeling to give misleading results. These effects 
also result in substantial correlation between values of residuals and values of 
quantitative explanatory variables. 

1.3.3 Example: Floor Effect Causes Misleading OLS Regression 

How can ordinary regression give misleading results when used with ordered cat-
egorical response variables? To illustrate, we apply the standard linear regression 
model to simulated data with an ordered categorical response variable v based on an 
underlying continuous latent variable y*. The explanatory variables are a continuous 
variable x and a binary variable z. The data set of 100 observations was generated as 
follows: The x values were independently uniformly generated between 0 and 100, 
and the z values were independently generated with P(z = 0) = P(z = 1) = 0.50. 
At a given x, the latent response outcome v* was generated according to a normal 
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distribution with mean 

E(y*) = 20.0 + 0.6x - 40.0z 

and standard deviation 10. The first scatterplot in Figure 1.1 shows the 100 obser-
vations on y* and x, each data point labeled by the category for z- The plot also 
shows the OLS fit that estimates this model. 

We then categorized the 100 generated values on y* into five categories to create 
observations for an ordinal variable y, as follows: 

y = 1 if y* < 20, y = 2 if 20 < y* < 40, y = 3 if 40 < y* < 60, 

y = 4 if 60 < y* < 80, y = 5 if y* > 80. 

The second scatterplot in Figure 1.1 shows 100 observations on y and x. At low 
x levels, there is a floor effect for the observations with z — 1. When x < 50 with 
z = 1, there is a very high probability that observations fall in the lowest category 
of y. 

Using OLS with scores 1, 2, 3, 4, and 5 for the categories of y suggests either (a) 
a model with an interaction term, allowing different slopes relating E(y) to x when 

-i 1 1 1 1 r "-J 1 1 1 1 r1 

0 20 40 60 80 100 0 20 40 60 80 100 
x x 

Figure 1.1. Ordered categorical data (in second panel) for which ordinary regression suggests interac-
tion, because of a floor effect, but ordinal modeling does not. The data were generated (in first panel) 
from a normal main-effects regression model with continuous (x) and binary (z) explanatory variables. 
When the continuous response y* is categorized and y is measured as (1, 2, 3, 4, 5), the observations 
labeled " 1 " for the category of z have a linear x effect with only half the slope of the observations 
labeled "0" for the category of z. 
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z = 0 and when z — 1, or (b) a model with a quadratic effect of x on E(y) when 
z = 1. The second scatterplot in Figure 1.1 shows the fit of the linear interaction 
model, that is, using OLS to fit the model E(y) = a + ß\x + ß2Z + ßi(x x z) to 
the ordered categorical response. The slope of the line is about twice as high when 
z = 0 as when z — 1. This interaction effect is caused by the observations when 
z = 1 tending to fall in category y = 1 whenever x takes a relatively low value. 
As x gets lower, the underlying value y* can continue to tend to get lower, but the 
observed ordinal response cannot fall below 1. 

Standard ordinal models such as those introduced in Chapters 3 to 5 fit the data 
well without the need for an interaction term. Such models can be motivated by 
a latent variable model. They allow for underlying values of y* when z = 1 to be 
below those when z = 0, even if x is so low that y is very likely to be in the first 
category at both levels of z. (The data in Figure 1.1 are revisited with such a model 
in Exercise 5.2.) 

Hastie et al. (1989) showed a real-data example of the type we presented here 
with simulated data. They described a study of women in South Africa that modeled 
an ordinal measurement y of osteoporosis in terms of x = age and an indicator 
variable z for whether the woman had osteoarthritis. At low age levels, a high 
proportion of women clustered in the lowest category of osteoporosis, regardless 
of osteoarthritis status. Using OLS, for each osteoarthritis group the line relating 
age to the predicted osteoporosis score took value at the lowest ordinal level near 
a relatively low age level, but the line for the group positive for osteoarthritis had 
a significantly greater slope as age increased. In fact, there was also a significant 
quadratic effect for that group. When the authors used an ordinal model instead, 
they found no evidence of interaction. For other such examples, see McKelvey and 
Zavoina (1975, Sec. 4) and Winship and Mare (1984). 

1.3.4 Ordinal Methods with Truly Quantitative Data 

Even when the response variable is interval scale rather than ordered categorical, 
ordinal models can still be useful. One such case occurs when the response outcome 
is a count but when standard sampling models for counts, such as the Poisson, 
do not apply. For example, each year the British Social Attitudes Survey asks a 
sample of people their opinions on a wide range of issues. In several years the 
survey asked whether abortion should be legal in each of seven situations, such 
as when a woman is pregnant as a result of rape. The number of cases to which 
a person responds "yes" is a summary measure of support for legalized abortion. 
This response variable takes values between 0 and 7. It is inappropriate to treat 
it as a binomial variate because the separate situations would not have the same 
probability of a "yes" response or have independent responses. It is inappropriate 
to treat it as a Poisson or negative binomial variate, because there is an upper 
bound for the possible outcome, and at some settings of explanatory variables 
most observations could cluster at the upper limit of 7. Methods for ordinal data 
are valid, treating each observation as a single multinomial trial with eight ordered 
categories. 



8 INTRODUCTION 

For historical purposes it is interesting to read the extensive literature of about 
40 years ago, much of it in the social sciences, regarding whether it is permissible 
to assign scores to ordered categories and use ordinary regression methods. See, for 
example, Borgatta (1968), Labovitz (1970), and Kim (1975) for arguments in favor 
and Hawkes (1971), Mayer (1971), and Mayer and Robinson (1978) for arguments 
against. 

1.4 ORGANIZATION OF THIS BOOK 

The primary methodological emphasis in this book is on models that describe 
associations and interactions and provide a framework for making inferences. In 
Chapter 2 we introduce ordinal odds ratios that are natural parameters for describing 
most of these models. In Chapter 3 we introduce the book's main focus, presenting 
logistic regression models for the cumulative probabilities of an ordinal response. 
In Chapter 4 we summarize other types of models that apply a logit link function 
to ordinal response variables, and in Chapter 5 we present other types of link 
functions for such models. 

The remainder of the book deals with multivariate ordinal responses. In 
Chapter 6 we present loglinear and other models for describing association 
and interaction structure among a set of ordinal response variables, and in 
Chapter 7 present bivariate ordinal measures of association that summarize the 
entire structure by a single number. The following three chapters deal with mul-
tivariate ordinal responses in which each response has the same categories, such 
as happens in longitudinal studies and other studies with repeated measurement. 
This topic begins in Chapter 8 with methods for square contingency tables having 
ordered rows and the same ordered columns and considers applications in which 
such tables arise. Chapters 9 and 10 extend this to an analysis of more general 
forms of correlated, clustered ordinal responses. Primary attention focuses on 
models for the marginal components of a multivariate response and on models 
with random effects for the clusters. 

In Chapters 2 to 10 we take a frequentist approach to statistical inference, focus-
ing on methods that use only the likelihood function. In the final chapter we show 
ways of implementing Bayesian methods with ordinal response variables, combin-
ing prior information about the parameters with the likelihood function to obtain a 
posterior distribution of the parameters for inference. The book concludes with an 
overview of software for the analysis of ordered categorical data, emphasizing R 
and SAS. 

For other surveys of methods for ordinal data, see Hildebrand et al. (1977), 
Agresti (1983a, 1999), Winship and Mare (1984), Armstrong and Sloan (1989), 
Barnhart and Sampson (1994), Clogg and Shihadeh (1994), Ishii-Kuntz (1994), 
Ananth and Kleinbaum (1997), Scott et al. (1997), Johnson and Albert (1999), Ben-
der and Benner (2000), Guisan and Harrell (2000), Agresti and Natarajan (2001), 
Borooah (2002), Cliff and Keats (2002), Lall et al. (2002), Liu and Agresti (2005), 
and O'Connell (2006). 



C H A P T E R 2 

Ordinal Probabilities, Scores, 
and Odds Ratios 

In this chapter we introduce ways of using odds ratios and other summary measures 
to describe the association between two ordinal categorical variables. The measures 
apply to sample data or to a population. We also present confidence intervals for 
these measures. First, though, we introduce some probabilities and scores that are 
a basis of ways of describing marginal and conditional distributions of ordinal 
response variables. 

2.1 PROBABILITIES AND SCORES FOR AN ORDERED 
CATEGORICAL SCALE 

For an ordinal response variable Y, let c denote the number of categories. For n 
observations in a sample, n\,ri2,...., nc denote the frequencies in the categories, 
with n — £\- tij, and {pj — nj/n] denote the sample proportions. 

For an observation randomly selected from the corresponding population, let Ttj 
denote the probability of response in category j . Some measures and some models 
utilize the cumulative probabilities 

Fj = P(Y < j) = 7Γ, + · · · + Tth j = l,2,...,c. 

These reflect the ordering of the categories, with 

0 < F\ < Fi < · ·· < Fc — 1. 

2.1.1 Types of Scores for Ordered Categories 

How can summary measures utilize the ordinal nature of the categorical scale? 
One simple way uses the cumulative probabilities to identify the median response: 

Analysis of Ordinal Categorical Data, Second Edition, By Alan Agresti 
Copyright © 2010 John Wiley & Sons, Inc. 

9 
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namely, the minimum j such that Fj > 0.50. With a categorical response, an 
unappealing aspect of this measure for making comparisons of groups is its dis-
continuous nature: Changing a tiny bit of probability can have the effect of moving 
the median from one category to the next. Also, two groups can have the same 
median even when an underlying latent variable has distribution shifted upward for 
one group relative to the other. 

Alternatively, we could assign ordered scores 

V{ < l>2 < · ■ · < Vc 

to the categories and summarize the observations with ordinary measures for quan-
titative data such as the mean. Doing this treats the ordinal scale as an interval 
scale. There is no unique way to select scores, and the key aspect is the choice 
for the relative distances between pairs of adjacent categories. For example, with 
c — 3, comparisons of means for two groups using the scores (1, 2, 3) yields the 
same substantive conclusions as using the scores (0, 5, 10) or any set of linearly 
transformed scores but possibly different conclusions from using scores such as 
(1, 2, 5) or (0, 3, 10). Often, an appropriate choice of scores is unclear. In that case 
it is advisable to perform a sensitivity analysis: Choose scores in a few sensible 
ways that are not linear translations, and check whether conclusions for the method 
that uses those scores depend on the choice. 

An alternative approach to selecting scores uses the data themselves to determine 
the scores. One such set uses the average cumulative proportions for the ordinal 
response variable. For sample proportions {pj}, the average cumulative proportion 
in category j is 

y'-i 

Ί=ΣΡΙ( + ΟΡ1> y' = l , 2 , . . . , c , 
k=\ 

that is, the proportion of subjects below category j plus half the proportion in 
category j . In terms of the sample cumulative proportions Fj = p\ H l· Pj, 

„ Fj-i+Fj 

with Fo = 0. Bross (1958) introduced the term ridits for the average cumulative 
proportion scores. 

The ridits have the same ordering as the categories, a\ < aj < ■ ■ ■ < ac. Their 
weighted average with respect to the sample distribution satisfies 

Σ pj°j= Σ PJ( ΣP k + 7PJ) 

= 2EEk<jPjPk + Ejtf = (EjPjf = 0 5 0 
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The ridits are linearly related to the midranks, which are the averages of the ranks 
that would be assigned if the observations in a category could be ranked without 
ties. The midrank r\ for category 1 is the average of the ranks \,...,n\ that pertain 
to the «i observations in category 1, so r\ — (1 + «i)/2. The midrank for category 
2 is r2 — [(n\ + 1) + («i + /i2)]/2- Generally, the midrank for category j is 

r [(Σ/:ι'"0 + ι] + Σ/-ι* 
j - 2 

Whereas midrank scores fall between 1 and n, ridit scores fall between 0 and 1. 
The linear relationship between them is 

rJ- ° · 5 
r, = naj + 0.5, a\ — — . 

n 

Ridit and midrank scores take directly into account the way the response is catego-
rized. For example, if two adjacent categories are combined, the ridit (or midrank) 
score for the new category falls between the original two scores, with the other 
scores being unaffected. If the category ordering is reversed, the ridit score for 
category j transforms from aj to 1 — aj. 

Another way to form data-dependent scores assumes a particular distribution for 
an unobserved continuous latent variable assumed to underlie Y. This approach 
regards the ordinal scale as representing a partition of intervals of values of the 
latent variable. For example, suppose that we assume an underlying standard normal 
distribution, with cumulative distribution function Φ. Then we could use some 
variation of normal scores as applied in some nonparametric statistical methods. 
For example, we could let v\ be the mean of the truncated normal distribution 
falling between —oo and Φ_1(Ρι) [where Φ~ι(ρ\) denotes the standard-normal 
score for which the cumulative probability below it equals p{\, let V2 be the mean 
of the truncated normal distribution falling between Φ~ι(ρ\) and Φ~'(ρι + pi), 
and so on, up to vc, which is the mean of the truncated normal distribution falling 
between Φ~'(/?ι + h pc-\) and oo. More simply, we could let Vj — Φ~'(α;) 
where a7 is the ridit score in category j . A very similar score based on the midranks 
{rj)i&Vj = <l>-l[rj/(n + l)]. 

We used scores in this section to summarize ordinal data, but it is not necessary 
to do so. In this chapter we learn about other methods that do not require assigning 
scores, and this is also true of most models for ordinal response variables presented 
in later chapters. 

2.1.2 Example: Belief in Heaven 

Every other year, the National Opinion Research Center at the University of 
Chicago conducts the General Social Survey (GSS). This survey of adult Ameri-
cans provides data about the opinions and behaviors of the American public. It is 
simple to download results from the surveys.1 In this book we use several data sets 
from the GSS to illustrate methods. 

This can currently be done at sda.berkeley.edu/GSS. 
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TABLE 2.1. 

Count 
Proportion 
Ridit score 

Responses About Belief in 

Definitely 

1546 
0.648 
0.324 

Heaven 

Does Heaven Exist? 
Probably 

498 
0.209 
0.752 

Probably Not 

205 
0.086 
0.899 

Definitely Not 

138 
0.058 
0.971 

Total 

2387 
1.0 

Source: General Social Survey. 

Table 2.1 shows results of 2387 responses from the GSS to a question about 
whether heaven exists. The ridit scores for the counts in this ordinal categorical 
scale are 

/ 1 \ 1546 Λ „ 1546 / 1 \ 498 Λ 
01 = U ) 238̂  = °·32' * = 2387 + U ) 2387 = 0 · 7 5 ' 

G) 
G) 

1546 + 498 / 1 \ 205 
a3 = + I - I = 0.90, 

2387 V 2/2387 

1546 + 498 + 205 /1\ 138 
a4 = h I - I = 0.97 

2387 I 2 / 2387 

The ridit scores of 0.90 for "probably not" and 0.97 for "definitely not" are 
relatively close. Whenever two adjacent categories both have relatively small pro-
portions, this necessarily happens. 

The normal scores based on ridits, vj = Φ~'(α7), are (—0.457, 0.681, 1.277, 
1.897), where, for example, Φ(—0.457) = a\ = 0.32 is the probability that a stan-
dard normal variable falls below —0.457. The very similar normal scores based 
on midranks, vj = Φ_1[^·/(η + 1)], are (-0.457, 0.680, 1.276, 1.894), where, for 
example, Φ(-0.457) = [(1 + 1546)/2]/2388 = 0.324. 

This example illustrates that ridit scores or scores based on them, such as normal 
scores, need not represent an underlying scale realistically. For the ridit scores (0.32, 
0.75, 0.90, 0.97) for (definitely, probably, probably not, definitely not), the score 
of 0.75 for "probably" is closer to the score of 0.97 for "definitely not" than it is to 
the score of 0.32 for "definitely." Yet we would not be likely to regard "probably" 
and "definitely not" as closer together than "probably" and "definitely." Similarly, 
note that the normal scores treat "definitely" and "probably" as being nearly twice 
as far apart as "probably" and "probably not" or "probably not" and "definitely 
not." 

For descriptive summaries of this ordinal scale, such as comparing mean 
responses for different groups, it is often more sensible to use fixed scores 
instead of ridit scores or normal scores. The scores (1, 2, 3, 4) would treat 
(definitely, probably, probably not, definitely not) as equidistant for pairs of 
adjacent categories. Scores such as (0, 1, 4, 5) would treat the distance between 
"probably" and "probably not" as greater than the distance between "definitely" 
and "probably" and the distance between "probably not" and "definitely not." 
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2.1.3 Two-Way Contingency Tables with an Ordinal Response 

In practice, observations on ordinal response variables are usually accompanied by 
observations on explanatory variables and are sometimes accompanied by obser-
vations on other response variables. When the other variables are categorical, a 
contingency table can display the frequencies of observations for the various com-
binations of levels of the variables. Each cell in the contingency table shows the 
number of observations that have that combination. In this chapter we consider 
primarily the case of two categorical variables. We denote the second variable by 
X if it is another response variable and by x if it is an explanatory variable. We 
let r denote the number of rows and let c denote the number of columns in the 
contingency table. Let n,7 denote the number of observations in the cell of the table 
in row i and column j . 

For a two-way cross-classification of an ordinal response variable Y with 
another categorical response variable X, let [pij] denote the cell proportions for 
the possible values of (X, Y). That is, pij = ritj/n, where n is the total sample 
size. Then J2i Σ ; Pij = 1> anc^ iPij) is t n e sample joint distribution. The sample 
marginal distributions are the row totals and column totals obtained by summing 
the joint proportions. We denote marginal proportions by p , + for row i and p+j for 
column j . Note that p+j = £ \ pu = £,. nu/n and J2j P+j = l-

Although the second variable could also be a response variable, more commonly 
it is an explanatory variable. Then conditional distributions for the response vari-
able are usually more relevant than joint distributions. We let the columns refer to 
the ordinal response variable Y and the rows refer to the explanatory variable x. 
For the observations in row /, we denote the proportion in category j of Y by pj\j. 
Hence, pj\j = njj/ni+, where n,+ is the total count in row / and ]T; Pjtf — 1 f°r 

each i. The values (pi\j, p2\i, ■ ■ ■, pc\i) form a sample conditional distribution. Dif-
ferent levels of x can be compared with respect to the proportions of observations 
in the various categories of Y. The sample conditional cumulative proportions, 

Fj\i = P\\i + 1" Pj\i, j = l,2,...,c, 

specify the proportion of observations classified in one of the first j columns, given 
classification in row i. 

2.1.4 Probabilistic Comparisons of Two Ordinal Distributions 

Now consider the special case of a 2 x c table, for comparing two groups on an 
ordinal response variable Y. Let Y\ and J·̂  denote the column numbers of the 
response variable for subjects selected at random from rows 1 and 2, independent 
of each other. A measure that summarizes their relative size is 

a = P(Yl>Y2) + \P(Yl=Y2) (2.1) 

(Kruskal 1957; Klotz 1966). If Y\ and Y2 are identically distributed or if they 
have symmetric distributions over all c categories, then a = 0.50. When a > 0.50 
(< 0.50), outcomes of Y\ tend to be larger (smaller) than outcomes of Y2. 
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A related measure that has null value equal to 0 rather than 0.50 is 

A = P(Yi>Y2)-P(Y2>Yl). (2.2) 

The measures a and Δ are functionally related, 

Δ + 1 Λ 0 1 

a = , Δ = 2a — 1, 
2 

with a having range [0, 1] and Δ having range [—1, 1]. We refer to them as mea-
sures of stochastic superiority, a term introduced by Vargha and Delaney (1998). 
In Chapter 7 we present related measures for r x c tables. 

With sample data we can estimate a from the conditional distributions by 

ά = ΣΣ PWPW + l2 Σ ; Pj\\Pj\2-
j>k 

The sample version of Δ is 

Δ = Χ]]£/>;ιΐΛ|2-ΣΣ^ΊΐΛ|2· 
j>k j<k 

Another useful comparison of P(Y\ > Y2) and P(Y2 > Y\) is 

= P(YX > Yj) 

P{Y2>Y\Y 

Its sample value is 

i Ylllj>kPj\^Pk\2 _ HT,j>knlJn2k 

T,T,j<kPj\lPk\2 E E j 4 « l j " a 

When c — 2, Θ is an odds ratio. For c>2, § is a generalized odds ratio for ordinal 
responses (Agresti 1980), which we refer to as an ordinal odds ratio for comparing 
two groups. In Section 2.2 we introduce other ways of forming odds ratios for 
ordinal responses. 

The ordinal odds ratio Θ differs slightly from 

a _P{Y\>Y2) + }iP(Yx = Y2) 

\ - a ~ P{Y2>YX) + \P(YX =Y2)' 

which approximates P(Y\ > Y2)/P(Y2 > Yi) for an underlying continuous scale. 
The measure a/(1 —a) is closer to 1.0 than is Θ. Similarly, usually P(Yi > Y2)/ 
P(Y2 > Y\) for the underlying continuous scale is closer to 1.0 than Θ is for the 
observed ordinal scale. This is because observations that are tied on the observed 
ordinal scale usually have similar relative frequencies of the two orders for the 
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underlying scale. By contrast, we can interpret a or Δ either for the observed scale 
or an underlying continuous scale. For example, suppose that Δ = 0.40. Then, 
in comparisons of the groups with independent observations for the underlying 
continuum, we expect a higher response for group 1 about 70% of the time and a 
higher response for group 2 about 30% of the time, since 0.70 — 0.30 = 0.40 and 
0.70 + 0.30= 1.0. 

2.1.5 Means of Conditional Distributions in Two-Way Tables 

Next we consider r x c tables. With ordered scores {u;} for the categories of Y, 
in each row we can use the sample conditional distribution to find a sample mean 
response. In row i this is 

c 

7 = 1 

When x is ordinal, we often expect a trend (upward or downward) in {y,} across 
the rows. 

Alternatively, we could find the means using data-generated scores. For example, 
we could use ridit scores for Y calculated from the proportions in its marginal 
distribution. For outcome category j , 

7 - 1 

aj = J2p+k + 5P+7' 7 = 1,2, . . . , c . 
* = i 

The mean ridit for the sample conditional distribution in row / is 
c 

Äi =Y^aiPj\i-
7 = 1 

The weighted average of the mean ridits satisfies 
r 

Y^Pi+Ai =0.50. 

When the data in the full sample are ranked, using midranks {r,}, the mean rank 
for the sample conditional distribution in row ϊ is 

c 

*·■ = Σ / 7 Ρ 7 Ί < · 
7 = 1 

Their weighted average over the r rows is (n + l)/2. The mean ridits and mean 
ranks are related by 

Ri - 0.50 
At = . 

n 
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Bross (1958) argued that an advantage of ridit scoring is their lack of sensitivity 
to the way the ordinal response variable is categorized (e.g., with different numbers 
of categories). Two researchers who categorize an ordinal response in different 
ways for a particular sample would, nevertheless, obtain similar mean ridits for 
the rows. 

2.1.6 Mean Ridits and Mean Ranks Relate to Stochastic Superiority 
Measures 

For 2 x c tables, the sample values of the stochastic superiority measures a = 
P(Y\ > Y2) + \P(Y\ = Yi) and Δ = P(Y] > Y2) - P(Y2 > Yi) relate to the mean 
ridit scores in the two rows by2 

ά = (Λι - Λ 2 + 0.50) and Δ = 2(Ä", - A2). 

Vigderhous (1979) presented other connections between mean ridit measures and 
ordinal measures of association. In terms of the mean ranks R\ and R2 in the two 
rows, 

„ Ri-R2 : ncn - 2{RX - R2) a = h 0.50 and Δ = . 
n n 

For r x c tables, let K, denote the response outcome for a randomly selected 
subject at level i of x, and let Y* denote the response outcome for a randomly 
selected subject from the marginal distribution of Y. The sample mean ridit A, 
using the marginal ridit scores estimates 

P{Yi>Y*) + \P(Yi = Y*). 

In analogy with the terms logit and probit, Bross (1958) chose the term ridit 
because Ä, describes how the distribution of Y in row 1 compares relative to an 
identified distribution (in this case, the marginal distribution of Y). The {A,} or the 
corresponding population values can be used to compare each row to an overall 
marginal distribution of the response (Kruskal 1952). In some of the literature on 
nonparametric statistical methods they are referred to as relative effects. 

For underlying continuous distributions, Ä, estimates the probability that an 
observation from row i ranks higher on the ordinal response variable than does 
an observation from the marginal distribution of Y. Such a probability inference is 
approximate, since besides sampling error, it is unknown how tied observations for 
the observed discrete scale would be ordered for an underlying continuum. Also, 
the sample marginal distribution of Y, which determines the ridit scores, reflects the 
study design. For some sampling schemes, this need not be close to the population 
marginal distribution. 

2For fully ranked data, analogous connections exist between Wilcoxon statistics using mean ranks and 
Mann-Whitney statistics using pairwise orderings. 
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To compare rows i and k in an r x c table, it is tempting to regard (A, — Ak + 
0.50) as an estimate of [/>(K, > Yk) + \P(Yi = Yk)], as suggested by Bross (1958). 
However, this may be a highly biased estimate, mainly because P{Y, > Yk) is not 
determined by P(K, > Y*) and P(Yk > Y*). To estimate [P(F, > Yk) + \P{Yi = 
Yk)], it is more appropriate to find (Λ, — Ak + 0.50) by computing the ridit scores 
using rows i and k alone (Beder and Heim 1990). This is equivalent to estimating 
a using data in that pair of rows alone (see also Note 2.2). 

2.1.7 Example: Comparing Treatments for Gastric Ulcer Crater 

We illustrate these methods for comparing two ordinal categorical distributions 
using Table 2.2 from a randomized study to compare two treatments for a gastric 
ulcer crater. The response, following three months of treatment, was the change in 
the size of the ulcer crater. This was measured with the ordinal scale (larger, less 
than | healed, | or more healed, healed). 

The sample conditional distributions on the ordinal response are: 
Treatment A : (0.19,0.12,0.31,0.38). 

Treatment B : (0.34,0.25,0.25, 0.16). 

For the category scores (1,2,3,4), the sample mean responses are y\ =2.875 
and y2 = 2.219, indicating a tendency for a better response with treatment A. The 
sample ridit scores using the response marginal distribution are 

fli = 0.133, fl2 = 0.359, a3 = 0.594, a4 = 0.867. 

The sample mean ridits are A\ = 0.581 and A2 — 0.419. Thus, a — (Ä\ — Aj + 
0.50) = 0.661 estimates the probability of a better response with treatment A than 
treatment B, for underlying continuous responses. Similarly, Δ — 2(A\ — Ä2) = 
0.322 estimates the difference between the probability that the response is better 
with A than B and the probability that the response is better with B than A for the 
observed scale or for an underlying continuous scale. The ordinal odds ratio for 
the observed scale is 

- = P(Yj > Y2) = 1 2 ( l l + 8 + 8 ) + 1 0 ( l l + 8 ) + 4 ( l l ) = 

Ρ(Υ2>Υύ 5(6 + 4 + 1 0 ) + 8(6 + 4 ) + 8(6) 

TABLE 2.2. Results of Study Comparing Two Treatments for Gastric Ulcer 

Treatment 
Group 

A 
B 
Total 

Larger 

6 
11 
17 

Change in 

Healed 

4 
8 

12 

Size of Ulcer Crater 

Healed 

10 
8 

18 

Healed 

12 
5 

17 

Total 

32 
32 
64 

Source: Armitage (1955), with permission of the Biometrie Society. 
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The sample number of pairs in which treatment A gave the better response equals 
2.45 times the sample number of pairs in which treatment B gave the better 
response. 

2.2 ORDINAL ODDS RATIOS FOR CONTINGENCY TABLES 

In the preceding section we introduced an ordinal odds ratio for comparing two 
groups on an ordinal response. In this section we present alternative odds ratios 
for two-way cross-classifications of ordinal variables. Instead of a single odds ratio 
summarizing the entire table, this alternative approach provides a set of odds ratios 
for a table which, together with the marginal distributions, fully specifies the joint 
distribution. 

Let's first briefly review the odds ratio for 2 x 2 tables. Within row 1, the sample 
odds that the response is in column 1 instead of column 2 equals ρ\\ι/ρ2\ι- Within 
row 2, the odds equals p\\2/pi\2- Each odds is nonnegative, with value greater than 
1.0 when response 1 is more likely than response 2. The ratio of these odds is the 
sample odds ratio, 

£ _ P l | l / P 2 | l _ «11»22 

P\\2/P2\2 «12«21 

The proportion of subjects that made response 1 is larger in row 1 than in row 2 if 
Θ > 1, whereas it is smaller in row 1 if Θ < 1. In a corresponding population, the 
two conditional distributions are identical if and only if Θ = 1.0. 

2.2.1 Local, Global, and Cumulative Odds Ratios 

For r x c tables, odds ratios can use each pair of rows in combination with each pair 
of columns. For rows a and b and columns c and d, the odds ratio »aC«fc<i/n*c>W 
uses four cells falling in a rectangular pattern. All such odds ratios of this type are 
determined by a basic set of (r — l)(c — 1) odds ratios. One such basic set consists 
of the odds ratios 

ftrjMic 

which use the cell in the last row and the last column as a baseline. Each odds 
ratio is formed using the rectangular array of cells determined by rows i and r and 
columns j and c (see Figure 2.1). For ordinal variables the odds ratio §\\ for the 
four corner cells, which describes association with the most extreme categories of 
each variable, is often of particular interest. It compares the odds of the highest 
instead of the lowest response at the highest and lowest levels of the other variable. 
When the two variables have a positive or negative trend, this is often the strongest 
of the odds ratios (farthest from 1.0). 

The construction for forming a minimal set of odds ratios that determine the 
entire set is not unique. A natural basic set of (r — l)(c — 1) odds ratios for two 
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Figure 2.1. Odds ratios defined in (2.3). 

HiJ + llli + ij 
(2.4) 

for ( = 1 , . . . , r — 1, j = 1 , . . . , c — 1. These odds ratios use cells in adjacent rows 
and adjacent columns. Their values describe the relative magnitudes of associations 
in localized regions of the table. They are called local odds ratios. 

A second natural family of odds ratios for ordinal variables is 

9°. 
•j 

\ Σ α < ί J-,b<j nab) ( Σ α > ί J2b > j na>>) 

( L-,a<i iLb > j nab) { Σα > i J--b<j nab) 
(2.5) 

These measures are the regular odds ratios computed for the 2x2 tables obtained 
from the {r — l)(c — 1) ways of collapsing the row and column classifications into 
dichotomies. They describe associations that are global in both variables, in the 
sense that each odds ratio uses all categories of each variable instead of a localized 
region. They are called global odds ratios. 

The local and global odds ratios treat row and column variables alike. They 
are especially useful when both variables are response variables. A family of odds 
ratios that distinguishes between rows and columns is 

AC _ (T,b<j nib)(T,b> j n'+hb) 

'J {T.b>jnib){T,b<jni+\,bY 
(2.6) 

These odds ratios are local in the row variable but global in the column variable. An 
equivalent definition for these odds ratios uses the sample conditional cumulative 
distribution functions of Y given JC, 

^ 
^FJV/(l-FJV) 

Fj\i+\/(l - Fj\i+\) 
(2.7) 

We refer to them as cumulative odds ratios. These odds ratios are natural when x 
is an explanatory variable. They provide a comparison of pairs of levels of x with 
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respect to their entire conditional distribution on Y. For 2 x c tables, global and 
cumulative odds ratios are identical. 

Figure 2.2 illustrates local, global, and cumulative odds ratios. With positive 
counts, conversion of the cell counts into the set of odds ratios (2.3), (2.4), 

I /+1 

/ ' + 1 

( + 1 

/ + 1 

Figure 2.2. Three sets of (r — l ) ( c - 1) odds ratios for ordinal variables: (a) Local odds ratios, 
(b) cumulative odds ratios, and (c) global odds ratios. 
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(2.5), or (2.6) does not result in a loss of information. Given the marginal totals, 
the sample joint distribution of cell proportions or cell counts is determined by 
these odds ratios. For example, given sample global odds ratio values {§$} and 
sample marginal cumulative distribution functions Fx = p\+ -\ \- pi+ and 
Fj — p+i-\ l· p+j, the sample estimate of the joint distribution function 
Fu = P(X < i, Y < j) is 

„ \ + (e9-l)(Fl
x + Fj)-{[l + (9pj-l)(Fi

x + Fj)]2-49fj(§f}
j-l)Fl

xFjY'2 

Fij = τρ, 
2(β°-1) 

(2.8) 

when Of- φ 1 and F,7 = F* Fj when §9. = 1. The sample joint distribution deter-
mines the cell proportions. 

2.2.2 Example: Happiness and Income 

We illustrate odds ratios for ordinal variables with Table 2.3 from the 2006 General 
Social Survey. Respondents were asked, "Taken all together, would you say that 
you are very happy, pretty happy, or not too happy?" The table cross-classifies 
this response with family income, here measured as the response to the question, 
"Compared with American families in general, would you say that your family 
income is below average, average, or above average?" 

Table 2.4 contains the sample values of the ordinal odds ratios. For example, 

272x835 - r 272 x (835 + 131) 
= 1.70, Θ?, = = 1.69, 

294x454 " (294 + 49) x 454 
272 x (835 + 131 + 527 + 208) 

(294 + 49) x (454+185) 

These values mean that for those of above-average family income: 

• The estimated odds of being very happy rather than pretty happy are 
of-, — 1.70 times the corresponding estimated odds for those of average 
family income. 

TABLE 2.3. Happiness and Relative Family Income 

Family Income 

Above average 
Average 
Below average 
Total 

Very Happy 

272 
454 
185 
911 

Happiness 

Pretty Happy 

294 
835 
527 

1656 

Not Too Happy 

49 
131 
208 
388 

Total 

615 
1420 
920 

2955 

*!·.= 

?Fi 

Source: 2006 General Social Survey. 
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TABLE 2.4. Values of Local, Cumulative, and Global Odds Ratios for Happiness 
Data of Table 2.3 

Row cut 

II 
II 

to
 

—
 

Local §fj 

7 = 1 7 = 2 

1.70 0.94 
1.55 2.52 

Cumulative §f: 

7 = 1 7 = 2 

1.69 1.17 
1.87 2.87 

Global §fj 

7 = 1 7 = 2 

2.11 1.96 
2.20 3.01 

• The estimated odds of being very happy rather than pretty happy or not happy 
are op, — 1.69 times the corresponding estimated odds for those of average 
family income. 

• The estimated odds of being very happy rather than pretty happy or not happy 
are Op =2.11 times the corresponding estimated odds for those of average 
or below-average family income. 

All three sets of measures in Table 2.4 indicate that higher family income tends 
to be associated with higher happiness, except for θ\2, which is less than 1. This is 
also reflected by other summaries, such as the sample conditional distributions on 
happiness. For example, the estimated conditional probability of a "very happy" 
response takes value (0.44, 0.32, 0.20) for the family income levels (above average, 
average, below average). 

2.2.3 Ordinal Odds Ratios Compare Numbers of Concordant 
and Discordant Pairs 

Ordinal odds ratios provide various ways of dividing the number of concordant 
pairs of observations by the number of discordant pairs of observations. A pair 
of observations for two subjects is concordant if the subject ranking higher on X 
also ranks higher on Y. A pair of observations is discordant if the subject ranking 
higher on X ranks lower on Y. Each concordant pair gives evidence of a positive 
association, with higher values of X tending to occur with higher values of Y. 
Each discordant pair gives evidence of a negative association, with higher values 
of X tending to occur with lower values of Y. 

For example, consider the global odds ratio, f?p, for Table 2.3. For each variable, 
this particular global odds ratio treats the "high" and "low" dichotomy as "category 
1" and "above category 1." The 272 observations in the cell that are "high" on both 
family income and happiness form concordant pairs when matched with each of the 
(835 + 131+ 527 + 208) observations that are "low" on both variables. The (294 + 
49) observations that are "high" on family income but "low" on happiness form 
discordant pairs when matched with each of the (454 + 185) observations that are 
"low" on family income but "high" on happiness. The total number of concordant 
pairs is 272 x 1701 = 462,672, the total number of discordant pairs is 343 x 639 = 
219,177, and the first global odds ratio is op = 462,672/219,177 = 2.11. 
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Each ordinal odds ratio has a particular identification of "high" and "low" for 
forming the concordant and discordant pairs. In Section 7.1 we show alternative 
ways of summarizing the two types of pairs that account simultaneously for all the 
possible ways of dichotomizing into "high" and "low." 

2.2.4 Corresponding Population Ordinal Odds Ratios 

With appropriate randomization in sampling or experiments, these sample ordinal 
odds ratios estimate corresponding odds ratios for a population. The population 
values can be defined in terms of joint probabilities {πν,} or conditional probabilities 
{7r,|,}. Joint probabilities are natural when both variables are response variables. 
Conditional probabilities are natural when one variable is explanatory. 

The population local odds ratios are 

0 L _ πνπί+ι,]+ι _ nj\i/n]+i\i 
11 Ki,j + lXi + \J ^y'li + l /^/ '+l l i + l 

Population cumulative odds ratios relate to the joint probabilities and to the con-
ditional cumulative probabilities by 

9C = (T.b<j7t'b){Eb>j7ti+Ub) _ F/|,-/(l ~ FJV) 
11 {Eb>j7tib)(Eb<j7ti+Ub) Fj\i+i/d-Fj\i+i)' 

Because each global odds ratio uses all categories for each variable, this type of 
odds ratio makes sense for joint probabilities, 

aG _ \ Σ α < ι Hb<j n<>b) ( Σ α > ,· Σ & > j nab) ("2 11) 

( L a < i JZb > j nab) ( Σ,α > ,■ Z-,b<j nab) 

Let (X, Y) denote the row number and column number for an observation from 
the joint distribution {π^}. Then the global odds ratios are 

DG _ P(X <i, Y <j)P(X>i, Y>j) 
"iJ ~ P(X <i, Y> j)P(X >i, Y < j)' 

By comparison, the local odds ratios are 

L _ P(X = i,Y = j)P(X = i + 1, Y = j + 1) 
iJ P(X = i,Y = j + \)P(X = i + l,Y = j) 

_P(Y = j + l\X = i + \)/P(Y = j\X = j + l) 
P(Y = j + \\X = i)/P(Y = j\X = i) ' 

and the cumulative odds ratios are 

P(X = i, Y < j)P(X = i + l, Y>j) 
eh ,J P(X = i,Y>j)P(X = i + l,Y<j) 

P(Y<j\X = i)/P(Y>j\X = i) 

P(Y <j\X = i + \)/P(Y >j\X = i + lY 
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Another ordinal odds ratio, less commonly used than the local, global, and 
cumulative odds ratios, is the continuation odds ratio, 

Oco __P(Y = j\X = i)/P(Y >j\X = i) 
ij P(Y = j\X>i)/P(Y>j\X>i)' 

A separate and nonequivalent set of continuation odds ratios applies this formula 
after reversing the category order for both variables. 

2.2.5 Stochastic Orderings of Groups 

In comparing two groups, the notion of stochastic ordering is a way to characterize 
one group as being higher than the other on a quantitative response variable. The 
probability distribution for group 1 is stochastically higher than the probability 
distribution for group 2 if the cumulative distribution function (cdf) for group 1 
is uniformly below the cdf for group 2. This means that for group 1, relatively 
more probability falls at the high end of the response scale. Figure 2.3 illustrates 
stochastic orderings for two groups with continuous probability density functions 
and cumulative distribution functions. 

For an adjacent pair of rows i and i + 1 in a contingency table with ordinal 
response variable, the conditional distribution in row i + 1 is stochastically higher 
than the conditional distribution in row i if3 

Fj\i > Fj\i+\ for j = 1, 2 , . . . , c - 1. 

Underlying Underlying 
density functions distribution functions 

7X\ 
(a) 

(b) 

Figure 2.3. (a) Distribution 1 stochastically higher than distribution 2. (b) Distributions not stochasti-
cally ordered. 

3At least one inequality should be strict, so the distributions are not identical. 
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This is equivalent to cumulative log odds ratios taking values 

log efj > 0 (hence 6fj > 1) for j = 1 , . . . , c - 1. 

Row i + 1 is stochastically lower than row / if \og9fj < 0 for j = 1, 2 , . . . , c - 1. 
When the "high" end of the scale is column 1 instead of column c, the inequalities 
are reversed in these two definitions. 

To illustrate, consider the sample cumulative odds ratios shown in Table 2.4. 
Treating the high end of the happiness scale as column 1, those of above-average 
family income are stochastically higher on happiness than those of average family 
income. Similarly, those of average family income are stochastically higher on 
happiness than those of below-average family income. 

2.2.6 Types of Positive Dependence 

For each type of odds ratio, X and Y with joint distribution {π,·,·} are statistically 
independent if all (r — l)(c — 1) of the population odds ratios equal 1.0, or equiv-
alently, all population log odds ratios equal 0. Consider two ordinal variables that 
agree in terms of which end of the scale is regarded as the "high" end (i.e., either 
the first row and first column, or the last row and last column). For a given type 
of ordinal odds ratio, the association between the variables is called positive when 
all the log odds ratios are positive and negative when all the log odds ratios are 
negative. 

Some definitions of positive (or negative) association are more stringent than 
others: 

If all log 9j-j > 0, then all log §fj > 0 and all log §ff > 0. 

If all log §fj > 0 or if all log §fj° > 0, then all log θ?} > 0. 

For example, the set of tables having uniformly positive local log odds ratios is 
contained in the set of tables having uniformly positive cumulative log odds ratios, 
and that set is itself contained in the set of tables having uniformly positive global 
log odds ratios. The condition of positive association is therefore most stringent 
when expressed in terms of the local odds ratios. For a joint distribution in a 2 x c 
case, when you reverse orientation of the table and consider the distribution of X 
given Y, the condition of uniformly positive local log odds ratios is equivalent to 
c strictly monotone-decreasing probabilities for category 1 of X. 

When an association is positive (or negative) for all four ordinal odds ratios, 
more localized associations tend to be weaker in terms of log odds ratios being 
smaller in absolute value. For example, local log odds ratios tend to be weaker 
than cumulative log odds ratios, which tend to be weaker than global log odds 
ratios. Table 2.4 shows this behavior except for θ\{ — 1.70 and §f{ — 1.69 being 
slightly out of order. For odds ratios [such as formula (2.3)] using just four cells in 
a rectangular pattern, the values tend to be stronger for less localized odds ratios. 
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For example, in Table 2.4 the local odds ratios fall between 0.94 and 2.52, whereas 
the sample odds ratio for the four corner cells in the table equals 

nn«33 272x208 , nA 

-^-^- = = 6.24. 
ni3«3i 185 x 49 

See also Note 2.4. 
When different researchers may choose different numbers of categories c for an 

ordinal response variable, an advantage of ordinal odds ratios that are global in Y 
is that their values do not usually depend much on that choice, since in each case 
they use the entire response scale. By contrast, each local odds ratio uses more 
of the response scale when c is small than when c is large. The local odds ratio 
is itself natural, though, when we want to make comparisons in terms of pairs of 
outcome categories rather than dichotomized regions of values. 

2.3 CONFIDENCE INTERVALS FOR ORDINAL ASSOCIATION 
MEASURES 

Next we present confidence intervals for ordinal measures. In Chapter 7 we con-
sider this subject for a wider variety of ordinal measures of association. There 
we also present significance tests of independence of two ordinal variables for an 
alternative hypothesis expressed in terms of positive association for an ordinal log 
odds ratio. Tests and confidence intervals are also a by-product of various ordinal 
models presented in Chapters 3 and 4 that use these ordinal odds ratios to describe 
associations. 

Let ζ denote a generic ordinal measure of association. For n observations its 
sample value, ζ, is a smooth function of sample proportions in the cells of a con-
tingency table. We assume multinomial sampling over the cells of the contingency 
table; that is, the cell counts {n,7} have a multinomial distribution with parameters 
that are the cell probabilities {7r,-y·}. Then ζ has an asymptotic (large-sample) normal 
sampling distribution by the delta method (Bishop et al. 1975, Sec. 14.6). 

Let SE denote an estimated standard error for ζ. An approximate 100(1 — a)% 
confidence interval for ζ is 

C±z„/2(SE), 

where za/2 denotes the standard normal percentile with right-tail probability equal 
to a/2. For a 95% confidence interval, a = 0.05 and zo.025 = 1 -96. 

Other confidence interval methods exist, discussed in Section 2.3.3, that are 
better in the sense that the actual coverage probability of the confidence interval 
tends to be closer to the nominal level. However, most software merely reports 
sample values of measures of association and their estimated standard errors, so 
this interval is simplest to obtain. The quality of the method often depends on the 
scale used, so this should be chosen with some care. For example, for odds ratios it 
is more sensible to use the asymptotic normality for the log odds ratio rather than 
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the odds ratio, because the sample log odds ratio converges much more quickly to 
normality as n increases. 

2.3.1 Confidence Intervals for Ordinal Odds Ratios 

In Section 2.2 we introduced four types of odds ratios for cross-classifications 
of ordinal variables: local odds ratios {öM, global odds ratios {9fj}, cumulative 
odds ratios {Ofj}, and continuation-ratio odds ratios {9fj°}. For a particular ordi-
nal odds ratio θ^, denote the four probabilities that make up the odds ratio by 
[Xjj, λ ,+i j , kjj+\, λ,+ι> 7 +ι}. Each ordinal odds ratio has the form 

^■ij^-i + Uj+l 

λι + Ι , , /λ/ j+i 

For example, for the local odds ratio 9\j expressed in terms of joint probabilities, 

whereas for global odds ratio θ$, 

λυ = ΣΣπαΐ" ki+i'j= Σ Σπαΐ" 
a<i b<j a > i b<j 

^i,j + l = 2_, Α^ 7Γα<" λ-ι' + Ι,ν + Ι = 2_, Δ-ι nah' 
a<i b> j a>i b> j 

Each type of ordinal odds ratio has the same form as the ordinary odds ratio for 
a 2 x 2 table. Ordinary inference for the odds ratio applies, with the probabilities 
used in the particular ordinal odds ratio. The estimated standard error for each 
ordinal log odds ratio is 

S E = - ^ + ^ — + ^ — + ^ . (2.12) 
y nXij nkij+\ nXi+\j nki+\j+\ 

When the region of the table covered by an odds ratio increases, the odds ratio has 
larger counts in the four cells. Thus, the sample log odds ratio value tends to be 
more precise as an estimator of the population value. For example, with standard 
sampling schemes, logö^ has smaller standard error than logÖ^ or logö^°, which 
have smaller standard errors than logö^. 

A confidence interval for a log ordinal odds ratio is 

sample log odds ratio ± z„/2(SE). (2.13) 

Exponentiating (taking antilogs of) its endpoints provides a confidence interval for 
the odds ratio itself. When a sample odds ratio Θ equals 0 or oo, the confidence 
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interval does not exist. When Θ = 0, a sensible lower limit is 0. When Θ = oo, a 
sensible upper limit is oo. The other bound can use the ordinary formula following 
some adjustment, such as replacing each ηλ term that equals 0 in the SE formula 
by 5. A less ad hoc approach forms the confidence interval by inverting score 
tests or likelihood-ratio tests about the value of the odds ratio, as discussed in 
Section 2.3.3. An alternative method uses a Bayesian approach, which naturally 
smooths the data based on prior beliefs and provides positive probability estimates 
in empty cells (Section 11.2). 

2.3.2 Example: Happiness and Income Revisited 

Table 2.3 showed a 3 x 3 table that cross-classified happiness with family income. 
Table 2.5 shows the four 2 x 2 tables that are collapsings of the original table 
formed to construct global odds ratios. Table 2.6 shows the sample global odds 
ratios (which were shown with other ordinal odds ratios in Table 2.4), the log global 
odds ratio values, the standard error estimates, and the 95% confidence intervals 
for the population global odds ratios. For example, for the first one (0p, =2.11), 

SE = J + + + = 0.094, 
V 272 343 639 1698 

and the 95% confidence interval is 

2.1 l[exp ±1.96(0.094)] = (1.75,2.53). 

This set of confidence intervals suggests that there is a uniformly positive associ-
ation between family income and happiness, as summarized by global odds ratios. 
But the association does not seem to be strong. 

Here are two further considerations for these data: First, the values of the four 
sample global odds ratios are similar. One way to summarize the data further 
would be to form a weighted average of these values. This would be the outcome 
of fitting a model by which the four population global odds ratios are assumed to 

TABLE 2.5. 2 x 2 Tables for Global Odds Ratios Between Happiness" and Relative 
Family Income'' 

Happiness6 

Income" VH PH + NH VH + PH NH 

AA 272 
A + BA 639 
AA + A 726 
BA 185 

343 
1698 
1309 
735 

566 49 
2001 339 
1855 180 
712 208 

"AA, above average; A, average; BA, below average. 
4VH, very happy; PH, pretty happy; NH, not too happy. 
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TABLE 2.6. Global Odds Ratios for Table 2.5 and Corresponding Confidence 
Intervals 

Odds Ratio 

°2\ 
aG 

Sample Value 

2.11 
1.96 

2.20 

3.01 

Log Odds Ratio 

0.745 
0.671 

0.790 
1.102 

SE 

0.094 

0.160 
0.094 

0.111 

95% CI 

(1.75,2.53) 
(1.43,2.68) 

(1.83,2.65) 
(2.42, 3.74) 

have identical values. We present such a model in Section 6.6. Second, if we truly 
want separate estimates such as those in Table 2.6, it can be useful to adjust the 
individual confidence levels so that the overall confidence level is controlled. A 
very simple way to do this uses a Bonferroni adjustment. If we want the overall 
confidence level to be at least 95% when we form confidence intervals for four 
global odds ratios, we would use error probability 0.05/4 for each individual interval 
(i.e., confidence level 98.75%). 

2.3.3 Score and Profile Likelihood Confidence Intervals 

The confidence interval of the form ζ ± za/2(SE) presented above is called a Wald 
confidence interval. It is based on inverting the Wald test of Ho: ζ = ζο against 
Ha- ζ φ ζο using the large-sample normal test statistic 

For example, the 95% confidence interval consists of all ζο values for which this 
test has a two-tailed P-value from the standard normal distribution that is larger 
than 0.05. 

Wald confidence intervals for proportions or parameters based on proportions 
often perform poorly for small to moderate n. The actual coverage probability of 
a nominal 95% Wald confidence interval may be quite far from 0.95 unless n is 
quite large. This is especially true when ζ takes values near the boundary of the 
parameter space (such as in estimating a proportion that is near 0 or 1), in which 
case ζ may have a highly skewed sampling distribution. Then it may not be sensible 
for ζ to be the midpoint of the confidence interval, an extreme case being when ζ 
falls at the boundary. 

Alternative confidence intervals that provide results similar to those of Wald 
intervals for large n but usually perform better for small to moderate n result from 
inverting likelihood-ratio or score tests. The likelihood-ratio test has test statistic 

- 2 ( L 0 - L i ) , 

where LQ and L\ denote the maximized log-likelihood values under the null 
hypothesis //Q and under the alternative hypothesis Ha. The P-value is the right-tail 
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probability beyond the observed test statistic value, using the chi-squared distri-
bution with df = 1. In this context, L \ is the multinomial log-likelihood function 
evaluated at the sample proportions. The 95% profile likelihood confidence interval 
for ζ is the set of ζο values for which the P-value > 0.05 for the likelihood-ratio 

test of H0: ζ = ζ0. 
The score test is based on the derivative of the log-likelihood function and its 

standard error, evaluated at the null hypothesis value. The test statistic can often 
be expressed in the form 

_ ζ-ζο 
Z SEo ' 

where SEo is the standard error estimated under the constraint that ζ = ζο· Although 
computationally more complex than the Wald method and not always readily 
available with software, these methods usually perform better in terms of having 
coverage probabilities closer to the nominal level. Lang (2008) provided a unified 
approach to fitting profile likelihood and score confidence intervals for contingency 
table parameters.4 

We discuss this approach in the context of interval estimation of an odds ratio. 
Let Θ denote a particular ordinal odds ratio, such as a global odds ratio for a 2 x 2 
table of counts [nty] that results from a particular collapsing of the r x c table 
{riij}. A 95% confidence interval based on inverting the likelihood-ratio (or score) 
test consists of all θο values such that the P-value > 0.05 for the likelihood ratio 
(or score) test of Ho: Θ — #o against Ha: θ φθ^. For each given θο value there 
are expected frequencies {£,·_,· (0n)} having the same margins as the observed 2 x 2 
table {rriij} and having an odds ratio of #o· The likelihood-ratio statistic for HQ: 
Θ = #o has the form 

G2 = 2 S E m y i o g 
ßij(6o) 

The 95% profile likelihood confidence interval consists of the set of #o values for 
which G2 is less than the 95th percentile of a chi-squared distribution with df = 1, 
which is 3.84 (= 1.962). The score test statistic for Ηο'. θ = θ$ has the form of a 
Pearson chi-squared statistic, 

χ 2 _ ν ^ ν ^ [m,7 - βί](θ0)]
2 

The 95% score confidence interval consists of the set of 0o values for which X2 < 
3.84. Simulations show that the score method works particularly well for estimating 
an odds ratio. 

More generally, consider any hypothesis for a multinomial model that 
corresponds to a goodness-of-fit test. That is, the fitted values for the alternative 

'Lang's R function ci.table can construct such confidence intervals. 
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hypothesis are the sample data, so testing the hypothesis corresponds to comparing 
fitted values under a null hypothesis to fitted values under an alternative hypothesis 
that are merely the sample cell counts. This is the case for the test about an odds 
ratio for a 2x2 table. Then the score statistic has the form of the Pearson statistic 
just shown (Smyth 2003; Lovison 2005). 

Advantages of confidence intervals based on inverting likelihood-ratio tests or 
score tests is that unlike the Wald interval, they are not affected adversely when a 
sample odds ratio is 0 or oo and they do not depend on the scale. That is, applying 
them to the original scale or applying them to the log scale and then exponentiating 
yields the same result. Unfortunately, for some measures of association, standard 
statistical software does not yet provide score confidence intervals, but profile like-
lihood intervals are often available when the measure is equivalent to a parameter 
in a model. For the odds ratio, the profile likelihood confidence interval can be 
obtained with most logistic regression software by fitting a model with a binary 
predictor to the 2x2 table.5 Although not readily available with some software, the 
score confidence interval for the odds ratio is relatively easy to obtain.6 

2.3.4 Example: Comparing Treatments for Shoulder Pain 

Table 2.7 comes from a study (Lumley 1996) to compare an active treatment with 
a control treatment for patients having shoulder tip pain after laparoscopic surgery. 
The two treatments were randomly assigned to 41 patients. The patients rated their 
pain level on the fifth day after the surgery. 

Consider first the odds ratio for the odds that pain is in one of the first two 
categories instead of one of the last three. This is both a global odds ratio and 
a cumulative odds ratio. The sample odds ratio is 18.9, the estimated odds of a 
relatively low level of pain being much higher for the active treatment than for the 
placebo. The ordinary Wald confidence interval is (2.1, 170.4), the profile likelihood 
confidence interval is (3.0, 373.8), and the score confidence interval is (2.6, 128.1). 
With small samples, different methods can give quite different results. Based on 
simulations, we trust the score interval estimator of the odds ratio more than we 
do the other methods. With any of the intervals, we infer that the active treatment 
works better than the control treatment to reduce shoulder pain. 

TABLE 2.7. Shoulder Tip Pain Scores After Laparoscopic Surgery 

Treatments 

Active 
Control 

1 

19 
7 

2 

2 
3 

Pain Score" 
3 

1 
4 

4 

0 
3 

5 

0 
2 

Source: Lumley (1996), Table 2. 
" 1 , low; 5, high. 

5For example, in SAS, using the LRCI option in PROC GENMOD. 
6An R function is available at www.stat.ufi.edu/~aa/cda/software.html. 
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2.3.5 Confidence Intervals for Measures Using P(Y\ > Yz) 

We now consider the stochastic superiority measure a = P(Y\ >Yi) + \ P(Y\ 
= Y2) for comparing two groups on an ordinal response. A confidence interval 
for a implies a corresponding confidence interval for Δ = P{Y\ > Y2) — 
P(Y2>Yi), since Δ = 2a - 1. 

For independent multinomial samples of sizes n\ and ni from the two rows, 
Halperin et al. (1989) showed that the sample value of the variance of the sample 
estimate ά is 

SE2 = — 
«1«2 

where 

ά - ( η ι + η 2 - 1)ά2 + ("2 - 1)C + (n\ - \)D - - ^ P / | i A ' | 2 

(2.14) 

- X Pc\\Pc\2 

i = l V j = i + 1 Z J 

j-1 - ^ 2 PIIPW 

j=2 x i = l 

The Wald approach works better by applying it to estimate logit a rather than a. 
From the delta method, the 95% Wald confidence interval for logit a is 

SE 
logit a ± 1.96- —. 

a ( l — a) 

Its bounds [LB, UB] induce the interval 

exp(LB) exp(UB) 
l+exp(LB) ' l+exp(UB) 

for a. If ά is either 0 or 1, the interval is undefined, and it is better to use the 
interval obtained with the profile likelihood or score method. 

Ryu and Agresti (2008) used the result mentioned above about the score test 
statistic having the form of the Pearson statistic to construct a score confidence 
interval for a. For any given value ao, the product multinomial likelihood can be 
maximized subject to the constraint a = ao, leading to fitted values that can be 
compared to the observed counts with X2. A 95% score confidence interval7 is the 
set of ao values for which X2 < 3.84. 

For the shoulder pain data just analyzed, the 95% logit Wald confidence inter-
val for a is (0.621, 0.874). The score confidence interval is (0.633, 0.875). The 
imprecision reflects the relatively small sample sizes. 

7www.stat.ufl.edu/~aa/cda/software.html has R functions by E. Ryu for confidence intervals for a. 
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2.3.6 Small-Sample Interval Estimation for Local Odds Ratios 

A well-known approach to small-sample inference for some parameters with cat-
egorical data eliminates unknown nuisance parameters by conditioning on their 
sufficient statistics. Statistical inference then uses the conditional distribution, which 
does not depend on the nuisance parameters. This method can be applied to inter-
val estimation for odds ratios. With a multinomial distribution over the r x c table, 
conditioning on row and column totals yields a noncentral hypergeometric distri-
bution that depends on the local odds ratios but not on unknown row and column 
marginal probabilities. 

In Section 2.2.1 we mentioned that all odds ratios using a rectangular array of 
cells in a r x c table are determined by a basic set of (r — l)(c — 1) odds ratios, 
such as the odds ratios 

nijllrc 

0,·,· = - ^ - ^ , i = l , r — 1, j = l , . . . , c - l . 
Hrjftic 

With full multinomial sampling or independent multinomial sampling within rows 
or within columns, conditional on the marginal totals, the distribution of {n(J} is 
proportional to 

n?=in5=1ny!· 

There is a one-to-one relationship between these odds ratios and the ordinal local 
odds ratios {öM. The equivalent expression for this distribution in terms of the 
local odds ratios is 

nf~i'n;.-j(ffi"j 

where su = Σα<ι Eb<j nab-
A simple model considered in Section 6.2.2 assumes a common value β = log 6jj 

for the local log odds ratios. In that case, the conditional distribution of the data 
is proportional to β^/Π,-Π^π,-;!, where T — Σι Σ ; ( ' 7 ) η ο · F°r ^xe(^ marginal 
totals, the maximum likelihood estimate β of β for this model is a strictly mono-
tone function of T. This suggests basing exact inference for β on the conditional 
distribution of T. The statistic T is itself a monotone function of the correlation 
between X and Y for equally spaced scores for the rows and columns. As described 
in Section 7.6, we can base an exact conditional test on the conditional distribution 
of T. This can be done independent of any model for the odds ratios, but we con-
sider a model of uniform local odds ratios here in order to consider a small-sample 
confidence interval for an ordinal effect measure. 

Let C, denote the sum of (Π,Π7η,7!)_1 for all tables with the given marginal 
totals that have T = t. Assuming a common local log odds ratio β, the conditional 
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distribution of T is (Agresti et al. 1990) 

C,eßl 

P(T = t\ {ni+}, {n+j}; ß) = ' ■ 

To form a confidence interval for p\ we invert exact tests of Ho: β = ρΌ using this 
distribution. For observed value f0bs for T, an interval having confidence level at 
least 1 — a is (ßt, ß„), where ße and ßu are the solutions to the equations 

£ P(T = t\[ni+},in+JY,ßt) = ^ and 
'>'obs 

Σ P(T = t\[ni+),[n+jY,ßu) = ^, 
'<'obs 

except that βι = — oo when T takes its minimum possible value (for the given 
margins) and ßu = oo when T takes its maximum possible value. The correspond-
ing confidence interval for each local odds ratio, under the assumption that they 
are identical, is (exp(pV), exp(^„)). Mehta et al. (1992) presented a similar analysis 
for stratified 2 x c tables with ordered columns. 

When the sample size is very small or the data are unbalanced, with most obser-
vations in a single row or column, the inference can be quite conservative. The 
actual confidence level can be much larger than the nominal value. To achieve a con-
fidence level that tends to be closer to the nominal level, although no longer guar-
anteed to be at least that level, invert the test using the mid-P value. That is, in the 
tail sums of probabilities just given, include only jP(T = /obs | {«,+}, {«+;}; ßu)· 
The mid-P interval also has the advantage of being a bit shorter. 

For 2 x 2 tables, software can easily obtain small-sample confidence intervals 
for the odds ratio by conditioning on the marginal counts. Thus, it is possible to 
construct such confidence intervals for any particular ordinal odds ratio introduced 
in Section 2.2. Alternatively, an unconditional approach can be used for small-
sample confidence intervals for odds ratios. Agresti (2002, pp. 99-100) has details 
and references. However, that method and the mid-P-based conditional method are 
not yet available in standard software. 

2.3.7 Example: Severity of GVHD in Leukemia Patients 

The StatXact manual (2005) reports Table 2.8, from one protocol for a study at the 
Dana Färber Cancer Institute. For patients receiving a bone marrow transplant, the 
ordinal response was the severity of graft versus host disease (GVHD). Table 2.8 
covers a suspected risk factor: whether there was a type of blood incompatibility, 
called a MHC mismatch, between the donor and the recipient of the bone marrow. 

The sample local odds ratios for the table, calculated as the estimated odds of 
the worse of two adjacent outcomes for mismatch divided by the corresponding 
estimated odds for match, are 

2x3 2x4 lxl n 1x2 
= 0.75, = 4.0, = 0.25, = oo. 

2 x 4 2x1 2 x 2 1x0 
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TABLE 2.8. Severity of GVHD in Leukemia Patients by Whether Patient Had MHC 
Mismatch 

MHC Status 

Mismatch 
Match 
Total 

None 

2 
3 
5 

Severity of GVHD Toxicity 
Mild 

2 
4 
6 

Moderate 

2 
1 
3 

Severe 

1 
2 
3 

Extreme 

2 
0 
2 

Total 

8 
10 
18 

Source: StatXact (2005, p. 633), with permission. 

Given the very small cell counts, these estimates are extremely imprecise and can 
benefit from smoothing. Under the assumption that the true distributions have a 
common value for the four local odds ratios, StatXact reports8 a small-sample 95% 
confidence interval for that common local odds ratio of (0.58, 3.27). With such a 
small sample, it is not possible to estimate that odds ratio very precisely. 

2.4 CONDITIONAL ASSOCIATION IN THREE-WAY TABLES 

Most applications have more than two relevant variables. The emphasis is often, 
then, on analyzing the relationship between the response variable and an explana-
tory variable at fixed levels of other explanatory variables or control variables. 
A partial table is a contingency table that displays counts for the relationship 
between two categorical variables at fixed levels of another variable (or variables). 
In a partial table, the other variable is controlled, in the sense that its value is held 
constant. 

The association displayed in a partial table can be analyzed using the methods 
introduced in this chapter. For example, ordinal odds ratios apply to each partial 
table using the cell counts {ny*} in the three-way contingency table that corresponds 
to "stacking up" the various partial tables. For the (r — l)(c — 1) local odds ratios 
at level k of the control variable(s), these are 

5L _ njjk.ni+\,j+\,k 
•j\k ~ ' 

1 i , ; + l,t1i + l,y·,* 
1, . . . , r - 1, j = l , . . . , c - 1. (2.15) 

The response variable and explanatory variable are conditionally independent, given 
the control variable(s), if the population values of these odds ratios all equal 1. 

2.4.1 Summary Measures of Conditional Association 

If the association as described by an ordinal measure is similar in each partial 
table, it can be useful to pool the measure values into a summary measure of 

Using the "permutation with general scores" analysis and choosing scores 1, 2, 3, 4, and 5. 
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conditional association. This is also useful for meta-analyses, to combine results 
about an association from several studies. 

One way to do this forms a weighted average of the sample values, with weights 
{wk} satisfying all Wk > 0 and J2k Wk = 1. For odds ratio measures, it is sensible to 
do this on the log scale. Let Z denote the control variable(s) (or variable identifying 
the various studies in a meta-analysis). Let K denote the number of categories of 
Z, which is also the number of partial tables. Possible choices for the weights {wk\ 
include: 

• Wk = l/K, equal weight to the sample measure in each table. 
• Wk — n++k/n, the proportion of observations in the partial table. 
• Wk = ( l /SE^AX^L, 1/SE^), where SE* is the estimated standard error of 

the sample measure in partial table k. The weight is inversely proportional to 
the estimated variance. This scheme approximates the measure in the class of 
weighted averages that has the smallest variance. 

• For measures that are ratios, weights can be applied separately to the numera-
tors and the denominators, such as is done in the Mantel-Haenszel odds ratio 
estimate for several 2 x 2 tables (e.g., Liu and Agresti 1996; Liu 2003). 

Such summary measures have limited usefulness when there are multiple control 
variables. It is then more informative to use a modeling approach, as discussed 
starting in Chapter 3. This enables us to check the fit of the assumed association 
structure and to compare models of different complexities. For example, some 
models assume that the population ordinal odds ratios of a particular type in a 
two-way table are identical. If such a model fits each partial table well, we can 
analyze whether the extended model that has the same common ordinal odds ratio 
in each partial table fits well. If not, we would report the estimated odds ratios 
for the separate partial tables or use other ways of describing how the association 
varies across those tables. 

2.4.2 Example: Association Between Political Views and Party, 
by Education 

In 2006, the General Social Survey asked about the respondent's political ide-
ology (liberal, moderate, conservative) and about the respondent's political party 
affiliation (Democrat, Independent, Republican). Table 2.9 summarizes the 4253 
observations. Political party affiliation could be treated as nominal or ordinal. 
We treat it as ordinal to study whether there is a trend in ideology as one goes 
from Democrat to Republican. The sample conditional distributions, also shown in 
Table 2.9, suggest a moderately positive trend from liberal to conservative as one 
moves across the rows from Democrat to Republican. For a model presented in 
Section 6.2.2 that assumes a common value for all the local log odds ratios, the 
maximum likelihood estimate of that log odds ratio is 0.746. This corresponds to 
a local odds ratio estimate of exp(0.746) = 2.109. 
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TABLE 2.9. Political Ideology by Political Party Identification, with Conditional 
Distributions on Political Ideology in Parentheses 

Party 

Democrat 
Independent 
Republican 

Liberal 

616 (44%) 
450 (26%) 

94 (8%) 

Political 

Moderate 

522 (37%) 
821 (47%) 
305 (27%) 

Ideology 

Conservative 

262 (19%) 
462 (27%) 
721 (64%) 

Total 

1400 
1733 
1120 

Source: 2006 General Social Survey. 

TABLE 2.10. Values of Estimated Common Local Log Odds Ratio Between Political 
Ideology and Political Party Affiliation, Controlling for Education 

Education Sample Size Local Log Odds Ratio 

Less than high school 612 0.107 
High school 2151 0.686 
Junior college 362 0.754 
Bachelor 734 1.200 
Graduate 394 LU2 
Overall 4253 0.746 

Can this association be explained by education? For example, if more highly 
educated people tend to be more liberal and if more highly educated people tend 
to identify more as Democrats, perhaps this might explain the association and we 
may find little if any association at fixed levels of education. 

Table 2.10 shows the estimated common local log odds ratios for the partial 
tables. The strength of association increases considerably across the education lev-
els. There is little association for those with less than a high school education but a 
very strong association for those with a bachelor's or graduate degree. In this case, 
it seems better to report the separate values for the partial tables than to report a 
summary number for conditional association. Recall that less localized odds ratios 
would be stronger yet. For example, the estimated odds ratio using the four comer 
cells of Table 2.9 is (616 x 721)/(262 x 94) = 18.0. You can check that the local 
odds ratios relate to the comer odds ratio by ^ ,θ^ο^ ,θ^ . Thus, the model-based 
estimate of a common local odds ratio of 2.109 propagates to an estimated comer 
odds ratio of 2.1094 = 19.8, a very strong positive association. 

2.5 CATEGORY CHOICE FOR ORDINAL VARIABLES 

Most analyses presented in this book treat the ordinal scale as fixed, typically 
predetermined by the researcher who conducted the study. The results of some 
analyses may depend greatly, however, on the way the categories were denned. 
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In this section we illustrate this point, first for detecting the association between 
ordinal variables and then for describing a conditional association when a control 
variable is ordinal. 

2.5.1 Finer Categorizations Provide More Power for Detecting Associations 

With most ordinal variables, there are various possible scales for their measure-
ment. Political ideology, for instance, might be measured with categories (liberal, 
moderate, conservative) or with categories (very liberal, liberal, slightly liberal, 
moderate, slightly conservative, conservative, very conservative). There are bias 
and power advantages to using categorizations having relatively more categories. 

Often, it makes sense to imagine a continuous latent variable underlying the 
observed ordinal measurement. Then, an advantage of using more categories is 
that we get more information about the underlying effects. For example, as the 
numbers of rows and columns in a cross-classification of two ordinal variables 
are increased, the measurement gets finer. Then fewer pairs of observations are 
tied, falling in the same row or in the same column. (In Section 7.1.3 we present 
formulas for the various types of tied pairs.) Thus, more pairs of observations 
provide concordant or discordant indications that contribute to overall summaries 
such as ordinal odds ratio values. 

Also, it is advantageous to have as many pairs untied as possible to increase 
power for determining the direction of the association. For example, an advantage 
of precise measurement of ordinal variables is that significance tests tend to be more 
powerful when there are relatively fewer tied pairs of observations. For testing 
the hypothesis of independence, the sample size needed to attain a certain power 
at a given significance level tends to decrease as r and c increase (Agresti 1976). 
This can be demonstrated by redefining categories for a table. We illustrate using 
Table 2.11, which is a 2x2 condensation of the 3x3 happiness data of Table 2.3. 
The "very happy" and "pretty happy" categories of happiness have been combined 
into the single category "happy." Also, the first and second income categories have 
been combined. Table 2.11 has log odds ratio equal to 1.102, with SE = 0.111. 
This is one of the global odds ratios of the original table. By comparison, for the 
original 3x3 table, a model considered in Section 6.6 that assumes a common value 
for all four global odds ratios has estimated log global odds ratios of 0.856, with 
SE = 0.068. With finer measurement, the ratio of the estimate to its SE is larger. 

The values of ordinal odds ratios that are local for a variable tend to be more 
highly dependent on the categorization than are ordinal odds ratios that are global 

TABLE 2.11. Condensation of Table 2.3 Used to 
Illustrate Effects of Category Choice 

Happiness 
Family Income Happy Not Too Happy 

Average or above 1855 180 
Below average 712 208 
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for that variable. Typically, the local odds ratios tend to be weaker when the 
response scale is finer. 

Besides depending on the numbers of categories, the values of many measures 
of association depend on the marginal distributions of the variables, that is, on the 
relative numbers of observations in the different categories. This is the case for the 
odds ratios that group categories together. Because of this, it can be risky to com-
pare values of measures calculated in tables having different category definitions or 
highly different marginal distributions. Consider, for example, case-control stud-
ies in which each subject who has a severe case of some disease is matched with 
someone having a mild case and a set of control subjects who do not have that 
disease, with all subjects observed in terms of some exposure that could cause the 
disease. The expected values for a summary measure of association would be dif-
ferent for a study that used one control for each pair of cases and a study that used 
more than one control for each pair of cases. An exception is the local odds ratio. 
It uses pairs of response categories and maintains the usual invariance to marginal 
proportions that is a well-known property of the odds ratio for 2 x 2 tables. 

2.5.2 Finer Categorizations Describe Conditional Associations Better 

Sometimes a control variable is also ordinal. When that variable represents categor-
ical measurement of an underlying continuous variable, it is also advantageous to 
choose several categories for it to describe the conditional association adequately. 
For example, suppose that for an underlying continuous control variable Z, the 
value of a particular ordinal odds ratio between X and Y is identical at each fixed 
level of Z. We would want the measure value found with the ordinal categorization 
of Z to be relatively near the value that occurs for the underlying continuous mea-
surement of Z. The approximation tends to improve as the number of categories 
of the control variable increases, since then Z is held more nearly constant in each 
partial table. 

To illustrate, suppose that a trivariate normal distribution underlies three ordinal 
variables, with correlations ρχγ — 0.64 and ρχζ = PYZ = 0.80. For this distribu-
tion, the conditional distribution relating X and Y at a fixed level of Z is bivariate 
normal with partial correlation ρχγζ = 0 . Then, for any way of categorizing X and 
Y at a fixed single value of Z, any ordinal odds ratio equals 1.0. Now, suppose that 
Z is not actually measured continuously but, rather, with K categories. Consider 
the value of the global odds ratio for the probabilities in the partial tables, when 
X and Y are dichotomized at the means of the underlying variables. Table 2.12 
reports the global odds ratio values for those partial tables. These measures tend to 
approach 1.0 as the number of categories K of the control variable increases. How-
ever, with small K there can be substantial bias in approximating the underlying 
conditional association. We would probably fail to detect the absence of underlying 
conditional association if we used relatively few control categories or if one control 
category contained a majority of the observations. In this scenario we need K > 5 
strata before the middle one has an odds ratio within 10% of the limiting value. 

Even with relatively large K, Table 2.12 shows that a considerable conditional 
association can occur at the highest and lowest levels of the categorized control 
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TABLE 2.12. Global Odds Ratio for Partial Tables from a 2 x 2 x K Table Having 
an Underlying Trivariate Normal Distribution with Correlations 0.80 Between X and 
Z and Between Y and Z but Zero Partial Correlation Between X and Y 

Marginal 
K 

2 
2 
3 
4 
5 

10 
00 

Probabilities for Z 

(0.1,0.9) 
(0.5, 0.5) 
(1/3, 1/3, 1/3) 
(0.25, 0.25, 0.25, 0.25) 
(0.2, 0.2, 0.2, 0.2, 0.2) 
(0.1 each) 

Values of Global Odds Ratio 

1.66,5.00 
2.20, 2.20 
1.87, 1.29, 1.87 
1.77, 1.20, 1.20, 1.77 
1.72, 1.15, 1.10, 1.15, 1.72 
1.66, 1.11, 1.05, 1.03, 1.02, 1.02, 1.03, 1.05, 1.11, 1.66 
1.00 each 

variable, when the marginal XY association is very strong. This tendency is not 
as severe when the marginal XY association is weaker. For example, suppose that 
PXY = 0.25 and ρχζ = PYZ — 0.50. Then again, ρχγ.ζ = 0, and when K = (2, 
3, 4, 5, 10), the odds ratio in the partial table for the highest l/K or lowest \/K 
portion of the conditional distribution equals (1.28, 1.21, 1.19, 1.17, 1.13). 

Cochran (1968) showed similar results for cases in which Y is quantitative 
and X is binary, in the context of reducing bias in comparing two groups in an 
observational study. When a quantitative variable can be measured in an essentially 
continuous manner, we are usually better off doing so rather than collapsing the 
variable into a few ordered categories. For models for ordinal response variables 
considered in this book it is possible to include continuous explanatory variables 
and control variables without having to categorize them. 

2.5.3 Guidelines for Category Choice 

Based on our experience, we suggest the following guidelines about category 
choice. These guidelines are approximate, and the exact behavior depends on the 
particular distributional structure. The guidelines are phrased in terms of measures 
of association, but they also apply to parameters describing associations in ordinal 
models presented in the remainder of the book. 

• Ordinal categorical measures become relatively more efficient at detecting 
nonnull associations as r and c increase, since there are fewer tied pairs and 
standard errors tend to decrease. 

• Measures of conditional association for ordinal categorical variables having 
ordinal control variables tend to become less biased in describing the condi-
tional association for underlying continuous variables as more categories are 
used for the control variables. 

• Different ordinal measures of association and ordinal models presented in 
the next four chapters typically yield similar conclusions about whether an 
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association exists when used in significance tests. However, the results of 
these analyses may depend strongly on how the categories are chosen for 
those ordinal variables. 

CHAPTER NOTES 

Section 2.1: Probabilities and Scores for an Ordered Categorical Scale 

2.1. Other articles dealing with ridits include Brockett and Levine (1977), 
Vigderhous (1979), Semenya et al. (1983), Jansen (1984), Beder and Heim (1990), 
and Brunner and Puri (2001). For criticisms of the use of ridit scores, see Borgatta 
(1968), Mantel (1979), and Graubard and Korn (1987). 

2.2. The stochastic superiority measure a = P(Y\ > Y2) + \P(Y\ = F2) is pop-
ular in the nonparametric literature, both for comparing pairs of groups and for 
comparing each group to a marginal distribution. In the latter case it is the mean 
ridit, often called the relative treatment effect. It is used both for independent 
samples and repeated measures, as in Akritas and Brunner (1997), Brunner and 
Puri (2001), and Brunner et al. (2002). With G,(}>) = [P(K, < y) + P(K, < ;y)]/2, 
i = 1,2, the normalized distribution functions, we can express 

a= ί G2(y)dG,(y), 

an equation that also holds when Y\ and Y2 are continuous rather than ordinal 
categorical (Brunner and Munzel 2000). Simonoff et al. (1986) considered various 
estimators of Δ and their estimated variances, showing that a bootstrap method 
provides a robust estimated variance. For methods using such measures with several 
groups or multiple variables, see Semenya et al. (1983), Brunner and Puri (2001), 
Munzel and Hothorn (2001), Ryu and Agresti (2008), and several other articles by 
E. Brunner and colleagues summarized in Section 7.7.2. Bamber (1975) showed 
that a is the same as the area under a receiver operating characteristic (ROC) curve 
(Section 5.5.3). 

2.3. Although a,·* from applying a to compare two groups i and k is not deter-
mined by the a values comparing group /' to the marginal distribution of Y and 
comparing group k to the marginal distribution, models can be specified in which 
this type of simplicity occurs. An alternative to models considered in the next three 
chapters that use r — 1 parameters to compare r groups on an ordinal response 
variable [e.g., models (3.11) and (4.4)] is 

logit (aik) = r; - rk, 

with a constraint such as rr = 0. Semenya et al. (1983) proposed a weighted least 
squares analysis for this model. Kawaguchi and Koch (2010) generalized this model 
in the context of crossover studies. 
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Section 2.2: Ordinal Odds Ratios for Contingency Tables 

2.4. In a 2 x c table with an ordinal response Y, suppose that all c — 1 of the 
cumulative log odds ratios take value ß. McCullagh and Neider (1983, p. 122) 
noted that local log odds ratios {log öK} relate to the uniform cumulative log odds 
ratio ß by 

logo,,· = ß[P(Y <j+l)- P(Y < j - 1)] + ο(β), y = 1, . . . , c - 1, 

where ο(β)/β -» 0 as β -*■ 0. Hence, local log odds ratios are typically smaller 
in absolute value than the cumulative log odds ratio β. For example, for the uni-
form marginal distribution {P{Y = j) = 1/c}, for small \ß\, logöK «* 2ß/c. The 
discrepancy between the two types of odds ratio tends to increase as c increases. 

2.5. For other examples of ordinal odds ratios and for relationships among them, 
see Lehmann (1966), Dale (1984), Grove (1984, 1986), Douglas et al. (1990), 
Barnhart and Sampson (1994), and Oluyede (1994). 

EXERCISES 

2.1. Show that the mean ridits for conditional distributions of Y in a two-way 
contingency table satisfy ]Tp,+Ä, = 0.50. 

2.2. For a sample set of counts n\,...,nc, show that the y'th midrank r, relates 
to the y'th ridit aj by rj = na; + 0.5. Show that aj and rj/{n + 1) are very 
close for large n. 

2.3. Let Δ,* denote the measure of stochastic superiority (2.2) applied to rows i 
and k of a contingency table. 

(a) Does Δ,·* — Δ,·_,· + Δ ^ ? Why or why not? 
(b) Show by example that it is possible to have Δ,·7- > 0 and Δ ^ > 0, yet 

have Δ/jt < 0. 

2.4. For the local odds ratios, explain why 0,-j; > 1, 1 < j < c — 1, implies that 
the conditional distribution in row / + 1 is stochastically higher than the 
conditional distribution in row i. Explain why the converse is not true. 

2.5. For two conditional distributions, the plot of lines that connects succes-
sively the points {(0, 0), (Fm, Fm), (F2|i, F2\i), (F3ll, F3\2), ■■-, (1.0, 1.0)} 
is called a cumulative sum diagram (CSD). See Grove (1980). 

(a) Show that a straight line for the CSD corresponds to independence. 
(b) Show that a convex CSD corresponds to the condition that all local log 

odds ratios for the two rows are nonnegative. 
(c) Draw and interpret the sample CSD for the data in Table 2.2. 
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2.6. Lehmann (1966) defined two random variables (X, Y), discrete or continuous, 
to be positively quadrant dependent if 

P(X <x,Y < v) > P(X < x)P(Y < y) all x and y 

and positively likelihood-ratio dependent if their joint density satisfies 

f(x\,yi)f(x2,y2) > f(x\,yi)f(x2,y\) 

whenever x\ < X2 and y\ < yj. He defined Y to be positively regression 
dependent on X if 

P(Y < y \ X = x) is nonincreasing in x. 

(a) Show that the bivariate normal distribution satisfies positive likelihood-
ratio dependence. 

(b) For cross-classifications of ordinal variables, explain why positive quad-
rant dependence corresponds to {logo? > 0}, positive likelihood-ratio 
dependence corresponds to {log#l· > 0}, and positive regression depen-
dence corresponds to {\og§fj > 0}. 

2.7. Go to sda.berkeley.edu/GSS and cross-classify the variables POLVIEWS and 
HAPPY for the latest survey [e.g., enter YEAR(2008) in the selection filter 
to obtain results for the year 2008]. Using methods of this chapter, describe 
the data. 
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Logistic Regression Models Using 
Cumulative Logits 

For binary response variables, in most fields logistic regression has become the 
standard model for analyzing the effects of explanatory variables. In Chapters 3 
and 4 we present extensions of logistic regression for ordinal response variables. In 
Section 3.1 we describe ways of forming logits for an ordinal scale, in Sections 3.2 
and 3.3 we present a model for one of these logits which applies to response cumu-
lative probabilities, and in Section 3.4 we discuss model fitting and inference. In 
Section 3.5 we present model checking methods, in Section 3.6 introduce more 
complex models that sometimes fit better, and in Section 3.7 discuss connections 
between inference methods of models for cumulative probabilities and nonpara-
metric rank methods. In Chapter 4 we present analogous models using the other 
ways of forming ordinal logits introduced in Section 3.1. 

3.1 TYPES OF LOGITS FOR AN ORDINAL RESPONSE 

When the response variable is ordinal, how can we form logits in a way that 
recognizes the category order? One way is to group categories that are contiguous 
on the ordinal scale. For example, we can apply the logit transformation to the 
cumulative probabilities. 

3.1.1 Cumulative Logits 

For c outcome categories with probabilities n\,..., nc, the cumulative logits are 
defined as 

logit [P(Y< j)]= log- - J ' 
l-P(Y< j) 

= log » ' + · · · + » ' , , = ! , . . , , c _ l . (3.1) 
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This logit equals the ordinary binary logit applied to the collapsing of the response 
outcomes into the two results Y < j and Y > j . Each cumulative logit uses all c 
response categories. 

3.1.2 Adjacent-Categories Logits 

The adjacent-categories logits are the log odds for pairs of adjacent categories, 

l o g - ^ - , y = 1 c - 1 . 
nj+\ 

This logit equals the ordinary binary logit applied to the conditional probability of 
response outcome in category j , given response outcome in category j or j + 1; 
that is, 

P{Y = j | Y = j or Y = j + l) 
log t [P(Y= j \Y = j or Y=j + l)]= log — —. 

B l J ' J J n s \-P(Y=j I Y = j or Y = j + 1) 
As a set of logits, the adjacent-categories logits are equivalent to the baseline-

category logits commonly used to model nominal response variables. Those 
logits pair each category with a baseline category, typically the last one, as 
log(jij/nc), j = 1 , . . . , c — 1. The connections are 

l o g ^ = l o g ^ + l o g ^ ± i + .-- + l o g ^ i (3.2) 
7TC 7Γ,· + ι 7Γ/+2 Kc 

and 

l o g ^ = l o g ^ - l o g ^ 7 = 1 , . . . , c - 1 . 

Either set is sufficient in the sense that it determines the logits for all Q pairs of 
response categories. 

3.1.3 Continuation-Ratio Logits 

The continuation-ratio logits are defined as 

log *J , y = l , . . . , c - l . (3.3) 
itj+i H \-nc 

Continuation-ratio logit models are useful when a sequential mechanism determines 
the response outcome, in the sense that an observation must potentially occur in 
category j before it can occur in a higher category (Tutz 1991). An example is 
survival of a person through various age periods. Let <w, = P(Y = j \ Y > j). 
That is, 

Ö)I = ^ , y = l c - 1 . (3.4) 
7Γ; H Ync 
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The continuation-ratio logits (3.3) are ordinary logits of these conditional proba-
bilities: namely, logftwy/O — <wy)]. 

An alternative set of continuation-ratio logits, appropriate if the sequential mech-
anism works in the reverse direction, is 

log nj+l , j = 1 c - l . (3.5) 
π\-\ \-7tj 

The two forms of continuation-ratio logits are not equivalent. With c = 3 categories, 
for example, the first set (3.3) of sequential continuation-ratio logits is 

log 

log 

7Ti 

7Γ2 + 7 Γ 3 

7Γ2 

» 

log-

i π ι log—, 
7Γ3 

*3 

while the second set (3.5) is 

7t\ π\ + 7Γ2 

3.1.4 Ordinal Models Use Ordinal Logits Simultaneously 

For each type of ordinal logit applied to a c-category response, c — 1 logits can 
be formed. Ordinal models incorporate the c —\ logits into a single model. In 
the next section we show that this approach results in more parsimonious and 
simpler-to-interpret models than the fitting of c — 1 separate models, one for each 
logit. 

In this chapter we present models for cumulative logits and in Chapter 4 present 
models for the other ordinal logits. We see that each model has its own ordinal odds 
ratio for summarizing effects. For example, since the adjacent-categories logits use 
pairs of adjacent categories, they are naturally summarized using local odds ratios. 

3.2 CUMULATIVE LOGIT MODELS 

We now present a model for the cumulative logits, incorporating explanatory vari-
ables. For subject i, let }>,· denote the outcome category for the response variable, 
and let x,· denote a column vector of the values of the explanatory variables. The 
model simultaneously uses all c — 1 cumulative logits. It has the form 

logit [P(Yi < j)] = aj + β'χι = ctj + ßixn + ß2xn + ·■■ (3.6) 

for j = 1 , . . . , c — 1, for a column vector ß of parameters that describes the effects 
of the explanatory variables. For simplicity of notation, unless we need to refer to 
particular subjects or to particular values of the explanatory variables, we replace 
P(Xi < j I X/) in such equations by P(Y < j), keeping in mind that in the model 
this is actually a conditional probability at each fixed value for the explanatory 
variables. 
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In model (3.6), the logit for cumulative probability j has its own intercept, otj. 
The {aj} are increasing in j because P(Y < j) increases in j for each fixed value 
of x, and the logit is an increasing function of this probability. The equivalent 
model expression for the cumulative probabilities is 

expfa, + ß'x) 
P(Y<j)=.*J. * ' , j = l,...,c-l. (3.7) 

1 + exp(aj + ß x) 

For the cell probabilities themselves, 

ρ(γ _ -x _ exp(a; + ß'x) exp(gj-i + ß'x) 
~ J \ + exp(aj + ß'x) 1 + exp(o,-_, + ß'x)' 

with «o = —oo and ac = oo. This formula has the form of a linear combination 
of inverse link functions: namely, inverse logit links with coefficients 1 and — 1. 
The link function for the cell probabilities in such a case is called a composite link 
function (Thompson and Baker 1981). 

In model (3.6), the effects ß are the same for each cumulative logit. This results 
in a parsimonious model, compared to models such as baseline-category logit mod-
els for nominal responses that have separate parameters for each logit. We'll see 
motivation for this model structure in Section 3.3.2, based on an ordinary regression 
model for an underlying latent variable. 

3.2.1 Cumulative Logit Model: Continuous Predictor 

To help explain the cumulative logit model and its interpretations, let's first consider 
the case of a single continuous predictor x. The model is then 

logit [P(Y <j)]=ctj+ßx, j = l,...,c- 1. 

Figure 3.1 depicts this model for c = 4 outcome categories for Y. For fixed j , the 
response curve is an ordinary logistic regression curve for a binary response with 
outcomes Y < j and Y > j . The common effect ß for the three cumulative logits 
implies that the three response curves for the cumulative probabilities for 7 = 1, 
2, 3 have the same shape. 

Figure 3.1. Depiction of cumulative probabilities in proportional odds version of cumulative logit 
model. Each curve has the same effect parameter. 
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As in logistic regression, the size of |/3| determines how quickly the curves 
go up or go down. At any fixed x value, the curves have the same ordering as 
the cumulative probabilities, the one for P(Y < 1) being lowest. When the model 
holds with ß = 0, the graph of P(Y < j) as a function of x is a horizontal line 
for each j . Then Y is statistically independent of x. 

Since the curves for the different cumulative probabilities have the same shape, 
any one curve is identical to any other curve shifted to the right or shifted to the 
left. For j < k, the curve for P(Y < k) is the curve for P(Y < j) translated by 
(oik — 0Lj)jß units in the x direction; that is, 

P[Y <k | X=x] = P Y <j\X = x + 
ß 

The greater the difference α^ — α;· for a given value of β, the greater the horizontal 
distance between the curves for the two cumulative probabilities. Although we 
need the intercept parameters {α7·} to fully determine the cumulative probabilities, 
in practice the parameter of interest is β, which describes the effect of x. 

Figure 3.1 has β > 0 and Figure 3.2 shows corresponding curves for the category 
probabilities, P(Y = j) = P(Y < j) - P(Y <j- 1). When β < 0, the analogous 
curves for Figure 3.1 descend rather than ascend, and the labels in Figure 3.2 reverse 
order. The identical shape for the various curves implies that the distributions of 
Y at different values of* are stochastically ordered, as defined in Section 2.2.5. If 
β>0, each cumulative logit increases as x increases, which means that P(Y < j) 

II 

a. 

Figure 3.2. Depiction of category probabilities in proportional odds version of cumulative logit model. 
At any particular x-value, the four probabilities sum to 1. 
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increases also. This implies that the conditional Y distributions are stochastically 
lower at higher levels of x. If ß < 0, the conditional Y distributions are stochasti-
cally higher at higher levels of x. 

3.2.2 Alternative Parameterization with —ß'x Predictor 

Often, the cumulative logit model is instead expressed as 

lo&t [PW <j)]=aj-ß'xi. (3.8) 

For this parameterization with a negative sign preceding ßkXik for predictor k, the 
sign of ßk has the usual directional meaning. For example, ßk > 0 when Y is more 
likely to fall at the high end of the scale as *,* increases. Specifically, if ßk > 0, 
then as *,* increases, each cumulative logit decreases. Hence, the corresponding 
cumulative probabilities decrease. Then relatively less probability mass falls at the 
low end of the response scale, and Y is less likely to fall at the low end and more 
likely to fall at the high end of the scale. 

Some software (such as SPSS) uses the linear predictor form otj — ß'xj, whereas 
other software (such as SAS) uses ctj + /J'x,. Another way to have the usual sign 
interpretation for each effect is to express the model as1 

P(Y > i) 
logit [P(Y > j)] = log ρ { γ < } = «y + ß%, y = 1 , . . . , c - 1, 

with the cumulative probability in the denominator instead of the numerator. 

3.2.3 Cumulative Logit Model for Contingency Table: 
Quantitative Predictor 

Next we consider the cumulative logit model applied to a two-way contingency 
table. The rows are levels of a categorical explanatory variable. As in ordinary 
regression or logistic regression, if the explanatory variable is qualitative (nominal 
scale), indicator variables can represent its categories. The predictor is then a factor 
in the model. When the explanatory variable is quantitative with particular scores 
for the rows, such as the number of siblings of the subject, it is often sensible, 
instead, to represent that variable as a single predictor. Then a slope coefficient 
reflects a trend in Y as x changes. Similarly, although an ordinal variable can be 
treated as a factor, it is often useful to assign numerical scores to its categories and 
treat it in a quantitative manner. It is unnecessary to assign scores to the levels of 
Y, because the c — 1 cumulative logits within each row are ordered and serve as 
the responses. 

'With the DESCENDING option, SAS fits the model in this form. 
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Consider first the case in which the explanatory variable is quantitative and we 
use ordered scores [u\,..., ur] for its rows. The cumulative logit model (3.6) then 
simplifies in terms of the row score κ,·, 

\ogit[P(Y <j)]=aj+ßUi, 7 = 1 c - 1. (3.9) 

As in ordinary logistic regression, interpretation of ß can use log odds ratios. For 
rows a and b, 

logit [P(Y <j\X = ub)] - logit [P(Y <j\X = ua)] = ß(ub - ua). 

This is the log odds ratio for the 2 x 2 table obtained using rows a and b and the 
binary response with outcomes Y < j and Y > j . This log odds ratio is proportional 
to the distance between the rows, and for fixed a and b, it is the same for all j for 
collapsing the response. 

With a = i and b — i + 1, this log odds ratio is the cumulative log odds ratio 
estimated in equation (2.7). With unit-spaced row scores such as the row numbers 
{uj = i], the cumulative log odds ratio equals 

logit [P(Y <j\X = «,-+,)] - logit [P(Y <j\X = «,)] = ß (3.10) 

for i — 1 , . . . , r — 1, j — 1 , . . . , c — 1. Then exp(j8) represents the constant value 
of the odds ratios {Θ^Λ for the (r — l)(c — 1) separate 2x2 tables obtained by 
taking all pairs of adjacent rows and all binary collapsings of Y. These cumulative 
odds ratios take a uniform value whenever the row scores are equally spaced. We 
refer to this model for two-way contingency tables applied with equally spaced row 
scores as the cumulative logit uniform association model. Figure 3.3 illustrates the 
uniform cumulative odds ratio implied by this model. 

3.2.4 Cumulative Logit Model for Contingency Table: Qualitative Predictor 

When the explanatory variable is nominal scale, it enters the model as a factor, 
with indicator variables. The model has the form 

logit [P(Y < j)] = Uj + nz i + τ2Ζ2 H + rr_izr_i, j = 1 , . . . , c - 1, 

Figure 3.3. Odds ratios AD/BC that are constant for all pairs of adjacent rows and all c — 1 cumulative 
probabilities for a cumulative logit uniform association model. 
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in which z, = 1 for an observation from row i and Zi = 0 otherwise. As usual, 
it would be redundant to include an indicator variable for the final category. The 
effect terms take the form of row effects. For short, we can express the model in 
terms of the effect for an observation in row i as 

logit [P(Y < ; ) ] = aj,+ τ, for j = l,...,c-\ (3.11) 

(Simon 1974). For identifiability, {r,} have a linear constraint, such as rr = 0 or 
Σί ^ί = 0· The constraint τ> = 0 corresponds to the model expressed above with 
indicator variables for each row except the last. 

The row effect parameters determine the cumulative odds ratios. For a pair of 
rows a and b, the cumulative log odds ratio 

logit [P(Y <j\X = b)]- logit [P(Y <j\X = a)] = Tb- τα. 

For these two rows, this cumulative log odds ratio is the same for all c — 1 of 
the 2 x 2 tables obtained for the c — 1 possible collapsings of the response to 
binary, Y < j and Y > j . If Xb > τα, the cumulative probabilities are higher in row 
b than in row a, so the conditional Y distribution is stochastically lower in row b. 
Independence of Y and X is the special case τ\ — T2 — ■ ■ ■ — τΓ. 

3.2.5 Example: Astrology Beliefs and Educational Attainment 

The 2006 General Social Survey asked subjects, "Would you say that astrology is 
very scientific, sort of scientific, or not at all scientific?" Table 3.1 cross-classifies 
their responses with their highest degree. The data show evidence of a trend, with 
more highly educated people tending to put less credence in astrology. 

We treat opinion about astrology as the response variable. First we treat educa-
tional level as quantitative, 

\ogit[P(Y <j)]=aj+ßUi, J = 1,2, (3.12) 

TABLE 3.1. Education and Opinion About Astrology, with Conditional Distributions 
on Opinion in Parentheses 

Highest Degree 

< High school 
High school 
Junior college 
Bachelor 
Graduate 

Very 

23 (11%) 
50 (5%) 
4 (2%) 

11 (3%) 
1 (1%) 

Astrology Is Scientific 
Sort of 

84(41%) 
286 (31%) 
44 (26%) 
57 (17%) 
23 (13%) 

Not at All 

98 (48%) 
574 (63%) 
122 (72%) 
268 (80%) 
148 (86%) 

Source: 2006 General Social Survey. 
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TABLE 3.2. Output for Fitting Cumulative Logit Models to Table 3.1 

Parameter 
Interceptl 
Intercept2 
degree 

Parameter 
Interceptl 
Intercept2 
degree 
degree 
degree 
degree 
degree 

DF 

0 
1 
2 
3 
4 

1 
1 
1 

DF 
1 
1 
1 
1 
1 
1 
0 

Estimate 
-2.3138 
-0.0264 
-0.4614 

Estimate 
-4.1236 
-1.8310 
1.9439 
1.2942 
0.8782 
0.4693 
0.0000 

Standard 
Error 
0.1246 
0.0853 
0.0486 

Standard 
Error 
0.2429 
0.2196 
0.2582 
0.2299 
0.2770 
0.2581 
0.0000 

Like. 
Conf. 

-2.5636 
-0.1938 
-0.5581 

Ratio 95% 
, Limits 

-2.0746 
0.1408 

-0.3674 

Like. Ratio 95% 
Conf. Limits 

-4.6212 
-2.2860 
1.4524 
0.8622 
0.3443 

-0.0241 
0.0000 

-3.6660 
-1.4212 
2.4678 
1.7673 
1.4343 
0.9915 
0.0000 

Chi-
Square 
344.77 

0.10 
90.09 

Chi-
Square 
288.28 
69.50 
56.69 
31.68 
10.05 
3.31 

using row scores (0, 1, 2, 3, 4), which are the values coded by the GSS. Table 3.2 
shows software output for fitting models (as obtained with SAS, PROC GEN-
MOD). The top part of the table shows results for this uniform association model 
(3.12). There are two intercept parameter estimates, with άι = —2.3138 and &2 = 
—0.0264, because the response variable has three categories. The maximum likeli-
hood estimate β = —0.4614 reflects the tendency for the cumulative probability to 
decrease as the level of education increases. Each increase of a category in the level 
of attained education corresponds to a multiplicative impact of g-0·4614 — 0.63 in 
the estimated odds of response "very scientific" (instead of "sort of scientific" or 
"not at all scientific"), and in the estimated odds of response "very scientific" or 
"sort of scientific" (instead of "not at all scientific"). The estimated cumulative odds 
ratio comparing "< high school" with "graduate" education is e(°-4X-°·4614) = 6.3. 

We can substitute the estimated parameters into the model formula to obtain 
estimated cumulative logits and then invert the estimated cumulative logits to obtain 
estimated cell probabilities. To illustrate, for "graduate" education, for which the 
predictor score equals 4, 

P(Y < 1) 

P(Y < 2) = 

e-2.3138+4(-0.4614) 

1 -I- £-2.3138+4(-0.4614) 

e-0.0264+4(-0.4614) 

1 4. e-0.0264+4(-0.4614) 

= 0.015, 

= 0.133. 

From these, 

P(Y = 1) = 0.015, P(Y = 2) = 0.133 - 0.015 = 0.118, 

P(Y = 3) = 1 -0 .133 = 0.867. 

The corresponding sample proportions are 0.006, 0.134, and 0.860. 
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Next, we treat educational level as qualitative (a factor) by fitting the model 
with row effects, 

logit [P(y <j)]=aj+Th y = l ,2 . 

The second panel of Table 3.2 shows results under the constraint τ$ = 0. The 
decrease in {τ,} across education categories again reflects the tendency for the 
cumulative probability to decrease as education level increases. The effect is strong 
for quite different educational levels. For example, the estimated cumulative odds 
ratio comparing "< high school" with "graduate" education is e

L 9 4 3 9 _ 0 = 7.0. 

3.3 PROPORTIONAL ODDS MODELS: PROPERTIES 
AND INTERPRETATIONS 

We introduced cumulative logit models by focusing on simple models with a single 
explanatory variable. The property by which a cumulative log odds ratio comparing 
two settings of a predictor is identical for each of the c — 1 cumulative probabilities 
extends to the more general case (3.6), namely, 

logit IP(Y < j)] = aj + β'χ, j = 1 , . . . , c - 1. 

3.3.1 Proportional Odds Property 

The general model with multiple explanatory variables satisfies 

logit [P{Y < j | x,)] - logit [P(Y < j | x2)] 

— log ■ = β (xi - X2). 

The odds of making response Y < j at x = xi are cxp[ß'(x\ — X2)] times the odds 
at x = X2- The log cumulative odds ratio is proportional to the distance between 
xi and x2. The same proportionality constant applies to each of the c — 1 logits. 

Because of this property, model (3.6) is often referred to as a proportional odds 
model. The name comes from an influential article on modeling ordinal data by 
McCullagh (1980). An alternative name used in some fields is ordered logit model. 
We prefer to refer to model (3.6) as the proportional odds version of the cumulative 
logit model. The term ordered logit is vague, because there are also other types of 
logit models for ordinal data, presented in Chapter 4. The term proportional odds 
is also vague, because these other logit models for ordinal data can also have a 
proportional odds structure. 

3.3.2 Latent Variable Motivation 

How can we justify the common effect ß for different logits in the proportional 
odds version of the cumulative logit model? One way uses a regression model for 
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an unobserved continuous variable assumed to underlie Y (Anderson and Philips 
1981). Let Y* denote the underlying latent variable. For fixed values of explanatory 
variables x, suppose that Y* varies around a location parameter η, such as a mean, 
that depends on x through η(χ) — β'χ. Specifically, suppose that the conditional 
cdf of Y* is 

P(Y* <y*\x) = G(y* - η) = G(y* - β'χ). 

With the mean as the location parameter, at a given value of x, 

Y*=ß'x + e, 

where e has cdf G with E(e) = 0. Suppose that —oo = αο < αι < · · · < ac = oo 
are cutpoints of the continuous scale, sometimes also referred to as thresholds, 
such that the observed response Y satisfies 

Y = j ifa,-_, <Y* <aj. 

That is, Y falls in category j when the latent variable falls in the y'th interval of 
values. Figure 3.4 depicts this, and Figure 1.1 showed a particular example of a 
regression model for a latent variable and the corresponding ordinal categorical 
measurement. 

Under this latent variable structure, 

P(Y < j I x) = P(Y* < ocj | x) = G(aj - ß'x). 

x1 x 2 

Figure 3.4. Ordinal measurement and underlying regression model for a latent variable. 
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So the link function to apply to P(Y < j | x) to obtain a linear predictor is G_ 1, 
the inverse of the cdf for Y*. That is, 

G-l[P(Y<j\x)]=aj-ß'x. 

When G is the cdf of the standard logistic distribution, which is G(e) = ee/(l + 
ee), then G_ 1 is the logit link function. That is, the logistic latent variable model 
implies the model for the observed response, 

logit[P(Y <j\x)]=aj-ß'x. 

This is the proportional odds version of the cumulative logit model, which has the 
same effects for each cumulative probability. Other underlying distributions imply 
different link functions for the cumulative probabilities but maintain the common 
effect for all j . In Section 5.1 we discuss the general model form. Most important, 
normality for e implies that G_ 1 is the inverse of the standard normal cdf. This is 
the probit link for cumulative probabilities. In Section 5.2 we discuss cumulative 
probit models. 

The derivation above shows that using a cdf of the form G(y* — ß'x) for 
the latent variable, with y* values varying around ß'x, results in linear predic-
tor cij — ß'x rather than ay + ß'x. In Section 3.2.2 we introduced this negative 
parameterization for the explanatory variables for the special case (3.8) with logit 
link. In practice, it does not matter which parameterization we adopt as long as we 
interpret effects appropriately. 

The latent variable motivation for the model explains why distributions of Y at 
different settings of explanatory variables are stochastically ordered. The model is 
sensitive to location effects, not effects whereby the variability of Y changes as the 
explanatory variables change. The model usually fits poorly if the variability of an 
underlying latent variable changes dramatically over the range of observed values, 
as explained in Sections 3.6 and 5.4. 

The latent variable construction also suggests an interpretation of the model 
parameters. A unit increase in x^ corresponds to an increase in E(Y*) of /}*, keep-
ing fixed the other predictor values. The size of the effect depends on the spread of 
the conditional distribution of Y* and can be specified in standard deviation units. 
When Var(e) = σ2, a 1-unit increase in Λ> corresponds to an increase in E(Y*) of 
ßk/σ standard deviations. The standard logistic distribution, for which the inverse 
gives the logit link function, has σ = 7r/\/3. For the example in Section 3.2.5, an 
interpretation of β = —0.4614 is that a 1-unit increase in educational level corre-
sponds to an estimated decrease of 0.4614/(7r/V3) = 0.25 standard deviation for 
the mean of a hypothetical underlying latent conditional distribution for scientific 
belief in astrology. 

McKelvey and Zavoina (1975) and Bock (1975, Sec. 8.1.6) suggested the latent 
variable representation for the normal case. Aitchison and Silvey (1957) and Ash-
ford (1959) had used it with a single factor or quantitative variable as the predictor. 
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3.3.3 Invariance to Choice of Response Categories 

In this derivation using a latent variable model, the same parameters ß occur for 
the effects of the explanatory variables on Y regardless of how the {ctj} cut up the 
underlying continuous scale. This implies that the effect parameters ß are invariant 
to the choice of categories for Y. 

For example, suppose that a continuous variable measuring political ideology 
has a linear regression with some explanatory variables. Then the same effect 
parameters apply to a discrete version of political ideology with the categories 
(liberal, moderate, conservative) or (very liberal, slightly liberal, moderate, slightly 
conservative, very conservative). This feature makes it possible to compare model 
parameter estimates from studies using different response scales. 

To illustrate, the cumulative logit uniform association model (3.12) for Table 3.1 
has ß — —0.461. If we combine the categories "very scientific" and "sort of scien-
tific" for opinion about astrology and fit the binary logistic regression model, we 
obtain ß = —0.456, very similar in value. 

3.3.4 Interpretations Comparing Response Probabilities 

An alternative way of summarizing effects in cumulative logit models directly 
uses the cumulative probabilities for Y. For example, to describe the effect of a 
quantitative variable x, we could compare P(Y < j) [or P(Y > j)] for a particular 
j at different values of x, such as the maximum and minimum values. To describe 
effects of a categorical predictor, we compare P(Y < j) for different categories of 
that predictor. We can control for other quantitative variables in the model by setting 
them at their mean. We can control for other qualitative variables in the model 
by making the comparison at each combination of their values. When there are 
several qualitative variables, we could, instead, merely set them all at the means of 
their indicator variables, mimicking the treatment of quantitative control variables. 
Similarly, we can describe effects on the individual category probabilities. Using 
the lowest and highest categories of Y, we could report the maximum and minimum 
values of P(Y = 1) and P(Y = c) over the set of predictor values, reporting the 
values of the predictors that provide these extremes. 

For example, consider the uniform association model (3.12) applied to Table 3.1. 
The estimated probability that astrology is judged to be "very scientific" decreases 
from 0.090 for those with less than a high school education to 0.015 for those with 
a graduate degree. The estimated probability that astrology is judged to be "not at 
all scientific" increases from 0.507 for those with less than a high school educa-
tion to 0.867 for those with a graduate degree. Figure 3.5 portrays the estimated 
category probabilities on opinion about astrology at the five education levels. The 
height of the lowest portion (darkly shaded) of each bar is the estimated prob-
ability of response "not at all scientific"; the height of the medium bar is the 
cumulative probability for categories "not at all scientific" and "sort of scientific," 
so the middle portion of each bar portrays the estimated probability of response 
"sort of scientific." The more lightly shaded top portion of each bar portrays the 
estimated probability of response "very scientific." With multiple predictors, such 
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Figure 3.5. Estimated conditional probabilities for opinion about astrology at five highest degree levels 
based on fit of model (3.12). 0, less than high school; 1, high school; 2, junior college; 3, bachelor; 4, 
graduate. 

a comparison can be made at the maximum and minimum values of each predictor, 
with the other predictors set at their means. 

For a continuous predictor Xk, a comparison of probabilities at maximum and 
minimum values of Xk is not resistant to outliers on Xk- When severe outliers 
exist, it is often preferable to use the lower and upper quartiles of Xk instead. A 
comparison of estimated probabilities at the quartiles summarizes an effect over 
the middle half of the data (on Xk) and is not affected by outliers. Alternatively, 
a standard approximation for the rate of change of a probability in the logistic 
regression model also applies with ordinal logit models. The instantaneous rate of 
change in P(Y < j) as a function of explanatory variable Xk, at fixed values for 
the other explanatory variables, is 

dP(Y < /') 
\ ~J = ßkP(Y < j)H ~ P(Y < j)]. 
oxk 

For example, suppose that ßk = 0.150 for the effect of Xk = number of years of edu-
cation in a particular application. Then, at predictor values such that P(Y < j) = 
0.60, an increase of 1 in Xk while keeping fixed the other predictors corresponds 
to approximately a 0.150(0.60)(0.40) = 0.036 estimated increase in P(Y < j). 

We have seen that interpretations can also focus on standardized effects for the 
conditional distribution of an underlying latent response variable Y*. Alternatively, 
standardized effects can refer to the marginal distribution of Y*, as is often done 
in ordinary regression. This is discussed in Section 5.1.3. Yet another type of 
interpretation focuses on standardizing other measures. For example, Joffe and 
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Greenland (1995) showed how to convert estimated regression coefficients into 
estimates of standardized fitted probabilities, probability differences, and probability 
ratios. 

3.4 FITTING AND INFERENCE FOR CUMULATIVE LOGIT MODELS 

Next we discuss maximum likelihood (ML) fitting for cumulative logit models, 
assuming independent multinomial observations. The model of proportional odds 
form, 

logit[P(Y<j)]=Uj+ß'x, l , . . . , c - l , 

constrains the c — 1 response curves to have the same shape. Because of this, its 
fit is not the same as the fits of c — 1 separate binary logistic models, one for each 
cumulative logit corresponding to a binary collapsing of the ordinal response. 

Some early applications of cumulative logit models used weighted least squares 
for model fitting (e.g., Williams and Grizzle 1972). This entails applying the delta 
method to the sample proportions in the various categories at each setting of pre-
dictors to obtain a large-sample estimated covariance matrix of all the sample 
cumulative logits. Such logits are correlated with nonconstant variance, so ordi-
nary least squares is not efficient. The weighted least squares approach has the 
advantage of computational simplicity, as the vector of model parameter estimates 
has closed form and does not require iterative methods. However, since the sam-
ple logits are functions of sample cell proportions, this approach is designed for 
nonsparse contingency tables and cannot handle continuous predictors. Walker and 
Duncan (1967) were the first to present ML model fitting for cumulative logit 
models. McCullagh (1980) presented an algorithm for more general models for 
cumulative probabilities discussed in Chapter 5. 

3.4.1 Maximum Likelihood Model Fitting 

For subject <', let v,i, ■ · ·, yu be binary indicators of the response, where v;; = 1 for 
the category j in which the response falls; that is, when K, = j , then v,j = 1 and 
yik —Q for k φ j . Recall that x, denotes the values of the explanatory variables 
for subject i. Let ττν(χ,) denote P{Yi = j | X — x,·). For independent observations, 
the likelihood function is based on the product of the multinomial mass functions 
for the n subjects, 

Π 
( = 1 

c 

y'=i J 

n 

=n 
i = l 

n 

=n 
i = l 

c 

Π 
[j=i 

c 

Π 

Π [ρ(γ> Z j I x;) - P(Yi < j - 1 I *)]"' 

exp(aj + ß'xj) exp(a;_i +j8'x,·) 
1 + exp(a; + j8'x,·) 1 + exp(a,-_i +j8'x,). 

Vij 

(3.13) 
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The likelihood function is a function of ({a,}, β) after observing {yiy}. Denote 
the log-likelihood function by L({ay·}, ß). We obtain each likelihood equation by 
differentiating L with respect to a particular parameter and equating the derivative 
to zero. For simplicity, we denote 

l+exp(z) [1-)-exp(z)]2 

Then the likelihood equation for an effect parameter β^ is 

έί έίyijXik G{(Xj+ß'Xi) ~G{aj'1+ß'Xi) 

Section 5.1.2 shows the full set of equations in the context of a more general model 
with a family of link functions. As in ordinary logistic regression, these equations 
are nonlinear in the parameters and do not have a closed-form solution. 

Iterative methods are used to solve the likelihood equations and obtain the 
ML estimates of the model parameters. Walker and Duncan (1967) and McCullagh 
(1980) used the Fisher scoring algorithm to do this. This is an iteratively reweighted 
least squares algorithm of the type used to fit ordinary generalized linear models. 
Each step has the form of weighted least squares, reflecting the nonconstant variance 
of the observations. The weights change from step to step as the approximations 
for the ML estimates of ß get closer to the actual ML estimate ß. Convergence of 
the iterative method is usually rapid because the log-likelihood function is concave 
(Haberman's discussion of McCullagh 1980; Burridge 1981; Pratt 1981; Kaufmann 
1988). 

McCullagh (1980) showed that sufficiently large n guarantees a unique maxi-
mum of the likelihood function. However, for finite n, unique estimates may not 
exist or may be infinite, for certain patterns of data, as explained in Section 3.4.5. 

3.4.2 Estimating Standard Errors 

The large-sample estimated covariance matrix for the ML model parameter esti-
mates is the inverse of the information matrix evaluated at the ML estimates. The 
information matrix contains the negative second partial derivatives of L({otj},ß) 
with respect to the model parameters, that is, describing the curvature of the log-
likelihood function. The more highly curved the log likelihood function at the ML 
estimates, the smaller are the standard errors, and the more precise are the ML 
estimates of the model parameters. In Section 5.1.2 we show this matrix in the 
context of a more general model with a family of link functions. 

The information matrix has two possible versions. The observed information 
matrix uses the actual second partial derivatives. The element in row a and 
column b of the observed information matrix is — d2L({otj], ß)/dßa dßb, where 
ßa and ßb are a pair of parameters from (α ι , . . . , a c - i , ß). By contrast, the 
expected information matrix uses the expected values of the second partial 
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derivatives. The element in row a and column b of the expected information 
matrix is E[—d2L(ß)/dßa dßb]. In either case the information matrix is estimated 
by substituting ({ά7·},/?). The estimated information matrix is inverted to obtain 
the estimated asymptotic covariance matrix. For either version of the inverse 
estimated information matrix, the estimated standard errors are the square roots of 
the main-diagonal entries. 

The inverse of the expected information matrix is used in the Fisher scoring 
algorithm for obtaining the ML model fit. The corresponding algorithm that, 
instead, uses the observed information matrix is the Newton-Raphson algorithm 
[e.g., see Simon (1974) for the row effects model]. Results for ß are identical for 
each algorithm, as either algorithm yields the ML solution. For either algorithm, 
an estimated asymptotic covariance matrix is a by-product of the algorithm, from 
the inverse of the estimated information matrix at convergence. However, standard 
error estimates do depend on the algorithm used. For example, in SAS, PROC GEN-
MOD uses the observed information, whereas PROC LOGISTIC uses the expected 
information, so their reported standard errors typically differ slightly. (By contrast, 
for binary logistic regression and baseline-category logit models, the observed 
information and the expected information are identical; see Agresti 2002, p. 149.) 
The Fisher scoring algorithm sometimes has better computational stability, because 
the weight matrix is positive definite over a larger region of the parameter space. 

3.4.3 Inference About Model Parameters and Probabilities 

Based on the model fit, we can conduct statistical inference about the model param-
eters using the ML estimates, their standard errors, and the maximized likelihood 
function in the usual ways. For example, a 95% Wald confidence interval for a 
parameter ßk is 

&±1.96(SE), 

where SE is the standard error of ßk. For testing HQ: ßk — 0, we can use 

A 
Z = S E 

or its square, which (under Ho) has an asymptotic chi-squared distribution with 
d f= 1. 

When the sample size is small or a large percentage of the observations fall at 
the highest (or lowest) category of the response variable, the distribution of (ßk — 
ßk)/SE need not be close to standard normal. Then it is better to use likelihood-
ratio tests and confidence intervals based on the profile likelihood function. The 
likelihood-ratio test statistic equals 

- 2 ( L 0 - L i ) , 
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where LQ is the maximized log-likelihood function under the null hypothesis con-
straint that ßk =0 and L i is the maximized log-likelihood function without that 
constraint, that is, evaluated at ß. The 95% confidence interval for ßk consists of 
null-hypothesis values ßko for this parameter for which the P-value exceeds 0.05 
for the likelihood-ratio test of HQ: ßk — ßko- These inferences are available in some 
software.2 

For the data on educational level and belief about astrology, Table 3.2 shows that 
the uniform association model for cumulative odds ratios has ß — —0.4614 with 
SE = 0.0486. The Wald 95% confidence interval for ß is -0.4614 ± 1.96(0.0486), 
or (—0.557, —0.366). The sample size was large, and this is similar to the profile 
likelihood confidence interval reported in that table. The corresponding confidence 
interval for the cumulative odds ratio for each one-category change in educational 
level is (<ra557, e~0366) = (0.57, 0.69). 

For interpreting effects, we can compare estimated cumulative probabilities or 
category probabilities at various settings of explanatory variables. Confidence inter-
vals for the corresponding population probabilities describe the precision of those 
estimates. Some software also provides these inferences.3 

3.4.4 Example: Mental Health by Life Events and SES 

Table 3.3 comes from a study of mental health for a random sample of adult 
residents of Alachua County, Florida.4 Mental impairment is ordinal, with cate-
gories (well, mild symptom formation, moderate symptom formation, impaired). 
The study related Y = mental impairment to several explanatory variables, two 
of which are shown here. The life events index JCJ is a composite measure of the 
number and severity of important life events that occurred to the subject within 
the past three years, such as the birth of a child, a new job, a divorce, or a death 
in the family. In this sample, x\ has a mean of 4.3 and standard deviation of 2.7. 
Socioeconomic status (x2 — SES) is measured here as binary. 

The cumulative logit model of proportional odds form with main effects is 

logit [P(Y < j)] = ctj + βχχι + ß2X2-

Table 3.4 shows SAS output. The estimates βι — -0.319 and ß2 = 1.111 suggest 
that the cumulative probability starting at the "well" end of the mental impairment 
scale decreases as life events increases and increases at the higher level of SES. 
Given the life events score, at the high SES level the estimated odds of mental 
impairment below any fixed level are eiAi[ — 3.0 times the estimated odds at the 
low SES level. 

Table 3.5 shows estimated category probabilities that also help us to interpret 
the predictor effects. To illustrate, we describe effects by the change in P(Y = 1) 

2For example, in SAS, using PROC GENMOD with the LRCI and TYPE3 options, and in R with the 
confint function. 
3For example, in SAS, using PROC GENMOD with the OBSTATS option. 
4Thanks to Charles Hölzer for the background for this study. 
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TABLE 3.3. Mental Impairment by SES and Life Events 

Subject 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Mental 
Impairment 

Well 
Well 
Well 
Well 
Well 
Well 
Well 
Well 
Well 
Well 
Well 
Well 
Mild 
Mild 
Mild 
Mild 
Mild 
Mild 
Mild 
Mild 

SESfl 

1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
0 
0 
1 
0 
1 
0 
1 
1 
0 
1 

Life 
Events 

1 
9 
4 
3 
2 
0 
1 
3 
3 
7 
1 
2 
5 
6 
3 
1 
8 
2 
5 
5 

Subject 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

Mental 
Impairment 
Mild 
Mild 
Mild 
Mild 
Moderate 
Moderate 
Moderate 
Moderate 
Moderate 
Moderate 
Moderate 
Impaired 
Impaired 
Impaired 
Impaired 
Impaired 
Impaired 
Impaired 
Impaired 
Impaired 

SESa 

1 
0 
1 
1 
0 
1 
0 
0 
1 
0 
0 
1 
1 
1 
0 
0 
0 
1 
0 
0 

Life 
Events 

9 
3 
3 
1 
0 
4 
3 
9 
6 
4 
3 
8 
2 
7 
5 
4 
4 
8 
8 
9 

" 1 , high;0, low. 

TABLE 3.4. Output for Fitting Cumulative Logit Model to Table 3.3 

P a r a m e t e r 
I n t e r c e p t l 
I n t e r c e p t 2 
I n t e r c e p t 3 
l i f e 
s e s 

E s t i m a t e 
- 0 . 2 8 1 9 

1 .2128 
2 . 2 0 9 4 

- 0 . 3 1 8 9 
1.1112 

S t d 
E r r o r 
0 .6423 
0 .6607 
0 .7210 
0 .1210 
0 .6109 

L i k e . R a t i o 95% 
Conf. 

- 1 . 5 6 1 5 
- 0 . 0 5 0 7 

0 .8590 
- 0 . 5 7 1 8 
- 0 . 0 6 4 1 

L i m i t s 
0 .9839 
2 . 5 6 5 6 
3 .7123 

- 0 . 0 9 2 0 
2 . 3 4 7 1 

C h i -
S q u a r e 

0 .19 
3 .37 
9 .39 
6 .95 
3 . 3 1 

Pr > 
0 
0 
0 
0 
0 

ChiSq 
6607 
0664 
0022 
0084 
0689 

LR Statistics 
Source DF Chi-Square Pr > ChiSq 
life 1 7.78 0.0053 
ses 1 3.43 0.0641 

Score Test for the Proportional Odds Assumption 
Chi-Square DF Pr > ChiSq 

2.3255 4 0.6761 
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TABLE 3.5. Estimated Probabilities Describing Effect of Life Events and SES on 
Mental Impairment 

Estimated Probabilities 
Life Events 

Min. = 0 
Mean = 4.3 
Max. = 9 

Min. = 0 
Mean = 4.3 
Max. = 9 

Well 

0.70 
0.37 
0.12 

0.43 
0.16 
0.04 

Mild 

0.21 
0.35 
0.25 

0.34 
0.30 
0.12 

Moderate 

0.05 
0.15 
0.24 

0.13 
0.24 
0.18 

Impaired 

0.03 
0.12 
0.39 

0.10 
0.20 
0.66 

for the "well" outcome. Its value varies between 0.04, for those with low SES 
and nine life events, and 0.70, for those with high SES and zero life events. First, 
consider the SES effect. At the mean life events of 4.3, P(Y = 1) = 0.37 at high 
SES (i.e., x2 = 1) and P(Y = 1) = 0.16 at low SES (x2 = 0). Next, consider the 
life events effect. For high SES, P(Y = 1) changes from 0.70 to 0.12 between the 
sample minimum of zero and maximum of nine life events; for low SES, it changes 
from 0.43 to 0.04. Comparing 0.70 to 0.43 at the minimum life events and 0.12 to 
0.04 at the maximum provides a further description of the SES effect. The sample 
effect is substantial for each predictor. 

The precision of such estimates is portrayed by confidence intervals for popu-
lation probabilities. Table 3.6 shows these for describing the life events effect on 
the probability of the "well" outcome. For the relatively small sample size of these 
data, the probability estimates are rather imprecise. 

To illustrate inferential methods about effects of explanatory variables, we con-
sider the effect of life events, controlling for SES. Table 3.4 reports a 95% profile 
likelihood confidence interval for ß\ of (—0.572, —0.092). The confidence inter-
val for the effect on the cumulative odds of a 1-unit increase in life events is 
(exp(-0.572),exp(-0.092)) = (0.56, 0.91). The corresponding Wald confidence 
interval is exp[-0.3189± 1.96(0.121)] = (0.57, 0.92), where the standard errors 
are based on the observed information (with model fitting using PROC GENMOD 

TABLE 3.6. Estimates and Confidence Intervals Describing Effect of Life Events on 
Probability of "Well" Outcome 

SES Life Events Estimated P(Well) 95% Confidence Interval 

High 0 0.70 (0.39,0.89) 
9 0.12 (0.03,0.36) 

Low 0 0.43 (0.18,0.73) 
9 0.04 (0.01, 0.19) 
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in SAS). The chi-squared values reported in the table opposite the parameter esti-
mates are for the Wald tests. For example, for testing HQ: ß\ = 0, the Wald statistic 
equals (-0.319/0.121)2 = 6.95 with df = 1 (P-value = 0.008). The separate table 
for results of the likelihood-ratio tests also shows strong evidence of a life events 
effect but weaker evidence of an SES effect. 

3.4.5 Infinite Model Parameter Estimates 

In practice, with relatively small sample sizes, a large number of model parameters, 
or highly unbalanced data, one or more of the model parameter estimates may be 
infinite. An estimate ßk = oo if the log-likelihood function continues to increase as 
ßk increases unboundedly, and β^ — — oo if the log-likelihood function continues to 
increase as ßk decreases unboundedly. This happens most commonly with certain 
patterns of empty cells in contingency tables. 

From binary logistic regression, we know that an estimate does not exist or is 
infinite when there is quasi-separation, that is, no overlap in the sets of explanatory 
variable values having y — 0 and having y = 1. A hyperplane passing through the 
space of predictor values can separate those with y = 1 from those with y — 0. 
For a cumulative logit model, this is the case if such separation occurs for each of 
the c — 1 collapsings of the ordinal response to a binary response. 

For example, consider the quantitative predictor model (3.12), which is 

logit [/>(K <j)]=aj+ßut 

with ordered scores {w, } for the rows. The estimate of ß is infinite whenever either 
no pairs of observations are concordant or no pairs are discordant. One such case is 
a contingency table for which all observations fall in r + c — 1 cells consisting of 
one row and one column, with each at the highest or lowest level of the variable. 
Another case is when all observations fall on a diagonal of the table, such as an 
r x r table having n,, > 0 for all i and n,j = 0 for i φ j . 

Next, consider the qualitative predictor model (3.14) for a n r x c table, which 
in terms of row effects {τ,} is 

logit [P(Y < j)] = aj + τ, 

with rr = 0. Infinite estimates exist if there is a pair of rows for which all observa-
tions in one row never fall above any observations in the other row. For example, 
τ, = oo if all observations in row i fall in the first column and £,· = — oo if all 
observations fall in the last column, when this does not happen for row r. 

Whenever an infinite estimate exists for a given model, more complex models 
also have this property. For example, if β is infinite in the quantitative predictor 
model (3.12), finite effect estimates will not exist in the qualitative predictor model 
(3.11). 

When infinite effect estimates occur, one solution is to use a simpler model 
for which all effect estimates are finite, such as by eliminating any predictor or 



FITTING AND INFERENCE FOR CUMULATIVE LOGIT MODELS 65 

interaction term from the model that has an infinite estimate. Interpretations must 
then take this into account, and this is not a sensible solution if the simpler model 
fits poorly. Or, you can just use the model with an infinite estimate, realizing that 
this does not invalidate inference and prediction using methods other than Wald 
tests and confidence intervals. For example, suppose that ßk is a parameter for 
which ßk = ±00. Then the model still has a finite maximized log likelihood in 
the limit as ßk grows unboundedly, which software should report. So it is still 
possible to test HQ\ ßk = 0 by comparing double the maximized log likelihood 
to its value for the simpler model. Similarly, it is still possible to obtain a profile 
likelihood confidence interval for ßk having form (L, oo) when ßk = oo and having 
form (—oo, U) when ßk = —oo. Finally, another solution is to fit the model with a 
Bayesian approach, which naturally shrinks model parameter estimates away from 
boundary values. 

Most software does not recognize when \ßk\ = oo. An indication of a likely 
infinite estimate is when a \ßk\ reported is unusually large and the corresponding 
standard error is enormous. The iterative fitting process has then determined that it 
has reached the maximum of the log-likelihood function, and the relative flatness of 
the log-likelihood function at the point of convergence results in the extremely large 
SE value. If you are unsure, you can fit the corresponding binary logistic model for 
all possible binary collapsings of Y using software (such as PROC LOGISTIC in 
SAS) that can recognize when quasi-separation occurs and estimates are infinite. 

3.4.6 Summarizing Predictive Power of Explanatory Variables 

How can we summarize how well the response can be predicted using the fit of 
the model chosen? One way is with an index of predictive power called the con-
cordance index. Consider all pairs of observations that have different response 
outcomes. The concordance index estimates the probability that the predictions 
and the outcomes are concordant, that is, that the observation with the larger y-
value also has a stochastically higher set of estimated probabilities (and hence, for 
example, a higher mean for the estimated conditional distribution). The baseline 
value of 0.50 for the concordance index corresponds to its expected value from 
randomly guessing the response. A value of 1.0 results when knowing which obser-
vation in an untied pair has the stochastically higher estimated distribution enables 
us to predict perfectly which observation has the higher actual response. The higher 
the value of the concordance index, the better the predictive power. 

Table 3.7 reports estimated concordance index values for some cumulative logit 
models fitted to the mental impairment data in Table 3.3. For the main effects model 
fitted above, for 70.5% of the untied pairs, the observation with the higher response 
outcome also had a stochastically higher estimated distribution. The predictive 
power was better than for models with a single predictor, but adding an interaction 
term provided no substantive improvement. 

An alternative approach adapts standard measures for quantitative response vari-
ables, such as the multiple correlation and R -squared. For example, suppose that 
we assign scores {VJ} to the outcome categories. Then we could find the correla-
tion between the observed responses and the estimated means of the conditional 
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TABLE 3.7. Summary Measures of Predictive Power for Cumulative Logit Models 
Fitted to Mental Impairment Data of Table 3.3 

Predictors in Model 

SES 
Life events 
SES, life events 
SES, life events, interaction 

Concordance Index 

0.586 
0.679 
0.705 
0.706 

Multiple Correlation 

0.230 
0.389 
0.484 
0.503 

distributions from the model fit. This mimics the multiple correlation in multiple 
regression modeling. Or we could find the proportional reduction in variance when 
comparing the marginal variation to the conditional variation, which mimics R-
squared (Agresti 1986). A related approach estimates /?-squared for the regression 
model for an underlying latent response variable. McKelvey and Zavoina (1975) 
suggested this for the corresponding model with probit link function. 

To illustrate, consider the no-interaction model with the mental impairment data 
in Table 3.3. The first subject in the sample has response in the first category 
("well") and values 1 for life events and 1 for SES. From the prediction equation 

logit [P(Y < j)] =äj -0.319*! + 1.111x2, 

with ä\ = —0.282, &2 = 1.213, and «3 = 2.209, the estimated probabilities are 
(0.625, 0.256, 0.071, 0.047) for the four response categories. With scores (0, 1, 2, 
3) for the categories (well, mild symptom formation, moderate symptom formation, 
impaired) of mental impairment, the observed response is 0 and the estimated 
mean response is 0(0.625) + 1(0.256) + 2(0.071) + 3(0.047) = 0.541. For all 40 
observations, the estimated correlation is 0.484 between the observed response and 
the predicted response given by the estimated conditional mean. Table 3.7 shows 
results with other models. Again, using both predictors provides improvement over 
a single predictor, but it does not help much to add an interaction term. 

3.4.7 Classifying Observations into Ordered Categories 

Some applications have values of several explanatory variables for a sample and 
require predictions for the category of an ordinal response that is not observed. 
For example, Marshall (1999) showed how to use explanatory variables such as 
body mass index, cholesterol levels, hypertension, and ethnicity to predict potential 
diabetes using the ordinal scale (normal, impaired glucose tolerance, diabetes). The 
standard test used to provide observations on this scale requires fasting and a blood 
test after a two-hour glucose load and is impractical for routine use as a screening 
instrument. Thus, a classification rule was considered useful for predicting the 
ordinal response based on the explanatory variables alone. 

One approach to classification uses existing data for which the response is also 
observed to find an ordinal model that fits well, and then use the prediction equation 
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to generate estimated response probabilities. The classification rule would then pre-
dict the response category that has the highest estimated probability. In cases in 
which one outcome is much more likely than the others, this can result in always 
or nearly always predicting that category. Instead, Marshall (1999) classified using 
the category having the maximum estimated probability of the category divided 
by a prior probability for the category. He used this approach with the cumulative 
logit model as well as a classification tree approach and a search partition analy-
sis method that was applied repeatedly to binary outcomes formed by collapsing 
adjacent categories of the ordinal scale. An evaluation of the methods indicated 
that the tree-based method had the largest overall misclassification rate and that 
classifications using the cumulative logit model performed well. See Note 3.6 for 
other literature on this topic. 

3.5 CHECKING CUMULATIVE LOGIT MODELS 

Having considered ML fitting and inference for cumulative logit models, we next 
present ways of checking the adequacy of the model fit. Methods include global 
goodness-of-fit tests as well as more narrowly directed methods such as model 
comparisons and residual analyses. 

3.5.1 Testing Model Goodness of Fit for Contingency Tables 

For nonsparse contingency tables, it is possible to conduct a goodness-of-fit test 
of the null hypothesis that the model holds against the alternative hypothesis that 
it does not. The alternative is equivalent to the saturated model, which fits the 
data perfectly. The test statistics compare the observed counts in the cells of the 
contingency table to expected frequency estimates based on the model fit. 

At a particular setting x, of the explanatory variables for which the observed 
multinomial sample has n, observations, let {η,7·, j = 1 , . . . , c] denote the observed 
cell counts for the c response categories. Under the null hypothesis that the model 
holds, the corresponding expected frequency estimates based on the model estimates 
of {P(Y = j | x,·)} equal 

pLij = rnP(Y = j | x,), j = 1 , . . . , c. 

The Pearson statistic for testing goodness of fit is 

χ 2 _ ν ^ γ ^ ("ϋ ~ ^Ο') 

' J J 

The corresponding likelihood-ratio (deviance) statistic is 

G 2 = 2 £ X > , l o g ^ . 
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Under the null hypothesis that the model holds, X2 and G2 have large-sample chi-
squared distributions. Their degrees of freedom equal the number of cumulative 
logits modeled minus the number of model parameters. The number of cumulative 
logits modeled equals the number of multinomial parameters in the saturated model: 
namely, c — 1 times the number of settings of the explanatory variables. 

For example, a r x c contingency table has c — 1 multinomial parameters in 
each row, for a total of r(c — 1) parameters. This is the number of parameters in 
the saturated model, for which the expected frequency estimates are merely the 
cell counts. The model (3.9) that treats the explanatory variable as quantitative, 

logit [P(Y <j)]=aj+ßu,, 

has a single association parameter (ß) and c — 1 intercept parameters (the {ay}) for 
the c — 1 logits, a total of c parameters. So the residual df for testing goodness of fit 
are df = r(c — 1) — c = re — r — c. This is one less than the df = (r — l)(c — 1) 
for the independence model, which is the special case of this model with ß — 0. 
Model (3.14), which treats the explanatory variable as qualitative with row effects, 

logit [P(y <j)]=ctj+Th 

has (c — 1) + (r — 1) parameters. Its residual df = r(c — 1) — [(c — 1) + (r — 
1)] = (r - l)(c - 2), as noted by Simon (1974). 

When the data are sparse or the model contains at least one continuous predictor, 
these global goodness-of-fit tests are not valid. Lipsitz et al. (1996) proposed an 
alternative goodness-of-fit test for such cases. It generalizes the Hosmer-Lemeshow 
test for binary logistic regression, which constructs a Pearson statistic comparing 
observed and fitted counts for a partition of such values according to the estimated 
probabilities of "success" using the original ungrouped data. This method does not 
seem to be available in current software. Pulkstenis and Robinson (2004) suggested 
an alternative approach. This is an area that still deserves serious research atten-
tion, to evaluate proposed methods and possibly develop others, such as normal 
approximations for chi-squared statistics when the data are very sparse. 

3.5.2 Example: Astrology Beliefs and Education Revisited 

For Table 3.1 on education and belief about astrology, in Section 3.2.5 we reported 
the fit of the uniform association model (3.12). For testing its goodness of fit, 
software (SAS, PROC LOGISTIC) reports 

Criterion Value DF Value/DF Pr > ChiSq 
Deviance 5.8798 7 0.8400 0.5539 
Pearson 5.6081 7 0.8012 0.5862 

The test statistic values X2 = 5.6 and G2 — 5.9 have df = 7 because the 10 multi-
nomial parameters (two in each of the five rows of the table) are described by three 
parameters in the cumulative logit model (3.12). The model seems to fit well. 
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The more complex model (3.14) treats education as qualitative, using separate 
row effects. It has X2 = 3.7 and G2 — 4.1 with df = 4. The change in deviances 
compared to the simpler uniform association model, 5.9 — 4.1 = 1.8 with df = 
7 — 4 = 3, also indicates that the more complex model does not give a significantly 
better fit. The null hypothesis that the uniform association model holds is equivalent 
to stating that the qualitative predictor model holds with a linear trend in {τ,}. 

3.5.3 Model Checking by Comparing Nested Models 

If a model fails a goodness-of-fit test, various things could be wrong. Perhaps an 
important term is missing, such as an interaction term. Perhaps response distribu-
tions at different predictor values differ substantially in variability. Or perhaps, if 
the sample size is large, it is merely a matter of statistical significance without 
practical significance. 

As with ordinary logistic regression, one way to check the model fit is to add 
terms and analyze whether the fit improves significantly. This approach is par-
ticularly useful when at least one explanatory variable is continuous or there are 
multiple predictors, because the goodness-of-fit tests presented above are invalid 
for data that are not contingency tables with reasonably sized counts. For a quan-
titative predictor, we could add a quadratic term or treat the predictor as a factor 
if it is categorical to allow for the effect to vary in a nonmonotone manner. For a 
multiple-predictor model, we could add interaction terms to the main effects. Com-
paring the working model to the more complex model can be done with a formal 
significance test. The likelihood-ratio test statistic equals — 2(LQ — L\), where LQ is 
the maximized log likelihood under the simpler model. The df for the large-sample 
chi-squared distribution equals the number of extra parameters in the more com-
plex model. Compared to conducting an overall goodness-of-fit test, an advantage 
of comparing the model to a more general model is that a small P -value suggests 
that the more general model be used as a new working model. 

Alternatively, the comparison of models can use a criterion that summarizes how 
close the model's estimated cumulative probabilities are likely to fall to the true 
population values. The most popular such measure is AIC, the Akaike information 
criterion (see Section 3.5.9), which many software packages provide. As usual, 
compared to a more complex model, a more parsimonious model has benefits 
when the extra bias that the simpler model has is relatively small. The benefits 
include simplicity of description and possibly more precise estimation. 

3.5.4 Example: Mental Health Modeling Revisited 

In Section 3.4.4, using a cumulative logit model with main effects, we described 
how mental impairment (Y) depends on a quantitative life events index x\ and a 
binary measurement of socioeconomic status (SES) xi (1 = high, 0 = low). We 
can check the fit by comparing the model to more complex models. Permitting 
interaction yields a model with ML fit, 

logit [P(Y < j)] = oij - 0.42(ki + 0.371*2 + 0.181Χ1ΛΓ2-
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The coefficient 0.181 of x\x2 has SE = 0.238. The estimated effect of life events is 
-0.420 for the low-SES group (JC2 = 0) and (-0.420 + 0.181) = -0.239 for the 
high-SES group (x2 = 1). The impact of life events seems more severe for the low-
SES group, but the sample size was relatively small and the estimates are imprecise. 
The likelihood-ratio statistic for testing HQ : βτ, = 0 for a lack of interaction is only 
0.59 with df = 1 (F-value = 0.44). So the difference in effects is not significant, 
and the simpler model without an interaction term seems adequate. 

3.5.5 Testing the Proportional Odds Assumption 

Some software (such as PROC LOGISTIC in SAS) reports a score test of the 
proportional odds property (Peterson and Harrell 1990). This tests whether the 
effects are the same for each cumulative logit against the alternative of separate 
effects. It compares the proportional odds version of the model, 

logit [P(Y < j)] = aj + β'χ, j = l c - 1, 

which has one parameter for each predictor, to the more complex model, 

\ogit[P(Y <j)]=aj+ß'jX, j = l,...,c-l. (3.14) 

With a single predictor, the proportional odds version of the model has one ß, the 
more general model has c — 1 parameters {ßj}, and the large-sample chi-squared 
distribution for the score test has df — (c — 1) — 1 = c — 2. With p predictors, 
df=p(c-2). 

The more complex model has the structural problem that cumulative probabilities 
can be out of order at some settings of the predictors. Because of this, it is often 
not feasible to maximize the likelihood function for model (3.14). Thus, the score 
test comparing the models is more widely applicable than a likelihood-ratio test or 
a Wald test, because the score test evaluates the rate of change of the log likelihood 
only at the null hypothesis, under which βγ — β2 — ■ ■ ■ = ßc-\- By contrast, the 
Wald and LR tests use the likelihood function maximized under the alternative 
hypothesis. When the more general model can be fitted, such tests can also be 
used, such as Wald tests proposed by Brant (1990) comparing separate estimates 
{ßj} for each predictor. 

To illustrate, Table 3.4 shows the result of this score test for the model fitted 
to the mental impairment data in Section 3.4.4 (using PROC LOGISTIC in SAS). 
This test compares the model with one parameter for x\ and one for x2 to the more 
complex model with three parameters for each, allowing different effects for logit 
[P(Y < 1)], logit [P(Y < 2)], and logit [P(Y < 3)]. The test statistic equals 2.33. 
It has df = 4, because the more complex model has four additional parameters. 
The more complex model does not fit significantly better (P = 0.68). 

Unfortunately, this score test itself has limitations. First, Peterson and Harrell 
(1990) noted that the test may perform poorly for sparse data, such as when rela-
tively few observations fall in one of the outcome categories or some explanatory 
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variables are continuous. Second, when the data are not sparse, its performance 
tends to be too liberal: P-values tend to be too small, and actual type I error rates 
tend to be greater than the nominal value. 

Even if a model with nonhomogeneous effects for the different cumulative logits 
fits better over the observed range of x, for reasons of parsimony a simple model 
with proportional odds structure is sometimes preferable. One such case is when 
{ßj} for different logits with model (3.14) are not substantially different in practical 
terms. With a large sample size, a small P-value in the test of proportional odds 
may merely reflect statistical significance rather than practical significance. An 
analogy is with ordinary regression modeling using 

E(Y) = u + ßw +ß2X2 + ----

This model often is useful for describing the linear component of the effect of a 
quantitative predictor, even though almost certainly the true relationship is more 
complex than linear. Similarly, the cumulative logit model with proportional odds 
structure often is effective in capturing the essence of the location effects even 
when the model has lack of fit, as illustrated by the example in Sections 3.5.6, 3.5.8, 
and 3.6.3. 

For this reason, when the P-value is small in the test of proportional odds, it is 
useful to fit the model with nonhomogeneous effects or the ordinary binary logistic 
regression model for each of the c — 1 collapsings of the response. Compare the 
c — 1 estimated effects for each predictor to check whether some estimated effects 
vary greatly, such as changing direction in some cases. Then the more complex 
model may be useful. Alternatively, Kim (2003) suggested plotting estimated prob-
abilities obtained under the proportional odds structure against the corresponding 
estimated probabilities found allowing different effects. In practical terms, the lack 
of fit is not severe if the pairs of estimated probabilities fall close to the line with 
intercept 0 and slope 1. 

As explained in Section 3.6.1, biased effect estimators from the simple model 
may even have smaller mean-squared error than estimators from a more complex 
model, especially when the more complex model has a large number of additional 
parameters. So even if a test of proportional odds has a small P-value, we do not 
automatically reject the proportional odds form of the model. 

3.5.6 Example: Religious Fundamentalism by Region 

Table 3.8 cross-classifies subjects in the 2006 General Social Survey by the region 
in which they live and by whether they consider themselves fundamentalist, 
moderate, or liberal in their religious beliefs. Since region is of nominal scale 
type, we create indicator variables for its categories and consider the model (3.14) 
that treats it as a factor, 

logit [P(Y <j)]= aj + τ,·, 7 = 1,2. 

This model implies that the regions are stochastically ordered with respect to their 
distributions on religious beliefs. Table 3.8 also displays the sample conditional 
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TABLE 3.8. Data on Region of Residence and Religious Beliefs, with Conditional 
Distributions on Religious Beliefs in Parentheses 

Religious Beliefs 
Region Fundamentalist Moderate Liberal 
Northeast 92 (14%) 352 (52%) 234 (34%) 
Midwest 274 (27%) 399 (40%) 326 (33%) 
South 739 (44%) 536 (32%) 412 (24%) 
West/Mountain 192 (20%) 423 (44%) 355 (37%) 

Source: 2006 General Social Survey. 

distributions. They show that each of the six pairs of regions are stochastically 
ordered except for (Northeast, West/Mountain). For that pair, in each extreme 
religious belief category (fundamentalist and liberal) the sample percentage is 
higher for West/Mountain than for Northeast. 

Table 3.9 shows some SAS output from fitting the model. With the constraint 
τ4 = 0, the ML estimates of row effects are i\ = —0.07, ij = 0.27, £3 = 0.89. 
These show a tendency for fundamentalism to be much more common for subjects 

TABLE 3.9. Output for Fitting Cumulative Logit Model of Proportional Odds Form 
to Table 3.8 on Residence and Religious Beliefs 

Parameter 
Intercept 
Intercept 
region 
region 
region 

1 
2 
1 
2 
3 

DF 
1 
1 
1 
1 
1 

Estimate 
-1.2618 
0.4728 

-0.0702 
0.2688 
0.8896 

Standard 
Error 
0.0640 
0.0611 
0.0930 
0.0835 
0.0757 

Wald 
Chi-Square 
388.3248 
59.8968 
0.5687 

10.3531 
138.0873 

Pr > 

< 
< 
0 
0 

< 

ChiSq 
.0001 
.0001 
.4508 
.0013 
.0001 

S c o r e T e s t f o r t h e P r o p o r t i o n a l Odds Assumpt ion 
C h i - S q u a r e DF Pr > ChiSq 

93 .0162 3 -C.0001 

CELL-SPECIFIC STATISTICS 

yi 
y2 
y3 
y4 
y5 
Y6 

yv 
y8 
y9 
ylO 
yll 
yl2 

Observed 
92 

352 
234 
274 
399 
326 
739 
536 
412 
192 
423 
355 

Fitted 
141.62 
264.78 
271.60 
270.04 
406.63 
322.33 
688.34 
654.80 
343.86 
214.04 
383.54 
372.42 

Stand. Resid 
-7.788 
7.788 
-7.788 
0.567 
-0.567 
0.567 
7.902 
-7.902 
7.902 

-3.036 
3.036 
-3.036 
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in the South. The Northeast and West/Mountain states are similar but slightly less 
fundamentalist than the Midwest. 

The score test of the proportional odds assumption compares this model with 
the more complex model having separate {£,} for the two logits, that is, three extra 
parameters. From Table 3.9, the score test statistic equals 93.0 (df = 3), giving 
extremely strong evidence of lack of fit. The model with separate {f,} for the 
two logits is saturated, so this test is an alternative to the Pearson and deviance 
statistics (not shown in the output table) for testing the model goodness of fit. Those 
statistics equal X2 = 97.5 and G2 = 98.0 (df = 3). In Sections 3.5.8 and 3.6.3 we 
investigate the nature of the lack of fit and whether it is substantively important. 

3.5.7 Residuals to Detect Specific Lack of Fit 

Global goodness-of-fit tests such as provided by the deviance have disadvantages. 
First, they do not apply with sparse contingency tables or when any explanatory 
variables are continuous. Second, even when the P-value is small, the test result 
gives no information about what's wrong with the model. The test of the pro-
portional odds assumption that compares the model with the more general model 
replacing ß by j8y is more directed than the global goodness-of-fit test when the 
more general model is not saturated. 

An alternative way of checking for more specific types of lack of fit is to form 
residuals. For a contingency table with cell count n,-7· and fitted value μ,·7· at setting 
/ of the explanatory variables and response category j , the standardized residual is 

r y ~~ SE ' 

The SE term is the estimated standard error of n,; — μ,·; under the presumption that 
the model holds. Lang (1996) provided an expression for SE. It uses an analog of 
the "hat" matrix for a class of generalized loglinear models, presented in Section 
6.6.4, that contains cumulative logit models as a special case. 

When the model holds, standardized residuals have approximate standard normal 
distributions. So relatively large values, such as exceeding about 3 in absolute 
value, indicate lack of fit in that cell. McCullagh (1980) suggested first finding 
the contribution provided to the deviance for each multinomial sample and then 
inspecting cell-specific residuals for those cases that have large contributions. In 
some cases, this may indicate that a model fits the data well except for one or two 
combinations of explanatory variable values. 

It can also be informative to form residuals using cumulative totals rather than 
cell counts. A standardized residual for a cumulative total at response category j 
for setting i of the explanatory variables divides (Σ,{=ι "'* — Σ*=ι M/t) by its SE. 
More simply, a Pearson-type residual has the form 

Et= l riik ~ Σί=\ P<ik _ T,k=lnik-niP(-Y ^J I *i) 

y/niP(Y < j | x,)[l - P(Y < j | x,·)] JniP(Y < j \ x,)[l - P(Y < j | x,)] 
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where the denominator is the estimated standard deviation of Σί=ι n'k based on 
the model fit. However, this residual does not have the standard normal as its 
reference distribution because it does not account for Σ*=ι μ,* being estimated 
in the numerator. Or, we could informally inspect cumulative sums of the cell-
specific standardized residuals defined above. Liu et al. (2009) proposed graphical 
diagnostics based on cumulative sums of residuals to diagnose misspecification 
for the proportional odds version of the cumulative logit model. Pruscha (1994) 
proposed partial residuals. Bender and Benner (2000) proposed various graphics, 
including smoothed partial residual plots. 

3.5.8 Example: Religious Fundamentalism by Region Revisited 

Let's now investigate the nature of the lack of fit of the row effects model to 
Table 3.8. We first consider the contribution to the deviance of each row. In a 
given row i, this contribution 

j rij 

equals 51.4 in row 1, 0.2 in row 2, 39.3 in row 3, and 7.1 in row 4. Rows 1 and 
3 both contribute strongly to the overall lack of fit. 

Next we inspect the cellwise standardized residuals for the fit of the model, r1; = 
{riij — /x,j)/SE, focusing on rows 1 and 3. Table 3.9 also shows the fitted values 
and the standardized residuals.5 With residual df — 3, there are many redundancies 
among their values, and each row has only one bit of information about lack of 
fit. From these, we clearly see the nature of the lack of fit. The Northeast (and 
West/Mountain states) has more people in the moderate category and fewer in 
the other two categories than the model predicts; by contrast, the South has fewer 
people in the moderate category and more in the other two categories than the model 
predicts. This residual analysis suggests that the groups differ in dispersion as well 
as location, with relatively more dispersion in the South. Section 5.4 presents a 
cumulative logit model that allows dispersion as well as location effects. 

Nonetheless, the estimates from the proportional odds form of model are useful 
for describing overall location tendencies of the four regions. The estimates convey 
the fact that fundamentalism is considerably more likely in the South than in other 
regions and also somewhat more likely in the Midwest than in the Northeast or 
West/Mountain states. 

3.5.9 Model Selection Issues 

For a candidate set of potential models, how should we select one? The usual 
approaches for model selection are available. For example, at the start of a study, 
we could formulate certain hypotheses to be tested that correspond to comparing 

'Obtained using the mph.fit R function discussed in the Appendix as shown at www.stat.ufl.edu/~aa/ 
ordinal/ord.html. 
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pairs of nested models. A very small P-value in a test comparing two models 
suggests rejecting the simpler model in favor of the more complex model, subject 
to the usual caveat about whether a statistically significant result is also practically 
significant. 

Other criteria besides significance tests can help select a good model. The best 
known is the Akaike information criterion (AIC). It judges a model by how close 
its fitted values tend to be to the true outcome probabilities, as summarized by 
a certain expected distance between the two. The estimated optimal model for 
providing the best estimates is the model that minimizes 

AIC — — 2(log likelihood — number of parameters in model). 

The AIC penalizes a model for having many parameters. Even though a simple 
model is farther than a more complex model from the true relationship, for a sample 
the simple model may provide better estimates of the true expected values. 

For Table 3.1 the AIC values are 2664.2 for the quantitative predictor (uniform 
association) model (3.12) and 2668.4 for the qualitative predictor model (3.14). 
This criterion favors the simpler model (3.12). 

3.6 CUMULATIVE LOGIT MODELS WITHOUT PROPORTIONAL 
ODDS 

A notable feature of the proportional odds form of cumulative logit model is the 
assumption that the effect of each explanatory variable is the same for the logits 
for the different cumulative probabilities. An advantage of this model is that effects 
are simple to summarize and interpret, requiring only a single parameter for each 
predictor. 

In Section 3.3.2 we showed that the proportional odds form of model is implied 
by a latent variable structure in which an underlying continuous response variable 
having a logistic conditional distribution satisfies an ordinary regression model with 
the same dispersion at all predictor values. When this ordinal model fails, the latent 
variable model usually fails also. Often, this is because either the linear predictor 
is inadequate (e.g., lacking an important interaction term) or because the dispersion 
varies substantially among the predictor values. 

3.6.1 Cumulative Logit Models with Separate Effects for Each Logit 

The generalized model (3.14) that permits different effects of the explanatory vari-
ables for the different cumulative logits is 

logit [P(Y < j)] = a; + fi'jx, j = 1,..., c - 1. 

As in the baseline-category logit model, each predictor has c — 1 parameters. This 
model implies nonparallelism of the lines for the different cumulative logits and of 
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the curves for the different cumulative probabilities. Therefore, curves for different 
cumulative probabilities can cross for some x values. Such curves then violate the 
proper order for cumulative probabilities. So although this more general model can 
be useful, it can hold only over a limited range of predictor values. In practice, it 
is more useful for contingency tables with at most a few variables than for data 
sets with several predictors, of which some are continuous. (This limitation does 
not apply to the ordinal logistic models introduced in Chapter 4, which are valid 
even when different logits have different effects.) 

Because cumulative probabilities may be out of order at some settings of the 
predictors, model fitting can fail for this model. That is, it may not be feasible to 
maximize the multinomial likelihood function that considers this model simultane-
ously for all j . When we impose constraints on the cumulative probabilities, model 
fitting becomes considerably more complex. We can fit the model separately for 
the different j , but this does not provide an overall maximized likelihood function. 

This more general model also has other disadvantages. Although the bias dimin-
ishes in estimating the population response proportions at the various predictor 
settings, the model is much less parsimonious because of the possibly large increase 
in the number of parameters. The mean-squared errors of the estimates of the pop-
ulation response proportions may even tend to be larger. These comments reflect 
the trade-off in statistical analysis between bias and variance, both of which con-
tribute to mean-squared error. Simpler models have greater bias, yet may provide 
better estimates in terms of a criterion such as mean-squared error because of the 
decreased variance of estimation that results from their parsimony. 

3.6.2 Example: Mental Health Modeling Revisited 

The example in Section 3.4.4 modeled mental impairment with four response cat-
egories as a function of a quantitative life events index and a binary SES indicator 
(1 = high, 0 = low) using the cumulative logit model with proportional odds 
structure, 

logit [P(Y < j)] = ctj + ßlXi + ß2x2, j = 1, 2, 3. 

The more general model with separate effects for each logit is 

logit [P(Y < j)] = aj + ßjixi + ßj2x2, j = 1,2,3. 

Table 3.10 shows the parameter estimates for this model obtained by fitting an ordi-
nary logistic regression model separately for j = 1, 2, 3. The estimated life events 
and SES effects are substantively similar for the three logits, suggesting that it is 
simpler to use the proportional odds form of model. The final column of Table 3.10 
shows the estimates of parameters for that model. Comparing the standard errors 
for this model with the other models illustrates the efficiency benefit of using the 
entire four-category response instead of collapsing it to a binary response. 
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TABLE 3.10. Estimates for Cumulative Logit Modeling of Mental Impairment Data 
of Table 3.3 Allowing Different Effects for Each Logit 

Parameter Logit 1 (SE) Logit 2 (SE) Logit 3 (SE) Prop. Odds (SE) 

Intercept -0.173 (0.748) 0.9251 (0.723) 2.595 (0.975) 
Life events -0.328(0.164) -0.3099(0.148) -0.376(0.166) -0.319(0.121) 
SES 1.006(0.784) 1.6297(0.781) 0.947(0.868) 1.111(0.611) 

3.6.3 Example: Religious Fundamentalism by Region Revisited 

In Table 3.8 we cross-classified subjects by region (Northeast, Midwest, South, 
West/Mountain) and by whether they consider themselves fundamentalist, moder-
ate, or liberal in their religious beliefs. Since region is nominal scale, we created 
indicator variables for its categories and used the model 

logit [P(Y<j)]=otj + Tt, 

with xn — 0. The score test of the proportional odds assumption (Table 3.9) showed 
that this model fits poorly. For the more general model with separate effects for 
each logit, fitting the model separately for each logit gives estimates of (τι, Τ2, τ^) 
equal to (-0.45, 0.43, 1.15) for the first logit and (0.09, 0.18, 0.58) for the second 
logit. The change in the sign of f i reflects the lack of stochastic ordering of the first 
region (Northeast) and the fourth region (West/Mountain). A Northeast resident is 
less likely to be fundamentalist, reflected by f i = —0.45 < 0 for the first logit, but 
slightly more likely to be fundamentalist or moderate and hence slightly less likely 
to be liberal, as reflected by i\ — 0.09 > 0 for the second logit. Inspection of the 
conditional distributions in Table 3.8 shows less dispersion in the Northeast than 
the other regions. The {ij, ij,} estimates also differ by a fair amount for the two 
logits, but the direction of the effect is preserved. 

In summary, the proportional odds version of the cumulative logit model does 
not fit these data well. Its summary estimates of (τι, Τ2, τ^) of (—0.07, 0.27, 0.89) 
are rather severe summaries of the estimates (—0.45, 0.43, 1.15) for the first logit 
and (0.09, 0.18, 0.58) for the second logit. In fact, even if the Northeast or 
West/Mountain region were dropped from the data set, so that the three groups 
remaining in the sample are stochastically ordered, the test of proportional odds 
would show lack of fit. However, we've seen that the estimates from that sim-
ple model convey the basic information about location: Residents of the South 
are considerably more likely to be fundamentalist, and there is also somewhat 
more of a tendency for fundamentalism in the Midwest than in the Northeast or in 
West/Mountain states. Even though the proportional odds form of model has lack 
of fit, it is still useful for summarizing overall location effects in the data. 

3.6.4 Partial Proportional Odds 

Peterson and Harrell (1990) proposed a model that falls between the proportional 
odds version of the cumulative logit model and the more general model (3.14). In 
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this model, some predictors in the set x have a proportional odds structure, but 
others do not. Denote the subset of predictors that do not have it by u. The partial 
proportional odds model is 

\ogit[P(Y <j)]=aj+ß'x + y'jU, j = 1 , . . . , c - 1. (3.15) 

For identifiability, one of the y ·, say y , , equals 0. 
For a predictor x^ having proportional odds, the parameter ßk has the ordinary 

cumulative log odds ratio interpretation that holds for each of the c — 1 cumulative 
probabilities. For a predictor Xk not having proportional odds, ßk is the log odds 
ratio only for the first cumulative probability. Denote by Uk the element of u that is 
also Xk. Then the conditional log odds ratio between Y and Xk, controlling for the 
other variables, is ßk + Ykj for j between 2 and c — 1. The ordinary proportional 
odds model is the special case in which 

Yi = -" = Yc-\ = ° 

Peterson and Harrell (1990) also proposed special cases of this model in which 
the parameters for the nonproportional odds part of the model satisfy certain con-
straints. For example, suppose that predictor Xk is the only one with nonproportional 
odds, and suppose that the conditional log cumulative odds ratio between Y and Xk 
changes linearly as the cutpoint changes from 1 to c — 1. Let yy denote the incre-
ment to the effect ßk of Xk for cumulative probability j . Then we could consider 
the special case of this model in which yj = (j — \)γ. The advantage of such a 
model is that it has only one more parameter than the proportional odds version of 
the model. 

3.6.5 Example: Coronary Heart Disease and Smoking 

Table 3.11 from Peterson and Harrell (1990) shows the relationship between the 
degree of coronary heart disease and smoking status in a study at Duke University 
Medical Center. Let x be an indicator for smoking status (x = 1 smoker, x = 0 
nonsmoker). The proportional odds form of cumulative logit model, 

logit [P(Y < j)] = ctj + βχ, 

has β = —0.737 (SE = 0.082). The estimated common cumulative odds ratio is 
e-o.737 _ o.48. However, the model fits poorly, with the goodness-of-fit tests having 
X2 = 40.3 and G2 = 40.5 and the score test of the proportional odds assumption 
having test statistic 44.8 (df = 3). These tests all have an alternative hypothesis 
corresponding to the general model with three additional parameters (i.e., β replaced 
by ßj), which is saturated. 

The lack of fit is reflected by the four sample cumulative log odds ratios, which 
equal —1.04, —0.65, —0.46, and —0.07. In other words, a strong association occurs 
when the outcome is measured as "no disease" versus "some disease," but the 
association weakens progressively to nearly no association when the outcome is 
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TABLE 3.11. Smoking Status and Degree of Heart Disease, with Percentages for 
Degree of Heart Disease in Parentheses 

Smoking 
Status 

Smoker 
Nonsmoker 

0 

350 (22.6%) 
334 (45.2%) 

Degree of Coronary Heart Disease" 
1 2 3 

307 (19.8%) 345 (22.3%) 481 (31.0%) 
99(13.4%) 117(15.8%) 159(21.5%) 

4 

67 (4.3%) 
30(4.1%) 

Source: Peterson and Harrell (1990), with permission. 
"0, no disease; 4, very severe disease. 

measured by contrasting the most severe disease category with the others. There 
seems to be roughly a decreasing linear trend in these cumulative log odds ratios. 

We consider next the model 

logit [P(Y < j)] = aj + βιχ + (j - l)ß2x. 

This is not a proportional odds model, because the effect of x depends on j . The 
cumulative log odds ratio contrasting outcomes Y < j and Y > j is 

logöf; = ßu log0,c2 = ßx + ß2, logög = ßx + 2ß2, logÖ,c4 = ßx + 3ß2. 

This model has a much better fit (X2 = 3.45, G2 = 3.43, d f = 2 , P-value = 
0.18). The ML estimates of the effect parameters6 are ßx = -1.017 (SE = 0.094) 
and ß2 — 0.298 (SE = 0.047). The corresponding estimated cumulative log odds 
ratios are 

log <9fj = -1.02, log 0& = -0.72, log 0& = -0.42, log §f4 = -0.12. 

These represent well the sample values of —1.04, —0.65, —0.46, and —0.07. 

3.6.6 Other Approaches When Proportional Odds Fits Poorly 

When a proportional odds model does not fit adequately, what are the remedies? We 
have seen two possibilities: using a more general model such as the nonproportional 
odds model (3.14) or the partial proportional odds model (3.15). Sometimes we 
can continue to use the proportional odds model for describing the essence of the 
location effects, as shown for the example in Section 3.6.3. We list some other 
options here briefly and discuss them further in subsequent chapters. 

Most options involve other types of models having additional parameters. These 
options include (1) using a link function for which the response curve is nonsym-
metric (Section 5.3); (2) adding additional terms, such as interactions, to the linear 
predictor; (3) adding dispersion parameters (Section 5.4); (4) fitting logistic models 

6Obtained using the mph.fit R function described in the Appendix as shown at www.stat.ufl.edu/~aa/ 
ordinal/ord.html. 
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that have separate parameters for each logit; and (5) letting the cutpoint parameters 
{aj} depend on covariates through a linear model (Terza 1985). 

Option 2 is usually worth investigation because the variability across the c — 1 
cumulative logits for the effect of a particular predictor may reflect an interaction 
between that predictor and another one. Failure of the proportional odds model often 
reflects nonconstant variability of the response variable, but in practice, option 3 has 
seen relatively little use. For option 4, other than fitting an ordinary logistic regres-
sion model separately to each cumulative logit, one could use a different type of 
ordinal logit. For example, Section 4.2 presents the continuation-ratio logit model. 
This model utilizes the ordinal nature of Y but can have different effects for each 
of the c — 1 logits. Section 4.1 presents the adjacent-categories logit model, which 
in its most general form is equivalent to a standard baseline-category logit model 
(Section 4.1.3). This general form treats the response variable as nominal, but one 
can use the ordinality in an informal way in interpreting the effects and how they 
may tend to increase or decrease across the c — 1 adjacent-categories logits. An 
advantage of these types of logits is that the ML fit of a model permitting heteroge-
neous effects, found simultaneously for all c — 1 logits, exists much more generally 
that it does for the cumulative logit model (3.14) with heterogeneous effects. 

3.7 CONNECTIONS WITH NONPARAMETRIC RANK METHODS 

We've seen that the effect of an explanatory variable on an ordinal response variable 
can be tested by constructing a cumulative logit model and testing the hypothesis 
that a certain parameter or set of parameters equals zero. When the model has a 
proportional odds structure, such tests have connections with nonparametric tests 
using ranks or rank-based scores for the response variable. 

3.7.1 Connections with Comparing Groups Using Mean Ranks 

Consider the comparison of two groups on an ordinal response Y. The Wilcoxon test 
is a nonparametric method for comparing two groups by ranking all the observations 
on the response variable and comparing the mean ranks. In Section 7.4.1 we show 
that the Wilcoxon test generalizes to allow tied observations, as occur with ordered 
categorical data. The data are summarized in a 2 x c contingency table of counts 
{riij} with ordered columns, such as for Table 3.11 on smoking status and Y — 
degree of coronary heart disease. The test compares means using midrank scores 
{r,} or corresponding ridit scores [aj] based on the marginal proportions {pj = 
{ti\j + ri2j)/n} of Y, as defined in Section 2.1.1. The null hypothesis of identical 
response probabilities for the two groups is tested by comparing the mean ranks 
for the two groups, relative to the variability expected under the null hypothesis. 

The Wilcoxon test has a connection with a cumulative logit model-based test. 
For 2 x c tables with ordered columns, we regard the data as two independent 
multinomial observations, with sample sizes n\ and «2 for the two rows. The 
model with proportional odds structure is 

\ogit[P(Y <j)]=aj+ßXi, (3.16) 
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where x, is an indicator variable for the groups (rows) that equals 1 in row 1 
(i = 1) and 0 in row 2 (/ = 2). We can test the hypothesis of identical response 
distributions for the two rows by a Wald, likelihood-ratio, or score test of Ho'. 
ß = 0. The score test is based on the derivative of the log likelihood with respect 
to ß evaluated at the ML estimates under the constraint ß = 0. This derivative is 
proportional to 

2 c 

Σ Σ (n<v ~niPj)xirJ 
1 = 1 7 = 1 

(McCullagh and Neider 1989, p. 188). This is the difference between the sum of 
rank scores in group 1 and its null expected value for the two groups. Equivalently, 
it can be expressed in terms of the difference between the mean ranks for the two 
groups. In fact, the score test is equivalent to the discrete version of the Wilcoxon 
test. Such a test is locally most powerful for the one-sided alternative hypothesis 
(McCullagh 1980, Sec. 4.3). Pettitt (1984a) considered connections for underlying 
distributions other than the logistic. 

The more general qualitative predictor model (3.14) for comparing r groups in 
a r x c table is 

logit [P(Y < j)] =aj+Ti, j = l,...,c-l. 

The score test of HQ: τ\ = Γ2 = · · ■ = rr compares the mean ranks of the r rows, 
with df = r — 1. It is equivalent to the generalized Kruskal-Wallis test for an 
ordered categorical response presented in Section 7.4.3. 

Finally, for an arbitrary cumulative logit model of proportional odds form, 
consider a particular explanatory variable k with value JC,·* for setting /' of the 
explanatory variables and parameter pV Then the derivative of the log-likelihood 
function with respect to p* uses the data in terms of Σ < ( Σ ί xiknijrj)> where n,7 is 
the number of observations in response category j at setting i of the explanatory 
variables. For example, if explanatory variable k is binary and its indicator values 
are +1 and —1, inference about the effect of that predictor essentially uses the 
difference between the mean ranks for the two levels of the predictor. 

3.7.2 Sample Size and Power for Comparing Two Groups 

Whitehead (1993) presented sample-size formulas for achieving a desired power in 
comparing two groups on an ordered categorical response using the proportional 
odds version (3.16) of the cumulative logit model with a binary indicator predictor. 
Let 1 — β denote the power for an a-level test for detecting an effect of size βο for 
the cumulative log odds ratio in that model. Suppose that the plan is to allocate the 
sample size to the two groups in the ratio A to 1, and π, denotes the guess for the 
marginal probability in response category j . Based on large-sample approximations, 
the sample size required for a two-sided test is approximately 

n_3(A + l)2(za,2 + Zß)2 

Αβ2
0(1-Σπ]) 
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This requires anticipating the marginal probabilities and the size of the effect. 
Alternative approximations are mentioned in Note 3.9. 

Setting [nj = 1/c} provides a lower bound for n. Whitehead showed that the 
sample size does not depart much from this bound unless a single dominant 
response category occurs. With {UJ = 1/c}, the needed n depends on c through 
the proportionality constant (1 — 1/c2)-1. In this sense, relative to a continuous 
response (c — oo), using c categories provides efficiency (1 — 1/c2); for c = (2, 
3, 4, 5, 10), this is (0.75, 0.89, 0.94, 0.96, 0.99). The loss of information from 
collapsing to a binary response is substantial, but there is little gain from using 
more than four categories. The ratio of the sample size n(c) needed for c categories 
relative to the sample size n(2) needed when c = 2 is 

«(2) V c2) 

However, this assumes equal dispersion among the categories, which is not usual 
in practice. 

3.7.3 Testing Conditional Independence in Three-Way Tables 

As we discussed in Section 2.4, in practice we usually study the effect of an 
explanatory variable on a response variable while controlling for other variables. 
Models provide a natural way to do this. For an ordinal response variable, we 
can construct a model for which conditional independence between an explanatory 
variable and the response corresponds to a value of 0 for a model parameter. The 
test of the hypothesis then uses standard methods for testing that a parameter (or 
set of parameters) equals 0. 

For cumulative logit modeling of Y, we consider two cases, differing in terms 
of whether the explanatory variable X is treated as quantitative (i.e., interval scale, 
or ordinal scale with monotone scores) or as qualitative (nominal scale). In each 
case, the control variable Z, which could be multivariate, is treated as nominal. 
A partial table relates X and Y at each level of Z. When the XY association is 
similar in the partial tables, the power benefits from basing a test statistic on a 
model of homogeneous conditional association. Alternatively, in Section 6.4.5 we 
present score tests that generalize the Cochran-Mantel-Haenszel (CMH) test for 
sets of 2x2 tables to sets of r x c tables. 

X Quantitative Let {«,} be ordered scores for the rows of a contingency table. 
The model 

logit [P(Y<j)X = i,Z = *)] = ctj + ßUi + βξ (3.17) 

and the more general model with a-s + ßjf replaced by ajk have the same linear 
trend ß for the effect of X in each partial table. The models also apply when X is 
continuous, in which case M, is the value of X at its ith level. For these models, XY 
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conditional independence is HQ: ß = 0. Likelihood-ratio, score, or Wald statistics 
for Ho provide large-sample chi-squared tests with df = 1 that are sensitive to the 
trend alternative. The score test cumulates correlation-type information across the 
partial tables, with scores {«,} for the rows and midrank scores (or, equivalently, 
ridit scores) for Y. 

X Qualitative Alternatives to conditional independence that treat X as a 
nominal-scale factor are 

logit [P(Y <j\X = i,Z = k)]= aj + ßf + ßf, 

and the more general model with aj + ßf replaced by α7&. The effect parameters 
have a constraint such as ßf = 0. For these models, XY conditional independence 
is Ho: ßf = ■ ■ ■ = ß*. Large-sample chi-squared tests have df = r — 1. The score 
test cumulates information about the common variability among the row mean 
ranks on Y across the partial tables, with average rank scores for Y. It is a stratified 
version of the Kruskal-Wallis test (Section 7.4.3). 

3.7.4 Example: Political Ideology and Evolution, by Religiosity 

The 2006 General Social Survey shows a moderate association between politi-
cal ideology (measured on a scale of 1 to 7, from extremely liberal to extremely 
conservative) and whether one believes that human beings evolved from earlier 
species of animals. Using an indicator variable for belief in evolution (1 = yes, 0 
= no), model (3.16) with political ideology as the response variable has ß = 0.908 
(SE = 0.094). The estimated common cumulative odds ratio is exp(0.908) = 2.48, 
those who believe in evolution being relatively more liberal. Could this associa-
tion be explained by religiosity, with more religious subjects tending to be more 
conservative and also less likely to believe in evolution? We'll use this GSS to test 
conditional independence. 

Table 3.12 cross-classifies these three variables. Using two indicator variables 
for the religiosity effect, model (3.17) has ß = 0.697 (SE = 0.100). The association 
seems somewhat weaker than when religiosity is ignored, but the likelihood-ratio 
statistic for testing Ηο'. β = 0 equals 49.7 (df = 1). There is very strong evidence 
that belief in evolution tends to be associated with more liberal political beliefs, 
even after controlling for religiosity. 

For the religiosity effect, the likelihood-ratio statistic equals 43.2 (df = 2). For 
coding that sets βξ = 0, model (3.17) has ßf = 0.754 and βξ = 0.519. Lower 
religious attendance tends to be associated with a tendency toward more liberal 
views, for given beliefs about evolution. Using, instead, a linear trend for religiosity, 
for scores (1, 2, 3) for religiosity, the estimated coefficent for the religiosity effect 
is -0.369 (SE = 0.058), and the likelihood-ratio statistic for that effect is 41.4 
( d f = l ) . 

These models assume a lack of interaction between religiosity and belief in 
evolution in their effects on political ideology. Adding an interaction term to the 
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TABLE 3.12. Data on Political Ideology and Belief in Evolution, by How Often 
Attend Religious Services 

Religiosity* 

1 

2 

3 

Evolution 

Yes 
No 

Yes 
No 

Yes 
No 

1 

23 
8 

8 
4 

5 
4 

2 

83 
22 

34 
15 

15 
17 

Political Ideology" 
3 

66 
16 

30 
19 

15 
36 

4 

161 
108 

68 
64 

48 
113 

5 

67 
24 

36 
30 

19 
51 

6 

33 
34 

24 
38 

18 
113 

7 

9 
4 

1 
5 

3 
37 

" 1, extremely liberal; 2, liberal; 3, slightly liberal; 4, moderate; 5, slightly conservative; 6, conservative; 
7, extremely conservative. 
* 1, at most once a year; 2, several times a year to two or three times a month; 3, nearly every week or 
more. 

model having two indicator variables for religiosity gives two extra parameters. 
The evidence of interaction is not strong (likelihood-ratio statistic = 4.51, df = 2, 
/>-value = 0.10). 

Incidentally, these models all show some lack of fit. For example, model (3.17) 
with no interaction term has X2 = 56.8 and G2 = 57.2 for testing goodness of lit 
(df = 27, P-value = 0.001). Nonetheless, they are adequate for providing strong 
evidence of effects. As Mantel (1963) argued in a similar context: "that a linear 
regression is being tested does not mean that an assumption of linearity is being 
made. Rather it is that a test of a linear component of regression provides power 
for detecting any progressive association which may exist." To illustrate, if we 
fit the more general version of model (3.17) with <xj + ßf replaced by oijk, the 
model fits somewhat better, with X2 = 31.2 and G2 = 32.0 for testing goodness of 
fit (df = 17). However, the amount of evidence about the evolution effect is very 
similar, as ß — 0.692 (SE = 0.100) and the likelihood-ratio statistic for testing Ho'. 
ß = 0 equals 48.8 (df — 1). In this case, the statistics detect the tendency of those 
who believe in evolution to be more liberal and for those who are more religious 
to be less liberal. 

CHAPTER NOTES 

Section 3.1: Types of Logits for an Ordinal Response 

3.1. McCullagh (1978) defined a statistical method to be palindromic invariant 
if the results are invariant under a complete reversal of order of categories (except 
for the sign of the estimates) but not under general permutations of categories. 
Most methods discussed in this book, such as cumulative logit modeling, have this 
property for ordinal variables. A reversal of the categories of Y changes the sign of 
parameter estimates but does not alter the maximized log-likelihood or substantive 
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conclusions. Models presented in Section 4.2 using continuation-ratio logits are not 
palindromic invariant. 

3.2. This book focuses on methods for ordinal response variables. Other meth-
ods are designed specially for ordinal explanatory variables, for various types of 
response variables (see Sections 7.4.8 and 7.5.1). The first of these sections presents 
the Cochran-Armitage trend test for a binary response. It assigns scores to the cat-
egories of an ordinal explanatory variable as the basis of a chi-squared statistic with 
df = 1 for detecting evidence of a trend in the probability of a particular outcome 
(Armitage 1955; Cochran 1954, 1955). 

Section 3.2: Cumulative Logit Models 

3.3. Cumulative logit models were proposed for contingency tables by many 
authors, including Snell (1964), Bock and Jones (1968), Samejima (1969), Tukey 
(1971), Williams and Grizzle (1972), Simon (1974), Clayton (1974), and Bock 
(1975, pp. 544-546). McCullagh (1980) popularized the proportional odds case. 
His influential article and the subsequent discussion gave an interesting exposi-
tion of issues related to modeling ordinal data. McCullagh also presented more 
general models with arbitrary link functions and/or dispersion terms (Sections 5.1 
and 5.4). Later articles about cumulative logit models include McCullagh (1984), 
Snapinn and Small (1986), Stram et al. (1988), Hastie et al. (1989), Tutz (1989), 
Brant (1990), Peterson and Harrell (1990), Holtbriigge and Schumacher (1991), 
Agresti and Lang (1993a), Joffe and Greenland (1995), Scott et al. (1997), and 
Marshall (1999). See also Sections 8.2.1, 8.2.4, 8.6.1, 8.4.2, 10.1.1, 10.3, and notes 
in Chapters 8, 9, and 10 for their use in models for clustered observations, such as 
in longitudinal studies, and Section 11.3 for a Bayesian approach. In the context 
of survival modeling, see Clayton (1976), Bennett (1983), Pettitt (1984b), Rossini 
and Tsiatis (1996), and Hedeker et al. (2000). For smoothing and semiparametric 
structuring using cumulative logit models, see Hastie and Tibshirani (1987), Yee 
and Wild (1996), Fahrmeir and Tutz (2001), Kauermann and Tutz (2003), and Tutz 
(2003). For example, in Kauermann and Tutz (2003), some explanatory variables 
enter the model linearly, whereas others have unspecified but smooth functions. 

Section 3.4: Fitting and Inference for Cumulative Logit Models 

3.4. Kaufmann (1988) discussed existence and uniqueness of ML estimates for 
ordinal response models, including cumulative logit models and continuation-ratio 
logit models and models with other link functions. When all cell counts are positive, 
he showed that the ML estimates exist and they are unique if all parameters are 
identifiable. 

3.5. With highly stratified data, the number of parameters can be large relative to 
the sample size, and unconditional ML estimates may perform poorly. A standard 
approach with canonical-link GLMs such as binary logistic regression conditions on 
sufficient statistics for nuisance parameters, thus eliminating those parameters from 
the conditional likelihood function. This approach does not work for cumulative 
logit models, because baseline-category logits rather than cumulative logits are 
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the canonical link for a multinomial distribution. McCullagh (1984) proposed a 
type of sequential conditioning as a way of eliminating nuisance parameters from 
cumulative logit models. 

3.6. For other articles about ordinal classification, see Larichev and Moshkovich 
(1994), Rudolfer et al. (1995), Coste et al. (1997), Feldman and Steudel (2000), 
Tutz and Hechenbichler (2005), Horvath and Vojtas (2006), and Piccarreta (2008). 
Tutz and Hechenbichler (2005) used variants of bagging and boosting methods 
that make use of the ordinality, showing how predictive power improves with 
appropriate aggregation. In the context of machine learning, see also Herbrich et 
al. (1999), Frank and Hall (2001), Shashua and Levin (2003), Chu and Ghahramani 
(2005), Chu and Keerthi (2007), and Waegemana et al. (2008). 

Section 3.6: Cumulative Logit Models Without Proportional Odds 

3.7. Cumulative logit models without the proportional odds structure were pro-
posed by Williams and Grizzle (1972), who used weighted least squares for model 
fitting. Other articles that considered models with different effect parameters for 
different logits include Cox and Chuang (1984), Brant (1990), Peterson and Harrell 
(1990), Cox (1995), Ananth and Kleinbaum (1997), Bender and Graven (1998), 
Lall et al. (2002), and Cole et al. (2004). For alternative tests of the proportional 
odds property, see Brant (1990) and Stiger et al. (1999). For further discus-
sion of the partial proportional odds form of model, see Peterson and Harrell 
(1990), Stokes et al. (2000, Sec. 15.13), Lall et al. (2002), and criticism by Cox 
(1995). 

3.8. Tutz (1989) proposed a compound model of hierarchical form defined on a 
partition of the response categories into sets. The first part of the model describes 
the mechanism for classification in those sets, and the second part of the model 
describes classification into categories within sets. This is useful when groups 
of categories are relatively homogeneous. For instance, with c — 7 categories, a 
cumulative logit model might describe effects of explanatory variables on whether 
the response is in category set 1-2, 3-5, or 6-7, and then logistic and cumula-
tive logit models with different parameter values might describe the effects of 
explanatory variables conditional on the response being in a particular set of 
categories. 

Section 3.7: Connections with Nonparametric Rank Methods 

3.9. For determining sample size for comparing two groups, Kolassa (1995) 
provided methods based on a Cornish-Fisher approximation to the null distribution 
and an Edgeworth approximation for the power. Hilton and Mehta (1993) provided 
another approach, based on evaluating the exact conditional distribution with a 
network algorithm, or simulating that distribution. Rabbee et al. (2003) presented 
simpler approximations for exact methods. Lee et al. (2002) evaluated methods and 
claimed that Whitehead's formula is adequate when the sample size is moderately 
large. 
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EXERCISES 

3.1. Is a cumulative logit model a special case of a baseline-category logit model? 
Why not? 

3.2. For the model, logit [P(Y < j)] — <xj + ßjx, explain why cumulative prob-
abilities may have an inappropriate order for some x values. 

3.3. A response scale has the categories (strongly agree, mildly agree, mildly 
disagree, strongly disagree, don't know). One way to model such a scale 
uses an ordinary binary logistic model for the probability of a don't know 
response and uses a separate ordinal model for the four ordered categories 
conditional on response in one of those categories. Explain how to construct 
a likelihood function to do this simultaneously. See also Note 3.8. 

3.4. Consider the 2 x 3 x 2 contingency table relating a binary x\ to an ordinal 
Y, by row, of (10, 10, 10; 0, 0, 30) at the first level of x2 and (10, 10, 10; 
10, 10, 10) at the second level of x2. Explain why a cumulative logit model 
with main effects has finite estimates for the effects of x\ and x2 but a model 
that also has an interaction term does not. Observe what happens when you 
fit these models with software. 

3.5. Table 3.13 shows data cross-classifying job satisfaction and income, stratified 
by gender, for black Americans. The data are analyzed in Agresti (2002, 
Chap. 7). 

(a) Analyze the conditional association between job satisfaction and income, 
treating the variables as nominal. 

(b) Analyze the conditional association between job satisfaction and income, 
treating the variables as ordinal. 

(c) Compare the analyses in parts (a) and (b) in terms of simplicity of descrip-
tion and power for detecting an association. 

TABLE 3.13. Job Satisfaction and Income by Gender 

Income* 

1 
2 
3 
4 

Females' 
1 

1 
2 
0 
0 

2 

3 
3 
1 
2 

Job Satisfaction" 
3 

11 
17 
8 
4 

4 

2 
3 
5 
2 

Males' 
1 

1 
0 
0 
0 

' Job Satisfaction" 
2 

1 
3 
0 
1 

3 4 

2 1 
5 1 
7 3 
9 6 

Source: General Social Survey. 
" 1 , very dissatisfied; 2, a little satisfied; 3, moderately satisfied; 4, very satisfied. 
b 1, lowest; 4, highest. 

3.6. Refer to Exercise 2.7. Analyze these data using methods of this chapter. 
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Other Ordinal Logistic Regression 
Models 

In Chapter 3 we modeled ordinal responses using logits for cumulative proba-
bilities. In this chapter we present alternative logit models using the adjacent-
categories logits and the continuation-ratio logits introduced in Section 3.1. Such 
models have interpretations that can use individual categories rather than the cumu-
lative probabilities. Like the proportional odds version of the cumulative logit 
model, the proportional odds versions of the adjacent-categories logit model and 
the continuation-ratio logit model account for ordinality by assuming that explana-
tory variables have the same effects for each of the c — 1 logits for a c-category 
response variable. More generally, models with these types of logits, unlike cumula-
tive logit models, have a valid structure (e.g., cumulative probabilities maintaining 
the appropriate order) even when used with separate effect parameters for each 
logit. 

In Section 4.3 we present a more general type of proportional odds model 
for adjacent-category logits or corresponding baseline-category logits. Called the 
stereotype model, it estimates scores for the response categories as a way of per-
mitting more general structure for the effects while maintaining a similar effect 
structure for each logit. It differs from other models considered so far in having a 
predictor form that is multiplicative rather than linear in the parameters. 

4.1 ADJACENT-CATEGORIES LOGIT MODELS 

For multinomial probabilities {KJ}, the adjacent-categories logits are 

logit [P(Y = j\Y = joTY = j + \)]=\og - ^ - , j = 1 , . . . , c - 1. 

Analysis of Ordinal Categorical Data, Second Edition, By Alan Agresti 
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With a set of explanatory variables x, the general adjacent-categories logit 
model has the form 

\og-^-= a j+ß'jx, j = l,...,c-l. (4.1) 
7Γν·+ι(χ) J 

Because such models use pairs of adjacent categories, the effects are naturally 
described with local odds ratios rather than the cumulative odds ratios that naturally 
apply with cumulative logit models. Unlike the corresponding cumulative logit 
model (3.14) with nonproportional odds presented in Sections 3.5.5 and 3.6.1, this 
model provides valid probabilities regardless of predictor values. 

4.1.1 Proportional Odds for Adjacent-Categories Logit Models 

The construction of the adjacent-categories logits recognizes the ordering of the 
categories of Y. To benefit from this in model parsimony by truly exploiting the 
ordinality of Y, however, we must use a simpler specification for the linear pre-
dictor. If an explanatory variable has a similar effect for each logit, the usual 
advantages of model parsimony accrue from using a single parameter instead of 
c — 1 parameters to describe that effect. The model is then 

\og^^-=aj+ß'x, j = l,...,c-l. (4.2) 
7Γ, + ι(Χ) 

For predictor k, the estimated odds of the lower instead of the higher of two 
adjacent response categories multiply by exp(ft) for each 1-unit increase in **. 
This odds ratio is the same for all adjacent pairs, that is, not dependent on j . The 
corresponding model for the category probabilities is 

exp(a7· + β'χ) 
nj00= , , ^ c _ , ' , ^ τ : - j = 1,2, . . . , c - 1. 

Model (4.2) has proportional odds structure, much like the corresponding cumu-
lative logit model (3.6). These two types of model fit well in similar situations. One 
reason for this is that they both imply stochastically ordered distributions for Y at 
different predictor values. A model more general than this but simpler than model 
(4.1) permits partial proportional odds, having simpler structure for some but not 
all explanatory variables. Such a model is an analog of the partial proportional 
odds model (3.15) for cumulative logits. 

For the parameterization (4.2), a value for ft > 0 means that as JC* increases, 
Y is more likely to fall at lower values. For the sign of ft to have the usual 
interpretation by which a positive value means a positive conditional effect of x^ 
on Y, the model can instead be expressed as 

, *j&) at 
log =aj-ß x. 

π>ι(χ) 



90 OTHER ORDINAL LOGISTIC REGRESSION MODELS 

This parallels the parameterization logit P(Y < j) = (Xj — ß'x often used for the 
proportional odds version of the cumulative logit model [see equation (3.8)]. 
Another way to have such an interpretation for ßk is to express the model in 
terms of log[nj+\(x)/nj(\)], with the probability for the higher category in the 
numerator instead of the denominator. 

4.1.2 Parallel Log Odds Models for r x c Tables 

Consider an r x c contingency table with an ordinal response variable Y. Denote 
the conditional probabilities [nj\i = P(Y = j \ X = i)}. 

First, suppose that X is a quantitative or ordinal explanatory variable. Let {«, } 
denote ordered row scores for X. A model of proportional odds form that utilizes 
the ordering of the rows is 

\og-^-=aj+ßuh y = 1 c - 1. (4.3) 

For this model, the local log odds ratio satisfies 

l o g ^ =ß(Ui -Μ,· + ι). 

For equally spaced scores, the model satisfies uniform association for the local 
odds ratio. When all w, — m+\ = 1, the uniform local odds ratio equals exp(ß). 
Cumulative logit model (3.9) is a corresponding uniform association model for 
cumulative odds ratios. 

For a nominal explanatory variable, we replace the ordered {/JK,·} by unordered 
parameters {r,}. This results in the more general row effects model, proposed by 
Simon (1974), 

log^!-=aj+rt, j = l , . . . , c - l , (4.4) 

with a constraint such as rr = 0. The local log odds ratio satisfies 

log0^ = r,· -τ,·+ι. 

For a given pair of rows i and k, the c — 1 log odds ratios that are local in the 
response variable are identical, 

l o g ^ Ä = r , . - r „ y = l , 2 , . . . , c - l . 
7Γ/Ί*/7Γ/+1|* 

This model is also useful when the explanatory variable is ordinal but we do not 
expect an overall positive trend or negative trend for the association. 

For the quantitative predictor model (4.3) with fixed j , the r logits {log(7r;|,/ 
7T/+1I,), ί = 1 , . . . , r] plotted against {«,, i = 1 , . . . , r} follow a straight line with 
slope β. Forming such a plot for each of the c — 1 possible values of j yields 
c — 1 parallel lines. By contrast, for the row effects model (4.4), {log(7r7|,7^+i|,·), 
/ = 1 , . . . , r] plotted against {i = 1 , . . . , r} are parallel for different j but do not 
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follow a straight line. Goodman (1983) referred to this model as a parallel log-odds 
model. 

4.1.3 Connection with Baseline-Category Logit Models 

For nominal-scale response variables, the standard logits are the baseline-category 
logits. The order of the response categories is then irrelevant, and we contrast an 
arbitrary baseline category against each of the other categories. When category c 
is the baseline category, these logits are 

log —, log — , . . . , log . 
Ttc 7lc 7tc 

As noted in Section 3.1.2, the adjacent-categories logits are a basic set of logits 
that are equivalent to the baseline-category logits. For baseline category c, 

l o g ^ - = l o g ^ - + l o g ^ ± - r - " - + log-i-!-. (4.5) 
Uc Ttj+\ 7Γ/+2 Xc 

Models using adjacent-categories logits can be expressed as baseline-category logit 
models. For the general adjacent-categories logit model, 

log-^-=aj+ß'jX, y = l , . . . , c - l , 
π>ι(χ) ' 

from adding c — j terms as in (4.5), the equivalent baseline-category logit model is 

<°*W,='ir+(§«)*· j=i c-* 
= α* + 0*'χ, 7 = l , . . . , c - l . 

This model has the form of an ordinary baseline category logit model. Because 
it does not assume a common effect for each j , this model does not utilize the 
ordinality of Y. 

Of greater interest for ordinal responses is the proportional odds form of the 
adjacent-categories logit model, with common effect β for each logit, 

log-^-=aj+ß'%, ; = l , . . . , c - l . 
7Γν·+ι(χ) 

The equivalent baseline-category logit model is 

log ^ Τ Τ = Τ > * + (c - y)jS'x, y = l , . . . , c - l (4.6) 

= a* + ß'uj, y = l , . . . , c - l , (4.7) 
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with Uy = (c - j)x. So the adjacent-categories logit model corresponds to a 
baseline-category logit model with an adjusted model matrix. That model accounts 
for the ordinality of Y by using a single parameter for each explanatory variable 
and by letting the explanatory variable itself incorporate a distance measure c — j 
between each category j and the baseline category c. 

The connection between adjacent-categories logits and baseline-category logits 
is useful because software is more readily available for fitting baseline-category 
logit models. For example, since 

π}{χ) 7Γ,·(χ) 7Γ,·+ι(χ) . 
log = log -J-— - log J , 7 = l , . . . , c - l , 

π,·+ι(χ) 7rc(x) TTC(X) 

we can obtain the ML estimate ßj of ßj in the general adjacent-categories logit 
model (4.1) by obtaining estimates {ß ■} for the ordinary baseline-category logit 
model and then finding that 

0 ; =ßj-ßj+\> 

where p c = 0. 
Similarly, with some software it is possible to fit the proportional odds form of 

model (4.2). This requires being able to fit the equivalent baseline-category logit 
model (4.7) that constrains {ßj} to be identical.1 

4.1.4 Likelihood Function for Adjacent-Categories Logit Model 

The baseline-category logits are the canonical link functions for a multinomial 
distribution. Unlike models with other link functions, such as cumulative logits 
and probits, models using them or adjacent-categories logits have reduced sufficient 
statistics and relatively simple likelihood equations. 

For subject /, let v,y· denote the binary indicator for whether the response is in 
category j (1 = yes, 0 — no), and let x^ denote the value of explanatory variable 
k, with x, = (JC,I, Xi2, . . . ) ' . Assuming n independent multinomial observations, the 
contribution of subject i to the log-likelihood function is 

log Π*;·<*)Λ' 
c - l / c - l 

J^yu 1°87Γ;(χ<) + ! ~ XIy>j I log7Tc(Xi) 

c - l 

^'log^77T + l o g 7 r c ( x , ) · 
71 c \Λί) j=l 

For the baseline-category logit model with parameters a* and β* for logit j , the 
log-likelihood function incorporating all n observations is 

'For example, using PROC CATMOD in SAS or the mph.fit R function, as the Appendix shows. 
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i'=l 

logf] fl̂ (xi)>y 
y = i 

n f c Γ c Ί 1 

= Σ ΣXJ<°o-+ßJ*) - los 1 + Σ«PK+ßJ*) 
i = l l j = l L j=\ J J 

=Σ[«;(Σ^)+Σ^(Σ™)" 
rc i - c — 1 - i 

-Σ1 οβ ι + ΣεχρΚ+^'χ'> · 
ί = 1 L 7 = 1 -■ 

Now, for the adjacent-categories logit model (4.2) of proportional odds form, 
because of the connection (4.7) with baseline-category logit models, the log-
likelihood function simplifies to 

L(«, β) = Σ \Σak(Σyu) + J > - j)ßk(Σxayij)] 
j=\ *-k=j M = l ' k ^ i = l ' ^ 

- £ l o g J1 + J ] e x p £ « * + (c - j)( Σ A*«*)I · 
i=i l j=i L ^ - V λ / J J 

The sufficient statistic for a7 is Σί=ι Σ*=ι 3Ί'*· Th's equals the yth cumulative 
marginal total for Y. The sufficient statistic for ßk is ^iYijxik{c — j)yij. For 
example, suppose that there is a single explanatory variable x that is ordinal and we 
apply model (4.3) having the same linear trend for each pair of adjacent categories 
to a contingency table of counts {«A,}. Then for the equally spaced row scores 
[uh = h] for JC, the sufficient statistic for ß reduces to Y^h J^j h(c — j)rihj. Since 
the row marginal totals on x are fixed by the multinomial sampling design, it is 
equivalent to know J2h ^ljW)nhj· For fixed row and column marginal totals, there 
is a one-to-one relationship between this sum and the correlation, for the integer 
scoring of X and Y. That is, the correlation between the variables summarizes the 
information the data provide about the effect of X on y. 

The likelihood equations equate the sufficient statistics to their expected val-
ues. In particular, the likelihood equations for {av} imply that the fitted marginal 
counts for Y are the same as the sample marginal counts. This is not the case for 
cumulative logit and probit models. The log-likelihood function is concave, and the 
Newton-Raphson iterative method yields the ML estimates of model parameters. 
The estimators have large-sample normal distributions and their asymptotic SE val-
ues are square roots of diagonal elements of the inverse information matrix. For 
models with these logits, the observed and expected information matrices are the 
same, so the Fisher scoring fitting algorithm is equivalent to the Newton-Raphson 
algorihm. 
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When the data are a nonsparse contingency table, goodness-of-fit tests can use 
the Pearson or deviance statistics to compare the observed cell counts to the model 
fitted values. When a model of proportional odds form fits poorly, we can try adding 
additional terms to the model, such as interactions. Or, we can use the more general 
model (4.1) or use a model presented in Section 4.3 that nests between the general 
model and the simple model of proportional odds form. 

4.1.5 Example: Opinion on Stem Cell Research and Religious 
Fundamentalism 

Table 4.1 from the 2006 General Social Survey shows the relationship in the United 
States between opinion about funding stem cell research (Y) and the fundamental-
ism/liberalism of one's religious beliefs, stratified by gender. For simplicity, we use 
scores x = (1, 2, 3) for religious beliefs. For gender g(l = females, 0 = males), the 
model 

log-^-=aj+ßix+ß2g, 7 = 1,2,3, 

describes simultaneously the odds that opinion is "definitely fund" instead of "prob-
ably fund," "probably fund" instead of "probably not fund," and "probably not 
fund" instead of "definitely not fund." 

This model is equivalent to the baseline-category logit model 

log ^ = or* + 0,(4 - j)x + ft (4 - j)g, 7 = 1,2,3. 
7Γ4 J 

The value of the first predictor in this model is set equal to 3x in the equation for 
log(7ri/7T4), 2x in the equation for logfe / ;^ ) , and Λ: in the equation for log(tt3/7r4). 
For example, for the liberal category of religious beliefs, the values in the model 
matrix for the religious beliefs predictor are 9, 6, 3 for each gender, whereas the 
values for the gender predictor are 3, 2, 1 for females and 0, 0, 0 for males. With 

TABLE 4.1. Data on Opinions About Stem Cell Research and Religious Beliefs by 
Gender, with Conditional Distributions on Stem Cell Research in Parentheses 

Gender 

Female 

Male 

Religious 
Beliefs 

Fundamentalist 
Moderate 
Liberal 
Fundamentalist 
Moderate 
Liberal 

Definitely 
Should Fund 

34 (22%) 
41 (25%) 
58 (39%) 
21 (19%) 
30 (27%) 
64 (45%) 

Stem Cell Research 
Probably 

Should Fund 

67 (43%) 
83 (52%) 
63 (43%) 
52 (46%) 
52 (47%) 
50 (36%) 

Probably 
Not Fund 

30 (19%) 
23 (14%) 
15 (10%) 
24 (21%) 
18 (16%) 
16(11%) 

Definitely 
Not Fund 

25 (16%) 
14 (9%) 
12 (8%) 
15 (13%) 
11 (10%) 
11 (8%) 

Source: 2006 General Social Survey. 
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TABLE 4.2. Output for Fitting Adjacent-Categories Logit Model to Table 4.1 on 
Funding Stem Cell Research 

Effect 

Interceptl 
Intercept2 
Intercept3 
Religion 
Gender 

Parameter 

1 
2 
3 
4 
5 

Estimate 

-0.5001 
0.4508 

-0.1066 
0.2668 

-0.0141 

Standard 
Error 

0.3305 
0.2243 
0.1647 
0.0479 
0.0767 

Chi-
Square 

2.29 
4.04 
0.42 

31.07 
0.03 

Pr > ChiSq 

0.1302 
0.0444 
0.5178 
<.0001 
0.8539 

some software (e.g., PROC CATMOD in SAS; see Table A.2 in the Appendix), we 
can enter a row of a model matrix for each baseline-category logit at each setting 
of predictors. Then, after fitting the baseline-category logit model that constrains 
the effects to be the same for each logit, the estimates of the regression parameters 
are also the estimates of parameters for the adjacent-categories logit model. 

Table 4.2 shows output for this model. For moderates, the estimated odds 
of opinion "definitely should fund" instead of "probably should fund" are 
exp(0.267) = 1.3 times the estimated odds for fundamentalists, whereas the 
estimated odds of opinion "definitely should fund" instead of "definitely should 
not fund" are exp[3(0.267)] = 2.2 times the estimated odds for fundamentalists 
(for each gender). For this model, the strongest association results from the 
extreme categories of each variable. That is, for liberals, the estimated odds 
of opinion "definitely should fund" instead of "definitely should not fund" are 
exp[2(3)(0.267)] = 5.0 times the estimated odds for fundamentalists (for each 
gender). In this sense, the estimated association is relatively strong. Table 4.2 
shows that the association is also statistically significant according to a Wald test, 
with test statistic 31.1 (df = 1) having P-value < 0.0001. The effect of gender is 
not significant. 

The model describes 18 multinomial probabilities (three for each religion x 
gender combination) using five parameters. The deviance is G2 = 12.0, with 
df = 13 (f-value = 0.53). This model with a linear trend for the religious beliefs 
effect and a lack of interaction between it and gender seems adequate. 

Similar substantive results occur with a cumulative logit model. Its deviance is 
G2 = 7.5 with df = 13. The religious beliefs effect is larger {ß\ = 0.488, SE = 
0.080), since it refers to the entire response scale rather than only adjacent cate-
gories. However, statistical significance is similar, with (ß\/SE) > 5 for each model. 

4.1.6 Paired-Category Versus Cumulative Logit Models 

For the proportional odds form of model, how can we choose between the adjacent-
categories logit form and the cumulative logit form? Since the two types of model 
tend to fit well in similar situations, the choice cannot usually be based on goodness 
of fit. One criterion is whether you prefer effects to refer to individual response 
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categories or instead to groupings of categories using the entire scale or an underly-
ing latent variable. Adjacent-categories logit models describe effects with pairs of 
individual categories and cumulative logit models describe effects with groupings 
of categories: namely, cumulative probabilities. In the next section we present yet 
another possibility, in which effects refer to an individual category relative to a set 
of categories above that category. 

Since effects in cumulative logit models refer to the entire scale, they are usu-
ally larger than effects in analogous adjacent-categories logit models. (Recall the 
discussion in Section 2.2.6 about sizes of effects. Note 2.4 at the end of Chapter 2 
showed an approximate relationship, when the effects are weak, between cumula-
tive log odds ratios and local log odds ratios.) The ratio of estimate to standard 
error, however, is usually similar for the two model types. So one model does not 
usually have greater power than the other for detecting effects. An advantage of 
the cumulative logit model is the approximate invariance of effect estimates to the 
choice and number of response categories, explained in Section 3.3.3. This does 
not happen with the adjacent-categories logits. 

As we discuss in Section 4.3.11, paired-category logit models have the advantage 
that with retrospective studies (i.e., sampling X at each given value of y), the effects 
are the same and can still be estimated. Paired-category logit models also have the 
advantage of being in the exponential family. Hence, reduced sufficient statistics 
exist, and conditional likelihood methods apply. For example, we can conduct 
exact small-sample inference for a parameter by eliminating the other "nuisance" 
parameters from the likelihood function by conditioning on their sufficient statistics. 

4.2 CONTINUATION-RATIO LOGIT MODELS 

We next present models for continuation-ratio logits. There are two types. One set 
forms the log odds for each category relative to the higher categories, 

log - ^ — , y = l c - 1 . (4.8) 
Kj + \ -I \- 7tc 

The other set forms the log odds for each category relative to the lower 
categories, 

log ^ - , y = 1 c - 1 . (4.9) 

4.2.1 Logit Models for Sequential Processes 

A model using the first type of continuation-ratio logit is useful when a sequential 
process determines the response outcome. This is the case with duration and devel-
opment scales, in which a subject passes through each category in order before the 
response outcome is determined. Examples are survival after receiving a particular 
medical treatment (<1 year, 1 to 5 years, 5 to 10 years, >10 years), educational 
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attainment (less than high school, high school, college, postgraduate), and child 
development through different stages. Let 

a>j = P{Y = j\Y>j) = - ^ - , y = l , . . . , c - l . (4.10) 
nj H h nc 

The continuation-ratio logits (4.8) are ordinary logits of these conditional proba-
bilities: namely, \og[a>j/{\ — ω,·)]· We refer to them as sequential logits. 

With explanatory variables, continuation-ratio logit models using sequential log-
its have the form 

logit [a>j(x)] = aj + ß'jx, j = 1 , . . . , c - 1. (4.11) 

Unlike the cumulative logit model (3.14) having separate effects for each logit, this 
model provides valid probabilities regardless of predictor values. A simpler model 
with proportional odds structure is 

logit [a>j(x)] = otj + ß'x, j = l,...,c-l, (4.12) 

in which the effects are the same for each logit (McCullagh and Neider 1989, 
p. 164; Tutz 1991). Models with partial proportional odds structure are also possible 
(Cole and Ananth 2001). 

4.2.2 Latent Variable Motivation for Sequential Model 

Tutz (1991) provided a latent variable model that induces sequential continuation-
ratio logit models. For the model (4.12) of proportional odds form, latent variables 
Y*, Yj, ■ ■ ., Y*_x are assumed to satisfy 

Y*=ß'x + €j, 

where {e7} are independent from some cumulative distribution function G. Then, 
for a set of thresholds [aj], there is a process such that the observed categorical 
outcome 

K = l i f y , * < a i , 

and if Y* >a\, then 

Y = 2, given Y > 2, if F2* < «2, 

and so on, with, generally, 

Y = j , given Y> j , ifY*<aj. 

A transition from category j — 1 to category j takes place only if the latent variable 
that determines the transition is above a threshold that is characteristic of the 
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category under consideration. The sequential mechanism assumes a binary decision 
at each step. Only the final resulting category is observable. 

This construction leads directly to the model 

P(Y = j\Y> j) = G{ctj - ß'x). 

When the underlying distribution for the latent variables is logistic, the link function 
G~l is the logit link. The resulting model is (4.12), with the sign of each element 
of ß changed. An analogous construction with different {ßj} yields model (4.11). 
However, as Maddala (1983, p. 51) noted, it is sometimes unrealistic that the 
random factors that influence responses at the various stages of the sequential 
process would be independent. 

4.2.3 Multinomial Factorization with Sequential Probabilities 

For subject i with explanatory variable values x,·, let {ytj, j = 1 , . . . , c] denote 
the response indicators. That is, y,7 = 1 when the response is in category j and 
ytj = 0 otherwise, so £ · yij = 1· Let b(n, y; ω) denote the binomial probability 
of y successes in n independent trials when the probability of success for each 
trial is a), with b(0, 0; ω) = 1. From the expression of the multinomial proba-
bility for yn,..., yic in the form p(yn)p(yi2 I yn) · · · p(yic \yn,..-, yt.c-i), the 
multinomial mass function for a single observation has factorization 

b[\, yn; ωι(χ,·)] 

Ml - yn, v,2; ω2(χ,)] ■■■b[l-yn yiiC-2, yi,c-\\ <wc_i(x,·)]. (4.13) 

The full likelihood function for all subjects is the product of such multinomial 
mass functions from the n subjects. The log likelihood is a sum of terms such that 
different ω7 enter into different terms. 

Let «i, « 2 , . . . , nc denote the marginal numbers of observations on Y falling in 
the c response categories. Let Sj denote the set of n* = rij + ■ ■ ■ + nc subjects 
who make a response in the set of categories j , . . . ,c. The likelihood function is a 
product of c — 1 terms. Term j refers to subjects in Sj and looks like the ordinary 
likelihood function for logistic regression with n*j binary outcomes (j vs. j + 1 
through c combined), such that subject i in group Sj has probability ω;(χ,) of 
response in category j . 

Suppose that parameters in the sequential model specification for logit a>7 are 
distinct from those for logit ω* whenever j φ k [i.e., case (4.11)]. Then a separate 
set of likelihood equations applies for each sequential binary split for forming the 
continuation-ratio logits, with separate parameters in each set of equations. Thus, 
maximizing each set of equations separately maximizes the full log likelihood. 
That is, separate fitting of models for the various sequential continuation-ratio 
logits gives the same results as simultaneous fitting. Because these logits refer 
to a binary response in which one category combines levels of the original scale, 
separate fitting can use methods and software for binary logistic regression models. 
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Similarly, overall goodness-of-fit statistics are the sum of goodness-of-fit statistics 
for the separate fits. For example, consider categorical predictors in model (4.11) 
and a nonsparse contingency table. The sum of the c — 1 separate deviance statistics 
provides an overall goodness-of-fit statistic pertaining to the simultaneous fitting 
of c — 1 models. 

For the proportional odds form of the model (4.12), the likelihood equations 
from the separate sequential binary splits combine to form a single set of likelihood 
equations. We discuss this case in Section 4.2.5. Similar remarks about types of 
models and factorization apply to the other type of continuation-ratio logits, in 
formula (4.9). However, models with those logits do not give results equivalent to 
those for models with sequential continuation-ratio logits. 

4.2.4 Partitioning Chi-Squared for Independence in Two-Way Tables 

A useful application of the multinomial factorization with sequential probabilities 
relates to testing the hypothesis of independence in a two-way contingency table. 
Let iw,j = P(Y — j | Y > j , x — i). The hypothesis of independence corresponds 
to the model 

logit (wij) =aj, j = l,...,c-l 

for i = 1 , . . . , r. 
First, consider a 2 x c table. The likelihood-ratio statistic G2 for testing indepen-

dence, which has df = c — 1, partitions into c — 1 components. The ;'th component 
is G2 for a 2 x 2 table where the first column is column j and the second column 
is columns j + 1 through c of the full table. Each component statistic has df = 1. 
For the second type of continuation-ratio logit (4.9), the components are likelihood-
ratio statistics for the first two columns, for combining the first two columns and 
comparing them to the third column, and so on, up to combining the first c — 1 
columns and comparing them to the last column. 

For an r x c table and a particular type of continuation-ratio logit, each of 
the c — 1 likelihood-ratio statistics relates to a r x 2 table and has df = r — 1. 
More refined partitions contain (r — l)(c — 1) statistics, each having df = 1. See 
Note 4.3. 

4.2.5 Likelihood Equations for Sequential Proportional Odds Model 

Let's consider now the proportional odds form (4.12) of the model using the sequen-
tial logits. For subject i, the conditional probability ω,(χ,) of response in category 
j , given response in category j or above, is assumed to satisfy 

logit [ω,·(χ,·)] = otj + ßixn + ß2xi2 H 

in which {ß^} are the same for each j . We exploit the product binomial fac-
torization (4.13) of the multinomial mass function. For component j , the standard 
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log-likelihood function for the logistic regression model for the n*j = rij -I \-nc 

subjects in the group Sj of subjects who make response in category j or above is2 

LJ = ( Σyij)aJ + Σ ( Σyux'k)ßk - Σlog 1 + exp laj + £ßkxik\ , 
j j j 

where £ s · denotes the sum over subjects / in group Sj. The log-likelihood function 
for the full model is 

L(a,/J) = L i + L 2 + - " + Z-c-i· 

From the expression for the log-likelihood function, the sufficient statistic for 
otj is J2s y>j ~ nj· ^° m e t o t a l c o u n t s m m e various response categories for Y 
are sufficient statistics. The sufficient statistic for ßk is 

Σ ynxik + Σ y'2Xik H + Σ Λ^-ι*/* = Σ ^ ' ΐ + Λ2 H + v,-,c_i)jc,t, 

where the sum on the right-hand side is over all n subjects. This is the same as 
the sufficient statistic for ßk for the logistic regression model for the binary split 
(1 through c — 1 combined vs. c). 

Differentiating the log-likelihood function with respect to aj yields the likeli-
hood equation 

Σ _ y ^ exp(Q!y· + J2k ßkxik) 
ytj - L 1 + e x p ( a + £ ßkXik)' 

The term on the left-hand side is rij and the term on the right-hand side is 
J2s ■ ω ; ( χ ι ) · This equation implies that the marginal counts for Y equal their fitted 
values, as in adjacent-categories logit models. 

Differentiating the log-likelihood function with respect to ßk yields the likeli-
hood equation 

/ \ c- / eXp(Q;v. + J^k ßkxik)xik 

Σ ( Σ * / * ) - Σ ( Σ Γ 
■·_ι \ c. ' ;_ l \ c. 

J=l x c. , , = 1 ^5J. -+exp(«, -+E*f t*«·*) / ' 

The term on the right-hand side is 

c - l 

;—i V c. ' 

The likelihood equation for ßk equates the sufficient statistic for ßk to its expected 
value. The equation is not quite the same as the equation for ßk for the logistic 

2For example, see the derivation for equation (5.16) in Agresti (2002). 
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regression model for the binary split (1 through c — 1 combined vs. c), which has 
the same left-hand side but a different right-hand side. Thus, the ML estimates 
differ. 

We can fit the model using ordinary logistic regression software, by entering a 
data file that provides the separate binomials that factor to give the multinomial 
and fitting a model that assumes the same effect for each logit. For example, for a 
2 x c table with an indicator x for two groups, consider the model 

logit [ω;·(JC)] = oij + βχ, j = 1 , . . . , c — 1. 

There is one table for each sequential continuation-ratio logit, and each table has 
the two groups as its rows. The first 2x2 table has response outcome 1 in column 
1 and response outcomes 2 to c grouped together in column 2, the second 2 x 2 
table has response outcome 2 in column 1 and response outcomes 3 to c grouped 
together in column 2, and so on. We can fit the continuation-ratio logit model 
by fitting to the c — 1 stratified 2 x 2 tables the ordinary logistic regression model 
having a common treatment effect. See Table A.3 in the Appendix for the following 
example, and also see Cox (1988). 

4.2.6 Example: Tonsil Size and Streptococcus 

We illustrate continuation-ratio logits using Table 4.3. It cross-classifies a sample 
of children by their tonsil size and by whether they were carriers of Streptococcus 
pyogenes, a bacterium that is the cause of group A streptococcal infections. The 
response has three ordered outcomes (not enlarged, enlarged, greatly enlarged). 
From the conditional distributions shown in Table 4.3, the response distribution 
is stochastically higher for the carriers. The data have been analyzed by many 
statisticians, including Tutz (1991), who used continuation-ratio logits with the 
proportional odds structure. 

Tutz (1991) argued that sequential continuation-ratio logits are natural for these 
data, because of the sequential process by which a subject can develop greatly 
enlarged tonsils. The tonsils start in the not enlarged state and may become enlarged, 
perhaps explained by some explanatory variable. If the process continues, the tonsils 
may become greatly enlarged. The underlying process starts in category 1 (not 
enlarged) and may transition successively to higher categories until the process 

TABLE 4.3. Tonsil Enlargement by Whether a Carrier of Bacteria, with Estimated 
Conditional Distributions on Tonsil Size in Parentheses 

Carrier 

Yes 
No 

Not Enlarged 

19 (26%) 
497 (37%) 

Tonsil Size 
Enlarged 

29 (40%) 
560 (42%) 

Greatly Enlarged 

24 (33%) 
269 (20%) 

Source: M. Holmes and R. Williams, J. Hyg. Cambridge, 52: 165-179 (1954), with permission. 
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stops. The latent variable model described in Section 4.2.2 seems plausible. Thus, 
Tutz used sequential continuation-ratio logits to model (1) the probability π\ of 
nonenlarged tonsils, and (2) the conditional probability ft^/fe + π-}) of enlarged 
tonsils, given that the tonsils were enlarged or greatly enlarged. 

Let x indicate whether a child is a carrier of Streptococcus pyogenes (1 = yes, 
0 = no). The sequential proportional odds model is 

log , , , —=αι+βχ, log——=cc2 + ßx. 
n2(x) + n-i{x) m(x) 

To fit the model using ordinary logistic regression model software, we create a data 
file with the four independent binomials, such as by 

stratum carrier success failure; 
1 1 19 53 
1 0 497 829 
2 1 29 24 
2 0 560 269 

Entering the stratum indicator variable in the model, as shown in Table A3 , pro-
vides the separate intercept terms for the two logits. 

The sample odds ratios for the two strata of binomials to which the continuation-
ratio logit model applies are 

19 x 829 29 x 269 
= 0.598, = 0.580. 

53 x 497 24 x 560 

These are very similar. In each case, the more desirable outcome is less likely for 
the carriers of the bacteria. The ML estimate of the carrier effect for the sequential 
proportional odds model is ß = -0.5285 (SE = 0.198), for which exp(/3) = 0.59. 
For example, given that the tonsils were enlarged, the estimated odds for carriers of 
having enlarged rather than greatly enlarged tonsils were 0.59 times the estimated 
odds for noncarriers. The model fits the data very well, with deviance 0.01 (df = 1). 

For this model, exp(/3) = 0.59 estimates an assumed common value for a cumu-
lative odds ratio from the first part of the model and a local odds ratio from the 
second part of the model. By contrast, the cumulative logit model of proportional 
odds form estimates a common value of exp(—0.6025) = 0.55 for each cumulative 
odds ratio (model deviance = 0.30, df = 1), and the adjacent-categories logit model 
of proportional odds form estimates a common value of exp(—0.429) = 0.65 for 
each local odds ratio (model deviance = 0.24, df = 1). As we would expect, the 
size of the estimated odds ratio for the continuation-ratio model falls between those 
for the other two models. According to the deviance, any of these three models is 
plausible. 

The data provide strong evidence of an association. For testing Ηο'. β =0 against 
Ha: βφθ, the Wald statistic equals (-0.5285/0.198)2 = 7.13 and the likelihood-
ratio statistic equals 7.32. The P-values, from the chi-squared distribution with 
df = 1, are 0.008 and 0.007. 
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4.2.7 Sequential Models for Grouped Survival Data 

In the modeling of survival times with a probability density function / and cumula-
tive distribution function F, the ratio h(t) = / ( r ) / [ l — F(t)] is called the hazard 
function. Often, survival times are measured with discrete categories, with the 
response grouped into a set of categories, such as (less than 1 month, 1 month to 
1 year, 1 to 3 years, 3 to 5 years, more than 5 years). The ratio / ( / ) / [ l — F(t)] 
is analogous to the ratio (4.8) used in sequential continuation-ratio logits. Hence, 
sometimes continuation-ratio logits are interpreted as log hazards and applied to 
grouped survival data. 

For comparing two groups with grouped survival data, the data are counts in a 
2 x c table with the grouped survival times as response categories. For such data we 
noted at the end of Section 4.2.5 that we can fit the model, logit CUJ(X) = aj + βχ, 
by fitting a standard binary logistic model to a set of c — 1 separate 2x2 tables. 
The hypothesis HQ\ β — 0 of identical response distributions for the two groups is 
equivalent to the condition that each of these 2 x 2 tables has a population odds 
ratio equal to 1.0. 

For this application, since the binomials in the separate 2x2 tables are inde-
pendent, we can apply the Cochran-Mantel-Haenszel test for testing conditional 
independence in stratified 2 x 2 tables (e.g., Agresti 2002, Sec. 6.3.2). That test 
is the score test of Wo: β — 0 for the model for the stratified tables. In this con-
text, the test is usually referred to as the logrank test or the Mantel-Cox test. The 
test can accommodate censored observations, which may occur in some of these 
2 x 2 tables but not others. For Table 4.3 this approach gives a chi-squared test 
statistic of 7.23 (df = 1), similar to the test statistic values given above for Wald 
and likelihood-ratio tests. The P-value is 0.007 for Ha: β φ 0. See Prentice and 
Gloeckler (1978) for related analyses for grouped survival data and Note 4.2 for 
related references. 

4.3 STEREOTYPE MODEL: MULTIPLICATIVE PAIRED-CATEGORY 
LOGITS 

When a proportional odds model using adjacent-categories logits, continuation-
ratio logits, or cumulative logits fits poorly, we can check whether the fit improves 
by adding other terms, such as interactions. Another approach analyzes whether 
the fit improves by letting some or all predictors have nonproportional odds form. 
When all variables have a practical degree of nonproportional odds, with adjacent-
categories logits we are left with the general model (4.1) having separate effects 
for each pair of adjacent categories. But this general model is equivalent to the 
standard baseline-category logit model, 

log ^ = α,-+ 0}x, j = l,...,c-l. (4.14) 

The disadvantage of this model, which treats the response as of nominal scale type, 
is the lack of parsimony. It has c — 1 parameters for each predictor je* instead of 
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a single parameter. The number of parameters can be large when either c or the 
number of predictors is large. 

4.3.1 Stereotype Model 

Anderson (1984) proposed a paired-category logit model that is nested between 
the adjacent-categories logit model (4.2) with proportional odds structure and 
the general model (4.1) for adjacent-category logits and, equivalently, (4.14) for 
baseline-category logits. For the baseline-category logits, Anderson's model is 

log7^-= a j+<Pjß'x, y = l , . . . , c - l . (4.15) 
πΓ(χ) 

Anderson referred to the model as the stereotype model. In terms of the response 
probabilities, the stereotype model is 

exp(a; + φ]β'χ) 
JT/OO = ^ τ ;—, / = 1, 2, . . . , C, 

Σί=ιβχρ(α*+Φ*0'χ) 
with ctc = φ€ = 0. 

For logit j , the explanatory variable Xk has coefficient (frjßk- This represents the 
log odds ratio for categories j and c of Y with a unit increase in **. That is, when 
xk = u + 1, the odds of response j instead of c are exp($j0jt) times the odds when 
Xk=u.By contrast, the general baseline-category logit model (4.14) has odds ratio 
exp(ßjk) for this effect. That model requires many more parameters for describing 
all the effects. 

The [φ]} parameters in the stereotype model (4.15) can be regarded as scores 
for the outcome categories. Since φ]β = tyj/C)Cß for any nonzero constant C, 
these parameters are not identifiable unless we impose a constraint on {φ}}, such 
as φ\ = 1. With this constraint, the coefficient 0* of Xk represents the effect of a 
unit increase in Xk on the log odds of response in category 1 instead of category c. 

Given the scores {</>;}, like proportional odds models, the stereotype model 
has the advantage of requiring only a single parameter to describe the effect of 
a predictor. So it is more parsimonious than the ordinary baseline-category logit 
model. We illustrate for the case of four explanatory variables and c = 3 outcome 
categories for Y. The stereotype model for the two baseline-category logits is 

log — — =αι+φι (0ι*ι + ß2xi + ft*3 + 04*4). 
7Γ3(Χ) 

log — = α2 + Φΐ(βΐΧ\ + 02*2 + 03*3 + 04*4), 
7Γ3(Χ) 

with φ\ = 1. By contrast, the general baseline-category logit model is 

log — = αι + 011*1 + 012*2 + 013*3 + 014*4, 
*3(X) 

log — = a2 + 021*1 + 022*2 + 023*3 + 024*4· 
π3(χ) 
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It has three more parameters. The stereotype model achieves the parsimony of 
a single parameter to describe a predictor effect by using the same scores for 
each predictor. This may or may not be realistic. Using different scores for 
each predictor increases flexibility but yields a model equivalent to the general 
model (4.14). 

4.3.2 Stereotype Model for Adjacent-Category Logits 

The stereotype model can be expressed in terms of adjacent-categories logits, 
as 

log nj(X\ =aj + Vjß'x, y = l , . . . , c - l . (4.16) 
π>ι (χ ) 

The {v;} scores in this model relate to the {</>y} in the baseline-category logit form 
of the model (4.15) by 

vj =Φ] -<t>j+\, 7 = l , . . . , c - 1 , 

and 

Φί = Vj + Vj+i H h vc_i, j = 1, . . . , c - 1. 

The discussion at the end of Section 4.1.3 showed how the proportional odds 
version (4.2) of the adjacent-categories logit model is a special case of a baseline-
category logit model with effects (c — j)ß. Therefore, that adjacent-categories logit 
model is the special case of the stereotype model (4.15) in which {$; = c — j], 
so that {vj = 1} in (4.16); that is, the {0;·} scores are fixed and equally spaced. 
Equivalently, the scores could be any set of constants that are equally spaced, such 
as {φ] — (c — j)/(c — 1)} for the constraints φ\ = 1 and φ€ = 0 often used with the 
stereotype model. Thus, if the stereotype model holds and {0/} are equally spaced 
for the baseline-category logits and equivalently, {v,·} are identical for the adjacent-
categories logits, then necessarily the simpler proportional odds adjacent-categories 
logit model (4.2) holds. 

It is often sensible to conduct a likelihood-ratio test comparing the stereotype 
model with score parameters {</>,} to the special case with fixed, equally spaced 
[φ]}, corresponding to the proportional odds version (4.2) of the adjacent-categories 
logit model. Such a test analyzes whether [φ]} may depart significantly from being 
equally spaced. If the simpler model is adequate, it is preferable to use it because of 
the advantages of model parsimony. When {0,} depart significantly from equally 
spaced but two adjacent scores are similar, it may be sensible to constrain those 
adjacent scores to be equal and refit the model. This corresponds to collapsing the 
response scale by combining those two categories. The example in Section 4.3.7 
considers these two strategies. 
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4.3.3 Stereotype Model with Ordered Scores 

Nothing inherent in the stereotype model 

7Γ/00 , 
log -L—,- = aj+ φ]β x, j = l , . . . , c - 1, 

7TC(X) 

treats the response variable Y as ordinal. But we've seen that when {<j>j} are a 
linear function of the category number, the stereotype model is equivalent to an 
ordinal model: namely, the proportional odds version of the adjacent-categories 
logit model. Anderson (1984) also proposed an ordered stereotype model having 
the constraint 

1 = Φ\ > Φι > ■ ■ ■ > 0c = 0. 

With such monotone scores, the ordered stereotype model treats Y as ordinal. For a 
unit increase in a particular predictor **, the log odds ratio Φίβί for categories j and 
c of Y is then larger in absolute value when category j is farther from category c. 

The baseline-category ordered stereotype model corresponds to the adjacent-
categories stereotype model 

flj (x) log —=otj + Vjßx, j = l , . . . , c - 1, 

7T7 + i(x) 

having the constraint 

Vj>0, j = l , . . . , c - 1. 
This implies that the direction of the effect of a predictor x^ is the same for each 
pair of adjacent categories. For example, a given predictor has either uniformly 
positive or uniformly negative local log odds ratios with Y. 

For the ordered stereotype model, Anderson (1984) noted that the conditional 
distributions of Y are stochastically ordered according to the values of ß'x. Specif-
ically, the higher the value of ß'x, the more the distribution of Y tends to move 
toward the low end of the response scale. So, for a particular predictor **, a value 
of ßk > 0 means that the distribution of Y tends to move toward lower values as 
Xk increases. For the sign of ßk to be such that a positive value means a positive 
effect, the stereotype models can instead be expressed as 

log -±— = oij;- <j>jß x or l o g - —=ctj-Vjßx. 
nc(x) Xj+\W 

This parameterization parallels the parameterization logit P(Y < j) = aj — ß'x 
used in cumulative logit models [equation (3.8)] for the same purpose. 

In practice, even if {07} are monotone in the stereotype model, pairs of {0,} 
in fitting the ordinary model are often out of order because of sampling error. For 
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example, the standard error of 4>j+\ — 4>j may be on the same order of size as the 
difference φί+\ — φ^ unless the sample size is quite large. This is not uncommon 
for pairs of adjacent categories, which have relatively small distances between 
scores in the ordered stereotype model. 

4.3.4 Motivation for Stereotype Form of Model 

The stereotype model is an appealing way of obtaining model parsimony, yet 
permitting a more general model than the proportional odds form of adjacent-
categories logit model. But is there any way to motivate this model by a model for 
underlying latent variables? 

Anderson (1984) generalized a construction used to motivate binary logistic 
regression. Suppose that the conditional distribution of X, given that Y = j , is 
multivariate normal with the same covariance matrix for each j , that is, Nfaj, Σ). 
Then, by applying Bayes' theorem, conditional on x, the distribution of Y follows 
the baseline-category logit model with effects for logit j being 

β) = (jij - HC)'T-1. 

If the means follow a linear trend for some set of scores, possibly even nonmono-
tone, then (μ ■ - με)'Σ~ι has the form φφ' for certain scores. Then the stereotype 
model holds. If the linear trend has means with the same ordering as the indices, 
the ordered stereotype model holds. 

In proposing the stereotype model as an alternative to standard proportional odds 
models, Anderson (1984) argued that many ordinal scales are highly subjective 
and do not result from categorization of a univariate underlying latent variable, but 
rather, result from a subjective merging of several factors. For example, a physician 
who diagnoses the severity of a particular illness of a patient, with a scale such 
as (no illness, mild case, moderate case, severe case), probably takes into account 
many aspects of a physical examination and available medical tests in applying his 
or her stereotype of what it means for a patient's condition to be at each category of 
this scale. Anderson claimed that the stereotype model has greater flexibility than 
proportional odds models for capturing an inherently multidimensional response, 
and he proposed even more general stereotype models that are multidimensional. 

4.3.5 Interpreting Scores and Checking for Indistinguishability 

For the stereotype model (4.15), the log odds ratio comparing values u and u + 1 
of an explanatory variable xk in terms of whether the response occurs in category 
h or j equals 

P(Y = h | x, xk = u + \)/P(Y = j | x, xk = u + 1) 
° g P(Y = h\ x, xk = u)/P(Y = j | x, xk = u) m Ψ')ΡΙ" 

Hence, the association for these outcome categories is stronger when φι, and φ; 
are farther apart. Equally spaced {(/>;} implies uniform local conditional association 
for the various adjacent pairs. 
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When the stereotype model holds with φι, — φ], the pair of outcome cate-
gories h and j is said to be indistinguishable. This means that x is not predictive 
between the two categories, in the sense that log odds ratios equal 0 using those 
two categories and any pair of x values. Specifically, when φι, = φ^ from (4.15), 
log[nh(x)/nj(x)] = ah -ctj is a constant not dependent on x. In that case, the 
model still holds with the same [φ]} if the response scale is collapsed by combin-
ing those two categories. Indistinguishability of categories h and j in the general 
baseline-category logit model (4.14) corresponds to ßh = ßj. 

The stereotype model estimates how "close" adjacent response categories j and 
j + 1 are, based on how close φ} and 4>j+\ are. This is information not evaluated 
with cumulative logit models. For those models, the distance between {α7} param-
eters merely reflects the relative numbers of observations in the various categories. 

4.3.6 Stereotype Model for Two-Way Contingency Tables 

Let's look at what the stereotype model implies for two-way contingency tables. 
First, suppose that the single explanatory variable is binary. The model then applies 
to a 2 x c contingency table. Let JC = 1 for row 1 and x = 0 for row 2. The 
stereotype model (4.15) then simplifies to 

7tj(x) 
log-^—- =aj +φ]βχ, j = 1, ...,c- 1, 

nc{x) 

where φ\ = 1 for identifiability. The model has c — 1 {ary·} parameters, c — 2 {(/>7} 
parameters, and the β parameter, for a total of 2(c — 1) parameters. This equals 
the number of multinomial parameters for the two rows (c — 1 for each row). 
Thus, without any restrictions on {$;}, the model is saturated. The model has the 
same number of parameters as two multinomial distributions having unrestricted 
probabilities, so the model perfectly fits any 2xc contingency table. 

For this model, the log odds ratio for outcome categories j and c satisfies 

i ^Ay/new . a 
log — = ώίβ. 

S7r7(0)/7rc(0) ΨιΡ 

Consider now the ordered stereotype special case, for which 1 = φ\ > φι > · · · > 
φ€ — 0. For it, the log odds ratio is monotone in j and the model is no longer 
saturated. The local log odds ratio for outcome categories j and j + 1 equals 

i * ; ( ΐ ) /* ;+ιΟ) (Α Α so log,, iowrr—7W\ = (φί ~ φί+ύβ-nj(U)/nj+\(O) 

Thus, for the ordered stereotype model, all the local log odds ratios have the same 
sign as β. The model then is equivalent to the condition under which there is a 
uniformly positive association or a uniformly negative association for all the local 
log odds ratios. 
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Next suppose that the explanatory variable has r categories. When it is quanti-
tative, or ordinal with fixed scores {*,}, the stereotype model is 

log J =aj+(t>jßxi, j = l,...,c-\. 
nc{xj) 

When X{ = i represents the row number, the log odds ratio for the 2 x 2 table 
consisting of the cells in rows a and b and columns d and e equals 

ß(4>d-4>eKa-b), 

where <j>c — 0. The residual df = (r — 2)(c — 1) and the model is unsaturated when 
r > 2. With equally spaced {</>y·}, the model then implies uniform local odds ratios. 

When the explanatory variable is nominal, a set of r — 1 dummy variables can 
represent its categories, such as x-, = 1 for observations from row / and *,■ = 0 
otherwise. The stereotype model is then 

l o g - 1 - - =aj +φ]{β\Χ\ + l· ßr-lXr-l), j = 1 , . . . , C - 1. 
7TC(X) 

For this model, the log odds ratio for the 2x2 table consisting of the cells in rows 
a and b and columns d and e equals 

(<l>d-<t>e)<ßa-ßb). 

The strength of this association depends on the distance between the scores for the 
Y categories and the distance between the row effects for the X categories. The 
residual df = (r — 2)(c — 2) and the model is unsaturated when r > 2 and c> 2. 
This model with multiplicative form for the log odds ratios is equivalent to an 
association model for two-way contingency tables, called the RC model, presented 
in Section 6.5. 

4.3.7 Example: Boys' Disturbed Dreams by Age 

Anderson (1984) used the stereotype model to analyze Table 4.4, from a study that 
cross-classified boys by their age and by the severity of their disturbed dreams. 
Let xi be the age for row i, using the midpoint scores (6, 8.5, 10.5, 12.5, 14.5). 
Consider the model 

log ' ' = ctj + (fijßxi, j = 1,2,3, 

setting φ\ = 0 and φ^ = 1. The model has six parameters (a\, cti, «3, Φ2, 03, β) 
for the 15 multinomial probabilities. The deviance goodness-of-fit statistic is 9.7 
(df = 9), compared to 32.5 for the independence model (df =12) . 
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TABLE 4.4. Degree of Suffering from Disturbed Dreams, by Age 

Age 

5-7 
8-9 

10-11 
12-13 
14-15 

Not Severe (1) 

7 
10 
23 
28 
32 

Degree 
(2) 

4 
15 
9 
9 
5 

of Suffering 
(3) 

3 
11 
11 
12 
4 

Very Severe (4) 

7 
13 
7 

10 
3 

Source: A. E. Maxwell, Analysing Qualitative Data, Methuen, New York, 1961, p. 70. 

Anderson reported estimates for score parameters of 

01 = 1.0, 02 =0.19 (SE = 0.25), 03 = 0.36 (SE = 0.24), 04 = 0.0, 

and we find β = 0.31. Estimates 02 and 03 are out of order, relative to the ordering 
for the ordered stereotype model. Those two estimates are not far from 04 relative 
to their SE values. Anderson also considered the simpler model that constrains 

02 = 03 = 04. 

This simpler model has deviance 11.4 (df = 11), 1.7 higher than the model with 
unconstrained score estimates but with two fewer parameters. The ML estimate 
of β for this model is identical to the ML estimate of β for the binary logistic 
regression model 

log = a + ßxi. 
π2(χι) + n3(xi) + n*(Xi) 

That model has >S = 0.251 (SE = 0.058), indicating that the probability that a 
disturbed dream is not severe increases with age. 

Alternatively, we consider the special case of the stereotype model with equally 
spaced {07} severity scores. This is equivalently the adjacent-categories logit model 

log nJ{Xi) =aj+ßxi, y = l ,2 ,3 , 

with proportional odds form and a linear effect in the age scores. The deviance 
is 14.6 (df = 11), 4.9 higher (with two fewer parameters) than for the stereotype 
model with unconstrained score estimates. The model fit has ß = 0.097 (SE = 
0.024). The estimated odds of outcome in the less severe rather than the more 
severe of two adjacent categories multiplies by e0097 = 1.10 for each increase 
of a year in age. The estimated odds ratio comparing the not severe and very 
severe categories for a 1-unit increase in age is exp[3(0.097)] = 1.34, compared 
to exp(0.251) = 1.29 for the constrained model of the preceding paragraph. 

By comparison, the cumulative logit model of proportional odds form with a 
linear trend using the same age scores has deviance 12.4 (df = 11). The age effect 
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is ß = 0.219 (SE = 0.050). The estimated odds of outcome at the less severe end 
of the scale multiplies by e0219 = 1.24 for each additional year of age. If we do not 
assume a linear trend for the cumulative logits but, instead, use dummy variables for 
the categories of age (treating age as nominal scale), the resulting row effects type of 
model has deviance 7.1 (df = 8). The estimated row effects, using constraints that 
set the final estimate to be 0, are (-1.82, -1.92, -1.12, -1.14,0). This suggests 
an alternative way to collapse categories, this time for the age variable using age 
ranges of 5 to 9 (rows 1 and 2), 10 to 13 (rows 3 and 4), and 14 to 15 (row 5). 

4.3.8 ML Fitting of the Stereotype Model 

Although the stereotype model has the advantage of being more parsimonious than 
the ordinary baseline-category logit model with separate effects for each logit, a 
disadvantage is that it is multiplicative rather than linear in the parameters. That 
is, the predictor expression has <$>j and ß multiplied together. Because the pre-
dictor is not linear in the parameters, we cannot directly fit the stereotype model 
with standard software for generalized linear models. Complications also occur in 
conducting inference for the model parameters, as we discuss in Section 4.3.9. 

When {(f>j) are fixed, the model is linear in the parameters. This suggests an 
iterative two-step approach for fitting nonlinear versions of the model (Goodman 
1979a; Greenland 1994): Begin by selecting fixed values for {0y}. Then estimate ß 
(and {dj}) using ordinary ML fitting for baseline-category logit models, by taking 
predictor k in the model to equal 4>jXi<.. If you start with the equally spaced values 
\4>j = (c — j)/(c — 1)}, this corresponds to the fit of the proportional odds version 
of the adjacent-categories logit model. At the second step, treating the estimate ß 
of ß from the first stage as fixed and treating {<j>j} as unknown parameters, refit the 
model to estimate [φ]}. The predictor in the model is now ß x. This completes the 
first cycle of the iterative process. In the next cycle you treat the estimates {</>v·} from 
the end of the preceding cycle as fixed and again estimate ß, and then treat that 
estimate of ß as fixed to estimate {</>,·}. Iterations continue in this way, alternating 
between a step estimating {</>y·} and a step estimating ß, until convergence occurs. 
This process is not guaranteed to converge to the ML estimates, but it seems to do 
so when the model fits reasonably well. 

A disadvantage of this two-step fitting approach is that the standard errors that 
software reports at the final iteration for the estimates ß of ß are not valid. They 
treat {<pj} as fixed, whereas {07} were also estimated in one step of each cycle. 
Another approach fits the model, recognizing directly both ß and {(j>j} as parame-
ters by using an iteratively reweighted least squares algorithm that generates ML 
estimates (e.g., Holtbriigge and Schumacher 1991). 

Various software macros can fit the stereotype model. A useful one is the gnm 
add-on function to R for nonlinear models mentioned in the Appendix. 

4.3.9 Inference with the Stereotype Model 

The multiplicative nature of the stereotype model makes inference awkward. To 
illustrate, let's apply the model to r x c contingency tables. When the predictor is 
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quantitative or ordinal with row scores {*,}, the model is 

TtdXi) 
log J =cij +φ]βχί, j = l , . . . , c - 1. 

nc(xj) 

The null hypothesis of independence is HQ: β = 0. When the predictor is nominal 
with indicator variables {z,} for the rows, the model is 

log ^ T = aJ + W i Z i + ' ■' + ßr-iZr-i), y = 1 , . . . , c - 1. 

The null hypothesis of independence is HQ\ ß\ = ß2 — ■ ■ ■ = ßr_\ = 0. In both 
cases, the {<j>j} score parameters are not identifiable under HQ. Because of this, 
the standard conditions for likelihood-ratio test statistics to have approximate chi-
squared distributions are not satisfied. In fact, Haberman (1981) showed that the 
asymptotic null distribution of the likelihood-ratio statistic for testing independence 
in the case of the nominal model is the same as the distribution of the largest 
eigenvalue from a matrix having a Wishart distribution. 

For the stereotype model with β φ 0, it is possible to use ordinary methods 
to test the indistinguishability hypothesis for a subset of s < c categories, such as 
Ho : 4>h = 4>j for s = 2. The likelihood-ratio statistic has an asymptotic null chi-
squared distribution with df = s — 1. It is also possible to use a likelihood-ratio test 
to compare the model to its special case in which the scores are fixed. An example 
is comparing the stereotype model to the special case with equally spaced scores, 
which corresponds to the adjacent-categories logit model of proportional odds form. 
We conducted both these types of inference for the example in Section 4.3.7. It is 
also possible to compare the model to the general baseline-category logit model 
(4.14), when that model is unsaturated, to check whether the fit is poorer in using 
the more parsimonious stereotype model. The following example illustrates. 

4.3.10 Example: Back-Pain Prognosis 

Anderson (1984) used the stereotype model to analyze a back-pain study with 101 
subjects. The response variable was the assessment of back pain after three weeks 
of treatment using the six ordered categories (worse, same, slight improvement, 
moderate improvement, marked improvement, complete relief). The three explana-
tory variables observed at the beginning of the treatment period were x\ = length 
of previous attack (0 = short, 1 = long), x2 = pain change (three ordered cat-
egories scored 1 = getting better, 2 = same, 3 = worse), and x^ — lordosis, an 
inward curvature of a portion of the vertebral column (0 = absent/decreasing, 
1 = present/increasing). Table 4.5 shows the 2 x 3 x 2 x 6 contingency table. 

The stereotype model for the five baseline-category logits is 

7T/(x) 
log -L-— = aj + (pj{ß\x\ + ßix2 + /ß3X3), ;' = 1 , . . . , 5. 

π6(χ) 
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TABLE 4.5. Counts on y = Back Pain by xi = Length of Previous Attack, X2 = Pain 
Change, and X3 = Lordosis 

xi = 0 
X2 * 3 

1 0 
1 1 
2 0 
2 1 
3 0 
3 1 

1 

0 
0 
0 
0 
0 
0 

2 

1 
0 
2 
1 
0 
0 

Back Paina 

3 

0 
0 
3 
0 
0 
1 

Source: Anderson (1984). 

4 

0 
1 
0 
2 
0 
1 

5 

2 
3 
6 
0 
2 
3 

"From 1, worse to 6, complete relief. 

6 

4 
0 
4 
1 
2 
0 

X] 

1 
1 
2 
2 
3 
3 

= 1 
* 3 

0 
1 
0 
1 
0 
1 

1 

0 
0 
0 
1 
2 
2 

2 

0 
1 
3 
4 
2 
0 

Back Pain" 
3 

3 
0 
4 
4 
1 
2 

4 

0 
0 
5 
3 
5 
3 

5 

1 
3 
6 
0 
2 
0 

6 

2 
0 
2 
1 
0 
0 

Table 4.6 shows the ML parameter estimates reported by Anderson. The (0,·} are 
not monotone, but given the large SE values, it is not implausible that {$,} are. 

In considering the indistinguishability of categories, Anderson grouped the score 
parameters into three values, <j>\ = 1, fa = 03 = 04, and 05 = φβ = 0, essentially 
reducing them to a single unknown score parameter that has an ML estimate 
of 0.30 with SE = 0.13. For this simpler model, Table 4.6 also shows the ML 
estimates of the effect parameters. Since φ\ — 1 and 05 = 06 = 0, exponentiat-
ing a ßk value gives an estimated odds ratio for the odds of response "worse" 
instead of "marked improvement" or "complete relief." For example, for lordo-
sis present or increasing and fixed values of length of previous attack and pain 
change, the estimated odds of the response "worse" instead of "marked improve-
ment" or "complete relief were exp(1.05) = 2.86 times the estimated odds for 
lordosis absent or decreasing. The estimate is very imprecise, as the correspond-
ing Wald 95% confidence interval is exp[1.05 ± 1.96(0.47)], or (1.14, 7.18). Since 
02 = 03 = <t>4 = 0.30 and φ5 = φ6 = 0, exp(0.30#0 is an estimated odds ratio for 
the odds of the response "same," "slight improvement," or "moderate improvement" 
instead of the response "marked improvement" or "complete relief." For example, 
for lordosis present or increasing and fixed values of the length of the previous 
attack and pain change, the estimated odds of the response "same," "slight improve-
ment," or "moderate improvement" instead of the response "marked improvement" 

TABLE 4.6. ML Estimates for Stereotype Models Fitted to Back-Pain Data of 
Table 4.5 

Ordinary model 
Estimate 
SE 

Simpler model" 
Estimate 
SE 

4>\ 
1 

— 

1 
— 

"Sets 02 = 03 = 04 and 05 = 

02 
0.31 
0.13 

0.30 
0.13 

= 06· 

03 
0.35 
0.14 

0.30 
0.13 

04 
0.51 
0.17 

0.30 
0.13 

05 
0.14 
0.10 

0 
— 

06 
0 
— 

0 
— 

β\ 
2.63 
0.93 

2.79 
1.31 

ßl 
2.15 
0.75 

1.80 
0.74 

fr 
1.31 
0.51 

1.05 
0.47 
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or "complete relief were exp[0.30(1.05)] = 1.37 times the estimated odds for lor-
dosis absent or decreasing. 

Anderson and Phillips (1981) also fitted the cumulative logit model of propor-
tional odds form 

7Ti(x) + |-7Γ/(Χ) 
log —— - — = otj + jSixi + ß2X2 + ßixi, 7 = 1 5. 

π,·+ι(χ)Η + π6(χ) 

The effect estimates are fa = 1.515 (SE = 0.402), fa = 0.486 (SE = 0.265), and 
fa = 0.866 (SE = 0.374), with SE values based on the observed information 
matrix. According to this fit, for lordosis present or increasing and fixed values 
of the length of the previous attack and pain change, the estimated odds of the 
response "worse" instead of "same" or "improvement" or "complete relief were 
exp(0.866) = 2.38 times the estimated odds for lordosis absent or decreasing. 
The model has one fewer parameter than the simpler stereotype model (with 
02 = 03 = 04 and 05 = 06). According to a fit criterion such as AIC, the simpler 
stereotype model is preferred to this cumulative logit model. The maximized 
log-likelihood values are —159.0 for the cumulative logit model and —154.4 for 
the simpler stereotype model having only one additional parameter. However, 
this comparison must take into account that the simpler stereotype model was 
suggested by the fit of the ordinary stereotype model. That stereotype model is 
also preferred to the cumulative logit model according to AIC, as its maximized 
log likelihood is —151.6 with four more parameters (the difference being larger 
than the number of parameters). 

Another possible model is the simpler stereotype model with equally spaced 
{<pj}, which is equivalent to the adjacent-categories logit model of proportional 
odds form 

7T;(x) 
log -^—— = Ctj + faxX + ß2X2 + faX3-

The quality of fit is similar to the cumulative logit model, with a maximized log 
likelihood of -160.1. The effect estimates are fa =0.605 (SE = 0.180), fa = 
0.217 (SE = 0.116), and fa = 0.320 (SE = 0.162). The estimates and SE values 
are on the order of 40% of the size of those for the cumulative logit model. 
According to this fit, for lordosis present or increasing and fixed values of the 
length of the previous attack and pain change, the estimated odds of response in 
the worse instead of the better of two adjacent categories were exp(0.320) = 1.38 
times the estimated odds for lordosis absent or decreasing. 

Any of these models are much more parsimonious than a full baseline-category 
logit model having separate parameters for each logit (i.e., treating the response as 
nominal). Such a model has four parameters for each logit, a total of 20 parameters, 
compared to eight parameters for the cumulative logit or adjacent-categories logit 
model of proportional odds form (five <xj and three ßk), nine parameters for the 
simpler stereotype model, and 12 parameters for the ordinary stereotype model. The 
full baseline-category logit model does not give a significantly better fit than the 
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two stereotype models, as its maximized log likelihood of —149.5 is only slightly 
higher. 

4.3.11 Using Paired-Category Logit Models with Retrospective Studies 

Some studies, such as retrospective studies in epidemiology, sample X conditional 
on y instead of Y conditional on x. Such studies take subjects with certain values 
on y (such as having stage II of a certain cancer, stage I of the cancer, or no 
disease) and then observe x values that measure subject characteristics such as past 
smoking behavior. The sampling is then outcome-dependent sampling instead of 
independent multinomial sampling on Y. With outcome-dependent sampling, the 
effects are preserved and can be estimated for paired-category logit models, such 
as adjacent-categories logit models and stereotype models. That is, we can use the 
same estimates and SE values as we would obtain by treating the data as ordinary 
independent multinomial observations on Y. 

To illustrate, for the stereotype model, 

7T;(x) „, 
-L

7- = exp(o,· +φ]βχ), j = 1 , . . . , c - 1, 
7TC(X) 

suppose that the sampling fractions from the various categories of y are [f\, fi, ■ ■ ■, 
fc}. For the sampled population, the odds in terms of pairs of categories of Y are 

P(Y = j | x, sampled) _ fj exp(afj + (pjß'x)/ Y,k e*P(«* + <fo/3'x) 
P(Y = c | x, sampled) fcj J2k expfe + <l>kß'x) 

= exp(a* + φ}β'χ), 

where a* = a7 + log(/)//c) . The parameters for the effects of the predictors are 
preserved. Those effect parameters can be estimated consistently with outcome-
dependent data (but the intercept terms cannot be). This is not the case with 
models, such as cumulative logit models, that group outcome categories together. 
Mukherjee and Liu (2008) presented necessary and sufficient conditions for the 
link functions that allow for the equivalence of prospective and retrospective infer-
ence for multinomial models. They showed that the equivalence does not hold 
beyond paired-category logit models. For related work, see Greenland (1994) and 
Mukherjee et al. (2007, 2008). 

CHAPTER NOTES 

Section 4.1: Adjacent-Categories Logit Models 

4.1. Adjacent-categories logit models or models equivalent to them have been 
presented by Simon (1974), Andrich (1978, 1979), Goodman (1979a, 1983, 1991), 
Masters (1982), and Magidson (1996). See also Agresti (1992b) and Böckenholt 
and Dillon (1997) for modeling paired comparison data, Hirji (1992) for exact 
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small-sample inference, Lipsitz et al. (1996) for a test of fit patterned after the 
Hosmer-Lemeshow test for binary logistic regression, Sobel (1997) for specialized 
structure when there is a middle category, Hartzel et al. (2001a,b) for random effects 
models, and Agresti and Lang (1993b) and DeSantis et al. (2008) for latent class 
models. 

Section 4.2: Continuation-Ratio Logit Models 

4.2. Thompson (1977) used continuation-ratio logits in modeling discrete 
survival-time data. When the lengths of time intervals approach zero, his model 
converges to the Cox proportional hazards model. See also Section 5.3.3, Prentice 
and Gloeckler (1978), Fienberg and Mason (1979), Aranda-Ordaz (1983), Berridge 
and Whitehead (1991), Ten Have and Uttal (1994), Heagerty and Zeger (2000a), 
Hedeker et al. (2000), Albert and Chib (2001) for a Bayesian approach, Fahrmeir 
and Tutz (2001, Chap. 6.5), Tutz and Binder (2004), and Grilli (2005). For other 
applications of continuation-ratio logits, see Fienberg (1980, pp. 114-116), Cox 
and Chuang (1984), Läärä and Matthews (1985), Cox (1988), Armstrong and 
Sloan (1989), Tutz (1989, 1990, 1991), Berridge and Whitehead (1991), Ryan 
(1992), Barnhart and Sampson (1994), Greenland (1994), Joffe and Greenland 
(1995), Smith et al. (1996), Yee and Wild (1996), Lindsey et al. (1997), Scott et 
al. (1997), Coull and Agresti (2000), Guisan and Harrell (2000), Dos Santos and 
Berridge (2000), Kvist et al. (2000), Ten Have et al. (2000), Hemker et al. (2001), 
and Fu and Simpson (2002). 

4.3. The continuation odds ratios defined in Section 2.2.4 apply to a set of 2 x 2 
tables for which the likelihood-ratio (LR) statistic for testing independence in the 
r x c table partitions exactly into a sum of (r — \){c — 1) components. Each com-
ponent is the LR statistic computed for a 2 x 2 table. The (r — l)(c — 1) separate 
2 x 2 tables are 

nu 

Σ naj 
a > i 

b>j 

Σ, Σ nab 
a> i b> j 

for / = 1 , . . . , r — 1 and j = 1 , . . . , c — 1 (Lancaster 1949). Such partitionings do 
not apply to the other ordinal odds ratios presented in Section 2.2. 

Section 4.3: Stereotype Model: Multiplicative Paired-Category Logits 

4.4. The stereotype model has been discussed by Anderson (1984), Greenwood 
and Farewell (1988), DiPrete (1990), Holtbriigge and Schumacher (1991), Green-
land (1994), Joffe and Greenland (1995), Ananth and Kleinbaum (1997), Guisan 
and Harrell (2000), Lall et al. (2002), and Kuss (2006). See also references for 
the related multiplicative RC model for two-way contingency tables in Section 
6.5.2 and Note 6.7. Cox and Chuang (1984) proposed similar multiplicative logit 
models for contingency tables using baseline-category logits and cumulative logits. 
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Greenland (1994) described underlying processes for which he believed stereotype 
models are more natural than cumulative logit models. Johnson (2007) used it for 
discrete choice modeling of an ordinal response. Greenland (1994) suggested using 
the bootstrap to estimate valid standard errors. Kuss (2006) used PROC NLMIXED 
in SAS to fit the model with a quasi-Newton maximization method that uses finite-
difference methods for the first derivatives. This method gradually builds up an 
approximation to the matrix of second partial derivatives as the iterations proceed, 
and at convergence its inverse gives a valid estimate for the asymptotic covariance 
matrix. Yee and Hastie (2003) suggested another approach. 

EXERCISES 

4.1. For the row effects model (4.4), show that the sufficient statistics for {τ,} 
are sample means computed within the rows, using the column scores 
( l , 2 , . . . , c ) . 

4.2. If cumulative logit and adjacent-categories logit models with proportional 
odds structure both fit a data set well, explain why the parameter estimates 
from the cumulative logit model would probably be larger. Does this imply 
that it is easier for effects to achieve statistical significance with that model? 
Explain. 

4.3. Prove factorization (4.13) for the multinomial distribution. 

4.4. Summarize some advantages and disadvantages of the stereotype model com-
pared to the ordinary multinomial logit model using baseline-category logits. 

4.5. Analyze Table 4.1 with (a) a cumulative logit model and (b) a continuation-
ratio logit model. Compare and contrast results to those obtained in 
Section 4.1.5 using adjacent-categories logit models. 

4.6. Refer to Exercise 2.7. Analyze these data using methods of this chapter. 
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Other Ordinal Multinomial 
Response Models 

In Chapters 3 and 4 we presented several multinomial models for ordinal response 
variables that use the logit link function. Among these, most commonly used are 
the models for logits of cumulative probabilities in Chapter 3 that have proportional 
odds structure. 

For binary data, models can use link functions other than the logit. Best known 
of these is the probit model. Similarly, in the ordinal response case, other link 
functions are possible. In Section 5.1 we present a general model with a family of 
link functions for cumulative probabilities. Sections 5.2 and 5.3 cover two important 
special cases, with the probit link function and a log-log link function. In Section 5.4 
we present a further generalization to allow explanatory variables to have dispersion 
effects as well as location effects. In Section 5.5 we show how to apply such models 
to construct receiver operating characteristic (ROC) curves as a way of assessing 
diagnostic tests. 

Models using nonlinear link functions, such as the logit and probit, have the 
disadvantage that they can be difficult for nonstatisticians to understand and to 
interpret. In Section 5.6 we consider a simpler model for ordinal responses that 
assigns scores to the outcome categories and models the mean response directly as 
a linear function of the predictors. 

5.1 CUMULATIVE LINK MODELS 

Let h denote an arbitrary link function. The model 

h[P(Y <j)]=aj+ß'x, j = 1 c - 1 , (5.1) 

links the cumulative probabilities to a linear predictor. As in the proportional 
odds model (3.6), the effects of x in (5.1) are the same for each cumulative 
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probability, j = 1 , . . . , c — 1. We refer to this class of models as cumulative link 
models. 

In Section 3.3.2 we showed that the homogeneous effects assumption holds 
when a linear regression holds for a continuous latent variable Y*. Specifically, 
model (5.1) with — ß rather than +ß in the linear predictor results when Y is a 
discrete measurement of a latent variable Y* that satisfies the regression model 

Y*=ß'x + e, 

with e having a cdf of some standard form G. The link function h relates to G 
by h(u) = G~ ' (M) , that is, the inverse of the continuous cdf G. For example, the 
logit link function h{u) — log[«/(l — u)] is the inverse of the standard logistic cdf. 
Assuming that Y* has, conditional on x, a logistic distribution with constant vari-
ance leads to the cumulative logit model of proportional odds form. The parameters 
[otj} are category cutpoints on a standardized version of the latent scale. In this 
sense, cumulative link models are regression models, using a linear predictor p"x 
to describe effects of explanatory variables on ordinal categorical measurement Y 
of Y*. Using +ß rather than — ß in the linear predictor simply results in a change 
of sign of ß. 

5.1.1 Common Link Functions for Cumulative Link Models 

After the logit, the most commonly used link function for cumulative link models 
is the probit, which is the inverse of the standard normal cdf. Cumulative link 
models using the probit link function are called cumulative probit models. We 
study this model in Section 5.2. It results directly when the latent variable model is 
the standard regression model for which the conditional distribution of Y*, given 
the predictors, is normal with constant variance. 

Another useful link function is the complementary log-log link, log{—log[l — 
P(Y < j)]}, and the related log-log link, log{- \og[P(Y < j)]). Unlike the logit 
and probit links, these link functions are not symmetric. With a continuous predictor 
x, for example, P(Y < j) approaches 0 at a different rate than it approaches 1. 
These cumulative link models are presented in Section 5.3. 

Another symmetric link function, less commonly used, is the inverse of a 
Cauchy cdf, sometimes called the cauchit link. The Cauchy distribution has 
much thicker tails than the normal or the logistic. So this link function is 
appropriate when the conditional distributions of an underlying latent variable 
have a substantial chance of extreme values for y*, in either direction. This link 
function is tan[n[P(Y < j) — 0.5]} for the mathematical constant π. 

5.1.2 ML Estimation for Cumulative Link Models 

For subject i, let y,y = 1 if ;y, = j and let yij = 0 otherwise, i = 1 , . . . , n. Then 
E(Yij) = Kj(Xj), the probability that observation i with explanatory variable values 
x, falls in category j . McCullagh (1980) and Fahrmeir and Tutz (2001, pp. 76, 



120 OTHER ORDINAL MULTINOMIAL RESPONSE MODELS 

88-89) treated cumulative link models as multivariate GLMs: The multivariate 
distribution is the multinomial, and the link function h applies to a vector of means 
(n\(Xj),... , jrc(x,·)). As we explained in Section 3.2, we can also view this in 
terms of a composite link function. 

Let G — h~l denote the inverse link function for the cumulative link model, 
such as the standard normal cdf for the cumulative probit model. With independent 
observations, we obtain the likelihood function by substituting G(oij + /3'x,) for 
P(Y < j | x,) in the product of multinomial probability mass functions, 

Π Π»;<*>*' = Π Π 
i = l Lj=\ J 1 = 1 l 7 = 1 

P(Yi < j I x,·) - P(Yi <j-l\ «,·) 
ytj -

The log-likelihood function is 

n c 

L(a, β) = ΣΣ ytj logfGK+0'x<) - G(«y-i+0'*)]· 
i = l y = l 

Let g denote the derivative of G, that is, the probability density function corre-
sponding to the cdf G, and let Sjk denote the Kronecker delta, <57* = 1 if j = k 
and Sjk = 0 otherwise. Then the likelihood equations are 

3L Α,Α g{aj + β%) - gictj-i + fa) 

rK i = l y = l 
: G(aj + β'χι) - G(aj-i + β'χ,) 

dL _ y ^ V ^ Sjkgioij + jS'xi) - fy-uffta,·-! + ß'*i) __ 
dak i = l 7 = 1 

G(aj + β%) - G&j-i + ß%) 

McKelvey and Zavoina (1975) derived the information matrix for the cumulative 
probit model. Substituting G in place of their standard normal cdf yields this matrix 
for the general cumulative link model. Denote z,; = oij + ß'xj. Then the second 
partial derivatives are 

d2L 

dßk dße 

d2L 

dßk dote 

;—i ;—i I i = l 7 = 1 

f [G(zjj) - G(zij-\)][g(Zij-i)Zij-i - g(zjj)Zjj] 

[G(zu) - Gizij-ύ]2 

[g(Zjj-l) - g(Zjj)]2 

iG(zu) - Gizij-0]2 

= ΣΣχΐχι· 
(lg(Zij-\) - g(zij)][g(zjj)Sje - g(zjj-\)Sj-i,t] 

i = l 7 = 1 1 [G(zij) - Gizij-i)}2 

[G(Zjj) - G(zij-\)][g(Zij)zij&je ~ g(Zij-\)zij-\Sj-i,e] 
[G(zij) - G(Z/,,-_,)]2 
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dak dag ^—' *—' 
i = l 7 = 1 

ί [GjZjj) - G(ZiJ-\)][g(,Zi,j-\)Zi,j-\&j-l,k&j-l,l - g(Zij)ZijSjkSje] 
yU\ lG(zu) - Gizij-i)]2 

_ [g(zij)Sjk - g(zij-\)Sj-\tk][g(zij)Sje - g(zjj-iSj-\,e] 1 
[G(zu) - Gizu-i)]2 J' 

Replacing ytj in these terms by E{Yij) — [G(zij) — G(zij-\)] (i.e., the probability 
of category j for subject i) and taking negatives yields the expected information 
matrix. The inverse of this matrix, with parameters replaced by their ML estimates, 
is the estimated asymptotic covariance matrix of the parameter estimates. 

Unlike models using paired-category logits such as adjacent-categories logit 
models, the model does not have reduced sufficient statistics. Similarly, the likeli-
hood equations do not have the simple form of equating sufficient statistics to their 
expected values. For example, unlike adjacent-categories logit models, cumulative 
link models need not have fitted marginal counts for Y that are the same as the 
sample marginal counts. McCullagh presented a Fisher scoring algorithm for ML 
estimation. A unique maximum of the likelihood function occurs with sufficiently 
large n. Burridge (1981) and Pratt (1981) showed that the log-likelihood function 
is concave for many cumulative link models, including the models with logit, pro-
bit, and complementary log-log link functions. Because of the concavity, iterative 
algorithms converge rapidly to the ML estimates unless any estimates are infinite 
or do not exist. Remarks in Section 3.4.5 about infinite estimates for cumulative 
logit models also apply to the corresponding cumulative link models. 

5.1.3 Interpreting Effects on an Underlying Latent Response 

The interpretation of the effects ß in a cumulative link model depends on the link 
function h. For the logit link, for instance, Section 3.3.1 showed that ßk is the 
effect of a unit increase in xk on the log odds for each cumulative probability, 
controlling for the other predictors; thus, exp(/?*) is a cumulative odds ratio using 
any collapsing of the ordinal response for values of xk that differ by 1. 

Regardless of the link function, an alternative interpretation refers to the under-
lying latent variable model, for which 

Y* = ß'x + e, 

where e has a cdf of some standard form G. A unit increase in xk corresponds 
to an increase in E(Y*) of ßk, keeping the other predictor values fixed. The size 
of the effect is relative to the spread of the conditional distribution of Y*, which 
depends on the standard deviation of the cdf G. When Y* is scaled such that e has 
standard deviation σ, a 1-unit increase in xk corresponds to an increase in E(Y*) of 
ßk/σ standard deviations of the conditional distribution of Y*. Common values are 
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σ = π/\/3 for the standard logistic distribution for e and σ = 1 for the standard 
normal distribution. 

Alternatively, standardized effects can be expressed as multiples of the uncondi-
tional standard deviation of Y*, as is often done in ordinary regression. Assuming 
that e and the explanatory variables X are uncorrelated, the unconditional variance 
of Y* is 

/9'Var(X)0 + Var(e), 

where Var(X) denotes the covariance matrix of X. So the standardized coefficient 
is (Winship and Mare 1984) 

V/?'Var(X)j8 + Var(e)' 

Multiplying this standardized coefficient by the standard deviation of Xk gives a 
fully standardized coefficient for which effects refer to a standard deviation change 
in Xk- Such fully standardized coefficients can be useful for comparing effects of 
predictors having different units of measurement. 

5.2 CUMULATIVE PROBIT MODELS 

Denote the cdf of the standard normal distribution by Φ. This has an appearance 
very similar to the symmetric S-shape of the cdf for the logistic distribution with 
mean 0 and standard deviation 1. The cumulative probit model is 

4>-l[P(Y<j)]=aj+ß'x, j = l,...,c-l. (5.2) 

Some fields call it the ordered probit model. As in the proportional odds model 
with the logit link, the effect ß is the same for each cumulative probability. But 
it is not appropriate to call this model a "proportional odds" model because probit 
model interpretations do not apply to odds or to odds ratios. 

The cumulative probit model describes the cumulative probabilities directly as 

P(Y < j) = Φ(α; + ß'x), j = 1, · · ·, c - 1. 

For example, P(Y < j \ x) = \ for x values such that ctj + ß'x = 0, since Φ(0) = 
j is the probability that a standard normal random variable falls below 0. Similarly, 
since the central 68% of a standard normal distribution falls between —1 and 1, 
P(Y < j I x) = 0.16 for x values such that a} + ß'x = - 1 , and P(Y < j \x) = 
0.84 for x values such that ctj + ß'x = 1. 

In some fields that place strong emphasis on latent variable models, particularly 
econometrics, the cumulative probit model is more popular than the cumulative 
logit model. McKelvey and Zavoina (1975) gave expressions for the information 
matrix for the model. 
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5.2.1 Interpreting Parameters in Cumulative Probit Models 

The cumulative probit model (5.2) generalizes the binary probit model to ordi-
nal responses. It is implied by a model in which an underlying continuous latent 
variable Y* satisfies an ordinary regression model Y* = ß'x + e in which e has 
a normal distribution with mean 0 and constant standard deviation. The observed 
ordinal scale provides no information about variability for the underlying latent 
variable. So without loss of generality we can let the standard deviation of e be 1. 
(Recall that this latent variable model actually generates the cumulative link model 
with linear predictor oij — ß'x rather than ay + ß'x.) 

How can we interpret parameters in terms of a latent variable Υ*Ί Having the 
inverse standard normal cdf as the link function corresponds to a standard deviation 
for e that equals 1. This is also the conditional standard deviation for Y*. So for 
coefficient ßk of Xk, a unit increase in jt* corresponds to an increase in E{Y*) of 
ßk conditional standard deviations of Y*, keeping the other predictor values fixed. 

5.2.2 Comparison of Cumulative Logit and Cumulative Probit Models 

Because logistic and normal cdf s having the same mean and the same standard 
deviation look so similar, cumulative probit models and the corresponding cumu-
lative logit models fit well in similar situations. Whereas the standard normal 
distribution has mean 0 and standard deviation 1, however, the standard logis-
tic distribution has mean 0 and standard deviation n/y/3 = 1.81. Because of this, 
their ML estimates are not on the same scale. The standard normal cdf at a point z 
is well approximated by the standard logistic cdf at the point (15ττ/16\/3)ζ = 1.7z. 
Typically, ML estimates from cumulative logit models are about 1.6 to 1.8 times 
the ML estimates from cumulative probit models. 

The coefficient ßk of JC* in the cumulative logit model with linear predictor 
a7 — ß'x has the interpretation that a unit increase in Xk corresponds to an increase 
in E(Y*) of β^, keeping the other predictor values fixed, when Y* has standard devi-
ation 7T/ \ /3 . Thus, a unit increase in Xk corresponds to an increase of ßk/{n/sf3) 
standard deviations in the underlying response scale. For example, if ß = 0.345 
with a single quantitative predictor, as in the following example, a 1-unit increase 
in x corresponds to an increase of 0.345/(7r/V3) = 0.19 conditional standard devi-
ation in the mean of the underlying latent response. 

5.2.3 Example: Religious Fundamentalism by Educational Degree 

Table 5.1 cross-classifies subjects by their highest educational degree and by 
whether they are fundamentalist, moderate, or liberal in their religious beliefs. 
The table contains data from every GSS since 1972. (We use all the years in order 
to show some effects of having a very large sample size, n = 49,040.) 

Consider the cumulative link model with link function h, 

h[P(Y<j)}=aj+ßXi, 7 = 1,2, 
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TABLE 5.1. Data on Highest Educational Degree and Religious Beliefs, with 
Conditional Distributions on Religious Beliefs in Parentheses 

Religious Beliefs 
Highest Degree Fundamentalist Moderate Liberal 

Less than high school 4,913 (43%) 4,684 (41%) 1,905 (17%) 
High school 8,189(32%) 11,196(44%) 6,045(24%) 
Junior college 728(29%) 1,072(43%) 679(27%) 
Bachelor 1,304 (20%) 2,800 (43%) 2,468 (38%) 
Graduate 495 (16%) 1,193 (39%) 1,369 (45%) 

Source: General Social Survey. 

using scores {*,·} for the rows to treat educational degree in a quantitative man-
ner. Using the row numbers as the scores, ß = —0.206 (SE = 0.0045) with the 
probit link and -0.345(SE = 0.0075) with the logit link. From the logit model 
estimate, for each of the two cutpoints for the response variable, the estimated 
odds of response in the fundamentalist rather than the liberal direction multiply by 
exp(—0.345) = 0.71 for each category increase in highest degree. So the estimated 
cumulative odds ratio for comparing those with a graduate degree to those with less 
than a high school degree is exp[4(—0.345)] = 0.25. For example, the estimated 
odds of response fundamentalist rather than moderate or liberal for those with less 
than a high school education are 1/0.25 = 4.0 times the estimated odds for those 
with a graduate degree. 

Next we consider effects in terms of an underlying continuous latent variable 
for religious beliefs, with higher values corresponding to responses that are more 
liberal. The ß values for the logit and probit links with the a7 — ßxt parameteriza-
tion are positive. From the probit model estimate of ß — 0.206, for each category 
increase in highest degree, the mean of the latent response on religious beliefs is 
estimated to increase by about 0.21 conditional standard deviation of that underly-
ing scale. Similarly, since ß = 0.345 for the logit link, for each category increase 
in highest degree, the mean of the latent response on religious beliefs is estimated 
to increase by about 0.345/(7r/V3) = 0.19 conditional standard deviation of that 
underlying scale. 

For the unit-spaced scores for highest degree, the estimated standard deviation 
of that explanatory variable is sx — 1.144. The estimated unconditional standard 
deviation of the latent response variable is 

y/(ßsx)
2 + Var(e). 

This equals 1.11 for the probit link and 1.92 for the logit link. So the standardized 
effects of highest degree in terms of the unconditional variability of the latent 
response are (0.206)/1.11 = 0.185 for the probit link and (0.345)/1.92 = 0.180 
for the logit link. The estimated effect is similar for the two models. 

According to formal goodness-of-fit tests, both models show lack of fit. The 
deviance is 48.7 for the cumulative probit model and 45.4 for the cumulative 
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logit model (df = 7 for each, P < 0.0001). With such an enormous sample size, 
however, we expect a test of nearly any hypothesis to be statistically significant. 
We address below whether the lack of fit is also practically significant. 

The more general model that has row effects rather than a linear trend for the 
effect of educational degree, 

h[P(Y<j)]=aj+Th y' = l ,2, 

treats educational degree as a qualitative factor. Even with such a large n, this 
model fits adequately according to goodness-of-fit tests, with deviance 5.2 for the 
cumulative probit model and 2.4 for the cumulative logit model (df = 4). With the 
constraint τ$ = 0, the ML estimates of the row effects are 

f! = 0.83, τ2 = 0.56, τ3 = 0.46, τ 4 =0 .17 , τ5 = 0 

for the cumulative probit model, and 

fi = 1.39, f 2 =0 .94 , f3 = 0.78, r4 = 0.29, τ5 = 0 

for the cumulative logit model. For example, the estimated odds of response fun-
damentalist rather than moderate or liberal for those with less than a high school 
education are exp(1.39) = 4.0 times the estimated odds for those with a graduate 
degree. From the probit estimates, the mean of the underlying latent response on 
religious beliefs is estimated to be about 0.83 (conditional) standard deviation of 
that underlying scale lower (i.e., more fundamentalist) for those with less than a 
high school education than for those with a graduate degree. 

For the row effects model and the linear trend model, the estimates provide 
similar information. The estimates for the cumulative logit model are about 70% 
larger than those for the cumulative probit model. Even with such a huge sample 
size, the deviances cannot discriminate between the models and indicate that one fits 
and the other does not. The {£,·} for the row effects model are monotone decreasing 
for each link function but depart slightly from a linear trend as a function of the 
row numbers. Of the four pairs of adjacent categories for educational degree, the 
effects are a bit greater comparing less than high school and high school categories 
and comparing junior college and bachelor categories than comparing the other 
two pairs. In practical terms, though, the departure from a linear trend is not great. 
For simplicity, it is adequate to use the linear trend model even though it exhibits 
some lack of fit. 

5.3 CUMULATIVE LOG-LOG LINKS: PROPORTIONAL HAZARDS 
MODELING 

The type I extreme value distribution, sometimes called the Gumbel distribution, 
has cumulative distribution function 

G(y) = exp —exp (-̂ y 
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where a is a location parameter and b > 0 is a scale parameter. Its mode is a (the 
mean is a + 0.577b) and the standard deviation is 1.283b. The term extreme value 
refers to this being the limit distribution of the maximum of a sequence of inde-
pendent and identically distributed continuous random variables. The distribution 
is often used to model extremes, such as the highest level of a river at a particular 
location over a year period. 

The shape of the probability density function corresponding to this cdf is highly 
skewed to the right. Thus, the cdf approaches 1 at a much slower rate than it 
departs from 0, whereas the complement of the cdf approaches 1 at a much faster 
rate. The inverse of this cdf is the log-log link function. 

5.3.1 Complementary Log-Log Link Function 

An underlying extreme value distribution for a latent variable Y* implies a cumu-
lative link model for the observed ordinal response Y of the form 

log{- Iog[l - P(Y < j)]} = aj + ß'x. (5.3) 

This model applies the log(— log) link function to the complement of the cumu-
lative probabilities. The link function for the cumulative probability is called the 
complementary log-log link. 

With this link function, P(Y < j) approaches 1.0 at a faster rate than it 
approaches 0.0. This differs from models that use the probit or logit link function. 
For them, the link function h(u) is symmetric: For any 0 < P(Y < j) < 1, the 
link function applied to the cumulative probability satisfies 

h[P(Y < j)] = -h[\ - P(Y < j)], 

and P(Y < j) approaches 1.0 at the same rate as it approaches 0.0. For the related 
log-log link, which is log{— \og[P(Y < j)]}, P{Y < j) approaches 1.0 at a slower 
rate than it approaches 0.0. It is appropriate when the complementary log-log link 
holds for the categories listed in the reverse order. 

The model (5.3) with complementary log-log link function has the property 

P(Y > y|Xl) = [P(Y > j\x2)]
exp[ß'(x,~X2)]. 

For example, suppose that xi is identical to X2 except that Xk is increased by 1. 
Then 

P(Y > j | x with xk = x + 1) = P(Y > j \ x with xk = x)expißk). 

As xk increases with fixed values for other predictors, P(Y > j) increases or 
decreases according to whether ßk is negative or positive. The latent variable model 
actually implies that the model for Y has the form 

l o g { - l o g [ l - P ( r < . / ) ] ) = a ; - 0 ' x . 
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The sign of ß then reverses, so that positive β^ corresponds to increasing values 
of P(Y > j), as in the usual sense of a positive association. 

5.3.2 Example: Life Table for Gender and Race 

Table 5.2 shows the life-length distribution for U.S. residents in 2004, by race and 
gender. Life length uses five ordered categories. The underlying continuous cdf 
of life length increases slowly at small to moderate ages but increases sharply at 
older ages. This suggests the complementary log-log link function. This link also 
results from assuming that the hazard rate increases exponentially with age, which 
happens for an extreme value distribution. The distributions shown are estimated 
population distributions based on census data. Sample sizes were unspecified and 
the samples were probably not simple random samples, so we will not use formal 
inference methods. 

For gender g (1 = female; 0 = male), race r (1 = black; 0 = white), and life 
length Y, Table 5.2 also contains fitted distributions for the model 

log{- log[l - P(Y < j)]} = ctj + ßlg + ß2r. 

We obtained these by fitting the model to the estimated population distributions 
shown in the table. The model describes well the four distributions, as indicated by 
the closeness of the fitted distributions shown in Table 5.2. One way to summarize 
the difference between two such distributions is with the dissimilarity index, which 
is half the sum of absolute differences between the fitted and estimated population 
distributions. This index takes values 0.004, 0.003, 0.0035, and 0.005 for the four 
groups. Another indication of the good fit is that if the model had been fitted to 
multinomial samples of size 1000 for each of the four groups that had the same 
percentages as Table 5.2 shows, the deviance would equal 2.1. 

The fitted values correspond to model parameter values of ß\ = —0.538 and 
ß2 = 0.611. To interpret the gender effect, we note that the fitted cdf s satisfy 

P(Y > j | G = 0, R = r) = [P(Y >j\G = l,R= r)]exP(°538>. 

Given race, the proportion of men living longer than a fixed time equaled the 
proportion for women raised to the power of exp(0.538) = 1.71. Given gender, 

TABLE 5.2. Observed and Fitted (in Parentheses) Life-Length Distributions of U.S. 
Residents, as Percentages 

Gender 

Female 

Male 

Race 

Black 
White 
Black 
White 

0-20 

1.8(1.6) 
0.9 (0.9) 
2.6 (2.7) 
1.3 (1.5) 

Life Length 
20-40 

2.4 (2.7) 
1.3 (1.5) 
4.9 (4.6) 
2.8 (2.5) 

40-50 

3.7 (3.5) 
1.9 (1.9) 
5.6 (5.7) 
3.2 (3.3) 

50-65 

12.9(13.1) 
8.0 (7.6) 

20.1 (20.1) 
12.2 (12.3) 

>65 

79.2 (79.1) 
87.9 (88.0) 
66.8 (66.9) 
80.5 (80.4) 

Source: 2008 Statistical Abstract of the United States, U.S. Census Bureau, Washington, DC. 
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the proportion of blacks living longer than a fixed time equaled the proportion of 
whites raised to the power of exp(0.611) = 1.84. The ß\ and ß2 values (and the 
corresponding fitted distributions in Table 5.2) indicate that white men and black 
women had similar life-length distributions, that white women tended to have the 
longest lives, and that black men tended to have the shortest lives. If the probability 
of living longer than some fixed time equaled λ for white women, that probability 
was about λ1·8 for white men and black women and about λ3 5 for black men. 

The cumulative logit model of proportional odds form also fits this life table well. 
(The deviance equals 2.4 when the model is fitted to counts having the estimated 
population distributions and a sample size of 1000 for each group.) Its gender effect 
is —0.604 and its race effect is 0.685. So if Ω denotes the odds of living longer 
than some fixed time for white women, the estimated odds of living longer than 
that time are εχρ(-0.604)Ω = 0.55Ω for white men, εχρ(-0.685)Ω = 0.50Ω for 
black women, and exp(-0.604 - 0.685)Ω = 0.28Ω for black men. 

5.3.3 Proportional Hazards Model for Grouped Survival Times 

In studies of survival, sometimes the survival-time response is measured by 
grouping the time scale into ordered categories. In Section 4.2.7 we noted that 
continuation-ratio logit models can describe hazards functions for grouped survival 
data. A certain model using the complementary log-log link function is also useful 
for such data. In fact, models using that link function are sometimes referred to 
as proportional hazards models, because the model results from generalizing the 
proportional hazards model for survival data to handle grouped survival times. 

When a continuously measured survival time has probability density function / 
and cumulative distribution function F, the hazard function h, — f(t)/[l — F(t)] 
is the instantaneous risk function. Incorporating explanatory variables, denote 
the hazard function by h, when x = 0 and by h, (x) otherwise. The proportional 
hazards model is 

ht(x) — Λ, expQS'x). 

Equivalently, in terms of the survival functions S, — 1 — F(t) when x = 0 and 
S,(x) otherwise, 

5,00 = S^ß'x). 

Now, for discretely measured survival, let Sj = P(Y > j). As in Section 4.2, let 

wj = P(Y = j\Y>j) = l - ^ t L , j = 1 , . . . , c - 1. 

Incorporating explanatory variables and letting ω,- and Sj without arguments refer 
to x = 0, for the proportional hazards model, 

c , s r*xp(0'x) 
ω ( x ) = i _ £z±iW = j _ ^ ± L _ = i _ (i _ ω )«P«> '») . 

J Sj(x) 5exp(/!'x) *· J' 
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It follows that 

log[- log(l - a>j(x))] = ß'x + log[- log(l - eoj)] = ctj + ß'x 

with ofji= log[— log(l — ω7·)]· That is, the model applies the complementary 
log-log link to the conditional probabilities used in continuation-ratio logits. For 
further details and related results, see Thompson (1977), Prentice and Gloeckler 
(1978), McCullagh (1980), and Aranda-Ordaz (1983). Perhaps surprisingly, this 
model for the conditional probabilities {ω7·} is equivalent to one using the same 
link function but with cumulative probabilities (Läärä and Matthews 1985). 

5.3.4 Generalized Link Function Including Probit and Log-Log Links 

Genter and Farewell (1985) introduced a generalized link function that permits 
comparison of fits provided by various cumulative link functions. Their generalized 
link function corresponds to the inverse cdf for a log-gamma density, which depends 
on a parameter q such that the density is positively skewed when q < 0, negatively 
skewed when q > 0, and is the standard normal density when q — 0. Special cases 
of the link function include the probit (q = 0), the complementary log-log (q = 1), 
and the log-log (q = —1). 

The estimate q that maximizes the multinomial log-likelihood function provides 
an estimate of the best-fitting link function out of this generalized family. The test 
statistic for testing the adequacy of a particular link function equals double the 
difference between the maximized log-likelihood for the link function correspond-
ing to the ML estimate q of q and the maximized log-likelihood for the chosen 
link function. Because the model with particular q is a special case of the model 
with unspecified q, this statistic has a null asymptotic chi-squared distribution with 
df = 1. As long as observations do not fall mainly in only one or two categories, 
Genter and Farewell (1985) found that Var(^) tends to decrease as the number 
of outcome categories c increases and as the effect size increases, thus making it 
easier to discriminate among the various link functions. 

Suppose that we want to compare a particular pair of link functions, such as the 
probit and complementary log-log. The two models are not nested, so they cannot 
be compared with standard methods. However, if twice the difference between their 
maximized log likelihoods exceeds the appropriate percentile of the χ\ distribution, 
we can conclude that the link with the smaller maximized likelihood fits more 
poorly. This is because the likelihood-ratio statistic comparing that link to the link 
corresponding to q would have an even larger test statistic. Thus, using the xj* 
distribution for this evaluation is conservative. 

Unfortunately, the logit link is not a special case of this generalized link family. 
It is closely approximated by the probit link in this family. Lang (1999) proposed an 
alternative parametric family of link functions that includes the logit, log-log, and 
complementary log-log. He accomplished this by letting the cdf for the inverse link 
function be a mixture of the cdf s corresponding to these three link functions. He 
also considered a Bayesian analysis with this approach in which prior beliefs about 
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an appropriate link function could be combined with the data to obtain posterior 
information about an appropriate link function. 

5.4 MODELING LOCATION AND DISPERSION EFFECTS 

The cumulative link models studied so far in this chapter have the same effect for 
each cumulative probability. For this structure, settings of the explanatory variables 
are stochastically ordered on the response (recall Section 2.2.5): For any pair Xi and 
x2, either P(Y < j | x,) < P(Y < j | x2) for all j or P(Y < j | xj) > P(Y < j \ 
x2) for all j . This is not surprising, because the latent variable construction showed 
that the model holds when an underlying continuous response has the usual regres-
sion model structure with a constant variance. In that case, the distribution of the 
response at different predictor values differs in terms of location but not dispersion. 

5.4.1 Adding Dispersion Effects to the Cumulative Link Model 

When a cumulative link model fits poorly, often it is because the dispersion changes 
considerably at different predictor values. For instance, perhaps responses tend to 
concentrate around a similar location for Y at Xi as at x2 but more dispersion occurs 
at Xi. In other words, at xi the responses concentrate more at the extreme categories 
than at x2. Then it would not be surprising if P{Y < j | xi) > P(Y < j | x2) for 
small j but P{Y < j \ x{) < P(Y < j | x2) for large j . 

McCullagh (1980) generalized the cumulative link model to incorporate disper-
sion as well as location effects. With link function h, the model is 

a, - ß'x 
h[P(Y < j)] = J . , ,■ (5.4) 

exp(y x) 

The denominator contains scale parameters y that describe how the dispersion 
depends on x. This model arises from a latent variable model in which the distri-
bution of the latent variable has shape determined by h, such as normal for the 
probit link and logistic for the logit link. The latent variable has mean ß'x and 
standard deviation exp(y'x) that varies as x does. (We use the negative coefficient 
for the ß'x term here to emphasize the connection between ß'x and the mean for 
the underlying latent variable model.) 

The ordinary cumulative link model (5.1) is the special case of model (5.4) with 
γ = 0. Otherwise, at setting x, the cumulative probabilities tend to shrink toward 
their average when γ'χ > 0. This creates higher probabilities in the end categories 
for Y and overall greater dispersion. The cumulative probabilities tend to move 
apart, creating less dispersion, when y'x < 0. 

5.4.2 Comparing Two Groups with Location and Dispersion Effects 

Let's see how the cumulative link model for comparing two groups on an ordinal 
scale generalizes to permit dispersion effects. For this application, x consists of 
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a single binary predictor x represented by an indicator variable taking values 0 
and 1. Model (5.4) with link function h simplifies to 

h[P(Y<j)]=aj, * = 0 · 
a, - ß 

h[P{Y<j)\ = -L-7^r, JC = 1. 
exp(y) 

The parameter ß represents the difference between the means on the latent scale. 
The parameter exp(y) represents the ratio of standard deviations for the two groups 
on the latent scale. When γ > 0, the group labeled x = 1 has more dispersion on 
Y than the group labeled x = 0. 

To illustrate, consider the cumulative logit link. The case γ — 0 is the propor-
tional odds form of the model, in which β is a location shift that determines a 
common cumulative log odds ratio for all 2x2 collapsings of a 2xc table. When 
γ φ 0 the difference between the logits for the two groups, and hence the cumu-
lative odds ratio, varies as j does. 

Fitting model (5.4) is not straightforward, because it is not linear in the param-
eters. We can form the multinomial likelihood function by replacing response 
category probabilities by differences of cumulative probabilities, as in equation 
(3.13), then substituting h~x [(ccj — j8'x)/ exp(y'x)] for the cumulative probabilities. 
The appendix to McCullagh (1980) derived likelihood equations and the informa-
tion matrix. ML estimates can be obtained by using a nonlinear regression program 
to maximize the log likelihood, such as an iteratively reweighted Gauss-Newton 
algorithm (Cox 1995). 

5.4.3 Example: Coronary Heart Disease and Smoking 

In Section 3.6.5 we analyzed data on the relationship between the degree of coro-
nary heart disease and smoking status. Table 5.3 shows the data again. The rows 
are stochastically ordered, but a cumulative logit model of proportional odds form 
fits poorly (deviance = 40.5, df = 3). In Section 3.6.5 we found that a nonpropor-
tional odds model for which the cumulative log odds ratio changes linearly across 
the response categories fits much better (deviance = 3.4, df = 2). That model esti-
mated the cumulative log odds ratios as —1.02, —0.72, —0.42, and —0.12, close to 
the sample values of -1.04, -0.65, -0.46, and -0.07. 

TABLE 5.3. Smoking Status and Degree of Coronary Heart Disease, with 
Percentages for Response in Parentheses 

Smoking 
Status 

Smoker 
Nonsmoker 

0 

350 (22.6%) 
334 (45.2%) 

Degree of Coronary Heart Disease" 

1 2 3 

307 (19.8%) 345 (22.3%) 481 (31.0%) 
99(13.4%) 117(15.8%) 159(21.5%) 

4 

67 (4.3%) 
30 (4.1%) 

Source: Peterson and Harrell (1990), with permission. 
"0, no disease; 4, very severe disease. 
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The varying cumulative log odds ratios also reflect differing dispersion for 
the two groups. The cumulative logit model having both location and disper-
sion effects with indicator x — \ for smokers has ß = 0.657 (SE = 0.077) and 
γ — —0.308(SE = 0.054). Compared to nonsmokers, responses for smokers tend 
to be located more toward the severe end of the response scale and show somewhat 
less dispersion. This model has deviance = 6.8 (df = 2), a decrease of 33.7 from 
the model having only a location effect, for which β = 0.737. 

5.4.4 Example: Vision Quality for Men and Women 

Table 5.4 from Stuart (1953) shows data on assessment of right-eye vision for men 
and for women. From the percentages shown, men and women are not stochastically 
ordered. Relatively more men tend to fall at both the highest and lowest levels. 
Hence, a model having only a location parameter fits poorly. The cumulative logit 
model of proportional odds form with a binary indicator variable for gender has 
deviance = 128.4(df = 2). Its location parameter estimate of 0.038(SE = 0.039) 
seems to suggest a lack of difference between the groups. 

McCullagh (1980) and Cox (1995) analyzed the data with location and scale 
models. The special case of the cumulative logit model with a dispersion effect 
but with location effect β — 0 fits well (deviance = 2.6, df — 2). With an indicator 
variable that equals 1 for females, the estimate γ — —0.271 (SE = 0.025) reflects 
the smaller dispersion for the female responses. For an underlying continuous dis-
tribution of right-eye quality, the means seem to be similar for women and men, 
but the ratio of standard deviations is estimated to be exp(—0.271) = 0.76. 

5.5 ORDINAL ROC CURVE ESTIMATION 

Diagnostic tests are used to detect many undesireable medical conditions, such as 
a disease of a particular type. For example, some diagnostic tests use x-rays or 
other imaging devices such as the mammogram (for diagnosing breast cancer) and 
the MRI body scan. A diagnostic test result is called positive if it states that the 
disease is present and negative if it states that the disease is absent. The accuracy 
of a diagnostic test is often assessed by two conditional probabilities: 

sensitivity = P(positive result | disease present), 
specificity = P(negative result | disease absent). 

TABLE 5.4. Quality of Right-Eye Vision by Gender, with Conditional Distribution of 
Vision Quality in Parentheses 

Gender 

Males 
Females 

0 (Highest) 

1053 (32.5%) 
1976 (26.4%) 

Quality of Right-Eye Vision 
1 2 

782(24.1%) 893(27.5%) 
2256 (30.2%) 2456 (32.8%) 

3 (Lowest) 

514 (15.9%) 
789 (10.6%) 

Source: Stuart (1953), with permission of the Biometrika trustees. 
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The higher these two probabilities, the better the diagnostic test. A false positive 
occurs when the subject does not have the disease but the test is positive, which 
happens with rate 

false positive rate = P(positive result | disease absent) = 1 — specificity. 

5.5.1 Ordinal Sensitivity and Specificity 

Often, a diagnostic rating Y has an ordinal scale, such as 1 = definitely normal, 
2 = probably normal, 3 = equivocal, 4 = probably abnormal, and 5 = definitely 
abnormal. Let x be the indicator of actual disease status, with x = 1 when the 
disease is present and x = 0 when the disease is absent. If we regard outcome 
Y > j on the ordinal scale as being a positive response, then 

specificity = P(Y < j \ x = 0), sensitivity = P(Y > j \ x = 1). 

A receiver operating characteristic (ROC) curve is a graphical way to summa-
rize the performance of a diagnostic test. For various criteria for calling a diagnostic 
test result positive, the curve plots the false positive rate on the horizontal axis and 
the sensitivity on the vertical axis. For an ordinal response, the point on the ROC 
curve corresponding to the definition Y > j for a positive outcome has coordinates 

[1 - specificity, sensitivity] = [P(Y > j | x = 0), P(Y > j \x = 1)]. 

The ROC curve is constructed by plotting these points for j — 0, 1 , . . . , c. The 
curve connects the point (0, 0), which occurs for j = c, with the point (1, 1), 
which occurs when j = 0. For j between 1 and c — 1, the points usually all fall 
above the straight line connecting the points (0, 0) and (1, 1). If a point falls below 
that line, then for some definition of "positive," predictions are better by guessing 
randomly than by using the diagnostic test. 

5.5.2 Cumulative Link Models and ROC Curves 

Suppose that we use a cumulative link model 

h[P(Y<j)]=aj-ßx 

to describe the impact of x on Y, using data for which we can measure both 
variables. We use the negative coefficient for the ßx term here so that ß > 0 cor-
responds to having a greater likelihood of a positive response when the disease is 
present than when it is absent. 

Based on the model fit, the point for the ROC curve that is plotted when category 
j is the cutoff point for a positive outcome is 

[P(Y>j\x=0), P(Y>j\x = l)) = [l-h-1(aj), 1-A"1 ( « ; - £ ) ] · 
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For the logit link, for example, exp(ß) is the estimated odds of a positive response 
for a diseased patient divided by the estimated odds of a positive response for 
a nondiseased patient. This is true for each possible cutoff point for a positive 
outcome. Based on the model fit, the point for the ROC curve that is plotted when 
category j is the cutoff point for a positive outcome is 

[P(Y>j\x = 0), P(Y>j\x = l)] = 

For the probit link, 

[P(Y >j\x = 0), P(Y>j\x = 1)] - [1 - Φ («,·)■ 1 ~ Φ(ά; - ß)l 

In practice, rather than plotting only the c — 1 pairs of these estimated prob-
abilities for j = 1 , . . . , c — 1, a smooth curve is constructed by letting äj vary 
continuously over the real line for the given ß. With a symmetric link function h 
such as the probit or logit, for which h[P(Y < j)] = -h[\ - P(Y < j)], the ROC 
curve has a symmetric appearance. The curve approaches the point (1,1) with the 
same shape as it approaches the point (0,0), that is, symmetry about the line drawn 
from the top left to the bottom right of the graph. For the cumulative logit model 
of proportional odds form or the corresponding cumulative probit model, the ROC 
curve is necessarily concave when ß>0. 

Figure 5.1 shows the ROC curve for the cumulative probit model for four 
possible values of ß. For example, let aj = 0.0, for which the false positive rate 

0 J i — i — i — i — i — i — i — I — i — l — i — I — i — i — i — i — i — l — i 

0 0.2 0.4 0.6 0.8 1 

False positive rate 

l+exp(a,·)' 1+βχρ(ά,·-ο). 

Figure 5.1. ROC curves for cumulative probit model with four different disease indicator effects ß. 
(From Tosteson and Begg (1988), with permission of Sage Publications.) 



ORDINAL ROC CURVE ESTIMATION 135 

on the horizontal axis is 1 — Φ(0) = 0.50. Then the true positive rate on the vertical 
axis is 1 - Φ(-β) = Φ(β), which for β = (0.0, 0.5, 1.0, 2.0) equals (0.50, 0.69, 
0.84, 0.98). As β increases, reflecting a better diagnostic process, the area under 
the ROC curve increases. 

In addition to the disease indicator x, the model for the diagnostic rating Y can 
contain other explanatory variables that may have effects on the diagnosis, such as 
whether or not the patient has certain symptoms. Tosteson and Begg (1988) showed 
that the same ROC curves then result as when the model does not contain such vari-
ables, because the extra terms can be absorbed into the intercept term. Changing lev-
els for an additional predictor corresponds to movement along the ROC curve rather 
than creation of a new curve. For example, if a binary predictor is an indicator for 
two different raters, the effect of its coefficient is merely to translate by that constant 
the cutpoints for one rater relative to the other one. However, when the additional 
predictors include an interaction between an explanatory variable and the disease 
status variable, a different ROC curve occurs at each setting of those variables. 

5.5.3 Dispersion Effects and Area Under the ROC Curve 

More generally, the ROC curve can be based on a model that also includes disper-
sion effects, such as model (5.4), which is 

α, -β'χ 
h[P(Y < j)] = ' , ■ 

exp(y'x) 

Tosteson and Begg (1988) suggested that this generalized model produces shapes 
for ROC curves that better resemble sample ROC plots often seen in practice, 
such as curves that are not symmetric or even concave. They noted that for such a 
model fitted to radiologic data, the estimated dispersion term exp(y'x,·) for those 
with the disease often exceeds 1. That is, the spread of responses for diseased 
subjects (actual disease status x = 1) is greater than that for nondiseased subjects 
(disease status x = 0). This may reflect the fact that healthy physiology does not 
vary as much in its radiologic image as does abnormal physiology. 

Consider the special case of the generalized model with the probit link function 
and with the disease status indicator as the only predictor in both portions of the 
model, with location effect β and dispersion effect γ. Then the area under the ROC 
curve is 

area — Φ 

See Tosteson et al. (1994), who also derived a standard error for its ML estimate. 
When γ = 0, the area is Φ(β/*/2). When β = 0 also, the ROC curve is the line 
with intercept 0 and slope 1, and the area under the curve is 0.50. For fixed γ, 
the area under the ROC curve is monotone increasing in β, with limiting value 1 
as β -*■ oo. For fixed β, the area under the ROC curve is monotone decreasing 
in y, with limiting value 0.50 as γ —*■ oo. Let Y\ denote a random observation 
for a subject with the disease and Y2 a random observation for a subject without 
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the disease. Then the area under the ROC curve equals the value of the stochastic 
superiority measure a = P{Y\ > Y2) + \P{Y\ = Y2) introduced in Section 2.1.4 
(Bamber 1975). 

Including a covariate term in the dispersion part of the model has the effect of 
either raising the ROC curve or lowering it. Including interaction terms with the 
disease status and explanatory variables provides the flexibility of different shapes 
for the ROC curve. 

5.5.4 Example: Ultrasonography Cancer Detection 

Table 5.5, based on an example discussed by Tosteson and Begg (1988), refers 
to the use of ultrasonography in detecting the presence or absence of hepatitic 
metasteses in patients with primary cancers of either the breast or the colon. Let 
x\ be the indicator of hepatic metasteses (1 = yes, 0 = no) and let xi indicate the 
type of cancer (1 = breast, 0 = colon). The cumulative probit model 

a, — B\x\ — B2X2 — βι{χ\Χι) 
Φ[Ρ(Υ < j)] = ————ί-=-=— 

exp[yi*i + Y2X2 + ys(*i*2)] 

has the estimates shown in Table 5.6. Figure 5.2 shows the ROC curves for the 
two types of cancer corresponding to these estimates. The curve for breast cancer 

TABLE 5.5. Example of Ultrasound Rating Data for 
Breast Cancer and Colon Cancer 

Hepatic Tumor 
Metasteses Site 

No Colon 
Yes Colon 
No Breast 
Yes Breast 

1 

1 

47 
4 
6 
0 

Ultrasonography Rating 

2 

17 
1 
5 
2 

3 

2 
2 
2 
0 

4 

0 
2 
1 
2 

5 

0 
13 
0 
5 

Source: Based on an example described in Tosteson and Begg 
(1988). 

TABLE 5.6. ML Estimates for Cumulative Probit Models Fitted to Ultrasonography 
Data 

Original model 
Estimate 
SE 

Reduced model" 
Estimate 
SE 

ßl 

2.64 
0.85 

2.18 
0.47 

ft 

0.23 
0.24 

— 
— 

ft 

-0.74 
1.02 

— 
— 

Y\ 

1.81 
0.54 

1.26 
0.44 

h 

0.42 
0.38 

h 

-1.28 
0.69 

"Reduced model has location and dispersion effect only for hepatic metasteses indicator. 
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0.4 0.6 
False positive rate 

Figure 5.2. Estimated ROC curve for colon and breast cancer metasteses, based on cumulative pro-
bit model, including dispersion effect. (From Tosteson and Begg (1988), with permission of Sage 
Publications.) 

suggests that when its false positive rate is high, that rate may even exceed the 
true positive rate. 

The standard errors for the coefficients of X2 and x\xj in the location and scale 
parts of the model suggest that it may be adequate to use a simpler model with 
x\ alone in both parts, thus using the same curve for each type of cancer. This 
is verified by the likelihood-ratio statistic comparing the model fits, which equals 
6.5 with df = 4. The simpler model has deviance = 11.55 (df = 10), βι =2.18 
(SE = 0.47), and y = 1.26 (SE = 0.44). The positive γ estimate suggests that 
greater dispersion exists when hepatic metastases are present. 

5.6 MEAN RESPONSE MODELS 

In Chapters 3 to 5 we have introduced a variety of models for the outcome 
probabilities of an ordinal response. Cumulative link models apply link functions 
to cumulative probabilities. Adjacent-categories models and the stereotype model 
apply link functions to conditional probabilities, given occurrence in a pair of cate-
gories. Continuation-ratio models apply link functions to conditional probabilities, 
given occurrence above some category or given occurrence below some category. 
In this section we present a model that differs from models studied previously 
in that it describes a single summary of the outcome probabilities, the expected 
response, rather than the outcome probabilities themselves. The formula for the 
expected response resembles the ordinary regression formula for a quantitative 
response variable. 
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The model requires assigning monotone scores vi < vj < ■ ■ ■ < vc to the out-
come categories. At each fixed setting of explanatory variables x, let 

μ(χ) = Y^vjnjix) 
j 

denote the mean response on Y for those scores. The model 

μ(χ) = a + β'χ (5.5) 

assumes a linear relationship between the mean and the explanatory variables. We 
refer to this class of models as mean response models. 

5.6.1 Fitting Mean Response Models 

Assume that the observations on Y at different values of x,· are independent multino-
mial samples. Bhapkar (1968) and Grizzle et al. (1969) used weighted least squares 
(WLS) to fit mean response models. Since the outcome probabilities change as x 
changes, so does the variance of Y, and the WLS approach weights each sample 
mean by the inverse of its estimated variance. This requires all explanatory vari-
ables to be categorical, because many observations must occur at each predictor 
value in order to estimate the variance. In practice, this means that the overall 
sample size must be relatively large and the data cannot be sparse. 

The ML approach for maximizing the product multinomial likelihood is more 
general than WLS. It applies for either categorical or continuous explanatory vari-
ables, and it does not require a large sample. Haber (1985), Lipsitz (1992), and 
Lang (2004, 2005) presented algorithms for ML fitting of families of models that 
include mean response models. The fitting process is somewhat complex, because 
the probabilities in the multinomial likelihood function are not direct functions 
of the parameters in model (5.5). The ML fit produces estimated response prob-
abilities at each setting for the explanatory variables that maximize the product 
multinomial likelihood function under the constraint that they satisfy the model. 
Specialized software is available1 that can fit a very broad class of models that 
includes mean response models. 

5.6.2 Example: Political Ideology by Political Party and Gender 

We illustrate the mean response model using Table 5.7, from the 2006 General 
Social Survey. We model the mean of Y = political ideology using gender and 
political party identification. For simplicity, we use political ideology scores that 
are the category numbers. The sample means for the three party identifications 
(Democrat, Independent, Republican) are (3.54, 3.98, 4.96) for females and (3.52, 
4.01, 5.14) for males. For each gender, responses tend to be more conservative for 
Republicans than for the other two party IDs. 

'The mph.fit R function described in the Appendix, as illustrated at www.stat.ufl.edu/~aa/ordinal/ord. 
html. 
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TABLE 5.7. Political Party Identification and Political Views 

Party ID 

Democrat 
Independent 
Republican 
Democrat 
Independent 
Republican 

1 

42 
33 
5 

28 
20 

3 

2 

201 
87 
19 

120 
79 
12 

Political Views" 
3 

136 
107 
29 
89 

124 
26 

4 

320 
459 
177 
202 
362 
128 

5 

83 
123 
121 
51 

120 
107 

6 

63 
92 

183 
37 
90 

211 

7 

18 
19 
52 
10 
18 
47 

Total 

863 
920 
586 
537 
813 
534 

Source: 2006 General Social Survey. 
" 1 , extremely liberal; 2, liberal; 3, slightly liberal; 4, moderate; 5, slightly conservative; 6, conservative; 
7, extremely conservative. 

Let g be an indicator variable for gender (1 = females, 0 = males) and let 
p\ and p2 be indicator variables for political party identification (p\ = 1 for 
Democrats and 0 otherwise, p2 = 1 for Independents and 0 otherwise, p\ = p2 = 0 
for Republicans). The mean response model with main effects but no interaction 
has ML fit, 

μ = -5.081 - 0.063g - \.5\3pi - \M9p2. 

For a given political party, there seems to be essentially no difference in mean 
political ideology for males and females. For a given gender, the mean political 
ideology for Republicans is estimated to be about one category more conserva-
tive than for Independents and about 1.5 categories more conservative than for 
Democrats. 

The goodness-of-fit statistics are G 2 = 4 . 1 8 and X2 = 4.17. Since sample 
means occur at six party ID x gender combinations and the model has four 
parameters, the residual df = 2. The fit seems adequate (P-value = 0.12). The SE 
values are 0.040 for the g effect, 0.052 for the p\ effect, and 0.048 for the pj 
effect. In the population, we can be 95% confident that the difference between the 
mean political ideology for Democrats and for Republicans falls in the interval 
—1.513 ± 1.96(0.052) for each gender. This rounds to (—1.6, —1.4), quite close 
to 1.5 categories more liberal for Democrats. 

5.6.3 Advantages and Disadvantages of Mean Response Models 

Treating ordinal variables in a quantitative manner is sensible if their categorical 
nature reflects crude measurement of an inherently quantitative variable. In fact, 
we have seen that ordinal cumulative link models result from latent variable mean 
response models. Mean response models for ordinal categorical response variables 
provide yet another way of approximating ordinary regression models for latent 
response variables that we would ideally like to observe. 

Females 

Males 
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With c = 2, without loss of generality we can take v\ = 0 and i>2 = 1. The 
model then specifies that the probability in a particular outcome category is a linear 
function of the predictor variables. For binary outcomes, that model is called the 
linear probability model. With multiple predictors, such a model is rarely adequate, 
because of the restricted [0, 1] range for probabilities. Often, ordinary ML fitting 
fails, because the iterative process generates an estimated probability outside the 
[0, 1] range for at least one predictor value. 

With c>2, ML fitting of the mean response model can also have difficulties, 
because the mean response must fall between v\ and vc. In addition, the example 
in Section 1.3.3 illustrated that having upper and lower bounds for the observed 
response can cause floor effects and ceiling effects that bias the results. This tends 
to be less problematic as c increases and there is reasonable dispersion of responses 
over the c categories throughout the domain of interest for the explanatory variables. 
Fitting is most likely to encounter problems when a relatively high proportion of 
observations falls in category 1 or in category c of Y. 

With c > 2, the mean response model does not specify the response probabilities 
structurally but merely describes the dependence of the mean on x. That is, unlike 
models considered previously, specifying parameters for a mean response model 
does not uniquely determine cell probabilities. Thus, mean response models do not 
directly specify structural aspects, such as stochastic orderings. These models do not 
represent the categorical response structure as fully as do models for probabilities, 
and conditions such as independence do not occur as special cases. 

Although mean response models have these severe limitations, they have the 
advantage of providing simple descriptions. Effects are described by slopes or dif-
ferences between means instead of by odds ratios or parameters in cumulative link 
models. As c increases, mean response models also interface with ordinary regres-
sion models for quantitative response variables. For moderate to large c, the mean 
response model approximates results for the regression model that would be appro-
priate if we could measure Y in a truly quantitative manner, with ungrouped data. 

CHAPTER NOTES 

Section 5.1: Cumulative Link Models 

5.1. Other articles that discussed cumulative link models include Cowles (1996), 
Ishwaran and Gatsonis (2000), and Chen and Dey (2000) using MCMC meth-
ods for Bayesian model fitting. For latent variable modeling with a set of ordinal 
response variables for various link functions, see Bartholomew (1983) for an early 
review and Moustaki (2000) for later work. An alternative latent variable approach 
to deriving an ordinal model is based on maximizing random utility. Small (1987) 
presented this approach in the context of discrete choice modeling. Yee and Wild 
(1996) defined generalized additive models for ordinal responses. Such models are 
especially useful for smoothing ordinal response data having continuous explana-
tory variables without assuming linearity of effects. In Note 11.2 we refer to other 
ways of smoothing ordinal data. 
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Section 5.2: Cumulative Probit Models 

5.2 Early uses of the cumulative probit model were by Aitchison and Silvey 
(1957), Ashford (1959), Gurland et al. (1960), Bock and Jones (1968, Chap. 8.1), 
and Samejima (1969). Bock (1975, Sec. 8.1.6) and McKelvey and Zavoina (1975) 
motivated the model by the regression model for an underlying normal latent vari-
able, extending models of Aitchison and Silvey (1957) and Ashford (1959) for 
a single predictor. Later uses include Muthen (1984) for latent variable models, 
Tosteson et al. (1989) for a measurement error model, Agresti (1992a) for paired 
preference data, Becker and Kennedy (1992) for a graphical exposition, Hausman 
et al. (1992) for modeling transaction stock prices, Weiss (1993) and Kim (1995) 
for modeling a bivariate response, Saei et al. (1996) for modeling repeated mea-
sures of count data, Cowles (1996) using MCMC methods, Ronning and Kukuk 
(1996) for multivariate modeling assuming an underlying joint normal distribution, 
and Glewwe (1997) for a test of the normality assumption for the latent variable 
model. The notes for Chapters 10 and 11 list several references that deal with 
multivariate cumulative probit models. 

Section 5.3: Cumulative Log-Log Links: Proportional Hazards Modeling 

5.3 Farewell (1982) generalized the complementary log-log model to allow vari-
ation among the sample in the category boundaries for the underlying scale by 
letting exp(ai) vary among the sample according to a gamma distribution, with 
ctj — a\ the same for all subjects. This type of model relates to random effects 
models having random intercepts (Section 1.3) for which the variance component 
describes subject heterogeneity. Other articles in which proportional hazards mod-
els were discussed include Läärä and Matthews (1985), Nandram (1989), Barnhart 
and Sampson (1994), Crouchley (1995), Cowles (1996), Ten Have (1996), Hedeker 
et al. (2000), and Grilli (2005). 

Section 5.4: Modeling Location and Dispersion Effects 

5.4 Other articles in which modeling dispersion as well as location were con-
sidered include Nair (1987), Tosteson and Begg (1988), Tutz (1989), Hamada and 
Wu (1990), and Williams (2009). Cox (1995) presented a general model that con-
tains as special cases the cumulative logit model having dispersion effects and the 
cumulative logit model (3.15) allowing partial proportional odds. Cox proposed ML 
estimation with a nonlinear regression program using the Gauss-Newton method 
(such as PROC NLIN in SAS), employing constraints so that estimated cumula-
tive probabilities are not out of order. He presented several examples, including an 
alternative analysis of Table 5.3. 

Section 5.5: Ordinal ROC Curve Estimation 

5.5 For more details about using cumulative link models with location and dis-
persion terms to construct ROC curves, see Tosteson and Begg (1988) and Tosteson 
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et al. (1994). Lui et al. (2004) proposed methods for testing equality between two 
diagnostic procedures with paired-sample ordinal data that can be stratified by 
cases and noncases. One method is based on correctly identifying the case for a 
randomly selected pair of a case and a noncase, and the other is based directly 
on the sensitivity and specificity. Toledano and Gatsonis (1996) and Ishwaran and 
Gatsonis (2000) extended ordinal ROC curve analysis for data in which several 
raters analyze the same cases. Waegemana et al. (2008) discussed ROC analysis in 
a machine learning context. 

Section 5.6: Mean Response Models 

5.6 Articles that discussed mean response models for ordered categorical 
response variables include Yates (1948), Bhapkar (1968), Grizzle et al. (1969), 
Koch and Reinfurt (1971), Williams and Grizzle (1972), Koch et al. (1977), 
Meeks and D'Agostino (1983), Haber (1985), Agresti (1986) for an R2 measure, 
Agresti (1992), Lang et al. (1999) for comparing mean responses of multivariate 
ordinal data, and Haber (1985), Lipsitz (1992), and Lang (2004, 2005) for ML 
fitting. 

EXERCISES 

5.1. For the cumulative probit model Φ~ι[Ρ(Υ < j)] = α7 — β'χ, explain why a 
1-unit increase in x^ corresponds to a ßk standard deviation increase in the 
expected underlying latent response, controlling for other predictors. 

5.2. Refer to the example in Section 1.3.3. Generate 100 observations from the 
given latent variable model, which has E(y*) — 20 + 0.60.x - 40.0z. 

(a) Plot the data and fit the model using OLS. 
(b) Categorize y* into y using five categories, as in that example. Now 

using y as the response, fit the same model as well as the extended 
model allowing interaction, using OLS with the scores (1, 2, 3, 4, 5). In 
the interaction model, compare the slopes for the two levels of z. 

(c) Fit the ordinal probit model to y. Show how results compare to those 
for the model for y*, and show that there is actually no need for an 
interaction term. 

5.3. For cumulative link model (5.1), show that for 1 < j < k < c — 1, P(Y < k \ 
x) z= P(Y < j | x*), where x* is obtained by increasing the ith component 
of x by (oik — &j)/ßi· Interpret. 

5.4. A cumulative link row effects model for an r x c contingency table with a 
qualitative predictor is 

h[P(Y<j)]=aj+Th j = l,...,c-l. 
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(a) Show that the residual df = (r - l)(c - 2). 
(b) When this model holds, explain why independence corresponds to x\ = 

■ ■ ■ = xr and the test of independence has df = r — 1. 
(c) When this model holds, explain why the rows are stochastically ordered 

on Y. 

5.5. Let F\(y) = 1 — exp(—λν) for ;y>0 be a negative exponential cdf with 
parameter λ, and let F2{y) = 1 — exp(—μγ) for y > 0. Show the difference 
between the cdf s on a complementary log-log scale is identical for all y. Give 
implications for data analysis with an ordered categorical response variable. 

5.6. For a link function h, consider the model of form presented in Section 4.2, 

Α[ω,-(χ)] = a, + β,·χ, where ω,· = . 
1 π,- Η Ync 

(a) Explain why the fit of this model is the same when fitted separately for 
j — 1 , . . . , c — 1 or when fitted simultaneously. 

(b) For the complementary log-log link, show that this model is equivalent 
to one using the same link function for cumulative probabilities (Läärä 
and Matthews 1985). 

5.7. Using the logit link, fit the model (5.4) with location and dispersion terms 
to Table 3.8 from Section 3.5.6 in Chapter 3, for which the cumulative logit 
model of proportional odds form has lack of fit. Interpret. 

5.8. Table 5.8 summarizes observations of passengers in autos and light trucks 
involved in accidents in Maine in one year. The table classifies passengers 

TABLE 5.8. Passenger Observations 

Gender 

Female 

Male 

Location 

Urban 

Rural 

Urban 

Rural 

Seat Belt Use 

No 
Yes 
No 
Yes 
No 
Yes 
No 
Yes 

1 

7,287 
11,587 
3,246 
6,134 

10,381 
10,969 
6,123 
6,693 

Extent of Injury" 
2 

175 
126 
73 
94 

136 
83 

141 
74 

3 

720 
577 
710 
564 
566 
259 
710 
353 

4 

91 
48 

159 
82 
96 
37 

188 
74 

5 

10 
8 

31 
17 
14 
1 

45 
12 

Source: Cristanna Cook, Medical Care Development, Augusta, Maine. 
0 1 , not injured; 2, injured but not transported by emergency medical services; 3, injured and transported 
by emergency medical services but not hospitalized; 4, injured and hospitalized but did not die; 5, 
injured and died. 
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by gender, location of accident, seat belt use, and extent of injury. Find a 
cumulative link model that describes these data well. Describe the effects 
using estimated parameters from the model. 

5.9. Refer to Exercise 2.7. Analyze these data using methods of this chapter. 



C H A P T E R 6 

Modeling Ordinal Association 
Structure 

Our focus so far in this book has been on modeling a single ordinal response 
variable. The remainder of the book deals with bivariate and multivariate ordi-
nal responses. We focus next on the analysis of association between response 
variables, in this chapter using models and in Chapter 7 using non-model-based 
summary measures. When each response variable has the same categories, such as 
in longitudinal studies that measure a variable repeatedly over time, it is often of 
interest to compare and model the marginal distributions. In Chapter 8 we present 
ways of doing this and in Chapters 9 and 10 extend the analyses to more general 
models (such as including random effects), with emphasis on effects of explanatory 
variables. 

For joint distributions of categorical response variables, loglinear models 
describe the dependence structure. For example, loglinear modeling can analyze 
whether the association between a pair of variables is homogeneous across the 
categories of other variables, and if so, whether those variables are conditionally 
independent. In this chapter we assume familiarity with standard loglinear models 
for contingency tables. We introduce specialized loglinear models for ordinal 
response variables as well as other models not having loglinear structure that can 
describe ordinal association, such as models for global odds ratios. We refer to 
the models of this chapter as association models. 

6.1 ORDINARY LOGLINEAR MODELING 

Most of this chapter deals with modeling two-way contingency tables. Denote 
the observed cell counts by {n,-y·} and the expected cell counts by {μ^}. We 
assume a multinomial sample over the cells, with fixed sample size n and multino-
mial probabilities π,·7· = ßij/(J2a Σ έ ßab) = ßij/n. The ML estimates of loglinear 
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association and interaction parameters are identical to the ML estimates under the 
assumption that the cell counts are independent Poisson variates with expected 
values {μ,7}. Similarly, for inferential analyses about model effect parameters, 
equivalent results occur under the Poisson and multinomial sampling assumptions. 

6.1.1 Loglinear Models of Independence and of Association 

The loglinear model of statistical independence for an r x c table is 

\ogßU=X + X? + X]. 

For identifiability, the row and column terms satisfy constraints such as X* = XY = 
0. This model has residual df = (r — l)(c — 1). The general loglinear model that 
permits association is 

There are (r — l)(c — 1) linearly independent Xf-Y terms. For example, with the 
constraints that these association parameters equal 0 in the last row and in the last 
column, these parameters are log odds ratios for the 2x2 rectangular patterns of 
cells that use the cell in the last row and last column as a baseline, 

XfY = log 
ßicßrj 

This model is saturated, having as many parameters as cell count observations. 
Because of this, its residual df = 0 and {faj = nij}. 

This loglinear model and ordinary loglinear models for multiway contingency 
tables have a serious limitation—they treat all classifications as nominal. If the 
order of a variable's categories changes in any way, the fit is the same. For ordinal 
classifications, these models ignore the ordinality. The following example illustrates 
this point. 

6.1.2 Example: Astrology Belief and Educational Attainment 

In Section 3.2.5 we analyzed a 5x3 cross-classification from the 2006 General 
Social Survey on highest educational degree and opinion about astrology. Table 6.1 
shows the data again. Consider the loglinear model of independence. Table 6.1 also 
contains its ML fitted values {μ,;· = rij+n+j/n}. The statistics for testing goodness 
of fit are the likelihood-ratio (deviance) statistic, G2 — 107.6, and the Pearson 
statistic, X2 = 103.5, where 

χ2 = Σ Σ ^Μ and 02 = 2ΣΣηυ10^ (jU) 
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TABLE 6.1. Education and Belief About Astrology with Fit of Independence Model 
and Its Standardized Residuals 

Astrology Is Scientific 
Highest Degree Not At All Sort of Very 

< High school 98 (138.3, -6.4) 84 (56.5, 4.6) 23 (10.2, 4.4) 
High school 574(614.1,-4.0) 286(250.7,3.7) 50(45.2,1.1) 
Junior college 122 (114.7, 1.3) 44 (46.8, -0.5) 4 (8.4, -1.6) 
Bachelor 268 (226.7, 5.3) 57 (92.6, -4.8) 11 (16.7, -1.6) 
Graduate 148 (116.1,5.5) 23 (47.4, -4.4) 1 (8.5, -2.8) 

Source: 2006 General Social Survey. 

Under the null hypothesis of independence, each statistic has an approximate chi-
squared distribution with df = 8. The model fits poorly. Yet adding the ordinary 
association term makes the model saturated. 

Table 6.1 also contains standardized residuals for the independence model fit. 
In a particular cell, the standardized residual equals niy· — μ,·ν· divided by the esti-
mated standard error of that difference, assuming the independence model. The 
standardized residuals in the corners stand out. Their pattern indicates lack of fit 
in the form of a negative trend. Subjects who are more highly educated are less 
likely to think that astrology has some scientific basis. 

Models for ordinal variables use association terms that permit trends of this type. 
The models are more complex than the independence model, yet unsaturated. More-
over, the models have parameters that lead to simple descriptions of the association 
and that provide improved power in statistical inference for detecting effects. 

6.2 LOGLINEAR MODEL OF LINEAR-BY-LINEAR ASSOCIATION 

We first consider the case in which both variables in a two-way contingency table 
are ordinal. A simple model with just one more parameter than the independence 
model can describe a positive or a negative trend association between those vari-
ables. 

6.2.1 Bilinear Association Term and Ordinal Trends 

Let u\ < «2 < · · · < "r be ordered row scores and vi < vj < · · ■ < vc be ordered 
column scores. The model is 

log ßij = λ + λ? + λ] + ßUi vj, (6.2) 

with constraints such as λ* = λ^ = 0. This model is the special case of the general 
loglinear model in which the association term has the structured form, Xf? — 
ßuiVj. It uses only one parameter to describe association, whereas the general 
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model uses (r — l)(c — 1) parameters. Independence between the two variables is 
the special case in which ß = 0. 

The term ßiijVj represents the deviation of logμ,,-j from the independence pat-
tern. The deviation is linear in the Y scores {VJ} at a fixed level of X and linear in 
the X scores {κ,} at a fixed level of Y. In column j , for instance, the deviation is a 
linear function of X, having the form slope x score for X, with slope ßvj. Because 
of this property, model (6.2) is called the linear-by-linear association model. We 
abbreviate it by L x L. The model implies that the greatest departures from inde-
pendence are in the four corners of the table. Haberman (1974) introduced this and 
more general models by decomposing the association term kf? in a loglinear model 
into orthogonal components. Birch (1965) had suggested the linear-by-linear form. 
Goodman (1979a) was highly influential in investigating this and more general 
models introduced in Section 6.3, with scores that are themselves parameters. 

For the 2x2 table using the cells intersecting rows a and c with columns b and 
d, direct substitution shows that the model satisfies 

log ——— = ß(uc - ua)(vd - vb). (6.3) 
ßadßcb 

This log odds ratio is stronger as |/3( increases and for pairs of categories that are 
farther apart. The direction and strength of the association depend on ß. When 
ß > 0, Y tends to increase as X increases. Expected frequencies are larger than 
expected (under independence) in cells where X and Y are both high or both low. 
When ß < 0, Y tends to decrease as X increases. When the data display a positive 
or negative trend, the L x L model fits better than the independence model. 

6.2.2 Choice of Scores and the Local Odds Ratios 

The choice of row scores and column scores in the model affects the interpretation 
of ß. Simple interpretations result when U2 — u\ = ■ ■■ — ur — ur-\ and V2 — v\ = 
• · · = vc — vc-i. In that case the local odds ratios (2.4) for adjacent rows and 
adjacent columns all take the same value. Duncan (1979) and Goodman (1979a) 
called this case uniform association. Figure 6.1 portrays local odds ratios having 
uniform value. For unit-spaced scores such as {«, = /} and {VJ = j], the common 
local odds ratio equals e&. 

For quantitative variables for which possible values have been grouped into 
ordered categories, it is often sensible to choose scores that approximate distances 
between midpoints of categories for the quantitative scale. For example, if alcohol 
consumption is measured in terms of number of drinks per day using the categories 
(0, less than 1, 1-2, 3-5, 6 or more), scores such as (0, 0.5, 1.5, 4, 7) are sensible. 
Then ß represents the log odds ratios for unit distances in the X and Y directions. 
However, you do not need to regard scores as approximations for distances between 
categories or as reasonable scalings of ordinal variables for the model to be valid. 
The scores merely imply a certain pattern for the local odds ratios. If the L x L 
model fits well with equally spaced row and column scores, the uniform local odds 
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Figure 6.1. Uniform local odds ratios. 

ratio describes the association regardless of whether the scores are sensible indexes 
of true distances between categories. 

Two sets of scores having the same spacings, such as {u\ = 1, W2 = 2,1/3 = 3} 
and [u\ = — 1, M2 = 0, M3 = 1}, yield the same ML estimate ß, the same fitted 
values [ßij], and the same G2 and X2 values for testing fit. Two sets of scores 
with the same relative spacings (i.e., one set being a linear transformation of the 
other) yield the same fitted values but an appropriately rescaled ß. For instance, 
using row scores {«, = 2i] with {vj = j] yields the same fit as scores {w, — i] and 
ivj — j}> DUt ß ar>d its SE are both half as large. Any linear transformation of the 
scores has no impact on inferential results or on model goodness of fit. 

It is sometimes useful to standardize the scores, subtracting the mean and divid-
ing by the standard deviation of the scores for the table marginal distributions. 
Then the standardized scores satisfy 

and similarly with sample marginal distributions. Then β represents the log odds 
ratio for a standard deviation increase in each variable. If the marginal standard 
deviations for the original scores are σχ and σγ, and if β is the effect for the 
original scores and β* is the effect for the standardized scores, 

β* = β^χσγ. 

Often, it is sensible to regard the observed variables as crude measurement of 
underlying inherently continuous latent variables. The uniform association version 
of the L x L model tends to fit well when the underlying joint distribution is approx-
imately bivariate normal and the marginal cutpoints for forming the categories are 
equally spaced. For standardized scores, β* then approximates p*/[l — (p*)2], 
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where p* is the correlation between the underlying continuous variables. For weak 
associations, ß* « p*. See Goodman (1981a,b, 1985), Wang (1987, 1997), and 
Becker (1989b) for further elaboration of this connection. 

6.2.3 Corresponding Adjacent-Categories Logit Model 

A logit formulation of the L x L model treats Y as a response variable and X 
as explanatory. Let 7Τ;|, = P(Y = j | X — /'). Using logits for adjacent response 
categories (see Section 4.1) with model (6.2), 

log -J—- = log — '— = (λ)+1 - λ ' ) + ß(vj+i - Vj)iij. 

For unit-spaced {υν}, this simplifies to 

log M i = «,-+,,«,., 

where otj = λ^+1 — λ | . The same linear logit effect β applies simultaneously for 
all c — 1 pairs of adjacent response categories: The odds that Y = j + 1 instead of 
Y = j multiply by e? for each unit change in x. In using equal-interval response 
scores {vj}, we implicitly assume that the effect of x is the same on each of the 
c — 1 adjacent-categories logits for Y. This is the proportional odds structure for 
this logit model. 

6.2.4 L x L Model Fitting and Inference 

For independent Poisson sampling over the cells of a two-way contingency table, 
the kernel of the log-likelihood function is 

L (M) = Σ Σ nU l0S ̂ J ~ Σ Σ μν ■ 
' j i j 

This simplifies for the L x L model (6.2) to 

L(IL) = nk + J2 ni+k? + J2n+JkYJ + β Σ Σ! UiVini> 
i j ' j 

- Σ Σ ε χ Ρ( λ + λ? + λ̂  + ßuiVj). 
i j 

Differentiating L separately with respect to (λ^, λ^, β) and setting the three partial 
derivatives equal to zero yields the likelihood equations 

£/+ = ni+, i = l,...,r, μ+j = n+j, j - 1 , . . . , c, 
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Σ ΣMi "jfoj= Σ ΣΜ; ̂ '"y · 

Let pij = itij/n and Aij = μ,,/η. From the first two likelihood equations, £;+ = 
Pi+ and 7T+J = p+j for all / and j . That is, the marginal distributions and hence 
the marginal means and variances for the chosen scores are identical for the fitted 
and observed distributions. The third likelihood equation is 

Σ Σ"«w = Σ Σ u'vJPu-
' j i j 

Since the marginal distributions are identical for fitted and observed distributions, 
this equation implies that the correlation p between the scores for X and Y is also 
the same for both distributions. Let u = £,· κ,Ά'+ and v — J2j vjP+j denote the 
marginal sample means. The sample correlation p equals the covariance divided 
by the product of the sample standard deviations, 

p = EiEjJUi-Wj-VPij ( 6 4 ) 

J[Zi(ui-*)2Pi+][Ej(vj-*)2P+j] 

It falls between — 1 and + 1 . The larger p is in absolute value, the farther the data 
fall from independence in a linear dimension. The fitted counts display the same 
positive or negative trend as the sample data, substituting Ay for ptj in (6.4). 

Log-likelihood functions for loglinear models are concave, and the observed 
information matrix is identical to the expected information matrix. The 
Newton-Raphson iterative method, which for loglinear models is equivalent to 
Fisher scoring, yields the ML fit. This is easily implemented with software for 
generalized linear models, as the Appendix shows. 

An infinite estimate occurs for ß whenever either no pairs of observations are 
concordant or no pairs are discordant. Then the sufficient statistic J2i Σ ; ^i^jnij 
for ß takes its minimum or maximum possible value given the row and column 
marginal counts. This happens when all observations fall in one row and in one 
column, with each at the highest or lowest level of a variable. It also happens when 
all observations fall on a diagonal of the table. 

Since {«,·} and {υ,·} are fixed, the L x L model (6.2) has only one more parameter 
{β) than the independence model. Its residual 

df = re - [1 + (r - 1) + (c - 1) + 1] = (r - l)(c - 1) - 1 = re - r - c. 

The model is unsaturated for all but 2 x 2 tables. For large samples the Pearson 
X2 and deviance G2 statistics for testing the model fit by comparing {n,j} to 
the ML fitted counts {/t(J} have approximate chi-squared null distributions with 
df = re — r — c. 

Inference about the association parameter ß uses standard methods. Wald or 
likelihood-ratio confidence intervals for ß imply confidence intervals for odds ratios 
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such as local odds ratios. Significance tests of Ho: ß = 0 are tests of independence 
that take into account the ordinality of the variables. Let G2(I) denote the deviance 
statistic for testing the fit of the independence model, and let G2(L x L) denote the 
deviance for testing the fit of the linear-by-linear association model. The likelihood-
ratio test statistic for HQ: ß = 0 equals 

G2(I | L x L) = G2(I) - G2(L x L). 

Designed to detect positive or negative trends, it has an asymptotic null chi-squared 
distribution with df — 1. Alternative chi-squared test statistics are the Wald statistic, 
(jö/SE)2, and the score statistic, which equals (n — l)p2 for the sample correlation 
p between the scores for X and Y. (Section 7.3.4 presents the score test in a more 
general context.) For highly sparse data, another possibility is a bootstrap test using 
G2(I | L x L) for repeated samples from a multinomial with probabilities based on 
the fit of the independence model (Pettersson 2002). 

When the L x L model holds, the ordinal test using G2(I | L x L) is asymptot-
ically more powerful than the test using G2(I). This is because for a fixed degree 
of effect (technically, the noncentrality for the noncentral chi-squared asymp-
totic distribution), the power of a chi-squared test increases when df decreases. 
When the L x L model holds, the noncentrality is the same for G2(I | L x L) 
and G2(I); thus, G2(I | L x L) is more powerful, since it has df = 1 compared to 
df = (r — l)(c — 1) for G2(I). The power advantage increases as r and c increase, 
because the noncentrality remains focused on df = 1 for G2(I | L x L) but df also 
increases for G2(I). 

6.2.5 Example: Astrology and Education Revisited 

Now we continue analyzing Table 6.1 on highest educational degree and opinion 
about astrology. Table 6.2 shows the data again together with the fitted values 
for the linear-by-linear association model, using equally spaced scores for rows 
and columns. Table 6.3 shows software output. To obtain this, we added a quan-
titative variable to the linear predictor for the independence model having values 
equal to the product of row and column number (see the Appendix). Compared to 
the independence model, for which G2(I) = 107.6 with df = 8, the L x L model 
fits dramatically better, with G2(L x L) = 6.8 based on d f = 7 . Comparing to 
Table 6.1, the improved fit is especially noticeable in the corners of the table, 
where the model predicts the greatest departures from independence. 

With unit-spaced scores, ß — —0.390 (SE = 0.042). Subjects having higher lev-
els of education tend to see less scientific basis to astrology. Then exp(ß) — 
exp(—0.390) = 0.68 is the estimated common local odds ratio. The strength of 
association seems weak. From (6.3), however, nonlocal odds ratios are stronger. 
The estimated odds ratio for the four corner cells equals 

exp[/ß(M5 - Μ,)(υ3 - υ\)] = exp[-0.390(5 - 1)(3 - 1)] = 0.044, 
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TABLE 6.2. Education and Belief About Astrology with Fit of Linear-by-Linear 
Association Model 

Highest Degree 

< High school 
High school 
Junior college 
Bachelor 
Graduate 

Not At All 

98 (104.6) 
574 (567.3) 
122 (122.5) 
268 (268.2) 
148 (147.4) 

Astrology Is Scientific 
Sort of 

84 (78.4) 
286 (287.9) 

44 (42.1) 
57 (62.4) 
23 (23.2) 

Very 

23 (22.0) 
50 (54.8) 

4 (5.4) 
11 (5.4) 
1 (1-4) 

TABLE 6.3. Output for Fitting Linear-by-Linear Association Model to Table 6.1 

C r i t e r i o n 
D e v i a n c e 
P e a r s o n 

P a r a m e t e r 
I n t e r c e p t 
a s t r o 
a s t r o 
a s t r o 
d e g r e e 
d e g r e e 
d e g r e e 
d e g r e e 
d e g r e e 
uv 

C r i t e r i a For 

C h i - S q u a r e 

1 
2 
3 
0 
1 
2 
3 
4 

DF E s t i m a t e 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 

0 .3153 
- 1 . 5 5 8 5 
- 0 . 2 8 8 5 

0 .0000 
4 .3349 
4 .8562 
2 . 1 5 3 8 
1 .7679 
0 .0000 
0 .3898 

A s s e s s i n g Goodness Of 
DF 

7 
7 

S t a n d a r d 
E r r o r 
0 .4948 
0 .1453 
0 . 0 8 2 1 
0 .0000 
0 .4672 
0 .3656 
0 .2672 
0 .1559 
0 .0000 
0 . 0 4 2 1 

V a l u e 
6 .8389 
8 .0767 

Wald 

F i t 
Va lue /DF 

0. 
1 . 

95% 
C o n f i d e n c e L i m i t s 
- 0 . 6 5 4 4 
- 1 . 8 4 3 3 
- 0 . 4 4 9 5 

0 .0000 
3 .4192 
4 . 1 3 9 7 
1 .6301 
1.4623 
0 .0000 
0 .3073 

1.2850 
- 1 . 2 7 3 7 
- 0 . 1 2 7 6 

0 .0000 
5 .2506 
5 .5728 
2 . 6 7 7 5 
2 . 0 7 3 5 
0 .0000 
0 .4723 

LR S t a t i s t i c s For Type 3 A n a l y s i s 
S o u r c e 
a s t r o 
d e g r e e 
uv 

DF C h i - S q u a r e Pr > ChiSq 
2 158. 
4 939. 
1 100 

.75 

.71 

.77 

< . 0 0 0 1 
< . 0 0 0 1 
<-0001 

.9770 
1538 

C h i -
S q u a r e 

0 . 4 1 
115 .02 

1 2 . 3 5 

8 6 . 0 8 
176 .44 

6 4 . 9 8 
1 2 8 . 5 8 

8 5 . 7 5 

or 22.6 for the reciprocal odds ratio corresponding to reversing category order 
of one of the variables; that is, for subjects with less than a high school degree 
the estimated odds of believing that astrology is very scientific (versus not scien-
tific at all) are 22.6 times the estimated odds for those with a graduate degree. 
This odds ratio estimate also is the odds ratio using the corner-fitted values, 
(22.01 xl47.40)/(l 04.60 x 1.37) = 22.6. 

The 95% Wald confidence interval for the common local odds ratio e& is 
exp[-0.390 ± (1.96 x 0.042)], or (0.62, 0.74). The corresponding 95% confidence 
interval for the odds ratio for the four corner cells is exp[9(—0.390) ± 1.96 x 
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9(0.042)], or (0.023, 0.086). This is a strong association, perhaps more clearly 
portrayed by the corresponding confidence interval (11.7, 43.7) for the reciprocal 
corner-cells odds ratio. 

For testing H0: ß = 0, the likelihood-ratio statistic G2(I | L x L) = 107.6 -
6.8 = 100.8. The Wald statistic (/ß/SE)2 = (-0.3898/0.0421)2 = 85.7. For these 
equally spaced scores, the score statistic (n — \)p2 = 1792(0.2255)2 = 91.1. All 
three statistics show extremely strong evidence of an association (df = 1, P -value 
< 0.0001). 

For scores {vj = j], the marginal mean and standard deviation for opinion about 
astrology are 2.63 and 0.58. The standardized scores are {(j — 2.63)/0.58}, or 
(—2.81,-1.08,0.65). Unit-spaced scores for highest degree have standard deviation 
1.19, and the standardized equal-interval scores are (—1.38, —0.54, 0.30, 1.14, 
1.99). For these scores, the standardized association parameter estimate is ß* = 
-0.390(0.58)(1.19) = -0.267. By solving ß* = p*/[l - (p*)2] for p*, we find 
p* = —0.25. If there is an underlying bivariate normal distribution for the variables, 
we estimate the correlation to be —0.25, a relatively weak negative association. 

6.3 ROW OR COLUMN EFFECTS ASSOCIATION MODELS 

Generalizations of the linear-by-linear association model treat scores for the cat-
egories of a variable as parameters rather than as fixed by the data analyst. This 
approach provides estimated scores for which the fit is best. The extra flexibility 
of not needing to choose the scores seems advantageous, but it comes at a price. 
When the scores are parameters, then unless we place an order restriction on the 
parameters, the results are invariant to the category ordering. That is, if we refit 
the model after permuting the order of the categories in some way, we'll get the 
same fit with similarly permuted values of the estimated scores. Thus, the vari-
able is treated as nominal, and the model is less parsimonious. However, such a 
model with parameter scores for one of the variables is natural when one variable 
is nominal and one is ordinal. 

6.3.1 Row Effects Model for a Nominal-Ordinal Association 

Suppose that the row variable, X, is a nominal variable, and the column variable, 
Y, is ordinal. As in the L x L model, we represent the ordered columns with 
monotone scores, v\ < vi < · · · < vc. Since the rows are unordered, we represent 
them by parameters instead of scores. Replacing the ordered values {ßuj} in the 
linear-by-linear term ßuiVj in model (6.2) by unordered parameters {μ,}, 

log in, = X + Xf + X] + ßt vj. (6.5) 

Identifiability requires constraints such as λ* = λ^ = μΓ — 0. This model has r — 1 
more parameters (the {μ,}) than the independence model. Independence is the 
special case μ\ = ■ ■ ■ = μΓ. 
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Odds ratios describe the way that {μ,} determine the association structure. The 
log odds ratio comparing rows a and b for adjacent columns j and j + 1 is 

, ßajßb,j+l , ■., . 
log — = (ßb ~ ßa)(Vj+\ ~ Vj). 

ßa.j+lßbj 

For all j , such log odds ratios have the same sign as ßb — μα. So this model implies 
that the rows are stochastically ordered on their conditional distributions of Y. The 
stochastic ordering is determined by the {μ, }.\f μα> ßb, observations in row a tend 
to be higher on Y than are observations in row b. The greater the difference between 
μα and ßb, the greater the difference between the two conditional distributions. If 
ßa — ßb, the conditional distributions on Y are identical in rows a and b. For the 
unit-spaced scores {VJ+\ — Vj = 1}, the log odds ratio equals (ßb — μα) for each 
pair of adjacent columns. 

The [ßj] are row effects and model (6.5) is called a row effects model. A 
corresponding column effects model has association term κ,-υ,· that treats X as 
ordinal with fixed scores {M,·} and Y as nominal with parameters {v7}. 

6.3.2 Corresponding Adjacent-Categories Logit Model 

With {υ,·+ι — Vj — 1}, the row effects model has adjacent-categories logit form 
with proportional odds structure, 

log = a j + ßi- (6.6) 
6 P(Y = j\x = i) ' 

The effect in row i is identical for each pair of adjacent responses. 
Plots of these adjacent-categories logits against i (i = 1 , . . . , / ) for different j 

are parallel. This is model (4.4) proposed by Simon (1974) described in Section 
4.1.2, which Goodman (1983) called the parallel odds model. 

6.3.3 Model Fitting and Inference for the Row Effects Model 

The likelihood equations for the row effects model (6.5) are 

ßi+ — ni+, i =i,...,r, ß+j = n+J, j = 1 , . . . , c, 

and 
YjVjßij = YjVjnij, i = l , . . . , r . 

Regarding Y as a response variable and letting pj\i = nij/rii+, since μ,+ = n,+ 
the third likelihood equation can be expressed as 
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For the conditional distribution within each row, the mean score on Y is the same for 
the fitted distribution and the sample data. Although the {μ,} are row parameters 
and not means, variability among {μ;} represents variability among conditional 
means on Y in the population modeled. In fact, the ML estimates {μ,} necessarily 
have the same ordering as the the sample row means {M, — ]T\ VjPj\i] (Agresti 
et al. 1987a). 

The likelihood equations are solved using iterative methods such as the 
Newton-Raphson method. Since the model is loglinear, it is easily fitted with 
software for generalized linear models (see the Appendix). The G2 and X2 

goodness-of-fit statistics have large-sample chi-squared null distributions with 
d f = ( r - l ) ( c - 2 ) . 

Infinite estimates occur when the sufficient statistics {Λί,- = J \ . vjPj\i) f°r (M;) 
take their minimum or maximum possible values for the marginal counts observed. 
Specifically, μ.,· = — oo if all observations in row i fall in the first column, and 
μ,- = oo if all observations fall in the last column. 

6.3.4 Example: Happiness and Marital Status 

Table 6.4 displays the relationship between marital status and happiness for data 
from the 2006 General Social Survey. Goodness-of-fit tests show that the model of 
independence (I) is inadequate, with deviance G2(I) = 218.0 for df = 4 (P-value 
< 0.0001). The table also shows standardized residuals for the model. The count 
in the very happy category was much higher than independence predicts for those 
who are married and much lower than expected for the other two groups. 

Denote the independence model by I and the row effects model by R. Table 6.5 
shows output for the R model. Adding the row effects parameters dramatically 
improves the fit [G2(R) = 1.3, df = 2] compared to the I model. Testing inde-
pendence (//(,: μι = μ2 = Ma) using G2(I | R) = G2(I) - G2(R) = 216.7 (df = 2) 
provides extremely strong evidence of an association. Table 6.4 also shows fit-
ted values for the two models. The improved fit is noticeable in every cell, but 
especially in the cells for the very happy category. 

TABLE 6.4. Happiness and Marital Status, with Standardized Residuals for 
Independence Model in Parentheses" 

Happiness 
Marital Status Not Too Happy Pretty Happy Very Happy 

Married 93 (-9.6) 720 (-5.7) 600 (12.9) 
175.5*, 88.9f 794.3, 728.2 443.2, 595.9 

Divorced or separated 119 (6.5) 355 (2.4) 112 (-7.2) 
72.8,117.0 329.4,358.9 183.8,110.0 

Never married 127 (4.8) 459 (4.2) 144 (-7.9) 
90.7, 133.0 410.3,446.9 229.0, 150.0 

Source: 2006 General Social Survey. 
"The first entry (*) in each pair is the fit of the independence model; the second entry (t) is the fit of 
the row effects model. 
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TABLE 6.5. Output for Fitting Loglinear Row Effects Model to Table 6.4 

Parameter 
Intercept 
marital 
marital 
marital 
happy-
happy 
happy 
v*marital 
v*marital 
v*marital 

1 
2 
3 
1 
2 
3 
1 
2 
3 

DF 
1 
1 
1 
0 
1 
1 
0 
1 
1 
0 

Estimate 
5.0109 

-1.2939 
-0.0373 
0.0000 

-0.1202 
1.0914 
0.0000 
0.8910 

-0.0910 
0.0000 

Standard 
Error 
0.0733 
0.1724 
0.1871 
0.0000 
0.1190 
0.0727 
0.0000 
0.0772 
0.0892 
0.0000 

Like. Ratio 95% 
Confidence 
4.8645 
-1.6333 
-0.4044 
0.0000 

-0.3538 
0.9503 
0.0000 
0.7407 

-0.2659 
0.0000 

Limits 
5.1518 

-0.9573 
0.3292 
0.0000 
0.1129 
1.2356 
0.0000 
1.0435 
0.0837 
0.0000 

Wald 
Chi-Squa: 
4674.12 

56.33 
0.04 

1.02 
225.15 

133.08 
1.04 

The output uses indicator variables for the first two categories of each classi-
fication. The interaction term equals the product of the score for happiness and 
a parameter for marital status. Thus, the row effect estimates satisfy μ-} — 0, and 
the other two estimates contrast the married and the divorced/separated with those 
never married. The estimates are μ,\ = 0.891 and jxj = —0.091. The further Zu-
falls in the positive direction, the greater the tendency for the marital status i to 
locate at the very happy end of the happiness scale relative to those who have never 
been married. So those who are married have much more of a tendency to be very 
happy than the other two marital statuses, and those who are divorced/separated 
seem to be similar to those who have never been married. 

Loglinear models do not distinguish between response and explanatory variables. 
To treat happiness as a response, we could use the equivalent adjacent-categories 
logit model. From (6.6) the model predicts constant odds ratios for adjacent columns 
of happiness. For example, since £3 — μ,\ = 0.891, the estimated odds that the 
married were very happy instead of pretty happy, or pretty happy instead of not 
too happy, were exp(0.891) = 2.4 times the corresponding estimated odds for those 
never married. The 95% profile likelihood confidence interval for this odds ratio 
is [exp(0.7407),exp( 1.0435)] = (2.1,2.8). The estimated odds that the married 
were very happy instead of not too happy were exp[2(0.891)] = 5.9 times the 
corresponding estimated odds for those never married, with a 95% confidence 
interval (4.4, 8.1). 

6.3.5 Order-Restricted Row or Column Effect Parameters 

To treat a variable as ordinal, association models use fixed monotone scores. With 
parameter scores such as the {μ,} in the row effects model, the resulting ML 
estimates of scores need not be monotone. Variables with parameter scores are 
treated as nominal. 

Constrained versions of the models with parameter scores recognize the ordinal-
ity by maximizing the likelihood subject to order restrictions. For example, suppose 
that we want to treat the row variable as ordinal with the row effects model 

log ßij = λ + λ? + λ J + ßj vj. 
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We might prefer this model over the linear-by-linear association model if we prefer 
not to assign scores to the rows. To treat the rows as ordinal but with unspecified 
scores, we could fit the model subject to the ordering constraint 

Mi < μι < · ·■ < Mr-

Let {μ*} denote the ML estimates of {μ,·} subject to the ordering constraint. Agresti 
et al. (1987a) noted that the ML estimates {μ,} for the ordinary row effects model 
satisfy the constraint jx\ < £2 < · · · < fi-r if the sample conditional row means 
Mi = 52 ■ VjPj\i are monotone increasing. Otherwise, the order-restricted solution 
[μ*} corresponds to fitted values that have means {M*} such that M* = M*+l 

whenever μ* = μ*+ι. If the ordinary ML estimates {μ,,} satisfy the order restriction 
except for μα > μα+\, then {μ*} can be determined by combining row a and a + 1 
and refitting the model. If the resulting {μ*} are in proper order, that is the final 
solution. Otherwise, out-of-order rows are again combined and the model is refitted, 
continuing in this way until the order restriction is satisfied. (This fitting method 
employs the pooling adjacent violators algorithm, presented in Section 7.5.1.) 

Let G2(R*) denote the deviance for the fit of the order-restricted model to the 
original table. Let G2(R') denote the fit of the row effects model to the collapsed 
table for which rows are combined that have identical μ* order-restricted estimates. 
In addition, let G2(I) and G2(I') denote the deviances for the fit of the independence 
model to the original and collapsed tables, respectively. Then, Agresti et al. (1987a) 
showed that 

G2(R*) = G2(R') + [G2(I) - G2(I')] = G2(R') + £ G2(lk), (6.7) 
k 

where G2(L<) is the deviance for the fit of the independence model to the kth set 
of rows that are combined and that have identical order-restricted score parameter 
estimates. 

Goodman (1985) presented tests about equality of score parameters for mod-
els with row effects or column effects. His test statistics relate to goodness-of-fit 
statistics for order-restricted solutions. For example, to test Ηο'. μ,- = μ,+ι for the 
row effects model, Goodman proposed the test statistic 

T = [G2(I) - G2(R)] - [G2(I') - G2(R')], 

where Γ and R' refer to the collapsed table that combines rows i and i + 1. Under 
HQ, T has an asymptotic chi-squared distribution with df = 1. Now if the order-
restricted fit has strict inequality except for μ* = μ*+ι, then 

G2(R*) = G2(R') + [G2(I) - G2(I')] = G2(R) + T, 

so that 
T = G2(R*) - G2(R). 
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Suppose that the R model truly holds with strictly ordered parameter scores, 
μ\ < ß2 < · · · < ßr- Then G2(R*) has the same asymptotic distribution as G2(R): 
namely, chi-squared with df — (r — l)(c — 2). By contrast, suppose that μ\ < 
■ ■■ < μι = ßi+l < ■■■ < ßr. Then, with limiting probability 0.5 as n -> oo, the 
ML estimates are in order and G2(R*) = G2(R) has an asymptotic chi-squared dis-
tribution with df = (r - l)(c — 2). Also, with limiting probability 0.5 as n -*■ oo, 
ßi > ßi+\ and G2(R*) has an asymptotic chi-squared distribution with df — (r — 
l)(c —2) + 1. Thus, in this case, the limiting distribution is a mixture of two 
chi-squared distributions, which is a special case of a chi-bar-squared distribution 
(Section 7.5.1). 

6.3.6 Example: Boys' Disturbed Dreams Revisited 

Section 4.3.7 used the stereotype model (4.15) introduced in Section 4.3 to analyze 
a 5x4 data set (Table 4.4) from a study that cross-classified boys by their age 
and by the severity of their disturbed dreams. The model used midpoint scores (6, 
8.5, 10.5, 12.5, 14.5) for the five age levels and parameters for the four categories 
related to the severity of disturbed dreams. A related approach fits the column 
effects model, with parameters for the columns, 

log ßU = λ + kf + X Yj + Ui Vj. 

This model has G2(C) = 9.75 with df = 9. With constraint υ4 = 0, the ML esti-
mates of the column score parameters are 

0, = 0.309, v2 = 0.059, D3 = 0.112, D4 = 0.0. 

These suggest a negative trend in the association, with dreams tending to be less 
severe at greater ages, except for the out-of-order pair \>j < vj. 

Now suppose we assume that vj > V2 > V3 > V4 and conjecture that O2 < O3 is 
due simply to sampling error. This implies that boys of higher ages are stochas-
tically lower on severity of disturbed dreams. The order-restricted column effects 
model has 

Of = 0.309, i£ = O3 = 0.086, DJ = 0.0. 

The order restricted fit has G2(C*) = 10.13, very nearly as good as the unre-
stricted fit. If truly vi > V2 = V3 > V4, this fit statistic has asymptotic null dis-
tribution that is an equal mixture of chi-squared with df = 9 and df = 10, so 
the order-restricted model is plausible. The test of HQ\ VI = V3 has test statistic 
T = G2(C*) - G2(C) = 10.13 - 9.75 = 0.38, with df = 1. However, it is best to 
treat T as only an informal index, since Ho was suggested by the fit of the unre-
stricted model. The statistic does support the conjecture that the order violation 
may merely reflect sampling error. 

For this table the independence model fits poorly, having G2(I) = 32.46 with 
df = 12. The 5x3 table that combines columns 2 and 3 of the original table has 
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G2(I') = 30.97 and G2(C) = 8.64. The decomposition (6.7) in the context of col-
umn effects is 

G2(C*) = 10.13 = G2(C) + [G2(I) - G2(I')] = 8.64 + 32.46 - 30.97. 

6.3.7 Row or Column Effects Association as a Stereotype Model 

As mentioned, in Section 4.3.7 we analyzed Table 4.4 using the stereotype model. 
That model treated the severity of disturbed dreams as the response variable. In 
fact, the column effects model fitted above is equivalent to the special case of the 
stereotype model, 

log— =otj +<pjßui, j - 1,2,3. 

The parameter Vj in the column effects model corresponds to φ$ in the stereotype 
model. For the constraints <p\ — 1.0 and φ^ = 0.0 for the stereotype model, β = v\. 
The order-restricted column effects model is equivalent to the ordered stereotype 
model of Section 4.3.3. 

Alternatively, for these data we could use the simpler linear-by-linear association 
model with the same age scores and with equally spaced scores for severity. That 
model corresponds to the stereotype model with equally spaced {<t>j} and the same 
age scores. It has fit statistic G2 — 14.61, which is 4.86 higher (with two fewer 
parameters) than the unconstrained column effects model. The L x L estimate β = 
—0.097 (SE = 0.024) also shows the overall negative trend in the association. 
In yet another analysis, Gelfand and Kuo (1991) assumed stochastically ordered 
distributions on disturbed dreams at various age levels. 

6.4 ASSOCIATION MODELS FOR MULTIWAY TABLES 

We next study ways to describe association in multiway contingency tables. Multi-
way tables with ordinal responses can use generalizations of the association models 
presented in the two preceding sections. 

6.4.1 Homogeneous Conditional Associations 

Consider a three-way contingency table {«,·_,·*} with expected frequencies {μ.,7*}. 
The useful loglinear model 

log ßiJk =λ + λ?+ λ] + kl + k*r + λ*ζ + λ]ξ (6.8) 

permits a conditional association between each pair of variables. It has the structure 
of homogeneous association, whereby a particular odds ratio between two variables 
is the same at each category of the third variable. This model is often denoted by 
(XY, XZ, YZ), representing the fact that its minimal sufficient statistics are the 
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three sets of two-way marginal tables collapsed over the third variable. The model 
(XZ, YZ) of conditional independence between X and Y, given Z, is the special 
case in which {Xf? = 0). The more general model with a three-factor interaction 
term XfXz allows each conditional odds ratio to vary across categories of the third 
variable and is saturated. 

These loglinear models treat all the variables as nominal. Analogous models 
apply for higher-dimensional tables. By contrast, the rich collection of ordinal 
models includes association models that are more parsimonious than the model of 
homogeneous association and models permitting heterogeneous association that are 
unsaturated. 

6.4.2 Modeling Ordinal Conditional Associations 

In a three-way table, suppose that X and Y are ordinal. Models for the XY con-
ditional association that are special cases of the homogeneous association model 
(XY, XZ, YZ) replace the Xf? association term by a structured term that accounts 
for ordinality. The linear-by-linear term ßuiVj, row effects term μ,υ7, and col-
umn effects term UjVj, respectively, provide a stochastic ordering of conditional 
distributions within rows and within columns, within rows, and within columns. 

With a linear-by-linear term, the model is 

log ßijk =X + Xf +X] +Xf + ßuiVj+ xfk
z + X)l. (6.9) 

The conditional local odds ratios {eL·^ describing local XY association at a given 
value of Z [see (2.15) for sample values] then satisfy 

logÖ^|A = ß(ui+\ - Ui)(vj+i - vj) for all k. 

The association is the same in different partial tables, with homogeneous linear-
by-linear XY association. For equally spaced scores for X and for Y, there is 
homogeneous uniform XY association. For example, with unit-spaced scores, e& 
is the common value of all (r — l)(c — 1) local odds ratios in each partial table. 
This model has one more parameter than the model (XZ, YZ) of XY conditional 
independence. With K categories for Z, its residual df = K(r — \)(c — 1) — 1. 

When the association is heterogeneous, structured terms for ordinal variables 
make effects simpler to interpret than in the saturated model. For example, consider 
the heterogeneous linear-by-linear XY association model 

log μιμ = x + xf + xY
j+ xl + (ß + ßk)Ui vj + Xfk

z + XY
jk

z, (6.10) 

with a constraint such as βχ = 0. Such a model has linear-by-linear association 
within each level of Z, but the strength of the X Y association varies across levels 
of Z. With unit-spaced scores, the XY conditional local odds ratios satisfy 

\og9kk=ß+ßk for all ί and j . 



162 MODELING ORDINAL ASSOCIATION STRUCTURE 

Here ß represents the uniform local log odds ratio at level K of Z, and ßk rep-
resents the difference between the uniform local log odds ratio at levels k and K. 
Alternatively, we could parameterize the model by replacing ß + ßk by ßk. Then 
no constraint is needed and ßk is the uniform local log odds ratio in level k. Fitting 
this model is equivalent to fitting the L x L model (6.2) separately at each level 
of Z. With K strata, it has K more parameters than the model (XZ, YZ) of XY 
conditional independence. Its residual df = K[(r — l)(c — 1) — 1]. 

The models also generalize to describe association structure among several 
response variables, some of which are ordinal and some of which are nominal. A 
basic homogeneous association model uses a term of linear-by-linear form ßutVj 
for a pair of ordinal variables, a term of row-effects form μ, Vj for an association 
between a nominal variable and an ordinal variable (with parameters {μ,·} for the 
nominal variable), and a term of form λ,ν for an association between two nominal 
variables. 

6.4.3 Example: Income and Education by Race 

Table 6.6, from the 2006 General Social Survey, shows the relationship between 
/ — family income and E = education in the United States separately for black 
and white categories of race (/?). The loglinear model (IR, ER) of conditional 
independence between income and education, given race, fits poorly (G2 = 287.2, 
df = 8). 

Table 6.7 shows the results for several models that permit conditional associa-
tion. The homogeneous linear-by-linear El association model using equally spaced 
scores fits much better, with only one additional parameter. However, it shows some 
lack of fit (G2 = 23.0, df — 7). The heterogeneous linear-by-linear El association 
model fits only a bit better (G2 = 19.9, df = 6), with a stronger estimated local log 
odds ratio for black subjects (0.840) than for white subjects (0.577). However, it 
is also worth considering other models that have a lack of three-factor interaction. 
The homogeneous row effects model, using parameter scores {μ,} for education 
levels, has G2 = 18.6 (df = 6). The homogeneous column effects model, using 
parameter scores {υ,} for income levels, has G2 = 4.3 (df = 6). 

The homogeneous column effects model gives an excellent fit, the reduction in 
deviance compared to the conditional independence model being 282.8 at the cost 

TABLE 6.6. Educational Degree and Family Income, by Race 

Family Income, Black Family Income, White 
Below Above Below Above 

Highest Degree Average Average Average Average Average Average 

< High school 
High school, junior college 
College, grad school 

43 36 5 
104 140 23 
16 30 18 

114 97 12 
410 658 221 
97 259 287 

Source: 2006 General Social Survey. 
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TABLE 6.7. Goodness-of-Fit of Loglinear Models Fitted to Table 6.6 on Education 
(E), Income (I), and Race (R) 

Model 

El cond. indep. 
El homo. L x L 
/ effects homo. 
E effects homo. 
El hetero. L x L 
Homo, assoc. 

logMijt 

λ + λ* + λ} + λ* + λ™ + λ # 
X + Xf + X'j + XR + ßUi vj + xfk

R + XIR 

X + Xf + XJ+XR+UiVj+Xfk
R+X>* 

X + Xf + X'j + λ* + mvj + Xfk
R + X'jR 

X + Xf + X'j + XR + ßkUiVj + Xfk
R + X'jR 

X + Xf + X>+X« + Xf>+XfkK+X>x 

G2 

287.2 
23.0 
4.3 

18.6 
19.9 
2.8 

df 

8 
7 
6 
6 
6 
4 

of only two extra parameters. This model is 

log ixijk = λ + λ,£ + λ}. + λ* + uiVj + Xfk
R + X'jü. 

With education scores {κ, = i} and constraint V3 = 0, the column effect estimates 
are 0X = —1.668 (SE = 0.107) and v2 = -1.137 (SE = 0.095). Since {M,} are 
monotone increasing, the monotone increase in {VJ} reflects the positive associ-
ation between education and income, controlling for race. The estimated local 
log odds ratios are about half as large for columns 1 and 2 as they are for 
columns 2 and 3. The estimated odds that income is above average instead of 
average are multiplied by exp( 1.137) =3 .1 for each category increase in edu-
cation. By contrast, the estimated odds that income is average instead of below 
average are multiplied by exp(1.668— 1.137) = 1.7 for each category increase 
in education. The estimated odds ratio for the four corner cells in each partial 
table is exp[(w3 — u\)(vi — v\)] — exp[2(1.668)] = 28.1, reflecting a very strong 
conditional El association. 

6.4.4 Testing Conditional Independence in Three-Way Tables 

In many studies, a major focus is whether the association between two variables 
disappears after controlling for other variables. In testing the hypothesis of condi-
tional independence between X and Y when one or both are ordinal, models can use 
terms that reflect an expected ordinal feature such as trend. We then test whether a 
model parameter equals 0 under which conditional independence occurs. The test 
statistic could be a likelihood-ratio statistic, Wald statistic, or score statistic. When 
such models fit relatively well, the tests are more powerful than tests that ignore 
the ordinality, such as tests comparing models (XZ, YZ) and (XY, XZ, YZ). In 
Section 3.7.3 we presented such tests using cumulative logit models. Alternatively, 
we could use association models as the basis for such tests. 

When both X and Y are ordinal, we can compare the conditional independence 
model (XZ, YZ) to the homogeneous linear-by-linear XY association model (6.9). 
Tests of ß = 0 in that model have df = 1. To allow the conditional association to 
vary among the strata, we could, instead, compare the conditional independence 
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model to the heterogeneous linear-by-linear association model, (6.10), the test hav-
ing df = K. Unless the association truly varies substantially, being positive for 
some strata and negative for others, this test tends to be less powerful than the test 
of ß = 0 for model (6.9) because of its greater df value. 

When X is nominal and Y is ordinal, we could assign scores {vj} to Y and fit 
the model 

log ßijk = λ + λ? + λ] + Xf + ßiVj + kfk
z + XY

jk
z. (6.11) 

This homogeneous row effects model uses the same {μ,,} in each stratum. Condi-
tional independence is Ηο'. μι = · · ■ — μΓ· The asymptotic chi-squared distribution 
has df = r — 1. 

6.4.5 Generalized Cochran-Mantel-Haenszel Tests for r x c x K Tables 

With binary X and Y, a popular test of XY conditional independence for 2x2xK 
contingency tables {«,;*} is the Cochran-Mantel-Haenszel (CMH) test. The test 
statistic sums over the strata the difference between « m and its expected value 
under the null hypothesis of conditional independence, conditional on the marginal 
totals for each stratum. 

Mantel (1963) generalized the CMH statistic for ordinal X and Y. With ordered 
scores {«,·} and {vj}, it is sensitive to a correlation of common sign in each stratum. 
Evidence of a positive trend occurs if in each stratum 7]t = 5Z, £ , · u· vjn'jk exceeds 
its null expectation. Given the marginal totals in each stratum, under conditional 
independence 

E(Tk) = 

Var (Tk) = 

(Σ,- Ui"i+k) ( Σ 7 · vjn+jk) 

n++k 

n++k - 1 n++k 

Σ* 

sr 2 (Σ;";"ί+0 
yu^i+k 
*-^ n , , i. . / 

(Σ7· vjn+jkj 

n++k 

The statistic [Tk — £(7]fe)]/[Var(7Ä:)]1/2 equals Vn++* _ 1Ä f° r the sample corre-
lation f>k between X and Y in stratum k. To summarize across the K strata, Mantel 
proposed 

M2 = 
| Σ * [Σ,- Σ] UiVjHijk - E (Σ , - Σ] «iWy"y*)J j 

Σ ^ (Σ,-Σ,-ΗΙ·";"/;*) 
(6.12) 

This has an approximate xf null distribution [see also Birch (1965)]. 
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Landis et al. (1978) further generalized the CMH statistic to include M2 and 
statistics for which one or both variables can be nominal. The tests treat X 
and Y symmetrically. Conditional on row and column totals, each stratum has 
(r — l)(c — 1) nonredundant cell counts. Let 

Π* = ( « l i t , «12*. · · · . «l,c-l,*> ■■■, «r- l ,c- l ,<t ) ' · 

Let ßk = E(nk) under HQ: conditional independence: namely, 

/** = («l+(fc« + U> nl+kn+2k, · . · , rtr-l,+,i<:«+,<—U)7n++*· 

Let V* denote the null covariance matrix of η*, where 

ni+k(&ii'n++k - nj>+k)n+jk(8jj>n++k - «+/*) 
Cov (nijk,ni>j>k) 

n2
++k(n++k - 1) 

with Sab — 1 when a = b and Sab = 0 otherwise. Let B* = u* ® v* denote the 
Kronecker product matrix of constants based on row scores u* and column scores 
v,t for stratum k. The generalized statistic is 

L2 = ^ B i ( n * - iik) ΣΒ*ν*Β* 
L it 

]ΓΒ*(η* -lik). 

Suppose that u^ = (u\,..., ur) and v* = (v\,..., vc) for all strata. Then L2 = 
M2. Suppose that u^ is an (r — 1) x / matrix (I, —1), where I is an identity matrix 
of size (r — 1) and 1 denotes a column vector of r — 1 ones, and v* = (υ ι , . . . , uc). 
Then L2 sums over the strata information about how r row means compare to their 
null expected values, and it has df = r — 1. That statistic treats X as nominal and Y 
as ordinal. Rank score versions of these statistics are analogs for ordered categorical 
responses of strata-adjusted Spearman correlation and Kruskal-Wallis tests. The 
generalized CMH tests are available in some software, such as PROC FREQ in 
SAS (see the Appendix). 

6.4.6 CMH Tests and Related Score Tests for Models 

The generalized CMH tests seem to be non-model-based alternatives to tests using 
models. However, a close connection exists between them. For various models, 
the generalized CMH tests are score tests about XY association parameters, just 
as the ordinary CMH test for 2x2xK tables is a score test for the homogeneous 
association loglinear model and the equivalent logistic model for Y having main 
effects for X and for Z. 

Consider first stratified ordinal-by-ordinal tables. Mantel's M2 statistic based on 
Σ * ( Σ / Σ ; uivjnijk) for row and column scores [see formula (6.12)] is the score 
test statistic for testing HQ\ β — 0 in the homogeneous linear-by-linear association 
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model (6.9) using the same scores. The statistic Σ * ( Σ ί Σ ; uivjnijk) 1S m e suf-
ficient statistic for ß in that model. With equally spaced scores for {VJ}, it is the 
score statistic for testing Ηο'. β — 0 in the adjacent-categories logit model 

l o8 P{Y = j} = aik + ß"t· 

which treats Y alone as a response variable and assumes the same linear effect of 
X on Y in each partial table. For the corresponding cumulative logit model, 

logit [P(y <j)]=aJk+ßui, 

the score statistic for testing HQ: ß = 0 is Mantel's M2 with {vj} scores that are 
midrank (or ridit) scores for Y. 

Next consider stratified nominal-ordinal tables. The L2 statistic mentioned for 
this case in Section 6.4.5 is a score statistic for testing HQ: μ-ι = · ■ · = ßr in 
the loglinear homogeneous row effects model (6.4.5) having term μ,υ,- for the 
conditional XY association. With midrank [vj] scores, it is the score test for the 
cumulative logit model above that replaces ßui by μ,. 

With large samples in each stratum, the generalized CMH tests give similar 
results as likelihood-ratio tests comparing the relevant model to the conditional 
independence model. An advantage of the model-based approach is that it provides 
estimates of effects as a by-product. Ultimately, this is more important than mere 
significance testing. However, the CMH tests have the advantage that they are also 
valid for randomized studies in which the samples cannot meaningfully be regarded 
as multinomialsamples (e.g., volunteer samples). 

6.4.7 Example: Income and Education by Race, Revisited 

We return to the analysis of Table 6.6 (Section 6.4.3) on Y = family income 
and X = education by Z — race. Table 6.8 shows output from conducting some 
generalized CMH tests. Statistics treating a variable as ordinal used scores (1, 2, 
3) for its categories. 

The test with general association alternative treats X and Y as nominal. It is 
sensitive to any association that is similar in each level of Z and is the score 
test for the loglinear model (XY, XZ, YZ). The test with row mean scores differ 
alternative treats rows as nominal and columns as ordinal. It is sensitive to variation 
among the row mean scores on Y when that variation is similar in each level of 
Z, and it is the score test for the homogeneous row effects model. The test for a 
corresponding column mean scores differ alternative would result from applying 
this test after interchanging rows with columns and would treat rows as ordinal and 
columns as nominal. It is the score statistic for the homogeneous column effects 
model that was seen to fit well in Section 6.4.3. Not shown in Table 6.8 is the fact 
that it has test statistic equal to 266.80 with df = 2. Finally, the test for the nonzero 
correlation alternative treats X and Y as ordinal and uses Mantel's statistic (6.12). 
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TABLE 6.8. Output for Generalized Cochran-Mantel-Haenszel Tests with Data 
from Table 6.6 on Education and Income, Controlling for Race 

Summary S t a t i s t i c s f o r income by educ 
C o n t r o l l i n g f o r r a c e 

C o c h r a n - M a n t e l - H a e n s z e l S t a t i s t i c s (Based on T a b l e S c o r e s ) 
S t a t i s t i c A l t e r n a t i v e H y p o t h e s i s DF V a l u e P rob 

1 Nonzero Correlation 1 251.4861 <.0001 
2 Row Mean Scores Differ 2 257.7836 <.0001 
3 General Association 4 291.1257 <.0001 

It is sensitive to a similar linear trend in each level of Z and is the score test for 
the homogeneous linear-by-linear association model. 

For this example, all statistics show strong evidence of a conditional association. 
The nonzero correlation alternative has the advantage of focusing the effect on a 
single degree of freedom. Even when the homogeneous linear-by-linear association 
shows some lack of fit, as it does for these data, this statistic is typically very 
powerful whenever the actual conditional association has somewhat of a monotone 
trend with the same direction in each partial table. 

6.5 MULTIPLICATIVE ASSOCIATION AND CORRELATION MODELS 

The linear-by-linear association (L x L) model is the special case of the row effects 
(R) model, in which the row parameter scores {μ,} are replaced by fixed values 
{«,}, and the special case of the column effects (C) model, in which the column 
parameter scores {VJ} are replaced by fixed values {vj}. The R and C models are 
themselves special cases of a more general model that has parameters for both the 
row and column scores. 

6.5.1 RC Model 

Replacing {«,) and {vj} in the L x L model (6.2) by parameters {μ,·} and {vj} 
yields the row and column effects (RC) model (Goodman 1979a), 

log μ1} = λ + λ? + λ ] + ßßi Vj. (6.13) 

Identifiability requires location and scale constraints on {μ,} and {vj}. The stan-
dardized constraints 

Σ ßi*i+ = X] vjTt+j = 0, 
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correspond to means of 0 and standard deviations of 1 for each margin. We need 
yet another restriction, because if the model holds, it also holds if signs are reversed 
for ß and the {μ,·}, or for β and the [Vj], or for the {μ,·} and [VJ]. If the scores are 
monotone, we prefer the choice of signs for which 

Mi — ßz < · · · 5· ßr and vi < V2 < · · ■ < vc. 

The RC model is log-multiplicative, not loglinear, because the predictor is a 
multiplicative (rather than linear) function of parameters μ,- and v,·. It treats classi-
fications as nominal, because the same fit results from a permutation of rows or of 
columns. Parameter interpretation is simplest when at least one variable is ordinal, 
through the local log odds ratios 

log0,7 = β(μί+ι - ßi)(vj+\ - Vj). 

One use of the model is to generate a hypothetical order of categories, correspond-
ing to the order of the estimated scores when the categories are partially ordered 
or the ordering is unknown. For example, Xie (1992) did this in studying social 
mobility for the categories (service class, routine nonmanual, petty bourgeoisie, 
farmer, skilled working class, semi- and unskilled working class, agricultural). 

6.5.2 Model Fitting and Inference for the RC Model 

When {VJ} are fixed, the RC model simplifies to the row effects (R) model. When 
{μ,-} are fixed, the RC model simplifies to the column effects (C) model. Goodman 
(1979a) suggested an iterative model-fitting algorithm that exploits this. A cycle 
of the algorithm has two steps. For some initial guess of {v,}, it estimates {μ,·} as 
in the R model. Then, treating the estimated {μ,} from the first step as fixed, it 
estimates {VJ} as in the C model. Those estimates serve as fixed column scores in 
the first step of the next cycle, for reestimating {μ,} in the R model. There is no 
guarantee of eventual convergence to the ML estimates, but this seems to happen 
when the model fits reasonably well. 

This iterative procedure does not yield appropriate standard errors for the ML 
estimates, because each part of a cycle recognizes only a subset of the parameters as 
truly being parameters. Haberman (1995) proposed a stabilized Newton-Raphson 
algorithm for fitting association models that also generates appropriate standard 
errors and tends to converge even when the model fits poorly. Ai't-Sidi-Allal et al. 
(2004) proposed a Fisher scoring algorithm. Specialized software exists that can fit 
such nonlinear models and provide standard errors (see the Appendix). The residual 
df value for testing the fit of the model is 

df = re - [1 + (r - 1) + (c - 1) + 1 + (r - 2) + (c - 2)] = (r - 2)(c - 2). 

The model is of use only when r > 2 and c > 2 ; otherwise, it is saturated. 
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Although it may seem appealing to use parameter scores instead of arbitrary 
fixed scores, the RC model presents complications that do not occur with log-
linear models. The likelihood may not be concave and may have local maxima. 
Ordinary first-order inference for the association parameter ß may be inadequate 
(Simonoff and Tsai 1991). Independence is a special case, but it is awkward to 
test independence using the RC model. This is because of the lack of identifiabil-
ity of the parameters under that condition. Independence can be characterized as 
ß — 0, or as μ\ = ■ ■ · = μΓ, or as vi = · · · = vc. Because of this, Haberman (1981) 
showed that the asymptotic null distribution of G2(I) — G2(RC) is not chi-squared. 
Instead, it is the same as that of np2, where p is the canonical correlation for the 
table, which is the maximum correlation between the variables out of all ways of 
assigning scores to the rows and columns (monotone or not). That is, when the 
variables are independent, [(G2(I) — G2(RC)) — np2] converges in probability to 
0. The null asymptotic distribution of either statistic is the same as that of the max-
imum eigenvalue of the (r — l)x(r — 1) central Wishart matrix with c — 1 degrees 
of freedom. 

The usual chi-squared asymptotic distributions do apply when we use likelihood-
ratio statistics to compare the RC model to the simpler R model or C model or 
L x L model. The parameters are then identifiable under the special cases. For 
example, the R model is the special case of the RC model that replaces ßvj by the 
fixed score Vj. 

6.5.3 Example: Mental Health Status and SES 

Table 6.9 describes the relationship between children's mental health status and 
parents' socioeconomic status for a sample of 1660 residents of Manhattan. In 
introducing association models, Goodman (1979a, 1985) fitted various models to 
these data. 

The RC model fits well (G2 = 3.6, df = 8). For scaling (6.17), the ML estimates 
are (-1.11, -1.12, -0.37, 0.03, 1.01, L82) for the row scores, (-1.68, -0.14, 
0.14, 1.41) for the column scores, and ß = 0.17. Nearly all estimated local log 

TABLE 6.9. Mental Health and Parents' Socioeconomic Status 

Mental Health 
SES" Well Mild Symptoms Moderate Symptoms Impaired 

A 
B 
C 
D 
E 
F 

64 
57 
57 
72 
36 
21 

94 
94 

105 
141 
97 
71 

58 46 
54 40 
65 60 
77 94 
54 78 
54 71 

Source: Srole (1978), with permission. 
"A to F, highest to lowest. 
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odds ratios are positive, as only the first two row scores are slightly out of order. 
This indicates a tendency for mental health to be better at higher levels of parents' 
SES. 

Ordinal loglinear models also fit well. For equal-interval scores, G2(L x L) = 
9.9 (df = 14). The statistic G2(L x L | RC) = 6.3 (df = 6) tests that row and col-
umn scores in the RC model are of equal-interval type. The parameter scores do 
not provide a significantly better fit. It is sufficient to use a uniform local odds ratio 
to describe the table. For unit-spaced scores, ß = 0.091 (SE = 0.015), so the fitted 
local odds ratio is exp(0.091) — 1.09. There is strong evidence of positive associ-
ation, but the degree of local association is rather weak. For the four corner cells, 
the estimated odds ratio is exp[(6 — 1)(4 — 1)0.091] = 3.9, considerably stronger. 

6.5.4 RC Model as a Special Case of the Stereotype Model 

For the RC model (6.13), suppose that we treat Y as a response and X as explana-
tory. Forming baseline-category logits, we obtain 

l 0 g P(Y = c\X = i) = l 0 g Wc = ikj ~K)+ ßß'(VJ ~ Vc)-

This has the form 
log = a, + φφί, 

BP(Y = c\X = i) ] JH 

where otj = λ^ — λζ, ßi = ßßi, and φ-} — vj — vc. Now let x denote a vector of 
indicator variables for the rows, where JC, = 1 for row / and *,· = 0 otherwise, 
i = 1 , . . . , r — 1. Then the right-hand side of this equation has the form of the 
predictor aj + 0,/3'x of the stereotype model (4.15) presented in Section 4.3. 

It follows that the RC model is a special case of the stereotype model. In 
Section 4.3.6 we presented the two-way contingency table version of that model. 
This connection is useful for both model interpretation and model fitting. 

6.5.5 Latent Variable Model Implies the RC Model 

Anderson and Vermunt (2000) showed that the RC model and more general asso-
ciation models result from latent variable models. Those underlying models related 
to graphical models for discrete and continuous variables (Lauritzen and Wermuth 
1989). 

The simplest case has the following structure: A latent variable Z is assumed 
such that the observed variables X and Y are conditionally independent given Z. 
Collapsed over Z, X and Y are assumed to have a multinomial joint distribution. 
Conditional on X — i and Y = j , Z is assumed to have a normal distribution with 
mean μ(ί, j) and variance σ2. Under this structure, the distribution of X and Y 
has the RC form, with association term proportional to σ2. The scores in the RC 
model then depend on the association between Z and (X, Y). For related results, 
see de Falguerolles et al. (1995). 
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Anderson and Vermunt also considered multivariate categorical responses. The 
same sort of latent structure then yields extensions of the RC model for multiple 
responses. Anderson (2002) extended graphical latent variable models to situations 
in which dependencies between observed variables are not fully accounted for by 
the latent variables. 

6.5.6 Inequality Constraints on Model Parameters 

In some applications it is reasonable to assume ordered scores but without speci-
fying values for those scores as we did in Section 6.3.5 for the row effects model. 
To treat both rows and columns as ordinal with the RC model, we could fit the 
model subject to the ordering constraints 

Mi < ß2 < · · · < ßr and vj < V2 < ■ ■ ■ < vc. 

Ritov and Gilula (1991), Bartolucci and Forcina (2002), and Galindo-Garre and 
Vermunt (2004) gave algorithms for finding the order-restricted ML estimates. The 
X2 test comparing the order-restricted model to the unrestricted RC model has a null 
distribution that is a mixture of chi-squared distributions that requires Monte Carlo 
or bootstrapping to estimate. In the special case that the order-restricted model has 
only two adjacent categories of one of the variables that have equal scores and all 
other scores are strictly monotone, the P-value is half that of a chi-squared random 
variable with df = 1. 

For an order restriction such as μ\ < μ2 < · · ■ < μΓ, the Bayesian approach 
can ensure that the posterior distribution recognizes this constraint by specify-
ing the prior distribution in terms of parameters such as log(/iJ+i — μ7·) or by 
using densities over the nonnegative real line for {<pj = ßj+i — μ7}. When sample 
estimates violate the order, ML estimates commonly fall on the boundary of the 
constrained parameter space. An appealing aspect of the Bayesian approach is that 
posterior means of parameters often fall in the interior of the parameter space. 
Gelfand et al. (1992) and Iliopoulos et al. (2007, 2009) presented Bayesian fitting 
of parameter-constrained models, with the latter articles considering the RC model. 

Although models with inequality constraints have the advantage of greater gen-
erality compared to models assuming a linear trend with fixed scores, a loss of 
power can result from the addition of parameters (e.g., the linear trend models 
have only a single association parameter). The model becomes less parsimonious, 
and tests of effects may be less powerful. Also, the user can no longer rely on 
standard chi-squared tests and confidence intervals for the effects, and the models 
are not easily available with standard software packages. 

6.5.7 Correlation Models 

The row and column effects (RC) model and its special cases use row and column 
scores or parameters to describe how the log cell probabilities differ from indepen-
dence. Gilula (1984) and Goodman (1985) presented an alternative type of model 
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that does the same thing directly for the cell probabilities {JT//}. In its simplest form 
with fixed row and column scores, this model is 

Mij = ni+n+j(\ + puiVj). (6.14) 

When {w,} and {vj} are standardized to satisfy 

Σ u'ni+ = Σ vJn+J = ° and Σ "?π''+ = Σ υ)π+ϊ = l' 

p is the correlation between the scores for joint distribution {π,·;}. That is, for these 
standardized scores, it follows directly from (6.14) that 

i j 

Because of this, model (6.14) is called a correlation model. The independence 
model is the special case in which p = 0. 

With fixed monotone scores, the model treats both variables as ordinal. This 
correlation model is then like the linear-by-linear association model in that it uses 
a single parameter to describe departures from independence. Thus, it has residual 
df = re — r — c. For the standardized scores, 

Σ> (^) ='"; and Σ>(^)='«' 
(Goodman 1985). Consider the second equation. Note that J2j vj(:Tij/7li+) is t n e 

mean response in row i, using the conditional distribution of Y given x in that 
row. So the equation implies that the mean response model of Section 5.6 holds, 
treating Y as a response variable with slope p. Similarly, the first equation states 
that the mean response model holds, treating X as a response variable, with slope 
p. When the model has ML estimate p close to zero, since 

1 + pujVj ~ exp(pujVj), 

p is similar to β for the L x L model using the same scores. 
A more general model lets the row and column scores be parameters, 

Ttij - π·ί+π+7(1 + pßiVj). (6.15) 

In that case, the correlation model is also called the canonical correlation model, 
because ML estimates of the scores maximize the correlation for (6.15). As with 
the RC model, although parameter scores provide greater flexibility, the model does 
not then utilize the ordering of the categories. 

A strand of related research, beginning with Karl Pearson, deals with estimating 
the correlation for an assumed underlying bivariate normal distribution. See Section 
7.2.2 and Note 7.3. 
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6.5.8 Example: Mental Health and SES Revisited 

In Section 6.5.3 we used association models to analyze the mental health data 
in Table 6.9. Goodman (1985) also fitted correlation models to these data. The 
canonical correlation model (6.15) with standardized parameter scores has estimated 
scores (-1.09, -1.17, -0.37, 0.05, 1.01, 1.80) for the rows and (-1.60, -0.19, 
0.09, 1.48) for the columns, each monotone except for the first two rows. The 
model fits well (G2 = 2.75, df = 8). The quality of fit and the estimated scores are 
similar to those that we showed in Section 6.5.3 for the RC model with standardized 
parameter scores. 

More parsimonious correlation models also fit these data well. Models that have 
fixed monotone scores recognize the ordering of categories. With equally spaced 
scores, the model (6.14) has G2 = 9.64 (df = 14), similar to the fit of the L x L 
association model with the same scores (G2 = 9.90, df = 14). With standardized 
scores, the correlation estimate is p = 0.16. 

All analyses of Table 6.9 have yielded similar conclusions about the association. 
They all neglect, however, the fact that mental health is a natural response variable. 
It may make more sense to use a model that recognizes this, such as a cumulative 
logit model. The proportional odds form of that model with a linear effect of 
SES for scores (6, 5, 4, 3, 2, 1) also fits well (G2 = 10.87, df = 14). It has effect 
exp(ß) — exp(0.167) = 1.18 for the common cumulative odds ratio for pairs of 
adjacent levels of SES, compared to 1.09 for the common local odds ratio for the 
L x L model. 

6.5.9 Similarities Between Correlation Models and Association Models 

The correlation model (6.14) with fixed scores is analogous to the linear-by-linear 
association model (6.2). The correlation model (6.15) with parameter scores has 
many properties in parallel with the RC model (6.13). Here we summarize some 
such results from Gilula et al. (1988). 

Given fixed values for the marginal distributions, the row and column scores, 
and the correlation between them, the joint distribution {π^} specified by the RC 
model maximizes the entropy, £,· J2,·πυ 1°8πυ■ By contrast, the joint distribu-
tion specified by the correlation model (6.15) minimizes J2i Σίπ}ί/πί+π+ί· An 
implication is that under such conditions, the RC joint distribution is the closest to 
the independence distribution according to the Kullback-Leibler distance, 

ΣΣ*ϋ1°Ι πι+π+j 

whereas the joint distribution for the correlation model is closest to the indepen-
dence distribution according to the Pearsonian distance, 

ΣΣ (itij — 7ti+7t+j)2 

ni+n+j 
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Goodman (1985) noted that the Pearsonian distance for the correlation model equals 
p2, the square of the correlation parameter in that model. 

Under the RC model, the entropy is an increasing function of ß. Under the 
correlation model, a summary measure 

* k 

of the difference between adjacent conditional distributions of one variable given 
the other is an increasing function of p for given k — 1 , . . . , c — 1 and i = 1 , . . . , 
r — 1. When the row parameter scores and the column parameter scores are scaled 
to have means of 0 and standard deviations of 1, the association parameters β from 
the RC model (6.13) and p from the correlation model (6.15) satisfy 

ß = ΣΣπ>+μ'π+1ν1 lo%9U and P = Ε Σ ^ + ^ ^ ' ^ ^ ~~ Xi+x+j) 

for the local odds ratios {#M. 
Goodman (1985) discussed advantages of association models over correlation 

models. The correlation model is not denned for all possible combinations of score 
values because of the constraint 0 < 7r,y· < 1. Also, its ML fitted values do not 
have the same marginal totals as the observed data, and it does not generalize in a 
simple way to multiway tables. 

6.5.10 More General Association and Correlation Models 

For the saturated loglinear model for a two-way table, log μ,·7 = λ + λ* + λγ- + 
Xf-Y, Goodman (1985, 1996) expressed the association term in a form that gener-
alizes the ßßjVj term in the RC model. His expression is 

M 

$ r = Y,ßkßikVjk, (6.16) 
k=\ 

where M = min(r — 1, c — 1). The parameters satisfy constraints such as 

Σ μα<π·+ = Σ vjkK+j = 0 for all k, 
' j 

Σ Α4*«·+ = Σ v2jkn+j =l for a11 *· <6 · 1 7 ) 
' j 

Σ ßikßih*i+ = Σ v)kvjhK+j = 0 for all k φ h. 

The model is referred to as the RC(M) model. 
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For M* < M, the special case of model (6.16) with ßk = 0 for k > M* is unsat-
urated. It is called the RC(M*) model. The RC model (6.13) is the case M* = 1. 
Like the simpler RC model, the RC(M*) model is also nonlinear, which com-
plicates model fitting, and it treats the variables as nominal unless we replace 
parameter scores by fixed scores or impose ordering constraints such as in Kateri 
et al. (1998). Becker (1990a) and Ait-Sidi-Allal et al. (2004) proposed algorithms 
for ML model fitting. The model is not as simple to interpret as the ordinary RC 
model and its special cases, so it has not received much attention in applications. 
Anderson (1996) discussed some ways in which it has been applied. 

Goodman (1985, 1996) also noted that the canonical correlation model (6.15) 
extends to a more general model with sets of parameter scores that is equivalent 
to the saturated model, 

Xij = πί+π+j ί 1 + ^ PkßikVjk I 

with constraints for parameters as in the RC(M) model. Here pk is the correlation 
between μ,* and v,*, since 

Zlzl^'kvjk^ij = Pk-
• j 

Goodman noted that for this model the Pearsonian distance partitions into 

( \2 M 

V""* V"-* Wj "~ 7ti+K+j) _ V-v 2 

' J 
*i+*+j j r r 

Ait-Sidi-Allal et al. (2004) proposed a Fisher scoring algorithm for ML model 
fitting. 

Again, simpler models are possible using M* < M sets of parameter scores. For 
example, when p\ is nearly as large as £ * P\> ^ ' s adequate to use the simpler 
model (6.15), for which the Pearsonian distance equals p\. This is the case for the 
mental impairment and SES data of Section 6.5.8, for which M = 3 and 

p\ = 0.0266 = 0.96(pf + p\ + p\). 

Based on the Box-Cox transformation, Rom and Sarkar (1992) proposed a 
generalization of the correlation model and the RC model to 

nij = ni+n+j[l +(/>(ρ«,υ;)] \/Φ 

For this model, X and Y are independent if p = 0, the ordinary correlation model 
(6.14) results when φ = 1, and the RC model (6.13) results as φ converges to 0 
and with parameter scores. The conditional distributions are stochastically ordered, 
and the correlation for the scores {«,} and [VJ] is increasing in p for fixed φ. 
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Goodman (1996) proposed a more general model by using an expansion of form 
Σ*=ι ßkßikVjk to predict /?(π,·77π·ί+π+7·) for any monotone-increasing function R 
defined on the positive real line. Using the log function for R gives association 
models and using the identity function gives correlation models. 

The models of this section also generalize to multiway tables. For example, to 
describe conditional association in a three-way table, replacing the heterogeneous 
XY conditional association term ßkUjVj in model (6.10) by a term ßkßiVj with the 
same parameter scores in each partial table assumes that the form of the association 
is the same in each partial table but the level of association may vary according to 
{ßk\ (Xie 1992). The more general term ßkßikvjk has different parameter scores in 
each partial table and is equivalent to a separate RC model for each partial table. 

6.5.11 Model Selection for Ordinal Variables 

In this chapter we have shown several ways to use category orderings in describ-
ing associations. With allowance for ordinal effects, the variety of potential models 
is much greater than standard loglinear models. To choose among models, one 
approach uses the standard models for guidance. If a standard model fits well, sim-
plify by replacing some parameters with structured terms for ordinal classifications. 
For example, with three variables, if the standard loglinear model (XY, XZ, YZ) 
fits well, check whether the fit is still adequate for an ordinal model of homogeneous 
association such as homogeneous linear-by-linear association. 

Association models and correlation models are mainly sensible when we have 
two ordinal response variables and want to study their association marginally or 
conditionally on other variables. When one variable alone is a response variable, 
models presented in earlier chapters are more appropriate. 

6.6 MODELING GLOBAL ODDS RATIOS AND OTHER 
ASSOCIATIONS 

For cross-classifications of ordinal variables, the linear-by-linear association model 
(6.2) can be described by odds ratios for pairs of rows and pairs of columns, as 
in (6.3). For equally spaced row and column scores, the model implies uniform 
association in terms of the local odds ratios. By contrast, cumulative logit models 
can be described by odds ratios that are global in the response variable, based on the 
odds P(Y < j)/P(Y > j) using cumulative probabilities for each binary collapsing 
of that variable. With an ordinal explanatory variable with equally spaced scores, 
the model implies uniform association in terms of cumulative odds ratios. See 
equation (3.9) in Chapter 3. 

6.6.1 Models for Global Odds Ratios 

Yet another association model for ordinal variables describes the odds ratios that 
are global in both variables. Let 

G _ ^ α < ι ^b<j παώ(ΐ_,α>ί Z-,b> j nab) 

(^a<i \^b > j nab)(l_a > ,· Z^,b<j πα&) 
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A uniform association model assumes constancy of the global odds ratios, 

9pj=9, i = 1 r — 1, y = l , . . . , c - l . 

The model assumes a common odds ratio for all (r — l)(c — 1) ways of collapsing 
the joint distribution into a 2x2 table. Plackett (1965) defined a family of joint 
distributions that satisfy uniform global odds ratios. The family is constructed from 
the marginal distributions and the common global odds ratio 0. Given the marginal 
distribution functions F* — P(X <i) and Fj — P(Y < j) and a common value 
0 φ 1 for [Ofj], the joint distribution function Fu - P(X <i,Y< j) is the special 
case of equation (2.8), 

F<j 

_ 1 + (0 - l)(F,x + Fj) - {[1 + (0 - 1)(F* + Fj)]2 - 40(0 - l)F?Fj}1'2 

~ 2(0 - 1) ' 

When 0 = 1, as usual F^ — F* Fj, the independence model. 
Anscombe (1981, p. 314) discussed ML fitting of the uniform global odds ratio 

model subject to the constraints that the fitted marginal distributions equal the 
sample marginal distributions. The sample marginal distributions, together with an 
estimate for Θ, determine an estimate of the joint distribution function using Plack-
ett's construction. Anscombe gave an iterative method for generating a sequence 
of estimates of 0 that converge to the ML estimate. ML fitting is possible with 
software by treating the model as a member of a class of generalized loglin-
ear models presented in Section 6.6.4, as illustrated for the following example at 
www.stat.ufl.edu/~aa/ordinal/ord.html. 

6.6.2 Example: How Scientific Are Biology and Social Sciences? 

Table 6.10 shows responses of those aged 18 to 25 in the 2006 GSS in response to 
the questions, "How scientific is biology?" and "How scientific is sociology?" The 
data are sparse, so the sample global odds ratios of 0° = 5.11, 0^ = 2.03, 0fj = 
oo, 0^ = 2.86 are unstable estimates. The ML estimate of a uniform global log 
odds ratio is 0.81 (SE = 0.34), corresponding to a uniform global odds ratio of 
2.25 and a 95% confidence interval of (1.2, 4.4). 

TABLE 6.10. Results on "How Scientific Are Biology and Sociology?" 

Biology 

Very scientific 
Pretty scientific 
Not scientific 

Very Scientific 

13 
1 
0 

Sociology 
Pretty Scientific 

80 
22 

3 

Not Scientific 

37 
17 
4 

Source: 2006 General Social Survey. 
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The goodness-of-fit statistics are G2 = 1.39 and X2 = 1.07. They are based 
on df — 3, since the model has four odds ratio responses and one parameter. The 
corresponding fit statistics for the independence model (θ° — 1) are G2 = 7.25 and 
X2 = 6.47 (df = 4). The likelihood-ratio statistic for testing 0G = 1 (or log(9G = 0) 
gives a test of independence under the assumption that the uniform global odds 
ratio model holds. The test statistic equals 7.25 — 1.39 = 5.85 based on df = 1. 
There is strong evidence of an association (P-value = 0.02), which appears to be 
positive. 

6.6.3 Normal Approximations and Model Generalizations 

When the uniform global odds ratio model holds, Plackett argued that it is a dis-
crete approximation for a bivariate normal distribution. See Note 6.9. However, 
Goodman (1981b) showed that a uniform global odds ratio model does not fit as 
well as a model of uniform local odds ratios when the underlying distribution is 
bivariate normal and the marginal cutpoints for forming the categories are equally 
spaced. Global odds ratios do have the advantage, compared to local odds ratios, 
of being relatively unaffected by the choice of category boundaries (Dale 1984). 

More complex models are also possible for the global odds ratios. For example, 
the model 

states that the global odds ratio depends only on the row cutpoint. In collapsing 
the response, the global odds ratios take into account the ordinal nature of each 
dimension. Thus, if a model holds for the {Ö(

G}, it will generally not hold if rows 
or columns are permuted. For example, unlike the loglinear row effects model, the 
model #(

G = μ; is not appropriate for nominal row variables. 
The modeling approach using global odds ratios shares with the loglinear 

approach the fact that it treats both variables as response variables. Unlike 
loglinear models, however, models for global odds ratios do not lend themselves 
to comparisons of pairs of rows or pairs of columns, because levels are pooled 
with others rather than being treated individually. Models for global odds ratios 
are better suited for describing association between two response variables than 
for comparing pairs of categories of one variable in terms of their conditional 
distribution on the other variable. 

6.6.4 Global Odds Ratio Models as Generalized Loglinear Models 

Models for global odds ratios are special cases of a very general family of models. 
Let n = ( n i , . . . , njy)' and μ, = (μ\,..., μ/ν)' denote column vectors of observed 
and expected counts for the N cells of a contingency table. For simplicity we use 
a single index, but the table may be multidimensional. Loglinear models, including 
simple association models such as the linear-by-linear association model, have the 
form 

log μ, = Χβ, 
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for a model matrix X and a column vector ß of model parameters. A generalization 
of this expression provides many additional models. This generalized loglinear 
model is 

ClogA/t = Xj8 (6.18) 

for matrices C and A. The ordinary loglinear model results when C and A are 
identity matrices. 

For global odds ratio models, C has dimension (r — l)(c — 1) x 4(r — l)(c — 1) 
and A has dimension 4(r — l)(c— I) x N. A particular row of A has 1 and 0 entries 
such that, multiplied by μ, it forms a quadrant of expected frequencies used in a 
particular global odds ratio; there are four such rows for each collapsing of the 
table to a 2 x 2 table. A particular row of C has +1 in two places and — 1 in two 
places such as to form the appropriate contrast of the log quadrant counts. For the 
uniform global log odds ratio model, X is a (r — l)(c — 1) x 1 vector with 1 in 
each position, and β is then the scalar value for the common global log odds ratio. 

Other special cases of (6.18) include cumulative logit models, adjacent-
categories logit models, and continuation-ratio logit models. For further generali-
zations, see Lapp et al. (1998) and Coull and Agresti (2003). 

ML fitting of generalized loglinear models is not trivial. See Lang and Agresti 
(1994) and Lang (1996, 2004, 2005). The R function mph.fit developed by Lang 
can do this (see the Appendix). The fit provides estimated cell probabilities and 
expected frequencies that satisfy the model. 

6.6.5 Models for Measures of Association 

When there is a bivariate response, we could formulate models in terms of how 
a measure of association between the response variables depends on explanatory 
variables. In a meta-analysis, for example, this could be useful for describing how 
an effect varies across studies. 

Let ζ denote a generic measure of association between two response variables. 
Let ζ(χ) denote the value of the measure when a vector of explanatory variables 
takes the value x. A generalized linear model for ζ(χ) has the form 

link ζ(χ) =α+ β'χ. 

For instance, the model could specify a uniform value for the global log odds ratio 
at x. Dale (1986) and Liu (2003) studied a model of this type. 

Some authors have combined association models using global odds ratios with 
regression-type models for each response in terms of explanatory variables. For 
example, in addition to modeling the association, Dale modeled each response 
marginal distribution using a cumulative logit model with the same explanatory 
variables. Molenberghs and Lesaffre (1994), Glonek and McCullagh (1995), 
Williamson et al. (1995), Glonek (1996), Heagerty and Zeger (1996), Williamson 
and Kim (1996), and Lapp et al. (1998) also presented models of this type. In 
Section 9.1.3 we show an example of this generalized type of model. 
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CHAPTER NOTES 

Section 6.1: Ordinary Loglinear Modeling 

6.1. Wermuth and Cox (1998) used ordinary loglinear models with ordinal vari-
ables by checking whether certain pairs of adjacent categories can be combined. 
They did this by considering special cases of the models in which certain param-
eters or contrasts of parameters are set to 0, corresponding to certain types of 
conditional independence. 

Section 6.2: Loglinear Model of Linear-by-Linear Association 

6.2. For small samples with the linear-by-linear association model, Agresti et 
al. (1990) proposed inferences about ß. The confidence interval was the method 
described in Section 2.3.6, and in Section 7.6.1 we present the test of HQ: ß = 0. 
McDonald et al. (1998) proposed a small-sample goodness-of-fit test. Gross (1981) 
evaluated the relative efficiencies of various tests of independence in the context 
of this model. She showed the asymptotic equivalence of the likelihood-ratio test 
and a correlation-based test of Yates (1948) that uses the same scores, regardless 
of whether the model truly holds. A test based on rank scores is asymptotically 
equivalent to these when the model holds with equally spaced scores and the 
marginal distributions are both uniform. 

6.3. If the linear-by-linear association model fits well with small \ß\ and if 
it uses the ridit (average cumulative probability) scores Vj = (Fj_l + F?)/2, the 
cumulative logit model of proportional odds form with predictor y3w, should have 
similar fit and have \ß\ about half the value of ß for the L x L model. See Note 
2.4 for a related remark. 

Section 6.3: Row or Column Effects Association Models 

6.4. Row effects models were proposed by Haberman (1974), Simon (1974), 
Duncan and McRae (1979), and Goodman (1979a). Goodman (1979a) proposed 
an analysis of association (ANOAS) as an analog of ANOVA to partition chi-
squared statistics pertaining to various aspects of the association. See also Clogg 
and Shihadeh (1994, pp. 53-61). Chuang et al. (1985), Gilula (1982), and Beh 
(2001) related association models to the singular value decomposition of a matrix, 
which itself underlies correspondence analysis (Note 6.8). 

Section 6.4: Association Models for Multiway Tables 

6.5. Clogg and Shihadeh (1994), Ishii-Kuntz (1994), and Etzioni et al. (1994) 
provided reviews of association models. Articles focusing on such models for multi-
way tables include Clogg (1982a), Agresti and Kezouh (1983), Goodman (1981c, 
1985), Gilula and Haberman (1988), Becker (1989a), Becker and Clogg (1989), 
Xie (1992), de Falguerolles et al. (1995), and Siciliano and Mooijaart (1997). 

6.6. Landis et al. (1978), Koch et al. (1998), and Stokes et al. (2000) reviewed 
CMH methods. Koch et al. (1982) reviewed related methods. The Mantel-Haenszel 
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estimate of a common odds ratio for a set of 2x2 tables has been generalized 
to a set of tables with ordinal response (Liu and Agresti 1996, Liu 2003). An 
advantage of the generalized CMH methods is that they maintain good perfor-
mance under sparse asymptotics whereby K grows as n does, possibly with a 
very small sample size in each stratum. An example is case-control studies with 
an ordered subclassification of the disease states, in which each stratum provides 
results for a particular matched set. In such cases, ML model-based estimates can 
be biased. 

Section 6.5: Multiplicative Association and Correlation Models 

6.7. The RC model and generalizations of it such as the RC(A/) model have 
been studied by Andersen (1980, pp. 210-216), Becker (1989b, 1990a), Good-
man (1979a, 1981a,b, 1985, 1991, 1996), Clogg (1982a,b), Chuang et al. (1985), 
Chuang and Agresti (1986), Yamaguchi (1990), Simonoff and Tsai (1991), Xie 
(1992), Anderson (1996), Sobel et al. (1998), Kateri and Iliopoulos (2003), and de 
Rooij and Heiser (2005). For connections with item response models, see Ander-
sen (1995) and Anderson and Yu (2007). Kateri et al. (2005) and Iliopoulos et 
al. (2007, 2009) proposed Bayesian inference for the RC model and its gener-
alizations, including order-restricted analyses. Regarding the nonstandard limiting 
distribution for G2(I) - G2(RC), Hirotsu (1983) gave a related result for anal-
yses making simultaneous comparisons of conditional distributions within rows 
or within columns of a contingency table. Generalizations of the RC model for 
multiway tables were presented by Choulakian (1988), Anderson and Böckenholt 
(2000), Anderson and Vermunt (2000), Becker (1989a), Becker and Clogg (1989), 
Goodman (1985, 1986, 1996), and Wong (2001). For example, Becker and Clogg 
(1989) developed such models for comparing associations in several tables. De 
Rooij (2001) proposed a reparameterization of their models in which association 
parameters are transformed to distances in multidimensional Euclidean space. 

6.8. Kendall and Stuart (1979, Chap. 33) surveyed basic canonical correlation 
methods for contingency tables. See also Williams (1952), who discussed ear-
lier work by R. A. Fisher and others. The parameter scores in correlation model 
(6.15) have features in common with scores estimated in the first dimension of 
a correspondence analysis, which is a graphical way of describing association in 
two-way tables (Goodman 1981a, 1985, 1986, 1996, 2000; Gilula and Haberman 
1986; Choulakian 1988; van der Heijden et al. 1989; Gilula and Ritov 1990; Ritov 
and Gilula 1993; Greenacre 2007). Much research influenced by Goodman's work 
explored connections among association models, correlation models, and correspon-
dence analysis. See Gilula (1984, 1986); Gilula et al. (1988), Douglas and Fienberg 
(1990), Ritov and Gilula 1993, Etzioni et al. (1994), Beh (1997), Rayner and Best 
(2000), and Beh and Davy (2004). Schriever (1983) and Gilula and Ritov (1990) 
focused on an ordinal version of correspondence analysis pertaining to stochastic 
orderings of conditional distributions, focusing mainly on models of rank 2 with 
ordered scores. Beh (1997) and Lombardo et al. (2007) used an alternative approach 
with orthogonal polynomials. 
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Section 6.5: Modeling Global Odds Ratios and Other Associations 

6.9. Plackett (1965) and Mardia (1967) proposed simple but inefficient ways 
of fitting the uniform global odds ratio model. Wahrendorf (1980) fitted the model 
using weighted least squares methods. Plackett stated that the model approximates 
a bivariate normal distribution with correlation p related to the global odds ratio Θ 
by p = cos[n/(l + V#)], for the mathematical constant n. Mardia (1967) studied 
Plackett's joint distribution and suggested that it better approximates the normal 
distribution with p — 2 sin{7r(02 - 1 - 201og<9)/[6(0 - l)2]}, except close to the 
means. In central regions, Anscombe (1981, p. 306) suggested the approximation 
ρ = (θ- \)/{θ + 1). 

EXERCISES 

6.1. Consider the L x L model (6.2), scaling row scores and column scores to 
have means of zero and standard deviations of 1. Express the model as 
a probability function for the cell probabilities {πν;}, and demonstrate the 
similarity of this function with the bivariate normal density having unit 
standard deviations and correlation p. Show that the association parameter 
β corresponds to p / ( l - p2) (Goodman 1981a,b, 1985). 

6.2. For score parameters {μ,} and {v/}, explain why the model 

log ßijk = k + kf + kYj + kz
k + ßßi Vj + kfk

z + k)k
z 

is a homogeneous association version of the RC model (6.13). What com-
plications are there in using it to test XY conditional independence? 

6.3. An alternative loglinear model for the ordinal-ordinal table, having fixed 
scores as well as unknown row and column effects, is 

log ßij = k + kf + kY + μ,· vj + Ui Vj. 

With equally spaced {«,} and {VJ}, Goodman (1979a, 1981a) referred to 
it as the R + C model because of the additivity in terms of row effects 
{μ,} and column effects {v,}. Kateri et al. (1998) generalized this model 
to include both additive and multiplicative effects. 

(a) Show that the L x L model, row effects model, and column effects 
model are special cases. 

(b) Specify constraints to make the model identifiable, and show that 
residual df = (r - 2)(c - 2), like the RC model. 

(c) With equally spaced scores, show that the log local odds ratio has the 
additive form logÖ^ = y, + 8j. By contrast, for the RC model (6.13), 
show that log öl· = y,<5y·. 
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(d) A multiplicative model for the log global odds ratios has form 
logö^ — YiSj. Is this model invariant to permutations of rows or 
columns? Why or why not? How does this compare to the RC 
model? 

6.4. Consider a cross-classification of two ordinal variables with fixed row and 
column scores. 

(a) Describe the association pattern represented by the model 

log ßij = λ + λ* + λ] + ß\UiVj + ß2U2
iVj. 

For a 3xc table, explain why this model is equivalent to the row 
effects model. [More generally, Haberman (1974) expressed the gen-
eral association term \f? by an expansion using orthogonal polyno-
mials.] 

(b) For the model 

log/i,;; =a+ X\Ui + X2uj + y\Vj + Y2Vj + ßUiVj, 

show that the likelihood equations equate the sample marginal means, 
marginal standard deviations, and correlation with their fitted values. 

6.5. For the homogeneous linear-by-linear association model (6.9), show that 
the likelihood equation corresponding to ß is 

Σ I Σ Σ " ' " ^ ' * I = Σ I ΣΣΜ<υ;η<ν* I · 

Find the likelihood equation corresponding to ßk for the heterogeneous 
linear-by-linear association model (6.10). What do these equations, 
together with the equations for the main effects, suggest about observed 
and fitted correlations? 

6.6. Refer to Exercise 2.7. Analyze these data using methods of this chapter. 

6.7. Refer to Table 9.1 in Chapter 9. Fit the uniform global odds ratio model 
for each gender. Show how to compare the associations inferentially. 
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Non-Model-Based Analysis 
of Ordinal Association 

In this chapter we present ways of describing and making inference about associ-
ations between ordinal variables that are not based on models. Here we introduce 
some measures of association and methods that have been used much longer than 
the models presented in earlier chapters. 

We've seen that (r — l)(c — 1) odds ratios in a r x c contingency table describe 
the association structure completely. For simplicity, however, it can be useful to 
summarize the association by a single number. One way to do this is by fitting a 
model that assumes a common value for all (r — l)(c — 1) ordinal odds ratios of a 
particular type. For example, a model can assume that all the local odds ratios are 
identical (Section 6.2.2), all the global odds ratios are identical (Section 6.6.1), or 
all the cumulative odds ratios are identical (Section 3.2.3). An alternative approach, 
considered in this chapter, uses non-model-based statistics that extend the measures 
for 2 x c tables introduced in Section 2.1.4. 

7.1 CONCORDANCE AND DISCORDANCE MEASURES 
OF ASSOCIATION 

Several measures of association for ordinal variables are based on the numbers 
of concordant and discordant pairs of observations. From Section 2.2.3, a pair of 
observations is concordant if the subject ranking higher on X also ranks higher on 
Y. A pair of observations is discordant if the subject ranking higher on X ranks 
lower on Y. Denote the total number of concordant pairs by C and the total number 
of discordant pairs by D. 

7.1.1 Example: Concordant and Discordant Pairs for Happiness Data 

We illustrate using the GSS data analyzed in Section 2.2.2 on happiness and family 
income, shown again in Table 7.1. We treat "very happy" as the high end of the 
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TABLE 7.1. Happiness and Relative Family Income 

Family Income 

Above average 
Average 
Below average 

Very Happy 

272 
454 
185 

Happiness 
Pretty Happy 

294 
835 
527 

Not Too Happy 

49 
131 
208 

scale on happiness. Consider two people, one of whom is classified in the cell 
(above average, very happy) on (income, happiness) and the other in the cell 
(average, pretty happy). This pair is concordant, since the first person is ranked 
higher than the second in both income and happiness. Now each of the 272 persons 
classified in the cell (above average, very happy) form concordant pairs when 
matched with each of the 835 people classified (average, pretty happy), so there 
are 272 x 835 = 227, 120 concordant pairs from these two cells. In fact, the 272 
people in the cell (above average, very happy) are part of a concordant pair when 
matched with each of the (835 + 131 + 527 + 208) = 1701 people classified lower 
on both variables. 

Figure 7.1 illustrates the pairings of cells that result in concordant pairs. The 
total number of concordant pairs equals 

C = 272(835 + 131 + 527 + 208) + 294(131 + 208) 

+ 454(527 + 208) + 835(208) = 1,069,708. 

C = 272 (835 + 131 + 527 + 208) + 294 (131 + 208) 

+ 454 (527 + 208) + 835 (208) 

Figure 7.1. Concordant pairs. 



186 NON-MODEL-BASED ANALYSIS OF ORDINAL ASSOCIATION 

By contrast, the total number of discordant pairs equals 

D = 49(454 + 835 + 185 + 527) + 294(454 + 185) 

+ 131(185 + 527) + 835(185) = 533,662. 

For these data, C > D, which indicates a tendency for those having greater family 
income to be happier. The formulas for C and D are 

° = ΣΣΣΣ"y"« and D = ΣΣΣΣ"yn«· 
In each case, the first double summation is over all pairs of rows i < k, and the 
second double summation is over all pairs of columns. 

The measures presented next are based on C — D, providing various ways of 
mapping this difference to the interval [—1, 1]. For each measure, the association is 
said to be positive if C — D > 0 and negative if C — D < 0. Like the correlation, 
the measures are most suitable when observations are obtained randomly on both 
variables. Thus, the population versions are defined in terms of probabilities {π,;} 
for a joint distribution. 

7.1.2 Gamma 

Of the (C + D) pairs of observations that are concordant or discordant, the pro-
portion C/(C + D) is concordant and the proportion D/(C + D) is discordant. 
The difference between these proportions is called gamma (Goodman and Kruskal 
1954), 

-> C-D 
y — · 

r C + D 

For Table 7.1, 

A C-D 1,069,708-533,662 _ n ^ „ _ 
v = = ■ ■ = 0.667 - 0.333 = 0.334. 
r C + D 1,069,708 + 533,662 

Of the pairs that are concordant or discordant, | are concordant, | are discordant, 
and the difference between the proportions is 0.334. 

The population analog of gamma is 
= nc - nd 

Y nc + nd' 
where 

Π Ε = 2 Σ Σ Σ Σ ^ Μ and π^ = 2 ΣΣΣΣ 7 Γ ί > 7 Γ " 
i<k j<i i<k j>I 
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are the probabilities of concordance and discordance for a randomly selected pair of 
observations. The factor of 2 occurs in these formulas because the first observation 
could be in cell (i, j) and the second in cell (k, i), or vice versa. 

The value of γ (and y) is symmetric, that is, the same whether we treat Y or 
X or both as response variables. Its range of values is — 1 < γ < 1, with larger 
absolute values representing stronger associations. The gamma value just found of 
0.334 indicates a relatively weak association. By contrast, when the GSS last asked 
X = whether you believe in miracles and Y = whether you believe in heaven, using 
the scale (definitely, probably, probably not, definitely not) for each, γ = 0.828, 
indicating a strong positive association. The association between belief in heaven 
and belief in hell was even stronger, with γ — 0.895 and nearly 95% of the untied 
pairs being concordant. 

The boundary values are γ = 1, which occurs when D = 0, and γ — — 1, which 
occurs when C — 0. Table 7.2 shows contingency tables having various values 
of γ. The value | / | = 1 implies that the relationship is monotone but not strictly 
monotone. If γ = 1, in other words, for a pair of observations (Xa, Ya) and (Xb, Yb) 
with Xa < Xb, it follows that Ya < Yb but not necessarily that Ya < Yb. As is true 
for the correlation, in the population, statistical independence of X and Y implies 
that γ — 0, but the converse is not true. For example, γ can equal 0 for a U-shaped 
bivariate relationship. 

For 2 x 2 tables, γ simplifies to 

«11«22 — «12«21 
y = ; · 

«11«22+»12«21 
This measure was introduced by the British statistician G. Udny Yule in 
1900 and given the symbol Q in honor of Adolphe Quetelet, a Belgian 
statistician-sociologist-astronomer. Also called Yule's Q, it relates to the odds 
ratio Θ — «n«22/"i2«2i by 

. Θ- 1 

TABLE 7.2. Values of Gamma for Various 
Cross-Classifications 

1 
3 

0 
0 

0.2 
0.2 
0 

0.2 
0.2 
0 

0.00 
0.03 

0 
1 
3 

0 
0 

0.2 
0.2 
0 
0 

0.2 
0.30 
0.67 

0 
0 
1 
3 

0 
0 

0.2 
0.2 
0.2 
0 
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For 2 x 2 tables, gamma is a monotonic function of Θ that transforms from a [0, oo] 
range onto a [—1, +1] range. 

7.1.3 Kendall's Tau-b 

Kendall (1945) proposed a measure based o n C - D that also uses pairs of obser-
vations that are neither concordant nor discordant. These other pairs are tied on 
one or both of the variables, falling in the same row or falling in the same column 
or both. The number of pairs Τχ that are tied on the row variable X and the number 
of pairs Τγ that are tied on the column variable Y are 

Γ Χ = Σ Β ' + ( Β ' + - 1 ) and Ty = J2n+j(a+J-l). 
i=\ ; = 1 

The pairs tied on both X and Y are pairs of observations from the same cell. The 
total number of these pairs is 

i=i ;= i 

nijimj ~ 0 

For n observations, the total number of pairs decomposes into 

n ( n ~ 1} = C + D + Tx + TY - TXY. 

In this formula, Τχγ is subtracted because pairs tied on both X and Y are also 
counted in Τχ and in 7>. 

The sample form of Kendall's tau-b measure is 

C-D 

n = V[n(« - D/2 - Tx][n(n - l)/2 - 7>] 

The population version is 

Uc-Ud 
*b 

J(i-Z,*h)(i-Zj*lj) 

Like gamma, Kendall's tau-b is symmetric. Since C + D can be no greater than 
[n(n — l)/2 — Τχ] or [n(n — l)/2 — TY], it also cannot exceed their geometric 
average, which is the denominator of τ*,. Thus, |τ^| < \γ\. For 2 x 2 tables, it, is 
identical to the correlation. 

In fact, ib is a type of correlation even for r x c tables, using sign scores for 
pairs of observations. For each pair of observations {xa, ya) and (JCJ,, yb), let 

Xab = sign(j:a - xb), yab = sign(ya - yb), 
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where sign(w) = 1 if u > 0, sign(«) = — 1 if u < 0, and sign(K) — 0 if u = 0. The 
sign scores {xab\ indicate whether xa is greater than or less than Xb, and similarly 
for the {yab}· Note that xab = —Xba and yab = —yba- The product xabyab = 1 for a 
concordant pair and — 1 for a discordant pair. The square x^ = 1 for a pair untied 
on X and 0 for a pair tied on X. Similarly, y2

ab = 1 for a pair untied on Y and 0 for 
a pair tied on Y. For the n(n — 1) ordered pairs of observations (a, b) with a Φ b, 

X]X)*a6)W = 2(C - D), Σ Σ * α ί ' = Σ Σ ^ = 0' 
αφο a^b αφ-b 

Oyib 

n(n - 1) 
Τχ ΣΣ^ = 2 

aj^b 

n(n - 1) 
Τγ 

We use each pair twice in these sums, so that Σ Σαφο x"b — Σ Yla^b yab — 0 
because of the relationship xab = —Xba and yab = —yba- The sample correlation 
between [xab] and {yab} is therefore 

Z^ l^a^bxal>yab 

y ( Σ Zla^bxab)ul Σ α ^ α * ) 

C-D 
= rb. 

n(n - l)/2 - Tx n{n - l)/2 - TY 

7.1.4 Kendall's Tau 

For continuous variables, samples can be fully ranked on both variables, so 
Tx = TY = Τχγ = 0. Then C + D = n(n - l)/2, and γ and xb both simplify to 

τ = 
C-D 

n(n- l ) /2 ' 

In the population, the common value of γ and %b is ΠΓ — Π,;. This measure of 
ordinal association, proposed by Kendall (1938), is called Kendall's tau. Daniels 
(1944) noted that tau is a correlation coefficient for sign scores, and Kendall (1945) 
formulated tau-b by constructing the same correlation when ties exist. With cate-
gorical data, a nontrivial proportion of the pairs are tied, so tau-b is normally used 
instead of tau because tau cannot then attain a very large value. 

7.1.5 Somers' d 

Somers (1962) proposed a measure similar to gamma and tau-b, but which treats 
Y as a response variable and X as an explanatory variable. For this measure, pairs 
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untied on X serve as the base. The sample version, called Somers' d, is 

C- D 
d= . (7.1) 

n(n-l)/2~Tx 

Of the pairs that are untied on X, it is the difference between the proportions of 
concordant and discordant pairs. 

Since the denominator of d is at least as large as the denominator of γ, \d\ < \γ\. 
For \d\ to equal 1 there must be stricter monotonicity than for \γ \ — 1, in the sense 
that C or D must equal 0, and in addition, none of the pairs that are untied on X 
can be tied on Y. The population version of Somers' d is 

nc - nd 
Δ = 

When r = 2, Somers' d is equivalent to the stochastic superiority measure 

A = P(Yl>Y2)-P(Y2>Yi) 

for comparing two ordinal distributions introduced in Section 2.1.4. That measure 
is also useful when the two rows are unordered. For 2x2 tables, Δ simplifies to 
the difference of proportions, 7ri|j — π\\2. 

7.1.6 Example: Happiness and Income Revisited 

For Table 7.1 on Y — happiness and X = family income, in Section 7.1.2 we 
found that C = 1,069,708, D = 533,662, and γ = 0.334. Of the n(n - l)/2 = 
2955(2954)/2 = 4,364,535 pairs in that table, Tx = 1,619,035 are tied on family 
income and Τγ = 1,859,923 are tied on happiness. Of the pairs that are untied on 
family income, the difference between the proportions of concordant and discordant 
pairs is 

C-D _ 1,069,708-533,662 
~ n(n- l)/2 - Tx ~ 4,364,535 - 1,619,035 ~ 

For pairs of observations, the correlation between the sign scores for family income 
and the sign scores for happiness is 

C-D 
*b = V[«(« - D/2 - Tx)[n(n - l)/2 - Ty] 

1,069,708-533,662 
V(4,364,535 - 1,619,035)(4,364,535 - 1,859,923) 

= 0.204. 

All the ordinal measures show a relatively weak tendency for people at higher 
family income levels to tend to be happier. 
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7.1.7 Category Choice for Ordinal Variables 

Of the measures based on concordant and discordant pairs, gamma is the simplest 
to interpret. However, in some ways Kendall's tau-b and Somers' d are preferable. 
As discussed next, gamma tends to be more sensitive than Kendall's tau-b to the 
choice of the number of categories for the variables and the way they are defined. 
Also, for 2xc tables with an ordinal response variable, Somers' d is a useful 
asymmetric measure. 

To illustrate the potential effects of category choice, we collapse the 3 x 3 
table on happiness and family income to a 2 x 2 table, combining the first two 
categories of each variable (see Table 2.11). When categories are combined, there 
are necessarily more ties and fewer concordant and discordant pairs. Gamma takes 
value 0.50 for the 2 x 2 table, about 50% larger than its value of 0.33 for the 
original 3x3 table. Kendall's tau-b is not as greatly affected, changing from 0.20 
to 0.19. 

Ideally, a measure should be relatively stable with respect to changes in the 
categorization if it is to be a reliable index of association for cases in which there 
is no unique way of selecting the categories. As the numbers of rows and columns 
are increased, there are fewer tied pairs, and gamma and Kendall's tau-b tend to get 
closer in value to Kendall's tau, which they both equal for continuous variables. We 
can judge a measure's stability in terms of how close it tends to be to its limiting 
value for fully ranked data. According to this criterion, gamma fares poorly. It 
tends to inflate in absolute value as fewer categories are used. When there is an 
underlying continuous distribution, Kendall's tau-b tends to be closer than gamma 
to the underlying value of Kendall's tau. 

Why does gamma tend to inflate when data are categorized? Pairs of observa-
tions that become tied and excluded from calculation in gamma are those that are 
relatively close on X and/or Y. Ordinarily, pairs of observations selected from a 
subpopulation in which at least one of the variables is restricted in range exhibit 
a weaker association than pairs of observations selected randomly from the popu-
lation. With cruder measurement such pairs are excluded from the calculation of 
gamma, so the effect is to increase its absolute value (Quade 1974; Agresti 1976). 

Not all ordinal methods have biased summaries when crude categorizations 
are used. For example, when the proportional odds form of the cumulative logit 
model holds, Section 3.3.3 noted that the parameters describing effects are the 
same for all ways of categorizing the response variable. Even then, however, cruder 
categorization tends to result in larger standard errors. 

Besides depending on the numbers of categories, the values of most measures 
of association depend on the marginal distributions of the variables. This is the 
case for the concordance-discordance measures as well as odds ratios that group 
categories together. Because of this, it can be risky to compare values of measures 
calculated in tables having different category definitions or highly different marginal 
distributions. Consider, for example, case-control studies in which each subject 
who has a severe case of some disease is matched with someone having a mild 
case and a set of control subjects not having that disease, with all subjects observed 
in terms of some exposure that could cause that disease. The expected values of 
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a summary measure of association would be different for a study that used one 
control for each pair of cases and a study that used more than one control for 
each pair of cases. An exception is the local odds ratio. It uses pairs rather than 
groupings of response categories and maintains the usual invariance to marginal 
proportions, which is a well-known property of the odds ratio for 2 x 2 tables. 

7.2 CORRELATION MEASURES FOR CONTINGENCY TABLES 

In Section 7.1.3 we noted that Kendall's tau-b is a correlation between sign scores 
for pairs of observations. Other correlation measures are also useful for ordinal 
data. 

7.2.1 Correlation for Fixed or Rank Scores 

A common approach treats ordinal variables as of interval-scale type by assigning 
scores to the rows and columns and using the ordinary correlation. For row scores 
u\ < U2 < ■ ■ ■ < ur and column scores i>i < V2 < ■ · ■ < vc and for sample propor-
tions {pij}, equation (6.4) showed the sample correlation p. It's simple to find p 
using software: Enter the score on each classification for each observation. Then 
find the ordinary correlation, weighting by the cell count if each observation refers 
to a cell in a contingency table rather than a single subject. 

Alternatively, we could utilize only the ordinal aspect of the variables and use 
rank-type scores such as ridits (Section 2.1). For sample proportions {pij}, the 
ridit scores for the marginal distributions are the average marginal cumulative 
proportions, 

ai = Z^Pk+ + ~Γ' ί = 1,2, . . . , r , 
*=i 

4 = Σ>+* + ψ , y = i,2.....c. 

For each margin, the mean of the ridit scores equals 0.50. 
For observations on continuous variables that are ranked on each variable, Spear-

man's rho is the ordinary correlation applied to the rank scores. Kendall (1970, 
p. 38) proposed an analog of Spearman's rho for contingency tables. It is the 
ordinary correlation applied using the ridit scores. For sample data it equals 

EiEMf-0.50)(aJ~ 0.50)PiJ 
Pb= , = · 

y/lEitf - 0.50)2Λ+][Σ;Κ " 0.50?p+j] 

Since the ridit scores are a linear function of the midranks, ßb also equals the 
correlation applied to the sample midrank scores. For 2 x 2 tables, ßb = %, and 
then both measures equal the ordinary correlation. 
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7.2.2 Contingency Coefficient and Polychoric Correlation 

An alternative approach to measuring association assumes a continuous bivariate 
latent variable underlying the contingency table and approximates the correlation 
for its distribution. Most of this literature assumes an underlying bivariate normal 
distribution. Karl Pearson did this in proposing his tetrachoric correlation for 2 x 2 
tables, which is the ML estimate based on the four observed frequencies. For 
r x c tables, Pearson (1904) proposed an estimate based directly on the chi-squared 
statistic X2 for testing independence, his contingency coefficient 

Vx2 + «' 

Tallis (1962) proposed finding the ML estimate of the correlation for an assumed 
underlying bivariate normal distribution for the r x c table, and the term polychoric 
correlation now usually refers to the ML estimate. The names polychoric and 
tetrachoric refer to the names of mathematical expansions Pearson and later authors 
used in estimating the correlation with categorical data. 

Because the underlying random variables are unobserved, the means and vari-
ances are arbitrary. For given values, such as means of 0 and standard deviations 
of 1, the estimable parameters are the correlation and the r — 1 row cutpoints and 
c — 1 column cutpoints of the continuous scale that determine the probabilities for 
the r x c table. Olsson (1979) proposed an iterative two-step method for finding 
the ML estimate. In the first step, the cutpoints of the continuous scale that deter-
mine the marginal probabilities are estimated using the marginal frequencies. In 
the second step, the correlation is estimated by solving a likelihood equation for 
that parameter. Note 7.3 references other articles on this topic. 

Given the marginal cutpoints and the correlation estimate, the underlying bivari-
ate normal distribution having that correlation determines joint cell probabilities 
that have the corresponding marginal probabilities. Multiplying these estimated 
cell probabilities by n yields fitted values under the assumption of an underlying 
bivariate normal distribution. These can be compared to the observed cell frequen-
cies with the usual chi-squared statistics to test the goodness of fit of the underlying 
bivariate normal model, with df = re — r — c. The fit of this model is usually sim-
ilar to that of the linear-by-linear association model (6.2), which has the marginal 
frequencies and the correlation (for fixed row and column scores) as sufficient 
statistics and which tends to fit well when there is underlying bivariate normal 
distribution (Becker 1989b; Goodman 1981b; Wang 1987, 1997). 

7.2.3 Example: Happiness and Income Revisited 

Let's reconsider Table 7.1. With equally spaced row and column scores, p — 0.223. 
The rank-based measure pb — 0.223 (by coincidence the same, to three decimal 
places, as p with equally spaced scores). The ML estimate of the polychoric correla-
tion equals 0.282 (SE = 0.022). All these association measures indicate a relatively 
weak positive association. 
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TABLE 7.3. Fit of Bivariate Normal Model and Linear-by-Linear Association Model 
to Table 7.1 

Family Income 

Above average 
Average 
Below average 

Very Happy 

272 (278.8, 278.7) 
454(448.5,449.1) 
185 (183.4, 183.2) 

Happiness 
Pretty Happy 

294 (299.5, 299.7) 
835 (807.2, 806.6) 
527 (549.6, 549.7) 

Not Too Happy 

49 (36.7, 36.6) 
131 (162.7, 164.4) 
208 (188.5, 187.1) 

Table 7.3. shows the fitted values based on the joint probabilities implied by a 
bivariate normal distribution with correlation 0.282 that is categorized into a 3 x 3 
table with the given margins. (The fitted values are the first set of parenthesized 
values.) The deviance chi-squared statistic1 for testing the model of an underlying 
bivariate normal distribution equals 14.6, with df = 3. For contrast, Table 7.3 also 
shows the fit of the linear-by-linear association model with equally spaced row and 
column scores (the second set of parenthesized values), which has deviance 15.6 
with df = 3 and ß = 0.513 (SE = 0.043). The fit is similar to that of the bivariate 
normal model, both showing some lack of fit. 

In principle, we could assume a bivariate distribution other than the normal. 
When the underlying distribution is a bivariate exponential, Edwardes (1993) 
showed that the underlying values of the correlation and of Kendall's tau for the 
continuous latent variables are identical. 

7.3 NON-MODEL-BASED INFERENCE FOR ORDINAL 
ASSOCIATION MEASURES 

We now present inference methods for ordinal measures of association. We first 
provide a general result for asymptotic standard errors that are used in confidence 
intervals. Then we consider significance tests of independence. 

A typical sample measure is a function of sample cell proportions in a con-
tingency table. For multinomial sampling, the sample cell proportions have an 
approximate multivariate normal distribution for large n. The delta method implies 
that the measure itself has a large-sample normal distribution. The variance of that 
distribution depends on the true cell probabilities and on the partial derivatives of 
the measure taken with respect to those probabilities. For details about the delta 
method, see Bishop et al. (1975, Sec. 14.6). 

7.3.1 Standard Errors of Ordinal Measures of Association 

The ordinal measures of association presented in this chapter take the form of a 
ratio. The delta method implies the following (Goodman and Kruskal 1972): Let 

This is available with the polychor R function cited in the Appendix. 



NON-MODEL-BASED INFERENCE FOR ORDINAL ASSOCIATION MEASURES 195 

ζ = v/S denote a generic measure of association, with numerator v and denomi-
nator 8 that are certain functions of cell probabilities {jr,,}. Let 

Let ζ denote the sample value of ζ for a multinomial sample. Then as n —*■ oo, 
•JniX — ζ) converges in distribution to the normal with mean zero and variance 

Σ; Σ> πϋΦ\ί ~ ( Σ/ Σ ; πϋΦϋ ) 
σ2 = A / _ . (7.2) 

In practice, replacing {π^} by their sample values in σ2 yields the ML estimate 
σ2 of σ2. The term SE = σ/*fn is an estimated standard error for ζ. A Wald 
confidence interval for ζ is ζ ± z„/2(SE). As explained in Section 2.3.3, more 
refined confidence intervals can be based on inverting likelihood-ratio and score 
tests. See Lang (2008). 

The formula for φ^ differs from measure to measure, and we defer such formulas 
to an appendix at the end of this chapter. The standard errors are available with 
software such as SAS (PROC FREQ), SPSS (CROSSTABS option), Stata (tabulate 
two-way), and StatXact of Cytel Software (which is also a good source for standard 
error formulas). 

7.3.2 Standard Errors with Independent Multinomial Sampling 

Rather than taking a single multinomial sample and cross-classifying it on the 
variables, some studies take a set of independent multinomial samples. For example, 
when levels of an explanatory variable refer to groups to be compared, the study 
might fix the sample size for each group in proportion to its size in the population 
and then take a random sample of those fixed sizes from the various groups. 

Suppose that there is independent multinomial sampling within the rows of a 
two-way contingency table, with proportion ω, sampled from row i. When ω, is 
the population proportion classified in that row, the sampling is called propor-
tional sampling. For a measure of form ζ = ν/δ expressed in terms of conditional 
probabilities (π7|,), let 

^" = 3(ä^)-v(ä^)· 
Goodman and Kruskal (1963, 1972) showed that the expression for the asymptotic 
variance σ2 of */η(ζ — ζ) is 

σ ~¥^^ 

Again, SE = σ/^/η is an estimated standard error. 

Σπηί<ή\ϊ - \Τ2π]\ίΦ]\ί) 
z -



196 NON-MODEL-BASED ANALYSIS OF ORDINAL ASSOCIATION 

7.3.3 Testing Independence Using Concordant and Discordant Pairs 

We next consider tests of HQ: independence of X and Y. Let {μ,7 = n,+/i+j/n} 
denote the estimated expected frequencies under this hypothesis. The Pearson X2 

and likelihood-ratio G2 test statistics [see (6.1)] have asymptotic chi-squared null 
distributions with df = (r — l)(c — 1). They are invariant to changes in the order 
of the rows and/or columns, so they treat both variables as nominal scale and are 
designed for a general alternative. 

In most applications with ordinal variables, associations take the form of a pos-
itive or negative trend. That is, Y tends to increase or tends to decrease, in some 
sense, as X increases. For ordinal measures of association that describe the associ-
ation by relative numbers of concordant and discordant pairs, positive and negative 
associations are characterized by the probability orderings n c > Π^ and n c < Π^, 
respectively. To construct a test having good power for a trend, we can use a test 
statistic that is natural for Ha: Tlc — Π^ > 0, Ha: Tlc — Π</ < 0, or Ha: Ylc — Π^ φ 
0. Each alternative is narrower than the general one to which the statistics X2 and 
G2 refer, because n c φ Π^ implies dependence, but the converse is not true. 

The quantity n c — Π^ is negative, zero, or positive in precisely the same 
instances that gamma, Kendall's tau-fc, and Somers' d are. Simon (1978) showed 
that all sample measures having numerator C — D have the same efficacy, and 
hence the same local power, for testing independence. Thus, it is unnecessary to 
have separate tests for each measure of association. Instead, a single test can be 
constructed using C — D, the common numerator of their sample values. 

For large random samples, C — D is approximately normally distributed. A 
large-sample test of independence has test statistic 

C - D 
z = , (7.3) 

&C-D 

where OC-D denotes the null standard error of C — D. Under HQ: independence, 
ac-D depends only on the sample size and the true marginal proportions. Condi-
tional on both sets of sample marginal counts, Kendall (1970, p. 55) showed that 

2 n(n - l)(2n + 5) - £,. ni+(ni+ - l)(2ni+ + 5) 
<yr-n = _. .. _ 'C-D 

+ 

18 
Zjn+j(n+j-O(2n+j+5) 

18 
[ £,. ni+(ni+ - l)(n,+ - 2)][ Ej n+M+j ~ D(»+j ~ 2)] 

9n(n - l)(n - 2) 

[Σ< «.■+(».■+ - Ρ ] [ Σ ; n+jin+j - 1)] 
2n(n - 1) 

In Exercise 7.3 we summarize the way that this uses the marginal proportions. 
Alternatively, we could use a Wald test, such as z = y/SE, where SE is the 

standard error for γ used for a confidence interval. That is, SE is the nonnull 
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standard error, which is valid whether or not HQ is true. Rejecting Ho in favor 
of a two-sided alternative for such a test at the a level is equivalent to 0 falling 
outside the corresponding 100(1 — a)% Wald confidence interval. However, under 
Ho, convergence to the standard normal distribution as n increases is better for the 
test statistic (7.3) that uses the null standard error, and we recommend that statistic. 

7.3.4 Tests Based on Correlation or Pairwise Measures 

To detect a positive or negative trend, we could alternatively base tests on a 
correlation-type measure. Let p denote a sample correlation, based on assigning 
fixed scores or rank-type scores to the rows and columns (see Section 7.2). Then, 
under HQ: independence, the test statistic 

(« - DP2 (7-5) 

has an asymptotic chi-squared distribution with df = 1 (Mantel 1963). In Section 
6.4.5 we presented a stratified version of this test. 

Another approach uses a measure that compares each pair of rows simultane-
ously, using the difference between means or mean ranks. The test statistic uses the 
sum of such differences for all pairs of rows, maintaining the order of the rows for 
each comparison. The Jonckheere-Terpstra test does this using ranks, combining 
the results of r{r — l)/2 tests of the Wilcoxon type presented in Section 7.4.1 [see 
Hollander and Wolfe (1999, pp. 202-210)]. 

7.3.5 Example: Inference About the Happiness-Income Association 

To illustrate inference for ordinal measures, we reconsider the happiness and family 
income data from Table 7.1. From Section 7.1.2, C = 1,069,708, D = 533,662, 
and γ = 0.3343. Formula (7.4) provides OQ-D = 44,022.2 , and hence 

C - D 1,069,708 - 533,662 
7 — — = 12.18. 

aC-D 44,022.2 

There is extremely strong evidence of a positive association. 
Software reports a standard error for gamma of SE = 0.0262. A 95% Wald 

confidence interval for the population value of gamma is 

0.3343 ±1.96(0.0262) or (0.283,0.386). 

This suggests that the association is relatively weakly positive. 
With equally spaced scores for each variable, the sample correlation is p — 

0.223. The chi-squared statistic (7.5) for testing independence equals (n — l)p2 = 
146.55, corresponding to a standard normal statistic of z = V« — lp = 12.11. 
Using midrank scores and the Spearman-type correlation f>b = 0.223 for this test 
yields a nearly identical result. 
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7.3.6 Sample Size and Power for Establishing an Association 

In testing independence with ordinal variables, how large a sample size do we 
need to obtain a particular power? For comparing r = 2 groups, in Section 3.7.2 
we presented a formula based on a cumulative logit model of proportional odds 
form. That formula also applies to the Wilcoxon-type test of Section 7.4.1. 

For r x c tables, most tests are based on asymptotically normal statistics, such 
as a measure of association (e.g., correlation, gamma) or an estimate of a model 
parameter. Let ζ denote an asymptotically normal estimator of a generic parameter 
ζ that equals 0 under the null hypothesis, with variance of the form v/n. Then for 
a fixed nonnull value ζο of ζ, standard arguments show that the required sample 
size for a one-sided test with /'(type I error) = a and P(type II error) = β is 

(Za + Zß)2V 

To use this formula, the steps are to (1) choose an anticipated set of nonnull 
cell probabilities, (2) find the value of ζο corresponding to those probabilities, (3) 
find v for those probabilities, and (4) substitute fo and v into this formula with the 
a and β desired. In some cases υ has closed form, based on the delta method, and 
in some cases it requires iterative methods. Even when it has closed form, though, 
the formula is typically messy computationally. A simple approach to determining 
v (and fo) enters the anticipated cell probabilities as data into standard software, in 
which case v equals the square of the reported SE value (since the effective sample 
size equals 1). 

For illustrative purposes, suppose that we had anticipated probabilities pro-
portional to the counts in Table 7.1 relating happiness and family income. In 
Section 7.3.5 we observed γ = 0.3343 and a standard error of 0.0262 for these 
data having a sample size of 2955. Setting υ/2955 = (0.0262)2 yields v = 2.028. 
To have power 0.90 in a size a = 0.05 one-sided test of γ — 0 when the true rela-
tionship has such probabilities with yo = 0.3343 requires a sample size of about 
n = (1.645 + 1.282)2(2.028)/(0.3343)2 » 156. 

7.3.7 Testing Conditional Independence with Ordinal Variables 

To test conditional independence between two ordinal variables for stratified data, 
ordinal statistics can be constructed that summarize the information about trends 
in the partial tables. For example, to use concordant and discordant pairs, in partial 
table k we could find C* — D* and its null variance σ\ using equation (7.4). A 
simple test statistic is then 

_ Ek(Ck ~ Dk) 

In Section 6.4.5 we presented alternative tests for the same purpose using stratum-
specific correlation information. 
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7.4 COMPARING SINGLY ORDERED MULTINOMIALS 

When the row variable X is nominal rather than ordinal, the notion of a positive 
or negative trend is no longer applicable. However, it is still relevant to study 
whether responses tend to be higher on the ordinal variable Y in some rows than 
in others. For example, often we expect underlying continuous distributions to be 
stochastically ordered, with similar variabilities but differing in location. 

We next consider tests of independence that treat the columns as ordinal and the 
rows as nominal, in the sense that results are invariant to permutations only of the 
rows. Independence is equivalent to identical population conditional distributions 
on Y within the r rows. The tests are also useful when the rows are ordinal (rather 
than nominal) but a positive trend or negative trend is not necessarily expected. 
Such a test is preferable to the trend tests of Section 7.3 if we expect the levels of 
X to be stochastically ordered on Y, but not in a monotonic manner, as an example 
in Section 7.4.4 illustrates. 

7.4.1 Comparing Mean Ranks for Two Ordinal Categorical Distributions 

We first consider the comparison of two groups (r = 2). The best-known nonpara-
metric rank-based test is the Wilcoxon test (Lehmann 1975, pp. 18-23). It ranks 
all the observations on Y and then uses as a criterion the sum of the ranks in the 
first row relative to its null expectation. For ordered categorical responses, it uses 
the midranks or ridits. 

Denote the sample sizes by n\ for row 1 and n2 for row 2. Denote the sum of 
the ranks for row 1 by W. Denote the number of tied observations at level j of 
the response Y by tj, j = 1 , . . . , c. These are the column totals of the 2xc table. 
Under the null hypothesis of identical population distributions, conditional on {«,} 
and {tj}, 

E(W) = 

Var(W) = 

n\{n\ +Π2 + 1) 
2 ' 

n\n2(ni +n2+ 1) «ι«2 Σ%\(ή ~ 0') 
12 12(m +η2)(«ι + 1 2 - 1 ) 

The second term in the expression for Var(W) is a correction for ties. It decreases 
as the number of response categories c and the dispersion of the sample among 
them increases. (It disappears completely when there are no ties, that is, when all 
tj = 1 .) Under Ho, the test statistic 

W-E(W) 
z = —, (7.6) 

VVar(W) 

has a large-sample standard normal distribution. 
Equivalent expressions for this test statistic use a numerator that is the difference 

between the mean ranks or between the mean ridits for the two groups. Such 
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formulas can use variances expressed in terms of midrank or ridit scores, making it 
unnecessary to separately correct for ties (Brunner and Puri 2001, Sec. 1.6.1). Here, 
we use the midrank scores. Let Rtj denote the midrank score for observation j in 
group /, j = 1 , . . . , m, for i = 1, 2. Denote the mean ranks in the two groups by 
Ri and R2. The mean rank for the combined sample of n — (n\ + «2) observations 
is (n + l)/2. Then the test statistic equals 

R1-R2 

v/Var(Ä, - R2)' 

where 

(7.7) 

Alternative expressions compare the mean ridits or compare one of the mean ridits 
to 0.50 (see Exercise 7.5 and Section 7.4.3 applied to two groups). 

The Wilcoxon test is also equivalent to an analysis based on numbers of con-
cordant and discordant pairs. With unordered groups, identifying which are the 
concordant and which the discordant pairs is arbitrary. This equivalent approach 
bases inference on the distribution of C — D under the null hypothesis of identical 
distributions, with the z statistic (7.3). The test using that approach is called the 
Mann-Whitney test. Natural effect measures relating to this test are the a and Δ 
stochastic superiority measures (Section 2.1.4). 

7.4.2 Example: Comparing Treatments for Gastric Ulcer Crater 

Table 7.4 shows data from a randomized study to compare two treatments for a 
gastric ulcer crater. The response was the change in the size of the ulcer crater 
after three months of treatment, measured with the ordinal scale (larger, less than 
I healed, | or more healed, healed). The sample conditional distributions on the 
ordinal response are (0.19, 0.12, 0.31, 0.38) for treatment A and (0.34, 0.25, 0.25, 
0.16) for treatment B. 

TABLE 7.4. Results of Study Comparing Two Treatments for Gastric Ulcer 

Treatment 
Group 

A 
B 

Total 

Larger 

6 
11 

17 

Change in 

<f 
Healed 

4 
8 

12 

Size of Ulcer Crater 

Healed 

10 
8 

18 

Healed 

12 
5 

17 

Total 

32 
32 

64 

Source: Armitage (1955), with permission of the Biometrie Society. 
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The cumulative marginal response counts are (17, 29, 47, 64), so the midranks 
are 

i±iZ = 9, 1 ^ = 23.5, ^ ± i Z = 38.5, « ± ^ = 56. 
2 2 2 2 

The sum of the ranks for treatment A is 

W = 6(9) + 4(23.5) + 10(38.5) + 12(56) = 1205. 

Under the null hypothesis of identical response distributions, 

32(32 + 32+1) 
E(W) = ——--—— = 1040, v

/Vär(WÖ = V5546.7 - 366.6 = 72.0. 

The test statistic in terms of the rank sum W is 

W - E(W) 1205 - 1040 „ „„ 
z = — = = 2.29. 

VVar(W) 72.0 
This has a P-value of 0.02 for the two-sided alternative, giving evidence of a better 
response with treatment A than with treatment B. In Section 2.1.7 we also analyzed 
these data and noted that the sample effect was of moderate size, as ά = 0.66 
estimates the probability of a better response with treatment A than treatment B. 
The 95% score confidence interval for a is (0.52, 0.77). The sample size was not 
very large, so we cannot estimate precisely the size of the effect. 

7.4.3 Comparing Mean Ranks for Several Groups 

For a continuous response with fully ranked observations, the Kruskal-Wallis test is 
the best known nonparametric rank-based test for comparing r groups (Kruskal and 
Wallis 1952; Lehmann 1975, pp. 204-210). It is an analysis of variance comparing 
the r mean ranks. For an ordinal categorical response, a discrete adaptation of the 
Kruskal-Wallis (KW) test uses midranks. We express the statistic in an equivalent 
expression using sample mean ridits. The test is designed to detect differences 
among the r rows in the population mean ridits. 

Suppose that the sampling is full multinomial or independent multinomial within 
the rows. Let Ä, denote the sample mean ridit for the n, observations in row i, 
when the ridits are based on the sample marginal distribution of Y. Then the mean 
and the variance of {Ä,} are 

Y" Ϊίί-Ä, = 0.50, y - ( A , - 0 . 5 0 ) 2 . 
i = l i '=l 

The Kruskal-Wallis statistic is proportional to this variance: namely, 

19 _1_ 
KW = , , η Τ Σ Β ' · ^ - °·5 0 ) 2 ' (7"8) 
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where T is a correction factor for ties involving the column totals {tj}, 

nJ — n 

Under HQ: identical population distributions in the r rows, the KW test statistic 
has an asymptotic chi-squared distribution with df = r — 1. 

For large {tj}, T is approximately equal to 1 — J \ . p^_.. It converges upward 
toward 1.0 as the number of response categories c and the dispersion of the sample 
among them increases, equalling 1.0 when there are no ties. Alternatively, T can 
be expressed in terms of the variability in the midrank or ridit scores (Brunner 
and Puri 2001, Sec. 1.6.1). Let /?/,· denote the midrank score for observation j in 
group i, and let A,·; = (/?;7 — 0.50)/n denote the corresponding ridit score. Then, 
in statistic (7.8), 

<Ζ±1* _ -!- ± ί > „ - ».so,' = ■— t Σ fa- - — V· 12« η - \ ^ ^ J ' η2(η-\)^^\ ' 2 
( = 1 j = \ i = l j=\ N 

7.4.4 Example: Happiness and Number of Sex Partners 

Throughout this chapter we've analyzed data on happiness. The GSS in 2006 
also asked about the number of sex partners the respondent had in the preceding 
year. Table 7.5 cross-classifies the number of sex partners (0, 1,2 or more) with 
happiness. 

We could check for a trend in the data: for example, whether happiness tends 
to increase as the number of sex partners increases. However, summary ordinal 
measures of association are near 0, such as γ = 0.031 (SE = 0.035) and Kendall's 
ib =0.017 (SE = 0.020). A quick look at conditional distributions within rows, 
also shown in Table 7.5, indicates why. The sample percentage in the "not too 
happy" category equals 19% for 0 partners, 8% for 1 partner, and 18% for 2 or 
more partners. Subjects in the first and third rows have a tendency for less happy 
responses. A monotone trend does not occur. 

The Kruskal-Wallis test treats the rows as nominal. It is designed to detect 
location differences in happiness among the three rows. Software2 reports 

TABLE 7.5. Data on Happiness and Number of Sex Partners 

No. Sex Partners 

0 
1 
>2 

Not Too Happy 

112(19%) 
118 (8%) 
57 (18%) 

Happiness 
Pretty Happy 

329 (55%) 
832 (56%) 
198 (63%) 

Very Happy 

154 (26%) 
535 (36%) 

57 (18%) 

Source: 2006 General Social Survey. 

2SAS, using PROC FREQ with the CMH2 and SCORES = RANK options. 
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KW = 77.5, with df = 2 (P-value < 0.0001). There is strong evidence that the 
distribution of happiness is not identical among the three levels for number of sex 
partners. 

7.4.5 Pairwise Comparisons of Groups on an Ordinal Response 

In practice, rarely do we believe that the null hypothesis of independence might be 
true. We expect some effects, even if they are small. We learn more from estimating 
the sizes of any effects: for example, by forming confidence intervals for measures 
of association. 

For the singly ordered analysis, the Kruskal-Wallis test merely indicates whether 
at least two rows differ in their population mean ridits. Rejection of HQ suggests 
two other questions that usually have greater practical importance: 

• Which pairs of rows have significant differences? More generally, to what 
extent can we make inferences about how the rows are ordered on the 
response? 

• How large are the differences among the rows in their response distributions? 

To answer the first question, we can repeat the Wilcoxon-type test (7.6) for each 
pair of rows. This test is equivalent to the KW test applied solely to those two 
rows, the square of the standard normal statistic (7.6) being the KW statistic (7.8), 
which then has df = 1. Each application of the test uses a different 2 x c table, so 
the midranks (or ridits) are recomputed each time. 

The second question posed above about sizes of differences can be answered 
by estimating the mean ridit differences or other summary measures for comparing 
two ordinal categorical distributions, such as 

Δ = P{YX > Y2) - P(Y2 > y,), a = P(YX > Y2) + \P{Y2 = y,), 

introduced in Section 2.1.4. These measures have simple probability interpretations 
that describe just how different the groups are on the ordinal response. In Section 
2.3 we presented confidence intervals for such measures. 

7.4.6 Simultaneous Confidence Intervals Comparing Groups 

When r is large, there are many pairwise comparisons. A multiple comparison pro-
cedure can protect the overall error rate. For the r(r — l)/2 pairwise comparisons, 
suppose that we want the overall type I error rate to be about a. The Bonfer-
roni approach uses the ordinary test but sets the type I error probability for each 
comparison to be a/[r(r — l)/2]; that is, the difference between rows i and k is 
considered significant if the P-value < 2a/r( r — 1) for comparing those two rows. 
This approach is asymptotically a bit conservative, with actual overall error rate 
bounded above by a. 
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An alternative method that is less conservative than the Bonferroni method is 
adapted from a method that Agresti et al. (2008) proposed for comparing several 
binomial proportions. For the Wilcoxon-type statistic Zik f°r a pair of rows / and 
k, declare significance if 

where Qr(ce) denotes the 100(1 — a) percentile of the studentized range distribution 
with an infinite number of degrees of freedom. (That studentized range distribution 
is the distribution of the range between the maximum and minimum of r indepen-
dent standard normal random variables.) In other words, the cutoff point Qr(a)/V2 
for the rejection region replaces the value za/r(r-i) from the standard normal dis-
tribution that is used with a Bonferroni adjustment. For a = 0.05, for example, the 
cutoff points for \iik\ when r — 5 are 2.81 for the Bonferroni method and 2.73 
using the studentized range distribution. With a = 0.05, the values of ßr(0.05) 
for r = (2, 3 , . . . , 10) are (2.772, 3.314, 3.633, 3.858, 4.030, 4.170, 4.286, 4.387, 
4.474). 

A similar approach also works with confidence intervals. When a pairwise inter-
val results from inverting a z test that compares an approximately standard normal 
test statistic to za/2, replace that cutoff point by Qr{a)/\/2 to construct a set 
of r{r — l)/2 confidence intervals that have an overall confidence level approxi-
mately equal to 1 — a. For example, suppose that confidence intervals should have 
a simultaneous confidence level about 95% for the measure Δ, comparing pairs of 
groups. A simple way to do this takes the standard errors that software reports for 
Somers' d (which equals Δ when r — 2) and finds a margin of error for Wald-type 
confidence intervals by multiplying the standard errors by ßr(0.05)/V2. An even 
better way takes the score-test-based confidence interval alluded to in Section 2.3.3 
and replaces za/i as the critical value for the z form of test statistic by Qr(a)/V2. 
For further details, see Ryu (2009). 

7.4.7 Example: Happiness and Sex Partners Follow-Up 

For Table 7.5, the Wilcoxon test for each pair of rows has test statistics zoi = —6.55 
for comparing 0 with one partner, zo2 = 1-61 for comparing 0 with at least two 
partners, and z\2 = 7.25 for comparing one partner with at least two partners. There 
is extremely strong evidence that happiness tends to be higher for those with one 
sex partner than for the other subjects. 

The sample estimates of Δ are Δοι = —0.163 (SE = 0.0250) for comparing 
0 with one partner, Δ02 = 0.058 (SE = 0.0347) for comparing 0 with at least 
two partners, and Δ12 = 0.230 (SE = 0.0298) for comparing one partner with at 
least two partners. The effects are relatively modest. For approximate simultaneous 
95% confidence, we obtain margins of error by multiplying each standard error by 
Ö3(0.05)/\/2 = 2.343. This yields confidence intervals 

Δ01 : (-0.22, -0.10), Δ02 : (-0.02,0.14), Δ,2 : (0.16,0.30). 
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7.4.8 Comparing Means with Fixed Scores and Corresponding Trend Tests 

Instead of tests comparing mean ranks of multinomial distributions with ordered 
categories, we could use a test employing fixed scores {VJ} for the response cat-
egories. One way to do this applies the generalized Cochran-Mantel-Haenszel 
(CMH) tests of conditional independence presented in Section 6.4.5 to the special 
case of a single stratum. In this context we use the statistic for unordered rows but 
ordered columns with scores {VJ}. The generalized CMH statistic that uses rank 
column scores corresponds to the square of the Wilcoxon-type statistic (7.6) for 
two groups and to the Kruskal-Wallis-type statistic (7.8) for several groups. 

For the data on comparing treatments for gastric ulcer crater analyzed with the 
Wilcoxon-type test in Section 7.4.2, the generalized CMH statistic with equally 
spaced scores for the change in the size of the ulcer crater equals 5.18 with df = 1, 
for a P-value of 0.02. The corresponding generalized CMH statistic with midrank 
(or ridit) scores equals 5.26, the square root of which is the z statistic of 2.29 for 
the Wilcoxon-type test reported in Section 7.4.2. 

Such tests with fixed scores also relate to binary regression models that reverse 
the roles of the variables artificially. For the case of two groups, reorient the 2xc 
table as a c x 2 table, regarding the groups as the binary response variable Y and 
the levels of the ordinal variable as the explanatory variable X with scores {u,·}. 
Then we treat the data as c independent binomials rather than two independent 
multinomials, where row i has n,i cases with y = 1 out of n, = η,ι +η,·2 trials. 
Consider the model 

link P(Y = 1 | X = i) = a + ßvt 

such as with the logit or probit link. The score test of Ηο'. β — 0 is often referred 
to as the Cochran-Armitage test (Armitage 1955; Cochran 1954, 1955). The chi-
squared form of the test statistic is 

EJUQ*-")"" Ί2 

-y/pV-p)TZ=i"i(Vi-i>)2l ' 

where p — n+i/n is the overall proportion of cases with y = l and 
ϋ = ( Ε , η ι υ ί ) / η ' s the sample mean of the fixed scores. The generalized 
CMH statistic3 applied to a single stratum with the same scores equals (n — \)/n 
times this statistic. Corcoran et al. (2000) compared the power of this test and 
small-sample conditional tests. 

In summary, there are many ways to compare two multinomials with ordered 
categories, in addition to the model-based methods of Chapters 3 to 5. In Notes 
7.5 and 7.6 and the following section we mention yet other methods. 

3The slightly smaller value results from its being derived conditional on the number of outcomes of 
the two types, which is the sufficient statistic for a in the model with logit link (i.e., it is a conditional 
score statistic). 



206 NON-MODEL-BASED ANALYSIS OF ORDINAL ASSOCIATION 

7.5 ORDER-RESTRICTED INFERENCE WITH INEQUALITY 
CONSTRAINTS 

In this chapter inference has utilized ordered categories with summary measures, 
such as by comparing counts of concordant pairs and discordant pairs or mean 
ranks. An alternative approach uses order-restricted inference based on inequality 
constraints for parameters that recognize the ordering. In this section, based on a 
survey article on this topic by Agresti and Coull (2002), we present ways of doing 
this using the constraint that ordinal log odds ratios are nonnegative. In Sections 
6.3.5 and 6.5.6 in Chapter 6 we presented an alternative order-restricted approach 
using inequality constraints for parameters in association models. 

7.5.1 Inequality Constraints for an Ordinal Predictor of a Binary Response 

To begin, consider an r x 2 table with ordered rows. We'll see in Section 7.5.3 
that the results also apply to 2 x c tables with ordered columns. Suppose that 
the rows are independent binomial samples, with "success" counts (yi,...,yr) 
based on (n\,..., nr) trials having parameters {π\,..., π>). In many applications, 
such as in dose-response investigations, we expect that π\ < πι < ■ ■ · < rtr (or 
7Γι > 7Γ2 > · · · > nr). Then to test HQ: π\ — π-χ — ■ ■ ■ — πΓ, we can use the order-
restricted alternative, Ha: π\ < π2 < · · · < π>· 

Denote the sample proportions by p, = >//«<, / = 1 , . . . , r. Under HQ, the ML 
estimator of π,· is the overall sample proportion of successes, p = £,· yi/ Γ̂,- η,. If 
the r sample proportions satisfy p\ < p2 < ■ · ■ < pr, they are the order-restricted 
ML estimators {π,·} of {πν}. Otherwise, {π,} are obtained using the pooling adja-
cent violators algorithm. This pools "out-of-order" pairs of categories for which 
Pi > Pi+i until the resulting sample proportions are monotone increasing. The 
order-restricted ML estimates {π,} for the original categories are the sample pro-
portions for the finest partition of categories for which the order restriction occurs. 

Denote the hypotheses by I for the null (independence) hypothesis and O for 
the order-restricted hypothesis. Test statistics compare the fitted counts for / to 
the fitted counts for O. In row i, the fitted values are £/i(i) = «;/? and μ.,2(ΐ) = 
1/(1 — P) under I (i.e., the same proportions in each row) and £zi(0) = n,7r,· and 
Α/2(θ) = i ; ( l — £;) under O, for the order-restricted ML estimates {ir,}. Robertson 
et al. (1988, p. 167) presented the likelihood-ratio (LR) statistic for testing I against 
O as a special case of the LR test comparing parameters for independent samples 
from an exponential family distribution. The test statistic is 

G2(I | O) = 2 T nn log - + 2 T ni2 log —-^-. (7.9) 
t—1 p t—1 1 — p 
/ = 1 F 1 = 1 F 

Equivalently, this can be expressed in the usual LR form for comparing fitted values 
for two nested multinomial models, 

G\\ | O) = 2 £ E " y l ° I ^ H = 2 £ X > y ( 0 > l o g ^ K ° > . (7.10) 
7 7 M/yd) i j ßiJm 
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Bartholomew (1959) presented a corresponding Pearson statistic, noting that it 
equals the ordinary X2 for testing independence applied to the counts in the col-
lapsed table that combines rows having sample proportions falling out of order. 

The large-sample null distribution of G2(I | O) and the corresponding X2 statistic 
is chi-bar-squared. This is the distribution of a mixture of independent chi-squared 
random variables of form Σά=ι wdXd-i' where xj is a chi-squared variate with d 
degrees of freedom (with χ£ = 0) and uv is the null probability that the inequality-
constrained estimators have d distinct sets on which the estimates are level. For 
a test statistic T [such as G2(I | O)] having this distribution, with observed value 
fobs» the P-value equals 

r 

P(T > fobs) = Σ WdP(Xd-l > 'oh), 
d=\ 

the same weighted average of ordinary chi-squared P-values for the possible col-
lapsed tables. Robertson et al. (1988, pp. 74-82) presented {u^} for independent 
samples from normal populations, and these approximate {wd} for the order-
restricted binomial problem. They provided tables of critical values for the chi-bar-
squared distribution for r = 3 and r = 4 (pp. 411-413) and for larger r values for 
equal-sample-size cases (p. 416). For equal sample sizes with r = (3,4, 5, 6, 7, 8), 
and nominal size 0.05, the critical values are (3.82, 4.53, 5.05, 5.46, 5.80, 6.09). 
Agresti and Coull (1996) presented small-sample tests. 

7.5.2 Example: Order-Restricted Treatments in Dose-Response 

Table 7.6, from Chuang-Stein and Agresti (1997), refers to a clinical trial for 
patients who experienced trauma due to subarachnoid hemorrhage. The four ordered 
treatment groups correspond to a control group and three dose levels of a medica-
tion. A study objective was to determine whether a more favorable outcome tends 
to occur as the dose increases. 

To illustrate an inequality-constrained test about binomial parameters, we first 
compare the four treatment groups on the probability of outcome category 1 (death), 

TABLE 7.6. Responses on the Glasgow Outcome Scale from a Clinical Trial with a 
Placebo (Control) and Three Treatment Groups 

Glasgow Outcome Scale 
Treatment 
Group 

Placebo 
Low dose 
Medium dose 
High dose 

Source: Data from 

Death 

59 
48 
44 
43 

Chuang-

Vegetative 
State 

25 
21 
14 
4 

Major 
Disability 

46 
44 
54 
49 

Stein and Agresti (1997). 

Minor 
Disability 

48 
47 
64 
58 

Good 
Recovery 

32 
30 
31 
41 

Total 

210 
190 
207 
195 
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combining the other three categories. We test HQ: π\ = π2 = πι, = π^ against 
Ha: π\ > 7T2 > 7Γ3 > π^. The sample proportions of death were (p\, p2, P3, PA) — 
(0.281, 0.253, 0.213, 0.221), so ρτ, and p4 slightly violate the order restriction. 
The pooling adjacent violators algorithm combines rows 3 and 4 to give π-$ = 
π·4 = (44 + 43)/(207 + 195) = 0.216. So the ML fitted probabilities under Ha are 
(jri, 77-2,^3-£4) = (0.281, 0.253, 0.216, 0.216). The LR statistic for testing H0 

against Ha is G2(/ | O) = 3.27. From Robertson et al. (1988, pp. 74-82), the 
{\bd} estimates are (0.251, 0.459, 0.249, 0.041). The large-sample chi-bar-squared 
distribution yields a P -value of 

P = 0.251(0) -)- 0.459Ρ(χ2 > 3.27) 

+ 0.249Ρ(χ2
2 > 3.27) + 0.041 Ρ(χ3

2 > 3.27) = 0.095. 

For comparison, the chi-squared test of independence against the general 
alternative for the 4x2 table has LR test statistic G2(I) = 3.30 (df=3) and 
P = 0.35. Using the ordering of the dosage levels results in much stronger 
evidence of an effect. 

7.5.3 Inequality-Constrained Odds Ratios in 2xc Contingency Tables 

For an r x c contingency table for which both X and Y are ordinal, in Section 2.2 
we introduced various ordinal odds ratios. For any particular ordinal odds ratio, 
a positive association corresponds to nonnegative values of all (r — l)(c — 1) log 
odds ratios. Denote this condition by L for the local odds ratios, G for the global 
odds ratios, C for the cumulative odds ratios, and Co for the continuation odds 
ratios. Of these conditions, 

L implies C implies G and L implies Co implies G. 

To conduct order-restricted inference, we could estimate cell probabilities under one 
of these conditions or test independence against that condition as an alternative. 

We discuss this first for comparing two groups (r = 2) using a 2 x c table 
with two independent multinomial samples. The cumulative odds ratios and the 
global odds ratios are then identical, so conditions C and G are equivalent. They 
correspond to the conditional distribution of Y being stochastically higher at the 
second level of X than at the first. 

Brunk et al. (1966) derived the ML estimates of the two sets of multinomial 
probabilities under this stochastic ordering constraint. Let 

_ Fjji _ («11 H \-n\j)/ni 
1 Fj\2 ("21 H l· n2j)/n2 

be the ratio of sample cumulative distribution functions at response category j . 
When the minimum ratio equals 1, which is the value at the final column j = c, 
the sample counts themselves satisfy condition C. Then (£y(0) ="17} anc^ m e 
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sample conditional proportions are the order-restricted estimates. Otherwise, the 
c columns are divided into subsets as follows: The first subset ends at column 
υι for which ουχ is the minimum of [o\,..., oc}. The second subset consists of 
columns [vi + 1 , . . . , V2} such that oV2 is the minimum of [oVl + u ..., oc], and 
so on. Grove (1980) provided a geometric representation of this construction. In 
this construction of subsets, suppose that a particular subset consists of columns 
a, a + 1 , . . . , b. Then the ML fitted value under the stochastic ordering restriction 
for cell (/, j) in those columns equals 

{n+a H l· n+b)ni+ 
Mo'(O) = nij—, ; ; : — . 

and at column b, the sample cdf s violate the stochastic order but the fitted cdf s 
are identical. When a subset contains a single column, £17(O) = (n+7n,+)/n, the 
fitted value for the independence model. 

Grove (1980) and Robertson and Wright (1981) presented the LR test of whether 
two multinomial distributions are identical against the C alternative. The test statis-
tic has the usual G2 form (7.10), comparing the fitted values for the null and 
alternative hypotheses. 

The L condition is also called likelihood-ratio ordering (Lehmann 1966). Dyk-
stra and Lemke (1988) showed how to obtain the ML fit for this condition. In fact, 
for 2 x c tables, this fit is identical to the ML fit described in Section 7.5.1 for the 
alternative of monotone-increasing binomial proportions when we rotate the table 
and consider the distribution of X given Y. Dykstra et al. (1995) presented the LR 
test of whether two multinomial distributions are identical against the L alternative. 
Their test is equivalent to the LR test (7.9) for the rotated table. 

The Co alternative has received considerably less attention than L or C. Grove 
(1984) proposed the LR statistic for comparing two multinomial populations against 
Co. Oluyede (1993) presented an asymptotically equivalent statistic with Pearson 
components. 

All asymptotic distributions for the various tests for 2 x c tables are chi-bar-
squared. The weights {wj} for such distributions are unknown, because they depend 
on the common unknown multinomial probabilities. Grove (1980) for C and Dyk-
stra et al. (1995) for L suggested that it is adequate to use the approximate />-value 
that applies when the column totals are equal, for which the end of Section 7.5.1 
gave references for critical values. 

7.5.4 Inequality-Constrained Odds Ratios in r x c Contingency Tables 

Now we consider r x c tables with ordered rows and columns. Denote the LR 
statistics for testing independence against the various order-restricted alternatives 
for ordinal odds ratios by G2(I | L), G2(I | C), G2(I | Co), G2(I | G). These all 
have the general form (7.10). Of the conditions {L, C, Co, G}, the condition L of 
nonnegative local log odds ratios is the most restrictive, meaning that if L holds, 
so do the other conditions. The nesting of L within C and Co, which themselves 
are nested within G, implies that 
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G2(I | L) < G2(I | C) < G2(I | G) and G2(I | L) < G2(I | Co) < G2(I | G). 

This implies corresponding stochastic orderings of the null distributions. When the 
sample satisfies L, all four order-restricted fits are identical to the sample data. 
All four LR test statistics are then identical to G2(I). Hence, the P-values have 
the ordering induced by the null distributions, the P-value for G2(I | L) being 
smallest. Agresti and Coull (1998) noted that if the true local log odds ratios are 
strictly positive, the LR test based on them is asymptotically more powerful than 
the others. 

Again, the asymptotic distributions of the LR statistics are chi-bar squared. For 
the L alternative, Dykstra and Lemke (1988) provided an algorithm for finding the 
ML fitted values. For the C alternative, no closed form exists for the ML fit when 
r > 2. Wang (1996) showed that the asymptotic chi-bar-squared approximation per-
forms well for small to moderate samples when {n,+} are approximately equal but 
deterioriates as the sample sizes become unbalanced. Wang proposed approximate 
tests, such as one using the bootstrap. Grove (1984) and Oluyede (1994) proposed 
large-sample chi-bar-squared tests (not LR) of independence against the Co condi-
tion. Dardanoni and Forcina (1998) provided a unified inference for the L and C 
alternatives. For cell probabilities jr, they expressed each alternative in the form 
g(jr) = Xß for Kß > 0, where g, X, and K are specific to the type of ordering, 
and applied a constrained Fisher scoring algorithm to maximize the log-likelihood 
subject to these constraints. They provided MATLAB programs for large-sample 
LR testing with L, C, and Co alternatives. 

Grove (1986) showed with numerical evaluations that the size of an order-
restricted test can be sensitive to the configuration of the marginal probabilities. 
The choice of test statistic is not obvious unless one is willing to make a rather 
strong assumption about the nature of the association, and Grove stated that one 
should select the test statistic designed for the form of association expected. Agresti 
and Coull (1998) used an optimization program to obtain the ML fits for L, C, 
Co, and G alternatives and suggested Monte Carlo simulation of exact small-
sample conditional tests for the LR test statistics, using the principle presented 
in Section 7.6. 

7.5.5 Example: Dose-Response Revisited 

The dose-response data of the 4 x 5 Table 7.6 has (4 — 1)(5 — 1) = 12 ordinal 
odds ratios of any particular type. All 12 sample global log odds ratios exceed 
0, so G2(I | G) = 27.8 is identical to G2(I). For the C alternative, two of the 12 
sample cumulative odds ratios violate the C order restriction, but barely, and G2(I | 
C) = 27.7. For the L alternative, five of the 12 sample local odds ratios violate it, 
and its fit is somewhat different from the observed data, giving G2(I | L) = 16.1. 

For testing independence with the L, C, or G alternatives, the P-values based on 
simulated exact conditional LR tests are all at most 0.002. It may seem surprising 
that this happens for the L alternative, since many sample local odds ratios violate 
it. However, as mentioned above, its null distribution is stochastically lower, and the 
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G2(I | L) value is sufficient to provide strong evidence of association (P = 0.002). 
Also, in these tests, a small P-value does not imply that the order restriction truly 
holds. It implies merely that strong evidence exists against Ho: independence, based 
on that test criterion. 

7.5.6 Anomalies with Order-Restricted Likelihood-Ratio Tests? 

Certain ML order-restricted fits and corresponding LR tests can behave in a coun-
terintuitive manner. Even if all the sample log odds ratios are negative, many of 
the fitted log odds ratios may be strictly positive. A relatively small /"-value may 
occur even though many of the sample odds ratios contradict the order restriction. 
For example, in Table 7.6 suppose the alternative of interest is G for the reverse 
ordering of the rows. All sample global log odds ratios are then negative. But 
5 of the 12 fitted log odds ratios for the G constraints are then stricdy positive, and 
G2(I | G) = 11.8 with P = 0.26, even though each sample odds ratio contradicts G. 

Cohen and Sackrowitz (1998) claimed that the LR test is inappropriate for var-
ious constrained alternatives. Perlman and Wu (1999) argued that counterintuitive 
results that occur when the sample data fall outside the parameter spaces described 
by the null and alternative hypotheses may partly reflect a null that is too sharp. 
They claimed that such results would not occur if testing were, instead, done with 
a null hypothesis consisting of the entire complement of the order-restricted space 
rather than a small subset such as independence. Order-restricted inference with 
sharp null spaces should be used with caution when the sample data seem incon-
sistent with both hypotheses. Keep in mind that a small P-value does not suggest 
that the order restriction truly holds but merely that that criterion provides strong 
evidence against the null. 

Of the tests discussed in this section, the one based on G2(I | L) is least likely to 
provide seemingly anomalous results when the data contradict the order restriction. 
To illustrate, suppose that every sample local log odds ratio violates L. Then, using 
properties of related loglinear models, Agresti and Coull (1998) argued that the L 
fit is identical to the independence fit; thus, G2(I | L) = 0.0 and P — 1.0, which 
seems sensible. 

7.6 SMALL-SAMPLE ORDINAL TESTS OF INDEPENDENCE 

For small samples with r x c tables, there is a well-known device for conducting 
tests of independence. The common sampling models are multinomial over the 
entire table or independent multinomial within the rows or within the columns. 
Then, conditioning on the row and column marginal totals yields a multivariate 
hypergeometric null distribution that does not depend on unknown row and/or 
column marginal probabilities. The probability of a particular table {n,j} having 
the given margins is 

(fWOClW) 
ni=.n5=.»y! ' 
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This is Fisher's method of eliminating nuisance parameters by conditioning on their 
sufficient statistics. 

Methods using this conditional approach are often referred to as exact because 
P-values can be calculated without estimating unknown parameters. For 2 x 2 
tables, this method is the basis of Fisher's exact test. For r x c tables and stratified 
tables, special algorithms and software such as StatXact are available for computing 
small-sample tests. We recommend these tests when large-sample approximate tests 
may be invalid. 

7.6.1 Small-Sample Tests for Detecting a Trend Association 

To construct a test that is sensitive to the category orderings, we order all the 
tables in the reference set that have the given marginal totals by a statistic T that 
incorporates the ordering and describes the distance from HQ: independence. For 
the alternative hypothesis of a positive association, we could take the P-value = 
P(T > fobs), where T is a correlation or an ordinal measure such as C — D and iGbs 
is its observed value. The P-value is the sum of the hypergeometric probabilities 
for all tables having the given marginal totals for which T > i0bs. For the two-
sided alternative, the P-value is P(\T\ > |i0bS|)· When a statistic T does not have 
E(T) — 0 under Ho, for a two-sided test, order the tables by \T — E(T)\ instead. 

Agresti and Wackerly (1977), Patefield (1982), and Agresti et al. (1990) proposed 
such small-sample ordinal tests. Cohen and Sackrowitz (1992) suggested a related 
test for the one-sided alternative of nonnegative log odds ratios (L), constructing a 
less discrete P-value. Of the tables having T = i0bs, they included in the P-value 
only those having probability no greater than the probability of the observed table. 

7.6.2 Small-Sample Comparisons of Singly Ordered Multinomials 

In Section 7.4 we presented large-sample tests for comparing multinomial distribu-
tions having ordered categories, using rank scores in discrete versions of Wilcoxon 
and Kruskal-Wallis test statistics or using fixed scores in trend tests. The exact 
conditional approach yields small-sample analyses for such statistics. For several 
multinomials, Klotz and Teng (1977) presented a small-sample analysis with the 
Kruskal-Wallis statistic (7.8). Mehta et al. (1992) considered a class of tests for 
comparing two multinomials that includes Wilcoxon-type tests and trend tests with 
fixed scores. Their analyses also apply in the stratified-data context. 

7.6.3 Example: Severity of GVHD in Leukemia Patients 

Table 7.7 results from one protocol for a study at the Dana Färber Cancer Institute. 
For patients receiving a bone marrow transplant, the ordinal response was the 
severity of graft versus host disease (GVHD). The table, analyzed in Section 2.3.7, 
showed a suspected risk factor: whether there was a type of blood incompatibility, 
called a MHC mismatch, between the donor and the recipient of the bone marrow. 

The sample sizes for the two groups are small, so we perform a small-sample 
exact test. The midranks for the five categories are 3, 8.5, 13, 16, 18. The sum 
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TABLE 7.7. Severity of GVHD in Leukemia Patients by Whether Patient Had MHC 
Mismatch 

MHC Status 

Mismatch 
Match 

Total 

None 

2 
3 

5 

Severity of GVHD 
Mild Moderate 

2 
4 

6 

2 
1 

3 

Toxicity 
Severe 

1 
2 

3 

Extreme 

1 
0 

1 

Total 

8 
10 

18 

Source: StatXact (2005, p. 633), with permission. 

of ranks for the mismatch group is 83. StatXact reports that under Ho, given the 
margin totals this statistic has a distribution with a minimum possible value of 40.5, 
a maximum possible value of 113.5, a mean value of 76, and a standard deviation 
of 10.9. The one-sided P-value for the alternative that GVHD severity is worse 
for the mismatch group is the null probability that the rank sum for the mismatch 
group is at least 83. This P-value equals 0.28. The two-sided P-value, defined as 
the null probability of an absolute difference of at least |83 — 76| = 7 between the 
rank sum and its expected value equals 0.57. There is not much evidence of an 
effect. Unless the true effect is quite large, however, such a small sample size does 
not provide much power. 

7.6.4 Small-Sample Tests of Conditional Independence 

Small-sample tests of independence for two-way tables generalize to tests of con-
ditional independence in three-way tables. To eliminate nuisance parameters, we 
condition on row and column totals in each stratum. This device works for any 
loglinear model, as these totals are the sufficient statistics for the unknown param-
eters. The distribution of counts in each stratum is multivariate hypergeometric, 
and this propagates an exact conditional distribution for the statistic of interest. 

For example, for the homogeneous linear-by-linear association model, con-
ditional on the row and column totals in each stratum, the information about 
the XY association parameter ß is contained in its sufficient statistic, which is 
Σ * ( Σ ι Σ ; uivjnijk)- The null hypergeometric distribution in partial table k for 
the data induces one for ]T^ £ \ . «,-υ,-η,·^. These then generate a convolution distri-
bution for Σ * ( Σ / Σ ; uivjnijk), considered over all the partial tables. The P-value 
for testing H0: β — 0 against Ha: β Φ 0 is the probability of those tables having 
the same strata margins as observed but test statistic at least as large as observed. 
See Birch (1965), Agresti et al. (1990), Mehta et al. (1992), and Kim and Agresti 
(1997). 

7.6.5 Dealing with Intense Computations or Discreteness 

Exact tests are sometimes impractical when n or the table dimensions are relatively 
large, because of the enormous number of tables in the reference set having the 
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same margins as the observed table. In such cases, we can conduct the test using a 
random sample of tables from the reference set (Agresti et al. 1979). The estimated 
P-value is then the sample proportion of those tables that have test statistic value 
at least as large as the observed value. For example, suppose that the actual exact 
P-value is 0.05, unknown to us, and we estimate it by sampling 1 million tables. 
Then the sample proportion is an unbiased estimator of the actual P-value. As an 
estimate, it has standard error V0.05(0.95)/1,000,000 = 0.0002, small enough for 
most purposes. 

For r x c tables, Patefield (1982) used Monte Carlo simulation with the LR test 
statistic for the L alternative, and Agresti and Coull (1998) used it for the L, C, Co, 
and G alternatives. Agresti and Coull (1996) provided software for simulating exact 
LR tests comparing two multinomial distributions against the L and C alternatives. 
Kim and Agresti (1997) used this approach for the generalized CMH test statistics 
of Section 6.4.5. The software StatXact has the option of simulation to estimate 
exact /"-values precisely. 

When n is very small or when the data fall mainly in one row or one col-
umn, the conditional distribution of the test statistic T can be highly discrete, 
having relatively few possible values. Then the exact conditional test can be quite 
conservative; when HQ is true, the probability of a P-value < 0.05 may be well 
below 0.05. To alleviate the conservatism, one can use the mid P-value, which is 
P{T > /obs) + {P(T = iobs). This P-value has null expected value = 0.50, like the 
P-value for a continuous test statistic and unlike the ordinary P-value for discrete 
data. However, although the test still uses the exact small-sample distribution, the 
size of the test is no longer guaranteed to be no greater than the nominal value. 

7.7 OTHER RANK-BASED STATISTICAL METHODS FOR 
ORDERED CATEGORIES 

Traditional nonparametric methods such as the Wilcoxon test for comparing two 
groups are formulated for fully ranked data in most texts. They apply to continuous 
response variables, after replacing the observations by their ranks. Section 7.4 
showed that such methods apply to ordered categorical variables using midranks 
(or ridits). The formulas in this chapter for an ordered categorical response also 
apply to fully ranked data when we display the data in the form of a contingency 
table with a separate column for each observation. For example, the Wilcoxon test 
then applies to a 2 x n table with n = n\ + n2> each column containing cells with 
counts of 0 and 1. More generally, Rayner and Best (2001) expressed a variety of 
nonparametric tests in the context of contingency tables, making it straightforward 
to handle ordered categorical responses. 

In this chapter we have focused on the best known nonparametric methods for 
bivariate analyses: namely, rank-type correlation analysis when both variables are 
ordinal and Wilcoxon and Kruskal-Wallis type tests and related summary measures 
for the singly ordered table. Similarly, nonparametric methods for multivariate 
analyses can be applied to ordered categorical data. 
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7.7.1 The Rank Transform Method 

Increasingly in recent years, nonparametric rank-based methods have been extended 
to more complex analyses, such as tests for "no main effects" or for "no interaction" 
in a two-way layout with independent or matched samples. One strain of this 
research has used traditional parametric statistics and distributions but with ranks 
substituted for the observations. Conover and Iman (1981) described this rank 
transform approach. 

Later research showed difficulties with this approach (e.g., Akritas 1991), caused 
by the ranks being nonlinear functions of the data. For example, for the two-way 
layout, rank statistics are the same for any monotonic transformation of the data, but 
the truth of hypotheses such as "no interaction" on the scale of the data is not invari-
ant to nonlinear transformations of the data. In addition, homogeneous variances 
among groups for the original observations is not equivalent to homogeneous vari-
ances for the ranks. Akritas and Arnold (1994) showed that rank transform methods 
are valid when hypotheses are expressed in nonparametric form for effects based 
on the ranks rather than on the scale of the data. Such effects relate to measures 
such as mean ridit scores and the stochastic superiority measures a and Δ. 

7.7.2 Extended Rank-Based Hypotheses and Inferences 

A related methodology has been developed by E. Brunner with various coauthors, 
building on the Akritas and Arnold research for hypotheses for which relative 
effects relate to rank-based measures. We mention briefly some of this literature 
here. For many common settings such as the one-way layout, see Brunner and Puri 
(2001) for details and Shah and Madden (2004) for a nontechnical summary. 

Brunner and Munzel (2000) provided nonparametric solutions for comparing 
two groups by testing Ho', a — 0.50 for the stochastic superiority measure a when 
the groups are not assumed to have the same variability. Then null is then more 
general than identical distributions. The asymptotic variance for the test is estimated 
consistently by using the ranks over all observations as well as the ranks within each 
sample. An alternative approach is to construct the score test, which is equivalent to 
checking whether the score confidence interval for a proposed by Ryu and Agresti 
(2008) contains 0.50. 

Munzel and Hothorn (2001) extended the Brunner and Munzel approach for 
the one-way layout. Brunner and Puri (2001, 2002) presented a general theory for 
the analysis of nonparametric factorial designs with fixed factors, using hypothe-
ses expressed in terms of distribution functions and test statistics that are score 
functions. 

Motivated by problems arising from multicenter clinical trials, Brunner (1995) 
considered nonparametric hypotheses and analyses for stratified two-sample 
designs, including cases where centers and interactions are treated as random 
effects. The effects are estimated by linear rank statistics using ranks calculated 
over all centers. Akritas and Brunner (1997) used quadratic forms to test 
hypotheses about main effects and interactions for a mixed model. Brunner et al. 
(1997) proposed effective approximations for small-sample distributions of the 
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quadratic forms used in nonparametnc factorial designs. For unbalanced factorial 
designs, Akritas (1997) proposed tests for nonparametric hypotheses of no main 
effects, no interaction, and no factor effects. Brunner et al. (1999) developed 
nonparametric factorial designs for multivariate observations under the framework 
of general rank-score statistics. They applied the methods to a two-way mixed 
model assuming compound symmetry and to a factorial design for longitudinal 
data. For longitudinal data, Brunner and Langer (2000) proposed a nonparametric 
model that expresses treatment effects and interactions in terms of means of the 
marginal distributions. The methods proposed extend the Wilcoxon test to factorial 
designs. For additional methods and examples in the longitudinal setting, see Wei 
and Lachin (1984) and the text by Brunner et al. (2002). 

Bathke and Brunner (2003) proposed a nonparametric alternative to analysis of 
covariance. Bathke (2005) proposed an asymptotic test for a nonparametric mixed 
model that is sensitive to detecting a monotone effect of an ordinal covariate. This 
test contains a test for Spearman's rho as a special case. 

Nonparametric methods have traditionally focused mainly on hypothesis testing. 
Much of the work described above also considers models and estimation of mean 
ridit-type relative effects and ordering probabilities such as a. Ultimately, this is 
more informative. Such nonparametric models contrast with the parametric models 
that are the main focus of this book. 

APPENDIX: STANDARD ERRORS FOR ORDINAL MEASURES 

This appendix shows the expression for φ^ in the variance formula (7.2) based on a 
multinomial sample, for several ordinal measures of association. In some formulas, 
it is convenient to use the notation 

πυ'= Σ Σ n"b+Σ Σπαΐ» 
a<i b<j a>i b>j 

a<i b>j a>i b<j 

The term πγ is the sum of probabilities for the cells that are concordant when 
matched with the cell in row i and column j , and π\,' is the sum of the probabilities 
for the cells that are discordant when matched with that cell. Figure 7.2 illustrates 
these probabilities. 

Gamma The population value of gamma is γ = v/S with v = n c — Π^ and 
δ = Tlc + I V Then 

</>,·,· = 4(Ud^f - ncn\f) 

a nd Σ ι Jlj πί]Φίί — 0» s o t n a t °2 = Σ ί Σ ; Jiij<l>fj/(nc + rid)4 [see Goodman and 
Kruskal (1963, 1972)]. 
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lie 
β̂ 

*ij 

se 
HB 

Key 

Probabilities summed to get π<?) 

Probabilities summed to get π<Φ 

W) Figure 7.2. Probabilities summed to get π/J and 7T; 

Gamma has a tendency to converge slowly to normality and to have distribu-
tional irregularity, bias, and skewness problems, especially when the true absolute 
value is large (Rosenthal 1966; Gans and Robertson 1981). O'Gorman and Wool-
son (1988) and Carr et al. (1989) showed that better convergence occurs using the 
Fisher-type transform 

; i , 1 + 9 
ζ = - log -
S 2 BΙ-γ 

for which γ = 
ο2ζ 1 
e 2 f+ 1 

The asymptotic variance of ζ equals the asymptotic variance of γ multiplied by 
(1 — γ2)~2. A confidence interval can be constructed for ζ and then inverted to 
one for γ. The measure ζ — \ \og(C/D) relates to the ordinal odds ratio measure 
C/D proposed by Agresti (1980). 

Kendall's Tau-b The population value of Kendall's tau-b is 

with v = n c - Y\d and 8 — n = 

For this measure, from Agresti (1976), 
N 

(ι-Σ<)(ι-ΣΧ)· 

Φυ = 2*<π£> - »») + v*+J(l-£^+)(l-£>>,,) 

+ V*i + 

\ 

1-Σ*2 
+b 

ι-Σ^2+ 
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Somers' d The population value of Somers' d is 

Δ = - with v = n c - n r f and & = 1 - ^ π ;
2

+ . 
δ 

For this measure, 

0y = -2π,·+(ΠΓ - Π̂ ) - l(\ - £ > a
2

+ W c ) - n\f). 

In this case, £,. £ . JT/,-0/,· = -2(Π Γ - Π^) [see Goodman and Kruskal (1972)]. 

Δ = P(Y2 > Fi) - P(Fi > F2) For 2 x c tables, Somers' d simplifies to the 
stochastic superiority measure Δ. It has form Δ = v/S with 

v = 2^, /__, 7tia^2b — 2_^ 2_, n\a^2b and S = π\+πζ+. 
a< b a> b 

For this measure, 

^ = ι5( Σπΐα - ν Σ π ΐ α ) ~ ν?Γι+' Jf = 1 

a<j a>j 

In this case, Σί Σ ; πί]Φίί = 0· F°r independent multinomial sampling in the two 
rows, 52 ■ π_,·|ΐ07·|ΐ = £ · ̂ ίΧΐΦίχι — 0. With proportional sampling, the variance is 
the same as for a single multinomial sample. 

a = P(Y1 < Y2) + \P{Y\ = Yi) Since a = (Δ + l)/2, the standard error of a 
is half the standard error of Δ, just considered. Halperin et al. (1989) gave an exact 
expression for the variance of a. Equation (2.14) shows its sample estimate. Ryu 
and Agresti (2008) compared various confidence interval methods for a. 

P(Y2>Yi) 
v = ΤΓΤ^ ίΤΤ F° r 2 x c tables, this ordinal odds ratio has form Θ = v/8 with 

P(Y\ > Y2) 
v = Σ Σα<* n\a*v> and S = Σ Έα >b n\a^ib- For this measure, 

0U = δ 5Z nib ~~ v Σ n2b and foj ~ ^yVi« ~ νΎ*.π\α> 
b>j b<j a<j a>j 

for which £,· Σ / πθ'0θ' = 0- The measure log Θ converges more rapidly to normal-
ity than does Θ. The asymptotic variance a2 of ^/n\og§ relates to the asymptotic 
variance σ2 of ^/n§ by σ2 — σ2/θ2. This result can be used to construct a confi-
dence interval for logo. Exponentiating its endpoints yields a confidence interval 
for Θ (Agresti 1980). 
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CHAPTER NOTES 

Section 7.1: Concordance and Discordance Measures of Association 

7.1. Kruskal (1958) surveyed many ordinal measures of association, mainly for 
fully ranked cases. Agresti (1981) extended the stochastic superiority measures to 
summarize association when comparing several groups. One such measure equals a 
weighted average of the |Δ| values for the 2 x c tables for the (£) pairs of groups. 
Semenya et al. (1983) used a Bradley-Terry type of model (Section 8.6.1) to sum-
marize (2) measures for pairs of groups by r — 1 parameters. Agresti et al. (1987b) 
proposed logit and probit models for the probability that a pair of subjects is con-
cordant. For multiway tables, they modeled the probability that the response at one 
setting of explanatory variables exceeds the response at another setting. Svensson 
(2000a,b) defined a measure that compares concordant and discordant pairs for 
all pairs except those tied on both variables, applying it to describe the associ-
ation between discrete and continuous scalings of the same variable. Hildebrand 
et al. (1977) presented ordinal measures of association based on predictive power 
in using one variable to predict the other. They defined a measure of prediction 
success as the proportional reduction in prediction error compared to predictions 
without using the explanatory variable. Measures such as Somers' d and Kruskal's 
(1958) quadrant measure are special cases. 

7.2. Davis (1967), Kendall (1970, p. 121), Quade (1974), and Agresti (1977) 
used concordant and discordant pairs in measuring ordinal conditional associa-
tion. Davis proposed [X^(C* — Αθ] / [Σ*(£κ + At)]> where C* and D* are the 
numbers of concordant and discordant pairs in partial table k. This is a weighted 
average of the stratum-specific gamma values. Generalizing Kendall's tau-b as a 
correlation for sign scores, Somers (1959, 1968), Hawkes (1971), Ploch (1974), and 
Smith (1974) suggested ordinal analogs of partial slopes and partial correlations 
by constructing a multiple regression model using sign scores. Beh et al. (2007) 
used orthogonal polynomials in partitioning measures of association to describe 
location and dispersion effects for how one or more ordinal variables predicts an 
ordinal response variable. Carr et al. (1989) applied gamma to longitudinal studies 
in which an ordinal response variable is observed at least twice for subjects in two 
or more ordered groups to describe the association between group and response at 
each time and to evaluate potential group x time interaction on the response. 

Section 7.2: Correlation Measures for Contingency Tables 

7.3. Mayer and Robinson (1978) presented measures of association between 
interval-scale and ordinal variables based on maximizing their correlation, con-
sidered over all possible monotone transformations of the ordinal variable. To 
estimate the correlation for an assumed underlying bivariate normal distribution, 
Ritchie-Scott (1918) proposed a weighted average of tetrachoric correlations for 
the possible collapsings of the r x c table to a 2 x 2 table. Lancaster and Hamdam 
(1964) showed the inadequacy of Pearson's contingency coefficient estimate of the 
correlation, and they and Martinson and Hamdan (1972) further investigated the 
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polychoric correlation. Ronning and Kukuk (1996) summarized Olsson's (1979) 
polychoric correlation method and considered a more general model. Olsson et al. 
(1982) extended the polychoric correlation to ML estimation of an underlying cor-
relation when one variable is ordinal and the other is continuous. Drasgow (1988) 
surveyed polychoric correlations, as did Ekström (2009), who also proposed new 
ones for larger classes of parametric families. Lee et al. (1992) and Jöreskog (1994) 
estimated polychoric correlations in the context of structural equation models. This 
measure is also the basis of multivariate probit models, such as proposed by Kim 
(1995), Chen and Dey (2000), Biswas and Das (2002), Todem et al. (2007), Webb 
and Forster (2008), and Lawrence et al. (2008). For other discussions about esti-
mating an underlying normal correlation, see Lancaster (1969, Chap. X), Kendall 
and Stuart (1979, Chaps. 26 and 9.2), Goodman (1981a,b, 1985), Wang (1987, 
1997), and Becker (1989b). 

Section 7.3: Non-Model-Based Inference for Ordinal Association Measures 

7.4. Yates (1948) suggested a statistic similar to Mantel's correlation statistic 
(7.5) as well as a statistic that applies with unordered rows (see also Exercise 7.4). 
Simon (1978) and Gross (1981) analyzed efficiencies for tests based on correlation-
type measures. Lipsitz and Fitzmaurice (1996) generalized the correlation test to 
accommodate missing data. When the data are missing at random but not miss-
ing completely at random (Section 9.2.5), they showed that their method is more 
appropriate than using the ordinary statistic only with the complete cases. 

Section 7.4: Comparing Singly Ordered Multinomials 

7.5. An alternative nonparametric method for comparing two groups is the 
Kolmogorov-Smirnov test, based on the maximum absolute difference between 
the sample cumulative distribution functions (StatXact 2005, pp. 210-217; Hilton 
et al., 1994; Hilton 1996). For yet other methods, see Gautam (1997), Berger 
et al. (1998), Cohen et al. (2000), Gautam et al. (2001), and articles cited in 
Section 7.5. Edwardes (1997) adapted the Wilcoxon test for ordered categories 
by treating the cutpoints for the outcome categories as randomly determined 
rather than fixed. This approach relates to random effects models for cumulative 
probabilities (Chapter 10). Fay and Gennings (1996), Edwardes (2002), and Jung 
and Kang (2001) extended the Wilcoxon test to handle clustered data. 

7.6. For comparing two groups by interchanging variables and using a trend 
test for a binary response, other tests have been designed mat use fixed scores 
for the ordered categories. Freidlin et al. (1999) and Podgor et al. (1996) used 
efficiency robustness principles to combine tests from two or more sets of scores 
into one robust test for analysis in such a way as to minimize the worst possible 
efficiency loss over all the sets of scores. Zheng (2008) considered the maximum 
value of a trend statistic over all possible choices of monotone scores and based 
the P-value on its distribution, thus making the actual decision independent of a 
choice of scores. In related work, Kimeidorf et al. (1992) used isotonic regression 



CHAPTER NOTES 221 

techniques for binomial responses to find the maximum and minimum values of 
the sample correlation and of standard test statistics, among the possible values for 
all possible sets of increasing column scores, and Streitberg and Röhmel (1988) 
suggested reporting the minimum and maximum P-value found over the possible 
scorings. Rahlfs and Zimmerman (1993), Ivanova and Berger (2001), and Senn 
(2007) offered different criteria for choosing scores for a trend test. Ivanova and 
Berger preferred non-equally-spaced scores to reduce the discreteness of small-
sample tests, but Senn argued that equally spaced scores are preferable unless the 
nature of the categories suggests a different choice. 

7.7. Taguchi (1974) proposed a test of independence, called accumulation anal-
ysis, using cumulative probabilities to compare a set of multinomial distributions. 
The test statistic is Σ ;= ι X;» w n e r e rf ' s t n e Pearson chi-squared statistic for 
the collapsed response with categories 1 through j in the first column and j + 1 
through c in the second column. Nair (1986) showed the inadequacies of this 
approach. Takeuchi and Hirotsu (1982) and Nair (1987) proposed tests that are 
based on weighted sums Σ%\ wjXj-

Section 7.5: Order-Restricted Inference with Inequality Constraints 

7.8. Order-restricted methods have also been proposed for a single set of multino-
mial probabilities, assuming that π\ < ■ ■ ■ < nc. Dykstra and Lee (1991) expressed 
ML estimators in terms of least squares projections. Chacko (1966) tested Wo : 
Tt\ = ■ ■ ■ — nc against Ηα:π\ < ■ ■ ■ < nc, and Robertson (1978) and Lee (1987) 
extended Chacko's results to likelihood-ratio tests for and against an arbitrary 
ordered alternative. 

7.9. For other inference relating to stochastic ordering, see Berger (1998), Dar-
danoni and Forcina (1998), Vermunt (1999), survey articles in a 2002 issue of 
J. Statist. Plann. Inference (Vol. 107, Nos. 1-2), and Chapter 2.1 of Silvapulle and 
Sen (2004). Agresti and Coull (2002), Gao and Kuriki (2006), and Klingenberg et al. 
(2009) considered stochastic ordering as an alternative for testing marginal homo-
geneity with multivariate ordinal data. Jewell and Kalbfleisch (2004) considered a 
special case of ML estimation with r ordered multinomial distributions in which 
each of the first c — 1 multinomial probabilities have a monotone ordering, apply-
ing this to discrete survival times with competing risks. Chuang-Stein and Agresti 
(1997) surveyed methods for detecting monotone relationships in dose-response 
relationships. For 2 x c tables, Oh (1995) discussed estimation of cell probabilities 
under C, L, G, and Co conditions. For testing independence against the G alter-
native, Nguyen and Sampson (1987) and Rao et al. (1987) presented alternative 
tests to the likelihood-ratio test. The tests of Nguyen and Sampson are based on 
the number of tables with the same marginal counts as the table observed that are 
"more concordant" than the table in the sense of having cdf at least as high in each 
argument uniformly over all cells in the table. The Rao et al. test uses eigenvalues 
of a matrix based on dependence ratios {pij/pi+p+j}. Kimeldorf and Sampson 
(1989) provided a unified framework for studying different concepts of positive 
dependence. 
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7.10. For the L alternative, Cohen and Sackrowitz (1992) showed that certain 
ordinal tests, such as one based on numbers of concordant and discordant pairs, 
are sometimes inadmissible in a decision-theoretic sense. Hirotsu (1982) showed 
that statistics that have a convex acceptance region and are monotone increasing in 
each of $,·_,· = Σα<ί Σ έ < ;

 nab (given the marginal totals) yield efficient score tests. 
Cohen and Sackrowitz (1991) showed that such tests form a complete class, being 
the set of exact, unbiased, and admissible tests. A simple way to construct a test 
in this class is to let the test statistic be some positive linear combination of {s,7} 
and form the critical region from large values of the statistic. For strictly ordered 
row and column scores, T = Σί Σ ; uivjnu is o n e such combination. Berger and 
Sackrowitz (1997) and Cohen and Sackrowitz (1998) discussed a complete class 
of tests for the C alternative and provided conditions for tests to be unbiased, 
conditionally unbiased, and in the complete class. 

Section 7.6: Small-Sample Ordinal Tests of Independence 

7.11. In 2xc tables, Mehta et al. (1984) proposed small-sample exact tests for 
nonnull values of local odds ratios as a way of establishing treatment equivalence. 
For r x c tables, Bartolucci and Scaccia (2004) used the exact conditional approach 
with a Pearson statistic, implemented with Markov chain Monte Carlo, to compare 
the observed counts to the fitted values for an alternative such as L or G. Cohen and 
Sackrowitz (1991) had considered the L alternative, and Cohen et al. (2003) the 
C alternative. For surveys of small-sample methods, see the manuals for StatXact 
(Cytel Software), Agresti (1992b), and Hirji (2005, with pp. 392-394 showing 
distributions that apply for adjacent-categories logit models with a nominal or 
quantitative predictor). 

EXERCISES 

7.1. Show that the ordinal odds ratio nc/Tld (Agresti 1980) simplifies for 2 x c 
tables to Θ = P(Y2 > Y\)/P(Y\ > Y2), presented in Section 2.1.4, and for 
2 x 2 tables to the odds ratio. 

7.2. Let m = min(r, c) in an r x c table. Show that the maximum attainable value 
of n c — Ud is (m — l)/m, which occurs when the probability is uniformly 
distributed on m cells in a longest diagonal of the table. Hence, 

m(nc - Ud) 
τ€ = 

m — 1 
can equal 1.0 in absolute value for any table size (Stuart 1953). Stuart (1963) 
defined a discrete version of Spearman's rho that can equal 1.0 for any table 
size: namely, 
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in terms of the marginal ridit scores. By contrast, Kendall's |τ^| and \pb\ can 
equal 1.0 only when r = c. 

7.3. Refer to formula (7.4) for the null variance of C — D. For large marginal 
totals, show that it equals approximately 

_2 v-EiPlw-EjPlj)"3 

°C-D = g · 

(For Table 7.1, aC-D = 43, 941 compared to aC-D = 44,022 .) Show that 
the estimated null variance of (fic — Π^) is approximately 

4(1 ~ Σ,· P?+)d - Σ ; P\j) 
9n 

which equals 4/9n for Kendall's tau for fully ranked data. 
7.4. In an ordinal r x c table, we could assign ordered scores and use a linear 

trend model, E(Y | X = «,■)= a + ßty. With the least squares estimator b 
of jö, show that the Pearson statistic for testing independence partitions into 

X2(I)=X2(L) + X 2 ( I |L) , 

where X2(I | L) = b2/Var(b). Here X2(L) has df = re - r - c for testing the 
fit of the linear model, and X2(I | L) has df = 1 for testing HQ: independence, 
given that the linear model holds (Yates 1948). The test based on X2(I | L) 
is an alternative to tests in Section 7.3. Section 5 presented this model, but 
using ML to estimate parameters. 

7.5. For sample mean ridit scores A\ and Aj for two groups, show that the 
Wilcoxon test statistic (7.6) equals 

_ Äi - 0 . 5 0 _ _ Ä 2 - 0 . 5 0 

VVar(Äi) v/Var(A2)' 

where 

n2(n]+n2 + l) η2Υί](ή-ί]) 
Var(Ai) = 12ni(ni + n2)2 12m(ni +n 2 ) 3 (m + n 2 - 1)' 

and Var(A2) is the formula for Var(Ai) but with n\ and n2 interchanged. 
Moreover, 

Var(Ä,) = ( ^ ) 2 V a r ( Ä 1 - Ä 2 ) , 

where Var(A! - A2) = (l/n2)Var(/?i - R2) for Vai(Ri - R2) in equation 
(7.7). The equivalent expressions for the two mean ridits hold because 

— Äi + — Ä2 = 0.50 and n2Var(Ä,) = n?Var(Ä2). 
n n 
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7.6. For drug dosage (low, medium, high) and the effect on a patient's condi-
tion (negative, none, positive), the conditional distributions on the effect are 
expected to exhibit the pattern: 

Dosage Negative None Positive 

Low 
Medium 
High 

0.30 
0.10 
0.30 

0.40 
0.30 
0.40 

0.30 
0.60 
0.30 

Indicate why it is preferable to test independence using a singly ordered 
statistic such as the Kruskal-Wallis statistic (7.8) rather than a doubly ordered 
statistic such as (7.3), even though both variables are ordinal. 

7.7. Using the multivariate version of the delta method (Bishop et al. 1975, p. 
493), show that the sample mean ridits Ä = ( Ä i , . . . , Är_i)' in a r x c table 
have asymptotic covariance matrix Ό'ΈΌ/η, where Σ/η is the re x re 
multinomial-based covariance matrix for the sample proportions [with 
Wai(pij) = nij(l-Kij)/n and Co\(pu, pu) = -πί}πΗ/η] and D' is a 
(r — 1) x re matrix with elements 

dAk 

dnn 

\-CLj\k, _ i ^ k 

1—α/Ι,-Η , ι = k, 
π,·+ 

with aj\k = Σ<<, Ki\k + (^j\k/2). Here A contains only r — 1 of the r sample 
mean ridits because of the linear constraint J2i Pi+^i — 0.50. 

7.8. In testing Ho: independence for an r x r table, suppose that «,,· = 1 for all i 
and tiij — 0 for all ( φ j . 

(a) Show that an exact test that uses the Pearson X2 to order all tables having 
the given margins has P-value = 1.0. 

(b) Explain why a two-sided test using an ordinal criterion such as C — D 
or a correlation to order all the tables with the given margins has P-
value = 2/r!. 

7.9. Go to sda.berkeley.edu/GSS and cross-classify the variables POLVIEWS and 
HAPPY for the latest survey. Using the methods of this chapter, describe the 
association. 
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Matched-Pairs Data with 
Ordered Categories 

In this chapter we present methods for matched-pairs data in which each observation 
in a pair uses the same ordinal scale. The contingency table summarizing the table 
is then a square table for a bivariate response. Matched-pairs data occur when each 
subject is observed on an ordinal response at two points in time, such as before 
and after undergoing some experimental treatment or at the beginning and end of a 
longitudinal study. They also occur when each subject has two sites for observing 
a response, such as an observation on each eye or on each ear. Sometimes the unit 
of observation is a couple, such as a social mobility study of parent-child pairs 
that observes the parent's and the child's social class. Or, each subject might be 
asked his or her opinion on each of two response variables that have the same 
scale. Table 8.2, analyzed in several sections of this chapter, is an example of such 
a square table. It summarizes responses in the 2006 General Social Survey in the 
United States to the questions "How successful is the government in (1) Providing 
health care for the sick? (2) Protecting the environment?" 

The analysis of matched-pairs responses can have three aspects: comparing 
the two marginal distributions, analyzing the structure of the joint distribution, 
and modeling how each response variable (and possibly the association between 
them) depends on explanatory variables. A comparison of the marginal distributions 
reveals whether one distribution tends to have higher responses than the other. In 
Section 8.1 we describe ways of comparing marginal distributions in square tables 
having ordered categories. In Section 8.2 we show how to conduct the analysis 
using ordinal models. To analyze the nature of the joint distribution, we could use 
any of the models discussed in Chapter 6 to investigate the association structure. 
However, specialized models that have a symmetric structure that recognizes the 
square nature of the table are usually more appropriate. In Section 8.3 we introduce 
such models and in Section 8.4 we generalize them to the analysis of matched sets. 

Analysis of Ordinal Categorical Data, Second Edition, By Alan Agresti 
Copyright © 2010 John Wiley & Sons, Inc. 
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In Chapters 9 and 10 we present the two main ways of modeling each response 
variable in terms of explanatory variables. 

In Sections 8.5 and 8.6 we present two applications for which matched-pair 
models are useful: analyzing agreement between two observers who rate a com-
mon set of subjects, and evaluating preferences of treatments based on pairwise 
comparisons about which is better and by how much. 

8.1 COMPARING MARGINAL DISTRIBUTIONS FOR MATCHED 
PAIRS 

Denote the two ordinal responses that are cross-classified as (Y\, Yj). Let c denote 
the number of categories for each response. The data can be summarized in a 
c x c contingency table. We regard the cell counts {n(J· — npij} with joint sample 
proportions {p^} as a multinomial sample with sample size n and parameters {π^). 
In this section we present methods for comparing the marginal distributions of the 
square table. 

8.1.1 Marginal Homogeneity in Square Tables 

The condition of marginal homogeneity states that 

P(Yl=j) = P(Y2=j), y = l , 2 , . . . , c . 

For the joint probabilities {7Γ//}, this says that 

Kj+ = π+;' ' y = 1, 2 , . . . , c . 

Suppose that we want to focus on comparing marginal probabilities for a par-
ticular outcome category j . We can test equality of π7-+ and π+j by collapsing the 
c x c table {n,y} to a 2x2 table, with categories (_/', not j) in each dimension. For 
the cell counts {nn, J^b^tj njb> Σα& "aj, Σαφ] T,b?j n"b) in this collapsed table, 
the test statistic 

_ Z_,fĉ y njb — Σαφί naj 
ZJ — I 

y/T.b^j nJb + Σαφ] n"j 

has an asymptotic standard normal null distribution. This is an application of McNe-
mar's test. We could also construct a confidence interval for (π^+ — π+^) using the 
collapsed table. How could we, instead, compare all c pairs of marginal probabilities 
simultaneously? One way creates a quadratic form by pre- and postmultiplying 

(P\+ - P+i< P2+ ~ P+2, ■■·, P(c-n+ - P+(c-i)) 
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by its estimated inverse covariance matrix to obtain a null asymptotic chi-squared 
variate with df = c — 1. However, such an analysis treats the two response variables 
as nominal. 

Ordinal analyses provide more parsimonious description and more powerful 
inference. This is especially true when c is large, the association between Y\ and 
Yi is strong, and the focus in on detecting a location shift, that is, whether one 
response tends to be higher than the other response. We do this using marginal 
mean scores in this section and using models in Section 8.2. The assessment of 
sampling variability in such analyses must take into account the matching (rather 
than independence) of the samples comprising the observed marginal distributions. 

8.1.2 Comparing Marginal Mean Scores 

To compare marginal mean responses, we assign scores u\ < u2 < ■ ■ ■ < uc to 
the outcome categories. Marginal homogeneity implies that E(Y\) = E{Yj), where 
E{Y\) — Σ( Μ,7Γ,+ and £(^2) = Σ , "ί^+ί· The sample mean responses are 

7l = J2UiPi+ and 2̂ = Σ "i/>+i· 

The sample standard error of J\ — J2 *s 

SE = ^Tji»i-uj^Pu-ih-hY_ ( 8 l ) 

We drop the ( j , — J2)
2 t e r m t 0 obtain a null standard error SEo, as the population 

value of that term equals 0 under the null hypothesis. 
A large-sample confidence interval for E(Y\) — E(Y2) is 

(Jl -y2)±Z«/2(SE). 

A test statistic for testing HQ: marginal homogeneity is 

, 7l - Ϊ2 

which has a null asymptotic standard normal distribution. Equivalently, z2 is a chi-
squared statistic with df = 1. Meeks and D'Agostino (1983) derived this test as a 
score test based on a latent variable model. The corresponding statistic replacing 
SE0 by SE is a Wald statistic (Bhapkar 1968). 

8.1.3 Comparing Marginal Mean Ranks or Mean Ridits 

It is also possible to compare the marginal distributions using rank scores. Par-
alleling the analysis in the preceding section, we could rank the In observations 
using midranks and find the mean ranks for the two margins. The midrank for the 
first category is [1 + (n\+ + n+\)]/2, the average of ranks 1 through («i+ + n+\) 
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for the (n\+ + n+\) observations falling in the first category for either margin. The 
midrank for category j is 

_ [(E/=iI("f+ + «+()) + l] + Σ/=ι(η«+ + «+«) 

which equals Σ/=ι (n<+ + n+') + (nv'+ + n+j + l)/2- The marginal mean ranks 
are R\ = £,· r,/?,+ and R2 = Σ , '"fP+i-

The mean ranks do not lend themselves as easily to interpretation as ordinary 
means for fixed scores, because their size depends on the sample size. Equivalent 
analyses use ordinal summary measures presented in Section 2.1. Let Y\ denote 
an observation from the {π,·+} row marginal distribution and Y2 an independent 
observation from the {π+j} column marginal distribution. The summary measures 
are the mean ridits and corresponding summaries of P{Y\ > Y2) and P(Yi > Y\). 
For the marginal probabilities, Y\ is stochastically higher than Y2 if 

π\+ H h nj+ < 7T+i H h π+j for j = 1 , . . . , c - 1. 

A useful measure of the extent to which one marginal distribution is stochastically 
higher than the other is given by 

Α = Ρ(Υ2>Υι)-Ρ(Υι>Υ2). 

This measure is positive when Ϊ2 is stochastically higher than K| and negative 
when Y\ is stochastically higher than Y2. An alternative, equivalent measure is 

1 Δ + 1 
a = P(Y2 > Yi) + -P(Yi = Y2) = —2—. 

Marginal homogeneity implies that Δ = 0 and a = 5. 
In Sections 2.3 and 7.4.1 we presented inference for the stochastic superiority 

measures Δ and a for two independent multinomial samples in a 2 x c table. 
Now, by contrast, we estimate them for a 2 x c table consisting of the marginal 
distributions of a c x c table, so that the samples in the two rows are matched 
rather than independent. In terms of the c x c table, the sample value of Δ is 

^ = ΣΖΣ2 n+p+j - Σ Σ Pi+p+j-

See Agresti (1983b), Svennson (1997, 1998), and Svennson and Holm (1994). 
The sample versions of these measures relate to ridit scores. The ridit score in 

category j using the sample marginal distribution of Y\ is 

aXi = P(Y\ < j) + {-P(Yi =j) = P\+ + --- + Pu-\)+ + jPj+-
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The ridit score in category j using the sample marginal distribution of Y2 is 

a2j = P+\ Λ l· p+u-\) + \p+j. 

Let Au(V) denote the mean ridit for the distribution of V when we use the distri-
bution of U to define the ridits. So for Y\ and Y2, 

ÄY[ (Y2) = J2 Ρ+ιαυ = Σ P+j (PI+ + · · ■ + Pu-i)+ + -γ) > 
j j 

ÄY2(Y\) = J2pj+a2j =Σρί+[ρ+\ +··· + Ρ+ν-ΐ) + -γ-). 

Then the ordinal measures Δ and ä relate to these mean ridits by (Vigderhous 
1979, Agresti 1983b) 

Δ = ΑΥι(Υ2)-Α~γ2(Υ{) and ä = A~Y](Y2). 

8.1.4 Inference about Δ and a for Matched Pairs 

The estimated large-sample variance of Δ for matched multinomial distributions 
induced by a multinomial distribution over the c x c table is 

SE2-
Σ,· Σ ; ftjPij ~ (Σ,· Σ7- fajPij) 

where 0,7 = 2(aly — a2i). The standard error of a is SE^ = (SE^)/2. For large n, 
the null hypothesis of marginal homogeneity can be tested using the statistic 

Δ _ ά - 0.50 
i>E^ bha 

which has approximately a standard normal null distribution. When the true 
marginal distributions are stochastically ordered, this test and the test comparing 
means can be much more powerful than a chi-squared test having df — c — 1 for 
comparing the margins. The power advantage increases as c increases (Agresti 
1983b). 

Using the SE values, we can construct Wald confidence intervals for Δ or a. 
When the true effects are strong, so that these measures fall near their boundary 
values, the actual coverage probabilities for such intervals need not fall near their 
nominal levels. Ryu and Agresti (2008) noted that a better Wald approach constructs 
the interval for logit (a) and then inverts it to the a or Δ scale. The Wald confidence 
interval for logit (a) is 

logit (a)±^j- —. 
a(\ —a) 
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Its bounds [LB, UB] induce the interval 

exp(LB) exp(UB) 
_1 +exp(LB) 1 +exp(UB) 

for a. Simulations suggest that this method performs well, although more sophis-
ticated methods such as a score-test-based or profile likelihood confidence interval 
are needed when the sample values fall at the boundary. 

8.1.5 Example: Occupational Mobility in Britain 

Table 8.1 relates fathers' and sons' occupational status category for a British sam-
ple. Except for the (n^, «31) combination, the sample satisfies π,·7- < η7, whenever 
/ < j . Thus, for each other pair of categories, the proportion of the father-son 
pairs for which the son had the higher status category is greater than the pro-
portion for which the father had the higher status category. The sample marginal 
distributions are stochastically ordered, and there is a marked tendency for more 
sons to have occupations with the highest status. For the population represented 
by this sample, we analyze whether the occupational distribution for sons differs 
from the occupational distribution for fathers. 

With scores equal to the status numbers, the marginal sample means are ~yx = 
3.701 for fathers and y2 = 3.799 for sons. The difference has SE = 0.01972 and 
SEo = 0.01974. Since z = (7i — 72)/SEo = 4.5, there is strong evidence of a dif-
ference between the population marginal means. The large sample size results in the 
narrow confidence interval (0.05, 0.13) for the difference between the population 
means for sons and fathers. 

For the ordinal rank-based approach, Δ = 0.0507 and a = 0.525. For Ho'. 
Δ = 0 (and a = \), the test statistic z = A/SEÄ = 0.0507/0.0102 = 5.0 also 
gives extremely strong evidence of marginal inhomogeneity. A 95% confidence 
interval for Δ is (0.031, 0.071). The corresponding confidence interval for a is 
[(0.031 + l)/2, (0.071 + l)/2)] = (0.505, 0.545). We conclude that there is a slight 
tendency for a son's occupational status to be higher than a father's. 

TABLE 8.1. Occupational Status for British Father-Son Pairs 

Father's 

1 
2 
3 
4 
5 

Total 

> Status" 1 

50 
28 
11 
14 
3 

106 

2 

45 
174 
78 
150 
42 

489 

Son's Status" 

3 

8 
84 
110 
185 
72 

459 

4 

18 
154 
223 
714 
320 

1429 

5 

8 
55 
96 
447 
411 

1017 

Total 

129 
495 
518 
1510 
848 

3500 

Source: D. V. Glass, ed., Social Mobility in Britain, Free Press, New York, 1954, with permission. 
" 1 , lowest status; 5, highest status. 
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8.2 MODELS COMPARING MATCHED MARGINAL DISTRIBUTIONS 

In Section 8.1 we compared the marginal distributions directly. A test comparing 
marginal means is a test of HQ: ß = 0 for the simple model 

Ε(Υι)=α, Ε(Υ2)=α + β. 

Alternative models directly address the categorical nature of the response scale. 
Any type of model introduced in previous chapters is valid as long as the analysis 
accounts for the dependence between the two sample marginal distributions. We 
illustrate by formulating models for cumulative logits. 

8.2.1 Cumulative Logit Model Comparing Marginal Responses 

A cumulative logit model for two marginal distributions that may differ in their 
location is 

logit [P(YX < j)] = aj and logit [P{Y2 < j)] =«j+ß (8.2) 

for j = 1 , . . . , c — 1. The model makes the proportional odds assumption by which 
the effect ß is the same for each cumulative probability. For each j , the odds of 
outcome Y2 < j equal exp(/3) times the odds of outcome Y\ < j . The model implies 
stochastically ordered marginal distributions, with ß > 0 when Y\ tends to be higher 
than Y2. Marginal homogeneity corresponds to ß = 0. As usual, {a,·} are monotone 
increasing in j since the cumulative probabilities increase in j . 

Model fitting treats (Y\, Y2) as dependent. The ML approach maximizes the 
multinomial likelihood function for the joint distribution of cell probabilities {7Γ,7} 
in the c x c table. This is not simple to do with the standard model-fitting functions 
in ordinary software. The model refers to marginal probabilities [P{Y\ = i) = Jr,+} 
and {P(Y2 = j) = π+j], but the multinomial log likelihood, Σί J2j nU '°Sπυ:* 
contains joint probabilities. To illustrate, the example in Section 8.2.2 fits this 
model to the two margins of a 3 x 3 contingency table. The natural sampling 
model is a multinomial distribution over the nine cells of the table, which is a 
joint distribution for the two responses. Since the model refers to the marginal 
probabilities, it is not possible to substitute the model formula into the likelihood 
function as is done with univariate response models to generate a function of the 
model parameters that the ML estimates maximize. 

We defer discussion of ML model fitting of marginal models to Section 9.1.2. 
Specialized software is available, such as the mph.fit R function described in the 
Appendix that maximizes the multinomial likelihood function by treating the model 
formula as a set of constraint equations for the maximization. In Section 9.2 we 
present a simpler (not ML) way to estimate model parameters that is available in 
ordinary software: the generalized estimating equations (GEE) approach. 

Model (8.2) describes the 2(c — 1) marginal probabilities by c parameters, so 
df = c - 2 for testing fit. A test of marginal homogeneity has Ho: β = 0. A sum-
mary of the degree of marginal inhomogeneity is given by a confidence interval 
for β or for the cumulative odds ratio exp(ß). 
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TABLE 8.2. Data on Success of U.S. Government in Providing Health Care and 
Protecting the Environment 

Health Care 

Successful 
Mixed 
Unsuccessful 

Successful 

199 
129 
164 

Environment 
Mixed 

81 
167 
169 

Unsuccessful 

83 
112 
363 

Source: 2006 General Social Survey. 

8.2.2 Example: Health Care and Environmental Protection 

Table 8.2 summarizes responses to the questions "How successful is the government 
in (1) Providing health care for the sick? (2) Protecting the environment?" To detect 
whether responses tend to be more positive for one question than the other, we 
compare the marginal distributions using the cumulative logit model (8.2). The 
sample cumulative marginal proportions are (0.247, 0.526, 1.0) for health care 
and (0.335, 0.620, 1.0) for the environment. This shows a stochastic ordering, with 
responses on the environment tending more toward the low end of the ordinal scale 
(i.e., more successful) than those on health care. With scores (1, 2, 3), the mean 
response for health care was 2.23 and the mean response for environment was 2.04. 

The cumulative logit model (8.2) has ML estimate ß = 0.403 (SE = 0.058).' 
There is strong evidence that population responses are more positive on the environ-
ment than on health care, with z — (/Ö/SE) = 6.9. The profile likelihood confidence 
interval for ß is (0.290, 0.516). The fit of the model has X2 = 0.39 (df = 1), a 
good fit. The estimated common cumulative odds ratio for comparing the two 
marginal distributions is exp(0.403) = 1.50. For example, the estimated odds of 
response "successful" (instead of "mixed" or "unsuccessful") on the environment 
for a randomly selected subject are 1.50 times the estimated odds of the response 
"successful" on health care for another randomly selected subject. 

8.2.3 Subject-Specific and Population-Averaged Tables 

A three-way representation of the matched-pairs data motivates a different type of 
model. This display presents the data as n separate 2xc partial tables, one table for 
each matched pair. Partial table i shows the responses (Y\,Y2) for matched pair /, 
and we denote those responses by (Yu, Ifo). Each table has columns that are the 
c possible outcomes for each observation. It shows the outcome for Yu in row 1 
and the outcome for Yn in row 2. 

Table 8.2 cross-classified results about government performance in health care 
and the environment for 1467 subjects. Table 8.3 shows a partial table for a subject 
who answers "successful" on health care and "mixed" on the environment. The full 
three-way table corresponding to Table 8.2 has 1467 partial tables. For example, 81 
partial tables look like Table 8.3. Each subject has a partial table, displaying the two 

'Results obtained using the R function mph.fit discussed in the Appendix. 
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TABLE 8.3. Representation of Matched Pair Contributing to Count nn in Table 8.2 

Issue 

Health care 
Environment 

Successful 

1 
0 

Response 
Mixed 

0 
1 

Unsuccessful 

0 
0 

matched observations. The 1467 subjects provide 2934 observations in a 2x3 x 1467 
contingency table. Collapsing this table over the 1467 partial tables yields a 2x3 
table with the first row equal to (363, 408, 696) and the second row equal to 
(492, 417, 558). These are the total number of (successful, mixed, unsuccessful) 
outcomes for the two questions and are the marginal counts in Table 8.2. 

The 2 x c x n table having a separate partial table for the two responses by each 
of n subjects is called the subject-specific table. When each matched pair is not a 
single subject but, rather, a pair of matched subjects, such as in the occupational 
mobility study of Table 8.1, we refer to the table instead using the more general 
term cluster-specific table. A matched pair is a simple type of cluster. Models for 
the subject-specific table, such as the one in Section 8.2.4, are called subject-specific 
models, or cluster-specific in the more general case. Sometimes they are also 
referred to as conditional models, because when the data are stratified by subject, 
the effect comparing the responses is conditional on the subject. By contrast, the 
c x c table that cross-classifies in a single two-way table the two responses for all 
subjects is called a population-averaged table. Table 8.2 is an example. Its margins, 
which form the 2 x c table obtained by collapsing the subject-specific tables, 
can yield estimates of population marginal probabilities. Models for the marginal 
probabilities, such as model (8.2), are called marginal models. In Chapters 9 and 
10 we present marginal models and subject-specific models in detail, generalizing 
the models of this chapter by also permitting explanatory variables. 

8.2.4 Subject-Specific Model Comparing Ordinal Responses 

A subject-specific model for matched-pairs data refers to the subject-specific partial 
tables of form Table 8.3. A subject-specific cumulative logit model of proportional 
odds form is 

logit [P(Yn < j)] = a,· + Yj, logit [P(Yi2 < j)] = «, + Yj + β. (8.3) 

Equivalently, logit P(Yu < j) — a;■■ + Yj+ ßxu with*,) =0andx,2 = l-Thef}^·} 
are monotone increasing in j . The model assumes that for each matched pair, the 
odds that observation 2 falls in category j or below (instead of above category 
j) are exp(ß) times the odds for observation 1. Since each partial table refers to 
a single subject (matched pair), this conditional association is a subject-specific 
effect. When ß = 0, the model states that for each matched pair, the response 
distribution is the same for both observations. This implies marginal homogeneity 
when averaged over all subjects. 
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This model differs from other models studied so far by permitting each subject 
to have their own probability distribution, reflected by the a, term with the subject 
i subscript. The model permits subject heterogeneity, with each cumulative prob-
ability j having a value that varies among subjects. For identifiability, we impose 
a constraint, such as £ a, = 0. A subject with a relatively large positive a,· has a 
relatively high probability of observation in category j or below for each of the 
two matched observations. By contrast, a subject with a relatively large negative 
a, has a relatively low probability of observation in category j or below for each 
of the two matched observations. 

Given the parameter values, model fitting treats the observations (Yn, ^2) f°r 

each matched pair as independent. Although the observations are treated as con-
ditionally independent at the subject level, averaged over the subjects the model 
implies a nonnegative marginal association. The greater the variability in the {a,}, 
the greater the positive association between the two observations when considered 
marginally, because of the effect of the variation in value of a; described in the 
preceding paragraph. 

Statistical inference for the model usually focuses on parameter ß for comparing 
the distributions. However, an awkward aspect is that the model has as many subject 
parameters {a,} as subjects. This causes difficulties with the fitting process and with 
the properties of ordinary ML estimators. In Chapter 10 we discuss ML fitting of 
an extended model that treats {a,} as random effects. This approach assumes that 
{a,} are an unobserved sample having a particular probability distribution, such as 
the normal. Here, we present a simple estimate of ß that although not ML for the 
random effects version of this model, is similar to that estimate and has similar SE. 
It is based on the fact that for each possible binary collapsing of the response to 
(category a and below, above category a), a = 1 , . . . , c — 1, the ratio of cell counts 

log — =±= 
λ-,\<α 2-,j>an'i 

estimates β. This is based on a standard result for the special case of binary 
matched pairs. Combining this information for all c — 1 possible collapsings 
yields an estimate proposed by Agresti and Lang (1993a), 

ΣΣ;>,·0 -0«y 
McCullagh (1977) presented alternative estimates. 

An ordinal test of marginal homogeneity (β = 0) can use this estimated effect 
(8.4) with its estimated standard error, 

SE Σ Σ,·<;0" - ')2«y Σ Σ« > j(' - j)2mj 
+ \| [ Σ Σ,·<>U ~ '>«;] [ Σ Σ; > j(' - 7')ny] 

The ratio z = ß/SE is an approximate standard normal null test statistic. 
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8.2.5 Example: Health Care and the Environment Revisited 

For Table 8.2 on government performance in providing health care and in protecting 
the environment, Section 8.2.2 used a marginal cumulative logit model to compare 
responses. That model had ß = 0.403 with SE = 0.058, for a common cumulative 
odds ratio of 1.50 comparing the marginal distributions. 

For Table 8.2, the estimator (8.4) for the subject-specific model equals 

« , 1(129+169)+ 2(164) 626 
p = log = log = 0.556. H B 1(81 +112)+2(83) B 359 

The estimated subject-specific cumulative odds ratio is exp(/3) — 626/359 = 1.74. 
For each subject the estimated odds of response "successful" (instead of "mixed" 
or "unsuccessful") on the environment are 1.74 times the estimated odds of that 
response for health care. The estimate ß = 0.556 has SE = 0.079. For Ho: ß = 0, 
z — 0.556/0.079 = 7.0 provides extremely strong evidence against the null hypoth-
esis of marginal homogeneity, which the marginal model in Section 8.2.2 also 
provided. 

8.2.6 Marginal Effects Versus Subject-Specific Effects 

With the subject-specific model, we just estimated the cumulative odds ratio com-
paring the two response distributions by 1.74. By contrast, the cumulative odds 
ratio estimate of 1.50 found in Section 8.2.2 refers to a marginal model that 
focused on the margins of this table. Those margins are equivalently the rows 
of the marginal table obtained by collapsing the 2 x 4 x 1467 contingency table 
with subject-specific strata. That these odds ratios take different values reflects the 
basic result that conditional odds ratios in three-way contingency tables can differ 
substantially from marginal odds ratios in collapsed two-way tables. 

As is the case with binary data, estimates of effects in subject-specific mod-
els tend to be larger in absolute value than estimates of corresponding effects in 
marginal models. Compare, for example, ß = 0.556 just obtained with ß — 0.403 
obtained for the marginal model. However, SE values also tend to be larger for 
the subject-specific model, and usually /J/SE takes a similar size. For Table 8.2, 
/3/SE = 6.9 for the marginal model and 7.0 for the subject-specific model. In 
Section 8.4.2 and Sections 10.1.4 and 10.5.1 in Chapter 10 we discuss further 
the distinction between subject-specific and marginal models and their odds ratio 
effects. 

8.3 MODELS FOR THE JOINT DISTRIBUTION IN A SQUARE TABLE 

An alternative analysis of square contingency tables models the joint distribution 
of (Yu, Yn). Some such models have marginal homogeneity as a special case and 
can also be used to compare the marginal distributions. 
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8.3.1 Symmetry Model for Matched Pairs 

A c x c joint distribution {7r,j} satisfies symmetry if 

Ttij = nji whenever i φ j . (8.5) 

Under symmetry, 7ri+ = ^ Xij — Σι nji — π+ί f° r a ^ '> s o marginal homogene-
ity also occurs. For c = 2, symmetry is equivalent to marginal homogeneity, but 
for c > 2 marginal homogeneity can occur without symmetry. 

The ML fit for the symmetry model is 7r,j = (n,-y· + nyi)/2n = (ptj + Pjt)/2 for 
all i and j . Its residual df = c(c — l)/2 for testing goodness of fit. 

8.3.2 Ordinal Quasi-Symmetry Model for Matched Pairs 

When the marginal distributions differ substantially, the symmetry model fits 
poorly. Marginal heterogeneity can be accommodated by the quasi-symmetry 
model. For matched-pairs data, this model has form 

log ^-=ßj- ßi for all i and j , (8.6) 

with a constraint such as ßc — 0. Symmetry is the special case in which ß\ = ■ ■ · = 
ßc-i = 0 also. The higher ßj compared to other [ßj], relatively more observations 
fall in column i than in row i. 

The symmetry (S) and quasi-symmetry (QS) models treat the classifications as 
nominal. A special case of QS called ordinal quasi-symmetry (OQS) is often useful 
when the categories are ordered. Let u\ <uj < ■ ■ ■ <uc denote ordered scores for 
the rows and columns. The OQS model for matched-pairs data is 

\og?± = ß(uj-Ui). (8.7) 

This is a special case of the QS model in which {ßi} have a linear trend. This 
model has the form of the usual logistic model, logit π = a + βχ, with a = 0, x = 
Uj — Uj, and it equal to the conditional probability for cell (i, j), given response 
in cell (j, j) or cell (j, i). The greater the value of \β\, the greater the relative 
difference between π,·7· and πμ and between the marginal distributions. With scores 
{ui — i], the probability that the second observation is x categories higher than the 
first observation equals exp(xß) times the probability that the first observation is 
x categories higher than the second observation. An underlying bivariate normal 
latent model implies a model of this form (Agresti 1983, Exercise 8.1). 

For sample cell proportions {p,7 = n,;/n} and sample marginal means £(- «,/?;+ 
and Σί ujP+j> m e likelihood equations for the ordinal quasi-symmetry model are 

Σ Μ,·7Γ,+ = ^ Uipi+, ] T UjTt+j = Σ UjP+j, 
i ' j j 

Ttij + äji - Pu + Pji for i < j . 
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The first two equations show that the fitted marginal distributions have the same 
means as the sample marginal distributions. When responses in one margin tend 
to be higher on the ordinal scale than those in the other margin, the fit of the 
OQS model (8.7) exhibits this same ordering. When ß > 0, the mean response is 
lower for the row variable. When ß < 0, the mean response is higher for the row 
variable. The ordinary QS model replaces the likelihood equations equating fitted 
and sample means with likelihood equations having the stronger condition that the 
fitted marginal proportions equal the sample marginal proportions. For each model 
we need only the equation for the rows or the equation for the columns, as the 
other is redundant because of the third equation above. 

It is simple to fit the OQS model (8.7) using software for logistic models: Identify 
(riij, riji) as binomial numbers of successes and failures in η,; + rc;, trials, and fit a 
binary model with logit link function, with intercept forced to equal 0 (which most 
software can do with a "no intercept" option), and with the value of the predictor x 
equal to uj — «, (Table A.5 in the Appendix illustrates). Since the OQS model has 
only one more parameter than the symmetry model, its residual df = c(c — l)/2 — 1 
for testing goodness of fit. Symmetry and thus marginal homogeneity is the special 
case β — 0. 

8.3.3 Example: Health Care and the Environment Revisited 

We analyzed Table 8.2 on government performance in providing health care and 
in protecting the environment with cumulative logit models of marginal form in 
Section 8.2.2 and subject-specific form in Section 8.2.5. A cursory glance at the data 
reveals that the symmetry model is inappropriate. Indeed, G2 = 49.77 for testing 
its fit, with df = 3. By comparison, the quasi-symmetry model fits well, having 
G2 = 0.72 with df = 1. The simpler ordinal quasi-symmetry model also fits well. 
For the scores {1, 2, 3}, G2 = 0.76 with df = 2, and β = 0.374 (SE = 0.055). 
Table 8.4 displays its fitted values. The estimated probability that response on the 
environment is x categories more positive than the response on health care equals 
exp(0.374*) times the reverse probability. Responses on the environment tend to 
be more positive than those on health care. 

Based on the fits of the S and OQS models, the likelihood-ratio test of marginal 
homogeneity uses the difference between the G2 (deviance) values for the S and 
OQS models, with df = 1. This equals 49.77-0.76 = 49.0. Alternatively, the 
Wald statistic (/3/SE)2 = (0.374/0.055)2 = 46.6. A third ordinal test is a score-type 
test, with chi-squared test statistic that is the square of the statistic discussed at the 

TABLE 8.4. Fit of Ordinal Quasi-Symmetry Model to Table 8.2 

>>2 = Environment 
y\ = Health Care Successful Mixed Unsuccessful 

Successful 199 (199.0) 81 (85.6) 83 (79.4) 
Mixed 129(124.4) 167(167.0) 112(114.6) 
Unsuccessful 164 (167.6) 169 (166.4) 363 (363.0) 
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end of Section 8.1.2 that compares marginal sample means (for category scores 
{«, = /}) relative to a null standard error. For these data, z = (y\ — 72)/SEo = 
(2.227 - 2.045)/0.0262 = 6.9, and z2 = 48.2 with df = 1. All three statistics give 
very strong evidence of heterogeneity (P < 0.0001). The evidence is similar to 
that obtained in the preceding section for effects in a marginal model and in a 
subject-specific model, both of which had (y8/SE) values of about 7. 

8.3.4 Diagonals-Parameter Symmetry Models 

Goodman (1972, 1979b,c, 1981c, 1985) formulated several ordinal models in which 
diagonals that are parallel to and equidistant from the main diagonal exhibit similar 
patterns for probabilities. His diagonals-parameter symmetry model is 

log ^ =£,_, · , i<j, (8.8) 

for a set of parameters {ß\,..., ßc-i). The parameter ßk is the log odds that an 
observation falls in a cell (i, j) satisfying j — i =k instead of in a cell satisfying 
j — i = —k, k = 1 , . . . , c — 1. Each probability on the diagonal that is k bands 
above the main diagonal is the same multiple exp(/J*) of the corresponding prob-
ability on the diagonal that is k bands below the main diagonal. The odds depend 
only on the distance k between the diagonal containing the cell and the main 
diagonal. 

The symmetry model is the special case of this model in which ß\ = ■ ■ ■ = 
ßc_i = 0. The diagonals-parameter symmetry model has c — 1 more parameters 
than the symmetry model, and its residual df = (c — l)(c — 2)/2. The ordinal quasi-
symmetry model is the special case of (8.8) that replaces {ßk} by a single parameter, 
through 

ßj-i = (Uj ~ Ui)ß. 

Let n* denote the 2 x (c — k) table constructed using the two diagonals that are 
k bands from the main diagonal, k = 1,..., c — 2. For example, nj has first row 
("i2> "23. · · ·. i(c-i)c) a nd second row («21. «32. ■ · ·. "c(c-i))- When the diagonals-
parameter symmetry model holds, the expected values of these counts are such that 
the entry in the first row of n* is the same multiple exp(ßt) of the corresponding 
entry in the second row. The model is therefore equivalent to independence for the 
expected frequencies in the tables {n*, k = 1,..., c — 2}. The fitted values {μ,7} for 
the model are the expected frequency estimates for the independence model applied 
to the {njfe} tables. The estimate of ßk is the common log of the within-column ratio 
of expected frequency estimates in the two rows of n*. 

8.3.5 Conditional Symmetry Model 

Bishop et al. (1975, pp. 285-286) proposed the model 

log m=ß, i < j. (8.9) 
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This model implies that for i < j , 

P(Yi = i, Y2 = J\Y1< Y2) = ρ{γχ = j , Y2 = i | y, > Y2), 

where (Y\, Y2) is selected at random according to the [π^] distribution. Because 
of this property, it is referred to as a conditional symmetry model. This model is 
the special case of the diagonals-parameter symmetry model (8.8) with β\ = ■ ■ ■ = 
/5c_i = ß. The symmetry model corresponds to ß = 0. Like the ordinal quasi-
symmetry model, the conditional symmetry model has only one more parameter 
than the symmetry model, and its residual df = c(c — l) /2 — 1. 

The likelihood equations for the conditional symmetry model are 

fiij + ßji = nij + nji for all / < j , ΣΣ&>1 = Σ Σ H i J ' 

The ML estimate of ß has closed form, 

^ = l o g . 
ΈΈί>]ηα 

This estimate has estimated asymptotic variance 

ΣΣ"ο) + ( Σ Σ ^ 
<<J / \ i>j 

The fitted values for the model are 

exp(ß)(nu +nji) . . 
fin = ^ —, i < / and 

expGß) + 1 

ntj + nji 
ßij = — . , ι>], 

exp(^)+ 1 

with fin = n„ for / = 1 , . . . , c. 

8.3.6 Quasi-Independence and Quasi-Uniform Association 

Often, regular loglinear models for ordinal variables fit square tables well when 
they are adapted to fit the cells on the main diagonal perfectly, as the conditional 
symmetry model does. Let {w,} be ordered category scores. Consider the loglinear 
model 

log My = λ + Xf + λ] + ßmuj + «,·/(/ = j), (8.10) 
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where I(i = j) denotes an indicator that equals 1 when / = j and 0 otherwise. This 
model adds the main diagonal parameters {δ,) to the linear-by-linear association 
model (6.2): namely, <5i for cell (1,1) (in row 1 and column 1), Sj for cell (2,2), 
and so on. The ML fit in those cells is perfect, with /I,·,· = «,·,· for all i. The model 
permits linear-by-linear association off the main diagonal. This model is called the 
quasi-linear-by-linear association model. 

For equal-interval scores, model (8.10) implies uniform local association, given 
that responses differ. In that case, Goodman (1979a) called the model quasi-uniform 
association. See also Duncan (1979). Model (8.10) has residual df = c(c — 3), so 
it is unsaturated only for tables of size 4x4 and larger. The fit can be obtained with 
standard software for GLMs, as Table A.5 in the Appendix shows. A more general 
model treats the scores as parameters, as did the RC model of Section 6.5.1. A 
simpler model introduced in Section 8.5.3 sets <$i = · ■ ■ = Sr. 

The special case β = 0 of model (8.10) is the quasi-independence model, an 
important model for square tables with unordered categories. When <5,· > 0 in that 
model, cell (i, i) is more likely than under independence. Off the main diagonal, 
the ordinary independence model applies. In other words, conditional on the obser-
vations differing, Yi is independent of Y2. For 3x3 tables, it is equivalent to the 
quasi-symmetry model. 

8.3.7 Example: Health Care and the Environment Revisited 

We analyzed Table 8.2 on opinions about government spending on health care 
and on the environment in Sections 8.2.2, 8.2.5, and 8.3.3 using various ordinal 
models. Section 8.3.3 found that the ordinal quasi-symmetry model fits well, so 
necessarily the diagonals-parameter symmetry model (8.8), which is more complex, 
fits well. Its deviance statistic is G2 = 0.08 (df = 1) and its parameter estimates are 
βι — —0.434 and /S2 = —0.681. For example, the estimated odds that response on 
the environment is one category more positive than response on health care (instead 
of the reverse) is exp(—βι) = exp(0.434) = 1.54. For this model, exp(—^2) = 
1.98 = «3i/«i3 = 164/83. 

The conditional symmetry model (8.9) also fits well, with deviance G2 = 2.39 
(df=2). It has estimate β = -0.515 (SE = 0.076). The estimated odds that 
response on the environment is more positive than response on health care (instead 
of the reverse) equals exp(0.515) = 1.67. Finally, the quasi-independence model 
also fits well (G2 = 0.72, df = 1), being equivalent to the quasi-symmetry model 
for these data. 

8.4 COMPARING MARGINAL DISTRIBUTIONS FOR MATCHED SETS 

The methods for comparing marginal distributions of matched pairs extend to 
marginal distributions of matched sets. To show this, we first extend the notion 
of marginal homogeneity from square tables to T -dimensional tables and express 
it is a special case of marginal models and cluster-specific models. 
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8.4.1 Marginal Homogeneity in Tables for Matched Sets 

Let Y\, Y2,..., YT denote the T responses in a matched set. With c response 
categories, a contingency table with cT cells summarizes the possible sequences 
of observations in a cluster. Let i = i\,..., 17· denote the cell having Yt — i,, 
t = 1 , . . . , T. Let 7Ti = P(Y, =i,,t=l,...,T). Then 

P(Yt = j) = *+...+;+...+, 

where the j subscript is in position t, and [P(Yt — j), j = 1 , . . . , c] is the marginal 
distribution for Y,. 

This Γ-way table satisfies marginal homogeneity if 

P(Y\ = j) = P(Yi = ]) = ■■■ = P(YT = j), for j = 1 , . . . , c - 1. 

As in the matched-pairs case, various ordinal models have marginal homogeneity 
as a special case. Having df = T — 1 for tests comparing margins, these models 
provide more powerful ways of detecting shifts in location that standard (nominal-
scale) analyses that have df = (Γ — l)(c — 1). 

8.4.2 Marginal and Subject-Specific Models for Matched Sets 

As in Section 8.2, we consider both marginal models and subject-specific models. A 
marginal cumulative logit model with proportional odds structure for the T margins 
of the cT contingency table is 

logit [/»(F, <j)]=aj+ß„ j = 1 c - 1 , f = l , . . . , 7 \ (8.11) 

with a constraint such as βτ = 0. The odds of response below any particular cat-
egory for a subject randomly selected for observation t equal exp(p"r — β„) times 
the odds for another subject randomly selected for observation u. Marginal homo-
geneity is the special case βι — ■ ■ ■ = βτ. 

Although model (8.11) is simple, ML fitting of it is not straightforward. As 
Section 8.2.1 explained in the matched-pairs setting, the model refers to marginal 
probabilities, whereas the multinomial likelihood function uses the joint distribu-
tion of the data. ML fitting can be accomplished with special-purpose programs 
such as the mph.fit R function described in the Appendix. 

Conditional, subject-specific models for matched pairs also extend to matched 
sets. Let Yu denote observation t in cluster i. A cumulative logit model with 
proportional odds structure is 

l o g i t L P ( l ' i l < . / ) ] = « i + y i / + A , j = 1 c - 1 , f = l , . . . , 7 \ 
(8.12) 

For cluster i, the odds of response below any particular category for observation 
t equal exp(p", — ßs) times the odds for observation i. Marginal homogeneity is 
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implied by ß\ = ■ ■ ■ = βτ. The same interpretation applies to a more general model 
that replaces a, + yj by α,·7·, letting the distances between cutpoints vary by cluster. 

For c = 2, a model of form (8.12) is called the Rasch model. This model is 
often used in educational applications as an item response model, for example to 
model the probability that subject i makes a correct response on question i, using 
subject parameters {a,} and item (question) parameters {/£?,}. For c > 2 , Samejima 
(1969) considered such models for cumulative logits and probits. 

As in the matched-pairs case, the complication with this model is the large 
number of cluster-specific parameters {a,}. To reduce the number of parameters, 
the random effects approach treats {a,} as unobserved random variates having 
distribution in a parametric family, such as the normal. In Chapter 10 we study 
models such as (8.12) in more general contexts, incorporating both matched sets 
and explanatory variables. 

8.4.3 Example: Crossover Study for Treating Dysmenorrhea 

Table 8.5, based on data from Kenward and Jones (1991), shows results of a three-
period crossover study. The study was designed to compare placebo (treatment A) 
with a low-dose analgesic (treatment B) and a high-dose analgesic (treatment C) for 
relief of severe uterine pain during a woman's menstrual cycle, a condition called 
dysmenorrhea. The study assigned subjects randomly to one of die six possible 
sequences for administering the three treatments during the three periods. At the 
end of each period, each woman rated the treatment as giving no relief (1), moderate 
relief (2), or complete relief (3). More complex modeling showed no evidence that 
effects depended on the sequence, and Table 8.5 shows the data collapsed over the 
six sequences. 

We consider the marginal cumulative logit model 

logit P(Y, < j) = atj +ß„ 7 = 1,2, t = A, B, C, (8.13) 

with constraint ßc = 0. We report here estimates of [ß,} for the reparameterization 
with P(Y, < j) replaced by P{Yt> j), so that larger values of ßt correspond to 

TABLE 8.5. Data from Crossover Study for Treating Dysmenorrhea, with Fitted 
Values for Ordinal Quasi-Symmetry Model" 

A C: 

1 

2 

3 

1 

6 
(6.0) 

2 
(1.0) 

1 
(0.2) 

B = 1 
2 

4 
(4.7) 

3 
(3.4) 

0 
(0.6) 

3 

5 
(4.5) 

2 
(2.9) 

2 
(1.3) 

1 

3 
(3.3) 

1 
(2.4) 

0 
(0.4) 

B = 2 
2 

13 
(11.2) 

3 
(3.0) 

0 
(0.2) 

3 

10 
(9.6) 

1 
(1.0) 

0 
(0.6) 

1 

1 
(2.3) 

2 
(1.5) 

1 
(0.7) 

B = 3 
2 

8 
(6.9) 

1 
(0.7) 

1 
(0.4) 

3 

14 
(15.0) 

2 
(2.0) 

0 
(0.0) 

Source: Kenward and Jones (1991). 
"1, giving no relief; 2, moderate relief; 3, complete relief. 
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more positive results (e.g., a greater probability of complete relief). Equivalently, 
such estimates result from replacing ß, in the model by — β,, which in Section 3.3.2 
we noted is the natural parameterization induced by an underlying latent variable 
model. The ML estimates2 are then 

βΒ-βΑ= 2.038 (SE = 0.360), 

ßc-ßA= 2.430 (SE = 0.372), 

ßc-ßB= 0.392 (SE = 0.252). 

For example, the estimated odds that relief for the low-dose analgesic is com-
plete or moderate rather than none, or complete rather than moderate or none, are 
exp(2.038) = 7.7 times the estimated odds for the placebo. Treatments B and C 
clearly differ from placebo, but there is only weak evidence that the high dose 
works better than the low dose. 

ML model fitting provides fitted values in the cells of the 3x3x3 table that 
satisfy the model. Those fitted values can be compared to the observed counts 
using chi-squared statistics to test the fit of the model. For these data, X2 = 0.5 
and G2 = 0.5 (df = 2) for comparing observed to fitted cell counts in modeling 
the six marginal logits (two for each treatment) using the four parameters of model 
(8.13). The fit is quite good. The likelihood-ratio test of H0: ßA = ßB = ßc has 
a test statistic that equals the difference between the deviance for the simpler 
model imposing this constraint and the deviance for model (8.13). It equals 46.3 — 
0.5 =45.8 with df = 2, strong evidence of at least one difference among the three 
treatments. 

8.4.4 Ordinal Quasi-Symmetry Model for Matched Sets 

In Section 8.3 we showed that some models for the joint distribution of matched 
pairs have parameters that compare the marginal distributions. Some of these mod-
els, such as the ordinal quasi-symmetry model that has marginal means in its set 
of sufficient statistics, extend to matched sets. For a multinomial sample of size n, 
let μ-, = ηπ·, denote the expected frequency in cell i. 

The joint distribution for a cT contingency table satisfies complete symmetry if 
it\ = 7Tj for any permutation j = j \ , ■ ■ ■, jr of i = i i , . . . , I'T. Complete symmetry 
can be expressed as the loglinear model 

log/ij = Kb...m, 

where a is the minimum of i\,..., />, b is the next smallest,..., and m is the 
maximum. This notation reflects the permutation invariance of μ\ in the subscript 
i. In a three-way table, for example, log μ 133 = log/X3i3 = 1ο§μ33ΐ = λΐ33. 

2Found using the mph.fit R function discussed in the Appendix as shown at www.stat.ufl.edu/~aa/ 
ordinal/ord.html. 
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A cT contingency table cross-classifying Y\, Y2,..., Υτ satisfies quasi-symmetry 
(QS) if 

log ßi = λ + λJ + λ£ + · · · + λ% + Xab...m, (8.14) 

where ~kab...m has the permutation invariant structure of the complete symmetry 
model. This model permits each single-factor marginal distribution to have its 
own parameters. The model's likelihood equations imply that the fitted marginal 
distributions are identical to the sample marginal distributions. 

For ordinal responses, a simpler loglinear model with quantitative main effects 
uses ordered scores \UJ\ for the c categories in each margin. The ordinal quasi-
symmetry (OQS) model is 

log w = ß\uh + ß2ui2 + \-βτ»ίτ +kab...m, (8.15) 

where Xa/,.„m is permutation invariant and {ß,} satisfy a constraint such as βτ = 0. 
For matched pairs, in logit form for cells (i, j) and (j, /), the equivalent expres-
sion is 

Mi; 
log —- = ß(uj — Ui) for all i and j , 

ßji 

identifying ß with ß2 — ß\ in model (8.15) for T = 2. This equation corresponds 
to equation (8.7) in terms of probabilities. 

For the OQS model, complete symmetry is the special case ß\ — ■ ■ ■ — ßj. The 
sufficient statistic for β^ is the mean response for sample marginal distribution 
k. The sufficient statistic for the \ab...m term is the sum of all cell counts having 
those indices. For a three-way table, for example, the sufficient statistic for λ]33 is 
«133 + «313 + «331- The likelihood equations equate the sufficient statistics to their 
fitted values. The complete symmetry model has residual df = cT — (C+

T~ ), the 
OQS model has residual df = cT - (f+£_1) - (Γ - 1), and the ordinary QS model 
(8.14) has residual df = cT - (c+£_1) - (c - l)(T - 1). 

Since their sufficient statistics are the marginal means, the [ßk\ in the OQS 
model (8.15) reflect shifts in location among the T marginal distributions. Like the 
marginal cumulative logit model (8.11), this model is useful for describing location 
shifts in the marginal distributions. Both models fit poorly when the margins have 
quite different dispersion. The ML estimates {ßj} for OQS have the same order as 
the sample mean responses in the marginal distributions. 

When the OQS model holds, marginal homogeneity is equivalent to complete 
symmetry (S). Marginal heterogeneity occurs if OQS holds but S does not. The 
likelihood-ratio statistic comparing the deviances tests marginal homogeneity, 
with df — T — Ϊ. This test is sensitive to detecting location shifts in the marginal 
means. The score test is based on variability among those means, as discussed in 
Section 8.1.2 for T = 2 and in Section 8.4.8 for general T. 
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8.4.5 Ordinal Quasi-Symmetry and Ordinal Rasch Models 

A useful way to interpret {ßk} in the ordinal quasi-symmetry model (8.15) utilizes 
a connection with a cluster-specific adjacent-categories logit model, 

P(Y- = /' 4- Π lpg η,'ν - Λ =aU+ß" ; = l , . . . , c - l , t = \,...,T. (8.16) 
'('it — J) 

One way to estimate {ß,} treats {or,·,·} as fixed effects and conditions on their suffi-
cient statistics to eliminate them from the likelihood function. Then the conditional 
ML estimates of {ß,} for model (8.16) are identical to the ordinary ML estimates 
of {ß,} for the OQS model (8.15) with [UJ = j} (Agresti 1993a,b, 1995). So [β,] 
have the interpretation that for each given cluster /, the odds of the higher instead 
of the lower of two adjacent responses for observation t are exp(ß, — ßs) times 
the corresponding odds for observation s. 

Model (8.16) is an extension of the Rasch model from a binary response for 
cluster i and "item" t to an ordinal response. A simpler extension also gives 
structure to the cluster-specific terms (Andersen 1973; Andrich 1978), 

lQg «,/v - Λ =°H + Yj + ßt- (8-17) 
"(*it — J ) 

This linear predictor structure is the same as in the corresponding subject-specific 
cumulative logit model (8.12). The conditional ML estimates of {ßt} for this ordinal 
Rasch model are identical to the ordinary ML estimates of {ßt} for the special case 
of the OQS model (8.15), 

C 

logμΐ = ß\uh + ß2ui2 -\ VßjUij + ^λ , · ί 7 · + ps (8.18) 

with s — i\ + ii + h ίγ, {uj = j], and tj denotes the number of {i,} that equal 
j . Here the symmetry term ps refers to a coarser partition having a separate param-
eter for each sum of responses rather than for each possible ordered sequence. This 
ordinal Rasch model has a simple form for the cluster and item effects for a given 
outcome category. When interest focuses mainly on {ß,}, the more general model 
(8.16) provides more flexibility, because the corresponding loglinear model (8.15) 
fits well in a wider variety of cases. For related models in an item response context, 
see Masters (1982). 

In Section 8.3 we introduced several other models for square tables with ordered 
categories, such as diagonals-parameter-symmetry and conditional symmetry. 
These do not extend as simply to matched sets as the ordinal quasi-symmetry 
model does. 

8.4.6 Example: Dysmenorrhea Crossover Study Revisited 

We now further analyze Table 8.5, from a crossover study comparing three treat-
ments for relief of dysmenorrhea. Table 8.6 shows the goodness of fit of several 
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TABLE 8.6. Goodness of Fit of Loglinear Models for Table 8.5 

Model 

Mutual independence 
Complete symmetry 
Ordinal quasi-symmetry 
Quasi-symmetry 

Deviance 
G2 

26.73 
69.00 
10.35 
9.99 

Pearson 
X2 

25.06 
66.21 
10.01 
9.37 

Degrees of 
Freedom 

20 
17 
15 
13 

loglinear models. Because the table is sparse, we put more faith in the Pearson 
X2 statistic, using the deviance mainly to compare models. The OQS model (8.15) 
fits well (X2 = 10.0, df = 15). Table 8.5 also displays its fitted values. There is 
a dramatic improvement compared to the complete symmetry model (which has 
X2 = 66.2, df = 17). The ordinary QS model fits only slightly better, and interpre-
tations are simpler for the ordinal model. 

Denote main effects in the ordinal quasi-symmetry model for the treatments 
by βΑ, ββ, ßc- The likelihood-ratio test of Ho: ßA = ße = ßc has test statis-
tic G2(S) - G2(OQS) = 69.0 - 10.3 = 58.7, with df = 2. The estimated treatment 
comparisons are: 

ßB-ßA = \ .207 (SE = 0.239), 

ßc~ßA = 1-537 (SE = 0.259), 

ßc-ßB =0.330 (SE = 0.221). 

Substantive results are the same as with the marginal cumulative logit model 
(Section 8.4.3). Treatments B and C both clearly differ from the placebo (A), 
but there is only weak evidence that the high dose is better than the low dose. 
These effects can also be interpreted in terms of the generalization (8.16) of the 
Rasch model. For instance, for a given subject, the estimated odds that relief for the 
low-dose analgesic is moderate rather than none, or complete rather than moderate, 
are exp(1.207) = 3.34 times the estimated odds for the placebo. 

8.4.7 Comparing Marginal Means for Matched Sets 

For simpler interpretation, it can be helpful to report sample marginal means and 
their differences and SE values. With response scores (1, 2, 3) for the possible 
outcomes for each treatment for dysmenorrhea, the sample means were 1.31 for 
treatment A, 2.06 for B, and 2.22 for C. The differences between pairs of sample 
means, with SE values based on equation (8.1) for matched-pairs data, are 

yB-yA= 0.744 (SE = 0.113), 

yc - yA = 0.907 (SE = 0.109), 

yc-yB= 0.163 (SE = 0.105). 
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These results correspond to estimates from fitting the model 

£ w ; P ( r , = y ) = ft, r = l , 2 , . . . , 7 \ (8.19) 
j 

where {VJ = j}. Unless we impose structure on {ß,}, such as a linear trend, the 
model is saturated. Here, the substantive results are the same as with models that 
account more fully for the categorical nature of the data. 

The margins can be compared in significance tests using the mean responses. 
Koch et al. (1977) proposed Wald-type tests. The generalized CMH tests described 
next are score-type tests. 

8.4.8 Generalized CMH Tests Comparing Marginal Means 

In Section 6.4.5 we introduced generalized Cochran-Mantel-Haenszel (CMH) 
tests for testing conditional independence in three-way contingency tables. In this 
context of comparing the T margins of a cT contingency table, we apply the test 
to cluster-specific partial tables that show the T observations for a particular clus-
ter. That is, for cluster i, partial table / has rows that are the T observations and 
columns that are the c possible response outcomes. One observation occurs in each 
row. Such a data file corresponds naturally to the cluster-specific sort of model of 
form (8.12), which in Chapter 10 we generalize and study further. 

One such generalized CMH test assigns scores to the response categories and is 
sensitive to detecting variability in the T marginal means. In this sense, it connects 
with the mean response model (8.19) just described. For details about such tests in 
this context, see White et al. (1982) and Landis et al. (1978, 1988). The covariance 
matrix of the sample marginal means is evaluated under the null hypothesis of equal 
means, so this is a score-type statistic for the model (8.19) for marginal means and 
also for the ordinal quasi-symmetry model, which has the marginal means as its 
sufficient statistics. 

When we apply this approach with the crossover study using response scores 
(1,2, 3), the generalized CMH statistic for comparing the means equals 73.4 with 
df = 2. Like the model-based analyses, this shows extremely strong evidence of a 
difference among the treatments. 

8.5 ANALYZING RATER AGREEMENT ON AN ORDINAL SCALE 

One application in which matched-pairs data occur is the investigation of agreement 
between two observers or "raters." For example, for each of several patients, two 
doctors might evaluate whether the patient has a particular condition, with a scale 
such as (yes, probably yes, probably no, no). Sometimes, one rater is considered 
an "expert." Then, interest focuses on how well another rater or set of raters tends 
to agree with the expert. 

Table 8.7 illustrates a rater agreement application in which the raters were 
movie critics. The table summarizes ratings of 160 movies between April 1995 
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TABLE 8.7. Ratings of Movies by Gene Siskel and Roger Ebert" 

Siskel 
Rating 

Con 
Mixed 
Pro 

Con 

24 (24.0*, 24.1f) 
8 (7.9, 6.2) 

10(10.1, 11.6) 

Ebert Rating 
Mixed 

8 (8.1, 6.3) 
13 (13.0, 14.6) 
9 (8.9, 9.1) 

Pro 

13 (12.9, 14.5) 
11 (11.1, 11.2) 
64 (64.0, 62.3) 

Source: Adapted from A. Agresti and L. Winner, CHANCE 10: 10-14, (1997), with permission. 
Copyright © 1997 American Statistical Association. All rights reserved. 
"The first entry (*) in each pair is the fit of the quasi-independence model; the second entry (f) is the 
fit of the simpler model, which adds a single main diagonal parameter to the independence model. 

and September 1996 for at-the-time Chicago newspaper film critics Gene Siskel 
and Roger Ebert. Each movie review is categorized with the scale (pro, con, mixed) 
according to whether the review was positive, negative, or a mixture of the two. 
In Table 8.7, each matched pair consists of the ratings by Siskel and Ebert for a 
particular movie. 

8.5.1 Agreement: Departures from Independence 

For Table 8.7, let π ι ; denote the probability that Siskel classified a movie in cat-
egory i and Ebert classified it in category j . Their ratings of a particular movie 
agree if their classifications are in the same category. In a square table, the main 
diagonal {/ = j) represents rater agreement. Thus, Σ , π-,-, is the total probability 
of agreement. Perfect agreement occurs when Σ; π,-, = 1. 

For cross-classifications of ordinal rater evaluations, we usually expect a positive 
association. In fact, the independence model fits poorly (G2 = 43.2, df = 9). Its 
standardized residuals (not shown here) take large positive values on the main 
diagonal, indicating that agreement for each category is greater than expected if 
the ratings were statistically independent. 

8.5.2 Quasi-independence and Agreement Modeling 

More complex models add components that relate to agreement beyond that 
expected under independence. For two raters A and B, a useful generalization is 
quasi-independence. For expected frequencies {μί7·}, this is the loglinear model 

log ßtj = λ + kf + kj + St I(i=j), 

which adds main-diagonal parameters {£,} to the independence model. For the 
movie reviewer data, this model has deviance G2 = 0.01 (df = 1). It fits much 
better than the independence model. Table 8.7 shows the fit. The fitted counts have 
the same main-diagonal values and the same row and column totals as the observed 
data, but satisfy independence for cells not on the main diagonal. Given that the 
critics disagreed, the rating by Siskel seems to have been essentially independent 
of the rating by Ebert. 
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Conditional on rater disagreement on an ordinal scale, an association often 
remains. Thus, the quasi-symmetry model often fits much better than the quasi-
independence model. With c = 3, however, these models are equivalent. 

Models for agreement can take ordering of categories into account. The ordinal 
quasi-symmetry model (8.5) fits these data well, with G2 = 0.09 (df = 2). The 
small value of ß = 0.1255 for that model (SE = 0.178) suggests that the simpler 
model of symmetry is adequate. In fact, this is a rare data set for which this is true 
(G2 — 0.59, df = 3). However, these models do not have parameters that naturally 
summarize agreement. For example, the parameter ß in the OQS model focuses 
on a location difference between the margins. 

8.5.3 Ordinal Agreement Model 

Conditional on rater disagreement, there is often a tendency for high (low) ratings 
by one rater to occur with relatively high (low) ratings by the other rater. More 
useful quasi-symmetric models for ordinal agreement describe this by partitioning 
beyond-chance agreement into that due to a baseline association and a main-
diagonal increment. One such model that generalizes the quasi-independence model 
is the quasi linear-by-linear association model (8.10). Conditional on disagreement, 
there is a linear-by-linear association. This model has residual df = c(c — 3), how-
ever, so it is saturated for Table 8.7. 

A more parsimonious model (Agresti 1988) is the ordinal agreement model 

log ßU = λ + kf + kj + ßuiUj + 81 (i = j). (8.20) 

This uses a single parameter <5 to describe beyond-chance agreement on the main 
diagonal and another parameter ß to describe association off that diagonal. The 
likelihood equations equate the model fitted values to the data for the marginal 
distributions (the sufficient statistics for {λ^} and {λ?}), the correlation for the 
chosen scores (the sufficient statistic for β), and the prevalence of exact agreement 
(the sufficient statistic for <5), 

ι i 

So this model accommodates the larger number of observations that typically fall 
on the main diagonal relative to what the independence model predicts. The model 
can be fitted with standard software for loglinear models (see Table A.5 in the 
Appendix). 

For the movie reviewers' data, the ordinal agreement model with {«,· = /} has 
deviance G2 = 0.59 (df = 2). The agreement and association parameter estimates 
are S = 0.859 (SE = 0.300) and ß = 0.194 (SE = 0.206). This suggests that a 
simpler model that adds only a single main diagonal parameter to the independence 
model fits well. In fact, that is the case, with fit statistics G2 = 1.49 (df = 3) 
and with S = 1.094 (SE = 0.171). Table 8.7 also shows this fit. The estimated 
odds of agreement for any given category are exp( 1.094) = 3.0 times what the 
independence model predicts. 
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8.5.4 Odds Ratio Summarizing Agreement 

For two subjects observed by two raters, suppose that each rater classifies one in 
category i and one in category j . The odds that the raters agree rather than disagree 
on which is in category i and which is in category j equal 

_ ngnjj _ ßaßjj 
Xij — — 

As Tij increases, the raters are more likely to agree for that pair of categories. 
For the ordinal agreement model (8.20), log τ,;· = (UJ — «,)2yß + 2<5. When ß > 0 
and S > 0, the agreement log odds are greater for categories farther apart. For 
instance, for Table 8.7, 8 = 0.859 and β = 0.194, so that ii2 = τ23 = 6.8, whereas 
f13 = 12.1. 

As often happens in practice, more than one model fits well for the movie 
reviewer data. It's not necessary to restrict attention to one model, as different 
models describe different aspects. For example, although the symmetry model and 
the quasi-independence model fit adequately, the ordinal agreement model is more 
useful for showing how the observations cluster around the main diagonal. 

8.5.5 Weighted Kappa: A Summary Measure of Agreement 

An alternative approach summarizes the agreement with a single index. For nom-
inal scales, the most popular measure of agreement is kappa (Cohen 1960). It 
compares the agreement to that expected if the ratings were independent. Kappa 
treats classifications as nominal. So it treats a disagreement for ordered categories 
that are close the same as a disagreement for categories that are far apart. 

When categories are ordered, the seriousness of a disagreement depends on the 
difference between the ratings. The measure weighted kappa (Spitzer et al. 1967) 
uses weights {WJJ} satisfying 0 < w,j < 1 with all ιυ„ = 1 and all u>,7 = Wji to 
describe closeness of agreement. Popular choices for weights are 

ί l - l i - j l l , ί 1 - (i - j? \ 
wU = -—r-\ and {«,<,= ( c _ i ) 2 j . 

For both of these, agreement is weaker and disagreement is stronger for cells farther 
from the main diagonal. The weighted agreement is defined to be Σί E j wijnij-
Weighted kappa compares this to its expected value under independence, using 

The denominator equals the numerator with the weighted agreement replaced by 
its maximum possible value of 1, corresponding to perfect agreement, Σί πα — 1· 
The ordinary kappa (unweighted) has ιυ,;· = 1 for i — j and w,y — 0 for i φ j . 

Weighted kappa equals 0 when the independence model holds, and it equals 1.0 
when perfect agreement holds. The stronger the weighted agreement, the higher the 
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value of KW, for given marginal distributions. With [wij = 1 — (i — j)2/(c — l)2}, 
Fleiss and Cohen (1973) showed that KW is an intraclass correlation for a two-way 
ANOVA treating the subjects rated and the raters as random samples of subjects 
and raters. The intraclass correlation is the ratio of the variability between subjects 
to the total variability between subjects and between raters. That is, like r-squared, 
it is a "proportion of variability explained" sort of measure. 

For sample cell proportions {/?,■_/}, let 

Öi. = ^WijP+j, W . j = J ] l 

denote weighted averages of the weights in row / and column j , and let P0 = 
Σί Pa ar,d Pe = Σ , Pi+P+i- The estimated asymptotic variance of the sample 
value icw is (Fleiss et al. 1969) 

(SE)2 = 
«(1 - Pe)4 

- (P0Pe - 2Pe + P0) 

Σ Σ PiAw'Al - pe) - («>«. + *j)(i - Po)f 
i J 

2 

For Table 8.7 for the movie reviewers, icw = 0.427 (SE = 0.0635) with {uijj = 
1 - |i - j\/(c - 1)} and icw = 0.458 (SE = 0.072) with {wtj = 1 - (/ - j)2/ 
(c — l)2}. The difference between the weighted agreement and that expected 
under independence is less than half of the maximum possible. The agreement 
between Siskel and Ebert was not especially strong. 

A disadvantage of kappa and weighted kappa is that their values depend strongly 
on the marginal distributions. The same diagnostic rating process can yield quite 
different values for κ or for KW, depending on the proportions of cases of the 
various types. Values of KW for different tables should be compared only if they 
use the same weights and have similar margins. Graham and Jackson (1993) noted 
that icw describes association more than agreement and can be large even when 
no observations fall on the main diagonal. See also Exercise 8.6. In summariz-
ing a contingency table by a single number, the reduction in information can be 
severe. It is helpful to construct models providing more detailed investigation of the 
agreement and disagreement structure rather than to depend solely on a summary 
index. 

8.5.6 Agreement Among Multiple Raters 

With several raters, ordinary loglinear models for the joint cross-classification for all 
the raters are not usually relevant. With such models, the description of agreement 
and association between two raters is conditional on the ratings by the other raters. 
It is usually more relevant to study agreement marginally, without conditioning on 
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the other ratings. Then, simultaneously modeling the pairwise agreement structure 
requires modeling all the two-way marginal tables of the joint table for all the 
raters (Becker and Agresti 1992). 

An alternative simple approach averages a pairwise measure of agreement over 
all the possible pairs of raters. Generalizations of kappa summarize pairwise agree-
ments or multiple agreements (Landis and Koch 1977a,b; O'Connell and Dobson 
1984). A related approach summarizes the concordance among the ratings, by using 
an adjustment of the Kendall coefficient of concordance to recognize ties and adjust 
for chance agreement (Fagot 1994). A more general approach models the value of 
a summary measure such as weighted kappa between pairs of raters as a function of 
explanatory variables, allowing that not all raters need observe all subjects (Gonin 
et al. 2000). 

Latent variable models are also useful. One approach uses an ordinal categorical 
latent variable, with linear-by-linear association between the latent variable and 
each observed ordinal variable (Agresti and Lang 1993b). The number of latent 
classes can be a parameter, or it can be fixed. Another approach assumes continuous 
underlying evaluations which transform to ordered category ratings according to 
category thresholds for the rating categories. Such models separately evaluate the 
association between raters and the differences in their category definitions. See 
Uebersax (1993), Uebersax and Grove (1993), Qu et al. (1995), and Williamson 
and Manatunga (1997). Finally, the intraclass correlation can be estimated for 
underlying assumed continuous responses.3 

8.6 MODELING ORDINAL PAIRED PREFERENCES 

Sometimes categorical outcomes result from pairwise evaluations. A common 
example is athletic competitions, when the outcome for a team or player facing 
another consists of categories (win, lose) or (win, tie, lose). Another example is 
pairwise evaluation of product brands, such as brands of wine of some type. When 
a wine critic rates r brands of chianti classico, it might be difficult to establish an 
outright ranking, especially if r is large. However, after tasting any given pair of 
brands (say, a and b) at the same occasion, the critic could likely compare a to b 
on a scale such as (much worse, slightly worse, about the same, slightly better, 
much better). An overall ranking of the brands of wine could then be estimated 
using all of the pairwise preference evaluations. In this section we present a model 
for doing this. Below we refer to the items being compared (such as different 
brands of wine) using the generic term treatments. 

8.6.1 Ordinal Extensions of the Bradley-Terry Model 

Bradley and Terry (1952) proposed a logistic model for pairwise evaluations with 
a binary outcome. Of the r treatments, let X\ab denote the probability that a is 

3See john-uebersax.com/stat/agree.htm for a survey of agreement analyses. 
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preferred to b. Suppose that Πα(, + Π&, = 1 for all pairs; that is, a tie cannot 
occur. The Bradley-Terry model is 

l l f c a 

with a constraint such as ßr = 0. For this model, nab = j when ßa — ßb and 
nofc > \ when ßa > ßb- The model reduces the set of r(r — l)/2 pairwise proba-
bilities {Tlab} to the r — 1 treatment parameters {/},}. 

The Bradley-Terry model extends to comparisons with an ordinal scale. With 
cumulative logits and a c-category evaluation scale, let Yab denote the response for 
a comparison of a with b. The model, which can be motivated by an underlying 
latent variable model with logistic distributions (Tutz 1986), is 

logit [P(Yab < j)] = a, + (ßb - ßa), (8.21) 

with a constraint such as ßr = 0. If there is no effect relating to the order in which 
subjects observe treatments, P(Yab < j) — P(Yba > c - j) = 1 - P(Yba <c — j). 
It follows that 

logit [P(Yab < j)] = -logit [P{Yba <c- j)], 

and necessarily a.j — —ac-y. The most common ordered preference scale is (win, 
tie, lose). Then a\ = —a^. 

If ßa> ßb, P(Yab < j) < P(Yba < j)· With an evaluation scale in comparing a 
and b such as (much worse, slightly worse, the same, slightly better, much better), 
this means that a is ranked more highly, in the sense that it is less likely that a is 
much worse than b than it is that a is much better than b. If ßa = ßb, a and b are 
equivalent in the sense that P(Yab — j) = P(Yab — c — j + 1) = P(Yba = j) for 
all j . 

This model can use an alternative link function, such as the probit. Another 
possibility applies the logit link to adjacent response probabilities (Agresti 1992a), 

log P{Yab ^L_ =ai + (ßb-ßa). (8.22) 

Again assuming no order effect, this logit is the same as \og[P{Yba = c — j + 
\)/P{Yba = c — j)], so that <Xj = —ac-j. The model satisfies 

P(.Yab = j) 
p " = exp[(c + 1 - 2j)(ßb - ßa)]. 
P(Yba = j) 

When c — 5, for example, suppose that λ = P(Yab = 4)/P(Yba = 4 ) = 
exp[2(/öa — ßb)] is the odds that a is considered slightly better than b instead of 
slightly worse. Then λ2 = P(Yab — 5)/P(Yba = 5) is the odds that a is much 
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better than b instead of much worse. The interpretation refers directly to an odds 
for a given outcome rather than an odds for two groupings of outcomes as occurs 
with cumulative logit models. This is more natural for many applications. The 
two forms of model share the property that Yab is stochastically higher than Yba 

when ßa>ßb-
Model (8.22) treats each pair of adjacent responses identically in terms of the 

effect comparing a and b. More generally, we could permit a positive distance 
dj between categories j and j + 1, where dj = dc-j, for j = 1 , . . . , c — 1. A 
relatively small distance diminishes influences of treatment effects. This leads to a 
generalization of model (8.22) satisfying 

P
p
{Jv

ab Z Jl = exp[(vc_7+l - Vj)(ßb - ßa)], (8.23) 

where {VJ} are monotone scores satisfying {VJ+I — vj = dj}. 

8.6.2 Paired Preference Model Fitting and Inference 

For a sample with pairwise evaluations of r treatments, let ri(ab)j denote the num-
ber of times that outcome j occurs in comparing treatment a with treatment b, 
for each a < b and j = 1 , . . . , c. Let {ß(ab)j} denote expected frequences for the 
r(r — l)/2 x c contingency table in which each row displays comparisons for a 
particular pair of treatments. To fit a paired preference model, the simplest approach 
treats each set {ri(ab)\, n^ab)2, ■ ■■, n^ab)C) with a < b as an independent multinomial 
sample. The model can then be fitted with standard software, setting up the model 
matrix with the constraint aj — —ac-j (see the Appendix for an example). 

We can test goodness of fit by comparing observed counts {n(av)j\ with fitted 
values {p.(ab)j} for the model. The usual X2 and G2 fit statistics have asymptotic 
chi-squared distributions with df = Q ( c — 1) — [(r — 1) + (c — l)/2] when c is 
odd and df = Q ( c — 1) — [(r — 1) + (c — 2)/2 when c is even. We can test the 
hypothesis of equivalent treatments by the change in the deviance between the null 
model with ßt = ■ ■ ■ = ßr and the full model, using the chi-squared distribution 
withdf = r- 1. 

We elaborate further now on aspects of model fitting for the adjacent-categories 
logit model. In its general form (8.23), the model has the same fit as the loglinear 
model 

log ß(ab)j = λ + kfab) +kYj + Vj{ßa - ßb), 

where for all j , λγ. = XY
C_ .+1. This loglinear model is a special case of the row 

effects model (6.5) presented in Section 6.3.1. Let 

Hab)+ = X)«(afr)j> «(+)./ =^222n<.ab)j, 
j a<b 

n(g)j - 2 - , n(ga)j + Zln(.ag)c-j + l, "(£)+ = 2_,n(g)j-
a>g a<g j 
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Then ri(g)j is the number of occurrences of outcome j in comparing treatment g 
with all other treatments. Suppose that we treat the η^)+ comparisons of treatments 
a and b as independent multinomial trials and suppose that comparisons of different 
pairs of treatments are independent. Then cell counts in different rows of {n(ab)j} are 
independent multinomial samples, and the likelihood equations for model (8.23) are 

ß(ab)+ = n(ab)+ for all a < b, 

A(+)7 + ß(+)c-j+\ = "(+)y + ni+)c-j+l, j — 1, . . . , C, 

Σ vjfag)j = Σ vJn(g)J. g = l,...,r. 
j j 

For the scores {vj}, the mean response when treatment g is compared with other 
treatments is the same for the observed and fitted data. For this model, the ML 
estimates {ßg} have the same order as these sample means. 

The last set of likelihood equations results from differentiating the log likelihood 
with respect to {ßg}. Let 

Μι = Σν1ηΙ*ν> g=\,...,r. 
j 

For the hypothesis of no treatment effects, HQ: ß\ = · ■ ■ = ßr, let π\,..., nc with 
Try = 7tc-j+\ denote the response distribution for each pair of treatments. Without 
loss of generality, we let [vj] satisfy vj = —uc_/+i. Then, under HQ, E(Mg) — 0, 
Var(Mg) = it(g)+YljVJnj, and Cov(Ma, Mb) - -ΐ(α*)+Σ)7· υ?7Γ7·. When each 
pair of treatments has the same number of observations, the correlation for each 
(Ma, Mb) pair is — \/{r — 1), and the score statistic for testing HQ has the simple 
form 

5_(r-l)EgM
2
g 

Its asymptotic null distribution is chi-squared with df = r — 1. 

8.6.3 Example: Comparing Tastes of Soft Drinks 

In 1985 the Coca-Cola Company introduced a sweeter formulation designed to 
replace its flagship soft drink, Coca-Cola (Coke). We refer to this newly formulated 
drink here as "New Coke" and the flagship drink as "Classic Coke." Table 8.8, 
from Agresti (1992a), refers to a soft-drink tasting experiment in which each of 61 
subjects made three pairwise evaluations of A = New Coke, B = Classic Coke, 
and C = Pepsi. For comparing drink a with drink b, the experiment used the rating 
scale (much worse, slightly worse, about the same, slightly better, much better). In 
Table 8.8, the response sequence (1, 2, 5) for (BA, CA, CB), for instance, means 
that the subject rated Classic Coke much worse than New Coke, Pepsi worse than 
New Coke, and Pepsi much better than Classic Coke. 
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TABLE 8.8. Data for Soft-Drink Tasting Experiment" 
BA CA 
1 1 
1 1 
1 2 
1 2 
1 2 
1 2 
1 2 
1 2 
1 4 
1 4 
1 4 
1 5 
1 5 

CB 
2 
4 
2 
3 
3 
3 
3 
5 
4 
5 
5 
4 
5 

BA 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

CA 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
3 
3 

CB 
1 
5 
5 
5 
1 
3 
3 
4 
5 
5 
2 
2 

BA 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 

CA 
3 
3 
3 
4 
4 
4 
4 
1 
2 
2 
2 
3 

CB 
3 
4 
4 
3 
4 
4 
5 
2 
1 
3 
3 
3 

BA 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 

CA 
3 
4 
4 
4 
5 
5 
1 
1 
1 
2 
2 
3 

CB 
4 
1 
2 
4 
2 
4 
1 
4 
4 
2 
5 
2 

BA 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 

CA 
3 
3 
3 
3 
4 
4 
4 
5 
1 
2 
5 
5 

CB 
3 
4 
4 
5 
2 
2 
4 
2 
3 
1 
1 
3 

Source: Agresti (1992a). 
"A, New Coke; B, Classic Coke; C, Pepsi. 

TABLE 8.9. One-Way Margins for Soft-Drink Tasting Evaluations from Table 8.8 

Preference Scale 
Pair (a,b) a Much Worse a Worse No Preference a Better a Much Better 

Classic Coke, New 12 19 11 14 5 
Coke 

Pepsi, New Coke 11 18 12 13 7 
Pepsi, Classic 7 12 14 16 12 

Coke 

The joint ratings for the 61 subjects produce counts in a sparse contingency 
table having 53 = 125 cells. Table 8.9 shows the one-way margins to which the 
model applies. For model fitting, we first treat each pairwise evaluation by a subject 
as independent of all others by the same subject or by other subjects. With this 
approach, we fit the model to Table 8.9 by treating the counts in that table as three 
independent multinomial samples. 

We fitted the adjacent-categories logit model (8.22) by using software (see Table 
A.6 in the Appendix) to fit the equivalent baseline-category logit model 

l0g P{Yab = j)
 =a* + (j _ c)(ßa _ βΛ 

B P(Yab = c) J J H J 

where a j relates to <xj in (8.22) by 

a* = ctj + aj+\ -I h ac_i. 
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Because a7 = — ac-j for model (8.22), with c ■■ 
a\ =a\. Hence, the model can be expressed as 

L = X0, 

where L is the 12 x 1 vector of baseline-category logits 

P(Yi2 = 1) , P{Yn = 2) , P(Yi2 = 3) , log , log , 
/>(y12 = 5) ' B/>(y12 = 5) ' &P(Y12 = 5)' 

5 it follows that a* = 0 and 

' = (log . . , log P(Yl3 

P(Yl3 

^4)V 
= 5))-

ß = (α^, a?, ß\, ßi)' (setting β^ = 0), and the model matrix 

X = 

(0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

V i 

0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 

- 4 
- 3 
- 2 
- 1 
- 4 
- 3 
- 2 
- 1 

0 
0 
0 
0 

4 \ 
3 
2 
1 
0 
0 
0 
0 

- 4 
- 3 
- 2 

- i ) 

The model fits well, with deviance = 1.3 (df = 8). The likelihood-ratio statistic 
for testing HQ\ ßx = ß2— ßi is 6.68 and the score statistic is 5 = 6.86 (df = 3, 
P-values = 0.08). Table 8.10 shows results of ML fitting.4 This analysis ranks the 
drinks in the order (New Coke, Pepsi, Classic Coke) from most preferred to least 
preferred. However, the evidence of a difference is notable only between New Coke 
and Classic Coke. (A public uproar followed the announcement about the possible 

TABLE 8.10. Comparisons from Fitting Adjacent-Categories Logit Model to 
Table 8.8, with SE Values in Parentheses and Results of Test of Homogeneity, Wo: 
βι = ßi = βί 

Pair of Soft Drinks Parameters Independent ML Dependent ML 

New Coke, Classic Coke 
New Coke, Pepsi 
Classic Coke, Pepsi 
Test of homogeneity 

ßi 
ßi 
ßl 

-ß2 
-ßi 

-ft 

0.217 (0.084) 
0.103 (0.082) 

-0.113 (0.082) 
6.68 

0.234 (0.094) 
0.111 (0.079) 

-0.123 (0.090) 
6.39 

4The results shown in Agresti (1992a) are incorrect, referring to a subset of the data originally obtained 
for only 53 of the subjects. 
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replacement of Classic Coke by New Coke, and the company soon returned to the 
classic formulation and eventually discontinued selling New Coke.) 

8.6.4 Model Fitting Allowing Dependent Ratings 

In some applications it is more sensible to treat different evaluations by the same 
subject (rater) as correlated rather than independent. When the separate evaluations 
by each subject are available, as in Table 8.8, we can investigate this dependence 
by fitting the models in a different manner. Let T = Q be the number of pairs of 
treatments. When all n subjects evaluate each pair of treatments with a c-category 
scale, the frequencies of the joint ratings can be displayed in a cT contingency table. 
The models presented in this section apply to the one-dimensional margins of that 
table. When there is within-subject dependence of evaluations but we treat the 
one-way margins as independent samples, the ML estimates of model parameters 
are still consistent (assuming that the model holds), but the standard errors are 
inappropriate. 

One approach to fitting the model while allowing dependence treats the 
cell counts in the cT table as having a multinomial distribution and max-
imizes that multinomial likelihood subject to the constraint that the model 
holds for the marginal probabilities. This approach can use methodology 
developed by Lang and Agresti (1994), as discussed in Agresti (1992a) and 
available with the R function mph.fit discussed in the Appendix, as shown 
at www.stat.ufl.edu/~aa/ordinal/ord.html. When the joint evaluations table of 
size cT is huge, a simpler approach uses the GEE methodology presented in 
Chapter 9, treating the T evaluations by a subject as a cluster of correlated 
observations. 

For the soft-drink tasting data, Table 8.10 also shows results of ML fitting of 
the adjacent-categories logit model (8.22) by treating the samples as dependent. 
The estimated differences ßa — ßt, and their SE values are similar as in treating 
the three taste evaluations by each subject as independent observations. The model 
also fits well for this sampling model, with deviance = 2.49 (df = 8). 

CHAPTER NOTES 

Section 8.2: Models Comparing Matched Marginal Distributions 

8.1. The marginal cumulative logit model (8.2) of proportional odds form, the 
corresponding subject-specific model (8.3), the ordinal quasi-symmetry model (8.7), 
and the conditional symmetry model (8.9) all imply stochastically ordered marginal 
distributions. Assuming merely a stochastic ordering of the marginal probabilities 
without a particular model form, Robertson et al. (1988, p. 290) discussed pro-
jections that provide ML fitted values. El Barmi and Dykstra (1995) tested for 
this stochastic ordering against the unrestricted alternative. Gao and Kuriki (2006) 
and Klingenberg et al. (2009) tested marginal homogeneity against stochastically 
ordered margins. Agresti and Coull (1998) described ways of testing marginal 
homogeneity against various order-restricted alternatives. 
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Section 8.3: Models for the Joint Distribution in a Square Table 

8.2. Kateri and Agresti (2007) showed that given the marginal means, the ordi-
nal quasi-symmetry model is the closest model to the symmetry model in terms 
of the Kullback-Leibler distance. Becker (1990b) and Agresti and Lang (1993b) 
presented other quasi-symmetric models. Hout et al. (1987) applied diagonals-
parameter symmetry models. McCullagh (1978) and Goodman (1979b) also dis-
cussed the conditional symmetry model. Goodman (1985) used association models 
for the joint distribution in square tables. Sobel (1988) extended these models to 
stratified square tables and to c x c x c tables. Plackett and Paul (1978) proposed 
Dirichlet latent structure models such that, conditionally on the category proba-
bilities, the responses are independent, but unconditionally, when averaged with 
respect to the Dirichlet a positive trend occurs along the main diagonal. They 
incorporated ordinality by using a generalized Dirichlet mixture. 

8.3. Specialized models apply to triangular tables that have observations only 
above or only below the main diagonal. Goodman (1968), Bishop and Fienberg 
(1969), and Altham (1975) showed how to fit a quasi-independence model. Sarkar 
(1989) and Tsai and Sen (1995) proposed tests of quasi-independence for such 
tables, using ordinal alternatives such as local log odds ratios that are uniformly 
of one sign. Goodman (1972) defined a generalized triangular model that satisfies 
quasi-independence above the main diagonal and a separate quasi-independence 
below the main diagonal. 

Section 8.4: Comparing Marginal Distributions for Matched Sets 

8.4. The ordinal quasi-symmetry models (8.15) and (8.18) were proposed by 
Agresti (1993a), with the logistic linear trend version (8.7) for matched pairs in 
Agresti (1983c). Agresti (1993b) and Agresti and Lang (1993a) considered analo-
gous models with cumulative logits. Klotz (1980) extended the Cochran Q statistic 
for comparing several matched proportions to the case of ordered response cate-
gories with some missing observations. His test generalizes the Friedman test to 
accommodate tied observations and missingness. 

Section 8.5: Analyzing Rater Agreement on an Ordinal Scale 

8.5. The following surveyed measuring and modeling agreement with ordinal 
data: Banerjee et al. (1999) presented summary measures, Roberts and McNamee 
(2005) focused on kappa-type measures, Schuster and von Eye (2001) focused 
on models, and von Eye and Mun (2005) presented a chapter on the loglinear 
modeling approach. Broemeling (2009) presented Bayesian approaches. Perkins and 
Becker (2002) simultaneously modeled univariate marginal responses and bivariate 
marginal associations to evaluate agreement both in terms of the overall frequency 
of responses and the category-specific agreement among pairs of raters. Ordinal 
association models have been used to summarize agreement (Becker and Agresti 
1992; Valet et al. 2007) and to study social and occupational mobility (Duncan 
1979; Goodman 1979c; DiPrete 1990; Xie 1992, Lang and Eliason 1997, Sobel et al. 
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1998). For Bayesian approaches, see Johnson (1996), Mwalili et al. (2004), and 
Kottas et al. (2005). 

Section 8.6: Modeling Ordinal Paired Preferences 

8.6. Böckenholt and Dillon (1997) presented an alternative way to handle depen-
dence with ordinal paired preference evaluations. They proposed a latent class 
extension of adjacent-categories logit and cumulative probit models that accounts 
for preference differences among the raters. Dittrich et al. (2004) noted that pref-
erence decisions typically depend on characteristics of the raters and the subjects 
being rated. They extended adjacent-categories logit paired preference models in 
loglinear form by incorporating categorical rater- and subject-specific information. 
Dittrich et al. (2007) extended this, also incorporating dependencies and applying 
the paired preference structure to make comparisons of a set of Likert responses 
on a common scale. Fahrmeir and Tutz (1994) modeled paired comparisons over 
time, allowing effects to change with time. 

EXERCISES 

8.1. Suppose that (1Ί, K2) has bivariate normal probability density function 
/ (y i , y2), with E(Y{) = μ, Ε(Υ2) = μ + Α, Var(y,) = Var(y2) - σ2, 
and Corr(r,, Y2) = p. Show that f(yu y2)//(y2, yi) has form 8y''y2 for 
some constant S. Thus, under the assumption of an underlying bivariate 
normal distribution, explain why the ordinal quasi-symmetry model (8.7) 
may be appropriate for a square ordinal table. 

8.2. For matched pairs, consider the special case (8.18) of the loglinear ordinal 
quasi-symmetry model (8.15), namely 

log ßij = λ + ki + Xj + ß\u, + ß2Uj + pi+j. 

For equally spaced scores, explain why this model has the form 

ßij = otiOijSi-j8*+j, 

which is in a class of models proposed by Goodman (1985). 

8.3. Consider the conditional symmetry (CS) model (8.9). 

(a) Show that this model has the loglinear representation 

logMiy = Xmjn(;j),max(i,7·) + ßl{i < j), 

where /(·) is an indicator (see also Bishop et al. 1975, pp. 285-286). 
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(b) Show that conditional symmetry + marginal homogeneity = sym-
metry. Explain why G2(S | CS) = G2(S) - G2(CS) tests marginal 
homogeneity (df = 1). When the model holds, G2(S | CS) is more 
powerful asymptotically than G2(S | QS). Why? 

8.4. Formulate a marginal model using adjacent-categories logits or continua-
tion-ratio logits that is analogous to cumulative logit model (8.11). Inter-
pret parameters. 

8.5. Table 8.11, from a general social survey, was analyzed with the OQS 
model by Agresti (1995). Subjects gave their opinions regarding govern-
ment spending on (1) the environment, (2) health, (3) assistance to big 
cities, and (4) law enforcement. Analyze the data using an alternative 
model such as a marginal cumulative logit or adjacent-categories logit 
model. 

TABLE 8.11. Opinions About Government Spending0 

Cities: 1 2 3 
Law Enforcement: ' 2 3 1 2 3 1 2 
Environment Health 

62 
11 
2 
11 
1 
1 
3 
1 
1 

17 
7 
3 
3 
4 
0 
0 
0 
0 

5 
0 
1 
0 
0 
1 
0 
0 
0 

90 
22 
2 
21 
6 
2 
2 
2 
0 

42 
18 
0 
13 
9 
1 
1 
1 
0 

3 
1 
1 
2 
0 
1 
0 
0 
0 

74 
19 
1 
20 
6 
4 
9 
4 
1 

31 
14 
3 
8 
5 
3 
2 
2 
2 

11 
3 
1 
3 
2 
1 
1 
0 
3 

Source: General Social Survey. 
"1, too little; 2, about right; 3, too much. 

8.6. For weighted kappa with {ιυ,7 — 1 — (i — j)2/(c — l)2}, show that two 
tables that have the same marginal distributions have the same values 
of KW whenever they have the same correlations, with row and column 
numbers as the scores (Graham and Jackson 1993). 
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Clustered Ordinal Responses: 
Marginal Models 

Many studies observe a response variable for clusters of subjects. The matched-
pairs type of observation analyzed in Chapter 8 is the simplest type of clustered 
data, with each pair forming a cluster. In practice, there may be more than two 
observations in a cluster and there are usually also explanatory variables. 

Longitudinal studies are a common source of clustered data, with the repeated 
observations on a subject at different times forming a cluster. For example, a 
physician might evaluate patients who are using a placebo or a new drug treatment 
for a curable condition at weekly intervals using the scale (cured, improved, no 
change, worse). The set of responses for a particular subject forms a cluster. In 
this chapter we present examples with repeated observations of an ordinal response 
from longitudinal clinical trials to analyze progress over time in Section 9.2.3 for 
treating arthritis and in Section 9.3.3 for treating insomnia. Repeated responses on 
a subject need not refer to different times, however. A dental study might make a 
visual observation of the extent of plaque (none, mild, moderate, severe) for each 
tooth in a subject's mouth. Analyses should take the clustering into account, as 
two teeth in the same person's mouth are likely to be more similar than two teeth 
from different mouths. 

In some applications groupings of like subjects form clusters. For example, 
a study of factors that affect children's weight, measured with the ordinal scale 
(normal, overweight, obese), might sample families and treat children from the 
same family as a cluster. Again, observations within a cluster tend to be more 
similar than observations from different clusters. Inferential analyses that ignore 
the clustering may be badly biased. 

In most studies with clustered data, besides comparing the marginal distributions 
as we did in Chapter 8, it is also of interest to analyze effects of explanatory vari-
ables on the marginal responses. For instance, a longitudinal study might analyze 
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whether responses tend to improve over time and whether different age or socioe-
conomic subgroups have different trends. In Chapters 10 and 11 we show how to 
incorporate the effects of explanatory variables. The main focus of this chapter is 
on marginal modeling, emphasizing the generalized estimating equations (GEE) 
approach for parameter estimation, which is computationally simpler than ML. We 
also consider a transitional approach for longitudinal studies that models obser-
vations at a given time by including previous outcomes among the explanatory 
variables. Then in Chapter 10 we present an alternative approach using cluster-level 
random effect terms in the model. Such models have conditional, cluster-specific 
interpretations that apply at the cluster level. This contrasts with marginal mod-
els, which have population-averaged interpretations, a distinction introduced in 
Section 8.2.3. 

As in Section 8.4, we let T denote the number of observations in a cluster. The 
clusters may have different sizes. Sometimes this happens because of the nature 
of the cluster, such as when each cluster is a family. Even when a study designs 
the clusters to have the same size, in practice the observed data often have clusters 
of different sizes because data are missing for some observations in some clusters. 
For simplicity of notation in this chapter, however, we express the cluster size for 
cluster i as T rather than 7}. 

9.1 MARGINAL ORDINAL MODELING WITH EXPLANATORY 
VARIABLES 

At observation Y, in Y\, Y2,..., Yj on a c-category scale, we can model the 
marginal response distribution using c — 1 cumulative logits or probits or some 
other type of ordinal link function. For a particular link function, a model for Y, 
has the form 

link,·, =aj+ß'jX,, j = l,...,c-l, t=\,...,T, 

such as with link,·, = logit [P{Yt < j)] or log[P(Y, = j)/P(Y, =j + 1)]. When 
we replace ß j by ß, the model takes the proportional odds form with the same 
effects for each logit. With cumulative logit link, this is the marginal model of the 
form 

logit [P(Y, < j)] = UJ + ß'x, =aj+ ß\xXt + ß2x2, + ■■■ + ßkXkt- (9.1) 

Some parameters in ß may refer to the variable subscripted by t (e.g., time) that 
indexes the clustered observations. One can then compare marginal distributions at 
particular settings of x or evaluate effects of x on the response. The linear predictor 
can also contain interaction terms: for example, to analyze whether the effects of 
x are the same at each t. 
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9.1.1 Within-Cluster and Between-Cluster Standard Errors 

Ignoring the clustered nature of the data and, instead, treating the observations 
as independent results in invalid standard errors for the model parameter esti-
mates. Whether a standard error is too large or too small typically depends on 
whether the parameter refers to a within-cluster effect or a between-cluster effect. 
For within-cluster effects, the same clusters occur in each of the groups compared. 
For between-cluster effects, the groups to be compared have distinct clusters. For 
example, consider the ordinal response Y = relief of headache (none, some, com-
plete) measured in a crossover study for two drugs and for female and male subjects. 
Each subject forms a cluster that is evaluated for both drugs. A comparison of the 
two drugs on Y is a within-subject comparison, because in a crossover study each 
subject takes both drugs. A comparison of females and males on Y is a between-
subject comparison, because female subjects are distinct from male subjects. 

A within-cluster correlation is usually positive. For example, subjects who 
respond relatively well under one condition usually tend to respond relatively well 
in another. With positive within-cluster correlation, the true standard errors for 
within-cluster effects tend to be smaller than if the same effects occurred with the 
same number of independent observations. As in other settings, such as comparing 
two means with matched-pairs data, blocking the data into relatively homogeneous 
clusters results in improved precision of within-cluster effects. 

By contrast, standard errors for between-cluster effects tend to be larger than if 
the same effects occurred with the same number of independent observations. Since 
T observations from within a cluster tend to be more alike than T observations 
from different clusters, those observations provide less information about a group 
than is provided by T independent observations. In Section 9.2.3 we show an 
example of SE bias in ignoring the clustering of data. 

9.1.2 ML Fitting of Marginal Ordinal Models 

As explained in Section 8.2.1, ML fitting of marginal models for categorical 
responses is not simple, because the models refer to marginal probabilities, whereas 
the likelihood function specifies the joint distribution of the clustered responses. So 
it is not usually possible to express the likelihood function in terms of the model 
parameters of interest. ML fitting becomes even more difficult when there are also 
explanatory variables. 

At each combination of values of explanatory variables, we assume a multino-
mial distribution with cT cell probabilities π to describe the distribution of the T 
observations on the c-category response. Marginal models that use ordinal logits 
for the margins can be expressed as special cases of the generalized loglinear model 
introduced in (6.18): namely, 

C\ogKn=Xß. 

The matrix A is a marginalization matrix that, when multiplied by π, forms the 
marginal probabilities to be modeled. Each row of A contains 1 and 0 elements in 
the appropriate positions to form the relevant marginal probabilities. For marginal 
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cumulative logit models, for example, this forms marginal cumulative probabili-
ties and their complements. The matrix C is a contrast matrix that constructs the 
relevant logits. Each row of C has a 1 in one position, a — 1 in one position, and 
0 elsewhere, to form the appropriate contrast of logs of the marginal probabilities 
or their sums. This generalized loglinear model maps the cT cell probabilities to a 
much smaller number of marginal logits, and it is not invertible. That is, we cannot 
express the multinomial probabilities π in terms of the marginal model param-
eters ß, so standard methods are not available for maximizing that multinomial 
likelihood function. 

Molenberghs and Lesaffre (1999) and Agresti (2002, pp. 464-466) surveyed 
methods for ML fitting of marginal models. One approach views the model as a con-
straint equation and uses methods for maximizing a likelihood function subject to 
constraints. The method introduces Lagrange multipliers corresponding to the con-
straints and solves the Lagrangian likelihood equations using a Newton-Raphson 
algorithm (Lang and Agresti 1994, Lang 1996, 2004, 2005). Another approach uses 
a one-to-one correspondence between joint cell probabilities and parameters that 
describe the marginal distributions, the bivariate distributions, the trivariate distri-
butions, and so on (Molenberghs and Lesaffre 1994). Multivariate logistic models 
apply then to the component distributions, although some higher-order effects may 
be assumed to vanish, for simplicity. 

Compared to the continuous-response case using the multivariate normal, the 
number of parameters can be extremely large. For example, with T means and a 
common variance and correlation, the multivariate normal has only T + 2 parame-
ters (ignoring, for now, the parameters for modeling the explanatory variables). By 
contrast, in the categorical case, there are cT — 1 parameters for the multinomial 
at each setting of the explanatory variables, unless the joint distribution is itself 
modeled in addition to the marginal distribution. ML fitting is not practical when T 
is large or when there are many predictors, especially when some are continuous. 
It is even more difficult to implement ML when the number of observations is 
not the same in each cluster. Currently, ML is available only in certain cases with 
specialized software, such as the R function mph.fit described in the Appendix. 

One way in which it is more feasible to conduct ML fitting of marginal mod-
els is to specify a latent variable model such that the likelihood function can 
be expressed directly in terms of model parameters. For example, Kim (1995) 
developed such models for applications in opthalmology with bivariate ordinal 
categorical responses. His bivariate probit model assumed an underlying bivariate 
normal distribution for the two ordinal responses and specified an ordinary linear 
model for each latent normal response in terms of the explanatory variables. 

Williamson and Kim (1996) proposed similar models without assuming normal-
ity for the latent variables, instead describing association by global odds ratios. 
They argued that such an approach could be more flexible, as the joint distribution 
need not be normal and various models can apply to the marginal probabilities, 
including cumulative logit and probit models. For the models they presented, it 
is possible to express the likelihood function in terms of the model parameters of 
interest, so ML fitting is not as difficult. 
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9.1.3 Example: Eye Disease Risk Factors 

Williamson and Kim (1996) analyzed data from a Wisconsin epidemiological study 
in which insulin-taking young diabetics were examined to assess the prevalence 
and severity of diabetic retinopathy, which is a type of noninflammatory damage to 
the retina of the eye. Table 9.1 shows the data for the right and left eyes, stratified 
by the gender of the person, with the four ordered categories used to summarize 
retinopathy severity. Several explanatory variables were measured in the study. 
Some of them, such as gender and diastolic blood pressure, were characteristics of 
the person. Others, such as a binary variable indicating whether an eye has macular 
edema, were characteristics of the right or left eye and were observed for each eye. 
Each person forms a cluster, with an observation on the response variable for each 
eye. The complete data set is available at www.stat.ufl.edu/~aa/ordinal/ord.html. 

Let Yi and YR denote the retinopathy responses for the left and right eyes. 
Let Xp denote person-specific explanatory variables, and let x/. and XR denote 
characteristics of the left and right eyes. For eye characteristics for which there is 
no reason to expect a difference between right and left eyes, we could consider a 
marginal model such as the cumulative logit model of proportional odds form, 

logit [P(YL < ; ) ] = aj + ß\xP+ ß'2xL, logit [P(YR < j)]=aj+ß\xP+ß'2xR. 

Because the eye-specific effects ß2 are assumed to be the same for each eye, at 
each setting of the explanatory variables the model implies marginal homogeneity 
between the right and left eye margins. 

Although the primary focus is on the effects of the explanatory variables on Yi 
and YR, we can also model the association between Yt and YR and describe how it 
depends on explanatory variables x. Those explanatory variables may be a subset 
of those in x/>, XL, and x«. Let θ£(χ) denote the global odds ratio at setting x 
of the explanatory variables for the binary collapsing of (YL, YR) following row h 

TABLE 9.1. Severity of Diabetic Retinopathy, by Eye and Gender 

Retinopathy Severity 
Left Eye 

None Mild Moderate Treatment 

Females 

Males 

Right Eye 

None 
Mild 
Moderate 
Proliferative 
None 
Mild 
Moderate 
Proliferative 

109 
16 
0 
0 

128 
15 
0 
0 

22 
108 
20 
1 
15 
92 
19 
0 

1 
21 
30 
7 
0 
14 
50 
4 

Proliferative 

0 
3 
4 

15 
0 
1 
5 

20 

Source: Williamson and Kim (1996). 
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and column j . A model that assumes a uniform global odds ratio at each setting 
of the explanatory variables has the form 

log0 jg (x )=a+0 'x , 

in which the linear predictor does not depend on hot j . More generally, in allowing 
the global odds ratio to depend on these cutpoints for the collapsing, we could 
model the global odds ratios as being the same for cutpoints (h, j) in (YL, YR) as 
for cutpoints (j, h). 

Some of the explanatory variables in this study are continuous, so a contingency-
table representation of the data has a separate 4x4 table for each person, with a 1 
in one cell and 0 in each other cell. The likelihood function is the product of these 
multinomial mass functions, each with a single observation. Each particular cell 
probability 7r/y(x,·) for the 4x4 table for person i relates to the joint distribution 
function Fhj = P(YL < h,YR < j) by 

nhj(Xi) = Fhj(Xi) - Fh-ij(Xi) - Fhj-i(Xj) + ^A-i.y-iCx/). 

The joint distribution function can itself be expressed in terms of the global odds 
ratios and the marginal distribution functions using equation (2.8). Then, substitut-
ing in that expression the global odds ratio model for the global odds ratios and the 
cumulative logit models for the marginal distribution functions yields the product 
multinomial likelihood function in terms of the parameters ({otj}, β{, β2) for the 
marginal model and the parameters (or, β) for the association model. Williamson 
and Kim employed a quasi-Newton algorithm to maximize that function and obtain 
the ML estimates and their SE values. 

Their model selection resulted in a model with estimates summarized in 
Table 9.2. The only explanatory variable needed for the global odds ratio 
association model was the person's gender. The estimated uniform global odds 
ratio for the nine possible collapsings of the 4x4 table for each person was 
e361 = 37 for males and e

3 · 6 ' - 0 · 8 1 — 16 for females. The parameter estimates for 
the marginal model suggest that longer duration of diabetes, higher glycosylated 
hemoglobin level, higher diastolic blood pressure, presence of proteinuria, 
presence of macular edema, and male gender are jointly associated with worse 
retinopathy. The estimates have the usual interpretation for cumulative logit 
models. For example, given the other explanatory variables, the estimated odds 
that the retinopathy severity is less than any particular fixed level for females 
equals e032 = 1.38 times the corresponding estimated odds for males. 

Williamson and Kim (1996) noted the challenge of checking the adequacy of 
the model, since it contains many continuous explanatory variables. One standard 
method that is available with ML model fitting is likelihood-ratio tests comparing 
the model to more general models with additional predictors such as interaction 
terms. 
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TABLE 9.2. ML Estimates from Fitting Model for Eye Data Using 
Cumulative Logits for Margins and Global Odds Ratio for Association 

Effect 

Model for margin 
Duration of diabetes (years) 
Glycosylated hemoglobin level 
Diastolic blood pressure 
Gender (1 = female, 0 = male) 
Proteinuria (1 = present, 0 = absent) 
Macular edema (1 = present, 0 = 

Model for association 
Intercept 
Gender (1 = female, 0 = male) 

= absent) 

Estimate 

-0.124 
-0.093 
-0.041 

0.320 
-0.869 
-1.33 

3.61 
-0.814 

SE 

0.008 
0.026 
0.007 
0.140 
0.208 
0.229 

0.180 
0.353 

Source: Williamson and Kim (1996). 

9.2 MARGINAL ORDINAL MODELING: GEE METHODS 

For marginal models, ML fitting is computationally awkward and difficult for many 
data sets. An alternative to ML fitting uses a multivariate generalization of quasi-
likelihood. For a univariate response, rather than assuming a particular probability 
distribution for Y, the quasi-likelihood method specifies only a linear model for 
a link function applied to μ — E(Y) and a formula ν(μ) for how the variance 
of Y depends on the mean. The multivariate generalization does this for each 
Yt for the marginal model and uses a guess for the correlation structure among 
(Y\, Yi,..., YT) without assuming a particular joint probability distribution. 

9.2.1 Generalized Estimating Equation Methodology: Basic Ideas 

For a multivariate response Y\, Yi,..., YT, we first describe briefly the basic ideas 
of the quasi-likelihood method for marginal models in the case that each Yt is one-
dimensional, such as a binomial or Poisson variate. Then we describe the extension 
to an ordinal multinomial response. 

For the marginal model for Y,, the nature of Y, usually suggests a particular 
variance function v. For example, when Y, is a binary variable for a marginal 
logistic regression model, then v(/At) = μ,(1 — μ,). Various structures are possible 
for the working correlation matrix for the responses Yn, YJ2, ■. ■, Yn in cluster 
i. A popular one is an exchangeable structure, which assumes a common value 
for Corr(Yis, Yit) for each pair (s, t) of observations in the cluster. That common 
correlation value is estimated from the data. In choosing a correlation structure, we 
attempt to capture the main component of the dependence in whatever joint distri-
bution actually exists. Unlike in the multivariate normal case, specifying marginal 
means and variances and the correlation structure does not fully determine the 
multivariate distribution for the joint distribution of Y\, Yi,..., YT-
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The estimates of model parameters with this approach are solutions of equations 
that, in the way they incorporate the mean and variance structure, resemble like-
lihood equations. The equations are called generalized estimating equations, and 
the method is referred to as the GEE method. The equations are not likelihood 
equations, however, because the method does not specify a full multivariate distri-
bution for Y\, Y2,.. ., YT, SO the method does not have a likelihood function. 

When the marginal models hold, the GEE estimates of model parameters are 
valid even if the working correlation structure is misspecified. The validity of the 
GEE estimates holds even under the simplistic working correlation structure by 
which the observations are pairwise uncorrelated, that is, Corr(YiS, Yjt) = 0 for 
each (s, i), referred to as independence working correlations. The estimates then 
equal those obtained using ML and treating different observations within a cluster 
as if they are independent observations, hence the same as different observations 
from different clusters. For binary data and count data, estimators based on this 
naive working correlation structure can have surprisingly good efficiency when the 
actual correlation is not very strong. 

Although the model parameter estimates are valid, standard errors based solely 
on the assumed marginal and joint structure may not be, especially if the actual 
correlation structure is quite different from the working guess. For example, stan-
dard errors based on independence working correlations are badly biased if the 
responses are actually strongly associated. More appropriate standard errors result 
from an adjustment the GEE method makes using the empirical dependence exhib-
ited by the data. The standard errors based on the working correlation structure 
are updated using this empirical dependence to provide more appropriate robust 
standard errors. These use a sandwich covariance matrix that is based on a prod-
uct of three matrices, the ends of which are the covariance matrix if the working 
correlation structure were truly correct and the middle of which uses the empirical 
evidence. Unless the number of clusters is quite large, however, these empirically 
based standard errors can themselves tend to underestimate the true standard errors 
and have potentially large variability. 

The GEE method is appealing for categorical data because of its computational 
simplicity compared to ML. However, the method has limitations. Since it does 
not have a likelihood function, likelihood-based methods such as likelihood-ratio 
tests and profile likelihood confidence intervals are not available for checking fit, 
comparing models, and conducting inference about parameters. Instead, inference 
uses Wald statistics. For example, the test of He,: ßk = 0 treats the GEE estimate 
ßk of ßk as having an approximate normal sampling distribution. Using a standard 
error SE from the sandwich-estimated covariance matrix, we obtain a P -value 
by referring z = $t/SE t 0 a standard normal distribution or z2 to a chi-squared 
distribution with df = 1. Some software (such as PROC GENMOD in SAS) also 
reports analogs of score tests for effects of predictors. These are more trustworthy 
than Wald tests. 
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9.2.2 GEE Approach: Ordinal Responses 

The GEE methodology, originally introduced for modeling univariate marginal 
distributions such as the binomial, has since been extended to marginal mod-
eling of multinomial responses. Lipsitz et al. (1994) proposed a GEE approach 
for cumulative logit models with repeated ordinal responses. We next outline this 
approach. 

Marginally, we assume a multinomial distribution for each Yt, t = 1 , . . . , T. For 
cluster /, each observation K„ is specified by a set of c — 1 indicator variables, the 
y'th one indicating whether Yit falls in category j , j — 1 , . . . , c — 1. Specifically, 
let yijt — 1 if observation t in cluster i has outcome j (j = 1 , . . . , c — 1), with 
y-φ = 0 otherwise. Let y, be the T(c — 1) binary indicators for cluster i for the T 
observations. The covariance matrix V, for y,; is a T(c — 1) x T(c — 1) matrix. The 
covariance matrix V,r for the c — 1 indicators for each K,, is a (c — 1) x (c — 1) 
matrix block on the main diagonal of V, that is the multinomial covariance matrix 
for a single multinomial trial. That is, the covariance matrix V,( for ym,..., yi,c-\,t 
has entry Vjj, = P{Yijt = 1)[1 — P(Yijt = 1)] for the cell on the main diagonal in 
row j and column j and entry — P(Yn,t = l)P(Yijt = 1) for the cell in row h and 
column j with h φ j . 

The remaining elements of V, contain elements Cov(y;;„, YjjS) for s ^ f that 
are not determined by the marginal multinomial covariances. For each pair {h, j) 
of outcome categories, the GEE approach uses a working correlation matrix for the 
pairs (Yis, Yit) of clustered observations. The working covariance matrix V, for y, 
specifies a pattern for Corr(y,J(, Κ,τ̂ ) for each pair of outcome categories (h, j) and 
each pair (5, t) of observations in a cluster. An awkward aspect is the large number 
of parameters in the working correlation structure, especially if c and/or T are 
large. One way to reduce this somewhat uses the exchangeable structure, whereby 
Con(Yiht, Yijs) = Phj for all pairs (s, t) in a cluster. That is, for a given pair of 
categories, the correlation is the same for all pairs of observations in a cluster. This 
is still a substantial number of parameters if c is large. The independence working 
correlation structure is p^ = 0 for all h and j . 

Let μ, = £(y()· This is a function of the model parameters β that depends on 
the choice of model. The generalized estimating equations for β are 

n 

u(J8) = ^ D ; v - 1 ( y i - M , . ) = 0 , 

where D) = d^/dß. Lipsitz et al. (1994) suggested a Fisher scoring algorithm for 
solving these equations and a method of moments update for estimating {ßhj} at 
each step of the iteration. 

As in the univariate case, the GEE method uses the empirical dependence to find 
sandwich-covariance-based standard errors that are appropriate with large samples 
even if the working correlation guess is poor. For example, standard errors based 
on assuming independent observations would usually be invalid. An empirically 
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adjusted sandwich covariance matrix for the GEE estimate ß is 

■ n -i — 1 r « ~1 Γ " 

^D;vr 'D , · ^DjVr'CoviY.OVr'D,- £ > i V 7 D , 
i = l 1 = 1 1 = 1 

This is itself estimated by substituting //., from the model fit in D, and V, and 
replacing Cov(Y,) by the empirical covariance matrix of y,-. 

9.2.3 Example: Arthritis Clinical Trial 

To illustrate ordinal GSS methods, Lipsitz et al. (1994) used data from a random-
ized clinical trial comparing a drug (auranofin) with placebo for the treatment of 
rheumatoid arthritis. Patients were randomly assigned to a treatment, which they 
received throughout the study. At the start of the study and after one month, three 
months, and five months of treatment, patients assessed their arthritis on the ordi-
nal scale (good, fair, poor). Other explanatory variables measured were age and 
gender. Table 9.3 shows the data for four of the 303 patients in the study. The 
complete data set is available at www.stat.ufl.edu/~aa/ordinal/ord.html. 

Lipsitz et al. treated the baseline self-assessment as a covariate and modeled the 
three follow-up assessments as a function of that baseline assessment, treatment, 
age, sex, and time of observation. Let Y, denote follow-up response ί (ί = 1,2, 3). 
Each subject forms a cluster, with the observations (yn, y,2, y,3) in cluster / being 
the ordinal response at the three follow-up occasions of observation. Table 9.4 
shows the sample marginal distributions of the ordinal arthritis assessment at the 
three follow-up times and at the baseline. At the baseline, the distributions are 
similar for the two treatments, as expected by the randomization of patients to treat-
ments. At follow-up times, the responses tend to improve, more for auronofin than 
for the placebo. The change does not seem to be uniformly monotone for the poor 
or the good outcomes, which suggests using indicator variables for the time effects 
rather than a linear trend. Relevant questions then include whether the response is 

TABLE 9.3. Four Observations from Clinical Trial Comparing Arthritis Assessment 
for Two Treatments 

Arthritis Assessment" 
Subject 

1 
2 
3 
4 

Sex 

M 
F 
M 
F 

Age 

55 
60 
28 
47 

Treatment 

Auranofin 
Auranofin 
Placebo 
Placebo 

Baseline 

2 
3 
2 
3 

1 Month 

1 
2 
3 
1 

2 Months 

1 
2 
1 
3 

3 Months 

1 
2 
3 
2 

Source: Lipsitz et al. (1994). Complete data are at www.stat.ufl.edu/~aa/ordinaiyord.html. 
" 1, good; 2, fair; 3, poor. 
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TABLE 9.4. Sample Marginal Distributions of Arthritis Assessment 

Auranofin Response (%) Placebo Response (%) 
Occasion 

Baseline 
1 month 
3 months 
5 months 

Good 

22 
37 
45 
50 

Fair 

45 
51 
35 
35 

Poor 

33 
12 
20 
15 

Good 

22 
36 
30 
39 

Fair 

47 
34 
43 
35 

Poor 

31 
30 
28 
25 

significantly better for auronofin than for the placebo and whether the treatment 
effect changes with time (i.e., whether there is treatment x time interaction). 

Lipsitz et al. fitted the cumulative logit model of proportional odds form 

logit [P(Y, < j)] = otj + ßxt2 + ß2h + ß3b + ß4a + ß5s + ß6tr, 

with indicator variables t2 for time 2 and t-$ for time 3 (with t2 = t-$ — 0 for time 1), 
b — baseline response (scored 1, 2, 3), a = age, s for sex (1 = male, 0 = female), 
and tr for treatment (1 = auranofin, 0 — placebo). They noted that more complex 
models having interaction terms did not fit better. They showed that similar results 
occur with various working correlation structures. With the independence structure, 
the GEE approach gives the prediction equation 

logit [P(Y, < j)] = äj - 0.046ί2 + 0.266ί3 - 1.0356 - 0.006α + 0.133s + 0.548ir 

with SE values (0.124,0.118,0.137,0.008,0.184,0.176) for the explanatory effects. 
The important effects are for baseline and for treatment. A simpler model that 
smooths the effects by deleting those for time 2, age, and sex has the fit 

logit [P(Y, < j)] = äj + 0.289/3 - 1-0426 + 0.554rr, 

with SE values 0.098, 0.136, and 0.176. Controlling for other variables, patients 
using auranofin have estimated odds of response good instead of fair or poor and 
estimated odds of response good or fair instead of poor that are exp(0.554) = 1.74 
times the corresponding estimated odds for patients using the placebo. A change in 
the baseline response from 1 = good to 2 = fair or from 2 = fair to 3 = poor has 
the effect of multiplying the estimated odds of response in category j or below by 
exp(-1.042) = 0.35. 

As explained in Section 9.2.2, the working correlation structure comprises the 
correlations of binary indicators for each pair of outcome categories between 1 and 
c — 1 for all pairs of observations (f, s) in a cluster. For example, the exchangeable 
structure has Corr(y,7„, Ytjs) = pf,j for all / and s. For these data, the indicator vari-
ables for the first two categories at each of three times are ym, v,2i, ym, yn2, y,i3, 
and _y,23- For all three pairs of times (f, s) = (1,2), (1,3), (2,3), the estimated 
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exchangeable correlations for the pairs with the first two outcome categories are 
Con(YiU, YiU) = 0.39, Corr(yn„ Yi2s) = 0.15, and Corr(y,2r, Yi2s) = 0.21. 

Recall from Section 9.1.1 that when there is positive within-cluster correlation, 
standard errors for within-cluster effects tend to be smaller, and standard errors 
for between-cluster effects tend to be larger than if the same effects occurred with 
the same number of independent observations. If we had naively treated repeated 
responses as independent for the entire analysis, the SE values for within-subject 
time effects would be misleadingly large and the SE values for between-subject 
effects would be misleadingly small. For example, the treatment effect estimate 
would have had SE = 0.130 rather than 0.176. 

For simpler interpretation, it can be helpful to report sample marginal means 
and their differences. With arthritis assessment scores (1, 2, 3), the initial means 
were 2.10 for auranofin and 2.09 for the placebo. The means after five months were 
1.65 for auranofin and 1.86 for the placebo. The difference in means between the 
baseline and five-month responses was 0.45 for auranofin and 0.23 for the placebo. 

9.2.4 Modeling Association to Generate Working Correlations 

The GEE approach requires selecting a working correlation matrix for the binary 
category indicators. Disadvantages are that this can involve a large number of 
parameters and that the correlation is not a natural measure for binary data. 

Williamson et al. (1995), Heagerty and Zeger (1996), and Lumley (1996) had 
the appealing idea of, instead, basing the correlations on a natural association model 
for ordinal data for the two-way tables that cross-classify pairs of responses. For 
example, one could assume a uniform association model for global odds ratios for 
each pair of responses. In an exchangeable form, this requires only a single global 
odds ratio parameter to specify the working correlation structure. The association 
parameter can itself be modeled in terms of explanatory variables, to describe more 
precisely how the correlation may vary. 

Williamson et al. (1995) illustrated their approach for the diabetic retinopathy 
example described in Section 9.1.3. The analysis in that section used ML methods. 
In their GEE analysis, the global odds ratio seemed to vary as a function of gender 
and the number of doses of insulin taken per day. They used the fit of the association 
model specifying a uniform global odds ratio at each fixed setting of gender and 
doses of insulin to generate the working correlation matrix and hence the GEE 
analyses. The GEE estimates and SE values they obtained were similar to those 
reported in Table 9.2 using ML. 

9.2.5 Dealing with Missing Data 

For any modeling with longitudinal data, missing data are often problematic. Infer-
ence using ML has the advantage of being applicable under weaker assumptions 
about the missing data mechanism than GEE requires. The GEE method requires 
the strong assumption that the data are missing completely at random (MCAR). 
This means that the missing data are a random sample of all observations. In par-
ticular, the probability that any observation is missing is independent of the value 
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of that observation. In modeling an ordinal arthritis assessment as a function of 
age, if the probability that the arthritis assessment is missing is the same for all 
subjects regardless of their age or their actual arthritis assessment, the data are 
MCAR. 

ML methods are valid under the weaker assumption that the missing observa-
tions are missing at random (MAR). This means that given the observed data, the 
missingness mechanism does not depend on the unobserved data. That is, what 
caused the data to be missing does not depend on the data itself. If the probability 
that the arthritis assessment is missing varies according to the age of the subject 
but does not vary according to the arthritis assessment of subjects with the same 
age, the data are MAR. 

Suppose that we divide the subjects into the group having a complete set of 
observations and the group having missing observations. If the data are MCAR, 
both groups should be random samples of the same population distribution of 
observations. If the data are MAR, both groups should be random samples of the 
same distribution of arthritis assessment within each level of age, but they do not 
have the same distribution of age [see Little and Rubin (2002) for further details 
about these definitions]. 

Likelihood-based inference is valid under the MAR condition. Under that con-
dition, it is not necessary to specify the missing data mechanism. When the data 
are MAR but not MCAR, it is necessary with the GEE method to specify the 
missing data mechanism to deal with the potential bias. For ways of dealing with 
missing data, see Kenward et al. (1994), Mark and Gail (1994), Molenberghs et al. 
(1997), Little and Rubin (2002), Molenberghs and Verbeke (2005), and Kaciroti et 
al. (2006). Sometimes, information may be missing in a key covariate rather than 
the responses. Toledano and Gatsonis (1999) modified ordinal GEE equations to 
account for this. 

9.3 TRANSITIONAL ORDINAL MODELING, GIVEN THE PAST 

For a sample of patients with insomnia problems, Table 9.5 shows results of a 
randomized, double-blind clinical trial comparing an active hypnotic drug with a 
placebo. The response is the patient's reported time (in minutes) to fall asleep after 
going to bed. Patients responded before and following a two-week treatment period. 
The two treatments, active drug and placebo, form a binary explanatory variable. 
The subjects were randomly allocated to the treatment groups, so observations 
for the two treatment groups are independent samples. Here each subject forms 
a matched-pair type of cluster, with the two observations in a cluster being the 
ordinal response at the two occasions. 

We could use marginal models to analyze the data. Table 9.6 displays sample 
marginal distributions for the four treatment x occasion combinations. At the initial 
occasion, the marginal distributions for the two treatments were similar, as was 
expected because of the random assignment of subjects to the treatment groups. 
From the initial to follow-up occasion, the time to falling asleep tended to shift 
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TABLE 9.5. Time to Falling Asleep, by Treatment and Occasion 

Treatment 

Active 

Placebo 

Initial 

<20 
20-30 
30-60 

>60 
<20 

20-30 
30-60 

>60 

Time to 

<20 

7 
11 
13 
9 
7 

14 
6 
4 

Falling Asleep 
Follow-

20-30 

4 
5 

23 
17 
4 
5 
9 

11 

■up 

30-60 

1 
2 
3 

13 
2 
1 

18 
14 

>60 

0 
2 
1 
8 
1 
0 
2 

22 

Source: S. F. Francom et al. (1989), with permission of John Wiley & Sons, Ltd. 

TABLE 9.6. Sample Marginal Distributions of Table 9.5 for Response on Time to 
Falling Asleep 

Treatment 

Active 

Placebo 

Occasion 

Initial 
Follow-up 
Initial 
Follow-up 

<20 

0.101 
0.336 
0.117 
0.258 

Response 
20-30 

0.168 
0.412 
0.167 
0.242 

30-60 

0.336 
0.160 
0.292 
0.292 

>60 

0.395 
0.092 
0.425 
0.208 

downward for both treatments. The degree of shift seems greater for the active 
drug, indicating possible interaction, as is verified by model fitting (Agresti 2002, 
p. 469). Here we'll use an alternative type of model for these data, applying logits 
only to the follow-up response and treating the initial response as a covariate. 

9.3.1 Comparisons that Control for Initial Response with Matched Pairs 

Let Y, denote the response at occasion t (t = 1, initial, t = 2, follow-up) and let 
x denote the treatment (0 = placebo, 1 = active drug). So Y2 denotes the follow-
up response, for treatment x with initial response Y\. With scores assigned to the 
categories for the initial outcome, the model 

logit [P(Y2 < j)] =ctj+ßxx + ß2yx (9.2) 

controls for that initial response. In this model, the parameter ß\ compares the 
follow-up distributions on Y2 for the treatments, controlling for initial observation 
yx. This is an analog of an analysis of covariance model, with ordinal rather than 
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continuous response. This cumulative logit model refers to a univariate response 
(Y2) rather than to the marginal distributions of a bivariate response (Υι, Υ2). 

In some situations, whether an effect of a certain type exists may differ between 
this type of model and a marginal model. For example, consider data in the form 
of Table 9.5, with responses at two times for two treatment groups. Suppose that 
the true marginal distributions for initial response are identical for the treatment 
groups, as we expect with random assignment of subjects to the groups. Suppose 
also that there is no treatment effect, in the sense that conditional on the initial 
response, the follow-up response distribution is identical for the treatment groups. 
Then the follow-up marginal distributions are also identical. By contrast, suppose 
that the initial marginal distributions are not identical, as might well happen with 
observational data for which randomization of subjects is not possible. Then, even 
when the conditional distributions for follow-up response are identical for the two 
treatment groups, the difference between follow-up and initial marginal distributions 
may differ between the treatment groups. In such cases it may be more informative 
to construct models that compare the follow-up responses while controlling for 
the initial response. Model (9.2), which does this, is an example of a transitional 
model. 

9.3.2 Transitional Models with Time-Series Data 

In longitudinal studies with relatively long time-series data, the focus is often 
on the dependence of observation Yt on the responses observed previously 
ΟΊ» Ϊ2, ■ ■ ■, vr_i) as well as on the explanatory variables. Time-series models 
that include past observations as predictors are transitional models. A Markov 
chain is a transitional model for which, for all t, the conditional distribution of Yt 

given y i , . . . , y,-i is assumed identical to the conditional distribution of Yt given 
y,-\ alone. That is, given y,-i, Y, is conditionally independent of Y\,..., Yt-i-
Knowing the most recent observation, information about observations before that 
one does not help us predict the next observation. Many transitional models have 
Markov chain structure for at least part of the model. See, for example, Lindsey 
et al. (1997), Böckenholt (1999), and Müller and Czado (2005). 

Transitional models can also include explanatory variables other than past obser-
vations. With k such explanatory variables, we could specify an ordinal model for 
each t, such as 

logit [P(Y, < j)] = aj + £yr_, + ßixu + ■■■ + ßkxkl. 

This model also permits an explanatory variable to take a different value for each 
t. For example, in a longitudinal medical study, a subject's values for predictors 
such as blood pressure and cholesterol level would be time varying. Kedem and 
Fokianos (2002, p. 99) used a cumulative logit transitional model of this form in 
which the explanatory variable is a periodic function of time and yf_i is represented 
by indicators for the categories. Given the predictor values at each t, if we treat 
the observations by a subject as independent, this type of model can be fitted 
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with ordinary software. A higher-order Markov model could also include }>,_2 and 
possibly other previous observations in the linear predictor. 

In transitional models, the interpretation and magnitude of ß depends on how 
many previous observations are in the model. Within-cluster effects often diminish 
markedly by conditioning on previous responses. This is an important difference 
from marginal models, for which the interpretation does not depend on the spec-
ification of the dependence structure. In some applications, it is more relevant to 
estimate the effects on Y, without conditioning on previous response values. In 
addition, many transitional models that have been proposed have the limitations 
that subjects must be observed at the same times and an observation cannot be 
included in the fitting process if the previous observation(s) is missing. 

9.3.3 Example: Insomnia Clinical Trial 

The transitional type of model can be especially useful for matched-pairs data. 
Marginal models evaluate how the marginal distributions of 1Ί and Y2 depend on 
explanatory variables. By contrast, a transitional model treats Y2 as a univariate 
response, evaluating effects of explanatory variables while controlling for the initial 
response y\. 

Consider the insomnia study of Table 9.5. In model (9.2) we use scores (10, 
25, 45, 75) for the four categories of the initial time to fall asleep _yi. This initial 
response y\ plays the role of an explanatory variable, in addition to the treatment 
group predictor. Applying software for ordinary cumulative logit models to the 
univariate response Yi, the ML treatment effect estimate is ß\ = 0.885 (SE = 
0.246). This provides strong evidence that follow-up time to fall asleep is lower 
for the active drug group. For any given value for the initial response, the estimated 
odds of falling asleep by a particular time for the active treatment are exp(0.885) = 
2.4 times those for the placebo group. In Exercise 9.6 we consider alternative 
analyses for these data. 

CHAPTER NOTES 

Section 9.1: Marginal Ordinal Modeling with Explanatory Variables 

9.1. Much of the ML marginal modeling literature also provides models for the 
joint distribution, as in the retinopathy example of Williamson and Kim (1996) 
presented in Section 9.1.3. In an early application of ML for marginal modeling, 
Dale (1986) used cumulative logit models for the margins while using the global 
odds ratio to describe the joint distribution. Lang and Agresti (1994) gave other 
examples of simultaneous modeling of marginal and joint distributions. The ML 
approach was extended by Molenberghs and Lesaffre (1994), Heagerty and Zeger 
(1996), Molenberghs et al. (1997), and Lesaffre et al. (1998). For other uses of 
ML with marginal models for ordinal data, see Glonek and McCullagh (1995), 
Kim (1995), Glonek (1996), Lang and Eliason (1997), Lang et al. (1999), Bar-
tolucci et al. (2001), Colombi and Forcina (2001), Vermunt et al. (2001), and 
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Ekholm et al. (2003). By contrast, Jokinen et al. (2006) focused on modeling the 
association structure for clustered ordinal data using various latent variable and 
Markov models. Rather than using odds ratios, they and Ekholm et al. (2003) 
described association using dependence ratios, which are measures of the form 
P(Yis = a, Y„ = b)/P(Yis = a)P(Yil = b). 

Section 9.2: Marginal Ordinal Modeling: GEE Methods 

9.2. For GEE methods for ordinal responses, see Heagerty and Zeger (1996), 
Miller et al. (1993), Lipsitz et al. (1994), Williamson et al. (1995), Lumley (1996), 
Ten Have et al. (1998), Miller et al. (2001), Huang et al. (2002), Parsons et al. 
(2006), Nores and Diaz (2008), Parsons et al. (2009), and references in Agresti 
and Natarajan (2001) and Liu and Agresti (2005). An earlier approach formed a 
weighted combination of estimates from separate models fitted to margins, using 
an empirically generated covariance matrix of the separate estimates (Stram et al. 
1988). More general models with ordinal responses allow for dispersion parameters 
that also depend on covariates, as in Section 5.4. Toledano and Gatsonis (1996) 
used such models for estimating ROC curves from multiple interpretations of the 
same diagnostic study. Stiger et al. (1999) presented tests of the proportional odds 
assumption for GEE analyses of cumulative logit models of that form. Heagerty 
and Zeger (2000a) used multivariate continuation-ratio logit models. Williamson 
and Lee (1996) developed GEE methods for a mixture of an ordinal with a nom-
inal response, modeling the marginal distributions and using odds ratios that are 
cumulative in the ordinal variable to describe the association. 

9.3. Koch et al. (1977) used weighted least squares (WLS) to fit marginal mod-
els to categorical data. The WLS approach is simpler than ML but has severe 
limitations, such as needing categorical covariates and nonsparse marginal tables. 
Because of this, it is now rarely used in the form originally proposed, but it can be 
regarded as a natural predecessor of the GEE approach. In particular, Miller et al. 
(1993) showed that under certain conditions the solution of the first iteration in the 
GEE fitting process gives the WLS estimate. This equivalence uses initial estimates 
based directly on sample values and assumes a saturated association structure hav-
ing a separate correlation parameter for each pair of response categories and each 
pair of observations in a cluster. In this sense, GEE (like ML) is an iterated form 
of WLS. Moreover, in this case, the covariance matrix for the estimates is the same 
with WLS and GEE approaches. 

9.4. For designs with longitudinal observations of ordered categorical data, 
Brunner and Langer (2000) proposed a nonparametric model for marginal dis-
tributions to analyze treatment effects and interactions. The proposed methods also 
provide extensions of the Wilcoxon-Mann-Whitney test to factorial designs. See 
also the text by Brunner et al. (2002) and references in Section 7.7.2. 

Section 9.3: Transitional Ordinal Modeling, Given the Past 

9.5. Lindsey et al. (1997) proposed a simple Markov model, conditioning on 
the previous response using continuation-ratio logits. Böckenholt (1999) presented 
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mixed Markov cumulative probit models that take into account both within- and 
between-subject variability. Kosorok and Chao (1996) considered a Markov model 
for an ordinal response in continuous time. It is also possible to combine marginal 
models with transitional models. Lee and Daniels (2007) proposed such models for 
the analysis of longitudinal ordinal data. They introduced a proportional odds model 
of cumulative logit form for the marginal distributions and a Markov transition 
structure for the temporal dependence, using ML for model fitting. In related work 
using a variety of ordinal structures, Bartolucci and Farcomeni (2009) included a 
time-varying random effect that follows a Markov process. Albert (1994), Lindsey 
and Kaufmann (2004), and Kaciroti et al. (2006) proposed transitional models for 
ordinal time-series data. Varin and Vidoni (2006) considered a cumulative probit 
time-series model for which an underlying latent variable model has autoregressive 
structure. For a latent variable Y* for which categorization into intervals provides 
the observed ordinal response, the model has the form 

Y* = a + ßlXu + ■■■ + ßkxkt + γ{ y;_, + · · · + γρΥ;_ρ + e„ 

where {e,} are independent normal variates. Model fitting is complex, and Varin and 
Vidoni proposed a pseudolikelihood model-fitting method based on the composite 
likelihood approach that uses contributions to the likelihood function for pairs of 
observations. 

EXERCISES 

9.1. A study investigates home Internet use, measured as (none, <1 hour a 
day, > 1 hour a day), for subjects in families living in a rural location and 
families living in an urban area. Each cluster consists of the people in a 
particular family. For this study, give an example of a (a) within-cluster 
effect and (b) between-cluster effect. Explain why you would expect the 
within-cluster correlation to be positive, and in each case, explain how 
the actual standard errors would compare to those obtained with the same 
number of independent observations. 

9.2. In Section 8.2.2 we used ML to fit a marginal cumulative logit model to 
GSS responses on how well the government provides health care for the 
sick and protects the environment. Obtain GEE estimates, compare to the 
ML estimates, and interpret. 

9.3. Analyze the crossover data in Table 8.5 using the GEE method with a 
marginal cumulative logit model. Compare {β,} and their SE values to 
those obtained using ML in Section 8.4.3. 

9.4. Refer to Exercise 8.5. Fit a marginal model to these data about government 
spending, using ML or GEE. Interpret the results. 
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9.5. Analyze the soft-drink comparison data of Table 8.8 in Section 8.6.3 using 
methods of this chapter that treat the three evaluations by a subject as 
potentially correlated. Interpret the results. 

9.6. Refer to Table 9.5 on the clinical trial for insomnia patients. 

(a) To compare effects while controlling for the initial response, add an 
interaction term to model (9.2). Summarize how the estimated treat-
ment effect varies according to the initial responses by showing that 
the estimated treatment log odds ratio changes from 0.00 to 1.41 as 
the initial response score goes from 10 to 75. 

(b) Now treat the initial response as qualitative, using indicator variables. 
Fit the model without interaction. Show that the estimated treatment 
log odds ratio is 0.911 (SE = 0.249), and interpret. Now fit the model 
with interaction terms. Explain why the results suggest that the active 
treatment seems relatively more successful at the two highest initial 
response levels. 

(c) Using ML or GEE, fit a marginal model for time to fall asleep, with 
predictors the treatment, the occasion, and treatment x occasion inter-
action. Interpret results. 
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Clustered Ordinal Responses: 
Random Effects Models 

In this chapter we present the alternative model type for clustered ordinal data, 
which contains a random effect term in the linear predictor for each cluster. Such 
models permit heterogeneity in response probabilities for the various clusters that 
have a particular setting of explanatory variables. In some studies, variability among 
random effects might represent heterogeneity caused by the absence from the model 
of certain explanatory variables that are associated with the response. Another use 
of a random effect term is to represent random measurement error in the explanatory 
variables. 

A model with random effects is a type of latent variable model. The observed 
clusters are regarded as being sampled randomly from the set of all possible clusters, 
and the random effect for a cluster is an unobserved random variable. Conditional 
on the random effect, the observations in a cluster are treated as independent, 
whereas marginally, ignoring the random effects, they are associated. Early appli-
cations of such models for ordinal variables were in the context of extending factor 
analysis to categorical data, such as by Samejima (1969) and Bartholomew (1980, 
1983). 

In Sections 8.2.4 and 8.4.2 we introduced cluster effects in models for matched 
pairs and for matched sets. Such models have conditional interpretations for the 
effects of the explanatory variables, in the sense that those effects are conditional 
on the cluster. The effects are called cluster specific, or subject specific when each 
cluster is a subject. This contrasts with the marginal models presented in Chapter 9, 
which have population-averaged interpretations because effects are averaged over 
all the clusters. 

In Section 10.1 we introduce ordinal response models with random effects and 
discuss model interpretation and inference. In Section 10.2 we present examples 
of models for which the random effect plays the role of an intercept term that 
varies among clusters. There we revisit examples analyzed with marginal models 
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in Chapters 8 and 9. In Section 10.3 we present examples of models with multiple 
random effect terms, which permit effects of explanatory variables as well as inter-
cepts to vary among clusters. In Section 10.4 we discuss multilevel (hierarchical) 
models in which random effects enter at various levels, such as occurs in educa-
tional applications that include random effects for students as well as for schools. In 
the final section we discuss relevant issues in choosing between a random effects 
model, a marginal model, and some other type of model, such as a transitional 
model. 

10.1 ORDINAL GENERALIZED LINEAR MIXED MODELS 

The generalized linear mixed model (GLMM) is an extension of the generalized 
linear model that permits random effects as well as fixed effects in the linear 
predictor. In this chapter we introduce GLMMs for ordinal responses that are 
assumed to have a multinomial distribution at each particular value of the fixed 
and random effects. Such models are special cases of a multivariate generalized 
linear mixed model (Tutz and Hennevogl 1996). 

10.1.1 Cumulative Logit Random Intercept Model 

Let y,r denote the response for observation t in cluster i. Let x\jt, X2it, ■ ■ ■, Xkn 
denote the values of the k explanatory variables for that observation. Denote the 
random effect for cluster i by «,-. In the simplest and most common case, u, is an 
intercept term in the model. The model is then called a random intercept model. 

For outcome categories j = 1, 2 , . . . , c — 1, the cumulative logit model of pro-
portional odds form with a random intercept is 

logit[P(r,-r < ;)] = H, + aj + ß{xu, + ßix2it +■■■ + ßkXkit- (10.1) 

This model takes the linear predictor from the marginal model (9.1) and adds a 
random effect w, to the intercept term ctj. It uses the same random effect for 
each cumulative probability. Using an overall intercept term of form «, + aj is 
also a way of allowing subjectivity in subjects' choices for outcome categories by 
allowing the ordinal scale cutpoints to vary among subjects (Farewell 1982; Wolfe 
and Firth 2002). 

A subject with a relatively large positive (negative) κ,- has relatively large (small) 
cumulative probabilities, and hence a relatively high (low) chance of occurring at 
the low end of the ordinal scale. We can express the model alternatively as 

l o g i t [ P ( y i 7 < j)] = ctj - (Ui + ßxxUl + ß2X2it + ■■■ + ßkXkit), 

which naturally results from an underlying latent variable model. For this parame-
terization, increasing values of random and fixed effects correspond to increasing 
probabilities at the high end of the ordinal scale. Another way this interpretation 
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results is from replacing P(Yn < j) in (10.1) by P(Yn > 7). The cutpoint parame-
ters satisfy a i < ot2 < · · ■ < ac_ 1, to reflect the ordering of cumulative probabilities 
for each i. 

In practice, a random effect w, is unobserved, so its value is unknown. It is 
usually assumed to vary from cluster to cluster according to a normal N(0, σ^) 
distribution. The variance component σ„ is a parameter that is estimated together 
with the fixed effects. Why not treat the {«,} as fixed effects, that is, as parameters 
rather than random effects? One reason is that usually a study has a large num-
ber of clusters (e.g., one for each subject), so the model would then contain too 
many parameters. Treating {«,} as random effects, we have only a single additional 
parameter (σ„) in the model, describing their dispersion. Another reason is that if 
{ui} were treated as fixed, inferences would extend only to those clusters and not 
to the population of clusters they represent. 

10.1.2 Other Ordinal Logit Random Intercept Models 

The same linear predictor structure holds with other link functions for which a 
common effect for each logit is plausible. For example, Hartzel et al. (2001 a,b) 
used it with adjacent-categories logits (ACLs), 

P(Y- = j) 
l 0 § n / s / " ■ , is = M< + aJ + Pi*"' + foX2it H + ßkxkit-

P(Yit = 7 + 1) 
An ACL model is more useful than a cumulative logit model when we want descrip-
tions to contrast probabilities of response in pairs of categories rather than above 
versus below various points on the response scale. The ACL model is equivalent 
to the baseline-category logit (BCL) model, 

log ' ' _ , =(<Xj H l·ac-i) + (c - j)(ui + ßixut + ßixiu + \-ßkXkii)-
ryiit—c) 

The effects in the BCL model are the multiple c — 7 of those in the ACL model. 
Random effects models can also use continuation-ratio logits or an alternative 
cumulative link such as the probit or complementary log-log. 

When used with a common fixed effect ß and a common random effect w, 
for each logit, cumulative link models and adjacent-categories logit models both 
describe location effects and imply stochastically ordered response distributions at 
different settings of predictors. They typically provide similar substantive conclu-
sions about the statistical and practical significance of effects. 

10.1.3 Positive Correlation Induced by Random Effects Variability 

As the variance σ^ of the random effects increases, the correlation Corr(v„, yi5) 
between two observations within the same cluster also tends to increase. This type 
of correlation is called an intraclass correlation. 
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Consider the cumulative link model with a random intercept. The underlying 
regression model refers to a continuous latent variable y*. The latent outcome for 
observation t in cluster i is 

y*t =a + ß'xj, + Ui +€it. 

Suppose that {«,·} are independent N(0, σ2) variates and {e,·,} are independent errors 
that are also independent of {«,} and have variance σ2. Then, conditional on the 
explanatory variables and for each pair (r, s) in a cluster, 

Corr(y;f,y?) = - 5 ^ - 5 (10.2) 

(Skrondal and Rabe-Hesketh 2004, p. 51). This equals the proportion of the total 
residual variance that is due to the variability σ2 in the random effect. The corre-
lation is positive and increases as σ2 increases, for fixed σ2. 

For this latent variable construction, σ is nonidentifiable because the model still 
holds if the latent outcomes are linearly rescaled. The cumulative probit model 
results when e„ has a normal distribution, and it is then common to let σ = 1, 
corresponding to the standard normal distribution. On this scale, the variability σ2 

of the random effect is such that Corr(y*t, y*s) = o^l(a2 + 1). For example, σ„ 
values of (0, 1, 2, 3) correspond to correlation values of (0, 0.50, 0.80, 0.90). This 
correlation corresponds to a polychoric correlation for the ordered categorical scale. 

The cumulative logit model results from categorizing an underlying standard 
logistic latent variable. Then Corr(y*r, y*s) = ο^Ι\σ2 + (π2/3)], since σ 
for the standard logistic distribution. For example, σ„ values of (0, 1, 2, 3, 4) corre-
spond to correlation values of (0,0.23,0.55,0.73, 0.83). We'll see in Section 10.5.1 
that increasing σ„ also increases the difference between sizes of corresponding fixed 
effects in random effects models and in marginal models. 

As suggested by formula (10.2) for the correlation in terms of variance compo-
nents, a model with a random intercept implies a nonnegative correlation between 
clustered observations. In the boundary case σ2 = 0 of no between-cluster hetero-
geneity, the correlation disappears and the clustered observations behave as if they 
are independent observations. 

10.1.4 Parameter Interpretations for Random Effects Models 

A fixed effects parameter in a model with random effects has a conditional intepre-
tation. It refers to the consequence of changing the value of an explanatory variable, 
for which the fixed effect is the coefficient, for a given value of the random effect 
and the other fixed effects. Those fixed effects are of two types. First, consider 
an explanatory variable that varies in value among observations in a cluster. For 
example, in a crossover study comparing T drugs, for each subject the drug taken 
varies from observation to observation in that subject's cluster of T observations. 
For such an explanatory variable, its coefficient refers to the effect on the response 
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of a within-cluster (e.g., subject-specific) 1-unit increase of that predictor. The 
effect of that explanatory variable is a within-cluster effect. 

Second, consider an explanatory variable with constant value among observa-
tions in a cluster. When each cluster is a person, an example is the person's gender 
or race. For such an explanatory variable, its coefficient refers to the effect on the 
response of a between-cluster 1-unit increase of that predictor. An example is a 
comparison of females and males using an indicator variable and its coefficient. 
However, this fixed effect applies only when the random effect as well as other 
explanatory variables in the model take the same values in both groups, such as a 
male and a female with the same values for their random effects. 

It is in this sense that random effects models are conditional models, as both 
within- and between-cluster effects apply conditional on the random effect value. 
By contrast, effects in marginal models are averaged over all clusters; that is, they 
are population averaged. Those effects do not refer to a comparison at a fixed 
value of a random effect. 

How can we interpret the variability in effects that this model implies for clusters 
having different random effect values? Consider observation yit for cluster i at a 
particular setting for predictor Xk and observation y^s for cluster h at setting JC* + 1. 
Their log odds ratio for a cumulative logit model of form (10.1) is 

\ogi\[P(Yhs < j | uh)] - \ogü[P(Yit < j | M,·)] = ßk + (uh ~ «/)■ 

When au = 0, ßk is the usual form of cumulative log odds ratio for a model 
without random effects. When σ„ > 0, ßk is the cumulative log odds ratio for two 
observations in the same cluster (h — i) or with the same random effect value. 
Otherwise, we cannot observe Uh — u-„ but the difference «/, — κ,- is a random 
variable having a N(0, 2σΗ

2) distribution. Thus, 100(1 — a)% of these log odds 
ratios fall within 

ßk±za/2>/2au. (10.3) 

10.1.5 ML Model Fitting and Inference 

The model-fitting process estimates the fixed effects and the standard deviation σΗ 
of the random effects that describes the variability among clusters. Hedeker and 
Gibbons (1994; 2006, Sec. 10.2.4), Best et al. (1996), Tutz and Hennevogl (1996), 
and Hartzel et al. (2001b) discussed model fitting for ordinal random effects models. 

An ordinal GLMM can be regarded as a two-stage model. At the first stage, 
conditional on the random and fixed effects, observations are assumed to be inde-
pendent, as in an ordinary multinomial model. At the second stage, the random 
effects are assumed to be independent realizations from a normal distribution. 
Integrating out the random effects gives a marginal distribution for the response 
outcomes and a marginal likelihood function. This is a function of the fixed 
effects parameters (α, β) = [a\,..., ac_i, βι,..., ßk) and the parameter σ„ of 
the N(0, σ„) random effects distribution. Averaged with respect to the distribution 
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of the {«,}, the model implies nonnegative correlation among observations within 
a cluster, as discussed in Section 10.1.3. 

Here are some details for a cumulative link model, adding a random intercept 
to the basic model (5.1) with link function h: For each of the 7; observations 
in cluster i, let the response y„ for observation t be represented by a vector y,·, 
of c binary indicators. That is, let v,;r = 1 if the observation falls in category j 
and let yiJ( = 0 otherwise, / = 1 , . . . , n, j — 1 , . . . , c, t = 1 , . . . , 7}. Given w,·, let 
Ttj(Xj,; Ui) — P(yijt = 1). We treat y;r as a multinomial observation with proba-
bility mass function 

π·ι(χ,·,; Μ,·)Λ"π2(χ1ί; Μ,·)Λ'2' · ■■nc(\it\ u, ·)*". 

Each term in this product is a difference of cumulative probabilities with the inverse 
link function, 

Kj(xit;Ui) =h~\ui +ctj + ß'\it) -h~l(ut + α/_ι + ß'xu), 

with ao = -oo and ac = oo. With a N(0, σ%) probability density function for M,·, 
the marginal likelihood function has the form 

Tj c 

Π Π (A"I("'· + aJ + *itß) - h~l(»i +«7-i + ltß)Y'J' 
1=1 7 = 1 

The main computational difficulty in fitting GLMMs is the need to evaluate this 
integral to obtain the marginal likelihood function. The integral does not have a 
closed form. Numerical methods for approximating the marginal likelihood function 
can be computationally intensive, especially for models with multiple random effect 
terms. Once the marginal likelihood function is approximated, standard methods 
such as the Newton-Raphson algorithm can maximize it, yielding ML estimates 
of parameters. As a by-product, inverting the approximated observed information 
matrix provides a large-sample covariance matrix for ML estimates. Inference about 
fixed effects then proceeds in the usual way. For example, likelihood-ratio tests can 
compare nested models. Asymptotics for the model apply as the number of clusters 
increases rather than as the numbers of observations within the clusters increase. 

For relatively simple GLMMs such as random intercept models, Gauss-Hermite 
quadrature approximates the integral that determines the marginal likelihood func-
tion by a finite weighted sum that is evaluated at certain quadrature points. Essen-
tially, the normal density is approximated by a discrete histogram with bars centered 
at the quadrature points. The approximation improves as the number q of quadra-
ture points increases. Similarly, as q increases, subsequent approximations for the 
ML parameter estimates and their SE values improve. An adaptive version of 

Π 
i=l 

F 
J -c 
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Gauss -Hermite quadrature centers the quadrature points with respect to the mode 
of the function being integrated and scales them according to the estimated curva-
ture at the mode. This improves the efficiency, reducing the number of quadrature 
points needed for an effective approximation. The number of unique clusters is the 
biggest factor in determining the amount of time that the fitting process requires. 
Model fitting can be rather slow for large data sets with continuous covariates. 

Gauss-Hermite quadrature can handle most models used in practice. With a 
complex random effect structure, however, it may not be feasible. Monte Carlo 
methods simulate in order to approximate the integral that determines the marginal 
likelihood function. The Gauss-Hermite and Monte Carlo methods approximate 
the ML parameter estimates but converge to the ML estimates as they are applied 
more finely: for example, as the number of quadrature points increases for numerical 
integration. This is preferable to other approximate methods that are simpler but 
need not yield estimates near the ML estimates. Such approaches, such as Laplace 
approximation and penalized quasi likelihood (PQL), replace the function to be 
integrated by an approximation for which the integral has closed form (e.g., Keen 
and Engel 1997; Hartzel et al. 2001b). These methods can perform poorly relative 
to ML, especially when the true variability σ„ of the random effects is large. For 
example, the PQL method can substantially underestimate σ„. 

Another approach to model fitting is Bayesian. With it, the distinction between 
fixed and random effects no longer occurs. A prior distribution is assumed for each 
effect of either type. We discuss this approach in Chapter 11. 

10.1.6 Prediction and Inference About Random Effects 

The model-fitting process can also provide predictions {£,} for the random effects. 
The prediction M, is the expected value of its posterior conditional distribution, 
given the data. Calculation of a predicted value itself requires numerical integration 
or Monte Carlo approximation. Similarly, it is possible to predict the value of a 
cumulative probability for a particular cluster. One averages the expression for the 
estimated cumulative probability, as a function of the ML parameter estimates and 
random effect, with respect to the posterior conditional distribution of the random 
effect. A simpler approach substitutes «, into the estimated cumulative probability. 
This gives a somewhat different value, though, because the nonlineanty implies that 
the expected value of the cumulative probability is not the same as the cumulative 
probability evaluated at the expected random effect value. 

The predictions {w,} induce corresponding predictions for effects of interest, such 
as cumulative odds ratios. These predictions exhibit shrinkage relative to those that 
use only the sample data in the specific cluster. Shrinkage estimators can be far 
superior to sample values when the sample size for estimating each parameter is 
small, when there are many parameters to estimate, and when the true parameter 
values are roughly equal. 

Sometimes it is also relevant to conduct inference about the standard devia-
tion σ„ of {«,·}, which describes the variability among clusters. One such inference 
compares the model with its special case in which σ„ = 0. The simpler model 
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then falls on the boundary of the parameter space relative to the more complex 
model, since au cannot be negative. When this happens, the usual likelihood-
ratio chi-squared test for comparing models is not valid. Likewise, a Wald statistic 
such as au/SE does not have an approximate standard normal null distribution. 
(When au — 0, because σ„ < 0 is impossible for an ML estimate, au is not approx-
imately normally distributed around σ„.) For testing Ηο'. σ„ = 0 against Ha: au > 0 
for a random intercept model, the asymptotic null distribution of the likelihood-
ratio statistic has probability 5 at 0 and \ following the shape of a chi-squared 
distribution with df = 1. The test statistic value of 0 occurs when σΜ = 0, in 
which case the maximum of the likelihood function is identical under Ho and 
Ha. When au > 0 and the observed test statistic equals t, the P -value for this 
large-sample test is \Ρ{χ} >f), half the P-value that applies for χ\ asymptotic 
tests. 

10.2 EXAMPLES OF ORDINAL RANDOM INTERCEPT MODELS 

To illustrate ordinal models with random effects and their interpretation, we show 
three examples. The first is the crossover study analyzed in Section 8.4.3, which has 
a within-cluster fixed effect (the treatments) and a random effect (the subject term). 
The second example, the arthritis study analyzed in Section 9.2.3, also has between-
subject predictors. The third example shows that ordinal models are also useful 
for analyzing count responses that take relatively few values and do not satisfy 
a standard distribution for counts such as the Poisson. We finish by describing 
a generalization of the random intercept model for ordinal time-series data that 
allows observations closer together in time to be more highly correlated. 

10.2.1 Example: Crossover Study for Treating Dysmenorrhea 

Table 8.5 in Section 8.4.3 showed the results of a three-period crossover study 
designed to compare placebo (treatment A) with a low-dose analgesic (treatment B) 
and a high-dose analgesic (treatment C) for relief of dysmenorrhea, using response 
categories (no relief, moderate relief, complete relief). Each cluster is a particular 
woman's set of observations on the three treatments. In Section 8.4.3 we analyzed 
the data with a marginal cumulative logit model that is designed to detect location 
differences among the treatments. 

Let y,r denote the outcome on treatment t for subject i. Let **, be a dummy 
variable that equals 1 when subject i uses treatment t and equals 0 otherwise. In 
this context, cumulative logit model (10.1) is 

\ogi\[P{Yit < ])} = Ui +ctj+ ß,xit, y = l ,2, / = 1,2,3. 

The random intercept w, is assumed to vary randomly among subjects according 
to a N(0, σ^) distribution. For identifiability we set β\ = 0 for treatment A, the 
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TABLE 10.1. Results for Models Fitted to Table 8.5, with SE Values in Parentheses 

Cumulative Logit Cumulative Logit Adjacent-Cat. Logit 
Comparison Marginal Random Effects Random Effects 

h~h 2.038(0.360) 2.030(0.326) 1.460(0.248) 
ßc-ßA 2.430(0.372) 2.410(0.331) 1.724(0.255) 
ßc - ße 0.392 (0.252) 0.380 (0.284) 0.265 (0.196) 

placebo. So the model states that 

\ogxt[P{Yn < j)] = ut + aj, logit[P(Yi2 < j)] = ut + a} + ft, 

logit[P(Yi3 < j)] = Ui + a; + ft, j = 1,2. 

For //o : ft = ft = 0, the likelihood-ratio test statistic is double the difference 
between the maximized log-likelihood for this model and for the simpler null 
model having ft = ft = 0. This equals 68.4, with df = 2. Table 10.1 shows the 
ML estimated effects, but replacing ft in this model by - f t so that larger values 
of ft correspond to more positive results (e.g., a greater probability of complete 
relief), as in the parameterization for the marginal cumulative logit model in Section 
8.4.3. The contrasts of {ft} provide the same conclusions as does marginal model 
analysis. Treatments B and C clearly differ from placebo, but there is only weak 
evidence that the high dose is better than the low dose. The fixed effects estimates 
have subject-specific log odds ratio interpretations. For a given subject, for instance, 
the estimated odds that relief for the low-dose analgesic is moderate or complete 
rather than none, or complete rather than moderate or none, are exp(2.41) =11.1 
times the estimated odds for the placebo. 

The random effects have σ„ = 0.0. So {ft} and their SE values are the same as if 
the three responses for a woman were treated as independent and we fitted an ordi-
nary cumulative logit model of proportional odds form. When σ„ = 0, the cumu-
lative logit random effects model also implies the cumulative logit marginal model 
with the same parameter values and with independent observations. Table 10.1 
also shows ML results for the cumulative logit marginal model fitted in Section 
8.4.3. The ML estimates and SE values for the marginal model are not exactly 
the same as for the random effects model, because we fitted the marginal model 
in Section 8.4.3 while allowing the three observations to be correlated. (The ran-
dom effects model with σ„ = 0 corresponds to the marginal model fit treating the 
three responses as independent.) However, results are quite similar for the two 
models. 

The corresponding adjacent-categories logit random effects model is 

I o g otv '_ ■ . i\ = "' + ai + ß'x·" .7 = 1.2, ' = 1.2, 3. 
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This model is equivalent to the baseline-category logit model, 

l 0 g D(V _ - n = "i +«1 + Ρ Λ ο l°g -^JZ ~ = 2«; + («i + a2) + tPtXit 
"('it — A) "(rit — -J) 

for ί = 1,2,3. Table 10.1 also shows ML results for this model. As expected, 
estimates are somewhat smaller than for the cumulative logit model, because the 
{β,} refer to local log odds ratios rather than cumulative log odds ratios. However, 
comparing their size relative to their SE values yields substantive results similar to 
those for the cumulative logit model. 

10.2.2 Example: Arthritis Clinical Trial 

Section 9.2.3 used a cumulative logit marginal model to analyze data from a ran-
domized clinical trial comparing a drug (auranofin) with a placebo for the treatment 
of rheumatoid arthritis. At the start of the study and after one month, three months, 
and five months of treatment, patients assessed their arthritis on the ordinal scale 
(good, fair, poor). Other explanatory variables measured were age and sex. 

We now analyze the data with a cumulative logit random effects model. As in 
the marginal model analysis, we treat the baseline self-assessment as a covariate. 
Let Yn denote follow-up response t, t — 1, 2, 3, for subject /. Each subject forms 
a cluster for this model, with three observations in each cluster except for a few 
missing observations. The model is 

\ogA[P{Yit < j)] = Ui + aj + ß\t2 + ßih + βΦ + ß*a + ß5s + far, 

for covariates b = baseline response and a = age and for dummy variables tj for 
time 2 and i3 for time 3, s for sex (1 = male, 0 = female), and tr for treatment 
(1 = auranofin, 0 = placebo). ML fitting yields the prediction equation 

\ogit[P(Yit < j)] = Ui + äj - 0.15*2 + 0.34i3 - 1.59ft - 0.01a + 0.17s + 0.84ir 

with<7„ = 1.92. 
To illustrate interpretation of a within-subjects effect, consider the coefficient 

0.34 of ty. For a given subject, the estimated odds of response "good" instead 
of "fair" or "poor" and the estimated odds of response "good" or "fair" instead 
of "poor" at time 3 were exp(0.34) = 1.40 times the estimated time at time 1. 
To illustrate interpretation of a between-subjects effect, consider the coefficient 
0.84 of tr: For a subject taking auranofin and a subject taking a placebo having 
the same random effects value, the estimated odds of response "good" instead of 
"fair" or "poor" and the estimated odds of response "good" or "fair" instead of 
"poor" for the auranofin patient were exp(0.84) — 2.3 times the estimated odds for 
the placebo patient. Considering all random effect values for the two groups, since 
ZQ25 — 0.674, 50% of the odds ratio values are estimated to fall within 

exp(/36 ± 0.674V2<T„) = exp[0.84 ± 0.674V2( 1.92)], which is (0.37, 14.4). 

The treatment effect shows considerable variability. 
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TABLE 10.2. Results for Models Fitted to Data from Arthritis Clinical Trial, with SE 
Values in Parentheses 

Effect 

Time 3 
Baseline 
Treatment 

Cumulative Logit 
Marginal 

0.289 (0.098) 
-1.042(0.136) 

0.554 (0.176) 

Cumulative Logit 
Random Effects 

0.409(0.161) 
-1.600(0.205) 

0.850 (0.274) 

Adjacent-Cat. Logit 
Random Effects 

0.367 (0.139) 
-1.374(0.185) 

0.753 (0.240) 

When we constrain au = 0, the maximized log-likelihood decreases by 72.1. 
This gives very strong evidence that σ„ > 0. The likelihood-ratio test statistic of 
2(72.1) = 144.1 has P-value = \Ρ{χ}> 144.1), which is negligible. As in the 
marginal model case, effects are small and not statistically significant for time 2, 
age, and sex. A simpler model smooths the estimates of the substantively important 
effects by deleting the terms in the model for time 2, age, and sex. Table 10.2 shows 
the ML estimates from fitting this random effects model (again, it has σ„ = 1.92). 
The table also shows the GEE estimates from fitting the corresponding marginal 
model, with independence working correlation structure. Results are substantively 
similar in the two cases. At the follow-up observations, the treatment group tends 
to have a better response. 

From Table 10.2, ML estimates and standard errors are roughly 50% larger 
for the random effects model than for the marginal model. This reflects the fact 
that au = 1.92 for the random effects model is not near 0, reflecting substantial 
within-subject positive correlations among the repeated responses. The estimated 
intraclass correlation for an underlying latent variable equals σ„2/[σ^ + (π2/3)] — 
0.53. In Section 10.5.1 we explain why cluster-specific effects tend to be larger 
than population-averaged effects, more so as σ„ increases. 

Table 10.2 also shows ML results for the random effects model using adjacent-
categories logits, for which σ„ = 1.66. Estimated effects are a bit smaller than with 
the cumulative logit model, as expected, but results are substantively similar. 

10.2.3 Example: Repeated Measures of Zero-Inflated Count Data 

The next example differs from others in this book in that the response variable is 
an integer count rather than ordinal categorical. For count responses, sometimes 
the frequency of zero counts is much higher than expected with standard discrete 
models. For example, suppose that a longitudinal study observes each year the 
number of times that each subject made a medical appointment because of illness. 
Some subjects may have a zero observation in a particular year because of chance, 
whereas others may have a zero observation because of a doctor avoidance phobia 
or (in some countries) because of the cost and/or their lack of medical insurance. 
The data are then said to be zero-inflated. 

Methods for modeling clustered zero-inflated count data include random effect 
models of various types, such as (a) a hurdle model, which uses logistic regression 
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to model whether an observation is zero or positive and a separate loglinear model 
with a truncated distribution for the positive counts; (b) a zero-inflated Poisson 
model, which for each observation uses a mixture of a Poisson loglinear model 
and a degenerate distribution at 0; and (c) a zero-inflated negative binomial model, 
which allows overdispersion relative to the zero-inflated Poisson model. Model (a) 
requires separate parameters for the effects of explanatory variables in the logistic 
model and in the loglinear model. Models (b) and (c) require separate parameters for 
the effects of explanatory variables on the mixture probability and in the loglinear 
model. It addition, those models can encounter fitting difficulties if there is zero 
deflation at any settings of the explanatory variables. 

When the response variable has relatively few distinct count outcomes, a simple 
alternative approach applies a cumulative link random effects model to the count 
data (Saei et al. 1996). The first category is the zero outcome, and each other 
count outcome is a separate category. When the count can take a large number 
of values, the count oucomes are grouped into a set of ordered categories. It's 
then best to use at least four categories to avoid a substantial efficiency loss. This 
ordinal categorical approach has the advantage of a single set of parameters for 
describing effects. Those parameters describe effects overall rather than conditional 
on a response being positive. 

Min and Agresti (2005) illustrated this approach with data from a pharmaceutical 
study comparing two treatments (labeled A and B) for a particular disease in terms 
of the number of episodes of a certain side effect observed at six times. The study 
had 118 patients, with half randomly allocated to each treatment.1 Table 10.3 shows 
the frequencies of the side effect for the treatments, which took values between 0 
and 6. About 83% of the observations were zeros, and Min and Agresti showed 
that there is strong evidence of zero inflation for standard models for counts such 
as a Poisson GLMM with a random intercept. The other explanatory variable was 
the time that had elasped since the preceding observation. 

We group the response variable into five categories: 0, 1,2, 3, 4, and > 4. For 
this grouped response, a cumulative logit model for observation t on subject i is 

\ogit[P(Yi, < j)] = Ui + aj +ß\tr+ ß2 log(time), j = 0 , . . . , 4, 

TABLE 10.3. Side-Effect Frequencies for Treatments A and B 

Treatment 

A 
B 

Total 

0 

312 
278 

590 

1 

30 
39 

69 

2 

11 
20 

31 

Frequency 

3 

0 
6 

6 

4 

1 
7 

8 

5 

0 
2 

2 

6 

0 
2 

2 

Source: Data supplied by Yongyi Min. 

The complete data set is at www.stat.ufl.edu/~aa/ordinal/ord.html. 
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where tr is an indicator for whether the subject uses treatment A. The model fit 
suggests that treatment A has a lower expected number of episodes than treatment 
B, as βχ = 0.977 has SE = 0.431. The estimated odds that the number of side 
effects falls below any fixed level with treatment A are exp(0.977) = 2.7 times 
the estimated odds for treatment B. Time between visits has a negative effect 
on the cumulative logit and hence a positive effect on the expected number of 
episodes of the side effect, as expected, although it is not significant (βι = —0.153, 
SE = 0.181). The estimate σ„ = 1.73 (with SE = 0.25) of the variability among 
{«,} suggests considerable within-subject positive correlation among the repeated 
responses. 

10.2.4 Autoregressive Structure for an Ordinal Time Series 

The model fitting presented in Section 10.1.5 for a cumulative link model with a 
random intercept corresponds to a latent variable model 

y*t = a + ß'xit +Ui +€,-,, 

in which {w,·} are independent N(0, σ^) variates and {e,·,} are independent variates 
(over i and t) with distribution having a standardized cdf whose inverse provides the 
link function. In practice, even when such a linear predictor is sensible, sometimes 
it is not realistic to assume that e„ is uncorrelated with e,y. Correspondingly, 
for the observed response yu, it may not be realistic to assume that yu and ;y„< 
are uncorrelated, conditional on M,·. An example is a longitudinal study for which 
each cluster consists of a long time series of observations. We then often expect 
observations within a cluster to be more strongly correlated when \t —t'\ is small 
than when \t — t'\ is large. 

Varin and Czado (2010) provided a cumulative probit model for which {e„} 
have, instead, a Markov autoregressive structure. For this model, given e,-,r_i, e„ is 
independent of e,-,/-2> e;,t-3, This structure implies that {eir} are correlated but 
with weaker correlations farther apart in time. A severe complication then is that 
the integral that determines the likelihood function is much more complex, since 
the joint distribution of the observations, given «,, no longer factors into univariate 
components. Since ML is intractable with this model for large clusters, they pro-
posed a pseudolikelihood model-fitting method based on the composite likelihood 
approach that uses contributions to the likelihood function for pairs of observations 
that are close together in time. As a consequence, the integrals that need to be eval-
uated are bivariate. This approach is much simpler for cumulative probit models 
than for other cumulative links, because (as we explain further in Section 10.5.1) 
averaging out the random effects yields a multivariate normal density function, so 
the pseudolikelihood approach then integrates bivariate normal densities. Varin and 
Czado illustrated their method with a longitudinal study on the determinants of 
migraine headache severity that recorded four observations per day on each subject 
for anywhere between 4 and 338 days. 
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10.3 MODELS WITH MULTIPLE RANDOM EFFECTS 

Ordinal logit models with random intercepts such as the cumulative logit model 
(10.1) generalize to incorporate multiple random effects. The more general cumu-
lative logit model of proportional odds form is 

logit[P(r„ <j)]=aj+^wit+fi%„ 7 = 1 c - 1 . (10.4) 

The multivariate random effects u, have their own explanatory variables. The ran-
dom intercept models in Sections 10.1 and 10.2 had univariate w„ = 1 and u, = «,·. 
The random effect u, in (10.4) is usually assumed to have a multivariate normal 
distribution with unknown variances and correlations. In this section we present 
examples in which bivariate random effects are natural in ordinal logit models. A 
separate strand of research, not considered here, constructs models for a multivariate 
normal latent variable. See, for example, Todem et al. (2007). 

10.3.1 Random Intercepts and Random Slopes 

One important model of the form (10.4) has a random slope as well as a ran-
dom intercept. Such a model allows an explanatory variable effect as well as the 
intercept to vary among clusters. For example, consider a randomized clinical trial 
that observes subjects initially on an ordinal response variable and then randomly 
assigns them to a treatment or control group and observes them at several follow-up 
occasions. Let y,-t be the ordinal response for subject i at time i, and let x, be an 
indicator for subject i that takes value 1 for treatment and 0 for control. Consider 
the model 

\ogit[P(Yit < ; )] = ui + aj + βιχ, + (ß2 + υ,)ί + #,(*, x f), 

where («,, υ,) has a bivariate normal distribution with means 0 and unknown stan-
dard deviations σ„ and σ„ and correlation p. 

In this model, β\ is the treatment effect initially (i.e., at t — 0), expected to be 0 
because of randomization to the treatment and control groups. At follow-up times, 
the cumulative logit has linear trend over time with slope βι + υ; for a subject from 
the placebo group and slope βι + βτ,Λ-1>,· for a subject from the treatment group. 
That is, the model allows the trend over time to vary from subject to subject, with 
a mean of ßi for the placebo group and a mean of βι + β^ for the treatment group. 
Section 10.3.3 illustrates this type of model in the context of a psychiatric study. 

10.3.2 Comparing Models with Differing Numbers of Random Effect Terms 

A model with a random intercept M, and a random slope υ,- has three parameters 
associated with the random effects: σ„ and συ and p = Corr(«,, i>,). Suppose that 
you want to test whether the random component υ, of the slope effect can be 
dropped from the model, giving a model having the same slope in every cluster. 
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The simpler model has two fewer parameters, lacking συ and p. The asymptotic 
distribution of the likelihood-ratio statistic comparing the two models is a mixture 
of two chi-squared distributions, one with df = 1 and one with df — 2 (Molenberghs 
and Verbeke 2007). 

More generally, to compare nested models with k versus k + 1 correlated random 
effects, the null distribution of the likelihood-ratio statistic is an equal mixture of 
chi-squared distributions with df = k and df = k + 1. The P -value is the average 
of the right-tail probabilities above the observed test statistic value for the two 
distributions. The result mentioned in Section 10.1.6 for testing Ho: σ„ = 0 in a 
random intercept model is the special case with k — 0; in that case, the chi-squared 
distribution with df = 0 is degenerate at 0. 

10.3.3 Example: Evaluating a Drug for Schizophrenia 

In a psychiatry study, Hedeker and Gibbons (1994, 2006, Sec. 10.3) applied ordinal 
models having both a random intercept and a random slope. Patients suffering from 
schizophrenia were randomly assigned to receive a antipsychotic drug or placebo. 
The patients were then observed weekly for up to six weeks on an ordinal severity 
of mental illness scale: normal or borderline, mild or moderate, marked, severe. The 
data were also analyzed2 by Rabe-Hesketh and Skrondal (2008, Chap. 7). Here we 
summarize some models and analyses, and the books cited provide further details. 

Let Xi be an indicator variable for group (1 = drug, 0 — placebo). For each 
group, the cumulative logits have approximately a linear trend over time when 
time is measured by the square root of the week number / for the observation. 
Over the six weeks, the proportion in the first category increased from 0.0 to 0.1 
for the placebo group and from 0.0 to 0.35 for the drug group. 

Suppose that we naively ignored the repeated measurement aspect of the study 
and treated the several observations for each patient as independent, using the 
model 

logit[P(y/r < j)] = a, + βιχι + ß2ft + ß3(xi x VF) 

assuming independent multinomial observations. Table 10.4 shows some results 
for this marginal model. On the root-time scale, the time effect has estimated 
trend of fa = 0.54 for the placebo group and β\ + βτ, — 1.29 for the drug group. 
This model ignoring the clustering is inappropriate for obtaining SE values, and 
Table 10.4 does not report them. 

To reflect the clustered nature of the data, we add a random intercept for each 
patient, 

logit[/>(K,·, < j)] = Ui + otj + ßixi + h*ß + ßj,(xi x sit). 

The previous model is the special case in which σ„ = 0. The trend effects are now 
subject specific rather than population averaged. The time effect has estimated 

2The data are at the web site www.stata-press.com/data/mlmus2.html. 
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TABLE 10.4. Results for Cumulative Logit Models Fitted to Data from Study 
Comparing Drug to Placebo for Treating Schizophrenia, with SE Values in 
Parentheses 

Cumulative Logit Model 
Effect 

Treatment (βι) 
Time (ft) 
Interaction (ft) 
σ for («,·, v;) 
Log-likelihood 

Marginal 

0.00 
0.54 
0.75 

(0.0, 0.0) 
-1878.1 

Random Intercept 

0.05 (0.31) 
0.77 (0.12) 
1.21 (0.13) 
(1.94,0.0) 
-1701.4 

Random Intercept/Slope 

-0.11 (0.40) 
0.88 (0.24) 
1.72(0.27) 

(2.67, 1.43) 
-1662.8 

Source: Results from Hedeker and Gibbons (2006) and Rabe-Hesketh and Skrondal (2008). 

trend βι = 0.77 for the placebo group and β\ + ßi — 1 -97 for the drug group. 
Results are substantively similar but effects are larger because they are subject 
specific. (In Section 10.5.1 we explain why cluster-specific effects tend to be larger 
than population-averaged effects, more so as au increases.) The estimate σ„ = 1.94 
reflects considerable heterogeneity among the patients in their propensity toward 
being mentally well. 

To permit the slope of the time effect also to vary among patients, we use the 
model with both a random intercept and a random slope, 

\o%\t[P{Yit < j)] = Ui + Uj + ßixt + ifii + Vi)Vi + ßiixi x Vt), 

where (M, , υ,) have a bivariate normal distribution with standard deviations (au, σν). 
The foregoing model is the special case in which συ = 0. Table 10.4 shows that 
the time trend effect varies around an estimated mean of ßj = 0.88 for the placebo 
group and an estimated mean of /Ö2 + ßs = 2.60 for the drug group, with standard 
deviations συ — 1.43. The large ratio (^3/SE) provides strong evidence that the 
mean trend is greater for the drug than for placebo. 

To analyze whether adding the random effects improved the fit, we compare 
maximized log-likelihood values for the three models. Rabe-Hesketh and Skron-
dal (2008, p. 301) reported that double the difference of log-likelihoods for the 
model with the random intercept and the simpler model having σ„ = 0 is 353. 
The asymptotic null distribution under HQ: au = 0 is an equal mixture of χ2 and 
degenerate at 0, so there is extremely strong evidence that the random intercept 
model is preferred. Double the difference of log-likelihoods for the model with the 
random intercept and random slope and the simpler model having συ = 0 is 77. 
The asymptotic null distribution under Ho: σν = 0, in which case Corr(w,, υ,) = 0 
also, is an equal mixture of χ2 and χ | . So there is extremely strong evidence that 
it is helpful to permit both random intercepts and random slopes. The estimated 
corr(w,, Vj) is —0.41. Those having less of a propensity to be mentally well tended 
to have a greater rate of improvement in their responses. 

Table 10.4 shows that the SE values of the trend effects increase when we permit 
the slopes to vary among patients. This merely reflects that an estimate of a mean 
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effect has smaller SE when the effect is assumed to have no variability than when 
it is permitted to vary. The smaller SE for the simpler model can be misleading if 
the model fails to capture an important source of variability. 

More generally, a model could allow (Μ,-, υ,) to have different covariance struc-
ture for the treatment and placebo groups. This would be useful, for example, if 
subjects in the placebo group have slopes that vary relatively little (perhaps about 
a small value or even 0) whereas subjects in the treatment group have slopes 
that vary substantially, with some subjects having essentially no change over time 
but others showing a rapid improvement. Additional useful analyses include pre-
dicting subject-specific cumulative probabilities or averaging over the estimated 
random effects distribution to estimate population-averaged effects for the implied 
marginal model. For details, see Hedeker and Gibbons (2006) and Rabe-Hesketh 
and Skrondal (2008). 

10.3.4 Example: Heterogeneity in Multicenter Clinical Trials 

Many applications deal with a comparison of two groups on an ordinal response for 
data stratified on a third variable. The data form several 2xc contingency tables. 
The goals include summarizing the association in the 2xc tables and analyzing 
whether and how that association varies among the strata. 

The strata are sometimes themselves a sample, such as a sample of schools in 
a state or a sample of medical centers in a nation. A random effects approach is 
then natural, treating each stratum as a cluster. With a random sampling of strata, 
inferences can extend to the population of strata. The fit of the random effects model 
provides a simple summary such as an estimated mean and standard deviation of 
cumulative log odds ratios for the population of strata. In each stratum the model 
can also predict the cumulative log odds ratio by shrinking the sample cumulative 
log odds ratios toward the mean. This is especially useful when the sample size in 
a stratum is small and ordinary sample log odds ratios have large standard errors 
or are even infinite. Even when the strata are not a random sample or not even a 
sample and a random effects approach is not as natural, the model is beneficial for 
these purposes. 

Table 10.5, analyzed by Hartzel et al. (2001a), is an example of this type. This 
table shows results for eight centers from a double-blind, parallel-group clinical 
study. The study was designed to compare an active drug with a placebo in the 
treatment of patients suffering from asthma. Patients were randomly assigned to 
the treatments. At the end of the study, investigators described their perception 
of the patient's change in condition, using the ordinal scale (much better, better, 
unchanged or worse). 

We will use random effects models to compare the treatments while simul-
taneously investigating potential treatment x center interaction and modeling the 
association variability among centers. In doing so, even though the clinics were 
not randomly chosen, the assumption of a random clinic effect yields statistical 
inferences that better capture the variability inherent in this setting than when 
clinic effects are considered fixed. In addition, the random effects approach more 
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TABLE 10.5. Clinical Trial Relating Treatment to Response for Eight Centers 

Center 

1 

2 

3 

4 

5 

6 

7 

8 

Treatment 

Drug 
Placebo 
Drug 
Placebo 
Drug 
Placebo 
Drug 
Placebo 
Drug 
Placebo 
Drug 
Placebo 
Drug 
Placebo 
Drug 
Placebo 

Much 
Better 

13 
1 
2 
2 

11 
2 
7 
0 

15 
1 

13 
4 
7 
1 

15 
3 

Response 

Better 

7 
1 
5 
2 

23 
8 

11 
3 
3 
1 
5 
0 
4 
1 
9 
2 

Unchanged 
or Worse 

6 
10 
10 

1 
7 
2 
8 
2 
5 
5 
5 
1 

13 
11 
2 
2 

Source: Data supplied by I. Liu. 

naturally directs the inferences toward the true population of interest (i.e., for all 
such centers) rather than only these eight centers. The fixed effects models have 
the limitation that their inferences, strictly speaking, apply only to those centers. 
Ideally, for random effects modeling, we would prefer to have more than the eight 
strata in Table 10.5. Keeping in mind the limitations of a small number of (non-
randomly chosen) centers and sparse data, we use these data to illustrate ordinal 
GLMMs having both a random intercept and a random treatment effect. 

Let Yj, denote observation t in center i, and let JC„ denote a treatment indicator 
variable (drug = 1, placebo = 0). The cumulative logit random-intercept model 
with proportional odds structure is 

logit[P(y„ < j)] = u{ + aj + ßxit, 7 = 1,2. (10.5) 

where {«,} are independent N(0, σ„) variates. This model assumes that each center 
has the same cumulative log odds ratio β. A more general model that permits 
heterogeneity in the cumulative log odds ratios is 

\ogit[P(Yit < j)] = Ui + aj + (β + vi)xit, j = U 2, (10.6) 

where {(«,, υ,)} are independent bivariate normal random effects having means 
(0, 0), standard deviations (σ„, σ„), and correlation p. Parameters of main interest 
are the mean β and the standard deviation σ„ of the center-specific cumulative log 
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odds ratios {ß + v,}. We could also consider a more complex cutpoint structure that 
replaces w, + <xj by a vector of random effects {«,;, j = 1 , . . . , c — 1}. Although 
such a model fits better, it can present computational problems3 for sparse data 
such as in Table 10.5. In addition, this more complex modeling usually has little 
impact on the question of main interest, namely, on estimating ß and σν. 

The homogeneity cumulative logit model (10.5), which has only a random center 
intercept, has β = 0.95 and SE = 0.28. Model (10.6), which allows heterogeneity 
in the treatment effects among centers, has β — 0.92 with SE = 0.53. Although the 
treatment estimate is similar for this more complex model, the SE is much larger. 
This larger SE results from the extra source of variability represented by {i>,} and 
described by συ = 1.22. That is, model (10.6) predicts that cumulative log odds 
ratios vary among centers with a mean of 0.92 and a standard deviation of 1.22. 
The SE of ß in the heterogeneity model is similar to that of the corresponding β 
in a homogeneity model only when σν is close to 0. 

We can test the hypothesis of homogeneity of the cumulative odds ratios across 
centers (Ho: συ = 0) by comparing these two models. The likelihood-ratio test 
statistic is the difference in the maximized 2(log-likelihood) values, which equals 
5.9. Under HQ, this statistic has asymptotic distribution that is an equal mixture of 
two chi-squared distributions, with df = 1 and with df = 2. The P-value is 0.03, 
the average of the tail probabilities above 5.9 for χ,2 and χ | variates. There is 
considerable evidence of heterogeneity. Recognizing the heterogeneity, we must 
be content with a less precise estimate of the overall association level. 

Table 10.6 shows the predicted values for the cumulative log odds ratios accord-
ing to model (10.6), based on predicting the value of u, and finding β + £,-. The 
predicted value C, equals the estimate of its expected value, given the data. (The 
standard errors provided in the table were found using a Laplace approximation 
to the conditional mean-squared error of prediction.) The random effects estimates 
"borrow from the whole" using data from all the centers to estimate the cumulative 
log odds ratio in each center. Because of this, they show considerable shrinkage 
toward the mean compared to the estimates from a fixed effects model that allows 
heterogeneous effects, which uses the data in a center alone to estimate the cumula-
tive log odds ratio in that center. The table also shows these estimates. For instance, 
the negative estimates of —1.62 and —1.06 shrink to —0.62 and —0.10. When data 
sets have small sample sizes per stratum, shrinkage of effect estimates is highly 
appealing for models permitting heterogeneity, since the stratum-specific sample 
estimates are then likely to exhibit more variability than the true parameters. In 
particular, a stratum-specific estimate is infinite when none of the sample pairs of 
observations in the stratum are concordant or none are discordant. 

Next, we consider the significance of the treatment effect, by testing HQ : β — 0. 
We begin with the homogeneous effect model, but only for illustrative purposes, 
since it fits poorly. For the model (10.5) with random center effects, the likelihood-
ratio statistic equals 12.0 (P < 0.001). This test, coupled with the positive sign for 
β, provides strong evidence that the response tends to be better with drug than with 

3See www.stat.ufl.edu/~aa/ordinal/data.html for SAS NLMIXED code. 
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TABLE 10.6. Summary of Center-Specific Cumulative Log Odds Ratio Estimates and 
Standard Errors for Treatment Effects with Fixed and Random Effects Heterogeneity 
Models Applied to Table 10.5 

Effect 

Center 1 
Center 2 
Center 3 
Center 4 
Center 5 
Center 6 
Center 7 
Center 8 

Fixed Effects Model 
Estimate 

3.03 
-1.62 

0.20 
0.71 
2.84 

-1.06 
1.76 
0.83 

SE 

0.87 
0.95 
0.55 
0.85 
0.95 
1.21 
0.87 
0.82 

Random Effects Model 
Estimate 

2.35 
-0.62 

0.32 
0.76 
2.11 

-0.10 
1.53 
0.84 

SE 

0.75 
0.92 
0.52 
0.72 
0.83 
0.94 
0.73 
0.73 

placebo. However, we've seen that the homogeneity assumption is unrealistic. In 
the heterogeneous association model (10.6), the likelihood-ratio statistic for testing 
HQ : ß — 0 that the mean of the cumulative log odds ratios is zero equals 2.5 
with df = 1 (P-value = 0.11 for Ha : β φ 0). The evidence of a treatment effect 
is considerably weaker, and that effect is then a mean effect rather than a common 
effect for each stratum. In using more realistic models permitting heterogeneity, 
it can be more difficult to establish significance of effects because of the extra 
variability inherent in the model. 

Similar substantive results occur for corresponding models using adjacent-
categories logits. With a heterogeneity model, β = 0.63 with a standard error 
of 0.34. Again the standard error is considerably larger than for a homogeneity 
model, for which β = 0.65 with a standard error of 0.19. The variability among 
{u,·} is described by συ = 0.77. 

These models summarized between-strata heterogeneity but have a single 
parameter describing association within each stratum. Although it is also 
unrealistic to think that all odds ratios within a stratum are truly exactly equal, in 
practice it is often sufficient to summarize the overall association within a stratum 
and describe the variability in that overall association across strata. An alternative 
approach models the heterogeneity both within and between strata. See Hartzel et 
al. (2001a) and Coull and Agresti (2003). 

10.3.5 Example: Toxicity Study Using Continuation-Ratio Logits 

For continuation-ratio logit models with ordinal responses, the logits refer to inde-
pendent binomial variates (Section 4.2). Thus, binary logistic random effects models 
apply to clustered ordinal responses using continuation-ratio logits (e.g., Ten Have 
and Uttal 1994). For observation t in cluster i, let 

P(Yit = j I Yi, > j ; 
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Let riij be the number of subjects in cluster / that make response j . Let 
«, = Yfj=inij. For a given cluster in a continuation-ratio logit model, treating 
«ii. · · · . ii,c-i as multinomial is equivalent to treating the separate counts as 
a sequential set of independent binomial variates, where n,7 is binomial for 
(«,· — J2h<j nih) trials with parameter ω^, j — 1 , . . . , c — 1. 

We illustrate with a developmental toxicity study conducted under the U.S. 
National Toxicology Program. This study examined the developmental effects of 
ethylene glycol (EG) by administering one of four dosages (0,0.75, 1.50, 3.00 g/kg) 
to pregnant rodents. The four dose groups had (25, 24, 22, 23) pregnant rodents. 
The clusters are litters of mice. The three possible outcomes are dead/resorption, 
malformation, and normal. Table 10.7 shows the data. The continuation-ratio logit 
is natural here because categories are hierarchically related, in the sense that an 
animal must survive before a malformation can take place. Coull and Agresti (2000) 
presented the following analyses. 

For litter i in dose group d, let logit[w,(d)i] be the continuation-ratio logit for 
the probability of death, and let logit[ft>,·^] be the continuation-ratio logit for 
the conditional probability of malformation, given survival. (The notation i(d) 
represents litter i nested within dose d.) Let xj be the dosage for group d. We 
account for the litter effect using litter-specific random effects u^d) = («ί(<ί)ΐ, «i(d)2) 
sampled from a bivariate normal distribution with mean 0 and covariance matrix 
Y,d that may vary according to the dosage level xj. This bivariate random effect 
allows for differing amounts of overdispersion for the probability of death and for 
the probability of malformation, given survival. A model also permitting different 
fixed effects for each is 

\ogit[wiid)j] = Ui(d)j + cij + βμά· (10.7) 

TABLE 10.7. Response Counts for 94 Litters of Mice on Numbers (Dead, Malformed, 
Normal) for Fetuses in the Litters 

Dose = 0.00 g/kg Dose = 0.75 g/kg Dose = 1.50 g/kg Dose = 3.00 g/kg 

(1,0, 7), (0, 0, 14) 
(0, 0, 13), (0, 0, 10) 
(0, 1, 15), (1, 0, 14) 
(1, 0, 10), (0, 0, 12) 
(0,0, 11), (0,0, 8) 
(1, 0, 6), (0, 0, 15) 
(0, 0, 12), (0, 0, 12) 
(0, 0, 13), (0, 0, 10) 
(0,0, 10), (1,0, 11) 
(0, 0, 12), (0, 0, 13) 
(1,0, 14), (0, 0, 13) 
(0, 0, 13), (1, 0, 14) 
(0, 0, 14) 

(0, 3, 7), (1, 3, 11) 
(0, 2, 9), (0, 0, 12) 
(0, 1, 11), (0, 3, 10) 
(0,0, 15), (0,0, 11) 
(2, 0, 8), (0, 1, 10) 
(0, 0, 10), (0, 1, 13) 
(0, 1, 9), (0, 0, 14) 
(1, 1, 11), (0, 1,9) 
(0, 1, 10), (0, 0, 15) 
(0, 0, 15), (0, 3, 10) 
(0, 2, 5), (0, 1, 11) 
(0, 1, 6), (1, 1, 8) 

(0, 8, 2), (0, 6, 5) 
(0, 5, 7), (0, 11,2) 
(1, 6, 3), (0, 7, 6) 
(0, 0, 1), (0, 3, 8) 
(0, 8, 3), (0, 2, 12) 
(0, 1, 12), (0, 10, 5) 
(0, 5, 6), (0, 1, 11) 
(0, 3, 10), (0, 0, 13) 
(0, 6, 1), (0, 2, 6) 
(0, 1, 2), (0, 0, 7) 
(0, 4, 6), (0, 0, 12) 

(0, 4, 3), (1, 9, 1) 
(0,4, 8), (1, 11,0) 
(0, 7, 3), (0, 9, 1) 
(0, 3, 1), (0, 7, 0) 
(0, 1, 3), (0, 12, 0) 
(2, 12,0), (0,11,3) 
(0, 5, 6), (0, 4, 8) 
(0, 5, 7), (2, 3, 9) 
(0, 9, 1), (0, 0, 9) 
(0, 5, 4), (0, 2, 5) 
(1,3, 9), (0, 2, 5) 
(0, 1, 11) 

Source: Study described in article by C. J. Price, C. A Kimmel, R. W. Tyl, and M. C. Marr, Toxicol. 
Appl. Pharmacol. 81, 113-127 (1985). 
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TABLE 10.8. Comparisons of Log Likelihoods for Multivariate Random Effects 
Models for the Developmental Toxicity Study Summarized by Table 10.7 

Model 

Dose-specific Σ, 
Σ,·, common a, β 
Common Σ 
Common Σ, p = 0 
Univariate σ2 

Number of 
Parameters 

16 
14 
7 
6 
5 

Change in 
Parameters 

2 
9 

10 
11 

Change in 
Log Likelihood 

28.4 
7.4 
7.4 

16.7 

Table 10.8 reports the change in the maximized log likelihood from fitting four 
special cases of this model: 

• Common intercept and slope for the two logits a\ — ai and β\ = βι. 
• Common covariance matrix for the four doses Σ ι = Σ 2 = Σ3 = Σ4· 
• Common covariance matrix and uncorrelated random effects. 
• Univariate common variance components across dose: «,·(</)ι = ";(d)2 and 

Od — Ou. 

Tests of the first three special cases against the general model (10.7) can use 
ordinary likelihood-ratio tests. It seems adequate to use the simpler model having 
uncorrelated random effects with homogeneous covariance structure (i.e., the fourth 
model listed in Table 10.8), since the likelihood-ratio statistic comparing this to 
model (10.7) equals 2(7.4) = 14.8 (df = 10). The model provides a separate model 
for each conditional binomial outcome, specifying that the proportion of dead pups 
and the proportion of malformed pups (given survival) are independent, both within 
litter and marginally. 

The univariate model in Table 10.8 is the special case of the third model listed 
in which the variances are common for the two logits and the random effects 
are perfectly correlated. Hence, it reduces to a univariate random effects model. 
According to standard model selection criteria such as the AIC, the univariate 
model is inadequate. 

The ML estimated effects for the separate model for each conditional binomial 
outcome are β\ = 0.08 (SE = 0.21), β2 = 1.79 (SE = 0.22). For a given cluster, 
there is no evidence of a dose effect on the death rate, but the estimated odds of 
malformation, given survival, multiply by exp(1.79) = 6.0 for every additional g/kg 
of ethylene glycol. The variance component estimates suggest a stronger litter effect 
for the malformation outcome given survival (<72 = 1-6) than for death {σ\ = 0.5). 

10.3.6 More Complex Models with Multiple Random Effects 

Cumulative logit model (10.4) has the proportional odds structure 

logit[P(y„ < y ) ] = a , + u > i f + 0'xi(, j = 1 c - l , (10.8) 



MULTILEVEL (HIERARCHICAL) ORDINAL MODELS 303 

by which the effects are the same for each cumulative probability. More general 
models permit fixed effects ßj that vary for different cumulative logits for at least 
some predictors (i.e., partial proportional odds, as in Section 3.6.4). However, 
such models have a structural problem whereby cumulative probabilities may be 
misordered at some predictor settings. See Hedeker and Mermelstein (1998) and 
Hedeker and Gibbons (2006, Sees. 10.2.1, 10.2.4). 

The proportional odds structure fails when different groups have different dis-
persion. An alternative approach generalizes the model introduced in Section 5.4, 
which includes dispersion effects. The generalized model has the form 

iogit[P(r,r < y)] = -!■—' ' ; " . 
exp(y'x/r) 

See Ishwaran and Gatsonis (2000) and Hedeker et al. (2006) for examples. 
In model (10.8), each logit for cluster i has the same random effect u,·. Such 

simplifications result naturally from underlying latent variable models for which 
the latent response variable has a logistic distribution. Tutz and Hennevogl (1996) 
considered a more general model that allowed a different random effect u,v· for each 
cumulative logit. This is the natural approach for a baseline-category logit model 
with random effects for a nominal response variable. Estimation in this extended 
model is more complicated, because the intercepts must be reparameterized to 
ensure that their ordering is not violated. 

Alternative ordinal models use other ordinal logits or link functions. The com-
plementary log-log link is useful for survival data (Hedeker and Gibbons 2006, 
Sec. 10.2.3; Rabe-Hesketh and Skrondal 2008, Sees. 8.6-8.8). When the adjacent-
categories logit (ACL) model has the same predictor form as model (10.8), ß has 
log odds interpretations for all pairs of adjacent categories. Since intercepts in the 
ACL model are unordered, an extended model permitting different random effects 
for each logit does not require reparameterization and has the form 

lQg ρ Γ ν σ - = J2n=aJ+ uo-w'-' + P"x '" J = l . . . . . c - 1 . (10.9) 

The ACL model is equivalent to a baseline-category logit (BCL) model with an 
adjusted model matrix. The random effect u,j in the BCL model then corresponds 
to u,j + · · · + U;,c_i from the ACL model. Thus, a simple covariance structure for 
the random effects in the ACL model implies a certain pattern for the covariance 
matrix for the random effects in the baseline-category logit model. An advantage of 
such a general model is that it may fit better. A disadvantage is that having a larger 
vector of random effects makes model fitting more challenging. When the main 
interest is in estimating the fixed effects, the simpler model is usually adequate. 

10.4 MULTILEVEL (HIERARCHICAL) ORDINAL MODELS 

Hierarchical models describe observations that have a nested nature: Units at one 
level are contained within units of another level. Such data are common in certain 
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application areas, such as in educational studies. Models that take into account 
the hierarchical nature of the observations are called multilevel models. Random 
effects can enter the model at each level of the hierarchy. 

Simple random effects models having a random intercept can be regarded as 
multilevel models. The first level consists of the observations that are nested within 
the clusters. The second level consists of the clusters themselves, represented by 
the random effects. In a three-level model, the second level would itself be nested 
within a third level, such as when multiple observations (level 1) on a student (level 
2) occur within different schools (level 3). The following example of a three-level 
model is based on a data set analyzed by Rampichini et al. (2004). 

10.4.1 Example: Student Evaluations of University Courses 

Students at the University of Florence (Italy) evaluate several aspects of their 
courses, such as the clarity of the teaching, the clarity of the exam rules, and 
the teacher's ability to answer student questions. Each rating uses a four-category 
scale: decidedly negative, more negative than positive, more positive than negative, 
decidedly positive. We refer to the different aspects of the course that are evaluated 
as items. A model for analyzing factors that affect the student evaluation on a 
particular item might use explanatory variables that include (a) characteristics of 
the student, such as GPA, whether a full-time student, gender, level of student 
interest in the course, whether the student's previous knowledge was sufficient for 
meeting the demands of the course, and the student's level of expectations for the 
course; and (b) characteristics of the course, such as the subject matter, whether 
the course is required or an elective, and the amount of required reading material. 

Just as responses for two items by the same student might tend to be more 
alike than responses for those items by different students, so might responses on 
a particular item by two students in the same course tend to be more alike than 
responses on that item by students from different courses. Student and course might 
be treated as random effects, with different ones referring to different levels of the 
model. For example, a model might have the several evaluations of a course by a 
student at level 1, a random effect for each student at level 2, and a random effect 
for the course at level 3. A multilevel cumulative link model then has a random 
effect for each student in a course, a random effect for each course, and fixed 
effects for a set of explanatory variables. 

Let y,(fc), denote the ordinal evaluation response for student i in course k for 
item t in the battery of items evaluated. A linear model for an unobserved latent 
response variable y*(k)l naturally induces a cumulative link model, as observed in 
Section 3.3.2. Let x,·^), denote the values of predictor variables for this evaluation. 
Suppose that 

3Ί**)/ ="k + υ,·(*) + ß'xmt + €nk)t, 

where e,·^); has a standardized distribution such as the standard normal. We observe 
ynk)t in outcome category j if y*(jk)< falls between α,·_ι and a ; . The model for the 
observed response y,^), then has the form 

link [P(ymt < j)] = uk + vm + a,· + ß'\mt. 
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This is a cumulative probit model when we assume a normal distribution for e,·^), 
and a cumulative logit model when we assume a logistic distribution. 

Here the explanatory variables x would include one that identifies the item eval-
uated. The random effects Uk for courses and υ,·(*> for students within courses are 
independent with different variance components. The student random effects {υ,(*)} 
account for variability among students in characteristics not measured by x. When 
they have a relatively large variance component, there is a strong correlation among 
the various ratings by a student (recall Section 10.1.3). The course random effects 
{«*} account for variability among courses. Predicted values of these describe the 
effect of the course on the student evaluations, conditional on the explanatory vari-
ables and the student random effect. They serve as adjusted indicators of the course 
quality. 

For this model, two ratings of the same course are correlated, but conditional 
on the explanatory variables, two ratings of different courses are uncorrelated. In 
practice, the same student may rate more than one course. This requires more 
complex modeling, because the student is then partially cross-classified with the 
course rather than nested within a single course. See Rampichini et al. (2004) and 
Skrondal and Rabe-Hesketh (2004, pp. 60-63, 321-348) for discussion, references, 
and examples. 

10.4.2 Example: Effectiveness of Sex Education 

In this section we describe an example analyzed in detail in Skrondal and Rabe-
Hesketh (2004, Sec. 10.2), based on a study that evaluated a sex education program 
for 15- and 16-year-old students in Norway. Schools participating in the study were 
randomly assigned to administer or not administer the sex education course. We 
refer to the two groups of schools as the treatment group and the control group. 
Students were observed at the time of randomization and then six months and 18 
months after the randomization, in terms of their responses to the statement, "If my 
partner and I were about to have intercourse without either of us having mentioned 
contraception, I could easily get out a condom (if I had one with me)." The ordered 
response categories were (not at all true, slightly true, somewhat true, mostly true, 
completely true). 

A model can contain random effects for the students to account for the likely 
positive association for repeated observations on the same student. It can also 
contain random effects for the schools to account for observations from students 
in the same school tending to be more alike that observations from students in 
different schools. Let y^, denote the response for student i in school k at time 
t following the randomization, measured in six-month multiples (i = 0 for initial, 
f = 1 for six months, t — 3 for 18 months). Let x be an indicator of whether the 
student was in the treatment group of schools (1 — yes, 0 = no). The model 

logit[P(y,Wr < j)] = uk + vm +otj+ßit + ß2x + ßi(t x x) 

allows the time trend to differ for the treatment and control groups. This model, 
with two random intercepts, has the same form as described in the preceding 
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example. Skrondal and Rabe-Hesketh reported that the school random effect w* 
had estimated variance of 0 and could be dropped from the model. By contrast, 
the within-subject associations between pairs of times were reflected by a variance 
estimate of 2.03 (SE = 0.31) for the subject random effect t>i(*). 

For this model or the simpler one without the school random effect, the fixed 
effects estimates were βλ = 0.13 (SE = 0.06), ß2 = 0.02 (SE = 0.19), and ß\ = 
-0.17 (SE = 0.09). The ß2 value estimates the treatment effect initially, and this 
was essentially 0 as expected by the randomization. The time trend was estimated to 
be ß\ =0.13 (perhaps surprisingly) for the control group and ßl + ß3 = —0.04 for 
the treatment group. The difference —fo =0.17 and the corresponding cumulative 
odds ratio of exp(0.17) = 1.19 indicates that after six months the change in the 
odds of a relatively high response instead of one below that is 19% higher in 
the treatment group than in the control group. But this effect is only marginally 
statistically significant. 

At each time, students also responded to two other statements using the same 
response scale: "If my partner and I were about to have intercourse without either 
of us having mentioned contraception, I could easily tell him/her that I didn't 
have any contraception" and "If my partner and I were about to have intercourse 
without either of us having mentioned contraception, I could easily ask him/her if 
he/she had any contraception." One can build a model that considers all three items 
simultaneously. Let ynk)st denote the response for student i in school k to item s 
at time t after the randomization. If responses merely tend to shift in location for 
the various items, the model 

logit[P(yi(k)st < ;')] = w,· + vm + a,· + Ss + ßxt + ß2x\ + #j(r x xi) 

with a constraint such as S\ = 0 may be adequate. 
This model could be generalized in various ways. To allow the item effects to 

vary by time, we could add an item x time interaction term. More complex random 
effect structure can also be useful: for instance to allow the associations among 
the repeated responses for the various times to differ according to the item. In 
such a case, it is still often sensible to expect that a student who has a relatively 
high response on one item will tend to have a relatively high response on another 
item. Then we could allow the random effect for each subject to be scaled larger 
or smaller as we move from item to item. One way to do this is to replace the 
subject random effect«, in the model by a term Xsiij, where M, is a standard normal 
random variable. Then the standard deviation of the random effects is Xs for item 
s. More generally, we could let the subject random effects vary by the item or vary 
by the occasion. See Skrondal and Rabe-Hesketh (2004) for details. 

10.5 COMPARING RANDOM EFFECTS MODELS AND MARGINAL 
MODELS 

In Chapters 9 and 10 we have presented three types of models for clustered, ordinal 
data: (1) Marginal models describe each Y, separately in terms of explanatory 



COMPARING RANDOM EFFECTS MODELS AND MARGINAL MODELS 307 

variables; (2) transitional models describe each Y, in terms of previous response 
observations such as y,-\ as well as the explanatory variables; and (3) random 
effects models describe each F„ in terms of explanatory variables, while sharing a 
random effect M, by the observations within cluster i to induce a joint distribution 
among the clustered observations. 

If we want to use past observations to predict future observations, thus describ-
ing effects of explanatory variables conditional on those past observations, it is 
natural to use transitional models. The choice between marginal models and ran-
dom effects models is not as clear-cut, because they both deal with using each 
observation in a cluster as a response variable. In this section we describe differ-
ences in interpretations for these two types of models and discuss factors that can 
influence the choice of the type of model. 

10.5.1 Differing Effects in Random Effects Models and Marginal Models 

As explained in Sections 8.2.6 and 10.1.4, effects of explanatory variables have 
different interpretations in random effects models than in marginal models. The 
parameters in random effects models have conditional, cluster-specific intepreta-
tions, given the random effect. By contrast, effects in marginal models are averaged 
over clusters (i.e., population averaged). 

The two types of effects not only have different interpretations but can have 
quite different sizes. In the arthritis study, the parameter estimates for the random 
effects model of Section 10.2.2 were about 50% larger than the estimates for the 
marginal model of Section 9.2.3 (see Table 10.2). One way to understand why 
this happens is to recall from Section 8.2.6 that a cluster-specific model applies 
naturally to probabilities for the data as displayed in a separate partial table for 
each cluster. By contrast, a marginal model applies naturally to the probabilities 
for the data collapsed over these partial tables. Basic results in contingency table 
analysis, such as Simpson's paradox, tell us that marginal associations can be quite 
different from the conditional associations. 

Another way to understand the distinction is to note that the difference in sizes 
of effects is caused by the link function being nonlinear. Figure 10.1 illustrates this 
for the first cumulative probability (y = 1) at a fixed value of t for a cumulative 
logit random intercept model. For a single quantitative explanatory variable x, 
the figure shows cluster-specific cumulative logistic curves for P(Yi, = 1 | M,·) for 
several clusters. The rate of increase in the curves reflects the size of the coefficient 
ß of x. In this figure, the considerable spread among the curves reflects substantial 
heterogeneity among the random effects {«,·}, corresponding to a relatively large σ„. 
At any fixed *-value, variability occurs in values of P{Yu = 1 | «;) for different 
i, and the average of these values is the marginal P(Y, = 1). These averages for 
various x-values yield the superimposed dashed curve that represents the marginal 
model. For that marginal (dashed) curve, the effect is considerably weaker than for 
each separate subject-specific curve. 

In summary, population-averaged effects in marginal models are smaller in 
magnitude than cluster-specific effects in random effects models. The difference 
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Figure 10.1. Logistic random-intercept model, showing the conditional (cluster-specific) curves and 
the marginal (population-averaged) curve averaging over these. 

between the two effects increases as the cluster-specific curves are more spread 
out, that is, as au increases. This is caused by the nonlinearity of the link function. 
By contrast, suppose that the curves were replaced by straight lines, corresponding 
to using the identity link function. Then the line connecting the average values of 
P(Yit = 1 | m) would have the same slope as that of each subject-specific line. 

In Section 10.1.3 we observed that as the random effects variability σ„ 
increases, so does the within-cluster correlation. So the stronger the association 
among responses within a cluster, the greater the difference between the parameter 
values in a random effects model and in the corresponding marginal model. To 
illustrate, relatively large heterogeneity was estimated for the cumulative logit 
model for the arthritis data in Section 10.2.2, with σ« = 1.92. Because of this, 
the estimates of the effects were considerably larger than those obtained for the 
corresponding marginal model in Section 9.2.3. 

Another relevant point here is that when a cumulative link random effects 
model holds, when we integrate out the random effects to obtain the corresponding 
marginal model, that marginal model does not exactly have the cumulative link 
model form, except when σ„ = 0. An exception occurs with the probit link. In that 
case, the cumulative probit random intercept model does imply a marginal model of 
cumulative probit form. Then, an effect in the probit random effects model equals 
the corresponding effect in the probit marginal model multiplied by (1 +σ^) 1 / 2 . 
When σ„ = (0,1, 2, 3), the ratio of the effect in the random effects model to the 
effect in the marginal model is (1.0, 1.4, 2.2, 3.2). 

When the cumulative logit random intercept model holds, the marginal model 
does not have cumulative logit form, but a cumulative logit model approximates 
the actual marginal model well. The effect in the random effects model equals 
the corresponding effect in the marginal model multiplied by approximately (1 + 
0.346σ^)1/'2. [The 0.346 multiple occurs because the standard logistic cdf at a point 
z is well approximated by the standard normal cdf at the point (16\/3/15ττ)ζ = 
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0.588z, and (0.588)2 = 0.346.] When au = (0,1, 2, 3,4), the ratio of the effect in 
the random effects model to the effect in the marginal model is about (1.0, 1.2, 
1.5, 2.0, 2.6). 

10.5.2 Example: Repeated Responses on Similar Survey Items 

Table 8.11 in Exercise 8.5 showed GSS data regarding government spending on (1) 
assistance to big cities, (2) law enforcement, (3) health, and (4) the environment, 
using the response scale (too little, about right, too much). Consider the random 
effects model 

logit[P(Yit <j)] = ui+aj+ßtxil, ./ = 1,2, ί = 1,2,3,4, 

where Xj, is an indicator variable that equals 1 for item t and equals 0 otherwise. 
With the constraint β^ = 0, Table 10.9 shows the ML estimates for β\, β2, βτ,, and 
σ„. By contrast, that table also shows the estimates for the corresponding marginal 
model, based on the GEE approach with independence working correlation. From 
the discussion above, the random effects model estimates should equal approxi-
mately the marginal model estimates multiplied by (1 +0.346σ2)'^2 = 1.10. The 
actual ratios of random effects model estimates to marginal model estimates are 
close to this, being 1.11 for β\, 1.10 for /32, and 1.16 for fa. The SE values 
have similar relative sizes, and the two approaches provide similar substantive 
conclusions. 

Let's compare effect interpretations, illustrating using β\. For the marginal 
model, β\ = —2.338 means that for the population marginal distributions, the 
estimated odds of response "too little" rather than "about right" or "too much" 
for spending on the environment were exp(2.338) = 10.4 times the corresponding 
estimated odds for spending on cities. By contrast, for the random effects model, 
βι — —2.586 means that for a given subject, the estimated odds of response "too 
little" rather than "about right" or "too much" for spending on the environment were 
exp(2.586) = 13.3 times the corresponding estimated odds for spending on cities. 

Next let's compare probability prediction, illustrating using the first category 
("too little"). Using predicted random effect values for the random effects model, 
given the data we can make subject-specific predictions. For example, each subject 
in the first cell (response in category 1 for each item) has predicted random effect 

TABLE 10.9. Results for Cumulative Logit Models Fitted to Table 8.11, with SE 
Values in Parentheses 

Estimate Random Effects Model Marginal Model (GEE) 

βι -2.586 (0.137) -2.338 (0.121) 
fh -0.510(0.128) -0.465(0.119) 
jk -0.088 (0.133) -0.076 (0.116) 
σ„ 0.78 (0.08) 
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w, = 0.718. The ML estimate of the first cutpoint parameter is «i = 1.114, so an 
estimated probability of category 1 for the response on cities is 

expjäj + äi + ßi) exp(0.718+1.114-2.586) 
l + e x p ( f i , + Ä i + Ä ) ~ l+exp(0.718+1.114-2.586) ~~ 

By comparison, each subject in the last cell (response in category 3 for each item) 
has w,· = —1.607, so an estimated probability of category 1 for the response on 
cities is then only 

expjüj + ά ι +ßQ _ exp(-1.607+ 1.114-2.586) _ „ „ , 
l + e x p ( K , · + « ! + & ) ~ l + e x p ( - 1 . 6 0 7 + 1.114 -2.586) ~ 

The marginal model does not generate such subject-specific estimates. For that 
model, ct\ — 0.997, so an estimated population-averaged probability of category 1 
for the response on cities is 

exp(«i+/3i) = exp(0.997 - 2.338) 
l + e x p ( f i i + 4 i ) 1 + exp(0.997 - 2.338) 

10.5.3 Choosing Between Random Effects Models and Marginal Models 

In Chapters 9 and 10 we have surveyed the use of marginal models and random 
effects models for clustered ordinal data. Agresti and Natarajan (2001) provided 
an earlier survey. What are the issues that affect the choice of one type of model 
over the other? 

We have seen that effect parameters are larger in random effects models than in 
marginal models, and more so as variance components increase. Usually, though, 
the significance of an effect is similar for the two model types. If one effect seems 
more important than another in a random effects model, the same is usually true 
with a marginal model. The choice of the model is usually not crucial to inferential 
conclusions. This statement requires a caveat, however, since sizes of effects in 
marginal models depend on the degree of heterogeneity in random effects models. 
In comparing effects for two groups or two variables that have quite different 
variance components, relative sizes of effects will differ for marginal and random 
effects models. The attenuation from the conditional to the marginal effect will 
tend to be greater for the group having the larger variance component. This remark 
is especially relevant when we allow different variability of random effects for two 
groups, such as mentioned near the end of the example in Section 10.3.3. 

Some statisticians prefer models with random effects over marginal models, 
because they more fully describe the structure of the data. The model provides a 
joint distribution for all the observations in a cluster and hence a likelihood function 
that can be used in the same way as with other statistical models. However, many 
statisticians believe that both model types are useful and that the choice of model 
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should depend on the purpose of the study. Different questions can suggest different 
models for the same data. 

Latent variable constructions used to motivate model forms such as the cumu-
lative probit and cumulative logit usually apply more naturally at the cluster level 
than the marginal level. Given a random effects model, we can in principle generate 
the estimated marginal distributions, although this may require extra work not read-
ily done by standard software. That is, a random effects model implies a marginal 
model. For example, with the cumulative probit link the marginal model also sat-
isfies a cumulative probit model, but with weaker effects. By contrast, a marginal 
model does not itself imply a random effects model, although it does implicitly 
determine the form of the fixed portion of the linear predictor in such a model, as 
defined by the integral equation linking the marginal and conditional cumulative 
probabilities (Heagerty and Zeger 2000b). In this sense, a random effects model 
contains more information than is contained in a marginal model. 

The random effects modeling approach is preferable if you want to fully model 
the joint distribution. That approach is also preferable if you want to estimate 
cluster-specific effects or estimate their variability, or if you want to specify a mech-
anism that could generate nonnegative association among clustered observations. 
Because a marginal model does not explicitly include random effects, it does not 
allow estimation of cluster-specific effects or probabilities. Some methodologists 
use random effects models whenever the main goal is to learn about within-cluster 
effects. In crossover studies such as the one analyzed in Section 10.2.1, the ran-
dom effects model is appropriate to obtain an estimate of the effects comparing 
treatments that is "within-subject," describing differences among treatments at the 
subject level. 

By contrast, if the main focus is on comparing groups that are independent 
samples, effects of interest are of between-cluster rather than within-cluster type. 
It is then often adequate to estimate effects with a marginal model. For example, 
if after a period of time we mainly want to compare the relative frequency of 
the best response category for those taking a new drug and for those taking a 
standard drug, a marginal model is adequate. In many surveys or epidemiological 
studies, the principal goal is to compare the relative frequency of occurrence of 
some outcome for different groups in a population. Then quantities of primary 
interest include between-group odds ratios comparing marginal probabilities for the 
various groups. When marginal effects are the main focus, it is simpler to model 
the margins directly and avoid trying to model aspects of the joint distribution that 
are not of particular interest in the study. One can then parameterize the model 
so that regression parameters have a direct marginal interpretation. Developing a 
more detailed model of the joint distribution that generates those margins, as a 
random effects model does, provides greater opportunity for misspecification. For 
example, with longitudinal data the assumption that observations are independent, 
given the random effect, need not be realistic. Or, the shape of the distribution of 
the random effects may be far from normal, or the variance of the distribution of 
the random effects may be quite different for some groups than for others. Having 
severe model misspecification can result in badly biased estimates of effects. 
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In summary, for studies that focus on the individual or the cluster, random effects 
models are natural, whereas for studies that focus on the population, marginal mod-
els are natural. For example, consider applications in medical research. Marginal 
models are usually sufficient for public policy decisions and epidemiological pur-
poses. However, for scientific understanding and clinical prediction, random effects 
models that focus on the individual as well as transitional models that use an 
individual's past observations to help predict the future are more informative. 

Finally, for the marginal model approach, we should recall a computational issue. 
ML is sometimes possible (e.g., with specialized functions such as the mph.fit 
function in R discussed in the Appendix), as shown for the crossover study in 
Section 8.4.3 and the diabetic retinopathy study in Section 9.1.3. However, the 
GEE approach is computationally simpler, especially for large T or mixed-cluster 
sizes, and it is more readily available with standard software. A drawback of the 
GEE approach is that likelihood-based inferences are not possible because the 
marginal model refers only to each marginal distribution and does not specify a 
joint distribution of the responses. Also, with missing data, potential bias is avoided 
with ML inference as long as data are missing at random, whereas GEE methods 
have the stronger requirement that data must be missing completely at random (see 
Section 9.2.5). 

CHAPTER NOTES 

Section 10.1: Ordinal Generalized Linear Mixed Models 

10.1. For factor analysis and latent class types of models for ordinal responses, 
see Samejima (1969), Bartholomew (1980, 1983), Croon (1990), Agresti and Lang 
(1993b), Qu et al. (1995), Bradlow and Zaslavsky (1999), Johnson and Albert 
(1999), Uebersax (1999), Anderson and Vermunt (2000), Moustaki (2000, 2003), 
Vermunt (2001), Quinn (2004), Todem et al. (2007), DeSantis et al. (2008), and 
Rabe-Hesketh and Skrondal (2008, Chap. 7). 

10.2. Harville and Mee (1984) proposed a cumulative probit random effects 
model that utilized Taylor series approximations for intractable integrals. Jansen 
(1990) and Ezzet and Whitehead (1991) proposed random intercept cumulative pro-
bit and logit models, respectively, and employed quadrature techniques. Böckenholt 
(1999) presented a Markov cumulative probit random intercept model. Kauermann 
(2000) used local smoothing in a cumulative logit model for longitudinal data. 
More general ordinal random effects models that allowed multiple random effects 
were proposed by Hedeker and Gibbons (1994, 2006), who applied Gauss-Hermite 
quadrature within a Fisher scoring algorithm, and by Tutz and Hennevogl (1996), 
who used quadrature and Monte Carlo EM algorithms. Chapter 10 of Hedeker 
and Gibbons (2006) gave more examples of such models. For subjects measured 
on both ordinal and continuous response variables, Catalano (1997) assumed an 
underlying bivariate normal distribution in modeling clustered data. Other links 
have received less attention. With the complementary log-log link function, the 
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likelihood function for the random intercept model has closed form when the ran-
dom effects distribution is the log gamma (Farewell 1982; Crouchley 1995; Ten 
Have 1996). Zayeri et al. (2005) applied a power transformation to the cumulative 
probabilities that gives the logit and complementary log-log cumulative links as 
special cases. Estimating the appropriate power gives information about an appro-
priate link function. For continuation-ratio logit models with random effects, see 
Ten Have and Uttal (1994), who modeled multiple discrete-time survival profiles, 
Coull and Agresti (2000), Dos Santos and Berridge (2000), Ten Have et al. (2000), 
Grilli (2005), and Rabe-Hesketh and Skrondal (2008, Chap. 8). Models for survival 
that use random intercepts for the subjects are referred to as frailty models. Xie et 
al. (2000) proposed random effects modeling of interval-censored ordinal data. 

10.3. Hartzel et al. (2000a,b) used a semiparametric approach to fitting multi-
nomial models with random effects. The basic models have the same multinomial 
form as in the fully parametric case, but a nonparametric part of the analysis esti-
mates mass points and their probabilities for an unspecified discrete random effects 
distribution. This approach avoids the need for numerical integration. 

Section 10.2: Examples of Ordinal Random Intercept Models 

10.4. Ohman-Strickland and Lu (2003) presented power and sample size calcu-
lations for comparing two groups of subjects on an ordinal outcome in experiments 
where die subjects are measured before and after intervention, using ordinal ran-
dom intercept models with treatment, time, and treatment-by-time interaction terms. 
Xiang et al. (2008) proposed influence diagnostics based on the effect on the param-
eter estimates of deleting clusters. 

Section 10.4: Multilevel (Hierarchical) Ordinal Models 

10.5. Literature on multilevel ordinal models includes Hedeker and Gibbons 
(1994, 2006), Hedeker and Mermelstein (1998), Qu and Tan (1998), Zaslavsky 
and Bradlow (1999), Fielding (1999), Ribaudo et al. (1999), Grilli and Rampichini 
(2002, 2003, 2007), Fielding et al. (2003), Rampichini (2004), Skrondal and Rabe-
Hesketh (2004, Chap. 10), Fielding and Yang (2005), Raman and Hedeker (2005), 
Hedeker et al. (2006), Liu and Hedeker (2006), Plewis et al. (2006), Steele and 
Goldstein (2006), and Rabe-Hesketh and Skrondal (2008, Chap. 7). For Bayesian 
approaches, see the references in Section 11.5.1 and Note 11.4. 

Section 10.5: Comparing Random Effects Models and Marginal Models 

10.6. It is possible for a model to combine elements of both marginal models 
and random effects models. For example, for a bivariate ordinal response, Todem et 
al. (2007) modeled an underlying bivariate latent variable with a linear mixed model 
while also modeling the association between the two outcomes using the correlation 
coefficient of the bivariate latent variable, conditional on random effects. The model 
provides parameters that are subject specific but also have a population-averaged 
interpretation when scaled appropriately. 
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EXERCISES 

10.1. Use a random effects model to estimate the effect in the subject-specific 
model that Section 8.2.5 considered for opinions about government per-
formance in providing health care and in protecting the environment. 
Compare the results to the ones shown there. 

10.2. Refer to Exercise 8.5 with Table 8.11 and Example 10.5.2 on opinions 
about government spending. 

(a) Formulate a cumulative logit random intercept model. Show that the 
ML estimates are as Section 10.5.2 shows. Interpret. 

(b) Fit the corresponding marginal cumulative logit model, using ML or 
GEE. Report estimates, explaining why they tend to be smaller than 
the estimates for the random effects model. 

(c) For an adjacent-categories logit random intercept model, when β^ — 0, 
the ML estimates are /3, = -1.92 (SE = 0.11), β\ = -0.37 (SE = 
0.10), and β3 = -0.06 (SE = 0.11), with σ„ = 0.61 for the random 
effects. Interpret, and explain why the estimates tend to be smaller 
than for the model in part (a). 

10.3. Explain how you could use a random effects model to analyze effects of 
explanatory variables on severity of retinopathy for the study described 
in Section 9.1.3, by using different variance components for the ran-
dom effects for females and for males to handle the different association 
between the two responses that seems to occur for the two genders. 

10.4. Refer to Table 9.5 from the insomnia study. 

(a) Analyze these data with a random effects model. Report and interpret 
the effects. 

(b) Fit the simpler model forcing σ„ — 0. Compare models, using either 
a likelihood-ratio test or AIC. What do you conclude? 

(c) Analyze the data with a marginal model. Compare results and inter-
pretations to those in part (a). 
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Bayesian Inference for Ordinal 
Response Data 

This book has taken the traditional, so-called frequentist, approach to statistical 
inference. In this approach, probability statements apply to possible values for the 
data, given the parameter values, rather than to possible values for the parameters, 
given the data. Recent years have seen increasing popularity of an alternative 
approach, the Bayesian approach, which has probability distributions for parameters 
as well as for data and which assumes a prior distribution for the parameters 
which may reflect prior beliefs or information about the parameter values. This 
information is combined with the information that the data provide through the 
likelihood function to generate a posterior distribution for the parameters. 

With the Bayesian approach, the data analyst makes probability statements about 
parameters, given the observed data, instead of probability statements about hypo-
thetical data given particular parameter values. This results in inferential statements 
such as "Having observed these data, the probability is 0.03 that the population 
cumulative log odds ratio is negative" instead of "If the population cumulative log 
odds ratio were 0, then in a large number of randomized studies of this type, the 
proportion of times that we would expect to observe results more positive than the 
ones we observed is 0.03." The Bayesian approach seems more natural to many 
researchers, but it requires adding further structure to the model by the choice of 
the prior distribution. 

In this chapter we apply the Bayesian paradigm to analyses of ordered cate-
gorical response data. In Section 11.2 we focus on Bayesian estimation of cell 
probabilities for a multinomial distribution with ordered categories or for a con-
tingency table in which at least one variable is ordinal. In Section 11.3 we focus 
on Bayesian regression modeling of ordinal response variables, with emphasis on 
cumulative link models. In Section 11.4 we focus on association modeling and 
in Section 11.5 cite extensions to multivariate response models. Some general 
comparisons of Bayesian and frequentist approaches to analyzing ordinal data are 
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made in Section 11.6. First, though, we summarize the basic ideas that underlie 
the Bayesian approach. 

11.1 BAYESIAN APPROACH TO STATISTICAL INFERENCE 

As mentioned above, the Bayesian approach treats a parameter as a random variable 
having a probability distribution rather than as a fixed (but unknown) number. 
Statistical inference relies on the posterior distribution of a parameter, given the 
data, rather than the likelihood function alone. 

11.1.1 Role of the Prior Distribution 

To obtain the posterior distribution, we must first choose a prior distribution. The 
approach in doing so may be subjective or objective. In the subjective approach, the 
prior distribution reflects the researcher's prior information (before seeing the data) 
about the value of the parameter. The prior information might be based on eliciting 
beliefs about effects from the scientist who planned the study, those beliefs perhaps 
being based on research results available in the scientific literature. In the objective 
approach, the prior distribution might be chosen so that it has little influence on 
the posterior distribution, and resulting inferences are substantively the same as 
those obtained with a frequentist analysis. This might be done if the researcher 
prefers the Bayesian approach mainly because of the interpretive aspect of treating 
the parameter as random rather than fixed. 

Introduction of the prior distribution to the statistical analysis is the key aspect of 
the Bayesian approach that is not a part of frequentist inference. Different choices 
for the prior distribution can result in quite different ultimate inferences, espe-
cially for small sample sizes, so the choice should be given careful thought. In this 
chapter we present the families of prior distributions commonly used for multino-
mial parameters and for parameters in ordinal models for multinomial responses. 

The method of combining a prior distribution with the likelihood function to 
obtain a posterior distribution is called Bayesian because it is based on applying 
Bayes' theorem. By that result, the posterior probability density function A of a 
parameter Θ, given the data y, relates to the probability mass function / of y, given 
Θ, and the prior density function g of Θ, by 

h(fl | y) = , / f ■ 
/(y) 

The denominator / (y) on the right-hand side is the marginal probability mass 
function of the data. This is a constant with respect to 0, so is irrelevant for 
inference about Θ. Computational routines must determine it so that the posterior 
density function h{9 | y) integrates to 1 with respect to Θ, yielding a legitimate 
probability distribution for Θ. When we plug in the observed data, / ( y | Θ) is the 
likelihood function when viewed as a function of Θ. So, in summary, the prior 
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density function multiplied by the likelihood function determines the posterior 
distribution. 

Unlike the frequentist approach, the Bayesian approach does not differentiate 
between large- and small-sample analyses. Inference relies on the same posterior 
distribution regardless of the sample size n. Under standard regularity conditions 
such as Θ not being on the boundary of the parameter space, as n grows the posterior 
distribution approximates more closely a normal distribution. Similarly, as n grows, 
a Bayesian estimator of Θ (usually, the mean of the posterior distribution) behaves in 
a manner similar to the maximum likelihood estimator in terms of properties such as 
asymptotic normality, consistency, and efficiency. For example, Freedman (1963) 
showed consistency of Bayesian estimators under general conditions for sampling 
from discrete distributions such as the multinomial. He also showed asymptotic 
normality of the posterior distribution, assuming a smoothness condition for the 
prior distribution. 

11.1.2 Simulating the Posterior Distribution 

Except in specialized cases such as those presented in Section 11.2, there is 
no closed-form expression for the posterior distribution. Simulation methods can 
then approximate the posterior distribution. The primary method for doing this 
is Markov chain Monte Carlo (MCMC), with particular versions of it being the 
Metropolis-Hastings algorithm and its special case of Gibbs sampling. It is beyond 
our scope to discuss the technical details of how an MCMC algorithm works. In a 
nutshell, a stochastic process of Markov chain form is designed so that its long-run 
stationary distribution is the posterior distribution. One or more such Markov chains 
provide a very large number of simulated values from the posterior distribution, 
and the distribution of the simulated values approximates the posterior distribution. 

The process begins by the data analyst selecting initial estimates for the param-
eters and using a "burn-in period" for the Markov chain until its probability 
distribution is close to the stationary distribution. After the burn-in period, the sim-
ulated values are treated as providing information about the posterior distribution. 
The successive observations from the Markov chain are correlated, but observations 
that are a sufficient number of lags apart have little correlation. So "thinning" the 
process by taking lagged values (such as every fourth value) provides essentially 
uncorrelated observations from the posterior distribution. Enough observations are 
taken after the burn-in period so that the Monte Carlo error is small in approx-
imating the posterior distribution and summary measures of interest, such as the 
posterior mean and certain quantiles. 

Various graphical and numerical summaries provide information about when 
the stationary condition has been reached and the Monte Carlo error is small. For 
a given parameter, plotting the simulated values against the iteration number is 
helpful for showing when burn-in is sufficient. After that, plotting the mean of 
the simulated values since the burn-in period against the iteration number helps to 
show when the approximation for the posterior mean has stabilized. A plot of the 
autocorrelations of lagged simulated values indicates how much the values must 
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be thinned to achieve approximately uncorrelated simulations from the posterior 
distribution. An alternative approach does not use thinning but accounts for the 
correlations. 

Software is now widely available that can perform these computations for the 
basic analyses presented in this chapter. Textbooks specializing in computational 
aspects of the Bayesian approach, such as Ntzoufras (2009), provide details. 

11.1.3 Inference Using the Posterior Distribution 

Having found the posterior distribution, Bayesian methods of inference are avail-
able that parallel those for frequentist inference. For example, to summarize the 
information about a parameter ß, we can report the mean and standard deviation of 
the posterior distribution of ß. We can also construct an interval that contains most 
of that distribution. Analogous to the frequentist confidence interval, it is often 
referred to as a credible interval or Bayesian confidence interval. 

A common approach for constructing a credible interval uses percentiles of the 
posterior distribution, with equal probabilities in the two tails. For example, the 
95% credible interval for ß is the region between the 2.5 and 97.5 percentiles 
of the posterior distribution for ß. An alternative approach constructs a highest 
posterior density (HPD) region. This is the region of ß values such that the pos-
terior density function everywhere over that region is higher than the posterior 
density function everywhere outside that region, and the posterior probability over 
that region equals 0.95. Usually the HPD region is an interval, the narrowest one 
possible with the chosen probability. 

A caution: For a parameter ß in the linear predictor of a model, it is not sensible 
to construct a HPD interval for a nonlinear function of ß. For a cumulative logit 
model, for instance, an HPD interval makes sense for ß but not for exp(jö). To 
illustrate, suppose that ß is the coefficient of a binary indicator for two groups. 
Then a HPD interval for the cumulative odds ratio exp(ß) does not consist of the 
reciprocals of values of the HPD interval for exp(—ß), which is the cumulative 
odds ratio for the reverse assignment of values for the indicator variable. This is 
because the HPD region for a random variable 1/Z is not the same as the set of 
reciprocals of values in the HPD region for the random variable Z. However, the 
HPD region for — Z is the same as the set of negatives of values in the HPD region 
for Z, so an HPD interval for ß (a log cumulative odds ratio) is valid. 

In lieu of P-values, with the Bayesian approach, posterior tail probabilities are 
useful. For example, for an effect parameter ß, the information about the effect 
direction is contained in the posterior probabilities P(ß > 0 | y) and P (ß < 0 | y). 
With a flat prior distribution, P(ß > 0 | y) corresponds to the frequentist P -value 
for the one-sided test with Ha: ß < 0. 

Instead of a formal hypothesis test comparing models or possible values for a 
parameter, it is often useful to construct a Bayes factor. Consider data y and two 
models Mi and Mj, which could also be two possible ranges of parameter values 
for a given model, two hypotheses, or even two nonnested distinct model types. 
The Bayes factor is the ratio of the marginal probabilities, P(y | Mi)/P(y \ M\). 
This ratio gives the amount of evidence favoring one model relative to the other. 
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Many other analyses, including ways of checking models and an analog of AIC 
(called BIC), are available but are beyond the scope of this brief chapter treatment. 
For more in-depth presentations of Bayesian methods, particularly as they apply 
to ordered categorical data, see Johnson and Albert (1999), O'Hagan and Forster 
(2004, Sec. 12.52), and Congdon (2005, Chap. 7). 

11.2 ESTIMATING MULTINOMIAL PARAMETERS 

We first present Bayesian methods for estimating parameters of a multinomial 
distribution. The distribution could refer to counts for categories of an ordinal 
variable or to cell counts in a contingency table in which at least one variable is 
ordinal. 

11.2.1 Estimation Using Dirichlet Prior Distributions 

We begin with the multinomial with c = 2 categories, that is, the binomial. The 
simplest Bayesian inference for a binomial parameter π uses a member of the beta 
distribution as the prior distribution. The beta distribution is called the conjugate 
prior distribution for inference about a binomial parameter. This means that it is 
the family of probability distributions such that when combined with the likelihood 
function, the posterior distribution falls in the same family. When we combine a 
beta prior distribution with a binomial likelihood function, the posterior distribution 
also is a beta distribution. The beta probability density function for π is propor-
tional to 7r"1_1(l — π)"2~χ for two parameters et\ > 0 and ctj > 0. The family of 
beta probability density functions has a wide variety of shapes over the interval (0, 
1), including uniform (when ct\ = a2 = 1)> unimodal symmetric {a\ —ai> 1), uni-
modal skewed left (a\ > az > 1), unimodal skewed right (a2 > «i > 1), and bimodal 
U-shaped (αι < l,a2 < 1)· 

For c> 2 categories, the beta distribution generalizes to the Dirichlet distribu-
tion. Its probability density function is positive over the simplex of nonnegative 
values π = (ττι,. . . , nc) that sum to 1. Expressed in terms of gamma functions 
and parameters {a, > 0}, it is 

g(n) = π rf ( Π "·"''"' for ° < *< < J a11 '· Σ>' = L 

Π,·Γ(«ί) f=\ Y 
The case {a, = 1} is the uniform distribution over the simplex of possible probabil-
ity values. The case {a, = ^} is the Jeffreys prior for the multinomial distribution, 
which is the prior distribution that is invariant to the scale of measurement for 
the parameter. Let K = Σ , "('· The Dirichlet distribution has £(π,·) = at/K and 
Var(7r,) = a,(AT —oti)/[K2(K + 1)]. For particular relative sizes of {a,}, such as 
identical values, the distribution is more tightly concentrated around the means as 
K increases. 
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For cell counts n = (n\,..., nc) from n = £],· n, independent observations with 
cell probabilities π, the multinomial probability mass function is 

„t c 

/(n|ir)= · , Π < ' · 
n i! · · · nc! i l 

Given n, multiplying this multinomial likelihood function by the Dirichlet prior 
density function g(jr) yields a posterior density function h{n | n) for π that is also 
a Dirichlet distribution, but with the parameters {a,} replaced by {or- = n, + a,·}. 
The mean of the posterior distribution of π, is 

n; + a, 
E(jii \m,...,nc) = ———. 

n + K 

Let Yi = Ε(π-,) = aj/K. This Bayesian estimator equals the weighted average 

n K 
n + K n + K 

of the sample proportion /?, = n,/n and the mean y, of the prior distribution for 
7Γ,·. This posterior mean takes the form of a sample proportion when the prior 
information corresponds to K additional observations of which α,- were outcomes 
of type i. 

Articles by Lindley (1964) and Good (1965) were influential early works that 
estimated multinomial parameters using a Bayesian approach with a Dirichlet prior 
distribution. Good's book and earlier related articles were motivated by work he 
conducted with Alan Turing at Bletchley Park, England, during World War II 
in breaking the German code used for wartime communications. For Dirichlet 
prior distributions with identical {a,}, Good referred to K as a flattening constant, 
because the Bayes estimate shrinks each sample proportion toward the equiproba-
bility value y, = 1/c. Greater shrinkage occurs as K increases, for fixed n. 

In summary, the Bayesian estimators shrink the sample proportions, which are 
the unrestricted ML estimates, toward their prior means. The Bayesian estimators 
combine good characteristics of sample proportions and of frequentist model-based 
estimators, such as the ML estimator 1/c for the simple equiprobability model. Like 
sample proportions and unlike model-based estimators, the Bayesian estimators are 
consistent even when a particular model (such as the equiprobability model) does 
not hold. The weight given the sample proportion then increases to 1.0 as the 
sample size increases. Like model-based estimators and unlike sample proportions, 
the Bayesian estimators smooth the data. For example, cells with no observations 
have Bayesian probability estimates that are strictly positive. 

Unlike the sample proportions, Bayesian estimators of multinomial parameters 
are slightly biased for finite n. Usually, though, they have smaller total mean-
squared error (MSE) than the sample proportions. They are not uniformly better 
for all possible parameter values, however. For example, if a particular π,- = 0, 
then pi — 0 with probability 1, so the sample proportion is then better than any 
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other estimator. We do not expect π, = 0 in practice, but this limiting behavior 
explains why the ML estimator can have smaller MSE than the Bayes estimator 
when 7Γ; is very near 0. 

11.2.2 Example: Government Spending on the Arts 

The 2006 General Social Survey asked respondents how much government should 
spend on culture and the arts, with categories (much more, more, the same, less, 
much less). Table 11.1 shows the results for 18 to 21-year-old females. None of the 
23 females in this sample said "much less," so the ML estimate for that category 
is the sample proportion value of 0.0. It is implausible that the corresponding 
population proportion is 0, and it is sensible to smooth these estimates. 

Table 11.1 also shows Bayes' estimates of the population proportions based on 
a Dirichlet prior with {a, = K/5} for various values of the flattening constant K. 
The prior with K = 1 provides only slight smoothing, the empty cell still having 
an estimated probability below 0.01. Greater smoothing occurs with the uniform 
prior, for which each a, = 1 and K = 5. The estimates then correspond to sample 
proportions after adding an observation to each cell, increasing the effective sample 
size from 23 to 28. Supersmoothing occurs with the choice K = 20, by which the 
prior information receives nearly as much weight as the data. 

11.2.3 Smoothing Contingency Tables 

This Bayesian analysis extends to estimating multinomial probabilities that result 
from cross-classifying categorical variables in a contingency table. Denote the cell 
counts by n = {n,·} and the cell probabilities by π = {π,·}, where these can refer to 
a table of any dimension. This section does not distinguish between response and 
explanatory variables (Section 11.3 does this) but focuses instead on smoothing the 
data to improve the estimation of jr. 

With a Dirichlet prior distribution for π, the posterior mean estimate for a 
particular cell probability again has the form (11.1). That is, the Bayesian estimator 
shrinks the sample proportions p = {/?,·} toward the prior means. 

TABLE 11.1. Opinions About Government Spending on the Arts 

Government Spending 
Estimates 

Sample counts 
Sample proportions 
Bayes, K = 1 
Bayes, K = 5 (uniform) 
Bayes, K = 20 

Much more 

1 
0.043 
0.050 
0.071 
0.116 

More 

7 
0.304 
0.300 
0.286 
0.256 

Same 

12 
0.522 
0.508 
0.464 
0.372 

Less 

3 
0.130 
0.133 
0.143 
0.163 

Much less 

0 
0.000 
0.008 
0.036 
0.093 

Source: 2006 General Social Survey. 
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Sometimes it can be useful to shrink the sample proportions toward a particular 
model, such as independence between two variables. This can be effective even 
when we do not think that model truly holds but we believe that the parsimonious 
aspects of the model are beneficial for smoothing the data. To do this, we could 
choose values for the prior means that satisfy the model. 

These two versions of Bayesian estimation do not account for the ordinality 
of a categorical variable. Without further structure, the analyses do not differenti-
ate between ordinal variables and nominal variables in the contingency table. To 
illustrate, consider the smoothing above of the multinomial counts in Table 11.1 on 
opinions about government spending on the arts. For a given K, the same estimates 
occur if the categories are permuted in any way. 

One way to extend this approach so that it recognizes the ordering of categories 
is to let the prior means satisfy an ordinal model. For example, suppose that the 
contingency table is a two-way cross-classification of two ordinal variables. Then 
we could let {y,j = Ε(π^)} satisfy an ordinal association model such as a linear-
by-linear association. To do this we could construct prior best guesses for cell 
probabilities that have a monotone trend, smooth them by fitting the ordinal model 
to them, and use those fitted values as the prior means. 

11.2.4 Empirical Bayesian Estimates of Multinomial Parameters 

Rather than requiring the data analyst to select parameter values for the prior 
distribution, another approach uses the data to determine those values. This is 
called the empirical Bayesian approach. With a common version of this approach, 
the estimated prior distribution is the one that maximizes the marginal probability 
/ (y) of the observed data, integrating out with respect to the prior distribution. 
Good (1965) used this approach to estimate the parameter value for a symmetric 
Dirichlet prior distribution for multinomial parameters. 

Fienberg and Holland (1973) proposed alternative estimates of multinomial prob-
abilities {7Γ,} that use data-dependent priors. For a particular choice of Dirichlet 
means {y,} for the Bayesian estimator 

n K 
n + K n + K 

they showed that the minimum total mean squared error occurs when 

r_ ι-Σ,*,2 

The optimal K = Κ(γ,π) depends on π, and they used the estimate K = Κ(γ,ρ) 
from substituting the sample proportion p for π. As p falls closer to the prior 
guess γ, Κ increases and the prior guess receives more weight in the posterior 
estimate. They selected {y,} based on the fit of a simple model. For elaboration 
and extensions, see Bishop et al. (1975, Chap. 12). 
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We illustrate for the opinions about government spending on the arts in 
Table 11.1. Section 11.2.2 estimated the cell probabilities using Dirichlet priors 
with Yi = ^ for the five categories. With the optimal K estimated by substituting 
the sample proportions, for this prior with identical prior parameters we obtain 
K = (1 - 0.384)/0.184 = 3.35, not much different from the uniform prior (K = 
5). The corresponding empirical Bayesian estimates of the five probabilities are 
(0.063, 0.291, 0.481, 0.139, 0.025), compared to the sample proportions of (0.043, 
0.304, 0.522, 0.130, 0.000). 

For two-way tables with sample cell proportions {/?,·;·}, Fienberg and Holland 
estimated the prior means by the fit of the independence model, {y,y = pi+p+j}. 
When the categories in at least one dimension in a contingency table are ordered, we 
would usually improve on this by using the fit of an ordinal model to specify {yv/}. 
Agresti and Chuang (1989) used this approach by smoothing toward the linear-by-
linear association model (6.2). They also considered an approach to smoothing that 
uses a Bayesian analysis for the saturated loglinear model but has linear-by-linear 
structure for the prior means of the association parameters. 

11.2.5 Example: Government Spending on Health, by Gender 

In Section 11.2.2 we analyzed GSS responses from 2006 about government spend-
ing on the arts. For the same year, Table 11.2 shows opinions about government 
spending on health, by gender, for subjects of age 18 to 25. The table also shows 
the sample conditional distributions on the opinion response variable. The two 
groups are stochastically ordered, females showing a slight tendency to fall more 
toward the "spend much more" end of the scale. With such a small sample, sample 
percentage estimates are unappealing. For example, it is implausible that the pop-
ulation percentage of females who favor spending less or much less on health is 
0.0. At the same time, there is not enough data to put much faith in any particular 
model for the association. As a compromise, it seems sensible to smooth the sample 
percentage estimates by shrinking them toward the fit of an ordinal model. 

TABLE 11.2. Opinions About Government Spending on Health, by Gender, with 
Sample Conditional Distribution on Spending and Bayes Estimates Based on 
Shrinking Toward Ordinal Model 

Female 

Male 

Count 
Percentage 

Bayes estimate 
Count 

Percentage 
Bayes estimate 

Much More 

30 
46.9% 
48.1% 

25 
40.3% 
39.0% 

Spending on Health 
More 

26 
40.6% 
41.2% 

28 
45.2% 
44.6% 

Same 

8 
12.5% 
8.4% 

3 
4.8% 
9.1% 

Less 

0 
0.0% 
1.7% 

4 
6.5% 
4.7% 

Much Less 

0 
0.0% 
0.7% 

2 
3.2% 
2.5% 

Total 

64 
100% 
100% 

62 
100% 
100% 

Source: 2006 General Social Survey. 



324 BAYESIAN INFERENCE FOR ORDINAL RESPONSE DATA 

Despite the stochastic ordering, ordinal logit models of proportional odds form 
that have an indicator variable for gender show some lack of fit. For example, 
the adjacent-categories logit model, which is equivalent to the loglinear model of 
uniform association for the local odds ratios (i.e., linear-by-linear association with 
equally spaced scores) has deviance 9.2 (df = 3). Although we might prefer not to 
use the fit of this model to estimate the cell probabilities, we could use the model 
as a mechanism for smoothing the sample percentages. This takes into account 
the ordering of the opinion categories, unlike Bayesian smoothing with ordinary 
Dirichlet priors. 

For the Fienberg-Holland data-based prior approach with the sample of size 
n = 126, we obtain K = 420.45. The estimated percentages are then weighted 
averages with weight n/(n + K) = 0.23 given to the sample percentage and weight 
K/(n + K) = 0.77 given to the model fit. So there is strong shrinkage of the 
sample percentages toward the model fit. Table 11.2 also shows the corresponding 
Bayesian estimates of the conditional distributions on the opinion response variable. 
The sample percentages of 0.0 for females on the "spend less" and "spend much 
less" categories are replaced by the Bayesian estimates 1.7% and 0.7%. 

11.2.6 Hierarchical Bayesian Estimates of Multinomial Parameters 

Good (1965) presented yet another alternative to specifying the parameters of a 
Dirichlet prior distribution. This approach is a hierarchical one that specifies distri-
butions also for the Dirichlet parameters {a,}. That is, Good treated {a,} as unknown 
and specified a second-stage prior distribution for them. For example, in the sym-
metric case with common value {a, = a}, in one example (p. 38) he assumed that 
log« has a symmetrical distribution about 0 such that P ( e < a < l / e ) = l— e 
for all 0 < e < 1. This corresponds to a probability density function for a of 

g(a) = — for 0 < a < 1 and g(a) — —τ for a > 1. 
2 2al 

More generally, the second-stage prior distribution can have its own parameters, 
called hyperparameters. 

Epstein and Fienberg (1992) suggested an alternative specification of two-stage 
prior distributions for the cell probabilities of a contingency table. The first stage 
again places a Dirichlet(A\ γ) prior on jr. The second stage uses a loglinear model 
for the prior means {y,}, assuming a multivariate normal prior distribution on the 
loglinear terms. Applying the loglinear parameterization to the prior means {y,·} 
rather than directly to the cell probabilities {7Γ,} permits the analysis to reflect 
uncertainty about the loglinear structure for {π·,·}. 

The hierarchical approach provides greater generality at the expense of not 
having the simple conjugate Dirichlet form for the posterior distribution. Com-
putations are therefore more complex. Compared to the hierarchical approach, a 
disadvantage of the empirical Bayesian approach is that it does not account for the 
additional source of variability due to substituting estimates for prior parameters. 
In recent years, use of the hierarchical approach has increased, as it provides a 



ESTIMATING MULTINOMIAL PARAMETERS 325 

direct mechanism for representing uncertainty about the parameters of the prior 
distribution. 

11.2.7 Estimation Using Logistic-Normal Prior Distributions 

The Dinchlet distribution is sometimes not sufficiently flexible. Although we can 
specify the means {£(7Γ,)} in the prior distribution through the choice of {y,} and 
the variances through the choice of K, there is no freedom to alter the correlations 
among the parameters in that prior. In addition, we've seen that the Dinchlet prior 
distribution does not take into account the ordering of the categories for ordinal 
responses unless we put some ordinal structure on the prior means. Also, it does 
not naturally extend to parameters in models for the multinomial parameters, such 
as cumulative link models and hierarchical models. 

An alternative to a Dirichlet prior distribution is a prior distribution induced 
by a multivariate normal distribution for multinomial logits such as the baseline-
category logits. This family of distributions also lends itself more naturally than 
the Dirichlet to extensions such as hierarchical modeling. The conesponding prior 
distribution for the multinomial parameters themselves is the multivariate logistic-
normal distribution. Specifically, if X = (X\,..., Xc) has a multivariate normal 
distribution, then π = {π\,..., nc) with 

_ exp(X,) 
" ' " Σ ^ ι β χ ρ ί Χ ; ) 

has a multivariate logistic-normal distribution. Specifying a mean vector and covari-
ance matrix for X induces a particular prior distribution for jr. A more general 
version uses a hierarchical approach that also specifies prior distributions for the 
parameters of the normal distribution, as illustrated in the next example. 

The logistic-normal prior distribution provides more flexibility than the Dirichlet 
prior distribution. For instance, with ordered categories we often expect proba-
bilities in adjacent categories to be similar. One way to represent this uses an 
autoregressive form for the normal correlation matrix. The correlation between Xa 

and Xb for categories a and b then has the form pa~b for \p\ < 1, for which Xa and 
Xb are more strongly correlated for categories that are closer together. Using the 
logistic-normal prior distribution also connects inference here with Bayesian infer-
ence for parameters in logistic regression models using normal prior distributions 
for the model parameters. 

11.2.8 Example: Smoothing a Histogram for Apple Diameter 

Leonard (1973) used a logistic-normal prior distribution for the purpose of smooth-
ing a histogram, treating the counts in the various class intervals as having a 
multinomial distribution. When the intervals have equal width, probabilities in 
adjacent intervals are often similar. An ordinary histogram uses the sample pro-
portion for category j to estimate the probability for that category. By contrast, 
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the Bayesian approach uses the information from all the categories to estimate the 
probability for any one category. 

Leonard applied this method of smoothing a histogram to data on the maximum 
diameters of apples of a certain species. The diameters were recorded in 10 inter-
vals, (2.0, 2.1], (2.1, 2.2], . . . , (2.9, 3.0]. Table 11.3 shows the counts and sample 
proportions for these intervals for a sample of 152 apples. The ordinary histogram 
using the sample proportions has modes for the intervals 1, 4, 6, 8. It is rough rather 
than smooth. Leonard found Bayesian estimates of the probabilities in these ten 
intervals using a hierarchical approach with a two-stage prior distribution. The first 
stage is a logistic-normal prior distribution for the probabilities. For the covariance 
structure of the multivariate normal, he let categories a and b have correlation of 
the form pa~h, reflecting categories that are closer together tending to have more 
similar probabilities. Leonard assumed no prior information about which categories 
would have higher probabilities. Thus, for the multivariate normal vector for which 
the logits generate the probabilities, he took the elements of the mean vector to be 
identical and elements σ2 of the variance vector to be identical. This corresponds 
to values of 1/10 for prior means for each probability. 

Specifying p and σ2 determines the logistic-normal prior distribution, and 
Bayesian methods generate the posterior distribution. However, Leonard suggested 
adding a second stage to the prior distribution, giving prior distributions also to 
p and τ = 1/σ2(1 — p2). He let νλτ have a chi-squared distribution with df = v, 
for specified values of v and λ, where λ is a prior estimate of τ _ 1 and v measures 
the sureness of this estimate. For technical convenience, he let p have a normal 
distribution, with specified mean and variance, truncated over the interval [—1, 1]. 
He found that for hyperparameter values corresponding to very flat distributions 
for p and σ2, results were not sensitive to the choice of those values. 

Table 11.3 also shows Bayesian estimates of the multinomial probabilities based 
on Leonard's analysis. Unlike the histogram of sample proportions, the smoothed 
histogram has just one mode and has a more appealing shape. The posterior mode 
for p equals 0.77, reflecting relatively strong association for adjacent categories. 
However, Leonard also noted that the Bayes estimates in categories 1, 2, 9, and 
10 being greater than the sample proportions was partly due to having equal prior 
means for those categories. If it were considered more reasonable to have smaller 
values in the tails, that prior structure may not be sensible. 

TABLE 11.3. Frequency Distribution for Ten Intervals for a Histogram for Apple 
Diameter 

Apple Diameter Interval 
Interval Summary 1 2 3 4 5 6 7 8 9 1 0 

Sample count 5 4 10 18 15 30 25 27 12 6 
Sample proportion 0.033 0.026 0.066 0.118 0.099 0.197 0.164 0.178 0.079 0.039 
Bayes estimate 0.042 0.045 0.067 0.102 0.111 0.172 0.161 0.153 0.086 0.060 

Source: Based on analysis presented in Leonard (1973). 
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With Leonard's approach, letting p = 0 provides an exchangeable structure 
among the categories that ignores the ordering and is analogous to the structure 
generated by a symmetric Dirichlet prior distribution. In that case, the Bayesian 
estimate of the logit for category j is approximately equal to a weighted average 
of the sample logit and the prior mean for the logit, with weight proportional to 
σ~2 for the prior mean. So, with the logistic-normal prior distribution, the inverse 
variance of each normal component serves as the analog of Good's flattening coef-
ficient, with smaller σ2 giving more weight to the prior mean and resulting in 
greater shrinkage. 

11.3 BAYESIAN ORDINAL REGRESSION MODELING 

Bayesian modeling of ordinal categorical response variables provides an alternative 
to the frequentist modeling of Chapters 3 to 5. Our main focus here is on cumulative 
link models, such as the cumulative logit and probit models. 

11.3.1 Improper and Other Relatively Flat Prior Distributions 

Models can have many parameters, and a researcher may have more prior infor-
mation about some of them than others. It can be challenging to specify a sensible 
prior distribution, especially when the parameters relate to nonlinear transforma-
tions of probabilities such as a cumulative logit. One simplistic approach takes 
the prior distribution to be constant over the multidimensional space of all possi-
ble parameter values. Then the posterior distribution is a constant multiple of the 
likelihood function. That is, the posterior distribution is a scaling of the likelihood 
function so that it integrates out to 1. The mode of the posterior distribution is then 
the ML estimate. 

When some parameters can take value over the entire real line, such as β effect 
parameters in cumulative link models, such a flat prior distribution is said to be 
improper. It is not a legitimate probability distribution, because it does not integrate 
out to 1 over the space of possible parameter values. A danger is that improper prior 
distributions also have improper posterior distributions for some models (Hobert 
and Casella 1996). A Markov chain Monte Carlo (MCMC) algorithm for approxi-
mating the posterior distribution may fail to recognize that the posterior distribution 
is improper. Thus, it is safer to use a proper but relatively diffuse prior if you prefer 
the prior distribution to be flat relative to the likelihood function. 

One such diffuse prior for a given parameter is a normal distribution with a very 
large standard deviation. However, when there are many parameters, the posterior 
mode need not then necessarily be close to the ML estimate, and Markov chains 
may converge slowly (Natarajan and McCulloch 1998). The mean can be quite 
different from the mode when the sample size is small or the data are unevenly dis-
tributed among the categories, in which case the posterior distribution may be quite 
skewed rather than approximately normal. When you use the Bayesian approach, 
it is usually more sensible to construct prior distributions that represent careful 
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expression of prior beliefs about the parameter values. For example, instead of 
using a very large standard deviation for a normal prior distribution, use a mean 
and standard deviation such that the range within three standard deviations of the 
mean contains all values that are at all plausible for the parameter. 

11.3.2 Proper Prior Specifications for Cumulative Link Models 

For frequentist inference with an ordinal response variable, we have seen that 
many models are special cases of the cumulative link model (5.1), which with link 
function h is 

h[P(Yi<j)]=aj~ß'xi. (11.2) 

From Section 3.3.2, such ordinal models are implied by standard regression models 
for underlying latent variables, such as logistic for the logit link and normal for 
the probit link. The model with the negative sign attached to the predictor effects 
naturally results from assuming a standardized distribution for (y* — μ.)/σ when a 
latent variable v* has mean μ = β'χ and standard deviation σ at setting x for values 
of explanatory variables. We use this parameterization because the model-fitting 
described below in Section 11.3.3 refers to the latent variable model. 

Prior distributions for parameters in cumulative link models should take into 
account the ordering constraint 

— CO < Of] < 02 < · · · < 0tc-\ < CO 

on the cutpoint parameters a = (a\,... , ac_i). Posterior distributions for the 
parameters β of interest mainly depend on the choice of prior for ß, so the prior 
for a is taken to be relatively diffuse. We shall assume that no parameters in 
the linear predictor ctj — /?'x, are redundant (e.g., β does not contain a separate 
intercept term), so it is not necessary to add further constraints. Considerable 
flexibility is provided by a multivariate normal prior density, plausible values for 
a parameter being dictated by the choice of prior mean and standard deviation. 
For example, for the cumulative probit model, Chipman and Hamada (1996) used 
a multivariate normal prior distribution for β and a truncated multivariate normal 
prior distribution for a that respects the ordering of their values. They illustrated 
with two industrial data sets. If appropriate, you can include correlation in the 
prior distribution between different parameters. 

In practice, meaningful specification of the parameters for such normal prior 
distributions for β is not obvious, because data analysts think more easily in terms 
of plausible values for probabilities rather than for model parameters that pertain 
to a nonlinear function of the cumulative probabilities such as cumulative log 
odds ratios. Alternatively, you can construct a prior distribution on the cumulative 
probability scale rather than a link function scale such as the logit. The chosen 
prior distribution then induces a corresponding prior distribution for the model 
parameters. Bedrick et al. (1996) proposed this approach in the binary case, and 
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Johnson and Albert (1999) extended it to ordinal responses. This approach requires 
prior distributions for at least as many cumulative probability values as there are 
parameters in the model. For example, if a cumulative logit model of proportional 
odds form has three explanatory variables for a three-category response variable, 
and hence five parameters, we need at least five such prior distributions. 

Suppose we choose M settings of explanatory variable values for placing prior 
distributions on cumulative probabilities. At setting s, denoted by X(s), we select 
a particular cumulative probability and formulate a prior distribution (such as a 
beta distribution) for it. Denote that cumulative probability by y(j). One way to 
indirectly determine the parameters for a beta distribution is to guess the value 
of the cumulative probability (call that guess gs) and to select a number Ks of 
"prior observations" that the prior belief represents. Then, the beta prior density 
for that cumulative probability has parameters Ksgs and Ks(l — gs), corresponding 
to mean gs. For example, we might predict that the first cumulative probability at 
a particular setting of the explanatory variable takes value 0.3 and that our prior 
information is relatively vague, say being comparable to two prior observations. 
We do this at all M settings. 

For simplicity, these M prior distributions for the cumulative probabilities are 
assumed to be independent. Then the joint prior density function in terms of these 
M cumulative probabilities is 

g(Yu.... YM) « n^w" - '* 1 - y^K'a~g,)~1· 
s 

Suppose that the link function for the model corresponds to the inverse of the 
cumulative distribution function F, such as standard normal for the probit link 
and standard logistic for the logit link. Let / denote the corresponding probability 
density function. Then, in terms of the model parameters this prior density function 
corresponds to 

g{ß, a) oc Y[{F(a{s)-ß'xw)K^-l[l - F(aU) - 0 'x ( i ) ) f ^ " S ^ " 1 

S 

X /(«(s) - ß'*(s))}, 

subject to the ordering constraint on a. 
Other types of prior distributions have been proposed for ordinal regression 

models. For example, Gill and Casella (2009) proposed nonparametric prior distri-
butions based on a Dirichlet process. 

11.3.3 Bayesian Fitting of Cumulative Link Models 

We now summarize the basic ideas of Bayesian model fitting of the cumulative 
link model, glossing over the technical details. Albert and Chib (1993) presented 
a Bayesian analysis for binary and multinomial models, implemented with Gibbs 
sampling, that has been influential. For cumulative probit models, it utilizes the 
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latent variable model shown in Section 3.3.2. This model is simpler to handle 
than the cumulative logit modelrbecause results apply from Bayesian inference for 
ordinary normal linear regression models. They assumed a multivanate normal prior 
distribution for the regression parameters and independent normal latent variables. 
Then, the posterior distribution of the regression parameters, conditional on the 
observed data and the latent variables, is multivariate normal. Implementation of 
MCMC methods is relatively simple because the Monte Carlo sampling is from a 
normal distribution. The approach described here partly borrows from that article 
and from Johnson and Albert (1999, Chap. 6.2). 

For the chosen prior specification, the prior density function is multiplied by the 
multinomial likelihood function for the model to obtain the posterior density func-
tion, apart from the proportionality constant needed so the posterior integrates to 1. 
Denote observation i by y,. If y, — j , its contribution to the likelihood function is 

F{aj - β%) - Fiotj-i - β'χι). 

This is simply the multinomial mass function for that single observation evaluated 
after observing the outcome, so it is the probability of category j . 

Equivalently, as in Albert and Chib (1993), the likelihood function can be con-
structed in terms of the model for the underlying latent observation, y*. If y, = j , 
then y* fell between α7_ι and aj. So, for the latent observation with standardized 
density / , the contribution to the likelihood function (also regarding the latent 
observation as if it were an unknown parameter) is 

/ (y*- j8 'x , ) / (« , ·_ , <y* <«,·), 

where / is the indicator function. Now, for the n independent observations, the 
likelihood function is proportional to 

Ylftf - β%)Παγι-ι < y? <ayi). 
i 

For uniform (improper) prior distributions, this is also the form of the posterior 
distribution, over the constrained space for a. 

Using the ML estimates as initial values, Albert and Chib (1993) found the 
posterior distribution using a "one-run" hybrid MCMC algorithm with thinning 
that recognizes the ordering constraint on the {aj} and uses highly diffuse prior 
distributions. Their Gibbs sampling scheme successively samples from the density 
of (1) y* given y, β, and a, (2) β given y, y*, and a, and (3) a given y, y*, 
and β. The model fitting results in posterior means for the Bayes estimates of any 
particular parameter. Posterior standard deviations describe the precisions of those 
estimates. 

Albert and Chib also used a link function corresponding to the cdf of a t dis-
tribution, to investigate the sensitivity of fitted probabilities of response categories 
to the choice of link function. They noted that a / variate with df = 8 divided by 
0.634 well approximates a standard logistic variate. The Cauchy link results with 
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df = 1 and the probit link results as df —*■ oo. They considered the / link case 
through a latent variable model using a scale mixture of normal distributions. They 
also considered a hierarchical analysis that uses prior densities for the parameters 
of a normal prior distribution for ß. 

11.3.4 Example: Comparing Operations for Ulcer 

We illustrate this Bayesian model-based analysis for the data in Table 11.4, from 
a study comparing two operations for duodenal ulcer. We use the cumulative logit 
model with proportional odds structure, 

logit[P(r, <j)]=aj-ßxit 

where x, is an indicator variable for the two operations. 
For the Bayesian analysis, we used independent normal prior distributions. To 

reflect a lack of prior belief about the direction of the effect, we took the mean 
of the prior distribution of ß to be 0.0. To reflect a lack of information about the 
size of the effect, we first took the prior distribution to be extremely diffuse, with 
a standard deviation of 1000. For the prior distributions of a\ and ai, we started 
with normal distributions having means of —1.0 for a\ and +1 for ai and with 
standard deviations of 1000, but truncated the joint distribution so that a\ < «2-
Instead of the usual (0, 1) coding for the indicator variable x,·, we let it take value 
—0.5 if subject i has operation 1 and take value 0.5 if subject 1 has operation 2. 
The prior distribution is then symmetric in the sense that the cumulative logits in 
each row have the same prior variability as well as the same prior means, yet ß 
still has the usual interpretation of a log cumulative odds ratio. 

The analysis can be implemented with Bayesian software such as WinBUGS or 
SAS (PROC MCMC, as shown in Table A.8 in the Appendix), using a MCMC 
algorithm to approximate the posterior means, standard deviations, and quantiles. 
Table 11.5 shows posterior estimation results for ß, based on an MCMC process 
using 1,000,000 iterations, with ML estimates as starting values and using the first 
10,000 iterations for burn-in and with a thin value of 2. Chains were also run with 
other starting values, and gave similar results. With such a long process, the Monte 

TABLE 11.4. Data from Clinical Trial Comparing Two 
Operations for Duodenal Ulcer 

Treatment 

Operation 1 
Operation 2 

Death 

7 
1 

Response 
Fair to Poor Good to Excellent 

17 76 
10 89 

Source: Adapted from M. Novick and J. Grizzle, J. Amer. Statist. 
Assoc. 60: 91 (1965), with permission. Copyright © 1965 Ameri-
can Statistical Association. All rights reserved. 
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TABLE 11.5. Posterior Estimates of Cumulative Log Odds Ratio ß for Analyses of 
Ulcer Data 

ß Prior Mean, Std. Dev. 

(0, 1) 
(0, 1000) 
ML" 

Mean 

0.836 
0.997 
0.970 

Std. Dev. 

0.361 
0.402 
0.396 

95% Credible Interval 

(0.138,1.555) 
(0.229, 1.808) 
(0.216,1.779) 

P(ß < 0) 

0.009 
0.005 
0.006 

"Results shown in ML row are the ML estimate, standard error, 95% profile likelihood confidence 
interval, and /"-value for likelihood-ratio test with Ha: ß < 0. 

Carlo standard error for the approximation 0.997 to the Bayes estimate of ß was 
negligible (about 0.001). The estimated odds of outcome in category j or below 
(for y = l,2) for operation 1 are exp(0.997) = 2.7 times the estimated odds for 
operation 2. The 95% credible interval for ß, based on the equal-tail method, is 
(0.23, 1.81). This provides the inference that ß > 0. The estimated size of the effect 
is imprecise, because 4 of the 6 cell counts are quite small and the prior distributions 
were highly diffuse. 

For comparison, Table 11.5 also shows results of the frequentist analysis. The 
cumulative logit model fits well, with Pearson statistic of X2 = 1.3 on df = 1 for 
testing goodness of fit. The ML estimate of the common cumulative log odds ratio is 
ß = 0.970, with SE = 0.395 using the observed information matrix. The likelihood-
ratio test of Ηο'. β — 0 has chi-squared test statistic = 6.42. The P-value is 0.006 
for the alternative Ha: ß < 0. This test and the corresponding 95% confidence 
interval suggest that operation 1 is worse than operation 2. Inferences about ß 
were substantively the same as with the Bayesian analysis. This is not surprising, 
because when the prior distribution is flat relative to the likelihood function, the 
posterior distribution itself is roughly proportional to the likelihood function. 

For further comparison, we used a more informative prior distribution for ß 
around the mean of 0.0. To reflect a belief that the size of the effect is not extremely 
strong, we took the prior standard deviation to be 1.0. Then nearly all the prior prob-
ability mass for the cumulative odds ratio exp(ß) falls between exp(—3.0) = 0.05 
and exp(3.0) = 20. For the prior distributions of a] and (*2, we started with nor-
mal distributions having means of —1.0 for ct\ and +1 for c*2 and with standard 
deviations of 2.0, but truncated the joint distribution so that a\ < ctj. Such distribu-
tions can still accommodate a broad range of response prior probabilities. Results 
for estimating β were somewhat different than with the frequentist analysis or the 
Bayesian analysis with very flat prior distributions. The posterior mean for β is now 
0.836 instead of 0.997. The prior standard deviation of 1.0 for ß in this Bayesian 
analysis was not dramatically larger than the SE of 0.395 for ß in the ML analysis, 
reflecting the small counts in four of the cells. As a consequence, the Bayesian 
analysis has non-trivial shrinkage of the ML estimate toward the prior mean of 0. 
The posterior mean is approximately the weighted average of the prior mean and 
the ML estimate, 

posterior mean % (1 — u0(prior mean) + it»(ML estimate), 
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with weights inversely proportional to the respective variances. The prior mean is 
0 and the prior variance is 1.0, and the ML estimate of 0.970 has SE = 0.395, so 
the posterior mean is approximately 

0.3952 1 
(0-0) + —7Γ3Γ (0.970) = 0.84. 1 + 0.3952 1 + 0.3952 

Corresponding to the frequentist P-value for Ha: ß > 0, the Bayesian approach 
can report the posterior probability that ß < 0. Table 11.5 also reports this probabil-
ity for each choice of prior distributions. For the essentially flat prior distribution, 
this posterior tail probability of 0.005 is nearly identical to the P-value for the fre-
quentist test of Ho: ß = 0 against Ha: ß > 0, thus giving very strong evidence that 
ß > 0. With the more informative prior distribution centered at a lack of a treat-
ment effect, this posterior probability provides slightly less evidence of a treatment 
effect. 

11.3.5 Bayesian Fitting of Adjacent-Categories Logit Models 

Adjacent-categories logit models for a multinomial response variable Y with cat-
egorical explanatory variables have corresponding Poisson loglinear models with 
equally-spaced scores for Y. For example, Section 6.2.3 noted that the uniform 
association model for a two-way contingency table is equivalent to an adjacent-
categories logit model of proportional odds form. Assuming independent multino-
mial responses for Y corresponds to assuming independent Poisson observations 
for the cell counts in the contingency table and then conditioning on the row totals 
at the various combinations of levels of explanatory variables. Bayesian analyses 
for such adjacent-categories logit models can be conducted by performing Bayesian 
analyses for the corresponding loglinear models. 

Using the loglinear connection has the advantage that Bayesian software that 
can handle Poisson responses can be used for Bayesian fitting of such models.1 A 
simplification of using an adjacent-categories logit model instead of a cumulative 
logit model is not having to deal with order constraints on intercept parameters, 
which makes specification of prior distributions simpler. 

We illustrate with the ulcer data of Table 11.4 that was analyzed in Section 11.3.4 
using a cumulative logit model. For the analysis with a cumulative logit model, 
ß was an assumed common cumulative log odds ratio. For the adjacent-categories 
logit model, 

log = OL; — ßX;, 

the corresponding loglinear model for the cell expected frequencies {μ,7} is 

log ßij = λ + λ,χ + λ] + ßxiVj, 

1 For example, in version 9.2, SAS PROC GENMOD can handle Poisson or binomial responses but not 
multinomial. 
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TABLE 11.6. Posterior Estimates of Local Log Odds Ratio ß for Adjacent-Categories 
Logit Analyses of Ulcer Data of Table 11.4 

Prior Distribution 

Improper 
Normal (σ = 1000) 
Normal (a = 1.0) 
Jeffreys 
ML" 

Mean 

0.878 
0.879 
0.737 
0.842 
0.842 

Std. Dev. 

0.335 
0.335 
0.272 
0.328 
0.328 

95% Credible Interval 

(0.252, 1.566) 
(0.251, 1.568) 
(0.218, 1.286) 
(0.229, 1.516) 
(0.234, 1.534) 

"Results in ML row are the ML estimate, standard error, and 95% profile likelihood confidence interval. 

with unit-spaced scores such as {υ\ = — 1, vi = 0, v?, = 1}. This loglinear model is 
a special case of the linear-by-linear association model (6.2), and the parameter ß 
is an assumed common local log odds ratio. 

In Table 11.6 we summarize the ML frequentist analysis and Bayesian analyses2 

for various prior distributions for ß and for the loglinear main effect parameters, 
with the ML results used for the initial values. The improper prior distribution is 
uniform over the entire parameter space. The normal prior distributions have means 
of 0. The standard deviation of 1000 corresponds to a highly diffuse prior similar to 
the improper uniform prior, whereas the standard deviation of 1.0 is relatively quite 
informative. The MCMC analysis was run sufficiently long (two million iterations) 
that the Monte Carlo standard errors for these results are less than 0.002 for each 
analysis. Results are substantively similar with each approach, with the informative 
prior resulting in some shrinkage of the estimated effect toward the prior mean. 

11.3.6 Bayesian Fitting of Continuation-Ratio Logit Models 

In Section 4.3 we observed that ML fitting of continuation-ratio logit models can 
utilize the connection between a multinomial likelihood and a product binomial 
likelihood. This results in two simplifications for Bayesian fitting of such mod-
els: First, Bayesian software that can handle binomial responses can be used for 
Bayesian fitting of such models. Second, the model does not have an ordering 
constraint on the cutpoint parameters. 

We illustrate using continuation-ratio logit modeling of Table 4.3, analyzed by 
frequentist methods with such a model in Section 4.2.6. The table cross classifies 
a sample of children by their tonsil size, with categories (not enlarged, enlarged, 
greatly enlarged), and by whether they were carriers of a bacteria that is the cause 
of streptococcal infections. 

Let x indicate whether a child is a carrier of the bacteria (yes = 0.50, no = 
—0.50). The sequential model of proportional odds form is 

π\(χ) 7ii(x) 
lo8—7^T, — =oe\+ßx, l o g — - — = a 2 + ßx. 

π2(χ)+πι(χ) π3(χ) 
2Obtained using PROC GENMOD in SAS. 
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TABLE 11.7. Posterior Estimates of Effect ß for Continuation-Ratio Logit Analyses 
of Enlarged Tonsils Data of Table 4.3 

Prior Distribution 

Improper 
Normal (σ = 1000) 
Normal (σ = 1.0) 
Jeffreys 
ML" 

"Results in ML row are 

Mean 

-0.532 
-0.533 
-0.518 
-0.528 
-0.5285 

Std. Dev. 

0.199 
0.199 
0.194 
0.198 
0.198 

the ML estimate, standard error, and 95% profile 

95% Credible Interval 

(-0.926,-0.146) 
(-0.926,-0.146) 
(-0.902,-0.141) 
(-0.919,-0.144) 
(-0.922,-0.144) 

likelihood confidence interval. 

Table 11.7 summarizes the ML frequentist analysis and Bayesian analyses3 for 
various prior distributions with the ML results used for initial values. The normal 
prior distributions have means of 0. The MCMC analysis was run sufficiently 
long (two million iterations) that the Monte Carlo standard errors for these results 
are less than 0.002 for each analysis. Results are substantively similar with each 
approach, with the informative prior (σ = 1.0) resulting in some shrinkage of the 
estimated effect toward the prior mean. 

11.4 BAYESIAN ORDINAL ASSOCIATION MODELING 

Bayesian modeling of association between two ordinal variables provides an alter-
native to the frequentist association modeling of Chapter 6. With bivariate ordinal 
responses summarized by contingency tables having ordered rows and ordered 
columns, we analyze the degree of evidence supporting an association in a partic-
ular direction, positive or negative, and estimate its strength. 

11.4.1 Evaluating Stochastic Ordering for Two Ordered Multinomials 

When one variable (say, the row variable) has only two categories, it is often 
useful to compare the conditional distributions on the columns for the two rows. 
This is true even if the variables are both response variables rather than one being 
an explanatory variable. We then can apply the Bayesian modeling methods of 
Section 11.3, regarding the two rows as groups to be compared with a model such 
as the cumulative link model h[P(Yi < j)] = ctj — ßxi, applied with an indicator 
predictor for comparing two multinomial distributions. 

An alternative approach is to summarize the degree of evidence supporting a 
stochastic ordering of the two rows with respect to their conditional distributions on 
the column variable. The cumulative link model implies that the two distributions 
are stochastically ordered, but this section shows an alternative analysis that does 
not assume a particular structural model or even assume a stochastic ordering. 

Obtained using PROC GENMOD in SAS, as shown in Table A.3 in the Appendix. 
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Let 7Tj\i denote the probability of outcome j in group i, i = 1,2. Recall that 
group 2 is stochastically larger than group 1 if 

k k 

Σπ^2 <ΣπΜ> k=l,2,...,c-l. 

Equivalently, all c — 1 cumulative log odds ratios are nonnegative. For c — 2, this 
is merely the ordering of the success probabilities, π\\2 < π\\\- In that case, one 
group is necessarily stochastically larger than the other. When c > 2, the groups 
need not be stochastically ordered, because one set of cumulative probabilities need 
not be bounded above by the other set for all j . 

Altham (1969) used a Bayesian analysis with two ordinal multinomial distri-
butions that evaluates the extent of evidence about stochastic ordering. Assuming 
independent Dirichlet prior distributions, she obtained an expression for the pos-
terior probability that one distribution is stochastically larger than the other, that 
is, that each cumulative probability for one distribution is no greater than the 
corresponding cumulative probability for the other distribution. 

Suppose that the Dirichlet prior distributions for {XJ\\} and {π,-ρ} have prior 
parameters {ctj > 0} for {π7·|ΐ} and [ßj > 0} for {JT/^}. Denote the cell counts in row 
/ by {n,i , . . . ,n,c}. Assuming {n\j} and {ny} are independent multinomial sam-
ples, the posterior distributions are independent Dirichlet with parameters {μ,7 = 
n\j + ctj] and [vj = n2j + ßj}. Let μ = (μ\ -\ h με) and v = (vi H h vc) 
be the effective posterior sample sizes. Based on the equivalence of a Dirichlet 
random variable with differences between certain order statistics from a uniform 
distribution over [0, 1], Altham (1969) found the posterior probability that group 
2 is stochastically larger than group 1. It equals 

ίμλ + vi - 1\ ίμ2 + v2\ //Xc-i + vc-A Ιμ€ + vc - 1 

Σ ν ^ V s\ ) \ s2 J V sc-i J\ sc 

" ' L, /μ + ν-2\ 
s\ sc I 1 

v v - i ; 
where each Sj index varies between 0 and the upper limit in the corresponding 
binomial coefficient, but such that (s\ + ··· +Sj) < (μι H l· ßj — 1) for 1 < 
j < c — 1. For fixed (μ, v) and fixed (ßj + vj) for each j , this posterior probability 
is monotone increasing as (μ\ -\ + μj) increases for any j < c, that is, as 
relatively more posterior probability falls at the low end of the scale for group 1. 
The nearer this posterior probability is to 1, the stronger the evidence that group 2 
tends to make higher responses than the group 1. 

When c> 2, the posterior probability that group 1 is stochastically larger than 
group 2 is not the complement of the posterior probability that group 2 is stochas-
tically larger than group 1, because the groups need not be stochastically ordered. 
For example, in a 2x4 table with posterior Dirichlet parameters (μι, μ2, μ^, μ^) 
= (3, 4, 10, 11) in row 1 and (vi, v2, V3, V4) = (2, 6, 9, 11) in row 2, Altham cal-
culated that the probability is 0.17 that group 1 is stochastically larger than group 
2 and 0.23 that group 2 is stochastically larger than group 1. 
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11.4.2 Example: Comparing Operations for Ulcer Revisited 

Weisberg (1972) presented an algorithm for performing Altham' s test about stochas-
tic ordering, illustrating the method for the data in Table 11.4 comparing two 
operations for duodenal ulcer. Weisberg used uniform Dirichlet priors with a\ = 
ai = 03 = 1 and ß\ = ßj = βτ, = 1, corresponding to little prior information about 
the probabilities. The posterior probability is 0.975 that the response distribution 
is stochastically larger (i.e., better) for operation 2 than for operation 1. 

Although the posterior probability calculated in this analysis takes into account 
the category ordering, the basic model itself does not do so. That is, the Dirichlet 
prior distribution is invariant to permutation of the categories, and no relation is 
specified between the probabilities in the two rows. This analysis is an alternative 
to formulating a standard ordinal model for the data, such as a cumulative logit 
model, and finding the posterior probability that the parameter comparing operation 
2 to operation 1 is positive. Assuming such a model, this posterior probability 
is the complement of the posterior probability that the parameter is negative. In 
Section 11.3.4 we performed such an analysis and obtained similar substantive 
conclusions. 

Yet another possible analysis for a table of this sort is Bayesian inference for a 
summary measure of association for 2xc tables such as the measures of stochastic 
superiority a and Δ. Given the cell counts n, finding a posterior probability such 
as Ρ(Δ > 0 | n) provides a Bayesian analog of the frequentist Wilcoxon test based 
on midrank scores. One way to do this generalizes the analysis Altham (1969) pro-
posed for 2x2 tables. Independent Dirichlet prior distributions for the conditional 
probabilities in the two rows combined with independent multinomial likelihood 
functions yield independent posterior Dirichlet distributions for those conditional 
probabilities. Those posterior distributions induce a posterior distribution for Δ 
and a. 

11.4.3 Modeling Ordinal Association in Contingency Tables 

For r x c tables, simple but useful models for describing ordinal association include 
the uniform local odds ratio model introduced in Section 6.6 and the uniform global 
odds ratio model introduced in Section 6.5. The uniform local odds ratio model is a 
special case of the model (6.2) of linear-by-linear association. For fixed monotone 
row scores [it,] and monotone column scores {VJ}, that model for the expected 
frequencies {μ,7} in a two-way contingency table is 

log ßU = λ + λ* + λ) + ßuiVj. 

With unit-spaced scores, ß is the uniform value for the local log odds ratios. The 
sign of ß is equivalent to the sign of the correlation for the joint distribution. 
Given the cell counts n, the posterior P(ß > 0 | n) or its complement summarizes 
the evidence about the direction of the association. A posterior credible interval 
for ß describes the strength of association. 
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To illustrate, consider again the data in Table 11.4 from a study comparing 
two operations for duodenal ulcer. In Section 11.3.5 we conducted a Bayesian 
analysis for this model as a way of conducting Bayesian inference for an adjacent-
categories logit model. The results shown in Table 11.6 for that logit model also 
apply to the uniform local log odds ratio for the linear-by-linear association model 
with unit-spaced scores. 

Section 6.5.2 presented a generalized association model, the RC model (6.13), 
in which the scores are themselves unknown parameters. Evans (1993) provided a 
Bayesian analysis for this model. Based on independent normal priors with large 
variances for the loglinear parameters for the saturated model, they used a posterior 
distribution for loglinear parameters to induce a marginal posterior distribution on 
the RC submodel through Euclidean projection. The RC model treats the variables 
as nominal. To treat them, instead, as ordinal, Iliopoulos et al. (2007, 2009) imposed 
an ordering constraint on both sets of score parameters. Their Bayesian solutions 
are alternatives to the frequentist analysis of Section 6.5.6. The 2007 article used 
gamma priors for differences between adjacent scores that are constrained to be 
positive, whereas the 2009 article treated the scores as ordered uniform variables 
and focused on model comparison, using a MCMC algorithm that allowed moving 
between parameter spaces of different sizes. For the simpler row effects model 
(6.5), Tarantola et al. (2008) proposed a Bayesian approach for analyzing whether 
the rows can be grouped into clusters, with all rows in the same cluster having the 
same row effects. 

The RC model extends to the more general RC(M*) model introduced in Section 
6.5.10. It has M* sets of row and column parameters, with M* < min(r — 1, 
c — 1). Kateri et al. (2005) provided a Bayesian analysis and addressed the issue 
of determining the order of association M*. They checked the fit by evaluating the 
posterior distribution of the distance of the model from the full model. 

11.4.4 Mental Health and SES Revisited 

In Section 6.5.3 we analyzed a 6x4 contingency table (Table 6.6) relating Y = 
child's mental health status (well, mild symptoms, moderate symptoms, impaired) 
with X — parents' socioeconomic status (row 1 = highest to row 6 = lowest). The 
uniform local odds ratio version of the linear-by-linear association model fits very 
well (deviance of 9.9 with df = 14), with ß = 0.091 (SE = 0.015). There is very 
strong evidence that mental health tends to be better at higher levels of parents' 
SES. With independent normal priors with means of 0, a Bayesian analysis produces 
a 95% posterior credible interval for ß of (0.062, 0.120) when each σ = 1000 and 
(0.060,0.119) when each σ = 1.0. This is consistent with the frequentist analysis, 
not surprising as the sample size (n = 1660) was large. With such a large sample 
size, it takes a very sharp prior distribution to have much of a smoothing influence. 

Albert (1997) showed how to compare the uniform association model to the 
more general loglinear model with association parameters [λϊγ]. He used a vague 
uniform prior for β and independent normal priors with constant variance for the 
set of association parameters. He also considered an alternative model that satisfies 
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independence except for some outlier cells. His approach yields estimates of the 
association parameters that allow for uncertainty that the hypothesized model is 
correct. He concluded that these data were equally well represented by an outlier 
model and by the uniform association model. His outlier model allowing three 
outliers provided estimates of log local odds ratios that are quite close to 0 relative 
to their standard errors, the largest one being the local log odds ratio estimate of 
0.28 (SE = 0.23) at the two lowest levels of SES and two highest levels of mental 
health status. 

For their Bayesian approach with the RC model for these data, Evans et al. 
(1993) obtained similar results as Section 6.5.3 reported for the RC-model frequen-
tist analysis. For example, they found strong evidence of a positive association but 
with the first two scores for SES having posterior means slightly out of order. 

To estimate the cell probabilities themselves, we could use one of these model 
fits or we could use the empirical Bayesian method of Section 11.2.4 to smooth 
the sample proportion estimates {p¡j} toward the ML fit of the model. Agresti and 
Chuang (1989) used a Dirichlet prior distribution for {7T¡J} with Dirichlet means 
{y¡j} that are themselves estimated by the ML fitted probabilities for the model of 
uniform local odds ratios. For these data, this provides Bayesian estimators of the 
form 

0.2&pij+0J2yij. 

Even though the sample size is large (n = 1660), these give primary weight to the 
ML model fit because the fit is so good. 

11.5 BAYESIAN ORDINAL MULTIVARIATE REGRESSION 
MODELING 

In modeling multivariate ordinal response variables, the focus can be on the 
association and interaction structure among the variables, extending methods of 
Section 11.4.3. More commonly, in practice in longitudinal studies and other types 
of studies having clustered observations, the focus is on the regression modeling 
of each component of the response vector in terms of explanatory variables, while 
accounting for the clustered nature of the ordinal responses. In Chapters 8 to 10 
we presented corresponding frequentist methods. 

11.5.1 Modeling Multivariate and Hierarchical Responses 

In Chapter 10.1 we analyzed multivariate ordinal response data using random 
effects models. That approach is somewhat Bayesian in flavor, as it specifies prob-
ability distributions for the random effect terms in the model. With a fully Bayesian 
approach, no effects are fixed, in the sense that all effects are given prior distribu-
tions. Nonetheless, it is helpful in building a model to distinguish between terms 
for the clusters, such as a random intercept for subjects in a longitudinal study, and 
terms for the effects of explanatory variables. 
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Best et al. (1996) used Bayesian methods with a cumulative logit model of 
proportional odds form having a random intercept, as introduced in Section 10.1.1. 
They presented their modeling in the form of a graphical model that makes explicit 
the conditional independence structure. 

The majority of work for multivariate ordinal responses, however, has focused on 
multivariate probit models. This is because such models naturally relate to latent 
variable models for multivariate normal responses. Chib and Greenberg (1998) 
showed this for the binary case in extending the Albert and Chib (1993) approach 
for a univariate response. A multivariate normal latent random vector with cut-
points along the real line defines the categories of the observed discrete variables. 
The correlation among the categorical responses is induced through the covari-
ance matrix for the underlying latent variables. The authors' approach includes a 
method for sampling the posterior distribution of the correlation matrix. Chen and 
Dey (2000) used a similar latent structure but focused on ordinal responses and 
(as in Albert and Chib 1993) permitted greater flexibility through using scale mix-
tures of normals for the latent variables, thus encompassing other link functions 
including a t link that is a close approximation to the logit. They also suggested a 
residual analysis on the latent scale. 

Chen and Dey illustrated their methodology with an item response example 
having a five-category ordinal response scale. The data resulted from a survey 
of secondary school teachers who were asked about the importance of various 
features of Master's degree programs for mathematics teachers. They noted that 
the exchangeability assumption implicit in ordinary frequentist random intercept 
models is often invalid. An advantage of their approach is that the correlation need 
not have an exchangeable structure within clusters of observations. 

11.5.2 Other Research on Ordinal Multivariate Models 

In another variation of Bayesian inference for an ordinal multivariate probit model 
with an underlying latent structure, Kottas et al. (2005) used a nonparametric 
Bayesian approach with a Dirichlet mixture of multivariate normals for the prior 
distribution. They showed that using a mixture of normals allows the dependence 
structure to vary across the contingency table cross-classifying the responses. They 
illustrated with an example on interrater agreement, suggesting that raters may tend 
to agree about extremely high or low scores but show more disagreement in rating 
average observations. They noted also that inference in some ordinal multivari-
ate probit models is plagued by problems related to the choice and resampling of 
cutpoints defined for the latent variables, because the cutpoints tend to be highly 
correlated with the latent variables. They claimed that this problem does not occur 
with their approach, because without loss of generality their approach treats the 
cutpoints as fixed. 

Webb and Forster (2008) parameterized the multivariate ordinal probit model in 
such a way that conditional posterior distributions are standard and easily simulated. 
They compared different conditional independence specifications by obtaining pos-
terior distributions over classes of graphical models, comparing posterior marginal 
probabilities of the models given the data (integrating out the parameters). 
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For other Bayesian research that has used an underlying latent random vector to 
induce an ordinal multivariate cumulative link model, see Lunn et al. (2001) and 
Congdon (2005, Sec. 6). In Note 11.7 we summarize other Bayesian research on 
multivariate ordinal models. 

11.6 BAYESIAN VERSUS FREQUENTIST APPROACHES 
TO ANALYZING ORDINAL DATA 

We have not discussed philosophical issues underlying the choice between the 
frequentist and Bayesian frameworks for analyzing data, as that has received con-
siderable attention in the Bayesian literature. Our comments here pertain solely to 
practical aspects of using the two approaches. 

The frequentist approach to analyzing ordinal data has the advantage of relative 
simplicity. We need only to specify the model and the distribution of the data, 
which determine the likelihood function. The Bayesian approach has two further 
complications: First, it is necessary to specify a prior distribution. We've seen that 
this can be nontrivial even for a relatively simple model for a univariate ordinal 
response. Second, it can be rather complicated to compute adequately (to proper 
convergence) the posterior distribution and its summaries. 

The choice of the prior distribution and appropriate specification of a model 
requires careful thought. For example, in the cumulative logit model example of 
Section 11.3.4, results depend strongly on the choice of prior distribution and on the 
way of defining an indicator variable for an explanatory variable. For multivariate 
models, it can be quite challenging to determine a sensible prior distribution. An 
independent observer may worry that results are not sufficiently objective, perhaps 
being too strongly influenced by the choice of prior distribution. 

To attempt to reduce the subjective aspect of a Bayesian analyis, the data analyst 
may decide to use prior distributions that are flat relative to the likelihood func-
tion. But the implications of such choices can also be worrisome with complex 
models that have large numbers of parameters. Some highly influential statisti-
cians are skeptical about Bayesian methods being used appropriately in such cases. 
For example, in his book Principles of Statistical Inference (Cambridge University 
Press, 2006), D. R. Cox states (p. 76): "Many empirical applications of Bayesian 
techniques use proper prior distributions that appear flat relative to the information 
supplied by the data. If the parameter space to which the prior is attached is of 
relatively high dimension the results must to some extent be suspect." 

Both the choice of prior distribution and the proper computational implemen-
tation of the Bayesian approach require a fair amount of methodological and 
computational savvy. For all but the simplest models, the use of Bayesian meth-
ods should be considered rather daunting for the unsophisticated data analyst. Over 
time, as data analysts gain more experience with the Bayesian approach and as soft-
ware becomes further developed and certain cases become considered as defaults 
when there is little prior information, these issues may be less problematic. 

In the 1960s, many statisticians discovered the value of Bayesian analyses 
because of the advantages of employing shrinkage estimation. An example was 
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Charles Stein's classic result that the ordinary maximum likelihood estimator of 
a vector of means of normal distributions was dominated by a Bayes estimator. 
These days, it is possible to obtain the same advantages of shrinkage in a frequentist 
context, for example by using models with random effects. In this sense, the lines 
between Bayesian and frequentist analysis have blurred somewhat. Nonetheless, 
there are still some analysis aspects for which the Bayesian approach is a more 
natural one. One is providing a natural way to combine available prior informa-
tion and new data. Another is the availability of model averaging to deal with the 
thorny issue of model uncertainty. Another is a common approach for conducting 
inference whether the sample size is large or small. In addition, to many methodol-
ogists it is more natural to make probability statements about unknown parameters 
than to make probability statements about hypothetical observations conditional on 
particular parameter values. 

In recent years, relatively fewer statisticians take the dogmatic view of regarding 
only the frequentist approach or only the Bayesian approach as valid. In the future, 
it seems likely that most data analysts will feel comfortable using both paradigms, 
making their choice for a data analysis according to which approach seems more 
natural for the particular application. 

CHAPTER NOTES 

Section 11.2: Estimating Multinomial Parameters 

11.1. For an ordinal response, Vijn (1983) expressed the Dirichlet density in 
terms of cumulative probabilities and in terms of cutpoints for an underlying latent 
variable. Sedransk (1985) and Gelfand (1992) estimated multinomial probabilities 
under the umbrella constraint n\ < ... < jr* > jtk+i > ••• > 7tc, using a truncated 
Dirichlet prior and possibly a prior on k if it is unknown. 

11.2. Frequentist methods also exist for smoothing contingency tables and shrink-
ing sample data toward models. These include kernel smoothing, mazimizing 
penalized likelihoods, and generalized additive models and other semiparametric 
regression models containing smooth functions of explanatory variables as the pre-
dictors. Kernel smoothing estimates the mean at a particular point by a weighted 
averaging of data near that point, with less weight given to data further away. For 
ordinal data, see Brown and Rundell (1985) and Dong and Simonoff (1995). Penal-
ized likelihood methods subtract a penalty term from the log-likelihood function, 
the penalty being smaller when the data are smoother. Simonoff (1987) argued 
that this method is superior to kernel methods. Penalized likelihood methods share 
some features with Bayesian fitting, as the penalty function results in the same type 
of smoothing as does imposition of a prior distribution, and the penalty function 
can be related to a prior distribution. For smoothing methods for ordinal data, see 
Simonoff (1996, Chap. 6; 1998) for surveys, Dong and Simonoff (1995), Hastie 
and Tibshirani (1987), Simonoff (1987), Titterington and Bowman (1985), Yee and 
Wild (1996), and Congdon (2005, Sec. 7.3). For the use of smooth predictor com-
ponents in ordinal models using cumulative logits or continuation-ratio logits, see 
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Hastie and Tibshirani (1987), Yee and Wild (1996), Fahrmeir and Tutz (2001), 
Kauermann and Tutz (2003), and Tutz (2003). For discussion of ordinal regression 
pertaining to machine learning, see Herbrich et al. (1999), Frank and Hall (2001), 
Shashua and Levin (2003), Chu and Ghahramani (2005), Chu and Keeithi (2007), 
and Waegemana et al. (2008). 

Section 11.3: Bayesian Ordinal Regression Modeling 

11.3. Section 11.3 described regression models that assume a particular link 
function. For binary and ordinal regression, Lang (1999) used a parametric link 
function based on smooth mixtures of two extreme value distributions and a logis-
tic distribution. His model used a flat, noninformative prior distribution for the 
regression parameters and was designed for applications in which some prior infor-
mation exists about the appropriate link function. Ntzoufras (2009, pp. 235-236) 
summarized related research. 

11.4. Section 5.4 presented a generalization of the cumulative link model that 
allows dispersion as well as location effects. Congdon (2005, Sec. 7.4) considered 
Bayesian inference for such a model. For other Bayesian ordinal regression analy-
ses, see Albert and Chib (1993, 2001), Cowles et al. (1996), Bradlow and Zaslavsky 
(1999), Ishwaran and Gatsonis (2000), Ishwaran (2000), Xie et al. (2000), Congdon 
(2005, Chap. 7), and Gill and Casella (2009). 

Section 11.4: Bayesian Ordinal Association Modeling 

11.5. Bhattacharya and Nandram (1996) and Evans et al. (1997) estimated sev-
eral multinomial distributions under a stochastic ordering when there is uncertainty 
about whether such a restriction is valid. Gelfand and Kuo (1991) modeled stochas-
tically ordered outcomes for responses at different dosage levels in a bioassay. 

11.6. Several articles have used Bayesian methods for modeling ordinal agree-
ment. Strong association does not necessarily imply strong agreement, so associa-
tion models alone are not usually adequate. Johnson (1996) proposed a Bayesian 
model for studies in which several judges provide ordinal ratings of items, a partic-
ular application being test grading. Johnson assumed that for a given item, a normal 
latent variable underlies the categorical rating. For a given judge, cutpoints define 
boundary points for the categories. He suggested uniform prior distributions over 
the real line for the cutpoints, truncated by their ordering constraints. The model is 
used to regress the latent variables for the items on covariates in order to compare 
the performance of raters. The model structure is hierarchical, with independent 
normal priors for the different judges but with the variances of those priors having 
an inverse gamma distribution. Kottas et al. (2005) also used a multivariate probit 
model but with a nonparametric prior structure. Mwalili et al. (2004) presented a 
model to correct for interobserver measurement error. Broemeling (2009) focused 
on Bayesian inference for agreement measures such as weighted kappa. 
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Section 11.5: Bayesian Ordinal Multivariate Regression Modeling 

11.7. Lawrence et al. (2008) used MCMC methods with multivariate probit 
models by sampling correlation matrices using Gibbs sampling. Other examples 
of Bayesian approaches to ordinal modeling of multivariate or hierarchical data 
include Tan et al. (1999), Rossi et al. (2001), Biswas and Das (2002), Qiu et al. 
(2002), Kaciroti et al. (2006), and the references in Note 10.5. For modeling of 
case-control ordinal data, see Mukherjee et al. (2007). 

EXERCISES 

11.1. Outline how you would conduct a Bayesian analysis for an ordinal measure 
of association that is not necessarily connected with a model, such as (a) 
gamma and Kendall's tau-b, and (b) a global odds ratio. 

11.2. For an ordinal 2xc contingency table, develop a Bayesian analog of the 
Wilcoxon test and Bayesian inference for the related measures of stochastic 
superiority, Δ and a. For Table 11.4, find a posterior tail probability using 
one of these measures that is analogous to the frequentist exact Wilcoxon 
one-sided P-value (which equals 0.0058) for the alternative that operation 2 
is better than operation 1. 

11.3. Refer to the example on government spending on the arts in Section 11.2.2. 
The corresponding counts for the sampled males in the 18-21 age range were 
(6, 4, 10, 5, 2). Using methods of this chapter, (a) report Bayesian estimates 
of the corresponding cell probabilities, (b) report Bayesian estimates for the 
table cross-classifying opinion by gender. 

11.4. Try to replicate the results shown for modeling the ulcer data in 
Sections 11.3.4 and 11.3.5. Obtain results for the corresponding continuation-
ratio logit model for these data. 

11.5. Refer to the opinions about teen sex, premarital sex, and extramarital sex 
shown in Agresti and Lang (1993a) and Congdon (2005, p. 262). Analyze 
these data with (a) a marginal model, (b) a random effects model, and (c) a 
Bayesian model. Compare results and interpretations. 
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Software for Analyzing Ordinal 
Categorical Data 

All major statistical software has procedures for categorical data analyses. In this 
appendix we discuss the use of SAS, R, Stata, and SPSS, with brief summaries of 
other software. We do not attempt to provide detailed instructions, as information 
on that is available in specialized publications and at Internet sites that we list. 
Our goal is merely to provide information about procedures that are available for 
the ordinal analyses presented in this book. Many of the Internet addresses listed 
below will be out of date at some stage, but the reader should be able to find 
similar information with a search on the Internet using relevant keywords. For 
more information about software packages for categorical data analyses, see the 
web site www.stat.un.edu/~aa/cda/software.html. 

SAS 

In SAS, the main procedures (PROCs) for categorical data analyses are FREQ, 
GENMOD, LOGISTIC, and NLMIXED. PROC FREQ provides large- and small-
sample tests of independence in two-way tables, measures of association and 
their estimated standard errors, and generalized CMH tests of conditional inde-
pendence. PROC GENMOD fits cumulative link models and loglinear models for 
ordinal responses, and it can perform GEE analyses for marginal models as well as 
Bayesian model fitting for some cases. PROC LOGISTIC also fits cumulative link 
models. PROC NLMIXED fits models with random effects and generalized nonlin-
ear models. PROC CATMOD can fit a wide variety of models, mainly using WLS 
but with ML for models that can be expressed using baseline-category logits, such 
as adjacent-categories logit models. The examples below show SAS code (version 
9.2) for many ordinal analyses. For convenience, examples enter data in the form of 
the contingency table displayed in the text. In practice, data would usually be listed 

Analysis of Ordinal Categorical Data, Second Edition, By Alan Agresti 
Copyright © 2010 John Wiley & Sons, Inc. 

345 



346 APPENDIX 

at the subject level. For further information about using SAS for ordinal categorical 
data analyses, see Stokes et al. (2000), Bender and Benner (2000), the appendix 
of O'Connell (2006), and the web site www.ats.ucla.edu/stat/sas/examples/icda at 
UCLA. 

PROC GENMOD can fit cumulative link models by specifying DIST — 
MULTINOMIAL and LINK = CLOGIT (cumulative logit) or LINK = CPROBIT 
(cumulative probit) or LINK = CCLL (cumulative complementary log-log). 
PROC LOGISTIC can also fit cumulative link models and conduct the score 

test of the proportional odds assumption of identical effect parameters for each 
cutpoint. The first three PROC statements in Table A. 1 fit cumulative logit models 
to Table 3.1. Stokes et al. (2000) showed how to use PROC GENMOD with the 
GEE methodology to obtain estimates for a partial proportional odds model. 

Adjacent-categories logit models can be fitted in SAS with PROC CATMOD 
by fitting equivalent baseline-category logit models. Table A.2 fits the adjacent-
categories-logit model to Table 4.1. PROC CATMOD has options (CLOGITS and 
ALOGITS) for fitting cumulative logit and adjacent-categories logit models to 
ordinal responses; however, those options provide weighted least squares (WLS) 
rather than ML fits and should be used only with nonsparse contingency tables. 
CATMOD treats zero counts as structural zeros, so they must be replaced by small 
constants (such as 10-8) when they are actually sampling zeros. PROC CATMOD 
can also fit mean response models (Section 5.6) using WLS. Continuation-ratio 

TABLE A.l. SAS Code for Ordinal Modeling of Table 3.1 

data astrosci; 
input degree astro count v2 ; uv=astro*degree; uv2=v2*degree; 

datalines; 
0 1 23 1 
0 2 84 3 
0 3 98 4 
1 1 50 1 

4 2 23 3 
4 3 148 4 

proc genmod; weight count; * cumulative logit; 
model astro = degree / dist=multinomial link=clogit lrci type3; 

proc logistic; weight count; * cumulative logit; 
model astro = degree / aggregate scale=none; 

proc genmod; weight count; class degree; * treat degree as nominal; 
model astro = degree / dist=multinomial link=clogit lrci type3; 

proc genmod; class astro degree; * linear-by-linear assoc; 
model count = astro degree uv / dist=poi link=log type3 obstats; 
proc genmod; class astro degree; * linear-by-linear assoc, other 
scores; 
model count = astro degree uv2 / dist=poi link=log type3 obstats; 

proc freq; weight count; * generalized CMH tests; 
tables astro*degree / cmh; 
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TABLE A.2. SAS Code Showing Use of PROC CATMOD to Fit Adjacent-Categories 
Logit Model to Table 4.1 

data stemcell; 
input i Eund scresrch gender count; 

datalines; 
1 
1 
1 
1 
1 
1 
1 
1 
2 

1 0 21 
1 1 34 
2 0 52 
2 1 67 
3 0 24 
3 1 30 
4 0 15 
4 1 25 
1 0 30 

3 4 1 12 

proc catmod order=data; weight count; 
population fund gender; 
model scresrch = 

run; 

= ( 1 0 0 3 0 , 
1 0 0 3 3, 
1 0 0 6 0, 
1 0 0 6 3, 
1 0 0 9 0, 
1 0 0 9 3, 

0 1 0 2 0, 
0 1 0 2 2, 
0 1 0 4 0, 
0 1 0 4 2, 
0 1 0 6 0, 
0 1 0 6 2, 

0 0 1 1 0 , 
0 0 1 1 1 , 
0 0 1 2 0, 
0 0 1 2 1, 
0 0 1 3 0, 
0 0 1 3 1) / ML NOGLS; 

logit models can be fitted using PROC GENMOD or PROC LOGISTIC by applying 
ordinary binary logistic regression models to the independent binomials to which 
the models apply, as explained in Section 4.2.6. Table A.3 illustrates for Table 4.3. 
Kuss (2006) showed how to use PROC NLMIXED to fit the stereotype model. 

To fit the nonlinear location-scale model (5.4), Cox (1995) used an iteratively 
re-weighted Gauss-Newton algorithm, implemented with PROC NLIN in SAS. 
PROC NLMIXED could also be employed by providing in the code the likelihood 
function to be maximized. 

The association models of Chapter 6 that are special cases of loglinear models, 
such as the linear-by-linear association model and the row effects model, can be 
fitted as special cases of generalized linear models using PROC GENMOD. As in 
ordinary loglinear modeling, one assumes a Poisson distribution for the cell counts 
and uses the log link function. The fourth and fifth PROC statements in Table A.l 
fit the linear-by-linear association model (6.2) (with equally spaced scores and 
with column scores 1, 3, 4) to Table 6.1. The defined variable uv represents the 
cross-product of row and column scores, which has ß parameter as coefficient in 
model (6.2). The RC model (6.13) can be fitted using PROC NLMIXED in SAS 
by specifying the likelihood function to be maximized, such as in Kuss (2006) for 
the related stereotype model. Davis (1988) showed how to fit the RC model using 
PROC MATRIX. 
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T A B L E A.3. SAS Code for Frequentist and Bayesian Continuation-Ratio Logit 
Modeling of Table 4.3 

data tonsils; * look at data as indep. binomials; 
input stratum carrier success failure; 
n = success + failure; carrier2 = carrier - 0.5; 

datalines; 
1 1 19 53 
1 0 497 829 
2 1 29 24 
2 0 560 269 

proc genmod data=tonsils; class stratum; * frequentist analysis; 
model success/n = stratum carrier / dist=binomial link=logit lrci 
type3; 

run; 
proc genmod data=tonsils; class stratum; * Bayesian analysis; 
model success/n = stratum carrier2 / dist=binomial link=logit; 
bayes coeffprior=normal (var=1.0) initialmle diagnostics=mcerror 
nmc=2000000; 

run; 

PROC FREQ estimates several measures of association and their standard 
errors (MEASURES option) and provides ordinal statistic (7.5) with a 'nonzero 
correlation' test (CMHl). The polychoric correlation is available with the PLCORR 
option in PROC FREQ. For tables having small cell counts, the EXACT statement 
can provide various exact analyses. These include exact trend tests for r x 2 tables 
(TREND), and exact correlation tests for r x c tables (MHCHI). With the CMH 
option, PROC FREQ provides the generalized CMH tests of conditional indepen-
dence presented in Section 6.4.5. The statistic for the "row mean scores differ" 
alternative treats X as nominal and Y as ordinal, and the statistic for the "nonzero 
correlation" alternative treats X and / as ordinal. Table A.4 shows analyses of 
Table 2.3. 

TABLE A.4. SAS Code for Measures of Association and Analyses of Data in Table 2.3 

data gss; 
input income happy count; 
datalines; 

1 1 272 
1 2 294 
1 3 49 

3 3 208 

proc freq data=gss; weight count; 
tables income*happy / chisq cmh cmh2 measures plcorr; 

proc freq data=gss; weight count; 
tables income*happy / cmh cmh2 scores=rank measures; 
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The matched-pairs models of Chapter 8 that are special cases of loglinear 
or logistic models, such as the ordinal quasi-symmetry model (8.6) and ordinal 
agreement model (8.20), can be fitted as generalized linear models using PROC 
GENMOD. Table A.5 shows analyses of Table 8.2. The qi factor invokes the <5, 
main-diagonal parameters in equation (8.10). It takes a separate level for each 
cell on the main diagonal, and a common value for all other cells. The main-
diag term invokes the 8 parameter in the ordinal agreement model. The bottom 
of Table A.5 fits logit models for the data entered in the form of pairs of cell 
counts (njj,njj). These three sets of binomial counts are labeled as above and 
below with reference to the main diagonal. The variable defined as score is the 
distance (uj — w,·) = j — i. The model fitted without an intercept (NOINT option) 
is ordinal quasi-symmetry. For rater agreement (Section 8.5), the AGREE option 
in PROC FREQ in SAS provides Cohen's weighted kappa with SE values. It 
uses the weights {u>,7 = 1 — \i — j\/(c — 1)} by default and the weights {ιυ,ν = 
1 - (ί - j)2l(c - l)2} when you specify (WT = FC) with the AGREE option. 

Table A.6 uses PROC CATMOD to fit the adjacent-categories logit paired pref-
erence model (8.22) to the soft-drink tasting data of Table 8.9. Here the equivalent 
model is fitted using baseline-category logits, for which the first threshold param-
eter is 0 and there is a common threshold parameter for categories 2 and 4 and a 
separate one for category 3, as explained in Section 8.6.3. 

PROC GENMOD in SAS can implement the GEE method presented in Chapter 
9, using the REPEATED statement to specify the variable name that identifies 
the subjects for each cluster. For multinomial responses, independence is cur-
rently the only working correlation structure for GEE. For a SAS macro with 
other working correlation structures, see Williamson et al. (1999). The TYPE3 
option with the GEE approach provides score-type tests about effects. See Stokes 
et al. (2000, Sec. 15.11) for the use of GEE with missing data. PROC NLMIXED 
extends GLMs to GLMMs by including random effects. Although the multinomial 
distribution is not supported directly by NLMIXED, one can define the general 
likelihood function needed to fit the models through the use of SAS program-
ming statements. Table A.7 shows how to analyze Table 8.5. The text web site 
www.stat.ufl.edu/~aa/ordinal/data.html shows NLMIXED code for the cumulative 
logit random effects analysis of the multicenter clinical trial data of Section 10.3.4 
and for an adjacent-categories logit random effects analysis of a 34 movie reviewer 
data set in Hartzel et al. (2001b). For other discussion of using SAS with clustered 
data, see Molenberghs and Verbeke (2005). 

Bayesian analyses for generalized linear models are available with the BAYES 
statement in PROC GENMOD. As of version 9.2, this is not available for multino-
mial distributions, but it can be employed for binomial and Poisson models, so this 
procedure is useful for Bayesian implementation of continuation-ratio logit mod-
els through the binomial factorization described in Section 4.2 and for Bayesian 
implementation of adjacent-categories logit models through the Poisson loglinear 
connection. The default prior distribution is improper uniform, but normal and 
Jeffreys priors are also easily invoked. Table A.3 illustrates with standard normal 
prior distributions for continuation-ratio logit modeling of Table 4.3, using the ML 
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TABLE A.5. SAS Code Showing Square-Table Analyses of Table 8.2 

data gss_2006; 
input helphlth helpenv count symm qi above maindiag diagl diag2; 
assoc = helphlth*helpenv; 
d a t a l i n e s ; 

1 1 199 1 1 0 1 0 0 
1 2 81 2 4 1 0 1 0 
1 3 83 3 4 1 0 0 1 
2 1 129 2 4 0 0 0 0 
2 2 167 4 2 0 1 0 0 
2 3 112 5 4 1 0 1 0 
3 1 164 3 4 0 0 0 0 
3 2 169 5 4 0 0 0 0 
3 3 363 6 3 0 1 0 0 

proc genmod; class symm; 
model count = symm helpenv helphlth / dist=poi link=log; * ord quasi 
symm; 

proc genmod; class helphlth helpenv qi; 
model count = helpenv helphlth qi assoc / dist=poi link=log; * quasi 
unif assoc; 

proc genmod; class helphlth helpenv; 
model count = helpenv helphlth assoc maindiag / dist=poi link=log; * 
ord agreement; 

proc genmod; class symm; 
model count = symm above / dist=poi link=log; * cond symmetry; 

proc genmod; class symm; 
model count = diagl diag2 symm / dist=poi link=log; * diag para 
symmetry; 

data square; 
input score below above @@; trials = below + above; 
datalines; 
1 4 43 1 8 99 1 18 230 2 4 163 2 1 185 3 0 233 

proc genmod data=square; 
model below/trials = score / dist=bin link=logit noint; 

estimates for initial values and reporting the Monte Carlo error as a diagnostic. 
The default number of iterations after the burn-in is 10,000 but can be changed 
by setting NMC. In version 9.2, multinomial models can be fitted using PROC 
MCMC. Table A.8 shows this for the Bayesian cumulative logit analysis of the 
ulcer operation data presented in Section 11.3.4. For details about using PROC 
MCMC for such a model, see the "Bayesian multinomial model for ordinal data" 
example at http://support.sas.com/rnd/app/examples/. 

R 

A good, detailed discussion of the use of R (and Splus) for models for cate-
gorical data is available online in the free manual prepared by Laura Thompson 
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TABLE A.6. SAS Code for Paired Preference Analyses of Table 8.8 with Model (8.22) 
for Adjacent-Categories Logits 

data coke; 
input row coke classic outcome count; 
datalines; 
1 1 - 1 1 12 
1 1 - 1 2 19 
1 1 - 1 3 11 
1 1 - 1 4 14 
1 1 - 1 5 5 
2 1 0 1 11 
2 1 0 2 18 
2 1 0 3 12 
2 1 0 4 13 
2 1 0 5 7 
3 0 1 1 7 
3 0 1 2 12 
3 0 1 3 14 
3 0 1 4 16 
3 0 1 5 12 

proc catmod data=coke order=data; weight count; 
population row; 

model outcome = 
(0 0-4 4, 1 0 -3 3, 0 1 -2 2, 1 0 -1 1, 
0 0-4 0, 1 0 -3 0, 0 1 -2 0, 1 0 -1 0, 
0 0 0 -4, 1 0 0 -3, 0 1 0 -2, 1 0 0-1) 
( 1 2 = 'threshold', 3 4 = 'treatments')/ covb ML NOGLS 
pred=freq; 

to accompany Agresti (2002) chapter by chapter. A link to this manual is at 
www.stat.ufl.edu/~aa/cda/software.html. Most of the ordinal methods considered 
in this book are also discussed in that manual; you can find them by searching the 
manual with relevant keywords [see also Bender and Benner (2000)]. 

As well as ordinary functions readily available with R, Laura Thompson's 
manual and this appendix mention useful specialized R functions from various 
R libraries. One of the most useful and powerful functions is mph.fit, written 
by Joseph Lang at the University of Iowa (jblang@stat.uiowa.edu). It can fit 
multinomial-Poisson homogeneous models that have the very general form 

L(M) = X/9 

for probabilities or expected frequencies μ, where L is a general link function. 
Lang (2005) introduced this general class of models and their ML model fitting. 
One special case is the generalized loglinear form (6.18), namely ClogA/t = Xß. 
This model form includes the ordinal logit models of Chapters 3 and 4 and the 
association models of Chapter 6 (e.g., with global odds ratios or local odds ratios) 
that have linear predictors, the models for matched pairs in Chapter 8, and the 
marginal ordinal logit models of Chapter 9. Another special case is the model of 
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TABLE A.7. SAS Code for GEE and Random Intercept Cumulative Logit Analyses 
of Crossover Data in Table 8.5 

data crossover; 
input a b c count symm; 
datalines; 

1 1 1 6 1 
1 1 2 4 2 
1 1 3 5 3 

3 3 3 0 10 

q2=0; q3=0; resp=a; t r e a t 
q2=l; q3=0; resp=b; t r e a t 
q2=0; q3=l; resp=c; t r e a t = 3 

1; output; 
2; output; 

output; 

if ql=l and a=2 then y2 = l; 

and b=2 then y2=l; 

if ql=l 

if q2=l and 

data crossover; 
set crossover; 

case = _n_; 

ql=l; 
ql=0; 
ql = 0; 

data crossover; 
set crossover; 
yl=0; y2=0; y3 = 0; 
if ql=l and a=l then yl=l; 

and a=3 then y3=l; 
if q2=l and b=l then yl=l; if q2=l 

b=3 then y3=l; 
if ql=0 and q2=0 and c=l then yl=l; if ql=0 and q2=0 and c=2 then 

y2=l; 
if ql=0 and q2=0 and c=3 then y3=l; 

proc genmod data=crossover; class case; freq count; * GEE analysis; 
model resp = ql q2 / dist=multinomial link=clogit; 
repeated subject=case / type=indep; 

proc nlmixed qpoints=200 data=crossover; * cumul logit random 
effects; 
bounds i2 > 0; 
etal = il + ql*betal + q2*beta2 + u; eta2 = il + i2 + ql*betal 
+ q2*beta2 + u; 
pi = exp(etal)/(l + exp(etal)); 
p2 = exp(eta2)/(l + exp(eta2)) - exp(etal)/(l + exp(etal)); 
p3 = 1 - exp(eta2)/(l + exp(eta2)); 
11 = yl*log(pl) + y2*log(p2) + y3*log(p3); model yl ~ gen-

eral (11) ; 
random u ~ normal(0, sigma*sigma) subject=case; 
replicate count; predict pi out=new; proc print data = new; 

proc nlmixed qpoints=200 data=crossover; * ACL random effects; 
etal = il + i2 + 2*ql*betal + 2*q2*beta2 + 2*u; 
eta2 = i2 + ql*betal + q2*beta2 + u; 
pi = exp(etal)/(l + exp(etal) + exp(eta2)); 
p2 = exp(eta2)/(l + exp(etal) + exp(eta2)),· 
p3 = 1/(1 + exp(etal) + exp(eta2)); 
11 = yl*log(pl) + y2*log(p2) + y3*log(p3); model yl - gen-

eral (11) ; 
random u - normal(0, sigma*sigma) subject=case; 
replicate count; predict u out=new; proc print data = new; 
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TABLE A.8. SAS Code Using PROC MCMC for Bayesian Cumulative Logit 
Modeling of Table 11.4 

data u l c e r ; 
input yl y2 y3 treat; 
datalines; 

7 17 76 -0.5 
1 10 89 0.5 

ods graphics on; 
proc mcmc data=ulcer nbi=10000 nmc=1000000 thin=2 seed=1181 

propcov=quanew monitor=(beta or); 
array alpha[2]; array gamma[2]; 
parms alphal alpha2 beta; 
prior beta ~ normal(0,var=1000**2); 
prior alphal - normal(-1.0,var=1000**2); 
prior alpha2 - normal(1.0,var=1000**2,lower=alphal); 
mu = beta*treat; 
do j = 1 to 2; 

gamma[j] = logistic(alpha[j] - mu); 
end; 
etal = gammal; eta2 = gamma2 - gammal; eta3 = 1 - gamma2; 
Hike = logmpdfmultinom(of yl-y3, of etal-eta3); 
model dgeneral (Hike) ; 
beginprior; 

or = exp(beta); 
endprior; 

run; 
ods graphics off; 

generalized linear form Αμ. = Χβ, which includes the mean response model of 
Section 5.6. See www.stat.ufl.edu/~aa/ordinal/ord.html for examples of mph.fit for 
the analysis of standardized residuals in Section 3.5.8, the partial proportional odds 
analysis in Section 3.6.5, the mean response model in Section 5.6.2, the global 
odds ratio model in Section 6.6.2, the marginal cumulative logit model in Section 
8.4.3, and the paired preference modeling of Section 8.6.4. 

Another powerful library, developed by Thomas Yee at the University 
of Auckland, is VGAM for vector generalized linear and additive models 
(www.stat.auckland.ac.nz/~yee/VGAM). For details about models that can be 
fitted,1 see Yee and Wild (1996), Yee and Hastie (2003), Yee (2010), and the 
Thompson manual. The vglm function fits by Fisher scoring a wide variety of 
models. The format resembles that for the ordinary R function glm with the 
addition of a family function. Possible models include the cumulative logit model 
(family function cumulative) with proportional odds or partial proportional odds or 
nonproportional odds, cumulative link models (family function cumulative) with 
or without common effects for each cutpoint, adjacent-categories logit models 

'See also cran.us.r-prqject.org/doc/Rnews/Rnews2008-2.pdf. 
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(family function acat), and continuation-ratio logit models (family functions 
cratio and sratio). The grc function fits the RC model. 

Many other R functions can also fit cumulative logit and other cumulative link 
models. Thompson's manual (p. 121) describes the polr function from the MASS 
library, for which the cumulative logit is the default. The syntax is simple, such as 
with response variable y and explanatory variable x, 

l ibrary(MASS) 
fit.cum <- polr(y ~ x, data=tab3.1, method=v'probit'') 
summary(fit.cum) 

Thompson also described the Irm function in the design library, the Icr function 
in the ordinal library, and the nordr function in the gnlm library. Continuation-
ratio logit models can be fitted by the Irm and nordr functions, as Thompson 
discusses, or by applying ordinary binary logistic regression models (e.g., with the 
glm function) to the independent binomials to which the models apply, as explained 
in Section 4.2.6. 

The glm function in R performs generalized linear modeling. The association 
models of Chapter 6 that are special cases of loglinear models, such as the linear-
by-linear association model, can be fitted with the glm function, assuming a Poisson 
distribution for the cell counts and using the log link function. The syntax has a 
simple form, such as with cell counts and with factors x and y, 

fit.LL <- glmfcount ~ x + y + u:v, data=tab6.1, family=poisson) 

summary(fit.LL) 

See Thompson's manual for detailed examples. 
The stereotype model and other nonlinear models for categorical data such as 

the RC model of Section 6.5 can be fitted with the gnm function developed2 by 
David Firth and Heather Turner. The Goodman RC model can also be fitted by the 
grc function in the VGAM library mentioned above. 

Chapters 2 and 7 introduced ordinal measures of association. A program writ-
ten by Euijung Ryu that constructs confidence intervals for a (and hence Δ), 
including using Lang's mph.fit function to find the score interval, is available at 
www.stat.ufl.edu/~aa/cda/software.html. An R function polychor in the polycor 
package written by John Fox computes the polychoric correlation and its stan-
dard error.3 The function rcorr.cens in the Hmisc library can compute gamma 
and Somers' d and their standard errors.4 An R function ci.table prepared by 
Joseph Lang (jblang@stat.uiowa.edu) can obtain confidence intervals for measures 
of association by inverting score and likelihood-ratio tests. 

2See www2.warwick.ac.uk/fac/sci/statistics/staff/research/tumer/gnm 
3 see rss.acs.unt.edu/Rdoc/library/polycor/html/polychor.html 
4See http://rweb.stat.umn.edU/R/library/Hmisc/html/rcorr.cens.html 
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The matched-pairs models of Chapter 8 that are special cases of loglinear or 
logistic models, such as the ordinal quasi-symmetry model, can be fitted with the 
glm function. See Thompson's manual for examples. 

Lang's mph.fit function can use ML to fit many marginal models by express-
ing them as special cases of the generalized loglinear model (6.18). The package 
geepack contains a function ordgee for ordinal GEE analyses. Parsons et al. (2009) 
described a function repolr for GEE analysis with the cumulative logit model of 
proportional odds form. These permit working correlations other than indepen-
dence. 

The package glmmAK contains a function cumlogitRE for using MCMC to fit 
cumulative logit models with random effects.5 The web site for the text Bayesian 
Computation with R by Jim Albert shows examples of some Bayesian categorical 
data analyses.6 

STATA 

In Stata, the ologit program (www.stata.com/help.cgi7ologit) fits cumulative logit 
models. After fitting the model, running brant provides the Brant (1990) Wald 
tests of the proportional odds assumption. The predict command produces estimated 
category probabilities, and the prvalue command produces them at particular values 
of explanatory variables. The oprobit program (www.stata.com/help.cgi7oprobit) 
fits cumulative probit models. A module omodel (written by R. Wolfe and W. 
Gould) available from Stata fits cumulative logit and probit models and provides 
an approximate likelihood-ratio test of the proportional odds assumption. Other 
ways to fit cumulative link models are with the Stata module OGLM. Adjacent-
categories logit models can be fitted by fitting the corresponding loglinear models 
(Chapter 6) as generalized linear models with the glm program, assuming a Poisson 
distribution for the cell counts and using the log link function. See examples of 
both of these at the UCLA web site listed below. Continuation-ratio logit models 
can be fitted with the ocratio module (www.stata.com/search.cgi?query=ocratio) 
written by R. Wolfe and with the seqlogit module written by M. Buis. The oglm 
module written by R. Williams can fit cumulative link models having dispersion as 
well as location effects. His gologitl module can fit the partial proportional odds 
cumulative logit model. See Williams (2009). The stereotype model can be fitted 
with the slogit program (www.stata.com/help.cgi7slogit). 

The association models of Chapter 6 that are special cases of loglinear 
models, such as the linear-by-linear association model, can be fitted with the 
glm program (www.stata.com/help.cgi7glm), assuming a Poisson distribution 
for the cell counts and using the log link function. The tabulate program 
(www.stata.com/help.cgi7tabulate_twoway) can generate many of the ordinal 
measures of association of Chapter 7, such as gamma and Kendall's tau-b, and 
their standard errors. 

5See bm2.genes.nig.ac.jp/RGM2/pkg.php?p=glmmAK 
6See bayes.bgsu.edu/bcwr. Another survey of Bayesian inference using R is at cran.r-project.org/web/ 
views/Bayesian.html. 
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The GLLAMM module for Stata (see www.gllamm.org) can fit a very wide vari-
ety of models, including cumulative logit models with random effects. For details, 
see www.stata.com/search.cgi?query=gllamm and Chapter 7 of Rabe-Hesketh and 
Skrondal (2008). 

For further information about Stata, see Handbook of Statistical Analyses Using 
Stata, 4th ed., by S. Rabe-Hesketh and B. Everitt (CRC Press, 2006). For methods 
for ordinal data, see Chapter 5 of Regression Models for Categorical Depen-
dent Variables Using Stata, 2nd ed. by J. S. Long and J. Freese (Stata Press, 
2006). For other examples of categorical data analyses, see also the useful site 
www.ats.ucla.edu/stat/stata/examples/icda at UCLA. 

SPSS 

SPSS can fit some ordinal multinomial models. On the ANALYZE menu, choose 
the REGRESSION option and then the ORDINAL suboption to get the ORDINAL 
REGRESSION menu for fitting a cumulative link model. Clicking on Options, 
you can request the link function, including the logit for cumulative logit models 
or the probit or complementary log-log. Clicking on Output, you can request a 
test of parallelism (i.e., proportional odds for the logit link). The model (5.4) with 
dispersion effects is also available as a regular option on the ORDINAL regression 
menu, by adding a scale component. The GENLOG function in SPSS can fit 
adjacent-categories logit models. 

The association models of Chapter 8.6 that are special cases of loglinear models, 
such as the linear-by-linear association model and the row effects model, can be fit-
ted as generalized linear models, assuming a Poisson distribution for the cell counts 
and using the log link function. On the ANALYZE menu, select the GENERAL-
IZED LINEAR MODELS option and the GENERALIZED LINEAR MODELS 
suboption. Select the cell count as the Dependent Variable and then the Poisson 
for the Distribution and the log for the Link Function. Click on the Predictors tab 
at the top of the dialog box and then enter quantitative variables as Covariates and 
categorical variables as Factors. Click on the Model tab at the top of the dialog 
box and enter these variables as main effects, and construct any interactions that 
you want in the model. Click on OK to run the model. 

The DESCRIPTIVE STATISTICS option on the ANALYZE menu has a 
suboption called CROSSTABS, which provides several methods of Chapter 
7 for contingency tables. After identifying the row and column variables in 
CROSSTABS, clicking on Statistics provides a wide variety of options, including 
measures of association such as gamma, Kendall's tau-b, and Somers' d and 
their standard errors. It also provides a test statistic for testing that the true 
measure equals zero, which is the ratio of the estimate to its null standard error 
(which only applies under independence). SPSS also has an advanced module for 
small-sample inference (called SPSS Exact Tests) that provides exact P-values for 
various tests in CROSSTABS and NPAR TESTS procedures, such as exact tests 
of independence for contingency tables with ordinal classifications. 

The matched-pairs models of Chapter 8 that are special cases of loglinear 
or logistic models, such as the ordinal quasi-symmetry model, can be fitted as 
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generalized linear models. For loglinear models, select the cell count as the 
Dependent Variable, the Poisson for the Distribution, and the log for the Link 
Function. For logistic models, the Dependent Variable is the binary outcome of 
whether in the cell in row i and column j or in the cell in row j and column i, 
the binomial is the Distribution of the outcome, and the logit is the Link Function. 

For GEE methods, on the ANALYZE menu, select the GENERALIZED LIN-
EAR MODELS option and the GENERALIZED ESTIMATING EQUATIONS 
(GEE) suboption. On the GEE window, click on Repeated and select the form 
for the working correlation model, and click on Type of Model to specify that you 
want a model for an ordinal logistic response. You can use a logit or probit link 
for the model. 

For some examples of SPSS for ordinal modeling, see the appendix of O'Connell 
(2006). 

OTHER PROGRAMS 

See www.stat.ufl.edu/~aa/cda/software.html for links to information about the pro-
grams listed below. 

StatXact and LogXact 

For certain analyses, specialized software has greater capability than the major 
packages. A good example is StatXact (Cytel Software, Cambridge, Massachusetts). 
It provides small-sample categorical data analyses that do not rely on large-sample 
theory, such as the ordinal tests presented in Section 7.6. It can perform tests 
for two-way tables using criteria such as the correlation or rank correlation. It 
can perform analogs for ordered categorical responses of basic nonparametric 
methods such as the Wilcoxon test for 2 x c tables or the Kruskal-Wallis statis-
tic or Jonkheere-Terpstra statistic for r x c tables. It can conduct exact tests of 
conditional independence in three-way tables that are small-sample analogs of gen-
eralized CMH tests. 

Most small-sample methods rely on the approach of eliminating unknown nui-
sance parameters from small-sample distributions by conditioning on their sufficient 
statistics. Computations for such methods require special algorithms to generate all 
the possible tables having the sufficient statistics that are fixed by the method. 
For those cases in which computations are too time consuming, StatXact uses 
simulation of the conditional distribution to estimate precisely the exact P-value. 

LogXact, a companion program available from Cytel Software, conducts small-
sample analyses for logistic regression model parameters. For an ordinal response, 
such inference is available for adjacent-categories logit models and continuation-
ratio logit models. The conditional method of eliminating nuisance parameters 
does not work for cumulative logit models, because the cumulative logit is not 
the "canonical link" for a multinomial distribution, and non-canonical links do not 
have reduced sufficient statistics. 
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BUGS 

BUGS (Bayesian Inference Using Gibbs Sampling) is statistical software for 
Bayesian modeling implemented using Markov chain Monte Carlo methods. The 
BUGS project was developed by the MRC Biostatistics Unit at the University of 
Cambridge, UK (www.mrc-bsu.cam.ac.uk/bugs). WinBUGS runs under Microsoft 
Windows. A version that emulates this is available for Macs, and an open-source 
version runs with Linux. 

SuperMix 

The SuperMix program, distributed by Scientific Software International, is designed 
for ML fitting of generalized linear mixed models. It can fit cumulative link models 
with random effects for logit, probit, and complementary log-log link functions, 
using Gauss-Hermite quadrature. The capability includes multi-level models that 
are difficult or very slow to fit by ML with most other software. 

Latent Gold 

Latent Gold is a program developed by Statistical Innovations (Belmont, Mas-
sachusetts) for fitting finite mixture models such as latent class models (i.e., the 
latent variable is categorical) in a generalized linear modeling framework. It can 
handle ordinal response variables and can include random effects that are treated 
in a nonparametric method rather than assumed to have a normal distribution. 

GoIdMineR 

The GoIdMineR (Graphical Ordinal Logit Displays Based on Monotonie Regres-
sion) package developed by Statistical Innovations (Belmont, Massachusetts) can 
fit a variety of models for ordered categorical response variables, including models 
that treat monotone scores for the categories as fixed or as parameters. The models 
include adjacent-categories logit models and some multiplicative models, such as 
the RC model and stereotype model. 

SUDAAN 

SUDAAN provides analyses for categorical and continuous data from stratified 
multistage cluster designs. It has a facility (MULTILOG procedure) for GEE anal-
yses of marginal models for nominal and ordinal responses. 

Others 

Other programs that can be useful for various ordinal modeling include the 
econometric software LIMDEP (www.limdep.com) and the LEM program by 
J. K. Vermunt for categorical data modeling (spitswww.uvt.nl/~vermunt). 
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