


Teaching Statistics



This page intentionally left blank 



Teaching Statistics

A Bag of Tricks

Andrew Gelman
Columbia University

Deborah Nolan
University of California, Berkeley

1



3
Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide in

Oxford New York

Auckland Bangkok Buenos Aires Cape Town Chennai
Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata

Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi
São Paulo Shanghai Taipei Tokyo Toronto

and an associated company in Berlin

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

c© Andrew Gelman and Deborah Nolan, 2002

The moral rights of the authors have been asserted

Database right Oxford University Press (maker)

First published 2002

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate

reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,

Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer

British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data

ISBN 0 19 857225 5 (hardback)
ISBN 0 19 857224 7 (paperback)

10 9 8 7 6 5 4 3 2 1

Typeset by the authors using LATEX

Printed in Great Britain
on acid-free paper by

Biddles Ltd, Guildford & King’s Lynn



To Caroline and Dave



This page intentionally left blank 



Preface

How to use this book
This book is intended for teachers of college and high school statistics courses.
The different chapters cover demonstrations, examples, and projects for a suc-
cession of topics in statistics and probability. (We distinguish between demon-
strations, which involve active student participation, and examples, which are
conducted by the instructor.)

This book contains more material than could possibly be used in a single
course; we suggest you read through it all and then try out some of the ideas.
Pick and choose what works for you.

Part I of the book presents a large selection of activities for introductory
statistics courses. Part II gives some tips on what works and what doesn’t, how
to set up effective demonstrations and examples, and how to inspire students
to participate in class and work effectively in homeworks, exams, and group
projects. A sample course plan is presented in Chapter 12 to illustrate how to
integrate these materials into a semester-long statistics course. Part III presents
demonstrations, examples, and projects for some more advanced courses on top-
ics including decision theory, Bayesian statistics, sampling, and mathematical
probability and statistics.

General acknowledgments and comment on originality
This book is collected as much as it is authored, and we have cited references
wherever we are aware of related writings on the topics. However, we suspect that
even the demonstrations and examples that we have made up ourselves have been
independently invented many times. Thus, we do not claim this book has value
because of “originality”; in fact, even if all the material here had appeared in
the statistics teaching literature, we would find it useful to collect it all in one
place.

We present each demonstration, example, and project in self-contained for-
mat. If you are interested in further reading on any of these topics, or details
about previous presentations of these ideas, see the Notes at the end of the book.

This is intended to be a collection of the “good stuff”: we do not attempt
to have a demonstration or example for every topic in statistics or to provide
a complete set of teaching materials for students. Rather, we’ve thrown in the
best examples we know about, including some we’ve developed ourselves. In
many cases, we are particularly happy with the form of the demonstrations we
have constructed; even if the basic idea has appeared several times in print, we
have tried in our particular version to focus on the statistical essentials while at
the same time creating scenarios that allow for personal student involvement.
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Our teaching methods are (we hope) continually subject to improvement.
If you have any comments, suggestions, or ideas, please email them to us at
gelman@stat.columbia.edu or nolan@stat.berkeley.edu.

Specific acknowledgments
We would like to thank, in addition to the authors of the articles and books
cited in our references, all the people who have told us about teaching demon-
strations and helped us collect and understand this material. Mark Glickman
coauthored an article that included several of the demonstrations in Part I of
this book. Anna Men, Steve Warmerdam, and Michelle Bautista contributed to
the statistical literacy project described in Chapter 6, including preparing much
of the material in the course packets, and Jason Chan, Inchul Hong, and Keay
Davidson provided helpful comments. The material in Chapter 15 on teaching
mathematical probability was adapted from an article cowritten by Ani Adhikari,
and these teaching aids were developed as part of the Mills Summer Mathemat-
ics Institute, an intensive six-week program for undergraduate women, and at a
similar program for minority students held at the University of California. The
laboratory assignments for a theoretical statistics course in Chapter 16 were de-
veloped in collaboration with Terry Speed, who coauthored the article and book
on which much of this chapter was based. All computations were performed using
the statistical packages R, S-Plus, and Stata.

We also thank Tom Belin, Eric Bradlow, Valerie Chan, Herman Chernoff, Ra-
jeev Dehejia, Phil Everson, Marjorie Hahn, David Krantz, Jim Landwehr, Jim
Liebman, Tom Little, Xiao-Li Meng, Roger Purves, Jerry Reiter, Seth Roberts,
Caroline Rosenthal, Andrea Siegel, Hal Stern, Stephen Stigler, Ron Thisted,
Howard Wainer, and Alan Zaslavsky for helpful comments and ideas. We espe-
cially thank Phillip Price for many useful suggestions.

Many thanks go to the students who have helped us put together this book.
Natalie Jomini and Christina Wells collected data, drew diagrams, and helped
construct the index. Kimmy Szeto drew diagrams, and Meg Lamm and Chandler
Sims found references and obtained permissions.

We would also like to thank the following sources of financial support: the
National Science Foundation for grants DMS-9404305, DMS-9720490, DUE-
9950161, and Young Investigator Award DMS-9496129/9796129, CDC Invest-
ment Management Corporation, the Undergraduate Research Apprenticeship
Program at the University of California, Berkeley, and also the general edu-
cational resources of Columbia University and the University of California. We
thank our instructors and teaching assistants for sharing many good ideas with
us. Most of all, we thank all the students who have taught us so much about
teaching during the past fifteen years.

All royalties from the sales of this book will be donated to nonprofit educa-
tional organizations.

New York A. G.
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1

Introduction

1.1 The challenge of teaching introductory statistics

We have taught introductory statistics to college students for several years. There
are a variety of good textbooks at this level, all of which cover the material
pretty well. However, we found it a challenge to keep students motivated in
class. Statistics is problem-solving. Watching the instructor solve a problem on
the blackboard is not as effective or satisfying for students as actively involving
themselves in problems. To improve participation, we and our colleagues have
been collecting and developing tools, tricks, and examples for statistics teaching.

Many teachers have their own special teaching methods but they are not al-
ways disseminated widely; as a result, some of the best ideas (for example, the
survey of family sizes presented here on page 56 and the coin-flipping demon-
stration on page 105) have been rediscovered several times. We put together this
book to collect all the good ideas that we have heard about or developed in our
own courses.

By collecting many demonstrations and examples in one place and focusing
on the techniques used to involve students as active participants, we intend this
book to be a convenient resource for instructors of introductory probability and
statistics at the high school and college level. Where possible, we give references
to earlier descriptions of these demonstrations, but we recognize that many of
them have been used by teachers long before they appeared in any of these cited
publications.

This book contains a range of teaching tools. What we find most important
about a teaching tool is the basic idea, along with details about how to implement
it in class. This can often be explained in a few paragraphs. We try to do this
where possible but without skimping on the little details that keep the students
involved.

1.2 Fitting demonstrations, examples, and projects into a
course

The demonstrations, examples, and project ideas presented here are most effec-
tive for relatively small classes (fewer than 60 students); with a large lecture
course, some of the demonstrations can be done in the discussion sections. These
materials are not intended to stand alone. We use them along with a traditional
statistics text, lectures, homeworks, quizzes, and exams.
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2 INTRODUCTION

The chapters in Part I of the book cover the topics roughly in order of
when they occur during the semester, with enough so that there can be a class-
participation activity of some sort during every lecture. Many of the activities
are relevant to multiple statistical concepts, and so for convenience we have listed
them on pages 6–8 by subject. Part III presents some demonstrations and ac-
tivities for more advanced courses in statistics. In between, we discuss issues of
implementing the class-participation activities, along with a detailed schedule
of how they fit in to a course. Finally, background information on many of the
examples is given in the Notes at the end of the book.

We have found student-participation demonstrations to be effective in dra-
matizing concepts that students often find difficult (for example, numeracy, con-
ditional probability, the difference between an experiment and a survey, statisti-
cal and practical significance, the sampling distribution of confidence intervals).
Students are made aware that they and others are subject to cognitive illusions
(see, for example, the United Nations demonstration on page 66, the coin-flipping
demonstration on page 105, and the lie detection example on page 113). In ad-
dition, the experiments that involve data-gathering illustrate general concerns
of bias and variance (for example, in the age-guessing example on page 11 and
the candy weighing on page 120) and also involve important practical issues
such as time trends (shooting baskets on page 134), displaying data (guessing
exam scores on page 25), experimental protocol (weighted coins on page 115 and
helicopter design on page 259), and the relation between models and data (av-
erage family size on page 56). One reason that we believe these demonstrations
are important is that the active settings emphasize that statistics is, in reality,
a participatory process with many actors (typically, different people design a
study, collect data, are experimental subjects, analyze data, interpret results,
and so forth).

Perhaps most important, the demonstrations get all the students involved
and help to create an environment where students feel free to participate and
ask questions in class.

The goal of class-participation tools is to improve learning within class and
also to encourage more learning outside of class. Our demonstrations are intended
to involve students in traditional lecture material and are not intended as a
substitute for more detailed student-involved investigations or group projects.
In Section 5.2 we include step-by-step instructions on how to run a class survey
project, and in Section 5.3.3 we provide directions for running a simple taste-
testing experiment. Chapter 11 gives advice on coordinating projects in which
groups of students work on projects of their own design.

At the center of any course on introductory statistics are worked examples
illustrating the important concepts and methods in real-data situations that are
interesting to students. Good statistics texts are full of such examples, and a
good lecture course will introduce new examples rather than simply working
out material already in the textbook. Interesting examples can often be found
directly from newspapers, magazines, and scientific articles; Chapter 6 presents
some examples that have worked well in our classes.
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There are many other excellent examples in statistics textbooks and other
sources. We discuss various places to find additional material in Section 11.5.

1.3 What makes a good example?

We enjoy discussing in class the issue of what makes a good example, opening
up some of our teaching strategies to the students.

When a topic is introduced, we like the first example to be simple so that the
mechanics of the method are transparent. It is also good to prepare a handout
showing the steps of the procedure so that the students can follow along without
having to scribble everything down from the blackboard. You can put some fill-
in-the-blanks on the handout so the students have to pay attention during the
exposition.

It can be good to use fake data for a first example and to discuss how you
set up the fake data and why you did it the way you did. For example, we first
introduce the log-log transformation with the simple example of the relation
between the area of a square and its circumference (page 33). Once students are
familiar with the log-log transformation, we use it to model real data and to
introduce some realistic complexity (for example, the data on metabolic rates on
page 35).

1.4 Why is statistics important?

Finally, it is useful before studying these demonstrations and examples to remind
ourselves why we think it is important for students to learn statistics. We use
statistics when we make decisions, both at an individual and a public level, and
we use statistics to understand the world. Many of the major decisions affecting
the lives of everything on this planet have some statistical justification or basis,
and the methods we teach are relevant to understanding these decisions. These
points are well illustrated by the kinds of studies reported in the press that
students chose to read about for a course project (see page 79). For example,
a pre-med student who ate fish frequently was interested in the observational
study described in “Study finds fish-heavy diet offers no heart protection,” New
York Times, April 13, 1995. Another student who commuted to school wanted
to learn more about a commuter survey reported on in the article entitled, “For
MUNI riders, familiarity breeds contempt, study says,” San Francisco Examiner,
August 27, 1998, and yet another chose to follow up on the article, “Audit finds
stockbrokers treat women differently,” San Francisco Chronicle, March 22, 1995,
because of her political convictions. Of course, studies of college students, such
as “More students drinking to get drunk, study finds,” San Francisco Examiner,
September 11, 1998, generate interest among most students.

Studies reported in the newspaper typically use statistics to analyze data
collected by survey, experiment, or observationally (examples of each of these
appear in Chapter 5). But in some cases, the simple act of collecting and report-
ing numerical data has a positive effect. For example, around 1990, Texas began
requiring every school and school district in the state to report average test
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scores for all grades in each of several ethnic groups. This provides an incentive
for schools to improve performance across these sub-populations.

Another example of the value of public statistics is the Toxics Release Inven-
tory, the result of laws in 1984 and 1990 that require industrial plants to release
information on pollutants released and recycled each year. Both the Texas schools
and the environmental releases improved after these innovations. Although one
cannot be sure of causal links in these observational settings (see page 72), our
point is that gathering and disseminating information can stimulate understand-
ing and action.

1.5 The best of the best

This book collects our favorite demonstrations, activities, and examples. But
among these we have some particular favorites that get the students thinking
hard about problems from unexpected angles. If you only want to use a few of
our activities, we suggest you try these first.

• Where are the cancers? (page 13)
• World record times for the mile run (page 20)
• Handedness of students (page 21)
• Guessing exam scores (page 25)
• Who opposed the Vietnam War? (page 27)
• Metabolic rates of animals (page 35)
• Tall people have higher incomes (pages 39 and 137)
• Sampling from the telephone book (page 48)
• How large is your family? (page 56)
• An experiment that looks like a survey (page 66)
• Randomizing the order of exam questions (page 68)
• Real vs. fake coin flips (page 105)
• What color is the card? (page 111)
• Weighing a “random” sample (page 120)
• Where are the missing girls? (page 121)
• Coverage and noncoverage of confidence intervals (pages 126–128)
• Shooting baskets (page 134)
• Examples of lying with statistics (page 147)
• How many quarters are in the jar? (page 204)
• What is the value of a life? (page 210)
• Subjective probability intervals (page 216)
• Helicopter design project (page 259)

1.6 Our motivation for writing this book

This book grew out of our shared interest in teaching. We describe three events
in our teaching career that influenced its creation.
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The first time that one of us taught a statistics course, we took ten min-
utes halfway through the course and asked the students for anonymous written
comments. As we feared, most of comments were negative; the course was in
fact a disaster, largely because we did not follow the textbook closely, and the
homeworks were a mix of too easy and too hard. Our lectures were focused too
much on concepts and not enough on skills, with the result that the students
learned little of either. This experience inspired us, in the immediate time frame,
to organize our courses better (and, indeed, our courses were much more suc-
cessful after that). We were also inspired to begin gathering the demonstrations,
examples, and teaching tools that ultimately were collected in this book, as a
means of getting the students more actively involved in their own learning.

Another time, one of us was asked to teach a special seminar in probability
for a small number of advanced undergraduate students who showed promise for
graduate study. We were asked to break from the traditional lecture style and
have students read original research papers even though they had no probability
background before starting the seminar. This was a tall order, but the students
did not disappoint us. The experience opened our eyes to the variety and level
of work that students could tackle with the right kind of guidance, and as a
result, we started to experiment with projects and advanced work in our regular
courses.

Then in 1994, we jointly led an undergraduate research project in statistical
literacy. The students’ enthusiasm for the project surprised and inspired us, and
led to the design of our course packets in statistical literacy (Chapter 6). This
project further sparked discussions on ideas for making classroom lectures more
fun for students and on ways to design meaningful course projects, and after
years of sharing ideas and techniques, we decided to write this book to provide
a resource for other instructors of statistics. We hope you find it useful.
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Table 1.1 Demonstrations, examples, and projects that can be used in the first part

of an introductory statistics course. See also Tables 1.2–1.3 and Chapter 12. Some

activities are listed more than once because we return to them throughout the course.

Concept Activities
Introducing data collection 2.1: Guessing ages

2.5: Collecting handedness data

Numeracy 2.3: Estimating a big number

Relevance of statistics 1.4: Why is statistics important?
2.2: Where are the cancers?
2.4: What’s in the news?

Time plots, interpolation 3.2.1: World record times for the mile run
and extrapolation 3.8.2: World population

Histograms 3.3.2: Handedness of students
3.3.3: Soft drink consumption

Means and medians 3.4.1: Average soft drink consumption
3.4.2: The average student

Scatterplots 3.5.1: Guessing exam scores
9.2: Psychometric analysis of exam scores

Two-way tables 3.5.2: Who opposed the Vietnam War?

Normal distribution 3.6.1: Heights of men and women
3.6.2: Heights of conscripts
3.6.3: Scores on two exams

Linear transformations 3.7.1: College admissions
3.7.2: Social and economic indexes
3.7.3: Age adjustment

Logarithmic transformations 3.8.1: Amoebas, squares, and cubes
3.8.2: World population
3.8.3: Metabolic rates
5.1.2: First digits and Benford’s law

Linear regression with 4.1.2: Tall people have higher incomes
one predictor 4.1.3: World population

Correlation 4.2.1: Correlations of body measurements
4.2.2: Exam scores and number of pages

written
9.2: Psychometric analysis of exam scores

Regression to the mean 4.3.1: Memory quizzes
4.3.2: Scores on two exams
4.3.2: Heights of mothers and daughters
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Table 1.2 Demonstrations, examples, and projects that can be used in the middle

part of an introductory statistics course. See also Tables 1.1–1.3 and Chapter 12. Some

activities are listed more than once because we return to them throughout the course.

Concept Activities
Introduction to sampling 5.1.1: Sampling from the telephone book

5.1.2: First digits and Benford’s law
5.1.5: Simple examples of sampling bias
5.1.6: How large is your family?
8.1: Weighing a “random” sample

Applied survey sampling 5.1.3: Wacky surveys
5.1.4: An election exit poll
5.2: Class projects in survey sampling
6.6.2: 1 in 4 youths abused, survey finds
14: Activities in survey sampling

Experiments 5.3.1: An experiment that looks like a survey
5.3.2: Randomizing the order of exam questions
5.3.3: Soda and coffee tasting
6.6.1: IV fluids for trauma victims
10.5: Ethics and statistics
16.4: Designing a paper “helicopter”

Observational studies 4.1.2: Tall people have higher incomes
5.4.1: The Surgeon General’s report on smoking
5.4.2: Large population studies
5.4.3: Coaching for the SAT
6.6.3: Monster in the crib
9.1: Regression of income on height and sex

Statistical literacy 6: Statistical literacy and the news media
10: Lying with statistics

Probability and 7.2: Random numbers via dice or handouts
randomness 7.3.1: Probabilities of boy and girl births

7.3.2: Real vs. fake coin flips
7.3.3: Lotteries

Conditional probability 7.3.1: Was Elvis an identical twin?
7.5.1: What color is the other side of the card?
7.5.2: Lie detectors and false positives

Applied probability 7.4.1: Lengths of baseball World Series
modeling 7.4.2: Voting and coalitions

7.4.3: Probability of space shuttle failure
7.6: Crooked dice and biased coins
9.3: Success rates of golf putts
13.1.1: How many quarters?
13.1.2: Utility of money
13.1.4: What is the value of a life?
13.1.5: Probabilistic answers to exam questions
15.4: Does the Poisson distribution fit real data?
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Table 1.3 Demonstrations, examples, and projects that can be used in the last part

of an introductory statistics course. See also Tables 1.1–1.2 and Chapter 12. Some

activities are listed more than once because we return to them throughout the course.

Concept Activities
Distribution of the 8.2.1: Where are the missing girls?

sample mean 8.2.2: Real-time gambler’s ruin
8.3.4: Poll differentials

Bias and variance 2.1: Guessing ages
of an estimate 8.1: Weighing a “random” sample

8.3.1: Biases in age guessing
Confidence intervals 8.3.2: An experiment that looks like a survey

8.3.3: Land or water?
8.3.4: Poll differentials
8.4.1: Coverage of confidence intervals
8.4.2: Noncoverage of confidence intervals
8.6.1: How good is your memory?
8.6.2: How common is your name?
13.2.2: Subjective probability intervals
13.2.5: Hierarchical modeling and shrinkage

Hypothesis testing 5.3.2: Randomizing the order of exam questions
7.3.2: Real vs. fake coin flips
8.3.5: Golf: can you putt like the pros?
8.5.1: Land or water?
8.5.1: Evidence for the anchoring effect
8.5.2: Detecting a flawed sampling method
8.5.3: Taste testing projects
8.5.4: Testing Benford’s law
8.5.5: Lengths of baseball World Series

Statistical power 8.2.1: Where are the missing girls?
8.7.1: Shooting baskets

Multiple comparisons 8.7.2: Do-it-yourself data dredging
8.7.3: Praying for your health

Multiple regression 9.1: Regression of income on height and sex
9.2: Exam scores
16.3: Quality control

Nonlinear regression 9.3: Success rate of golf putts
9.4: Pythagoras goes linear
16.4: Designing a paper “helicopter”

Lying with statistics and 10.1: Many examples from the news media
statistical communication 10.2: Selection bias

10.4: 1 in 2 marriages end in divorce?
10.5: Ethics and statistics
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First week of class

On the first day of class, in addition to introducing the concepts of probability
and statistics, and giving an overview of what the students will learn during the
term, we include class-participation demonstrations and examples. Then we start
with descriptive statistics, as discussed in the next chapter. We often begin the
first class with an activity on variation, such as the age-guessing demonstration
or the cancer example described here. In the first week, we also discuss numeracy,
address the question of why statistics is important, and collect data on students
to use later in the course. We like to get students involved right away and set
the expectation for plenty of class participation.

2.1 Guessing ages

This demonstration illustrates concepts of data collection and variation. Ahead
of time, we obtain 10 photographs of persons whose ages we know but will not
be known by the students (for example, friends, relatives, or non-celebrities from
newspapers or magazines) and tape each photo onto an index card. We number
the cards from 1 to 10 and record the ages on a separate piece of paper.

As the students are arriving for the first class, we divide them into 10 groups,
labeled as A through J, arranged in a circuit around the room. We pass out to
each group:

• A large sheet of cardboard on which we have written the group’s identifying
letter,

• One of the ten photo cards, and
• A copy of the form shown in Fig. 2.1.

We then ask the students in each group to estimate the age of the person in
their photograph and to write that guess on the form. Each group must come
up with a single estimate, which forces the students to discuss the estimation
problem and also to get to know each other. We then explain that each group
will be estimating the ages of all 10 photographed persons, and that the groups
are competing to get the lowest error. Each group passes its card to the next
group (A passes to B, B passes to C, . . ., J passes back to A) and then estimates
the age on the new photo, and this is continued until each group has seen all
the cards, which takes about 20 minutes. We walk around the room while this
is happening to keep it running smoothly.

11
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Guessing ages. For each card your group is given, estimate the age of the person
on the card and write your guess in the table below in the row corresponding to
that numbered card. Later, you will be told the true ages and you can compute
your errors. The error is defined as estimated minus actual age.

Estimated Actual
Card age age Error

1
2
3
4
5
6
7
8
9

10

Fig. 2.1 On the first day of class, divide the students into 10 groups and give one

copy of this form to each group. They fill it out during the age-guessing demonstration

(Section 2.1).

We then go to the blackboard and set up a two-way table with rows indicating
groups and columns indicating cards. We have a brief discussion of the expected
accuracy of guesses (students typically think they can guess to within about 5
years) and then, starting with card 1, we ask each group to give its guess, then
we reveal the true age and write it at the bottom margin of the first column of
the table. We do the same for card 2. At this point, there is often some surprise
because the ages of some photos are particularly hard to guess (for example,
we have a photo of a 29-year-old man who is typically guessed to be in his late
thirties). We introduce the concept of error—guessed age minus actual age—and
go back to the blackboard and write the errors in place of the guessed ages.
For each of the remaining cards, we simply begin by writing the true age at the
bottom, then for each entry in that column of the table we write the error of the
guess for each group.

Figure 2.2 shows an example of a completed blackboard display with the
results for all 10 cards. At this point we ask the students in each group to
compute the average absolute error of their guesses (typically some students
make a mistake and forget to take absolute values, which becomes clear because
they get an absurdly low average absolute error, such as 0.9). Typical average
absolute errors, for groups of college students guessing ages ranging from 8 to
80, have been under 5.0. We have found that—possibly because of the personal
nature of age guessing, and because everybody has some experience in this area—
the students enjoy this demonstration and take it seriously enough so that they
get some idea of uncertainty, empirical analysis, and data display.
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Avg. Students
Card abs. in group

Group 1 2 3 4 5 6 7 8 9 10 error # Sex
A +14 −6 +5 +19 0 −5 −9 −1 −7 −7 7.3 3 F
B +8 0 +5 0 +5 −1 −8 −1 −8 0 3.7 4 F
C +6 −5 +6 +3 +1 −8 −18 +1 −9 −6 6.1 4 M
D +10 −7 +3 +3 +2 −2 −13 +6 −7 −7 6.0 2 M/F
E +11 −3 +4 +2 −1 0 −17 0 −14 +3 5.5 2 F
F +13 −3 +3 +5 −2 −8 −9 −1 −7 0 5.1 3 F
G +9 −4 +3 0 +4 −13 −15 +6 −7 +5 6.6 4 M
H +11 0 +2 +8 +3 +3 −15 +1 −7 0 5.0 4 M
I +6 −2 +2 +8 +3 −8 −7 −1 +1 −2 4.0 4 F
J +11 +2 +3 +11 +1 −8 −14 −2 −1 0 5.3 4 F

Truth 29 30 14 42 37 57 73 24 82 45

Fig. 2.2 Errors in age guesses from a class of eighth graders, as displayed on the

blackboard. For the first two cards, we wrote the guessed and true ages, then we

switched to writing the true age and the estimation error for each group. At the end,

the groups were compared using the average of the absolute values of the errors. The

sexes and group sizes are shown because one of the students in the class commented

that the girls’ guesses were, on average, more accurate.

The age-guessing demonstration is extremely rich in statistical ideas, and we
return to it repeatedly during the term. The concepts of bias and variance of
estimation are well illustrated by age guessing: we have found the variance of
guesses to be similar for all the photos, but the biases vary quite a bit, since
some people “look their age” and some do not (see Fig. 2.2). Later in the course,
important points of experimental design can be discussed referring to issues
such as the choice of photographs, the order in which each group gets the cards,
randomization, and the practical constraints involved in running the experiment.
This is also an interesting example because, even if the experiment is randomized,
it does not yield unbiased estimates of ages. In addition, the data from the study
can be used as examples in linear regression, the analysis of two-way tables,
statistical significance, and so forth.

2.2 Where are the cancers?

We often conclude the first day of class by passing out copies of Fig. 2.3; this
is a map of the United States, shading the counties with the highest rates of
kidney cancer from 1980–1989. We ask the students what they notice about the
map; one of them points out the most obvious pattern, which is that many of
the counties in the Great Plains but relatively few near the coasts are shaded.
Why is this? A student asks whether these are the counties with more old people.
That could be the answer, but it is not—in fact, these rates are age-adjusted.
Any other ideas? A student notes that most of the shaded counties are in rural
areas; perhaps the health care there is worse than in major cities. Or perhaps
people in rural areas have less healthy diets, or are exposed to more harmful
chemicals. All these are possibilities, but here is a confusing fact: a map of the
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Highest kidney cancer death rates

Fig. 2.3 The counties of the United States with the highest 10% age-standardized

death rates for cancer of kidney/ureter for U.S. white males, 1980–1989. Hand this map

out to the students and ask why most of the shaded counties are in the center-west of

the country. See Section 2.2 for discussion.

lowest age-adjusted kidney cancer death rates also mostly highlights rural areas.
We show the students Fig. 2.4.

At this point, the students are usually stumped. To help them, we consider
a county with 100 people: if it has even one kidney cancer death in the 1980s,
its rate is 1 per thousand per year, which is among the highest in the nation.
Of course, if it has no kidney cancer deaths, its rate will be lowest in the nation
(tied with all the other counties with zero deaths). The observed rates for smaller
counties are much more variable, and hence they are much more likely to be
shaded, even if the true probability of cancer in these counties is nothing special.
If a small county has an observed rate of 1 per thousand per year, this is probably
random fluctuation, but if a large county such as Los Angeles has a very high
rate, it is probably a real phenomenon.

This example can be continued for use in a course on statistical modeling, de-
cision analysis, or Bayesian statistics, as we discuss in Section 13.2.1. In addition,
Section 3.7.3 describes a class demonstration involving age adjustment.

2.3 Estimating a big number

For this activity, we ask the class to guess how many school buses operate in
the United States. Some students will speak up and guess; we then ask the
students to pair up and for each pair to write a guess on a sheet of paper. (We
have students guess to warm them up for the class discussion that follows, and
students typically work more systematically and give more reasonable answers
when they work in pairs or small groups.) As a motivation, we will give a prize
(for example, a school-insignia T-shirt) to the pair of students whose guess is
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Lowest kidney cancer death rates

Fig. 2.4 The counties of the United States with the lowest 10% age-standardized

death rates for cancer of kidney/ureter for U.S. white males, 1980–1989. Surprisingly,

the pattern is somewhat similar to the map of the highest rates, shown in Fig. 2.3.

Hand this map out to the students only after they have discussed the previous map.

closest to the true value. How can we check whether these guesses are reasonable
and improve upon them? We lead the class through a discussion: how many
people are there in the United States, how many children of school age, how
many of them ride the bus, how many students per bus, and so forth. The
resulting estimate should have a great deal of uncertainty, but it will probably
be closer to the truth than most of the original guesses, as well as focusing our
attention on what parts of the problem we understand better than others. The
students are learning “numeracy” and the propagation of uncertainty, which
are important in practical uses of statistics. Further discussion here can lead
to additional statistical issues, including the reliability of data sources and the
design of data collection (how could we more accurately estimate the different
factors in our estimate). We repeat the class-participation exercise a few times
during the term using other uncertain quantities (for example, how many Smiths
are listed in the telephone book of Oakland, California, a city of 400 000 people)
when we have five minutes available at the end of class. (The numbers of school
buses and Smiths are given on page 265.)

2.4 What’s in the news?

News reports with shocking or humorous titles can make for good ice-breakers in
the first week of class. We choose news stories that report on statistical results
from recent studies, and hand out, or put on an overhead projector, excerpts from
these news reports. We read the title and short excerpt aloud and get a discussion
going by asking students to describe the main goal of the study and to identify
the subjects of the study, including how they are enrolled in the study and the
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Fig. 2.5 Example of a display of fragments of newspaper articles compiled for the

What’s in the News class-participation exercise described in Section 2.4.

response measured on them. Figure 2.5 displays fragments of three stories that
have generated plenty of student remarks: “1 in 4 youths abused, survey finds”
(San Francisco Examiner, October 4, 1994), “Infant deaths tied to premature
births” (New York Times, March 1, 1995), and “Surgeons may operate better
with music: Toscanini for a tonsillectomy, Bach for brain surgery” (San Francisco
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Examiner, September 21, 1994). In comparing the data collection techniques of
these three studies, we point out that the children in the abuse study are sampled
at random, the babies are part of a large observational study, and the surgeons
participated in an experiment. The provocative titles catch students’ attention,
and our discussion of the reported studies is a springboard for introducing the
types of studies they will learn about in the course.

2.5 Collecting data from students

Please indicate which hand you use for each of the following activities by putting
a + in the appropriate column, or ++ if you would never use the other hand for
that activity. If in any case you are really indifferent, put + in both columns.
Some of the activities require both hands. In these cases the part of the task, or
object, for which hand preference is wanted is indicated in parentheses.

Task Left Right
Writing
Drawing
Throwing
Scissors
Toothbrush
Knife (without fork)
Spoon
Broom (upper hand)
Striking match (hand that holds the match)
Opening box (hand that holds the lid)
Total

Right − Left: Right + Left: Right − Left
Right + Left :

Create a Left and a Right score by counting the total number of + signs in
each column. Your handedness score is (Right − Left)/(Right + Left): thus, a
pure right-hander will have a score of score (20 − 0)/(20 + 0) = 1, and a pure
left-hander will score (0 − 20)/(0 + 20) = −1.

Fig. 2.6 Handedness inventory. Have each student fill out this form and report his

or her total score. Students can later divide into pairs and sketch their guesses of the

histogram of these scores for the students in the class, as described in Section 3.3.2 and

shown in Fig. 3.2.

It is traditional at the beginning of a statistics course to collect data on
students—each student is given an index card to write the answers to a series
of questions and then these cards are collected and used to illustrate methods
throughout the semester. For example, when we teach sampling, we use the
cards as a prop. They represent the class population, and we mix them up on
the desk and have students pick cards at random for our sample (Section 14.1.2).
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Also, when we teach regression and correlation, we bring to class a scatterplot of
student data to study. For example, we compare a scatterplot of the height and
hand span for the students in our class to Pearson’s data on university students
collected over one hundred years ago (Section 4.2.1).

Possible information that can be asked include questions on student activities
outside the classroom, such as the amount of soda drunk yesterday (see Section
3.3.3) or the time spent watching television last night. Physical measurements,
such as the span from the thumb to the little finger (see Section 4.2.1), can be
measured on the spot by handing out a sheet of paper with a photocopy of a
ruler on it. Students enjoy completing the handedness form in Fig. 2.6, which is
the basis for a demonstration described in Section 3.3.2. Data can be displayed
on a blackboard using a projected grid (see Section 3.1).



3

Descriptive statistics

Descriptive statistics is the typical starting point for a statistics course, and
it can be tricky to teach because the material is more difficult than it first
appears. We end up spending more class time on the topics of data displays
and transformations, in comparison to topics such as the mean, median, and
standard deviation that are covered more easily in the textbook and homework
assignments. Data displays and transformations must be covered carefully, since
students are not always clear on what exactly is to be learned. In presenting the
activities in this chapter, we focus on specific tasks and topics to be learned.
Also, as always, the activities are designed to be thought-provoking and relate
in some way to the world outside the textbook.

3.1 Displaying graphs on the blackboard

A useful trick we have learned for displaying graphs is to photocopy a sheet of
graph paper onto a transparency sheet and then project it onto the blackboard.
This is helpful with histograms, scatterplots, least-squares lines, and other forms
of data display and calculations because we can then display information on
both the transparency and the blackboard. For example, we can plot data on the
transparency and then have students draw a regression line on the blackboard.
Or we can display one set of axis labels on the transparency and another on the
blackboard.

A related trick, when gathering data from students, is to pass around the
class an indelible marker and a transparency sheet with axes and grid already
labeled, with instructions for each student to mark his or her data point on the
graph (for example, plotting mother’s height vs. his or her own height). Different
colors of marker can be passed out with instructions, for example, for males and
females to use different colors.

3.2 Time series

Time series are probably the simplest datasets for students to visualize and
display. We present here a time-series extrapolation problem with a surprise
twist. Section 3.8.2 describes how we involve the class in another time series
example—world population over the past 2000 years—when covering logarithms.

19
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Fig. 3.1 World record times in the mile run since 1900. Blow up this graph onto

a transparency and display it on the blackboard with the portion after 1950 covered

up. Then ask the students to extrapolate to the year 2000. It is surprising that the

approximately linear trend continues unabated.

3.2.1 World record times for the mile run
We blow up and photocopy Fig. 3.1 on a transparency and project it on the
blackboard, but with the right half of the graph covered, so that the students see
the world record times for the mile run from 1900 to about 1950. We then ask how
well a straight line fits the data (reasonably well) and get a student to come to the
blackboard and draw a straight-line fit with chalk on the blackboard, extending
to the year 2000 and beyond. We discuss interpolation and extrapolation: is
the straight-line prediction for the year 2100 reasonable? What about the year
2000? The students agree that these extrapolations will be too optimistic since
there is some minimum time that will never be attained, and they agree on
an extrapolated curve that flattens out a bit between 1950 and 2000. We draw
this extrapolation on the blackboard, and then prepare to reveal the covered-up
half of the curve, so that the students can compare their extrapolation to what
actually happened.

We then reveal the right half of the curve: amazingly, the linear extrapolation
fits pretty well all the way to the year 2000—in fact, the time trend is actually
slightly steeper for the second half of the century than for the first half. We were
pretty shocked when we first saw this. Of course, we wouldn’t expect this to
work out to the year 2050 . . .

3.3 Numerical variables, distributions, and histograms
3.3.1 Categorical and continuous variables
When introducing numerical variables, we begin with some simple variables such
as sex (categorical), age (continuous), and number of siblings (numerical and
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discrete) that are defined on individuals. We do not bother to gather data from
students here—the idea is simply to define the concepts based on familiar ex-
amples. We then introduce some more complicated examples such as income
(continuous but with a discrete value at zero) and height of spouse (continuous
but undefined if you have no spouse).

Other discussion-provoking examples are not hard to find. For example, con-
sider the following table of variables labeled as “categorical” in an introductory
statistics textbook:

Variable Possible categories
Dominant hand Left-handed, right-handed
Regular church attendance Yes, no
Opinion about marijuana legislation Yes, no, not sure
Eye color Brown, blue, green, hazel

Of all of these, we would consider only eye color to be reasonably modeled as
categorical. Handedness is more properly characterized as continuous: as Figs.
2.6 and 3.2 indicate, many people fall between the two extremes of pure left-
and pure right-handedness. Church attendance could be measured by a numer-
ical frequency (for example, number of times per year), which would be more
informative than simply yes/no. The three options for opinion about marijuana
legislation could be coded as 1, 0, and 0.5, and one could imagine further iden-
tifying intermediate preferences with detailed survey questions.

Histograms are a key topic at the beginning of a statistics course—they are
an important way of displaying data and also introduce the fundamental concept
of a statistical distribution. Unfortunately, they can be hard to teach to students,
partly because they seem so simple and can be confused with other sorts of bar
graphs. (For a histogram or distribution, it is necessary to display counts or
proportions, which means that some population of items needs to be defined.)
We have developed an activity for this topic that we describe below in the context
of some examples that have worked well in our classes.

3.3.2 Handedness

In the first week of class, we collect data from students, including their handed-
ness scores, which range from −1 to 1 (see Fig. 2.6). Then, at the point when
we are introducing histograms and distributions, we divide the class into pairs,
give each pair a sheet of graph paper, and give them two minutes to draw their
guess of the histogram of the handedness scores of the students in their class. We
then present one group’s histogram on the blackboard (it typically looks like Fig.
3.2a), and invite comments from the class. Since they have all just worked on
the problem, many students are eager to participate. We correct the drawn his-
togram following the suggestions of the class, then display the actual histogram,
which we have prepared ahead of time. An example from a recent class appears
in Fig. 3.2b. We also discuss with the students the perils of bins that are too
narrow (losing the shape of the distribution amid the small sample size) or too
wide (thus missing some of the detail about the distribution).
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Typical guessed histogram

Handedness score
−1.0 −0.5 0.0 0.5 1.0

Actual handedness data

Handedness score
−1.0 −0.5 0.0 0.5 1.0

0
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4
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1
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2

Fig. 3.2 (a) A guess from a group of students of the histogram of handedness scores

in their class (see Fig. 2.6); (b) actual data. After completing their handedness forms

but before seeing this sort of graph of real data, the students should try in pairs to

guess the shape of the distribution of responses.

3.3.3 Soft drink consumption

How much soda do people drink?, we ask the students in our class. After some
discussion, it is clear that the answer is expressed better as a distribution than a
single number. Once again, we divide students into pairs and ask them to sketch
on graph paper their guesses of the distribution of daily soft drink consumption
(in ounces) by persons in the United States (for concreteness, we just consider
regular (nondiet) sodas), then we display one group’s guess on the blackboard.
Drawing this distribution is tricky because there will be a spike at zero (corre-
sponding to the people who drink no soda) which cannot be put on the same
scale as the continuous histogram. We suggest solving this problem by drawing
a spike at zero and then labeling the graph (for example, 70% of the mass of the
distribution is at 0 and 30% is in the rest of the distribution).

We then compare the students’ guesses to published estimates of soda con-
sumption. For example, Fig. 3.3 shows the responses of almost 50 000 adults in
a random-sampled nutrition survey in 1995, giving their daily consumption of
regular (nondiet) soft drinks. If we have collected data from the students on this
topic we compare it to the students’ guesses too. For example, Fig. 3.4 shows a
histogram of the regular soda consumed by students in a statistics class the day
before this material was covered in class.

3.4 Numerical summaries

We introduce the mean and median through the histograms of distributions we
have already examined.

3.4.1 Average soft drink consumption

The mean regular soft drink consumption can be computed from the distribution
as follows. First, we visually estimate the mean of the nonzero part of the dis-
tribution. We can do this by identifying the median and then recognizing that,
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All persons in the survey
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Fig. 3.3 Histograms of number of ounces of regular (nondiet) soft drinks consumed

per day from a national survey of 46 709 persons in the United States, for (a) all

respondents, and (b) respondents who reported positive consumption. The spike in the

first histogram indicates the 61% of the people who reported consuming no regular soft

drinks. The graphs exclude the fewer than 1% of respondents who reported consuming

more than 100 ounces per day.

Students in the class:  yesterday's consumption
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Fig. 3.4 Histogram of number of ounces of regular (nondiet) soda consumed by

students the day before this topic was covered in class. The spike in the histogram

indicates the 69% who reported consuming no regular soft drinks that day. Compare

to the survey data in Fig. 3.3a.

since the distribution is skewed to the right, the mean will be larger than the
median. We then compute the mean of the entire distribution, accounting for the
spike at zero. For example, if the mean of the nonzero part of the distribution
(that is, the average daily soda consumption for adults who drink soda) is 20
ounces, and 70% of the mass of the distribution is at zero, then the average daily
soda consumption for all persons is,

70% · 0 + 30% · (20 ounces) = 6 ounces.

We can compare the students’ guesses to published estimates of soda con-
sumption. For example, in the 1995 nutrition survey (Fig. 3.3), 61% of the people
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reported drinking no regular (nondiet) soft drinks, and of the remaining 39%,
the mean consumption was 18.3 ounces per day, which yields an overall mean of
7.2 ounces per day.

But other sources give different estimates. For example, the Statistical Ab-
stract of the United States reports average soft drink consumption as 43.2 gallons
per year in 1991. If we multiply by 128 and divide by 365.24, this yields 15.1
ounces per day of all soft drinks, and multiplying by 75% (the proportion of soft
drink consumption that is nondiet, according to the survey) gives an estimate of
11.3 ounces per day of regular soft drinks. As another example, in a class survey,
we find that 24 of the 35 students drank no regular soda the day before the
survey was taken, and the remaining students drank an average of 16.4 ounces,
which gives an overall average of 5.1 ounces of regular soda consumed that day.
The students can discuss why the different sources give such different estimates.

In any case, the published estimates can be used as a check on the students’
guesses (Section 3.3.3). In particular, if a student’s histogram yields an average
of 24 ounces per day, it is probably too high by at least a factor of 2. This is a
rich example because we can discuss both the shape and the numerical values of
the distribution.

3.4.2 The average student

Today, none of us wants to be average, but in 1835 the average man was a symbol
of an egalitarian society. According to Quetelet, a nineteenth century statistician,
“If an individual at any given epoch in society possessed all the qualities of the
average man, he would represent all that is great, good, or beautiful.”

We like to summarize the results from our class survey and describe the
average student. For one of our classes, the individual who, as Quetelet puts it,
possesses all the qualities of the average student, is 67.3 inches tall, watches 58
minutes of television per day, drinks 5.1 ounces of regular soda and 1.8 ounces
of diet soda per day, comes from a family of 2.7 children, and is 0.49 male. From
this amusing account of an average student, we discuss averages and medians for
continuous and discrete numerical variables.

3.5 Data in more than one dimension
When we introduce scatterplots to students, we also explain that graphs can
display data in many more than two dimensions. On a scatterplot itself, different
symbols can be used for different points (for example, to illustrate males and
females in Fig. 3.5). Another categorical variable can be coded by color, and the
size of each point can code a continuous variable. Even more information can
be shown using arrows (as in a plot of wind speeds and directions), and one
can go further by placing multiple scatterplots in a single display, in which the
positions of the scatterplots themselves convey information. We do not discuss
such complicated graphs further in the course, but we want students to think
about and be aware of such possibilities.

To allow students to understand some of the possibilities and challenges of
multidimensional data displays, we set up prepared examples for class discussion.
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Fig. 3.5 Actual vs. guessed midterm exam scores for a class of 53 students. Each

symbol represents a student; empty circles are men, solid circles are women, and ? has

unknown sex. The 45◦ line represents perfect guessing, and the dotted line is the linear

regression of actual score on guessed score. Both men and women tended to perform

worse than their guesses.

Here we give one example each of continuous and discrete data.

3.5.1 Guessing exam scores

We sometimes include a question at the end of an exam asking the student to
guess his or her total score on the other questions of the exam. As an incentive,
the student receives five points extra credit if the guess is within ten points of
the actual score. When the students complete their exams, we keep track of the
order in which they are handed in, so that we can later check to see if students
who finish the exam early are more or less accurate in their self-assessments than
the students who take the full hour. When grading the exams, we do not look
at the guessed score until all the other questions are graded. We then record
the guessed grade, actual grade, and order of finish for each student. We have
three reasons for including the self-evaluation question: it forces the students to
check their work before turning in the exam; it teaches them that subjective
predictions can have systematic bias (in our experience, students have tended
to be overly optimistic about their scores); and the students’ guesses provide us
with data for a class discussion, as described below.

Figure 3.5 displays the actual and guessed scores (out of a possible score of
125) for each student in a class of 53, with students indicated by solid circles
(women), empty circles (men), and ? for a student with unknown sex. (This
student had an indeterminate name, was not known by the teaching assistants,
and dropped the course after the exam.) The points are mostly below the 45◦ line,
indicating that most students guessed too high. Perhaps surprisingly, men did
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Fig. 3.6 Difference between actual and guessed midterm exam scores, plotted against

the order of finishing the exam. The exact order is only relevant for the first 20 or 25

students, who finished early; the others all finished within five minutes of each other at

the end of the class period. Each symbol represents a student; empty circles are men,

solid circles are women, and ? has unknown sex. The horizontal line represents perfect

guessing. The students who finished early were highly optimistic, whereas the other

students were less biased in their predictions.

not differ appreciably from women. The dotted line shows the linear regression of
actual score on guessed score and displays the typical “regression to the mean”
behavior (see Section 4.3).

A class discussion should bring out the natural reasons for this effect. Figure
3.6 shows the difference between actual and guessed scores, plotted against the
order of finish. Many of the first 20 or 25 students, who finished early, were highly
overconfident; whereas the remaining students, who took basically the full hour
to complete the exam, were close to unbiased in their predictions. Perhaps this
suggests that students who finish early should take more time to check their
results. (The students who finished early did, however, have higher than average
scores on the exam.) Other studies have found that students’ test performances
are overestimated by their teachers as well.

The data also have a detective-story aspect that can be fun to discuss. For
example, why do the guesses scores max out at 115? Since students got extra
credit for a guess within 10 points of their exam score, and the exam was only
worth 125 points, it would not make sense to guess higher than 115. (In fact, how-
ever, all four students who guessed 115 were overconfident about their grades.)
What about the student with uncertain sex who guessed 65 and scored 30? How
could someone guess so poorly? There could be a logical motivation, based on
the following reasoning: if he or she scored below 55 on the exam, he or she would
drop the course anyway. The extra credit points would then only be useful with
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Fig. 3.7 Actual vs. guessed midterm exam scores for students in two terms of intro-

ductory statistics classes. The dots represent students in the first term; the asterisks

represent students in the second term, who were shown the data from the first term

(Figs. 3.5 and 3.6) a week before the exam. The students in the second term gave pre-

dictions that were less biased. A square scatterplot is used because the horizontal and

vertical axes are on the same scale.

a score above 55, hence the guess of 65. In fact, the student did drop the course
after the low exam score.

When teaching this course again, we varied the procedure by handing out
Figs. 3.5 and 3.6 a week before the midterm exam, discussing the overconfidence
phenomenon, and warning them that the same question would appear on their
exam. We were encouraged to find that, thus prepared, the students’ guesses
were less biased than those of the earlier class. Figure 3.7 displays the results for
the unprepared class (indicated by dots, the same data as displayed in Fig. 3.5)
and the prepared class (indicated by asterisks).

3.5.2 Who opposed the Vietnam War?

To give our students practice in working with discrete data, we hand out copies
of the partially filled table in Fig. 3.8 and ask them to guess the numbers to fill
in the blanks. The table summarizes public opinion about the Vietnam War in
1971 among adults in the United States as classified by their education level. We
give the students two minutes to fill out the table (in pairs, of course) and then
discuss the results. We ask one student to present his or her pair’s guessed table
on the blackboard, and we begin by checking it for arithmetic: the numbers in
each column must add up to 100% and the numbers in the top and bottom row
must average, approximately, to 73% and 27%, respectively. (More precisely, if
the numbers in the table are

p1 p2 p3

1 − p1 1 − p2 1 − p3
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In January 1971 the Gallup poll asked: “A proposal has been made in Congress
to require the U.S. government to bring home all U.S. troops before the end
of this year. Would you like to have your congressman vote for or against this
proposal?”
Guess the results, for respondents in each education category, and fill out this
table (the two numbers in each column should add up to 100%):

Adults with:
Grade school High school College Total

education education education adults
% for withdrawal
of U.S. troops (doves) 73%
% against withdrawal
of U.S. troops (hawks) 27%
Total 100% 100% 100% 100%

Fig. 3.8 In-class assignment for students to get experience in discrete-data displays.

Students should work on this in pairs filling out the table. We discuss their guesses and

then reveal the true values (see page 266).

and the proportion of adults with grade school, high school, and college education
are λ1, λ2, λ3 (with λ1 + λ2 + λ3 = 1), then λ1p1 + λ2p2 + λ3p3 = 0.73. Since
λ1, λ2, λ3 are each approximately 1/3, the average (p1 + p2 + p3)/3 must be
approximately 0.73.)

We then ask the student at the blackboard to explain his or her numbers and
ask the other students in the class for comments. Finally, we present the true
numbers, which typically differ dramatically from students’ guesses (see page
266). This is an interesting example because it connects the mathematics of tab-
ular displays to an interesting historical and political question. The key link is
that, if some group supports withdrawal by more than 73% (the national aver-
age), then some other group must support it by less than 73%. Thus, the table
of percentages (technically, the conditional distribution of the survey response
conditional on education) focuses on differences among the educational groups,
which is of political interest.

3.6 The normal distribution in one and two dimensions

We illustrate the one-dimensional normal distribution with examples that are
twists on the typical example of men’s heights. We also examine students’ exam
scores from previous classes; these scores provide information that catches the
attention of our current students, and they are alert to ways in which exam
data depart from normality (for example, in being bounded, discrete, and pos-
sibly skewed or with outliers). We do not spend too much time on examining
such distributions, however, since exploratory analysis is much more fun in two
dimensions, as we illustrated with predicted and actual exam scores in Section
3.5.1 and also with repeated exams in Section 3.6.3 below.
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Fig. 3.9 (a) Distributions of heights of adult men and women in the United States.

(b) Distribution for all adults (52% women, 48% men). The combined distribution has

only one mode because the mean heights of men and women are so close together.
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Fig. 3.10 Distribution of heights of conscripts from Doubs, France. The distribution

appears to be bimodal, but it is an artifact of the conversion of the measurements from

centimeters to inches (see Section 3.6.2).

3.6.1 Heights of men and women

A simple and standard example of the normal distribution is the height of adult
men or women. In the United States, men’s heights have mean 69.1 inches (175.5
centimeters) and standard deviation 2.9 inches (7.4 cm), women’s have mean
63.7 inches and standard deviation 2.7 inches, and both distributions are well
approximated by the normal. The normal distribution is understandable here if
we think of the height of a man or woman as a sum of many small factors, so
that the Central Limit Theorem applies.

Perhaps surprisingly, the combined distribution of the heights of all adults
is not bimodal—the means of the two sexes are close enough that the modes
overlap (see Fig. 3.9). However, data from any specific sample can be bimodal
(see Fig. 4.5 on page 44).
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Fig. 3.11 Grades on midterm exams (each student is indicated by a dot on the graph),

a familiar example with which to illustrate the regression effect. The solid line is the

least-squares prediction, (y − 70) = 0.72(x − 69), which has a slope that is visibly less

steep than that of the 45◦ dotted line. The correlation of the data in this plot is 0.75.

3.6.2 Heights of conscripts

The distribution of the heights of military recruits from Doubs, France, in the
1850s shows two modes (Fig. 3.10), and at that time it was hypothesized that the
two modes came from combining the distributions of two groups of men—Celts
and Burgundians. After the students have seen that the combined distribution of
the heights of men and women is not bimodal, they are suspicious of this claim.
We ask them to come up with a reason for how this could happen.

In this case, rounding is the culprit. The original measurements were reported
to the nearest centimeter, but these measurements were converted to inches and
plotted to the nearest inch, creating an artificial dip at the center of the distri-
bution. The interval from 61 to 62 inches contains counts from two-centimeter
bins, whereas the intervals 59–60, 60–61, 62–63, and 63–64 all contain counts
from three-centimeter bins.

3.6.3 Scores on two exams

Scatterplots of students’ scores on two successive exams is a familiar example
with which to illustrate the regression effect (see, for example, Fig. 3.11). The
regression line of the second exam on the first typically has a slope less than 1,
the students who score the highest on the first exam typically do worse on the
second exam (“regression to the mean”), and so forth. Many students are more
interested in this example than in the traditional bivariate normal example of
parents’ and children’s heights. Students commonly see exam scores represented
as univariate distributions (for example, mean, median, and standard deviation
of scores, stem-and-leaf plots) but the bivariate display stimulates new thoughts.
We return to this example in Section 4.3.2.
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3.7 Linear transformations and linear combinations
When we cover linear and logarithmic transformations in our college statistics
course, we’re really covering high school algebra. But this is often new to the
students since it is an application of algebra, not simply solving mathematical
problems. We attempt to motivate them to learn this difficult material by con-
necting it to real problems (beyond the usual transformation examples such as
exchange rates or converting degrees Fahrenheit to Celsius).

3.7.1 College admissions

Students are always interested in what is needed to get into college. We use
the idea of a college admissions formula to explain linear transformations: for
example, total score = SAT + 1000 · GPA. We start by prompting the students
to guess the mean and standard deviation of the Scholastic Assessment Test
(SAT) scores of the applicants to the university—this is a good way to remind
them of the rule of thumb that approximately two-thirds of the distribution falls
within ±1 standard deviation. A similar exercise works for high school grade
point average (GPA). From there, they are asked to compute the mean and
standard deviation of the total scores of the applicants. After some discussion,
the students realize that the standard deviation of the total score depends on
the correlation of SAT and GPA in the population.

3.7.2 Social and economic indexes

Various social and economic topics lend themselves well to discussion in a statis-
tics class. Opinion polls are a popular source of examples; these are familiar
enough that there is no need for us to discuss them further here. Another pop-
ular topic is census adjustment (see Section 14.6.3), but for an introductory
course we prefer examples whose main interest lies outside of statistics, thus
better demonstrating the pervasive influence of statistical ideas.

An example of a topic in economics is defining economic growth. There is
some controversy about how to measure the size of the economy. The traditional
measure, Gross Domestic Product (GDP), has some problems. For example, if
you and your spouse divorce, have huge legal bills, and have to move to separate
houses, that increases the GDP. But if you stay together and spend quiet after-
noons at home, the GDP remains unchanged. Some economists have suggested
alternative measures of the size of the economy to separately identify productive
and unproductive activities. A discussion on this topic is relevant for a statistics
class.

A related measurement problem arises when defining the rate of inflation. The
Consumer Price Index is defined as the price of a standard “basket of goods,”
and 10% inflation, for example, means that the cost of these items has increased
10% in the past year. But not all the goods increase in price at the same rate.
For example, the prices of high-end computer and electronic equipment typically
decline over time—thus, including these products in the “basket of goods” causes
the official rate of inflation to decrease. But it’s relatively rich people who buy
these items. Thus, the true rate of inflation might be lower for rich people than
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for poor people. More generally, the rates of inflation can be different in differ-
ent sectors of the economy. So choices have to be made in defining the linear
combination that is the official “inflation rate.”

3.7.3 Age adjustment

Comparing the averages of two groups can be misleading if there are lurking
variables. The idea of adjusting an average for these variables is easier to un-
derstand if the students simulate such data. To do this, the students act as our
population, and we use random digits from dice (see Section 7.2) to simulate
their ages and whether or not they have insomnia. The students are divided into
two groups, and the setup is such that the incidence of insomnia is dramatically
different in the two groups, but when we compare people of the same age, the
incidence is the same for the two groups.

If, for example, the classroom has four rows of about 10 students each, we
have each student sitting in the first row roll a die once and add the result (0–9)
to 40 to get his or her age, then on the second roll of the die, if it lands 0 or
1 the student has insomnia. For the second row, the first toss is added to 50 to
find the age of the person, and he or she is an insomniac if the second roll lands
0–2. The third roll consists of 60-year-olds who have a 30% chance of having the
condition, and those in the fourth row are in their 70s and have a 40% chance.

We now divide the class into two groups cutting diagonally across the rows,
so that the first group has one student from the first row, three from the second
row, six from the third row, and nine from the last row, and the other group
contains the remaining students. Then roughly one-third of the first group and
one-fifth of the other group have insomnia. The students see the problem with
this comparison right away, and we ask them to figure out how to fix it while
keeping the same people in each group. We wind up computing the rate of
insomnia by age in each group and then find a weighted average of these rates
for each group. We discuss how the weights can come from the combined age
distribution of the two groups, the age distribution of one of the groups, or the
distribution from some other group.

We tell the students that a similar age adjustment was used in constructing
the maps of cancer rates discussed in the first week of class (see Section 2.2).

3.8 Logarithmic transformations

Logarithms are a topic in mathematics, not statistics, but we teach them in our
introductory course because they are so useful for understanding data, partly
because they allow numbers that vary by several orders of magnitude to be
viewed on a common scale, and more importantly because they allow exponential
and power-law relations to be transformed into linearity. We illustrate in Section
3.8.1 with some simple examples and then follow up in Sections 3.8.2 and 3.8.3
with some applied examples with interesting twists.
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3.8.1 Simple examples: amoebas, squares, and cubes

Logarithms and exponentials are unfamiliar to most students we have taught, so
it makes sense to start with simple examples of exact transformations. We do all
logarithms in the base-10 scale in our introductory classes.

For example, suppose you have an amoeba that takes one hour to divide, and
then the two amoebas each divide in one more hour, and so forth. What is the
equation of the number of amoebas, y, as a function of time, x (in hours)? It can
be written as y = 2x or, on the logarithmic scale, log y = (log(2))x = 0.30x.

Suppose you have the same example, but the amoeba takes three hours to
divide at each step. Then the number of amoebas y after time x has the equation,
y = 2x/3 = (21/3)x = 1.26x or, on the logarithmic scale, log y = (log(1.26))x =
0.10x. The slope of 0.10 is one-third the earlier slope of 0.30 because the popu-
lation is growing at one-third the rate.

In the example of exponential growth of amoebas, y is logged while x remains
the same. For power-law relations, it makes sense to log both x and y, as we
illustrate first with some simple geometrical examples. How does the area of a
square relate to its circumference? If the side of the cube has length L, then the
area is L2 and the circumference is 4L; thus

area = (circumference/4)2.

Taking the logarithm of both sides yields,

log(area) = 2(log(circumference) − log(4))
log(area) = −1.20 + 2 log(circumference),

a linear relation on the log-log scale.
After doing this, we ask students to work in pairs and graph the relation

between the surface area and volume of a cube, which, in terms of the side
length L, are 6L2 and L3, respectively. On the original scale, this is

surface area = 6(volume)2/3,

or, on the logarithmic scale,

log(surface area) = log(6) +
2
3

log(volume).

The students are now prepared for more complicated examples using loga-
rithms to model real data.

3.8.2 Log-linear transformation: world population

Other time series work well to illustrate other points. For example, logarithmic
transformations can be used to explore world population from the year 0 to 2000
(see Fig. 3.12). We show this to students in stages: first, we present the data in
tabular form (the first two columns of Fig. 3.10, which we put on the blackboard
before the class begins), then we graph the raw data (Fig. 3.13a) and then make
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Year Population log10 (population) Residual 10residual

1 170 million 8.230 .258 1.81
400 190 8.279 .037 1.09
800 220 8.342 −.171 .68

1200 360 8.556 −.227 .59
1600 545 8.736 −.318 .48
1800 900 8.954 −.236 .58
1850 1200 9.079 −.145 .72
1900 1625 9.200 −.047 .90
1950 2500 9.398 .107 1.28
1975 3900 9.591 .283 1.92
2000 6080 9.784 .459 2.88

Fig. 3.12 Time series of estimated world population and residuals from a logarithmic

fit, which reveal that the population has been growing even faster than exponentially.

After graphing the data above (see Fig. 3.13), we ask the students to guess the popu-

lation in the year 1400; it was 350 million.
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Fig. 3.13 World population over time, graphed on the original and logarithmic scales.

This is a subtle example since the growth is faster than linear, even on the logarithmic

scales. On the logarithmic graph, the least-squares regression line is drawn; the data in

the original and logarithmic scales, and the residuals from the regression, are given in

Fig. 3.12.

the graph on the logarithmic scale (Fig. 3.13b). On the raw scale, all you can see
is that the population has increased very fast recently. On the log scale, convex
curvature is apparent—that is, the rate of increase has itself increased.

Finally, we display the data for the year 1400, at which time the world popu-
lation was 350 million (actually lower than the year 1200 population, because of
plague and other factors), just to illustrate that even interpolation can sometimes
go awry.

Another possible discussion topic is the source of the population numbers:
for example, how would you estimate the population of the world in the year 1?

We return to this example in Section 4.1.3 to illustrate the use of regression
lines on the logarithmic scale.
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Fig. 3.14 Log metabolic rate vs. log body mass of animals. These data illustrate the

logarithmic transformation, a difficult concept for students. The fitted line has a slope

of about 0.75. See also Fig. 3.15.

3.8.3 Log-log transformation: metabolic rates
A rich source of examples when covering log-log transformations are biological
scaling relations. For example, Fig. 3.14 displays data on log metabolic rate vs.
body mass indicating an underlying linear relation. The scaling on the graph can
be made vivid to the students by pointing to the 70-kilogram man who consumes
about 100 watts; thus, a classroom with 100 men is the equivalent of a 10 000 watt
space heater. By comparison, we ask the students to figure out the amount of
heat given off by a single elephant (which weighs about 7000 kilograms according
to the graph) or 10 000 rats (which together also weigh about 7000 kilograms).
The answer is that the elephant gives off less heat than the equivalent weight of
men, and the rats give off more. We then discuss how to understand this using
logarithms.

What is the equation of the line in Fig. 3.14? The question is not quite as
simple as it looks, since the graph is on the log-log scale, but the axes are labeled
on the original scale. We start by relabeling the axes on the logarithmic (base
10) scale, as shown in Fig. 3.15a. We can then determine the equation of the
line by identifying two points that it goes through: for example, when x = −2,
y = −0.9, and when x = 3, y = 2.8. So, when x increases by 5 units, y increases
by 2.8 − (−0.9) = 3.7 units, and the slope of the line is 3.7/5 = 0.74. Since the
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Fig. 3.15 Fitted curve (from data in Fig. 3.14) of metabolic rate vs. body mass of

animals, on the log-log and untransformed scales. We give these to the students and

ask them to put dots on each graph corresponding to Rat, Man, and Elephant (as

displayed in Fig. 3.14).

line goes through the point (3, 2.8), its equation can be written as,

y − 2.8 = 0.74(x − 3)
y = 0.58 + 0.74x

log (metabolic rate) = 0.58 + 0.74 · log (body mass). (1)

We can exponentiate both sides of (1) to see the relation between metabolic rate
and body mass on the untransformed scales:

10log(metabolic rate) = 100.58100.74 log(body mass)

(metabolic rate) = 3.8 (body mass)0.74
. (2)

This curve is plotted in Fig. 3.15b. So, for example, when body mass is 1 kilo-
gram, metabolic rate is 3.8 watts. When body mass is 10 kilograms, metabolic
rate is 3.8 · 100.74 = 21 watts, when body mass is 100 kilograms, metabolic rate
is 3.8 · 1000.74 = 115 watts, and so forth.

We want to focus on the slope in (1), which is the exponent in (2), so we
write,

log (metabolic rate) = a + 0.74 log (body mass)

(metabolic rate) = A (body mass)0.74
.

For example, if you multiply body mass by 10, then you multiply metabolic rate
by 100.74 = 5.5. If you multiply body mass by 100, then you multiply metabolic
rate by 100.74 = 5.52 = 30.2, and so forth. These are all basic calculations, but
it is useful to work through them in class.

Now we return to the rats and the elephant. The relation between metabolic
rate and body mass is less than linear (that is, the exponent 0.75 is less than
1.0, and the line in Fig. 3.15b curves downward, not upward), which implies
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that the equivalent mass of rats gives off more heat, and the equivalent mass
of elephant gives off less heat, than the men. This seems related to the general
geometrical relation that surface area and volume are proportional to linear
dimension to the second and third power, respectively, and thus surface area
should be proportional to volume to the 2/3 power. Heat produced by an animal
is emitted from its surface, and it would thus be reasonable to suspect metabolic
rate to be proportional to the 2/3 power of body mass. Biologists have considered
why the empirical slope is closer to 3/4 than to 2/3; the important thing here is
to get students thinking about log transformations and power laws.

Our students are typically very uncomfortable with logarithms, and when
covering this material we give them many simple exercises, such as dividing
them in pairs to plot the lines log y = a + 0.74 log x and y = Ax0.74. We also
focus their thinking by pointing out patterns in the animal data; for example,
the males (Bull, Boar, Man, Cock) are all above the line and the females (Cow,
Sow, Woman, Hen) are all below.



4

Linear regression and
correlation

We follow descriptive statistics in our course with a descriptive treatment of lin-
ear regression with a single predictor: straight-line fitting, interpretation of the
regression line and standard deviation, the confusing phenomenon of “regres-
sion to the mean,” correlation, and conducting regressions on the computer. We
illustrate various of these concepts with student discussions and activities.

This chapter includes examples of the sort that are commonly found in statis-
tics textbooks, but our focus is on how to work them into student-participation
activities rather than simply examples to be read or shown on the blackboard.

4.1 Fitting linear regressions
We have found that students have difficulty with the algebra of linear equations;
for example, it is far from intuitive that the line going through the point (x̄, ȳ)
and with slope b has the equation, y = ȳ + b(x − x̄). Thus, when introducing
linear regression, we start with algebraic exercises with straight lines in various
examples.

In this section we present some simple drills illustrating the mathematics
of least-squares regression and then discuss two examples where least-squares
fits are informative but not quite ideal for the data at hand. In presenting the
examples, we focus first on the mechanics of the model—in particular, on the
interpretation of the fitted line. We then introduce the concept of residual stan-
dard deviation, that not all points will fall exactly on the line. Finally, we look
more carefully at the data and discuss with the students the limitations of the
least-squares fits.

4.1.1 Simple examples of least squares
We use simple scatterplots to introduce straight-line fitting. We bring to class a
handout of four scatterplots (Fig. 4.1), divide the students into pairs, and ask the
students in each pair to draw the best-fitting line for predicting y from x from the
data on each plot. We don’t go into the exact definition of a best fit yet—we just
tell them that we want to predict y from x and let them loose on the problem.
Once they have drawn their lines, we have them compute their predictions for
each yi and the sum of squared errors. Then we pass out red pencils and ask
each pair to mark a red × at the average y-value for each observed x (see Fig.

38
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Fig. 4.1 We present these simple scatterplots to students to teach least-squares fitting

of a line to points. Students sketch on each plot what they think is the best-fitting line

for predicting y from x. The example is continued in Fig. 4.2.

4.2). Then they find the best-fitting line to the crosses and compute the sum of
squared errors for predicting yi from the red line.

For a couple of the scatterplots, the placement of the points suggests the
wrong line to the naive line-fitter. The students are surprised to find the red line
outperforms their line in these cases, and at this point we begin the discussion
of minimizing square error in the y-direction.

4.1.2 Tall people have higher incomes

To demonstrate linear regression, many examples are possible. We use a regres-
sion of income on height, because it has a story with lurking variables to which
we can return in the discussion of multiple regression at the end of the semester
(see Section 9.1). Our focus here is on the interaction with the students more
than the example itself.

Before class begins, we set up Fig. 4.3 on a transparency and project it onto
the blackboard. We trace the lines and label the axes of the graph, then turn off
the projector, but leave it in place.

We begin the discussion by asking students if they think that taller people
have higher earnings (that is, income excluding unearned sources such as interest
income). If so, by how much? We draw on the blackboard a pair of axes repre-
senting earnings and height, and a point at (66.5, 20 000): the average height of
adults in the United States is about 5′6.5′′ and their average earnings (in 1990)
were about $20 000. We then draw a line through this central point with slope
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Fig. 4.2 The solid line in each plot (from Fig. 4.1) shows a student’s guess of the

best-fitting line to the set of points. The student then marks crosses at the average

y-value for each x and draws the best-fitting line to the crosses. In some cases these

lines are quite different, which provides a good lead-in to the method of least squares.

1560, carefully connecting the central point (66.5, 20 000) and two points on the
regression line: (56.5, 20 000 − 10 · 1560) and (76.5, 2000 + 10 · 1560)). We pick
points ±10 inches from the central point just for convenience in calculation and
display.

We explain that this line has equation y − 20 000 = 1560(x − 66.5), or y =
−84 000 + 1560x. We tell the students that this is the regression line predicting
earnings from height. We now ask the students to work in pairs and sketch
a scatterplot of data that are consistent with this regression line. They need
one more piece of information: the standard deviation of the residuals, which is
19 000. We show this on the graph by two dotted lines, parallel to the regression
line, with one line 19 000 above and the other line an equal distance below.
Approximately 68% of the data should fall in this region, but plotting the points
is tricky because of the constraint that earnings cannot be negative.

We then turn on the projector and display the graph of the actual survey
data (Fig. 4.3) on the blackboard. (The survey may have its own problems of
response and measurement error, but that is not our point here.) On the scale
of the actual data, the regression slope ($1560 per inch of height) is small but
undeniably positive. (We discuss statistical significance later in the course; see
Section 9.1.1.)

We then ask the students how do we interpret the constant term in the
regression: that is, the value −84 000 in the equation, y = −84 000 + 1560x (see
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Fig. 4.3 Earnings vs. height for a random sample of adult Americans in 1990. The

heights have been jittered slightly so that the points do not overlap.

the regression table at the bottom of Fig. 4.4)? The answer is, −84 000 is the
y-value of the regression line where x = 0—that is, the predicted value of income
for an adult who is zero inches tall. In this example, such an extrapolation is
meaningless. That is why we prefer to work with the form, y = ȳ + b(x − x̄); in
this case, y = 20 000 + 1560(x − 66.5).

The next question is how to interpret the result that taller people have higher
earnings? The students realize that men are taller than women and tend to make
more money; thus, sex is a lurking variable. We return to this example using
multiple regression in Section 9.1. (In fact, it turns out that height is correlated
with earnings even after controlling for sex.)

At the conclusion of the discussion, we hand out copies of Fig. 4.4, which
shows what we had to do to clean the data file before running the regression.
They can also use this as a template when doing their computer homework
assignments. We explain to the students that linear regression is not the best
model for this sort of data (economists might use a logarithmic model, or a tobit
regression), but it is in some ways more useful to illustrate the concept in an
example for which it is not completely appropriate.

4.1.3 Logarithm of world population

We return to the world population data (see Section 3.8.2) to illustrate linear
modeling on a transformed scale. It is worth going through these calculations of
linear regression predictions and errors on the logarithmic scale. We have found
students to have great difficulty with this sort of problem on exams unless they
have practiced it a lot.

A good way to understand the logarithmic model is with the least-squares
line: for the world population data in Fig. 3.12, the years have mean x̄ = 1406,
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. infix earn 203-208 height1 144 height2 145-146 using "wfw90.dat"
(2031 observations read)
. summ
Variable | Obs Mean Std. Dev. Min Max
---------+-----------------------------------------------------

earn | 1380 20290.21 22247.52 0 400000
height1 | 2031 5.138848 .4342736 4 9
height2 | 2031 5.461841 6.692941 0 99

Now let’s look at the height variables (in feet and inches).

. graph height1

. graph height2

Recode the missing data and create a total height variable in inches. Graph it.

. recode height1 9=.
(8 changes made)
. recode height2 99=.
(6 changes made)
. gen height = 12*height1 + height2
(8 missing values generated)
. graph height

The tallest person is 91 inches—that’s 7 feet, 7 inches. We suspect this is a mistake.
We’ll drop this data point and then graph the data.

. drop if height==91
(1 observation deleted)
. graph earn height, xlabel ylabel

The graph showed an outlier at $400 000. This is possible, but we are doubtful. We
drop it and then run the regression and plot the data and regression line.

. drop if earn==400000
(1 observation deleted)
. regress earn height

Source | SS df MS Number of obs = 1379
---------+------------------------------ F( 1, 1377) = 137.21

Model | 4.8773e+10 1 4.8773e+10 Prob > F = 0.0000
Residual | 4.8948e+11 1377 355470204 R-squared = 0.0906
---------+------------------------------ Adj R-squared = 0.0900

Total | 5.3826e+11 1378 390606004 Root MSE = 18854
-------------------------------------------------------------------------

earn | Coef. Std. Err. t P>|t| [95 Conf. Interval]
---------+---------------------------------------------------------------

height | 1563.138 133.4476 11.713 0.000 1301.355 1824.92
_cons | -84078.32 8901.098 -9.446 0.000 -101539.5 -66617.15

-------------------------------------------------------------------------
. graph earn yhat height, connect(.s) symbol(Oi) xlabel ylabel

Fig. 4.4 Log file from Stata showing the steps we had to go through to get the height

and earnings information from the public data file. Stata commands (in typewriter

font and preceded by the “.” prompt) and output (in typewriter font) are inter-

spersed with our comments (in italics). We give this to the students to give them an

idea of the practical difficulties of statistical analysis.
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the log (base 10) populations have mean ȳ = 8.92, and the regression slope is
b = 0.000 687, with a residual standard deviation of 0.265. We plot this line
on the blackboard (where the data are displayed, having been projected from
a transparency with graph paper, as described in Section 3.1) and then spend
some time discussing the interpretation of the least-squares line (see Fig. 3.13b).

First, the regression line goes through x̄ and ȳ, which means that, accord-
ing to the line, in the year 1406 the log population was 8.92, so the popu-
lation was 108.92 = . . . somewhere between 108 and 109 . . . that is, between
100 million and 1 billion . . . checking on the calculator, it is 831 million. The
slope of the line is 0.000 687, which means that in every year, the log popula-
tion increases by 0.000 687, which means the population increases by a factor
of 100.000 687 = 1.001 58. That’s a pretty small amount. What about every 100
years? In 100 years, the regression line increases by 0.0687, so the population
would be multiplied by 100.0687 = 1.17, an increase of 17%. In 200 years, this
becomes a factor of 100.0687·2 = 1.172 = 1.37, that is, an increase of 37%, and so
forth. The residual standard deviation implies that we can expect the predictions
to be off by about 0.265, and a range of ±0.265 on the log scale corresponds to
a range of [10−0.265, 100.265] = [0.54, 1.84] in the scale of population. That is, we
expect the true value to be between 54% and 184% of our prediction.

We conclude with an examination of the residuals themselves, which show a
pattern indicating a changing slope over time, with a higher rate of increase in
recent years.

4.2 Correlation
We cover correlation immediately after linear regression, and we define the cor-
relation coefficient between x and y as the regression slope, after both variables
have been scaled to have standard deviations of 1. This allows us to continue
to develop students’ intuitions about regression effects. We illustrate correlation
with data collected from students: physical measurements, grades, and simple
quizzes or memory tasks that can be performed in class. This builds upon our
earlier use of correlation between exam scores (see Fig. 3.11) to illustrate the
concept of a bivariate distribution.

4.2.1 Correlations of body measurements

It is traditional to look at correlations of measurements of body parts in individ-
uals or compared to relatives or spouses. We have fun collecting measurements
of unusual body parts on students in our classes. For example, we pass out strips
of paper marked with a centimeter rule and have students measure the span of
their right hand (distance from thumb to little finger when the fingers are spread
apart), the length of their left foot, or the length of their left forearm. Or if we
have a small class, we have students stand at the blackboard and measure their
arm span. We pair this new body measurement up with the student’s height to
discuss correlation (see Fig. 4.5).

In our discussion, we compare our data with those studied by Karl Pearson
at the beginning of the twentieth century. These data were also collected from
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Fig. 4.5 Height and span of right hand for students in a statistics course. (The points

are jittered slightly so that they do not overlap.) The average height is 66.5 inches

with a standard deviation of 4.5 inches, the average hand span is 23.5 centimeters with

a standard deviation of 2.5 centimeters, and the correlation is 0.74. This scatterplot

combines men (empty circles) and women (solid circles). When considered separately,

the 41 women had an average height of 63.4 inches with standard deviation 2.5 inches,

average hand span of 22.2 centimeters with standard deviation 1.7 centimeters, and a

correlation of 0.29. The 29 men had an average height of 70.5 inches with standard

deviation 3.2 inches, average hand span of 25.5 centimeters with standard deviation

2.0 centimeters, and a correlation of 0.57.

university students. Today’s students are taller than students 100 years ago, but
the correlations between lengths of various body parts has remained about the
same.

Sometimes, we surreptitiously lump data for men and women together—the
correlation then becomes much higher than for each group alone—and we ask
our students why they think the correlation is stronger now than it was 100 years
ago. After they come up with a few plausible (but false) explanations, we reveal
to them that we have combined the data—and then we discuss, using a diagram
of a scatterplot, why the correlation is higher for the mixture than for either sex
alone.

4.2.2 Correlation and causation in observational data

To make a different point, we recorded one year, for each student, the score on
the final exam and the number of pages used by the student in the blue book
to write the exam solutions. The two variables were negatively correlated. Since
then, we have used these data to illustrate Simpson’s paradox and the distinc-
tion between correlation and causation. A naive interpretation of the negative
correlation between pages written and exam scores would suggest that students
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could raise their scores (on average) by writing less. But this is not so—for any
given student, it would only help to write more. This is similar to the high scores
of the students who finish early on exams (see Section 3.5.1): students who re-
quire the entire class period to finish their exams have lower scores, on average,
than those who finish early, but, for any given student, staying on and working
through the entire class period can only increase his or her score.

These examples are a natural lead-in to other discussions of correlation and
causation. For example, people who own BMWs have bigger bank balances, on
average, than people who own Volkswagens; but this does not mean that if you
sell your Volkswagen and buy a BMW, you will have more money in the bank.
For another example, baseball players with higher batting averages receive higher
salaries, on average; does this mean that if a professional baseball player raises
his batting average he will likely get a higher salary? Well, yes . . ., but why is
that? Obviously the correlation alone is not enough to convince us.

4.3 Regression to the mean
We use a series of examples and class activities to demonstrate the ubiquity of
regression to the mean. This is a notoriously difficult topic to understand, and
we hope that we give students a chance to see the connections to correlation and
regression by involving them in several examples.

4.3.1 Mini-quizzes

We introduce the concept of “regression to the mean” with a demonstration
in which students are given two short tests separated by a few minutes. The
students can be tested on just about anything; it is important, however, that the
test have a mix of skill and luck so that scores are neither completely random
nor completely predictable. One thing we have tried, which works but is not as
exciting as we might want, is memory testing: we read aloud a list of fifteen
words, then wait 15 seconds, then ask each student to write all of these words
he or she remembers. We explain the task to the students ahead of time (so that
they know to try to memorize the words), and they typically can remember 5 to
10 of the words. We use different sets of 15 words for the two tests.

After the first test, we tally their scores and ask each student what score
they expect to get on the second test. Then we compare these guesses to what
actually happens. Typically, students expect to do about the same on the second
test as the first, but actually the students who do worst on the first test tend
to improve, and the students who do best tend to decline. For example, Fig. 4.6
shows results from a class of 25 students.

We then ask the students why these improvements and declines occurred.
They generally give explanations specific to the example: the students who did
the best relaxed on the second quiz, the students who did poorly tried harder,
and so forth.

Fundamentally, these explanations are not correct. It would be more accurate
to say that some people do better on this test than others, but the very best
scores on the first test are from people who are both good and lucky. They will
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Fig. 4.6 Number of words successfully remembered (out of 15) in each of two succes-

sive memory quizzes: each dot indicates a student in the class. The solid line shows the

regression line, which can be compared to the 45◦ line showing y = x. Students who

perform poorly on the first test tend to improve, and high performers tend to decline

(or, at least, not increase as much as the students who performed poorly the first time),

an instance of the regression effect.

still probably do well on the second test, but most of them will not be so lucky the
second time. However, we defer the discussion on this until we have considered
some more examples.

4.3.2 Exam scores, heights, and the general principle

We next remind students of the data on scores in two successive midterm exams
(Section 3.6.3). The students who performed the best on the first exam tended
to decline on the second exam, and those who performed the worst tended to
improve. This pattern is clear in the regression line (see Fig. 3.11). As with the
memory quizzes described above, the students give specific explanations tied to
the psychology of exam-taking.

We now bring in the killer example, which is also the standard example
of regression to the mean: heights of parents and children. For simplicity, we
consider heights of women and their adult daughters, so that we can ignore the
complications of sex differences. Sometimes we gather data from the students
(simply asking the women in the class to write the heights of themselves and
their mothers); other times we simply present a scatterplot of already-recorded
data. In either case, the data and the regression line show that the tallest women
have daughters who are tall, on average, but closer to the mean in height; and
similarly for the shortest women. We personalize it by considering individual
examples: for example, Janet Reno is 6′2′′ tall; if she has a daughter, she would
probably grow up to be tall, but probably quite a bit shorter than her mother.

What is the explanation for this “regression to the mean”? We point out to
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the class that, mathematically, these data have the same form as the two memory
quizzes or the two exam scores, but it is ridiculous to suggest, for example, that
because Janet Reno is so tall, her daughter will not try so hard and hence will
“regress” toward mediocrity.

The students are finally prepared for the general point, which is such patterns
occur in any pair of variables with correlation less than 1. We remind the class of
the identity r = bsx/sy; hence, the correlation r equals the regression coefficient
b of the standardized scores (for which sx = sy). For example, in the memory
quizzes and the midterm exam scores, even if everybody is trying equally hard
on both exams, the correlation will not be perfect on the two exams, hence the
regression slope of the standardized scores will be less than 1, hence the people
with the highest scores on the first test will decline (relative to the population)
and those with the lowest scores will improve, on average.

We also point out that regression to the mean, like correlation, is symmetric
in the x and y variables. Thus, for example, students who scored best on the
second exam probably were closer to the mean, on average, for the first exam.
And daughters who are much taller than the mean will probably have mothers
who are not so tall. We can confirm this by asking individual short and tall
women in the class what their heights and their mothers’ heights are.



5

Data collection

One way students learn about data collection is actually to collect some data.
This teaches some of the principles of experimental design and also gives the
students a feel for the practical struggles and small decisions needed in real data
gathering. This chapter includes several classroom demonstrations and examples
to illustrate key ideas, as well as examples of instructions for longer projects.

5.1 Sample surveys

It is fun and instructive for students to learn about sampling by conducting
simple classroom or homework assignments in which they use random numbers
to sample from actual populations. Unless it is part of a major class project,
we don’t recommend assignments with personal interviewing—this is too hard,
and the difficulty of contacting people, although providing an important lesson
in itself, is a distraction from the mathematical concepts of sampling.

There are all sorts of examples that don’t involve personal interviews, such
as sampling books from the library, pages from books, and words or letters from
pages.

For actually generating random numbers, we prefer using dice or personalized
sets of random digits rather than computers (can be awkward to use in class)
or random number tables (which are tricky if you want different numbers for
different students); see Section 7.2 for details.

5.1.1 Sampling from the telephone book

Random sampling of telephone book entries is a surprisingly subtle task, as we
show in a demonstration that involves the whole class. The students divide into
pairs (as usual), and we show them a local telephone book, from which we tear
off several pages that we have previously sampled at random. We pass out one
page for each pair of students. We then explain our plan: we would like each
pair to sample 10 entries at random from their phone book page and record the
phone numbers and addresses. (We later use these to demonstrate Benford’s law
as described in Section 5.1.2.)

We ask the students to spend five minutes coming up with a formal sampling
plan for obtaining 10 entries at random from their page. They must use their
random digits or dice (which yield random digits between 0 and 9; see Section
7.2) to do the sampling. We used the Manhattan phone directory, which has five

48
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Page Column Entry Address # Telephone #
1
2
3
4
5
6
7
8
9

10

Fig. 5.1 Form for pairs of students to record their samples from the telephone book,

for the demonstration described in Section 5.1.1.

columns per page with 126 lines in each column. It is thus reasonable for students
to first pick a column and a page (recall that their telephone book pages are two-
sided) and then a line within a column. They can repeat this procedure 10 times
to get their 10 addresses and telephone numbers. (Before class, we prepare a
special “ruler” with a list of numbers from 1 to 126 photo-reduced so that the
numbers exactly line up with a column of the phone book. We hand out copies
of this ruler to all the pairs of students so that, once they have sampled the entry
number, they can easily read off the address and phone number.)

Picking a column and a page is easy (simply roll the die and assign the
numbers 0 through 9 to the 10 columns on the two pages), but getting a random
number between 1 and 126 is more difficult. The simplest approach is to roll the
die three times, once for each digit, and discard if the number is not between 1
and 126. However, this method would require a huge number of die rolls. A more
efficient procedure that some students came up with is to restrict the sampling
from 000 to 199:

1. Roll a die to pick the first digit: select 0 if the die roll is even or 1 if it is
odd;

2. Roll two dice to pick the second and third digits, thus yielding a number
between 000 and 199;

3. If the number was not between 001 and 126, go back to step 1 and reselect
the number.

Of course there are many ways to select an entry at random. Rather than
simply telling them the above procedure, we see what the students come up with
and then lead the class in a discussion. We raise questions such as, What do you
do when the last two rolls gives us too big a number? or What if you sample
a blank line? (In the first case, the answer is to sample a new entry from the
column; in the second, one must sample a new page and column as well. In the
second case, the natural strategy of sampling the next non-blank line would not
work because it would oversample items that fall immediately after blank lines.)
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Fig. 5.2 Section from the white pages of a telephone book. As discussed in Section

5.1.1, blank lines and multiline entries create potential for biases if the sampling design

is not chosen carefully.

Once we agree on a protocol, the students start generating their samples
and collecting data. The students write the information for each entry on a
sheet that we provide (Fig. 5.1). Selecting the 10 random entries and finding the
telephone numbers and addresses takes about 5 minutes. At this point, we ask if
any difficulties arose. As is typical in real-life settings, the act of data collection
reveals problems that were not anticipated in the planning stage.

One difficulty is what to do with listings that take two lines; see, for ex-
ample, Sireesha Katragadda in the displayed phone book page in Fig. 5.2. We
ask students if they encountered any such entries in their sampling (there are
enough in the phone book that the answer will be Yes) and how did they handle
them: for example, what would they do if they had selected line 4 or line 5 from
that column. Typically, the students say that they would record Sireesha Katra-
gadda’s information in either case. We explain that such a procedure would yield
a biased sample, since people with two-line listings would then be twice as likely
to be sampled, and the sample as a whole would overrepresent such people. A
better method is to set up a rule ahead of time, for example, to only record those
phone book entries with a telephone number on the selected line (such as line 5
in this example). If a line without a telephone number (such as line 4) is picked,
the students should resample, just as if they had sampled a blank line or a line
number larger than 126.

Questions of duplicate listings and unequal sampling probabilities lead nat-
urally into a brief class discussion on real-life difficulties in survey sampling. We
ask the students to briefly divide into pairs and come up with possible sources
of bias in telephone sampling. Then we rejoin and consider the possibilities,
including households with multiple telephone numbers, unlisted numbers, non-
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Page Column Entry Address # Telephone #
1 520 5 100 15 W 53 St 586-7149
2 519 2 116 240 W 116 St 663-1076
3 519 4 087 710 West End Ave 749-2245
4 520 2 081 511 E 20 St 533-0614
5 519 4 115 2 Horatio St 206-7914
6 519 3 124 256 . . . 304-2769
7 519 2 110 350 . . . 308-4620
8 520 1 107 129 . . . xxx-2xxx
9 520 5 126 315 . . . xxx-2xxx

10 520 2 040 104 . . . xxx-1xxx

Fig. 5.3 Example of a filled-out form (from a pair of students given pages 519/520 of

the telephone book) for the random sampling demonstration described in Section 5.1.1;

for the last few entries the students just wrote the numerical address and the first digit

of the telephone number suffix, since these were all that were required for the next part

of the demonstration. There is evidence from these data that the students did not do

the sampling correctly. Can you figure out the incorrect sampling method the students

probably used? Think about this before reading on.

response, and multiple people living in a household. (In Fig. 5.2, consider Moshe
Katvan, who appears to be listed at three different telephone numbers at the
same address.)

Finally, we can go back and look at the students’ results and diagnose points
of confusion. For example, Fig. 5.3 shows an example of a form filled out by a
pair of students. A quick glance at this form revealed that the sampling had been
done incorrectly—it is a fun puzzle to figure out the mistake.

The problem with the filled-out form in Fig. 5.3 is that too many of the
entries (7 out of 10) are in the hundreds. When sampling numbers from 1–126,
only about 27/126 = 21% of the numbers should be between 100 and 126. (In
Section 8.5.2, we perform a formal significance test to check if a discrepancy this
large could plausibly have occurred by chance.) We suspect that the students
sampled in the following way:

1. Roll a die to pick the first digit: select 0 if the die roll is even or 1 if it is
odd;

2. Roll two dice to pick the second and third digits, thus yielding a number
between 000 and 199;

3. If the number was not between 001 and 126, go back to step 2 and reselect
the second and third digits.

This method differs from the recommended approach (see page 49) only in step
3: if the number selected is outside the desired range, only step 2 is repeated,
rather than steps 1 and 2. This may seem to be a more economical approach, but
it does not sample all 126 numbers with equal probability but rather oversamples
the numbers between 100 and 126. Instead, it gives a 1/2 probability that the
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First digits of phone First digits of
number suffixes addresses

0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

Fig. 5.4 Copy this sheet onto transparency paper, then pass it around the room along

with a marker so students can tally their results for the telephone book sampling. When

the students are done, you can display it on a screen or blackboard. See Fig. 5.5 for an

example of results.

number begins with a 0 and a 1/2 probability that it begins with a 1.
For another example, we tell the students to imagine a man, a dog, a beetle,

and the following sampling scheme: pick an animal at random, then a leg at
random from the animal selected. Are all twelve legs equally likely to be sampled?

5.1.2 First digits and Benford’s law
The data from the telephone book sampling in Section 5.1.1 can be immediately
used for a fascinating demonstration of the distribution of first digits. We ask
the students to guess the answers to the following questions about the addresses
and phone numbers they have sampled:

1. What proportion of the phone numbers have a 1 for the first digit of the
suffix (for example, 642-1034, or 530-1200)?

2. What proportion of the addresses have a 1 for their first digit (for example,
15 Hill Road, or 124 W 89th St., Apt. 4E)?

Reasonable guesses are 1/10 for the phone numbers and 1/9 for the street ad-
dresses (which cannot start with 0).

The next step is to see what actually happened. We can circulate a marker
and a sheet of transparency paper on which space is allocated for tallying the first
digits of the addresses and telephone number suffixes (see Fig. 5.4). The students
can pass the sheet around and tally their data while the lecture proceeds, and
when they are done we can display the results on the blackboard.

Figure 5.5 shows a typical set of data: the first digits of the phone numbers
are uniformly distributed (as one might expect), but the addresses are much
more likely to begin with low digits. We ask the students why this occurred. The
story for the phone numbers is simple: the last four digits can range from 0000
to 9999, and it is reasonable to assume a uniform distribution (except for minor
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Fig. 5.5 Data from a random sample of telephone-book entries from the class demon-

stration described in Section 5.1.2: (a) first digits of telephone number suffixes; (b) first

digits of addresses. The phone digits roughly follow a uniform distribution, but the

addresses show a striking pattern of many more low than high numbers. The pattern

of the first digits of addresses is characteristic of Benford’s law (see Section 5.1.2). The

lines on the graphs show expected frequencies under the uniform and Benford distribu-

tions, which are in fact consistent with the telephone and address digits, respectively

(see Section 8.5.4 for the formal hypothesis tests).

issues such as that suffixes of 0000 are presumably more likely to be assigned to
businesses and thus would not show up in pages from a residential directory).

But what about the addresses? One answer that comes up is: if a street is
only numbered up to 400, say, then the leading digit is most likely to be a 1, 2, or
3. More generally, there will be some streets numbered only up to 100 (in which
case each digit is roughly equally likely), some numbered up to 200 (and then
about half of the addresses begin with a 1), some numbered up to 300, and so
forth. Considering all of these, it makes sense that 1 is the most common leading
digit, followed by 2, then 3, etc.

More formally, one can model the distribution by assuming that street ad-
dresses are approximately uniformly distributed on the logarithmic scale: that
is, there should be approximately as many addresses between 100 and 200 as
between 200 and 400, or 400 and 800, and so forth. In this case, the probability
that the leading digit is i, for any i between 1 and 9, is log(i + 1)− log(i), which
starts at 0.30 for i = 1 and 0.18 for i = 2 and continues down to 0.05 for i = 9.
This theoretical curve is shown as the line in Fig. 5.5b, and, amazingly enough,
it fits the data well. (See Section 8.5.4 for a formal check of the fit.)

We then briefly relate the history of “Benford’s law,” as this phenomenon
is called, after Dr. Frank Benford, a physicist at General Electric Company in
the 1930s who noticed that in books of logarithms, the pages corresponding to
numbers with a leading digit of 1 were more worn than other pages. (Actually,
this was first noticed by Simon Newcomb in 1881, but Benford rediscovered it.)
Benford followed up by collecting data sets from many different sources in the
natural and social sciences and found that the logarithmic pattern generally held.
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Target Population

Sampling Frame

Sampled Population

Nonresponse
Ineligible

Fig. 5.6 Students fill in this template by identifying the target population, sampled

population, and sampling frame, for surveys discussed in class.

More recently, Benford’s law has been in the news as a method for checking for
fraud in financial data.

5.1.3 Wacky surveys

It is always fun to illustrate lecture points with examples of surveys reported in
the popular press. We choose news stories that report on surveys with possible
sources of selection bias, measurement bias, question bias, nonresponse bias,
and so forth. In class discussion, it’s important to be critical without being
dismissive: we lay out possible sources of bias while at the same time recognizing
that these imperfect survey results might be useful as part of a comprehensive
perspective on an issue. To help students understand the sampling scheme and
identify biases, we hand out copies of the template shown in Fig. 5.6. Students
practice distinguishing between the target population (the group we want to
study), the sampled population (the group from which the sample was taken),
and the sampling frame (the list used to contact the sampled population).

For example, on August 13, 1999, the Associated Press reported on an online
survey conducted by ABC News that estimated there to be 11 million Amer-
icans suffering from “some form of addiction to the World Wide Web.” This
estimate was based on data collected from 17 251 responses to an Internet use
questionnaire distributed and returned through the Web site abcnews.com. Here
the target population consists of persons who use the Web, the sampled popu-
lation are those visits (and submissions) at the ABC News Web site, and the
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sampling frame are the hits on that site. The sampled population is not well de-
fined because we don’t know if a person can complete the survey multiple times.
In addition, sample selection probabilities are unequal: the more time someone
is on the Web, the more likely he or she is to hit this particular site.

As another example (see Section 6.6.2), a telephone survey of 2000 children
ages 10–16 found that 25% of the children were slapped, punched, kicked, hit, or
threatened with an object in the past year by an adult, sibling, or another child.
Here the target population is all children ages 10 to 16 in the United States;
the sampling frame is all phone numbers in the United States; and the sampled
population is children living in a home (as opposed to an institution) with at
least one phone number who would be at home the time of the call and whose
guardian would consent to the interview. Measurement bias is key to this survey.
The definition of child abuse departs markedly from the more common definition
used by the National Crime Survey. The authors of the survey chose a broader
definition of abuse with the goal of raising public awareness about the violence
to which children are exposed.

In another news story, “Poll Finds 1 out of 3 Americans Open to Doubt There
was a Holocaust,” Los Angeles Times, April 20, 1993, the results from a Roper
poll created a big stir. But a closer look at the question asked reveals a potential
problem with question bias: “Does it seem possible or does it seem impossible to
you that the Nazi extermination of the Jews never happened?” The compound
structure of the sentence and the use of the double negative makes the question
confusing. 22% reported that it was possible that the Holocaust didn’t happen,
and 12% didn’t know. A year later, Roper repeated the survey, keeping all other
questions the same and rewording this one: “Does it seem possible to you that
the Nazi extermination of the Jews never happened, or do you feel certain that
it happened?” This time only 1% reported that it was possible that it didn’t
happen, and 8% didn’t know.

Hemenway (1997) reports a more consistent error in survey responses:

Using surveys to estimate rare events typically leads to overestimates. For example, the
National Rifle Association reports 3 million dues-paying members, or about 1.5% of
American adults. In national random telephone surveys, however, 4–10% of respondents
claim that they are dues-paying NRA members. Similarly, although Sports Illustrated
reports that fewer than 3% of American households purchase the magazine, in national
surveys 15% of respondents claim that they are current responders.

Students can discuss possible reasons for this bias and methods of correcting for
it.

5.1.4 An election exit poll

Election polling is a standard example for teaching sample surveys and provides
many interesting examples of successes and failures in sampling. One example
we personally encountered (but, alas, too late to fix) was an exit poll in New
York City, in which pollsters selected a sample of polling places and, at each,
intercepted every fifth exiting voter to ask whom they voted for, demographics
(sex, ethnicity, marital status, income, and so forth), and various other questions
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(including political ideology, previous voting, and opinions about the news me-
dia). But a key piece of information was not gathered by the pollsters . . . (At this
point, we give the students a minute to try to think of the missing information.)
If none of the students figure it out, that’s ok—neither did the political scientist
who conducted the poll: the pollsters should have been instructed to gather in-
formation on the nonrespondents, to record the sex, ethnicity, and approximate
age of the people who refused to cooperate. This would allow some judgment as
to the scale of nonresponse bias.

5.1.5 Simple examples of bias

Ask the students in your class to raise their hands if they love statistics. The
number who raise their hands, divided by the number of students in the room,
is an estimate of the proportion of people with this opinion in the general pop-
ulation. Now give the students a minute to work in pairs and come up with as
many sources of bias as they can think of for this example. These can be listed
on the blackboard and divided into categories: differences between sampled and
target populations (students in a math or statistics course are not typical of all
students, let alone all people, and, in addition, taking a statistics course may
increase your love for the subject!), nonresponse bias (most students hesitate to
raise their hands), and response bias (students may want to please the teacher
and say Yes, or conversely they may be embarrassed and say No even if they do
love the subject).

This mini-example can lead to a class discussion of biased survey questions:
when do the news media or other organizations get misleading impressions be-
cause of question wording? How much of a difference can question wording ac-
tually make? This can be a topic for a class project, in which groups of students
try to come up with loaded survey questions.

5.1.6 How large is your family?

After discussing sampling bias, with examples such as given above, we drive the
point home with a demonstration. Each student is asked to tell how many chil-
dren are in his or her family (“How many brothers and sisters are in your family,
including yourself?”). We write the results on the blackboard as a frequency
table and a histogram, and then compute the mean, which is typically around 3
(see Fig. 5.7 for an example).

We tell the students that the average number of children in families that
were having children 20 years ago (about the age of the students in the class)
was about 2.0. Why is the number for this class so high? Students give various
suggestions such as, perhaps larger families are more likely to send children to
college. After some discussion, someone will realize that if the family had zero
children, they certainly did not send any to college. This is part of the explanation
but not the whole story.

The 2.0 figure is the average number of children when sampling by family;
3.0 is the average number of children when sampling by child. When sampling
by child, a family with n children is n times more likely to be sampled than a
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Family size
(# of siblings,
including self) Count
1 3
2 3
3 5
4 5
5 3
6 or more 0
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Fig. 5.7 Data on number of children in families (displayed as frequency table and

histogram) from students in a typical class. The average is 3.1, which is at first a

surprise, given that the average family has about two children. See Section 5.1.6 for

the explanation.

family with 1 child. This illustrates the general point that it is not enough to say
you sampled at random; you must also know the method of sampling. It can also
be considered as an example of sampling bias (a topic we return to in Section
10.2).

At this point, we can get the students further involved by asking the question,
how can data be gathered to estimate the average number of children per family?
In discussing the problem, students can consider the relative difficulties of cor-
recting the data on students for sampling bias, compared to the direct approach
of sampling families. The former approach is tricky because it still requires some
estimate of the proportion of families with zero children. The students also have
to realize that, for either approach, a careful definition of “family” is required.
We sometimes ask the students how many children their oldest aunt or uncle
has. Leaving out those students who have no aunt or uncle, the average number
of children is much smaller (in one class survey we found it to be about 2.2).

Related issues arise in telephone sampling, when you call a telephone number
at random and then pick a person at random in that household to interview: Is
a person with many phone lines more or less likely to be sampled than a person
with one line? Is a person with many roommates more or less likely to be sampled
than a person living alone?

5.2 Class projects in survey sampling
Chapter 11 discusses various sorts of projects where students can get direct expe-
rience with data collection. One approach we have tried is to have our students
design a questionnaire, develop a sampling plan, collect the survey responses,
clean them and enter them on the computer, analyze the survey data, and write
a report of the findings. This is a big job, and we often run it as a whole-class
project. The project takes the better part of a semester to complete, although
the effort required from each student is limited to a few hours over one or two
weeks because we break the project into smaller manageable tasks where groups
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of students work on these different tasks. We oversee the project by scheduling
groups to report on their work to the rest of the class, and we use this reporting
time to solicit input from all of the students on each aspect of the project. Each
group writes a summary of its contribution, which appears in the final report as
an appendix.

We introduce the project early in the semester and set deadlines for com-
pletion of the main pieces. If the class is large, more than one group works on
the same task. For example, two groups may design questionnaires with the ad-
vantage being that we can merge the best parts of each into one questionnaire.
Typically, one large group of about six to ten students takes charge of data
collection and validation, but everyone in the class helps collect data.

We find that our students really enjoy working on these large projects. The
whole-class format has many advantages. Students can choose the task for which
they are best suited, and the value of the role they play in the process is evident to
everyone in the class because the entire process is viewed collectively. In addition,
the workload for each student is kept to a reasonable level. The instructor’s
involvement at each step helps secure a successful outcome, and it sets a good
example of how to carry out independent research projects.

5.2.1 The steps of the project

Although only a subset of the students work on any one task, we organize class
discussions on all the topics. We provide students with handouts, presented here
in Figs. 5.8–5.12, to clarify each group’s job and to focus our class discussions.

The sampling plan

We ask the team designing the sampling plan to come to class prepared to identify
the following:

• The target population: the group we want to study
• The sampling frame: the list to use to reach the members of the target

population
• The sampled population: the group from which the sample will be taken.

The students must also come up with a probability method to choose individuals
for the sample, and they must specify the sample size.

After the class discussion, the group draws up a formal sampling plan and
submits it for review and finalization by the instructor.

The questionnaire

The entire class first brainstorms to come up with a list of information that they
want to find out about the population. Then we ask smaller groups of students
to bring sample questions to class for discussion. We provide these groups with
a list of examples of what not to do in order to assist them in reducing bias. The
groups must try their questionnaires out on a few guinea pigs to uncover points
of confusion and improve the questionnaire. We combine and edit their efforts
to produce the final questionnaire.
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Designing your sampling plan
You must provide a set of explicit instructions for those in charge of the data collection
and verification stage of the process. This should include instructions on how to follow
up hard-to-reach cases and how to avoid interviewer bias.

• Determine the population to be surveyed. Differentiate between the target popu-
lation and the sampled population.

• What is your sampling frame; that is, how do you plan to reach the members of
the sampled population?

• How do you plan to choose members of the population for your sample? It is not
acceptable to simply use a convenience sample such as any student who walks by
the library. You must employ a probability method for selecting the sample.

• How large should the sample size be? A large sample size has the advantage of
increased accuracy in the estimate of the population percentage. But, keep in mind
the cost of taking a large sample. Here the cost is the time that it will take us to
conduct the survey—including the time to hunt down the hard-to-find students.
You can expect each class member to spend two hours collecting data for the
survey.

Fig. 5.8 First part of instructions for students for the design of their sampling project

described in Section 5.2.1. The instructions are continued in Figs. 5.9–5.12.

Data collection

We expect each member of the class to spend two hours collecting data for the
survey. The data collection team is responsible for providing explicit instructions
on how to do it. They oversee the data collection process, including handling
nonresponse, data entry, and cleaning. We ask the data collection team to give
frequent progress reports in class in order to keep the data collection on track
and so we can step in and help out when problems arise.

Here is an excerpt from one student’s report from the data collection group.

I was assigned to the last discussion section for Stat 21, Room 344 Evans from 3–4
on Tuesday Nov 15. I arrived there early to inform the TA of the purpose of my visit.
We decided to schedule my presentation about halfway into the class; that way tardy
students would have a chance to be surveyed (if they were on my list). As I sat there,
listening to the TA’s lecture, I was going over in my mind the presentation. How can
I make this presentation interesting and effective? I have taken questionnaires before,
and I know that if the questionnaire is not interesting or if the questionnaire does not
engage me in some way then my response is lukewarm and cursory. I have a plan.

I broke the ice by asking about how they feel about the labs in Stat 21, especially
after the TA’s announcement of a lab due next week. I told them my aversion to
labs and how I often postponed them until the last minute. (Most of them smiled
at this point.) I seized the opportunity by telling them about the Stat department’s
idea of redesigning the lab format to a video-game-like format. In order to give them
some concrete ideas about some of the types of possible games, I spoke of kicking Mr.
SD’s ass (excuse my language), philosophizing with Mr. Probability about life, love and
relationships, and playing SimStat. (Their interest was quite high at this point.) Finally,
after telling them that their anonymity will be preserved and about the randomness
of the selection process, I asked them for their input. I decided that, instead of giving
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Writing your questionnaire
The end result of this task is to create a questionnaire, including instructions on how
to complete the questionnaire and how to administer it.

• List the information that you wish to find out about the students. Some ques-
tions may be sensitive or otherwise hard to collect. For example, students may be
unwilling to answer questions about their grades or test scores.

• Create questions for obtaining the information on your list. The way a question
is worded can bias the response.

Confusing, long questions may be left unanswered or misread. For example, “Do
you not believe that video games could possibly not be educational?” is confusing
because of the double negative.

For some questions, it may be difficult to get honest replies. For example, “Do you
use illegally copied video games on your PC?”

For other questions, it may be difficult to get reliable responses. Of the following
two questions, the second will produce more reliable responses: “How many hours
do you spend a week on average playing video games?” “How many hours did you
spend last week playing video games?”

Also, consider the difference between these two questions. “Do you like math?”
“Do you hate math?” Students who like math may be unwilling to admit that
they do, but willing to say that they don’t hate it.

• Organize your questions into a questionnaire. The questionnaire should be easy
to read and easy to answer. It should appear organized and user-friendly. Asking
for personal data at the beginning may turn a respondent off to the entire ques-
tionnaire. Keep your questionnaire short and to the point, and keep in mind the
overall objectives of the study.

• Try your questions out on a few volunteers. These “guinea pigs” may uncover
points of confusion and other problems with the questionnaire. For example, when
asked where they usually play video games—on a home computer, a home system,
or in the arcade—some students checked more than one response. A different
question design might avoid this problem.

• Use your findings from the pilot test to improve your questionnaire. Clean up
confusing or leading questions. Eliminate unnecessary ones. Finalize your ques-
tionnaire.

Fig. 5.9 Second part of instructions for students for the writing their survey form for

their sampling project described in Section 5.2.1. See also Figs. 5.8 and 5.10–5.12.

them rewards after taking the survey, I would give them candies while they were filling
out the survey to keep them thinking about the survey while being satisfied and to
reduce the possibility of doing the survey in a superficial, hurried fashion.

I found two problems with the questionnaire. One is that the respondents chose mul-
tiple answers to questions that were designed for a single answer. For example, question
5 asks for the usual place that the respondent plays the video/computer game. One
respondent checked both arcade and home on a system. Another example is question
17, where, for example, one respondent checked both an A and a B for his expected
course grade. The second problem is missing data. A few respondents chose not to
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Collecting and validating your data
The goal of this task is to collect accurately the information from the students selected
for the sample. This part of the project requires a lot of organization.

• Make a plan for data collection and a procedure for monitoring the progress of
the data collection. Frequent updates and progress reports will ensure fast and
accurate collection. Include in the plan ways to follow up on the nonrespondents.

Be careful that your methods preserve the anonymity of the respondents. Re-
spondents’ names should not appear on the questionnaire. A numbering system
can be used to keep track of who has responded. For example, in the video game
survey, a manila envelope was provided for each section of the class, with a list
of the selected students pasted on the outside of the envelope. Students’ names
were crossed off this list when they returned the questionnaires. Completed ques-
tionnaires were turned in for data entry without any personal identification on
them.

• Develop a training program for the data collectors. They should briefly inform the
respondents about the purpose of the survey. You may want to prepare a short
script for them to read to the respondent before administering the questionnaire.

• Carry out your plan to collect the data. Document your efforts to obtain the
survey results. Be as specific as possible. Keep track of the times and places the
data were collected. Describe your efforts in follow-up. How successful were they?
What problems did you or the respondents encounter?

• Enter your data into the computer and check it for accuracy. Does a preliminary
analysis of the data uncover any problems with the survey design? What was your
response rate? Do the respondents differ from the nonrespondents in some way
that may effect our conclusions?

Fig. 5.10 Third part of instructions for students for the data collection and cleaning for

their sampling project described in Section 5.2.1. See also Figs. 5.8–5.9 and 5.11–5.12.

answer some questions. Overall, however, we had a very high response rate: 92 of the
95 students surveyed completed the questionnaire.

Data analysis

The appropriate analysis of the data depends on the questions asked. At first
we have the analysis team supply the class with preliminary findings, includ-
ing basic tabulations and graphical summaries of the responses to each of the
questions. With these summaries in hand, we brainstorm with the class about
what further analyses should be prepared. We emphasize that it is important to
provide a clear and complete picture of those surveyed, and this includes looking
at the relationships between variables through say cross-tabulations and scatter-
plots. The analysis team supplies the report-writing team with a summary of its
findings as well as detailed numerical and graphical results.

The write-up

We always have a target audience in mind when summarizing the findings of
the survey. For example, we ask the report team to write a memo to the com-
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Analyzing your data
The appropriate analyses of the data will depend on the specific questions asked of
the respondents. In general, the objective of the analysis is to summarize the findings
of the study. It is important to provide as clear and complete a picture as possible of
those surveyed. Be careful not to include too many numbers, charts, and graphs, but
also take care in providing backup information that might not appear in a final report.
It is useful to give a brief “executive summary” of your findings and then more detailed
numerical and graphical results later in the report.

Here are some pointers about what to include:

• Basic tabulations and graphical summaries of the responses to the individual ques-
tions.

• Confidence intervals for population percentages, such as the percentage of students
that played a video game last week.

• Information on the relationships between variables. For example cross-tabulations
of two or three variable may be of interest.

Fig. 5.11 Fourth part of instructions for students for data analysis for their sampling

project described in Section 5.2.1. See also Figs. 5.8–5.10 and 5.12.

Writing up your results
Summarize the findings of the survey. Have a target audience in mind when writing our
report. The data analysis group should have provided a broad overview of the results
and list a few interesting phenomena. Not all of their numbers will appear in your
report. It is up to you to determine which analyses are most informative and most
compelling. Make sure that the final report includes the following information:

• Purpose of the survey.

• Summary of findings and conclusions.

• Brief description of the survey methodology.

• Detailed description of your findings with supporting numerical and graphical
statistics. If possible put the results in context with other findings in the area.

• Discussion of problems encountered, including nonresponse.

• Conclusions and suggestions.

• Appendixes: group reports.

Fig. 5.12 Final part of instructions for students for writing up their sampling project

described in Section 5.2.1. The instructions are continued from Figs. 5.8–5.11.

mittee in charge of designing new computer laboratories, a press release for the
student newspaper on the future plans of math majors, or a report for the Chan-
cellor’s office with recommendations on mandatory community service work for
undergraduates.
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Not all of the numbers, charts, and graphs provided by the analysis group
make it into the body of the final report. The writing team selects those that
succinctly and accurately describe the population of interest. To help shape the
final report, the writing team presents a rough draft to the class for critique.

We ask that the final report includes the following information: the purpose
of the survey, a summary of findings and conclusions, a brief description of the
survey methodology, and a detailed description of the results with supporting
numerical and graphical statistics. We also ask that the report authors put the
results in context with other findings in the area, discuss the problems encoun-
tered, including nonresponse and other potential sources of survey bias, and
include as appendixes the reports from the other groups.

5.2.2 Topics for student surveys
We often choose the topic of study before the semester starts. We collect back-
ground materials (newspaper clippings, research papers, and reports) to frame
the problem, contact authorities on the topic for advice, and arrange guest lec-
tures to discuss the topic with our class. We choose a survey topic according to
current events and political issues on campus, and the group that we study is
usually some subset of the student population. We present three class projects
here to give a flavor for the variety of issues that can be addressed.

Video games

The goal of this survey (Fig. 5.13) was to inform a committee of statistics faculty,
who were designing new interactive computer labs for statistics classes, about
students’ preferences and attitudes toward video and computer games. The target
population was students who would be using the computer labs in statistics
courses, the sampled population was all undergraduates enrolled in Statistics 21,
Fall, 1994, at the university, and the sampling frame was the list of students who
took the midterm exam the week before the survey was conducted. A simple
random sample of 95 of the 310 students were selected for the sample. Several
steps were taken to reduce nonresponse:

1. Each section of the class (a section has 30 students and meets twice a week
with a teaching assistant) was visited on the day that the exams were re-
turned to the students. Before attending section, the teaching assistants had
been informed of the project, and the instructor for the course asked that
they accommodate the data collectors. The surveys were handed out and
collected in section.

2. The data collectors returned to the same section later in the week to reach
any students who had not come to the earlier section meeting.

3. Finally, the names of the students who had not attended either of the two
section meetings were written on the blackboard in the main lecture hall.
The instructor made an announcement at the beginning of class for the
listed students to raise their hands, and questionnaires were distributed to
them and collected in class.

Ultimately, 92 of the 95 students in the sample responded.
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1. How much time did you spend last week playing video and/or computer games?
(C’mon, be honest, this is confidential) Hours
2. Do you like to play video and/or computer games?
� Never played→ Question 9
� Very Much � Somewhat � Not Really � Not at all→ Question 9
3. What types of games do you play? (Check all that apply)
� Action (Doom, Street Fighter)
� Adventure (King’s Quest, Myst, Return to Zork, Ultima)
� Simulation (Flight Simulator, Rebel Assault)
� Sports (NBA Jam, Ken Griffey’s MLB, NHL ’94)
� Strategy/Puzzle (Sim City, Tetris)
4. Why do you play the games you checked above? (Choose at most 3)
� I like the graphics/realism
� relaxation/recreation/escapism
� It improves my hand–eye coordination
� It challenges my mind
� It’s such a great feeling to master or finish a game
� I’ll play anything when I’m bored
� Other (Please specify)
5. Where do you usually play video/computer games?
� Arcade
� Home � on a system (Sega, Nintendo, etc.)

� on a computer (IBM, MAC, etc.)
6. How often do you play?
� Daily � Weekly � Monthly � Semesterly
7. Do you still find time to play when you’re busy (for example, during midterms)?
� Yes (can’t stay away) � No (school comes first!)
8. Do you think video games are educational?
� Yes (or else all my years of playing have gone to waste)
� No (I should have been reading books all those years)
9. What don’t you like about video game playing? Choose at most 3.
� It takes up too much time � It costs too much
� It’s frustrating � It’s boring
� It’s lonely � My friends don’t play
� Too many rules to learn � It’s pointless
� Other (Please specify)
10. Sex: � Male � Female
11. Age:
12. When you were in high school was there a computer in your home?
� Yes � No
13. What do you think of math? � Hate it � Don’t hate it
14. How many hours a week do you work for pay?
15. Do you own a PC? � Yes � No
Does it have a CD-Rom? � Yes � No
16. Do you have an e-mail account? � Yes � No
17. What grade do you expect in this class? �A �B �C �D �F

Fig. 5.13 Questionnaire developed by students for the video game survey described

in Section 5.2.2.
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1. How old were you when you first realized you wanted to study math seriously?
� Ever since I could add! � Elementary school
� Junior high school � High school � College
2. Do you have a parent or close relative who is a mathematician or works professionally
in a math-related area? � Yes � No
If yes please specify: � Father � Mother � Brother � Sister � Other
3. In high school did you take:
Calculus or AP Math � Yes � No
Chemistry � Yes � No
Physics � Yes � No
4. In high school did you have a group of peers to talk about math with?

� Yes � No
5. What has been important to your success in math so far? Choose at most 3.
� Quality of high school education � A teacher showed an interest in me
� Friends support and encouragement � Undergraduate research experience
� Math comes naturally for me � Interesting and talented teachers
� Family support and encouragement � Hard work
� Job experience � Other
6. Why is math a good major for you? Choose at most 3.
� I’m good in mathematics � Lively intellectual community
� Challenging subject matter � Math is fun to me
� Good job opportunities � I know when I have the correct answer
� Aesthetic appeal � I like being able to work alone
� Other
7. If given another chance, would you major in math again? � Yes � No
8. Here at Cal, do you have a group of peers to talk about math with? � Yes � No
9. Do you like math at Cal better than high school math? � Yes � No
10. Do you learn from reading required texts? � Yes � No
11. Most of the time, do you first approach a difficult problem by:

� Writing a formula � drawing a picture
12. How often do you go to your math professors’ office hours?

� Rarely–like for a letter of recommendation
� Occasionally, when I’m really stuck on something
� Regularly to talk about homework

13. Have you ever talked to a professor about graduate school? � Yes � No
14. Do you plan to pursue a graduate degree in mathematical science?
Masters: � definitely � possibly � probably not � no way
PhD: � definitely � possibly � probably not � no way
15. How often do you question your ability to succeed in your field?

� Always � Often � Sometimes � Rarely � Never
16. Major: � Math � Applied Math
17. Are you a double major? � yes in � no
18. So far at Cal, how many units have you completed?
Honors math: units Other math: units
Total: units
19. Cumulative GPA: Math GPA:
20. Sisters: older younger Brothers: older younger
21. Father’s highest degree: Mother’s highest degree:
22. MSAT VSAT
23. Sex: � Male � Female
24. Age:

Fig. 5.14 Questionnaire developed by students for the math major survey described

in Section 5.2.2.
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Math majors

The goal of this survey (Fig. 5.14) was to study the differences between male and
female majors in regards to their course work, self-confidence, and future plans in
mathematics. The faculty and staff of the Mathematics Department gave input
into the design of the questionnaire. For motivation, we provided the class with
related findings from studies of students in mathematics and science. The target
population was all math majors at the university. The sampling frame was the
list of declared and registered mathematics majors in January, 1995. A complete
census was taken because there were only 115 majors. We obtained permission
from the instructors of math courses to approach the majors at the beginning of
the class to complete the survey. For the few majors who were not enrolled in a
math course that semester, we found them outside the meeting places of their
other classes.

Community service

In 1999, California Governor Gray Davis proposed a community service gradu-
ation requirement for all college students in order to instill in them a “sense of
obligation to the future.” A campus task force was formed to prepare a response
to the Governor’s proposal. To help the task force determine the current level of
student participation in service activities, and the general attitude of students
toward community service, we volunteered to work with the task force to design
a survey on the topic.

For background material, we read current news stories such as, “Educators,
Politicians Ponder Forcing Students to Volunteer,” San Francisco Chronicle, May
18, 1999, and the report, “Combining Service and Learning in Higher Education,”
from the Rand Corporation. We met with members of the task force to find out
about existing avenues at the university for students to perform community
service.

The target population was all undergraduates at the university, and the sam-
pling frame was the Registrar’s list of students enrolled in the Spring, 2000,
semester. The questionnaire did not ask for personal characteristics because this
information was available from other sources. The class fine-tuned the question-
naire in two series of pilot studies. Due to confidentiality, our data collection and
subsequent analysis were limited to the pilot studies. We forwarded the findings
to the committee as examples of how they could summarize the final results.

5.3 Experiments
5.3.1 An experiment that looks like a survey
At the point during the term when we are discussing designs of surveys and
experiments, we hand out a folded survey form to each student in the class. We
ask the students to read the forms, answer the questions independently (without
discussing it with their neighbors), and then fold them back up and return them
to the instructor. The form is shown in Fig. 5.15. (Because each student must
separately fill out his or her survey form, this is one of the few demonstrations
in which the students do not work in pairs or groups.)
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We chose (by computer) a random number between 0 and 100.

The number selected and assigned to you is X = .

1. Do you think the percentage of countries, among all those in the United
Nations, that are in Africa is higher or lower than X?

2. Give your best estimate of the percentage of countries, among all those in
the United Nations, that are in Africa.

Fig. 5.15 Handout for the experiment that looks like a survey, described in Section

5.3.1. Make copies of this form for all students in the class. Then write, by hand, “10”

in the blank space for half the forms and “65” on the others. Fold each form, shuffle

them, and hand them out to the students, telling them to answer the survey questions

individually, without discussing with their neighbors.

After the students have answered the questions and returned the forms, we
explain to the students that only two values of X were actually assigned and that
we were interested in finding the relation between X and the students’ responses
on the second question. If the experiment were actually performed with random
numbers from 0 to 100, the analysis would be somewhat more complicated,
because there would then be a continuous range of possible treatments. We then
ask the students what kind of data collection was happening: survey, experiment,
or observational study. In statistical terminology, the units are the students, the
treatments are the hand-written values of X (10 or 65), and the outcome of
interest is the response to the second question.

This experiment is adapted from a published study that reports the median
responses to the second question as 25 and 45, given X = 10 and 65, respectively.
This result is described as an example of the “anchoring heuristic,” in which an
estimate of an unknown quantity is influenced by a previously supplied starting
point. In this example, the value of X should not affect the outcome (after all,
the students were told that X was randomly generated), yet it does!

Now is a good time to discuss the principles of randomization and blindness
in experimentation, now that the students have been subjects in an experiment.
Incidentally, the actual value of the unknown quantity (see page 268) is irrelevant
for this example—we are only studying the differences in responses between the
two groups of students.

In performing this example in our classes, we have replicated the anchor-
ing effect, although its magnitude has not been so dramatic as in the published
literature; for example, histograms of responses for a class of 43 students are
given in Fig. 5.16. When the data have been collected, the two groups can im-
mediately be compared graphically using histograms; typically, as in Fig. 5.16,
the histograms overlap considerably but clearly differ. The dataset can be used
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Fig. 5.16 Responses of students in a small introductory probability and statistics

class to the question, “Give your best estimate of the percentage of countries, among

all those in the United Nations, that are in Africa.” The students were previously asked

to compare this percentage with a specified value X; histogram (a) displays responses

for students given X = 10, and histogram (b) displays responses for students given

X = 65. The students were told that the value of X was chosen at random, and yet it

has an effect (on average) on their responses. Similar results were obtained when the

experiment was repeated in other classes.

throughout the course to illustrate various points, including the mean and me-
dian in skewed distributions, methods of testing the statistical significance of
observed differences between groups, and the distinction between practical and
statistical significance. With classes of about 50 students, we have found the
anchoring effect in this experiment to be on the border of statistical significance
as measured by a t test.

Other examples in which an experiment is embedded in a survey include stud-
ies of question wording, question ordering, and other causes of survey response
bias. In addition, the experiment given here could be made more complex by
randomly ordering the options “higher” and “lower” in the first question of the
survey, thus giving two factors and four possible experimental conditions.

5.3.2 Randomizing the order of exam questions

One very direct experiment we have tried goes as follows. Without the knowledge
of the students in the class, we prepare two versions of the midterm examina-
tion, identical in all respects except that the order of the questions is reversed.
We prepare equal numbers of the two versions and mix them randomly before
handing out one to each student for the exam. (We put each exam question on
a separate page and grade the questions one at a time, so the grading is not
influenced by the order of the questions.) We record the grades achieved by the
two groups of students.

After returning the graded exams to the students, we reveal that there were
two forms of the exam and present the aggregate results; for example, the average
score was 65 for exam A and 71 for exam B. Should we adjust the scores of the
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“exam A” students upward (and the “exam B” students downward) to reflect
that exam A seems more difficult, in retrospect? A student who took exam B
objects, noting that the two exams had identical questions—just the order was
different. But the order could have an effect, right? What if the two forms had
been randomly given to 1000 students and this difference had been observed—
would it be “real” then? The goal here is to get the “exam A” students and
“exam B” students all fired up and holding opposite positions.

How can we address the question of whether the observed difference is due
to the exams or just because, say, the better students happened to take exam
B? We can consider this as an experiment designed to measure the difference
in exam difficulties and use the standard methods to obtain an estimate and
standard error. This demonstration motivates formal hypothesis testing: is the
observed difference statistically significant? Should we adjust the scores and,
if so, how much? (We return to this topic in Section 9.2.1.) To round out the
discussion, we ask: What if the exams differed not just in their ordering, but
in the questions themselves? How would/should our statistical methods change?
This is of course a subtle question with no easy answers. Students have also
raised ethical questions about basing grades on different forms of the exam.

In practice, the quality of the discussion is highly influenced by the observed
difference between groups, which cannot be predicted ahead of time. If the true
difference between the exams is approximately zero and the standard devia-
tion of exam scores is 15, then with a class of 40 students the observed dif-
ference in means has an expected value of zero and a standard deviation of√

152/20 + 152/20 = 4.7. The actual difference might then be in the range of
5–10 points, which is enough for students to care about, or it might be less than
5 points, in which case students might be not be so interested in the result.

We connect to other course material by discussing with the students how we
ensured double-blindness in this experiment. We return to this example at the
end of the course when covering multiple regression (see Section 9.2).

5.3.3 Taste tests

We model an in-class demonstration and a directed project on the famous (to
statisticians) experiment conducted by Ronald Fisher in 1919 when he concocted
an impromptu test of a lady’s ability to taste the difference between two prepara-
tions of tea. This taste test illustrates the principles of randomized experiments
and hypothesis testing.

According to Fisher’s daughter, one afternoon at tea-time in Rothamsted
Field Station in England, a lady proclaimed that she preferred her tea with the
milk poured into the cup after the tea, rather than poured into the cup before
the tea. Fisher challenged the lady, and presented her with eight cups of tea, four
made the way she preferred and four made the other way. She was told that there
were four of each kind, and asked to determine which four were prepared properly.
Unfortunately we do not know how well the lady fared, but Fisher subsequently
used this experiment to illustrate the basic issues in experimentation.
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Soda tasting demonstration

We demonstrate Fisher’s experiment in class where one student attempts to
distinguish between two kinds of soda. We bring to class two cans of chilled soda
(for example, one diet and one regular cola), a bottle of water, eight small paper
cups, paper towels for spills, and eight marbles in a sack, four of one color and
four of another. We also have ready the hypergeometric probabilities for n = 4,
M = 4, N = 8: they are 1/70, 16/70, 36/70, 16/70, 1/70, respectively.

We begin by asking if any students can tell the difference between the two
types of soda. We choose one of the “experts” to demonstrate his or her abilities,
and we request assistance from three other students.

Before setting up the demonstration, we describe Fisher’s design for testing
the expert, and sometimes we extract other possible designs from the class. For
example, we could flip a coin eight times where each time the coin lands heads
a cup is filled with one kind of soda and each time the coin lands tails the cup is
filled with the other kind. (A disadvantage of this design is the possibility that
all eight cups will contain the same kind of soda.) After this discussion, we have
the student-expert leave the room with one of the volunteers whose job is to keep
watch over the expert while we set up the experiment. The other two volunteers
divide the eight cups into two sets of four. They mark each of the four cups in
one set in an inconspicuous place, and fill the cups with the same kind of soda.
The unmarked cups are filled with the other kind of soda. The marbles are used
to determine the order in which the cups are put into a line.

When the student-expert returns, he or she sips the soda, separates the cups
into two groups of four, and tells us which group is which. The water is to
help clear the palate between sips of soda. If the student makes no mistakes, we
declare him or her an expert, and with one or more mistakes we say that the
student did as well as one might expect someone who was just guessing.

Coffee tasting project

After our demonstration, we have students work in groups of two or three to
conduct their own taste test in a directed project outside of class. If all of the
groups perform the same taste test, then their results can be compared. Alter-
natively, the students in each group select their own food for testing. Typically
students compare two brands of food, such as peanut butter, chocolate, or soft
drinks. We encourage them to be creative and conduct an experiment that they
care about; not to simply settle for the milk test (2% versus fat-free) because
it is easily available in the dining hall. One year, a group of students performed
a rum-and-coke taste test. Since then, we make sure we discuss the ethics of
experimentation on human subjects before letting them loose on the project.

We hand out a set of instructions to help them design and carry out their
experiments. We chose to illustrate these instructions using an experiment that
tests a subject’s ability to discriminate between decaffeinated and regular coffee
because it seemed the modern American version of tea tasting. (Cathy, the man-
ager of Peet’s Coffee shop on Domingo Avenue in Berkeley, California, was very
helpful in providing information on brewing and decaffeinating coffee.) These in-
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In this lab, you will design, conduct, and analyze results from your own experiment to
test the sensory discrimination of a person who claims to be able to taste the difference
between regular and decaffeinated coffee. You will need to find such a person for your
experiment.

1. Determine a protocol for your experiment.

(a) What should be done about random variations in the temperature, sweet-
ness, and so on? Before conducting your experiment, carefully lay out the
procedures for making the cups of coffee. Keep in mind that coffee can be
kept warm for about 20 minutes before it starts to turn bitter. Do not reheat
coffee.
Ideally you would want to make all cups of coffee identical, except for the
caffeine. But it is never possible to control all of the ways in which the cups
of coffee can differ from each other. Some ways must always be dealt with by
randomization.

(b) How many cups should be used in the test? Should they be paired? In what
order should the cups be presented? Fisher suggests that the experiment
should be designed such that, “if discrimination of the kind under test is
absent, the result of the experiment will be wholly governed by the laws of
chance.” Also keep in mind that the number and ordering of the cups should
allow a subject ample opportunity to prove his or her abilities and keep a
fraud from easily succeeding at correctly discriminating the type of coffee in
all the cups served.

(c) What conclusion could be drawn from a perfect score or from a test with one
or more errors? For the design you are considering, list all possible results of
the experiment. For each possible result, decide in advance what conclusion
you will make if it occurs. In determining this mapping of outcomes to conclu-
sions, consider the probability that someone with no powers of discrimination
could wind up with each outcome. You may want to make adjustments in your
design to increase the sensitivity of your experiment. For example, if someone
can’t distinguish decaffeinated coffee from regular, then by just guessing, the
guesser should have a small chance of correctly determining which cups are
which. On the other hand, if the taster possesses some skill at differentiating
between the two kinds of coffee, then he or she may make a few mistakes.

2. Write out an instruction sheet for your experimental process. Conduct a “dress
rehearsal” to work out the kinks in the process. After your practice run, you may
want to make changes in your instruction sheet to address any problems that
arose.

3. You should now be ready to conduct your experiment. Record your results care-
fully, and note any unusual occurrences in the experimental process. It may be
a good idea to keep track of the order in which the cups were prepared, and the
order in which they were served to the subject.

4. Summarize your results numerically. Do they support or contradict the claim that
the subject possesses no sensory discrimination? Use your list of all possible events
and subsequent actions to come to a conclusion. Discuss the reasons behind the
decision that you have made.

5. What changes would you make to your experimental process if you had the op-
portunity to do it over again?

Fig. 5.17 Instruction sheet for students for the coffee-tasting project described in

Section 5.3.3.
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structions appear in Fig. 5.17. To help students design their experiment, we also
provide a list of pitfalls that some students have discovered in their experimental
procedures:

The subject simply didn’t like the brand of coffee that I bought. I chose the brand
that I did because it had a decaffeinated and a caffeinated version. If I were to do
the experiment over, I might try to buy a kind of coffee that I knew the expert would
enjoy. This has its own problems because if you choose the expert’s favorite coffee, he
would probably be able to identify the version that he normally drinks (whether it be
caffeinated or decaffeinated) and deduce the other one.

The expert was used to drinking coffee with sugar, and I served the coffee black.
Whether this is an important factor is debatable. I think that if I were to do the
experiment over again, I would sugar the coffee, to simulate as closely as possible the
expert’s usual experience.

Another problem was that after six or seven sips of two different coffees, the expert’s
ability to differentiate was diminished. Both “mistakes” made by our expert were made
in the second half of the tastings. If I were to re-design the experiment, I would leave
some time between each tasting. In order to make sure each cup of coffee was the same,
I could make a single pot and use a thermos to keep it hot throughout the tasting
period.

If we had a chance to do it over again, we would have used saltine crackers rather than
water as a way for the taster to remove residual tastes. Water turned out to be less
effective than we had hoped.

We would choose to blindfold the taste tester. She may have been able to differentiate
the cups of soda by the amount of carbon dioxide in the soda.

With the 20 samples that we used, she had a hard time eating all of it. It was the first
time I had ever seen her full of chocolate.

5.4 Observational studies

In an introductory statistics course, we usually do not teach students how to con-
duct observational studies, but we certainly warn of potential pitfalls in their in-
terpretation. The in-class demonstrations of regression to the mean (Section 4.3)
and adjusting for age as a lurking variable (Section 3.7.3) show some of the pit-
falls of interpreting observational studies. When discussing data collection, we
remind students of these earlier demonstrations to relate data collection to sta-
tistical methods of scatterplots and regressions. These ideas return at the end of
the semester when we discuss multiple regression as a method of adjusting for
lurking variables (see Chapter 9).

Our class discussion of observational studies is grounded in demonstrations
and examples we have already considered in class. An example of an observational
study we have considered so far is the regression of height on income in Section
4.1.2. This mini-study showed that tall people had higher incomes, but this is
hard to interpret because sex is a potential lurking variable: men are taller than
women on average, and they also have higher average incomes. We return to this
example, using multiple regression to control for the lurking variable, in Section
9.1.
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For another example, the test scores of schoolchildren in Texas improved dra-
matically in the 1990s. Is it reasonable to attribute this to the state’s education
reforms (see Section 1.4)? What possible lurking variables could explain the dif-
ference? How could a study be designed to learn more about the effects of school
reforms?

In general, any observational study can have lurking variables, and we dis-
cuss with the students what can be done about this potential problem. Possible
strategies include restricting the lurking variable (for example, studying only
women and looking at the relation of height and income), controlling for the
lurking variable (analyzing income and height separately for men and women),
and balancing (comparing groups of tall and short people, with the two groups
chosen to be the same with respect to their proportions of men and women.

Randomized experiments ensure balance, at least on average: for example, in
the “United Nations” experiment in Section 5.3.1, we shuffled the survey forms
before handing them out to the students. We ask the students how we could have
performed this survey in a less balanced way, and they come up with options
such as giving one form to all the women and the other to all the men, or passing
out one form to the front half of the class and the other to the back.

Many topics can be studied either by experiments or observational studies,
and we can discuss in class the advantages and disadvantages of each form of
investigation. The rest of this section gives examples that we have used as dis-
cussion topics. Another example, in which we focus on ethical issues, appears in
Section 10.5.4.

5.4.1 The Surgeon General’s report on smoking

Evidence from dozens of observational studies formed an essential part of the
Surgeon General’s report in 1964 where it was declared that smoking causes lung
cancer. For our students this seems common knowledge, but that was not the case
forty years ago when nearly half of the adults in the United States smoked. The
early chapters of the Surgeon General’s report describe the criteria for judging
whether smoking is injurious to health, and we like to distribute excerpts from
the report (Fig. 5.18) and discuss the importance of large population studies in
this judgment. Then when we discuss other population studies reported in the
press, the students have a perspective on how to interpret the evidence.

5.4.2 Large population studies

Chapter 6 gives examples of projects and homework assignments involving de-
tailed analyses of observational studies. In addition, we bring news clippings
to class and organize brief in-class activities where students work in pairs to
identify five things about a study: the subjects, the outcome or response mea-
sured on each subject, the comparison groups (or variable), a possible lurking
variable, and the potential problem with the lurking variable. For example, in
“Pregnant Women Warned of Chlorinated Tap Water: Miscarriage Risk—But
More Study Urged,” San Francisco Chronicle, February 2, 1998, the subjects
were 5144 pregnant women enrolled in the Kaiser health plan, the outcome was
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. . . Clinical, pathological and experimental evidence was thoroughly considered and
often served to suggest an hypothesis or confirm or contradict other findings. When
coupled with the other data, results of epidemiologic studies can provide the basis upon
which judgments of causality may be made. . . .
Statistical methods cannot establish proof of a causal relationship in an association.
The causal significance of an association is a matter of judgment which goes beyond any
statement of statistical probability. To judge or evaluate the causal significance of the
association between the attribute or agent and disease, or effect upon health, a number
of criteria must be utilized, no one of which is an all-sufficient basis for judgment. These
criteria include:
a) The consistency of the association
b) The strength of the association
c) The specificity of the association
d) The temporal relationship of the association
e) The coherence of the association
. . .
In order to judge whether smoking and other tobacco uses are injurious to health or
related to specific diseases, the Committee evaluated three main kinds of scientific
evidence:
1. Animal experiments.—In numerous studies, animals have been exposed to tobacco
smoke and tars, and to the various chemical compounds they contain. Seven of these
compounds have been established as cancer-producing . . .
2. Clinical and autopsy studies.—Observations of thousands of patients and autopsy
studies of smokers and non-smokers show that many kinds of damage to body functions
and to organs, cells, and tissues occur more frequently and severely in smokers. . . .
3. Population studies. . . . In retrospective studies, the smoking histories of persons with
a specified disease (for example, lung cancer) are compared with those of appropriate
control groups without the disease. For lung cancer alone, 29 such retrospective studies
have been made in recent years. Despite many variations in design and method, all but
one (which dealt with females) showed that proportionately more cigarette smokers
are found among the lung cancer patients than in the control populations without lung
cancer. . . .
Another type of epidemiological evidence on the relation of smoking and mortality
comes from seven prospective studies which have been conducted since 1951. In these
studies, large numbers of men answered questions about their smoking or non-smoking
habits. Death certificates have been obtained for those who died since entering the
studies, permitting total death rates and death rates by cause to be computed for
smokers of various types as well as for non-smokers. The prospective studies thus add
several important dimensions to information on the smoking-health problem. Their
data permit direct comparisons of the death rates of smokers and non-smokers, both
overall and for individual causes of death, and indicate the strength of the association
between smoking and specific diseases . . .

Fig. 5.18 Excerpt from Chapter 3, Criteria for Judgment; and Chapter 4 Section A,

Kinds of Evidence; of the 1964 Surgeon General’s report on smoking. Hand this out

and discuss issues such as what is meant by “consistency,” “strength,” “specificity,”

and so forth.
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Before After
Control group •
Treated group •

Fig. 5.19 Diagram of available data in a before/after study such as the comparison

of SAT scores before and after coaching as described in Section 5.4.3. The appropriate

comparison would be treated vs. control in the “after” position. In this study, however,

the “before” group is considered as a control, and there is no separate control group.

As a result, it is impossible to separate treatment effects from changes that would have

occurred even without the treatment.

whether the woman had a miscarriage in the first trimester of pregnancy, and the
comparison groups were those who drank 5 or more glasses a day of highly chlo-
rinated tap water, compared to those who drank less water or who drank water
with less chlorine. A possible lurking variable is income because those drinking
“better” water, such as bottled water, may tend to have higher incomes, and
higher-income women tend to have healthier pregnancies.

5.4.3 Coaching for the SAT

For an illustration of the subtleties of observational studies on a topic familiar
to students, we discuss the claims made by some test-preparation organizations
that, with their classes, students gain an average of 100 or more points on the
Scholastic Assessment Test (SAT). We ask the students: do you think that taking
one of these classes would give you (or any other student) 100 extra points? We
divide them into pairs and give them two minutes to think up reasons why this
might be a biased estimate of the effect of test preparation.

The before–after comparison has many problems, most obviously that stu-
dents generally improve their scores even without test preparation, partly be-
cause they are more familiar with the test and partly because the second test is
taken later, and they have learned more material in school. In addition, students
who do relatively poorly are more likely to do test-preparation: if you did well
the first time, you would not bother doing extra studying. This is related to the
regression effect discussed in Section 4.3. Also, the very fact that a student is
taking a test preparation class implies some level of motivation, and maybe such
motivated students would improve a lot even without the formal class.

The fundamental problem is that the “after” scores should be compared, not
to the “before” scores, but to the “after” scores that would have occurred with
no treatment (see Fig. 5.19). Other examples of bias in observational studies
appear in Section 10.1.

For the SAT example, we tell the students about a more careful study that
compared students with and without test preparation: the estimated effect was
about 20 points: a positive effect, but not nearly as large as reported before–after
changes.
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Statistical literacy and the
news media

An important theme in an introductory statistics course is the connection be-
tween statistics and the outside world. We describe here some assignments that
have been useful in getting students to learn how to gather and process infor-
mation presented in the newspaper articles and scientific reports they read. We
developed these assignments with the help of several undergraduate research as-
sistants; we devote an entire chapter to this topic in order to give a sense of
the details that are needed to get students on track with this sort of long-form
assignment. Tracking down reports from newspaper articles can be difficult, and
this assignment seems to work well only when students have direction about how
to do this kind of research.

We discuss three related assignments, which are described in Sections 6.2
and 6.3. For the first kind of assignment, students work through prepared in-
structional packets. Each packet contains a newspaper article that reports on
a scientific study or statistical analysis, the original report on which the article
was based, a worksheet with guidelines for summarizing the reported study, and
a series of questions. For the second kind of assignment, we scale back by reduc-
ing the original report to one to two pages of excerpts that focus mostly on the
study protocol. In the third kind of assignment, each student is required to find
a newspaper article themselves, track down the original report, summarize the
study using our guidelines, and write a critique of the article. Here, we describe
the guidelines we developed to help the student in reading the newspaper article
and original source, and the procedures we used for each type of assignment.

Figure 6.2 provides instructions given to the students for the individual
projects. We also include in Section 6.6 the material from four of the packets,
complete with questions and answers written by students.

6.1 Introduction

Every year we teach one-semester introductions to probability and statistics.
One thing we like to do is hand out clippings of newspaper articles such as “Yes,
People are Right. Caffeine is Addictive,” that describe the results of scientific
studies or statistical analyses. These articles often lead to interesting class dis-
cussions, which led us to wonder (1) How good are the scientific studies that

76
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are reported in the press? and (2) How comprehensively and accurately do the
newspaper articles summarize the findings and implications of the studies?

We embarked on a project, with the help of three students, of clipping news-
paper articles and tracking down the scientific reports on which they were based.
In the process, we created a set of guidelines to help the students summarize rel-
evant information on a scientific study, and using these guidelines as a base, we
developed classroom assignments that focus on understanding the issues involved
in presenting quantitative findings.

Through these assignments, students connect in-class statistical knowledge
to current events, and they learn how to think critically about the information
found in the newspaper. An important component of these assignments, which
sets them apart from other projects that use current newspaper articles, is the
inclusion of the original source in the analysis. We have found that the students
are better able to evaluate the merits of the study and the quality of the reporting
when given the original reports, even though the reports are often quite technical.
They also feel a great sense of accomplishment when they are able to apply their
statistical knowledge to the primary source.

This type of assignment complements a wide range of statistics courses in-
cluding those using the increasingly popular teaching tools based on hands-on
work with data and news clippings.

6.2 Assignment based on instructional packets
From September 12 through November 13, 1994, three undergraduate research
assistants read the New York Times and the San Francisco Examiner and clipped
out every article that reported a scientific study or a statistical analysis, in-
cluding medical and health studies, economic analyses (“Feds, Wilson Dispute
Illegal Immigration Costs”) and social statistics (“Alarming Report on World-
wide Smoking Total”), but excluding highly technical studies, such as reports of
a new gene being located. Newspapers report a large number of opinion polls;
we selected only those with unusual methodological features. For example, “Poll:
More Lawyers See O.J. Walking,” reports on a survey conducted by the National
Law Journal, rather than by one of the leading polling firms.

For each article, we attempted to track down the report or reports on which
the article was based. Of the articles for which we had gathered reports, we
selected a subset of eleven to use for instructional packets. The articles were
chosen for their diversity in statistical methods and subject matter (see Table
6.1). For each study, one of our research assistants prepared a summary, a list of
questions, and answers to the questions. Each of these was reviewed by us and
revised by the student until it was in acceptable shape, while still keeping the
essence of the student’s original input. This procedure resulted in the creation
of the guidelines for summaries presented at the end of this section.

The eleven instructional packets can be used in the classroom in a variety
of ways. Most simply, the students can be given an article and the associated
original report (or can choose an article/report of interest to them from among
our eleven packets), and then be required to summarize the report and article
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Table 6.1 Articles from the New York Times (NYT) and San Francisco Examiner

(SFE) for which we created course packets. In selecting these from an original set of

107 articles clipped out of the newspapers over a two-month period in 1994, we sought

a diversity of kinds of studies (experiments, surveys, economic analyses, etc.) and also

of topics (that is, not just medical studies). Course packet materials for the first four

articles appear in Section 6.6.

Newspaper article Source Kind of study
Giving IV fluids to trauma New Eng. J. Medicine nonrandomized

victims found harmful (NYT) experiment

1 in 4 youths abused, Pediatrics sample survey
survey finds (SFE)

Monster in the crib (SFE) Science News; Pediatrics observational study

Illegal aliens put uneven Office of Governor of model-based
load on states (NYT); California; analyses

Feds, Wilson dispute illegal Urban Institute
immigrant costs (SFE)

Yes, people are right. J. Amer. Med. Assoc. observational study;
Caffeine is addictive. (NYT) randomized expt.

Over-control of eating Pediatrics randomized expt.
leads to fat children (NYT)

Runners are far ahead in Ann. Internal Medicine observational study
aging healthfully (NYT)

Surgeons may operate better J. Amer. Med. Assoc. randomized expt.
with music (SFE)

Walnuts add a happy crunch New Eng. J. Medicine randomized expt.
to life (NYT)

Panel finds no major risk J. Amer. Med. Assoc. meta-analysis
from ‘yo-yo’ dieting (NYT)

Working women say U.S. Dept. of Labor sample survey
bias persists (NYT)

using the guidelines displayed in Fig. 6.1 and to answer additional questions in
the packet (see Section 6.6 for the questions supplied for a sample packet). If
the students need additional help, they can be given a complete packet, with the
worksheet filled in and the questions answered, as an example.

For a slight variation on this assignment, we cut and paste parts of the original
report into a one- to two- page technical summary (see Section 6.6). We use this
alternative for a shorter assignment that focuses more on the design of the study
than on the statistical analysis.
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Guidelines for your summary
Source of newspaper article wire-service, in-depth article, feature story, etc.
Kind of report: medical/technical journal, press release, book, etc.
Summary of article: One-sentence summary of the newspaper article.
Background as taken from the original report.
Objective of the study, as taken from the original report.
Type of study: (a) randomized experiment: treatments under the control of the ex-
perimenter and assigned randomly; (b) nonrandomized experiment: treatments under
the control of the experimenter and assigned non-randomly (for example, the healthy-
looking patients get treatment A and the sick-looking patients get treatment B); (c)
observational study: treatments not under the control of the experimenter (for exam-
ple, the patients choose whether to smoke); (d) sample survey; (e) model-based analysis
(for example, an estimate of the economic effects of immigration); (f) meta-analysis:
an examination of several earlier studies.
Study protocol. This should include: the setting of the study, a description of the
experimental subjects or survey participants, the population to which the results are
generalized, the outcome measurements or responses, control variables, summary of
nonresponse.
Also, as appropriate, include: treatments used and the method of treatment assign-
ment (if experiment, observational study, or meta-analysis), blindness (a study is blind
if the subjects do not know which treatment they are receiving and double-blind if the
experimenters do not know which subjects receive which treatments), how the survey
was conducted (if a sample survey).
Statistical methods. These should include graphs and tables (which the students
should be expected to understand) as well as more formal methods such as t-tests and
regressions (which the students may just have to mention without understanding).
Stated conclusions. Taken from the original report.
Generalization. Difficulties of generalizing to the real world and other problems and
potential problems of the study. How do the results relate to the rest of the scientific
literature? These questions are generally addressed in the report itself, but the students
are encouraged to use their own critical thinking to discuss problems not mentioned in
the report.
Discussion. The students are asked to consider questions such as, How accurately did
the newspaper article summarize the report? Did the newspaper article overstate the
conclusions of the report? Did the newspaper article point out potential flaws in the
study not noted in the report?

Fig. 6.1 Guidelines for student summaries for the statistical literacy assignments.

6.3 Assignment where students find their own articles

A longer assignment, which takes more careful management but can be more
rewarding, has each student working with a newspaper article of his or her own
choosing. Below, we describe the steps involved in the assignment. The handout
for the assignment appears in Fig. 6.2.

The newspaper article

Each student must find his or her own newspaper article; two students may
not use the same article. We remind the students that scientific and statistical
studies on health, public policy, and lifestyle issues appear in all sections of the
newspaper and are not just covered by science reporters. Some students use the
Web to search for news clippings that interest them; we also save copies of two
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The assignment. You are to find a newspaper article that reports some scientific
finding of interest to you. Then track down the primary source for the article and
write a synopsis of the study including information on the kind of study performed, the
scientific protocol, general applicability and limitations of the study, and a summary
of the findings. In addition, you are to revise the clipped newspaper article to correct
any inaccuracies in reporting and add findings or other information which you thought
relevant to the story.
Finding an article. Read the newspaper and clip out an article that reports a scientific
study or statistical analysis. Scientific and statistical studies on health, public policy,
and lifestyle issues appear in all sections of the newspaper and are not just covered
by science reporters. The article may be a medical study of a clinical treatment, an
observational study, an economic analysis, or social statistics. Do not clip out reports
of highly technical studies. Also skip opinion polls, unless they have some unusual
methodological feature.
Finding the report. Determine the source of the scientific or statistical study for your
article, and track down the report or reports on which the article is based. Science-
related newspaper articles come from a variety of sources, ranging from in-depth studies
by local reporters featuring many references and interviews, to ten-paragraph sum-
maries of just-released scientific studies in publications (which send advance copies of
newsworthy findings to major newspapers), to press releases and interviews. Some of
the reports cited in newspaper articles are in widely circulating journals and can be
found in the library. In other cases, articles in other news publications may be cited,
and you will have to go further to track down the scientific reports. For some, you may
need to send away for a report, or telephone a person cited as a source in the newspaper
article. The goal is to find a primary source that has technical details on how the study
and data analysis were performed, along with numerical summaries (tables and graphs)
of the results.
The analysis. Carefully read the primary source, and use the guidelines provided to
make a worksheet summarizing the scientific findings. The examples in the handout
can be used as a model for your summary.
The write-up. Use our synopsis as a guide in writing a one- to two-page description of
the study. Next write a one-page critique of the news story. Discuss which information
was reported on in the newspaper article (or could be inferred from the information
provided in the article) and which was solely available from the primary source. Address
the following questions in your critique.

• How accurately does the title reflect the findings of the study?

• If you could change one sentence in the article, which sentence would you change,
how would you change it, and what are your reasons for changing it?

• If you could add one paragraph to the newspaper article to give more information
about the study, what would you say? Explain your reasons for choosing the
information you did.

• If there were any graphs of figures, comment on their usefulness. Do you think
additional figures or graphs in the article would be helpful? If so, what kind?

Fig. 6.2 Handout for students describing the long-form assignment in statistical lit-

eracy described in Section 6.3.
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newspapers every day for a month before starting the assignment and then bring
them to class for the students.

Often it is hard for students to judge the appropriateness of an article. For
example, some students choose articles that contain only a single summary statis-
tic with no indication of a more in-depth study underlying the news report. To
help students select an appropriate article, we require them to obtain instruc-
tor approval of their article before proceeding with their search for the original
source.

The original source

When the students choose an article that interests them, they can be very re-
sourceful in searching for the background material and have less difficulty read-
ing the source (in comparison to reading on a subject not of their choosing).
Nonetheless, it is useful to provide some guidelines about what kinds of reports
are relatively easy to obtain, along with strategies for tracking down hard-to-find
sources. We discuss these further in Section 6.4.

Some of the reports cited in newspaper articles are in widely circulating
journals (mostly in medicine and public health) and can be found in the library
or a reprint can be obtained from the author. In other cases, articles in other
news publications are cited, and the student will need to go further to track down
the scientific reports. To obtain such reports, the students have found it best to
make telephone calls to the persons cited as sources in the newspaper articles.
Phone numbers can be obtained from the Web, or from directory information.
Most reports will be 5 to 20 pages long, but in a few cases, they are book-length
studies.

At the time the student receives approval for the article, we outline a course
of action for obtaining the original source. We may help identify the journal that
contains the source and the library where it can be found, or we may help look
up a phone number and make contact with the person cited in the article.

The write-up

The student prepares a summary of the study using the general guidelines in Fig.
6.1. Students are asked to keep track of the information on the study that was
available from the news article alone. This helps them learn how to carefully read
the newspaper. Students are often misled by claims made in the paper and are
surprised when a closer reading shows that the journalist has been quite careful
in his or her choice of wording. Using the summary, the student writes a two- to
three-page report that describes the study and critiques the newspaper article.

The grade

The student turns in the newspaper article, background source, the summary
of the study, and two- to three-page report for grading. We look for a thorough
summary of the study, an accurate description of which study details were re-
ported in the newspaper article, and a responsible critique of the news article.
We try not to confuse the quality of the researcher’s study with the quality of
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the student’s report. For example, articles in the Journal of the American Med-
ical Association are structured so that a student can concisely summarize the
study from the abstract alone, and we look to see that the student has described
the study in his or her own words and has included details not available in the
abstract. Additionally, students do not get full credit if they merely try to punch
holes in the study or the newspaper report without appreciating its strengths.

Because of the time it takes to track down the source, we allow six to eight
weeks to complete this project, and we set intermediate deadlines for selecting
the newspaper article and obtaining the original source. The students also find
it helpful, if we review their summaries in advance of the final due date.

These projects serve as great sources for class examples, review problems,
and exam questions. The students like seeing their projects used this way in the
course, and they enjoy bringing their expert knowledge of the study to the class
discussion.

6.4 Guidelines for finding and evaluating sources
Here, we present some of the difficulties we had in finding the sources of newspa-
per articles; students find these accounts very useful when tracking down their
own studies.

Science-related newspaper articles come from a variety of sources, ranging
from in-depth studies by local reporters featuring many references and inter-
views, to ten-paragraph summaries of just-released scientific studies in publi-
cations such as the Journal of the American Medical Association (which send
advance copies of newsworthy findings to major newspapers), to press releases
and interviews. Nearly all newspaper articles identify the organization sponsor-
ing the original study and the publication in which it appeared, or the name and
affiliation of a contact person, such as the author of the study.

The studies we managed to track down varied greatly in quality. Generally
we found the studies in the Journal of the American Medical Association and
the New England Journal of Medicine to be thorough and convincing. Articles
in other scientific journals were mostly excellent but varied somewhat in quality.
The press releases also varied in quality: for example, “Working Women Count,”
put out by the U.S. Department of Labor, presents the results of two surveys
along with fairly comprehensive details of sampling design (and only a little bit
of that overly dramatic press-release style of writing). At the other extreme, the
information provided by the A. C. Nielsen Company about their procedures for
sampling television viewers was a brief press release that had too few details to
determine how the sample was chosen.

An example of an informative private-industry report is “Potential Impact
of a Nationwide Workplace Smoking Ban on International Travel to the U.S.,”
by Price Waterhouse LLP. This was used as source material for the San Fran-
cisco Examiner article, “Report: Smoking Curbs May Drive Visitors Away.” This
report, sponsored by the San Francisco Hotel Association, is an economic anal-
ysis of what might happen to tourism in San Francisco in the event of a ban
on smoking in hotels and restaurants. The report goes into great detail about
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the economic analysis and its assumptions. Unfortunately, the assumptions seem
simplistic to the extent of discrediting the conclusions. Claims of the potential
impact on tourism are based on an opinion poll of travel agencies and tour opera-
tors throughout the United States, who were asked to estimate by what percent a
smoking ban would increase or decrease the number of foreign visitors to the U.S.
It seems questionable to base an economic analysis (claiming billions of dollars
in lost sales in San Francisco) on the results of these sorts of speculations.

Other times, we could only obtain a press release or an oral description, with-
out enough details to fully understand the studies or their results. For example,
the newspaper article, “O.J. will be Cleared, Lawyers Tell Poll,” referred to the
National Law Journal, where we found the article, “O.J. Will Walk, Says 61
Percent in Lawyers’ Poll,” which presented the results of a “poll of 311 attor-
neys, conducted Sept. 23–26 [1994] by Penn + Schoen Associates Inc, a New
York polling company.” We called both the National Law Journal and Penn +
Schoen Associates, but neither would provide information on how the poll was
conducted.

In some cases, the persons who performed the studies were very helpful, but
the studies were too idiosyncratic to be useful for inclusion in this project. For
example, to track down the source for “Restaurants in New York Show Signs of
a Boom,” we called Fred Sampson, president of the New York State Restaurant
Association. We obtained the phone number of the association from 1-800-CALL-
INFO. After playing phone tag for a while, we finally made contact and talked
about the numbers quoted in a recent article about the rise in the restaurant
business in New York. Asked how he obtained those numbers, Sampson explained
that he got those figures informally through everyday conversations with mem-
bers of his association. He said he typically receives about 50 calls a day (which
we believe, since he was always on another line when we kept trying to reach
him) from his members. Whenever he talks to them, he casually asks how well
their businesses are doing and jots down the responses, usually percentages, on
a little note pad. Often approached by the media, he then, from his note pad,
estimates the status of the restaurant business in New York. No explicit analysis
or formal surveys were done, although he answered this question with some ad-
vanced statistical terminology. Therefore, all the numbers reported in the article
came from his own judgment.

In summary, articles from scientific journals are by far the most reliable
sources: generally easy to track down, and with comprehensive descriptions of
the studies. However, some of the most interesting reports come from other
sources—here, more effort must be put into tracking down the source, and even
then there is not always enough information to fully understand the study. De-
spite this difficulty, we do not recommend relying only on scientific journals,
because the students who gathered material from alternative sources found it
quite educational and because these reports offer a greater variety of topics.
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6.5 Discussion and student reactions
We asked the three students who prepared the instructional packets what they
had learned. Their responses are similar to the reactions of students in a class
to the assignments.

They felt that all of the studies used in this project had good objectives, but
some were so flawed that their results became unbelievable and misleading. Many
of the erroneous studies were actually harder to obtain because of the reluctance
of the researchers and sponsors to provide information. The students also noted
that the results of studies can depend strongly on the definitions of what is being
counted or observed, as in the illegal immigration study (see Section 6.6.4) and
the abused children study (Section 6.6.2).

About what gets reported, one student noted that, looking through a jour-
nal’s table of contents, there are many studies that seem as interesting as those
reported on in papers, yet they aren’t given the same press coverage. It appears
as if the studies reported on in newspapers are selected haphazardly. This can be
seen to an extent from the fact that most studies reported on in the New York
Times were not reported on in the San Francisco Examiner (and vice versa).

The students were generally impressed with the quality of the newspaper re-
porting, given the shortness of most of the articles. However, they commented
that the newspapers tend to make the research findings more convincing than
they actually are. The newspaper article often omits potential flaws or limita-
tions of the study that are actually mentioned in the original report. Newspaper
reporters have the difficult task of reading a report and writing an article that
retains enough important facts for the reader to understand the significance of
the study, under the constraints that it be readable and the right length for the
space provided.

On the whole, we have found that these assignments provide a framework
for the students in an introductory statistics class to combine their statistical
knowledge with their general powers of critical thinking. This is more important
than just criticizing newspaper articles; students learn some of the limitations of
scientific studies and the role of statistics in making conclusions and presenting
them. In these assignments, the students learn much more about issues of data
collection and design, and also about the relevance of statistical methods to
real-world problems.

6.6 Examples of course packets
We illustrate with four packets, corresponding to an experiment, a survey, an
observational study, and an economic analysis. These packets are complete except
for the cited reports.

The summaries, questions, and answers were written by students, but we
discussed and revised them together. So what you see here is more of an idealized
than an expected student assignment. The course packet can be used as teaching
material in two ways: give students the entire packet to read as preparation for
the classroom assignment (see Fig. 6.2); or give students the article, report (or
excerpts from it), and questions, and require them to make a summary and
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Fig. 6.3 Article from the New York Times for the course packet in Section 6.6.1.

answer the question. We have included sample excerpts for three of the four
packets presented here, and we marked those questions that cannot be answered
from the excerpts alone (without the full report).

We have also included a student’s comments on each of these packets to give
some sense of how they might be received.

6.6.1 A controlled experiment: IV fluids for trauma victims

“Giving IV fluids to trauma victims found harmful,” New York Times, October
28, 1994, p. A9 (see Fig. 6.3).

Excerpt from “Immediate versus delayed fluid resuscitation for hypotensive
patients with penetrating torso injuries,” W. H. Bickell et al., New England
Journal of Medicine 331, 1105–1109:

For the past two decades the preoperative approach to hypotensive patients with
trauma in North America has included prompt intravenous infusion of isotonic flu-
ids. The rationale for this treatment has been to sustain tissue perfusion and vital
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organ function while diagnostic and therapeutic procedures are performed. This ap-
proach was based largely on the demonstration in animals in the 1950s and 1960s
that isotonic-fluid resuscitation was an important life-sparing component of therapy
for severe hypertension due to hemorrhage.

Patients eligible for this study were adults or adolescents (age at least 16 years) with
gunshot or stab wounds to the torso who had a systolic blood pressure less than or equal
to 90 mm Hg, including patients with no measurable blood pressure at the time of the
initial on-scene assessment by paramedics from the City of Houston Emergency Medical
Services system. . . . Pregnant women were not enrolled in the study. All patients within
the city limits of Houston who met the entry criteria were transported directly by
ground ambulance to the city’s only receiving facility for patients with major trauma,
Ben Taub General Hospital.

Patients included in the final study analysis were those for whom fluid-resuscitation
might affect outcome. Part of the prospective study design was to exclude the following
from the outcome analysis: patients with a Revised Trauma Score of zero at the scene
of the injury, those who also had a fatal gunshot wound to the head, and patients
with minor injuries not requiring operative intervention. The paramedics caring for the
patients were not aware of these exclusion criteria and treated all hypotensive patients
with penetrating torso injuries according to the protocol.

All patients enrolled in this study were assigned to one of two groups: the immediate-
resuscitation group, in which intravascular fluid resuscitation was given before surgi-
cal intervention in both the prehospital and trauma-center settings, or the delayed-
resuscitation group, in which intravenous fluid resuscitation was delayed until operative
intervention. . . . Patients injured on even numbered days of the month were enrolled
in the immediate-resuscitation group, whereas those injured on odd numbered days
were enrolled in the delayed-resuscitation group. The alternating 24-hour period corre-
sponding to the 24-hour shifts worked by both the paramedics and the trauma teams.
Because there were three rotating teams of paramedics and surgical house staff, assign-
ments to the groups were alternated automatically for both prehospital and hospital
staff members.

Among the 289 patients who received delayed fluid resuscitation, 207 (70%) sur-
vived and were discharged from the hospital, as compared with 193 of the 309 patients
(62%) who received immediate fluid resuscitation. The mean estimated intra-operative
blood loss was similar in the two groups. Among the 238 patients in the delayed-
resuscitation group who survived to the postoperative period, 55 (23%) had one or
more complications (adult respiratory distress syndrome, sepsis syndrome, acute re-
nal failure, wound infection, and pneumonia), as compared with 69 of the 227 patients
(30%) in the immediate resuscitation group. The duration of hospitalization was shorter
in the delayed-resuscitation group.

A student’s summary

One-sentence summary of the newspaper article: Bleeding trauma patients are usually
given fluids in order to keep their blood pressure up, but this practice may actually be
harmful.

Background: Giving IV fluids to trauma patients before their bleeding is controlled
may be detrimental. This procedure has been standard for the past two decades because
it was proven successful for severe hypotension due to hemorrhage.

Objective: To determine the effects of delaying fluid resuscitation until the time of
operative intervention in hypotensive patients with penetrating injuries to the torso.

Kind of study: Nonrandomized experiment.
Subjects: 598 adults with penetration torso injuries with a pre-hospital systolic

blood pressure less than or equal to 90 mm Hg.
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Setting: City (Houston) with a centralized system of pre-hospital emergency care
and a single receiving facility for patients with major trauma.

Treatments: Immediate-resuscitation group and delayed-resuscitation group. The
difference between the two is that the first group received fluid resuscitation before they
reached the hospital and the others didn’t receive it until they reached the operating
room.

Treatment assignment: Depended on whether the person was injured on an odd-
numbered or even-numbered day.

Outcome measurements: Survival of patients.
Blindness: Patients knew how they were treated, but it probably didn’t alter their

will to survive. Physicians were not blind.
Population: People aged 16 and over with a gunshot or stab wound to the torso and

with a blood pressure less than 90 mm Hg. Pregnant women were not enrolled in the
study. Patients were also measured for the Revised Trauma Score to see if they were
to be included in the study; those with a score of 0 were not included, as well as those
with fatal gunshot wounds to the head and patients with minor injuries not requiring
operative intervention.

Statistical methods used: A comparison of different characteristics to check that
the two treatment groups were similar (Table 1 of the report). Comparisons between
treatments were made using two-way tables and binomial p-values for comparison of
proportions.

Stated conclusions: Of the 289 patients who received delayed fluid resuscitation,
70% survived and were discharged from the hospital. In the other group, 62% of 309
patients survived (this difference between the two percentages is statistically significant
at p = 0.04). Among the 238 patients in the delayed-resuscitation group who survived
to postoperative period, 23% had one or more complications. Among the 227 patients
in the immediate-resuscitation group who survived to the postoperative period, 30%
had complications (the difference is statistically significant at p = 0.08). In addition,
the duration of hospitalization was shorter in the delayed-resuscitation group.

Nonresponse: None (for all the patients that met the initial eligibility requirements).
Difficulties of generalizing to the real world: This study only found the effects of

specific types of wounds. Also, those with blood pressures below 40 mm Hg, who rarely
survived, were not included in the study, and so this cohort should also be examined
in a different study.

How does this relate to the rest of the scientific literature? These findings are similar
to conclusions of studies done on animals.

Questions

1. (a) What were the two treatments in the study?
(b) Who were the subjects? How many subjects were there?
(c) What pre-treatment characteristics were recorded?
(d) What were the main outcome measurements?

2. Describe the method of treatment assignment. Why do you think they did not
assign treatments randomly?

3. Was the treatment assignment blind to the subjects? The doctors?
4. The report gives details on how the sample size was chosen. Describe what they

did and what reasoning they used to decide the sample size.
5. Seeing the results, do you think the sample size turned out to be too small or too

large?
6. Given the information in the report, do you think the article title, “Giving IV

Fluids to Trauma Victims Found Harmful,” is a reasonable claim?
7. Among the 238 patients in the delayed-resuscitation group who survived to the

post-operative period, 55 (23%) had one or more complications. Among the 227
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patients in the immediate-resuscitation group who survived to the post-operative
period, 69 (30%) had complications. This comparison does not take into account
the patients who died right away. How does this adjustment affect this comparison?

8. (This question can only be answered with the full report, not merely the excerpt
given above.) If you have covered p-values in your statistics course, explain how
the p-value in the first row of Table 5 was determined. What does the p-value of
0.04 tell you?

9. Why do you think pregnant women were excluded from the study? What about
car accidents?

10. If you could add one paragraph to the newspaper article to give more information
from the study, what would you say?

Answers to questions

1. (a) The two treatments were the immediate-resuscitation group (in which intravas-
cular fluid resuscitation was given before surgical intervention in both the pre-
hospital and trauma-center settings) and the delayed-resuscitation group (in
which intravenous fluid resuscitation was delayed until operative intervention).
(p. 1106, “Methods: Study Interventions”)

(b) The subjects were patients over 16 years of age who were transported to Ben
Taub General Hospital with gunshot or stab wounds to the torso and a sys-
tolic blood pressure less than or equal to 90 mm Hg. They also did not have
a Revised Trauma Score of zero at the scene of the injury, a fatal gunshot
wound to the head, or minor injuries not requiring operative intervention.
There were 598 patients. (pp. 1105–1106, “Methods: Study Subjects” and p.
1107, “Results: Characteristics of the Patients,” second paragraph)

(c) Pre-treatment characteristics that were recorded were blood pressure; the Re-
vised Trauma Score (calculated from the Glasgow Coma Scale, systolic blood
pressure, and respiratory rate); times at which emergency vehicles were dis-
patched, arrived at the scene, departed from the scene, and arrived at the
trauma center; Injury Severity Score. (p. 1106, “Methods: Main Measurements
and Secondary Outcome Variables”)

(d) The main outcome measurements were survival of patients and assessment
of six defined postoperative complications (wound infection, adult respiratory
distress syndrome, sepsis syndrome, acute renal failure, coagulopathy, and
pneumonia). (p. 1106, “Methods: Main Measurements and Secondary Out-
come Variables”)

2. Patients injured on even-numbered days of the month were assigned to the immed-
iate-resuscitation group, while those injured on odd-numbered days were enrolled
in the delayed-resuscitation group. The researchers did not assign the treatments
randomly probably because of the difficulty and confusion to choose which pro-
tocol/treatment to use on each patient where time was a factor and each patient
was unique. (p. 1106, “Methods: Study Interventions”)

3. The treatment assignment was blind to the subjects because they did not know
that they were in an experiment. The treatment assignment was not blind to the
doctors because they have to know what to give in the pre-hospital phase. (p.
1106, “Methods: Study Protocol”)

4. The sample size was calculated on the assumption that death would occur in
35% of patients receiving standard preoperative fluid resuscitation for penetrating
torso injuries. On the basis of experimental data and past clinical experience,
an estimated 10–15% improvement in survival was predicted if fluid resuscitation
was delayed until operative intervention. With an alpha value of 0.05 and a beta
value of 0.2 for a hypothesis test, approximately 600 patients are needed. (p. 1106,
“Methods: Statistical Analysis,” first paragraph)
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5. The sample size seems reasonable, but a larger sample might be good, considering
that the main results are close to the cut-off p-value of 0.05. (p. 1108, Table 5)

6. The title does not seem reasonable because it implies that all trauma victims were
considered and studied, whereas the study only pertains to those with penetrating
torso injuries. Also, the title implies that IV fluids do not work at all, but the results
show some indication that the fluids can help: not all of the immediate-resuscitation
group died. (p. 1105, “Abstract: Results” and “Abstract: Conclusions”)

7. The numbers may be higher if those who died right away were accounted for. In
fact, the percentage for the delayed-resuscitation group could be bigger because
death or complications may be the results of not getting any fluids immediately.
(p. 1109, Table 6)

8. The null hypothesis is just a comparison of proportions (193/309 to 203/389).
The question is if this difference occurred by chance. The observed difference
is 8%. They divide this difference by the standard deviation of the difference
(
√

(0.62 · 0.38/309) + (0.70 · 0.20/289) = 0.035); the result is 0.08/0.035 = 2.28, so
the difference is 2.28 standard deviations away from zero. The z-test is performed
(two-sided) to give a p-value = 0.04. (p. 1106, “Methods: Statistical Analysis”)

9. Pregnant women were excluded in the study to make the sample and the results
representative and general to the whole population. Plus, there are outside com-
plications that occur during pregnancy that might confound the study. Also moral
issues could be involved (risk the life of the baby?) Those in car accidents were
excluded because they are more likely not to get penetrating wounds or more likely
received wounds that are not serious enough to get IV fluids. (p. 1105, “Methods:
Study Subjects,” first paragraph)

10. A possible paragraph: Despite indications that the delayed-resuscitation group
appeared to have fewer complications, there was not enough done to study this
issue. People who died immediately after operative intervention were not included
in these calculations. Complications might have come from not getting fluids, which
could result in death; but these patients were not accounted for in this analysis of
the existence of complications. (p. 1109, Table 6)

Another student’s opinions

The news article begins with the big headline, but as the reader reads on, the statement,
“Giving IV fluids to trauma victims found harmful,” carries less and less weight as the
writer qualifies his headline. Firstly, we discover that delaying IV treatment is useful
only for “bleeding adult patients with penetrating wounds to the chest and abdomen,”
and other types of injuries were not included, such as head wounds and victims who
were children or adolescents. Furthermore, another researcher says that even though
the data suggest that delaying IV treatment is best, the “door is still open for modifying
this recommendation.”

The journal article states that the percentage of victims who survived with IV fluids
was 62%; without fluids, 70%. Furthermore, those who received immediate fluids aver-
aged longer ICU and hospital stays suggesting that the immediate IV fluids interferes
with various immune responses, as the news article explains.

There were a few interesting points that caught my attention. The first was Table
1, where they state the “probability of survival” of both groups; those who receive
immediate resuscitation were 3% less likely to survive. If this is not accounted for in
the final calculation of survivors, then perhaps their findings would not be statistically
significant.

Overall, the researchers made a good effort to question a long-standing practice of
administering IV fluids to trauma victims. Their data suggest that in some cases, doing
so does more harm than it alleviates. Because of its widespread practice, more in-depth
research needs to be done to evaluate delayed IV’s with head traumas and injuries to
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children, which were not included in this study.

6.6.2 A sample survey: 1 in 4 youths abused, survey finds

“1 in 4 youths abused, survey finds,” San Francisco Examiner, October 4, 1994
(see Fig. 2.5 on page 16 of this book).

Excerpt from “Children as victims of violence: a national survey,” D. Finkel-
hor and J. Dziuba-Leatherman, Pediatrics 94, 413–420 (1994):

The study staff interviewed by telephone a nationally representative sample of 2000
young people between the ages of 10 and 16 and their caretakers. A national sample
of households was contacted and screened for the presence of appropriate age children
through random digit dialing. Interviewers spoke with the primary caretaker in each
household, asking him or her some questions relevant to child victimization prevention
and explaining the objectives of the study. They then obtained parental permission
to interview the child. Speaking to the children, the interviewers again explained the
study, obtained consent and made sure that the children were alone and free to talk
openly.

The participation rate was 88% of the adults approached, and 82% of the eligible
children in the households of cooperating adults, despite that the study involved chil-
dren, a potentially sensitive topic, a lengthy interview and required the consent of two
individuals. Almost three-quarters of the child nonparticipation came from the care-
takers denying permission to interview the children and the rest from the children not
wishing to the interviewed. The youngest children (aged 10 and 11) had marginally
lower levels of participation. An analysis of the households with child nonparticipants
showed them to be demographically indistinguishable from the participants, although
there was a slightly greater salience for issues of violence (more concern, more percep-
tion of threat) among the parents of participants.

Children were asked a total of 12 questions about possible victimizations. The vic-
timization questions were followed up with more extensive questions about the details
of the episode, on the basis of which the episodes were classified into one of several
categories and also as attempted or completed.

A quarter of the children reported a completed victimization (excluding corporal
punishment) in the previous year and over a third a completed or attempted victimiza-
tion. Over half the children reported a completed or attempted victimization sometime
in their lives. Nonfamily assaults were the most numerous type of victimization. Boys
were over three times more likely than girls to have experienced a completed nonfamily
assault the previous year, most of which were committed by known perpetrators under
the age of 18. The rates did not vary by age.

Children experienced family assaults at about one-third the rate of nonfamily as-
saults. There were no age or gender differences. A little less than half the family assaults
were committed by adults. The survey also revealed that well over a quarter of these
youths were still being corporally punished by their parents. However, there was a sig-
nificant decline in corporal punishment use with age (46% of 10-year-olds vs. only 15%
of 16-year-olds).

Nonfamily assault screening questions:
1. Sometimes kids get hassled by other kids or older kids, who are being bullies or

picking on them for some reason. Has anyone—in school, after school, at parties,
or somewhere else—picked a fight with you or tried to beat you up?

2. Has anyone ever ganged up on you, you know, when a group of kids tries to hurt
you or take something from you?

The definition of an attempted or completed assault included any child responding
yes to either of these questions (except that any episode involving a family member
perpetrator was moved from this category to the family assault category). A completed
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nonfamily assault was an episode that included actual punching, kicking, hitting with
an object, or threatening with a weapon.

Family assault screening questions:
1. Sometimes kids get pushed around, hit, or beaten up by members of their own

family, like an older brother or sister or parent. Has anyone in your family ever
pushed you around, hit you, or tried to beat you up?

2. Has anyone in your family gotten so mad or out of control you thought they were
really going to hurt you badly?

A completed family assault included the occurrence of actual punching, slapping,
kicking, hitting with an object, or threatening with a weapon.

A student’s summary

One-sentence summary of the newspaper article: According to a telephone survey of
2000 children, one in four adolescents had been physically or sexually abused within
the past year.

Background: Recently there had been a great deal of public and media attention
to victimized children, but this concern has been largely fragmented by focusing only
on specific forms of victimization. This fragmentation has prevented a comprehensive
view of the overall victimization of children.

Objective: To gain a more comprehensive perspective on the scope, variety, and
consequences of child victimization.

Kind of study: Survey.
Subjects: 2000 children (1042 boys, 958 girls) aged 10–16 years.
Responses/measurements: Children were asked 12 basic questions about any occur-

rence of nonfamily assault, family assault, kidnapping, sexual abuse/assault, violence
to genitals, and corporal punishment within the last year and in their lifetimes. Also
asked were follow-up questions about the details of the act(s): attempted/attempted-
and-completed, noncontact/contact/rape, family perpetrator/nonfamily perpetrator,
injury/no injury.

How the survey was conducted: The study staff contacted by telephone a national
sample of households through random digit dialing and screened the sample for appro-
priate age children. Interviewers spoke with the caretakers about victimization preven-
tion and the study and obtained permission to speak with the children. Then the staff
obtained consent from the children and, for 30–60 minutes, interviewed them alone.

Blindness: None.
Population: Children in the U.S. who were contacted through random digit dialing.
Control variables: Characteristics such as household income, race/ethnicity, region,

type of metro area, and gender.
Statistical methods used: Weighted sample to correct undercounting of black and

Hispanic children. Comparisons of weighted sample proportions by types of victimiza-
tion and completeness of act with 95% confidence intervals. Chi-squared tests (analyses
between various control factors and types of victimization). Six tables.

Stated conclusions: Within the past year, a quarter of the children had experienced
a completed victimization (excluding corporal punishment), a third had encountered
a completed or attempted act, one in eight had experienced an injury, and one in a
hundred required medical attention as a result. Nonfamily physical assaults were the
most numerous, usually with boys. Contact sexual abuse occurred to 3.2% of girls and
0.6% of boys. There were substantial numbers of incidents of attempted kidnappings
and violence directed to genitals. Two-thirds of the victimizations were disclosed to
someone, but only 25% to an authority. Most likely to experience victimization were
black or Hispanic, lived in the Mountain and Pacific areas, and lived in large cities.

Nonresponse: (in the population) 12% of the adults approached and 18% of the
eligible children with cooperating adults, due to refusal of permission from adult or



92 STATISTICAL LITERACY

child; (in sample of subjects) none.
Difficulties in generalizing to the real world: Only those between 10-16 years were

studied.
Other problems: Uncertainty of effectiveness of a telephone interview (time con-

straints, no knowledge of body language). Exclusion of some high risk children such
as those without telephones, those in juvenile correctional and mental health facilities,
those with disabilities, and those who were angry/alienated to participate. Possible
lack of disclosure of intimate victimizations to a stranger interviewer. Possibility of
children’s forgetting or repressing certain acts. Not many details obtained on every
victimization due to time. Unclear control for siblings. Definitions are broad.

How this relates to the rest of the scientific literature: Some rates in this study were
agreeable to past studies, but other rates were not as high or low as other past studies
due to difference in categorization. This study suggests the need for better statistics
and for a more comprehensive study on all forms of child victimizations.

Questions

1. The title of the short newspaper article is rather alarming. What is the definition of
abuse used in the survey? Why do the investigators choose to use such a definition?

2. The survey was conducted by phone interview of children. How were the children
included in the study? What percentage of the children were not included in the
survey either because the parent refused permission or the child refused to talk to
the interviewer?

3. What is the population of interest? How do the children surveyed compare demo-
graphically to the population of interest?

4. (This question can only be answered with the full report, not merely the excerpt
given above.) The assault rate reported in the article is 15.6%. Find this rate in
the report, and say what is it a report of.

5. (This question can only be answered with the full report, not merely the excerpt
given above.) The results of this survey are compared to those of two other surveys
in the report. What surveys are they? How do the assault rates differ from those
reported by Finkelhor and Dziuba-Leatherman? Why might they differ? Which
numbers does the newspaper report? What assault rate should be used in com-
paring this study’s results with those of the National Youth Survey?

6. In the report it is stated that of all victimizations, “only 6% were reported to
the police, the agency which collects crime statistics . . . Obviously the scope of
victimization to children cannot be assessed well through police-based statistics.”
Why might this percentage be so low?

7. If you could add one sentence to the newspaper article, what would it be?

Answers to questions

1. The survey asked about six kinds of abuses: nonfamily assault, family assault, kid-
napping, sexual abuse, violence to genitals, and corporal punishment. Abuse was
defined as: punching, kicking, hitting, or threatening with an object, kidnapping
where the child is taken somewhere, touching sexual parts in a sexual way, expos-
ing oneself to the child, asking the child “to do something sexual,” penetrating or
engaging in any oral-genital contact, violent contact to genitals, slapping, hitting,
or spanking (Appendix, p. 419)
The survey uses a wide definition of abuse to a child. The purpose of creating
a broad definition was to measure a comprehensive view of abuse to children as
opposed to other studies that only look at specific abuses such as sexual assault
(p. 413, column 1)

2. The caretaker of the child was first asked permission to talk to the child. 88% of
all adults asked gave permission and of that 82% of the children agreed to answer.
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28% of the children contacted were not included in the study because they or their
adult caretakers refused to be a part of the study. (p. 414, column 1)

3. The population of interest are children aged 10–16 years. The group surveyed had
a higher rate of assault than children 12–15 years old as reported by the National
Crime Survey and had a lower rate of assault than 11–17-year-olds in the National
Youth Survey. (p. 415, column 2)

4. The rate is last year’s completed nonfamily assaults. (p. 415, Table 1)
5. The results of this study were compared to the National Crime Survey and the

National Youth Survey. The estimate from the NCS is a third of the one in the
study (5.2%), and the estimate from the NYS was almost twice as much (31%)
as the rate in the study. The rates may differ because of the definition they give
to assault. The NYS estimate may be higher because it includes assault from
siblings and other nonparents family members which the Finkelhor and Dziuba-
Leatherman nonfamily assault rate does not cover. The news article quotes the
NCS. In order to compare this survey with the NYS, the sum of the completed
nonfamily assault rate and the completed family assault rate of this survey should
be compared to the NYS rate. (pp. 415–416)

6. The percentage of children who report to the police may be low because the assault
may not be seen as something that needed to be reported, such as another child
hitting one child on the playground. In this situation, a child may tell an adult
supervisor but not file a complaint with the police. (p. 416, Table 3)

7. Here is one possible sentence: “The study attempted to survey a more comprehen-
sive view of child victimization and abuse in order to alert people to its extensive
and diverse forms.”

Another student’s opinions

The newspaper article reported that 15.6% (14.0–17.2, 95% CI) of participants had
been assaulted; however, it does not further qualify, leaving one unaware that this figure
refers only to “completed nonfamily” assault. I believe the article should have reported
the most important finding of the study: about one-quarter of all children reported
completed victimization and over one-third had experienced attempted victimization.
These results are stated early in the results, and in the abstract. Also, it was found that
1 in 8 children experienced physical injury and 1 in 100 required medical attention. If
these data are accurate, then approximately 6 million of America’s youth are suffering
from completed abuse of some form, 2.8 million will be injured, and a quarter million
will need medical treatment for abuse.

Due to its brevity (around 110 words!), the newspaper article omitted many findings
that I found quite interesting, and disturbing. For example, in Table 5, p. 417, the
percent of children victimized in the Pacific and Mountain region was 62.7% and 64.6%,
whereas the average was around 52%. Also, differences were found between the social
classes; the biggest difference being from under $20K/year to $20–50K/year—general
victimization was 7.3% lower, and all other assaults were lower in the middle income
bracket. However, there was also not much difference between the middle bracket and
the highest one, over $50K/year.

If these data are accurate and representative of our family structure, then the con-
clusions are nothing less than disturbing and should set off further research into child
abuse. Moreover, intervention should be made more readily available for children of
such violence.

6.6.3 An observational study: Monster in the crib

“Monster in the crib,” Keay Davidson, San Francisco Examiner, September 25,
1994, p. A2. “The terrible twos just got younger,” Science News 146 (12). (See
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Fig. 6.4 Articles from the San Francisco Examiner and Science News for the course

packet in Section 6.6.3.

Fig. 6.4 for both articles.)
Excerpt from “Depressive symptoms and work role satisfaction in mothers of

toddlers,” A. L. Olson and L. A. DiBrigida, Pediatrics 94, 363–367 (1994):
This study investigates maternal depressive symptoms during the second year of the
child’s life. To avoid over selection of problem families, we studied depressive symptoms
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in mothers of toddlers presenting for health supervision visits in community practices.
Pediatricians currently provide advice in health supervision visits about development,
sleep, and behavior problems. Maternal depression has been associated with problems
in all of these areas. Thus the community pediatric practice is an important setting for
investigating maternal depression.

Because most studies examine broad age ranges in childhood, we have few data
of mothers when they are at most risk for depressive symptoms. The few longitudinal
studies of postpartum depression show increased rates of maternal depressive symptoms
and disorders in the child’s second year of life. In our interviews with parents they have
emphasized the year from ages 1 to 2 is the most demanding and that beyond 2 or 3
the situation improves. The constant vigilance needed to insure physical safety as well
as the child’s struggle for autonomy contribute to make the toddler year particularly
stressful for parents.

Depression screening measures were completed by 233 mothers of toddlers (aged 12
to 24 months) at health supervision visits in two community pediatric practices in New
Hampshire. Depression was evaluated with a depressive symptom screening inventory
modified by Barrett, Oxford, and Gerber from the Hopkins Symptom Checklist for use
in primary care population. Data were obtained on parents’ socioeconomic variables,
hours worked, and whether the mother was satisfied with her current role of being
employed or not employed.

Depressive symptoms were present in 42% of mothers. Rates of depressive symptoms
were similar in employment groups but varied significantly with work role satisfaction.
When both employment and satisfaction were considered, mothers who were dissatisfied
were 3.7 times more likely to be depressed. After controlling for work role satisfaction,
mothers working part-time were half is likely to be depressed as mothers working full-
time and not employed.

A student’s summary

One-sentence summary of the newspaper article: A recent report states that 42% of
mothers of children between the ages of one and two show some signs of depression,
evidence that confirms the belief that raising toddlers is very difficult.

Background: Maternal depression is found in about one-third of mothers studied,
with higher depression rates among mothers in poverty or those caring for handicapped
children. However, recent studies have shown that high depression rates occur in women
of all social strata. Because of the adverse effects of maternal depression, which include
newborn irritability, parenting difficulties, severe temper tantrums, and other behav-
ioral problems, it is important to learn which mothers are highest at risk for depression.

Objective: To determine the incidence of depressive symptoms in mothers of tod-
dlers in community pediatric practice. The interaction of employment and work role
satisfaction with depressive symptoms was also investigated.

Kind of study: Observational study
Subjects: 233 mothers of toddlers (aged 12 to 24 months) who brought their children

to health supervision visits at two community pediatric practices in New Hampshire.
Setting: Depression screening measures were completed in two community pediatric

practices in New Hampshire.
Outcome measurements: Depression screening measures, consisting of a depressive

symptom screening inventory for use in primary care populations, were conducted using
a Likert scale of satisfaction. (Inventory modified from the Hopkins Symptom Checklist
by Barrett, Oxman, and Gerber)

Control variables: Parents’ socioeconomic variables, hours worked, and if the mother
was satisfied with her current role of either being employed or unemployed

Blindness: None
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Population: Mothers who brought their one-year old children to one of two commu-
nity practices in New Hampshire for a health supervision visit.

Statistical methods used: Sociodemographic characteristics of the population were
examined by t-tests, one-way Anova, and chi-squared. Proportions of the population
with depression were compared across categories by chi-squared. The distribution scores
were examined for skewness. The interaction of significant independent variables on the
total depression score was determined by univariate analysis, two-way Anova after log
transformation, or nonparametric analysis of two groups. One figure, three tables.

Stated conclusions: Symptoms of depression were present in 42% of mothers, and the
rate of depressive symptoms varied significantly with work role satisfaction. Mothers
dissatisfied with their employment role were 3.7 times more likely to be depressed.
Controlling for employment satisfaction, mothers working part-time were half as likely
to be depressed as both mothers working full time and mothers not employed.

Nonresponse: The questionnaire was completed by 233 mothers, 90% of which were
recruited by telephone contact. The week before the visit, 332 calls were placed, with
238 agreeing to participate. 68 of the 332 could not be reached by multiple phone calls.
209 of those who agreed to fill out the questionnaire actually did so (the other 29 had
some sort of scheduling problem and had to back out), and 24 other mothers were
recruited at the time of a visit to the pediatric practice.

Difficulties of generalizing to the real world: The mothers included in this study are
predominantly white, married and middle class, so this study may not be applicable to
the population of mothers in the U.S. who do not fit the above three categories.

Other problems: Social support, specific stresses, and marital tension were not in-
vestigated in this study, but may contribute to maternal depression. Also, the authors
did not include any control groups in the study (such as women of the same age with
no children); instead, they used historical controls. Also, measuring the socioeconomic
values for the father and mother separately resulted in large differences in values be-
tween the two, as many more women were classified “lower-class” than were men. Since
families share the money earned in the household, it would have been more accurate to
use a single-family measure of socioeconomic values instead of measuring for the father
and mother separately.

How this relates to the rest of the scientific literature: Past studies have only exam-
ined broad age ranges in children, so minimal information existed about when mothers
are most at risk for depression. Also, earlier studies that looked at depression rates
have not been updated to account for the large increase in numbers of mothers in the
workforce.

Questions

1. How many subjects? How were they selected?
2. What general population are these subjects representative of?
3. 42% of the subjects in the sample display symptoms of depression. The newspaper

article says, “The finding strengthens the popular belief . . . ” But what if 42% of
the mothers of children of other ages—or women who are not mothers—display
symptoms of depression? (To address this issue, the report presents results from
comparison groups—comparable women who are not mothers of two-year-olds.
Where in the article are comparison groups mentioned? What are the groups and
what are their depression rates?)

4. If you could do a study of one more comparison group, what would that group be?
5. (This question can only be answered with the full report, not merely the excerpt

given above.) The numbers in Table 2 of the report are presented to 3 decimal
places. For practical purposes, would it be OK to use just 2 decimal places? What
about 1 decimal place?

6. A big thing in the report that is not mentioned in the article is a comparison
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of rates of depression among different groups of mothers of two-year-olds. If you
could add another paragraph to the Science News article to cover this topic, what
would you say?

7. If you had to remove three sentences from the Science News article, what would
they be? Why?

Answers to questions

1. 233 subjects. They were mothers of toddlers who brought their children for health
supervision visits in two pediatric primary care group practices in New Hampshire.
These children were between 12 and 24 months of age. They were first recruited
by phone one week before their visit but were recruited at the time of the visit
if phone contact was not made. Informed consent was obtained. (“Study Design:
Methods,” p. 364)

2. These subjects were primarily representative of the white, married, middle-class
population of mothers. (“Results: Population Characteristics,” p. 364)

3. The only comparison group found was the group of adult females who were screened
with the same measure as this study in another New Hampshire primary care study
(first paragraph of “Discussion” in article). Other characteristics of this comparison
group are unknown from this article, but their depression rate (21.5%) is half of
that of the mothers in this study. Other than this group, this study did not compare
groups of mothers of other ages (no control group) and did not focus on these
kinds of comparisons. If 42% of mothers of children of other ages or nonmothers
had symptoms of depression, then nothing can be said scientifically to justify the
popular belief from this study. The popular belief cannot also be disproven because
the study was not focusing on comparing different groups of mothers/nonmothers.
(pp. 363, 365)

4. A possible comparison group would be mothers with children aged 2 to 4 years
(ages when the children are still not in school). This would maintain a situation
where the mothers are the primary caretakers of the children. (opinion)

5. It would be OK to have the numbers reported to 2 decimal places because the
standard deviation is big and the variation is such that the third decimal place
just gives additional but insignificant information on the variation (variation is not
as big). Reporting to 1 decimal place is not as acceptable but can be used because
the variation is so big. (Table 2)

6. A possible paragraph would be: “This study did not focus on comparing charac-
teristics within the groups of mothers of two-year-olds. The subject population
was very similar in terms of ethnicity, marital status, socioeconomic status, and
age, and so it was assumed that this group would act similarly. Any differences
would be insignificant. The goal of this study is to see if only employment status
is correlated with depression.”

7. One possibility is to remove the third-to-last paragraph of the Science News article:
it is not clear that these findings are different than for non-mothers.

Another student’s opinions

Child-rearing is not an easy task. In particular, women who work and are dissatisfied
with work are 3.7 times more likely to be clinically depressed than women who were
unemployed or were satisfied at work. Thus for women, it appears young infants are
a risk factor for developing depression and that lack of job satisfaction makes them
vulnerable to depression. Their main conclusion claims that the amount of time mothers
spend working is the biggest factor affecting depression; the more time spent working,
the greater the likelihood of becoming depressed.

Interestingly, the journal article mentions studies of postpartum depression (after
childbirth) increasing during years 1–2, considered the “most demanding” and that
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after ages 2–3, “the situation improves.” Thus, the researchers studied women who were
exposed to the greatest difficulties in motherhood and saw how they coped. Instead
of simply recording women’s attitudes and symptoms of depression, I believe it would
have been more interesting had some form of counseling/family therapy treatment been
introduced as a subgroup to study. If successful, the results would highlight the need
for post-natal care, and if not, the results would stress further, the potential risks of
developing depression during the toddler’s first two years. It is somewhat disconcerting
to realize that more and more mothers are having to work more and more hours,
thus having less time for young children, and also increasing incidence of depression.
Studies such as this could help persuade more companies and corporations to realize
the importance of adequate and proper child-rearing, and how greatly work impacts
upon new mothers.

6.6.4 A model-based analysis: Illegal aliens put uneven load

“Illegal aliens put uneven load on states,” New York Times. “Feds, Wilson dis-
pute illegal immigrant costs,” San Francisco Examiner, September 15, 1994, p.
A4 (see Fig. 6.5).

“Illegal immigration: impact on California,” Office of Governor Pete Wilson,
press packet (1994). “Fiscal impacts of undocumented aliens: selected estimates
for seven states,” Urban Institute (1994). (These articles are not excerpted here.)

A student’s summary

Background: The federal government has established a program that provides incentives
for undocumented immigrants to violate U.S. immigration laws. As a result of federal
mandates, states are required to provide health care and education services to illegal
immigrants and their children. Further, the federal government confers citizenship to
children of parents residing illegally in the state, guaranteeing the children education,
welfare, and health care. The federal government has failed to fully reimburse states
for costs associated with its immigration policies.

These two reports (from the Governor’s office and the Urban Institute) provide two
contrasting analyses of the economic costs and benefits of illegal immigration.

Summary of the Governor’s office report: Illegal immigrants place a large financial
burden on the state of California. The federal government mandates states to provide
services to illegal immigrants at the expense of the other residents of the state.

Summary of the Urban Institute report: The costs of public school education of
illegal immigrants (undocumented aliens) are estimated for seven states: California,
Arizona, New York, New Jersey, Texas, and Illinois. These states account for over
85% of the undocumented population based on estimates from the Immigration and
Naturalization Service. The estimated costs from the Urban Institute Study are much
lower than the estimates from the Governor’s office.

Objective: To estimate the economic costs of illegal immigrants on state budgets
for education (and also some estimates of costs of incarceration).

Kind of study: Economic analysis.
Measurements: Estimates of number of undocumented immigrants in the state,

proportion of school age, percent attending school, and per-pupil state and local costs
of education.

Statistical methods used: Estimated cost is just obtained by multiplying the esti-
mates of the measurements given above. The estimates of the number of illegal im-
migrants comes from the Census Bureau (updating the April 1993 estimate from the
Census Bureau and the Immigration and Naturalization Service and adding a pro-
jection up to January, 1995, based on a Census Bureau estimate of an annual illegal
immigrant influx of 100 000). A 1992 Los Angeles County study was used to estimate
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Fig. 6.5 Article from the San Francisco Examiner for the course packet in Section

6.6.4.
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the school participation rate of school-age illegal immigrant children, which took into
account dropout rates. Average costs per pupil come from state sources.

Two tables, 10 graphs.
Stated conclusions: According to the Urban Institute, public schooling of undocu-

mented alien children cost California $1.3 billion in 1994. According to the Governor’s
office, this cost was $1.7 billion.

How this relates to the rest of the literature: The numbers from the two organiza-
tions differ because the Urban Institute estimates the number of illegal immigrant kids
in school to be 307 000 (p. 9 of that report), and the Governor’s office estimates it to be
392 000 (p. 3 of that report). There is a big dispute over how to estimate the number
of illegal immigrants, the proportion of them who are children, and the proportion of
these children who are in school.

Questions

1. The newspaper articles describe two studies that give quite different conclusions
about the costs of immigration in California. Briefly summarize the estimates from
the Governor of California and the Urban Institute.

2. The two reports are long. We will focus on the costs of educating illegal immigrants
in the California public schools. We have included compressed versions of the two
reports here. For each of the two studies, answer the following question:
How many illegal immigrant children are estimated to be in the California public
schools? On what information is this estimate based?

3. Explain why the two reports give such different answers for the number of illegal
immigrant children in school. Which numbers do you believe more? Why?

4. Explain why the two reports give slightly different values for per-student expendi-
tures.

5. Does either newspaper article give an accurate description of why the studies
give different estimates for the cost of educating illegal immigrant children in
California?

6. Discuss the difficulties of writing a newspaper article about an economic analysis,
as compared to a survey, experiment, or observational study.

Answers to questions

1. California initially made the estimate that the annual cost of hospital emergency
care, jails and schools for the undocumented was around $2.8 billion. The Urban
Institute, however, estimated that total annual costs were around $1.8 billion (SF
Examiner article, paragraph 5). After hearing about the Urban Institute’s report,
California released a new study, with calculations closer to the Urban Institute’s
findings (NY Times article, paragraph 7).

2. The state of California estimates that there are 392 260 illegal immigrant children
being educated in California public schools (1994–95), whereas the Urban Institute
believes this figure is at 307 024 (from Table 4.13 of the report). The California
figure is found using the Census Bureau’s April 1993 estimate of California’s illegal
immigrants; this number is multiplied by the percentage of 5–17 year-old immi-
grants; this is then multiplied by the estimated percent attending school (from
“Methodology for calculating California’s costs of educating illegal immigrants”).
The Urban Institute uses the same multiplication process, but it starts out with
the estimates from INS 1992 data. They also use the Census data to find informa-
tion on recent immigrants, and use these as “proxy populations,” with the goal of
finding out about the characteristics of the undocumented population.

3. The two studies get such different numbers because the Urban Institute bases its
figures on the INS, and California bases its figures on the Census. According to
the Urban Institute (p. 24, 2.3.5), the Census Bureau estimate is flawed because at
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the national level, the Special Agricultural Workers are omitted for the population
estimate of legal residents. This results in an overstatement of the number of illegal
immigrants in the range of 400 000 to 1 000 000 people. Because the INS is focused
on immigration issues and the Census just tries to record characteristics for all
people in the U.S., I would tend to think that the INS puts more care in getting
accurate illegal immigration figures.

4. These values are slightly different because each agency used a different school-year
for their measurements. California made measurements using a projected 1994–95
figure, while the Urban Institute used 1993–94 figures. (Urban Institute report:
Section 1.2.3 and Table 4.13)
(Also, the Urban Institute’s Table 4.13 shows that they used a value under the
heading “State and local per student costs,” whereas the California governor’s
report used a value under “ ‘Proposition 98’ per student costs.” However, in Cal-
ifornia’s methodology, they state that they did use the per-pupil state and local
expenditure level for their estimates, so the Urban Institute may have just incor-
rectly stated what numbers California used for its estimates.)

5. Only the SF Examiner gave a description of the reasons for the different estimates,
although it was a brief and incomplete one. The article stated, “Much of the conflict
between California and Washington revolves around complex data interpretations
that defy all but the most hearty of number crunchers” (paragraph 7, column 2).
The Urban Institute used Immigration and Naturalization Service estimates for
their analysis, and California officials stated that Urban Institute researchers did
not take into account school debt service and added payments into the teacher
retirement fund. However, the article does not state how California calculated
its estimates; we only know what the Urban Institute did and why the state of
California doubted the findings.

6. It is much more difficult to write an article on an economic analysis because many
of these studies are based on forecasting and estimation. In surveys, experiments
and observational studies, researchers know what they are looking for and they
explain this explicitly. As we can see with the immigration articles, there are
many different ways to estimate a value for the cost of a certain item, such as
the education of children. Thus people who write newspaper articles on topics
such as immigration should try to report on the concrete evidence in economic
studies, but often, this evidence in uncertain. It becomes even more difficult when
multiple agencies are working on the same topic. All the reporter can do is give
the conclusions of each entity, and hope that the entities have collected data in
similar ways.

Another student’s opinions

This is a hotly contested issue in California, and there will inevitably be many points
of view. One problem with any study of this nature, is that all figures are based on
estimations, and are not objectively experimental. Moreover, it is possible that the
data are biased against undocumented aliens, as most research is done by the U.S.
government and other agencies wishing to draw attention to a potential problem that
affects all U.S. citizens.

Because illegal immigration is widespread, and burdens a whole variety of social
services, I believe it is best to break down services into smaller, more manageable
fragments and examine them on an individual basis, and then compare them and
see how this relates to the big picture. For example, when looking at public school
enrollment (Table 4.9 of the Urban Institute report), I believe it is more useful to look
at a breakdown of exactly which counties are most affected and how undocumented
aliens are affecting class sizes, costs to schools, etc. Then compare data from other
counties.
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I am rather confused by figures such as discussed in question 1—the Urban Institute
estimates costs of illegal immigrants at $1.8 billion, whereas California’s own initial
estimate was $2.8 billion, which was later revised. How do we know which numbers to
believe? Here, the discrepancy is $1 billion, not exactly something to disregard.

Because of the complexity and sheer amounts of data to look at, I’m not sure this
article is entirely appropriate to teach from, and I would predict some difficulty in
comprehension of the data presented.
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Probability

We cover probability around the middle of the semester (see Section 12.3), and
by that time a few probability examples have already arisen in class. In covering
descriptive statistics (see Chapter 3), we discuss the concepts of one- and two-
dimensional distributions along with the basic use of the normal distribution.
We informally introduce probability calculations in the context of random sam-
pling for data collection (see Section 5.1.1). This chapter has some examples and
demonstrations focused specifically on probability. More theoretical probability
examples appear in Chapter 15, with some of the easier problems in Section 15.2.

7.1 Constructing probability examples

We like to use examples with some inherent interest. For example, when mak-
ing simple probability calculations, we prefer to work with examples such as the
probability of boy and girl births or of twins (see Section 7.3.1). These sorts of
examples are more interesting than poker hands and crap games. Also, using
probability models of real outcomes offers good value: first you can do the prob-
ability calculations, then you can go back and discuss the potential flaws of the
model (see Sections 7.4 and 9.3).

7.2 Random numbers via dice or handouts

7.2.1 Random digits via dice

Some of the demonstrations require random numbers (we have already seen some
of these in Chapter 5).

At the beginning of the term, we give each student in the class a 20-sided
die on which each of the digits from 0 to 9 are written twice. (These dice can
be bought in a game store for about 50 cents each.) Rolling the die once gives a
random digit. We have found that creating random numbers in this way is more
compelling to students than using a random number table and is a convenient
way to simulate a different random number for each student in the class.

7.2.2 Random digits via handouts

If it is too inconvenient or expensive to buy dice, you can prepare handouts of
random numbers for your students. It is important that these numbers be easy to
use and different for each student. Before the semester begins, use the computer
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to generate a few hundred random numbers for each student and print these out,
with one sheet of paper per student, and hand them out on the first day of class.
Each student then starts at the beginning of his or her sheet and, whenever a
random digit is needed, takes the next digit and then crosses it off so it will not
be used again. Sequences of random digits from 0–9 can be generated using any
statistics package or on the Web (for example, at www.random.org/nform.html).

Another approach is to photocopy the random digits table from a statistics
textbook and slice it up, handing two different lines of random numbers to each
student on the first day of class, and requiring them to bring these numbers to
every lecture.

7.2.3 Normal distribution
When we reach the section of the course on probability, sums of random vari-
ables, and the normal distribution, we ask the students how to create a random
variable with an approximate normal distribution with pre-specified mean μ and
standard deviation σ, using five rolls of the die (or five random digits). After
some discussion, they can derive that the sum of five independent random dig-
its has mean 22.5 and standard deviation

√
41.25 = 6.42, and we inform them

that the distribution is close to normal. (This can be demonstrated by asking
each student in the class to roll five dice, and then displaying a histogram of
the students’ totals on the blackboard.) Thus, the sum of five random digits,
minus 22.5, times σ/6.42, plus μ, has the desired distribution. (The students are
required to bring calculators, along with their dice or individual sheet of random
digits, to every class.)

7.2.4 Poisson distribution
A more difficult problem that arises in more advanced courses is creating a
random sample from a Poisson(λ) distribution. We break this into two tasks:
large and small λ. For large λ, we can use the normal approximation, drawing
from the distribution with mean λ and standard deviation

√
λ and rounding to

the nearest integer. We ask the class: how big must λ be for this to work? Well, at
the very least, we do not want to be drawing negative numbers, which suggests
that the mean of the distribution should be at least two standard deviations
away from zero. Thus, λ > 2

√
λ, so λ > 4. For smaller λ, we can compute the

distribution function directly, using the formula for the Poisson density function.
We can round the density function to two decimal places and then simulate using
two random digits obtained by rolling a die twice.

We tell the students that, in practice, more efficient and exact simulation
approaches exist; the methods here are useful for developing students’ intuitions
about distributions, means, and variances.

7.3 Probabilities of compound events
7.3.1 Babies
We enjoy examples involving families and babies. For example, we adapt a stan-
dard problem in probability by asking students which of the following sequences
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of boy and girl births is most likely, given that a family has four children: bbbb,
bgbg, or gggg. We give them a minute to consider the question in pairs. Some
students mistakenly think that bgbg is more likely, but the more sophisticated
students realize that all three sequences are equally likely, with probabilities of
1/16.

But, in fact, that is not right either, since births are more likely to be boys
than girls. For example, in the United States in 1981, there were 1 769 000 girls
born and 1 860 000 boys: 48.7% of births were girls. Using this as an estimate of
the probability of a girl birth, and assuming sexes of births are independent with
equal probability (a reasonable assumption, in fact), it is easy to compute that
Pr(bbbb) = (0.513)4, Pr(bgbg) = (0.513)2(0.487)2, and Pr(gggg) = (0.487)4.

Another example with the probabilities of boy and girl births appears in
Section 8.2.1.

A related topic for probability examples is twins: the historical probabilities
that a birth event is identical or fraternal twins are about 1/300 and 1/125,
respectively. One can then use a probability tree to calculate the probability of
having two boys in a birth event, or two girls, or one boy and one girl.

For a more complicated problem, what is the probability that Elvis Presley
was an identical twin? He had a twin brother who died at birth. Given this
information, the probability is 1

2 · 1
300/( 1

2 · 1
300 + 1

4 · 1
125 ) = 5/11 that this twin

was identical.

7.3.2 Real vs. fake coin flips

Students often have difficulty thinking about summary statistics as random vari-
ables with probability distributions. This demonstration, which also alerts stu-
dents to misconceptions about randomness, motivates the concept of the sam-
pling distribution.

People generally believe that a sequence of coin flips should have a haphazard
pattern, including frequent (but not regular) alternations between heads and
tails. In fact, it is quite common for long runs of heads and tails to appear in
sequences of random coin flips.

The demonstration proceeds as follows. We pick two students to be “judges”
and one to be the “recorder” and divide the others in the class into two groups.
One group is instructed to flip a coin 100 times, or flip 10 coins 10 times each, or
follow some similarly defined protocol, and then to write the results, in order, on
a sheet of paper, writing heads as “1” and tails as “0” (because “H” and “T” look
similar and can be confused when reading them off a sheet of paper). The second
group is instructed to create a sequence of 100 “0”s and “1”s that are intended
to look like the result of coin flips—but they are to do this without flipping
any coins or using any randomization device (or consulting with the other group
of students)—and to write this sequence on a sheet of paper. The recorder is
instructed to copy these sequences onto two blackboards. We announce that the
instructor and the judges will leave the room for five minutes while the students
create their sequences, and then we will return and try to guess which sequence
is from actual coin flips and which was made up.
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00111000110010000100 01000101001100010100
00100010001000000001 11101001100011110100
00110010101100001111 01110100011000110111
11001100010101100100 10001001011011011100
10001000000011111001 01100100010010000100

Fig. 7.1 Two binary sequences produced by students in an eighth grade class for the

demonstration of Section 7.3.2. Can you figure out which is the actual sequence of 100

coin flips and which is the fake? The answer appears on page 269.

We return to the room, examine the sequences written on the two black-
boards, and ask the judges to guess which sequence is real (see Fig. 7.1 for an
example). We then identify real and fake sequences; almost always the identifi-
cation is correct, and the students are impressed. How did we do it? Well, even
as the sequences are being written on the blackboard, the students notice a dif-
ference: the sequence of fake coin flips looks “random” in an orderly sort of way,
with frequent switches between 0’s and 1’s, whereas the sequence of real coin
flips has a “streaky” look to it, with one or more long runs of successive 0’s or
1’s. (One could distinguish between real and fake sequences using a formal rule
based on the longest run length, but we find that we can make the distinction
more effectively based on a visual inspection of the sequences, which implicitly
takes into account much more information.)

We picked out the real sequence using our experience and knowledge of coin
flips. How can this reasoning be formalized? For each of the two sequences on
the blackboards, we count the number of runs (sequences of 0’s and 1’s) and the
length of the longest run. We then hand out copies of Fig. 7.2, which shows the
probability distribution of these two statistics, as simulated from 2000 indepen-
dent computer simulations of 100 coin flips. The students are instructed to circle
on the scatterplot the locations of the values for the sequences on the blackboard.
Most of the times we have used this example in class, the sequence of real coin
flips is near the center of the scatterplot, and the sequence of fake coin flips has
too many runs and too short a longest run, compared to this distribution.

In addition to its “magic trick” aspect, this demonstration is appealing be-
cause it dramatically illustrates an important point for the interpretation of data:
seemingly surprising patterns (long sequences of heads or tails) can occur entirely
at random, with no external cause. Long runs in real coin-flip data surprise stu-
dents because they expect that any part of a random sequence will itself look
“random”—that is, typical of the whole. This can motivate a discussion of the
general phenomenon that small samples can be unrepresentative of a population.
Familiar examples include biological data (for example, a family can have several
boys or girls in a row) and sports (a basketball player can have “hot” and “cold”
streaks that are consistent with random fluctuation).

We have also occasionally tried an alternative version of this demonstration
in which the students divide into four groups, creating two sequences of real coin
flips and two of fake coin flips. Here, it is much harder to tell them apart—it’s a
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Fig. 7.2 Length of longest run (sequence of successive heads or successive tails) vs.

number of runs (sequences of heads or tails) in each of 2000 independent simulations of

100 coin flips for the demonstration described in Section 7.3.2. Each dot on the graph

represents a sequence of 100 coin flips; the points are jittered so they do not overlap.

When plotted on this graph, the results from an actual sequence of 100 coin flips will

most likely fall in an area with a large number of dots. In contrast, a sequence of heads

and tails that is artificially created to look “random” will probably have too many

switches and no long runs, hence will fall on the lower right of this graph.

matter of picking the one correct answer out of six possibilities, rather than one
out of two—and we have occasionally picked it wrong. For maximum dramatic
impact, we recommend just two groups so that it is easy to make the correct
identification quickly.

After surprising students by identifying the real and fake sequences of coin
flips, it is useful to develop their intuition as to why real sequences would be
expected to have some long runs of heads or tails, as is indicated by Fig. 7.2.
We ask the students what is the probability of having six straight heads? They
quickly calculate that it is 1/2 to the sixth power, or 1/64. A sequence of 100
coin flips includes 95 sequences of length six, and thus one would expect to see
one or two runs of six heads, as well as one or two runs of six tails. A sequence of
seven heads occurs with probability 1/128, which is certainly a possibility given
that there are 94 chances.

7.3.3 Lotteries

Lotteries are a popular source of examples for teaching probability. Surely the
most important practical lesson we can teach our students here is not to play
(see Sections 8.2.2 and problem 9 of Section 15.2.1 for illustrations of the futility
of gambling). In addition, though, lotteries are a relatively simple and familiar
example of extreme probabilities, and class discussion can bring up common
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points of misunderstanding.
For example, on September 9, 1981, the four-digit lottery number 8092 was

drawn in both Massachusetts and New Hampshire. This was described as a 1
in 100 million event. However, it would be more accurate to call this a 1 in
10 000 event, since the coincidence would have been remarked upon had any of
the four-digit numbers been picked. (It was not newsworthy that the number
was “8092.”) This can be illustrated by sketching a 10 000 × 10 000 grid on the
blackboard and labeling the diagonal elements as the cases in which the two
states would have the same number.

But, what about 1 in 10 000? Is this still not a surprise? Not if you consider the
number of daily lottery drawings (three years is about 1000 days) and the number
of possible pairs of states that could be compared. From this perspective, it is
no surprise that different states will occasionally have the same lottery number
on the same day, and it hardly seems newsworthy.

For a slightly more complicated example, a woman won the New Jersey lot-
tery twice, in 1985 and 1986, and this was particularly surprising given that the
chance of winning the lottery was less than 1 in a million each time. (In 1985,
the lottery game involved picking six numbers from a set of 39, in which case any
individual ticket had a 1 in 3.3 million chance of winning. In 1986, the lottery
required picking six numbers from a set of 42, and the probability of winning was
1 in 5.2 million.) The probability of winning both lotteries is then the product
of these probabilities, or 1 in 17 trillion.

How could such an unlikely event have occurred, we ask the students? To start
with, as in the previous example, the surprising thing is not the first lottery win
(after all, someone had to win that lottery) but rather that this woman, after
winning the first lottery, won again. Thus the surprising event has a probability
of 1 in 5.2 million, not 1 in 17 trillion. Another adjustment can be made because,
after winning the lottery the first time, this woman played weekly for years and
bought several tickets each week. If she bought ten tickets each week for ten
years, that is 5200 tickets, so her probability of winning the lottery again in the
next decade is about 1 in 1000. Finally, considering that there are thousands of
lottery winners all over (for example, if each of 20 states has a lottery winner
every week, that’s 1000 winners ever year), if many of them continue to play
regularly after winning, it is no surprise that some person, somewhere, will win
twice.

7.4 Probability modeling
The next step beyond probability calculation is modeling: that is, applying prob-
ability distributions to real phenomena. We present some simplified examples
here on topics in sports, social science, and engineering.

7.4.1 Lengths of baseball World Series

In the fall semester, we usually cover probability in mid-October, which is a
good time to introduce the following example that has often been used as a case
for probability modeling. In the baseball World Series, two teams play games
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Theoretical Expected number Actual
Length probability (out of 92 cases) # of cases

4 1/8 11.5 18
5 1/4 23.0 20
6 5/16 28.8 20
7 5/16 28.8 34

total 1 92 92

Fig. 7.3 Frequency of lengths of best-of-7 baseball World Series, along with expected

frequencies under an independent coin-flipping model. In class, we first derive the prob-

abilities, then reveal the actual frequencies, then discuss discrepancies between theory

and reality.

until one team has won four games; thus the total length of the series must be
between 4 and 7 games. What is the probability of each of these lengths under
the assumption that the games are independent events with each team equally
likely to win?

We work this out step by step on the blackboard by enumerating all the
possibilities for 4-, 5-, and 6-game series. Enumerating 7-game series seems like a
lot of effort, so at this point we pause and wait for some student to recognize that
Pr(7 games) = 1 − Pr(4 games) − Pr(5 games) − Pr(6 games). Interestingly, 6-
and 7-game series turn out to be equally likely; is there a reason for that? We
point out that, if the series has gone 5 games and is not over, then the sixth
game determines whether a seventh game is played and, under our model, the
two outcomes are equally likely.

The probabilities are shown in Fig. 7.3 along with the frequencies of the
lengths of the first 92 series (excluding some early series that were not played
under the best-of-7 rule), which we show to the students only after computing
the theoretical probabilities.

When we do reveal the numbers in Fig. 7.3, we are in a position for a lively
discussion of two aspects of lack of fit of the probability model:
• There are more four-game series than expected. Why would this be? One

possibility is that teams are not always equally matched, so the assumption
of 50/50 probabilities might be wrong. To illustrate, we compare the ex-
pected proportion of four-game series from the coin-flipping model, 2(0.5)4 =
0.125, to the proportion of four-game series we would expect if the better
team had a 60% chance of winning each game: 0.44 + 0.64 = 0.155. This
comes to an expected 0.155 · 92 = 14.3 four-game series out of 92 cases,
which is closer to the observed 18. (It seems unlikely that the probability of
the better team winning a world-series game is any higher than 0.6, since
the best baseball teams typically win only about 60% of their games against
all opponents, and presumably their World Series opponent is better than
average.)

• There are many more seven-game than six-game series, despite their having
equal theoretical probabilities. Why has this been happening? Student ex-
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planations have included home-field advantage, the scheduling of the pitch-
ing rotation, and even collusion (a longer series will sell more tickets and
advertising).

This is a fun example because it interests many of the students and illustrates
how we make approximations that are not quite true, and it is useful to see where
the approximations fail. Section 8.5.5 presents a formal test of the model’s fit.

7.4.2 Voting and coalitions
What is the probability that your vote will be decisive in a Presidential election?
(The answer depends on the closeness of the election and also on which state you
vote in.) Or, for a simpler example, suppose a class of 25 students is to vote on
some issue (for example, whether the end-of-semester party should have pizza or
Chinese food): what is the probability that any given student’s vote is decisive
in this choice?

How can this probability be calculated? It is worth spending some time
discussing it. A start is to assume that each student’s vote is equally likely
to go in either direction—in this case, the probability that 24 votes are split
evenly (so that you, the 25th voter, are decisive) is, from the binomial dis-
tribution, 24!

12!12! (0.5)24 = 0.16. What if you think pizza is more popular than
Chinese food? If pizza is preferred by 60% of the general population from which
this class is considered a sample, then the probability of a 12-12 vote split is

24!
12!12! (0.6)12(0.4)12 = 0.10.

The calculations become more subtle when coalitions are involved. For exam-
ple, suppose the class of 25 has 15 women and 10 men. Now consider the following
voting rule: the voters of each sex will get together and form a pact: they will
make a preliminary vote within their group and then, in the general vote of all 25
students, they will all vote as a block in favor of the choice preferred by a major-
ity of their sex. Now what is the probability that your vote is decisive? It is easy
to see that the men’s votes are irrelevant, since all 15 women have already agreed
to vote unanimously. What if you are a woman? Then, your vote is decisive if
the other women are divided 7-7, which has probability 14!

7!7! (0.5)14 = 0.21 if all
votes are equally likely, or 14!

7!7! (0.6)7(0.4)7 = 0.16 under the “60% prefer pizza”
model. Either way, the women benefit from being part of a cohesive coalition.

So, we ask the students, should you bother to vote at all? Certainly there’s no
point if you’re in the position of the men in the block voting system. Otherwise,
it depends on how likely it is for the vote to be tied. (Just for a standard of
reference, there were 20 000 contested elections for the U.S. Congress between
1900 and 1990, and none of these were tied. But six of the elections were within
10 votes of being tied, and 49 were within 100 votes).

7.4.3 Space shuttle failure and other rare events
The surprising explosion of the Space Shuttle in 1986 presents an interesting
example of probability modeling: before the launch, the official estimated proba-
bility of the space shuttle failing was 1/1000, but then it blew up. Looking back
at the historical data gave a more reasonable probability estimate of about 2%.
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The problem was that the 1/1000 probability came from a “fault-tree” model,
estimating the probability of each component failing and then combining these to
compute the probability that the system as a whole would fail in some way. The
inherent problem with this approach is that it did not include the probability of
a failure they had not thought of! In fact, any potential problem of which they
were aware would have been fixed; hence the probability estimate was bound to
be too low.

It is more reasonable to estimate the probability of failure empirically, by
considering the failure rate of previous rocket launches. Such a calculation was,
in fact, done at the time—yielding a probability estimate of 2%—but it was
brushed aside.

For another example of the empirical estimation of the probability of a rare
event, the London Observer reported,

In the last World Cup there was a competition offering prizes to anyone who could kick
a ball through a hole in a board put up in front of a goal. ‘We had to get a group of
people kicking balls at the board to work out the odds,’ [insurance executive] O’Reilly
said.

We discuss other examples of small probabilities in Sections 7.4.2 and 13.1.4.

7.5 Conditional probability

7.5.1 What’s the color on the other side of the card?

We have found the following standard probability example to be well-suited to
classroom use. Before coming to class, we prepare several sets of three cards:
each set has one card that is blue on both sides, one that is pink on both sides,
and one that is blue on one side and pink on the other. We keep one set for
ourselves, for demonstration purposes, and hand out the other sets to the class
(one set for each student). Using our set, we place our three cards in a hat, then
select one card and, without looking, tape the selected card to the blackboard.

Suppose the side of the card facing the class is blue. We then ask the class
what the probability is that the other side of the card on the blackboard is also
blue (if the side facing the class is pink, then we ask for the probability that the
other side of the card is also pink). The students make their guesses and give
their reasons for them.

The typical guessed probability is 1/2. The actual probability, however, is
2/3, which can be easily seen by considering the card selection as a random
choice among the six possible card sides that could have been picked. Of these
six card sides, three are blue, and two of those three sides have blue on the other
side: thus, the conditional probability that the other side is blue is 2/3. This
analysis is shown as a probability tree in Fig. 7.4.

We explain the probability reasoning to the students but not immediately.
Rather, we start with a simulation, using the sets of cards we have handed to
the students, to demonstrate that the probability is greater than 1/2. We ask
each student to randomly select one card from his or her set, without looking,
and lay it on his or her desk. We ask the students with a blue card face up to
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Fig. 7.4 Probability tree for the three-card example of Section 7.5.1. Show this to

the students only after performing the demonstration.

raise their hands, and we count the number. For example, in a class of 30, we
might see 14 students raising their hands. We now ask these students to look on
the other sides of their chosen cards (while keeping their hands in the air) and,
if the other side is pink, to put their hands down. We then count the number of
hands remaining in the air, which might be 10 in this example. We then estimate
the conditional probability of the second card being blue as the fraction of hands
that stayed in the air (for example, 10/14 = 0.71). We repeat this a few more
times to convince the students that the outcome they are witnessing is not a
fluke.

We then explain the probability reasoning via the tree in Fig. 7.4. This ex-
ample is fun because the students see, experimentally, that their original guesses
were (typically) wrong. At this point, the derivation of the correct answer us-
ing probability theory is a useful introduction to sample spaces and conditional
probability.

Similar probability trees underly two other popular probability problems.
The “Monty Hall” problem is similar, and students never seem to tire of

solving it. A contestant chooses one of three doors. Hidden behind two of the
three doors is a donkey, and the third holds a prize. Monty Hall opens one of
the two doors that the contestant has not chosen to reveal a donkey, and then
proceeds to ask the contestant if she wants to switch doors. (The rules of the
game require Monty to open a door that does not have the prize, and then he
must give you the option to switch.) It behooves the contestant to switch, as the
probability that the door Monty didn’t open has the prize behind it is now 2/3.

Another related problem involves three prisoners. Two of the three are about
to be released but only the warden knows which two. One prisoner asks the
warden to secretly tell him the name of one of the other two prisoners who is
to be released. He argues that since he knows that at least one of the others is
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to be released it won’t change anything if he is given this information. But once
the warden complies, the prisoner regrets his request, for he now thinks that his
chances of being released have dropped from 2/3 to 1/2. When we ask the class
what they think of the prisoner’s logic, it starts a lively class discussion.

7.5.2 Lie detectors and false positives

In teaching conditional probability, we embed a well-known example in a dra-
matic setting to get students directly involved with the problem. The scenario
is as follows. Through accounting procedures, it is known that about 10% of the
employees of a store are stealing. We pick two students to play the role of “man-
agers,” and the other students in the class are the “employees.” The managers
would like to fire the thieves, but their only tool in distinguishing them from the
honest employees is a lie detector test that is 80% accurate: if an employee is a
thief, he or she will fail the test with probability 0.8, and if an employee is not
a thief, he or she will pass the test with probability 0.8.

To simulate these conditions, each employee rolls a die on which are written
the digits from 0 to 9 (or random digits can be used; see Sections 7.2.1–7.2.2).
If the die roll (or random digit) is in the range 1–9, the employee is honest; if
it comes up “0,” he or she is a thief. In either case, however, the employee does
not reveal this outcome to anyone else. Instead, he or she rolls the die again to
determine the outcome of the lie detector test. If the die roll is in the range 2–9,
the lie detector gives the correct answer (“pass” for an honest employee, “fail”
for a thief); if it comes up “0” or “1,” the lie detector gives the wrong answer
and records “fail” for an honest employee and “pass” for a thief. The employees
who have failed the lie detector test are asked to raise their hands. For example,
in a class of 50 students, one would expect about 50 · 0.26 = 13 students to raise
their hands.

The managers are then asked, “How many of those employees do you think
are thieves?” A typical response is that about 80% of those who failed the lie
detector test are thieves. The students who have raised their hands are now
asked to tell their true status—honest or thief—and, in fact, it generally turns
out that most are honest! The mistake made by the managers is the well-known
fallacy of reversing the conditional probability (that is, confusing Pr(A|B) with
Pr(B|A)), which is also explained in terms of neglecting the “base rate” (in this
example, the rate of thieves in the general population).

We then explain the correct reasoning by drawing a probability tree that
has branches indicating “honest” or “thief,” each of which has branches indicat-
ing “pass” or “fail”; see Fig. 7.5. The total probability of “fail” is (0.1)(0.8) +
(0.9)(0.2) = 0.26, and the conditional probability of “thief,” given “fail,” is
Pr(“thief” | “fail”) = Pr(“thief” and “fail”)/Pr(“fail”) = 0.08/0.26 = 0.31: if
you fail the test, there is only a 31% probability that you are a thief. We also
explain by expressing the possible outcomes of the die rolls as a 10 × 10 table
with the row and columns indicating the results of the first and second die rolls,
respectively. The top row of the table corresponds to the thieves, and the left
two columns correspond to the lie detector giving the wrong answer. It is clear



114 PROBABILITY

honest

pass

fail
thief

9/10

1/10

fail

pass
4/5

1/5

1/5

4/5

Fig. 7.5 Probability tree for the lie detector example of Section 7.5.2. Show this to

students only after performing the demonstration.

that there are 18 ways to be honest and fail the lie detector test, but only eight
ways to be a thief and fail.

Another standard example of this phenomenon of a high false-positive rate
is in medical testing; whatever the context, we recommend that the student-
participation version precede formal presentation of tree diagrams and condi-
tional probability.

7.6 You can load a die but you can’t bias a coin flip
“A coin with probability p > 0 of turning up heads is tossed . . .”
— M. Woodroofe, Probability With Applications (1975, p. 108)

“Suppose a coin having probability 0.7 of coming up heads is tossed . . .”
— S. Ross, Introduction to Probability Models (2000, p. 82)

The biased coin is the unicorn of probability theory—everybody has heard of
it, but it has never been spotted in the flesh. As with the unicorn, you probably
have some idea of what the biased coin looks like—perhaps it is slightly lumpy,
with a highly nonuniform distribution of weight. In fact, the biased coin does
not exist, at least as far as flipping goes.

We have designed classroom demonstrations and student activities around
the notion of the biased coin. The simple toss of a coin offers opportunities
for learning many lessons in statistics and probability. For example, we ask our
students: How is a coin toss random? and What makes a coin fair? This starts a
discussion of random and deterministic processes. We can design experiments and
collect data to test our assumptions about coin tossing, and because flipping coins
is such a simple and familiar concept, important issues surrounding experimental
design and data collection are easy to spot and address.

Gambling and the art of throwing dice have a colorful history. For example,
in the eleventh century, King Olaf of Norway is said to have wagered the Island
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of Hising in a game of chance with the King of Sweden. King Olaf beat the
Swede’s pair of sixes by rolling a thirteen! One die landed six, and the other
split in half landing with both a six and a one showing. Stories about biased
dice have continued to the present day. Ortiz (1984) gives an amusing story of
an elaborate confidence game based on a rigged top. What amazes us most this
story is that people are apparently willing to bet with complete strangers in a
bar on the outcome of a spinning top.

But for coins, the physical model of coin flipping (discussed in Section 7.6.3
below), which says that the “biased coin,” when flipped properly, should land
heads about half the time, may explain why we had trouble finding such stories
about biased coins. One exception comes from the mathematician John Kerrich,
who tossed a coin 10 000 times while interned in Denmark in 1941. He describes
his method of tossing, “A small coin, balanced on the writer’s forefinger, was
given a little flip with the thumb so that it spun through the air for about a foot
finally landing on a cloth spread out flat over a table . . . if the coin fell heads
in one spin it was convenient to balance it head uppermost on the operator’s
forefinger when preparing for the next, and vice versa.” In addition to tossing
this coin (which landed heads 5067 times), Kerrich also tossed a wooden disc that
had one face coated with lead. Calling this face “tails” and the other “heads,”
he found the coin landed heads 679 out of 1000 times. As the coin was allowed
to bounce on the table, a bias was observed.

7.6.1 Demonstration using plastic checkers and wooden dice

Unfair flipping and experimental protocol

We bring a plastic checker to class and affix putty to the crown side, which
we also call the heads side. Then we ask the students whether they think the
probability the checker lands heads when tossed is 1/2 or not? Most are positive
that the “coin” is biased. We try flipping the checker a few times and varying
the way we flip it—high, low, fast spin, no spin, like a frisbee, off kilter, bouncing
on the ground, catching it in the air.

The students quickly realize that to make any sense of this probability state-
ment it is important to specify how to flip the checker. We ask them to come up
with a list of rules to follow when flipping the coin to make the flips as similar
as possible. For example: begin with the crown side up and parallel to the floor;
flip the coin straight up, high in the air so it spins rapidly, and with the spinning
axis also parallel to the floor; catch the coin midair in the palm of hand.

We proceed from here with designing an experiment to test the hypothesis
that p, the probability the coin lands heads, is 1/2. We ask questions such as,
how many flips are needed to determine if the coin is not fair? These lead to
discussions of hypothesis testing, significance levels, and power.

Checkers and bubble gum

Our in-class demonstration continues with a student activity on biased coins and
dice. After showing the students our altered checker, and discussing how to flip it
fairly, we give them a chance to make their own biased coins and dice. We divide
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3 6 3 1 2 1 4 4 1 2 1 4 3 1 5 5 1 1 1 3
1 1 1 1 1 2 3 1 3 4 1 2 3 4 2 2 5 1 5 1
5 5 5 5 3 2 3 5 1 3 5 1 3 1 1 2 1 3 3 1
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5 1 3 4 1 5 5 1 1 4 3 5 1 5 3 1 3 5 1 3

Fig. 7.6 The results of 120 rolls of a die that has had the edges on the 1-face rounded.

In 120 rolls, the 6, which is opposite the 1, showed only once.

them into pairs and give a plastic checker, wooden die, and piece of sandpaper to
each pair. We tell them that they can alter the checkers and dice however they
want—for example, they can sand the edges of the die or affix gum to one or
both sides of the checker (but then they should let the gum dry before handling
the checker). The object is to maximize the probability of tails (or heads) for the
checker, and to alter the die so the six sides are not equally probable.

We provide explicit instructions on how to flip and spin the checker and how
to roll the die. To roll the die, they must find a smooth level surface and draw
a circle on it about one to two feet in diameter. They shake the die in a cup
and drop it into the circle. It must remain within the circle when it comes to a
rest in order to count as a successful roll. The same circle is used for spinning
the checker. The spins are to be contained in the circle, and they must spin
quickly before falling. To flip the checker, we follow the rules set up in our
earlier discussion. After our in-class demonstration, the students understand the
necessity of closely following the protocol.

We also give specific instructions about the order that they are to work on
the dice and checkers. First, we have them modify the die. (Although it is easy
enough to do, we were surprised at how much sanding was needed to notice a big
difference from what is expected in 120 flips.) Next, they alter the coin. The hitch
is that we instruct them to modify the checker until they are satisfied that it is
biased when spun (say when tails come up 65 or more times in 100 spins). Then
they are to flip the altered checker, without making any further modifications to
it. The students should find that the alterations have essentially no effect on the
flips even though they have a large effect on the spins.

We ask the students to bring their modified coins and dice to the next lecture
along with a record of their results. They are to roll the die 120 times, and spin
and flip the checker 100 times each. Figures 7.6 and 7.7 contain the results from
one student’s efforts to modify her die and checker. After rounding one of the
corners on her die, she rolled only one 6 in 120 throws of the die. She also found
that her altered checker landed tails 77 times in 100 spins (Fig. 7.7), which has
a probability of less than one in ten million of occurring with fair spins. But
this same altered checker when flipped landed tails 47 times out of 100, a typical
result for a “fair coin.”

If we have a lot of students in the class then we would expect a few of the
pairs to have significant results for the flipping activity. This is an excellent
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100 spins of the checker 100 flips of the checker

01101001100000101010 11110101010000001111
10001000001010000100 00111000011000110100
00010100010000010000 01111100111001110111
00010000000001001000 00100010111100110010
00100000000000010010 10111100111101100010

(23 heads, 77 tails) (54 heads, 46 tails)

Fig. 7.7 The results of 100 spins and 100 flips of a plastic checker which has been

altered with putty. Heads are denoted by 1 and tails by 0. (We indicate Heads and

Tails by 1 and 0, respectively, because “H” and “T” are hard to distinguish visually.)

opportunity to discuss the notion of multiple comparisons. Some students may
insist that their checker has a probability greater than 0.5 of landing tails (or
heads) when flipped. Since they have brought their checkers to class, we have
them turn over their checkers to us for further investigation.

7.6.2 Sporting events and quantitative literacy
After the students have been “tricked” with the checkers, we discuss the find-
ings of Tomasz Gliszczynski and Waclaw Zawadowski, statistics teachers at the
Akademia Podlaska in Siedlce, Poland. These statisticians had their students
spin the Belgian one-Euro coin 250 times, and they found that it came up heads
140 times. (The one-Euro coins have a common design on the tails side and a
national image on the heads side. Belgium portrays King Albert II on the heads
side.) As the introduction of the Euro was the largest currency switch in history,
this finding received a lot of press coverage. We present some excerpts from news
stories for discussion and critique.
Memo to all teams playing Belgium in the World Cup this year: don’t let them use
their own coins for the toss . . . “It looks very suspicious to me,” said Barry Blight, a
statistics lecturer at the London School of Economics. “If the coin were unbiased the
chance of getting a result as extreme as that would be less than 7%.”

The academics claim Belgium Euro coins have been struck “asymmetrically” and come
up tails only 44% of the time. . . .With a French Euro and a limited knowledge of
physics—is it best to flip a coin in the air or spin it on a table?—we set to work.
. . . The French flip 56% “tree.” The French spin 52% “tree.”

The observation is not to be taken lightly on a sports-mad continent where important
decisions can turn on the flip of a coin. . . . Gliszynski says spinning is a more sensitive
way of revealing if a coin is weighted than the more usual method of tossing in the
air. . . . But Howard Grubb, an applied statistician at the University of Reading, notes
that, “with a sample of only 250, anything between 43.8 per cent and 56.2 per cent on
one side or the other cannot be said to be biased.” New Scientist carried out its own
experiments with the Belgian Euro in its Brussels office. Heads came up five per cent
less often than tails.

With their experience flipping and spinning their uniquely modified checkers,
the students are ready to discuss these news stories. Points that quickly come to
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surface are: there is confusion between flipping and spinning the coin; two articles
report their own experimental results, but they do not supply the number of flips
or spins; and the two statisticians quoted do not agree on whether the results
are suspicious or not.

7.6.3 Physical explanation

Deterministic physical laws govern what happens in the flip of a coin and the
throw of a die, but we consider these events as random. It’s hard to separate
the random from the deterministic even in something as simple as the coin flip.
What makes a coin toss fair?

The uncertainty of the coin’s initial state is the key. A coin toss is basically
deterministic. The coin obeys Newton’s laws of motion, with its final state de-
pending on its angular velocity (rate of spin) and time traveled (which in turn
depends on the upward velocity with which it is flipped). For tosses where the
coin spins rapidly and goes high in the air, the set of initial velocity values that
lead to either heads or tails are of equal size. That is, half of the initial conditions
lead to heads and half to tails. So, uncertainty in the initial state (for example,
a smooth probability distribution on a range of values for the initial state) leads
to the coin landing heads half the time.

Conservation of angular momentum tells us that once the coin is in the air, it
spins at a nearly constant rate (slowing down very slightly due to air resistance).
At any rate of spin, it spends half the time with heads facing up and half the
time with heads facing down, so when it lands, the two sides are equally likely
(with minor corrections due to the nonzero thickness of the edge of the coin);
see Fig. 7.8. Weighting the coin has no effect here (unless, of course, the coin is
so light that it floats like a feather): a lopsided coin spins around an axis that
passes through its center of gravity, and although the axis does not go through
the geometrical center of the coin, there is no difference in the way the biased
and symmetric coins spin about their axes.

Jaynes (1986) describes how to add another kind of spin to the coin like the
spin when you toss a frisbee, which enables you (if you are good enough at coin
flipping) to have the coin, biased or not, always land heads. To prove his point,
he tossed the lid of a pickle jar according to three different methods. First he
tossed it with a frisbee-type twist and a very slow spin, the lid landed “heads” 99
out of 100 times. (Heads in this case is the inside of the lid.) Then he tossed the
lid so that it landed on its edge and spun rapidly on the floor before falling to one
side. This time the lid landed heads 0 out of 100 times, because a lopsided coin
tends to fall on the side that makes the center of gravity high, and the center of
gravity for the lid was closer to the top. (The lid had a diameter of 2 5/8 inches,
height of 3/8 inch, and center of gravity 0.12 inches from the top of the lid.)
Finally, when the pickle jar lid was tossed without any bounce or frisbee-spin, it
landed heads 54 out of 100 times.

In the first method, the frisbee-style twist on the toss dominates, in the
second, the bias takes over, and in the third, we have a “fair coin toss.” It does
not make sense to say that the coin has a probability p of heads, because the
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Fig. 7.8 Angular position of a flipped coin as a function of time. Suppose heads was

up initially. Then, when the coin is caught, if the angle is between 90 and 270 degrees, it

will show “heads” when caught and displayed; otherwise, it will show “tails.” The initial

condition of the coin is “forgotten” if the uncertainty about when the coin is caught

is much greater than the rotation period. In this case, the coin will be in the “heads”

region of angular space with probability 1/2, no matter how the coin is weighted.

outcome can be completely determined by the manner in which it is tossed—
unless it is tossed high in the air with a rapid spin and caught in the air with
no bouncing, in which case p = 1/2. If we must assign a probability p to a coin,
then that probability must be approximately 1/2 (unless it is double-headed or
double-tailed), no matter how it is weighted.

But dice can be “loaded” to make some faces more likely because, among
other reasons, dice bounce after being thrown, and weighting and beveling can
affect the bounces. As we saw with Jaynes’s experiment, if a coin is spun, or if it
is thrown and allowed to bounce, it can have a stable probability of heads that
is not close to 1/2, and it is easy to alter this probability by shaving the edges
of the coin to different angles.
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Statistical inference

We begin this chapter with a very successful demonstration illustrating many
of the general principles of statistical inference, including estimation, bias, and
the concept of the sampling distribution. We then present various demonstra-
tions and examples that take the students on the transition from probability
to hypothesis testing, confidence intervals, and more advanced concepts such as
statistical power and multiple comparisons.

8.1 Weighing a “random” sample

It is well known among statisticians that when you take a “haphazard” sample
without using any formal probability sampling, you ar 294 e likely to oversample
the more accessible units. We have found students to respond well to the following
demonstration based on estimating the weight of a collection of objects. This
demonstration goes beyond the earlier examples of sampling bias in Section 5.1
in that we identify a sampling distribution and its bias and variance.

We pass around the room a small digital kitchen scale along with a bag
which, we (truthfully) tell the class, we filled ahead of time with 100 wrapped
candies of different shapes and sizes (for example, 20 full-sized candy bars and
80 assorted small candies). We divide the class into pairs and tell each pair of
students to estimate the total weight of the candies in the bag by first selecting a
“representative or random sample” of 5 candies out of the bag, then weighing the
sample and multiplying by 20 to estimate the total weight. We ask each pair of
students to write their measurement and estimate silently (so as not to influence
the other students), then put their sample back in the bag, shake up the bag,
and pass to the next pair. At the end, we tell the students, we will weigh the
bag, and whoever has the closest estimate will get to keep all the candy.

This demonstration takes about two minutes to explain, and then it proceeds
while the lecture takes place, thus giving all the students the opportunity to
participate without taking away lecture time. As usual, we have the students
work in pairs so they will focus more seriously on the task.

Once all the pairs of students have weighed their candies, we ask each pair to
state their estimated total weight; we write all these weights on the blackboard
and then display them as a histogram, as shown in Fig. 8.1. This histogram illus-
trates the sampling distribution of the estimated weights. We then get another
student to weigh the entire bag (a digital kitchen scale with enough accuracy

120
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Fig. 8.1 Results of 17 pairs of eighth graders independently estimating the weight

of a bag of 100 candies of varying size by selecting a sample of 5, weighing them (and

returning them to the bag), and multiplying the weight by 20. (The estimate of 2827.7

was from a student trying something clever.) The histogram represents the sampling

distribution of the estimates, and the spread in the histogram shows the variance of the

estimate. The true weight was 1480 grams; thus the sampling distribution also includes

a large bias. Students tend to overestimate the weight, even when they are motivated

to guess accurately, because it is easier to grab the larger candies out of the bag.

to weigh 5 candies and enough range to weigh all 100 can be bought for about
$50) and state the total weight. It is invariably lower than most or even all of
the sample-based estimates, and this shocks the students.

Why did this happen? The students realize that the larger candies are more
accessible (and also are more likely to remain on the top of the bag after it has
been shaken). Even though they tried to get a representative or random sample,
they could not help oversampling the large candies.

This example leads to the topic of random sampling. We ask the students how
they would take a random sample of size 5 from the 100 candies. In addition,
this is an excellent way to introduce the concepts of bias and variance of a
sampling distribution, as shown in Fig. 8.1. We can then discuss how the bias
and variance would change if (a) we switched to a random sampling approach,
or (b) we increased the sample size from 5 to 10 or 20.

8.2 From probability to inference: distributions of totals and
averages

A crucial and always-confusing topic in statistics is the sampling distribution of
sums and means of random variables. It is helpful to explore these ideas with
examples and student participation as well as algebra.

8.2.1 Where are the missing girls?

The natural probability that a baby is a girl is about 0.487 (see Section 7.3.1),
and this probability has historically been very stable. The outcomes are also
independent across births (except for the rare occasions of twins and triplets).
Hence, students can easily calculate summaries such as the mean and standard



122 STATISTICAL INFERENCE

Bet Example of winning numbers Payoff
Even 2, 4, 6, 8, . . . , 36 $1 for each $1 bet
1st 12 1, 2, 3, 4, . . . , 12 $2 for each $1 bet
Column 3, 6, 9, . . . , 36 $2 for each $1 bet
Line 4, 5, 6, 7, 8, 9 $5 for each $1 bet
Quarter 14, 15, 17, 18 $8 for each $1 bet
Three numbers 16, 17, 18 $11 for each $1 bet
Split play 30, 33 $17 for each $1 bet
Single play 25 $35 for each $1 bet

Fig. 8.2 A sample of bets available at a Nevada roulette table. The table has 38 num-

bers (1–36, 0, and 00) that are equally likely to occur. Each of these bets has expected

values of −2/38. To place a “line” bet on 4–9, the wager is put at the intersection of

the line between 4 and 7 and the horizontal line below the bottom row of the numbers.

To place a “quarter” bet on 14–18, the wager is put at the common corner of the boxes

surrounding the four numbers.

deviation of the proportion of girls in 100, or 1000, or 10 000 births. For example,
in 10 000 births, there is a 95% probability that the proportion of girls will be in
the range [0.482, 0.492]. In a million births, there is a 95% probability that the
proportion of girls will be in the range [0.486, 0.488].

It has been noticed, however, that in some countries the proportion of girl
births is much lower, for example, 47.6% in South Korea, 46.1% in China, and
below 45% in parts of India. Demographers think the discrepancy in girl births is
due to infanticide or to selectively aborting female fetuses. This is an interesting
example of the use of statistical regularity to learn about social processes.

We can also use this example to motivate a discussion of sample size: how
many births would be needed to detect a given difference in probabilities?

8.2.2 Real-time gambler’s ruin

Games of chance, especially roulette, are common examples for showing the
distribution of sums. We turn these typical problems into a lively class demon-
stration where we wipe out the students at roulette.

We begin by passing out a diagram of the roulette table and a chart of the
payoffs for various bets (Fig. 8.2). Then we ask for strategies on how to place
bets, if you had $20 to bet. Students volunteer their strategies, and we write
them up on the board with their names next to their strategies. We also ask
them to explain their strategies. Some want to play for as long as possible, and
others want to make money fast or try out a friend’s “system.” Here are some
of their strategies: put all $20 down on Red; bet $1 at a time on #17; cover the
board with multiple bets on different sets of six numbers; bet $1 on red, double
the bet if you lose, and continue to double the bet until you win, then start over
with a $1 bet. If this last system worked and the game were fair then you would
be guaranteed to make money, but there’s a hitch and that is that you don’t
have the resources to keep doubling your bet indefinitely.
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We are ready to start spinning the wheel once we have about 6 strategies on
the board. Each person to volunteer a strategy is given $20 in chips. In addition
to the roulette wheel, we bring to class three boxes of 100 chips: 50 white ($1),
25 red ($5), and 25 blue ($10). We enlist students to help make change, spin
the roulette wheel, and make the payoffs. The gamblers come to the front of the
class and start placing bets. As soon as they are wiped out they must sit down.
After about a dozen spins of the wheel, one or two students are left standing.
These are usually the ones with a strategy of placing only one bet. We tally the
net gain for each gambler, and then we add all of their gains together and switch
the sign to find the casino’s net gain. It is surprising to see how easy it is for the
group to lose money.

To drive the point home we finish with the following calculation. Suppose
there are 100 roulette wheels, and each is spun 50 times an hour, 20 hours a day
for ten days. On each spin of each wheel, $1 is bet on Red. We work out the
probability that the net gain for the casino is less than $50 000. It is less than 1
in 15 million.

8.3 Confidence intervals: examples
Confidence intervals are complicated, and we introduce them in two parts, be-
ginning in this section with some simple examples illustrating their connection
with probability distributions, means, and standard deviations. We follow with
demonstrations (described in Section 8.4) that use class participation to illustrate
the general concept of sampling distributions of confidence intervals.

Simple one-sample and two-sample intervals can be constructed from just
about any of the data collection activities previously done in the class. For ex-
ample, the class can construct confidence intervals for the average handedness
score (see Section 3.3.2) in the population, using the mean and standard devi-
ation of their responses. We begin by constructing a confidence interval using
the normal distribution (treating the standard deviation as known) and then go
back and redo using the t distribution.

Here we discuss two particularly interesting examples derived from in-class
demonstrations. For each example, we set up the problem and then allow students
to work in pairs for two minutes to construct the confidence interval. Then we
discuss the result and consider various perturbations (for example, how would
the confidence interval change if the sample size were changed, or if we were to
change the confidence level up or down from 95%).

8.3.1 Biases in age guessing

On the first day of class, the students learned some of the difficulties in guessing
ages of people from photographs (see Section 2.1). For example, the first column
of guesses in Fig. 2.2 shows that all ten groups of students overestimated the age
of the 29-year-old person on card 1. The errors of their guesses varied from 4 to
14 years, with a mean of 9.7 and a standard deviation of 3.1. In contrast, the
guessing errors for card 2 ranged from −7 to 2, with an average of −2.8 and a
standard deviation of 2.9.
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We ask the students: given that these are only samples of size 10, what can
we say about overall biases in guessing the ages of the people on these cards?
Considering the 10 groups of students as a random sample from a population
yields 95% confidence intervals for the bias as [9.7± 2.26 · 3.1/

√
10] = [7.5, 11.9]

for card 1 and [−2.8± 2.26 · 2.9/
√

10] = [−4.8,−0.8] for card 2. (The coefficients
of 2.26 come from the t distribution with 9 degrees of freedom.) The confidence
intervals give us some sense of the size of the biases and our uncertainty about
them.

8.3.2 Comparing two groups

In the classroom experiment described in Section 5.3.1, we looked at students’
estimates of the percentage of countries in the United Nations that are in Africa.
Students who are given the “anchoring” value of 10 percent tend to guess lower
than those given the anchor of 65 percent (see Fig. 5.16). As we discussed with the
class at the time, this is an experiment, and the difference in average responses
between the two groups is an estimate of the “treatment effect.”

We discuss with the class: how certain are we of this treatment effect? The
question can be answered with a confidence interval. For example, with the data
displayed in Fig. 5.16, the estimated difference is 21 − 18 = 8, the standard
deviation of this difference is

√
132/20 + 152/23 = 4.3, and so a 95% interval

from the normal distribution is [8 ± 2 · 4.3] = [−1, 17]. Or, the t distribution
with 19 degrees of freedom can be used (a conservative choice since the standard
deviations are estimated from groups of size 20 and 23), in which case the 95%
confidence interval is [8 ± 2.1 · 4.3], which, once again, is [−1, 17].

Usually when we do this experiment in class, the result is statistically signif-
icantly different from 0—for example, for another class, 15 students received the
“X = 10” treatment, and they had an average response of 17 with a standard
deviation of 10. The other 16 students were told “X = 65,” and their responses
averaged to 32 with a standard deviation of 19. The 95% normal-approximation
confidence interval for the treatment effect was then [4, 26]. Because of sampling
variability and small sample sizes, we never know ahead of time if a demonstra-
tion will “work,” in the sense of producing statistically significant results. This
is a point that can be made with the students, possibly leading to a discussion
of how the demonstration could be constructed to be more likely to give statis-
tically significant results. This leads the students to think about experimental
design in the context of a specific example.

8.3.3 Land or water?

We ask the class how they might estimate the proportion of the earth covered by
water. After several responses, we bring out an inflatable globe. If we were to take
a random sample of points on the globe, then the proportion that touched water
would be a reasonable estimate of the overall proportion of water covering the
earth. Better yet, we can use a confidence interval to provide an interval estimate
of the overall proportion. We explain that the globe will be tossed around the
class, and we instruct students to hit the globe with the tip of their index finger
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when it comes to them. When they do, they are to shout “water!” if their finger
touches water, or “land!” if their finger touches land. After the class starts to
tire of volleyball, we can use the results to construct a confidence interval for the
proportion. A discussion can follow this demonstration about the interpretation
of the interval, and about possible biases in the sampling procedure (what are
we assuming about consecutive hits of the globe, the weighting of the globe, and
so forth), leading to a formal connection with probability, independence, and the
applicability of the binomial distribution in practical problems.

For a different twist on the problem, students can be asked how one could
use random numbers from the computer to pick a random spot on the globe.
Any point is characterized by a latitude (which must be between 90◦ North and
90◦ South) and a longitude (between 180◦ West and 180◦ East). So can you pick
a random spot on the globe by picking a latitude between −90 to 90 at random,
and a longitude between −180 and 180 at random? No, because then points near
the poles will be oversampled . . . One must think seriously about the geometry
of the problem to get the right answer here.

8.3.4 Poll differentials: a discrete distribution
In introductory statistics courses, a key use of probability theory is to derive
the distribution of the mean of a set of independent random variables. This is
usually illustrated in the general case with a continuous measure (for example,
estimating the average height of a population of students) and also with the
binomial distribution (for example, estimating the proportion of people in a
population who would respond “yes” to a particular survey question).

A problem with these standard examples is that they obscure the proba-
bilistic derivation: in the continuous example, means and variances are generally
specified or estimated from data, rather than being computed using probability
theory. The binomial mean and variances are generally derived using probability,
but this derivation is quickly forgotten and simply becomes another formula.

An applied example that is slightly more complicated than the binomial is
the “lead in the polls.” For example, on August 18–19, 2000, the Gallup poll
surveyed 1043 adults and asked them their preferences in the upcoming Presi-
dential election: 47% supported Al Gore, 46% supported George Bush, and the
remaining 7% supported other candidates or had no opinion. So the differential
between Gore and Bush was 1%.

What would be an appropriate confidence interval for the differential? (As
usual in these introductory statistics examples, we assume simple random sam-
pling and ignore design effects and nonresponse corrections.) The problem can
be solved with a little trick: for each respondent i, let the response be

yi =

⎧⎨⎩ 1 for Gore supporters
0 for other or no opinion
−1 for Bush supporters.

Then Gore’s lead is ȳ = 0.01, with estimated standard error s/
√

1043, where
s =

√
0.47(1 − 0.01)2 + 0.07(0 − 0.01)2 + 0.46(−1 − 0.01)2 = 0.96.
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8.3.5 Golf: can you putt like the pros?

As a homework assignment or an in-class activity, students can compare their
abilities on some task to the professionals. For example, if you have an indoor
golf kit, you can have students try five-foot putts. Before they try the putts, ask
them how likely they are to get them in, and how well they think professional
golfers can do.

A study from golf tournaments found that the pros made 208/353 = 59% of
their five-foot putts. Under the binomial model, if the success probability at a
given distance is θ, then the number of successes y has a binomial distribution
with parameters n and θ, and y/n has a mean of θ and a standard deviation of
θ(1−θ)/n. An estimate for θ is then y/n, with an approximate standard deviation
of

√
(y/n)(1 − y/n)/n. So the success rate of professional five-foot putts is esti-

mated at 208/353 = 0.59 with a standard error of
√

0.59(1 − 0.59)/353 = 0.026.
And thus a 95% interval for the success rate is [0.59 ± 2(0.026)] = [0.54, 0.64].

A similar computation can be done from students’ shots, and then the stu-
dents and the pros can be compared, with an estimate and confidence interval for
the difference in their abilities. Is it reasonable that the students are as good as
the pros? Probably not, but the students are shooting on a flat surface indoors,
which should help them.

8.4 Confidence intervals: theory

8.4.1 Coverage of confidence intervals

At the beginning of the lecture, we pass out blank slips of paper to the students
and tell them to write their weights (in pounds) on their slips and put them in
a hat. When the hat is filled, we ask a student volunteer to copy all the weights
onto a sheet of paper. While the rest of the demonstration is going on, we ask
this student to compute the mean and standard deviation of the weights. (Or,
if the volunteer does not have a calculator that computes means and standard
deviations, he or she can approximate these by the median and half the width
of an interval that contains the central 68% of the data.)

Meanwhile, the hat (filled with the slips of paper) is passed around the room.
Each pair of students is told to mix up the slips in the hat, pick out 5 slips at
random, write the numbers, put the slips back in the hat, and pass the hat to
the next pair. By the time this is done, the student volunteer will have finished
computing the mean and standard deviation; we ask him or her to report the
standard deviation (but not yet the mean) aloud.

Intervals from the normal distribution

Each pair of students should then use the mean of their sample, along with the
known standard deviation, to create a 68% confidence interval for the average
weight of all the students in the class (with samples of size 5, the normal distri-
bution may not be perfect, but at least the students can do their computations
fairly quickly). This can be all done while the lecture is proceeding. (Students
are required to bring calculators to every class.) When all the pairs of students
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Fig. 8.3 (a) Example of confidence intervals (mean ±1 standard error) for the average

weight of students in a classroom (see Section 8.4.1). Each segment represents the 68%

interval created by a different pair of students based a sample of size 5, using the

normal distribution and with the population standard deviation set to its true value.

The vertical line shows the true population mean (not known by the students when

they are constructing their intervals). (b) Similar plot where intervals are constructed

from the t distribution using estimated standard deviations. The intervals now vary in

width, but approximately 68% still include the true value.

are done, they go up to the blackboard and plot their confidence intervals on an
axis (as horizontal segments, stacked vertically). Figure 8.3a shows an example.
(Alternatively, we can pass around the room a sheet of transparency paper with
a horizontal axis labeled, along with an indelible marker, and each pair of stu-
dents can draw their 68% interval on the transparency, which, when completed,
can be displayed from a projector.)

Approximately 68% of the intervals should contain the true value, which is . . .
(we ask the volunteer for the mean of all the numbers in the hat), which we can
draw as a vertical line on the blackboard display. The students should realize
that the exact number of intervals that contain the true value should follow
the binomial distribution. This demonstration dramatizes that the confidence
interval is itself a random quantity, subject to sampling variability. The display is
particularly compelling when the sampling distribution is created by the students
themselves.

The instructor can of course replace “weight” by the response to some more
controversial question about which the students might be particularly curious.
Or the instructor can use one of the body measurements (for example, arm span)
described in Section 4.2.1.

Intervals from the t distribution

We return to this example when we cover the t distribution. We then ask each
student to calculate the standard deviation of his or her sample of size 5 and to
then use this to get a t-interval for the unknown mean (for the t with 4 degrees
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Fig. 8.4 Example of wrong confidence intervals (mistakenly using 1/2 of the true

standard error) for the average weight of students in a classroom (see Section 8.4.2).

Each horizontal line represents the interval from the sample of a different pair of stu-

dents. Construct this plot with students’ intervals but without drawing the vertical line

indicating the true value. The students should be suspicious since there is no value for

which 68% of the intervals could be correct. Compare to Fig. 8.3a.

of freedom, the 68% interval is the mean ±1.13 standard deviations). Different
students’ intervals will now have different widths, but 68% of them should still
contain the true population mean (see Fig. 8.3b).

8.4.2 Noncoverage of confidence intervals

We repeat the demonstration of the previous section, but this time with a dif-
ferent question. It is good for students to have yet another example of this basic
confidence-interval calculation. This time, however, we give it a twist by giv-
ing the students a false value for the standard deviation—after gathering the
responses, we compute the standard deviation but then secretly divide it by 2
before telling it to the class. The students’ confidence intervals will then not
have the correct coverage probabilities, and displaying all the intervals on the
blackboard gives a picture as in Fig. 8.4, but without the vertical line since we
have not yet revealed the true population mean. We ask the students if anything
appears wrong and, after some discussion, point out that there is no true value
that is consistent with these intervals—that is, no vertical line goes through ap-
proximately 68% of the students’ nominal 68% intervals. We reveal to them that
we have lied, and also use this to motivate the t-interval (discussed at the end of
Section 8.4.1), in which the students use their own data to determine the widths
of their intervals.

8.5 Hypothesis testing: z, t, and χ2 tests

Rather than introduce new examples here, we simply return to examples we have
already covered in class and replace informal comparisons with formal hypothesis
testing. We usually start by referring to the demonstration in which we identified
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the real and fake sequences of coin flips (Section 7.3.2). This was certainly a
hypothesis test, and the question arises of how to quantify it. We do not go further
with that example but rather use it as a general motivation for introducing the
theory of hypothesis testing, which we introduce in the context of data examples
we have already discussed.

8.5.1 Hypothesis tests from examples of confidence intervals

Our next step is to construct hypothesis tests from statistical statements about
confidence intervals. We already have several of these from data collected from
students:

• Section 4.2.1 describes how we use data on students’ heights and hand spans
to illustrate a principle of correlation. The reported heights from these data
can also be compared to the known average values in the United States, as
given in Section 3.6.1 on page 29. For example, consider the data shown
in Fig. 4.5 on page 44. The women in this sample are consistent with the
U.S. average, but the men are over an inch taller on average, and the differ-
ence is statistically significant. (The 95% confidence interval for the mean
is [70.5± 2(3.2)/

√
29] = [69.3, 71.7], which excludes the population mean of

69.1 inches.) This leads to a discussion of the reason for the discrepancy:
perhaps the men in the class were overstating their heights?

• The confidence interval for the percent of the earth covered by water (Section
8.3.3) can be compared to the true value of 71%. If the confidence interval
excludes the true value, then there is evidence that the sampling procedure is
biased. For example, suppose the students tap the ball 45 times, and 35 of the
taps touch water. The estimate is then 35/45 = 0.78, and the approximate
95% confidence interval is [0.78 ± 2

√
0.78(1 − 0.78)/45 = [0.65, 0.90]. This

interval contains 0.71, so the data are consistent with unbiased sampling.
• Conversely, a hypothesis test can be constructed from the binomial distribu-

tion given the true value of 71%, and then the class can construct a p-value.
For example, with 45 trials, the number of successes has a distribution with
mean 0.71 · 45 = 31.9 and standard deviation

√
0.71(1 − 0.71) · 45 = 3.0.

We ask the students to draw this normal distribution in their notes, then
insert the observed value from the classroom demonstration. For example,
if 35 out of 45 hits were “water,” then the p-value is the probability of a
z-score being greater (in absolute value) than (34.5−31.9)/3.0 = 0.87. (The
value 34.5 is used rather than 35 for the continuity correction since the data
are discrete.) From the normal distribution, this p-value is 2(0.19) = 0.38,
which is not statistically significant. This should be clear to the students
since the z-score of 0.87 is much less than the 95% cutoff value of 2.

• Similarly, the confidence interval for the bias in age guessing, from Section
8.3.1, becomes a hypothesis test when this confidence interval is compared
to zero. Or, more directly, the confidence interval for the estimated age can
be compared to the true age. In either case, the students can use a t-interval
with standard error estimated from the data.
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• The experiment in which two groups of students guess the proportion of
countries in the United Nations that are in Africa (see Section 5.3.1) is ideal
for testing the hypothesis of no difference between groups. As described in
Section 8.3.2, the data collected from students (as in Fig. 5.16) can be used
to construct a confidence interval for the treatment effect (as estimated by
the difference in means between the two groups). The hypothesis test is
simply a check to see if this confidence interval includes zero, and a p-value
can be constructed based on the z-score of the observed difference compared
to 0, divided by the standard error.

8.5.2 Binomial model: sampling from the phone book

The simplest scenario in which to introduce formal hypothesis testing is the bi-
nomial distribution: checking if some observed data set, consisting of y successes
out of n trials, is consistent with a model in which the trials are independent,
each having some specified probability p of success. We introduce this problem
with data that students have generated earlier in the course.

As discussed in Section 5.1.1, when covering data collection, we coordinate
a demonstration in which each pair of students in the class has to sample 10
random numbers with replacement between 1 and 126 (as part of the task of
sampling addresses and telephone numbers from the phone book). Figure 5.3
shows a filled-out sampling form that made us suspect a mistake, since 7 out
of 10 of the numbers were 100 or more, and under random sampling we would
expect only 27/126 = 21% of the numbers to be at least 100.

Could this observed difference have occurred by chance? We lead the stu-
dents in a discussion of how this can be checked, and then we introduce the
formal hypothesis test, which can be performed using either the exact binomial
distribution or the normal approximation. From the binomial distribution, the
p-value can be written as,

Pr(y ≥ 7) =
(

10
7

)
0.2170.793 +

(
10
8

)
0.2180.792 +

(
10
9

)
0.2190.79 +

(
10
10

)
0.2110

= 0.0013.

Another way to test the hypothesis is using the normal approximation. Here,
the expected number of successes in 10 trials (assuming the sampling had been
done correctly) is 2.1, the standard deviation is

√
10(0.21)(0.79) = 1.3, so an ap-

proximate 95% interval for the number of successes is [2.1±2(1.3)] = [−0.5, 4.7].
This is clearly an approximation (since the number of successes cannot be neg-
ative) but is still useful.

The hypothesis test shows that the observed proportion of 7 out of 10 is much
too large to be reasonably explained by chance, so we can confidently conclude
that the 126 numbers were not equally likely to be sampled.

An alternative hypothesis, as described at the end of Section 5.1.1, is that
the numbers were selected so that it is equally likely for any number to be in the
range 1–99 or 100–126. In this case, we would expect 5 numbers in the sample
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to be at least 100, with a 95% interval of [5± 2
√

10(0.5)(0.5)] = [1.8, 8.2]. Thus,
the observed value of y = 7 is consistent with this other model.

8.5.3 Hypergeometric model: taste testing

The experimental protocol in the taste testing experiment (Section 5.3.3) im-
plies a probability model—the hypergeometric distribution—for the number of
successes, under the null hypothesis that the taste-tester is simply guessing at
random. That is, if the expert has no special skills, and the eight cups of soda are
identical in appearance and temperature, then the expert would just be guessing
which cups contained regular or diet soda. The expert does know there are four
of each type, however, and so will select four cups as regular. There are

(
8
4

)
= 70

possible ways to choose four cups as regular, and they are all equally likely un-
der the null hypothesis. This means the probability of getting them all right is
1/70 = 0.014. But it’s pretty easy to get all but one correct. This probability is
16/70 = 0.23. Our expert must correctly identify all eight cups to convince us
that he or she is not just guessing.

We discuss with the class the problems that would arise if the diet and reg-
ular soda were different temperatures, different colors, or if the cups were not
identical. Another point we discuss is why we use eight cups, why not 20, or
two? Aside from the problem of the expert wearing out from all of the tasting,
we compute various p-values for these versions of the test.

8.5.4 Benford’s law of first digits

Section 5.1.2 describes the distribution of student-collected data on first digits
of telephone numbers and addresses. Reasonable models for these data are a
uniform distribution on digits 0–9 for the telephone numbers and a logarithmic
distribution on digits 1–9 for the addresses; the latter is known as Benford’s law,
as is discussed in Section 5.1.2.

You can check whether the actual data collected fit the models using χ2 tests,
with 9 degrees of freedom for the telephone numbers and 8 for the addresses
(since they have 10 and 9 categories, respectively). For example, Fig. 5.5 on
page 53 displays data from 90 telephone numbers and 85 addresses (some of
the sampled telephone book entries had no addresses listed). For the telephone
numbers, the χ2 statistic is 6.9, which is close to the expected value of 9 for 9
degrees of freedom. For the addresses, the χ2 statistic is 14.1, which is higher
than expected but not statistically significant. (The 95th percentile point for the
χ2

8 distribution is 15.5.)

8.5.5 Length of baseball World Series

In Section 7.4.1, we describe how we lead our classes through a probability model
based on coin-flipping in order to model the length of the baseball World Series.
As discussed in Section 7.4.1, the model does not fit the data perfectly; in par-
ticular, there have been more 4-game and 7-game series (and correspondingly
fewer 5- and 6-game series) than would be predicted by the model in which the
game outcomes are independent with probability 0.5.
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Fig. 8.5 Estimated probabilities of the baseball World Series lasting 4, 5, 6, or 7 games

(see Section 7.4.1). The points are empirical estimates based on the sample data, the

vertical bars are 95% intervals based on the binomial distribution at each point, and

the dotted line shows the theoretical probabilities based on the coin-flipping model.

When we reach the point in the course where we cover statistical infer-
ence, we can check to see if these discrepancies are statistically significant.
Figure 8.5 displays the empirical proportions of 4, 5, 6, and 7-game series,
along with 95% binomial-theory confidence intervals. More formally, we can per-
form a χ2 test: the test statistic is

∑4
i=1(Observedi −Expectedi)2/Expectedi =

(18 − 11.5)2/11.5 + · · · + (34 − 28.8)2/28.8 = 7.8.
By comparison, the χ2 distribution with 3 degrees of freedom has an expected

value of 3 and a 95th percentile of 7.8. Thus, the discrepancy between model and
data is just at the borderline of statistical significance at the 5% level.

8.6 Simple examples of applied inference

Once the basic ideas of inference have been introduced, they can be applied in
many ways in the context of small projects or assignments, as we illustrate here.

8.6.1 How good is your memory?

An easy way to gather data in class is simple memory tests, as we have already
illustrated in Section 4.3.1. It is well known that accuracy of short-term memory
decreases rapidly when people are asked to remember more than seven items.
We investigate this phenomenon using the students in the class.

We start by giving some background to students about short-term memory,
anchoring the discussion with familiar points such as the relative ease of remem-
bering 7-digit telephone numbers and the difficulty of memorizing 10 digits. We
also point out individual variation in abilities such as remembering names and
faces. We then tell the students that we will read aloud a sequence of seven
random digits and, after 15 seconds, ask them to write the sequences on paper.
We do this and count the number of students who got all seven digits correct.
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Fig. 8.6 Estimates and 95% confidence intervals, [y/n ± 2
√

(y/n)(1 − y/n)/n], for

the proportion of students who can accurately remember, after a 15-second delay, all

of a set of random numbers read to them. Data came from a class of 31 students. The

probabilities are plotted vs. the length of the set of numbers. This example illustrates

the kind of applied statistical inference in which standard errors are used but not to

create a single confidence interval or hypothesis test.

We then repeat with random sequences of 11 digits and of 9 digits and display
the results on the blackboard. For each estimate, we display 95% error bars of
±2

√
p(1 − p)/n. Figure 8.6 presents sample results: there is a decline in average

performance as the number of items increases, and the size of the changes, com-
pared to the standard errors, indicate that this pattern is clearly not explainable
by chance.

Figure 8.6 is an example of inference that is not a simple confidence interval
or hypothesis test but rather has aspects of both. The estimated curve and error
bars act as confidence intervals in giving us a sense of the accuracy of the point
estimates; at the same time, the picture as a whole implicitly rules out any
models of short-term memory that are not consistent with the error bars.

8.6.2 How common is your name?

A fun mini-project or extended homework assignment is for students to estimate
how many people in the country have their name (this could be done with first
or last names). First, the class should break into pairs to discuss how this could
be done, for example using telephone books. The estimate would only be ap-
proximate since it would necessarily involve extrapolation to the entire country,
including people not listed in the book. Rules must also be set up for what con-
stitutes an equivalent name (for example, Cathy, Kathy, and Katherine). The
students would then individually gather the data and estimate the frequency of
their names as homework. Finally, once the assignments have been collected and
graded, the class can compare and discuss the estimated relative frequencies of
the different names. They can also comments on each others’ estimation meth-
ods; for example, if a student simply counts the occurrences of his or her name
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in the Manhattan telephone book and extrapolates, this might not be a good
representation of the frequency in the entire United States.

8.7 Advanced concepts of inference

8.7.1 Shooting baskets and statistical power

We introduce the comparison of proportions with the following demonstration.
We ask for two volunteers: one student who is considered to be good at basketball
shooting and one who is considered to be a poor shot. They will take twenty shots
each, throwing a tennis ball into a trash can. We also pick two students from
the class to be “judges”; they will decide who is the better shooter. We pull out
a bag of ten tennis balls, set up two trash cans at opposite sides of the room,
and stand each shooter 13 feet away from a can. One shooter takes ten shots,
then the other takes ten, then they repeat. We keep score on the blackboard
while the judges gather up the missed shots. The results for the two shooters are
compared; a typical outcome is 7/20 successes for one and 9/20 for the other.

Do the judges conclude that the second shooter is better? Suppose the shots
are independent with probabilities of success p1 and p2. The students are led to
constructing a confidence interval for (p1−p2). For example, if the data are 7/20
and 9/20, then the 95% confidence interval for the difference becomes [(0.45 −
0.35) ± 2

√
0.45(1 − 0.45)/20 + 0.35(1 − 0.35)/20] = [0.1 ± 0.3] = [−0.2, 0.4].

What do the students conclude from their confidence interval? Who would
they bet would make more shots in the next 20 tries? The next 200? If Bayesian
methods are being covered, the students can discuss how to use the information
that the students’ initial self-evaluations differed.

If, as typically happens, the difference between the success rates is not statis-
tically significant, this is a good time to introduce the idea of the statistical power
of an experiment. We ask the class how many tries would be necessary to be likely
to find a statistically significant result. 50? 100? 200? The class is led through a
power calculation, beginning with guesses of the true probabilities. It becomes
clear that, even if the true difference is quite large, 20 is most likely too small
a sample to distinguish between the abilities of the two shooters. For example,
if the true probabilities of success of the two students are 0.4 and 0.5, and each
student shoots 100 baskets, then the standard deviation of the observed differ-
ence in proportions is

√
(0.4)(0.6)/100 + (0.5)(0.5)/100 = 0.071, so that the true

difference is still less than two standard errors away from zero. This has obvious
consequences for experiments in other contexts (such as medical treatments) as
well as real-life conclusions that we draw from small samples. Conversely, when
discussing the possible results from very large samples, the students can discover
the distinction between statistical and practical significance: with a huge sample
size, even tiny differences can become statistically significant.

8.7.2 Do-it-yourself data dredging

In the general population, IQ is normally distributed with a mean of 100 and
a standard deviation of 15. (Why is IQ normally distributed? Because the test
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scores are transformed so that they have a normal distribution. But that’s an-
other story.) We tell the students that we will determine their IQs. But instead
of giving each student a test—that would take a lot of time—we’ll have each
student roll dice to simulate a random draw from the distribution. They know
how to use 5 die rolls or random digits to simulate a draw from the normal dis-
tribution with mean 22.5 and standard deviation 6.42 (see Section 7.2); what is
the transformation required to get a mean of 100 and standard deviation of 15?
After some discussions, the students recognize that subtracting 22.5, multiply-
ing by 15/6.42, and adding 100 will do the trick. The students roll the dice and
compute their IQs. It might not be an accurate number for each student, but the
distribution is right. Now we do some comparisons. If we were to compare the
average IQ of men vs. women in this group, would we find a difference? Yes—the
difference would almost certainly not be exactly zero. Would it be statistically
significant at the 5% level? After some discussion, the students realize that if the
experiment were performed many times, with the same number of students, only
5% of the samples would have differences extreme enough to be “statistically
significant.” What about comparing freshmen to upperclassmen? front row vs.
back row? Same answer. We now ask the students with IQs above 110 to hold up
two hands, those between 90 and 110 to hold up one hand, and those below 90
to hold up no hands. Given this information, we together construct a division of
the class that has almost all the high-IQ students on one side and almost all the
low-IQ students on the other. It is important that the divisions of the class be
based on some external criteria such as position in class, whether students wear
glasses, hair color, etc. (for example, comparing men in the front row to women
in the back two rows). We get the IQs for the two groups and compare and, sure
enough, the difference is statistically significant! We can construct an amusing
story to explain the difference (for example, the smarter women sit in the back
rows because they do not need to follow the lectures carefully). But of course it
is not real; the IQs were created by rolling dice.

We discuss the well-known implications of “data dredging” for scientific stud-
ies. For example, consider a drug company that is testing 1000 new treatments.
Even if they all have no effect, 50 of them will appear to be statistically significant
at the 5% level. Another example is given in Section 10.5.2.

8.7.3 Praying for your health

We were reading the Web-based magazine Salon one day and saw an article
reporting on a study of the effectiveness of prayer on the health outcomes of 990
patients at a critical-care unit. The article continues:

But does it do any good? Everybody’s got an opinion but nobody knows for sure,
because the faith–health dichotomy has never received much in the way of serious
scientific scrutiny.

Until now. A massive study published in the Oct. 25 issue of the Archives of Internal
Medicine (a journal of the American Medical Association) showed that heart patients
who had someone praying for them suffered fewer complications than other patients.

. . .
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Dr. Harold G. Koenig, director of Duke University’s Center for the Study of Re-
ligion/Spirituality and Health, has spent his entire professional life looking at how
spirituality affects a person’s physical well-being. This particular study is significant,
he says, “because it’s published in an AMA journal, it has a huge sample, and it shows
significant results.”

The prayed-for patients had better results, on average, than the control pa-
tients, and the difference was significant at the 4% level. On the other hand,
three tests were performed on the data (see Section 8.7.2), and one might be
skeptical about the findings, given that neither the patients in the study nor
their doctors knew about the prayers being conducted on their behalf.

We give copies of the news report and the journal article to the students at the
end of class one day with the instructions to read and prepare discussion points
for the next lecture. We divide the students into two groups: the “spiritual” group
and the “skeptic” group. Within each group, the students break into pairs, and
then each pair is required to come up with an argument on their side of the issue
(either supporting or opposing the claim of the article that intercessory prayer
is good for your health).

In performing this demonstration, we have had some resistance; for example,
one student said that because she is religious, she believes in prayer, and so she
did not want to argue on the “skeptic” side. We discussed this with the class and
pointed out that, even if you think an effect is real, this does not mean that any
given study is flawless.
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Multiple regression and
nonlinear models

Near the end of the semester, we cover multiple regression, linking statistical
inference to general topics such as lurking variables that arose early in the course.
Many examples can be used to illustrate multiple regression, but we have found
it useful to come to class prepared with a specific example, with computer output
(since our students learn to run the regressions on the computer). Section 9.1
steps through a continuation of the study of height and income from Section 4.1.2.
In Section 9.2 we discuss how to involve the class in models of exam scores. It
is also a good strategy to simply find a regression analysis from some published
source (for example, a social science journal) and go through the model and
its interpretation with the class, asking the students how the regression results
would have to differ in order for the study’s conclusions to change.

We conclude the chapter with two examples of nonlinear models that can be
used in more advanced classes: a nonlinear regression for golf putting in Section
9.3 and an illustration of the limitations of regression modeling in Section 9.4.

9.1 Regression of income on height and sex
We continue the example of predicting income from height in the national survey
of adults, previously considered in Section 4.1.2. The linear regression of earn-
ings on height yielded a positive slope for height (see Fig. 4.3), implying that
taller adults have higher earnings. It seemed possible that this positive slope was
explained by the lurking variable of sex: men tend to be taller and have higher
incomes than women.

9.1.1 Inference for regression coefficients
The first thing to check in the original regression of earnings on height is whether
the slope is statistically significant. The regression table in Fig. 4.4 shows an
estimated slope of 1560 (in units of dollars per year per inch), a standard error
of 130, and a 95% interval of [1300, 1820]. This is clearly statistically significant.

9.1.2 Multiple regression
We control for sex as a lurking variable by including it in the regression analysis;
the result appears in Fig. 9.1. We walk the students through the regression
output.

137
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. summ
Variable | Obs Mean Std. Dev. Min Max
---------+-----------------------------------------------------

earn | 1379 20014.86 19763.75 0 200000
sex | 2029 1.631345 .4825589 1 2

height | 2021 66.56111 3.81942 57 82
. regress earn height sex

Source | SS df MS Number of obs = 1379
---------+------------------------------ F( 2, 1376) = 101.73

Model | 6.9335e+10 2 3.4667e+10 Prob > F = 0.0000
Residual | 4.6892e+11 1376 340785180 R-squared = 0.1288
---------+------------------------------ Adj R-squared = 0.1275

Total | 5.3826e+11 1378 390606004 Root MSE = 18460
-------------------------------------------------------------------------

earn | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+---------------------------------------------------------------

height | 550.5448 184.5701 2.983 0.003 188.4756 912.614
sex | -11254.57 1448.892 -7.768 0.000 -14096.85 -8412.295

_cons | 1617.938 14059.5 0.115 0.908 -25962.44 29198.32
-------------------------------------------------------------------------

Fig. 9.1 Stata output from the multiple regression of earnings on height and sex.

Students should focus on the coefficient estimates, their standard errors, the R-squared,

and the root mean squared error. Compare to the simple regression of earnings on height

(Fig. 4.4 on page 42).

1. What are the codings for men and women? From the summary at the top of
Fig. 9.1, we can see that sex ranges from 1 to 2. The average value is 1.63,
and we know that there are more women than men in the population, so a
reasonable guess is that men are coded as 1 and women as 2.

2. The summaries also show some problems with the data. Women are 63%
of the sample, compared to about 52% of the adult population, so they are
overrepresented in this sample. Also, there are missing responses: height is
recorded for only 2021 of the 2029 respondents, and earnings are known
for only 1379 people. The regression is fit to the 1379 people for whom all
three variables are recorded. We ignore the missing data for the rest of the
analysis, but it is important to be aware of the issue.

3. The coefficients for sex is significant: comparing two people with the same
height, on average the woman’s earnings are $11 000 less than the man’s.
(This is the effect of increasing sex by 1 with the other predictor unchanged.)

4. Even after controlling for sex, height is predictive, with an increase of $550,
on average, for every additional inch.

5. The coefficients for sex and height are both statistically significant (their
confidence intervals exclude zero).

6. The residual standard deviation indicates that, given height and sex, you
can predict earnings to an accuracy of about $18 000, and the R-squared
tells us that height and sex explain 13% of the variance in earnings. (That
is, 1 − (18 460/19 763)2 = 0.13.)
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Next, students work in pairs and draw plots of earnings vs. height, with separate
regression lines for men and women. The estimated regression equation is,

y = 1600 + 550 · height + 11 300 · sex.

We explain how to interpret this by considering men and women separately. For
men and women, the sex variable is 1 and 2, and so the regression lines are,

for men: y = 1600 + 550 · height − 11 300 · 1
= −9700 + 550 · height

for women: y = 1600 + 550 · height − 11 300 · 2
= −21 000 + 550 · height.

These lines are parallel, both with a slope of 550, with intercepts of −9700 (for
men) and −21 000 (for women). The intercepts themselves are irrelevant, though,
since heights are never zero. At a height of 60 inches, the lines go through the
points −9700 + 550 · 60 = 23 300 (for men) and −21 000 + 550 · 60 = 12 000
(for women). This is a bit of reasoning that the students will appreciate more if
they have to figure it out in pairs rather than simply seeing it presented by the
instructor on the blackboard.

Compared to the previous regression that did not include sex as a predictor
(Fig. 4.4 on page 42), the coefficient for height has decreased (this makes sense,
since some of the apparent effects of height are explained by sex) but is still
positive, and the residual standard deviation has decreased, but only slightly
(from 18854 to 18460). The nonzero coefficient for height (after controlling for
sex) is interesting and worth a minute’s discussion in class.

Finally, the low R-squared implies that most of the variation in income cannot
be explained by height or sex. We ask students if this is a good or bad thing.
It is actually good, because factors such as qualifications, skill, and experience
should be much more important than height and sex in determining income. If
the R-squared were higher, this would mean that incomes were highly predictable
given only height and sex.

9.1.3 Regression with interactions
The next step in the regression is to consider different slopes for men and women:
for example, perhaps height is beneficial to men but not for women. Figure 9.2
shows the results for a regression that includes the interaction.

The estimated regression equation is,

y = −41 000 + 1200 · height + 16 000 · sex − 400 · height · sex.

Again, we interpret this equation by considering the sexes separately:

for men: y = −41 000 + 1200 · height + 16 000 · 1 − 400 · height · 1
= −25 000 + 800 · height

for women: y = −41 000 + 1200 · height + 16 000 · 2 − 400 · height · 2
= −9000 + 400 · height.
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. gen hght.sex = height*sex

. regress earn height sex hght.sex
Source | SS df MS Number of obs = 1379

---------+------------------------------ F( 3, 1375) = 68.22
Model | 6.9738e+10 3 2.3246e+10 Prob > F = 0.0000

Residual | 4.6852e+11 1375 340739573 R-squared = 0.1296
---------+------------------------------ Adj R-squared = 0.1277

Total | 5.3826e+11 1378 390606004 Root MSE = 18459
-------------------------------------------------------------------------

earn | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+---------------------------------------------------------------

height | 1176.099 603.7528 1.948 0.052 -8.277402 2360.475
sex | 16012.95 25099.33 0.638 0.524 -33224.19 65250.08

hght.sex | -403.668 370.9507 -1.088 0.277 -1131.359 324.0226
_cons | -41191.84 41776.58 -0.986 0.324 -123144.6 40760.89

-------------------------------------------------------------------------

Fig. 9.2 Stata output from the multiple regression of earnings on height, sex, and the

interaction of height and sex. Compare to the simpler regressions in Figs. 4.4 and 9.1.

The estimated slope is thus 800 (that is, $800 per inch) for men and 400 for
women. But the lines cannot yet be interpreted because the intercepts apply to
the meaningless condition of zero height. At a height of 60 inches, the expected
earnings are −25 000 + 800 · 60 = 23 000 for men and −9000 + 400 · 60 = 15 000
for women.

We graph these two non-parallel lines on the blackboard, a picture that shows
the regression predictions more directly.

9.1.4 Transformations

The regression of earnings on height (or on sex and height) is also a good topic
for a discussion of transformations. The regression model assumes linear effects,
for example, each inch of height is worth $550. Does this make sense? Perhaps
the effect should be proportional, for example, each inch adding x% to your
earnings. If so, what would x be? The average income in the sample is $20 000,
so an increase of $550 is a proportional change of 550/20 000 = 2.75%.

A fixed percentage (rather than a fixed dollar) effect of height on income can
be modeled by regressing the logarithm of income on height. One would expect
the coefficient to be approximately log(1.0275) = 0.012 (assuming the base 10
scale of logarithms).

So why did we not fit the model on the log scale, we ask the students. Various
suggestions are given, but most important is the practical problem that some
people have zero earnings, and you can’t take the logarithm of zero. Thus, more
complicated methods would be needed to transform earnings. Such models exist
(for example, mixture and tobit models), but we do not discuss them in our
introductory statistics courses.
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9.2 Exam scores
9.2.1 Studying the fairness of random exams
Section 5.3.2 describes an experiment in which we randomly assigned two ver-
sions, A and B, of the midterm exam to the students (without their knowledge)
and then, after the grades were recorded, compared the average scores on the
two exam forms. This motivated a discussion in class on the fairness of adjusting
the grade. We can usefully formulate this a regression problem.

Simply comparing the two means is equivalent to regressing exam score on
an indicator variable that equals 0 for students who took exam A and 1 for those
who took exam B. Because of the randomization, this is a reasonable estimate
of the effect of the exam. However, it is also possible that some of the observed
difference can be explained by differences in abilities of the students who took the
two exams. Randomization balances this factor on average, but only on average.

We ask the class, How could we tell if better students were taking exam B?
What other information do we have about their abilities? One thing is their scores
on their homeworks. A difference in difficulty between the two exams should
appear as a nonzero coefficient on the variable “exam type,” in a regression of
exam score, after controlling for homework score. Including the control variable
should improve our estimate of the relative difficulties of the exams.

9.2.2 Measuring the reliability of exam questions
Psychometric tools can be used for more elaborate analyses of exam grades.
The goals of these psychometric methods vary, but they include assessment of
individual exam questions; development of fairer and more effective measures of
student abilities; and assessment of the effectiveness of the course.

For an introductory course, these ideas can be developed using simple plots
and summaries. For example, for each exam question, one can compute two
histograms—one for the students who got the question correct, and one for the
students who got it wrong—of total scores on the other questions of the exam. If
the students who got the question correct did worse, on the rest of the exam, than
those who missed the question, then it is worth a closer look. This comparison
can be formalized by comparing means and checking for statistical significance.

The psychometric properties of continuous exam scores can be shown using
graphs, as in Fig. 9.3. Here, each of the six questions on an exam seems consistent
with the other five. A scatterplot with a strong negative correlation would indi-
cate a question where the better students did worse, which would be troubling.
These sorts of methods are used to evaluate questions on standardized tests.

In a more advanced course, more formal psychometric tools can be used, such
as fitting muliple linear regressions (for continuously graded questions) or logis-
tic regressions (for items scored as correct/incorrect) predicting each student’s
performance on each question using his or her total score of the other questions
as a predictor. Here it is desirable for the slope of the regression to be positive,
implying that better students do well on this particular question (or, more pre-
cisely, that high scores on this question are associated with high scores on the
rest of the exam).
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Fig. 9.3 A psychometric study of the grades on a statistics midterm exam. For each

question, a scatterplot shows each student’s grade on that question and his or her grade

on the rest of the exam. The correlations are also given. If any question had a negative

correlation, we would be worried.

These comparisons are similar to the correlations and regressions of Section
3.6.3 but more specifically focused on finding problems and patterns in exam
questions, rather than simply illustrating the statistical methods. The goal is to
give some feeling of applied statistics in an area—exams—with which students
are familiar. This can also lead to discussion of how to make exams better, the
different goals of an exam, and so forth.

Psychometric theory also gives suggestions on how to construct an exam.
For example, given an exam of fixed total length, which is better: a few long
questions or many short ones? For the purpose of accurately estimating student
abilities, it is probably better to use many short questions, because averaging
over more items reduces the standard error of the mean. Similar measurement
issues arise in other demonstrations such as age guessing (Section 2.1).

9.3 A nonlinear model for golf putting

Golf is a harder game than it looks, or else five feet is further than we think. A
study of professional golf players found that they made fewer than 60% of their
five-foot putts. Figure 9.4a shows the success rate of golf putts as a function of
distance from the hole. We use these data to motivate a derivation of a probability
model. It is a fun example because it involves some trigonometry, and it gives the
students a sense of the interplay between mathematics, probability, and statistics.
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Fig. 9.4 (a) Success rate of golf putts, as a function of distance from the hole; (b) the

same figure, with vertical lines showing 95% error bars based on the normal approxi-

mation to the binomial distribution.

9.3.1 Looking at data

We start by estimating the standard error of the estimated probability of success
at each distance, so that we have a sense of how closely our model should be
expected to fit the data. Each point in Fig. 9.4a is an estimate of the form y/n
(for example, 208/253 = 59% of five-foot putts were made) with an estimated
standard error of

√
(y/n)(1 − y/n)/n (see Section 8.3.5). Figure 9.4b repeats the

graph with ±2 standard errors, which correspond to approximate 95% intervals.

9.3.2 Constructing a probability model

We now ask what sort of model could fit the data in Fig. 9.4. With the class, we
discuss the possibilities. Clearly a linear regression is inappropriate, given the
evident curve in the data. What about a quadratic? This runs into problems
because the probabilities are bounded between 0 and 1. What should happen at
the extremes of the distance x from the hole? The probability of success must
have an asymptote and approach 0 as x → ∞. Also, shots from zero distance
must go in, and so the success probability at distance 0 must be 1.

We then sketch an idealized golf shot (see Fig. 9.5) on the blackboard. Simple
trigonometry shows that the shot goes in the hole if its angle is less, in absolute
value, than the threshold angle θ0 = sin−1((R − r)/x). The students can work
in pairs or small groups here to discover this relation.

How does this translate into the probability of a successful shot? The only
random variable here is θ, and so we need to assign a distribution to it. A normal
distribution seems reasonable (why?), presumably centered at θ = 0 (assuming
that shots do not systematically list to the left or the right), in which case the
only parameter is the standard deviation, σ (see Fig. 9.6).

From this distribution, the probability the ball goes into the hole is,

Pr(success of a shot from distance x) = 2Φ
[

1
σ

sin−1

(
R − r

x

)]
− 1,
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x

R
r

Fig. 9.5 A simple geometric model for golf putting. The ball has diameter 2r = 1.68′′

and the hole has diameter 2R = 4.25′′. The shot goes in the hole if the error in its

angle is less than θ0 = sin−1((R− r)/x); this is the angle between the solid and dotted

lines in the picture.

− 2σ 0 2σ

Fig. 9.6 Assumed normal distribution for the angle of error of the golf shot: θ = 0 is

a perfect shot, and the shot goes in the hole if |θ| < θ0, where the threshold error, θ0,

depends on the distance x from the hole.

where Φ is the normal cumulative distribution function. (If x < R − r, then
sin−1((R − r)/x) is not defined, but in this case the model is not needed since
the ball is already in the hole!)

The unknown parameter σ can be estimated by fitting to the data in Fig. 9.4.
(We fit this using nonlinear least-squares, but we do not go into this in class—we
just say that we fit the curve to the data.) The resulting estimate is σ̂ = 0.026
(which, when multiplied by 180/π, comes out to 1.5◦), and the fitted curve is
shown overlain on the data in Fig. 9.7. The model fits pretty well.

9.3.3 Checking the fit of the model to the data

The fit of the curve is not exact, however. As the vertical bars in Fig. 9.7 indicate,
several of the 95% confidence intervals do not intersect the curve, and we can
formally check this with a χ2 test. We introduce the notation i = 1, . . . , 19 for
the data points in Fig. 9.4, and xi, ni, yi for the distance to the hole, the number
of shots attempted at this distance, and the number of successes, respectively.
The Pearson χ2 test statistic is then,

χ2 =
19∑

i=1

(yi − E(yi))2

var(yi)
,
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Fig. 9.7 Success rate of golf putts, as a function of distance from the hole, along with

a fitted curve, Pr (success of a shot from distance x) = 2Φ(sin−1[(R− r)/x]σ)− 1, with

σ = 0.026 (that is, 1.5◦) estimated from the data.

where E(yi) = niPr(success from distance xi) and var(yi) = niE(yi)(1 − E(yi)).
The expected values E(yi) must be calculated given the estimated parameter σ.

The value of the test statistic is 58 for the data and fitted curve in Fig. 9.7.
The nonlinear least-squares method of estimating σ that we have used ensures
that the approximate distribution of this statistic if the model is correct is χ2

18

(19 data points minus one degree of freedom for the parameter σ estimated from
the data). Our result is clearly statistically significant (the 95th percentile of the
χ2

18 distribution is 29).
So the model does not fit perfectly. Nonetheless, it seems pretty reasonable.

At this point, we ask the students if they can see any reasons why the model
might not be correct. One serious flaw is that the model does not allow for
shots that miss because they are too short. The model also ignores that chance
that a ball can fall in if it goes partly over the hole. In addition, the binomial
error model assumes that the probability of success depends only on distance,
which ignores variation among golf greens, playing conditions, and abilities of
pro golfers. Including these complexities into the model would be difficult, but we
explain that the current model, for all its flaws, yields some insight into putting
and into why the curve of success probabilities looks the way it does.

This demonstration can be elaborated upon by actually bringing a putter
and a golf ball into class, having the students take shots, and marking off the
distribution of their error angles.

9.4 Pythagoras goes linear

A fundamental problem in statistics is that it can be easy to fit the wrong model
to data but difficult to notice the problem. A memorable way to convey this to
students is to give them a specially prepared dataset of several observations with
an outcome variable y and two predictors x1 and x2 with the instructions to fit
y as a function of x1 and x2. They will, of course, fit a linear regression model,
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x1 x2 y
0.4 19.7 19.7
2.8 19.1 19.3
4.0 18.2 18.6
6.0 5.2 7.9
1.1 4.3 4.4
2.6 9.3 9.6
7.1 3.6 8.0
5.3 14.8 15.7
9.7 11.9 15.4
3.1 9.3 9.8
9.9 2.8 10.3
5.3 9.9 11.2
6.7 15.4 16.8
4.3 2.7 5.1
6.1 10.6 12.2
9.0 16.6 18.9
4.2 11.4 12.2
4.5 18.8 19.3
5.2 15.6 16.5
4.3 17.9 18.4

Call: lm(formula = y ~ x1 + x2)
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) 0.7145 0.6531 1.0941 0.2892

x1 0.4939 0.0779 6.3381 0.0000
x2 0.8641 0.0341 25.3647 0.0000

Residual std err: 0.849 on 17 degrees of freedom
Multiple R-Squared: 0.9743
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Fig. 9.8 A small dataset we give to the students and the linear regression output

from S-Plus. The residual plot looks odd, but the overall fit is excellent (R2 = 97%).

However, the model is not appropriate for the data, as discussed in Section 9.4. Do not

simply give students this figure; rather, give them the data and allow them to model y

as a function of x1 and x2. After coming up with this regression model on their own,

they will be better able to appreciate its strengths and failings when they are later told

the true model that generated the data.

and in this case, it will fit quite well, with an R2 of 97%. The data, regression
fit, and residual plot are shown in Fig. 9.8.

Unbeknownst to the students, however, the data were simulated from the
“Pythagorean” model, y2 = x2

1 +x2
2. We used the following code in S-Plus, using

the runif command, which draws a random sample from a uniform distribution:

x1 <- runif (n=20, min=0, max=10)
x2 <- runif (n=20, min=0, max=20)
y <- sqrt (x1^2 + x2^2)

It is striking that the linear model, y = 0.71 + 0.49x1 + 0.86x2 (see Fig. 9.8) fits
these data so well.

What is the point of this example? At one level, it shows the power of mul-
tiple regression—even when the data come from an entirely different model, the
regression can fit well. There is also a cautionary message, showing the limita-
tions of any purely data-analytic method for finding true underlying relations.
As we tell the students, if Pythagoras knew about multiple regression, he might
never have discovered his famous theorem!



10

Lying with statistics

We prefer the term “statistical communication,” but the phrase “how to lie with
statistics” is a good hook to get students thinking about the issues involved.
We try throughout to dampen the natural cynicism that comes with this topic
and emphasize that, to most effectively tell the truth, you must avoid lying by
accident as well as on purpose. We assign readings and also discuss several ways
of lying with statistics that are not covered in usual treatments of the topic.

10.1 Examples of misleading presentations of numbers

We illustrate the difficulties of statistical communication by clipping newspaper
articles and discussing them in class. (The misleading is not always done by the
newspaper; in many cases, newspapers report on lying done by others.) When
presenting an example, we break the class into groups of four, give them two
minute to discuss, and then move to a general class discussion. In this section
we give several examples of articles we have used in class.

10.1.1 Fabricated or meaningless numbers

The simplest form of lying with statistics is to simply to make up a number, such
as Senator McCarthy’s proclaimed (but nonexistent) list of 205 Communists, or,
for a more recent example, “Patriot Missile Hits Revised from 41 to 4” (see
Fig. 10.1). More subtly, numerical measurements can be used dubiously, as in
the article, “Survey: U.S. Kids Reading Well” displayed in Fig. 10.1: it is not
at all clear if there is a reasonable way to compare reading ability in Finnish,
Hungarian, English, Chinese, and so forth. Comparison may be possible, but
without more detail, it is not clear how to interpret these rankings. Amusingly,
the two articles in Fig. 10.1 appeared on the very same page of the newspaper
(which of course reveals the possibilities of using newspaper articles as source
material for statistics classes). These examples are useful in class because the
students are told so much about subtle ways of misleading with statistics that
it is refreshing to remind them that simple fabrication or conceptual errors are
possible too.

10.1.2 Misinformation

Perhaps the most common error involving statistics is to make a claim that is
contradicted by available statistical information. It is not difficult to find such ex-
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Fig. 10.1 Two articles, appearing on a single page of the San Francisco Examiner,

illustrating potentially misleading numbers. In the top article, it is not explained how

one can accurately compare reading ability for students using different languages. The

bottom article discusses the possibility that the Army fabricated statistics during the

Gulf War.
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amples once you looking out for them. For example, we came across the following
statement in the Economist magazine:
Back in Vietnam days, the anti-war movement spread from the intelligentsia into the
rest of the population, eventually paralyzing the country’s will to fight.

This common belief is in fact false: as described in Section 3.5.2, the highly
educated people in the United States were in fact more likely to support the
Vietnam War (see Fig. 3.8 and the discussion on page 266). If the students have
worked this example when covering descriptive statistics, it is enlightening for
them to see a reputable magazine make the same error they made themselves
earlier in the semester.

In this case, the magazine’s statistical error was to make a false claim without
checking against readily available information on public opinion. This sort of
mistake illustrates why statistical data are gathered in the first place.

10.1.3 Ignoring the baseline
A common error, whether accidental or intentional, is to compare raw numbers
without adjusting for expected baseline differences. For an obvious example, it is
no surprise that California has more teachers than Arizona, given that California
has many more residents. A more reasonable comparison would be teachers per
person in each state, or perhaps the number of teachers divided by the number
of children between 5 and 18 years of age. As this simple example illustrates, it
is not clear what should be the baseline, but for most purposes it is important
to make some sort of adjustment.

Not adjusting for baseline occurs all the time. For example, it is commonplace
for dollar trends over time to be reported without adjusting for inflation. There is
some debate over the most appropriate price adjustment (see Section 3.7.2) but
it can’t be right to use raw dollars. A more subtle adjustment problem appears
in Fig. 10.5 on page 157.

Figure 10.2 illustrates how baselines can be ignored in a map. In this map
of Berkeley, California, areas were shaded that had more than 200 thefts and
75 burglaries in the previous year. We show this map to the students and ask
what is wrong here; eventually they realize that it would be more appropriate
to compare crime rates per population. For example, the large shaded region on
the left of the map contains relatively few people; in fact, much of the shaded
area is in the San Francisco Bay.

The class can continue by discussing appropriate measures of population—
that is, the denominator in the crime rate—for example, perhaps burglaries
should be measured per household and robberies measured with respect to the
number of pedestrians who frequent the area.

10.1.4 Arbitrary comparisons or data dredging
A more subtle error is selection of data, which is also illustrated by the map
in Fig. 10.2. (Once again, there is so much educational potential from a single
newspaper clipping.) Setting aside the problems with population variation, the
decision about where to set the threshold for shading appears arbitrary. What if
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Fig. 10.2 A map, from the student newspaper of the University of California at Berke-

ley, illustrating several potential statistical fallacies. Areas are shaded or not shaded

according to total crimes, without adjusting for possible differences in population in

the different areas. In addition, the threshold—200 personal thefts and 75 burglar-

ies—appears somewhat arbitrary, suggesting that the shading on the map might be

open to manipulation.

the rule were changed to “more than 300 thefts and 50 burglaries” or “more than
100 thefts and 100 burglaries” or “more than 250 thefts or burglaries”? Unless
this was some sort of preset standard, this thresholding rule seems subject to
manipulation in a way similar to multiple comparisons (see Section 8.7.2).

We ask the students how they could improve the map to allay these suspicions.
One suggestion has been to construct two smaller maps—one for thefts and one
for burglaries—and to use four levels of shading to indicate ranges of theft or
burglary rates.

For a more lighthearted example of selection, we tell the students of a com-
ment we saw in the newspaper several years ago: “The team whose city has the
tallest free-standing structure has won six of the past ten [baseball] World Se-
ries.” This statement was obviously intended to be humorous, but it is interesting
to debunk it. First, from the structure of the statement, we can suppose that the
team with the tallest free-standing structure lost the World Series eleven years
earlier (otherwise, the statement would presumably have been “seven of the past
eleven” or “eight of the past twelve” or whatever). We thus have “six out of the
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Fig. 10.3 Article from the Boston Herald reporting improved school test scores. There

is more to the story, however; see Section 10.1.5.

past eleven,” which is as close to 50/50 as can be, given that you can’t win half
a World Series.

10.1.5 Misleading comparisons

We show our students several ways in which numbers can be juxtaposed so as to
imply misleading conclusions. A favorite example, as always, involves test scores
(a topic that always fascinates students). Figure 10.3 shows an example: a news-
paper article we encountered several years ago in the Boston Herald reporting
improved scores in local schools.

But there is more to the story. It is typical for school systems that test
students every year to use the same standardized test form for several years
before switching to a new edition. Possibly from familiarity with the test forms,
average scores tend to rise during the years that a form is retained and then drop
when the new test is introduced. This was described in an article the same day
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are

Fig. 10.4 Newspaper clippings illustrating arbitrary and perhaps meaningless compar-

isons. The article on the left (from the San Francisco Weekly) shows several examples

of official reports with questionable numbers. The article on the right (from the San

Francisco Examiner) makes us wonder whether we should be happy or sad that more

children than cops are shot.
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by the rival newspaper, the Boston Globe:

Hub students improve in national test; Nine grades at or above average

Boston public school students who took the Metropolitan Achievement Test, one of
the main yardsticks to measure academic performance, scored at or above the national
average this year in nine out of 12 grades.

Some school officials touted the results, saying that the scores were the best overall
showing since 1980, when officials first kept systemwide testing statistics. Last year,
eight out of 12 grades met or exceeded the national average on the Metropolitan test.

“I’m very pleased that our focus on reading and math has paid off,” Superintendent
Laval S. Wilson said.

This sounded pretty good, but then there was a disclaimer:

But other school officials and some parents, skeptical about test scores being used as
propaganda to boost the image of the school system, were cautious in interpreting the
results.

The Metropolitan test scores, they said, have been climbing for the past three years
because the same version has been recycled, and teachers and students are increasingly
familiar with that version.

Paula Georges, director of the Citywide Educational Coalition, said that whenever
a new version of the Metropolitan is introduced, scores drop nationwide. Until then,
she said, “the trend is for them to go up.”

But the school officials still want to take credit:

[Wilson] said the Metropolitan results, taken together with a leveling off of the drop
out rate and increased promotion rates, suggest “student learning is improving.”

. . .
Joyce Grant, deputy superintendent for curriculum, and Mary Russo, director of

reading, said a major reason for the boost in scores is the effort of individual teachers.

Some other strange numerical comparisons appear in the articles shown in
Fig. 10.4. For example, it is sad that 13 children were being killed per day, but
it is not at all clear why this should be compared to the rate at which police
officers are shot. The comparison later in the article to Northern Ireland is more
reasonable (although it might be even more relevant to compare all violent deaths
rather than restrict to gunshots).

10.2 Selection bias

A favorite source of statistical errors is selection bias, which can generally be
categorized as a sample being unrepresentative of the population because some
units are much more likely than others to be represented, with the more likely
units differing from the unlikely units in some important way. Before getting to
this topic, we like to discuss simpler methods of lying with statistics (see above)
to make it clear that no great sophistication is required to mislead.

10.2.1 Distinguishing from other sorts of bias

Covering selection bias in class has two benefits: in addition to reminding the
students of an important source of error, it gets them thinking systematically
about sampling and probability as applied to real-world settings. Whenever we
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introduce a selection bias example, we like to stop and ask the students to cal-
culate or guess the probability of selection for different units in the population.
We can illustrate with many examples that we have already covered in class or
homework:
• Surveys of World Wide Web users that overrepresent frequent users (Section

5.1.3)
• Counts of number of siblings in families, in which larger families are more

likely to be selected because they have more children that could end up as
students in the class and thus be counted (Section 5.1.6)

• Sampling from a bag of candy; larger candies are more likely to be selected
(Section 8.1).

We also explain that there are all sorts of biases in statistics that are not
selection bias. We have already considered in class: measurement error (as in
the age-guessing demonstration on the first day of class (Section 2.1) or the
United Nations experiment described in Section 5.3.1); lurking variables (as in
the regression of earnings on height, ignoring sex, in Section 4.1.2), biased survey
questions (see Section 5.1.3), inappropriate comparisons in observational studies
(such as the biased estimates of the effect of coaching on SAT scores, described
in Section 5.4.3), and multiple comparisons (in the study of the effects of prayer,
described in Section 8.7.3). These all illustrate biases, but they are not selection
bias because, in all these cases (with the partial exception of the SAT coaching
example), the problem is not with sample selection but with the measurements
or analysis performed on the units selected.

10.2.2 Some examples presented as puzzles

Having given students examples of selection bias and clarified the concept, we
are ready with several more examples, which we have drawn from the statistical
and scientific literature. We present these as puzzles: for each, we briefly describe
the phenomenon; the class then tries to figure out the explanation. (Answers are
given on page 272.)

1. The most dangerous profession. In a study in 1685 of the ages and professions
of deceased men, it was found that the profession with the lowest average
age of death was “student.” Why does being a student appear to be so
dangerous?

2. Age and palm lines. A study of 100 recently deceased people found a strong
positive correlation between the age of death and the length of the longest
line on the palm. Does this provide support for the claim that a long line
on the palm predicts a long life?

3. The clinician’s illusion. When asked to judge the severity of a syndrome
among their patients, clinical psychiatrists tend to characterize the syn-
dromes as much more serious and long-term, on average, than are estimated
by surveys of patients who have the syndrome.

4. Your friends are (probably) more popular than you are. Sociologists have
conducted surveys in which they select random people and ask for a list of
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the people they know, and then they contact a sample of the friends and
repeat the survey. The people sampled at the second stage have, on average,
many more friends than do the people in the original sample. This suggests
that, on average, your friends are more popular than you are.

5. Barroom brawls. A study of fights in bars in which someone was killed found
that, in 90% of the cases, the person who started the fight was the one who
died.

10.2.3 Avoiding over-skepticism

When concluding the discussion, we find it useful to remind the students that
the existence of statistical biases does not necessarily invalidate a finding. For
example, several years ago a widely publicized study found that the average age
of death of left-handers was about 8 years less than that of right-handers. (The
researchers started with a sample of death certificates and then interviewed close
relatives or friends to find out the handedness of the deceased.) The authors of
the study went on to speculate about reasons why left-handers may be more
likely to die at a younger age.

This research was criticized as biased because the frequency of left-handedness
may have changed appreciably over time: if many people born 60 or more years
ago were forced to use their right hands, then the probability of being left-handed
would be higher for younger people, and this would result in a lower average age
of death for left-handers, even in the absence of any greater risk of death for the
individuals.

This claim of bias is potentially reasonable—however, the researchers on the
original study did other work that suggests this bias is small, and that left-
handers really do die younger, on average, than right-handers. The difference of
8 years in the raw data is probably an overestimate, but we should be wary about
simply discarding the research—it would be better to estimate the magnitude
of the bias and try to correct for it. We do not claim to have the answer here;
it is better to keep an open mind and consider different ways of studying the
problem.

As always, students must learn to be both skeptical and constructive.

10.3 Reviewing the semester’s material

We cover statistical communication in the last week of class, and it provides a
useful framework for reviewing all that came before.

10.3.1 Classroom discussion

It is possible to lie (or to make mistakes) by ignoring some key statistical prin-
ciples. These are typically covered in detail during the semester, and when we
cover “lying with statistics,” we find it useful to mention these in class, asking
students to quickly make up examples of each.

• Correlation does not imply causation (see Section 4.2.2).
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• “Statistically significant” does not necessarily mean “important” (we can
illustrate this with a hypothetical example of a very small effect that can
be discovered with a very large sample size).

• Not “statistically significant” is not the same as zero (recall the example of
Section 8.7.1, where 20 shots each are not enough to identify large differences
in abilities between basketball shooters).

• Response bias in sample surveys (see Section 5.1.3).
• Misleading extrapolation (for example, the world record times in the mile

run (Fig. 3.1 on page 20), or the regression of earnings on height in Section
4.1.2).

• Problems with observational studies (for example, the comparison of SAT
scores before and after coaching, described in Section 5.4.3).

• Regression fallacy (as illustrated with several examples in Section 4.3).
• Aggregation (for example, the way the regression of earnings on height

changes when sex is included in the model; see Section 9.1.2).
We illustrate many of these examples with newspaper clippings—it is fun and

not difficult to get your own, possibly with the help of your students. The point
here, however, is not to slam the press. In fact, as we discuss in Chapter 6 in
the context of the statistical literacy assignments, we are generally happy about
how the newspapers report on scientific and technical issues. But they are not
perfect, and they can often let their guards down when their news is not coming
from a scientific source.

10.3.2 Assignments: find the lie or create the lie

As a homework problem, we assign the problem of finding the two most important
statistical errors in the article shown in Fig. 10.5. This is a challenging problem—
in fact, many of our colleagues cannot readily find the errors.

In addition, we give the students the following homework assignment:

Do one of the following:
• Find an article in a recent newspaper or magazine that lies with statistics in some

way. Explain what the “lie” is and how you would correct it.
• Find an article in a recent newspaper or magazine with numerical information that

does not lie or mislead. Using the data in the article, create your own misleading
“lie.”

Include a photocopy of the article with your homework solutions. You get double credit
for this problem if your article is not used by any other student in the class.

Other possibilities include students working in groups to find the most out-
rageous statistical “lie” or to produce the most outrageous “lie” themselves.

10.4 1 in 2 marriages end in divorce?

Class discussions can be structured around commonly-quoted, but not necessarily
well-understood, numbers. For example, we hear statistics like “1 in 2 marriages
end in divorce,” but how can you really estimate that? It’s tricky. If you look at
the number of marriages in 1995 per 1000 adults, that number is roughly twice
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Fig. 10.5 Find the two most important statistical errors in this newspaper article.

Answers appear on pages 272–273.
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the number of divorces in that year. But, those getting divorces in 1995 are by
and large not the same people as those getting married that year. Since so many
marriages are ongoing, do you have to wait until one member of a married couple
dies before you can count that as a nondivorced marriage? For example, only
about 1 in 7 women who married in the early 1940s eventually divorced. But it is
not very satisfying to make statements about people who married sixty years ago.
Often assumptions are made that the divorce rate in a current year continues
indefinitely into the future. A careful study of marriage longevity would need to
consider life expectancy and control for age at marriage and length of marriage.

10.5 Ethics and statistics

Ethics is a topic that we find interesting, but students in statistics classes seem
to be wary of it. We recommend preparing for a class discussion about ethics by
gathering some relevant newspaper clippings; here we give examples of several
areas in which ethical issues arise in statistical data collection and analysis. As
always, we set up each problem and then ask the students to discuss in pairs as
a prelude to general class discussion.

10.5.1 Cutting corners in a medical study

On March 15, 1994, the New York Times reported on a Federal investigation of a
Canadian researcher at St. Luc’s Hospital in Montreal. The investigation found
violations of the scientific guidelines that govern the way the study was carried
out. According to the Times article:

A Federal investigation found that Dr. Poisson had falsified data in his part of the study
that helped change the way breast cancer is treated. That influential study concluded
that full mastectomies were not necessary to prevent the spread of early forms of the
disease in many women.

. . .While insisting that he did little more than tell “white lies” that he believed
would not change the conclusions of the study, Dr. Poisson signed an agreement with
the Federal Food and Drug Administration acknowledging that he had falsified results
of other studies.

In a written reply to the United States Public Health Service’s Office of Research
Integrity, which spearheaded the Federal investigation, he stated, “I always feel sorry
for a nice case to be denied the right to enter a good protocol just on account of trivial
details: a difference of a few days in the date of surgery because the patient took a long
time to decide.”

“When I lost a patient who did not wish to participate,” he said, “I always took it
as a personal defeat, knowing that the best protocol with the best biostatisticians is
useless unless enough patients are registered” . . .

Dr. Poisson said he should have read the fine print of the study design more carefully
to avoid the irregularities.

We provide students with a copy of this excerpt from the newspaper article,
and because the discussion can get heated, we ask them to write their answer to
the following question: On the basis of Dr. Poisson’s remarks, why do you think
the federal investigators were concerned about the experimental justification for
the claim that “full mastectomies were not necessary to prevent the spread of
early forms of the disease in many women”?
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We give them five minutes to work in pairs to write a short answer and then
we collect their written responses and lead a discussion on the topic. We use
these written answers to express opinions of students who might be too shy to
enter the discussion. In our discussion, we quote from Dr. Poisson’s letter to
the New England Journal of Medicine, where he stated, “My sole concern at all
times was with the health of my patients . . . For me, it was difficult to tell a
woman with breast cancer that she was ineligible to receive the best available
treatments because she did not meet 1 criterion of 22, when I knew this criterion
had little or no intrinsic oncologic importance.” We also provide the opinion of
Dr. Broder, Director of the National Cancer Institute, which funded the study. In
his testimony before the House Subcommittee on Oversight and Investigations,
he said, “we consider the entire data-set from St. Luc to be a total loss to the
American taxpayer.” These are delicate issues.

10.5.2 Searching for statistical significance

As another example, a colleague who works at a university statistical consulting
service reported the following story. A company wanted to get a drug approved,
but their study appeared to have no statistically significant results. (See Section
8.7.2 for a classroom demonstration of multiple comparisons.) The researchers at
the company broke up the data into subgroups in about 15 or 20 ways, and then
they found something significant. Is this data manipulation? What should the
statistician do? In this case, the company reported the results and their stock
went up 50%.

10.5.3 Controversies about randomized experiments

A fundamental ethical problem in statistics arises in experimentation, for ex-
ample in the context of studies of experimental drugs for treating AIDS. On
one side, organizations such as the National Institutes of Health insist on ran-
domly assigning treatments (for example, by flipping a coin for each patient to
decide which treatment to assign). The advantage of randomized experiments
is that they allow reliable conclusions without the need to worry about lurking
variables. However, some groups of AIDS patients have opposed randomization,
instead making the argument that each patient should be assigned the best avail-
able treatment (or, to be more precise, whatever treatment is currently believed
to be the best). The ethical dilemma is to balance the benefits to the patients
in the study (who would like the opportunity to choose among available treat-
ments) with future patients (who would be served by learning as soon as possible
about the effectiveness of the competing treatments).

The issue is complicated. On one hand, the randomized study is most trust-
worthy if all the patients in the study participate; if they are not treated respect-
fully, the patients might go outside the study and try other drugs, which could
bias the estimates of treatment effects. On the other hand, the patients might
be benefiting from being in an experimental study: even if the treatment is ran-
domized, the patients are getting close medical attention from the researchers.
Current best practice is to design studies so that all subjects will be expected
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to benefit in some way, but still keeping the randomized element. For example,
a study can compare two potentially beneficial experimental treatments, rather
than comparing a treatment to an inert “control.” But there will always be con-
flicts of interest between the patients in the study, the scientists conducting it,
and the public at large.

10.5.4 How important is blindness?

Other ethical issues arise in the blindness or double-blindness of experiments. In
order to achieve blindness, studies in psychology often use deception. For exam-
ple, in the United Nations experiment described in Section 5.3.1, the students
were not told that the anchoring values of “10” and “65” were an experimental
manipulation.

For another example (among many), we bring up in class the topic of stereo-
typing in job interviews. Are some applicants discriminated against because of
their race, ethnicity, or gender? Once students have given some opinions on the
topic, we steer the discussion toward the question of how this sort of bias could
be measured statistically. One approach is to compare the success of people of
different groups in job interviews. This would be an observational study, and we
ask the students what sort of lurking variables would need to be controlled for,
and how this could be done (see Section 5.4 for examples in which we discuss
these issues).

Another way that job discrimination has been studied is to run a random-
ized experiment in which the experimental subjects are people who might be in
a position to evaluate job applicants. We ask students what might be the treat-
ments: for example, the subjects might be given hypothetical resumes, identical
in all respects except that the ethnicity of the job applicant is selected at random
(similarly to how the anchoring values were assigned at random in the United
Nations experiment). This experiment must be done blindly, which necessarily
involves deceiving the experimental subjects. (If they are told ahead of time that
this is a study of ethnic stereotyping, their heightened awareness may affect their
judgments of the job applicants.) Once the experiment is over, the subjects can
be told of the true purpose of the experiment, but the practice of misleading
them is still controversial and, some would say, unethical. On the other hand, it
is important for society to learn the extent of problems such as racial bias, and
certain information can be gathered using deception that would be difficult to
gather any other way.

In other settings, blindness can pose medical risks. For example, in early stud-
ies of heart bypass operations, the treatment was compared to a control regimen
of medical (non-surgical) intervention. This posed difficulties both for blindness
and double-blindness (a patient knows if he or she has had heart surgery, and so
does a doctor making subsequent evaluations). The solution chosen was to per-
form a “sham operation” on the patients receiving the control treatment—that
is, to open up their chests, do nothing, and sew them back up—so they would be
externally indistinguishable from the patients who received actual surgery. This
certainly seems to be an ethically questionable way to achieve blindness. On the
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other hand, if it allows doctors to learn more about the effectiveness of heart
bypass surgery, maybe it is worth it? This is a topic for student discussion.

10.5.5 Use of information in statistical inferences

Criminal justice

Another sort of ethical issue concerns the acceptable uses of information in mak-
ing inferences and decisions. Members of ethnic minorities are more likely to be
stopped and questioned by police. In what sense is this a reasonable policy given
crime statistics? This has been a controversial area, both in stopping people on
the street and in their cars on highways. Using the information about ethnicity
is generally considered unethical, partly because of its obvious unfairness. There
is general agreement that upholding the principle of equal treatment under the
law is more important than potential short-term efficiency of police procedures.

In a criminal trial, a jury is not supposed to use knowledge of prior arrests or
convictions to draw conclusions about the guilt of a suspect. From a statistical
standpoint, if there is evidence that a person has committed previous crimes,
he or she is probably more likely to have committed the crime in question—
but legally and ethically, it is not considered acceptable to use this information.
Similar issues exist in many settings.

Background information and course grades

For another example, consider a course in which a “pre-test” is given at the
beginning of the semester to assess general background knowledge. The students
are told that the pre-test will not count in their grade, but they are requested to
try their best. Then, during the semester, there are some scheduling difficulties,
and the midterm exam for the course has to be canceled. At the end of the
semester, the instructor considers using the pre-test score in place of the missing
midterm grades. Is this fair? Students generally think not, and in this setting,
most instructors would not use the pre-test. However, ignoring this information
probably means that the students’ final grades will be less accurate indicators of
student abilities: if a student did better on the pre-test, he or she is probably a
better student, even after controlling for the grades in other aspects of the course.
The following two goals conflict: (a) keeping the promise to the students (or, even
more generally, in using information before the course began to determine grades)
and (b) producing final grades that best reflect students’ abilities.

The issue becomes even more complicated when the background informa-
tion being used is not under the control of the student; examples that can be
predictive of grades include ethnicity and parents’ education levels.

Models for guessing on multiple-choice exams

Consider a test with several true/false questions. If all the students answer a
question correctly, then presumably they all know the answer. Now suppose that
half the students get a certain question correct. Then, how many students do
you think knew the correct answer (we ask the class)? 50%? One possibility is
that none of the students knew the correct answer, and they were all guessing.



162 LYING WITH STATISTICS

Now consider a question that is answered correctly by 80% of the students.
If a student chosen at random knows the correct answer with probability p, or
guesses with probability 1−p, then we can write, approximately, p+0.5(1−p) =
0.8, which yields the estimate p = 0.6. Thus, a reasonable guess is that 60%
of the students actually know the correct answer and 40% were guessing. The
conditional probability of a student knowing the correct answer, given that he
or she answered the question correctly, is 60%/80% = 0.75.

Where is the ethical dilemma here? Consider now the task of giving each
student a total grade for the exams. The reasoning above suggests that they
should get no credit for correctly answering the question that 50% of the students
answered correctly (since the evidence is that they were all guessing), and they
should get 0.75 credit for answering the question that 80% answered correctly,
and so forth. Thus, the amount of points that a question is worth should depend
on the probability that a student’s correct answer was not due to guessing.
The ethical question is of the fairness of deciding the grading system after the
exam has been taken by the students. Is it fair for two students to get the same
number of questions correct on the exam but different total scores, because the
“circumstantial evidence” suggests that one of the students was more likely than
the other to be guessing?

Misleading information

In other settings, it might not be wise to gather information if there is a suspicion
that it will used inappropriately. For example the class activity of Section 7.5.2
demonstrated a scenario in which a person can fail a lie detector test and still
have a greater than 50% chance of being honest. (This happens whenever the
probability of error for the lie detector is greater than the probability that a
person is a liar.) A similar problem arises in imperfect medical tests of a rare
disease: it is possible that most people who test positive actually do not have
the disease.

This information can still be useful if used correctly: for example, a failure on
a lie detector test can be grounds for further investigation, and a positive test for
a disease can motivate further testing. However, if the tests are (inappropriately)
assumed to be perfect, then they can result in innocent persons being accused,
or healthy persons being unduly alarmed (or even given inappropriate medical
procedures). The ethical dilemma is whether to gather information that can be
useful in the right hands but misleading if interpreted crudely.

Privacy and confidentiality

Tradeoffs between individual and social benefits occur in many settings where
data are gathered on a population. For example, medical researchers can use
data on the personal histories of disease sufferers to study factors associated
with disease incidence, potentially saving future lives if they discover important
relationships. But such a study might require the use of private medical records,
which is open to abuse. For example, if the research were funded by an insurance
company, it would be important to make sure that the confidential records could
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not be used to deny people health insurance. Similar issues have arisen when
studying HIV and AIDS: it is important for public health authorities to be
aware of trends in prevalence of these conditions, but rules requiring doctors to
report new cases to the authorities can backfire, by causing some people at risk
to avoid testing.

More generally, any study of the general population can place burdens on the
persons being studied. Participation rates in public opinion polls have been de-
clining for decades, partly because market researchers and others have saturated
people with unsolicited telephone calls. When we talk about sample surveys in a
statistics class, we should remember that the respondents are not simply objects
of study, but participants (who are often giving their time for free) in a research
project.
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Part II

Putting it all together
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11

How to do it

In this chapter we give some tips on how to prepare your own activities and
how to adapt an activity you have read or heard about to your particular class.
We also provide examples of mistakes we have made in carrying out activities,
ideas for managing group work in class and in longer projects, and resources for
finding and developing new activities.

11.1 Getting started
There is often resistance to doing class-participation activities if they are new
to an instructor. We can get a bit scared when trying out new demonstrations,
but they always seem to go well, especially by the second or third try, once
the details have been tuned. For example, in the coin-flipping demonstration in
Section 7.3.2, we recently added the bit about having two students try to guess
which sequence is fake and give their reasons.

11.1.1 Multitasking
A natural fear when considering in-class demonstrations and other student-
participation activities is that they will take valuable class time away from serious
learning. We address this problem by, where possible, running these activities si-
multaneously with the other classroom material. For example, students can pass
a scale and bag of candy around the room and weigh objects (Section 8.1) while
a lecture is proceeding. Data can be gathered from students by passing out a
form during the lecture, and the times when students are working in groups can
be used by the instructor to put material up on the blackboard or to go around
the room answering questions. When students are providing data from a simple
calculation, such as finding a confidence interval for a proportion (Section 14.3),
we prepare in advance a list of all possible outcomes, which makes it easy to
display the results quickly.

11.1.2 Advance planning
Successful demonstrations require planning and organization, both for the stu-
dents and the instructor. We prepare our students by giving them handouts and
preceding any complicated activity with simpler exercises illustrating the same
point, as described in Section 1.3. For our part, after a few times of showing up
in class to find that we left an essential prop back at the office, we no longer
leave the preparation until the last minute.

167
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To help us get organized, we include in our class notes a list of materials
needed for the activity, an outline of the five parts of the activity as described
in Section 11.2.1, and any notes on how to carry it off, just as we might write
notes in the margins of a cookbook to improve a recipe.

Before the start of the term, we prepare a packet of materials for the course,
which we photocopy for students to purchase. It typically includes news stories,
templates, instruction sheets for demonstrations, survey forms, and so forth (see
Section 12.1).

It can also be good to practice a new demonstration before trying it in full
format in front of a class. Otherwise, unforeseen problems can occur. Once we
found an interesting demonstration of a sampling technique in a teaching journal.
It came complete with a list of materials required (coins and dice) and a game
board and instruction sheet ready to be photocopied for handouts. We read it
over and it looked simple enough so we decided to try it out on our students with
out making a dry run. In class, we were able to field questions as they arose, but
15 minutes into the activity the students still had not collected enough data to
understand the sampling procedure, and they were beginning to get exasperated.
We called it off. Fortunately, we had run plenty of demonstrations before then
and the students kept their faith in us and our activities.

11.1.3 Fitting an activity to your class

There is no single format for a successful activity. Considerations that enter
into choosing an activity for our class are the class size, classroom layout (for
example, can chairs be rearranged?), board space, and the presence of a teaching
assistant. The first time we try a demonstration, we are often worried about how
it will turn out, but after adjusting over two or three semesters, we can generally
adapt it to our teaching style.

Some activities are better suited for small classes. The largest class we have
worked with is 80, but others have reported success using some of these activities
in classes of over 200. An activity that requires students to share a piece of
equipment can be unwieldy to carry off in a large class. Also, in larger classes,
we limit our activities to those where the students remain seated working in
pairs, except for when a few volunteers write answers on the board. In all cases,
no matter what the class size or seating arrangement, we strongly advocate group
work.

If you have a teaching assistant attending your lecture, then he or she can
assist you, for example by doing lengthy computations on the side. For classrooms
with plenty of blackboard space, you may want to bring extra chalk and partition
the board so different groups can work on problems simultaneously.

11.1.4 Common mistakes

We have learned a few lessons from our mistakes and the mistakes of others. We
relay a few of the more obvious ones to you here in hopes that they will help you
avoid some.
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Fig. 11.1 The class can be divided into groups for a discussion or class activity.

Missing the details

It is important that in-class examples are relevant to the material being covered
at that point in the course, and changing seemingly minor details can lose that
focus. For example, when covering the binomial distribution, we planned to ask
students to work on the problem, “If 1000 babies are born in a hospital, how
many girls would we expect?” This is a simple way to introduce the binomial
distribution (with p = 0.487). But in class we got confused and stated the prob-
lem as, “1000 babies were born in a hospital, and 487 were girls. What is the
estimated probability of a girl birth?” We had absent-mindedly switched it from
a probability problem to a statistics problem, totally missing the point! Even the
experienced cook can be better off writing a recipe and following it step by step.

Another time, one of us tried the demonstration of Section 8.2.2, in which a
roulette board is set up and several students play until they are wiped out. We
made several mistakes in our implementation, including forgetting the steps of
(a) having students identify gambling strategies ahead of time, and (b) enlisting
other students in the class to make change and keep track of the bets. As a
result, the demonstration lacked focus, went slowly, and did not effectively teach
the key statistical point, which is the role of a negative expected value in a long
sequence of trials. In contrast, when we get the details right, we can focus on the
instructional material, not the mechanics of the demonstration itself.
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Fig. 11.2 When students work in groups, they can bounce ideas off each other, as in

the random sampling demonstration of Section 8.1.

Losing the punchline

None of these activities are so compelling that a student will wait until the next
class meeting to hear the end of the story. In fact, they become quite indignant
over the possibility of not completing the activity before the bell rings. Not to
mention, it makes us look disorganized.

Sensitive subjects

Although students enjoy collecting data on themselves, some subjects are taboo.
Take body weight for instance, even students who are not outliers might be
embarrassed to reveal their true weight in a class histogram.

When performing experiments on students, be careful in maintaining safety
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and anonymity of the students. For example, when we let our students design
their own taste testing experiments (Section 5.3.3), one group of students made
a comparison of rum and cokes with different brands of rum. After reading their
report, visions of drunk students came to mind. Since then, we have required all
experiments to receive instructor approval before being carried out.

Rewards

We read the evaluations of an instructor who routinely tossed candy to students
who had correctly answered a question. Several evaluations were scathing. One
likened the event to being “treated like monkeys.” Nonetheless, we have had
success using prizes in games of chance. Also, in large classes, we occasionally
have dollar days, where a volunteer comes to the front of the class and partakes
in an experiment, game, or other activity. We ask the student to introduce him
or herself to the rest of the class, they participate in the activity, and if they win
then we reward them with a dollar. The class applauds them for their efforts,
and we never seem to run out of volunteers.

11.2 In-class activities

In this book, we have tried to describe the classroom demonstrations and exam-
ples in enough detail that it is clear how the students will be directly involved
in learning the material. Here we gather some of our thoughts on what makes
an activity work well.

11.2.1 Setting up effective demonstrations

It is important to be clear on why any activity is being done, in several senses:
1. Concept: what statistical topic is being covered?
2. Mechanics: exactly what are the students expected to do?
3. Punchline: what is the key point of the activity?
4. Context: how does this message connect to other topics in the course and

relevant areas outside statistics?
5. Follow-up. Students take activities more seriously if they are connected to

the formal structure of the course. We encourage class participation by in-
cluding questions pertaining to the surveys discussed in class on exams and
homeworks.

Surprises

Surprise is often at the heart of a good demonstration or example. For example,
when students generate 100 real and 100 fake flips of a coin (Section 7.3.2), we
surprise them by not being fooled by the fake flips. The surprise comes from
common misconceptions about randomness: people generally believe that a se-
quence of coin flips should have a haphazard pattern, including frequent (but
not regular) alternations between heads and tails, and we use this misconception
to distinguish between the two sets of coin flips. Other demonstrations and ac-
tivities that have surprise twists include activities on family size (Section 5.1.6),
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weighing a random sample (Section 8.1), the mile run (Section 3.2.1), regression
of height and income (Section 4.1.2), and heights of men and women (Section
3.6.1).

In addition to being fun, the shock of confusion, followed by recognition, is a
good way for students to learn and remember the material. These double takes
are also effective at promoting classroom discussion. In each activity, the students
work on the problem before we tell the whole story, and when the surprise twist
is revealed, the students are now intrigued with the problem. They want to find
out what went wrong with their seemingly correct procedure, why their data do
not match some standard, or what was the flaw in their logic.

Props

For many of our demonstrations, we bring props to class. We collect them and
keep them on hand for our demonstrations. For example, to demonstrate prob-
ability problems, we have a set of lockable boxes, jumbo colored dice, and a
toy roulette wheel. The props are fun to use; they make the problem more con-
crete, and using them takes little additional class time over simply describing
the problem in words.

11.2.2 Promoting discussion

One natural idea for finding discussion topics would be to solicit them from
our students. To do this, we hand out index cards and each student to write a
question he or she wants answered or a topic of special interest. We use these
as sources of examples and discussion topics. Unfortunately, students do not
provide enough suggestions to use on a regular basis, so it is important for us
to come up with our own. Section 11.5 lists several sources of ideas for examples
and discussion topics.

The newspaper is always a good starting point for finding topical examples.
We often bring newspaper clippings and excerpts of journal articles to class (see
Chapter 6 and Sections 5.1.3, 14.1.1, and 14.5) and have students work in pairs,
where they read the handout and write responses to questions (these assignments
may be as simple as writing one criticism and one positive comment). We use
their answers to begin a class discussion. For example, sometimes we have the
students hand in their responses (without names on them), and without sorting
or looking through the papers, we take the top sheet from the stack, read it aloud
to the class, and discuss the student’s comments. We continue reading papers,
taking them one at a time from the stack until we have heard and discussed a
variety of ideas. Alternatively, we have groups focus on different questions, write
their answers on the board, and act as discussion leaders for their questions.
More elaborate examples and problems can become discussion projects if we
assign them to the students ahead of time so they will be prepared, as in the
prayer example in Section 8.7.3.
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Fig. 11.3 Students are working in pairs on the telephone-book sampling demonstra-

tion described in Section 5.1.1.

11.2.3 Getting to know the students

Activities work best if you know your students well enough to call on them by
name to answer questions, to supply data, or to write answers on the board.
Although we call on students by name to answer questions we raise in class, we
do not pressure them into providing an answer. If they signal an unwillingness to
answer then we move on to another student. They will get other chances later.

We have a few techniques for learning names. In the first few weeks of class
when students volunteer to answer a question, we ask them their names. Then
to reinforce, we try to call on them by name again in the same class period. We
also have students fill out index cards with their names, nicknames, and other
information, such as their major and possible discussion topics. After each class,
we go through the cards reviewing the names of students who answered questions
during class that day. As a third trick, we return homeworks by calling out the
students’ names and personally handing each student his or her homework. Some
instructors take photos of students and use these to learn their students’ names.

11.2.4 Fostering group work

When we develop a new activity, we try to turn it into group work wherever
possible. We schedule a lot of group work at the beginning of the term. Through
these group activities, students get to know each other, we set the expectation
for class participation for the rest of the term, and students figure out who they
will work with on projects outside the classroom. As the semester progresses, we
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Fig. 11.4 While a demonstration is going on, the instructor can circulate around the

room answering questions. Here a class of eighth graders is doing the age-guessing

demonstration described in Section 2.1.

often have students work together in class on short problems.
Typically we set a time limit for the groups to work on an activity, say 5 to

10 minutes. To keep students focused, we walk around the classroom, asking and
answering questions. When many groups encounter the same point of confusion,
we write hints or points of clarification on the board. Other times, we break up
a problem into parts and give students 2 to 3 minutes to work on each part,
getting the class together at each point to discuss the answer so far and keep all
the groups of students on track.

If the activity involves answering questions or drawing graphs, we invite par-
ticular groups to write solutions on the board. Sometimes we ask more than one
group to write up their responses in order to generate class discussion or to show
that there is more than one way to do the activity. We specifically invite groups
to the board, to make sure everyone gets a chance to participate at some point
in the course.

We have found that groups often work at different speeds; some will not have
completed the prescribed task in the allotted time, and others will finish quickly.
If everyone’s response is required (say, for body measurements on students, as in
Section 4.2.1) then we multitask: for example, we start recording data, resume
the lecture, or lead a class discussion while the last ones finish up. If we want to
record the data on the board (for example, when we draw the coverage of a set
of confidence intervals, as described in Section 8.1) we begin going around the
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classroom soliciting each group’s interval. We mark the interval with their names,
and in later discussion we refer to the interval by name. If students are filling in
a worksheet or drawing graphs (for example, the histogram of soda consumption
in Section 3.3.3) then we sometimes pose additional questions to those who have
finished already, or have students start writing up solutions before everyone has
finished.

We always leave time to go over the activity with the class as a whole. We
lead a class discussion that brings out the key point of the activity and ties it to
the topic we are studying.

11.3 Using exams to teach statistical concepts
Exams are an important teaching tool partly because students directly learn
from working out the problems during the exam and partly from the learning
that occurs while studying and preparing beforehand. Here we review some ways
in which we have used exams to teach statistical concepts in a third way, as direct
experience, by harnessing students’ interest in their grades. We have had success
using these techniques to involve the students in class discussions, and we believe
there is the potential for much more work in this area.

Our courses for undergraduates typically include one or two midterm exams
and a final. Students are of course very interested in their exam scores, and so we
have developed some tricks to channel this interest into thinking about statistics.
The activities involve both experimentation using exams and statistical analysis
and adjustment of exam scores. These demonstrations must be conducted with
care: students take their grades seriously, and it is important to make it clear
that their exam grades are not manipulated in an arbitrary or unfair manner.

Sections 3.5.1 and 3.6.3 illustrate the use of guessed and actual exam scores in
scatterplots and regressions. Section 4.2.2 uses exam lengths and scores to illus-
trate the difference between correlation and causation. Further examples appear
in Section 10.5.5 in the context of the ethical uses of statistical information.
Section 5.3.2 describes a more elaborate demonstration in which students are
randomly given different midterm exam forms, with the results of this experi-
ment motivating a class discussion when the graded midterms are returned to
the students.

We also use exams for demonstrations of more advanced topics. Section 9.2
uses the search for unfair exam questions as a way to introduce psychometric
modeling, and Section 13.1.5 discusses a probabilistic scoring rule that teaches
the concept of calibration of probability estimates.

11.4 Projects
At different times we have used various formats for group projects:
• Directed projects are based on well-defined problems. For example, in Section

5.3.3, students design and conduct an experiment modeled after Fisher’s ex-
periment of a lady tasting tea. Another example (Section 16.1) has students
analyze data from a case study in which they are provided suggestions on
how to address a question of interest.
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When we first started to develop these projects, our assignments were too
prescribed. For example, our data analysis projects were one-page instruc-
tion sheets with sample code. We found the students followed the instruc-
tions to the letter without exploring on their own. As a result, we replaced
the instruction sheet with more general suggestions where the student fig-
ures out which statistical techniques are appropriate for analyzing the data.

• Active homeworks. Occasionally in class discussions, there will be some num-
ber or set of numbers that is unknown but relevant to the discussion topic
(for example, the distribution of soda consumption in Section 3.3.3). The
task of looking up these numbers can be assigned to pairs of students. By
the end of the class, all the students will have done some of this library
research.

• Research projects. With the right kind of assistance, students can read and
report on original research papers. The statistical literacy project described
in Chapter 6 is one example where students choose a study reported in the
press to investigate. They then track down and read the report or journal
article on which the news story is based, and write a report describing the
study. Other examples are described in Sections 14.6.1 and 15.8.
The biggest problem we found with this project was that the student papers
were too much like abridged versions of the documents they read. Their
papers did not demonstrate that they had applied what they learned in the
course to their reading. The papers improved dramatically when we provided
more guidance. For example, we now give the students a set of questions or a
template to aid them in reading their papers. We also monitor their progress
more closely, requiring them to show us their work at an intermediate stage
in the project.

• Class projects have the entire class working together on the same project
(see Section 5.2, for example). We use the project as a theme that runs
throughout the course. We divide the project up into subtasks, and students
form small groups to work on these. Although the project takes most of a
semester to complete, the effort required from each student is limited to a
few hours over one or two weeks. The students learn both by doing and
through the advice of the instructor. The instructor’s involvement at each
step helps secure a successful outcome, and it sets a good example of how
to carry out independent research projects.
We oversee the project by scheduling groups to report on their work to the
rest of the class, and we use this reporting time to solicit input from all of
the students on each aspect of the project. We organize class discussions on
each topic and give handouts to clarify each group’s job and to focus our
in-class discussions. Each group writes a summary of its contribution, which
appears in the final report.

• Independent projects. Here, students work in small groups on data-collection
and data-analysis projects of their own creation, with the work spread over
several weeks. This sort of project is described in detail in Section 11.4.2.
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11.4.1 Monitoring progress

For all of these projects, it is essential for the instructor to keep track of how
the students are doing and intervene when appropriate. Typically, we introduce
the projects early in the semester and set deadlines for completion of the main
pieces. To get them started, we provide students with a list of past projects, and
dedicate class time to reviewing these projects and discussing what we expect.

Students usually work on the projects in groups of three to five. When they
are choosing a project from a list, we help them form groups by writing the list
on the board and having students stand near the item that interests them. They
form their groups, exchange contact information, and sign up for appointments
to plan the project with us.

We have found it essential to discuss the project in its early phases. At this
meeting, the students are expected to bring a completed research plan, template,
or outline, and, where appropriate, a copy of a research paper. We make sure
their plans are adequately formulated, we discuss strategies for completing the
project, and we identify a few important aspects of their work to which they
should pay special attention. We sometimes schedule a second meeting with the
groups to review the near complete version of the report, and make plans for
oral presentations.

Encouraging student writing

The writing process is an effective way for students to piece their ideas into a
coherent story and develop arguments in support of their thesis. The importance
that we place on writing skills is reflected in the grading of the projects; typically
25% of the grade for an assignment is based on the report’s organization, clarity
of argument, and correctness of the statistical statements.

It is especially effective to require students to write for a real-life setting.
Overall, the students enjoy such concrete assignments, and it helps them better
focus on the problem when they have an audience, albeit imagined, other than
the instructor.

We dedicate class time to a discussion of how to prepare the written re-
port. We emphasize the importance of making clear, careful arguments, and we
encourage students to revise and proofread their manuscripts. Communicating
ideas through charts and graphs is a particularly important part of a statisti-
cian’s communication skills, and we dedicate one to two lectures to this topic,
where we carefully review examples of how to miscommunicate with statistics
(see Chapter 10).

Some of our favorite writing resources are Gopen and Swan’s (1990) article
on how to write clear scientific arguments, Tollefson’s (1988) booklet containing
examples of common grammatical errors, and Wainer’s (1984) examples of poor
data displays. Appendix A in Nolan and Speed (2000) provides a synopsis of these
writing tips, which we distribute to our students before writing their reports. In
addition, Davis (1993) provides many good ideas on how to help students write
better.
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Presentations

We sometimes ask the groups to present their projects to the class. We give the
students a lot of leeway in designing their presentations; some lead discussions
modeled after our in-class activities, others use role-playing to present their find-
ings, or they hold a debate where they present conflicting statistical evidence to
make their arguments. To help students prepare, we schedule an appointment
with each group to review their handouts and plan the class presentation. Some-
times the presentations are done on a voluntary basis, and other times we ask a
few groups who have done especially good jobs to present their work.

Grading projects

We give students a clear picture of our expectations for their written report by
handing out samples from past reports. We provide multiple examples of good
introductions, analyses, arguments, and conclusions. We also place restrictions
on the length of a report (number of words), the number of charts and graphs,
and a list of appendixes to be included in the report.

We provide feedback to the students through our written comments on the
papers. Our grading is done holistically, based on four aspects: composition,
basic analyses, graphs and tables, and advanced analyses. For composition, we
look for an organized presentation, persuasive argument, descriptions made in
the student’s own words (not in the words of a reference), and statistically sound
statements.

11.4.2 Organizing independent projects
Independent projects can be fun, but they have to be well organized. The biggest
problem we have encountered is that students’ ideas tend to be too vague and
sometimes overly ambitious, and then when the time comes for data collection,
the students still don’t have a clear plan and end up being sloppy. We try to
fix this by focusing more clearly on the data-collection aspect of the project,
requiring a statement of purpose, pilot data collection, a writeup, and a formal
protocol before they go ahead and collect the main data. Also, we emphasize
that the focus of the project is on gathering clean data, not on a fancy analysis.
If you want a project in which students learn data analysis, we suspect you’re
better off with more structured projects such as described in Chapter 16.

Finally, some students can get overwhelmed by the idea of a final project. We
emphasize that it is the equivalent in effort of several homework assignments,
but with the work divided among four students. All students should participate
in all aspects of the projects, but the writing tasks can be divided: one student
writes the project proposal, another writes the summary of the pilot data, one
writes the formal data collection protocol, and so forth.

For our introductory statistics class, we divide our project over several weeks,
with the following steps.
• Brainstorming session in groups during class time
• Forming a project proposal: a goal or research hypothesis and a plan of data

collection and analysis



PROJECTS 179

For each part of the project, hand in a single assignment for the entire group, giving
the names of all the group members. Your group will all share the grade for all parts of
the project. Make a copy of each part of the assignment before you hand it in so you
can refer to it while doing the next parts.

1. Form groups of 4 (due lecture 4): Form a group and decide on a group name.

2. Research topic (due lecture 6): Decide on a question that interests you and how
you plan to collect data to answer it. Why do you care about this problem and
why do you think it is worth studying? (For the project, you must collect your
own data; you can’t download data from the internet or copy from a published
source.) Write no more than 1 page.

3. Meet with instructor (between lectures 6 and 8): Set up a time with your instructor
for a meeting of approximately 15–30 minutes to brainstorm about your project.
At least 3 of the group members (but preferably all) should attend. At the end
of the meeting, you should have a specific research question and a plan of what
sort of data to gather. For example, if you are gathering observational data, you
will decide where to go and what specific information you will record. If you will
interview people, you will decide what population you are studying and what
questions you will ask. If you are performing an experiment, you will decide the
experimental conditions and what will be measured.

4. Project description and preliminary data collection protocol (due lecture 10):
Write about 2 pages describing the research question you have decided to study,
why it is worth studying, and what data you will collect. You need a detailed
data-collection protocol that you will use in collecting your pilot data (see below).

5. Pilot data (due lecture 12): Spend about 15 minutes each collecting pilot data—
that is, a small set of preliminary data that you will use to learn about potential
difficulties in your data collection process. For this part of the assignment, you
must hand in: a copy of your pilot data, along with a list of the problems you
encountered while collecting the data.

Fig. 11.5 First part of instructions for student-organized group projects (schedule

based on a 26-lecture course). Continued in Fig. 11.6.

• Collecting pilot data and setting up a formal data collection protocol, an
idea the students should be somewhat familiar with after doing one of the
statistical literacy assignments described in Chapter 6.

• Collecting data

• Analyzing data with the computer package that we have been using in the
course (in our case, Stata). Many of the students want to use Excel, but that
has not worked well—it usually leads to unnecessarily simple data analyses
(typically, the computation of means and their presentation as bar graphs).

Figures 11.5–11.6 display the handouts we give to students describing the project.
The steps include group work, written assignments, and face-to-face discussions
with the instructor.



180 HOW TO DO IT

6. Formal data collection plan (due lecture 16):

Write a 2–4 page data collection plan that includes the following:

• A formal protocol—that is, exact instructions for the data collection, includ-
ing rules for how to classify difficult observations, deal with missing data,
etc.

• A design—where and when the data will be collected. If randomization is used
in sampling, clearly define the population and how the sample will be selected.
If randomization is used in assigning experimental treatments, clearly define
the possible treatments and how the randomization will be applied. (Even in
observational data collection, random sampling should be used. For example,
if you are observing people at a certain cafe in the afternoon, your population
is the set of all possible dates and hours when you might take observations,
and you should randomly select from that set.)

The instructor will read the data collection plan, make comments, and return it
by lecture 18.

7. Collected data (due lecture 22):

Collect the data according to your plan. Each member of your group should spend
at least 2 hours collecting the data (this is in addition to any time spent in prepa-
ration for the data collection). Once you have collected your data, tabulate it in a
computer file or spreadsheet that can be read into Stata. Do not include the pilot
data here.

For this part of the assignment, you must hand in a sample of your raw data and
the table with all the data collected.

8. Meet with instructor (between lectures 22 and 24): Set up a time with your in-
structor for a meeting of approximately 15–30 minutes to consider ideas for how
to analyze your data.

9. Statistical analysis (due lecture 26):

Analyze your data (you must use Stata for your graphical and numerical analyses).
You can try as many things as you want, but your final output should be:

• A single graph (or set of small graphs on a single page) that displays all your
data as informatively as possible.

• A single statistical analysis (for example, a set of confidence intervals or a
linear regression) that addresses your research question as directly as possible.

Explain how your statistical results relate to your research question. What prob-
lems did you have in collecting your data? How might your findings be biased
(this could include measurement bias, sampling bias, nonresponse, nonblindness
of experimental treatments, etc.)?

Your final results might be inconclusive. Calculate an estimate of how large your
sample size would have to be in order to get statistical significance. If you could
do this study again, how would you do things differently?

Fig. 11.6 Second part of instructions for student-organized group projects (schedule

based on a 26-lecture course). Continued from Fig. 11.5.
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11.4.3 Topics for projects

It is important for students to form groups and start thinking about project
topics right away and to get timely advice from the instructor. One semester the
projects did not go well because almost all the groups of students did surveys.
It would be fine if some groups did this sort of project, but a survey is a limited
research tool if it does not involve any experimentation. For example, in one
typical project, a pair of students interviewed about 100 students and collected
data on their age, family background, and marriage plans (whether they expected
to marry and, if so, at what age). The analysis included various scatterplots,
correlations, and two-sample comparisons. Even if this sort of project is done very
well, it is unlikely to yield interesting results. In addition, there was a sameness
to seeing survey after survey. Even in the context of observational studies, the
rest of the class would find it more interesting to see a variety of study topics, for
example animals, the news media, raindrops, or just about anything different.

How can we inspire students to work on more interesting projects? The best
projects came from psychology students who were working on experiments for
courses in their department. One strength of these projects were that they were
motivated by specific research hypotheses of interest and were not simply data-
collection exercises. We hope that by requiring students to think of a research
goal or hypothesis before designing their study, they will be less likely to gather
unanalyzable data. For example, in the study mentioned above, if the students
were asked to come up with an interesting hypothesis, they would have to go
beyond simple ideas such as “people with different religions have different mar-
riage plans” (yes, that is a research hypothesis but not a particularly interesting
one).

It often takes some discussion to isolate the fundamental question underlying
a research idea. For example, students often have the idea of gathering from
students data on grade point average and study habits, or alcohol consumption
and grade point average, or number of hours studied and amount of time spent
each week exercising. Students have a natural interest in questions like the effec-
tiveness of studying, differences between athletes and nonathletes, and campus
drinking. However, these sorts of questions rarely yield interesting results. Cor-
relations between the measurements are usually weak and, in any case, it is not
clear how to interpret the associations. With this in mind, we intercept these
projects at the beginning stage and, in our office meetings with each group, ask
“Why” questions that push toward more focused ideas.

It is also probably a good idea to hand out ahead of time a list of some
potential project topics. After students have done projects in your course for a
while, you can augment the list with titles of successful student projects in past
years. The intention is not for students to pick from this list (which includes
some less-than-exciting topics) but to give a sense of the breadth of possibilities
so they can design a data collection project on a topic that interests them. Here
are some ideas:

• Observing conversational styles.
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• Timing how long it takes various objects to fall different heights (not too
exciting, but it causes them to think hard about measurement protocols).

• Simple experiments on self and others (for example, systematically varying
eating, sleeping, or studying plans)—this is hard to do in a short time,
though.

• Studying friendships and relationships: what time of year do romantic rela-
tionships start, how many close friends do people have, how long do friend-
ships last, and so forth.

• Evaluating the accuracy of weather forecasts, sports betting odds, or point
spreads (see Section 13.1.6).

• Watching a bunch of violent movies and counting how many times the person
with the gun is on the left side or the right side of the screen. (This was
suggested by one of our graduate student instructors. No student has tried
it yet, but we would be curious to see the results.)

• Trying out one of the classroom demonstrations (for example, the age-
guessing example of Section 2.1) on students not in the statistics class.
In this case, the students should vary the experimental conditions (for ex-
ample, trying it on individuals, groups of two, and groups of three, to see
to what extent larger groups guess more accurately).

• Analyzing quiz and exam grades for a different course (assuming the instruc-
tor of the other course is willing to supply the data). This idea (along with
the evaluation of weather forecasts and sports odds) is not a data-collection
project, but maybe it is close enough if the analysis is done well.

• Measurements—have people guess their measurements and then compare
to actual values. Students doing this as a project can compare and see if
different groups of people have different sorts of biases.

• Measuring waiting times for buses/trains and queue lengths: students gather
some data and try to see the mathematical relations here.

• How many books are on the library shelves? Similar sampling problems:
frequencies of letters in different languages, . . . see Section 5.1.

• Taste-testing (see Section 5.3.3): for this to be a good project for a group
of students, they would have to do it on many experimental subjects.

• Survey questions on some interesting topic—for example, ask students where
they met their friends, how many close friends they have, whatever. It can
be hard to get random samples here. One possibility is an email survey, or
an in-person survey in dorms. Students should avoid the convenience sample
of, for example, students walking out of the student union.

• A survey of some subpopulation of particular interest to the group of stu-
dents: for example, math majors, or athletes, or Catholic students.

• Psychological experiments: for example, one semester, a group of students
had the idea of putting up a “No Eating or Drinking” sign in the library
study room, where eating and drinking were indeed prohibited but often
done anyway. They counted the number of students eating and drinking
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under the “no sign posted” and “sign posted” conditions, with several repli-
cations (15-minute periods) of each over a few weeks.

Because they see the project in the context of a statistics class, students are
often too focused on numerical measurements. When students conduct surveys,
often the most interesting data are qualitative free-form responses. For example,
a student survey about textbook-buying habits included the following responses:

I use the Columbia bookstore even though it is more expensive. There I can use my
Columbia Card Flex points. This way my loans, rather than I, pay for the books.

Labyrinth would be even better if they got rid of the pseudo-intellectual staff who know
that Lacan is in a separate “Lit Crit” section, but still get paid the same as Mickey D
employees.

Students do not generally realize that it is perfectly acceptable to gather quali-
tative data and then code it for a statistical analysis (as is described in research-
methods texts such as Babbie, 1999).

Direct observations are another source of the interesting and unexpected. For
example, Stilgoe (1998) describes some project ideas from his classes in landscape
history:

One [student] has just noticed escape hatches in the floors of inner-city buses and
inquired about their relation to escape hatches in the roofs of new school buses. Another
has reported a clutch of Virginia–Kentucky barns in an Idaho valley and wonders if
the structures suggest a migration pattern. A third has found New York City limestone
facades eroding and is trying to see if limestone erodes faster on the shady sides of
streets. A fourth has noticed that playground equipment has changed rapidly in the
past decade and wonders if children miss galvanized-steel jungle gyms. Another has been
trying to learn why some restaurants attract men and women in certain professions and
repel others, and another (from the same class years ago) has found a pattern in coffee
shop location. Yet another reports that he can separate eastbound and westbound
passengers at O’Hare Airport by the colors of their raincoats.

All these topics can involve statistical data collection.

11.4.4 Statistical design and analysis

In projects for introductory statistics classes, students typically learn most from
the design and data collection stages. It is crucial for them to learn the difficulties
of actual data collection, and we do not let the students download data from the
Internet. Data can be collected through surveys, experiments, or observationally.
Experiences in data collection are often discouraging, but sometimes the students
have unexpected success; for example,

We had originally intended on having 300 samples, but there were a number of people
who were unavailable when we went to their rooms and a very small number of people
refused to take part in the survey. It was surprising how eager other people were to
take part, as floormates would often brag about their head circumferences to each other
after being measured.

If the data collection involves sampling, we have found it necessary to enforce
the requirement that the students perform random sampling from a defined
population. It is helpful to hand out a successful past example, such as Figure
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Sunday Monday Tuesday Wednesday Thursday
11:00 pm Sabrina Therese Sandra 85 113
11:15 pm Sabrina 30 58 86 114
11:30 pm 3 Therese Sandra Sandra 115
11:45 am 4 32 60 88 116
12:00 am Sandra 33 61 89 117
12:15 am 6 34 62 90 Sandra
12:30 am Sandra Therese 63 91 119
12:45 am Sandra 36 64 92 Sandra
1:00 am 9 37 65 93 121
1:15 am 10 38 66 94 122
1:30 am 11 Therese 67 95 123
1:45 am 12 40 68 96 124
2:00 am 13 41 69 97 125
2:15 am 14 42 70 98 126
2:30 am 15 Therese 71 99 127
2:45 am Yves Therese 72 100 128
3:00 am 17 45 Yves 101 129
3:15 am Yves 46 74 Sabrina 130
3:30 am 19 47 75 Sabrina Yves
3:45 am 20 Therese 76 104 132
4:00 am Yves 49 Yves 105 Yves
4:15 am 22 50 78 106 Yves
4:30 am 23 51 79 107 135
4:45 am 24 Therese 80 108 136
5:00 am 25 53 81 109 Sabrina
5:15 am 26 54 82 110 Sabrina
5:30 am 27 55 83 111 139
5:45 am 28 56 84 Sabrina Sabrina

Fig. 11.7 Sampling plan from a group of four students who were studying the use

of the school library during school nights. The students divided the time into 140

15-minute slots and then took a simple random sample of 32 of these slots.

11.7, which is an example of simple random sampling of school library hours. We
can stimulate a class discussion of design issues by asking the following sorts of
questions:

• Why did the students sample 15-minute blocks instead of full hours?
• Why is the sample unbalanced with respect to times of night and days of

week? Will the imbalance cause problems?
• Is it a problem that the names are not assigned to time slots randomly (for

example, Therese is only assigned to Mondays; Yves is only assigned times
between 2:30 and 5:00 am)?

In the absence of direct guidance from the instructor, students typically take
convenience samples. For example, one group, misunderstanding the idea of ran-
dom sampling, wrote,

To ensure randomization, we handed out surveys at many different places, and at
different times. Moreover, by choosing to sample a relatively large population, we were
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able to ensure that the average results of many individual results would produce a
stable result (law of large numbers—reduce bias, increase randomization).

A different group used a more careful design:
Our population is defined as Columbia College sophomores and juniors. This population
is listed in the facebooks . . . In selecting our sample, we will first divide the population
into two strata: males and females. Next, each student will be assigned an integer value.
These numbers will be assigned separately for each stratum . . .We will use two sets of
random numbers to select 200 people from each stratum.

After the subjects are randomly selected, each of the four members of the group will
survey 100 students at their dormitories. The locations for individual students will be
obtained using the online Columbia directory. We will personally hand each subject the
questionnaire . . . If anyone refuses to complete a survey or if they cannot be reached,
we will replace that subject with another of the same sex, using the randomization
procedure outlined above.

When it comes to analysis, remember that most introductory statistics courses
(including ours) do not cover multiple regression or analysis of variance until
the very end. Thus, the design and analysis of the project will necessarily be
focused on graphical displays and simple comparisons. Students can make rea-
sonable graphs (in Stata, they typically create histograms and scatterplots).
Their most common errors are to simply present raw computer output and
to report unrounded results (for example, reporting a confidence interval of
−58.5962±191.1593). We also assure the students that it is acceptable to report
whatever they have found; they do not need to try to search for or construct
statistically significant results.

11.5 Resources
After you have tried your hand at some of the activities found in this book,
you might want to develop some of your own demonstrations, examples, and
projects. As discussed in Chapters 6 and 10, the popular press can be an impor-
tant motivator for learning statistics and also a source of interesting examples.
We are continually clipping articles from newspapers and magazines to hand
out to our introductory classes. At the beginning of the semester, we give out a
course packet with many of these handouts, which we discuss at the appropriate
points in class.

But you can cook up your own demonstrations from just about anything—
like a box of spaghetti. There are a great many resources available to get your
creative juices flowing. These are found in books, periodicals, Web sites, and
from conversations with other people. Even if you’re only teaching introductory
statistics, we recommend you read over the chapters in this book on demonstra-
tions and projects for more advanced courses to spark ideas of how to develop
similar class-participation activities for your own course.

11.5.1 What’s in a spaghetti box? Cooking up activities from
scratch

As an example of how demonstrations can be constructed from any raw materials,
we came up with some ideas using a box of spaghetti:
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1. How strong is a piece of fettuccini? Break pieces of fettuccini into different
lengths. Lay a piece of fettuccini crossways between two supports. Hang a
plastic bag from the middle of the piece of pasta, and add pennies to the
bag one at a time until the noodle breaks. Record the length of the noodle
and the breaking weight.

2. How much do noodles weigh after being cooked? (We have always thought
that capellini doesn’t fill you up as much as spaghetti.) Boil two ounces
of various types of noodles (for example, capellini, spaghetti, linguini, and
fettuccini) for the recommended time. Record the thickness (or volume) of
a piece of uncooked noodle, and the weight of the cooked pasta.

3. How long is a randomly broken piece of spaghetti? Color one end of several
pieces of spaghetti. Stand each piece on end (with the colored tip up) and
slowly push down until it breaks. Record the length of the broken piece with
the colored end.

4. How many pieces of spaghetti are in a box? Spill a box of spaghetti on a
tiled floor, and use cluster sampling techniques (each tile is a cluster) to
estimate the number of pieces in a box.

5. Can you taste the difference between different brands of pasta? See Section
5.3.3 for details on taste tests.

6. How long is a cooked noodle? See Section 15.3 on Buffon’s noodle for esti-
mating the length of a noodle by throwing it on a lined floor and counting
the number of lines it crosses.

Other questions that have crossed our minds: How many pounds of pasta does
the average American eat in a year? How has pasta consumption changed over
the past 50 years? Does spaghetti stick to the wall when it’s done? Does adding
oil to the water keep it from sticking? How far can you toss a javelin-noodle?
How far can you stretch a limp noodle?

11.5.2 Books

In recent years, many textbooks have been written that cover introductory statis-
tics in a way that integrates theory, application, homework, and computer as-
signments. We have used Moore and McCabe (1998) as a text for some of our
introductory classes. Utts and Heckard (2001) is a useful supplementary text,
since it has a large collection of interesting examples. Books are also available on
a variety of special topics. For example, Gastwirth (2000) is a collection of articles
on statistics and the law, and Finkelstein and Levin (2001) is an introductory
statistics textbook based on legal examples.

In addition, some books have been written specifically focusing on student ac-
tivities for statistics, including Charlton and Williamson (1996), Scheaffer et al.
(1996), and Rossman and Van Oehsen (1997). Some of the ideas in these books
are reviewed in Moore (2000). You may find it useful to read through these
books for ideas on how to keep students participating in class. For more sources
of interesting examples and topics for class discussion and student projects, take
a look at the books of Hollander and Proschan (1984), Anderson and Loynes
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(1987), Chatterjee et al. (1995), and Pearl and Stasny (1992), along with the
classic collection edited by Tanur et al. (1972, 1989). In addition, many popular
books on uncertainty and statistics (for example, Sprent, 1988) contain interest-
ing discussions that can be adapted for classroom use. For probability, Mosteller
(1965) provides a collection of standard problems and examples, which includes
all the favorites and some more obscure examples, with a readable presentation
that is rigorous without being mathematically pedantic.

The books by Davis (1993) and Bligh (2000a, b) describe many strategies for
organizing class discussion, group work, and projects for general college courses.
We have found Bligh’s discussions of “buzz groups” to be particularly useful.
Case (1989) is a collection of advice for teaching assistants and instructors of
mathematics classes. Other references appear in the Notes at the end of this
book.

11.5.3 Periodicals

Technical journals in statistics and other fields are full of interesting examples;
the key input required by the instructor is to structure these so that they bring
realism to the lecture without overwhelming the students with details. At this
point, the available example material may seem overwhelming. We mention all
these sources to show how, once we feel confident in integrating examples and
projects into our lectures and assignments, we find ourselves surrounded by rel-
evant topics. For example, Section 2.4 discusses how we use newspaper articles
to motivate the study of statistics, and Chapter 10 contains many examples of
news articles illustrating points of statistical communication.

For more ready-made material, Chance is a nontechnical magazine with sta-
tistical applications aimed at statisticians, students, and general audiences. Every
issue typically has examples that are good for class discussion. In addition, sev-
eral journals regularly publish literature on statistics teaching ideas and methods.
Teaching Statistics, published in England, is for teachers of students aged 9–19,
and the online Journal of Statistics Education is for “postsecondary teaching of
statistics.” The Mathematics Teacher is for secondary mathematics but includes
some probability and statistics examples as well. The American Statistician and
the Journal of Educational and Behavioral Statistics are more general journals
of research and exposition with “Teacher’s Corner” sections that include ideas
for college statistics teaching.

In addition, there are many publications in the field of education at the high
school and college levels, not specifically focused on statistics but still relevant
to the goals of keeping students interested and active in a difficult course. For
instance, the journal College Teaching provides examples of course activities that
can be adapted to multiple disciplines.

11.5.4 Web sites

Some of the materials described in this book, including course packets for the sta-
tistical literacy projects in Chapter 6, data for the stat labs described in Chapter
16, and related interactive learning tools, are at our own Web sites,
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www.stat.columbia.edu/∼gelman/, www.stat.berkeley.edu/users/nolan/.
The Journal of Statistics Education (www.amstat.org/publications/jse/)

information service lists several relevant sites, including a regular “Teaching
bits” column. Chance News is an always-interesting monthly newsletter of proba-
bility and statistics (www.dartmouth.edu/∼chance/chance news/news.html).
The Teaching Resource Center at the University of Virginia has a good selection
of general advice on college teaching at www.trc.virginia.edu/tips.htm/.

In addition, a Web search on any topic of interest is likely to yield some
interesting statistical examples. For example, a search on palm beach voting
yields the Web page madison.hss.cmu.edu/, which shows some linear regression
analyses of the vote for Patrick Buchanan in the Presidential election of 2000,
along with many references. The analysis was also published in Chance (Adams,
2001).

11.5.5 People

A big source of teaching tips is other teachers reporting what works and does not
work for them. In addition, do not overlook the possibilities of input from your
own students. One approach that has been recommended is to give students a
minute at the end of each class to write the answers to the following questions:
• What was the most important point of the lecture?
• What would you like to know more about?
• What was the muddiest point of the lecture?

The instructor collects these, reads them, and then at the beginning of the next
lecture tells the students what were the most common responses to the questions.

Of course, traditional midterm and end-of-term student evaluations can be
useful too, but by the time you get these evaluations it can be too late to help.
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Structuring an introductory
statistics course

The demonstrations and examples in this book are presented as separate modules
so that the reader can easily use any subset of them. This chapter illustrates how
we integrate our demonstrations and other teaching material into a non-calculus-
based semester-long introductory course. We outline the course material and the
student activities for each of 26 lecture periods of 75 minutes each. We make
no claims for the optimality of this syllabus; rather, we include it to show how
class-participation activities can be inserted into a standard course. In addition,
we sketch an alternative list of activities for each week of a 15-week semester.

12.1 Before the semester begins

We prepare ahead of time two packets for the students. For the first day of class,
we prepare:

1. A short packet for the first day of class, containing:
• A sheet with scheduling information for the class, office hours, due dates,

and so forth
• A summary of the material that the students will be expected to learn

during the semester. This is a list of about 50 short exam-type problems,
to which we refer throughout the course to emphasize the links between
the concepts covered and the specific skills being taught.

2. A course packet of material that we make available through the copy center.
It includes:
• Copies of all handouts to be used during the semester
• A detailed course syllabus with a paragraph on each lecture, along with

a schedule of reading assignments from the textbook
• All the homework assignments
• Instructions and help for the computer assignments
• Guidelines and suggested topics for the final projects
• Old midterm and final exams with solutions.

In addition to simplifying the mechanics of the course, the packet gives
students a sense of what will be happening next in class.

Students are required to bring the following materials to every class:

189
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• Their course packet
• A pocket calculator
• Their 20-sided die or personal sheet of random digits (see Section 7.2).

12.2 Finding time for student activities in class

A common response to this book is, “student activities are fine, but I don’t
have time for them in my class!” We attempt to answer this objection with a
schedule in Section 12.3 of our introductory statistics class, indicating in each
lecture where the demonstrations and examples fit in, along with the approxi-
mate amount of time taken by each activity. (Section 12.4 outlines an alterna-
tive schedule with fewer activities.) We usually complete the scheduled material
within the 75-minute lecture period (the key is to keep things moving and not to
spend too much time standing at the blackboard), but when we realize we will
not get through the entire scheduled material, we pause about 10 or 15 minutes
before the end of the lecture and explain what we will skip and the students must
thus study on their own. We do not drag half-finished topics across lectures.

The course schedule gives all the topics that we cover in class; extra time
is also allowed for discussing homework problems, projects, and student ques-
tions. (One of the goals of doing all these demonstrations is to make students
more comfortable with speaking up in class!) In addition, we often refer back to
examples we have covered in earlier lectures—although this is not always listed
in the schedule, these backward references are helpful in maintaining continu-
ity. Throughout, we follow the generally recommended approach of starting with
an example, moving to the general principle, and then illustrating with another
example. Especially in the later part of the class, where students are learning
specific techniques for solving probability problems, constructing confidence in-
tervals, and so forth, we reinforce the basic material with drills in class and
recitation sections.

12.3 A detailed schedule for a semester-long course

Lecture 1: Introduction

Bring to class: enough first-day-of-class handouts for the entire class, index cards
for all students, set of 10 photo cards and placards for age-guessing demonstration
(Section 2.1), 10 copies of “estimating ages” form (page 12), transparencies of
cancer maps (pages 14–15), transparency projector

1. (20 minutes) Estimating ages from photographs (Section 2.1)
2. (5 minutes) Introduction: why is statistics important? (Section 1.4)
3. (10 minutes) Some examples of things you’ll be able to do when the course

is over:
(a) Sampling
(b) Descriptive statistics
(c) Inference
(d) Probability
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4. (10 minutes) Administration
(a) Hand out cards. To put on card:

i. Name, section, year, email, major, sketch/description of self
ii. Total Left and Right scores on handedness inventory (on first page

of their packet of handouts; see Section 2.5)
iii. Other information?

(b) Mechanics of course
(c) Responsibilities of the instructor and the student. Ask questions, etc.

Calculus is not a prerequisite. Class participation is important.
5. (15 minutes) Example of numerical thinking: order-of-magnitude estimation

(a) How many school buses are there in the U.S? (Section 2.3)
(b) Other order of magnitude questions can be done every once in a while

throughout the term. Encourage students to bring them to class.
6. (5 minutes) Quantitative and categorical variables (Section 3.3)
7. (10 minutes) Example of statistics: map of kidney cancer rates (Section 2.2)

Lecture 2: Distributions and histograms

Bring to class: more handouts (information sheet, packet of handouts, index
cards) for students who did not show up last time, transparency of world record
times in the mile run (page 20), transparency projector, pad of graph paper,
tabulated data from students’ handedness scores

1. (10 minutes) What’s in the news? (Section 2.4)
2. (5 minutes) Administration
3. (5 minutes) Basic graphical displays we are about to discuss: time plots,

histograms, distributions
4. (10 minutes) Time plots. Example: world record times in the mile run (Sec-

tion 3.2.1)
5. Histograms

(a) (5 minutes) Simple example such as students’ ages
(b) (10 minutes) Example of a histogram: handedness scores (Section 3.3.2)
(c) (10 minutes) Example of a distribution: soft drink consumption (Section

3.3.3)
6. Computing probabilities and averages from histograms

(a) (5 minutes) Diagram with area under the curve
(b) (5 minutes) Example: soft drink consumption (Section 3.3.3)

7. (5 minutes) Normal distribution, z-scores. Example: heights of adult women
(Section 3.6.1)

8. (5 minutes) Linear transformations of one variable: y = a + bx

Lecture 3: Scatterplots and bivariate distributions

Bring to class: graph paper transparency (Section 3.1), transparency projector
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1. Before the lecture begins, load the blackboard with a set of numerical data
that will be displayed in a plot (for example, the guessed and actual exam
scores for men and women on page 25).

2. More on linear transformations
(a) (5 minutes) z-scores as a special case of linear transformation, setting

the mean to 0 and the sd to 1)
(b) (10 minutes) College admissions: an example of linear combination of

two variables (Section 3.7.1)
(c) (10 minutes) Drills with more examples

3. Plotting data, items, x- and y-variables.
(a) (10 minutes) Guessed and actual exam scores for men and women (Sec-

tion 3.5.1)
4. (5 minutes) Trace of conditional mean, median, and quantiles (illustrate on

graph of exam scores)
5. (5 minutes) Concepts of “regression” and conditional distributions
6. (5 minutes) Statistical independence and dependence. Illustrate with error

in guesses and time to finish exam (Fig. 3.6).
7. (10 minutes) Bivariate normality: scores on two exams (Section 3.6.3)

Lecture 4: Least-squares regression

Bring to class: graph paper transparency (Section 3.1), transparency projector
1. (10 minutes) Review of what we have covered so far
2. (10 minutes) Linear model: yi = a + bxi + errori

(a) Errors have mean 0 and constant sd of σ and are independent of x
(b) Suppose y = a + bx + error. Then mean(y|x) = a + bx (linear transfor-

mation) and sd(y|x) = sd(error) = σ.
3. (10 minutes) Example: actual and guessed exam scores (Fig. 3.5)
4. (15 minutes) Running a regression on the computer: tall people have higher

incomes (Section 4.1.2)
5. (15 minutes) Understanding the least-squares line (Section 4.1.1)
6. (5 minutes) Regression residuals
7. (10 minutes) Predictions: mean and variation
8. (5 minutes) Interpolation and extrapolation: height and income example

(Section 4.1.2)
9. (5 minutes) Summary of least-squares regression

Lecture 5: Log transformation

Bring to class: graph paper transparency (Section 3.1), transparency projector,
data on world population (page 34)

1. Before the lecture begins, load the blackboard with the first two columns of
the world population data (Fig. 3.12)

2. (10 minutes) Powers of 10, logarithms, exponential growth, amoebas (Sec-
tion 3.8.1)
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3. (10 minutes) Simple example of log-log transformation: cubes (Section 3.8.1)
4. (15 minutes) Example of log transformation: world population (Section 3.8.2

and 4.1.3)
5. (15 minutes) Example of log-log transformation: metabolic rates (Section

3.8.3)
6. (15 minutes) Discuss topics for group projects

Lecture 6: Correlation

Bring to class: yardsticks for body measurements (Section 4.2.1), lists of words
for the memory quizzes (Section 4.3.1)

1. (5 minutes) Correlation: definition of correlation and explanation in terms
of linear transformations (z-scores) of x and y (Section 4.2)

2. (5 minutes) Introduce the example of correlations of body measurements.
Gather data while the class proceeds.

3. (5 minutes) Example: correlation of exam scores (Section 3.6.3)
4. (5 minutes) Theoretical properties of the correlation
5. (10 minutes) Discussion of examples where correlation is relevant and where

it is irrelevant (Section 4.2)
6. (10 minutes) Example: correlations of body measurements (Section 4.2.1)
7. (10 minutes) Correlation and least-squares regression (Section 4.2)
8. (15 minutes) Demonstration of regression to the mean: a memory experi-

ment (Section 4.3.1)
9. (5 minutes) Understanding regression to the mean (Section 4.3.2)

Lecture 7: Categorical data and lurking variables

1. (15 minutes) Example of a 2-way table: who opposed the Vietnam War?
(Section 3.5.2)

2. 2-way and 3-way tables: use an example from the textbook
(a) (10 minutes) Description of the 2-way table: marginal and conditional

distributions and their interpretations
(b) (20 minutes) Looking at a lurking variable using the 3-way table

3. More examples of lurking variables
(a) (5 minutes) Tall people have higher incomes; is sex a lurking variable?

(Section 4.1.2)
(b) (10 minutes) Soliciting examples from students (Section 5.4)

Lecture 8: Experiments

Bring to class: U.N. questionnaire forms for all students in the class (page 67)

1. (5 minutes) Distinction between sampling and experimentation
2. (15 minutes) The “U.N. experiment” that looks like a survey (Section 5.3.1)
3. (25 minutes) Design of experiments: units, treatments, factors, control. Dis-

cuss in context of U.N. experiment and of a recent newspaper article
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4. (10 minutes) Example: coaching programs for the Scholastic Assessment
Test (Section 5.4.3)

5. (10 minutes) Problems with before–after studies, regression to the mean
6. (10 minutes) Some topics in experimentation: matching, randomization, sta-

tistical significance, replication, blindness

Lecture 9: Sampling

Bring to class: Random numbers (see Section 7.2), telephone book, telephone
book rulers (see Section 5.1.1)

1. (15 minutes) Discussion of sampling in the context of a recent newspaper ar-
ticle. Structure of sampling: population, units, sample, measurements. Con-
cept of a “representative sample” and its problems.

2. (10 minutes) Some topics in sampling: stratification, clustering, undercov-
erage, nonresponse, response bias

3. (5 minutes) Demonstration on question-wording bias
4. (10 minutes) Wacky surveys (Section 5.1.3)
5. (10 minutes) Survey of number of siblings in families (Section 5.1.6)
6. (15 minutes) Benford’s law demonstration with telephone book pages (Sec-

tion 5.1.2)

Lecture 10: Concepts of statistical inference

Bring to class: Scale, bag of candies
1. (5 minutes) Begin the candy-weighing demonstration (Section 8.1). The

class proceeds with the weighing for the next 40 minutes or so while the
lecture continues.

2. (10 minutes) Discuss examples of interesting research designs from recent
newspaper articles

3. (10 minutes) Introduce bias and variability using the data from estimating
ages (Section 2.1)

4. (10 minutes) Bias and variability: general discussion and simple examples
(a) Zero bias, high or low variability
(b) Moderate bias, high or low variability
(c) High bias, high or low variability

5. (10 minutes) Randomization; discussion in the context of the U.N. sur-
vey/experiment (Section 5.3.1)

6. (10 minutes) Conclude candy-weighing demonstration (Section 8.1)

Lecture 11: Probability: introduction

Bring to class: Copies of coin-flipping handout (page 107)
1. (5 minutes) Probabilities and proportions
2. (5 minutes) Rules of probability, probabilities of compound events
3. (10 minutes) Probabilities of various sequences of boy and girl births (Sec-

tion 7.3.1)
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4. (15 minutes) Example with probabilities of more complicated events: length
of the World Series of baseball (Section 7.4.1)

5. (5 minutes) Realism and approximations in probability models
6. (20 minutes) Real and fake sequences of coin flips (Section 7.3.2)
7. (10 minutes) Probabilities of rare events (Section 7.3.3)

Lecture 12: Probability: random variables

1. (5 minutes) Definition of random variable: examples of length of baseball
World Series, number of children, height of a randomly sampled person

2. (10 minutes) Distribution of X, Y , X + Y in a simple example with dice
3. (5 minutes) Expectations (means) and variances
4. (5 minutes) Linear transformations
5. (5 minutes) Probability trees for composite outcomes, for example, twins

(Section 7.3.1)
6. (10 minutes) Rules for probability trees and another example
7. (35 minutes) Review for midterm exam
8. (15 minutes) (if there is time) Voting and coalitions (Section 7.4.2)

Lecture 13: Probability: joint distributions and conditional probability

Bring to class: packets of three cards (Section 7.5.1)

1. (15 minutes) Discuss midterm exams. If there was randomizing of the exam
questions (Section 5.3.2), discuss whether it is fair to make an adjustment
for the students who took the exam form with the lower average grade.

2. (15 minutes) What’s the color on the other side of the card? (Section 7.5.1)
3. (10 minutes) Formal definition of conditional probability
4. (10 minutes) Lie detector demonstration (Section 7.5.2)
5. (10 minutes) Joint distributions, independence, conditional distributions
6. (10 minutes) Correlation and the mean and standard deviation of aX + bY

Lecture 14: Midterm exam (covering material up to and including lecture 12)

Lecture 15: Probability: binomial distribution and normal approximation

Bring to class: roulette set (Section 8.2.2)

1. (10 minutes) Example: number of girls in 100 births (Section 7.3.1)
2. (10 minutes) Exact form of the binomial distribution
3. (10 minutes) Derivation of mean and variance of binomial distribution
4. (5 minutes) Normal approximation and Central Limit Theorem
5. (5 minutes) Where are the missing girls? (Section 8.2.1)
6. (10 minutes) Rolling dice to get normally distributed “IQs” (Section 7.2.3)
7. (5 minutes) Mean and standard deviation of a sample proportion
8. (15 minutes) Real-time gambler’s ruin (Section 8.2.2)
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Lecture 16: Probability: sums of independent random variables

1. (5 minutes) Continuity correction for the normal approximation (example
such as probability of exactly 50 heads in 100 coin flips)

2. (10 minutes) Sampling distribution of the sample mean
3. (10 minutes) Sums and differences of sample means
4. (10 minutes) Example: playing roulette once for $10 000 vs. placing 10 000

bets of $1 each
5. (15 minutes) Poll differentials: an example of a discrete distribution (Section

8.3.4)

Lecture 17: Parameters and estimates

1. (10 minutes) Example of a confidence interval: land or water? (Section 8.3.3)
2. (10 minutes) Definition of confidence intervals
3. (10 minutes) Confidence interval from poll differentials (Section 8.3.4)
4. (15 minutes) Demonstration of coverage of intervals (Section 8.4.1)
5. (10 minutes) Demonstration of noncoverage of intervals (Section 8.4.2)
6. (10 minutes) Discuss how to estimate how common is your name (Section

8.6.2); students will gather the data as a homework assignment

Lecture 18: Significance testing

1. (10 minutes) Example: analysis of the data from the U.N. survey/experiment:
is there evidence for a real difference between the two groups? (Section 8.3.2)

2. (10 minutes) Example: are average scores on the two forms statistically
significantly different? (Section 5.3.2)

3. (10 minutes) Definition of hypothesis testing
4. (10 minutes) “Statistical significance” vs. practical significance
5. (10 minutes) Discuss the example, “Praying for your health” or some other

example from the news (Section 8.7.3)
6. (10 minutes) Do-it-yourself data dredging (Section 8.7.2)

Lecture 19: Inference using the t distribution

1. (10 minutes) Confidence intervals and hypothesis test for the U.N. sur-
vey/experiment (Section 8.3.2)

2. (10 minutes) The t distribution for confidence intervals and hypothesis tests:
x scores and t scores

3. (10 minutes) Analyze data from some previous example such as the age-
guessing demonstration (Section 2.1)

4. (10 minutes) Demonstration: coverage of confidence intervals (Section 8.4.1)
5. (10 minutes) Inference for linear combinations

Lecture 20: Inference for proportions

Bring to class: 10 tennis balls (Section 8.7.1)
1. (5 minutes) Margin of error in a sample survey
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2. (10 minutes) Inference for proportions using the normal approximation
3. (5 minutes) Comparing two proportions
4. (10 minutes) Comparing abilities of basketball shooters (Section 8.7.1)
5. (10 minutes) Using an example from the news, discuss the relation between

sample size and margin of error
6. (10 minutes) Example of several confidence intervals: how good is your mem-

ory? (Section 8.6.1)
7. (15 minutes) Using the binomial distribution to check the fit of the mod-

els for the World Series (Section 8.5.5) and Benford’s law (Section 8.5.4)
examples

Lecture 21: More examples of statistical inference

1. (10 minutes) Discussion of some recent newspaper article
2. (10 minutes) Sample size calculations; refer to the basketball shooting dem-

onstration (Section 8.7.1)
3. (10 minutes) One-sample and two-sample problems (discuss 1

n1
+ 1

n2
effect)

4. (15 minutes) Matched pairs experiment vs. comparing two means: demon-
stration using data gathered from pairs of students

Lecture 22: Inference for simple linear regression, begin multiple regression

1. (15 minutes) Regression of income on height (Section 9.1.1)
2. (10 minutes) Statistical model for linear regression
3. (5 minutes) Confidence intervals for the regression coefficients
4. (5 minutes) Comparing coefficients from two regressions (using an example

with data from two different surveys)
5. (15 minutes) Prediction intervals; illustration using scatterplots
6. (15 minutes) Multiple regression of income on height and sex (Section 9.1.2)

Lecture 23: Multiple linear regression

1. (10 minutes) The multiple linear regression model, referring to the regression
of income on height and sex (Section 9.1.2)

2. (15 minutes) Another example, possibly from a social science journal
3. (10 minutes) Estimates and confidence intervals for multiple regression
4. (10 minutes) Prediction intervals
5. (15 minutes) Regression with interactions (Section 9.1.3)

Lecture 24: Data collection and inference

1. (20 minutes) Discussion (with examples) of general approaches to dealing
with lurking variables: just use one condition of the lurking variable, control
for the variable, or balance over the lurking variable

2. (10 minutes) Aggregation: scatterplots to show how it can increase, decrease,
or make no change to correlation

3. (10 minutes) How to learn about causation? Discussion in the context of
some recent newspaper article with a controlled comparison
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4. (15 minutes) Causation: the fundamental problem of causal inference, com-
parison of treatment with control

5. When to do an experiment, survey, or observational study
(a) (10 minutes) Coaching for the SAT (Section 5.4.3)
(b) (10 minutes) Surgeon General’s Report described (Section 5.4.1)

Lecture 25: Statistical communication

1. (25 minutes) Methods of lying with statistics (Section 10.1)
2. (20 minutes) Interpreting the semester’s material from the perspective of

statistical communication (Section 10.3)
3. (15 minutes) Ethics and statistics (Section 10.5)

Lecture 26: Conclusion

1. (30 minutes) Discussion of students’ data collection/analysis projects, inter-
spersed throughout the lecture

2. (20 minutes) Review. What can the students now do that they could not do
before taking this class?

3. (20 minutes) More advanced topics in probability and statistics

12.4 Outline for an alternative schedule of activities
Here we provide a briefer outline showing how a few classroom activities can
be used each week in an introductory statistics class. We recommend reading
through this book, picking out the demonstrations that you like best, then de-
veloping your own personal versions as you try them out on your students.

Week 1: Distributions and histograms

1. What’s in the news? (Section 2.4)
2. Collecting data from students (Section 2.5)
3. Soft drink consumption (Section 3.3.3)

Week 2: Descriptive statistics and the normal distribution

1. The average student (Section 3.4.2)
2. Heights of men and women (Section 3.6.1)
3. Heights of conscripts (Section 3.6.2)

Week 3: Observational studies and experiments

1. Taste testing (Section 5.3.3)
2. Surgeon General’s report (Section 5.4.1)
3. Vietnam war opinions (Section 3.5.2)
4. Age adjustment (Section 3.7.3)
5. Literacy packets (Chapter 6)

Week 4: Scatterplots and correlation

1. Guessed and actual exam scores (Section 3.5.1)
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2. Body measurements (Section 4.2.1)
3. Scores on two exams (Section 3.6.3)

Week 5: Linear regression and log transformation

1. Simple examples (Section 4.1.1)
2. World population (Sections 3.8.2 and 4.1.3)

Week 6: Regression effect, regression fallacy, and causation

1. Memory experiment (Section 4.3.1)
2. Height and income (Section 4.1.2)

Week 7: Midterm exam and introduction to probability

1. Real vs. fake coin flips (Section 7.3.2)
2. Modifying dice and coins (Section 7.6)

Week 8: Probability: compound events

1. Rare events (Section 7.3.3)
2. Color on the card (Section 7.5.1)
3. Lie detection (Section 7.5.2)

Week 9: Probability: Central Limit Theorem

1. Random digits via dice (Section 7.2)
2. Roulette (Section 8.2.2)
3. Weighing a random sample (Section 8.1)

Week 10: Sampling

1. Wacky surveys (Section 5.1.3)
2. Sampling entries from the phone book (Section 5.1.1)
3. Family size (Section 5.1.6)

Week 11: Confidence intervals

1. Coverage of confidence intervals (Section 8.4.1)
2. Weighing a random sample revisited (Section 8.1)

Week 12: Hypothesis testing

1. Taste tests and the hypergeometric distribution (Section 8.5.3)
2. Comparing two groups (Section 8.3.2)
3. Benford’s law and the χ2 test (Section 8.5.4)

Week 13: Inference: interpretation

1. Do-it-yourself data dredging (Section 8.7.2)
2. How good is your memory? (Section 8.6.1)
3. Praying for your health (Section 8.7.3)
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Week 14: Statistical communication

1. Methods of lying with statistics (Section 10.1)
2. One in two marriages end in divorce (Section 10.4)
3. Breast cancer trials (Section 10.5)

Week 15: Review
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13

Decision theory and Bayesian
statistics

We have taught several times an introductory course in decision theory and
Bayesian statistics, requiring one term of probability as a prerequisite. In addi-
tion to the usual lectures, homework, and problem solving, we have found it use-
ful to conduct frequent classroom demonstrations. Some of these are essentially
lectures, but with extensive class participation, whereas others involve actions
or calculations by the students. This chapter outlines some of our more effective
demonstrations. Our contribution here is in the tricks used to involve students;
the ideas behind most of the demonstrations are well known, and we refer in-
structors and students to textbooks in applied decision analysis and Bayesian
statistics for further references (see the Notes at the end of the book).

The activities serve several purposes, including focusing student attention on
difficult conceptual issues that are hard to learn in a lecture or by solving home-
work problems (for example, the principle of expected gain in Section 13.1.1,
determining the value of a life in Section 13.1.4); alerting students to their cog-
nitive illusions and that they are shared with others (for example, the incoherent
utilities for money in Section 13.1.2 and the uncalibrated subjective probability
intervals in Section 13.2.2); bringing personal issues into the class, thus allow-
ing each student to make a personal contribution to the discussion (for example,
different areas of knowledge in the subjective probability intervals, different pref-
erences regarding the value of a life, and personal decision problems in Section
13.1.7); dramatizing counterintuitive results which a student might not realize
as counterintuitive if he or she were not forced to guess out loud (Sections 13.1.1
and 13.2.1); and demonstrating the multiple levels of uncertainty in a Bayesian
analysis, as well as the coverage property of posterior intervals. In addition,
eliciting discussion in these demonstrations has been useful in introducing the
students to the instructor and each other and has led to a high level of student
participation.

We divide the activities in two sections: decision analysis in Section 13.1
and Bayesian statistics in Section 13.2, but the topics greatly overlap and we
recommend you read the entire chapter if you are teaching a course on either
topic. Table 13.1 lists the demonstrations, the concepts they are intended to
convey, and the materials they require.

203
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Table 13.1 Concepts that are intended to be conveyed and additional materials re-

quired to conduct the demonstrations on decision analysis and Bayesian statistics in

Chapter 13.

Activity Concepts covered Materials required
13.1.1: How many Expected values, Jar filled with quarters,

quarters are subjective probability, count of the number
in the jar? optimization of quarters in the jar

13.1.2: Utility of money Utilities, coherence, none
decision trees

13.1.3: Risk aversion Cognitive illusions, none
coherence

13.1.4: What is the value Utilities, calibration of none
of a life? low probabilities

13.1.5: Probabilistic Proper scoring rules, Special question on
answers to true–false Brier score midterm exam
questions

13.1.6: Evaluating Calibration, accuracy none
real-life forecasts

13.1.7: Real decision Multiattribute utility none
problems functions

13.2.1: Where are the Adjustment of data, Handouts of Figs. 2.3,
cancers? sampling variability, 2.4, and 13.4

shrinkage

13.2.2: Subjective Overconfidence, Handouts of Fig. 13.5, list
probability intervals calibration of uncertain quantities

and their true values

13.2.3: Drawing Bayes inference (normal Hat filled with draws
parameters out of a hat model), coverage of from a normal

posterior intervals distribution

13.2.4: Where are the Bayes inference (Poisson List of counties with
cancers, a simulation model), shrinkage, populations, envelope

prior distributions filled with draws from
a gamma distribution

13.2.5: Hierarchical Bayes inference, Material for quick quizzes,
modeling and shrinkage validation laptop computer set up

to fit the model

13.1 Decision analysis

13.1.1 How many quarters are in the jar?

This demonstration, which we do on the first day of class, is one of our fa-
vorites, and we describe it in detail to show how we use it to convey concepts
of decision analysis as well as mathematical techniques. Before performing this
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demonstration, we lead the class through the demonstration of subjective proba-
bility intervals described in Section 13.2.2. (Please go to page 216 and read that
section before continuing.)

Constructing a consensus subjective probability interval for the number of
quarters

Once the students have gone through the subjective probability demonstration,
we pull out a glass jar full of quarters and let the students pass it around and ex-
amine it. The jar has previously been filled to a specified level, and the instructor
does not know how many quarters are in the jar—the answer has been written
on a sheet of paper and is in a sealed envelope, which the instructor places on
a table. The students are asked how many quarters they think are in the jar.
A few students will state guesses, and we then encourage them to explain and
discuss the guesses (for example, “So, Ned, given that Louise guessed that the
jar has 200 quarters, do you still want to guess 100? Is that your final answer?”).
A student is then asked for a 50% subjective probability interval, so that the
probability is 25% that the true value is below the low point of the interval and
25% that it is above the high point. The instructor and the class then prod the
student (for example, “Your interval is [125, 150]. If I offered you an even-money
bet, where you would win if the true number of quarters is between 125 and 150,
and I would win if it is below 125 or above 150, would you take this bet?”). Once
the student has settled on an interval, we ask if any students disagree with the
interval. Someone will answer and give their interval, and the class is led in more
discussion until they are brought to agreement on an interval that seems about
right for everyone (for example, [120, 200]).

We then sketch a normal density on the blackboard and ask what the mean
and standard deviation should be for the specified interval to contain 50% of the
probability. The computation is easily done, using the fact that [μ− 2

3σ, μ+ 2
3σ] is

an approximate 50% interval for the normal distribution with mean μ and stan-
dard deviation σ. (The students are already familiar with the normal distribution
from their probability prerequisite.) The horizontal axis of the density is then
labeled appropriately, and the students are asked if this seems to represent their
uncertainty (“You are 90% sure the number of quarters is less than X?”, etc.).
We ask if their uncertainty can be expressed exactly by a normal distribution.
Some students will realize the answer is no, because the true number of quarters
must be (a) positive, and (b) an integer. We discuss how, with a distribution
with mean 160 and standard deviation 60, for example, zero is far in the tail of
the distribution, and the discreteness is a minor issue, so it can be reasonable
to characterize the students’ uncertainty by a normal distribution. At the end
of the demonstration, we return to this issue and discuss why the results are
basically valid for any unimodal distribution.

What is the optimal guess?

We then state the puzzle: you [the class] will be given a single guess as to the
number of quarters in the jar. After the class submit its collective guess, we shall
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open the envelope to reveal the true value. If the guess turns out to be correct,
the money will be given to the class (yes, we would really do this) and split
equally among the students. If the guess is incorrect, the students get nothing.
What should the class guess? In answering, assume that the normal distribution
sketched on the board represents your true state of uncertainty about the number
of quarters; thus, you believe that 160 (say) is the most likely value, 159 and
161 are the next most likely, there is only a 5% chance that it will be more
than two standard deviations away, etc. Recall also that the jar was filled to a
specified level—the number was not picked in advance. So you need not worry
about psychological issues such as, “He wouldn’t have picked 150, because it’s a
round number.” It’s just a problem of geometry—how many quarters are in the
jar—and the distribution on the blackboard represents your uncertainty.

After a pause, a student speaks up and says they should guess 160, the mode
of the distribution. Does everyone agree? Yes, they all agree, although some are
wary, suspecting a trick. We state that, in fact, the “obvious” answer is wrong—
and there is no trick! Why is this? We pause to let the students think.

Building up intuition on decision making under uncertainty

We then pull a quarter out of our pocket and shake it between our two hands,
then hold out both fists. One fist contains the quarter. A student is asked to pick
a hand, and then we say, “This hand contains 0 or 1 quarters. There’s a 50%
chance that this hand holds a quarter, and if you guess right, you will get all the
quarters in the hand. Should you guess 0 or 1?” The students start to realize—if
you guess 0 and you’re right, you don’t win anything anyway, so you might as
well guess 1. “Suppose there’s only a 10% chance that there’s a quarter—what
should you guess?” You should still guess 1—it can’t hurt.

Now to a more complicated problem. Suppose the jar contains either 100 or
200 quarters, and you think the two possibilities are equally likely. Should you
guess 100 or 200? What if there is a 51% chance of 100 quarters and a 49%
chance of 200? Which should you guess? At this point, some students will choose
100 and some will choose 200. Which choice is better? We bring two students to
the blackboard—suppose Ned would guess 100 and Louise would guess 200—and
play the guessing game repeatedly. At each play, we choose a random number
from 00 to 99 by rolling dice (see Section 7.2); if the outcome is in the range
[00, 48], we give Louise $200, and if it is in the range [49, 99], we give Ned $100
(Monopoly money in both cases). After playing ten or so times, it becomes
clear that Louise is doing better than Ned. We derive this on the blackboard by
showing the expected value per play of Ned and Louise, and referring to the law
of large numbers.

So Louise’s strategy is better. But, a student asks, we are only playing the
quarters game once, not playing repeatedly, so why are expected values and
the law of large numbers relevant? Well, life is full of uncertainties—in a given
week, you may buy insurance, bet on a football game, make a guess on an exam
question, and so forth. As you add up the uncertainties in the events, the law
of large numbers comes into play, and the expected value determines your long-
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run gain (just like Ned and Louise). As long as no single decision or small set
of decisions are dominant (this condition can be made more precise in a more
theoretical course on probability), you can go with the expected value. (We are
ignoring nonmonetary gains such as the thrill of getting the correct guess.)

Maximizing the expected gain

Now back to the quarters. Should you guess 160, or something higher, or some-
thing lower? Yes, something higher. Let’s work it out mathematically. Your
goal is to maximize your expected return. Let x be your guess; then your ex-
pected gain is just x times the probability that the number of quarters is x.
For our distribution with mean μ and standard deviation σ, that probability is
approximately the normal density at x, so the expected gain is approximately
x 1√

2πσ
exp

(− 1
2σ2 (x − μ)2

)
. To find the maximum of the expected gain, differen-

tiate with respect to x and set the derivative to zero; after some cancellation this
yields a quadratic equation, with solution x = 1

2 (μ ±
√

μ2 + 4σ2). The answer
cannot be negative, so the ± must be +. We plug in μ and σ to compute an
answer, rounding to the nearest integer (for example, in the above example, with
μ = 160 and σ = 60, the optimal guess is x = 180.) Are the students happy with
this guess? It is useful to tell the story of the motorist who is stranded at night
and is looking for his keys, not by his car (the most probable location), but near
the street lamp (less probable, but more likely that he will find his keys, if that
is where they are). We then open the envelope and find the true answer, paying
out in the unlikely case that the guess is exactly correct.

An appealing feature of this demonstration is that the answer can be com-
puted exactly, but it requires some nontrivial analysis (differentiation and the
quadratic formula). This is probably the first problem they have ever seen in
which the exact formula for the normal density is useful. We conclude by noting
that their expected gain (and thus the instructor’s expected monetary loss from
doing the demonstration) equals the value of x times the probability that x is
the correct guess. Computing this for the chosen x and the approximate nor-
mal distribution shows the instructor’s expected loss to be reassuringly small (if
μ = 160 and σ = 60, an expected loss of 28.3 cents).

13.1.2 Utility of money

To introduce the concept of utility, we ask each student to write on a sheet of
paper the probability p1 for which they are indifferent between
• a certain gain of $1, or
• a gain of $1 000 000 with probability p1 or $0 with probability 1 − p1.

We write this formally as

U($1) = p1U($1 000 000) + (1 − p1)U($0),

where U is the student’s utility function for money.
The students are then asked to write, in sequence, the probabilities p2, p3, p4,

for which
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0.015/0.915

0.9/0.915

Fig. 13.1 A derivation of relative utilities using decision trees, replicating the steps

of equation (1).

U($1) = p2U($10) + (1 − p2)U($0)
U($10) = p3U($100) + (1 − p3)U($1)

U($100) = p4U($1000) + (1 − p4)U($10)
U($1000) = p5U($1 000 000) + (1 − p5)U($100).

One of the students is then brought to the blackboard to give his or her answers to
the questions. The probabilities are checked for coherence (that is, the existence
of a consistent set of utilities and preferences), as follows. First, the answers to
the questions involving p2 and p3 are combined to yield a comparison between
$1, $100, and $0. For example, suppose p2 = 0.1 and p3 = 0.15 (when working
through the example in class, using the student’s actual numbers is clearer than
working with the algebra of p1, p2, p3, etc.). Then,

U($1) = 0.1 U($10) + 0.9 U($0)
= 0.1(0.15 U($100) + 0.85 U($1) + 0.9 U($0)
= 0.015 U($100) + 0.085 U($1) + 0.9 U($0)

= 0.085 U($1) + 0.915
(

0.015
0.915

U($100) +
0.9

0.915
U($0)

)
. (1)
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This holds if and only if
(

0.015
0.915 U($100) + 0.9

0.915 U($0)
)

= U($1). (In class we work
this and subsequent utility computations out using decision trees, as illustrated in
Fig. 13.1, rather than equations.) Given this student’s answers to the questions,
we have deduced that U($1) = 0.0164 U($100) + 0.9836 U($0). We then repeat
this procedure, using the student’s value of p4, to determine the utility of $1
relative to $1000 and $0, and then once again, using p5, to determine the utility
of $1 relative to $1 000 000 and $0. Finally, this derived value is compared to the
student’s original value of p1. These will disagree, meaning that the student’s
preferences are incoherent. The students in the class then discuss with the student
at the blackboard how to change p1, . . . , p5 to give coherent and reasonable
answers. It may be necessary to remind the students that coherence does not
require the utility for money to be linear. The student at the blackboard then
is asked to sketch his or her utility function for money, as implied by the now-
coherent indifference statements.

13.1.3 Risk aversion

A related demonstration focuses on the form of the utility function for money. We
start by setting up the problem mathematically. Suppose a person is somewhat
risk averse and is:

• indifferent between (a) a certain gain of $10 and (b) a 55% chance of $20
and a 45% chance of $0;

• indifferent between (a) a certain gain of $20 and (b) a 55% chance of $30
and a 45% chance of $10;

• indifferent between (a) a certain gain of $x and (b) a 55% chance of $(x+10)
and a 45% chance of $(x − 10); for x = 30, 40, 50, . . . .

Is this reasonable? The students assent.
Another way of eliciting these indifferences is to pick a student and ask for

what value p is he or she neutral between the alternatives (a) $10 and (b) a p
probability of $20 and a (1 − p) probability of $0; then repeat this question for
U($20) = pU($30) + (1 − p)U($10), U($30) = pU($40) + (1 − p)U($20); and so
forth. The student will probably give a value of p that is near to or greater than
0.55.

We continue the example by asking the following question: for what dollar
value y is this person indifferent between (a) a certain gain of $y, and (b) a
50% chance of $1 billion and a 50% chance of $0? The answer, surprisingly,
is that $y is between $30 and $40, as can be derived easily by mathematical
induction. For example, using utility notation, the given indifferences can be
written as U($x) = 0.55U($(x + 10)) + 0.45U($(x − 10)) for each x, and thus
U($(x + 10)) − U($x) = 0.45

0.55 (U($x) − U($(x − 10))). Setting U($0) = 0 and
U($10) = 1 (the location and scale of the utility function can be set arbitrarily)
and evaluating the expressions in order yields,
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dollars
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Fig. 13.2 Utility function for the example of Section 13.1.3: (a) After setting U($0) = 0

and U($10) = 1, we can derive U($20), U($30), . . .. (b) The utility function has an

asymptote of 5.5: under these assumptions, U($1 billion) is virtually the same as

U($300).

U($20) = 1 +
0.45
0.55

= 1.818

U($30) = 1 +
0.45
0.55

+
(

0.45
0.55

)2

= 2.487
. . .

U($1 billion) = 1 +
0.45
0.55

+
(

0.45
0.55

)2

+ · · · +
(

0.45
0.55

)999 999 999

≈ 0.55
0.55 − 0.45

= 5.5.

Since

U($30) < 0.5U($1 billion) + 0.5U($0),
U($40) > 0.5U($1 billion) + 0.5U($0),

and utility is an increasing function of money, $y must be between $30 and $40.
The derived utility function is displayed in Fig. 13.2.
The student believes each step of the argument but is unhappy with the

conclusion. Where is the mistake? It is that fearing uncertainty (“risk aversion”)
cannot generally be explained as a rational response to a concave utility function
for money. Rather, it implies behavior that is not consistent with any utility
function. This is a good time to discuss cognitive illusions, many of which have
been demonstrated in the context of monetary gains and losses.

Here are some questions to raise in class: Is decision theory descriptive? Is it
normatively appropriate?

13.1.4 What is the value of a life?

We begin this demonstration by asking the students what is the dollar value of
their lives—how much money would they accept in exchange for being killed?



DECISION ANALYSIS 211

They generally answer that they would not be killed for any amount of money.
Now flip it around: suppose you have the choice of (a) your current situation,
or (b) a probability p of dying and a probability (1− p) of gaining $1. For what
value of p are you indifferent between (a) and (b)? Many students will answer
that there is no value of p; they always prefer (a). What about p = 10−12? If
they still prefer (a), let them consider the following example.

To get a more precise value for p, it may be useful to consider a gain of $1000
instead of $1 in the above decision. To see that $1000 is worth a nonnegligible
fraction of a life, consider that people will not necessarily spend that much for
air bags for their cars. Suppose a car will last for 10 years; the probability of
dying in a car crash in that time is of the order of 10 · 40 000/280 000 000 (the
number of car crash deaths in ten years divided by the U.S. population), and
if an air bag has a 50% chance of saving your life in such a crash, this gives
a probability of about 7 · 10−4 that the bag will save your life. Once you have
modified this calculation to your satisfaction (for example, if you do not drive
drunk, the probability of a crash should be adjusted downward) and determined
how much you would pay for an air bag, you can put money and your life on a
common utility scale. At this point, you can work your way down to the value
of $1 (as in the first demonstration in Section 13.1.2). This can all be done with
a student volunteer working at the blackboard and the other students making
comments and checking for coherence.

The student discussions can be enlightening. For example, one student, Julie,
was highly risk averse: when given the choice between (a) the current situation,
and (b) a 0.000 01 probability of dying and a 0.999 99 of gaining $10 000, she
preferred (a). Another student in the class pointed out that 0.000 01 is approx-
imately the probability of dying in a car crash in any given three-week period.
After correcting for the fact that Julie does not drive drunk, and that she drives
less than the average American, perhaps this is her probability of dying in a car
crash, with herself as a driver, in the next six months. By driving, she is ac-
cepting this risk; is the convenience of being able to drive for six months worth
$10 000 to her? This demonstration is especially interesting to students because
it shows that they really do put money and lives on a common scale, whether
they like it or not. There is a vast literature on the practical, political, and moral
issues involved in equating dollars and lives.

In addition, people are often ignorant of the magnitudes of various risks, a
point we illustrate by giving students the handout shown in Fig. 13.3.

13.1.5 Probabilistic answers to true–false questions

In discussing calibration and accuracy of probability forecasts, we introduce the
Brier score for evaluating probabilistic forecasts of binary outcomes. If a fore-
caster assigns the probability p to an event, the forecaster’s Brier score is defined
as 1− (1− p)2 if the event occurs, or 1− p2 if the outcome does not occur. This
scoring system is designed to give an advantage to forecasters who are calibrated
(given that the forecast probability is p, the event should actually occur with
frequency p) and precise (p should be as close as possible to zero or one, while
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Cause of death Estimated deaths per year
Botulism
Flood
Heart disease
Homicide
Motor vehicle accidents 40 000
Pregnancy
Stomach Cancer
Tornado

Estimate the frequency of deaths (number of deaths per year in the United
States) from each of the causes of death listed alphabetically above. As a refer-
ence point, about 40 000 persons die each year in the United States from motor
vehicle accidents.

Fig. 13.3 Example of a handout used to demonstrate misunderstandings about risks.

Try this out yourself; the true risks appear on page 274. There is nothing special about

this list; we encourage you to develop your own list that will interest your students.

remaining calibrated). If a forecaster has a subjective probability π that an event
will occur, the expected Brier score will be maximized by setting p = π; that is,
it is a “proper” scoring rule.

We cover the Brier score extensively in class, using examples such as weather
forecasting (the original motivation for the method). But we really bring the
subject to life by including on the midterm exam several true–false questions,
for which each student is asked to give a subjective probability p that the correct
answer is “True.” Their score for each question is five times the Brier score. We
have found that students tend to be overconfident in their answers, frequently
assigning probabilities of 0 or 1 (indicating certainty that the answer is “False”
or “True,” respectively) but being wrong. They have not internalized the mathe-
matics of the Brier score: for example, suppose you think that the correct answer
to a question is “True,” but you are not completely sure. If you write “0.8,” you
will receive 4.8 points (out of a possible 5) if you are correct and 1.8 points if you
are wrong. Even a blind guess of “0.5” nets you a certain 3.75 points. Students
have a greater appreciation of calibration of forecasts after losing exam points
from overconfident guessing.

13.1.6 Homework project: evaluating real-life forecasts

There are many examples of actual forecasts that students can evaluate for
calibration and accuracy. Examples include point spreads and betting odds in
sporting events, weather forecasts, and predictions of corporate earnings in busi-
ness. For a long-form homework assignment, students can divide themselves into
groups, with each group responsible for finding a series of forecasts from the
newspaper or some other source.

These forecasts can then be checked for calibration and accuracy, which can
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be evaluated using expected value and mean squared error. For continuous out-
comes, these concepts are straightforward (see, for example, the age-guessing
data in Figure 2.2 on page 13). For probability forecasts of binary events, mean
squared error is equivalent to the Brier score described in Section 13.1.5. For each
trial i = 1, . . . , n, the prediction pi is the forecast probability that the specified
event will occur, and the outcome is labeled yi = 1 if the event occurs or yi = 0
if the event does not occur. The mean squared error is simply

∑n
i=1(yi − pi)2/n.

Calibration and accuracy have been studied in a variety of forecasting set-
tings. For example, Las Vegas oddsmakers’ point spreads for professional football
games have been studied and found to be calibrated. That is, if yi is the differ-
ence between the scores of the two teams in football game i, and xi is the point
spread (which can be interpreted as a predicted value for yi), then E(y|x) = x for
any value of x. More precisely, E(y|x) − x has been estimated empirically, from
a dataset of actual football games, and found to be statistically indistinguish-
able from zero. The point spreads have an accuracy of about 14 points; that is,
sd(y|x) ≈ 14. Professional basketball games can be predicted to an accuracy of
about 12 points.

For a more serious example, economists have studied the calibration and
accuracy of forecasts of inflation by the Federal Reserve Board and by private
companies. Another active area of research is the information available from
commercial weather forecasts one or two weeks ahead.

13.1.7 Real decision problems

A standard assignment in any decision analysis class is for students to formally
analyze their own decision problems. Because this can be difficult for students,
one approach is to break the problem into parts. We follow treatments of busi-
ness and social decision-making, which emphasize that the key part of setting
up the problem is identifying goals and values, after which the formal steps of
constructing and evaluating the decision tree are relatively straightforward.

One plan is for students each to consider a personal goal and then various
strategies he or she might use to achieve this goal. Familiar examples of goals
(and decision options) include: finding an affordable and convenient place to
live (deciding among different housing options); achieving academic success and
a happy social life (deciding how many hours to spend studying and socializing
each week); having a useful and affordable consumer product (deciding how much
to pay for different features); and having an interesting and socially useful career
(deciding what sort of job or study to take after graduation).

An alternative project is to study a public or social decision problem. For
example: how much should the university charge in tuition and offer for financial
aid; what hours should the university library be open; what frequency should the
city run buses on a particular route; how much money should a particular local
company spend on advertising; how much should the government tax gasoline.
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Multiattribute value functions

All of these examples feature tradeoffs between different goals, and to study
these tradeoffs using decision analysis it is necessary to set up a value or utility
function. Before getting to the personal decision problems, we conduct a class
exercise on setting up multiattribute value functions. Section 13.1.2 describes a
demonstration of a one-dimensional value function (for money), and in Section
13.1.4, we consider a very specific two-dimensional value function for money and
life.

Here, we pick two continuous attributes and set up a value function—that is,
we define a utility for any combination of the two outcomes. We typically choose
a simple consumer-product example such as weight and battery-life of a laptop
computer, or carrying capacity and gas mileage of a car, or cost and location of
seats at a popular concert.

Setting up a utility function is difficult and is discussed in modern textbooks
on applied decision analysis. One recommended strategy is to first set up indif-
ference curves and then assign numerical utilities to the curves. In any case, this
must be done carefully in class; we have found that students are generally un-
able to construct a two-dimensional utility function as a homework assignment
without supervised practice first.

Setting up a decision problem

The next step is for students to attack a real-life decision problem of the sort
described at the beginning of this section. Personal decision problems can be
worked on in pairs, or the entire class can study a social decision problem, di-
viding the tasks among groups of students. If students are to work on real-life
decision problems for their final projects, it makes sense to first do a practice
problem together in class. Here we briefly lay out the steps required to set up
and formally “solve” a problem.

1. Goals and decision options. The first step—before setting up a decision
tree—is to state the decision-maker’s goals, which in turn can suggest strate-
gies to achieve them.

2. Values and utilities. Decision analysis then requires that a utility function
be defined on the space of all possible outcomes, as in the activity described
earlier in this section.

3. The decision tree. The students can then set up a tree identifying the struc-
ture of decision options and uncertainties.

4. Probabilities. Probability distributions must then be assigned to all uncer-
tainty nodes in the tree. For a classroom activity, these probabilities can
be guessed at, but the students should think about whether they can be
estimated quantitatively using reliable data.

5. Evaluating the tree. At this point, the decision problem can be formally
solved, averaging utilities over uncertainty nodes and maximizing over de-
cision nodes to determine the optimal decision at each point in the tree.
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6. Understanding the results. Does the recommended decision make sense? If
not, is it possible that aspects of the decision tree, value function, or problem
definition have not been specified correctly? Like a computer program, the
decision analysis is only as good as its inputs.

Ideally, the discussions surrounding each step should bring out the connections
between the real-world problem being studied, the concept of decision analysis,
and the technical steps of specifying and averaging over value functions and
probability distributions.

13.2 Bayesian statistics

13.2.1 Where are the cancers?

On the first day of our Bayesian statistics class we go over the example of the
cancer map, as discussed in Section 2.2, including handing out copies of Figs.
2.3–2.4. (Please go back to page 13 and reread before proceeding.)

We then continue the example by handing out copies of Fig. 13.4, a map
that shades the counties with the highest Bayes-estimated kidney cancer death
rates, where the Bayes-estimated rate for each county is a weighted average of
(a) the observed rate in the county and (b) the national average rate. In this
weighted average, the relative weight attached to the observed rate is approx-
imately proportional to the population of the county, so that in counties with
extremely small population the rate is shrunk virtually all the way to the na-
tional average, in counties with moderate population the rate is shrunk part way
toward the national average, and in very large counties the adjusted rate is es-
sentially equivalent to the observed rate. Figure 13.4 looks much different from
Fig. 2.3, with much more of the shading appearing in populous counties. Most of
the extreme rates in Fig. 2.3 occurred in low-population counties, and they got
shrunk so much toward the national average that they were no longer extreme in
Fig. 13.4. (In fact, the shading in Fig. 13.4 overemphasizes the high-population
counties, but this is not an issue we discuss in our introductory class.)

If the raw rates in Fig. 2.3 are yj/nj (yj cancer deaths out of nj white males
in county j), and the true rates have a Beta(α, β) distribution, then the Bayes-
estimated rates in Fig. 13.4 are (yj + α)/(nj + β). In this case, we can estimate
α = 27 and β = 58 000, and α/β = 4.65 ·10−4 is the average kidney-cancer death
rate among all U.S. counties for white males in the decade 1980–1989. The actual
adjustment is more complicated because the values are age-adjusted, but this is
the general idea.

This example is a good introduction to applied statistics because it shows a
case where statistical adjustment is clearly appropriate and is, in fact, a standard
tool in epidemiology. but we can explain it without worrying about prior distri-
butions or probability theory. We return to this example later in the semester to
illustrate Bayesian inference (see Section 13.2.4).



216 DECISION THEORY AND BAYESIAN STATISTICS

Highest Bayes-estimated kidney cancer death rates

Fig. 13.4 The counties of the United States with the highest 10% Bayes-estimated

age-standardized death rates for cancer of kidney/ureter for U.S. white males,

1980–1989. See Section 13.2.1 for discussion.

13.2.2 Subjective probability intervals and calibration

Subjective interval for a single unknown quantity

A well-known, and very useful, demonstration involves the calibration of prob-
ability intervals. We start by asking a student to give his or her guess at some
uncertain quantity. For example, when performing this demonstration at Smith
College, we asked the students to guess out loud the number of listings of persons
named Smith in the local telephone directory. We wrote the first several guesses
on the blackboard: 156, 250, 72, 210, 150, 120, 200, 35, 76, 49, 50. Substantial
differences of opinion have been revealed.

We then ask one student to give a 50% probability interval (more precisely,
the 25% and 75% quantiles) for the uncertain quantity—as we explain, this is an
interval for which the student believes there is a 1/2 chance the true value is inside
the interval, a 1/4 chance the interval is too high, and 1/4 chance the interval
is too low. This interval is intended to summarize the student’s uncertainty. For
example, when we did the demonstration at Smith, a student volunteered the
interval [100, 200].

At this point we invite the other students to comment. If a student in the class
would place more or less than 50% probability on the stated interval, we point out
the opportunity for a bet that both parties should accept. We discuss the idea of
a subjective interval with the class and alter the interval on the blackboard until
the students generally consider it reasonable. For example, most of the students
in the class at Smith thought [100, 200] was too high, so we considered [75, 175].
There was a general consensus that 75 was too low—that is, the class judged
that there was less than a 1/4 chance that the true value was below 75—so we
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Fig. 13.5 Experts’ predictions and 50% predictive intervals of the height at which

an embankment would fail, along with the true value. None of the predictions included

the true value.

adjusted again to [85, 175], which most of the class found reasonable.
We then revealed that the local telephone book had 458 listings of persons

named Smith. This result—a true value that was well outside the 50% interval—
is typical. People’s uncertainty intervals tend to be too narrow—that is, they
are overconfident. The students may be reassured to see the well-known exam-
ple displayed in Fig. 13.5, in which a set of internationally known geotechnical
engineers show overconfidence (in retrospect) in their probabilistic forecasts of
the failure height of an embankment.

Several unknowns and calibration

We follow up with a written exercise in which students are divided into pairs and
each pair is given a list of several unknown quantities and asked to write 50%
intervals for each, which takes about 10 minutes. To keep students interested, we
include questions on a range of topics. Figure 13.6 shows some questions we have
used in class; we encourage you to develop your own list with the cooperation of
your students. We perform the discussion before the written exercise because we
have found that many students do not understand the concept of a probabilistic
forecast until we have discussed it in class together.

We then write the questions on the blackboard and, for each question, reveal
the true value (which is often surprising enough to elicit gasps from many of the
students), then ask the pairs of students to raise their hands, first if their interval
contains the true value, then if their interval does not. We write on the blackboard
the coverage rate of the interval (for example, 8 intervals out of 25 containing
the true value), and repeat for each of the 10 questions. We have performed this
demonstration many times, and the students are invariably overconfident (even
though we warn them about this in the preceding class discussion). Far fewer
than half of the 50% intervals contain the true value. (A typical result for the
questions shown in Fig. 13.6 is for the coverage to be less than 50% for all the
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Uncertain quantity 25% lower bound 75% upper bound
% black
# eggs
# airline deaths
% girl births
% freshmen in phys sciences
# French speakers
# Super Bowl watchers
# babies born
# abortions
$ median income

Give 25% and 75% probability bounds for each of these quantities. You should
specify the bounds so that, for an unknown quantity x, there should be a 50%
chance that x is between your upper and lower bounds. Fill in all the blanks on
the table. You will then be told the true values of these quantities.

1. The percentage of people in the United States who are “black” (from the
1990 Census).

2. The total egg production in the United States in 1965 (in number of eggs).
3. The number of airline passengers worldwide who died in plane crashes in

1980.
4. The percentage of babies born in the United States that are girls.
5. The percentage of entering college freshmen in the United States in 1990

whose probable field of study was physical sciences.
6. The number of native French speakers in Canada in 1981.
7. The number of people in the United States who watched the Super Bowl in

1995.
8. The number of babies born in the United States in 1992.
9. The number of abortions in the United States in 1992.

10. The median household income in the United States in 1996.

Fig. 13.6 Example of a handout we have used to demonstrate the difficulty of cal-

ibrating subjective probability intervals. Try this out yourself; the true values of the

ten unknown quantities are on page 274. There is nothing special about this list; we

encourage you to develop your own list that will interest your students.

questions except the probability of a girl birth, for which students tend to be
slightly underconfident.)

After assessing the calibration of the students’ intervals, we go on to explain
an easy method for ensuring that your 50% intervals have perfect calibration. If
you simply set half of your intervals to (−∞,∞) and the other half to be empty,
then you are automatically calibrated! Clearly, calibration is not the whole story;
it is also important for the uncertainty intervals to be informative. Students can
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discuss how they would balance the goals of calibration and accuracy (see also
Section 13.1.5).

For a more advanced exercise, students can discuss methods of calibrating
subjective estimates in a setting such as the age-guessing example described
in Section 2.1. The students in the Bayesian statistics class can be given data
students’ age guesses (see, for example, Fig. 2.2) and asked to come up with a
procedure to get calibrated subjective intervals from these guesses.

13.2.3 Drawing parameters out of a hat

When introducing Bayesian statistics, a vivid way to illustrate population (or
prior) and data distributions is by physical sampling. The demonstration goes
as follows. Two students out of the class are picked to be “statisticians” and are
taken out of the room. Each of the remaining students then draws a slip of paper
from a hat, which, before the lecture, the instructor filled with random samples
from a normal distribution with mean 100 and standard deviation 15. This slip
of paper represents θj , the “true IQ” of student j. (IQ test scores are scaled so
that their distribution is approximately normal; see Section 8.7.2.) Each of these
students rolls a die several times and performs the appropriate linear transfor-
mation (see Section 7.2.3) to create a random variable with mean 0, standard
deviation 10, and an approximate normal distribution to represent “measure-
ment error,” and then adds it to his or her true IQ to obtain a “measured IQ,”
yj .

The two “statisticians” are then brought back into the room. They are told
the population distribution of “true IQs,” the distribution of measurement error,
and the “measured IQs” yj , and are asked to estimate the “true IQ” θj for
each student in the class and to supply 90% posterior intervals. The length and
coverage of these intervals are compared to the classical 90% intervals obtained
from the “measurements” alone. We find that both sorts of intervals have the
correct coverage properties (on average), but the Bayesian intervals are shorter,
which makes sense since the Bayesian intervals make use of the known population
distribution.

This example can be stretched out further by discussions of the prior distri-
bution, the likelihood, and so forth. As in Section 8.7.2, the “IQ” context is a
hook to get students involved.

13.2.4 Where are the cancers? A simulation

Near the end of the course, we work through the basics of Bayesian inference,
including results for normal, binomial, and Poisson models. Where possible, we
use prior distributions that correspond to actual populations, thus treating all
Bayesian models as implicitly hierarchical (that is, with a prior distribution that
represents the distribution of an actual population of parameters). As an exam-
ple, we adapt the “drawing parameters out of a hat” demonstration to the kidney
cancer mortality rates in U.S. counties (see Sections 2.2 and 13.2.1). To do this
requires first setting up a probability model for the parameters θj (the underly-
ing 10-year kidney cancer death rates in U.S. counties j) and the data yj (the
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observed number of deaths out of a population nj in each county j). We assume
a Poisson distribution for each yj with mean njθj (ignoring the age adjustment)
and a conjugate gamma population distribution for the θj ’s, with hyperparame-
ters set by matching moments (itself an interesting discussion topic), which has
parameters α = 27 and β = 58 000. A student in the class is asked to compute
the mean and standard deviation of this gamma distributionand to sketch its
density function on the blackboard. We interpret the mean of the distribution,
α/β = 4.65 · 10−4, as a nationally averaged rate of 4.65 · 10−5 kidney cancer
deaths per person-year (since the data cover a 10-year period).

The demonstration now begins. Two students out of the class are picked
to be “public health officials” and are taken out of the room. Each remaining
student in the class is assigned a county j (identified by its name and population),
taken from a list chosen to include a wide range of populations, ranging from
about a thousand to over seven million (Los Angeles), and also, to keep the
students’ interest, counties that are well known (for example, New York), or
with amusing names (for example, Jim Hogg County, Texas). Each student then
selects a true (underlying) kidney cancer rate θj for his or her county by drawing
from an envelope that we had previously stuffed with random simulations from
the gamma distribution with parameters 27 and 58 000. The physical sampling
brings an immediacy to the meaning of the prior distribution in a hierarchical
model.

Each student then multiplies the county population nj by the underlying rate
θj to get an expected number of kidney cancer deaths in a 10-year period. The
student then draws a random number, yj , from the Poisson distribution with
this mean (see Section 7.2).

All this is written on the blackboard. Then we erase the true rates and the
expected rates, leaving only the county names, populations, “observed” deaths
yj , and “observed” rates yj/nj . The “public health officials” are then brought
back into the room and asked to estimate the ranking of the counties in order
of the true death rates θj . The highest and lowest observed rates, of course, will
tend to be in low-population counties.

The class is then led through the Bayesian analysis, which yields the posterior
mean and standard deviation of θj , conditional on yj , for each county in the
table. We conclude the demonstration by writing the true values of θj back on
the blackboard, checking the confidence interval coverage, and comparing the
underlying, observed, and posterior mean death rates.

13.2.5 Hierarchical modeling and shrinkage

A central topic in modern Bayesian statistics is hierarchical (multilevel) model-
ing. We have already considered one such example—the cancer rates as discussed
in Section 13.2.4 are hierarchical in that there is a separate parameter for each
county, and the counties themselves are part of a larger distribution.

It should be possible to develop a demonstration of similar concepts using
data gathered directly from students. For example, suppose that each student
in class is given a simple memory quiz twice (as in Section 4.3.1). It is then
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possible to estimate each student’s ability with a hierarchical model, using the
data yjt, j = 1, . . . , J , t = 1, 2, where j indexes the students in the class. The
computer program to estimate the model can be set up ahead of time, and
then the inference can be done immediately in class. Each student then gets an
estimated true ability as compared to his or her raw score. The demonstration
can be continued by giving each student a third memory quiz, and checking to
see which estimate—the raw score or the Bayes estimate—better predicts the
actual score, yj3.



14

Student activities in survey
sampling

The principles of active student participation that we have discussed in the
context of an introductory statistics course can also be used in more advanced
classes. Part I of this book contains many activities on sampling that we also use
in our more advanced courses. For example, Section 8.1 describes a demonstra-
tion in which students draw samples of candies from a bag and weigh them. The
candies are of different shapes and sizes; the larger ones are easier to grab, which
leads to sampling bias. The activity on family size (Section 5.1.6) demonstrates
size-biased sampling, and the examples of wacky surveys in the news (Section
5.1.3) offer a variety of examples of bias. Section 10.2 has many examples of
selection bias.

This chapter describes student activities we have developed for undergraduate
survey sampling classes of 20 to 40 students. In addition to demonstrations and
examples, we describe our use of handouts, techniques for encouraging student
participation, the use of news clippings and external reading materials, and ways
to organize student projects.

14.1 First week of class

At the beginning of the course, we schedule activities for students to meet each
other and get comfortable speaking in class. These activities help the class estab-
lish as a group, and they help students to choose partners for later projects. As
the semester progresses we spend less class time on these sorts of activities and
more time organizing and tracking projects. We do, however, continue to have
the class work in small groups on worksheets and handouts that are focused on
specific techniques (cluster sampling, sampling with probability proportional to
size, network sampling, imputation, weighting, and so forth).

14.1.1 News clippings

The newspapers are full of reports on the latest survey results. These clippings
can quickly generate discussion among students at the start of a course. For one
of our first activities, we hand out a newspaper clipping, such as “1 in 4 youths
abused, survey finds” (see page 16). Any news clipping that reports on a sample
survey with the potential for several types of bias would work well here. After
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reading the article to the class, students work in pairs and write one criticism and
one positive comment about the study. We use these papers to begin defining
various types of bias in survey sampling—nonresponse, measurement, selection,
question-wording, and so forth. Students hand in their comments with no names
on them, and without sorting or looking through the papers, we take the top
sheet from the stack, read it aloud, and discuss with the class. We continue
reading papers, taking them one by one from the stack until we have heard and
discussed a variety of ideas.

After class, we read through the remainder of the papers and select those
with ideas that we did not cover and think would be good to address. We also
make a pile of papers that contain incorrect statements or that indicate basic
misconceptions. We bring these two sets of papers to the next class and continue
our discussion. We have found it helpful to identify and address basic misun-
derstandings as quickly as possible, and we continue this process throughout the
semester (see Sections 14.4 and 14.5 for alternative ways of generating discussion
and identifying problem areas). Also, we have found that maintaining anonymity
of the authors of the papers is crucial for guaranteeing complete student partic-
ipation. And, as always, having students work in pairs reduces the pressure of
performance and makes this a fun activity.

14.1.2 Class survey

In the first week of the course, we collect data on the students in our class.
This information forms the basis of examples and demonstrations used in the
first couple of weeks of the semester. The results of the survey are treated as a
mini-population, and we draw samples to demonstrate many of the basic ideas
behind simple random sampling.

We survey the class only once in the semester because after the first few weeks
of the course we use examples with real survey data. Treating the students in
our class as sampling units oversimplifies the issues in survey sampling. We do
not treat the data collected from the class as a sample from a larger population,
except to hold it up as a poor example of sampling undergraduate students
because a probability method was not used to choose the sample.

To carry out our survey, we bring to class numbered index cards, one for
each student. We mix them up, hand them out to the students, and ask them
to write on the cards their responses to our questions, which we write on the
board. Mixing the cards preserves anonymity, and we emphasize this point to
the students. The information we request is often something impersonal such as
the number of minutes they spent watching television the day before the survey.
Other times we have passed out sheets of paper with a ruler photocopied on it
and asked students to measure the span of their left hand (see Section 4.2.1).
See Section 2.5 for more examples of questions to ask your students.

The cards serve as units in the population. We turn them face down, mix
them up on the tabletop, and sample from our mini-population. It is easy in
this way to take multiple samples, which helps students see the randomness in
the sampling process. For each sample, we compute the average and standard
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deviation so students see how these statistics have a distribution. We also discuss
various ways of picking the cards. We ask them if it matters if we stack the cards,
shuffle them, and choose the top five for our sample. Or, is it acceptable to simply
take the bottom five cards?

In a later class, we present a tally of the population values. The distribution
of time spent watching television has a peak at 0 and a long right tail. We
can compute the sampling distribution of the average via simulation, and the
expectation and variance of the sample average can be computed exactly (see
Section 14.4).

14.2 Random number generation

14.2.1 What do random numbers look like?

The question, What is a random number?, is important for understanding how
sampling is done in practice. Although we use the computer to generate random
numbers, the numbers it generates are not really random. They are pseudo-
random numbers. We introduce one of the simple algorithms for generating
pseudo-random numbers, and demonstrate how it is deterministic and eventu-
ally repeats itself. However, if started properly the numbers appear random-like.
That raises the questions, What do random numbers look like? and Why not
skip the computer and just generate our own numbers “at random” out of our
heads? To answer this question we use the demonstration on real versus fake coin
flips (see Section 7.3.2), where we show how we can tell the difference between
a sequence of 100 real coin flips and a sequence of 100 coin flips made up by the
students. If there is further interest in the topic, we refer students to Web sites
in which pseudo-random numbers or physically generated random numbers are
available (see Section 7.2.2).

14.2.2 Random numbers from coin flips

To see how a random number can be created, we use the randomness in coin
flipping. This demonstration also serves as a review of some of the basic ideas in
probability. We divide the class into groups of two to three students, give each
group a coin, and ask them to come up with a procedure for generating a simple
random sample of size 2—two numbers at random without replacement—from
the integers 1 to 20. We hand out instructions on how to approach the problem.
The instructions divide the task into four parts:

1. Develop a method to generate either the number 1 or 2 at random from one
flip of the coin.

2. Extend your method to generate a number from 1, 2, 3, 4 using two flips of
a coin. Each number should have an equal chance of being generated.

3. Now generate two numbers between 1 and 4 without replacement.
4. Finally, extend the technique for generating a number between 1 and 4 to the

problem of generating a number between 1 and 20, inclusive. Be sure that
each number has an equal chance of being produced from your procedure.



ESTIMATION AND CONFIDENCE INTERVALS 225

The last two parts can be hard for students to figure out. We write hints on
the board to keep groups from getting discouraged. For example, we write the
question, “Can we generate numbers with replacement and ignore those that
have already appeared to get a sample without replacement?” In our experience,
not all groups will find solutions to all four problems in the allotted time. We
conclude the demonstration by choosing four groups to write up a solution to one
of the four parts of the task. Rather than ask for volunteers, we approach groups
and request them to write their results on the board. By controlling who writes
solutions on the board, we ensure equal participation from all the students over
the course of the semester. We make sure to leave time at the end of the class
to go over the solution, elaborate on the students’ solutions, correct mistakes,
and tie up any loose ends. In our experience, students don’t like a delayed punch
line.

In addition to this activity, or as an alternative to it, we have students sample
entries from a page in the telephone book (Section 5.1.1). Be sure to use 20-sided
dice or handouts to generate random digits (see Section 7.2.1). Six-sided dice are
too difficult to work with.

14.3 Estimation and confidence intervals
The candy-weighing example (Sections 8.1 and 14.3) can be adapted to use for
introducing standard errors and confidence intervals. For this activity, we use
candies that are all the same size and shape, so no sampling bias. The candies
differ only by the color of the wrapper. Foil-wrapped chocolate candies work well
for this activity. We fill a sack with 120 candies, say 72 gold and the rest silver.
Each student draws 16 candies from the bag, counts the number of gold ones, puts
them back, and passes the bag to the next student. While this is happening, we
set up the blackboard for data collection, and we lecture on the standard error of
a sample proportion. After the students have taken their samples, we go around
the classroom, and each student shouts out his or her sample proportion. We
mark the students’ sample proportions and confidence intervals on the board
(see Fig. 8.3). While we are drawing these confidence intervals, we pass the
bag of candy around the classroom for consumption. When we reveal the true
proportion, the visual image of the varying intervals makes the point that some
intervals cover the true proportion and some do not.

Since we are estimating proportions, and the sample size is small, we can pre-
pare in advance a list of all possible proportions, standard errors, and confidence
intervals. This makes it easy to display the results quickly. As we go around
the classroom soliciting proportions and intervals from the students, we write
their names next to the intervals we draw on the board. Then in the subsequent
discussion we identify unusual intervals that do not cover the true proportion by
the sampler’s name. Further tips on how to operate this demonstration can be
found in Section 8.1.

For another example, we have developed a triptych template (Fig. 14.1) to
help students differentiate between a population and its parameter, a sample and
its statistic, and the sampling distribution.
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Population Probability Model Sample

Unit: student Method: SRS Sample: 5, 15, 30, 0, 0,
Size: 43 Size: 16 30, 0, 120, 0, 100, 0, 0,
Info: TV watched 300, 0, 120, 120
Parameter: Average Statistic: Sample Avg Statistic: 52 min.

(67 min.) Expected value: 67 min.
Population SD: 105 min. Sample SD: 82 min.

Standard Error: 21 min. ŜE: 16 min.
95% C.I.: [20, 84]

Population histogram

TV watched (minutes)

0 100 200 300 400

0
5

10
20

Sampling dist. of the sample avg.

TV watched (minutes)

20 60 100 140

0
0.

01

Histogram of a particular sample

TV watched (minutes)

0 100 200 300 400

0
2

4
6

8

Fig. 14.1 Triptych template for a simple random sample from the class survey. Each

member of the class reported the number of minutes he or she watched television the

night before the survey. In this example we know all the population values, which are

displayed at the bottom left panel. We simulated the sampling distribution by taking

1000 samples from the population. The resulting histogram of 1000 sample averages

appears in the center panel. The right panel contains the values for the sample that we

take in class. We hand out the triptych as a template and have students fill in the blanks.

With examples where we do not know all of the information about the population, we

draw in the left panel a sketchy outline that resembles the sample histogram, and we

place a question mark over it to emphasize that we do not know what it looks like but

it should resemble the sample histogram.

14.4 A visit to Clusterville

Figure 5.6 on page 54 shows a template that students can fill out to isloate the
steps of a simple survey. In a course on survey sampling, students are introduced
to more elaborate sampling methods, for example, stratified, cluster, block, and
network sampling. These various methods are easier to understand when students
discover the main concept behind the sampling technique on their own through
activities or worksheets. The name of the sampling method often suggests how to
do it. When we give simple examples with diagrams that suggest how to apply
the technique, students can often derive the basic approach to the sampling
method and develop an estimator using their data.

For example, “cluster sampling” suggests sampling groups or clusters of units.
With the diagram and simple instructions found in Fig. 14.2, we have students
work in small groups for about 10 to 15 minutes to figure out how to take a
cluster sample from Clusterville. We also have them develop notation that is
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Map of Clusterville

1 2 3 1 2 3 1 2 3 1 2 3
4 1 5 4 2 5 4 3 5 4 4 5
6 7 8 6 7 8 6 7 8 6 7 8

1 2 3 1 2 3 1 2 3 1 2 3
4 5 5 4 6 5 4 7 5 4 8 5
6 7 8 6 7 8 6 7 8 6 7 8

1 2 3 1 2 3 1 2 3 1 2 3
4 9 5 4 10 5 4 11 5 4 12 5
6 7 8 6 7 8 6 7 8 6 7 8

1 2 3 1 2 3 1 2 3 1 2 3
4 13 5 4 14 5 4 15 5 4 16 5
6 7 8 6 7 8 6 7 8 6 7 8

1. Take a “cluster sample” of 16 units from Clusterville. Generate your sample
with coin flips and shade the selected households on the map.

2. Describe in words the cluster sampling technique that you have developed.
Can you generalize it to other populations with a different number of clusters
and a different cluster size?

3. What do you think are the pros and cons of your new sampling design?
There is no need to make a calculation. Explain why this design might be
preferred to the simple random sample or the stratified random sample.

4. How would you estimate the population average based on your sample data?
Use the notation provided in the map to define your estimator.

5. Do you think your estimator is unbiased?

Fig. 14.2 Example of a worksheet for learning cluster sampling (see Section 14.4).

In this map of Clusterville, each square represents a household. There are eight houses

to a block, and one household in each house. We sometimes label the map with street

and avenue names to make it appear more like a town. Students are asked to draw a

random cluster sample of 16 households from Clusterville. For example, with four flips

of a coin, we can choose a block of eight houses (TTTT=block #1, TTTH= block #2,

and so forth).
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rich enough to support their methodology.
In implementing this activity, it is important to keep it on course so that it

does not become too time-consuming for the amount the students learn. For ex-
ample, we have not had much luck with simulating capture/recapture sampling.
In our activity, students rolled dice to move markers, which represented animals,
around a game board that was marked with traps and free spaces. We found
there were too many steps involved in simulating the population movements. In
general, we bring a handout or template to each class meeting. Students use the
handouts to take notes or to practice a technique discussed in class, as with the
triptych template in Fig. 14.1. We also provide charts such as one on various
ways of imputing missing data and the one in Fig. 5.6 on page 54 where the
student must identify the target population, sampled population, and sampling
frame of a survey. We think these handouts help students process the material
at a deeper level by applying it to simple examples as they learn it.

14.5 Statistical literacy and discussion topics

Real examples of surveys make the important connection between statistics and
the outside world. Articles from the newspaper and not straight from the book
provide additional class examples and they also address statistical literacy.

We adapt the approach presented in Chapter 6 and expose the students to a
variety of surveys in the first several weeks of class. We set aside time each week
to discuss a survey. We vary the presentation somewhat from survey to survey,
but we always provide a set of questions, excerpts from a report on the study,
and sometimes a newspaper clipping. When the research report is long, we hand
the report out in advance, and ask students to come to class prepared to discuss
it.

Figures 14.3 and 14.4 give an example of a news story and accompanying
assignment. The survey under discussion was conducted by the U.S. Depart-
ment of Labor. In fact, two samples were taken: a popular sample was obtained
by distributing questionnaires to employers, labor unions, and women’s organi-
zations; and a scientific, or probability, sample was collected using a telephone
survey. The main task for the students is to compare the two samples. For this
assignment we also hand out copies of excerpts from a government report on the
survey.

Students work in pairs to answer the questions. Everyone answers the first
question to get at the basic differences between how the two samples were con-
ducted. Each group is also assigned one of the remaining four questions. We give
them about ten minutes to answer both questions, and for each question, we ask
two groups to write their answers on the board. We lead a class discussion on the
questions, and we ask the groups to explain their responses. As an alternative to
this type of discussion, we sometimes have the groups write up their responses
to be turned in for grading. We encourage class participation and attendance by
including questions pertaining to the surveys discussed in class on exams and
homeworks.
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Fig. 14.3 This news article reports on two surveys of working women conducted by the

U.S. Labor Department. We use this article and excerpts from the Labor Department’s

publication to promote discussion of the pros and cons of popular vs. scientific surveys.

We promote the discussion using the questions appearing in Fig. 14.4.
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1. The survey included “scientific” and “popular” samples. Compare the sam-
pling methods with respect to the following methodological issues. Be as
specific as possible.
• Target population
• Sampled population
• Sampling frame
• Sample size
• Nonresponse size
• Sampling method

2. What are three of the biggest difference between the samples that you think
would affect women’s attitudes toward their jobs?

3. What table in the report did the bar chart in the article come from? De-
scribe what information was used in creating the bar chart. What are the
advantages of the bar chart over the table?

4. Name three of the most important things in the report that are not in the
article.

5. For each of the following items in the newspaper article, determine whether
it came from the scientific sample or popular sample.
• bar chart
• 4% said they dislike their work
• stress was identified as a serious problem for 60% of the women
• an Alabama coal miner, who said she was the first woman . . .

Which results (scientific or popular) do you think the New York Times trusts
more?

Fig. 14.4 Worksheet on which students work in groups for the statistical literacy

assignment comparing a scientific sample and a popular sample used in a survey of

working women. See Fig. 14.3 for the accompanying news story. Students are also given

excerpts from a government publication describing the survey protocol and results (see

Section 14.5).

14.6 Projects

We use four types of projects in our sampling course. We ask students to re-
search and report on a complex survey; simulate and apply, using the computer,
the techniques learned in the classroom; study a special topic in depth, which
includes extra reading materials and homework assignments; or design and carry
out a survey. In any semester, we assign only two projects, typically the research
report and one of the other three types of projects. The project where the class
carries out a survey of its own design is described in Section 5.2. The other three
are described here.
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Survey Organization
National Survey of Family Growth National Center for Health Statistics
Youth Risk Behavior Surveillance Centers for Disease Control
National Health Information Survey National Institutes of Health
Consumer Expenditure Survey Bureau of Labor Statistics
Current Population Survey Bureau of Labor Statistics
American Housing Survey Dept of Housing and Urban Development
Commodity Flow Survey Census Bureau
National Survey of Speeding and Department of Transportation

Other Unsafe Driving Actions
Survey of Income and Program Census Bureau

Participation
National Crime Victimization Survey Department of Justice

Fig. 14.5 Several examples of complex U.S. government surveys and the organizations

in charge of administering them. Our students have used these surveys for projects.

Other class projects have involved complex surveys conducted by private and academic

research groups. Titles of some student presentations of these surveys also appear in

Section 14.6.1.

14.6.1 Research papers on complex surveys
Three weeks into the semester, students begin work on the first course project,
researching a complex survey. They work in groups of 3–5 to prepare a 10–15
page report describing a complex survey. Each group works on a different survey.
Figure 14.5 contains a list of surveys students have studied in the past.

The first time we assigned this project, the results were disappointing. Too
many papers read like abridged government documents. Most often, students
had read through an official government publication that described the survey,
and condensed it into a 10-page paper. They did not write the description in
their own words, and they did not use the notation and conventions they had
learned in the course, so it was unclear how much they got out of the project.
After that experience, we provided much closer supervision, and the assignment
became quite successful. We found that with closer supervision, students hone
their research and writing skills, and the projects are more ambitious and more
rewarding for them.

To get the students started, we provide them with a list of possible surveys
to study (Fig. 14.5), and we spend part of one lecture period reviewing the
topic of each survey. To help students form groups, we write the main subject
areas on the board (politics, sociology, health, economics, and so forth) and have
students stand near the area that interests them. Then they divide into groups
and decide which of the complex surveys they wish to study. Or, if they want,
they may choose to study a survey they have found on their own. At the time
the groups form, they exchange contact information, and sign up for the first of
two 15-minute appointments to discuss the project with us.

At the first appointment, students bring a completed template (see Fig. 6.1 on
page 79), a copy of the main source, and their draft description of the survey. We
use the main source to check their work to see if they have missed an important
aspect of the survey design. At the meeting, we identify a few important aspects
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of the survey for the group to study in more depth, and we discuss strategies
for investigating these additional topics. These topics are typically the subject of
oral presentations. For example, here are the titles of some student presentations:
• Public opinion polls and probability weighting
• Random digit dialing and political polls
• Binge drinking on college campuses
• Oak tree regeneration and the Sen–Yates–Grundy method of variance esti-

mation
• Customer satisfaction with public transit and nonavailability bias
• How is unemployment measured? The Current Population Survey
• The Consumer Expenditure Survey—time lines, diaries, and interviews
• The evolution of the National Survey of Family Growth
• Obtaining accurate information on pregnancy rates
• Commodity flow survey—design and measurement.
At the second appointment, the students in the group bring their nearly com-

plete version of the paper. The purpose of this meeting is to answer questions
that have arisen in addressing the additional topic and to focus on the presen-
tation of the written report. Also, if oral presentations are planned, we discuss
which aspects of the report they will present in class. Finally, we also offer to
review and comment on their draft of the paper, and we require in advance of
the oral presentation copies of handouts and an outline of the presentation.

14.6.2 Sampling and inference in StatCity

Many of the methods studied in an advanced survey sampling course, such as
weighting, imputation, and variance estimation, are quite complex. Often these
methods rely on the computer for implementation, and to get a fuller under-
standing of how they work takes practice. We have developed a computer project
where students practice these methodologies.

For our project, we use census data to make up a population that we call
StatCity. Students select a stratified cluster sample from the city, compute
weights to match city totals, impute missing values using the hot deck tech-
nique, and construct a confidence interval for median family income. They use
the statistical package R to do this.

Our handout outlines the project. For each step, the students write a de-
scription of what they did, and they must include evidence that they have done
it properly along with their code. For this evidence, we request specific sorts of
information, such as a table of weights or a histogram of bootstrap values. As
students progress on the project, we receive many questions in class, in office
hours, and in email to us. It helps all the students, and reduces our work, if we
put their questions with our answers to them on the course Web site.

StatCity project

StatCity is divided into two districts: Northeast and North Central. Imagine that you
are the city Census Director and that you have been asked to take a sample of the
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people of StatCity in order to estimate the median family income.
Proceed as follows:

1. Your sample should be a stratified cluster sample, where the strata are the city
districts and the clusters are families. The families should be selected proportional
to the number of persons in the family. You may ignore the difference between
sampling with and without replacement. One person is to be sampled from each
family chosen for the sample. The sample size is 1000.
Provide the following:
(a) A description of the method used to select the sample.
(b) A subset of the random indices of the persons chosen for the sample.

2. Weight your sample to:
(a) Account for the probability that the family is included in the sample. Describe

these weights.
(b) Adjust for nonresponse using ethnicity (white non-Hispanic, black non-Hispan-

ic, Hispanic, other) and sex. Use the method of raking. Match the city totals:
White non-Hispanic 42790 Males 26100
Black non-Hispanic 5022 Females 28638
Hispanic 5043
Other 1883

Provide a table of the weights to be used.
3. Impute any missing values of education level using the hot deck technique with

ethnicity and sex. Provide a list of the persons that had their educational items
imputed, and provide the persons that were used to impute the missing items.
Estimate the proportion of adults with a college education. Compare your estimate
to that obtained without imputation.

4. Graph the distribution function for family income for those in your sample. Be sure
to use the weights. Use the distribution function to estimate the median family
income.

5. Use the bootstrap to determine a 95% confidence interval for median family in-
come. Provide a histogram of the bootstrap values for median family income.

Frequently asked questions for the StatCity project

1. Is each record in the dataset one family?
No, each record represents one person. If there are three people in a family then
there will be three records in the file, one for each. There is no family identifier in
the file, so families cannot be exactly matched up.

2. Do I take a SRS of 1000 from the whole population?
No, you are to take a stratified cluster sample. To do this you take a sample from
each of the regions in the city separately. You need to figure out how many persons
you will sample from each region. The total sample size should be 1000.

3. How do I take a cluster sample when the dataset is not in clusters?
Look at the random digit dialing example in your text. It shows how a SRS of
phone numbers can be used to sample banks of 100 phone numbers where the
probability is proportional to the number of residential phones.

4. What if I wind up with two people from the same family?
This should be a rare event; ignore it.

5. How do I rake when the ethnicity codes in the dataset do not match the categories
supplied (white non-Hispanic, etc)?
You will need to create these categories by using two variables in the original data:
race and ethnicity. For example, white non-Hispanic are those with race = 1
and ethnicity = 8, and Hispanics are those with ethnicity between 1 and 7.
The other category should be the remainder (you can include the NA and DKs in
this group).
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6. When I rake, do I need to weight the data according to the probability of picking
a family?
No, the raking should be done at the individual person level. Make a table of the
counts in your sample of the eight categories: male white non-Hispanic, female
white non-Hispanic, . . . , male other, and female other. Use this table to find the
weights using the raking methods and the population totals that you have been
given.

7. What do I do with the records that have NA in them for everything but the region?
You just drop these records from your sample. They are your nonrespondents.
Your total “working sample size” will be less than 1000.

8. When I rake, do I need to worry about the way that I allocated the sample sizes
to the strata?
Yes, if you have allocated your sample proportionally to the population totals for
the strata then you need not worry. Otherwise, the counts in your table should
take into consideration the allocation.

9. When I impute the education level for those with missing values, do I need to use
the weighting scheme in selecting the records at random in the hot deck procedure?
No, you can simply choose at random with replacement from the group of persons
with sex and ethnicity that match the record with the missing education. (Ethnicity
is defined according to the variable you created in 2b: white non-Hispanic, black
non-Hispanic, Hispanic, and other.)

10. What should my estimator for the proportion of college educated adults look like?
(a) Start by creating a new variable that indicates whether a person is college

educated or not: yi is 1 if the person has at least a college education, and 0
otherwise. Also create an indicator for whether the person is an adult or not:
xi is 1 if the person is 18 or over and 0 otherwise.

(b) Use the weights from step 2b in creating your estimator. Call these rates ri for
raking weights. These are the only weights that you will need, because your
estimator is at the person level, not family level.

(c) Find the proportion of people in each stratum that are college educated. Be
sure to use your weights. Your estimator should then be (

∑
i yiri)/(

∑
i xiri),

where the sum is over those individuals sampled from the first (or second)
stratum.

(d) Use the population totals to combine your two proportions into a single esti-
mate.

11. What weights do I need to use in finding the family income?
You will need to take the product of the family weight (call it fi) and the raking
weight: wi = firi.
Also if you have not proportionally allocated then you will need to adjust for
the allocation method. (It’s probably a good idea to proportionally allocate your
sample.) You should probably check to see if

∑
i ri for stratum 1 is reasonable

close to the population total for stratum 1. If not, you may want to include a third
weight to adjust for this difference.

12. Do I compute the median separately for each stratum and then combine them as
I did with the estimate for proportion of college educated adults?
Unfortunately that won’t work. Instead, you need to find that income I∗ such that∑

i wi for those with incomes less than or equal to I∗ is 1
2

∑
i wi for all those in

the sample.
13. How do I compute the median using weights?

Try the following: sort your weights according to salary. Then use the R commands,

htot <- sum(wt)*.5
indexmedian <- min ((1:length(wt))[cumsum(wt)>htot]
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Fig. 14.6 A few years ago, the newspapers were full of stories about the U.S. Census

and the debate over whether sample survey results should be used to correct it. This

story appeared in the San Francisco Chronicle on August 25, 1998. It reports on the

decision to not adjust the Census and the possible implications of this decision for the

state of California. The inset describes briefly how a probability sample was to be used

to adjust the census for possible undercount.
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14.6.3 A special topic in sampling

We like to conclude the class with an example that students can research in
depth, for example the high-profile controversy over whether a sample should be
used to adjust the U.S. Census for possible undercounting. There is an abundance
of literature on this topic that is accessible (with our help) to undergraduates
who have studied sampling surveys.

We begin this project with a discussion of the importance of the topic, and
we bring to class several news stories and advertisements about the Census (see
Fig. 14.6, for example). However, the main task here is for the students to work
through several articles and research papers on the census, which we place on
reserve at the library.

For sources, we use the Census Web site, proceedings of the American Sta-
tistical Association and articles in statistical journals. In particular, the Census
2000 Operating Plan is available on the Web. This 150-page document provides a
broad overview of the census, covering topics such as questionnaire content, long
form sampling plan, address list development, enumeration strategies, nonre-
sponse followup, and the accuracy and coverage evaluation. Papers in the Amer-
ican Statistical Association Proceedings on Survey Research Methods, 1991, con-
tain detailed descriptions of some aspects of the census. For example, we found
“The 1990 Post-Enumeration Survey: an overview” (Hogan, pp. 518–523) and
“Address reporting error in the 1990 Post-Enumeration Survey” (West, Mulry,
Parmer, and Petrik, pp. 236–241) to be quite readable. Finally, the main ideas
behind the debate over adjustment can be found in articles in Statistical Science,
Chance, Evaluation Review, and Jurimetrics. For example, the Fall, 1993, issue
of Jurimetrics, “Adjusting the Census of 1990: an exchange,” is dedicated to the
topic.

To help the students read and digest this material, we provide several exten-
sive homework assignments that require going through the papers, filling in holes,
working out special cases, defining terms, and proving results related to the pub-
lished work. After careful completion of these assignments, the students should
have an understanding of the main points of the articles. When the students are
working on this project, we dedicate class-time to covering the basics—discussing
the main ideas and preparing them to carry out the assignments. We have found
that this project provides an excellent capstone experience for our students be-
cause it builds on what they have learned in the semester, and because it is a
highly publicized political debate surrounding a statistical controversy.
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Problems and projects in
probability

When probability is taught as a separate unit, not as part of a statistics course,
then it makes sense to include exercises and examples that are motivated from
mathematics rather than from applications. This chapter illustrates one way to
promote active student involvement in a more advanced class. The material is
designed to accommodate various mathematical backgrounds and to challenge
all students.

There are essentially three basic aspects to our mathematical probability
course. We teach in an interactive seminar style; we give students many chal-
lenging problems; and we require students to work on longer projects where they
derive complicated results step by step.

15.1 Setting up a probability course as a seminar

Our interactions with students in the first several weeks of the semester centers
on group problem-solving. We begin each class with a quick review of the material
covered in the previous lecture; then we introduce new concepts via an example
that the class works on with the instructor. After completing the example, the
students split into groups of two to four to work on problems that further develop
the material just introduced. Typically we set a time limit for the groups to work
on the problems, say 10 to 15 minutes, and we circulate among the students to
keep them on track and offer advice. When many groups encounter the same
point of confusion, we write hints or points of clarification on the board. In the
last part of the class period, we ask each group to write up a solution to one
problem on the board. When there are more groups than problems, we sometimes
have more than one group write a solution. The groups often work at different
speeds; some will not have completed all the problems in the allotted time, and
others will finish quickly. We bring extra problems for the rapid learners, and
those still working on the first set of problems are asked to write up a problem
that they have finished. At the end of the “lecture” period, we bring everyone
together to review the solutions, make corrections if needed, tie up loose ends,
and draw connections to the big picture.

This kind of group problem-solving also works well when each group works on
a different problem. For example, to introduce the standard discrete distributions

237
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(binomial, geometric, hypergeometric, and negative binomial), each group of stu-
dents works with a different distribution. They first find a numerical expression
for a specific probability; for example, the binomial group finds the probability
of three aces in seven rolls of a fair die. When they finish this exercise, they
generalize their result to find the probability of exactly k aces in n rolls of a
die, where the die lands ace with probability p. In these exercises, students gain
practice formulating a parametric probability model and they are introduced to
many of the standard discrete probability distributions via the wrap-up at the
end of the class period.

With group work we can cover a lot of basic material quickly. Indeed, we have
found it crucial to set a rapid pace from the start and get students accustomed
to the idea of discovering results and proofs for themselves, without the aid
of texts. We have developed a series of problems, which we provide in weekly
handouts. The handouts include problems that illustrate the main concepts and
just-for-fun, difficult problems about sleazy gambling joints, winning the lottery
twice, and random cuts of spaghetti. By the end of the semester, each student
has compiled a set of solutions to approximately 100 problems covering all of the
course material. These problems are in addition to their homework assignments.
Section 15.2 provides examples of the problems handed out to students. They
are designed to help students discover fundamental properties of probability and
expectation. The students’ eagerness and interest leads them to demolish these
problems in two weeks, whereas a typical undergraduate class would take almost
double that time to get this far, even with the aid of detailed lectures.

15.2 Introductory problems
The following are two sets of simple problems that we give at the beginning of the
course to introduce the students to mathematical probability. We include them
here not because there is anything special about our presentation but rather
to illustrate how we construct assignments for these students. More probability
examples appear in Chapter 7.

We demonstrate some of these problems in class before letting the students
loose on them. For example, with the birthday example (problem 3 in Sec-
tion 15.2.1 and problem 6 in Section 15.2.2), we go around the class looking
for same-birthday pairs. We write students’ birthdays on the board and count
the matches. Once when we did this with a class of 60 students, we found we had
twins in the class (we thought they were just brothers until then), and another
student shared the twins’ birthday! All together we had five matches. After we
talked about the assumptions we made in computing the probability of a same-
birthday pair, we computed the expected number of pairs, and found it to be
60 · 59/(2 · 365) = 4.8, another surprise for the students.

For many of our demonstrations, we bring props to class. We collect them
and keep them on hand for our demonstrations. We have jumbo red and blue
dice, a set of lockable boxes (problem 9 in Section 15.2.2), oversized playing cards
(problem 1 in Section 15.2.1 and problem 7 in Section 15.2.2), sets of double-sided
colored cards (Section 7.5.1), and a roulette wheel (Section 8.2.2). Using props
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adds variety to our lectures, makes problems more concrete when we describe
them to the class, and takes little additional time over simply describing the
problems in words.

15.2.1 Probabilities of compound events

Here is a set of problems that we give to students to start them thinking about
the probabilities of complex events in abstract settings. These complement the
more specific demonstrations and examples given in Chapter 7.

1. Symmetry in card shuffling. A deck of cards is well-shuffled, and the cards are
dealt one by one. What is the probability that the second card is an ace? What
is the probability that the seventeenth card is an ace? What is the probability
that the second and third cards are both aces? What is the probability that the
seventeenth and fiftieth cards are both aces?
The symmetry in these answers points to a theorem about random permutations.
Figure out what the theorem is; then state and prove it.
2. The gambler’s rule. Many questions in elementary probability theory were

originally posed by gamblers some centuries ago. Here is one of them. A gambler
bets repeatedly on an event that occurs with probability 1/N , where N is a fixed
positive integer, usually thought of as large. So for example, he or she could
be betting on the number 17 at roulette with a probability 1/38 of winning.
Suppose successive bets are independent of each other. How many times should
the gambler bet so that the probability of winning at least once is greater than
1/2? Gambling experience suggests that the answer is about 2/3 of N . Is this
consistent with your calculation?
3. The birthday problem. There are n people in a class. What is the probability
that at least two of them have the same birthday? (What assumptions are you
making?) Roughly how big is this probability if n = 40? About how many people
should there be in the class to make the probability at least 0.5?
4. Another birthday problem. There are n students in your class. What is the

probability that at least one of them has the same birthday as yours? Is this
problem the same as the birthday problem above?
5. Binomial distribution with parameters n and p = 1/2. A coin is tossed n

times. What is the probability of getting exactly k heads? What is the most
likely number of heads? Roughly what is the probability of getting exactly 1000
heads in 2000 tosses?
6. Binomial distribution with parameters n and p. Consider n independent trials,
each of which results in a success with probability p. What is the probability of
getting exactly k successes? What is the most likely number of successes?
7. Negative binomial distribution with parameters k and p. A gambler bets

repeatedly on an event that has probability p. The bets are independent of each
other, but the gambler decides to stop betting as soon as he or she has won k
times. What is the probability that she stops immediately after the nth bet?
(The special case k = 1 gives rise to the geometric distribution with parameter
p.)
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8. The symmetric gambler’s ruin problem. A gambler bets repeatedly on tosses
of a coin, on each bet winning $1 if the coin lands heads or losing $1 if the coin
lands tails. The gambler starts with a dollars and decides to keep betting until
he or she has won an additional b dollars or is broke. What is the probability
that he or she ends up broke? (Assume a and b are positive integers.)
9. The asymmetric gambler’s ruin problem. Do the gambler’s ruin problem again,
replacing the coin toss (which has probability 0.5 of heads; see Section 7.6) with
a randomizer that yields “heads” with probability p .

15.2.2 Introducing the concept of expectation

We introduce the mathematics of expected values through the following series of
problems for students to work on in groups.

1. Calculating E(X) from the distribution of X. Show that

E(X) =
∑

x

xPr(X = x),

where the sum is over all x in the range of X. Most texts use this formula to
define E(X), by saying something like: Let X be a random variable with possible
values x1, x2, . . . . The expectation E(X) is defined as,

E(X) =
∑

i

xiPr(X = xi).

This is fine, and usually all that’s needed in most elementary calculations. But
to understand and prove linearity, it is essential to think of the more formal
definition: let X be a random variable defined on a countable outcome space Ω,
on which there is a probability distribution p. The expectation of X is defined
as,

E(X) =
∑
ω∈Ω

X(ω)p(ω),

provided the series is absolutely convergent; if not, the expectation does not
exist.
2. Linearity of expectation. Let X and Y be random variables defined on Ω, and
assume that E(X) and E(Y ) exist. For constants a and b, show that

E(aX + bY ) = aE(X) + bE(Y ).

Though it might seem simple, this property of expectation is of fundamental
importance, as you shall see in the problems below.
3. The method of indicators. Let IA be the indicator of the event A; that is,
IA = 1 if A occurs, and IA = 0 if A does not occur. Find E(IA).

a) A sequence of independent events, each with probability p of success,
occurs. Use indicators to compute the expected number of successes in n trials.

b) A die is rolled repeatedly. Find the expected number of different faces that
appear in the first n rolls.
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4. Tail sums. Suppose the possible values of X are 0, 1, 2, 3, . . . Show that

E(X) =
∞∑

x=0

Pr(X > x).

Now suppose a sequence of independent events, each with probability p of success,
occurs. Let k be a fixed positive integer. Find the expected number of trials until
the kth success occurs. (It’s a good idea to think first about the case k = 1.)
5. The coupon collector’s problem. A cereal company puts one coupon in each
of its cereal boxes. There are n distinct coupons. If you collect a complete set of
these coupons, you get a grand prize. How many cereal boxes do you expect to
buy to get a complete collection? (What assumptions are you making?) Get a
good approximation to this expectation for large n.
6. The birthday problem, revisited. In a classroom with n students, find the
expected number (and variance) of same-birthday pairs.
7. Symmetry in card shuffling, revisited. You deal cards one by one from a well-
shuffled deck of cards, until all the aces have been dealt. How many cards do you
expect to deal?
8. Fixed points: the matching problem. There are n letters, labeled 1 through n.
And there are n envelopes, also labeled 1 through n. The letters are distributed
randomly into the envelopes, one letter per envelope, so that all n! possible
arrangements of letters in envelopes are equally likely. Say that a match occurs
in envelope i if the letter labeled i falls into the envelope labeled i. Find the
expected number of matches.
9. Cycles: the locked boxes problem. There are n boxes. Each box locks itself
when slammed shut, and must be opened with its own special key. An annoying
person permutes the keys randomly and throws them into the boxes, one key
per box, and then slams all the boxes shut. You want to open the boxes but
are willing to break open only one box. This will yield a key that may open
another box, which will yield another key, and so on. Find the expected number
of boxes you can open. (Hint: You have solved part of this problem in Exercise
7 in Section 15.2.1.)

15.3 Challenging problems

In addition to problems that reinforce basic concepts, we hand out additional
challenging problems on a regular basis. Some of the problems relate to a group
research project.

The problems may vary in difficulty. Students work those that interest them,
and divide up the task of writing solutions. They enjoy the freedom of choosing
their assignment. Some work nearly all the problems, while others work in groups
on a subset. Occasionally, the class period is dedicated to presenting solutions.

We include here examples of handouts for two kinds of challenging prob-
lems. The first handout (see Fig. 15.1) presents a result in number theory. Num-
ber theory is a popular subject among math undergraduates, and the following
problems were designed to demonstrate a connection between probability and
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Euler’s formula

The Riemann zeta function ζ is defined by

ζ(s) =
∞∑

n=1

n−s , s > 1.

Consider a positive integer-valued random variable X with distribution given by

Pr(X = n) =
n−s

ζ(s)
, n ≥ 1.

1. Let p be a prime number. Find Pr(X is divisible by p).
2. First, a definition. Recall that two events A1 and A2 are independent if
Pr(A1A2) = Pr(A1)Pr(A2). Events A1, A2, A3, . . . are called independent if, for
every n and every n-tuple of indices i1, i2, . . . , in,

independence: Pr(Ai1Ai2 · · ·Ain
) = Pr(Ai1)Pr(Ai2) · · ·Pr(Ain

).

Now back to the problem. Let Dp be the event that X is divisible by p. Show
that the events {Dp : p a prime} are independent.
3. Here is a general result about the monotonicity of probabilities. Let
A1, A2, A3, . . . be a decreasing sequence of events, that is, A1 ⊇ A2 ⊇ A3 ⊇ · · · .
Show that

Pr(An) ↓ Pr

( ∞⋂
i=1

Ai

)
as n ↑ ∞.

4. Use the previous exercises to prove Euler’s formula: for every s > 1,

1
ζ(s)

=
∏
p

(
1 − 1

ps

)
,

where the product is over all prime numbers.

Fig. 15.1 Occasionally, we assign students a sequence of related problems such as this

one where they use probability to establish Euler’s formula, a result in number theory.

number theory. Students enjoyed using their new probabilistic tools to establish
a well-known result in another branch of mathematics.

The second problem (see the handout in Fig. 15.2) gives an example of how a
classic problem can be generalized and extended in a variety of ways. The Buffon
needle problem was solved by the class as a whole. Then variations were given
to different groups to tackle and present to each other. The answers to all of the
variations are the same: 2L/πd.
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Buffon’s noodle

1. A needle of length l is dropped at random onto a floor marked with parallel
lines d apart (l < d). What is the probability that the needle crosses the line?
2. What is the expected number of lines crossed if the needle is of length L,
where L > d? View the long needle as k short needles each of length l, where
kl = L and l < d. Then use indicator functions to find the expectation.
3. What is the expected number of lines crossed if the needle is bent?
4. A plane curve of length L is inside a circle of diameter d, and a cut is made
along a randomly chosen chord as follows: select a distance uniformly from −d
to d and an angle uniformly between 0 and π; take the chord to be that which
is perpendicular to the diameter corresponding to the chosen angle and which
is the chosen distance from the origin. What is the expected number of cuts to
the curve? (Hint: Try an infinitesimal calculus approach similar to that in the
previous problem.)
5. What if 20 pieces of spaghetti, each 10 inches in length, are tossed on a plate,
and six cuts are made along randomly chosen chords as above? How many pieces
of spaghetti do you expect to get?
6. Two- and three-dimensional generalizations of these problems from stereology
can also be solved in groups. For example, the area of a two-dimensional region
inside a circle of diameter d can be estimated from the ratio of the length of the
region along a randomly chosen chord to the total chord length. In this case, the
chord is not generated as above. Instead, an angle is uniformly chosen between
0 and π; a point is chosen at random from the interior of the circle; and the
random chord is that which passes through the chosen point along the chosen
angle.

Fig. 15.2 In this sequence of problems we start with the classic Buffon needle problem

of estimating the length of a needle thrown on a floor and generalize the result to

throwing several pieces of cooked spaghetti on a plate.

15.4 Does the Poisson distribution fit real data?

We have also tried open-ended homework problems, for example, to find a set of
real data that could be modeled by the Poisson distribution. For this homework
assignment, we require at least 25 data points (as we tell the students, this could
be data from 25 states, or 25 countries, or 25 years). After collecting the data,
the students are instructed to fit a Poisson distribution, plot the data and the
fitted distribution, and comment on aspects of lack of fit. Most real count data
are overdispersed, and this was the point we wanted the students to learn.

However, in assigning the homework we found an additional problem—about
half the students made a major mistake by using noncount data, for which the
Poisson distribution was inappropriate. For example, one student used suicide
rates in the 50 states and tried to fit the Poisson distribution to rates (for ex-
ample, treating the rate of 5 per 100 000 as an observation of 5) even though it
is intended to model counts. The students who did pick count data found some
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interesting examples, however, including the number of major earthquakes in
each of 25 years, the number of law enforcement officers killed in each of 120
months, and the number of people killed in witch trials in Geneva in each of 155
years.

Such an assignment could of course be adapted to other discrete or continuous
probability distributions or even for stochastic processes such as random walks
or Markov chains. The emphasis here is not on statistical modeling so much as
on the understanding of the properties of probability distributions. For example,
Poisson data must be discrete counts, binomial data must have an upper bound
n, gamma data must be continuous and positive, and so forth.

15.5 Organizing student projects
Midway through the course, students form groups to work on projects. The
aim is to introduce the students to research and to enable them to discover a
subfield of probability on their own. Group work is structured toward genuine
collaborations, with each student contributing his or her strengths, supporting
and being supported by the others. They choose the direction in which they want
to head, starting with introductory material covered in the seminar.

We have used three different formats for these projects. In one format, projects
consist of a series of well defined problems that build on each other. We call them
structured projects (see Section 15.6). The aim is to have the students discover
the proof of a nontrivial and interesting result that requires a more sustained
and deep effort than standard undergraduate work. With a few modifications,
the challenging problems in Section 15.3 can double as structured projects.

An alternative to the structured project has students work on a set of general
questions from a subfield of probability that they have not yet studied. Again we
offer students a set of questions to guide their studies, but these questions are
less well defined (see Section 15.7 for examples of these unstructured projects).
Finally, we also have students read original research papers for their projects.
They choose the paper from an annotated bibliography that we hand out (see
Section 15.8). It works best when we give the students a set of questions, as with
the structured projects, to guide them in reading the paper. This project helps
students learn how to read mathematics papers.

In the last weeks of class, we spend time both in and out of class meeting
with the students and monitoring progress. Students write up their projects in
papers (one per group) of 8–10 pages. We sometimes ask them to present their
findings to the class.

These projects are very demanding, but the students rise to the challenge
and ultimately find a great sense of accomplishment in their work.

15.6 Examples of structured projects
This section contains the material we hand out to students for two of the struc-
tured projects. The first is on the arcsine approximation to various distributions
connected with the symmetric random walk. The development exploits symme-
try and sample path properties. Students enjoy figuring out how to cut and paste
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bits of sample paths to arrive at the results. They learn to write out mathemat-
ical proofs showing that their pictorial arguments worked; and lastly, they use
some real analysis to do the asymptotics.

The second structured project is on the recurrence and transience of Markov
chains, with special attention to random walks. The project starts with the defi-
nition of a Markov chain with a countable state space, and then leads students to
a proof of the theorem that connects transience and recurrence with the conver-
gence or divergence of a series of n-step transition probabilities. This theorem is
applied to study the recurrence and transience of random walks, both symmetric
and asymmetric, in one or more dimensions. Like the project on arcsine laws,
this one relies heavily on clever uses of elementary probability and real analysis
to prove theorems.

15.6.1 Fluctuations in coin tossing—arcsine laws

Let X1, X2, · · · be independent random variables, and for all i, let Xi take the
values 1 and −1 with probability 1/2 each. Let S0 = 0, and for n ≥ 1, let

Sn = Sn−1 + Xn = X1 + X2 + · · · + Xn.

The sequence Sn is called a simple symmetric random walk starting at 0.
We will think of (S0, S1, S2, · · · , Sn) as a polygonal path, whose segments are

(k − 1, Sk−1) → (k, Sk).

Preliminaries.

1. How many possible paths are there from (0, 0) to (n, x)?
2. Find Pr(S2n = 0).
3. Stirling’s formula—almost! Let n be a positive integer. Show that there is a

constant c such that
n! ∼ cnne−n

√
n.

(Hint: compare log(n!) with
∫ n

1
log xdx. It helps to draw a picture.) In fact

c =
√

2π. It takes a little work to prove this, but you can assume it.
4. Let u2n = Pr(S2n = 0). Show that

u2n ∼ 1√
πn

.

What does this say about the statement, “In the long run you expect about
half heads and half tails”?

Arguments by translation and reflection.

5. Warm-up: the reflection principle. Let z and w be positive integers. Show
that the number of paths from (0, z) to (n,w) that touch or cross the x-axis
is equal to the number of paths from (0,−z) to (n, w).
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6. Show that
u2n = Pr(S1 ≥ 0, S2 ≥ 0, · · · , S2n ≥ 0).

To do this, consider all paths of length 2n. Let the paths that end at level
0 be called “Type A” paths, and the ones that never get below the x-axis
be “Type B.” The idea is to establish a one-to-one correspondence between
paths of these two types. Here is how to start. Take a Type A path. If it
never gets below the x-axis, leave it alone. If it does, let (k,−m) be the
coordinates of the leftmost lowest point of the path. Make this point your
new origin. Take the initial portion from (0, 0) to (k,−m), reflect it about
the vertical line x = k, chop it off, and add it on to the end of the path.
Draw lots of pictures!

7. Show that

2 · Pr(S1 > 0, S2 > 0, · · · , S2n > 0) = Pr(S1 ≥ 0, S2 ≥ 0, · · · , S2n ≥ 0).

8. Show that
Pr(S1 �= 0, S2 �= 0, · · · , S2n �= 0) = u2n.

Arcsine laws.

9. Let k < n. In terms of the u’s, find α2k,2n, defined by

α2k,2n = Pr(S2k = 0, S2k+1 �= 0, S2k+2 �= 0, · · · , S2n �= 0).

10. Get a good approximation to α2k,2n and sketch a graph of this approxima-
tion as a function of k for fixed n. What does the graph say about the time
of the last zero in a random walk of 2n steps?

11. An arcsine law. Let x be between 0 and 1, and let the random walk go for
a very long time. Show that the probability that the last zero occurs before
a fraction x of the total time is approximately

2
π

arcsin
√

x.

12. Arcsine law for the time of the first maximum. Consider a random walk of
n steps. Say that the first maximum occurs at time k if

S0 < Sk, S1 < Sk, . . . , Sk−1 < Sk,

and
Sk+1 ≤ Sk, Sk+2 ≤ Sk, . . . , Sn ≤ Sk.

Show that the time of the first maximum also follows an arcsine law. (Hint:
Consider the “dual” random walk; the first step is Xn, the second step is
Xn−1, and so forth.)
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15.6.2 Recurrence and transience in Markov chains

A stochastic process {X0, X1, X2, X3, . . .} is called a Markov chain if, for each n,
the conditional distribution of Xn+1 given (X0, X1, . . . , Xn) is the same as the
conditional distribution of Xn+1 given just Xn.

Assume each Xi takes values in a countable set S, called the state space of the
process. For ease of notation, we will assume that S is the set of integers. Then
{X0, X1, X2, . . .} is a Markov chain if for every n and all integers i0, . . . , in+1,

Pr(Xn+1 = in+1|X0 = i0, . . . , Xn = in) = Pr(Xn+1 = in+1|Xn = in).

The probability on the right side of the equation is called a transition prob-
ability, because it is the probability that the process makes a transition to state
in+1 at time n+1 given that it was in state in at time n. In general, the transition
probability,

Pr(Xn+1 = j |Xn = i),

depends on i, j, and n. But in many interesting examples, it depends only on
i and j. A processes with such transition probabilities is called stationary, and
you can write the probability as a function of just i and j:

Pr(Xn+1 = j |Xn = i) = pij .

As the notation suggests, these transition probabilities can be arranged in a
transition matrix P whose (i, j)th element is pij .

In what follows, {X0, X1, X2, . . .} is an integer-valued Markov chain with
stationary transition matrix P . The process is said to start at time 0 with value
X0.
1. The n-step transition probabilities. Let p

(n)
ij be the probability that the chain

is at state j at time n, given that it started at state i. Show that p
(n)
ij is the

(i, j)th element of the matrix Pn. (To avoid irritation later, define P 0 to be the
identity matrix, and check that this definition makes intuitive sense.)
2. First-hitting probabilities. Let f

(n)
ij be the probability that the chain visits

state j for the first time at time n, given that it started at state i. That is,

f
(n)
ij = Pr(X1 �= j, X2 �= j, · · · , Xn−1 �= j, Xn = j |X0 = i).

Which is bigger: f
(n)
ij or p

(n)
ij ?

Let fij be the probability that the chain ever visits state j, given that it
started at i. Find a formula for fij in terms of the f

(n)
ij ’s.

Recurrence and transience. A state i is called recurrent if fii = 1, and transient
if fii < 1.

So i is recurrent if, given that the chain started at i, it is certain to return to
i. If there is some probability that it does not return to i, then i is transient.

Consider the simple random walk determined by independent steps, each
with probability p of increasing by 1 and probability of 1− p of decreasing by 1.



248 PROBLEMS AND PROJECTS IN PROBABILITY

Suppose the walk starts at 0. For which values of p do you think the state 0 will
be transient? For which values will it be recurrent? (For now just say what your
intuition tells you—by the end of this project you will have a rigorous answer!)

Back to the Markov chain. For brevity, write Pi(A) for the probability of A
given that the chain started in state i. That is,

define Pi(A) = Pr(A|X0 = i) for any event A.

Theorem. The main theorem of this project set says that transience of the state
i is equivalent to

Pi(infinitely many visits to i) = 0,

which is also equivalent to ∑
n

p
(n)
ii < ∞.

Conversely, recurrence of the state i is equivalent to

Pi(infinitely many visits to i) = 1,

which is also equivalent to ∑
n

p
(n)
ii = ∞.

Before you prove this theorem, use it to check your intuitive answer to the
question about random walks above. Exercises 3–6 constitute a proof of the
theorem.
3. In terms of the f ’s defined in Exercise 2, find a formula for the probability
that the chain makes at least m visits to j, given that it started at i. Hence find
a very simple formula for Pi (infinitely many visits to j), in terms of the f ’s.
Specialize this to the case j = i.
4. Show that

∑
n p

(n)
ii is the expectation of a certain random variable. Deduce

that ∑
n

p
(n)
ii < ∞

implies
Pi(infinitely many visits to i) = 0.

5. Show that fii < 1 implies
∑

n p
(n)
ii < ∞, in the following steps.

a) Show

p
(n)
ij =

n−1∑
s=0

f
(n−s)
ij p

(s)
jj .

b) Specialize to the case j = i, and sum both sides above, to show

n∑
t=1

p
(t)
ii ≤

n∑
s=0

p
(s)
ii fii.

c) Now complete the exercise.
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6. Show that the theorem has been proved!
7. More than one dimension. Consider a simple symmetric random walk in d
dimensions, defined as follows. Start at the origin. At each stage, toss d coins,
and change the ith coordinate by +1 or −1 according to whether the ith coin
lands heads or tails. Show that the origin is recurrent in one and two dimensions,
but transient in three or more dimensions.
8. Recurrent (or transient) chains. Call a Markov chain irreducible if every state
can be reached with positive probability from every other state—that is, if for
all i and j there is some n for which p

(n)
ij > 0.

a) Give an example of a Markov chain that is not irreducible.
b) Show that in an irreducible chain, either all states are recurrent, or none

is. Thus, for example, we can say, “the random walk is recurrent” once we have
checked that the origin is a recurrent state.

15.7 Examples of unstructured projects

Included below are the introductions to four projects. They are very informal,
and provide ideas for interesting avenues to explore, but students are urged to
investigate other areas and not to limit themselves to those listed here. The
project descriptions below are written to give directly to students.

In these projects, students are more self-directed than in the structured
projects. They decide which project they want to work on after we have given
introductions to each topic to the entire class. They spend a couple of days
looking over the materials and making their choice. As the groups develop their
material, they meet regularly with the instructor, where they receive direction,
supplemental reading, and fact sheets on related topics. They make periodic
progress reports in class, and each group keeps a notebook of its findings.

15.7.1 Martingales

After one introductory lecture on martingales, students try their hands at prov-
ing an optional stopping theorem. They begin by considering specific problems
such as the expected time it will take a monkey sitting at a keyboard to type
ABRACADABRA. Here are the instructions we give to the students.

Loosely speaking, a martingale is a process in which the expected value of the process
tomorrow, given all information up through today, equals the value of the process today.
In that sense, it can be thought of as your sequence of fortunes in a fair game, though
as you have seen, this doesn’t necessarily imply that you’ll break even in the long run!

Martingales have beautiful properties: under mild regularity conditions they con-
verge in various ways, and there are bounds on how wild they can get. Many interesting
problems, apparently unrelated to martingales, can be solved using optional stopping
theorems, which say the following: it’s easy to check that the expected value of a
martingale at every fixed time is the same, but the same is also true at certain well-
behaved random times, known as stopping times. This allows you to compute all kinds
of probabilities and expectations, as you will see.

It is often fun to “hunt the martingale” in problems so that the powerful martingale
methods can be used in solutions. See for example the connection with the branching
processes project.
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The study of martingales is central to modern probability theory. To do it right,
you have to be careful about exactly what is meant by “expected values given all the
information up through today,” etc. This involves analysis and measure theory, which
are good areas for you to get acquainted with anyway.
Suggested starting place. Read the lecture note sketches, and for the moment don’t
worry that there are gaping holes in them (you’ll plug those holes later). Trust that
the optional stopping theorem is true and use it to get the expected duration of the
game in the gambler’s ruin problem, and the expected amount of time a monkey will
take to type ABRACADABRA. This last is not as silly a problem as it might seem;
similar issues become very important in data compression. Once you have done this,
read Williams (1991) for a proof of the optional stopping theorem.

15.7.2 Generating functions and branching processes

After one lecture on branching processes, we set our students loose on the prob-
lem of trying to determine the long-run behavior of the population; for example,
will it die out?

This concerns a particular population growth model: start with one individual, who
then has a random number of offspring according to a certain distribution; each child
in turn has a random number of offspring, with the same distribution as the offspring
distribution of the original parent. All individuals reproduce independently of each
other. It is natural to draw the “family tree,” hence the name “branching process.”

Questions of interest concern the long-run behavior of the population: does it die
out? does it explode? And so on. Answers are very elegant.

But it helps to have some mathematical technique, namely the theory of generat-
ing functions. This is a general technique involving power series, which often makes
short work of otherwise intractable problems. For example, you can tackle the asym-
metric random walk, which doesn’t have the pretty symmetries of the symmetric walk.
The methods are analytical, rather than probabilistic, but well worth learning for the
mathematics student as they pop up in all kinds of places.
Suggested starting place. Glance through the branching process lecture, first ignoring
the math, and try to sift out the results. You might try taking a very simple offspring
distribution and see if you can figure out yourself whether your population will die
out. Then read Chapter 0 in Williams (1991). Then start learning about generating
functions.
Connections with other projects. There’s a useful martingale hidden in the branching
process.

15.7.3 Limit distributions of Markov chains

In this project on Markov chains, we encourage students to find more than one
way to establish the stationary distribution. Our introductory lecture introduces
them to the probabilistic method of coupling, and we give them the following
instructions to start them on their project.

Suppose you run a Markov chain for a long time. How might it behave? You can guess
at some of the behavior: because of the Markov property which says the most recent
state is the only one that matters, the chain should somehow forget where it started.
In fact it does, under certain conditions, and it has a limiting distribution that is easy
to compute and has useful properties.

The big theorem is that under certain conditions on the one-step transition proba-

bilities pij , the n-step transition probabilities converge: that is, for any i, limn→∞ p
(n)
ij =

πj , and this limit does not depend on the starting state i. It is then easy to check that
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the vector π satisfies the equations πP = π, and hence you have a way of computing
it. Explicitly computing π in special cases is a lot of fun and yields interesting results.

The “invariant distribution” π has many other interpretations and uses. It allows
you to compute things like the expected number of visits to i before the next visit to
j, the long-run fraction of time the chain spends at any given state, etc.

There is more than one way of proving the big theorem; after all, in some sense
it’s just a theorem about matrices and shouldn’t involve any probability. But the proof
outlined in the project is very “probabilistic” and uses a method called “coupling.”
This is a general method which works as follows. Suppose you are trying to prove
that your Markov chain has a certain asymptotic behavior. And suppose you know of
some other “nice” Markov chain that clearly has that same asymptotic behavior. Set
them both running, and try to show that the two paths are bound to meet somewhere.
If you can do this, you are home free, because after the meeting-point your Markov
chain is probabilistically equivalent to the other one, and therefore must have the same
asymptotic behavior!
Suggested starting place. The statement of the big theorem is at the bottom of page
10 of Williams (1991). You’ll quickly see that you need to learn some terminology, etc.
At this point you can simply start reading from page 1, and mark the places where
things aren’t proved. Most are proved in the appendix, but it’s best to start filling in
the gaps on your own. It will be good preparation for proving the big theorem.

15.7.4 Permutations

The project on random permutations revisits a problem given to the students in
the first week of class (see Section 15.2.2). There is not a large literature on this
subject that is accessible to undergrads, and so we provide more details in our
handout than for the other projects of this type.

Consider the n! permutations of the integers 1 through n. A random permutation of 1
through n is obtained by choosing one of these permutations at random so that all n!
permutations are equally likely. Random permutations appear in the letter-matching
problem and the locked-box problem in the last example in Section 15.2, though they
are couched in traditionally colorful language. Suppose there are seven locked boxes
and keys arranged as follows:(

Box 1 2 3 4 5 6 7
Key 5 1 7 4 6 2 3

)
.

A cycle representation for this permutation is (1562)(37)(4). There are three cycles, one
of length 4, one of length 2, and one of length 1. The cycle of length 1 represents a match
of box and key. Another way to express the cycle representation for the permutation
that does not require the use of parentheses is to use the convention that each cycle
is written so as to end in its smallest number, and cycles are written in the order of
increasing smallest last numbers. This representation is called the Hungarian map, and
for the above permutation the Hungarian map is 5621734.

It may be interesting to investigate the properties of the number of cycles of length
1, the length of the cycle that contains 1, or the total number of cycles in a random
permutation.

What is the probability the permutation is an involution; that is, that it contains
only cycles of length 1 and 2? What is the probability that all cycle lengths are divisible
by d? To answer these questions, it may be helpful to consider the cycle vector for a
permutation. It is the vector (l1, l2, . . . , ln), where li is the number of cycles of length
i in the permutation. For our example, the cycle vector is (1,1,0,1,0,0,0). Notice that∑n

i=1 ili = n. Show that the probability mass function for the cycle vector is,
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p(l1, . . . , ln) =
n∏

i=1

1

(li)! ili
.

Can you find the probability generating function for the cycle vector? To do this you will
need to learn about multivariate probability mass functions and generating functions.

Another interesting avenue to explore is the connection between cycles and records.
Consider the independent records, R1, R2, . . . , Rn, where Ri has a discrete uniform
distribution on {1, 2, . . . , i}. Try generating the Hungarian map in reverse order by
first choosing the Rnth element from the ordered set {1, 2, . . . , n}; then choose the
Rn−1th element from {1, 2, . . . , n} − Rn, and so on. What do you find?

There is also a connection between Polya’s urn and cycles. Consider the urn with 1
red and 1 black ball. Mark the red ball with the number 1. Then draw a ball at random
from the urn, and return it along with an additional ball of the same color to the urn.
But, before putting the new ball into the urn, mark it with the number 2. Continue
drawing balls in this fashion. That is, on the ith draw, a ball is chosen at random from
the urn, then the ball is returned to the urn along with another ball that is the same
color and that is marked i+1. What is the connection between the numbers on the red
balls in the urn and cycles? What happens to the proportion of red balls in the urn as
the number of draws goes to infinity?
Suggested starting place. The problems in the first week’s handout (see Section 15.2)
are a good place to start. Can you rephrase these questions in terms of cycles and
Hungarian maps?
Connections with other projects. Polya’s urn has a hidden martingale in it; and there
is an interesting connection to Markov chains.

15.8 Research papers as projects
Many students enjoy reading an original account of a research problem, rather
than prepared textbook material. These papers can cover a wide range of topics.

With assistance from the instructor, each group of students chooses a paper
that suits their interests and mathematical preparation. Some groups are also
given supplemental reading to prepare them for reading their research papers.

We have experimented with alternatives to writing papers on the research
papers. We sometimes ask the groups to give an oral presentation of their research
paper, to write a detailed abstract for the paper which we collect in a scrapbook
and distribute to all of the students, or to make up a worksheet of problems (and
their solutions) that are related to the paper.

We provide here an annotated list of some research papers that are suitable
for undergraduate mathematics students to read. This list can be distributed to
the students.
Dorfman, R., “The detection of defective members of large populations,” Annals of
Mathematical Statistics 14, 436–440 (1943). This self-contained paper is an application
of two-stage testing for a disease by pooling samples of blood. It requires work with
conditional expectations and discrete probability. For further reading, a three-stage
procedure is discussed in Finucan, “The blood testing problem,” Applied Statistics 13,
43–50 (1964).
Ferguson, T. S., “A characterization of the geometric distribution,” American Mathe-
matical Monthly 72, 256–260 (1965). This technical article develops a characterization
of two independent discrete random variables that can only hold if they have geomet-
ric distributions. It works with the independence properties of the minimum and the
difference of two random variables.
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Halley, E., Philosophical transactions—giving some account of the present undertak-
ings, studies and labors of the ingenious, in many considerable parts of the world. (1693)
Halley’s work on the uses of life tables is reprinted in Newman, J. R., The World of
Mathematics (1956). An excellent supplement to this reading is pages 131–143 in Hald,
A., A History of Probability and Statistics and Their Applications Before 1750 (1989).
There are many interesting problems to work on from Halley’s methods, such as the
relation between tail sums and expectation.
Hendricks, W., “A single-shelf library of N books,” Journal of Applied Probability 9,
231–233 (1972). Some additional background reading in Markov chains is required. A
simple move-to-the-front scheme for reshelving books is put in a Markov chain frame-
work. The stationary distribution is determined by induction.
Kingman, J., “The thrown string (with discussion),” Journal of the Royal Statistical
Society B 44, 109–138 (1982). A rigorous treatment of the extension of Buffon’s needle
discussed in Section 15.3.
Knuth, D., “The toilet paper problem,” American Mathematical Monthly 91, 465–470
(1984). This problem is related to the classical ballot problem (Feller, 1968). Recurrence
relations are used to find a generating function, which leads to large sample behavior
for the problem.
Mendel, G., An Experiment in Plant Hybridization (1865). Mendel’s work is also de-
scribed in Newman, J. R., The World of Mathematics (1956). Mendel’s paper is quite
elementary, but it offers many avenues for exploration. Feller (1968, Section V.8) con-
tains a variety of problems including some related to the Hardy–Weinberg equilibrium
and sex-linked traits.
Moran, P. A. P., “A mathematical theory of animal trapping,” Biometrika 38, 307–311
(1951). This paper develops a probability model for estimating the size of an animal
population using maximum likelihood estimation and Stirling’s approximation.
Newell, G. F., “A theory of platoon formation in tunnel traffic.” Operations Research
7, 589–598 (1959). This paper constructs a probability model for the flow of traffic
through a tunnel; it includes finding the distribution of a maximum of independent
random variables.
Ramakrishnan, S., and Sudderth, W. D., “A sequence of coin tosses for which the
strong law fails,” American Mathematical Monthly 95, 939–941 (1988). Some measure
theory is required for this paper.
Student, “On the error of counting with a haemacytometer,” Biometrika 5, 351–360
(1906). This paper derives the Poisson process in the plane from first principles. It offers
good practice with infinite series and moment generating functions. Any supplemental
reading from an undergraduate text on the Poisson process is helpful for synthesizing
the results presented here.
Tversky, A., and Gilovich, T. “The cold facts about the hot hand in basketball,” Chance
2 (1) 16–21 (1989). Plus additional articles in Chance in 1989 by Larkey, Smith, and
Kadane, issue 4, 22–30, and Tversky and Gilovich, issue 4, 31–34. This series of articles
provides a very accessible analysis of streak shooting from actual basketball games and
designed experiments. Additional reading on the distribution of run tests helps focus
the project for a mathematics class; see, for example, Lehmann, E., Nonparametrics:
Statistical Methods Based on Ranks (1975).
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Directed projects in a
mathematical statistics course

In this chapter we present a model for using case studies in undergraduate math-
ematical statistics courses. Statistics teachers at many institutions have created
innovative data-based homework assignments; we focus on these case studies
because we hope the suggestions in this chapter will be helpful for you in imple-
menting your own data-analysis assignments.

These case studies have more depth than most examples found in typical
mathematical statistical texts. In each case study, we provide students with a
real-world question to be addressed. The question is raised in the context of an
application, so the students have a sense that there is a good reason for trying
to answer it. We also provide students with background information, data to
address the problem, and a list of suggestions for investigating the problem. An
important goal of this approach is to encourage and develop statistical thinking.

We provide here examples of a case study (in Section 16.3) and a directed
project (in Section 16.4) along with a discussion of how we have changed the class
to fit these activities in the traditional material covered in a mathematical statis-
tics course. In essence, we make the case studies the centerpiece of the course;
that is, finding the answer to the question raised in the case study motivates the
develoment of related statistical theory. As a result, the curriculum, lectures, and
assignments are significantly different from a traditional mathematical statistics
course.

Our reason for teaching mathematical statistics this way is that we have
found that students have difficulty bringing the mathematical statistics learned
in the classroom to independent projects in school or on the job. (To be honest,
this can be a problem for professional statisticians too.) It can also be difficult for
students to make the transition from reading and understanding a critical review
of a statistical analysis to successfully working on their own problem. With case
studies, students develop their quantitative reasoning and problem-solving skills
in a broad multidisciplinary setting. They communicate their ideas orally and in
writing, and they learn to use statistical software.

254
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Table 16.1 A sample set of eight lab assignments for a mathematical statistics course.

Option
Lab A B Topics

Smoking and infant health I × summary statistics
Student use of video games × simple random sampling, ratio estimator
AIDS in hemophiliacs × 2×2 tables, Mantel–Haenszel test
Patterns in DNA × estimation and testing, Poisson process
Crab molting × regression, prediction
Snow gauge calibration × simple linear model, inverse regression
Smoking and infant health II × multiple regression, indicator variables
Monitoring quality control × analysis of variance, random effects

16.1 Organization of a case study
After trying several approaches, we settled on a model for the organization of
a case study, where each case has five parts: introduction, data, background,
investigations, and theory. Sometimes we include an extension section for a more
advanced analysis of the data and related theoretical material.

1. Introduction. First we state a clear scientific question and give motivation
for answering it. The question is presented in the context of the scientific
problem, not as a request to perform a particular statistical analysis. We
avoid questions suggested by the data, and attempt to orient the case study
around the original question raised by researchers who collected the data.

2. Data. Documentation for the data collected to address the question is pro-
vided to the students, including a detailed description of the study protocol.

3. Background. We provide students with background material to put the prob-
lem in context. This information is gathered from a variety of sources and
presented in nontechnical language. The idea is to present a picture of the
field of interest that is accessible to a broad college audience.

4. Investigations. Suggestions for answering the question posed in the intro-
duction are also given. These suggestions are written in the context of the
problem, using very little statistical terminology. The ideas behind the sug-
gestions vary in difficulty and we sometimes group them into subsets to
pace the assignment. Also included are suggestions on how to write up the
results, for example, as an article for a widely read magazine, a memo to
the head of a research group, or a pamphlet for consumers.

5. Theory. After the students have had a chance to look over the data, and
think about how to answer the motivating question, we discuss methodology
and theory that may be useful in attacking the problem. We present this
material in a general framework, and use the case as a specific example.

Examples of case studies with these five parts are sketched in Sections 16.3 and
16.4.

16.2 Fitting the cases into a course
We use case studies extensively in two mathematical statistics courses, one for
statistics and mathematics majors and one for engineering students. The enroll-
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ments for these courses varies from 20 to 60 students. (We have also used versions
of these cases with simpler investigations and less advanced theoretical material
in a course for social and life science majors.)

We cover about eight cases in a semester. They are chosen by the instructor
according to the theoretical topic, area of application, and the background of the
students. We divide the eight cases into two types: those discussed primarily in
lecture and those that require students to do extensive analyses outside of class
and write short papers on their findings.

Typically we ask students to write reports for four cases. Table 16.1 provides
two example sets of assignments. Option A could be used in a class for students in
the social and life sciences, and option B could be used for engineering students.
In addition to covering the core material, many cases also include special topics
in statistics, as listed in Table 16.1.

16.2.1 Covering the cases in lectures

In class, students work in groups on the case studies. Whether the analysis of
a case is an out-of-class assignment, or solely an in-class topic, we find it useful
for lectures to include discussion of the background to the particular problem,
where students who have taken courses in related fields can bring their expertise
to the discussion. In addition, for cases where students write reports, we hold
regular question-and-answer periods in class to give students an opportunity to
raise questions about their work. If a few students are having problems with the
assignment, then everyone receives the benefit of hearing the instructor respond
to these problems. We sometimes post our responses to these questions on the
Web for students to look over outside the class when they are analyzing the data.

We spend about one class period in three on these kinds of activities, with
the remainder being more traditional presentations of theoretical results (with
reference to the current case). Motivation of the statistical theory comes out of
these discussions. We develop the mathematical statistics for the methods used
to analyze the data after we discuss the case in detail, and begin to address the
problem.

16.2.2 Group work in class

To facilitate group work in class, we use handouts. One sort of handout is an
abbreviated list of investigations, where students work in groups to come up
with a plan of attack for addressing the questions. That is, they think of ways to
summarize or operate on the data, but they are not expected to do any actual
computations. With this exercise, we bring to class results from several possible
analyses of the data that we have prepared in advance in anticipation of their
comments. When we discuss with the class the ideas that the groups came up
with, we sketch our previously prepared results on the board or put them on an
overhead, and we talk about the pros and cons of the approaches and what we
found.

In another kind of handout, we provide students with a set of tables and
graphs. Students break into groups and we ask them to further summarize and



FITTING THE CASES INTO A COURSE 257

interpret the output with the goal of addressing the questions from the inves-
tigation. We have groups write their solutions on the board, and the instructor
leads the class in a discussion of the analysis. We have found that our students
really enjoy working on problems in class because they receive immediate feed-
back from the instructor and also because they get to see the great variety of
ideas their classmates come up with.

Another format for group work with which we have had some success has
groups of students work on different cases, and lead a class discussion on their
findings. Each group prepares a presentation of their results, including handouts
for the class. These presentations are synchronized with the curriculum and
scheduled throughout the semester. Students are given leeway in designing their
presentation; some lead discussions modeled after our in-class activities, and
others use role-playing as a research team to present their new research, or
they hold a debate where they present conflicting statistical evidence to make
their arguments. To help students prepare their presentations, we schedule two
appointments with each group, one to discuss their investigations and one to
review their handouts and plan the class presentation. In this sort of group
work, we expect a more thorough level of analysis, and a more in-depth report
than for the other written assignments (see Section 16.2.3).

16.2.3 Cases as reports

For the out-of-class assignments, students work on a case for about two weeks.
Their time is spent analyzing data and preparing reports on their findings. The
datasets are complex, the analysis is open-ended, and students must synthesize
their findings coherently on paper. The students find this work very challenging,
and we typically allow them to work in groups of two or three.

It can be difficult to grade the reports, because the investigations allow stu-
dents to be creative in their solutions to the problem. We usually break down
the score into four equal parts: (1) composition and presentation, including sta-
tistically sound statements; (2) a basic minimum set of analyses; (3) relevant
and readable graphs and tables; and (4) advanced analyses. For the advanced
analyses, we make a list of several possible avenues of pursuit, and look for a
subset of these in the write-up. Sometimes we also request an appendix to the
report for technical material.

The reports typically constitute up to half of the course grade, the remaining
being grades for homework and exams. We also think it is important to include
questions related to the cases on exams, because it maintains consistency with the
approach we have taken in teaching theoretical statistics through applications.

16.2.4 Independent projects in a seminar course

If the class is small, say fewer than 20 students, then we run the course in a
seminar style. Students are responsible for reading the background materials on
their own, and class time includes discussion and brainstorming on how to solve
the problems in the cases. We set assignments on a daily or weekly basis to
respond to questions and problems raised by the students. As a result, students
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are very engaged in the course and feel class time is essential.
An excellent accompaniment to this style of teaching is the independent

project. After practicing statistics on our case studies, the students are ready
and enthusiastic to try their hands on a project of their own invention. Stu-
dents present their projects in class and we use their projects as a source for
exam questions. Details on how to organize this kind of project can be found in
Section 11.4.

16.3 A case study: quality control
In this section, we give an outline of how we organize a specific case study in our
courses. This case examines the quality control of a manufacturing process. In
our introduction of the problem, we explain that a computer manufacturer has
designed a new piece of equipment—a head on a tape drive used in computer
backups. This head is to be manufactured by a supplier, and plans are to install
a machine, which we call a tester, at the supplier’s production facility to test the
heads before shipment. The main question is whether the tester is good enough
for monitoring the supplier’s manufacturing process. There is variation in the
manufacturing of the tape-drive head, and there is variation in the measurement
made by the tester for the performance of the head. The measurement error
needs to be small relative to the process variation in order for the tester to be
able to detect variation in the process.

The data used to address the question were collected as follows. Nine heads
were selected at random from the manufacturing process. Each head was tested
on six magnetic tapes, which were also selected at random. Two repeated mea-
sures were made on each head/tape combination for a total of 108 measurements.
We provide a table of data so students can look over the numbers and see the de-
sign. The measurement taken is a ratio of two voltages measured at two different
frequencies as the drive writes information to the tape in the reverse direction.
This ratio ideally should be 1.

For background, we provide information on the equipment being manufac-
tured and on the test process. For example, we describe why tapes are required
for backing up the disk drives on computer, how information is transferred from
the computer to the tape, the function of the head in this transfer, what can
go wrong if the head does not function properly, and how the tester is able to
detect a malfunction of the head.

Next, we make suggestions for investigating the data. These suggestions are
purposely vague in that they do not refer to specific statistical methods to be
applied to the data. For example, we begin by asking the student to consider three
sources of variation and how to estimate each of them: measurement error (the
variation in repeated measurements taken on the same head/tape combination),
the variation that might be attributed to differences in tapes, and the process
variation in the making of the heads. We point out that the average of the two
measurements taken for each of the tapes on one of the drives includes two sources
of variation, from measurements and from different tapes. We ask the student
to compare each part to the combined variation due to measurement error and
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tape reproducibility, and we point out that when making this comparison it is
important to consider the accuracy of their estimates of these different sources
of variation. One final suggestion is to consider a simulation study to estimate
the uncertainty in the estimates of variation. We instruct the students to write
up their findings, taking on the role of a statistician working in the quality
control department of the computer manufacturer who has been asked to advise
a production manager whether the tester should be installed in the supplier’s
production facility.

The accompanying theoretical material we present depends on what the stu-
dents have already studied. For example, they may already be familiar with
one-way and two-way analysis of variance and manipulating sums of squares.
Assuming this to be the case, we would begin by introducing the random effects
model,

yijk = μ + αi + βj + γij + εijk,

where i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . , K, μ is an unknown constant, and
the αi, βj , γij , and εijk are independent and normally distributed with mean
0 and standard deviations σα, σβ , σγ , σε, respectively. The various σ’s in the

model are related to repeatability (σε) and reproducibility (
√

σ2
β + σ2

γ). Finally,
a useful topic to cover is how to estimate these quantities using mean square
errors. For example,

1
I(J − 1)

I∑
i=1

J∑
j=1

(ȳij − ȳi)2

is an unbiased estimate of σ2
β + σ2

γ + σ2
ε /K. The students would be expected to

apply these ideas to the quality control problem to derive and compare estimates
of standard deviations such as σα and

√
σ2

β + σ2
γ + σ2

ε .

16.4 A directed project: helicopter design

16.4.1 General instructions

We present here an experiment we assign as a group project. We give students
copies of Fig. 16.1 (a diagram for making a helicopter from a half-sheet of paper)
and Fig. 16.2 (the flight times for 10 flights from two helicopters with specified
wing widths and lengths). The average of all 20 flight times is 1.66 seconds, and
the standard deviation is 0.04 seconds. The helicopters were dropped from a
height of approximately eight feet. We ask our students to build a better one—
one that takes longer to reach the ground.

When we hand out these materials, we also pass out some comments made
by previous students on helicopter building:

Rich creased the wings too much and the helicopters dropped like a rock, turned upside
down, turned sideways, etc.

Helis seem to react very positively to added length. Too much width seems to make
the helis unstable. They flip-flop during flight.
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Fig. 16.1 Diagram for making a “helicopter” from half a sheet of paper and a paper

clip. The long segments on the left and right are folded toward the middle, and the

resulting long 3-ply strip is held together by a paper clip. One of the two segments at

the top is folded forward and the other backward. The helicopter spins in the air when

dropped.

Andy proposes to use an index card to make a template for folding the base into thirds.

After practicing, we decided to switch jobs. It worked better with Yee timing and John
dropping. 3 – 2 – 1 – GO.

The helicopters are restricted to have the general form shown in Fig. 16.1. No
additional folds, creases, or perforations are allowed. The wing length and the
wing width of the helicopter are the only two design variables, that is, the only
two measurements on the helicopter that can be changed. The body width and
length must remain the same for all helicopters. A metal paper clip is attached
to the bottom of the helicopter. We hand out 25 half-sheets of paper and 10
paper clips to each group of students. They may use only these materials in the
construction of their helicopters. We also lend each group of students a stopwatch
that measures time in hundredths of a second.

Students work in groups on the experiment. We give each group a notebook
to record their data. This notebook serves as the group report. It must contain all
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Helicopter #1:
1.64 1.74 1.68 1.62 1.68 1.70 1.62 1.66 1.69 1.62
Helicopter #2:
1.62 1.65 1.66 1.63 1.66 1.71 1.64 1.69 1.59 1.61

Fig. 16.2 Flight times, in seconds, for 10 flights each of two identical helicopters (wing

width 4.6 centimeters and wing length 8.2 centimeters), for the project described in

Section 16.4.

data, statistical calculations, diagrams, plots, and a narration of the experimental
process, including problems encountered, reasons for any decisions made, and
final conclusions. We warn them to be careful, and to avoid making conclusions
of the following sort:
Our data are very suspicious.

We made an extremely vital mistake.

Since we are out of paper, we will just . . .

Great things were expected from our contour analysis, but unfortunately, fell far short
of our goals.

16.4.2 Designing the study and fitting a response surface

Before we set our students loose on this project, we launch a few helicopters in
class and discuss the sources of variability in flight time. We use the following
list of questions as a guide in this process.

1. How reproducible are the measurements of flight time? We put a string
across the room to mark the height from which to drop the helicopters, and
then stand on a desk to fly a helicopter a few times. We have one of the
students time the flights, and another records them on the board. We discuss
how it would be best to fly helicopters multiple times and compare mean
flight times. The question of how many times to fly a helicopter we leave to
them to decide. These helicopters wear out quickly: after a few flights the
wings get floppy and the flights become more erratic.

2. Is there any variability between “identical” helicopters? That is, how similar
are the flight times for two helicopters built according to the same specifi-
cations? Here we repeat the above procedure with a second helicopter made
to the same specifications as the first.

3. Are there noticeable person-to-person differences or other environmental
effects? Here we discuss the experimentation process, and how to set up a
procedure that reduces other sources of variability.

4. Which wing dimensions lead to viable helicopters? We launch a few funny
helicopters with exceptionally wide wings or tiny wings and watch them
flutter or plummet to the ground.

5. How big do the changes in the dimensions of the helicopters need to be
to create noticeable differences in flight time? Here we emphasize the im-
portance of making a good estimate for the standard error for the mean
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Fig. 16.3 Examples of (a) a design space and (b) a response surface for the helicopter

project described in Section 16.4.

response. We fly two helicopters that have very similar wing specifications
and two that are very different.

We hand out the following set of instructions to guide the students in their
experimentation.

1. Choose a set of wing dimensions to begin your search for the best helicopter.
Mark this helicopter on the design space (Fig. 16.3a) and call it d0. Each he-
licopter has an expected flight time. If this were plotted above the width and
length of the helicopter, then the flight times might look like a surface map
above the design space (Fig. 16.3b). The flight time is called the helicopter’s
response, and the map of flight times is called the response surface.

2. Form a rectangle around the design point d0, with d0 at the center. Label
the corners d1, d2, d3, and d4, as in the left plot in Fig. 16.4. Build four
helicopters according to the dimensions of the four corners of the rectangle.
Fly each many times, and record the flight times in your notebook.

3. Make a linear fit of flight to the dimensions of the helicopter wings,

time = b0 + b1 · width + b2 · length + error.

4. This fit can be used to determine the direction of future searches. Draw
contour lines on the design region that correspond to the contours of the
fitted plane. Next draw a line from the center of d0 perpendicular to these
contour lines. This perpendicular indicates the path of steepest ascent.

5. Choose a design point along this line and repeat the previous steps.

If the linear model is inadequate, or in the final phase of the search, a
quadratic model may be fit. To do this, we add four more design points to the
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Fig. 16.4 Examples of (a) a rectangular design and (b) a rectangular plus star design.
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Fig. 16.5 Examples of (a) a linear contour plot and (b) a quadratic contour plot.

rectangular design (Fig. 16.4). Once the additional data are collected, multiple
regression can be used to fit the quadratic model:

time = b0 + b1 · width + b2 · length
+ b3 · width2 + b4 · length2 + b5 · width · length + error.

We provide the students with a plotting routine so they can graph the contours
of the quadratic response surface (Fig. 16.5) and determine the peak region.

Before the students start on their experiment, we give them some last words
of advice taken from previous student reports.
We realized that we did this wrong, because we used [whole] centimeter increments
instead of [whole] millimeters, so our design rectangle was too large. We started over.

Instead of testing regions in a contiguous fashion, perhaps we should have moved fur-
ther along the steepest ascent vector at each round. We had wanted to have complete
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coverage of the test path, but our test method was too slow and used up too many
helicopters along the way.

We figured out posthumously why our analyses were so bad is that we were using the
wrong proportions for our path of steepest ascent. (Actually no one died.)



Notes and further reading

Much of the material in this book appeared, in somewhat different form, in
Gelman and Nolan (1997, 2002a, b, c, d, e), Gelman (1997, 1998), Adhikari and
Nolan (1997), Nolan and Speed (1999, 2000), and Gelman and Glickman (2000).

Preface. For information on the statistical packages R and S-Plus, see Becker,
Chambers, and Wilks (1988), MathSoft (2000), and R Project (2000). For infor-
mation on Stata, see StataCorp (2000).

Section 1.1. See Cobb (1992) and Gnanadesikan et al. (1997) for some discus-
sion of the benefits of class participation in statistics classes, and Bligh (2000a, b)
for discussion about class participation in general. Hawkins, Jolliffe, and Glick-
man (1992) discuss methods of teaching statistical concepts.

Section 1.2. Chapter 11 of this book has further discussion and references of
ways of keeping students involved in statistics classes.

Section 1.4. The Texas school reforms and the Toxics Release Inventory are
described by Liebman and Sabel (2002) and Sabel, Fung, and Karkkainen (1999),
respectively.

Section 2.1. A version of this age-guessing demonstration appears in Gelman
and Glickman (2000); it was adapted from Charlton and Williamson (1996, p.
76). See George and Hole (1995) for discussion and further references on biases
in estimating ages.

Section 2.2. A version of this demonstration appears in Gelman (1998). The
cancer map in Fig. 2.3 follows Manton et al. (1989). Gelman and Price (1999)
discuss the general problem of artifacts in interpreting maps.

Section 2.3. Estimating orders of magnitude has been discussed by many au-
thors, notably by Paulos (1988) in his discussion of innumeracy. This particular
activity appears in Gelman and Glickman (2000). There are about 360 000 school
buses in the United States and about 1620 Smiths in Oakland, California.

Section 2.4. The clippings in Fig. 2.5 are reprinted with permission of the
San Francisco Chronicle and the San Francisco Examiner.

Section 2.5. The questionnaire in Fig. 2.6 is adapted from the Edinburgh
Handedness Inventory (Oldfield, 1971). Various ways of measuring handedness
are discussed in Hardyck and Petrinovich (1977). For more on the topic, see the
book by Coren (1992). Handedness also comes up in Sections 3.3.2 and 10.2.3 of
this book.

Section 3.2.1. The mile run example is adapted from Gelman and Nolan
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(2002e). It is also discussed in Anderson and Loynes (1987, pp. 128–130). If your
students might be interested in other work on world record times of men and
women in running and swimming, see Wainer, Njue, and Palmer (2000). Carlin
and Gelfand (1993) discuss the statistical analysis of data on record breaking.

Section 3.3.1. The table of variables labeled as categorical comes from Utts
and Heckard (2001, p. 15), a textbook with a large collection of interesting ex-
amples.

Section 3.3.2. Data on the distribution of handedness in the general popu-
lation occasionally appear in the psychological and medical literature; for ex-
ample, see Oldfield (1971), Tan (1983), Lindesay (1987), Schachter, Ransil, and
Geschwind (1987), and Ellis, Ellis, and Marshall (1988).

Sections 3.3.3 and 3.4.1. The data on soda drinking in Fig. 3.3 come from a
survey by the U.S. Department of Agriculture (1995). The other information on
beverage consumption is in the Statistical Abstract of the United States.

Section 3.4.2. Our information about Quetelet comes from Stigler (1986).
Section 3.5. For more on displaying data multidimensionally, see Cleveland

(1985), Tufte (1983), and Wainer (1997).
Section 3.5.1. The example of guessed exam scores appears in Gelman (1997).

Lightman and Sadler (1993) report a study in which physics teachers were far
too optimistic in predicting their students scores on a short test.

Section 3.5.2. The actual results from the 1971 Gallup poll were,

Adults with:
Grade school High school College Total

education education education adults
% for withdrawal
of U.S. troops (doves) 80% 75% 60% 73%
% against withdrawal
of U.S. troops (hawks) 20% 25% 40% 27%
Total 100% 100% 100% 100%

Students are generally surprised that less-educated people were the ones most
likely to be doves. This example comes from Loewen (1995, pp. 297–303), along
with a very interesting discussion of college students’ reactions. For an example
of the ongoing confusion about this topic, see the quotation from the Economist
on page 149.

Section 3.6.1. The discussion of the heights of men and women is adapted
from Gelman and Nolan (2002e). The height distributions appear in Brainard
and Burmaster (1992). Schilling, Watkins, and Watkins (2001) provide a de-
tailed discussion of the common misconception that the distribution of heights
is bimodal.

Section 3.6.2. The data on heights of conscripts, along with the explanation of
the apparent bimodality, appear in Stigler (1986). To see how the rounding could
affect the histogram, the following table shows the height ranges in centimeters
that convert to 60–64 inches.
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Height Estimated Estimated Estimated
range height height height range

(centimeters) (centimeters) (inches) (inches)
152–153 152.5 60.03 60–61
153–154 153.5 60.43 60–61
154–155 154.5 60.82 60–61
155–156 155.5 61.22 61–62
156–157 156.5 61.61 61–62
157–158 157.5 62.01 62–63
158–159 158.5 62.40 62–63
159–160 159.5 62.79 62–63
160–161 160.5 63.18 63–64
161–162 161.5 63.58 63–64
162–163 162.5 63.97 63–64

The interval 60–61 inches contains only two of these bins, while the other intervals
each contain three bins.

Section 3.6.3. See Smith (1997) for more on correlation and the regression
effect with exam scores.

Section 3.7.2. Cobb, Halstead, and Rowe (1995) discuss problems with GDP
and alternative measures of the size of the economy. Madrick (1998) discusses
different ways of adjusting for inflation.

Section 3.8.2. The estimates of world population over time in Table 3.12 come
from McEvedy and Jones (1978) and U.S. Census Bureau (2000).

Section 3.8.3. Figure 3.14 of metabolic rates and body masses of animals
is reproduced from Schmidt-Nielsen (1984, p. 57). The two books by Schmidt-
Nielsen (1978, 1984) have dozens of plots of this sort. Schmidt-Nielsen (1984, pp.
58–61) discusses why it is reasonable for the slope of the line in the graph to be
3/4 rather than 2/3. Dodds, Rothman, and Weitz (2001) discuss the history of
the problem and suggest that the 3/4 power is not so appropriate.

Section 4.1.2. The height–earnings regression exampleas presented here is
adapted from Gelman and Nolan (2002e). The data come from the Work, Fam-
ily, and Well-Being Survey (Ross, 1990). An interesting analysis of the relation
between height and wages appears in Persico, Postlewaite, and Silverman (2001).
More generally, economists have modeled income data in many ways; see, for ex-
ample, Geweke and Keane (2000). McDonald and Moffitt (1980) discuss the
general use of regression models for nonnegative data such as income.

Section 4.2.1. Pearson and Lee (1903) give data on body measurements of
university students and their families. Scheaffer et al. (1996, pp. 323–329) provide
another example of this activity.

Section 4.3.1. Anderson and Loynes (1987, p. 140) and Lawrance (1996) dis-
cuss directed projects in which students design experiments on short-term mem-
ory.

Section 4.3.2. The last section of Kahneman and Tversky (1973) discusses,
from a psychological perspective, the persistent confusion about regression to
the mean.
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Section 5.1. Many of the examples of survey sampling in this section appear
in Gelman and Nolan (2002c). Paranjpe and Shah (2000) discuss sampling to
estimate frequencies of letters.

Section 5.1.1. The idea of sampling from the telephone book has appeared in
various statistics texts. The telephone book clipping in Fig. 5.2 appears courtesy
of Verizon.

Section 5.1.2. Benford’s law of the distribution of first digits was first dis-
covered by Newcomb (1881), who noticed the pattern in the use of tables of
logarithms. Benford (1938) rediscovered it and fit it to many datasets. A recent
mathematical discussion appears in Hill (1998), and Matthews (1999) summa-
rizes the history of Benford’s law and many of its applications.

Section 5.1.3. The survey sampling template in Fig. 5.6 comes from Lohr
(1999).

Hemenway (1997) uses the sort of conditional probability reasoning discussed
in Section 7.5.2 to explain why surveys tend to overestimate the frequencies of
rare events. Misclassifications that induce seemingly minor biases in estimates
of certain small probabilities can lead to large errors in estimated frequencies.
Hemenway discusses this effect in the context of traditional medical risk problems
and then argues that this bias has caused researchers to drastically overestimate
the number of times that guns have been used for self defense. Direct extrap-
olations from surveys suggest 2.5 million self-defense gun uses per year in the
United States, but Hemenway shows how response errors could be causing this
estimate to be too high by a factor of 10.

Section 5.1.5. Groves (1989) gives a thorough and practical presentation of
sources of error in surveys.

Section 5.1.6. The family size example also appears in Madsen (1981), Gel-
man and Glickman (2000), and Gelman and Nolan (2002e). On related topics,
Gelman and Little (1998) show how to correct for the fact that persons in larger
households are less likely to be picked in a telephone survey, and Cohen and Co-
hen (1984) discuss related biases of size-based sampling in psychiatry research.
See also the selection bias examples in Section 10.2. Size-based sampling in wait-
ing times is a standard example in probability theory; a classroom demonstration
based on this idea appears in Scheaffer et al. (1996, pp. 157–160). Also see An-
derson and Loynes (1987, pp. 123–124).

Section 5.2. The class project on sample surveys is adapted from Gelman
and Nolan (2002b). Handouts and additional questionnaires can be found at
www.stat.berkeley/users/nolan/surveys/.

Section 5.2.1. For more guidance on questionnaire design, see Fowler (1995).
For more on sampling, see Lohr (1999).

Section 5.2.2. The Rand Corporation survey, “Combining Service and Learn-
ing in Higher Education,” is at www.rand.org/publications/MR/MR998/.

Section 5.3.1. The United Nations experiment appears in Gelman and Glick-
man (2000) and is adapted from a description in Kahneman and Tversky (1974).
The actual proportion of countries in the United Nations that are in Africa is
53/189 = 28%. For many other examples of cognitive illusions (such as the an-
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choring heuristic illustrated here), see, for example, Kahneman, Slovic, and Tver-
sky (1982) and Goldstein and Hogarth (1997). For another classroom demonstra-
tion in which an experiment is embedded in a survey, see Scheaffer et al. (1996,
pp. 284–288).

Section 5.3.2. The experiment of altering the order of the questions on the
midterm exam is described in Gelman (1997).

Section 5.3.3. Details of the taste-testing experiment appear in Chapter 5
of Nolan and Speed (2000). The original experiment conducted by Fisher is
described in Fisher (1966) and Box (1978).

Section 5.4.1. See U.S. Surgeon General’s Office (1964) for the full report.
Section 5.4.3. Briggs (2001) provides a thorough discussion of the effects of

test preparation on SAT scores. See Gladwell (2001) for an interesting journalistic
overview of SAT coaching.

Chapter 6. This chapter on statistical literacy assignments is adapted from
Gelman and Nolan (1997). Some statistics teaching ideas based on newspaper
clippings appear in Chatterjee, Handcock, and Simonoff (1995), Finn and Snell
(1992), and Pearl and Stasny (1992). For general discussion of statistical literacy
and education, see Bessant (1992) and Wallman (1993). Course packets for the
11 articles listed in Table 6.1 (which include the four articles in Section 6.6)
appear at www.stat.columbia.edu/∼gelman/literacy/.

Section 6.6.1. The article in Fig. 6.3 is reprinted with permission of the New
York Times. The excerpted journal article appears with permission of the New
England Journal of Medicine.

Section 6.6.2. The excerpted article appears with permission of Pediatrics.
Section 6.6.3. The articles in Fig. 6.4 are reprinted with permission of the San

Francisco Examiner and Science News. The excerpted journal article appears
with permission of Pediatrics.

Section 6.6.4. The article in Fig. 6.5 is reprinted with permission of the San
Francisco Examiner.

Section 7.3.1. Estimating the probability of sequences of boys and girls is dis-
cussed in Kahneman and Tversky (1972). The Elvis Presley problem is Exercise
1.6 in Gelman et al. (1995).

Section 7.3.2. This form of the coin-flipping demonstration is adapted from
Gelman and Glickman (2000). Other versions appear in Maxwell (1994), Revesz
(1978), Schilling (1990), and Gnanadesikan et al. (1997). Kahneman and Tver-
sky (1974) discuss people’s general belief that any finite sequence of coin flips
should have a haphazard pattern. Gilovich, Vallone, and Tversky (1985) show
how apparent hot and cold streaks of basketball players are actually consistent
with random fluctuations. In Fig. 7.1, the sequence on the left is real and the one
on the right is fake. The left sequence has a few long sequences of 0’s and 1’s,
which are typical in real coin flips but are almost never produced by students
trying to produce realistic fake sequences.

Section 7.3.3. The lottery examples, and the method of discussing them in
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a statistics class, come from Hanley (1984, 1992), who considers the case of
the woman who won the lottery twice and several other examples of extreme
probability estimates that are “too good to be true.” Articles of this sort appear
occasionally in the statistics teaching literature as well as in newspapers; for
example, Wetzel (2001) considers the probability of three sisters giving birth on
the same day.

Section 7.4.1. The probability distribution of the length of the World Series
is a well-known example, dating back at least to Mosteller (1952). A thorough
discussion and references appear in Stern (1998a).

Section 7.4.2. Voting power and the probability of a decisive vote have been
much studied in political science; Penrose (1946), Shapley and Shubik (1954)
and Banzhaf (1965) are important early references. Gelman and Katz (2001)
study the probability of decisiveness under various probability models (and ar-
gue against the models of Penrose, Shapley and Shubik, and Banzhaf); see also
Mulligan and Hunter (2001). Gelman, King, and Boscardin (1998) consider rare
events in the context of estimating the probability that your vote will be decisive
in a Presidential election.

Section 7.4.3. Martz and Zimmer (1992) describe various estimates of the
probability of space shuttle failure. Fischhoff et al. (1978) discuss other examples
of this sort. The World Cup example comes from Doward (1998), a newspaper
article about how insurance companies establish coverage for promotional events.

Section 7.5.1. The problem of the three cards is a standard elementary prob-
ability example. The Monty Hall problem is described by Selvin (1975) and
Morgan et al. (1991), and the related problem of the three prisoners appears in
Gardner (1961) and Mosteller (1965).

Section 7.5.2. The lie-detection demonstration appears in Gelman and Glick-
man (2000). The conditional probability of a false positive test is a standard
example in probability teaching (see, for example, Moore, 1990, pp. 123–124),
but we have not seen it elsewhere in the form of a demonstration. Tversky and
Kahneman (1982) discuss the cognitive error of neglecting the base rate. Manly
and Thomson (1998) describe a more realistic example of using statistics to
discover theft.

Hemenway (1997) has used conditional probability to assess the bias in survey
estimates of the frequency that guns are used in self-defense; see the Note to
Section 5.1.3 on page 268.

Section 7.6. The biased coin demonstration appears in Gelman and Nolan
(2002d). The story of King Olaf is told in Ekeland (1993), and Jay (2000) has
many other interesting stories of the history of biased dice. Kerrich (1946) de-
scribes his coin-flipping experiences.

Section 7.6.2. The three news clips on the Euro coin come from Denny and
Dennis (2002), Henderson (2002), and MacKenzie (2002).

Section 7.6.3. The physical model for coin flipping leading to the equal-
probability rule is discussed by Keller (1986), Peterson (1990, 1997), and Jaynes
(1986).
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Section 8.1. Variations of the subjective sampling demonstration appear in
the statistical literature; for example, Scheaffer et al. (1996, pp. 149–156) present
a version based on rectangles drawn on paper. The example of weighing a random
sample of candy is adapted from Gelman and Nolan (2002e).

Section 8.2.1. Dugger (2001) reports on varying sex ratios of births as an
indication of selective abortion or infanticide.

Section 8.3.3. The idea of estimating the proportion of land area from a globe
is described in Burrill and Cobb (1994) and Johnson (1997). This version of the
demonstration appears in Gelman and Glickman (2000).

Section 8.3.4. Ansolabehere and Belin (1993) discuss the relative importance
of sampling and nonsampling errors in poll differentials for Presidential elections.

Section 8.3.5. The data from golf putts appear in Berry (1995, pp. 80–82).
The golf putting activity is described in Gelman and Nolan (2002a). Further
information on golf putting appears in Pelz (1989).

Section 8.4.1. Moore (1990, pp. 130–131) illustrates the use of stacked inter-
vals to picture the sampling distribution of a confidence interval.

Section 8.5.3. The p-values for the taste-testing experiment are derived by
Fisher (1966).

Section 8.6.1. Miller (1956) is a fascinating article summarizing and inter-
preting studies on the number of items that can be memorized from a short
exposure. It has been suggested that the estimated memory capacity of seven
items is the reason why telephone numbers in the United States are seven digits
long, but this has been disputed; Bailey (2000) provides a brief critical overview
summarizing more recent developments.

Section 8.6.2. Anderson and Loynes (1987, pp. 163–164) discuss how to es-
timate the number of people in the country with your surname. McCarty et al.
(2001) use the frequency of certain first names to estimate the size of personal
networks.

Section 8.7.1. The basketball shooting example appears in Gelman and Glick-
man (2000). For more on the probability of making a basketball shot, see Gilovich,
Vallone, and Tversky (1985) and some related articles mentioned on page 253 at
the very end of Chapter 15 of this book.

Section 8.7.2. This data-dredging activity appears in Gelman and Glickman
(2000). The assumed normal distribution for IQ scores is discussed by Reese
(1997).

Section 8.7.3. The articles about prayer are Bowen (1999) and Harris et al.
(1999).

Section 9.1. See the notes for Section 4.1.2 on page 267.
Section 9.2.2. Gulliksen (1950) and Lord and Novick (1968) develop various

methods for checking exam questions by comparing to scores on other parts of
the test. Wainer (1983) has an example of a graphical check.

Section 9.3. The data from golf putts appear in Berry (1995, pp. 80–82). The
probability modeling appears in Gelman and Nolan (2002a).
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Section 9.4. The linear regression of y on x1 and x2, where y2 = x2
1 + x2

2, is
a well-known example; we do not remember where we first saw it.

Chapter 10. Huff (1954) is the classic book on lying with statistics. It is still
interesting and informative despite being a bit dated.

Section 10.1. Friendly (2000) and Wainer (1984, 1997) provide many inter-
esting examples of statistical graphics in the news media and elsewhere.

Section 10.1.1. Senator McCarthy’s lists of Communists are described by
Rovere (1959). The articles in Fig. 10.1 are reproduced with permission of the
San Francisco Examiner.

Section 10.1.2. The quotation is from the Economist, October 6, 2001, p. 36.
Section 10.1.3. The map in Fig. 10.2 is reproduced with permission of the

Daily Californian.
Section 10.1.5. The article in Fig. 10.3 is reprinted with permission of the

Boston Herald. The Boston Globe article is Wen (1989). The articles in Fig.
10.4 are reproduced with permission of the San Francisco Weekly and the San
Francisco Examiner.

Section 10.2.2. Here are the explanations of the selection bias puzzles:
1. Deaths of students are rare, but when a student dies, he or she is usually

young. Most students survive school and move to other professions.
2. As people age, their palms get more wrinkly. Hence, people who happen to

live a long time have wrinkly palms when they die.
3. Patients with chronic cases will see psychiatrists more often, compared to

patients with short-term problems. Thus, any given psychologists will tend
to spend more time with chronic patients. This is similar to the family-size
survey described in Section 5.1.6.

4. If a person has more friends, he or she is more likely to be someone’s friend
also. Hence, a random person’s friend is likely to be a person with many
friends.

5. It is logical for the survivors of a fight to blame it on the dead person, who
is in no position to deny it.

Wainer, Palmer, and Bradlow (1998) present several thought-provoking and
amusing examples of selection bias, including examples 1, 2, and 5 above. Exam-
ple 3, and its practical importance, are discussed by Cohen and Cohen (1984),
who label it the “clinician’s illusion.” Example 4 is discussed by Newman (2002)
in the context of studying connections in personal networks.

Section 10.2.3. For more about the studies of the early deaths of left-handers,
see Porac, Coren and Duncan (1980), Coren and Halpern (1991), and Halpern
and Coren (1991). Salive, Guralnik, and Glynn (1993) argue that these findings
are statistical artifacts. Further debate appears in Ellis (1990) and Coren (1990).

Section 10.3.2. The newspaper article in Fig. 10.5 is reprinted with permission
of the Chicago Sun-Times. Its two errors are:

1. The graph is misleading. The first thing you see when you look at the graph
is a big drop from 1993 to 1994, but this is just because the first three
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months of 1994 are compared to all of 1993.

2. The claim in the figure caption that “Chicago is on pace for 150 fire-related
deaths in 1994,” is wrong. Presumably they got this by multiplying 38 deaths
by 4 (since Jan 1 to Mar 29 is 1/4 of the year). But fire deaths are more
common in the winter, so taking these winter deaths and multiplying by 4
gives an overestimate. If you read the article, it says that in 1993 there were
37 deaths in the first 3 months of the year and 104 total. This suggests that
Chicago was on pace for 38 · (104/37) = 107 fire-related deaths in 1994.

Section 10.4. Statistics on the number of marriages and divorces in the United
States can be found in the Statistical Abstract of the United States. Whitehead
and Popenoe (2001) contains a discussion on the probability that a marriage
ends in divorce.

Section 10.5.1. More information on the National Surgical Adjuvant Breast
Project and Dr. Poisson’s data can be found on the Web at
www.lij.edu/education and research/research2000/Sessions/sess 04.ppt

Section 10.5.5. Quantitative studies of the rates of police stops by ethnic
group include New York State Attorney General’s Office (1999), Harris (1999),
and Persico, Knowles, and Todd (2001).

Herman Chernoff told us about the idea of fractional grades for multiple-
choice questions. More formally, grades can be estimated using the likelihood
function with stochastic models that implicitly are allocating points based on
the estimated probability of guessing; see Thissen and Wainer (2001).

Chapter 11. Some ideas about encouraging class participation, including the
use of student activities in lectures and discussions, appear in the books by
Davis (1993), Lowman (1995), McKeachie (1999), Bligh (2000a, b), Lovett and
Greenhouse (2000).

Section 11.3. Some of the methods of using exams to teach statistical concepts
appear in Gelman (1997).

Section 11.4. Short and Pigeon (1998) discuss how to introduce to students
the idea of a formal data collection protocol. Students might also be interested
in the Roberts (2001) article on self-experimentation. Weinberg and Abramowitz
(2000) discuss how to implement examples as case studies for students.

Section 11.5.5. The end-of-class feedback sheet is described by Mosteller
(1988, pp. 97–98). The effectiveness of student evaluations of teachers, and the
information used in these evaluations, is discussed by Ambady and Rosenthal
(1997).

Chapter 12. This course syllabus mostly follows Moore and McCabe (1998),
which is the textbook we use when teaching introductory statistics. We augment
Moore and McCabe by including more material on probability, adding some more
difficult homework assignments throughout the course, including a project, and
covering “lying with statistics” (see Chapter 10) at the end of the semester.
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Chapter 13. Much of the material in this chapter appeared in Gelman (1998).
Textbooks in applied decision analysis and Bayesian statistics, from various per-
spectives, include Watson and Buede (1987), Clemen (1996), Berry (1995), Gel-
man et al. (1995), and Carlin and Louis (2000).

Section 13.1.2. The concept of behavior that is not consistent with any utility
function is discussed and modeled by Kahneman and Tversky (1979), Kahneman,
Slovic, and Tversky (1982), and Thaler (1992).

Section 13.1.4. There is a large social-science literature on the equating of
dollars and lives; two interesting books on the topic are Rhoads (1980) and
Dorman (1996). The example and true values for the risk estimates in Fig. 13.3
come from Fischhoff et al. (1981), Slovic, Fischhoff, and Lichtenstein (1982),
and Rodricks (1992) and are, approximately, 2, 200, 800 000, 11 000, 40 000, 450,
90 000, 90.

Section 13.1.5. The Brier score was introduced by Brier (1950); it and related
probability scoring rules are discussed by Dawid (1986). When applied to exam
scoring, many methods have been proposed to take into account students’ un-
certainties in their answers; see, for example, Coombs, Milholland, and Womer
(1956) and DeFinetti (1965).

Section 13.1.6. Stern (1997, 1998b) analyzes betting odds and point spreads
for several professional sports. The books by Rombola (1984) and Jimmy “the
Greek” Snyder (1975) are full of fascinating anecdotes of sports gambling.

Romer and Romer (2000) use regression models to evaluate different organi-
zations’ predictions of inflation rates.

Section 13.2.1. The map in Fig. 13.4 follows Manton et al. (1989). Gelman
and Price (1999) discuss this problem in general and explains why the map of
posterior means also has problems, in that it overemphasizes the high-population
counties. Clayton and Bernardinelli (1992) discuss this sort of Bayesian inference
for epidemiology.

Section 13.2.2. Figure 13.5 with the too-narrow subjective intervals is adapted
from Hynes and Vanmarcke (1977) and is a well-known example in risk analysis.
An interesting discussion of overconfidence, with experimental results, appears
in Alpert and Raiffa (1984). The question about the total number of eggs comes
from that paper. The true values of the uncertain quantities in Fig. 13.6 are
12.1, 64.6 billion, 814, 48.7, 2, 6.25 million, 39.4 million, 4.1 million, 1.5 million,
35 500.

Section 13.2.4. The fitted gamma distribution is estimated based on informa-
tion in Manton et al. (1989). Gelman and Price (1999) also discuss this model.

Chapter 14. We use Lohr (1999) as a textbook when we teach survey sam-
pling.

Section 14.4. The idea of Clusterville is adapted from Schwarz (1997).
Section 14.5. The article in Fig. 14.3 appears courtesy of the New York Times.
Section 14.6.1. Descriptions of the complex surveys can be found on the Web

at the following locations:
National Survey of Family Growth, National Center for Health Statistics,
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www.cdc.gov/nchs/nsfg.htm
Youth Risk Behavior Surveillance, Centers for Disease Control,
www.cdc.gov/nccdphp/dash/yrbs
National Health Information Survey, National Institutes of Health,
www.cdc.gov/nchs/nhis.htm
Consumer Expenditure Survey, Bureau of Labor Statistics,
www.bls.gov/cex/home.htm
Current Population Survey, Bureau of Labor Statistics,
www.bls.census.gov/cps/cpsmain.htm
American Housing Survey, Department of Housing and Urban Development,
www.census.gov/hhes/www/ahs.html
Commodity Flow Survey, Census Bureau,
www.census.gov/econ/www/se0700.html
National Survey of Speeding and Other Unsafe Driving Actions, Bureau of Trans-
portation, www.nhtsa.dot.gov/people/injury/aggressive/unsafe/methods
Survey of Income and Program Participation, Census Bureau,
www.sipp.census.gov/sipp
National Crime Victimization Survey, Department of Justice,
www.ojp.usdoj.gov/bjs

Section 14.6.2. The StatCity population and R code are available at
www.stat.berkeley.edu/users/nolan/.

Section 14.6.3. The article in Fig. 14.6 appears courtesy of the San Francisco
Chronicle.

Chapter 15. Much of the material in this chapter appeared in Adhikari and
Nolan (1997).

Section 15.3. Some good sources of probability problems, at different levels
of difficulty, are Mosteller (1965), Feller (1968), and Williams (1991). The devel-
opment of the number theory example in this section is modeled after that in
Williams’s text (1991). For more on the stereology example at the end of Fig.
15.2, see, for example, Baddeley (1982).

Section 15.6.1. These instructions follow the treatment of the arcsine rule in
Feller (1968).

Chapter 16. The material in this chapter is adapted from Nolan and Speed
(1999, 2000). The book by Nolan and Speed (2000) gives several individual case
studies in depth. Data and instructions for a set of labs, including those in
Table 16.1, are available at www.stat.berkeley.edu/users/nolan/statlabs/.
Another source of case studies on a wide range of topics in statistics is Chatterjee,
Handcock, and Simonoff (1995).

Recently Cobb and Moore (1997) called for the design of a better one-semester
statistics course for mathematics majors that both strengthens their mathemati-
cal skills and integrates data analysis into the curriculum. Others have called for
similar courses (Foster and Smith, 1969; Hogg, 1985, 1992; Kempthorne, 1980;
Moore and Roberts, 1989; Mosteller, 1988; Petruccelli, Nandram, and Chen,
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1995; Whitney and Urquhart, 1990), and many consider training in statistical
thinking important (see, for example, Daisley, 1979; Joiner, 1989; Schuyten, 1991;
Riffenburgh, 1995; and Nash and Quon, 1996).

Section 16.3. The data for the quality control project are available at
www.stat.berkeley.edu/users/statlabs/. This case study is described in Do-
lezal, Burdick, and Birch (1998). More details on the theoretical material can be
found in Vardeman and VanValkenburg (1999).

Section 16.4. The helicopter design project is described by Bisgaard (1991).
Details appear in Chapter 12 of Nolan and Speed (2000).
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