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Preface

Seasonality in disease was first recognised by Hippocrates (460–370 BC) who said,
“All diseases occur at all seasons of the year, but certain of them are more apt to
occur and be exacerbated at certain seasons.” We first encountered seasonality when
examining time series of cardiovascular disease. We found a strong seasonal pat-
tern with increases in winter and decreases in summer. Rather oddly, we found
that warmer climates showed the biggest seasonal changes. This odd pattern was
explained by studies which found that populations in colder climates had better insu-
lated homes and wore more clothes in cold weather. Recent studies that improved
home insulation found an improvement in residents’ general health and reductions
in their blood pressure.

By investigating seasonal patterns in disease it is possible to generate hypotheses
about aetiology. The changes in the seasons cause changes in many environmental
and social variables. These changes are repeated year after year and create a natural
experiment for studying links between seasonal exposure and disease.

This book details a wide variety of methods for investigating seasonal patterns in
disease. We use a range of health examples based on data collected daily, weekly and
monthly, and using Binomial, Poisson and Normal distributions. Chapter 1 intro-
duces the statistical methods that we will build on in later chapters. In Chap. 2,
we define a “season” and show some methods for investigating and modelling a
seasonal pattern. Chapter 3 is concerned with cosinor models, which are easy to
apply but have some important limitations. In Chap. 4, we show a number of differ-
ent methods for decomposing data to a trend, season(s) and noise. Seasonality is not
always the focus of the study; in Chap. 5, we show a number of methods designed to
control seasonality when it is an important confounder. In Chap. 6, we demonstrate
the analysis of seasonal patterns that are clustered in time or space.

We hope this book will be accessible to non-statistical researchers as well as
statisticians. To aid its implementation we have created an R library “season” that
contains most of the functions and data.

The methods shown in this book are all based on the Gregorian calendar running
from January to December, but any of the calendar-based methods could be equally
applied to the Islamic calendar.
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Chapter 1
Introduction

1.1 Example Data Sets

This section describes the example data sets that we will use to demonstrate methods
of analysing seasonal data. The examples aim to cover a range of health outcomes
and measurement scales. The diet and exercise example uses continuous body mass
index data that may have a Normal distribution. The cardiovascular disease data
are counts that may have a Poisson distribution. The stillbirth data are binary and
will have a Binomial distribution. The cardiovascular disease, schizophrenia and
flu data sets are time series, as the results are measured at successive and equally
spaced times. The exercise data are from an intervention study, and the times of
observations depended on when people joined the study.

1.1.1 Cardiovascular Disease Deaths

Figure 1.1 shows the monthly counts of cardiovascular disease (CVD) deaths
in people aged �75 in Los Angeles for the years 1987–2001 (14 years of data,
168 months). The data are from the National Morbidity and Mortality Air Pollu-
tion Study (NMMAPS) study [75]. There is a large peak in cardiovascular deaths
every winter and a dip in summer. There is also a general decline in the average
number of deaths from the start of the study to around 1992. Additionally there are
also smaller peaks in deaths in some summers.

The data are counts and so we should consider using methods that assume the
response has a Poisson distribution. However, the mean number of deaths is very
large, and so the Normal approximation to the Poisson distribution may well apply,
even though the data have a positive skew because of the large winter peak in deaths.

The data are arranged with one row per month (per year). The first three rows and
last row of data are shown in Table 1.1. The variable “pop” is the population size
which was only estimated in 2000 and so is the same for every row. “tmpd” is the
mean monthly temperature in degrees Fahrenheit. “cvd” is the monthly total number
of CVD deaths. “yrmon” is the fraction of time given by year C .month � 1/=12.

A.G. Barnett and A.J. Dobson, Analysing Seasonal Health Data, Statistics for Biology
and Health, DOI 10.1007/978-3-642-10748-1 1,
c� Springer-Verlag Berlin Heidelberg 2010
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Fig. 1.1 Monthly counts of cardiovascular disease deaths in people aged �75 in Los Angeles for
the years 1987–2000

Table 1.1 First three rows and last row of data from the cardiovascular disease study

Year Month yrmon pop cvd tmpd

1987 1 1987.000 429,474 1,831 54.75
1987 2 1987.083 429,474 1,361 57.98
1987 3 1987.167 429,474 1,569 58.97
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

2000 12 2000.917 429,474 1,455 58.03

This is useful for plotting the data on the correct time scale, for example using the
R command:

> plot(CVD$yrmon,CVD$cvd)

The CVD data are also available as daily counts and daily temperatures using the
NMMAPSlite package in R [66]. In this case the time series is 5,114 days long.

1.1.2 Schizophrenia

The time series shown in the left-hand panel of Fig. 1.2 shows the number of people
with schizophrenia in Australia by their month and year of birth from 1930 to 1971.
Schizophrenia is a serious mental disorder which significantly reduces quality of
life and shortens life expectancy. We use the broad diagnostic criteria based on a
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Fig. 1.2 Number of schizophrenia cases in Australia by date of birth from 1930 to 1971
(left panel), January 1930 to January 1932 (right panel)

broader definition of the number of symptoms needed for a sufferer to be classed as
schizophrenic.

The monthly number of births for schizophrenics is shown in Fig. 1.2. The dom-
inant feature of these data is the long-term trend, which rose from the late 1930s to
1960s, and then had a sharp decline from the 1960s onwards.

It is difficult to see any seasonal pattern in these data. The right-hand panel of
Fig. 1.2 shows the data for the first two years. In this panel each month’s starting
letter is used to label the points. There is no clear seasonal pattern in this small
section of data.

The schizophrenia data have a similar format to the cardiovascular disease data,
as they both deal with monthly counts of disease, and are recorded as one month per
row. The schizophrenia data cover a much longer time period, and an increase in the
population in Australia from 1940 to 1960 is largely responsible for the increased
trend. Data on the total number of births per month are also available and can be
used as an offset (Sect. 1.4.6).

The schizophrenia data set also contains the southern oscillation index (SOI). The
SOI is a weather variable that measures the monthly fluctuations in the air pressure
difference between Tahiti and Darwin, Australia. Positive values for the SOI are
usually accompanied by an increase in rainfall over Australia and hence a decrease
in sunshine. Sunshine is the key producer of vitamin D and insufficient maternal
vitamin D has been associated with an increased risk of schizophrenia [22].

There are 42 years of data in the study, giving 504 monthly observations. How-
ever, the number of people with schizophrenia born in January 1960 is missing. We
keep a record in the data for January 1960, but set the number of births to missing.
This ensures that the observations remain equally spaced.
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1.1.3 Influenza

The flu is an infectious disease that flourishes in cold temperatures. Most people
with the flu suffer pains, headache and coughing. In frailer people the symptoms
and consequences can be more serious and can lead to death.

Figure 1.3 shows the weekly number of influenza cases in two flu seasons using
data from the United States. The number of flu cases is monitored weekly by the
Centers for Disease Control and Prevention [15]. Week 1 is the first week of Jan-
uary. The number of cases is monitored from week 40 (October) in one year to
week 20 (May) in the next year. This period should capture the flu season. In 2006
the monitoring continued until week 25, as the number of cases was still reasonably
large in week 20.

The data are arranged with one row per week. The first three rows and last row of
the data are shown in Table 1.2. The data contain the weekly counts of four different
types of influenza: B, A (unsubtyped), A (H1) and A (H3).

Fig. 1.3 Weekly number of
positive influenza type B
samples from the Centers for
Disease Control and
Prevention, United States, for
the 2005/2006 and 2006/2007
flu seasons
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Table 1.2 First three rows and last row of data from the influenza study

Year Week B A un A H1 A H3

2005 40 1 4 0 6
2005 41 1 4 0 6
2005 42 5 6 0 12
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

2007 20 26 39 3 23
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1.1.4 Exercise

Keeping physically active reduces the risks of chronic disease such as diabetes and
hypertension. Levels of physical activity may depend on season, as many activities
(e.g., walking) are done outdoors. Figure 1.4 shows the total walking time in the last
week (in minutes) against date for 40 randomly selected subjects. We only plot 40
subjects because the plot becomes too busy if the data from all subjects are used.
The data contain repeated results from the same subjects over time, and this design
is known as a longitudinal study. It is difficult to see any seasonal pattern in the data,
partly because walking time is strongly skewed, with lots of zeros.

The data are from a randomised controlled trial of a physical activity interven-
tion in Logan, Queensland [31]. Subjects were recruited into the trial as they became
available and so the dates of responses are not equally spaced. Subjects were eligi-
ble for the trial if they were not meeting Australian guidelines for adequate physical
activity. Data were collected at an initial recruitment visit, and at two follow-up vis-
its 4 and 12 months later. However, as Fig. 1.4 shows, not all subjects completed the
follow-up. In total there were 434 subjects and 1,152 responses, giving an average
of 2.7 responses per subject.

The data are arranged in longitudinal format with one row per visit. The first six
rows of data are shown in Table 1.3. “NA” means missing in R, so the third response
for both these subjects is missing as these subjects dropped-out from the study. The
dates are in the format of day/month/year.

BMI was only measured at baseline. Walking time per week in minutes was
measured at every follow-up. Walking time is therefore a time-dependent variable,
whereas BMI is a time-independent variable.

Fig. 1.4 Walking time in the
last week (minutes) against
date for 40 randomly selected
subjects from the exercise
study. Results from the same
subjects are joined
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Table 1.3 First six rows of data from the exercise study

ID Visit Date BMI Walking

1 1 5/4/2005 26.0 0
1 2 18/10/2005 26.0 60
1 3 NA NA NA
2 1 1/4/2005 22.5 0
2 2 22/8/2005 22.5 115
2 3 NA NA NA
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Fig. 1.5 Monthly
percentages of stillbirth in
Queensland, 1998–2000
(n D 60; 110)
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The data from this study are irregularly spaced, as the responses were recorded
on the dates when the interviews were conducted. This is in contrast to the CVD
time series data, which were collected at regular monthly intervals. The results are
also unbalanced as some subjects gave only one response, whereas others gave two
or three. The data would only have been balanced if every subject gave the same
number of responses.

1.1.5 Stillbirths

Figure 1.5 shows the monthly percentages of stillbirth from Queensland by month
for the years 1998–2000. Although we have plotted the monthly rates the data are in
the form of individual births, with dates of birth. To preserve anonymity the dates of
birth have been scrambled by randomly re-ordering the day of birth. The first three
rows of the data are shown in Table 1.4.
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Table 1.4 First three rows of data from the stillbirth study

Dateb Gestation SEIFA Stillborn

01/01/1998 39 4 0
01/01/1998 40 1 0
01/01/1998 40 2 0
:
:
:

:
:
:

:
:
:

:
:
:
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Fig. 1.6 Frequencies of months of birth of Australian Football League (AFL; left panel) and
English Premier League (EPL; right panel) players

The main dependent variable is binary: stillborn (yes D 1 / no D 0). Incidence of
stillbirths during this period was very low, there were 352 stillbirths out of 60,110
births in total (0.6%). This is a large data set, as it is only possible to look for
seasonality in such rare conditions with a large number of subjects. The data also
contains information on the length of gestation (in weeks), and an area level measure
of socio-economic status called the SEIFA score (scaled to quintiles) [84].

It is difficult to spot a clear seasonal pattern in Fig. 1.5, but the rates are generally
higher in summer and lower in winter (southern hemisphere data). This is not the
best way to present these data, and we show an alternative method in Sect. 2.2.3.

1.1.6 Footballers

Figure 1.6 shows the distribution of players’ months of births for the Australian
Football League (AFL) and English Premier League. The AFL data is for the 2009
season (617 players), and the EPL data for the 2008/2009 season (272 players).
Foreign born players were excluded in both data sets. Players’ birthdays do not
appear to be evenly distributed throughout the year in either sport. The total number
of births by month in Australia and the UK is also available and we can use this
information to calculate the expected number of births in each month.
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1.2 Time Series Methods

In this section we give some time series methods that will be useful for, and
expanded in, later chapters. We only give a brief introduction to time series. Three
good introductory books on time series are by Chatfield [16], Diggle [25] and Fuller
[38].

We restrict ourselves to equally spaced time series, with an index for time
t D 1; 2; : : : ; n, and use yt to refer to the single observed value of the series y
at time t . We refer to an entire time series using bold font y. For the schizophrenia
data (Fig. 1.2) the first four observations of the time series are y D 8; 11; 15; 12; : : :.
These observations are referred to using the lower case letter y whereas unknown or
modelled values are referred to using the upper case letter. For example, Y505 is the
predicted number of people with schizophrenia born in January 1972 (which is one
month after the study ended).

We assume that any time series can be split into two parts: signal and noise,

Yt D Xt C "t ; t D 1; : : : ; n; (1.1)

where n is the total length of the time series or sample size. In this equation Xt

represents the signal part of the series, and the Greek letter "t represents the noise
(also referred to as residual or error). Time series in health always contain some
noise, and common causes of this noise are measurement error or random variability.
In general, we want to remove the noise so that we can focus on the signal (if there
is any), as the signal will tell us what patterns exist in the series, whereas the noise
should be unpredictable and without any interesting patterns. We should perform
residuals checks to verify the approximate randomness of the residuals (Sect. 1.4.3).

The signal-to-noise ratio gives the relative amount of signal to noise. The lower
the signal-to-noise ratio the harder it will be to extract the signal. Looking again
at the plot of the schizophrenia data (Fig. 1.2) we can expect a low signal-to-noise
ratio as the number of people with schizophrenia is thankfully small. In contrast
the cardiovascular data (Fig. 1.1) have a strong seasonal signal partly because of the
much larger number of cases. There is some variation from year to year, and we
discuss whether this is signal or noise later in Sect. 2.2.2.

The signal part of the time series in (1.1) can be split into different kinds of
signal, for example,

Xt D Zt C St ; t D 1; : : : ; n;

where Zt captures the long-term trend in Xt , and St captures the seasonality. We
discuss decomposing a time series into separate signals in Chap. 4.

Bold letters X, ", Z and S are used to denote the entire series of values of Xt , "t ,
Zt and St .
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1.2.1 Autocovariance and Autocorrelation

In this section we explain autocovariance and autocorrelation, which are useful
statistics for describing time series. These statistics use the sample mean and vari-
ance, so we start by explaining these most fundamental statistics. Also, before using
any statistical tests for the autocovariance or autocorrelation, we briefly outline the
principles of hypothesis tests and statistical inference.

1.2.1.1 Sample Mean, Variance and Median

For an observed time series we define the sample mean as

y D 1

n

nX

tD1

yt :

The mean is a useful measure of the centre of a time series. A useful measure of the
spread of the data is the standard deviation. For an observed time series we define
the sample standard deviation as

s D
vuut 1

n � 1

nX

tD1

.yt � y/2: (1.2)

If the time series data have a Normal distribution, then a 95% tolerance interval is
defined as

y ˙ 1:96s;

where 1.96 is the value from a standard Normal distribution such that P.�1:96 <

Z < 1:96/ D 0:95, where P./ means probability. A 95% tolerance interval gives
the limits within which 95% of the data would be contained if the observations could
be repeated.

For the cardiovascular disease data (Sect. 1.1.1) the mean number of deaths per
month is 1,373.2 and the standard deviation is 194.5. This gives a 95% tolerance
interval of 992.0 to 1,754.4. The mean and tolerance interval are plotted in the sec-
ond panel of Fig. 1.7. In this example the lower limit of the tolerance interval is
outside the observed range of the data. This is because the distribution of the data is
not Normally distributed but is positively skewed, as shown by the histogram.

Two better summary statistics to describe the centre and spread of these data
are the median and inter-quartile range, respectively. The interquartile range goes
from the first quartile to the third quartile. The first quartile is the point that divides
the data into the lower quarter and upper three-quarters (the median is the second
quartile). The interquartile range is a useful measure of spread as it contains the
central 50% of the data. The first quartile of the data is also known as the 25th
percentile. For the number of cardiovascular deaths the median is 1,325 and the
second and third quartiles are 1,248 and 1,435, respectively.
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Fig. 1.7 A time series (left panel) and histogram (right panel) of the monthly counts of cardiovas-
cular disease deaths in people aged �75 in Los Angeles for the years 1987–2000. Mean (square)
and 95% tolerance interval (vertical line) in the centre panel

The mean, median and standard deviation are all marginal statistics, meaning
they describe the distribution of the data in one dimension (that is, collapsed over
time). Importantly, they do not describe how the series changes over time. Similarly
the histogram in Fig. 1.7 describes the marginal distribution of the data. To illustrate
how the mean, median and histogram do not capture changes in time, we could re-
arrange the order of the series (e.g., swapping 1988 and 1989) but would obtain the
same mean, median and histogram.

1.2.1.2 Hypotheses Testing

A statistical hypothesis test is used to make formal decisions based on observed
data. For example, we might be interested in the mean of a random variable X . The
null and alternative hypothesis could be:

� H0: the mean of X is zero (E.X/ D 0).
� H1: the mean of X is not zero (E.X/ ¤ 0).

H0 is the null hypothesis and H1 is the alternative hypothesis. We gather some
data (x1; x2; : : : ; xn), and then calculate a test-statistic and associated p-value. The
p-value is the probability of observing more extreme data assuming that the null
hypothesis is true. So smaller p-values indicate less support for the null hypothesis
and greater statistical significance.
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Table 1.5 Four possible outcomes depending on which hypothesis is true and whether the null
hypothesis is accepted

H0 accepted H0 rejected

H0 is true Correct decision Type I error
H1 is true Type II error Correct decision

Standard practice is often to reject the null hypothesis if the p-value is less than
0.05. In other words, if there is a 1 in 20 chance or less of observing more extreme
data when the null hypothesis is true. For simplicity we say that H0 is “accepted”
if it is not rejected, although this is not strictly correct – it is really just not rejected
but still retained as a possibility.

As soon as we make a decision about which hypothesis to accept, there is a
chance that we have made the wrong decision, as shown in Table 1.5.

A Type I error is also known as a false positive, and a type II error as a false neg-
ative. The probability of a Type I error is equal to the level of statistical significance
(usually arbitrarily set at 0.05). Although this probability is only meaningful when
considering the long-term frequency of Type I errors, as for an individual test we
will have either made completely the wrong or completely right decision.

In the epidemiological literature there are many examples of an over-reliance or
abuse of p-values [81]. In this book we use p-values to judge the likelihood that
the null hypothesis is true, and avoid the arbitrary splitting of results into statis-
tically significant and statistically non-significant. We do this by also considering
clinical significance, when we take in account if the observed result is likely to
have noticeable implications in practice. Judging this significance is aided by using,
where possible, confidence intervals as well as (or instead of) the p-value.

In later chapters we use Bayesian methods, whose principles and inferences
depend less on p-values.

1.2.1.3 Autocovariance

A statistic that describes the pattern of a series over time is the autocovariance.
“Auto” here meaning from the same series, and “covariance” meaning how it varies
together. The sample autocovariance between observations k times apart is given by

ck D 1

n

n�kX

tD1

.yt � y/.ytCk � y/; k D 0; 1; : : : ; n � 1; (1.3)

where y is the sample mean. We calculate this statistic for increasing values of k D
0; 1; 2; : : : ; m, up to some limit m, and then plot the statistic against k. The value k

is referred to as the lag as it describes the time difference between two observations
(and m is the maximum lag). This plot is sometimes called the correlogram [16].
The plot will highlight how observations vary together and is useful for detecting
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Fig. 1.8 Autocovariance of
the cardiovascular disease
data for lags k D 0; : : : ; 36
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periodic patterns in the series. Note that

c0 D 1

n

nX

tD1

.yt � y/2;

is the sample variance s2; that is, the square of the sample standard deviation s

in (1.2), except that the denominator is n rather than n � 1.
We have plotted the autocovariance for the cardiovascular disease data in Fig. 1.8.

This plot was created using the R command:

> acf(CVD$cvd,type="covariance",demean=TRUE,
lag.max=36)

The option demean ensures that the sample mean (y) is subtracted from each obser-
vation as in our definition (1.3). The option lag.max=36 shows the covariance for
observations up to 3 years (36 months) apart (the value m defined above).

The autocovariance in Fig. 1.8 shows steady rises and falls that mirrors the rises
and falls in the original data (Fig. 1.1). The largest autocovariance is at lag zero
(which is – approximately – the variance). The next largest is 12 months later,
which indicates a positive covariance between the months in neighbouring years
(e.g., January 1987 and January 1988). This covariance persists for the same months
in non-neighbouring years, as shown by the peaks at k D 24 and 36, but the covari-
ance has become smaller with the widening time gap. Results that are six months
apart (i.e., in the opposite season) have a negative covariance, reflecting the fact that
the highest peaks in the data are followed six months later by the lowest points.
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1.2.1.4 Autocorrelation

The autocorrelation is the sample autocovariance (1.3) divided by the autocovari-
ance at lag zero (c2

0 ). The equation to estimate the autocorrelation is

rk D
Pn�k

tD1 .yt � y/.ytCk � y/Pn
tD1.yt � y/2

;

which gives us the correlation between observations k distances apart. Confusingly
both the autocovariance and autocorrelation are referred to as the ACF.

The autocorrelation is often more useful than the autocovariance because it is
on a standardised scale, with a range from �1 for observations that are perfectly
negatively correlated to 1 for observations that are perfectly positively correlated.
An autocorrelation of 0 indicates no correlation between the observations at the two
time points.

We can calculate and plot the autocorrelation using the R command:

> acf(CVD$cvd,type="correlation",demean=TRUE)

This command produces the plot shown in Fig. 1.9. Data from the same time point
(lag 0) are perfectly correlated (r0 D 1). Data one observation apart (lag 1) are
strongly positively correlated, with a correlation around 0.6. With increasing dis-
tance the observations become less correlated until at six observations apart the
results are negatively correlated. The patterns in Figs. 1.8 and 1.9 are identical, only
the scales on the y-axes are different.

Another advantage to plotting the autocorrelation instead of the autocovariance,
is that we can add horizontal lines that examine the statistical significance of the

Fig. 1.9 Autocorrelation of
the cardiovascular disease
data for lags k D 0; : : : ; 36
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autocorrelations. These horizontal lines correspond to the largest autocorrelation we
would expect to see if the series were completely random (and so had no autocorre-
lation). These limits are shown in Fig. 1.9 at ˙0:15 (explained below), and clearly
many of the autocorrelations for this series exceed these limits, which strongly
indicates that the series is not random.

If the series was completely random then we would expect the autocorrelations
to be zero for k > 0, but because of random noise they would never be perfectly
zero. The limits are derived from the fact that a completely random series has the
approximate variance [16]

var.rk/ ' 1

n
:

So approximate 95% confidence limits for the autocorrelation can be constructed
using 0 ˙ 1:96 � p

1=n. We recommend that these limits are used as a visual guide
to examine autocorrelation, and not to formally reject the null hypothesis that the
series is random if any of the points are beyond the limits (where 0 < k � m).
Firstly, multiple hypothesis testing is involved (for each value of the lag k) and for
large values of m (the maximum lag) the chance of making a type I error is high.
Second, the autocorrelation describes just one aspect of the randomness of a series,
and it may be that complex (non-random) patterns exist which cannot be detected
by the autocorrelation [10].

It is worth noting that the number of observations available for calculating the
autocorrelation and autocovariance decreases for larger values of k. So larger values
of ck and rk are based on less observed data and so should be interpreted with more
caution than values at shorter lags.

Patterns in the autocorrelation plot may not always be as clear as for the cardio-
vascular series. Figure 1.10 shows the autocorrelation for the first 10 years of the
schizophrenia data, again for observations up to 3 years apart. In this plot only two
values are outside the limits expected if the series was random, at k D 4 and 15, and
both are only just outside the limits of ˙0:18. There is also no clear cyclic pattern
in the plot, which indicates a lack of seasonal pattern in the data.

1.3 Fourier Series

The Fourier representation of a time series is a key approach for modelling season-
ality. It uses the trigonometric functions, cosine and sine, so we first introduce these
important functions. We refer to cosine and sine functions as sinusoidal.

1.3.1 Cosine and Sine Functions

Figure 1.11 shows the cosine and sine functions over the range 0 to 4� . In this
range both functions have moved through two complete cycles (or periods). The
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Fig. 1.10 Autocorrelation of
the first 10 years of the
schizophrenia data for lags
k D 0; : : : ; 36
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Fig. 1.11 Cosine and sine
functions over the range 0 to
4� . Dotted vertical line at 2�
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cosine function started at a height of 1, cos.0/ D 1, then dipped to a value of �1 at
� , cos.�/ D �1, and returned to 1 at 2� , cos.2�/ D 1. The sine function followed
the same pattern, but it started at zero. In fact sin.a C �=2/ D cos.a/ for any value
of a. So the sine curve is equal to a cosine curve that has been shifted to the right by
�=2.

The steady rise-and-fall of the cosine and sine functions makes them ideal for
modelling seasonality. Another useful property is that this rise-and-fall pattern is
repeated. So the patterns from 2� to 4� are the same as those in 0 to 2� .
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The repeating property of the cosine and sine functions means that we only need
to consider times from .0; 2��. The usual curved parenthesis (.), means “greater
than”, and the square parenthesis (�), means “less than or equal to”. Because of the
repeating property, for any value of a and any integer value of k we have

cos.a C 2�k/ D cos.a/;

sin.a C 2�k/ D sin.a/:

The value 2� is a key constant because it is the circumference of circle with
radius 1. Figure 1.12 shows a cosine and sine curve over a time period of 0 to 2�

and the corresponding points on a circle. The top panel shows a time of �=4. The
cosine curve started on the y-axis at cos.0/ D 1 at time 0, and has moved down
to cos.�=4/ D 0:707 by �=4. The sine curve started at sin.0/ D 0 at time 0,
and has moved up to sin.�=4/ D 0:707 by �=4. The accompanying circle starts
at 3 o’clock and moves in an anti-clockwise direction. The point on the circle is
defined by a right-angled triangle with an adjacent (horizontal) side of length of
cos.�=4/ D 0:707 and opposite (vertical) side of length of sin.�=4/ D 0:707. The
second time is at �=2, where the cosine function is zero, and the adjacent length of
the triangle is zero (hence it appears as a vertical line). The third time is at � , where
the cosine function is at its lowest value and the circle is at the opposite point from
where it started. The final plot shows the completion of the curves and circle at a
time of 2� .

Together, the cosine and sine functions can represent any point on the curve and
the circle. They are called trigonometric functions, as trigonometry is the branch of
mathematics that deals with triangles (and other shapes).

Figure 1.11 shows that the cosine and sine curves both have two turning points
(at their maxima and minima). Apart from these points they are either increasing or
decreasing. The rate of change is given by the first derivative which is

d

dx
cos x D � sin x;

d

dx
sin x D cos x:

So the rate of change in cos.x/ is given by sin.x/ and vice versa. So when sin.x/ D
0, cos.x/ is at one of its two turning points (Fig. 1.11). When sin.x/ D �1, cos.x/

is at its fastest rate of increase. So the biggest changes occur half-way between the
highest and lowest points, and the slowest changes occur close to the highest and
lowest points.

We can illustrate this aspect of a sinusoidal pattern using astronomical data. Fig-
ure 1.13 shows the day length in New York for 2009, defined as the difference (in
hours) between sunrise and sunset. The longest day is 21 June, the summer sol-
stice. The difference in day length between 20 June and 21 June is just 1 second.
The vernal equinox is 20 March. The difference in day length between 20 March
and 21 March is 164 seconds, the biggest increase in the year. The day length does
not perfectly match a sinusoidal function because the Earth’s orbit is not perfectly
circular (instead it is elliptical).
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Fig. 1.12 Cosine and sine curves at four times and the corresponding points on a circle with centre
at co-ordinates (0,0). The height of the solid cosine curve is equal to the length of the adjacent
(horizontal) side of the triangle (dotted line). The height of the dashed sine curve is equal to the
length of the opposite (vertical) side of the triangle (dotted line)
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Fig. 1.13 Day length in New
York for 2009 (solid line) and
fitted sinusoid (dashed line).
The dotted vertical lines show
the vernal equinox
(20 March) and summer
solstice (21 June)
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1.3.2 Fourier Series

To create a Fourier series we first modify a cosine function using the equation

Yt D A cos.!t � P /: (1.4)

A is the amplitude (or height) of the sinusoid, whilst ! is the frequency (cycle
length) and P the phase (peak location). We use a minus sign in front of the phase
so that it moves in a clockwise direction around the circle (Fig. 1.12).

Figure 1.14 illustrates the use of the formula (1.4), showing a sinusoidal pattern
for two combinations of amplitude, frequency and phase. The solid line sinusoid
has an amplitude of 1, which represents its maximum value. The dashed line has
an amplitude twice the size. The solid line has a frequency of 1, which means it
completes a cycle in the range 0 to 2� . The dashed line has a frequency of 2, which
means it completes two cycles in the range 0 to 2� .

The phase of the solid sinusoid is �=2 and this is where it peaks. The phase of
the dashed sinusoid is also �=2 but it peaks at �=4 and again at 5�=4 because the
phase is relative to the frequency. If we define the start as the point at which the
sinusoids are zero, then the phase for both sinusoids occurs one-quarter of the way
through their cycle. To calculate the point of the peak in time we use P � D P=!.
You can experiment with varying the amplitude, frequency and phase using the R
function sinusoid from our “season” library.

The sinusoidal representation (1.4) has many advantages for modelling season-
ality. It is a very parsimonious equation, as with just three parameters (A; ! and P )
it is possible to describe a large variety of seasonal patterns. The sinusoid is sym-
metric about the horizontal axis and so the area of the curve above zero is equal to
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Fig. 1.14 Two sinusoids
using the formula (1.4). The
solid sinusoid has an
famplitude, frequency,
phaseg of f1; 1; �=2g, the
dashed sinusoid f2; 2; �=2g.
The horizontal reference line
is at zero
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t

Yt

the area of the curve below zero. The sinusoid is also symmetric about the vertical
axis (using a point of symmetry at the phase), so the increase in the seasonal pattern
is mirrored by the decrease. This property may be too restrictive for seasonal health
conditions that do not have a steady rise-and-fall, and we investigate relaxing this
feature in later sections.

It is possible to combine multiple sinusoids using the formula

Yt D
mX

j D1

Aj cos.!j t � Pj /: (1.5)

This is the finite version of the Fourier series. For our purposes this combination
would be useful if there were multiple seasonal patterns in the data. Figure 1.15
shows the result of combining the two sinusoids from Fig. 1.14. Notice how the
resulting time series looks like a sinusoid with a frequency of 2 combined with a
downward trend.

Figure 1.16 shows the result of combining five sinusoids. Notice how the result-
ing time series looks very noisy, even though it is purely deterministic, meaning that
there is no noise.

1.3.3 Periodogram

The periodogram is a useful graphical statistic for uncovering the important fre-
quencies in a time series (i.e., the values of !j in (1.5)). The principle is that if we
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Fig. 1.15 Plot of the sum of
the two sinusoids from
Fig. 1.14. Horizontal
reference line at zero
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Fig. 1.16 Plot of the sum of
five sinusoids with
famplitude, frequency,
phaseg of f1; 1; �=2g,
f2; 2; �=2g, f3; 10; �=4g,
f4; 15; 0g, f5; 50; �g
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make m in (1.5) very large, and cover a range of frequencies, then we can closely
represent any real time series using this equation. Figure 1.16 demonstrated how we
can create a comparatively complex time series using only five sinusoids.

The frequencies examined by the periodogram range from the highest possible to
the lowest possible. As an example, if we had monthly data collected over two years,
then the highest possible frequency would be a sinusoid that changed from its lowest
to highest point from one month to the next month (i.e., 2-month cycle), and the
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Fig. 1.17 Plot of the highest
(dashed) and lowest (solid)
observable frequencies for
monthly data collected over
two years

Time (years)
10 2

lowest possible observable frequency would complete a cycle over two years. This
example is shown in Fig. 1.17. If there is a seasonal pattern that changes with a very
high frequency, say from week-to-week, then we would not be able to observe this
change using monthly data. We could only solve this problem by collecting more
detailed data (i.e., sampling at least every week). Similarly, if there is a seasonal
pattern that has a very long frequency (say every 4 years) then we would not be able
to observe it in these data, and would need to collect data for a longer time.

The frequencies examined by the periodogram are called the Fourier frequencies
defined as

!j D 2�j

n
; j D 1; : : : ; n=2: (1.6)

When j D 1, then !j D 2�=n, which is the highest observable frequency. At the
other end of the scale when j D n=2, then !j D � , which is the lowest observable
frequency.

We can express the Fourier frequencies as the number of time points needed for
a complete cycle using cj D 2�=!j ; or alternatively as the number of cycles per
unit of time using fj D !j =2� . For the example in Fig. 1.17, we have the highest
frequency of c1 D 2 months (one cycle every two months), or f1 D 0:5 (half a cycle
per month); and the lowest frequency of c12 D 24 months, or f12 D 1=24 cycles
per month.

The formula for the periodogram arises from expanded version of (1.5) (see [16]
for details) and is

I.!j / D 2

n
. OC 2

j C OS2
j /; j D 0; : : : ; n=2; (1.7)
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where

OCj D 2

nX

tD1

yt cos.!j t/=n;

OSj D 2

nX

tD1

yt sin.!j t/=n;

where y are the observed data and ! are the Fourier frequencies. The periodogram
I.!j / is always positive, as it is the sum of two squared values, but it will be larger
at frequencies that are strongly represented in the data. So we can give a graphical
representation of the important frequencies in the data by plotting I.!j / against !j .

We can calculate and plot the periodogram using the R commands:

> spec<-spec.pgram(CVD$cvd,demean=TRUE)
> plot.spec(spec,ci=-1,main="",xlab="Frequency",
ylab="Periodogram",log="no")

These commands produce the plot shown in Fig. 1.18. The frequency range on the
x-axis goes from 0 to 0.5 (not 0 to 2�), as it is based on a modified version of the
Fourier frequencies (1.6) with !�

j D !j =2� . So the number of times points for a
complete cycle are given by c�

j D 1=!�
j . The phrases “low frequency” and “high

frequency” used here are synonymous with those used in radio broadcasting.
There is a clear peak in the periodogram at a frequency of 0.0833, which gives

a cycle of 1=0:0833 D 12 months. So the periodogram has done a good job of
finding the annual signal in the data. The second largest peak in the periodogram

Fig. 1.18 Periodogram of the
cardiovascular disease data
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is at a frequency of 0.1667, which gives a cycle of 1=0:1667 D 6 months. This
corresponds to the peaks in deaths in summer and winter.

The formula for the periodogram (1.7) started at a Fourier frequency of !j D 0.
This zero frequency corresponds to an infinite cycle and gives OC0 D y and OS0 D 0.
So the periodogram at !j D 0 is proportional to the mean. As we discussed in
Sec 1.2.1, the mean is a marginal statistic and is not important for judging period-
icity. Using the demean=TRUE option in R means that the series mean is zero and
hence I.0/ D 0. If we did not subtract the mean then the scale of the periodogram
plot could be difficult to judge if I.0/ was very large.

Some properties of the periodogram worth noting are:

� I.!j / indicates the contribution of !j to the total variance in the series, and the
area under the periodogram is equal to the total series variance.

� The periodogram contains the same information as the autocovariance func-
tion (Sect. 1.2.1). The periodogram is a frequency domain statistic; the x-axis
in Fig. 1.18 is units of frequency. The autocovariance function is a time domain
statistic; the x-axis in Fig. 1.8 is in units of time.

� The periodogram is not consistent, which means its variance does not decrease
with increasing sample size. For many statistics, such as the sample mean, we get
a more accurate estimate as the sample size increases. To overcome this problem
it is common to smooth the periodogram. The smoothed estimate is called the
spectrum.

� A periodogram of a series without any signal will be roughly flat with no large
peaks. This is the derivation of the term “white noise” as white light is made up
of all frequencies of light (or colours) equally, and has a flat colour spectrum.

Figure 1.19 shows the periodogram of the artificial data from Fig. 1.16. Apart
from the four clear peaks the rest of the results are approximately zero. The largest
periodogram value is at a frequency of 0.125. The series was generated using 400
observations, so to transform this frequency to a cycle we use 400 � 0:125 D 50,
which corresponds to the frequency of the largest amplitude. The second largest
periodogram value is at a frequency of 400 � 0:0375 D 15, and the third largest at
400 � 0:025 D 10. The fourth largest value is at a low frequency of 0.005 or two
cycles (dashed line in Fig. 1.14), but there is no large value for the longest cycle
(solid line in Fig. 1.14). It is not surprising that the periodogram has missed this
frequency as it occurs only once in the data.

1.3.4 Cumulative Periodogram

A useful re-expression of the periodogram is the cumulative periodogram [85,
p. 395], defined as

C.k/ D
Pk

j D1 I.!j /
Pn=2

j D1 I.!j /
; k D 1; : : : ; n=2:
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Fig. 1.19 Periodogram of the
artificial data from Fig. 1.16
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Fig. 1.20 Cumulative
periodogram for the CVD
data (solid line) and limits for
the null hypothesis that the
series is purely noise (dashed
lines)
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For a completely uncorrelated series C.k/ should increase steadily from 0 to 1.
Limits for this increase, based on the null hypothesis that the series is purely noise,
were developed by Bartlett [11]. We can plot the cumulative periodogram and these
limits for the CVD data using the R command:

> cpgram(CVD$cvd)

The resulting plot in Fig. 1.20 shows the cumulative periodogram crossing the upper
limit at a frequency of 0:0833. There is another smaller vertical step at a frequency
of 0:1667.
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Fig. 1.21 Cumulative
periodogram for
independently generated data
(solid line) and limits for the
null hypothesis that the series
is purely noise (dashed lines)
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As a contrast we show the cumulative periodogram for a time series of the same
length (n D 168), but generated using random or independent data with no signal.
We used the R commands:

> set.seed(0)
> independent<-rnorm(168)
> cpgram(independent)

We used the set.seed command to fix a point for the random number generation,
which means that re-running this code will exactly reproduce the time series, and
hence the cumulative periodogram shown in Fig. 1.21. The cumulative periodogram
has remained well within the upper and lower boundaries.

1.4 Regression Methods

Regression is a commonly used statistical method for explaining the association
between a dependent variable and independent variable(s). Dependent variables are
also called response variables, and independent variables are also called explana-
tory variables or sometimes predictor variables. In this section we give a brief
introduction to some important aspects of regression.

We define a simple linear regression equation, with one independent variable Xt ,
as

Yt D ˇ0 C ˇ1Xt C "t ; t D 1; : : : ; n; (1.8)

where ˇ0 is the intercept and ˇ1 is the slope, which measures the average change in
Yt for a unit change in Xt and "t describes the random variation or noise in Yt .
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We can save space by representing regression models in matrix notation. A
matrix is a rectangular collection of variables. For example a 2 � 3 matrix is

M D
�

1 0 �1

0 2 0

�
:

The transpose of this matrix is denoted MT and transposes the columns into
columns, e.g.,

MT D
2

4
1 0

0 2

�1 0

3

5 :

In matrix notation, the multiple linear regression equation, (1.8), is

Y D Xˇ C ";

where X is the n � p design matrix, and ˇT D ˇ0; : : : ; ˇp are the parameters, of
which there are p C 1.

1.4.1 Scatter Plot

Before applying a regression model it is always useful to first plot the data in a
scatter plot. This is a plot of the dependent variable on the y-axis and an indepen-
dent variable on the x-axis. For multiple independent variables we would create
multiple plots. If there is only a weak association between the dependent and inde-
pendent variables, or if this association is complex, then these plots may be difficult
to interpret. However, these plots are generally useful for:

� Spotting unusually large or small values in the dependent or independent vari-
ables.

� Showing the association between the dependent and independent variables, and
whether this association is linear (or perhaps curvilinear), and also whether it is
“noisy”.

For the cardiovascular disease data (Sect. 1.1.1) we are interested in the explana-
tory variable mean monthly temperature. A scatter plot of the number of deaths
against temperature is shown in Fig. 1.22, and shows a clear association between
temperature and death. The most dominant pattern is a strong negative relation-
ship with fewer deaths at warmer temperatures. There is a steeper rise in deaths
below 60ıF, which suggests a non-linear association between temperature and
death. There is also a greater variance in deaths at lower temperatures than at higher
temperatures, which is known as heteroscedasticity.
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Fig. 1.22 Scatter plot of the
monthly number of CVD
deaths against the monthly
average temperature
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1.4.2 Linear Regression

A linear regression model assumes that the association between the independent
variable(s) and response is linear, and that the residual error is constant (homoscedas-
tic). The scatter plot for the cardiovascular data (Fig. 1.22) indicates that both these
assumptions will likely be violated, but we will fit a linear model for illustrative
purposes. We can fit a linear regression model using the R commands

> model<-lm(cvd˜tmpd,data=CVD)
> summary(model)

which gives the following output

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2933.246 118.681 24.71 <2e-16 ***
tmpd -24.296 1.841 -13.20 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 136.3 on 166 degrees of freedom
Multiple R-squared: 0.512, Adjusted R-squared: 0.509
F-statistic: 174.2 on 1 and 166 DF, p-value: < 2.2e-16

The estimated coefficient for temperature is the slope of the regression line, and
tells us that for every 1ıF increase in temperature the average number of deaths
decreases by 24.3. This change in deaths is strongly statistically significant with a
p-value less than 2e-16, which is in scientific notation and so means 2 � 10�16

which is 0:0000000000000002 (2 after 15 zeros). We also refer to the regression
coefficients as regression parameter estimates.
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The F-statistic gives a test of the fit of the regression model, which in this case
is equivalent to testing the effect of temperature. If we had multiple independent
variables, then the F-statistic would test their overall value.

1.4.2.1 R-Squared

A useful statistic in the above output from R is R-squared (also labelled “R2”). It
is the proportion of variability in the dependent variable explained by the indepen-
dent variable(s). For this example, 50.9% of the variability in the monthly counts
of cardiovascular deaths is explained by mean monthly temperature. We use the
adjusted version of the R-squared, as this gives a slightly more conservative value
by adjusting for the number of independent variables in the model.

The formula for the multiple (unadjusted) R-squared is

R2 D 1 � SSerror

SStotal
;

where SS stands for sum of squares which is a key measure of variability. The
R-squared divides the variability due to error divided by the total variability in the
data, to give the proportion of unexplained variability. One minus this value is the
proportion of explained variability. We can multiply the proportion by 100 to give a
percentage. Adjusted R2 takes into account the number of parameters (ˇ0; ˇ1; : : :)
estimated for the model.

For the above example the R command anova(model) gives the error sum
of squares of 3,082,569 and total sum of squares of 6,316,605, which gives R2 D
0:512.

1.4.2.2 Centring and Scaling

The intercept in the previous output is the estimated mean number of daily CVD
deaths at 0ıF, and is 2,375 in this example. We can give the intercept a more mean-
ingful value by working with a centred version of temperature. For example, to base
the intercept on 50ıF we would use the commands

> CVD$tmpd.c<-CVD$tmpd-50
> model<-lm(cvd˜tmpd.c,data=CVD)

which gives the following output

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1718.442 28.196 60.95 <2e-16 ***
tmpd.c -24.296 1.841 -13.20 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Residual standard error: 136.3 on 166 degrees of freedom
Multiple R-squared: 0.512, Adjusted R-squared: 0.509
F-statistic: 174.2 on 1 and 166 DF, p-value: < 2.2e-16

Note the slope for temperature has not changed, but the intercept is now a mean of
1,718 deaths when the temperature is 50ıF. This value can be roughly seen on the
scatter plot (Fig. 1.22). We do not interpret the p-value for the intercept, as it tests
the hypothesis that the intercept is significantly different from zero (at 50ıF), but
we know that the number of deaths will be positive. Note also that the R-squared
has not changed, as we are fitting the same model, but are presenting the results on
a more interpretable scale.

As well as centring it can also be useful to scale the effect of an independent
variable. For example, a 1ıF decrease in temperature may be too small to have any
clinical meaning, so we could look at a 10ıF decrease (centred on an intercept of
50ıF) using the following code

> CVD$tmpd.s<-(CVD$tmpd-50)/10
> model<-lm(cvd˜tmpd.s,data=CVD)

which gives the following output

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1718.44 28.20 60.95 <2e-16 ***
tmpd.s -242.96 18.41 -13.20 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 136.3 on 166 degrees of freedom
Multiple R-squared: 0.512, Adjusted R-squared: 0.509
F-statistic: 174.2 on 1 and 166 DF, p-value: < 2.2e-16

The average increase in deaths for a 10ıF decrease in temperature is 243. The inter-
cept and R-squared are the same as in the previous model. We could have obtained
the same scaled slope by multiplying the slope for temperature from the previous
output (�24:296) by 10. However, in general we prefer to scale explanatory vari-
ables in advance because: (1) it encourages a priori thought about the scale of the
explanatory variables, (2) in more complex models we will examine the covari-
ance between parameter estimates, and these estimates cannot simply be re-scaled
using multiplication after fitting the model, (3) scaling independent variables is often
necessary when fitting Bayesian models in the WinBUGS software (Sect. 1.6).

1.4.3 Residual Checking

The residuals are the difference between the observed and fitted values and we use
them to check a number of important assumptions about the regression model. The
fitted values are generated from the regression equation. So using the last regression
equation we would calculate the fitted values using the equation
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Fig. 1.23 Residuals of the linear model (left panel) and quadratic model (right panel) for the effect
of temperature in predicting CVD deaths. Dashed horizontal reference line at zero corresponds to
a perfect fit

2Deaths D 1; 718:44 � 242:96 � .Temperature � 50/=10;

where the “hat” symbol (b) indicates an estimate. The residuals are the difference
between the observed and fitted values (Deaths�2Deaths). We can calculate the fitted
values and residuals using the R commands:

> model<-lm(cvd˜tmpd,data=CVD)
> fit<-fitted(model)
> res<-resid(model)

If the model is a good fit to the data then there should be no signal remaining in
the residuals. So a scatter plot of the residuals against any independent variable, or
the dependent variable, should have no pattern. A plot of the residuals from the lin-
ear model against mean temperature in the left panel of Fig. 1.23 shows a quadratic
pattern (U-shaped pattern). The model systematically underestimates the number of
deaths at low and high temperatures. The horizontal reference line at zero indicates
a perfect fit.

We can fit a quadratic model to the number of deaths by adding a squared value
to temperature to the linear model. We use the R commands:

> CVD$tmpd2<-CVD$tmpdˆ2
> model2<-lm(cvd˜tmpd+tmpd2,data=CVD)
> summary(model2)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8904.889 1390.225 6.405 1.50e-09 ***
tmpd -210.745 43.298 -4.867 2.63e-06 ***
tmpd2 1.444 0.335 4.310 2.80e-05 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Residual standard error: 129.6 on 165 degrees of freedom
Multiple R-squared: 0.5614, Adjusted R-squared: 0.556
F-statistic: 105.6 on 2 and 165 DF, p-value: < 2.2e-16

The residuals from this model are shown in the right panel of Fig. 1.23. The
quadratic (squared) term has improved the fit somewhat as the residuals are more
evenly scattered around the horizontal line, but there is still noticeable heteroscedas-
ticity as the spread of the residuals becomes smaller at high temperatures. The
assumption that the residual variance is homoscedastic will be broken here, as our
predictions at low temperatures will have more error than our predictions at high
temperatures.

The adjusted R2 for the quadratic model is 55.6%, indicating a modest improve-
ment in fit compared with the linear model (adjusted R2 D 50:9%).

It is useful to first standardise the residuals before creating the scatter plots so
that relatively large residuals can more easily be spotted. The studentized residuals
are defined as

b" s
t D b"t

b�"

p
1 � ht t

; t D 1; : : : ; n;

where ht t is the diagonal of the so-called “hat” matrix and �" is the standard devi-
ation of the residuals. Using the Normality assumption, any residuals outside ˙2

may be considered somewhat unusual.

1.4.3.1 Independence of Residuals Over Time

The scatter plots in Fig. 1.23 were useful for examining any association between the
residuals and the independent variable average temperature. For time series data it
is also important to test independence over time. We can do this using two previous
defined statistics, the autocorrelation (Sect. 1.2.1) and the periodogram (Sect. 1.3.3).

We can explore whether the independent variable temperature has completely
explained the seasonal pattern in the data by using the autocorrelation function on
the residuals.

> acf(res,type=’correlation’,lag.max=36)

We do not need the demean=TRUE option as by definition the residuals have a
zero mean. The left-hand panel of Fig. 1.24 shows the autocorrelation of the residu-
als from the linear model. We can compare this plot to the autocorrelation using the
number of deaths (Fig. 1.9). The autocorrelations for the residuals are much smaller
than those using the death numbers, but there are still a number of significant val-
ues. The moderate positive correlations at lags 12, 24 and 36 indicate that some
part of the annual seasonal pattern has not been captured by the linear model. The
autocorrelation at lag 1 may indicate some trend, which we discuss later (Chap. 4).

The cumulative periodogram is another useful check of the independence of the
residuals over time. The right-hand panel of Fig. 1.24 shows the cumulative peri-
odogram for the residuals from the linear model. We can compare this plot to the
cumulative periodogram using the number of deaths (Fig. 1.20). The cumulative
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Fig. 1.24 Autocorrelation (left panel) and cumulative periodogram (right panel) of the residuals
of the linear model for temperature predicting CVD deaths

periodogram for the residuals indicates that there remains some pattern over time.
The cumulative periodogram first crosses the upper test limit at a frequency of 0.125
(cycle of 8 months) and again at 0.167 (cycle of 6 months).

The test limits of the ACF and cumulative periodogram have different type I error
probabilities (see Sect. 1.2). The test limits from the cumulative periodogram have
an overall type I error of 5%, whereas those from the autocorrelation function have
an individual type I error of 5%. In general, we recommend the cumulative peri-
odogram for formal significance testing, but a thorough investigation of the residuals
will involve looking at both plots rather than relying on a test.

1.4.3.2 Distributional Assumptions

We can also use the residuals to check distributional assumptions. The left panel of
Fig. 1.25 shows the histogram of the residuals from the linear model, and the right
panel using the quadratic model. There is a positive skew to the distribution, which is
slightly lessened for the quadratic model. Although inferences from simple regres-
sion models are based on the assumption that the residuals are Normally distributed,
in practice this assumption is often not important because for large sample size the
central limit theorem ensures that the fitted values will (approximately) have a Nor-
mal distribution. We still recommend plotting a histogram of the residuals though,
as it is useful for spotting:

� A skewed distribution, which may indicate that a data transformation such as the
log-transform would be useful

� Large outliers, which should be investigated further and may indicate a problem
with the data collection (e.g., erroneous data) or that an independent variable is
missing from the model (e.g., all the outliers have a similar set of independent
variables)
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Fig. 1.25 Histogram of the residuals of the linear model (left panel) and quadratic model (right
panel) for the effect of temperature in predicting CVD deaths

1.4.4 Influential Observations

Another useful check of the fit of a regression model is to look for influential obser-
vations. These are observations that have a large influence on the regression line
(either its intercept or slope). We can check the size of the influence by leaving out
each observation in turn and measuring the change in the regression line.

For the linear regression equation, (1.8), the statistic delta-beta (or df-beta) is
defined by

�t
Ǒ
k D Ǒ

k � Ǒ
k.t/;

where Ǒ
k.t/ is the estimate of ˇk obtained when the t th observation is omitted from

the data. Ǒ
k is the estimate of ˇk obtained using all the observations. The symbol �

is commonly used to indicate difference. A plot of �t
Ǒ
k against t can then be used

to identify influential observations.
Once an influential observation (or observations) is detected, the first step is to

determine whether it might be a measurement error, transcription error or some other
mistake. It should only be removed from the data (or truncated to a more reason-
able value) if there is a solid scientific basis (e.g., impossible value). Otherwise the
influential observation(s) should be retained, and regression models including and
excluding them reported.

For the exercise data, Fig. 1.26 shows a scatter plot of body mass index against
age. There are two very large BMIs that could have a large influence on a regression
model.

A linear regression model of body mass index against age gives a regression slope
of �1:82 for a 10-year increase in age, with a t-value of �6:88 and p-value < 0:001.
So older subjects have a lower BMI on average. Figure 1.27 shows the df-beta’s for
the linear regression slope plotted against the subjects’ ID number (Table 1.3). The
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Fig. 1.26 Body mass index
(kg/m2) at baseline against
age for all 434 subjects from
the exercise data
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Fig. 1.27 Influence of
leaving out observations
(df-beta statistic) on the effect
of the linear slope between
age and BMI
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df-beta’s are calculated in R using the command dfbeta(model). The largest
absolute change in the regression slope came from leaving out a subject with a BMI
over 60. Removing this subject reduces the regression slope to a shallower �1:76, so
the association between age and BMI is weaker. The df-beta is �1:82 � .�1:76/ D
�0:06, which is quite small. Also, the remaining points are reasonably close to zero,
so there are no overtly influential observations for the regression slope in this model.
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1.4.5 Generalized Linear Model

For previous regression examples in this chapter we have assumed that the depen-
dent variable had a Normal distribution. For dependent variables with a non-Normal
distribution we can use much of the same theory by generalising the model [26]. The
generalisation to non-Normal data is achieved using a link function. The equation
below extends the simple linear regression equation (1.8) to a generalized linear
model,

g.Yt / D ˇ0 C ˇ1X1t C � � � C ˇpXpt ; t D 1; : : : ; n; (1.9)

where g./ is the link function. This regression model has p C 1 regression param-
eters (ˇ) including the intercept (ˇ0). The distribution of the dependent variable is
modelled through the link function rather than as a Normally distributed random
error term on the right-hand side of the equation, as in (1.8).

Table 1.6 shows the link functions that we will need, and gives an example of
when the link function would be appropriate.

The logit link is appropriate for Binomial data and is defined as

logit.p/ D log

�
p

1 � p

�
;

where p is the probability of “success”, for example the probability of a stillbirth.
The logit link transforms p, which is bounded between 0 and 1, to an unbounded
value. The parameter estimates from the model are on the logit scale. We can obtain
the odds ratio of “success” for a change in an independent variable by exponentiat-
ing the parameter estimates in (1.9); the odds ratio corresponding to parameter ˇj is
exp.ˇj /. A parameter estimate Ǒ

j D 0 corresponds to no change in the probability
of success, which is an odds ratio of 1.

The log link is appropriate for count data and is simply the log transformation
of the observed counts. Count data often have a natural positive skew, and the log
transformation helps to reduce this skew and make the distribution appear more
Normal. Count data may have a Poisson distribution. For data where the mean count
is greater than 15, then the Normal approximation to the Poisson distribution may
be adequate, and we can fit a model without a link function.

When using Poisson regression the regression parameters are estimated on a
log scale. We can obtain the rate ratio for a change in an independent variable by
exponentiating the parameter estimates in (1.9); rate ratio RR = exp.ˇj /. It is also
possible to express the result as a percentage change using the formula

Table 1.6 Link functions for Normal, Binomial and Poisson dependent variables

Link Distribution (type) Seasonal example Section

None (identity) Normal (continuous) Body mass index 1.1.4
Logit Binomial (dichotomous) Stillbirth 1.1.5
Log Poisson (counts) Schizophrenia births 1.1.2
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�% D 100 � .RR � 1/:

A rate ratio of 1 indicates no change in mean counts.

1.4.5.1 Poisson Regression Example

We fit a Poisson regression model to the monthly birth counts for schizophrenia
cases. We used a single continuous explanatory variable of the southern oscilla-
tion index (SOI). Because the SOI has quite a wide range we first scaled it by 10
(Sect. 1.4.2). The R commands are:

> schz$SOI.10<-schz$SOI/10
> model<-glm(SczBroad˜SOI.10,data=schz,family=
poisson(link=’log’))

> summary(model)

This model has the parameter estimates

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.77231 0.01120 247.55 <2e-16 ***
SOI.10 0.01210 0.01249 0.97 0.332
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

If we exponentiate the parameter estimate for the SOI we get a rate ratio of
exp.0:01210/ D 1:012 for every 10 unit increase in the SOI, but this increase is
not statistically significant (p-value = 0.332). The results of Poisson regression are
on a multiplicative scale, whereas those using Normal regression are on an additive
scale (Sect. 1.4.2). The estimated percentage change in cases for a 10 unit increase
in the SOI is 100 � .1:012 � 1/ D 1:2%.

An important consideration when using Poisson regression is whether the data
closely follow a Poisson distribution. When data follow a Poisson distribution their
mean is equal to their variance. It is possible for data to have a roughly Poisson
distribution, but with a variance that is greater than the mean. In this case the data
is over-dispersed [26]. Conversely, and more rarely, if the variance is less than the
mean then the data is under-dispersed.

If we ignore over-dispersion then the standard errors of our parameter estimates
will be too small (because we are missing the extra variance due to over-dispersion).
The output below shows the R code and parameter estimates for the schizophrenia
cases after accounting for over-dispersion. We have used the “gam” function from
the “mgcv” library [88]. The scale=-1 option accounts for any over-dispersion.

> library(mgcv)
> model<-gam(SczBroad˜SOI.10,data=schz,family=
poisson(link=’log’),scale=-1)

> summary(model)
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Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.77231 0.01887 146.911 <2e-16 ***
SOI.10 0.01210 0.02104 0.575 0.565
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The mean estimates have not changed, but the standard errors (for both the intercept
and effect of SOI) have increased by a factor of 1.7.

1.4.5.2 Logistic Regression Example

We can fit a logistic regression model to the stillbirth data using the R commands:

> model<-glm(stillborn˜as.factor(seifa),
data=stillbirth,family=binomial(link = "logit"))

As an example we have used the single explanatory variable “seifa” (SEIFA score)
which is an area-level measure of socio-economic disadvantage (higher scores indi-
cate less disadvantage). In this data it was an ordinal variable on an integer scale of
1–5. We used the as.factor command to fit this variable as a nominal categori-
cal explanatory variable, rather than as a continuous variable. This command gives
the following parameter estimates

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.17325 0.10942 -47.280 <2e-16 ***
as.factor(seifa)2 0.02166 0.15134 0.143 0.886
as.factor(seifa)3 0.08272 0.16716 0.495 0.621
as.factor(seifa)4 0.01218 0.17210 0.071 0.944
as.factor(seifa)5 0.10818 0.17304 0.625 0.532
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

As we fitted SEIFA as a categorical variable we have five estimates which are all
compared with the reference category of a SEIFA score of 1 (the most disadvan-
taged group). The odds of a stillbirth for a woman with a SEIFA score of 2 are
exp.0:02166/ D 1:022 times the odds for a woman with a SEIFA score of 1. This
is a small increase in odds which is not statistically significant (p-value = 0.886).
There are no statistically significant differences in odds between SEIFA scores of
2–5 compared with a SEIFA score of 1.

The alternative to fitting SEIFA as a categorical independent variable is to fit it
as a ordinal variable, which assumes that increasing SEIFA score is associated with
a linear change in risk. The advantage of this method is that we would only need
one parameter (for the slope) as opposed to four parameters (one for each category
other than the reference category). So it is a more parsimonious model. In this case,
however, the parameter estimates based on a categorical variable do not show any
clear linear trend, so using a single parameter for the slope is probably not justified.
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1.4.6 Offsets

Offsets are used to adjust regression models to account for a denominator. For
example, the number of schizophrenia cases with birth dates in a particular month
(Fig. 1.2) is likely to depend on the total number of births in that month. Similarly,
if we counted the area of a patient’s skin covered by eczema, this would depend on
the patient’s total skin area.

For descriptive purposes we calculate the rate of schizophrenia per 1,000 births,

rate D 1;000 � .schizophrenia births = total births/:

This rate may be clinically meaningful, and it makes it easier to compare rates of
schizophrenia in Australia and other countries. The R command to calculate this
rate is

> schz$rate<-1000*(schz$SczBroad/schz$NBirths)

Figure 1.28 shows the rate of schizophrenia births over time. This figure should be
compared to the “raw” numbers in Fig. 1.2.

The two figures tell very different stories, and after adjusting for the number
of births the risk of schizophrenia now looks fairly constant from 1930 to 1960,
followed by a decline from 1960 to 1971. Ignoring the change in population birth
rates would have caused us to wrongly conclude that the risk of schizophrenia had
increased from 1930 to 1960.

To include an offset in a regression model we would use Poisson regression with
a log link. This is because we are interested in the rate of events, so our regression
equation in words is

Fig. 1.28 Rates of
schizophrenia cases per 1,000
births in Australia from 1930
to 1971
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log.counts=denominator/ D explanatory variables

but as log.a=b/ D log.a/ � log.b/ we can re-arrange this equation to

log.counts/ D explanatory variables C log.denominator/:

So we need to log-transform the denominator when we use it as an offset.
We can fit an offset for the population size (and account for over-dispersion)

using the R commands:

> model<-gam(SczBroad˜SOI,data=schz,family=
poisson(link=’log’),offset=log(NBirths),scale=-1)

This command gives the parameter estimates

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.98359 0.01637 -304.52 <2e-16 ***
SOI -0.01508 0.01818 -0.83 0.407
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

A 10 unit increase in the SOI changes the rate of schizophrenia by a factor of
RR = exp.�0:01508/ D 0:985, but this decrease is not statistically significant (p-
value = 0.407). The intercept is on a scale of “per birth”. We do not usually interpret
the parameter estimate for the intercept (or its p-value).

1.4.7 Akaike Information Criterion

A useful statistic for model selection is the Akaike information criterion (AIC) [1].
In words the equation is

AIC D �2 � log-likelihood C 2 � number of parameters:

The lower the AIC the better model. The log-likelihood is a measure of model fit,
with smaller values of �2� log-likelihood indicating a better fit to the data. The
number of parameters is a measure of model complexity. The equation aims to
penalize the addition of new independent variables by adding twice the number of
parameters to the model fit. This is important because the addition of any variable
will improve the log-likelihood, even if it is not associated with the dependent vari-
able. The AIC therefore aims to find variables that meaningfully improve the model
fit.

We can use the AIC to choose between two alternative models by taking the
difference in AIC. The size of this difference then describes the improvement (or
worsening) in model fit. Cut-offs for the difference in AIC have been suggested [13,
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Table 1.7 Difference in AIC between two alternative models and some suggested interpretations
[13]

�AIC Interpretation

0–2 No difference in models, the simpler model is preferred
4–7 Model with smaller AIC is probably better
>10 Model with smaller AIC is definitely better

p. 70], which seem to work well in our experience. Assuming that we have sub-
tracted the larger AIC from the smaller AIC, these cut-offs are shown in Table 1.7.
These cut-offs are only a guideline and we do not recommend using them as abso-
lute rules. Note also that there are gaps in the cut-offs 2–4 and 7–10, in these regions
the interpretation is less clear cut.

As well as using the AIC, the best model should also be selected based on the
results of residual checks and discussions about the inference. In some cases there
may not be a single best model, in which case it is valid to present the results from
a number of plausible alternatives.

As an example of using the AIC for model selection, consider the model fitted to
the schizophrenia data in Sect. 1.4.6. The R commands below fit models with and
without the SOI and then calculates the difference in AIC.

> model.0<-gam(SczBroad˜1,data=schz,family=poisson(link=
’log’),offset=log(NBirths),scale=-1)
> model.1<-gam(SczBroad˜SOI.10,data=schz,family=poisson(link=
’log’),offset=log(NBirths),scale=-1)
> aic.diff<-model.0$aic-model.1$aic
> aic.diff
[1] -0.530384

The AIC for a model without the SOI as an independent variable is 3,415.7. The
AIC with the SOI is 3,416.2, a difference of 0.5. This small difference indicates that
we should favour the simpler model without the SOI. Selecting the simpler of two
models with a similar fit is an example of the principle of parsimony.

1.4.8 Non-linear Regression Using Splines

The relationship between CVD death and temperature shown in Fig. 1.22 appears
to be non-linear, as the scatter plot has a curved shape. To account for this we pre-
viously added a non-linear quadratic effect for temperature (Sect. 1.4.3). However,
a quadratic term is quite restricted in its capability to describe possible non-linear
shapes. For example, it is symmetric about its point of inflexion. A more flexible
class of non-linear shapes are called splines.

There are many different types splines (e.g., natural splines, thin-plate splines),
see [88] for details. To demonstrate the major features of a spline we use a regression
spline defined as follows
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s.t/ D ˇ0 C ˇ1t C ˇ2t2 C
KX

kD1

ˇ?
k .t � �k/2C; t D 1; : : : ; n; (1.10)

where � are a set of knots, ˇ and ˇ? are sets of unknown parameters. There are
K C 3 regression parameters and K knots. The function .:/C is used to “switch on”
parts of the model, and is defined as

.x/C D
�

0; x � 0;

x; x > 0:

The first part of the spline (involving the terms ˇ) is a parametric function (quadratic
in this case). The second part of the spline (involving the terms ˇ?) is non-
parametric. This spline is said to have a quadratic basis because it uses the squared
value .t � �k/2C.

The splines that we use later in this section for modelling seasonality are often
more complex than (1.10). This is because much research has been done on the best
form of the spline basis, knot placement and parameters [73, 88]. However, the key
principles of splines can be illustrated using (1.10).

We illustrate the use of a spline in Fig. 1.29. The spline was created using the
following equation with K D 2 knots,

s.t/ D t2 C 0:2.t � �1/2C � 1:8.t � �2/2C:

The spline is shown as a solid line, the parametric (quadratic) part of the spline is
shown as a dashed line. To the left of the first knot (�1) the spline is purely quadratic
because t � �1 and so none of the non-parametric estimates are “switched on”.
After the first knot the spline is greater than the quadratic curve as ˇ?

1 D 0:2 is
positive. After the second knot (�2) the spline turns back towards, and then crosses,
the quadratic curve as ˇ?

1 C ˇ?
2 D �1:6 is negative.

The spline has a more complex non-linear pattern than the quadratic function.
The shape of the spline between any two knots is quadratic (U-shaped) as (1.10) has
a quadratic basis. These shapes are joined because the spline uses a cumulative sum
of the non-parametric parts, and because it uses time since the previous knot (t ��k)
in the model.

The spline shown in Fig. 1.29 can only change shape after passing a knot, so the
positioning of the knots is a key factor for determining the shape of the spline. Usu-
ally the knots, �, are equally spaced over time (or over the range of an independent
variable). The two knots in Fig. 1.29 are equally spaced along the x-axis.

If ˇ?
k

D 0 for all values of k, then the non-parametric part of the spline will
be zero and the spline will be completely parametric. Conversely if the values of
ˇ? are large, then the spline will depart greatly from the parametric curve and so
be very flexible. The flexibility of the line therefore depends upon the size of the
non-parametric part of the spline. A penalized spline applies a weight (or penalty)
to the non-parametric part of the spline [73]. We do not go into the details of these
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Fig. 1.29 Simple example of
a regression spline (solid line)
with a quadratic basis and
two knots

κ1 κ2

methods here, but instead focus on the practical application of using splines for
modelling seasonality.

1.4.8.1 Example of a Non-linear Spline

We show an example of splines by examining the non-linear association between
temperature and CVD death in Fig. 1.30. The spline was fitted using (1.10) with four
equally spaced knots. The result shows a slightly non-linear curve, as the association
becomes weaker at higher temperatures.

1.5 Box Plots

A box plot is a graphical method for illustrating the association between a contin-
uous variable and a categorical variable. The box extends from the first to the third
quartile of the continuous variable. The box therefore contains the central 50% of
the data and its length is the inter-quartile range (IQR; Sect. 1.2.1). The second quar-
tile (or median) is marked as a line within the box. The “whiskers” extend from the
top and bottom of the box to the maximum and minimum, respectively. However,
these maximum and minimum exclude outliers, which are defined as those obser-
vations which are more than 1:5� IQR from the top or bottom of the box. Values
outside this range are flagged as outliers.
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Fig. 1.30 Scatter plot of the
monthly number of CVD
deaths against the monthly
average temperature (grey
dots) and a fitted non-linear
spline (solid line) and 95%
confidence intervals (dashed
lines)
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Fig. 1.31 Box plot of the
number of cardiovascular
deaths against month
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We can obtain a box plot of the number of CVD deaths (continuous) against
month (categorical) using the R commands:

> boxplot(cvd˜month,data=CVD)

This command produces the plot show in Fig. 1.31. The seasonal pattern in deaths
is quite clear, as is the larger variability in deaths in January and December (when
the mean is also highest). There are two large outliers in February (more than
1,800 deaths) flagged using circles. The distribution in most months is symmetric,
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although February looks somewhat negatively skewed due to its longer lower
whisker, and December looks positively skewed due to its longer upper whisker.
This plot has not adjusted for the different number of days between months, so the
results for February may be unfairly low. We show how to adjust for this in the next
chapter (Sect. 2.2.1).

1.6 Bayesian Statistics

Bayesian statistics is an alternative statistical paradigm to the more commonly used
frequentist statistics. It has some advantages over standard frequentist theory that
we will use in later chapters.

In this section we give a very brief overview. Details of Bayesian analysis is
available in the books by Berger [12] or Gelman et al. [40]. A basic introduction is
also available in the book by Dobson and Barnett [26].

At the heart of Bayesian statistics is the equation

P.� jy/ / P.yj�/P.�/; (1.11)

where / means “proportional to”, � is an unknown parameter(s), y is the observed
data, P indicates probability and the vertical bar j is read as “given”. The unknown
parameter might be a linear regression slope, or an odds ratio (for example). The
equation combines the likelihood, P.yj�/, with a prior, P.�/, to give a posterior,
P.�jy/. The posterior is our updated view of � , formed by combining our prior view
with the latest data. If we have no prior opinion then all values of � are considered
equally likely so (1.11) becomes

P.� jy/ / P.yj�/:

So by using an uninformative prior our inference about � will be based solely on
the likelihood. The likelihood is the key function in frequentist methodology, so
Bayesian and frequentist approaches will often give the same inference.

Some distinct advantages of a Bayesian approach over a frequentist approach
are:

� A Bayesian approach views data as fixed and parameters as random (a frequentist
approach takes the opposite view). Most scientists find it more intuitive to think
of the collected data as being fixed. A frequentist approach requires us to think
about alternative data that might have been collected if the experiment could be
repeated.

� A Bayesian approach gives p-values and confidence intervals (called credible
intervals or posterior intervals) that make more intuitive sense. A 95% credible
interval contains the true parameter value with 95% probability. A frequentist
95% confidence interval would contain the true parameter on 95% of occasions
if the data could be collected again.
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� Priors can be used to specify assumptions about the model, whilst remaining
non-informative. We give an example of this type of prior in Sect. 4.4.1.

� For some statistical models it is impossible to write down the exact likelihood,
hence it is impossible to find estimates for � using a frequentist approach.
Bayesian statistics is able to empirically estimate the posterior by using a numer-
ical technique called Markov chain Monte Carlo. Hence Bayesian statistics can
be used to fit models that cannot be fitted using standard theory.

1.6.1 Markov Chain Monte Carlo Estimation

Using standard statistical theory, we can estimate the model parameters by maximis-
ing the likelihood, L.yj�/. The maximum value of L./ is found using an iterative
algorithm that progressively updates the values of � , until no better values can
be found (known as convergence). This method relies on knowing the likelihood
function (or a function proportional to the likelihood), which is not possible for all
models (especially more complex models).

Markov chain Monte Carlo (MCMC) estimation deals with complex likelihoods
by breaking the problem into smaller steps. Like maximum likelihood estimation
it progressively updates the values of � forming a chain of estimates. At each
step a new value for 	 is chosen probabilistically, importantly the probabilities are
weighted towards more likely estimates of 	 . A Markov chain does not stop when
it reaches the most likely value of 	 , but instead continues to sample values around
the maximum in order to estimate the complete distribution of 	 . Based on the dis-
tribution we can then create statistics that describe aspects of 	 , such as the mean
or fifth percentile. To start the chain we need to give initial values for � . It is often
worth thinking carefully about these initial values, as if they are very poor the chain
can find it hard to get started.

We show an example MCMC chain in Fig. 1.32, together with the deviance which
is �2� log-likelihood, so a lower deviance indicates a better fit. The model is a linear
regression of the number of CVD deaths against temperature (Fig. 1.22), which has
an intercept (	0) and slope parameter (	1). We used initial values of zero for both
the intercept and slope. From this initial value the chain for the slope O	1 in Fig. 1.32
has progressed towards a range of values from around �0:3 to �0:5. The decline in
O	1 is associated with a similar decline in the deviance, showing that the chain has
successfully progressed towards a better estimate.

The estimates of O	 from iterations 1 to around 50 are comparatively poor, and
we would not want to use them to make inferences about 	 . So we would discard
these iterations as a burn-in as the chain is recovering from the poor initial estimate.
Judging the correct length of the burn-in can be difficult for some chains, and some
may need to be run for a very long time (>10,000 iterations) before they can be said
to have converged. We can often improve the speed at which a chain converge by
centring the data (Sect. 1.4.2).
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Fig. 1.32 Estimated slope O	1

and deviance for 200 MCMC
iterations after an initial value
of O	1 D 0
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Table 1.8 Difference in DIC between two alternative models and some suggested interpretations
[79]

�DIC Interpretation

0–5 No difference in models, the simpler model is preferred
5–10 Model with smaller DIC is probably better
>10 Model with smaller DIC is definitely better

For a more detailed description of MCMC methods, see [40, Chaps. 10–11] or
[42].

1.6.2 Deviance Information Criterion

A useful model selection statistic when using Bayesian inference is the Deviance
Information Criterion (DIC) [80]. The DIC is the Bayesian equivalent of the Akaike
Information Criterion (Sec 1.4.7), and like the AIC, it is a trade-off between model
fit and complexity. The formula for the DIC is

DIC D D.yj�/ C 2pD;

where D.yj�/ is the deviance evaluated at the parameter means (�), and pD is the
effective number of parameters. The deviance is an estimate of model fit and the
number of parameters a penalty for complexity. The DIC uses the effective number
of parameters, which is not necessarily an integer and can be thought of as the
amount of “information” needed to fit the model.
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The cut-offs in Table 1.8 for the difference in DIC have been suggested [79].
We stress that these are guidelines and selecting the best model should be based on
other factors, such as residual checks. It is also important to check the inference and
interpretation of the best model. If two models have a similar DIC, but have very
different inferences (e.g., one shows a strong positive association between exposure
and disease, whilst the other shows a strong negative association), then it is probably
best to present the results of both models, or find another reason for selecting one
model over another (e.g., a more random residual pattern).



Chapter 2
Introduction to Seasonality

In this chapter we define what we mean by a season and show some methods for
investigating and modelling a seasonal pattern.

Three excellent, but more technical, books on seasonality are by Mardia [59],
Fisher [35], and Ghysels and Osborn [41]. We also recommend Chap. 8 of West and
Harrison [87]. An excellent book on the history and construction of the Christian
calendar is Duncan [28].

2.1 What is a Season?

The word “season” has many different meanings. It can be used for:

� Events that happen annually at fixed dates (such as the festive season).
� Events that tend to happen at particular times but with less certainty (such as the

flu season).
� Dividing the year into distinct climatic periods. Typically the seasonal divisions

are spring, summer, autumn and winter, although in tropical climates the only
important differences are between the wet and dry seasons.

In this book we are interested in all three of these types of seasons.
A seasonal pattern is not always regular in timing or in its shape. For example,

the flu season is a period when the number of cases of flu reaches an epidemic, but
the timing and length of this season varies from year-to-year. This variation can be
seen in Fig. 1.3. The peak number of cases in the 2005/2006 season happened in
week 13. In the 2006/2007 season there was a larger peak at a slightly early time
(week 9). The change in the timing reflects the dynamic nature of a flu epidemic.

Seasonal patterns can have many different shapes. Figure 1.1 shows a repeating
seasonal pattern in the number of CVD deaths that appears reasonably sinusoidal,
with a steady increase followed by a decrease in deaths. The seasonal pattern in flu
is less sinusoidal, as there are many weeks with low numbers, followed by a sharp
increase and equally sharp decline. More irregular seasonal shapes are also possible.
A good example is the festive season, which is a regular seasonal pattern in exposure
that has been linked to spikes in cardiovascular disease [68].

A.G. Barnett and A.J. Dobson, Analysing Seasonal Health Data, Statistics for Biology
and Health, DOI 10.1007/978-3-642-10748-1 2,
c� Springer-Verlag Berlin Heidelberg 2010
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Fig. 2.1 Three seasonal
patterns: sinusoidal (top),
sawtooth (middle), spiked
(bottom)

Time

Figure 2.1 shows three very different patterns, which can all be classed as sea-
sonal. In each case the seasonal pattern is repeated three times. The top panel shows
a very smooth sinusoidal seasonal pattern. The middle panel shows a sawtooth sea-
sonal pattern with a steady linear rise over time, followed by a short, sharp fall. The
lower panel shows a spiked seasonal pattern with a short high period and long low
period.

To capture the great variety of seasonal patterns we use the broad definition
below:

Box 2.1: Definition of a season

A season is a pattern in a health outcome or exposure that increases and
then decreases with some regularity.

This definition allows the size, timing and shape of the seasonal pattern to change
over time. Also, this definition is not restricted to annual seasonal patterns, and can
be applied to seasonal patterns that happen during a week, a month, or any other
period of time. This means that the cycle of the seasonal pattern can be any length,
from milliseconds to millennia.

2.1.1 Seasonality and Health

Many health conditions and exposures (or risk factors) have some seasonal ele-
ment. Table 2.1 lists a selection of seasonal health conditions and exposures. An
important distinction is whether a health condition is seasonal in its severity or
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Table 2.1 Some examples of seasonal health conditions and exposures. Those health conditions
in italics are seasonal by birth, those in normal font are seasonal by incidence, those underlined are
seasonal exposures

Air pollution [77] Asthma [50] Birth defects [39]
Birth weight [54] Blood pressure [9] Cardiovascular disease [8]
Cholera [34] Depression [51] Diabetes [44]
Kawasaki syndrome [14] Lead [89] Malaria [3]
Pesticide [57] Pulmonary disease [18] Schizophrenia [22]
Semen quality [77] SIDS [69] Suicide [64]
SIDS sudden infant death syndrome

incidence (e.g., cardiovascular disease, Sect. 1.1.1) or seasonal by birth (e.g., still-
birth, Sect. 1.1.5). In Table 2.1 those conditions with a seasonal pattern by birth
are shown in italics. As well as these health conditions, mortality is also strongly
seasonal [70].

Seasonal patterns can also occur in other aspects of health. For example, survival
times for colon cancer are longer for subjects diagnosed in summer and autumn [63].

Seasonality in disease has been a concern for some time. Hippocrates in around
400 BC said, “All diseases occur at all seasons of the year, but certain of them are
more apt to occur and be exacerbated at certain seasons.” A seasonal pattern in
pulmonary disease was reported in 1853 [18], and in suicide in 1886 [64]. More
recently there has been concern that seasons will become more intense due to global
warming, particularly episodes of extreme heat [62]. What consequences this will
have for human health, and how soon any changes will happen, are not yet known.

Seasonal changes provide a natural experiment for uncovering the aetiology of
disease, by creating periods of high and low incidence. For annual seasonal pat-
terns, every year of data gives us the opportunity to examine the association between
the seasonal incidence and candidate exposures, which should also have some sea-
sonal pattern. Finding a seasonal pattern in a disease can also act as a hypotheses
generator, and as a trigger for further investigation.

2.1.1.1 Environmental Seasonal Exposures

The two major changes caused by the astronomical year are that the days are longer
and hotter in summer, and shorter and colder in winter. These changes may be risk
factors for disease in themselves (e.g., increased sunlight exposure as a cause of
skin cancer), but the longer and hotter days also cause a cascade of changes in other
environmental variables. For example, increasing sunlight leads to increases in plant
growth, which causes a large seasonal increase in pollen in many places. High levels
of pollen are known to trigger hay fever and possibly asthma.

An example of the environmental changes in winter is shown in Fig. 2.2. In many
places around the world, rates of CVD have been shown to increase in winter [7]. It
is still not certain what the cause (or causes) of this increase are. As shown in the
figure the onset of winter leads to a drop in temperature. This may be the cause of
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Fig. 2.2 The possible
pathways between winter and
the increase cardiovascular
disease. Seasonal exposures
are shown in boxes with solid
lines, and risk factors in boxes
with dotted lines. Based on
Scragg [76]
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the winter increase in CVD as colder temperatures lead to higher blood pressures.
However, colder temperatures also mean that people use more heaters, which leads
to an increased exposure to air pollution. Exposure to air pollution has been linked
to an increased heart rate, which could also explain the winter increase in CVD.

Figure 2.2 highlights the inter-related nature of seasonal exposures. This can cre-
ate significant epidemiological challenges, because exposures that change together
will be confounded. This means we will not be able to determine statistically which
exposure is the most likely cause of the disease. For this reason we need to exploit
any differences in seasonal exposures in order to find the strongest links with dis-
ease. Using the example in Fig. 2.2, the influenza season may vary from year-to-year
in intensity and timing. Its seasonal pattern may differ from the seasonal pattern in
the coldest temperatures. We can then examine which pattern has the closest match
with the seasonal pattern in disease. In later sections (Sect. 4.7) we discuss ways of
exploiting this variability in exposure in order to find the strongest link with disease.

2.1.1.2 Social Seasonal Exposures

Social seasonal exposures are those due to regular events based on the calendar.
Important changes include seasonal work (e.g., in agriculture), the school and aca-
demic year, and public holidays. An example of the health effects of a social
seasonal exposure is the increase in CVD at Christmas and New Year’s in the US
[68]. The extra eating and drinking at this time may be the cause, or the fact that
many people delay going to see the doctor during holidays. In contrast, suicide rates
decrease in the periods before Christmas and other major holidays [48].

An interesting social example is the increase in accidents when the clocks go
back at the start of summer, and decrease in accidents when they go forward at the
end of summer, possibly caused by the loss and gain of an hour’s sleep [19]. This is
a social seasonal exposure caused by our reaction to astronomical changes.
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Another example is an increase in asthma risk 2–4 weeks after children return to
school [56].

Some social seasonal exposures, such as Christmas, occur on fixed dates, whereas
others, such as Easter or the start of the school year, have changing dates from
year-to-year. For statistical purposes some variation in the date is useful because
social seasonal exposures can often be confounded with environmental exposures.
For example, Christmas always occurs just after midwinter in the northern hemi-
sphere, and is therefore confounded with some of the year’s coldest temperatures.
We show some methods for separating these two exposures in Sect. 5.3. Interest-
ingly the Islamic calendar is lunar based, and therefore important events (such as
Ramadan) occur in different meteorological conditions from year-to-year.

2.2 Descriptive Seasonal Statistics and Plots

For any epidemiological problem, seasonal or not, it is important to investigate the
data before fitting a statistical model. In this section we outline some descriptive
statistics for seasonal data, and some methods for representing seasonal data graphi-
cally. First we look at the small but important adjustment that needs to be considered
when dealing with monthly count data.

2.2.1 Adjusting Monthly Counts

When examining seasonal patterns in count data we should always remember the
denominator, which is the size of the at-risk population. This can change depending
on the size of the population (e.g., the number of people in the city) and the length
of time considered. When using monthly counts of disease the duration of exposure
changes because of the unequal numbers of days in the months. This means we
would expect larger counts in January (31 days) than February (28 or 29 days). We
should adjust for this difference when plotting or regressing monthly count data.

For plotting monthly counts we can standardise to a common month length. This
common length could be 30 days, or even 365:25=12 D 30:44 days (the average
length of a month). Figure 2.3 shows the mean rate of CVD deaths in each month
using the cardiovascular disease data (Sect. 1.1.1) before and after adjusting the
results to an average month length. The results are also adjusted for population size,
and the y-axis shows the number of deaths per 100,000 people.

The adjusted rate of CVD was created using the formula

ratet D countt � 100;000 � 365:25=12

populationt � days per montht

; t D 1; : : : ; n:

The numerator contains the size of the population and month length that we want to
standardise to. The denominator contains the changes in the population and month
length over time. The variable “days per month” is either 28, 29, 30 or 31.
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The adjusted rates can be calculated using the following R code

> adjmean<-monthmean(data=CVD,pop=pop/100000,
resp=cvd,adjmonth=’average’)

The population is the variable pop in this example. The optionadjmonth=’ave-
rage’ means the results are given for an average month length of 30.44 days.

The means based on an adjusted rate of events in Fig. 2.3 follow a smoother curve
than the means based on the unadjusted counts. Particularly noticeable is the large
increase in the rate for February after adjusting for its shorter length.

When using a generalized linear model we can account for the unequal num-
ber of days using an offset (Sect. 1.4.6). As an example, to add an offset using the
cardiovascular disease data we use the R code

> monthglm(formula=cvd˜-1,offsetpop=pop/100000,
offsetmonth=TRUE,data=CVD,family=poisson())

The -1 option in the formula means that the model is fitted without an inter-
cept. The code has two offsets, one to adjust for the unequal number of days in
the months (offsetmonth), and one to adjust for the population size at the time
(offsetpop). The model was fitted assuming that the counts of deaths from car-
diovascular disease follow a Poisson distribution. We give more details on regression
modelling later (Sect. 2.3).

Fig. 2.3 Monthly mean rate
of CVD before and after
adjustment for the unequal
numbers of days in the
months
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Fig. 2.4 Numbers of CVD deaths over time for the years 1987–2000 for January (left panel) and
July (right panel). The scales on the y-axes are different in the left and right panels

2.2.2 Data Reduction

Data reduction is one of the simplest methods for investigating seasonality. It
involves ignoring or transforming a selection of the data. Sometimes this may be
the most appropriate approach, as the seasonal pattern may only occur in a specific
part of the year.

As an example of data reduction we show the rates of CVD death over time for
January and July in Fig. 2.4. January has the highest rates in every year, whilst July
has some of the lowest. It can be useful to consider just the worst and best levels of
a seasonal pattern. The rates in 1987 to 1990 seem generally higher, but this may be
due to long-term trend and a gradual reduction in CVD death with time. The rates
for January are quite erratic from year-to-year. The rates for July are reasonably sta-
ble after 1990 except for 1999 which had a comparatively high number of deaths.
In the same year the number of deaths in January was comparatively low. A possi-
ble explanation of this pattern is that temperature-related CVD is thought to affect
the most vulnerable people in the population. A mild winter with fewer cold-related
deaths would mean that there would be more vulnerable people in the following
summer, who are at greater risk of heat-related deaths [72]. This may also help to
explain the roughly alternating pattern in the January peak, as a winter with many
deaths means fewer vulnerable people in the following winter (whereas a mild win-
ter with a small number of deaths increases the vulnerable “pool” in the following
winter).

Figure 2.5 shows the results for all 12 months. It is important to note that the
scales on the y-axes are not equal. This is actually data rearrangement, not data
reduction, as all 168 observations are used and the information is the same as in
Fig. 1.1.
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Fig. 2.5 Counts of CVD deaths over time for the years 1987–2000 by month.

The R code to create this plot is

> CVD$month <- factor(CVD$month, labels=month.name)
> xyplot(cvd˜year|month,data=CVD,type="l")

Another useful form of data reduction for seasonal patterns is to look at the range
of responses in a year. As an example, we subtract the total number of births in May
from the number in the following November using data from the UK (Sect. 1.1.6).
The differences are shown in Fig. 2.6. May has 31 days, whereas November only
has 30, hence we first standardised the number of births in May to 30 days by
multiplying the observed number by 30

31
(Sect. 2.2.1).

The plot shows a declining difference from 1947 to 2003, indicating a decline in
the seasonal pattern. There are a number of possible reasons. One possible explana-
tion is the increased trend for children to be born outside of marriage [20, 46]. As
marriages are more popular in the summer months of June to August, this leads to
a peak in births approximately nine months later in March to May (birth rates were
also higher in March and April, although we only used the data for May). During
the war (1939–1946) the number of births was reduced and most social norms (such
as marriage times) were disrupted. A gradual improvement in nutrition after the war
would have reduced the seasonality in female fertility, which peaks in summer dur-
ing periods of poor nutrition. Also, after 1960 there was a large increase in both
contraceptive pill use and abortions. These changes gave women more control over
when they had children.

It is worth noting that by subtracting the counts of births from the same year we
have removed the strong secular trend in births. This de-trending makes it easier to
focus on the seasonal aspects of birth numbers.
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Fig. 2.6 Difference in the
total numbers of births
between May and the
following November in the
UK for the years 1938–2003.
Births in May adjusted to a
30-day month length. Dotted
horizontal reference line at an
equal number of births in
May and November
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Using this technique for detecting a long-term trend in seasonality relies on the
seasonal pattern being well characterised using dates for just two months. Ideally
these two months would be chosen to capture the highest and lowest levels.

To illustrate the effect we show two sinusoidal disease patterns in Fig. 2.7
together with the difference between the rates in January and July. The seasonal
pattern in one disease has remained constant over time, whereas the seasonal varia-
tion for the other has decreased (although the overall mean has remained the same
at a rate of 1). The reduction in the seasonal pattern is clear in this example using
either plot. The data reduction plot may help where the results are noisy. The exam-
ple also illustrates an important drawback of data reduction, as we have reduced the
sample size from 48 (4 years of monthly data) to just 4.

2.2.2.1 Grouping Data into the Four Seasons

A common method of data reduction when analysing seasonal data is to group the
data into the four seasons. These seasons may be defined in a number of ways, and
we give three definitions in Table 2.2. These definitions are for the Northern hemi-
sphere; for the Southern hemisphere the seasons are simply reversed. The solstices
are the two extremes in the year when the Earth is most tilted toward (or away) from
the sun (depending on the hemisphere). They are therefore the longest and shortest
days. The equinoxes are the two points in the year when the length of day and night
are roughly equal. These four important events do not always occur on the same
day every year. For example, the summer solstice is not always on 21 June, and can
sometimes be on 20 June. This movement is caused by the imbalance between the



58 2 Seasonality

2000 2001 2002 2003 2004

Year

0

1

2
D

is
ea

se
 r

at
e

1.0

1.2

1.4

1.6

1.8

2.0

Year

D
iff

er
en

ce
 (

Ja
nu

ar
y 

−
 J

ul
y)

2000 2001 2002 2003

Fig. 2.7 Plot of two sinusoidal disease patterns (left panel) and the difference between the rates in
January and July (right panel)

Table 2.2 Three alternative definitions of the four seasons in the Northern hemisphere. The table
shows the range of dates and the number of days in each season

Meteorological

Spring Mar, Apr, May (92 days)
Summer Jun, Jul, Aug (92 days)
Autumn Sep, Oct, Nov (91 days)
Winter Dec, Jan, Feb (90/91 days)

Astronomical

Spring 20 Mar (vernal equinox) to 20 Jun (93 days)
Summer 21 Jun (summer solstice) to 21 Sep (93 days)
Autumn 22 Sep (autumnal equinox) to 20 Dec (90 days)
Winter 21 Dec (winter solstice) to 19 Mar (89/90 days)

Mid-solstice

Spring 5 Feb to 6 May (91/92 days)
Summer 7 May to 5 Aug (91 days)
Autumn 6 Aug to 5 Nov (92 days)
Winter 6 Nov to 4 Feb (91 days)

calendar year (which is 365 or 366 days long) and the astronomical year (which is
approximately 365.25 days long) [28].

The Meteorological definition uses whole months to create four seasons. It is
called the Meteorological definition as it roughly breaks the year into the coldest
and hottest quarters. The Astronomical definition is based on changing the season
at the start of every solstice or equinox. The Mid-solstice definition has the solstices
and equinoxes at the centres of the seasons.

Figure 2.8 shows the three definitions over an annual time line (for the Northern
hemisphere). The Mid-Solstice seasons start earliest in the calendar year, followed
by the Meteorological and Astronomical.
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Fig. 2.8 Three definitions of the four seasons for the Northern hemisphere

For any of the three definitions there is a small difference in the number of days
in each season (Table 2.2). This could cause a small bias when using count data as
the denominator is not consistent. It is possible to remove this bias using an offset,
as described in Sect. 2.2.1.

The best seasonal definition to use will depend upon the data. The Mid-Solstice
seasons most evenly break the year in terms of day length, but average temperatures
often lag behind day length, hence the warmest and coolest periods are better cap-
tured by the Meteorological definition. The Astronomical definition is, arguably, the
most familiar to the public, although the most commonly used popular seasons vary
between countries. In tropical and sub-tropical regions there are only two important
seasons, wet and dry, which have different dates. In some cases the data may not
have been collected using day of the month, but collected using only month. In this
case it is only possible to use the Meteorological definition.

Reducing the data to seasons can make results easier to communicate. For exam-
ple, if we wanted to tabulate average rates of CVD, using months would require 12
rows (or columns depending on the layout), whereas using seasons requires only 4.
This space saving becomes particularly important if results are presented for multi-
ple groups (e.g., by gender). Reporting the data by seasons also avoids the confusion
of January being a winter month in the northern hemisphere and a summer month
in the southern.

A disadvantage of using defined seasons is the arbitrary differences it creates. For
example, using the Astronomical definition the 20 March and 20 June are considered
the same, whereas the 19 and 20 March are not. These arbitrary changes ignore more
plausible smooth changes in a seasonal disease. To illustrate the problems this can
cause let us assume that we are examining a disease with a seasonal pattern that
is sinusoidal. Figure 2.9 shows two sinusoidal disease patterns, one with a phase
on 5 February and another with a phase on 20 March. The dashed line shows the
mean estimates based on using the astronomical seasons. Using the four seasons
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Fig. 2.9 Sinusoidal seasonal disease pattern (solid line) estimated using the four Astronomical
seasons (dashed line). Sinusoid with a phase of 5 February (top panel) and 20 March (bottom
panel)

represents smooth change in “steps”. The closeness of these steps to the sinusoid
depends on the phase. With a phase on the cusp of winter and spring (20 March) the
estimates show only two disease rates: high in winter and spring, and low in summer
and autumn.

Care needs to be taken when interpreting estimates based on four seasons, as they
represent the average rates in each season. As shown in Fig. 2.9 these averages may
not capture the amplitude of the seasonal variation in disease, which ranges from the
highest to the lowest point of the sinusoid. Conversely, when we calculate seasonal
estimates based on sinusoids (Chap. 3) we need to remember that this maximum
difference only occurs for a short period of time.

Figure 2.10 shows the same sinusoidal changes in disease as in Fig. 2.9, this time
estimated using months instead of seasons. Again the estimates are in steps, but the
overall seasonal pattern is somewhat smoother. Also the largest difference in disease
rates is captured regardless of the phase.

All of the problems highlighted above only occur if the true seasonal pattern
in disease is sinusoidal, or follows some other gradually changing seasonal pat-
tern. Step-like seasonal patterns are possible when an exposure changes abruptly, as
may happen with a social seasonal exposure (Sect. 2.1.1). In this case a categorical
seasonal estimate might be preferable to a smooth seasonal estimate.
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Fig. 2.10 Sinusoidal season (solid line) estimated using months (dashed line). Sinusoid with a
phase of 5 February (top panel) and 20 March (bottom panel)

2.2.3 Circular Plot

So far we have summarised seasonal patterns using linear plots, with month on the
x-axis and the seasonal summary on the y-axis (e.g., Fig. 1.31). A disadvantage of
this type of plot is that the results from December and January are not side-by-side.
An alternative is a circular plot and an example using the mean rates of CVD is
shown in Fig. 2.11. These plots are also known as rose diagrams. The distance from
the centre to edge of the segment (or petal) is proportional to the size of the effect
(e.g., the mean or rate).

The mean rates in Fig. 2.11 have been adjusted for the unequal number of days in
the month (Sect. 2.2.1). January had the highest mean rate of 403 deaths per 100,000
people. The plot shows the steady decline from January to July, and then the steady
rise back again.

The R code to produce this plot is

> adjmean<-monthmean(data=CVD,resp=cvd,pop=pop/
100000,adj=’average’)

> plotCircular(radii1=adjmean$mean,dp=1,labels=month.abb,
scale=0.7)

The first line of code adjusts the counts to account for the unequal number of days
and standardises to a population size of 100,000.

It is also possible to show weekly data using a circular plot. Figure 2.12 shows the
number of CVD deaths by day of the week. We used the total counts of CVD rather
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Fig. 2.11 Circular plot of the
adjusted mean monthly rates
of CVD per 100,000
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Fig. 2.12 Circular plot of the
average numbers of CVD
deaths by day of the week
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than an adjusted rate because each of the seven days was almost equally represented
(Monday to Wednesday each occurred 730 times and the other days 731). The mean
counts are similar, although there was a slight increase on Mondays (46.0 deaths)
compared to other days.

We can also create a circular plot for Binomial data and we use the stillbirth
data as an example (Sect. 1.1.5). Using the rate of stillbirths, defined as the num-
ber of stillbirths divided by the total number ofbirths, automatically adjusts for the
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Fig. 2.13 Circular plot of the
rates of stillbirth per 100,000
births, 1998–2000,
Queensland
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unequal lengths of the months. Also, the total number of births has its own seasonal
pattern, and this is also accounted for by using the number of births as a denomina-
tor. Figure 2.13 shows the rate of stillbirths per 100,000 births. The rate of stillbirths
was highest in January and lowest in June. The rates appear to have a step-like sea-
sonal pattern with low rates in June to October (southern hemisphere winter) and
high rates in November to May.

It is also possible to add an estimate of uncertainty to the circular plot using
“spokes” that radiate from the centre of the circular axes. Figure 2.14 shows the
mean baseline BMI from the exercise study according to the month of joining the
study (Sect. 1.1.4). The segments shown the mean BMI and the spokes show the
standard error of the mean. The highest mean BMI was 36.5 kg/m2 in February.
This was also the month with the greatest amount of uncertainty, as there were only
three subjects with baseline data in February.

As a last illustration of the use of circular plots, we show what the three seasonal
patterns in Fig. 2.1 look like as circular plots in Fig. 2.15. These are idealised rep-
resentations of a seasonal pattern, without any noise. The figures based on real data
earlier in the section are not always as smooth.

2.2.4 Smooth Plot of Season

A circular plot summarises the overall seasonal pattern, but it is also useful to look
at the seasonal pattern from year-to-year. This can be achieved by fitting a spline for
time as part of a regression model (Sect. 1.4.8). The spline then represents the mean
value over time. A spline that is flexible enough will include any seasonal variation.
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Fig. 2.14 Circular plot of
mean BMI (kg/m2) and
standard error of the mean
using spokes
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Fig. 2.15 Circular plots of
three seasonal patterns shown
as a linear plot in Fig. 2.1
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As an example of the use of a spline we examine the exercise data (Sect. 1.1.4).
This is a particularly good example because it is difficult to visualise any seasonal
pattern in the raw data as it is very skewed, and there is a large variation between
subjects.

Figure 2.16 shows a spline for the walking time per week. The spline represents
the mean walking time, and the dashed lines are the 95% confidence interval of the
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Fig. 2.16 Smooth estimate
of mean walking time per
week using a penalized
spline. Mean estimate (solid
line) and 95% confidence
interval (dashed line)
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mean. For this graphical summary we have ignored the longitudinal design. There
is a clearly increasing trend in walking time, which may be due to the encourage-
ment the participants received during the course of the trial. There is also a seasonal
pattern, with increases in the mean walking time in July or August (two of the
coolest months in Queensland). It is possible that overall levels of walking decline
in summer, when it is often too hot to go outside for long periods during the day.

The smoothed mean was estimated using a penalized cubic regression spline with
seven degrees of freedom. We discuss choosing the degrees of freedom in Sect. 5.2.
We assumed that walking time had an over-dispersed Poisson distribution. The R
code to produce the plot is

> s.model<-gam(walking˜s(as.numeric(date),k=8,bs=’cr’),
family=poisson(),data=exercise,scale=-1)

> plot(s.model)

This uses the mgcv R library [88].
The times of the observations are shown in a rug plot along the x-axis of Fig. 2.16

(using the R command rug). This is particularly useful for unequally spaced data,
as it highlights time periods that have few responses, and hence where we should be
less certain about the mean response. This uncertainty is also reflected in the width
of the confidence intervals. In Fig. 2.16 the data are spread reasonably evenly over
time.

2.3 Modelling Monthly Data

In this section we describe regression modelling methods that use month to capture
annual seasonal patterns. In words the regression equation is

disease D month C other independent variables:
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In this section month will be fitted as a categorical independent variable, and we
explore simple fixed effects as well as more complex random effects. By using gen-
eralized linear models (GLMs) we are able to model data that can be represented by
Normal, Poisson or Binomial distributions (Sect. 1.4.5).

We have already plotted summary statistics by month (e.g., Figs. 1.31, 2.3 and
2.11), and we have seen how months can give a reasonably close approximation to
an annual sinusoidal seasonal pattern (Fig. 2.10).

For now we ignore any long-term trend, as we deal with this important issue later
in Chap. 4.

2.3.1 Month as a Fixed Effect

We start by fitting month as a fixed categorical effect. Each month is treated as a
separate category with a fixed parameter. We define m.t/ to be the month at time
t (or observation t) so m.t/ 2 f1; 2; : : : ; 12g. An example of m.t/ can be seen
for balanced data in Table 1.1, and we could extract month from the date for the
unbalanced data in Table 1.3. We always assume that the months are numbered in
order, so that 1 D January, 2 D February, etc.

The GLM regression equation including month can be written as

g.Yt / D ım.t/ C
pX

kD1

ˇkXt;k; t D 1; : : : ; n; (2.1)

where ım.t/ is the effect of month. There are p other independent variables (ˇ1; : : : ;

ˇp), which would typically include an intercept by setting the first column of the
design matrix to 1 (xt;1 D 1 for all t). If we use an intercept then we need to create
a reference month by fixing one of the ı’s to be zero. Without this reference month
the model would be over-parameterised.

An example GLM fit is shown in Table 2.3 using the CVD data. For this model
we assumed that the number of CVD deaths followed a Poisson distribution and we
adjusted for the unequal number of days in the month using an offset (Sec 2.2.1).

The R code to produce the estimates is

> monthglm(formula=cvd˜1,data=CVD,family=quasipoisson(),
offsetpop=pop/100000,offsetmonth=TRUE)

Using the option family=quasipoisson accounts for any over-dispersion
(Sect. 1.4.5).

As we assumed a Poisson distribution the results are in terms of rate ratios (RRs)
(Sect. 1.4.5). The rates are relative to January (the reference month), so for example,
the rate of CVD deaths in February is 0.90 times the rate in January (with a 95%
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Table 2.3 Estimates of the mean rate ratios (RRs) and 95% CIs of CVD deaths using an over-
dispersed Poisson model with month as a fixed categorical independent variable and January as a
reference month

Month RR 95% CI Z-value p-Value

January 1 �
February 0.90 0.86, 0.95 �4.22 <0.001
March 0.82 0.79, 0.87 �7.73 <0.001
April 0.79 0.75, 0.83 �9.44 <0.001
May 0.74 0.71, 0.78 �11.57 <0.001
June 0.72 0.68, 0.75 �12.71 <0.001
July 0.70 0.67, 0.74 �13.66 <0.001
August 0.70 0.67, 0.74 �13.48 <0.001
September 0.70 0.67, 0.74 �13.37 <0.001
October 0.74 0.70, 0.77 �11.89 <0.001
November 0.79 0.75, 0.83 �9.29 <0.001
December 0.93 0.89, 0.97 �3.07 <0.001

CI of 0:88; 0:92). A test statistic is given comparing the rate in each month with
January. In this case the rates in every month are statistically significantly lower
than the rate in January. Comparisons of other months are possible (e.g., testing the
hypothesis that the rate in June is equal to the rate in July).

Rather than focus on the results of paired tests we prefer to look for an over-
all seasonal pattern. The mean rate ratios are plotted in Fig. 2.17 together with the
95% confidence intervals. The seasonal pattern is remarkably smooth, with a strong
U-shaped pattern. An alternative plot is shown in the right-hand panel of Fig. 2.17
which plots the mean death rates per 100,000 people. The estimated seasonal pat-
tern is exactly the same, only the scale is different, and the results for January now
have a confidence interval. These estimates were made by fitting the model without
an intercept, using the R code formula=cvd˜-1.

Using a GLM it is possible to apply the same model, (2.1), to data with a vari-
ety of distributions. The stillbirth data (Sect. 1.1.5) are binary and so we can use
a logit link. However, as the probability of stillbirth is small we prefer to use the
complementary log-log link, as this is often better for modelling very small or very
large probabilities [26, Chap. 8]. However, for this example the results are almost
identical using the logit link.

The R code to produce the estimates is

> monthglm(formula=stillborn˜1,data=stillbirth,
family=binomial(link="cloglog"))

The estimates are plotted in Fig. 2.18. The odds ratios for stillbirth are lower from
July to October and higher from November to March. These ORs follow the same
pattern as the rates of stillbirth per 100,000 (Fig. 2.13). The 95% confidence inter-
val for each month includes 1, indicating no significant difference in any month
compared with January.
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Fig. 2.17 Monthly mean estimates of CVD (and 95% confidence intervals) using an over-
dispersed Poisson model. The left panel shows the rate ratios fitted with January as the reference
month. The right panel shows the death rates per 100,000, fitted without an intercept

Fig. 2.18 Monthly mean
estimates of the odds ratios of
stillbirth (and 95% confidence
intervals) using January as the
reference month
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Rather than testing individual months, we can test the overall value of adding
month by comparing the AIC of the model including month to the AIC from a model
with only an intercept (Sect. 1.4.7). The AIC for the model with month is 4,335.3,
the model without month has a smaller AIC of 4,322.7, a difference of 12.6. The
model with month used 11 extra parameters, which is a reasonably large increase
in complexity. This large difference in the AIC indicates that adding month has not
sufficiently improved the fit of the model, and the simpler model without month
should be preferred. Two possibilities are suggested: (1) there is no seasonal pattern
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in stillbirth, (2) the seasonal pattern in stillbirth is simpler than a model assuming
different rates in each month. The circular plot of the rates (Fig. 2.13) does seem to
suggest a simpler two-level seasonal pattern.

2.3.2 Month as a Random Effect

In the above examples month was fitted as a fixed effect, meaning that each month
was given a fixed parameter value. We can instead fit month as a random effect,
meaning that we allow the estimates to follow some distribution. The distribution
most often used for random effects is the Normal distribution. The random effects
in (2.1) would be

ıj � N.0; �2
ı /; j D 1; : : : ; 12:

For this parameterisation we do not use a reference month. Instead we fit an intercept
which is the overall average and the random effects represent the difference from the
overall average.

The monthly estimates are constrained to be Normally distributed, and the spread
of this Normal distribution is controlled by the variance parameter .�2

ı
/, a larger

variance means a larger spread in the monthly estimates. This translates to a greater
difference in the highest and lowest seasonal estimates. We use a subscript “ı”
for the variance to emphasise that it describes the spread of the ı estimates. An
important feature of the Normal distribution is that it is symmetric, so generally the
monthly estimates will be equally spread above and below the overall mean.

The fixed effect used 11 parameters for month, whereas the random model uses
13: one for each month (ıj ) plus the variance (�2

ı
). This is a relatively small increase

in complexity, and is usually offset by some borrowing of strength due to the use of
the Normal distribution.

To fit this model in R we prefer to use the Bayesian library “BRugs” [83].
Because of this the results are presented using credible intervals rather than con-
fidence intervals (Sect. 1.6).

The monthly estimates using a random effect are shown in Fig. 2.19. As in
Fig. 2.17 there is a clear U-shaped pattern. The estimates for April and November
are close to the average rate. There are four months above the average rate, and six
months below, indicating a positive skew in the seasonal pattern.

2.3.3 Month as a Correlated Random Effect

A disadvantage of the previous model is that is assumes complete independence
between months; ıi and ıj are uncorrelated if i ¤ j . For many seasonal patterns this
is unlikely to be true, as neighbouring months are likely to be positively correlated.
We can introduce a correlation between months using a technique called conditional
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Fig. 2.19 Monthly estimates
of the rate ratios of CVD (and
95% credible intervals) using
a random effect for month.
The horizontal reference line
is at a rate ratio of 1
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autoregression (CAR). This method has been widely used for modelling spatial
correlation between neighbouring areas (e.g., counties or countries) [67].

We first assume the month effects have a Multivariate Normal (MVN) distribu-
tion

ı � MVN.0; Vı/;

where 0 is a vector of zeros of length 12, and Vı is a 12 � 12 variance–covariance
matrix. This means that the estimates for each ı are no longer independent but can
depend upon other ı’s.

To make every neighbouring month correlated we specify the 12 � 12 variance–
covariance matrix as

Vı D �2
ı

2
666666666666666666664

1 � 0 0 0 0 0 0 0 0 0 �

� 1 � 0 0 0 0 0 0 0 0 0

0 � 1 � 0 0 0 0 0 0 0 0

0 0 � 1 � 0 0 0 0 0 0 0

0 0 0 � 1 � 0 0 0 0 0 0

0 0 0 0 � 1 � 0 0 0 0 0

0 0 0 0 0 � 1 � 0 0 0 0

0 0 0 0 0 0 � 1 � 0 0 0

0 0 0 0 0 0 0 � 1 � 0 0

0 0 0 0 0 0 0 0 � 1 � 0

0 0 0 0 0 0 0 0 0 � 1 �

� 0 0 0 0 0 0 0 0 0 � 1

3
777777777777777777775

: (2.2)
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The matrix has 12 rows and 12 columns to represent the 12 months. This formulation
splits the variance–covariance matrix into the overall variance �2

ı
and a correlation

matrix. The correlation between neighbouring months is 0 � � � 1, the correlation
between results from the same month is 1, and the correlation between results more
than one month apart is zero. The matrix is symmetric as the lower-left triangle
is the reverse of the upper-right triangle. This means that the correlation between
months i and j is equal to the correlation between months j and i . An important
feature of the matrix is the � that appears in the lower-left and upper-right corner,
which creates a link between January and December.

In the previous section we used an uncorrelated random effect, which is equiva-
lent to specifying the above variance–covariance matrix with � D 0.

The matrix Vı is a sparse matrix as it contains many zeros, which means it
cannot be readily inverted. However, inverting the variance–covariance matrix is
essential for most estimation techniques (e.g., least squares). This means that the
above model cannot be fitted using standard estimation techniques. Instead we can
use conditional autoregression (CAR) to break the large matrix into smaller parts.

The CAR model fits the matrix (2.2) by assuming that the estimate for each
month conditional on its neighbouring months has a Normal distribution

ıj jıj � N

�
ıj ;

v

nj

�
; j D 1; : : : ; 12;

where ıj denotes the estimates from the months that neighbour month j , and nj

is the number of neighbouring months, which is always 2 when using matrix (2.2).
The parameter v describes the variance, which is constant across months. The mean
of each month is defined using its two neighbours

ıj D

8
ˆ̂̂
<

ˆ̂̂
:

�
ı2 C ı12

�
=2; j D 1;�

ıj �1 C ıj C1

�
=2; j D 2; : : : ; 11;�

ı1 C ı11

�
=2; j D 12:

In words, the above equation simply states that the mean for each month will be the
means of the neighbouring months. This will smooth the estimates by producing a
more gradual change between months.

A graphical representation of the matrix (2.2) is given in Fig. 2.20. Each month
has two neighbours. The important feature is the join between December and
January, which creates a circular, rather than linear, model.

Fitting the correlated random effects model to the CVD data produces the
monthly estimates shown in Fig. 2.21 (as in previous models, we included an esti-
mate of the over-dispersion). In this case the estimates are almost identical to the
estimates using an uncorrelated random effect. The model with uncorrelated random
effects had a DIC of 1831 based on 143.7 parameters. The model with correlated
random effects had a DIC of 1830 based on 143.4 parameters. This indicates a very
similar fit of the two models, which is not surprising given the similarity of the
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Fig. 2.20 Graphical
representation of the
neighbourhood for months
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Fig. 2.21 Monthly estimates
of the rate ratios of CVD
deaths using correlated
random effects. The
horizontal reference line is at
a rate ratio of 1
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parameter estimates. In this case the monthly estimates are already very smooth,
and so are not altered by allowing neighbouring months to be correlated.

The effective number of parameters for these models seems high on first inspec-
tion: 143.7 and 143.4 for the uncorrelated and correlated model, respectively.
However, most of the parameters are used to model the over-dispersion. Fitting iden-
tical models without accounting for over-dispersion results in 11.9 parameters for
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Fig. 2.22 Monthly mean estimates of odds ratios of stillbirth rates (and 95% credible intervals).
Uncorrelated random effects (left panel), correlated random effects (right panel). The horizontal
reference line is at an odds ratio of 1
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Fig. 2.23 Monthly mean odds ratios of stillbirth rates: uncorrelated random effects (left panel),
correlated random effects (right panel)

the uncorrelated model and 11.7 for the correlated model. These are much closer
to the expected number of regression parameters of 12 (one for each month). The
slightly smaller number of effective parameters for the correlated model is due to
some borrowing of strength.

An example where there is a large difference between using an uncorrelated
and correlated random effect is shown in Fig. 2.22 for the seasonal pattern in still-
birth. Here the estimates based on correlated effects show a much smoother seasonal
pattern.

The DIC for the uncorrelated random effects model was 183.0, using 3.6 param-
eters. The DIC for the correlated random effects model was 181.5, using 4.1
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parameters. This indicates a small, and possibly unimportant, improvement in fit
due to a small increase in the number of parameters. As a comparison, the DIC
for an intercept only model was 181.2, using 1.0 parameters. This indicates that the
smooth seasonal effects used 3.1 parameters, which is much less than the theoretical
maximum of 12. This is due to the correlation between months, and 3.1 represents
the amount of information needed to fit this seasonal pattern. However, adding this
seasonal pattern did not considerably improve the overall fit (Table 1.8), and we
cannot be sure that the rates of stillbirth are seasonal. More precisely, we cannot be
sure that they have a smoothly varying seasonal pattern.

Figure 2.23 shows the mean monthly odds ratios plotted in a circular form as
per Fig. 2.20. The smoothing has increased the estimated risks in December and
February, and decreased them in September. These plots were produced by the R
function plotCircle.



Chapter 3
Cosinor

A simple and popular method for analysing seasonality is the cosinor. Its popularity
stems from its ease of application and interpretation [2, 60]. Also, it can be applied
to time series with regular dates, or survey data with irregular dates.

In Sect. 1.3 we defined a sinusoidal equation with an amplitude and phase,
Eqn. (1.4). Although this equation is relatively simple it is non-linear in time,
because the phase (P ) is part of the argument of the cosine function (i.e., cos.!t �
P /). This makes it difficult to estimate the amplitude and phase using standard
techniques (e.g., least squares).

An identical, but linear, representation of (1.4) is

Yt D c cos.!t / C s sin.!t /; t D 1; : : : ; n; (3.1)

where the amplitude is

A D
p

c2 C s2; .A � 0/ (3.2)

and the phase (in radians) is

P D
8
<

:

arctan.s=c/; c � 0;

arctan.s=c/ C �; c < 0; s � 0;

arctan.s=c/ � �; c < 0; s > 0:

(3.3)

This model is now linear in time, and values of cos.!t / and sin.!t / can be added to
the design matrix for a fixed frequency (!). The model can be fitted using standard
linear regression techniques. The estimates of c and s are used to estimate A and P .
The values of c and s can be seen in Fig. 1.12, as c (the cosine parameter) controls
the east–west point on the circle, and s (the sine parameter) controls the north–south
point. So the parameters have no meaningful interpretation on their linear scale, but
do when transformed into the phase and amplitude, which are the angle and radius
on the circle, respectively [55].

To create !t we first transform time into a fraction, ft , between zero and one.
If we are interested in an annual seasonal cycle based on daily data then we

A.G. Barnett and A.J. Dobson, Analysing Seasonal Health Data, Statistics for Biology
and Health, DOI 10.1007/978-3-642-10748-1 3,
c� Springer-Verlag Berlin Heidelberg 2010
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would use [55]

ft D dayt � 1

365 or 366
; (3.4)

where 1 � dayt � 366 is the day in the year of the t th observation, which is divided
by 366 in leap years and 365 in other years.

If we are interested in an annual seasonal cycle based on monthly data then we
would use

ft D montht � 1

12
; (3.5)

where 1 � montht � 12 is the month of the t th observation. More generally, if we
are interested in an seasonal pattern with k cycles per year based on monthly data
then we would use

ft D k

�
montht � 1

12

�
: (3.6)

To transform this fraction into radians we then multiply by 2� , !t D 2�ft . We
then add the columns cos.!t / and sin.!t / to the design matrix, which can then be
used as part of a generalized linear model (Sect. 1.4.5). This means that cosinor
models can be applied to Normal, Poisson or Binomial data.

To test the null hypothesis that the amplitude, A, is equal to zero, we use the
following criterion: reject the null hypothesis if the p-value for the estimate of c

or s is less than ˛=2, where ˛ is the required level of statistical significance (most
often ˛ D 0:05). We divide this significance level by 2 to maintain the type I error
probability at ˛.

The estimated phase, P , is on a scale of radians, and for interpretative purposes
it is preferable to transform this to a time scale using P � D 365.P=2�/ C 1, for
daily data, and P � D 12.P=2�/ C 1, for monthly data.

The cosinor is a parsimonious model, as it only requires two parameters to model
a seasonal pattern. The previous models based on using month as a categorical inde-
pendent variable, Sect. 2.3, required 11 parameters. However, the cosinor model
assumes a sinusoidal seasonal pattern which is symmetric (Sect. 1.3.1) along the x-
and y-axes. This assumption may be too restrictive for some seasonal data.

3.1 Examples

3.1.1 Cardiovascular Disease Deaths

Figure 3.1 shows the result of fitting a cosinor model to the daily CVD death data.
The estimated amplitude is 7.1 deaths per day with a phase of 23 January, and this
amplitude is statistically significant. The peak estimates of deaths on 23 January is
52.3 deaths per day, and the low (six months later) on 25 July is 38.0.

The sinusoid from the cosinor has not quite captured the peak in deaths in mid-
winter, and a histogram of the residuals shows a strong skew. This is because the
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Fig. 3.1 Daily CVD death data (grey dots) and estimated annual seasonal pattern using a cosinor
model. Results shown for the first three years only, 1987–1989

sinusoid is symmetric about the y-axis. Also, the residuals show some remaining
seasonal pattern, so although the cosinor model is statistically significant, it has
not fully described the seasonal pattern. Also, the figure highlights how the cosinor
model is based on the assumption that the seasonal pattern is the same in every year,
whereas the data indicate otherwise (Fig. 1.1).

The R code to fit the cosinor model as part of a GLM is

> cosinor(cvd˜1,date=date,data=CVDdaily)

which produces the following output

Number of observations = 5114
GLM coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.110481 0.1144621 394.10845 0.000000e+00
cosw 6.617196 0.1618739 40.87872 0.000000e+00
sinw 2.684572 0.1618739 16.58435 3.305908e-60
Cosinor test
Amplitude = 7.141024
Phase: Month = January , day = 23 Low
point: Month = July , day = 25

In this example both the c and s parameters are strongly statistically significant (p-
value < 0:001). The amplitude is 7.1 deaths per day, with a phase of 23 January.
The average number of deaths is 45.1 per day.
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As the model is based on a GLM we can add other independent variables. As an
example, after adding mean daily temperature, the estimated seasonal amplitude is
now 7.3 deaths per day, slightly larger than a model without temperature. The phase
remains as 23 January.

The daily number of CVD deaths is a count variable, and although its mean is
large enough for the Normal approximation to hold, it may be better to assume an
over-dispersed Poisson distribution, especially as the distribution of deaths has a
positive skew. The output from assuming an over-dispersed Poisson distribution is
shown below.

Number of observations = 5114
GLM coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.80282022 0.002505911 1517.54028 0.000000e+00
cosw 0.14715057 0.003536775 41.60586 0.000000e+00
sinw 0.05969845 0.003528804 16.91747 1.636301e-62
Cosinor test
Amplitude = 7.714917 (absolute scale)
Phase: Month = January , day = 23
Low point: Month = July , day = 25

The phase has remained as 23 January. The amplitude is
p

0:1471512 C 0:0596992

D 0:158799 on the log-scale, which gives a rate ratio of exp.0:158799/ D 1:172.
So the rate of deaths are 1.172 times the average on 23 January. As we used the log-
link, we use: exp.3:80282022C0:158799/�exp.3:80282022/ D 7:714917, to give
the amplitude in terms of the absolute number of deaths. This is reasonably similar
to the amplitude of 7.1 deaths per day assuming a Normal dependent variable.

Figure 3.2 shows the result of fitting a cosinor model to the monthly CVD death
data. The estimated amplitude is 215 deaths per month with a phase of 1.3 months
(i.e., early January). This is based on adjusting the monthly counts to account for
the unequal number of days in the month (Sect. 2.2.1).

Figure 3.3 shows the autocorrelation function and histogram of the residuals from
the cosinor model shown in Fig. 3.2. The large number of strong autocorrelations
indicate that a seasonal pattern still remains, and the histogram shows a positive
skew.

For the monthly data the AIC for the cosinor model is 3,025.1 with three param-
eters. In Sect. 2.3 we fitted a model using month as a fixed factors, and this has an
AIC of 2,611.8 with 12 parameters. So there is a big improvement of fit using the
monthly model (AIC difference of 413.3 for nine extra parameters). These results,
together with the residual checks (Fig. 3.3), indicate that the symmetric sinusoidal
shape assumed by the cosinor model is too simplistic.

3.1.2 Exercise

For the exercise data (Sect. 1.1.4) we use time based on visit date (which is irregu-
larly spaced). Body mass index (which we assume to have an Normal distribution)
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Fig. 3.2 Monthly CVD death data (grey dots) and estimated annual seasonal pattern using a
cosinor model
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Fig. 3.3 Autocorrelation function and histogram of the residuals from the cosinor model shown
in Fig. 3.2

has an estimated amplitude of 0.25 kg/m2 with a phase of 11 August, but this ampli-
tude is not statistically significant. Minutes of walking (which we assume to have
a Poisson distribution) has an estimated amplitude of 9 minutes with a phase of
24 June, and this amplitude is statistically significant.
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3.1.3 Stillbirths

For the stillbirth data (Sect. 1.1.5) we use time based on the child’s date of birth and
a binary dependent variable of stillborn (assuming a Binomial distribution and using
a logit link). Using the cosinor model gives an amplitude of 0.0012 (on a probabil-
ity scale) and a phase of 27 January, and this result is statistically significant. The
estimated peak estimate in the probability of stillbirth is on 27 January is 0.0070,
and the low on 29 July (six months later) is 0.0047.

3.2 Tests of Seasonality

In this section we describe two tests that are similar to the cosinor test as they view
the data as circular. Both use the trigonometric cosine and sine functions to describe
the peak point on the circle using an (x; y) co-ordinate (Sect. 1.3.1). This peak point
is the seasonal phase. Both tests are designed to detect a seasonal pattern that is:

� Annual in frequency
� Sinusoidal in shape
� Unimodal in shape (i.e., occurs once every year)
� The same in each year (known as stationary)

Bimodal seasonal patterns can be detected by doubling the number of cycles,
Eqn. (3.6). The tests can also be adapted to detect seasonal patterns at other fre-
quencies (e.g., weekly).

Test of Seasonality Based on Mean Distance

This test uses individual dates (e.g., birth dates), or results grouped into months. The
key statistics are the average distance along the x- and y-axes, given by

c D 1

n

nX

tD1

cos.!t /; t D 1; : : : ; n;

s D 1

n

nX

tD1

sin.!t /; t D 1; : : : ; n;

where n is the total number of dates, !t D 2�ft and ft is the fraction of time as
described in (3.4) for individual dates (e.g., birth dates) or (3.5) for monthly data.

Figure 3.4 shows circular plots (Sect. 2.2.3) for three possibilities based on
monthly data (assuming we have adjusted for the uneven number of days in the
months). The top-left panel shows the axes for c and s, where .c; s/ D .0; 0/ is the
centre of the circle. In the top-right panel the results in every month are equal, mean-
ing the plot is perfectly circular, so the mean direction in a both a East–West (c) and
North–South (s) direction is zero. In the bottom-left panel there is an increase in
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Fig. 3.4 Circular plots of monthly data and values of c and s under the null hypothesis of
no seasonality (top-right), the alternative hypothesis of a unimodal sinusoidal seasonal pattern
(bottom-left), and a bimodal sinusoidal seasonal pattern (bottom-right). The top-left panel shows
the c and s axes with a centre .0; 0/ at the middle of the circle

February and March (around the 45ı angle of the circle). In this case the values of
c and s are both positive. In the bottom-right panel there is an increase in Febru-
ary which is mirrored by an increase six months later in August (bimodal seasonal
pattern). In this case the mean directions are zero as the positive values of cos.!t /

and sin.!t / are cancelled by the negative values. So in this example the values of c

and s are insensitive to the bimodal seasonal pattern.
The test statistic is

Z D nA
2
;

where
A D

p
c2 C s2;

is the mean amplitude on a proportional scale (0 � A � 1). When A D 0 there is no
seasonal pattern and the dates are spread equally throughout the year. When A D 1

all dates are the same, which would be an extreme version of a spiked seasonal
pattern (Fig. 2.15).
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Heuristically the values of fc; sg can be thought of as determining the direction
of a compass needle. If there is no seasonal pattern then the needle could point in all
directions equally, and a circular plot of the data should appear perfectly circular. If
there is a seasonal pattern then the needle will point to the phase, and the strength
of the attraction is proportional to A.

The p-value for the null hypothesis that A D 0 is exp.�Z/ for a sample size
greater than 50 [35].

Using the stillbirth data as an example gives A D 0:08, Z D 2:54 and a p-value
of 0:079 based on 352 stillbirths. This gives some indication that the number of
stillbirths may have a sinusoidal seasonal pattern.

Adjusting for the At-Risk Population

The test of seasonality described in the previous section does not adjust for the
population at risk. For the stillbirth example, we tested the seasonal distribution of
the number of stillbirths without adjusting for the number of births. If birth numbers
are seasonal then this may create a false pattern of seasonality in stillbirths, or mask
a seasonal pattern (depending on the coincidence of the phases in the number of
births and the risk of stillbirth).

Walter and Elwood created a test to adjust for the population at risk by grouping
the data into months [86]. We define ni as the number of trials (e.g., the number of
births), and ri as the number of “successes” (e.g., the number of stillbirths) in month
i . The mean directions are

c D
12X

tD1

p
ri cos.!t /

,
12X

tD1

p
ri ; i D 1; : : : ; 12;

s D
12X

tD1

p
ri sin.!t /

,
12X

tD1

p
ri ; i D 1; : : : ; 12;

where !t D 2�ft and ft is based on (3.5). The mean directions for the population
at-risk data are

Qc D
12X

tD1

p
ni cos.!t /

,
12X

tD1

p
ni ;

Qs D
12X

tD1

p
ni sin.!t /

,
12X

tD1

p
ni :

The test statistic is

X2 D
�

c � Qc
O�c

�2

C
�

s � Qs
O�s

�2

;
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where the variances are

O�2
c D 1

4

12X

tD1

p
ri cos2.!t /

,"
12X

tD1

p
Nmi=M

#2

;

O�2
s D 1

4

12X

tD1

p
ri sin2.!t /

,"
12X

tD1

p
Nmi=M

#2

;

where N D P
ri and M D P

ni .
Under the null hypothesis of no seasonal pattern, X2 has a chi-squared distribu-

tion with two degrees of freedom. This is based on the assumption that c and s are
Normally distributed.

For the stillbirth data, the test statistic is X2 D 6:90 with p-value 0:032, indicat-
ing a significant seasonal pattern in stillbirth after adjusting for the seasonal pattern
in the number of births.

3.2.1 Chi-Squared Test of Seasonality

The tests of seasonality described so far are designed to find a sinusoidal seasonal
pattern, and are not designed to detect other seasonal patterns (such as sawtooth or
spiked, Fig. 2.15). In this section we describe an alternative test that examines any
departure from an evenly distributed pattern over 12 months.

For Binomial data we test the null hypothesis that the probability of success is
the same in each month. The overall probability of success is estimated by p DP12

iD1 ri=
P12

iD1 ni where ri is the observed number of successes in month i , and ni

the number of trials. The test statistic is then

X2 D
12X

iD1

.ri � ni p/2

ni p .1 � p/
: (3.7)

Under the null hypothesis this has an approximate chi-squared distributed with 11
degrees of freedom. The statistic may not work well if the expected frequencies
(ni p) are less than 1 [26, Chap. 7].

For the stillbirth data, the observed statistic is X2 D 9:39. A chi-squared distri-
bution with 11 degrees of freedom has a critical value of 19:68 for a 5% significance
level, and the p-value is 0:59. This result indicates that the risk in stillbirth does not
change over the year.

3.2.1.1 Simulation Study Comparing Tests of Seasonality

To examine the differences in the tests of seasonality we created random Binomial
data for 12 months using



84 3 Cosinor

ri � Bin.n; pi /;

pi D A f.cos Œ.i � 1/2�=12� C 1/=2g ; i D 1; : : : ; 12:

This creates monthly data (for 1 year) with a sinusoidal seasonal pattern whose size
is proportional to the amplitude (A). The study was based on monthly Binomial data
using a fixed number of trials per month, n, with a total sample size of N D 12n.

To examine the ability of the tests to find a non-sinusoidal seasonal pattern we
also generated data using the following monthly probabilities

pi D
�

0:5; i D 1; : : : ; 11;

0:5 C A; i D 12;

which creates monthly data with a spiked seasonal pattern, the size of which is
dependent on A. To examine the type I error probability of the tests we also
generated random (non-seasonal) data using a fixed monthly probability of p D 0:5.

Table 3.1 shows the results of a simulation study comparing the power of Walter
and Elwood’s test, the cosinor test and the chi-squared test. The cosinor test had the
best power to detect sinusoidal seasonal patterns, and had a power greater than or
equal to the other two tests in every simulation.

The chi-squared test had the best power to detect a spiked seasonal pattern. For
spiked patterns, the power of the chi-squared test was almost always greater than the
cosinor test, and the power of the cosinor test was always greater than Walter and
Elwood’s test. The greater power of the chi-squared test for spiked seasonal data is
because the alternative hypothesis of this test is any non-uniform pattern, whereas
the other tests are specifically designed to detect a sinusoidal pattern.

Table 3.1 Power (%) of detecting seasonality for three tests using a simulation study for varying
sample sizes and amplitudes. Results shown for sinusoidal and spiked seasonal patterns, and for
random data. Based on 1,000 simulations for each sample size and amplitude combination

Trials per Random Sinusoidal amplitude (A) Spike (A)
month (n) data 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

Walter and Elwood’s test
50 0.6 0.5 1.4 7.0 58.5 97.7 0.0 0.0 0.8 2.3 3.8
100 0.3 0.3 3.6 23.5 95.4 100.0 0.1 0.8 1.0 4.3 14.2
200 0.4 0.5 6.1 55.4 99.9 100.0 0.3 0.6 1.5 12.6 42.5

Cosinor test
50 4.3 5.1 10.8 29.8 90.6 99.7 4.5 3.0 7.9 16.6 28.6
100 5.1 4.2 18.1 61.6 99.6 100.0 5.2 8.6 9.5 27.8 55.2
200 5.4 6.7 33.6 89.2 100.0 100.0 4.5 8.9 13.5 49.8 84.6

Chi-squared test
50 5.9 5.9 8.8 16.2 63.1 97.6 6.3 5.1 10.3 39.8 85.4
100 4.8 6.1 10.6 35.1 94.8 100.0 3.8 8.3 21.0 76.5 99.7
200 4.6 5.9 16.4 62.3 99.9 100.0 5.4 9.6 38.1 98.3 100.0
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None of the tests had a good power to detect a very small seasonal pattern (A D
0:01). All three tests had close to perfect power for detecting a large sinusoidal
seasonal pattern (A D 0:3).

All tests were based on a 5% rejection level. The cosinor and chi-squared tests
gave type I errors closer to the correct 5% level, as shown by the results for random
data (A D 0).

Based on these results we recommend the use of the cosinor test in place of
Walter and Elwood’s test. As the cosinor test can be applied as part of a GLM it is
also a flexible test. The chi-squared test is preferable to the cosinor test when the
shape of the seasonal pattern is not known, although the chi-squared test has less
power to detect a sinusoidal seasonal pattern than the cosinor test.

3.2.2 Sample Size Using the Cosinor Test

We can calculate the sample size needed to detect a particular amplitude by exploit-
ing the fact that the cosinor test corresponds to a linear regression model, and so use
existing formulae for linear regression sample sizes [29].

The cosinor test involves two terms, the sine and cosine term. We can reduce this
to one by assuming that the phase is zero, so that the sine term is zero. For sample
size purposes only the size of the amplitude is important, and the time of the phase
is immaterial. The regression equation is then

Yt D A cos.!t / C "t ; t D 1; : : : ; n;

"t � N.0; �2
" /;

where "t are uncorrelated noise with variance �2
" .

To calculate the required sample size we need to specify the following five
variables:

� The required power of the study
� The type I error probability, which we divide by 2 as the cosinor test involves

two separate tests of seasonality
� The amplitude (A)
� The standard deviation of the errors �"

� The standard deviation of the independent variable cos.!t /

As n ! 1 the standard deviation sdŒcos.!t /� ! p
0:5 � 0:707. This assumes

that the observations are reasonably spread over throughout the year, which should
happen with time series data of a reasonable length, but may not always be true of
survey data if responses are grouped at particular dates. The greater the variability
in the independent variable (in this case time) the smaller the sample size needed
for a linear regression model [29]. So having data equally spread over the dates
of the year is optimal. If the responses are clustered around particular dates then
sdŒcos.!t /� will be less than 0:707, and hence the power will be reduced.
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Table 3.2 Sample size needed to detect a sinusoidal seasonal pattern with amplitude A and error
standard deviation �e using the cosinor test. For a power of 80% and two-sided significance level
of 5%

Amplitude (A)
�" 0.1 0.2 0.5 1
1 1,904 478 79 22
2 7,609 1,904 307 79
3 17,117 4,281 687 174

Table 3.2 shows the required samples sizes to detect a range of amplitudes and
error standard deviations. These samples sizes can be applied to time series based on
days or months. For example, to detect an amplitude of 0:2 with an error standard
deviation of �" D 2 would require 1; 904=365:25 D 5:2 years of daily data, or
1; 904=12 D 158:7 years of monthly data.

We can calculate the sample size needed for any combination of A and �" using
software such as PS [30].

3.3 Sawtooth Season

In contrast to the smooth sinusoidal pattern modelled by a cosinor, we can create a
model with a sawtooth seasonal pattern (Fig. 2.1). Sawtooth seasonal patterns may
be useful for modelling abrupt changes in exposure, or for modelling non-sinusoidal
seasonal patterns.

For monthly data an example sawtooth model is

st D 
1.zt � 5:5/=5:5; t D 1; : : : ; n; (3.8)

zt D mt � 
2 C 12I.
2 > mt /;

where mt is the month at time t (Sect. 2.3.1), 
2 determines the month at which
the seasonal pattern changes (
2 2 f1; 2; : : : ; 12g) and 
1 determines the height of
the sawtooth pattern. I.x/ is an indicator function such that I.x/ D 1 if x > 0,
and I.x/ D 0 if x � 0. zt is the unstandardised sawtooth pattern, we subtract
its mean and divide by its maximum (the mean and maximum both being 5.5), so
that 
1 corresponds to the greatest absolute seasonal change. This also means thatPn

tD1 zt D 0.
Figure 3.5 shows two examples of sawtooth seasonal patterns created using

model (3.8). The top panel shows a sawtooth pattern that increases sharply between
May and June and then steadily declines. The bottom panel shows a pattern that
drops sharply from October to November and then steadily rises. The maximum
change in the seasonal pattern is determined by 
1 which is 1 in the top panel and
2 in the bottom panel. The sign of 
1 determines the direction of sawtooth pattern.
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Fig. 3.5 Examples of sawtooth seasonal patterns created by model (3.8) plotted over two years:
top panel 
1 D �1; 
2 D 6; bottom panel 
1 D 2; 
2 D 11; dotted horizontal line at zero

A negative sign for 
1 creates a seasonal pattern with a sharp increase and steady
decline, whereas a positive sign creates a pattern with a steady increase and sharp
decline. When 
1 is negative 
2 is the month with the highest level, whereas when

1 is positive 
2 is the month with the lowest level.

3.3.1 Examples

3.3.1.1 Footballers

Football players’ birthdays may have a sawtooth seasonal pattern (Fig. 1.6) as we
suspect their distribution may be based on a social seasonal exposure (Sect. 2.1.1).
A social seasonal exposure may well vary by country, and we can investigate this
possible difference as we have data for Australia and the UK.

The total number of births in both Australia and the UK are seasonal (see Fig. 2.6
for the UK), and we need to adjust for this seasonal pattern when examining the
seasonal pattern in players’ births (as in Sect. 3.2). We first calculate the expected
number of players born in each month

em D OnmP12
mD1 nm

; m D 1; : : : ; 12;
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where nm is the total number of births in month m and O is the total number of
players. We used data on the total number of births that covered the same time
periods as the players’ birthdays.

The model with this offset and a sawtooth seasonal pattern is then

om � Po.�m/; m D 1; : : : ; 12;

log.�m/ D log.em/ C sm;

sm D 
1.zm � 5:5/=5:5;

zm D m � 
2 C 12I.
2 > m/;

where om is the number of footballers born in month m. The value exp.sm/ is then
the relative risk of a footballer being born in month m assuming a sawtooth seasonal
pattern.

We estimate model (3.8) using a Bayesian paradigm. We fit a separate model for
all twelve values of 
2 D 1; 2; : : : ; 12, and then select that model which has the
lowest DIC (Sect. 1.6.2). We use a vague prior for 
1 � N.0; 106/.

Figure 3.6 shows the DIC and estimated 
1 parameter over the 12 months for the
AFL and EPL players. These estimates were based on a burn-in of 10,000 MCMC
iterations, followed by a sample of 10,000. For the AFL players the lowest DIC was
75.6 in January, which was 12.6 lower than the next best DIC in August. In January
the mean estimate of 
1 was negative, �0:29 with a 95% CI of �0:41 to �0:16. For
the EPL players the lowest DIC was 73.7 in March, which was 8.1 lower than the
next best DIC in September. In March the mean estimate of 
1 was positive, 0:44

with a 95% CI of 0:25 to 0:62.
We show the estimated sawtooth seasonal patterns in Fig. 3.7. For the AFL play-

ers we used a 
2 of January, and for the EPL players we used both March and
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Fig. 3.6 Deviance information criterion for the 12 monthly values of 
2 (solid line) and mean
estimate of 
1 (dotted line) for the AFL (left) and EPL (right) footballers data



3.3 Sawtooth Season 89

Fig. 3.7 Seasonal relative
risks of birth for the
footballers data using a
sawtooth seasonal model. The
top panel is for the AFL
players using 
2 D 1

(January), the middle panel is
for the EPL players using

2 D 3 (March), and the
bottom panel is for the EPL
players using 
2 D 9

(September). The y-axes are
on a log scale
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September. There was a peak in AFL players’ birthdays in January with a steady
decline to December. School enrolment in Australia is based on year of birth. So
boys born at the start of the year will have almost of full year of extra growth
compared with those born at the end of the year. This extra growth would give
these boys an advantage in physical games. A similar pattern has been found in the
birthdays of Canadian hockey players [43] and UK footballers [78].

In the UK school enrolment starts with children born in September. However, the
optimal value for 
2 was March, which has no apparent association with the school
year (Fig. 3.7). However, the second best value for 
2 according to the DIC was
September (Fig. 3.6). The estimated sawtooth seasonal pattern based on September
has a shape that could be explained by school year and the physical advantages of
being the oldest in the class.

3.3.1.2 Cardiovascular Disease

It is possible to combine a sawtooth seasonal pattern with a sinusoidal pattern. As an
example we fit both seasonal patterns to the monthly CVD death data. We modelled
the number of deaths using a Poisson distribution and used an offset to account for
the uneven number of days in the months (Sect. 2.2.1). We included a quadratic trend
and modelled the over-dispersion. We used a burn-in of 10,000 MCMC iterations,
followed by a sample of 10,000.

The WinBUGS code is shown below.

model{
for (i in 1:N){
cases[i]˜dpois(mu[i]);
log(mu[i])<-trend[i]+season[i]+log(offset[i])+disp[i];
season[i]<-cosinor[i]+sawtooth[i];
cosinor[i]<-(b.cos*cos(omega[i]))+(b.sin*sin(omega[i]));
sawtooth[i]<-zeta_1*(z[i]-5.5)/5.5;
z[i]<-(month[i]-zeta_2)+(12*step(zeta_2-month[i]-0.1))
trend[i]<-beta[1]+(beta[2]*time[i])+(beta[3]*time2[i]);
disp[i]˜dnorm(0,tau.disp);

}
for (k in 1:3){
beta[k]˜dnorm(0,0.0001);

}
zeta_1˜dnorm(0,0.0001);
b.cos˜dnorm(0,0.0001);
b.sin˜dnorm(0,0.0001);
tau.disp˜dgamma(0.0001,0.0001);
}

The parameters b.cos and b.sin are c and s respectively in the cosinor equa-
tion (3.1). The first two lines of the data in WinBUGS format are shown below.



3.3 Sawtooth Season 91

0.90

0.95

1.00

1.05

1.10

1.15

1.20

R
at

e 
ra

tio

J F M A M J J A S O N D J F M A M J J A S O N D

Fig. 3.8 Combined seasonal pattern of a sawtooth and cosinor using the CVD death data. Results
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cases[] offset[] month[] time[] time2[] omega[]
1831 1.01848 1 -0.9880952 0.9763322 0
1361 0.91991 2 -0.9761905 0.9529478 0.5235988

The variables time and time2 are used to model the linear and quadratic trends,
respectively. We used a centred version of time (Sect. 1.4.2) as centring often
improves the convergence of the MCMC chain.

We used vague prior distributions for all the unknown parameters,


1 � N.0; 104/; c � N.0; 104/; s � N.0; 104/:

The value for 
2 with the smallest DIC was December, which had an associ-
ated mean value for 
1 of �0:10 (95% CI: �0:27, �0:01). Figure 3.8 shows the
estimated combined pattern for two years. The most noticeable difference between
this seasonal pattern and a standard sinusoid is the sharp increase in risk between
November and December. The sawtooth pattern combined with the sinusoidal pat-
tern has made a non-symmetric seasonal pattern, as the decline in deaths from
December to July takes 7 months, whereas the rise in deaths from July to December
takes only 5 months.

Figure 3.9 shows the ACF (Sect. 1.2.1) of the residuals from this model and,
for comparison, the residuals from a cosinor model (including a quadratic trend).
The autocorrelation for the combined model is noticeably lower at 12 months, sug-
gesting that it has better captured the seasonal pattern. However, some statistically
significant autocorrelations remain, particularly at short lags.



Chapter 4
Decomposing Time Series

A useful way to view time series data is as a combination of trend, season and noise.
For data that are equally spaced over time (t D 1; : : : ; n) an equation that splits the
series into these three parts is

Yt D �t C st C "t ; t D 1; : : : ; n; (4.1)

where �t is the trend, st is the seasonal pattern and "t is the random noise (also
known as the error or residuals). We assume the residuals are uncorrelated, with a
zero mean and constant variance, so

"t � N.0; �2
" /; cov."t ; "k/ D 0; t ¤ k:

We can include multiple seasonal terms using the equation

Yt D �t C
kX

j D1

st;j C "t ; t D 1; : : : ; n: (4.2)

For example, we could use this equation to model both an annual and biannual
seasonal pattern.

As we show later (Sect. 4.4) we can also further split the season into an average
seasonal pattern, and a year-to-year change from the average seasonal pattern using

st D ım.t/ C �t ; t D 1; : : : ; 12;

where m.t/ is the month at time t (Sect. 2.3.1), ı represents the average seasonal
pattern, and � the changes in this pattern. This is useful for examining changes over
time in the seasonal pattern.

The technique of decomposing aims to split a time series into its constituent
parts of trend, season and remaining noise. Figure 4.1 graphically shows the aim of
decomposition. In this example of artificial data the trend is a linear increase and the
season is sinusoidal.

A.G. Barnett and A.J. Dobson, Analysing Seasonal Health Data, Statistics for Biology
and Health, DOI 10.1007/978-3-642-10748-1 4,
c� Springer-Verlag Berlin Heidelberg 2010
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Trend + Season + Noise

Time

Trend

Time
Season

Time

Noise

Time

Fig. 4.1 Decomposing a time series (top-left) into the trend (top-right), season (bottom-left) and
residuals (bottom-right). The scales on the y-axes are different. Dotted horizontal lines at zero in
the season and residuals

Definition of a Trend

We assume that the trend in (4.1) represents the long-term change in disease. It is
also known as the secular trend. This trend represents the gradual improvement or
worsening in disease frequency, which may be linear or non-linear. These changes
occur for many reasons. Examples include gradual improvements in health care, diet
and working conditions.

The reasons behind the trend will depend on the time span of the study. Studies
that cover decades are likely to include trends due to improvements in socio-
economic conditions, although this depends on the disease being studied and the
location. Trends may also occur because of a delay in case registration. For exam-
ple, the plot of schizophrenia rates (Fig. 1.28) shows a drop in cases from 1960 to
1970. This drop is not because of a reduction in schizophrenia, but because at the
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time the data were collected some people born in the 1960s have not yet lived long
enough to be diagnosed with schizophrenia.

We assume that there are no sudden changes in the long-term trend. Such sudden
changes may occur because of natural disasters, interventions or changes in the
way that a disease is classified or recorded. These changes are also not part of the
seasonal pattern, and to model them we would need to add another independent
variable to (4.1) using

Yt D �t C st C �xt C "t ; t D 1; : : : ; n;

where � describes the sudden change in the mean at time d using the indicator
variable

xt D
�

0; t < d;

1; t � d:

This might occur if a disease is reclassified at some point in time, d , which we
assume is known. The indicator variable can also be designed to model a temporary
change in the mean

xt D
�

0; t < d1; t > d2;

1; d1 � t � d2;

which defines a temporary change in the mean that starts at d1 and ends at d2.
However, if the time period from d1 to d2 is short, it could be partially confounded
with any seasonal change.

In some cases the trend may be the focus of the analysis, in which case (4.1) can
be used to obtain estimates of the trend that are seasonally adjusted. For example,
we may be interested in recent trends in mortality potentially due to global warming,
but want to adjust for the seasonal pattern in mortality. In other cases the focus of the
analysis is the seasonal pattern, and we want to remove the trend so that it can not
influence (or become part of) the seasonal estimate. This is most likely to happen
when the trend is highly changeable. For example, a disease increases over a year,
and then decreases in the following year. Such relatively short-term changes can
appear to be like seasonal changes, and become difficult to separate statistically. A
common theme of the methods presented in this chapter is strategies that aim to
prevent the trend and season from competing to “explain” the same variance.

An important constraint that helps to ensure the orthogonality of the trend and
seasonal parts of model (4.1) is

nX

tD1

st D 0:

This means that, on average, the seasonal pattern is centred on the mean. We assume
that n=l is an integer, where l is the length of the seasonal cycle (for an annual
season pattern l D 12). This assumption ensures that the sum includes n=l complete
cycles of the seasonal pattern.
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Time Time

Fig. 4.2 Non-stationary seasonal patterns. Dotted horizontal lines at zero

Non-stationary Seasonal Patterns

An important distinction is whether the seasonal pattern is stationary or non-
stationary. A stationary seasonal pattern is constant from season to season, whereas
a non-stationary pattern changes over time. This is also known as time-dependent
seasonality. We can also say that there is a trend in the seasonality, being careful to
point out that this trend is distinct from the long-term trend in disease frequency.

The left panel of Fig. 4.2 shows a seasonal pattern with an increasing amplitude.
The right panel of Fig. 4.2 shows a seasonal pattern with an decreasing amplitude.
For both series the length of the seasonal cycle and phase has remained constant.
These seasonal patterns are both non-stationary, whereas the seasonal pattern in
Fig. 4.1 is stationary.

A non-stationary seasonal pattern may occur because of year-to-year changes
in exposure. For example, an unusually mild winter may lead to a smaller number
of cold-related CVD deaths compared to neighbouring years. Alternatively a grad-
ual change over time in an exposure may lead to a gradual change in the seasonal
pattern of a condition. For example, gradual changes in sunlight exposure (due to
public health education programmes) may be responsible for changes in the sea-
sonal pattern of birth weight [61]. Also, a gradual change in marriage trends may
have reduced the seasonal pattern in UK birth numbers (Sect. 2.2.2).

4.1 Stationary Cosinor

In this section we present a very simple model of decomposition, based on a para-
metric trend and stationary cosinor to estimate the seasonal effect. This model is
simpler than the models in later sections, but is easy to apply and can be a useful
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comparison to more complex models. It may also be a sufficiently complex model
for studies covering short periods (say 2–3 years), where there is less potential for
complex trends and non-stationary seasonal patterns.

Using (4.1) we assume that the trend is a parametric function of time �t D f .t/,
for example a quadratic model, �t D ˇ0 C ˇ1t C ˇ2t2. The season is assumed to
be a stationary cosinor, defined by

st D A cos.!t � P /; t D 1; : : : ; n:

This is the cosinor model (Sect. 1.3.2). As with the previous cosinor model this
model can be fitted as a GLM. So we can apply the model to data assuming a
Normal, Poisson or Binomial distribution.

4.1.1 Examples

4.1.1.1 Cardiovascular Disease Deaths

We fitted a stationary cosinor model with trend to the cardiovascular disease death
data. We first standardised the counts to adjust for the unequal number of days in
the month (Sect. 2.2.1). We used linear and quadratic terms to model the trend.

The decomposition of the series into the trend, season, fitted values and residuals
is shown in Fig. 4.3. Instead of showing a time series of the residuals we show
the autocorrelation function of the residuals, as it is easier to judge the important
assumption of independence at the seasonally important lag of 12 months.

The trend shows a strong quadratic U-shape over time. The seasonal pattern
shows a symmetric oscillation with a phase of 1.3 months (early January) and an
amplitude of 214 deaths per month. The fitted values in Fig. 4.3 can be compared
with those in Fig. 3.2, which shows a stationary cosinor model without trend. The
ACF values of the residuals are greatly reduced compared with the ACF of the
monthly counts (Fig. 1.9), but still show a strong seasonal pattern.

The R code to fit a stationary cosinor model with a quadratic trend is

> CVD$yrmonc<-CVD$yrmon-1994
> CVD$yrmon2c<-CVD$yrmoncˆ2
> result<-cosinor(adj˜yrmonc+yrmon2c,
type=’monthly’,date=month,data=CVD)

The first line centres the fraction of time variable yrmon; the second line creates a
quadratic version for fitting the trend.

4.1.1.2 Schizophrenia

For the schizophrenia data we used a GLM assuming that the monthly number
of cases followed a Poisson distribution. We used the log of the number of births
divided by 1,000 as an offset. A cubic trend gave much better residuals than a
quadratic trend.
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Fig. 4.3 Results from decomposing the monthly CVD time series using a stationary seasonal
model. Quadratic trend (top-right), stationary seasonal component (top-right), fitted values (trend
C season; bottom-left), and ACF of the residuals (bottom-right). The scales on the y-axes are
different

The stationary seasonal estimate in terms of the rate ratio is shown in Fig. 4.4,
together with the autocorrelation function of the residuals. The sinusoidal seasonal
estimate had a phase of 6.9 months (end of June), with a peak in the rate ratio of
1.045. The autocorrelation in the residuals is small, suggesting that a stationary
seasonal pattern (with a cubic trend) may be an adequate model.

4.2 Season, Trend, Loess

In this section we describe a decomposition method based on loess smoothing
[17, 85]. It is given the acronym STL (season, trend, loess). The purpose of using
loess smoothing is to model the trend and seasonal effects using purely numerical
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Fig. 4.4 Results from
decomposing the
schizophrenia time series
using a stationary seasonal
model. Stationary season
(top) and ACF of the
residuals (bottom) R
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methods based on the data rather than assuming mathematical models (such as the
cosinor) or any particular probability distributions (e.g., the Poisson distribution for
count data).

For a dependent variable y and independent variable x the stages of loess
smoothing are:

1. For a value xt define the window as xt � h to xt C h for some constant h. The
pairs of dependent and independent variables within this window are y0 and x0,
respectively.

2. Calculate weights for each point in the window wj D f .x0
j �xt /. These weights

describe the distance between each point and the central point (xt ), so that values
further from xt are given less weight. A simple example is f .u/ D juj.

3. Fit a regression model y0 D f .x0/ using the weights w. This model is usually
linear f .u/ D ˇ0 C ˇ1u, or quadratic f .u/ D ˇ0 C ˇ1u C ˇ2u2. It is also
possible to fit a constant f .u/ D ˇ0, which is equivalent to a moving average.
The degree of the model is 0 for a moving average, 1 for a linear model, and 2
for a quadratic model.

4. Estimate the fitted value st D Oy0
t at xt .

These four steps are then repeated for a range of values of x to build up the smooth
seasonal curve (s).

The key choice for determining the smoothness of s is the size of h. Larger values
of h increase the number of observations in the window and so give a smoother
estimate. As h becomes very small the number of paired observations tends to 1,
which gives a “smooth” that passes through each observation (st D yt ).
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For monthly data with an annual seasonal pattern, the STL algorithm groups
each of the months and applies a loess smooth to each group. So the results in every
January are smoothed, then the results in every February, and so on. The window (h)
is the number of neighbouring years included in the smooth. Selecting h D 1 means
that only neighbouring years are used, whereas h D 2 uses two years either side.
The overall size of the smoothing window is w D 2h C 1. This then estimates the
long-term pattern in each month. The long-term seasonal pattern is then estimated
by joining together these monthly estimates. This procedure treats the results from
neighbouring months as independent, and so the STL does not constrain the seasonal
pattern to take a particular form (e.g., sinusoidal).

The STL algorithm applies separate loess smooths to the trend and seasonal pat-
tern, so we need to choose a window size for the trend (w�) and a separate window
size for the season (ws). We should choose w� so that it models the long-term varia-
tion in disease. For monthly data, the value for w� determines the number of months
included in the window. A very small value for w� could therefore wrongly include
seasonal variation. Guidelines for choosing ws are w� are:

� ws should be an odd integer, �7. The final choice of ws should be based on
knowledge about the expected variation in the seasonal pattern, and testing for
remaining seasonal pattern in the estimated residuals.

� w� D b1:5l=.1 � 1:5=ws/c where bxc means the smallest odd integer �x and l

is the length of the seasonal cycle. For an annual seasonal pattern with monthly
data l D 12.

The STL algorithm estimates the smooth trend and season by alternating between
estimates of the season and trend, using updated estimates at each iteration [17]. It
also applies a low-pass filter to the seasonal pattern in order to further smooth it by
removing any erratic (high frequency) patterns.

A robustness step can be added to the algorithm, which multiplies the weight
calculated in step 2 by a reliability weight. This weight is based on the estimated
residuals

O"t D yt � O�t � Ost ; t D 1; : : : ; n:

The weight is designed to reduce the influence of observations with a relatively
large O"t . The relative size of the residual is calculated using the absolute values of
the residuals

Oet D jO"t j= Œ6 � median.j"j/� :

The reliability weight is then

w�
j D

(
.1 � Oe2

j /2; 0 � Oej < 1;

0; Oej � 1:
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4.2.1 Examples

4.2.1.1 Cardiovascular Disease Deaths

Figure 4.5 shows the STL decomposition with window sizes, ws D 7 and w� D 21

using the cardiovascular disease data. We first adjusted the counts to account for the
unequal number of days in the month (Sect. 2.2.1). We selected a reasonably small
seasonal window (ws D 7) because we believed the seasonal pattern in monthly
CVD is non-stationary (based on the plot of the observed data, Fig 1.1). The degree
of the loess model was 0 for season, and 1 for trend.

The trend in Fig. 4.5 shows the overall mean, which ranges from around 1,300–
1,500 deaths per month. The trend is much smoother using the robustness step.
Without using this step, the trend shows an oscillating pattern from high to low
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Fig. 4.5 Example of using STL for the monthly cardiovascular disease data. The rows show: the
trend (top), season (middle) and autocorrelation of the residuals (bottom). The results are based on
the windows ws D 7; w� D 21, the right column includes a robustness step to reduce the influence
of large residuals
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Fig. 4.6 Estimated annual
seasonal pattern using STL
for the monthly
cardiovascular disease death
data. Overlay of seasonal
patterns from multiple years
using windows of
ws D 7; w� D 21 and a
robustness step. Dotted
horizontal line at zero
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between 1990 and 1999. This is the seasonal pattern discussed in Sect. 2.2.2, and so
the results with the robustness step are preferred.

The seasonal estimates have captured the skewed, non-sinusoidal, pattern in car-
diovascular death, with its sharp January peak. This is an advantage of the STL
method, as by smoothing in grouped months it places no restriction on the seasonal
shape. A more detailed look at the seasonal pattern is shown in Fig. 4.6. The number
of deaths peaks in January (200–500 more deaths than the average), and dips in July
or August (100–200 fewer deaths).

The seasonal pattern also appears to be non-stationary as it changes over time.
Both seasonal patterns in Fig. 4.5 remain relatively stable from 1987 to 1990, then
reduce in amplitude from 1991 to 1994/1995, and then increase in amplitude to
2000. The non-stationary seasonal patterns in Fig. 4.5 are quite different to the
stationary estimate shown in Fig. 4.3.

The STL allows a seasonal pattern that is non-sinusoidal and non-stationary.
Despite this flexibility, the residuals from both models in Fig. 4.6 contain some
remaining seasonality as indicated by the ACF, although this is much reduced using
the robustness step. The positive autocorrelation at lag 1 may indicate an inade-
quate estimate for trend. Experimenting with different values of ws and w� might
eventually yield almost independent residuals. The autocorrelation in the residuals
is greatly reduced compared with the stationary model in Fig. 4.3.

The R commands to fit a STL model are:

> ts<-ts(CVD$adj,frequency=12,start=c(1987,1))
> sm<-stl(ts,s.window=7,t.window=21,robust=TRUE)
> plot(sm)
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where s.window is ws , and t.window is w�. The first command creates a time-
series object based on the adjusted monthly numbers of CVD deaths, starting in
January, 1987, and with an 12-month frequency (annual cycle). A robust version of
the STL is fitted by using the option robust=TRUE.

4.2.1.2 Schizophrenia

For the schizophrenia data (Sect. 1.1.2) we selected a seasonal window of ws D 11

because we believed that any seasonal pattern would change relatively slowly over
time. Figure 4.7 shows the seasonal pattern for the rate of schizophrenia per 1,000
births, for the four decades from the 1930s to the 1960s. To aid the visualisation of
the annual season, dashed vertical lines have been added at the start of each year.
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Fig. 4.7 Estimated annual seasonal pattern using STL for the monthly rates of schizophrenia per
1,000 births. The y-axes are on the scale of schizophrenia per 1,000 births centred at zero. Each
panel shows a different decade. Vertical dashed lines are at the start of every year. The dotted
horizonal lines are at zero
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The estimated seasonal pattern in schizophrenia is strongly non-stationary, both
in its phase and its amplitude. The pattern is relatively regular from 1930 to 1935,
with a peak in risk in July births, and dip in November. The peak in risk then moved
to June from 1935 to 1940. In the remainder of the 1940s it is difficult to see a clear
seasonal pattern, in particular it is difficult to see a sinusoidal pattern. In the late
1950s and early 1960s the peak in risk was in September, with the dip in November.
Over the 1960s there was a steady decline in this seasonal pattern. This decline
corresponds to the decline in trend, which indicates that a multiplicative seasonal
model may be more appropriate, in place of the additive model, (4.1).

The multiplicative decomposition model is

Yt D �t � st � "t ; t D 1; : : : ; n:

This can be fitted to the schizophrenia data by first log-transforming the rates of
schizophrenia per 1,000 births. The results are shown in Fig. 4.8. The seasonal esti-
mates are given as rate ratios, and range from around 0.7 to 1.4. The estimated
seasonal pattern from the multiplicative model has a similar shape to that from the
additive model shown in Fig. 4.7. The reduction in the seasonal variation over the
1960s using the multiplicative model is much less pronounced, although any sea-
sonal pattern over this period is quite noisy, with erratic changes in risk from month
to month.

4.3 Non-stationary Cosinor

In this section we show a method for decomposing a time series using a cubic spline
for the trend, and a non-stationary seasonal pattern defined as

st D At cos.!t � Pt /; t D 1; : : : ; n; (4.3)

where !t D 2�ft and ft is the fraction of time as described in (3.4) for individual
dates (e.g., birth dates) or (3.5) for monthly data. This model is parametric because
we have constrained the pattern to be sinusoidal. It is non-stationary because the
amplitude (At ) and phase (Pt ) are dependent on time. We refer to (4.3) as a non-
stationary cosinor model.

The model, (4.1), with the seasonal pattern, (4.3), can be represented more
generally, as in [5], as

Yt D FT Bt C "t ; t D 1; : : : ; n;

Bt D GBt�1 C T � vt ;

vt � MVN.0; V/;

"t � N.0; �2
" /;
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Fig. 4.8 Estimated annual seasonal pattern using STL for the log-transformed monthly rates of
schizophrenia per 1,000 births. The y-axes show the rate ratios for schizophrenia per 1,000 births
centred at zero. Each panel shows a different decade. Vertical dashed lines are at the start of every
year. The dotted horizonal lines are at one

where � denotes element-by-element matrix multiplication and the matrices are

F D

2

664

1

0

1

0

3

775 ; G D

2

664

1  0 0

0 1 0 0

0 0 	 �1

0 0 1 0

3

775 ; V D

2

6664

�3

3
�2

2
0 0

�2

2
 0 0

0 0 �2
s 0

0 0 0 0

3

7775 ; T D

2

664

�1

�1

�2

�2

3

775 ;

and 	 D 2 cos.2�=l/ where l is the length of the seasonal cycle. For an annual
seasonal pattern using monthly data l D 12. The term  is the distance between
observations (on a time scale), so for monthly data  D 1=12, and for annual data
 D 1=365. We have added vertical and horizontal lines to the above matrices to
show the partition between the trend (top-left) and seasonal (bottom-right) parts.
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The matrix Bt defines a cubic spline for the trend and a non-stationary cosinor
for the season. At each time point, t , the matrix is a combination of the matrix
from the previous time, Bt�1, and some change from the previous time, vt , which
is scaled by �1. Larger values of �1 allow more change between observations and
hence a greater potential flexibility in the spline. In this model, the value for �1 is
fixed in advance, similarly to the degrees of freedom for a Generalized Additive
Model (GAM) (Sect. 5.2) [45].

The flexibility in the non-stationary seasonal estimate is determined by the vari-
ance �2

s and the smoothing parameter �2. This parameter �2 is fixed in advance,
whilst the variance parameter �2

s is estimated (see below).
One advantage of this model is that it is relatively easy to add multiple sea-

sonal components, as in (4.2). For example, to fit two seasonal terms we expand the
matrices thus,

F D

2

66666664

1

0

1

0

1

0

3

77777775

; G D

2

66666664

1  0 0 0 0

0 1 0 0 0 0

0 0 	1 �1 0 0

0 0 1 0 0 0

0 0 0 0 	2 �1

0 0 0 0 1 0

3

77777775

; V D

2

66666664

�3

3
�2

2
0 0 0 0

�2

2
 0 0 0 0

0 0 �2
s1

0 0 0

0 0 0 0 0 0

0 0 0 0 �2
s2

0

0 0 0 0 0 0

3

77777775

; T D

2

66666664

�1

�1

�2

�2

�3

�3

3

77777775

;

where 	1 D 2 cos.2�=c1/; 	2 D 2 cos.2�=c2/ and c1 and c2 are the lengths of the
seasonal cycles (c1 ¤ c2).

4.3.1 Parameter Estimation

The estimates of v; �" and � s in the non-stationary cosinor model are made using
the Kalman filter [45]. We first use a forward and backward sweep of the Kalman
filter to estimate OBt . The mean estimated trend and season are extracted using

O�t D Œ1 0 0 0� OBt ; t D 1; : : : ; n;

Ost D Œ0 0 1 0� OBt ; t D 1; : : : ; n;

assuming a single seasonal component. The residuals are estimated as

O"t D yt � O�t � Ost ; t D 1; : : : ; n:

The variance �2
" is estimated using a randomly generated value from an inverse

Gamma distribution with shape .n=2/ � 1 and scale
P O"2

t =2.
To estimate the variance in the seasonal estimate, �2

s , we first calculate the
difference

�Ost D Ost � Ost�1; t D 2; : : : ; n:
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The variance �2
s is then estimated using a randomly generated value from an inverse

Gamma distribution with shape Œ.n � 1/=2� � 1 and scale
P

�Os2
t =2. The value

sampled from the inverse Gamma is divided by �2
2 to give �2

s .
The whole process is then repeated again using the updated estimates of �2

"

and � 2
s . This is known as Markov chain Monte Carlo (MCMC) sampling. We

store the estimates at the end of each iteration to give a vector of estimates,
O� s D O�1

s ; O�2
s ; : : : ; O�M

s , of which there are M in total. Mean estimates are then
the sample means

O�s D 1

M

MX

iD1

O� i
s ; O�" D 1

M

MX

iD1

O� i
" ; O�t D 1

M

MX

iD1

O�i
t ; Ost D 1

M

MX

iD1

Osi
t :

Similarly we can calculate confidence limits for the parameter estimates using the
100.˛=2/ and 100.1 � ˛=2/ percentiles from the M MCMC samples. These confi-
dence intervals have no distributional assumptions, so it not important if the MCMC
samples are not Normally distributed. Being able to calculate confidence intervals
for the trend and season is a distinct advantage of this method over the STL method.

The MCMC process is started by giving initial values for O�" and O� s . The initial
value for O�" is the standard deviation of the dependent variable. The initial values for
O� s need to be specified. The convergence of the MCMC chains should be verified
before creating any estimates (Sect. 1.6.1).

The values to be estimated are v; �"; � s and �. The parameters � are fixed in
advance of estimating the other parameters, but we can estimate their optimal values
using a trial and error procedure, as we show in the examples below. We recommend
starting with all values of � equal to 1. A model can then be fitted using a small
number of MCMC samples, say 2,000 samples with a burn-in of 500. The results
of this initial fit should give an idea of whether the trend is too taut or too flexible.
A second model can then be fitted by suitably adjusting �1. When choosing the
next value it is worth bearing in mind that �1 is proportional to the variance of the
dependent variable, var.Yt/. We also recommend using initial values for � s based
on the results of the first model. Further models should be fitted until the estimated
trend appears to be modelling the long-term change in disease, and no seasonal
components. Next we tune the value of �2 to control the flexibility in the seasonal
estimate. We recommend trying both very small values that give an almost stationary
fit, and large values that allow the seasonal pattern to be strongly non-stationary. A
final value for �2 can be based on looking for any remaining seasonal pattern in the
residuals.

The mean residuals are estimated as

O"t D yt � O�t � Ost ; t D 1; : : : ; n:

These are the residuals that we test for any remaining trend or seasonal pattern.



108 4 Decomposing Time Series

4.3.1.1 Estimating the Amplitude and Phase

To estimate the amplitude and phase of the seasonal pattern we first calculate the
periodogram of Ost (Sect. 1.3.3). We then select the estimates of OCj and OSj for
the value of j closest to the cycle (l). We can then estimate the amplitude and
phase using (Eqns. 3.2) and (3.3), respectively, with c D Cj and s D Sj . We
do this at every MCMC sample to give a chain of estimates for the amplitude,
OA D OA1; OA2; : : : ; OAM , and phase, OP D OP 1; OP 2; : : : ; OP M .

The phase is a circular variable that is bounded between 0 and 2� . Hence esti-
mating confidence intervals is complicated because the values 0 and 2� � a (for
small a) are close on the circular scale, but far apart on the linear scale. The solution
is to first rotate the phases ( OP) so that they are centred on � , estimate the confidence
interval for the rotated phases, and then rotate these estimates back to their centre
[35, Sect. 2.3.2]. As before the confidence interval is calculated using the 100.˛=2/

and 100.1 � ˛=2/ percentiles.
Figure 4.9 demonstrates the issue for estimates of the phase centred close to zero.

A confidence interval based on the unrotated estimates almost covers the entire
range of possible phase values. After rotation, the mean is estimated as 0:32, and
the 95% confidence interval as �0:15 to 0:84. The lower confidence interval is
negative because it is relative to the mean. We can put the values on a more mean-
ingful scale using the invyrfracion function in R. If the phase in Fig. 4.9 is for
daily data, then the mean phase is 19 January, with a 95% confidence interval from
23 December to 18 February.

Fig. 4.9 Estimates of a 95%
confidence interval for the
phase based on 500 MCMC
estimates. The lower (L) and
upper (U) estimates are
shown in italics for the
unrotated estimates and in
normal font for the rotated
estimates. The top panel
shows a histogram of the
MCMC samples, the bottom
panel shows the estimates
after they have been rotated to
have a centre on �
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4.3.2 Examples

4.3.2.1 Cardiovascular Disease Deaths

Figure 4.10 shows the estimated trend, seasonal effect and residuals from the CVD
death data. The estimates are based on a single seasonal cycle of 12 months. We
show a histogram and box plot of the residuals against month. The results are based
on �1 D 130 and �2 D 10. We used 5,000 MCMC samples, with a burn-in of 1,000.

The results in Fig. 4.10 include confidence intervals for the mean and seasonal
estimate, whereas the STL only estimates the mean. This is an advantage of this
method over the STL.

The seasonal pattern is reasonably consistent in its phase, the mean estimate
is 2.3 months and 95% confidence interval is 2.1 to 2.5, corresponding to early
February. This phase is surprising late, considering that the peak of deaths is usu-
ally in January (Fig. 2.3). The box plot of residuals (Fig. 4.10) shows that the model
tends to underestimate mortality in January, with an inter-quartile range from around
100 to 300 deaths. The sinusoidal model has missed the peak in January deaths, and
this is because it is based on the assumption of symmetry. For sinusoidal models the
gap between the highest and lowest rates of disease will be 6 months apart. How-
ever, Fig. 2.3 shows a peak in deaths is in January and a that low that varies from
July to September (6–9 months later). The estimated phase for the model shown in
Fig. 4.10 has therefore been influenced more by the low in mortality than its peak.
The box plot of the residuals confirms this, as the residuals for July to September,
are comparatively good. Overall, there is still some seasonal pattern in the residuals,
as shown by the ACF.
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Fig. 4.10 Estimated trend (top-left) and season (top-right) over time, and residual autocorrelation
(bottom-left) and box plot (bottom-right) from the CVD data using a non-stationary cosinor with
smooth parameters �1 D 130; �2 D 10. In the top row the mean is a solid line, and the 95%
confidence interval a grey area
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Fig. 4.11 Estimated trend (top-left) and season (top-right) over time, and residual autocorrelation
(bottom-left) and box plot (bottom-right) from the CVD data using a non-stationary cosinor with
smooth parameters �1 D 30; �2 D 100. In the top row the mean is a solid line, and the 95%
confidence interval a grey area

The estimated amplitude does vary from year-to-year. The average amplitude is
207 deaths per month (95% CI: 183, 231). The mean estimate of �" is 110.0, and of
�s is 0.79.

The long-term trend shows clear peaks in 1989 and 2000. The small peak in
trend in 1994 in January could be due to a seasonal increase. We want the trend to
exclusively model the long-term changes in disease. We therefore re-ran the model
with a smaller smoother parameter for the trend (�1 D 30). At the same time we
increased the smoothing parameter for the seasonal pattern in the hope that it would
increase in flexibility and thus give a better fit to the seasonal pattern (�2 D 100).
The results are shown in Fig. 4.11.

The trend in Fig. 4.11 is much smoother than that shown in Fig. 4.10, so the
reduction in the smoothing parameter has had the desired effect. In contrast, increas-
ing the smoothing parameter has done little to change the seasonal estimate. The
estimated mean phase and amplitude are almost identical. We increased the �2

smoother parameter further, but still found no change in the seasonal pattern. This
suggest that the variance in the seasonal pattern is at its limit, and a better fit can
only be achieved using a different model.

To see if we could improve the residuals, we added a second seasonal cycle at
6 months. This cycle was suggested by the periodogram in Fig. 1.18. The results are
shown in Fig. 4.12.

The 6-month season amplitude is smaller than the 12-month amplitude, averag-
ing 74 deaths per month (95% CI: 52, 93). Adding a 6-month cycle has not improved
the overall fit, as the residuals still have a strong seasonal pattern.

The R commands to fit a model with two seasonal components with cycles of 6
and 12 months is:

> nscosinor(response=adj,cycles=c(6,12),tau=c(30,10,10),
niters=5000,burnin=1000,data=CVD,inits=c(2,2))
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Fig. 4.12 Estimated 6-monthly season (top-left) and 12-monthly season (top-right) over time, and
residual autocorrelation (bottom-left) and box plot (bottom-right) from the CVD data using a non-
stationary cosinor with smooth parameters �1 D 30; �2 D 100; �3 D 100. In the top row the mean
is a solid line, and the 95% confidence interval a grey area

4.3.2.2 Schizophrenia

For the schizophrenia data we fitted a single annual seasonal pattern. Based on the
experience with the STL (Sect. 4.2.1), we fitted the model to the log-transformed
rates of schizophrenia per 1,000 births (i.e., multiplicative model). The results are
based on 5,000 MCMC samples and a burn-in of 1,000.

The mean phase is at 6.4 months, with a wide 95% confidence interval of
4.6 to 8.5 months. The mean amplitude is a rate ratio of 1.048, with a 95% con-
fidence interval of 1.016 to 1.088. This result is quite similar to the model using
a stationary cosinor (Fig. 4.4), which had a phase of 6.9 months, with a rate ratio
amplitude of 1.045. The estimated non-stationary season is plotted by decade in
Fig. 4.13.

4.4 Modelling the Amplitude and Phase

The model in the previous section used a non-stationary cosinor for the seasonal
pattern, Eqn. (4.3). The advantages of this were shown in the two examples, as we
were able to see how the seasonal pattern had changed over time. However, the
model did not give actual estimates of how the trend or phase had changed over
time, except via the plot of the overall seasonal pattern. Also this model is restricted
to a seasonal pattern with both a non-stationary phase and amplitude, but we may
prefer to assume that only one of these parameters is non-stationary. In this section
we describe another model that assumes a non-stationary seasonal pattern, but more
explicitly models the non-stationarity.
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Fig. 4.13 Estimated annual
seasonal pattern using a
non-stationary cosinor with
smooth parameters
�1 D 0:01; �2 D 2, for the
monthly rates of
schizophrenia per 1,000
births. The y-axes are on the
scale of schizophrenia rate
ratios per 1,000 births. Each
panel shows a different
decade. Vertical dashed lines
are at the start of every year.
The dotted horizonal lines are
at one. The mean is a solid
line, and the 95% confidence
interval a grey area
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Eilers et al. used a similar model to examine non-stationary patterns in total
mortality over the years 1960–2000 in 50 different age groups [32]. Their method
smooths the cosine and sine parameters of a cosinor model over time and age using
a two-dimensional spline. In their example they found non-stationarity in both the
phase and amplitude that varied by age group.

We define two alternative versions of (4.3). A model with non-stationary ampli-
tude and stationary phase is

st D At cos.!t � P /; t D 1; : : : ; n: (4.4)

A model with stationary amplitude and non-stationary phase is

st D A cos.!t � Pt /; t D 1; : : : ; n: (4.5)

The choice of whether the phase or amplitude (or both) is stationary is dependent
on knowledge about the disease being studied.

A simple model for non-stationary amplitude is a linear model,

At D ˛0 C ˛1t; t D 1; : : : ; n;

which would describe a steady increase or decrease in the amplitude, such as that
shown in Fig. 4.1. We can test the hypothesis that the amplitude has remained con-
stant by testing whether Ǫ1 D 0. Similarly we could model a steady drift in the
phase using the model
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Pt D �0 C �1t; t D 1; : : : ; n;

although as we show in the next section we need to restrict �0 and �1 because the
phase is circular.

We can use more complex models for the amplitude, such as a quadratic change

At D ˛0 C ˛1t C ˛2t2; t D 1; : : : ; n;

but to obtain a more flexible fit for amplitude we can allow it to change linearly from
year to year using

At D a0 C ˛1 � ˛y.t/ C 	
.˛y.t/ � ˛y.tC12//�m.t/



; t D 1; : : : ; n; (4.6)

where a0 is the mean amplitude, ˛i is the amplitude in year i D 1; : : : ; Y C 1, y.t/

is the year at time t , and �m.t/ is the scaled difference between months,

�m.t/ D m.t/ � 1

12
;

where m.t/ is the month at time t (Sect. 2.3.1). We can smooth annual amplitudes
by specifying a multivariate Normal distribution

˛ � MVN.0; V˛/;

where 0 is vector of zeros of length Y C 1, and V˛ is an .Y C 1/ � .Y C 1/

variance–covariance matrix, with .j; k/th element defined by

V˛.j; k/ D
8
<

:

�2
˛ ; j D k;

��2
˛ ; jj � kj D 1;

0; otherwise;

(4.7)

where 0 � � � 1 describes the correlation between neighbouring estimates of the
amplitude, and �2

˛ describes the overall variance of the estimates. The advantage of
this model is that it produces a gradually changing amplitude, without putting any
parametric restriction on its shape (e.g., a linear increase). We use a CAR model
because the matrix V˛ is sparse (Sect. 2.3.3).

An advantage of this model over the previous decomposition models described
in this chapter, is that it can be applied to irregularly spaced data. When using irreg-
ularly spaced data we need to modify the seasonal component described in (4.3)
to

s.ti / D A.ti / cos Œwi � P.ti /� ; i D 1; : : : ; n;

where n is the number of observations, and ti is the time of the i th observation.
!i D 2�fi , where fi is the fraction of time described in (3.4). A.t 0/ and P.t 0/ are
the amplitude and phase at time t 0, respectively.
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4.4.1 Parameter Estimation

We estimated this model using the Bayesian paradigm because:

� The sinusoidal model, (4.4), is non-linear in time (Sect. 3), and so standard
estimation techniques (e.g., least squares) cannot be used.

� The CAR model needed for estimating V˛ is available in the Bayesian WinBUGS
software.

� We are able to obtain an estimate of model fit from the deviance information
criterion (Sect. 1.6.2), and the estimated number of parameters that we can use to
calculate the degrees of freedom.

Another advantage of using a Bayesian model is that we are able to fit the model
using a GLM framework. This means we can use the model for dependent data
assuming a Normal, Poisson or Binomial distribution. The previous non-stationary
cosinor model (Sect. 4.3) should only be applied to Normal dependent data.

For Normal data, a model with a stationary phase and a linearly changing
amplitude is defined by

Yt � N.mt ; �2
" /; t D 1; : : : ; n;

mt D �t C st ;

�t D ˇ0 C ˇ1 Qt C ˇ2 Qt2;

st D At cos.!t � P /;

At D ˛0 C ˛1 Qt :

The overall mean, mt , is split into the trend, �t , and season, st . The noise is assumed
to be Normally distributed with variance �2

" . In this model the trend is constrained
to be quadratic. In place of time, t D 1; : : : ; n, we use a scaled version of time
Qt D Œt � .n=2/�=.n=2/, which is bounded between �1 and 1. This is because the
MCMC chains generated by WinBUGS perform better with centred independent
variables. The difference between two adjacent times is �Qt D 2=n.

We use vague priors for all parameters, defined by

˛j � N.0; 106/; j D 0; 1;

ˇj � N.0; 106/; j D 0; 1; 2;

�" � U.0; 106/:

A vague prior for a stationary phase is defined by

P � U.0; 2�/;

as this covers every possible point on the circle. However, this creates a difficulty
when using MCMC estimation because when the phase is close to zero the chain
may legitimately jump between 2� and 0. Such a large jump may appear to suggest
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a bimodal likelihood, and hence a lack of convergence. Therefore to assess conver-

gence we may first need to rotate the chain so that the mean, OP , is � . Although we
only need to do this if the chain has large jumps.

Another potential problem using MCMC estimation is caused because a sinu-
soidal seasonal pattern has two identical solutions as

�A cos.t C P / D A cos.t C P C �/:

This could lead to the amplitude and phase chains jumping between these two equiv-
alent solutions, which again complicates the assessment of convergence. To avoid
this problem we restrict the amplitude to be positive (At � 0 for all t). We can do
this by specifying

st D A�
t cos.!t � P /;

A�
t D max.0; At /:

When fitting the flexible model for the amplitude, (4.6), we can help to ensure
that At � 0 by specifying that the mean amplitude is positive using the prior

a0 � U.0; 106/:

In the model specified by (4.6), the smoothness of the year-to-year change in
amplitude is determined by �˛ . Larger values of �˛ will result in greater year-to-
year changes (greater non-stationarity). We can either estimate �˛ as part of the
overall model by using a vague prior [21],

�˛ � U.0; 106/;

or we can fix the value of �˛ in order to restrict the flexibility of At . Choosing the
ideal value of �˛ is akin to choosing the � values for the model in Sect. 4.3. The
degrees of freedom for a fixed value of �˛ can be estimated using the estimated
number of parameters from the DIC (Sect. 1.6.2).

For the phase, we can specify a linear change over time using

Pt D �0 C �1 Qt ; t D 1; : : : ; n;

For this model we use the priors

�0 � U.0; 2�/;

�1 � N.0; �2
� /:

The prior for �0 is vague, and allows the phase at t D 1 to be any point on the
circle. We use an informative prior for �1, to restrict the linear change in the phase
to a plausible range of values. This is because very large changes in the phase are
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unlikely (e.g., a change in the phase from January in one year to July in the next
year). We restrict the linear change using the variance �2

� . A standard deviation
of n�=288 means the probability that the absolute change in the phase is greater
than 1 month per year is 0.95 (using the scaled value of time, Qt ). A larger standard
deviation of n�=144 would mean that we believed that the change could be as large
as 2 months per year.

4.4.2 Examples

4.4.2.1 Cardiovascular Disease Deaths

For the CVD data we assumed that the number of cases had a Poisson distribution.
We used a log link, and the log-transformed numbers of days in the month as an
offset. We used a burn-in of 20,000 MCMC samples, followed by 15,000 samples.
The number of parameters and DIC for five different models are shown in Table 4.1.

A model with a stationary amplitude had a phase of 1.26 months (95% CI: 1.19,
1.33), with an amplitude risk ratio of 1.17 (95% CI: 1.16, 1.18). A linear model
gave a worse fit compared with the stationary model, so it seems unlikely that the
amplitude had a linear change over the years 1987–2000. The parameter for the
linear change, Ǫ1, had a mean of �0:0009, and 95% of �0:0110 to 0:0087, which
supports this lack of linear change. The quadratic model was, likewise, no better.

Model (4.6) with a vague prior for �˛ gives a substantially better fit to the data as
measured by the DIC. The mean value of �˛ was 0.134 (95% CI: 0.088, 0.207). We
estimate the degrees of freedom for model (4.6) by subtracting its estimated number
of parameters (pD) from the estimated number of parameters for a stationary model.
Using a fixed value of �˛ D 0:01 resulted in 4.6 degrees of freedom for the non-
stationary amplitude.

We show the non-stationary amplitudes for three models in Fig. 4.14. The model
with the most flexible amplitude shows a large change in seasonality from year-to-
year. The largest amplitude is a risk ratio of 1.29 in 1994 (95% CI: 1.26, 1.32), which
was followed by the smallest of 1.03 in 1995 (95% CI: 1.01, 1.06). The pattern of

Table 4.1 Table of estimated number of parameters (pD ) and DICs for the cardiovascular disease
death data for a range of different models for the amplitude. The lower the DIC, the better the
model. The degrees of freedom for the amplitude is defined by df

Amplitude model pD df DIC

Stationary model, At D ˛0 5.0 1.0 2,757.2
Linear model, At D ˛0 C ˛1Qt 6.0 2.0 2,759.1
Quadratic model, At D ˛0 C ˛1Qt C ˛2Qt 2 7.0 3.0 2,757.8
Model (4.6), vague prior for �˛ 18.8 13.8 2,492.5
Model (4.6), fixed �˛ D 0:01 9.6 4.6 2,680.9
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Fig. 4.14 Estimated
non-stationary seasonal
amplitude for the mortality
risk ratio of the CVD data.
Quadratic model (top),
model (4.6) using a fixed
�˛ D 0:01 (middle),
model (4.6) using a vague
prior for �˛ (bottom). The the
solid line is the mean estimate
and the grey area the 95%
credible interval. The y-axes
show the risk ratios; the
scales between panels are
different
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large amplitudes being followed by small amplitudes is also clear at other times. As
discussed in Sect. 2.2.2 this may be because of the changes in the vulnerable pool.

We examined a non-stationary phase by first looking for a linear change, com-
bined with model (4.6) using a vague prior for the change in amplitude (�˛). The
mean for �2 was �0:01, with a 95% credible interval of �0:06 to 0:04. The DIC
for this model was 2,493.1 (based on 19.3 estimated parameters), which is slightly
worse than the DIC of 2,492.5 for the model with a stationary phase. Hence there is
little evidence of a linear change in the phase.

4.4.2.2 Exercise Data

An advantage of the model described in this section compared with the STL or non-
stationary cosinor (Sect. 4.3) is that it can be applied to irregularly spaced data. We
illustrate this by applying the model to the exercise data (Sect. 1.1.4).

A model with stationary amplitude and phase has an estimated phase of 1 July
(95% CI: 28 June, 5 July), with an amplitude of 12 minutes (95% CI: 11, 13). This is
a similar result to the cosinor model (Sect. 3.1). The DIC for this model is 203,481
based on 7.0 parameters.

We examined a model with a linear change over time in both the phase and ampli-
tude. The linear change in the amplitude was estimated as 0.003, with a 95% CI of
�0:011 to 0:016, hence there was little evidence of a change in the amplitude. The
linear change in the phase was estimated as �1:018 (on a scale of radians), with
a 95% CI of �1:082 to �0:956, hence there was strong evidence of a change in
the phase. To understand this change we plot the phase and the seasonal pattern in
Fig. 4.15. The phase in 2005 was after the middle of the year, the 2006 phase was
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Fig. 4.15 Estimated linear change in the phase (left) and non-stationary seasonal pattern over time
(right) for time spent walking. Vertical dotted lines are in the middle of each year (approximately
2 July)

close to the middle of the year, whereas the phase in 2007 was just before the mid-
dle of the year. The DIC for this model is 202,618 based on 9.1 parameters, which
is a substantial improvement of 863 (with 2.1 extra parameters) compared with the
model with a stationary phase.

4.5 Month as a Random Effect

In Sect. 2.3.3 we described a seasonal model that smoothed the results from neigh-
bouring months using the CAR approach. In this section we expand on that model by
including a trend for each month. This allows us to model a non-stationary seasonal
pattern.

Again we use the model of trend, season and noise, (4.1), but this time the
seasonal part of the model is defined by

st D ım.t/ C ��
m.t/y.t/; t D 1; : : : ; n; (4.8)

��
j D �j � �; j D 1; : : : ; 12;

�j � N.0; 106/;

ı � MVN.0; Vı/;

where m.t/ and y.t/ are the month and year at time t , respectively. The variance–
covariance matrix, Vı , is defined by (2.2). The seasonal effect has been split into
the monthly pattern, ı, and the change over time in this pattern, ��. We centre the
estimates of � by subtracting the overall mean as otherwise these monthly trends
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can become confounded with the overall trend (�). We also used a centred version
of year in (4.8),

Qy.t/ D Œy.t/ � .Y=2/� =.Y=2/;

where Y is the total number of years, in order to improve the convergence of the
estimates of �� when using MCMC estimation.

The model estimates the trend in each month independently of other months,
which is similar to the STL (Sect. 4.2). Like the STL method, an important advan-
tage of this model is that it does not assume a sinusoidal shape for the average
seasonal pattern (ı). Also, it is possible to make future predictions with this model;
a one season ahead prediction would be

Ost D Oım.t/ C O��
m.t/ Qy.t/; t D n C 1; : : : ; n C 12:

Instead of restricting the change over time to be linear, we can smooth the
estimates using a seasonal model defined by,

st D ım.t/ C �fm.t/;y.t/g; t D 1; : : : ; n; (4.9)

ı � MVN.0; Vı/;

�j � MVN.0; V�/; j D 1; : : : ; 12;

where V� is a 12 � 12 variance–covariance matrix, with .j; k/th element defined by

V�.j; k/ D
8
<

:

�2
� ; j D k;

��2
� ; jj � kj D 1;

0; otherwise:

The mean �j is zero for every month. The values of � describe the departures from
the average seasonal pattern at each time. We use the same variance, �2

� , for each
month (j D 1; : : : ; 12), assuming that the overall departure from the mean seasonal
estimate is constant across months.

4.5.1 Examples

4.5.1.1 Cardiovascular Disease Deaths

We applied a model with linear changes in each month to the CVD data. Figure 4.16
shows the average seasonal pattern, which is almost identical to the estimates from
a stationary model but with narrower credible intervals (Fig. 2.21). The narrower
credible intervals are due to some of the variability in season now being explained
by the seasonal changes over time (�).

The linear changes in each month on the scale of log relative risk are shown
in Fig. 4.17. The relative risks estimates for February declined over time, whereas
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Fig. 4.16 Means and 95%
credible intervals for the
monthly relative risk
estimates for the CVD death
data. Dashed horizontal line
at RR = 1
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Fig. 4.17 Means and 95%
credible intervals for the
monthly estimates of linear
change for the CVD death
data (��). Dashed horizontal
line at zero indicates no
change
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those for May increased. To help interpret the changes over time in the seasonal
pattern, we plot the mean seasonal pattern in Fig. 4.18.

The DIC for this model is 2,334.2 based on 24.9 parameters. This is better than
any of the models based on a sinusoidal pattern shown in Table 4.1.

A linear change in the seasonal pattern over time may be too simple for these
data. Accordingly we fitted model (4.9). Figure 4.19 shows the estimated changes
in the seasonal pattern over time for each month (�). The biggest changes were in
January, February and December, and these changes were quite erratic from year
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Fig. 4.18 Means seasonal
pattern for the rate ratio of
CVD death data using a
non-stationary model 4.8
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Table 4.2 Summary of the five different decomposition methods

Model (section) Sinu- MCMC CIs GLM Irregularly
soidal estimation spaced data

Stationary cosinor (Sect. 4.1) Yes No No Yes No
STL (Sect. 4.2) No No No No No
Non-stationary cosinor (Sect. 4.3) Yes Yes Yes No Yes
Modelling the amplitude and phase (Sect. 4.4) Yes Yes Yes Yes Yes
Month as a random effect (Sect. 4.5) No Yes Yes Yes No
CIs confidence/credible intervals, GLM generalized linear model

to year. This model had a DIC of 1,929.5 based on 182.9 parameters, indicating a
big improvement in fit compared with the simpler model which assumed a linear
change in months over time (but with a substantial increase in model complexity).

4.6 Comparing the Decomposition Methods

We summarise the five different methods described in this chapter in terms of five
important characteristics in Table 4.2. Three of the methods assume a sinusoidal
pattern in disease. This is a parametric assumption that may add strength to a weak
signal, but it is also a fairly restrictive shape, that is symmetric about the x- and
y-axes. As we have seen, this assumption does not fit the skewed seasonal pattern
in CVD mortality.

Three of the models use MCMC estimation. One disadvantage of this method
is the extra computation time. On the other hand, the extra computation means
that confidence (or credible) intervals can be calculated for important parameters,
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Fig. 4.19 Estimated changes over time in the monthly seasonal pattern for the CVD death data
using model (4.9). y-Axes are on the same scale and show the log rate ratio. The dotted horizontal
lines at a log rate ratio of zero (no change)

including the seasonal pattern. Three of the methods use a GLM framework, and
hence are able to cope with non-Normal data (such as logistic or Poisson regres-
sion). Two of the methods are only able to be used on equally spaced time series
data, whereas the others can be applied to unequally spaced survey data.

4.7 Exposures

So far, the methods in this chapter have been used to model the seasonal pattern
in health outcomes without considering the seasonal pattern in the exposure (or
exposures) behind the seasonal pattern in risk. In this section we describe meth-
ods for exploring the link between seasonal patterns in exposure and risk using
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decomposition methods. We examine decomposing a putative exposure in the same
way that we decomposed disease, and then comparing the trends and seasonal pat-
terns. However, comparing seasonal patterns will not be straightforward if there is a
non-linear relationship between risk and exposure.

4.7.1 Comparing Trends with Trends and Seasons with Seasons

For data on a daily timescale we can expand (4.1) to become

Yt D �t C st C dt C "t ; t D 1; : : : ; n;

where dt is the short-term pattern in disease. The signal part of the time series is
on three separate time scales: long-term trend (�t ), season (st ) and short-term (dt ).
The short term variation encompasses any (non-noise) variation which is at a shorter
than seasonal timescale. So it may include week-to-week or day-to-day variation.

The advantage of looking at the associations at different timescales is that asso-
ciations at multiple levels increase the weight of evidence. Also, associations that
may be confounded at one timescale, may not be at another. For example, the asso-
ciation between mortality and air pollution may be somewhat confounded by day
of the week, as combustive pollutants increase on Mondays (when there are more
cars on the road), and some causes of death also increase on Mondays. However,
day of the week could not confound the long-term association between trends in
mortality and air pollution, although it is possible that there are other confounders
at this timescale, such as general improvements in health or medical treatment over
time and reductions in the levels of some air pollutants.

In Chap. 5 we consider methods that control for season and trend, so that the
short-term associations between exposure and disease can be estimated.

We present some examples comparing different timescales below. Other exam-
ples are given in [27] and [65, Sect. 5.3.1].

4.7.1.1 Cardiovascular Disease Deaths and Temperature

Day-to-day changes in mortality can be dependent on day-to-day changes in tem-
perature [7]. We are interested in whether this association also appears at a seasonal
and long-term level. Previously we looked at the association between monthly tem-
perature and mortality using a scatter plot (Fig. 1.22). The plot showed a negative
association, but this plot combines the long-term and seasonal variation.

Figure 4.20 shows the long-term estimate of temperature trend and the non-
stationary seasonal pattern (based on monthly data). In general higher trends in
temperatures (shown in Fig. 4.20) are associated with lower trends in cardiovascular
deaths (shown in Fig. 4.11), and the Pearson’s correlation is �0:84 (using monthly
estimates of the trends). So there is evidence of higher temperatures being correlated
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Fig. 4.20 Estimated trend
(top) and annual season
(bottom) over time in
temperature (ıF) from the
CVD death data using a
non-stationary cosinor with
smooth parameters
�1 D 1; �2 D 30 for
temperature. The mean is a
solid line, and the 95%
confidence interval a grey
area
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with lower death rates in the long-term. This conclusion is in contrast to many fears
about global warming and increased mortality. A plausible hypothesis is that higher
temperatures cause lower blood pressures, and that lower blood pressure always
prevents cardiovascular disease (no matter how low a person’s level is already) [53].

To look for a correlation in seasons we first reduce the data by taking the highest
mean seasonal temperature and lowest mean seasonal mortality in each year. This
is because we are interested in the association between relatively warm years and
relatively low levels of mortality. The Pearson correlation between these relative
measures of season is 0.42 (based on 14 years). This is moderately suggestive that
the warmest years were generally associated with lower numbers of deaths.

4.7.2 Exposure–Risk Relationships

In this section we examine exposure–risk relationships, and show that reasonably
complex relationships between exposure and risk can lead to very complex seasonal
patterns in risk [61].

We assume that the seasonal pattern in risk is due to a seasonal pattern in
exposure described by the equation

sr
t D f

�
se

t

�
; t D 1; : : : ; n;

where sr
t is the seasonal pattern in risk, se

t is the seasonal pattern in exposure, and
f .:/ is the association between exposure and risk, the exposure–risk relationship
(ERR). We assume that any trends in risk or exposure have been removed, and any
noise. Both seasonal patterns are also subject to a zero sum constraint



4.7 Exposures 125

Low

High

Time

E
xp

os
ur

e

Exposure

R
is

k

Low High

Low

High

Low

High

Time

R
is

k

Fig. 4.21 Seasonal pattern in exposure over two years (left panel), negative linear exposure–risk
relationship (centre panel), and seasonal pattern in risk (right panel)

nX

tD1

sr
t D 0;

nX

tD1

se
t D 0;

assuming that n=l is an integer, where l is the length of the seasonal cycle.
The seasonal pattern in risk will only match the seasonal pattern in exposure if

f .:/ is the linear function, f .x/ D ax, for some constant a > 0. Figure 4.21 shows
this scenario with a sinusoidal seasonal exposure. High seasonal exposure is mir-
rored by high levels of risk, and low exposure by low levels of risk. The difference
in the scales of exposure and risk is determined by a, if a D 1 then the scales are
the same.

A linear exposure–risk relationship, f .x/ D ax, but with a negative slope,
a < 0, creates an inverse relationship between exposure and risk as shown in
Fig. 4.22. The effect of the negative linear relationship is to delay the phase in risk
by 6 months.

Non-linear exposure–risk relationships can lead to complex patterns in risk, as
shown in Fig. 4.23. These risks were created using the same seasonal exposure
shown in Fig. 4.22. A quadratic ERR creates a sinusoidal pattern in risk with double
the number of cycles. A J-shaped ERR also creates double the number of cycles but
with one amplitude much greater than the other. A threshold ERR creates a strongly
non-linear seasonal pattern, with periods of no change in risk and seasonal “dips”.

The results in Fig. 4.23 show that complex seasonal patterns in risk can be cre-
ated by combining a relatively simple sinusoidal seasonal exposure with a non-linear
ERR. Many researchers only examine the seasonal pattern in risk, and may not know
or consider the seasonal pattern in exposure. A researcher finding a seasonal pat-
tern in risk with two cycles per year may think that there are two separate seasonal
exposures, one with a 12-month period, and another with a 6-month period. The
results in Fig. 4.23 provide an alternative explanation, of one seasonal exposure with
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Fig. 4.22 Seasonal pattern in exposure over two years (left panel), positive linear exposure–risk
relationship (centre panel), and seasonal pattern in risk (right panel)

a 12-month period and a non-linear ERR. This explanation is more parsimonious
than assuming two separate exposures.

We made number of important assumptions to create these figures. We assumed
that the seasonal exposure had a sinusoidal pattern, but different patterns would be
observed if we used a sawtooth or spiked exposure (Sect. 2.1). We also assumed that
there was no delay between exposure and risk. We could introduce a delay using the
equation,

sr
t D f

�
se

t�k

�
; t D 1; : : : ; n;

where k is an integer, often referred to as the lag. This would have the effect of
moving the phase in the risk to k time points after the phase in exposure.

An example of a sawtooth exposure and lagged pattern in risk is shown in
Fig. 4.24. The seasonal pattern in risk has a sharp non-sinusoidal peak, that is out of
phase with the peak in exposure.

4.7.2.1 Example

As an example of a non-linear ERR we consider the association between tempera-
ture and cardiovascular mortality. Temperature is a roughly sinusoidal exposure, but
may have a non-linear ERR with mortality as shown in Fig. 1.22. The periodogram
of CVD deaths shows a secondary peak at 6 months (Fig. 1.18), and the time series
shows secondary peaks in mortality in the summer months (Fig. 1.1). These find-
ings point towards a J-shaped association between temperature and risk [4]. Using
the CVD death data a model with a J-shaped ERR is defined as
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Fig. 4.23 Exposure–risk relationships (left column) and associated seasonal patterns in risk (right
column) based on the seasonal exposure shown in Fig. 4.22

Yt � N.mt ; �2
" /; t D 1; : : : ; n;

mt D �t C Qst � Qs;
Qst D st C �s2

t ;

st D At cos.!t � P /:

In this model st is the seasonal exposure at time t and Qst is the seasonal risk which
is a quadratic function of the exposure. We subtract the mean seasonal risk (Qs) to
maintain the zero sum constraint. We have created a quadratic ERR using only one
extra parameter (�). We gave this parameter a vague prior,

� � N.0; 106/:

We used a non-stationary amplitude (At ) defined by (4.6) with a vague prior for �˛ ,
which is shown graphically in Fig. 4.14.
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Fig. 4.24 Sawtooth seasonal exposure (left panel) quadratic exposure–risk relationship (centre
panel) and associated lagged seasonal pattern in risk (right panel)
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Fig. 4.25 Quadratic exposure–risk relationship between season and CVD death risk (left) and
estimated seasonal pattern in CVD death risk for the years 1987–1989 (right)

The results of this ERR model are shown in Fig. 4.25. The ERR is J-shaped with
a strong increase at high exposure (peak season) and lower increase at low exposure
(low season). The effect on the estimated seasonal pattern is to produce a sharper
peak in the increased risk in January, and a longer period of low risk from May to
September which includes a slight increase in risk in July. The estimated seasonal
pattern is now distinctly non-sinusoidal.

The mean estimate for � was 5.0 (95% CI: 4.3, 5.6). The DIC for the ERR model
is 2,276.5 based on 13.8 parameters. This is a substantial improvement of 404.4
from the DIC of 2,680.9 compared with a linear model (Table. 4.1). The large � and
big improvement in DIC provide strong evidence that a quadratic ERR is a better fit
than a linear ERR.



Chapter 5
Controlling for Season

In some circumstances seasonality is not the focus of investigation, but is impor-
tant because its effects need to be controlled for. This could be because both the
outcome and the exposure have an annual seasonal pattern, but we are interested in
associations at a different frequency (e.g., daily).

An example is the association between air pollution and death. Death has an
annual seasonal pattern due to a complex array of causes (including temperature
and influenza). Air pollution is a generic term for a mix of toxic substances found in
the air. Ozone is just one of these substances, and it varies seasonally because it is
formed by the combination of other air pollutants (often from traffic) and sunlight.
As ozone has an association with sunlight then an important confounder is temper-
ature. Ozone’s association with traffic means that day of the week could also be a
confounder.

The diagram in Fig. 5.1 shows these associations. In the following sections we
demonstrate a number of different methods for modelling these associations at the
same time as controlling for seasonal confounding. For illustrative purposes we only
use one or two independent variables, whereas models in this area tend to include
the delayed effects of pollution and temperature [65].

5.1 Case–Crossover

A useful method for controlling for seasonality in time series data is the case–
crossover study design [58]. The idea is to compare “case” days when events
occurred (e.g., deaths) with control days to look for differences in exposure that
might explain differences in the number of cases. Control days are selected to be
nearby to case days, which means that only recent changes in exposure are com-
pared. This means that any long-term or seasonal variation in exposure can be
eliminated. This elimination depends on the definition of nearby and on the seasonal
and long-term patterns in exposure (we discuss these issues below).

In a case–crossover design each subject acts as their own control, and so any fixed
characteristics (e.g., sex) are controlled for by design. This matching of subjects is
akin to controlling for important confounders using a matched case–control design.

A.G. Barnett and A.J. Dobson, Analysing Seasonal Health Data, Statistics for Biology
and Health, DOI 10.1007/978-3-642-10748-1 5,
c� Springer-Verlag Berlin Heidelberg 2010
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Fig. 5.1 Higher ozone is
possibly associated with
increased mortality and both
have an annual seasonal
pattern. Temperature and day
of the week are important
confounders

Mortality

Ozone

Temperature Day of
the week

For both designs conditional logistic regression is used to calculate the odds ratio
for cases compared with controls for a unit increase in exposure.

There are two main parts to a case–crossover analysis: (1) matching the controls
days to the case days, (2) performing the conditional logistic regression. There are
many different strategies for matching control days to case days. We use the time-
stratified method because it has been shown to have good properties in terms of
bias [47].

The first stage of the time-stratified method is to split the time series into equally
sized non-overlapping strata covering the entire study time. Case days will only
be compared with control days from the same strata. The stratum number for an
observation at time t is given by

wt D bt= lsc C 1; t D 1; : : : ; n; (5.1)

where ls is the strata length, n is the length of the series and bac is the integer part
of a. Unless n=ls is an integer the last stratum will have fewer than ls observations.

The length of the strata (ls) needs to be short enough to remove the seasonal
patterns from both the dependent and independent variables, but not so short that
the exposure for the cases and controls is too similar. As an example of the effect of
strata length, we look at the seasonal exposure of ozone and CVD mortality in the
Los Angeles data. Ozone levels change from day-to-day as they depend on traffic
and sunlight (amongst other things). The dependence on sunlight means that levels
tend to peak in summer and dip in winter. However, for this example we are not
interested in the seasonal exposure in ozone, but in whether day-to-day changes
in ozone are associated with changes in mortality. Ozone is measured in parts per
billion (ppb).

The left panel of Fig. 5.2 plots the daily 8-hour ozone levels and the mean 8-hour
ozone levels in each 28-day stratum. The right panel shows the daily numbers of
CVD deaths and the means in each 28-day stratum. The means have captured the
strong seasonal pattern in ozone, but within each stratum there is still some variation
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Fig. 5.2 Daily 8-hour ozone levels (left panel) and number of CVD deaths (right panel) in Los
Angeles in 1987. Daily means are shown as grey dots, and the mean in each 28-day strata as a
solid line

in ozone levels. It is this variation, not the larger seasonal variation, that the case–
crossover design will use to relate to the de-seasoned variation in CVD mortality.
The seasonal pattern in mortality is the reverse of the seasonal pattern in ozone, as
it is lowest in summer.

For comparison we show the means using strata twice the length (56 days) in
Fig. 5.3. The main seasonal pattern is still captured by the means, but the sharp
rise in ozone levels from March to April has not been captured. Using this wider
stratification would mean that some of the differences in exposure between cases
and controls would be due to seasonal differences, which we are trying to eliminate.

Splitting the time series into strata follows the same principle as calculating the
mean in each month, which we discussed in Sect. 2.2.1.

After selecting the stratum length, we need to decide which days to use as con-
trols within the strata. The key consideration is the autocorrelation in exposure,
as this determines the similarity in exposure for case days and control days. For
the ozone example, we would expect the results to be positively autocorrelated for
nearby days. If we select control days that are too close to the case day then we
run the risk of over-matching. We can reduce the correlation by using an exclusion
window around each case day.

As an example, Fig. 5.4 shows a case–crossover scheme with a stratum length of
28 days and an exclusion period of 4 days. In the top row the case day is the first day
of the stratum, and this is compared to days 6–28 (23 controls). In the third row the
case day in the fifth day of the stratum, and this is compared to day 1 and days 10–28
(20 controls).
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Fig. 5.3 Daily 8-hour ozone levels (left panel) and number of CVD deaths (right panel) in Los
Angeles in 1987. Daily means are shown as grey dots, and the mean in each 56-day strata as a solid
line

Fig. 5.4 Graphical
representation of case and
control days for a
time-stratified case–crossover
design using a stratum length
of 28 days. Examples for four
different case days. The
number on the left indicates
the case day
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5.1.1 Matching Using Day of the Week

An alternative scheme is to match cases and controls by day of the week. Figure 5.5
shows some examples using a stratum length of 28 days. The four examples are
based on cases in the first week of the stratum. Each case has three controls. When
matching on day of the week, a consistent number of controls is achieved by using
a stratum length (ls) that is a multiple of seven.
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Fig. 5.5 Graphical representation of case and control days for a time-stratified case–crossover
design using a stratum length of 28 days, and matched by the day of the week

An advantage of matching on day of the week is that the large gaps between
observations will reduce the autocorrelation in exposure [47]. Also, this extra match-
ing removes any confounding caused by day of the week. Such confounding is
possible if the dependent and independent variable are both dependent on day of
the week. Mortality has been shown to vary by day of the week, although for CVD
mortality the variation is small and may be due to data quality issues [6]. Suicide
deaths do vary strongly by day of the week, with big increases on Mondays possi-
bly due to the pressures of work [49]. An example of an independent variable with a
weekly exposure pattern is air pollution, as levels are generally higher on weekdays
due to greater volumes of traffic.

5.1.2 Case–Crossover Examples

To illustrate the case–crossover design we use the daily CVD data (Sect. 1.1.1). We
examine the association between ozone and mortality, both of which have a strong
annual seasonal pattern, but with different phases resulting in a negative association
overall which may mask any short-term positive association (Fig. 5.2).

The R code to run a time-stratified case–crossover analysis is

> CVDdaily$o3mean.10<-CVDdaily$o3mean/10
> CVDdaily$tmpd.5<-CVDdaily$tmpd/5
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> model<-casecross(cvd˜o3mean.10+tmpd.5
+Mon+Tue+Wed+Thu+Fri+Sat,data=CVDdaily,
stratalength=28,exclusion=4)

We have used a 28-day stratum length with an exclusion period of 4 days as shown
in Fig. 5.4. We have attempted to control for the confounding effect of mean tem-
perature (tmpd) by adding it as a linear independent variable. We have controlled
for day of the week by adding separate binary variables for each day of the week
except Sunday, which becomes the reference day. We first scaled the results so that
the estimates for Ozone correspond to a 10 ppb increase, and for temperature to a
5ıF increase (Sect. 1.4.2). This R output is shown below.

Number of case days 5114
Average number of control days per case day 19.7

coef exp(coef) se(coef) z p
o3mean.10 -0.007128078 0.9928973 0.003660678 -1.947201 5.2e-02
tmpd.5 0.009956200 1.0100059 0.002986518 3.333715 8.6e-04
Mon 0.033562804 1.0341324 0.008007677 4.191329 2.8e-05
Tue 0.015620390 1.0157430 0.008091139 1.930555 5.4e-02
Wed -0.015751216 0.9843722 0.008108262 -1.942613 5.2e-02
Thu -0.011979920 0.9880916 0.008091265 -1.480599 1.4e-01
Fri 0.009771223 1.0098191 0.008067023 1.211255 2.3e-01
Sat 0.014914884 1.0150267 0.007879267 1.892928 5.8e-02

The number of case days is the length of the time series. The values in the coef
column are the log odds ratio, and in exp(coef) the odds ratios. A 10 ppb increase
in ozone is associated with a decreased risk of death (odds ratio = 0:993), and this
decrease is of borderline statistical significance (p-value = 0.052). The odds ratio
for Mondays, relative to Sundays, is 1.034, and this increase is strongly statistically
significant (p-value < 0:001).

The results from matching on day of the week (using a stratum length of 28) are
shown below.

Number of case days 5114
Average number of control days per case day 3

coef exp(coef) se(coef) z p
o3mean.10 -0.007686579 0.9923429 0.003886986 -1.977517 0.0480
tmpd.5 0.009497229 1.0095425 0.003106989 3.056731 0.0022

The average number of controls per case is now only 3, compared with 23.2 for the
previous scheme. We do not have any estimates for the days of the week, as they
are controlled for by design. The estimated effect of ozone and its standard error are
very similar to the previous analysis.

This effect of ozone is unexpected, as every 10 ppb increase significantly reduces
the risk of death, odds ratio = 0.992, 95% CI: 0.984, 0.999. This means that higher
levels of ozone are associated with fewer deaths. This strange result may have been
caused by some remaining confounding between ozone and temperature (Fig. 5.1).
Higher ozone levels are associated with higher temperatures, and higher tempera-
tures are generally associated with fewer CVD deaths. We discuss further ways to
remove this possible confounding below.
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Fig. 5.6 Mean odds ratio
(and 95% confidence
intervals – dashed lines) from
a case–crossover model for
the effect of a 10 ppb increase
in ozone on daily mortality
for stratum lengths from 7 to
56 days. Dotted horizontal
line at an odds ratio of 1
corresponds to the null
hypothesis of no association
with CVD mortality
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5.1.3 Changing Stratum Length

One possible reason for the negative association between daily levels ozone and
CVD mortality is that we have not sufficiently removed the seasonal variation in
ozone. We can investigate the level of control for season by using different stratum
lengths.

Figure 5.6 shows the odds ratio for the effect of a 10 ppb increase in ozone plot-
ted against stratum length. For every stratum we used an exclusion period of 4 days.
There are two main features in the plot: the erratic estimates for stratum lengths
between 7 and 14 days, and the steady increase in the negative effect of ozone for
stratum lengths from 14 to 56. The erratic estimates possibly occurred because these
very narrow strata have very few controls, and a relatively small within-stratum
variance in CVD mortality and ozone. The wider stratum lengths (from 14 days
onwards) are associated with greater negative associations between ozone and mor-
tality. As the strata become wider, the control for the seasonal pattern in ozone and
mortality becomes weaker (compare Figs. 5.2 and 5.3). Hence there is a greater
potential for the negative seasonal association to dominate any shorter-term daily
association.

5.1.4 Matching Using a Continuous Confounder

In the previous example we controlled for the confounding effect of temperature on
mortality by adding it as an independent variable. However, temperature and ozone
are very strongly correlated, and hence there may be some collinearity between
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these two independent variables. This collinearity should have been somewhat con-
trolled for by the stratification, but even within 28-day periods there may be some
correlation between temperature and ozone.

We can control more rigidly for the effects of temperature by only selecting
control days within a similar temperature range as the case day. A narrower range
corresponds to stricter matching, and this is more likely to remove the effect of the
confounder, but it will also reduce the available number of control days.

The results of matching cases and controls by a difference of ˙1ıF (using a
stratum length of 28) are shown below. In this example we do not match on day of
the week as that would further reduce the number of available controls.

Number of case days with available control days 4324
Average number of control days per case day 4.8

coef exp(coef) se(coef) z Pr(>|z|)
o3mean.10 0.02769832 1.028085 0.004503147 6.150880 7.705427e-10
Mon 0.06749914 1.069829 0.009781503 6.900692 5.174972e-12
Tue 0.04427209 1.045267 0.009978894 4.436573 9.140250e-06
Wed 0.02336136 1.023636 0.010047078 2.325189 2.006183e-02
Thu 0.03099919 1.031485 0.010002281 3.099212 1.940360e-03
Fri 0.04346522 1.044424 0.009728080 4.468016 7.894844e-06
Sat 0.03629306 1.036960 0.009544978 3.802319 1.433477e-04

The effect of a 10 ppb increase in ozone is now to increase the risk of death
(OR = 1.028), and this increase is statistically significant (p-value < 0.001). The
number of case days is 4324, which is smaller than the total number of days (5114),
because there were 790 days (15.4%) for which a matching control day was not
available. We do not include mean temperature as a dependent variable as it is
controlled for by design.

An advantage of matching using a confounder is that the shape of the association
between the confounder and the dependent variable is not important. This means the
association can take any shape (e.g., non-linear).

Figure 5.7 shows the mean odds ratio for ozone using a model that matches on
temperature for a range of stratum lengths. The smallest stratum length is 8 (whereas
in Fig. 5.6 it is 7) as a model based on a stratum length of 7 did not have enough
controls per case.

After matching on temperature to within a degree, ozone is almost always associ-
ated with an increased risk of mortality, regardless of the stratum length. The size of
this increased risk becomes closer to the null as the stratum length increases. Again
this possibly indicates a seasonal confounding that, in this case, is independent of
temperature.

5.1.5 Non-linear Associations

The association between temperature and CVD mortality is known to be non-linear,
with increases at hot and cold temperatures [4]. In most of the examples so far
we have assumed that the effect of temperature is linear. The exception was in the
previous example, when we matched on temperature.
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Fig. 5.7 Mean odds ratio
(and 95% confidence
intervals – dashed lines) from
a case–crossover model for
the effect of a 10 ppb increase
in ozone on daily mortality
for stratum lengths from 8 to
56 days. Control days were
matched to case days by
using a mean temperature
difference ˙1ıF. The dotted
horizontal line at an odds
ratio of 1 corresponds to the
null hypothesis of no change
in mortality 1.00
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We can add a non-linear effect to a case–crossover analysis by including an
interaction term. In the example below we have added an interaction between tem-
perature and season (using the meteorological definition, Sect. 2.2.2). To make sure
that the temperature estimates and strata overlap, instead of (5.1) we use a stratum
number based on year and month

wt D Œy.t/ � min.year/� � 12 C m.t/; t D 1; : : : ; n; (5.2)

where y.t/ is the year of observation t and m.t/ is the numeric month (Sect. 2.3.1).
The results are shown below.

Number of case days 5114
Average number of control days per case day 22.1

coef exp(coef) se(coef) z p
o3mean -0.01397586 0.9861213 0.00363599 -3.843757 1.2e-04
tmpd.winter -0.01056041 0.9894952 0.00466591 -2.263313 2.4e-02
tmpd.spring 0.02210746 1.0223536 0.00590697 3.742607 1.8e-04
tmpd.summer 0.05040559 1.0516976 0.00905725 5.565219 2.6e-08
tmpd.autumn 0.01430658 1.0144094 0.00583980 2.449840 1.4e-02
Mon 0.03046140 1.0309301 0.00801143 3.802243 1.4e-04
Tue 0.02282887 1.0230914 0.00809855 2.818885 4.8e-03
Wed 0.00173084 1.0017323 0.00812288 0.213082 8.3e-01
Thu 0.00652781 1.0065492 0.00809858 0.806044 4.2e-01
Fri 0.01631883 1.0164527 0.00806924 2.022351 4.3e-02
Sat 0.01427699 1.0143794 0.00788437 1.810797 7.0e-02

So in winter an increase in temperature leads to a decrease in risk of CVD mortal-
ity (OR = 0.989), whereas in the other months, particularly summer, an increase in
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temperature leads to an increase in risk. The differences in the temperature effects
are relatively large, and this model probably controls better for the effect of tem-
perature than the previous model assuming a linear risk. With this increased level of
control for confounding, the effect of ozone has unexpectedly become more strongly
protective.

5.2 Generalized Additive Model

In this section we show how to use a generalized additive model (GAM) to control
for seasonal patterns. GAMs are semi-parametric models, which means they have
parametric and non-parametric parts. It is this combination that makes them useful
for flexibly modelling non-linearity. Here we aim to model the non-linear seasonal
pattern in the dependent variable.

We do not cover the details of GAMs. For a more detailed description of GAMs
see the books by Keele [52], Ruppert et al. [73] or Wood [88].

5.2.1 Definition of a GAM

We define a GAM by adding a smooth function to the equation for a GLM, (1.9),

g.Yt / D ˇ0 C ˇ1X1t C � � � C ˇpXpt C s.t; /; t D 1; : : : ; n;

where s.t; / is some smooth function of time (t), the smoothness of which is con-
trolled by the degrees of freedom,  � 1. Larger values of  lead to more non-linear
or flexible (bendy) functions; smaller values of  lead to more linear functions, with
 D 1 corresponding to a linear function.

We will use the smooth function, s.t; /, to model the trend in Yt and any annual
seasonal pattern. We aim to design s.t; / so that it removes all annual seasonal
variation from the data, so that the other independent variables (e.g., X1t ) represent
associations at a shorter time frequency. This will only be true if s.t; / completely
removes the annual seasonal variation. So choosing the correct value of  is akin
to choosing the correct stratum length in the case–crossover analysis. The differ-
ence is that the case–crossover design removes seasonality using a step-like function
(Fig. 5.2), whereas the GAM uses a smooth function.

5.2.1.1 An Example of Applying a Seasonal GAM

In this section we show how to use a spline to model the roughly sinusoidal pattern in
cardiovascular mortality (Fig. 1.1). As time is the independent variable, the degrees
of freedom needed will depend on the length of time (longer time series needing
more degrees of freedom). Also, because we know the seasonal pattern repeats every
year it is helpful to define the degrees of freedom as the degrees of freedom per year.
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This makes the degrees of freedom needed to model seasonality more comparable
when using time series of different lengths.

To illustrate the effect of increasing the degrees of freedom, we show a fitted
spline for the first three years of CVD data. We show the splines for one to six
different degrees of freedom per year (Fig. 5.8). One degree of freedom per year
gives an almost linear spline that only captures the long-term trend in mortality.
Using two degrees of freedom per year gives a spline that has captured the basic
seasonal pattern, but the phases of the spline do not coincide with the peaks in
observed mortality in late January. Increasing the degrees of freedom gives a much
closer fit to the seasonal pattern in the data. For five or six degrees of freedom per
year, the spline has also captured the smaller summer increase in CVD deaths.
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Fig. 5.8 Observed daily cardiovascular mortality (grey dots) and estimated spline (solid line) for
increasing values of the number of degrees of freedom per year (number in top-right corner). First
three years of data (1987–1989) for the CVD data. The y-axes show the daily number of deaths
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To fit these splines we used the GAM functions available in the mgcv R library
[88]. The R command is

> gam(cvd˜s(as.numeric(date),k=df,bs=’cr’),data=CVDdaily,
family=poisson(),scale=-1)

The CVD data are the counts of daily deaths, which we assume follow a Poisson
distribution and use the log-link. This means the estimated effects are given as rate
ratios (Sect. 1.4.5). The scale=-1 command means that we use an over-dispersed
Poisson model (Sect. 1.4.5). The spline is a penalized cubic regression function; the
cubic basis is specified using bs=’cr’. This allows a cubic pattern between any
two knots; in the previous section we used a quadratic basis (Fig. 1.29). The value
df is the maximum degrees of freedom, calculated as the number of years multiplied
by the degrees of freedom per year, plus one (so that the model is identifiable).
The actual degrees of freedom (and hence the flexibility of the line) is chosen by
penalizing the non-parametric part of the spline equation (1.10). The optimal size of
the penalty is chosen by generalized cross-validation [73, 88]. Cross-validation is a
robust estimation technique that aims to avoid giving estimates that are too closely
tailored to the data. For a spline this would mean a very flexible estimate that had
modelled idiosyncratic parts of the data. Cross-validation works by leaving out each
observed value in turn and then predicting this value based on the remaining data.
Minimising the squared residuals from these predictions gives estimated splines that
are not overly flexible.

Next, we look at the effect of controlling for season on the estimated effect of
daily ozone. In this model we included independent variables for mean daily ozone
(o3mean), mean daily temperature (tmpd) and day of the week. Figure 5.9 shows
the estimated rate ratios for ozone against the degrees of freedom per year for the
spline using one to six degrees of freedom per year. As in Fig. 5.6, as we increase the
seasonal control, the negative effect of ozone disappears. So greater seasonal control
gives an estimated effect for ozone that is closer to the null value of no effect.

An advantage of GAMs over the case–crossover analyses is that it is possible
to check the residuals of a GAM. This is not possible using the case–crossover
because we cannot calculate the fitted values using conditional logistic regression
(here the estimated daily number of deaths). We can check the residuals from the
GAM for any remaining seasonal pattern using the ACF or cumulative periodogram.
The residuals from a model with six degrees of freedom per year, and independent
variable of daily ozone, temperature and day of the week, show a clear pattern using
either the cumulative periodogram or ACF (Fig. 5.10). Something is still missing
from the model, possibly an inadequate control for temperature. Adding temperature
for the previous 1–3 days may help [65].

5.2.2 Non-linear Confounders

We can extend our previous GAM to incorporate non-linear estimates for indepen-
dent variables other than time. The equation to include other smooth independent
variables is
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Fig. 5.9 Mean rate ratio (and
95% confidence intervals –
dashed lines) from a GAM
for the effect of a 10 ppb
increase in daily ozone on
daily CVD mortality against
the degrees of freedom per
year using a smooth effect of
time. The dotted horizontal
line at a rate ratio of 1
corresponds to the null
hypothesis of no change in
mortality
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Fig. 5.10 ACF and cumulative periodogram of the residuals from a GAM with a dependent vari-
able of daily CVD mortality, independent variables of daily ozone, temperature and day of the
week, and using six degrees of freedom per year to control for trend and season

g.Yt / D s.X1t ; 1/ C ˇ2X2t C � � � C ˇpXpt C s.t; 2/; t D 1; : : : ; n:

In our example it could be particularly useful to fit the effect of temperature using a
spline, as we know the effect is non-linear.

Figure 5.11 shows the estimated effect for temperature assuming three degrees
of freedom. We choose 3 as we know that temperature has a roughly U-shaped
association with mortality. We fitted a penalized spline using a cubic basis, and
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Fig. 5.11 Mean number of
CVD deaths (and 95%
confidence interval) plotted
against mean temperature
(ıF): effect estimated using a
penalized regression spline
with three degrees of freedom
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fitted the same type of spline for time, with four degrees of freedom per year (to
control for season and trend).

The effect of temperature is strongly non-linear, with increases in mortality at
cold and hot temperatures. The lowest average number of deaths occurs around
60ıF. The AIC for a GAM using a linear effect for temperature is 35,002. The AIC
using smoothed temperature is 34,923, indicating a big improvement in fit of 79.

5.3 A Spiked Seasonal Pattern

It is possible for a disease to have two or more seasonal patterns. In this section
we show how to separate these patterns when one pattern is a short-term spike in
disease and the other is a longer-term seasonal pattern. As an example, we examine
the short-term increase in CVD at Christmas, after controlling for the longer-term
seasonal increase in winter.

It is first useful to plot the daily number of CVD deaths over the Christmas period
and surrounding days. We define the Christmas period as 10 days either side of
Christmas day (15 December to 4 January), which includes New Year’s day. Wider
periods can be used, but they would put the Christmas increase in the wider context
of the overall seasonal increase in deaths [68]. However, a shorter period means
that we are comparing days with generally similar temperature and season. This
definition of a comparison period is similar to choosing the length of the strata for
the case–crossover analysis (Sect. 5.1.3).

Figure 5.12 is a box plot of the number of deaths over our defined Christmas
period. To remove the effect of long-term trend, we first subtracted the mean number
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Fig. 5.12 Box plot of the
difference in the daily number
of CVD deaths 10 days either
side of Christmas day
(15 December to 4 January).
The y-axis shows the
difference in the daily number
of deaths from the average
number of deaths in the same
Christmas season
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of deaths in the same Christmas period. This is akin to the stratification used by the
case–crossover analysis (Sect. 5.1).

The plot shows a generally increasing trend in deaths from mid-December to
early January. There is no clear increase in deaths at Christmas, but there may be a
small increase on the 27 and 28 December.

To further investigate the trend we consider the predicted values using five
degrees of freedom from Fig. 5.8 and plot them over the Christmas period in
Fig. 5.13. Over this 21-day period the longer term sinusoidal pattern in CVD deaths
is approximately linear. The plot suggests that we could fit a mixed model with a
random intercept and linear slope to control for the annual seasonal effect.

5.3.1 Modelling a Spiked Seasonal Pattern

As an initial model we investigate an increase on Christmas day only. We do this
by adding another term to the GAM that we used to remove the effect of season in
Sect 5.2. Christmas day is added as a binary independent variable. As before we fit
independent variables for mean temperature (using a spline with three degrees of
freedom) and day of the week.

The result is a mean RR for Christmas day of 1.036, 95% CI: 0.960, 1.119,
p-value = 0.36. The confidence interval is relatively wide as there are only 14 Christ-
mas days over the study period. Based on the results of the box plot (Fig. 5.12), we
might instead define a binary variable to cover the Christmas period of 25 Decem-
ber to 28 December. The mean RR for this Christmas period is 1.100 per day, 95%
CI: 1.059, 1.143, p-value < 0:001. So averaged between 25 and 28 December there
is a 10% increase in mortality per day.
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Fig. 5.13 Predicted number
of CVD deaths from a GAM
for the 10 days either side of
Christmas day
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A weakness of the above model is that it assumes equal risk for all days defined
within the Christmas period. It might be more reasonable to assume that the spiked
seasonal pattern has a rise-and-fall in risk. We can fit this pattern in a Bayesian
framework by specifying a prior for the spiked pattern that has a multivariate Normal
distribution

ˇ � MVN.ˇ; V/;

where ˇ D ˇ1; : : : ; ˇm and m is the total number of days. The average increase on
each day is ˇ, and V is an m � m symmetric variance–covariance matrix

V D �2
ˇ

2
66666666664

1 � 0 : : : 0 0 0

� 1 � 0 0 0

0 � 1 0 0 0
:::

: : :
:::

0 0 0 1 � 0

0 0 0 � 1 �

0 0 0 : : : 0 � 1

3
77777777775

:

The correlation matrix has 1’s along the diagonal and �’s either side of the diagonal.
This means that the estimates on the same day are perfectly correlated, and those
from neighbouring days have a correlation of �, where 0 < � < 1. The overall
increase in risk over m days is then

P
m ˇ. In practice, we fit this model using a

conditional autoregressive framework (Sect. 2.3.3).
An advantage of this formulation is that it is non-parametric. So we have not

constrained the spiked seasonal pattern (ˇ) to have any particular shape, but we
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have acknowledged the correlation between neighbouring days, and so the daily
estimates borrow strength from their neighbours. This is important here because the
estimates are based on a relatively small number of days. We could have achieved a
similar smoothing using a parametric model, for example, by specifying a quadratic
shape over the m days. However, this restricts the spike to have a U-, or inverse U-,
shape.

We fit this model in a Bayesian framework by only using the data from the
Christmas period defined as the 10 days either side of Christmas day. This gives
a sample size of 294 days, as we include the incomplete Christmas periods from
January 1987 and December 2000 (the start and end of the time series). The advan-
tage of this method is that we can control for the sinusoidal seasonal pattern using a
linear model, as suggested by Fig. 5.13. The disadvantage is a loss of power, as the
original sample size is 5,114 days (14 years of data).

We assume that the daily number of deaths follows a Poisson distribution and
use a log-link. The CAR equation for the mean number of CVD deaths on day t in
Christmas period i is then

Yi t � Poisson.�i t /; i D 1; : : : ; 15; t D 1; : : : ; 21;

log.�i t / D �i1 C �i2t C ˛3Xt C �Xd C ˇXs ;

�i1 � N.˛1; �2
1 /;

�i2 � N.˛2; �2
2 /;

where t D 1 corresponds to 15 December and t D 21 corresponds to 4 January. For
the first Christmas period (i D 1) there are only data for t D 18; : : : ; 21 (1–4
January). For the last Christmas period (i D 15) there are only data for t D
1; : : : ; 17 (15–31 December).

This is a mixed model, as it includes both fixed and random effects. �i1 is a
random intercept, used to model the mean differences between Christmas periods, as
shown by the variation in intercepts in Fig. 5.13. �i2 is a random slope, used to model
the mean differences in trends between Christmas periods, which is also visible in
Fig. 5.13. The mean intercept is ˛1, and the mean slope ˛2. xt is the temperature on
day t , so exp.˛3/ is the relative risk for a 1ıF increase in temperature. The matrix Xd

has six columns and is designed so that � models the effect of day of the week (with
Sunday as a reference category). The matrix Xs has m columns and is designed so
that ˇ models the effect of a spiked seasonal pattern.

The estimated spiked seasonal pattern for 25–29 December is shown in Fig. 5.14.
We also show the “flat” spike in risk estimated using ˇ D ˇ.

We can compare the fit of the models using the deviance information criteria
(Sect. 1.6.2). The “flat” model uses 34.9 parameters for a DIC of 2,081.9. The CAR
model uses 37.6 parameters (2.7 more) for a DIC of 2,082.2 (0.3 worse). So there
is no clear difference between the two models, and their estimates of average daily
estimated increase in risk is similar, as shown by the mean in Fig. 5.14.
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Fig. 5.14 Mean relative risk
of the spike in CVD deaths
over the Christmas period
(25–29 December) using a
CAR model (open circles
with solid line) and flat model
(closed circles with dashed
line), plus the daily mean
estimates. The vertical solid
lines show the 95% credible
intervals. The dotted
horizontal line at RR D 1

corresponds to the null
hypothesis of no increase in
mortality
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Arguably the CAR model is preferable as it gives more information on the spiked
seasonal pattern. It shows a rise-and-fall that seems to agree with the pattern shown
in Fig. 5.12.

5.4 Adjusting for Seasonal Independent Variables

In this section we show how controlling for a seasonal pattern in an independent
variable can be important when analysing a dependent variable that is collected
some time later. We consider the situation of predicting long-term survival based on
an independent variable collected at baseline. For example, a study may consider
survival time (in years) after discharge from hospital based on blood pressure on
admission (baseline). If the study recruits subjects over a long enough period then
baseline blood pressure will have a seasonal pattern. Thus some of the variation in
blood pressure will be due to seasonality and so the time effect of blood pressure
will be a mix of true risk and season. The seasonality in the independent variable can
be thought of as measurement error, and the bias it causes is similar to the regression
dilution bias [36].

We illustrate the problem, and the effect of seasonal adjustment, using artificial
data in Fig. 5.15. The unadjusted responses are shown in the left-hand panel. There
is a strong underlying sinusoidal pattern, which makes those results collected in the
first half of the year generally higher than those in the second half. A subject’s value
depends on the time they were recruited into the study, and a subject recruited in
the first half of the year would have had a different measured value if they had been
recruited in the second half of the year.
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Fig. 5.15 Example of a seasonal pattern in an independent variable and the effect of adjusting (arti-
ficial data over one year). In the left panel, the grey dots show the observed independent variable
values, the smallest and largest values are shown as triangles, the black line shows the underlying
sinusoidal seasonal pattern, and the arrows show the direction of the seasonal adjustment. In the
right panel, the grey dots show the seasonally adjusted independent variable. The seasonal pattern
has been flattened

This seasonal variation is a nuisance when we are interested in long-term risk.
The right-hand panel of Fig. 5.15 shows the effect of removing the seasonal varia-
tion using a cosinor (Chap. 3). The highest and lowest of the unadjusted values are
plotted using triangles in both panels. The highest value is still relatively high, but
has been reduced. The lowest value is no longer the smallest one after adjustment,
although it is still relatively low. It is also worth noting that a low unadjusted value
around the seasonal phase (under the downward pointing arrow in the left-hand
panel), is roughly equal to the highest unadjusted values at the seasonal low (above
the upward pointing arrow). After adjustment, the low and high values are now
relative to the season they were collected in.

This type of seasonal variation is not a nuisance when we are interested in
short-term risk, for example, examining the risk of death in the next month. In
this situation the seasonal variation may be of great interest and importance. For
example, the seasonal increase in blood pressure is likely to be one of the major
contributors to the seasonal increase in mortality [9].

5.4.1 Effect on Estimates of Long-term Risk

We now consider the effect that seasonal adjustment will have on estimates of long-
term risk. In the formula for a generalized linear model, (1.9), we assume there is
a seasonally varying independent variable (Xt ). The parameter estimated using the
seasonally varying independent variable will approximately be
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ˇ� D ˇ
�2.X�/

�2.X/
; (5.3)

D ˇ
	
�.X�; X/


2
;

where ˇ is the “true” risk, �2.X/ is the variance of the unadjusted independent
variable, and �2.X�/ is the variance of the seasonally adjusted independent variable
(X�

t ). The ratio of variances in (5.3) is called the reliability ratio [37, Chap. 1].
We have also shown the formula using the correlation between the unadjusted and
adjusted variable, �.X�; X/.

If there is no change in the independent variable after seasonal adjustment, then
�.X�; X/ D 1 and ˇ� D ˇ. The larger the change in the independent variable after
seasonal adjustment, the smaller the correlation, and hence the greater the underes-
timation of risk from using an unadjusted variable. Figure 5.16 shows the bias in
the estimated parameter for a range of correlations assuming the true risk is 1. Only
at very high correlations will the bias caused by seasonality be negligible; at low
correlations the bias will be substantial.

For the example in Fig. 5.15, the correlation between the adjusted and unadjusted
responses is 0.35. We would therefore expect to see a greatly reduced estimate of
risk when using an unadjusted independent variable, and almost eight times the
estimated risk after seasonal adjustment.

The approximate bias, (5.3), applies to any model fitted using a generalized lin-
ear model framework, so it applies to Normal, logistic or Poisson regression. For
logistic or Poisson regression it applies to the parameter estimates on the logit or
log scale, respectively. The bias equation assumes that the independent variable,
and the adjusted version, are roughly Normally distributed.

Fig. 5.16 Approximate bias
in the estimated parameter
depending on the correlation
between the unadjusted and
seasonally adjusted
independent variable, when
the true risk is ˇ D 1 (dashed
horizontal line)
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A further assumption is that the appropriate seasonal adjustment can be made
using a cosinor model, which is based on a sinusoidal seasonal pattern. Other more
complex seasonal patterns, e.g., sawtooth, would require other types adjustment.
For irregular seasonal patterns, we recommend examining the residuals after fitting
a spline for time (Sect. 5.2).

5.4.1.1 Example Using Long-term Survival After Hospital Discharge

We give an example of seasonal adjustment based on real data. The data are from
a study of long-term survival after discharge from the Prince Charles Hospital,
Brisbane. On admission patients had their creatinine levels measured (�mol/L�1),
as it is a useful measure of renal function, and is thought to be important for
long-term health. There were 5,559 admissions to hospital from 2001 to 2005 with
creatinine levels recorded. The study has a total of 16,625 person years of follow-up,
and 429 patients died (7.7%).

As the creatinine data are strongly positively skewed, we first applied a log-
transformation. A cosinor model (Sect. 3) showed that log creatinine levels have
a statistically significant annual seasonal variation, with an amplitude of 0.043 and
a phase of 16 March.

A Cox proportional hazards model based on the unadjusted creatinine levels
gives a hazard ratio of 3.47 (95% CI: 2.86, 4.20). So a one unit increase in log
creatinine is associated with more than treble the risk of death. A model based
on the seasonally adjusted creatinine levels gives a hazard ratio of 3.45 (95% CI:
2.85, 4.18). So in this example, despite the statistically significant seasonal varia-
tion in creatinine levels, the estimate of its long-term risk is not affected by seasonal
adjustment. The Pearson correlation between the unadjusted and seasonally adjusted
creatinine data is 0.991. Hence the very small change in the hazard ratio after
adjustment.

5.5 Biases Caused by Ignoring Season

In this section we describe the potential biases caused by ignoring season in observa-
tional studies. We examine a study design that measures subjects at baseline, applies
an intervention, and then measures them again at a follow-up visit [71, 74]. We
examine the situation where the seasonal pattern in the main dependent variable is
ignored, but show how to control for this bias by design.

The left-hand panel of Fig. 5.17 presents artificial data for an extreme case where
a study is started at the phase of an annual seasonal pattern and the follow-up is six
months later. The solid line shows the mean annual seasonal pattern, which peaks at
the beginning of the study and dips six months later. The baseline observations were
recorded in the first two weeks, and the follow-up observations six months later. The
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Fig. 5.17 Simulated data from an observational study with a baseline observation and 6-month
follow-up. The grey circles show the observed responses (from 20 subjects), baseline and follow-
up responses are joined by grey lines. The solid black line shows the underlying seasonal pattern.
The subjects are recruited in 2 weeks (left-panel) and 6 months (right-panel)

individual observations were generated randomly using a Normal distribution with
a mean centred on the mean seasonal pattern.

This example shows how the seasonal variation could be confused with an
(almost linear) change in response. In this example there is no intervention effect,
but the investigator is likely to conclude that the intervention has caused a strong
decrease in the response. If the intervention truly caused a negative change in
response, then this would look stronger by ignoring the seasonal variation. If the
intervention truly caused a positive change in response, then this would look weaker
by ignoring the seasonal variation (and possibly even cause a type II error). For this
example the seasonal change is completely confounded with the intervention effect,
and could not be controlled for statistically.

The problem could be avoided by design. One design is to include a control
group (without the intervention), which has the advantage of controlling for other
unmeasured confounding. If its not possible to have a control group, the bias can be
“averaged out” by staggering the recruitment of subjects over a 6-month period. This
design is shown in the right-hand panel of Fig. 5.17. In this case the seasonal pattern
still causes strong changes between baseline and follow-up, but these differences are
averaged out when looking at the mean difference between baseline and follow-up.
Importantly, this design will work regardless of the phase.

Although the simulated example in Fig. 5.17 uses Normally distributed data, sim-
ilar biases would apply to dependent data with a Poisson or Binomial distribution.



Chapter 6
Clustered Seasonal Data

In this section we show how to model clustered seasonal data. We look at two types
of clustered data: longitudinal data and spatial data.

Longitudinal data are time series data from multiple subjects or clusters (e.g.,
cities). They may be equally spaced (e.g., every week) or irregularly spaced. If each
subject has the same number of responses then the data are balanced, otherwise they
are unbalanced.

The data on walking time are an example of unbalanced longitudinal data, as sub-
jects have 1, 2 or 3 responses (Sect. 1.1.4). For this example, we might be interested
in whether certain types of people show a greater seasonal variation in walking time
(e.g., older vs. younger subjects). We might be interested an individual seasonal pat-
tern, or the average seasonal pattern. As we show in the next section, these can be
quite different.

The NMMAPS data is an example of spatial data, as they are available for 108
cities throughout the US. This is an example of balanced data, as the monthly (or
daily) results are available during the same time span for each city (years 1987–
2000). For this example, we might be interested in whether the seasonal variation in
CVD mortality shows any geographic variation.

We only deal with seasonality in longitudinal or spatial data. For a more detailed
discussion of all aspects of longitudinal analyses see Diggle et al. [24], and for
spatial analyses see Elliot et al. [33].

6.1 Seasonal Heterogeneity

When considering longitudinal data it is important to consider whether there is
any between-subject variation (or heterogeneity) in the seasonal pattern, and also
whether the focus of the analysis is on the average seasonal pattern, or the individual
seasonal pattern.

Figure 6.1 shows four hypothetical examples, using subject data that have a sinu-
soidal seasonal pattern. In this example there is no between-subject variation in
amplitude (which is always 1), but there is some between-subject variation in phase.
If there is no variation in the phase, then the average seasonal pattern and individual

A.G. Barnett and A.J. Dobson, Analysing Seasonal Health Data, Statistics for Biology
and Health, DOI 10.1007/978-3-642-10748-1 6,
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Fig. 6.1 Individual seasonality for four subjects (dashed lines) and mean seasonality (solid line)
for four different levels of between-subject variability in phase. No variability, individual and mean
seasonality are the same (top-left); moderate variability (top-right); large variability (bottom-left);
maximum variability (bottom-right)

seasonal pattern are the same, and both have an amplitude of 1. When there is some
variation in phase, the mean seasonal pattern has a smaller amplitude than the indi-
vidual pattern. The larger the variation in subjects’ phases, the smaller the average
seasonal amplitude. In the extreme case, if the phases in individual seasonal pat-
terns are spread evenly throughout the year, then the average seasonal pattern will
be flat.

As an example, imagine we are interested in the seasonal pattern in time spent
walking (Sect. 1.1.4). Public health practitioners would be interested in the mean
seasonal pattern, with a view to launching campaigns to improve levels of walking in
the whole community when mean levels are lowest, or when they begin to increase.
An individual subject would be more interested in the average individual change,
which would also be more useful for predicting the individual change in weight.
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We can fit models to capture either the average seasonal pattern, or the individual
pattern. The choice of model depends on whether the focus of the analysis is the
average or the individual. This choice, and reduction in the mean estimate compared
with the individual estimate (Fig. 6.1), is an analogous to the difference between a
marginal and random effects logistic regression model [23, Sect. 7.4].

6.2 Longitudinal Models

The most important aspect of longitudinal data is that the repeated results from the
same subject can no longer assumed to be independent. A statistical model that we
can use to account for this dependence is a mixed model. A mixed model has both
fixed and random effects (Sect. 2.3).

We start by combining a generalized linear model, (1.9), with a Fourier model,
(1.4), and adding an index for each subject

g.�i t / D ˇ0 C ˇ1X1it C � � � C ˇpXpit C A cos.!wi t � P /; (6.1)

i D 1; : : : ; m; t D 1; : : : ; ni ;

where m is the number of subjects, ni is the number of observations for subject
i , and wi t is the time of the response number t for subject i . ˇ0 is the intercept.
For data that are both equally spaced and balanced, wi t D t . The constant, ! D
2�=ls, transforms the times into radians, where ls is the length of the seasonal cycle.
The seasonal pattern is controlled by the amplitude (A) and phase (P ), assuming a
sinusoidal seasonal pattern. The ˇ parameters model the non-seasonal aspects of the
data (e.g., trend).

Using a generalized linear model the response could follow, for example, a
Normal distribution

yi t � N.�i t ; �2/;

using a identity link function, or a Poisson distribution

yi t � Po.�i t /;

using a log link function.
We can add a random intercept to the model using

g.�i t / D �i0 C ˇ1X1it C � � � C ˇpXpit C A cos.!wi t � P /; (6.2)

�i0 � N.ˇ0; �2
0 /; i D 1; : : : ; m;

so each subject has their own intercept (�i0). These intercepts are constrained to
follow a Normal distribution, centred on the mean intercept (ˇ0) and with variance
�2

0 . A random intercept would be useful for modelling between-subject differences
that are constant over time. The estimated seasonal pattern is now expressed in terms
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of the difference from the average, rather than being centred on the overall mean.
Because the model combines a generalized linear model and a mixed model it is a
generalized linear mixed model (GLMM).

To add subject-specific phases we use

g.�i t / D �i0 C ˇ1X1it C � � � C ˇpXpit C A cos.!wi t � Pi /; (6.3)

Pi D P C . QPi � �/; i D 1; : : : ; m;

QPi � N

�
�;

�a�

12

�2
�

;

P � U.0; 2�/;

where Pi is the estimated phase for subject i . These terms are modelled by QPi which
is centred on � , the furthest point on the circle from the border at 0 and 2� . This
avoids the problem of the MCMC chain jumping between two identical solutions.
We used a similar restriction in Sect. 4.4.1. The value a controls the variance of the
Normal distribution, and will approximately allow phases of up to 2a months either
side of the mean phase.

In this model each subject has their own seasonal pattern (defined by A and Pi ),
which is centred on the mean individual pattern (defined by A and P ). In Fig. 6.1, the
seasonal estimates from model (6.3) are the dashed lines, whereas those from (6.2)
are the solid line. The seasonal pattern in model (6.3) is for an average individual,
whereas the pattern in model (6.2) is the average of the individuals.

6.2.1 Example

We highlight the differences between marginal and individual models using the exer-
cise data (Sect. 1.1.4). We assume that the walking time (number of minutes per
week) follows a Poisson distribution. We therefore define a marginal model as

yi t � Po.�i t /; i D 1; : : : ; 434; t D 1; : : : ; ni ;

log.�i t / D ˇ0 C ˇ1X1it C ˇ2X2it C c cos.!wi t / C s sin.!wi t /;

where ni 2 f1; 2; 3g, X1 is a binary covariate which is 1 for the second visit and 0
otherwise, and X2 is a binary covariate which is 1 for the third visit and 0 otherwise.
We add these independent variables to model the changes in activity from baseline.
We assume a stationary seasonal pattern, as c and s do not depend on t . We estimate
the amplitude and phase using Eqns. (3.2) and (3.3), respectively.

The mean rate ratio amplitude is 1.146 (95% credible interval: 1.136, 1.156).
The phase is 5 July (95% credible interval: 1 July, 9 July). The seasonal pattern
is plotted in the left panel of Fig. 6.2. The right panel shows the mean seasonal
pattern using a model with a random intercept. The mean rate ratio amplitude for
this model is 1.202 (95% credible interval: 1.190, 1.213). The phase is 8 July (95%
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Fig. 6.2 Mean seasonal pattern in walking time (solid line) and 95% credible intervals (dashed
lines) from a marginal model (6.1) (left panel), and model with a random intercept model (6.2)
(right panel)

credible interval: 4 July, 11 July). The peak of activity in the Australian winter is not
surprising considering the heat of a Brisbane summer and the mildness of winter,
and we saw the same pattern when smoothing the data in Sect. 2.2.4.

For the model with random seasonal effects (6.3) we decided to allow subjects’
phases to differ by no more than a month, and we did so by setting a D 0:5. The
mean subject specific rate ratio amplitude is 1.378 (95% credible interval: 1.362,
1.394). The mean phase is 8 July (95% credible interval: 3 July, 11 July). Individual
phases ranged from 19 June to 26 July (roughly within a month of each other).

The DIC for the marginal model is 204,475 based on 5.0 parameters. The DIC for
the model with a random intercept is 62,475 based on 395.0 parameters (142,000
better than the marginal model). The DIC for the model with a random seasonal
effects is 59,975 based on 398.4 parameters (2,500 better than the marginal model).
So a random intercept greatly helped to explain the variation between subjects, and
even allowing a relatively small variation in the phase gave a substantially better
model.

6.3 Spatial Models

Seasonal diseases that have some association with temperature or sunlight are also
likely to have some geographic variation. As the seasons are more extreme the fur-
ther we move from the equator, we might expect greater seasonal amplitudes in
disease with increasing north or south latitude.

We can use geographic variation in a seasonal pattern to give clues about the
seasonal exposure. If the seasonal pattern in disease was due to weather, we would
expect the risk to vary smoothly over space. This is because weather variables (such
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as average sunlight hours and temperature) generally vary gradually, although there
can be more sudden changes along coastlines. In contrast, if the seasonal pattern
in disease was due to a social factor (Sect. 2.1.1), we might expect to see no geo-
graphic variation, or more sudden changes along political borders. For example, a
seasonal pattern in risk due to the change in daylight saving time in Australia might
be different in New South Wales (which uses daylight savings) compared with its
neighbour Queensland (which does not).

6.3.1 Example

As an example we look at the geographic variation in CVD mortality in the US
using the NMMAPS data. We used the monthly counts of CVD deaths for people
aged �75 years old. We fitted a model with a stationary seasonal amplitude and
stationary phase, and a quadratic trend (Sect. 4.1). We accounted for the unequal
number of days in the month and population size using an offset. We fitted the
model in each of the 108 cities.

Figure 6.3 maps the seasonal amplitude expressed as a percent change in CVD
mortality (Sect. 1.4.5). The most noticeable spatial pattern is the group of large
amplitudes in California and Arizona.

Figure 6.4 maps the phase in months. The latest phase was 2.3 months (early
February) in Biddeford, Maine (top-right corner of Fig. 6.4). The phase was also
2.3 months in Honolulu. The earliest phase was 12.5 months (mid December) in
Anchorage.

Anchorage

Honolulu

Percent change

 3.1

 7.3

11.5

15.7

20.0

Fig. 6.3 Seasonal amplitude in CVD mortality expressed as a percent change by location (108
cities). Results for Anchorage and Honolulu shown in bottom-left corner
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Fig. 6.4 Seasonal phase in CVD by location (108 cities). Results for Anchorage and Honolulu
shown in bottom-left corner

Fig. 6.5 Circular plot of the
phases in CVD mortality for
the 108 NMMAPS cities
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Figure 6.5 shows a circular plot of the phases, and demonstrates the predomi-
nance of phases in January.

To produce a smoothed picture of the geographic patterns in the amplitude and
phase we used kriging interpolation [24]. We used the surf.gls function from
the spatial R library [85]. We excluded the results from Anchorage and Hon-
olulu, as these cities are too distant from mainland USA for smoothing purposes.
The smooth amplitude in Fig. 6.6 shows the largest seasonal changes occurred in
California. There is a steep decline in amplitude with increasing northerly latitude,
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Fig. 6.6 Estimated smooth seasonal amplitude expressed as a percentage increase (top) and phase
in months (bottom) in CVD mortality in mainland USA. Results from Anchorage and Honolulu
were excluded

which matches the theory that people living in cold climates are better prepared
to deal with relatively cold temperatures [82]. There is also a decline in ampli-
tudes moving south through Florida. This is possibly because winter temperatures
in Florida are not cold enough to cause large increases in CVD [8].

The smooth phase shows that the earliest phases occurred in central USA
(1.2 months, corresponding to early January), with increasingly later phases as we
move towards the US coast and border regions (1.6 months, corresponding to mid
January).
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57. MacIntosh, D.L., Spengler, J.D., Özkaynak, H., hui Tsai, L., Ryan, P.B.: Dietary exposures to
selected metals and pesticides. Environ. Health Perspect. 104(2), 202–209 (1996)

58. Maclure, M.: The case–crossover design: a method for studying transient effects on the risk of
acute events. Am. J. Epidemiol. 133(2), 144–153 (1991)

59. Mardia, K.V.: Statistics of Directional Data. Academic, London (1972)
60. Matthews, C.E., Freedson, P.S., Hebert, J.R., Stanek, E.J., et al.: Seasonal variation in house-

hold, occupational, and leisure time physical activity: longitudinal analyses from the seasonal
variation of blood cholesterol study. Am. J. Epidemiol. 153(2), 172–183 (2001)

61. McGrath, J.J., Barnett, A., Eyles, D., Burne, T., et al.: The impact of nonlinear exposure–risk
relationships on seasonal time-series data: modelling Danish neonatal birth anthropometric
data. BMC Med. Res. Methodol. 7(45) (2007)

62. Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingston, P., et al.: Global climate projections.
In: S. Solomon, et al. (eds.) Climate Change 2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change. Cambridge University Press, Cambridge (2007)

63. Moan, J., Porojnicu, A., Lagunova, Z., Berg, J.P., Dahlback, A.: Colon cancer: prognosis for
different latitudes, age groups and seasons in Norway. J. Photochem. Photobiol. B 89(2–3),
148–155 (2007)

64. Ogle, W.: Suicides in England and Wales in relation to age, sex, season, and occupation. J. Stat.
Soc. London 49(1), 101–135 (1886)

65. Peng, R.D., Dominici, F.: Statistical Methods for Environmental Epidemiology with R: A Case
Study in Air Pollution and Health. Springer, New York (2008)

66. Peng, R.D., Welty, L.J.: The NMMAPSdata package. R News 4(2), 10–14 (2004). http://
CRAN.R-project.org/doc/Rnews/

67. Pfeiffer, D.U., Robinson, T.P., Stevenson, M., Stevens, K.B., et al.: Spatial Analysis in
Epidemiology. Oxford University Press, Oxford (2008)

68. Phillips, D.P., Jarvinen, J.R., Abramson, I.S., Phillips, R.R.: Cardiac mortality is higher around
Christmas and New Year’s than at any other time. Circulation 110(25), 3781–3788 (2004)

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/


162 References

69. Ponsonby, A.L., Dwyer, T., Jones, M.E.: Sudden infant death syndrome: seasonality and a
biphasic model of pathogenesis. J. Epidemiol. Community Health 46(1), 33–37 (1992)

70. Rau, R.: Seasonality in Human Mortality A Demographic Approach. Springer, New York
(2007)

71. Rochester, D., Jain, A., Polotsky, A.J., Polotsky, H., et al.: Partial recovery of luteal function
after bariatric surgery in obese women. Fertil. Steril. 92(4), 1410–1415 (2009)
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