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Preface 

Nearly all statistical packages, and many scientific computing 
libraries, contain facilities for the empirical choice of a model given 
a set of data and many variables or alternative models from which to 
select. There is an abundance of advice on how to perform the 
mechanics of choosing a model, much of which can only be described 
as folklore and some of wh ich is quite contradictory. There is a 
dearth of respectable theory, or even of trustworthy advice, such as 
recommendations based upon adequate simulations. This mono
graph collects together what is known, and presents some new 
material on estimation. This relates almost entirely to multiple linear 
regression. The same problems apply to nonlinear regression, such 
as to the fitting of logistic regressions, to the fitting of autoregressive 
moving average models, or to any situation in which the same data 
are to be used both to choose a model and to fit it. 

This monograph is not a cookbook of recommendations on how 
to carry out stepwise regression; anyone searching for such advice 
in its pages will be very disappointed. I hope that it will disturb 
many readers and awaken them to the dangers in using automatie 
packages which pick a model and then use least squares to estimate 
regression coefficients using the same data. My own awareness of 
these problems was brought horne to me dramatically when fitting 
models for the prediction of meteorological variables such as 
temperature or rainfall. Many years of daily data were available, so 
we had very large sampie sizes. We had the luxury of being able 
to fit different models for different seasons and to be able to use 
different parts of the data, chosen at random not systematically, for 
model selection, for estimation, and for testing the adequacy of the 
predictions. Selecting only those variables which were very highly 
'significant', using 'F-to-enter' values of 8·0 or greater, it was found 
that some variables with 't-values' as large as 6 or even greater had 
their regression coefficients reversed in sign from the data subset 
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used for selection to that used for estimation. We were typically 
picking about 5 variables out of 150 available for selection. 

Many statisticians and other scientists have long been aware that 
the so-called significance levels reported by subset selection packages 
are totally without foundation, but far fewer are aware of the 
substantial biases in the (least-squares or other) regression coef
ficients. This is one aspect of subset selection which is emphasized in 
this monograph. 

The topic of subset selection in regression is one wh ich is viewed 
by many statisticians as 'unclean' or 'distasteful'. Terms such as 
'fishing expeditions', 'torturing the data until they confess', 'data 
mining', and others are used as descriptions of these practices. 
However, there are many situations in which it is difficult to 
recommend any alternative method and in which it is plainly not 
possible to collect further data to provide an independent estimate 
of regression coefficients, or to test the adequacy offit of a prediction 
formula, yet there is very little theory to handle this very common 
problem. It is hoped that this monograph will provide the impetus 
for much badly needed research in this area. 

It is a regret of mine that I have had to use textbook examples 
rat her than those from my own consulting work within CSIRO. My 
experience from many seminars at conferences in Australia, North 
America and the UK, has been that as soon as one attempts to use 
'real' examples, the audience complains that they are not 'typical', 
and secondly, there are always practical problems which are specific 
to each particular data set which distract attention from the main 
topic. I am sure that this applies very much to the textbook examples 
which I have used, and I am grateful that I do not know of these 
problems! 

This is not in any sense a complete text on regression; there is no 
attempt to compete with the many hundreds of regression books. 
For instance, there is almost no mention of methods of examining 
residuals, of testing for outliers, or of the various diagnostic tests for 
independence, linearity, normality, etc. Very little is known of the 
properties of residuals and of other diagnostic statistics after model 
selection. 

Many people must be thanked for their help in producing this 
monograph, which has taken more than a decade. The original 
impetus to develop computational algorithms came from John 
Maindonald and Bill Venables. John Best, John Connell (who 
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provided a real problem with 757 variables and 42 ca ses), Doug 
Shaw and Shane Y oull tried the software I developed and found the 
bugs for me. It soon became obvious that the problems of inference 
and estimation were far more important than the computational 
ones. Joe Gani, then Chief of CSIRO Division of Mathematics and 
Statistics, arranged for me to spend a six-month sabbatical period 
at the University of Waterloo over the northern hemisphere winter 
of 1979/80. I am grateful to Jerry Lawless and others at Waterloo 
for the help and encouragement which they gave me. Hari Iyer is 
to be thanked for organizing aseries of lectures which I gave at 
Colorado State University in early 1984, just prior to reading a 
paper on this subject to the Royal Statistical Society of London. 
The mono graph was then alm ost completed at Griffith University 
(Brisbane) during a further sabbatical speil which Terry Speed 
generously allowed me from late 1985 to early 1987. The most 
important person to thank is Doug RatclifT, who has been a constant 
source of encouragement, and has read all but the last version of 
the manuscript, and who still finds bugs in my software. I of course 
accept full responsibility for the errors remaining. I would also like 
to thank Sir David Cox for his support in bringing this monograph 
to publication. 

Alan Miller 

Melbourne 



CHAPTER 1 

Objectives 

1.1 Prediction, explanation, elimination or what? 

There are several fundamentally different situations in which it may 
be desired to select a subset from a larger number of variables. The 
situation with which this mono graph is mainly concerned is that of 
predicting the value of one variable, which will be denoted by Y, 
from a number of other variables, which will usually denoted by 
X's. It may be required to do this because it is expensive to measure 
the variable Yand it is hoped to be able to predict it with sufficient 
accuracy from other variables which can be measured cheaply. A 
more common situation is that in which the X-variables measured 
at one time can be used to predict Y at some future time. In either 
case, unless the true form of the relationship between the X - and 
Y-variables is known, it will be necessary for the data used to select 
the variables and to calibrate the relationship to be representative 
ofthe conditions in which the relationship will be used for prediction. 
This last remark particularly applies when the prediction requires 
extrapolation, e.g. in time, beyond the range over which a 
relationship between the variables is believed to be an adequate 
approximation. 

Some examples of applications are 

1. the estimation of wool quality, which can be measured accurately 
using chemical techniques requiring considerable time and 
expense, from reflectances in the near infra-red region, which can 
be obtained quickly and relatively inexpensively; 

2. the prediction of meteorological variables, e.g. rainfall or 
temperature, say 24 hours in advance, from current meteorological 
variables and variables predicted from mathematical models; 

3. the prediction of tree heights at some future time from variables 
such as soil type, topography, tree spacing, rainfall, etc. 
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The emphasis here is upon the task of prediction not upon the 
explanation of the effects of the X-variables on the Y-variable, 
though the second problem will not be entirely ignored. The 
distinction between these two tasks is weIl spelt out by Cox and 
Snell (1974). However, for those whose objective is not prediction, 
Chapter 4 is devoted to testing inferences with respect to subsets of 
regression variables in the situation in which the alternative 
hypotheses to be tested have not been chosen apriori. 

Also we will not be considering what is sometimes called the 
'screening' problem, that is the problem of eliminating some variables 
(e.g. treatments or doses of drugs) so that effort can be concentrated 
upon the comparison of the effects of a smaller number of variables 
in future experimentation. The term 'screening' has been used for a 
variety of different meanings and, to avoid confusion, will not be 
used again in this monograph. 

In prediction we are usually looking for a small subset of variables 
which gives adequate prediction accuracy for a reasonable cost of 
measurement. On the other hand, in trying to understand the effect 
of one variable on another, particularly when the only data available 
are observational or survey data rather than experimental data, it 
may be desirable to include many variables which are either known 
or believed to have an effect. 

Sometimes the data for the predictor variables will be collected 
for other purposes and there will be no extra cost to include more 
predictors in the model. This is often the case with meterological 
data, or when using government-collected statistics in economic 
predictions. In other situations, there may be substantial extra cost 
so that the cost of data collection will need to be traded off against 
improved accuracy of prediction. 

In general, we will assume that all predictors are available for 
inclusion or exclusion from the model, though this is not always the 
situation in practice. In many ca ses, the original set of measured 
variables will be augmented with other variables ca1culated from 
them. Such variables could include the squares of variables, to allow 
curvature in the relations hip, or simple products of variables, to 
allow for the gradient of the regression of Y on say Xl to change 
with the value of another variable, say X 2' Usually a quadratic term 
will only be included in the model if the linear term is also inc1uded; 
similarly a product of two variables will only be included if at least 
one of the two original variables is also inc1uded. Computational 
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methods will be described, in Chapter 3, for finding best-fitting linear 
models subject to the unrestricted selection of variables. 

In some practical situations we will want to obtain a 'point 
estimate' of the Y-variable, that is a single value for it given the 
values of the predictor variables. In other situations we will want 
to predict a probability distribution for the response variable Y. For 
instance, rather than just predicting that tomorrow's rainfall will be 
5 mm we may want to try to assign one probability that it will not 
rain at all and another probability that the rainfall will exceed say 
20 mm. This kind of prediction requires a model for the distribution 
of the Y-variable about the regression line. In the case of rainfall, a 
lognormal or a gamma distribution is often assumed with parameters 
which are simple functions of the point estimate for the rainfall, 
though the distribution could be modelIed in more detail. Attention 
in this monograph will be focused mainly on the point estimate 
problem. 

All of the models which will be considered in this monograph will 
be linear, that is they will be linear in the regression coefficients. 
Though most of the ideas and problems carry over to the fitting of 
nonlinear models, the complexity is greatly increased. Also, though 
there are many ways of fitting regression lines, least squares (LS) 
will be almost exclusively used. Other types of model have been 
considered by Linhart and Zucchini (1986), while Boyce, Farhi and 
Weischedel (1974) consider the use of subset selection methods in 
optimal network algorithms. 

There has been a small amount of work done on multivariate 
subset selection. The reader is referred to Seber (1984) and Sparks 
et al. (1985) for an introduction to this subject. 

An entirely different form of empirical modelling is that of 
classification and regression trees. In this the data are split into two 
parts based upon the value of one variable, say X l' This variable is 
chosen as that which minimizes the variation ofthe Y-variable within 
each part while maximizing the difference between the parts. Various 
measures of distance or similarity are used in different algorithms. 
After splitting on one variable, the separate parts are then split. 
Variable X 2 may be used to split one part, and perhaps X 3' or X 2 

or even XI again, may be used to split the other part. Such methods 
are usually employed when the dependent variable is a categorical 
variable rather than a continuous one. This kind of modelling will 
not be considered here, but it suffers from the same problems of 
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over-fitting and biases in estimation as subset selection in multiple 
regression. For discussion of some of these clustering methods, see 
e.g. Everitt (1974), Hartigan (1975) or Breiman et al. (1984). 

When the noise in the data is sufficiently smalI, or the quantity 
of data is sufficiently large, that the detailed shape of the relationship 
between the dependent variable and its predictors can be explored, 
the technique known as projection pursuit may be relevant. See e.g. 
Huber (1985), Friedman (1987), Jones and Sibson (1987) or Hall 
(1989). 

1.2 How many variables in the prediction formula? 

It is tempting to include in a prediction formula all of those variables 
which are known to affect or are believed to affect the variable to 
be predicted. Let us look closer at this idea. Suppose that the 
predictor variable, Y, is linearly related to the k predictor variables, 
X 1,X2, ••• ,Xk thus 

k 

Y=ßo+ L ßiXi+ e (1.1) 
i= 1 

where the residuals, e, have zero mean and are independently sampled 
from the same distribution which has a finite variance (T2. The 
coefficients ßo, ß1' ... ' ßk will usually be unknown, so let us estimate 
them using LS. The LS estimates of the regression coefficients, to 
be denoted by b's, are given in matrix notation by 

b= (X'X)- l X'y 

where 

b' = (bo, b1, ... ,bk)' 

X is an n x (k + 1) matrix in which row i consists of a 1 followed by 
the values of variables Xl' X 2, ••. , X k for the ith observation, and Y 
is a vector oflength n containing the observed values of the variable 
to be predicted. 

Now let us predict Y for a given vector x' = (1, Xl' ••• ' Xk) of the 
predictor variables, using 

Y=x'b 

= bo + b1x 1 + ... + bkxk· 

Then from standard LS theory (see e.g. Seber, 1977 p. 364), we have 
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that 
var(x'b) = q2X'(X'X)- lX. 

If we form the Cholesky factorization of X' X, Le. we find a 
(k + 1) x (k + 1) upper-triangular matrix R such that 

(X'X)-l = R-1R- T 

where the superscript - T denotes the inverse of the transpose, then 
it follows that 

(1.2) 

Now x' R- 1 is a vector of length (k + 1) so that the variance of the 
predicted value of Y is the sum of squares of its elements. This is a 
suitable way in which to compute the variance of Y, though we will 
recommend later that the Cholesky factorization, or a similar 
triangular factorization, should be obtained directly from the 
X-matrix without the intermediate step of forming the 'sum of 
squares and products' matrix X' X. 

Now let us consider predicting Y using only the first p of the 
X-variables where p< k. Write 

X=(XA,XB) 

where XA consists of the first (p + 1) columns of X, and XB consists 
of the remaining (k - p) columns. Then it is weH known that if we 
form the Cholesky factorization 

X~XA =R~RA 

then RA consists ofthe first (p + 1) rows and columns of R, and also 
that the inverse R~ 1 is identical with the same rows and columns 
of R- 1• The reader who is unfamiliar with these results can find 
them in such references as Rushton (1951) or Stewart (1973) though 
it is obvious to anyone who tries forming a Cholesky factorization 
and inverting it that the factorization down to row p and the inverse 
down to row p are independent of following rows. The Cholesky 
factorization of X' X can be shown to exist and to be unique except 
for signs provided that X' X is a positive-definite matrix. 

Then if X A consists of the first (p + 1) elements of x and bA is the 
corresponding vector of LS regression coefficients for the model with 
only p variables, we have similarly to (1.2) that 

(1.3) 
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That is, the variance of the predicted values of Y is the sum of sq uares 
of the first (p + 1) elements which were summed to obtain the 
variance of x'b, and hence 

var(x'b) ~ var(x~bA)' 

Thus the variance of the predicted values increases monotonically 
with the number of variables used in the prediction - or at least it 
does for linear models with the parameters fitted using least squares. 
This fairly well-known result is at first difficult to understand. Taken 
to its extremes it could appear that we get the best predictions with 
no variables in the model. If we always predict Y = 7 say, irrespective 
of the values of the X-variables, then our predictions have zero 
variance but probably have a very large bias. 

If the true model is as given in (1.1) then 

and hence 

bA =(X~XA)-1X~Y 

E(bA) = (X~XA)-1 X~X~ 

= (X~XA)-1 X~(XA' XB)P 

= (X~XA)-1(X~XA,X~XB)P 

= PA + (X~XA)-1 X~XBPB 
where PA' ~B consist of the first (p + 1) and last (k - p) elements 
respectively of p. The second term above is therefore the bias in the 
first (p + 1) regression coefficients arising from the omission of the 
last (k - p) variables. The bias in estimating Y for a given x is then 

x'~ - E(x~bA) = X~~A + X~~B - X~~A - X~(X~XA)-1 X~XB~B 

= {x~ - X~(X~XA) -1 X~XB}~B' (1.4) 

As more variables are added to a model we are 'trading ofT reduced 
bias against an increased variance. If a variable has no predictive 
value then adding that variable merely increases the variance. If the 
addition of a variable makes little difference to the biases then the 
increase in prediction variance may exceed the benefit from bias 
reduction. The question of how this trade-off should be handled is 
a central problem in this field, but its answer will not be attempted 
until Chapter 6 because of the very substantial problems of bias 
when the model has not been selected independently of the data. 
We note though that the addition of extra variables does not 
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generally reduce the bias for every vector x. Also, the best subset for 
prediction is a function of the range of vectors x for which we want 
to make predictions. 

If the number of observations in the calibrating sam pie can be 
increased then the prediction variance given by (1.3) will usually be 
reduced. In most practical cases the prediction variance will be of 
the order n - 1 while the biases from omitting variables will be of 
order 1 (that is, independent of n). Hence the number of variables 
in the best prediction subset will tend to increase with the size of 
the sampie used to calibrate the model. 

We note here that Thompson (1978) has discriminated between 
two prediction situations, one in which the X -variables are 
controllable, as for instance in an experimental situation, and the 
other in wh ich the X -variables are random variables over which 
there is no control. In the latter ca se the biases caused by omitting 
variables can be considered as forming part of the residual variation 
and then the magnitude of the residual variance, (12, changes with 
the size of subset. 

At this stage we should mention another kind of bias which is 
usually ignored. The mathematics given above is all for the case in 
which the subset of variables has been chosen independently of the 
data being used to estimate the regression coefficients. In practice 
the subset of variables is usually chosen from the same data as are 
used to estimate the regression coefficients. This introduces another 
kind of bias which we will call selection bias; the first kind of bias 
discussed above will be called omission bias. It is far more difficult 
to handle selection bias than the omission bias, and for this reason 
a whole chapter, Chapter 5, is devoted to this subject. Apart from 
a few notable exceptions, e.g. Kennedy and Bancroft (1971), this 
topic has been alm ost entirely neglected in the literature. 

To illustrate the biases which can arise, consider the following 
simple artificial example. Let the population correlation matrix 
among three predictor variables, Xl' X 2' X 3' and adependent 
variable, Y, be 

[ 
0~5 0~5 ~:~ ~:~ 1 
0·5 0·5 1 0·5 . 

0·5 0·5 0·5 1 
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Artificial data were genera ted from the multivariate normal 
distribution with this matrix as its covarianee matrix, and with zero 
population means for all variables. Let us suppose that one and only 
one predictor is to be chosen. Thus we have a case of three predictors 
competing for selection. It is a case which is fairly typical of many 
which occur in practiee in which onee one variable has been selected, 
only a small improvement in the fit can be obtained by adding the 
others. 

Using a sampie of 20 cases, the best fitting predictor of the three 
was found. We know in this case that the three predictors are equally 
good, but we would not know that in a practical situation. The 
regression coefficient was estimated for the chosen variable, with 
only that variable in the model (excluding a constant for simplicity). 
The fraction R2 of the sum of squares of the dependent variable 
'explained' by the chosen predictor was also calculated. This exercise 
was repeated for 1000 sampies. Figure 1.1 shows histograms of 
the regression coefficient, b, and of R2 for the best-fitting predictor; 
these are the first and third histograms down. The other two 
histograms are the combined histograms for X l' whether or not it 
was the best-fitting, for X 2 and similarlY for X 3' The expected value 
of the regression coefficient of Y upon any one of the predictors is 
0'5, and the sampie mean for all three predictors considered one at 
a time was c10se to this (0'491), but the average regression coefficient 
for the best-fitting variable was 0·593. That is, the bias in the 
regression coefficient in this case is about 20%. About two-thirds of 
the sampie regression coefficients were above the expected value of 
0·5. There is a similar bias for R2 for which the population value 
for any one predictor chosen apriori is 0'25. The sampie average 
for the best-fitting variable was 0·374. Only 25% of the values of R2 

for the best-fitting predictor were less than 0·25. 
Though it has long been known that standard LS theory does 

not apply when the model has not been chosen independently of 
the data being used for estimation, this has rarely been stated 
explicitly in the literature. Hocking (1976) wams the reader that this 
is the case, but gives the reader no indication of the magnitude of the 
over-fitting, or of the biases in regression coefficients. Copas (1983) 
states explicitly (p. 321) that 'x j ••• is more likely to be selected if l,Bjl 
overestimates ... than if it underestimates. Thus the coefficients for a 
selected subset will be biased, as a result ofwhich the usual measures 
of fit will be too optimistic, sometimes markedly so'. Miller (1984) 
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Best b 

Allb 

Best R2 

All R2 
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Regression coefficient or R2 

Fig. 1.1 Histograms of va lues of the regression coefficient, b, and of R 2 for 
the best-fitting predictor out ofthree, andfor all predictors taken one at a time. 

goes further and attempts to quantify the biases in a few simple 
eases. 

The question of how many variables to include in the predietion 
equation, that is of deeiding the 'stopping rule' in seleetion, is one 
whieh has developed along different lines in the multiple-regression 
eontext and in the eontext of fitting time series, though it is the same 
problem. In the time-series eontext, terms are often added in a 
predetermined order. For instanee, if an autoregressive model is 
being fitted, the first term added is usually one with a lag of one 
time unit, the next is of two time units, ete. This closely paralleis a 
eommon praetiee in fitting polynomial regressions, of first fitting a 
linear term, then a quadratie, ete. It is unusual in fitting time-series 
models to do a seareh for the best term to add next, though the 
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fitting of seasonal terms mixed with say monthly terms, plus the fitting 
of moving-average as weIl as autoregressive terms, means that the 
choice of alternative models considered can be moderately large. 

In neither the multiple-regression nor the time-series case can an 
answer be given until selection bias is understood, except for the 
rare situation in which independent data sets are used for the 
selection of variables (or of the order of the model in fitting time 
series) and for the estimation ofthe regression coefficients. This topic 
will be discussed in detail in Chapter 6. 

1.3 Alternatives to using subsets 

The basic reason for not using all of the available predictor variables 
is that, unless we have sufficiently large data sets, some of the 
regression coefficients will be poody determined and the predictions 
may be poor as a consequence. Two principal alternatives are 
available which use all of the variables, these are (i) using 'shrunken' 
estimators as in ridge regression, and (ii) using orthogonal (or 
nonorthogonal) linear combinations of the predictor variables. 

The usual form in which the expression for the ridge regression 
coefficients is written is 

b(O) = (X'X + OI)-lX'y 

where I is a k x k identity matrix, and 0 is a scalar. In practice this 
is usually applied to predictor variables which have first been centred 
by subtracting the sampie average and then scaled so that the 
diagonal elements of X' X are all equal to I. In this form the 
X' X-matrix is the sampie correlation matrix of the original predictor 
variables. There is a very large literat ure on ridge regression and on 
the choice of the value for the ridge parameter 0, including several 
reviews (see e.g. Draper and van Nostrand, 1979; Smith and 
Campbell, 1980 and the discussion which follows this paper; Draper 
and Smith, 1981, p. 313-25). 

The simplest shrunken estimator is that obtained by simply 
multiplying all ofthe LS regression coefficients by a constant between 
o and 1. Usually this shrinkage is not applied to the constant or 
intercept in the model (if there is one), and the fitted line is forced 
to pass through the centroid of the X- and Y-variables. The best 
known of these shrunken estimators is the so-called James-Stein 
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estimator (see Sclove, 1968). There have also been many other types 
of shrunken estimator proposed; see for instance the 57 varieties 
considered by Dempster, Schatzoff and Wermuth (1977). 

All of these shrunken estimators yield biased estimates of the 
regression coefficients and hence usually of Y but, with a suitable 
choice of the parameter(s) controlling the amount of shrinkage, can 
produce estimates with sm aller mean square errors of prediction 
than the LS estimator using all the predictor variables, over a range 
of the X -variables. 

The use of orthogonal linear combinations of some or all of the 
predictor variables (calIed principal components in the statistical 
literature and empirical orthogonal functions in the geophysical 
sciences) is a way of reducing the number of variables. Usually only 
the combinations which correspond to the largest eigenvalues of X' X 
(or, equivalently the largest singular values of X) are used. If there 
are say 100 predictor variables there will be 100 eigenvalues but 
perhaps only the linear combinations corresponding to the first 5 
or 10 eigenvalues will be used. Often the selection of the subset of 
the new variables, i.e. the linear combinations, is done without 
reference to the values of the Y-variable, thus avoiding the problem 
of selection bias. It is usual practice to centre and scale the 
X -variables before calculating the eigenvalues or singular values, 
particularly if the predictor variables are of different orders of 
magnitude or have different dimensions. In some practical situations 
the first few eigenvectors may have so me sensible interpretation, for 
instance, if the X -variables are the same quantity (such as pressure 
or rainfall) measured at different locations, the first eigenvector may 
represent a weighted average, the second may be east-west gradient, 
and the third a north-south gradient. 

The derivation of principal components uses only the values of 
the predictor variables, not those of the variable to be predicted. In 
general there is no reason why the predictand should be highly 
correlated with the vectors corresponding to the largest eigenvalues, 
and it is quite common in practice to find that the vector wh ich is 
the most highly correlated is one corresponding to one of the smaller 
eigenvalues. A valuable ex am pie has been given by Fearn (1983). 
This paper was rather controversial, and some of the enthusiasts for 
ridge regression have published alternative analyses of the data (see 
e.g. Hoerl, Kennard and Hoerl, 1985 and Naes, Irgens and Martens, 
1986). 
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An alternative approach to principal component regression is to 
reject those components which make insignificant contributions to 
the fit to the predictor variable. This is the approach advocated by 
Jolliffe (1982). Mason and Gunst (1985) compare the advantages and 
biases of the two criteria for selecting principal components. 

There is no need for the linear combinations to be orthogonal; 
any linear combinations could be used to reduce the dimensionality. 
The advantages are that the coefficients within the linear 
combinations are taken as known so that only a small number of 
parameters, that is the regression coefficients, have to be estimated 
from the data, and that if there is no selection from among the linear 
combinations based upon the Y-values then there is no selection 
bias. The principal disadvantages are that the linear combinations 
involve all the predictor variables so that they must still all be 
measured, and the Y-variable may not be well predicted by the 
chosen linear combinations though there may be some other linear 
combination which has been rejected which does yield good 
predictions. 

1.4 'Black box' use of best-subsets techniques 

The ready availability of computer software encourages the blind 
use of best-subsets methods. The high speed of computers coupled 
with the use of efficient algorithms means that it may be feasible to 
find say the subset of 10 variables out of 150 which gives the c10sest 
fit in the LS sense to a set of observed Y-values. This does not 
necessarily mean that the subset thus chosen will provide good 
predictions. Throwing in a few more variables produced using a 
random number generator or from the pages of a telephone directory 
could have a very salutary effect! 

A number of derogatory phrases have been used in the past to 
describe the practices of subset selection, such as data grubbing, 
fishing expeditions, data mining (see Lovell, 1983), and torturing the 
data until they confess. Given a sufficiently exhaustive search, some 
apparent pattern can always be found, even if all the predictors have 
come from a random number generator. To the author's knowledge, 
none of the readily available computer packages at the time of 
writing makes any allowance for the over-fitting which undoubtedly 
occurs in these exercises. 

Given a large number of variables and hence a very large number 
of possible subsets from which to choose, the best subset for 



1.4 USE OF BEST-SUBSETS TECHNIQUES 13 

prediction may not be the one which gives the best fit to the sam pie 
data. In general, a number of the better-fitting subsets should be 
retained and examined in detail. 

If possible, an independent sam pie should be obtained to test the 
adequacy of the prediction equation. Alternatively, the data set may 
be divided into three parts; one part to be used for model selection, 
the second for the calibration of parameters in the chosen model, 
and the last part for testing the adequacy ofthe predictions. In some 
scientific disciplines, it is the practice, or at least the advocated 
practice, to divide the data into two parts rather than three. If this 
is done, the calibration of parameters should not be done using the 
same part of the da ta as was used to choose the model. This is 
because of the substantial biases which can arise in the estimation 
of parameter values in such cases. 

If splitting the data into parts is not possible, then cross-validation 
provides a poor substitute which can be used instead. These 
techniques will be discussed in Chapter 6. 

The 'traditional' approach to empirical model building has been a 
progressive one of plotting and/or correlating the Y-variable against 
the predictor variables one at a time, possibly taking logarithms or 
using other transformations to obtain approximate linearity and 
homogeneity of variance, then selecting one variable on some basis, 
fitting it and repeating the process using the residuals. This type 
of approach may be feasible when the data are from a well-designed 
experiment, but can be difficult to apply to observational data when 
the predictor variables are highly correlated. This type of approach 
is essentially a form of forward selection, one of the procedures to 
be discussed in Chapter 3. Forward selection procedures are relatively 
cheap to apply and easy to use. While forward selection and similar 
procedures often uncover sub sets which fit weIl, they can fail very 
badly. The Detroit homicide data used in Chapter 3 provides such 
a ca se (see Table 3.14) in wh ich the best-fitting subset of three 
variables gives a residual sum of squares which is less than a third 
of that for the subset of three variables found by forward selection. 
The author has one set of data, not presented here, for which the 
same ratio is about 90:1. In general, it is gross optimism to hope 
that an ad hoc procedure of adding one variable at a time, and 
perhaps plotting residuals against everything which comes to mind, 
will find the best fitting subsets. 

A sensible compromise between forward selection and the costly 
extreme of an exhaustive search is often required. If it is feasible to 
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carry out an exhaustive search for the best-fitting subsets of say five 
variables, then an examination of say the best 10 subsets each of 
three, four and five variables may show two variables which appear 
in all of them. Those two variables can then be forced into all future 
sub sets and an exhaustive search carried out for the best-fitting 
subsets of up to seven variables including these two. 

It will often not be possible to specify in advance a complete set 
of variables to be searched for best-fitting subsets, though large 
numbers of polynomial and interaction terms may be included in 
the initial set. For instance, if possible trends in time have to be 
considered then it may be sensible to include interactions between 
some of the variables and time as a way of allowing for regression 
coefficients to vary with time. Graphical examination may for 
instance show that polynomial terms and interactions are being 
included in most of the better-fitting subsets because the response 
variable has an asymptotic level, or a threshold level. In such cases 
a simple nonlinear model may provide a much better predictor, and 
by explaining a considerable amount of the noise in the data may 
show up the relationship with other variables more clearly. 

When a small number of promising sub sets of variables has been 
found, the fit of these subsets should be examined in detail. Such 
methods of examination are often graphical. This may show that 
there are outliers in the data, that some of the observations have 
far more influence than others, or that the residuals are highly 
autocorrelated in time. These methods are not described in detail in 
this monograph. Useful references on this subject are Atkinson 
(1985), Barnett and Lewis (1978), Baskerville and Toogood (1982), 
Belsley, Kuh and Welsch (1980), Cook and Weisberg (1982), Cox 
and Snell (1981), Gunst and Mason (1980), Hawkins (1980) and 
Weisberg (1980). The user should be cautious though as the 
techniques of empirical data analysis described in these references 
are for the case in which the model has been chosen independently 
of the data. Nothing appears to be known about the properties of 
LS residuals of best-fitting subsets. 



CHAPTER 2 

Least-squares computations 

2.1 Using sums of squares and products (SSP) matrices 

Most modern statistical packages use some form of orthogonal 
reduction for least-squares (LS) computations, yet such methods are 
still not widely known or taught. Most of the published algorithms 
for subset selection in regression use methods based upon sums of 
squares and products matrices, and so abrief introduction to such 
methods is given here. Most of this chapter though is devoted to 
orthogonal reduction methods, and to the properties of orthogonal 
projections. 

Given a set of n observations of k variables, xij' i = 1,2, ... , n, 
j = 1,2, ... , k, the LS coefficients, bi , j = 1,2, ... , k, are obtained by 
solving the set of (k + 1) 'normal' equations: 

LYi = nbo + b1 L Xi1 + ... + bk L Xik 

LXilYi = bO~>il + b1 LXrl + ... + bkLxilXik 

L XikYi = bo L Xik + b1 L XikXil + ... + bk l>?k (2.1) 

where all of the summations are over i, that is over the observations. 
The oldest method for solving the normal equations is that of 

Gaussian elimination. The method is weIl known and is described 
in many elementary texts on numerical methods or on linear 
regression. If the normal equations must be solved, it is an efficient 
method provided that the number of equations, k + 1, is not large. 
For k greater than about 15-20, an iterative procedure of the 
Gauss-Seidel or over-relaxation type will usually be faster. Most 
modern LS algorithms do not use the normal equations because of 
the poor accuracy they can give. 

It is instructive to look at the first stage of Gaussian elimination. 
Suppose that we start by eliminating the term bo from all except 
the first equation. For the (j + l)st equation we do this by 
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subtracting (~:Xi)n) times the first equation from it. This leaves this 
equation as 

L XijYi - L XijYJn = bdL xijxil - L Xij L Xil/n) 

+ ... + bk(L XijXik - L Xij L xiJn). (2.2) 

Now it can be readily shown that 

L xijxi/ - L Xij L XiJn = L (Xij - X)(Xi/ - x,), (2.3) 

where Xj' X, are the means of the variables X j and X" Hence (2.2) 
can be written as 

L (Xij - Xj)(Yi - y) = b1 L (Xij - Xj)(Xil - Xl) 

+ ... + bk L (Xij - Xj)(Xik - Xk)' (2.4) 

The set of k equations of the form (2.4) for j = 1,2, ... , k constitute 
what are known as the 'centred' or 'corrected' normal equations. 

We note that regression programs have sometimes contained code 
to perform the centring operation on the left-hand side of (2.3) and 
then called a Gaussian elimination routine to solve the remaining 
k centred equations when the routine operating on the original (k + 1) 
equations would have performed the same centring operations 
anyway! 

The use of the right-hand side of (2.3) as the computational method 
for centring requires two passes through the data, the first to calculate 
the means and the second to calculate the cross-products. An 
alternative method uses progressively updated means as each new 
observation is added. If we let Sr be a partial cross-product calculating 
using the first r observations, then it can be shown that 

where 

r+ 1 

Sr+ 1 = L (Xi - Xr+ l)(Yi - Yr+ 1) 
i= 1 

= Sr + (j;l>;r/(r + 1), 

(jx = X r + 1 - Xr 

(jy = Yr+l - Yr 

(2.5) 

and X,., y" Xr + l' Yr + 1 are the means of X and Y from the first r or 
r + 1 observations. The means are updated using 

Xr + 1 = Xr + (jJ(r + 1). 
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In the form (2.5), two multiplications are required for each 
observation for each pair of variables. This can be halved by using 
the deviation from the new mean for one ofthe two variables. Thus if 

then 

Sr+ 1 = Sr + c5:c5Y' 

This updating formula appears to be due to Jennrich (1977, equation 
16 on p. 64). A review of other updating formulae has been given 
by Chan, Golub and LeVeque (1983), who give a method of their 
own, similar to the fast Fourier transform, which gives good accuracy 
when the sampie size is an exact power of 2. See also Miller (1989). 

The use of the right-hand side of (2.3) or of progressive updating 
(2.5) for calculating the centred equations can give very substantial 
improvements in accuracy, but only when fitting regressions which 
inc1ude an intercept. A c1assic example is that given by Longley 
(1967). He examined the regression of employment against six other 
variables for the years 1947-62. Table 2.1 gives the numbers of 
accurate digits in the coefficients of the centred normal equations 
as calculated in single precision using a computer which allocates 
32 binary bits to floating-point numbers wh ich are thus stored to 
an accuracy of about 7 decimal digits. The numbers of accurate 
digits were taken as -loglOl(ejx)l, where x is the true value and e 
is the error. The number of accurate digits was taken as 7·2 when 
the error was zero or when the logarithm exceeded 7·2. In this case, 
the use of either the right-hand side of (2.3) or of progressive updating 
of the means (2.4) has resulted in a centred SSP-matrix with very 
little loss of accuracy. Regression coefficients calculated using the 
left-hand side of (2.3) yie1ded no accurate digits in any of the seven 
coefficients using Gaussian elimination, in fact five of the seven had 

Table 2.1 

F ormula used 

Left-hand side of (2.3) 
Right-hand side of (2.3) 
Progressive updating (2.5) 

Range oi accurate digits 

3,1-7,2 
6,7-7,2 
6,0-7,2 
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the wrong signs. Using either of the other centring methods gave 
between 2·6 and 4·7 accurate digits for the different coefficients. 

Writing the equations (2.1) in matrix form gives 

X'Y = X'Xb (2.6) 

where X is an n x (k + 1) matrix with a column of l's as its first 
column and such that the element in row i and column (j + 1) is 
the ith value of the variable Xj; Y is a vector of length n containing 
the observed values of the variable Y, and bis the vector of (k + 1) 
regression coefficients with the intercept bo as its first element. The 
matrix X' X is then the SSP-matrix. 

This formulation tempts the use of matrix inversion to obtain b 
using 

b = (X,X)-l X'v. (2.7) 

If only the regression coefficients are required, this involves 
considerably more computation than using Gaussian elimination. 
However the covariance matrix of b is given by u2(XX) - 1 so that 
the inverse is usually needed. 

The SSP-matrix is symmetrie and positive definite, or at worst 
positive semi-definite, and there are extremely efficient ways to invert 
such matrices. Two of the popular methods are the so-called 
Gauss-Jordan method (though it was probably unknown to either 
Gauss or Jordan - it first appeared in a posthumous edition of a 
book by Jordan), and the Cholesky factorization method. The 
Cholesky factorization can also be used in a similar way to Gaussian 
elimination to obtain the regression coefficients by back-substitution. 
Both of these methods can be executed using the space required for 
either the upper or lower triangle of the matrix, with the inverse 
overwriting the original matrix if desired. Code for the Gauss-Jordan 
method is given in Wilkinson and Reinsch (1971, pp. 45-9), Garside 
(1971a) and Nash (1979, pp. 82-5). Code for the Cholesky 
factorization is given in Wilkinson and Reinsch (1971, pp. 17-21) and 
Healy (1968a, b), though it can easily be coded from Stewart (1973, 
algorithm 3·9 on p. 142). From error analyses, the Cholesky method 
should be slightly more accurate (see e.g. Wilkinson, 1965, pp. 244-5), 
but in an experiment to compare the Gauss-Jordan and Cholesky 
methods by Berk (1978a), the difference was barely detectable. 

The Cholesky method requires the calculation of square roots. 
Square roots can be calculated very quickly in binary arithmetic 
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using a method which is often taught in schools for calculating square 
roots in the scale of ten. If we are trying to find the square root of 
a number y and have so far found a number x containing the first 
few digits or binary bits, then we attempt to find absuch that 

(x + b)2 ~ Y 

whence 

b ~ (y - x2)j(2x + b). 

That is, we divide the current remainder (y - x 2 ) by twice x plus 
the next binary bit b. The particular advantages in the scale of two 
are that the doubling operation simply requires a shift, and the next 
bit, b, can only be 0 or 1 so that the division operation is simply a 
test of whether (2x + b), when shifted the correct number of places, 
is greater than or equal to the remainder. As the divisor, 2x + b, 
starts with only one binary bit and averages only half the number 
in the mantissa, the method is about twice as fast as a floating-point 
division. Unfortunately most computers use a different method to 
take advantage of hardware for division. This method usually uses 
two Newton-Raphson iterations and often gives errors in the last 
binary bit. This could explain Berk's findings on the relative accuracy 
of the Gauss-Jordan and Cholesky methods. 

The Cholesky method uses the factorization 

X'X=LL' 

where L is a lower-triangular matrix. An alternative factorization, 
which is sometimes credited to Banachiewicz (1938), wh ich avoids 
the calculation of square roots is 

X'X=LDL', (2.8) 

where L is lower-triangular with l's on its diagonal, and D is a 
diagonal matrix. In computations, the elements on the diagonal of 
D are stored overwriting the diagonal elements of L. This can be 
expected to be slightly more accurate than the Gauss-Jordan 
method and as efficient in terms of both speed and storage require
ments. Code for forming the factorization (2.8) is given in Wilkinson 
and Reinsch (1971, pp. 21-4). 

An advantage of the Cholesky or Banachiewicz methods over the 
Gauss-Jordan method in some situations is that the tri angular 
factorizations can easily be updated when more data become 



20 LEAST-SQUARES COMPUTATIONS 

available. A method for doing this will be presented in section 2.2. 
If the Gauss-Jordan method has been used, the inverse matrix 
(X' X) - 1 can be updated using 

A* = A - (Axx'A)/(1 + x'Ax), (2.9) 

where A is the old inverse and A* is the updated inverse after an 
extra observation, x, has been added. Unless the inverse matrix is 
required after every new observation is added, this method is slow 
and can give poor accuracy. If only the regression coefficients are 
required after each observation is added, then the regression 
coefficients can be obtained quickly from a triangular factorization 
using back-substitution without the need for matrix inversion. The 
update formula (2.9) is usually credited to Plackett (1950) or Bartlett 
(1951), though it has been suggested by Kailath (1974) that the 
method was known to Gauss. 

So far we have looked at some aspects of LS computations when 
all of the variables are to be included in the model. In selecting a 
subset ofvariables we will want to perform calculations for a number 
of different subsets, sometimes a very large number of them, to find 
those which give good fits to the data. Several ways of doing this 
will be described in Chapter 3. In choosing the computational 
procedure, we will need both speed and accuracy. Accuracy is 
particularly important for two reasons: 

1. Subset selection procedures are often used when there is a choice 
among several fairly highly correlated variables which are 
attempting to measure the same attribute, and in such cases the 
normal equations can be badly ill-conditioned. 

2. Some of the procedures for searching for best-fitting subsets 
require a very large number of arithmetic operations to be 
performed and we need to be sure that rounding errors accumulate 
as slowly as possible. 

The emphasis will be upon calculating the residual sum of squares 
for each subset investigated, not upon regression coefficients which 
can be found later for the small number of subsets singled out for 
closer scrutiny. We will want to obtain the residual sum of squares 
for a subset with the smallest amount of additional computation 
from calculations already carried out for previous subsets. We shall 
see later that methods operating on the SSP- matrix (or equivalently 
on the correlation matrix) and its inverse sometimes have a slight 
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speed advantage over methods based around triangular factorization 
which will be described in section 2.2. 

However, these latter methods have a very definite advantage in 
accuracy, particularly if the starting triangulation is computed 
accurately using either orthogonal reduction or extra precision. On 
many computers, two levels of precision are available, a single 
precision which often represents floating-point numbers to about 
7-8 significant decimal digits, and a double precision which 
represents them to say 16-18 decimal digits. The accuracy advantage 
is such that it is often feasible to perform the search for best-fitting 
subsets in single precision using the methods based around triangular 
factorizations when double precision is necessary using SSP-matrices 
and Gauss-Jordan methods. When a floating-point processor is not 
available, double-precision calculations are usually several times 
slower. 

2.2 Orthogonal reduction methods 

The basic idea here is to find an orthogonal basis in which to express 
both the X- and Y-variables, to perform regression calculations in 
this basis, and then to transform back to obtain regression 
coefficients in the dimensions of the real problem. In most of the 
orthogonal reduction methods, the matrix X of n observations of 
each of k variables, Xl' X 2"", X k (where Xl will be identically equal 
to one in most practical cases), is factored as 

X=QR, (2.10) 
where either 

1. Q is an n x k matrix and R is a k x k upper-triangular matrix, or 
2. Q is an n x n matrix and R is an n x k matrix containing an 

upper-triangular matrix in its first k rows and zeros elsewhere. 

In either case, the columns of Q are orthogonal and usually 
normalized so that 

Q'Q=I 

where I is either a k x k or an n x n identity matrix. The principal 
methods which use the factorization (2.1O) are the Gram-Schmidt, 
Householder reduction, and various methods using planar rotations 
(also known as Jacobi or Givens rotations). A readable general 
introduction to these alternative methods is contained in 
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Seber (1977, Chapter 11). Code for the modified Gram~Schmidt 
method has been given by Farebrother (1974), Wampler (1979a, b) 
and Longley (1981), and for the Householder method by Lawson 
and Hanson (1974, algorithm HFTI on pp. 290~1), Lawson et al. 
(1979) and in the LINPACK package (Dongarra et al., 1979). 

An alternative type of orthogonal reduction method uses the 
singular-value decomposition (s.v.d.) in which Xis factored as 

X=VAV', (2.11 ) 

where V is n x k, A is a k x k diagonal matrix with the singular 
values along its diagonal, V is k x k, and V' V = V' V = VV' = I. Then 

X'X = VA 2 V', 

which provides a quick and accurate way of calculating principal 
components without first forming the SSP-matrix. In most statistical 
work the matrix V is not required, and in such cases A and V can 
conveniently be obtained starting from the factorization (2.10). 

Principal components are usually formed after subtracting the 
me ans from each variable. If the orthogonal reduction (2.10) has 
been formed from a matrix X which had a column of l's as its first 
column, then the means are conveniently removed simply by leaving 
out the top row of R. Similarly, the X -variables can be scaled to 
have unit sum of squares about the mean by scaling each column 
of R, after removing the top row, so that the sum of squares of 
elements in each column is 1. The modified version of R is then used 
in place of X in (2.11) to obtain the same principal components 
which are usually obtained (with poor accuracy) from the correlation 
matrix. As the matrix R has only (k - 1) rows, which is usually far 
fewer than the n rows of X, the s.v.d. calculation is fairly fast; the 
bulk of the computational effort goes into calculating the orthogonal 
reduction (2.10). Ths s.v.d. can be used for multiple regression work 
but is usually somewhat slower than the other orthogonal reductions. 
Code for the s.v.d. is given in Chan (1982), Lawson and Hanson 
(1974, pp. 295~7), LINPACK (Dongarra et al., 1979), Nash (1979, 
pp. 30~1) and Wilkinson and Reinsch (1971, pp. 134~51). 

If we write R = {rij}' then from (2.10) we have 

Xl = rllQl 

X2 = r 12Ql + r 22Q2 

X3 = r 13Ql + r 23Q2 + r 33Q3, etc. 
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Thus Ql spans the space of Xl; Ql and Q2 span the space of X 2' 
where r22Q2 is that component of X 2 which is orthogonal to X 1> 

etc. We notice also that 

X'X=R'R, 

that is that R is the upper triangle of the Cholesky factorization. 
SSP-matrices can thus be constructed from the R-matrix if needed. 
If we omit the first row and column of R, the remaining coefficients 
give the components of X2, X3, etc. which are orthogonal to Xl' in 
terms of the direction vectors Q2' Q3' etc. If Xl is a column of 1 's 
then R'_lR_ l gives the centred SSP-matrix, where R_ l is R after 
removal of the first row and column. Correlations between variables 
can then be calculated from the SSP-matrix. Similarly, by removing 
say the first three rows and columns of R, the matrix of partial 
correlation among X 4 ,XS , ••• ,Xk can be obtained after regressing 
out Xl' X 2 and X 3• 

The orthogonal reduction (2.10) can be achieved by multiplying 
X on the left by aseries of orthonormal matrices, each one chosen 
to reduce one or more elements of X to zero. One such type of 
matrix is the planar rotation matrix 

where c and s can be thought of as cosine and sine, as for the matrix 
to be orthonormal we require that c2 + S2 = 1. For instance, if we 
want to reduce the element y to zero by operating on the two rows of 
the matrix below, we choose c = w/(w2 + y2)1/2 and s = y/(w2 + y2)1/2, 
then 

( c s)(w x 
-s c y z 

cx+sz ... ) 
-sx + cz .. . 

The full planar rotation matrix looks like 

where the blanks denote zero values, for the rotation of rows 2 and 
4 of a 4 x 4 matrix. 
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By applying planar rotations to one additional row of X at a time, 
the factorization (2.10) can be achieved requiring the storage of only 
one row of X and the k rows of R at any time. It is possible to 
eliminate the calculation of square roots by producing the 
Banachiewicz factorization instead of the Cholesky factorization. 
Efficient algorithms for this have been given by Gentleman (1973) 
and Hammarling (1974). Using this type ofmethod, (! is the product 
of the planar rotations as the product is such that (! X = R. The 
matrix Q is not usually formed explicitly, though the c's and s's can 
be stored if needed. 

The linear transformations applied to the X-variables are 
simultaneously applied to the Y-variable giving a vector Q'Y. The 
vector of values of Y can be added to X as an extra column if wished, 
though that method will not be used here.lfthe orthogonal reduction 
is of the kind for which Q is an n x k matrix, e.g. the modified 
Gram-Schmidt method, then Q'Y is of length k, and there is an 
associated residual vector wh ich is orthogonal to the columns of Q 
and hence orthogonal to the X -space. If the reduction method is of 
!he kind for which Q is an n x n matrix, e.g. Householder reduction 
or planar rotation methods, then Q'Y is of length n. In either case, 
the first k elements of Q'Y are the projections of Y in the directions 
Ql' Q2"'" Qk' 

The residuals in the last (n - k) elements of Q'Y from either the 
Householder reduction method or the planar rotation method can 
be shown to be uncorrelated and to be homogeneous, i.e. to have 
the same variance, if the true but unknown residuals from the model 
also have these properties. This is a property which LS residuals do 
not have, and it can be useful in model testing. The residuals from 
using Householder reduction are known as LUSH (linear unbiased 
with scalar, covariance Householder) and are discussed by 
Grossman and Styan (1972), Ward (1973) and Savin and White 
(1978). The residuals from using planar rotations have been shown 
by Farebrother (1978) to be identical to the 'recursive' residuals of 
Brown, Durbin and Evans (1975) and are much more readily 
ca1culated using planar rotations than by using the elaborate method 
given by them. 

If we let r iy denote the ith element of Q'Y, then 

Y = r1yQl + r2yQ2 + ... + rkyQk + e (2.12) 

where e is the vector of residuals orthogonal to the directions 
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Q1, Q2"'" Qk' The ri;s are therefore the LS regression coefficients 
of Y upon the Q's. Using (2.12), we can substitute for the Q's in 
terms of the variables of interest, that is the X's. In matrix notation, 
(2.12) is 

Y = Q(Q'Y)+e 

where Q is an n x k matrix. Substituting for Q from (2.10) then gives 

Y = XR- 1Q'Y +e 

=Xb+e 

where b is the vector of regression coefficients of Y upon X. Hence 
b can be calculated from 

or more usually by back-substitution in 

Rb=Q'Y. (2.13) 

The formula (2.13) can also be obtained by substitution in the 'usual' 
formula (2.7). By using only the first p equations we can quickly 
obtain the regression coefficients ofY upon the subset Xl' X 2""'X P' 

The break-up ofthe sum of squares is readily obtained from (2.12). 
The total sum of squares of Y is 

Y'Y = ri, + r~y + ... + r;y + eie. 

If the first variable, Xl' is just a column of I's then the total sum 
of squares of Yabout its me an is 

2 2 + 2 + I r 2y + r 3y + ... r ky e e. 

The residual sum ofsquares after regressing Y against Xl' X 2"'" X P 

is 

2 + 2 + I r P + l,y + ... r ky e e. 

Thus from the factorization (2.10), and the associated vector Q'Y, 
the set of k sequential regressions Y upon Xl; Y upon Xl and X 2; 
Y upon Xl' X 2' ... , X k can be carried out very quickly. In the 
situation in which there is a hierarchical order for carrying out a 
set of regressions, such as when fitting polynomials, the various 
methods of orthogonal reduction provide a fast computational 
method. 
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Now suppose that we want to regress Y against a subset of the 
predictor variables such as Xl' X 3 and X 4 but excluding X 2 • We 
can rearrange the columns of X and Q in (2.10), and both the rows 
and columns of R. Unfortunately the rearranged matrix R, let us 
call it Rn is no longer triangular. We have then 

X 1 X 3X 4X 2 = Ql Q3Q4Q2RT 

where RT looks like 

x x x X 

X X 

X 

X X X 

where an X denotes a nonzero element. A more serious problem is 
that the orthogonal directions Ql' Q3 and Q4 do not form a basis 
for Xl' X 3 and X 4 as both X 3 and X 4 have components in the 
direction Q2 which is orthogonal to this basis. A solution to this 
problem is to use planar rotations to restore RT to upper-triangular 
form. By operating upon rows 2 and 4, the element in position (4,2) 
can be reduced to zero. Other elements in these two rows will be 
changed, in particular a nonzero element will be introduced into 
position (2,4). Another planar rotation applied to rows 3 and 4 
removes the element in position (4,3) and the matrix is in upper
triangular form. Let P be the product of these two planar rotations, 
so that PRT is the new tri angular matrix. Then 

so that the first three columns of (Q1Q3Q4Q2P) form the new 
orthogonal basis. This method appears to have been used first by 
EIden (1972); it is described in more detail by Clarke (1980). The 
first publication of the method appears to be in Osborne (1976). 

Software for changing the order of variables can be found in 
Osborne (1976), in the LINPACK package Dongarra et al. (1979), 
and in Clarke (1981). 

It is possible to generate subset regressions from the s.v.d. as weIl 
as from triangular factorizations, but the process of adding or 
deleting a variable changes the entire factorization, not just one or 
two rows. 
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2.3 Gauss-Jordan v. orthogonal reduction methods 

We have said that the orthogonal reduction methods, which lead to 
operations on triangular matrices, are much more accurate than 
methods which require the inversion of parts of an SSP-matrix. Why 
is this? Let ei be used to denote the ith LS residual, then 

p 

ei=(Yi- y)- L bixij-xj ) 
j= 1 

(2.14) 

where the b/s are the LS estimates of the regression coefficients and 
it is assumed that we are fitting models containing a constant; Xi' Y 
denote the sam pie means of the appropriate variables. Suppose that 
the e;'s are calculated using (2.14) with each quantity correctly 
rounded to t decimal digits. Now let us suppose that the e;'s are of 
a sm aller order of magnitude than the (Yi - y)'s, which will be the 
case if the model fits the data closely. The order of magnitude could 
be defined as say the average absolute value of the quantities, or as 
their root-mean square, or as some such measure of their spread. 
Then if the e;'s are of order lO-d times the order of the (Yi - y)'s, 
the e;'s will be accurate to about (t - d) decimal digits, and the sum 
Lef will have a similar accuracy. This loss of d decimal digits is 
because of the cancellation errors which occur in performing the 
subtraction in (2.14). Suppose, for instance, that we are working to 
seven decimal digits, then the right-hand side of (2.14) for one 
observation might be 

3333333. - 3311111. 

giving a difference ei = 22222. If the two quantities were correctly 
rounded then the maximum error in each is 0·5. Hence the maximum 
error in ei is 1·0 or a possible error of one in the fifth decimal digit. 
This is the principal source of error in orthogonal reduction methods 
in which we work in the scale of the original variables, not in the 
scale of their squares as with SSP-matrices. 

In using SSP-matrices, residual sums of squares are usually 
calculated as 

n n n 

L ef = L (Yi - y)2 - L bj L (Xij - Xj)(Yi - y). (2.15) 
i=1 i=1 j i=1 

Now ifLef is ofthe order of 1O-2d times the order ofL(Yi - y)2, and 
all ofthe terms on the right-hand side of(2.15) are correctly rounded 
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to t decimal digits, then 2d digits in each of the terms on the 
right-hand side must cancel giving an accuracy of (t - 2d) digits for 
the residual sum of squares. Thus we can expect to lose about twice 
as many digits of accuracy using methods based upon SSP-matrices 
as we lose using orthogonal reduction methods. 

The notation (1 - R2) is commonly used for the ratio 
Let !L(Yi - ji)2. Then if R2 = 0·9 we can except to lose one decimal 
digit due to cancellation errors when using SSP-matrices. We can 
expect to lose two digits if R 2 = 0,99, three if R 2 = 0'999, etc. This 
assumes that L(Yi - ji)2 was calculated accurately in the first place 
and, as was shown in section 2.1, this can also be a source of serious 
error. These are lower limits to the loss in accuracy as they ignore 
errors in the b/s, which can be substantial if there are high 
correlations among the X -variables. 

Now let us look at how this applies to regressions involving subsets 
of variables. Let us denote by aij the element in row i and column 
j of the SSP-matrix. In adding variable number r into the regression 
we calculate new elements, a~, usually overwriting the old ones, using 

a~ = aij - airariarr for all i,j =F r, 
a~ = - air/arr for i =F r, 

and 

a:;' = 1/arr• 

The elements, a:, along the diagonal are of particular interest. 
Initially aii is the sum of squares for variable Xi' which may have 
been centred if a constant is being fitted. (air/arr) is the regression 
coefficient for the regression of variable Xi on variable X r which we 
will denote by bir. Then 

for i =F r. (2.16) 

This has the same form as (2.15) as bir and air have the same sign. 
Hence if the correlation coefficient between Xi and X r is ± 0·95 (i.e. 
R2 ~ 0'9), one decimal digit will be lost in cancellation errors in 
calculating a:, two digits will be lost if the correlation is ± 0'995, 
etc. This means that high correlations among the predictor variables 
can lead to losses of one or more digits in calculating the second 
term on the right-hand side of (2.15) so that the residual sum of 
squares may be of low accuracy even when the Y-variable is not 
weIl predicted by the X -variables. Again these los ses are roughly 
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halved when working in the scale of the X -variables, e.g. with 
triangular factorizations, rather than with sums of squares and 
products. 

Planar rotations are stable transformations wh ich lead to little 
build-up in error when used repeatedly. Suppose for instance that 
we need to calculate 

x = uc + vs 

where c, s are such that c2 + S2 = 1, and that the values of u and v 
have been calculated with errors t5u and t5v respectively. Then, 
neglecting errors in c and s, the error in the calculated x is 

t5x = c t5u + S t5v 

plus any new rounding error in this calculation. The maximum value 
of t5x is then {(t5U)2 + (t5V)2} 1/2 and occurs when c = ± t5u/{(t5U)2 + 
(t5V)2} 1/2, though in most cases it will be much smaller and often the 
two components of t5x will have opposite signs and partially cancel 
each other. Thus the absolute size of the errors will remain small, 
though the relative errors may be large when the x resulting from 
calculations such as this is very small. Thus we can anticipate only 
little build-up of error when planar rotations are used repeatedly to 
change the order of variables in tri angular factorizations. There is 
no such result limiting the size of build-up of errors in the inversion 
and reinversion of parts of matrices in the Gauss-Jordan method. 

The above is a heuristic discussion ofthe errors in LS calculations. 
Detailed error analyses have been given for one-off LS calculations 
by Golub (1969, particulady pp. 382-5), Jennings and Osborne 
(1974), Gentleman, W.M. (1975) and Stewart (1977), among others. 
The basic building blocks for these analyses were given by Wilkinson 
(1965) on pp. 209-17 for Gaussian elimination, and on pp. 131-9 
for planar rotations. 

To investigate the build-up of errors in a subset selection 
procedure, the Garside (1971 b, c) algorithm for generating all subsets 
of variables using a Gauss-Jordan method, and an equivalent 
routine using plan ar rotations were compared with respect to both 
speed and accuracy in single precision on machines which use 32 
binary bits for floating-point numbers and hence store numbers with 
about seven significant decimal digits. In each case the appropriate 
starting matrix, the upper triangle of the SSP-matrix for the Garside 
algorithm and the upper triangular matrix from an orthogonal 
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reduction for the planar rotation algorithm, were calculated in 
double precision then rounded to single precision. Generating all 
possible subsets is usually not very sensible in practice; it was chosen 
here as an extreme example of a subset selection procedure requiring 
the maximum amount of computational effort and hence giving the 
slowest speeds and poorest accuracy. 

The Garside algorithm was programmed in FORTRAN with the 
upper triangle of the SSP-matrix stored as a singly dimensioned 
array to minimize the effort required in evaluating storage addresses. 
The tests for singularities and the facility for the grouping of variables 
were omitted. 

Many alternative ways of coding the planar rotation algorithm 
were considered. First, two alternative orders for producing the 
subsets were examined, namely the Hamiltonian cycle, as used by 
Garside (1965) and Schatzoff et al. (1968), and the binary sequence 
as used by Garside (1971b,c). Unless otherwise stated, the 'Garside 
algorithm' will be used to refer to his 1971 algorithm. 

The Hamiltonian cycle can be thought of as a path joining all of 
the corners of a hypercube in which each step is to a neighbouring 
corner. If the corners of a three-dimensional cube with side of unit 
length are at (0,0,0), (0,0,1), ... , (1,1,1), then there are many 
Hamiltonian cycles of which one is 

000 001 011 010 110 111 101 100 

In applying this to subset selection, a '1' or '0' indicates whether a 
variable is in or out of the subset. The attractive feature of the 
Hamiltonian cycle is that only one variable is operated upon at each 
step. In the binary sequence, the string of O's and 1 's is treated as a 
binary number to which one is added at each step. Thus a sequence 
for three variables is 

000 001 010 011 100 101 110 111 

This sequence often requires several variables to be added or 
removed from the subset in one step. However, as the right-hand 
end digits change rapidly, these can be made to correspond to the 
bottom corner of the tri angular matrix, in either the Garside or the 
planar rotation algorithm, where there are fewer elements to be 
operated on than in the upper rows. More details ofthese alternatives 
are contained in Appendix 2A, where it is shown that for a moderate 
number, k, of X -variables, the number of multiplications or divisions 
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per subset is about (10 + k) for the Hamiltonian cycle and 15,75 per 
subset for the binary sequence, In contrast, Garside's algorithm 
requires 14 operations (multiplications or divisions) per subset (not 
8 as stated by Garside). Both the Hamiltonian cycle and the binary 
sequence have been used with the planar rotation algorithm in the 
comparisons which follow. 

The other major alternative considered was in the treatment of 
the response variable Y. It could either be left as the last variable 
or it could be allowed to move in the triangular matrix being placed 
immediately after the last variable included in the current subset. It 
was found to be much faster with the Hamiltonian cycle to leave it 
fixed as the last variable as otherwise two rows of the triangular 
matrix had to be swapped at each step instead of one. The column 
corresponding to the Y-variable, Q'Y in our earlier notation, was 
stored as aseparate vector as also were the progressive residual sums 
f th t ' th t't'" 2, 2 2 t o squares, a IS e quan lies e e, e e + rk)l' e e + rk)l + r k - 1,)I' e c. 
Another alternative considered was whether to use the Gentleman 

(1973) algorithm or the Hammarling (1974) algorithm for the planar 
rotations. The Gentleman algorithm is usually slower but can be 
applied so that only small sub-triangles within the main triangular 
matrix need to be operated upon when a binary sequence is used 
to generate the subsets, The Hammarling algorithm has a 
disadvantage in that it requires occasional rescaling to prevent its 
row multipliers becoming too smalI. In the following comparisons, 
both the Hammarling and Gentleman algorithms have been used, 
the first with the Hamiltonian cycle and the second with the binary 
sequence. 

For the comparisons of accuracy, five data sets were used. These 
are briefly summarized in Table 2.2. The W AMPLER data set is an 
artificial set which was deliberately constructed to be very 
ill-conditioned; the other data sets are all real and were chosen to 
give a range of numbers of variables and to give a range of 
ill-conditioning such as is often experienced in real problems. 

Table 2.3 shows measures of the ill-conditioning of the 
SSP-matrices. If we denote the eigenvalues of the correlation matrix 
by A/S, then the ratio of the largest to the smallest, Amaxl Amin' is often 
used as a measure of the ill-conditioning of the SSP-matrix. Berk 
(1978a) compared a number of measures of ill-conditioning and 
found that for matrix inversion the accuracy of the inverse matrix 
was most highly correlated with the trace of the inverse matrix, 
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Table 2.2 Summary of data sets used 

Data set k=no.of n=no.of 
name Source X -variables observations 

WAMPLER Wampier (1970) using his Y3 5 21 
LONGLEY Longley (1967), Y = total 6 16 

derived employment 
STEAM Draper and Smith 9 25 

(1981, p. 616) 
DETROIT Gunst and Mason (1980). 11 13 

Set A3 on p. 360. 
Origin, Fisher (1976) 

POLLUTE Gunst and Mason (1980). 15 60 
Set B1 on pp. 370-1. 
Origin, McDonald and 

Schwing (1973) 

Table 2.3 M easures of ill-conditioning of the test data sets 

AmaJAmin L(l!Ai) 

Data set X only X and Y X only X and Y 

WAMPLER 600000 700000 130000 130000 
LONGLEY 12000 6000 3100 2200 
STEAM 800 1100 290 350 
DETROIT 7000 4200 1500 1500 
POLLUTE 900 1000 260 280 

which is L(1jA;). Both of these measures are shown in the table, 
first for the matrix of correlations among the X -variables only and 
then with the Y-variable added. 

Table 2.4 shows the lowest and average numbers of accurate 
decimal digits in the residual sums of squares for all subsets of 
variables for the Gauss-Jordan (GJ) and the two planar rotation 
algorithms. The calculations were performed using a CROMEMCO 
Z2-D microcomputer using Microsoft FORTRAN version 3.37 and 
the CDOS operating system. As mentioned earlier, the centred 
SSP-matrix and orthogonal reduction were calculated in double 
precision (equivalent to about 17 decimal digits) and then rounded 
to single precision. Some calculations were repeated on a PDPll-34 
with identical results. 
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Table 2.4 Lowest and average numbers of accurate decimal digits in the 
calculation of residual sums of squares for all subsets 

Gauss-Jordan Hamiltonian cycle Binary sequence 
Data 
set Lowest Average Lowest Average Lowest Average 

WAMPLER 1·6 3·5 4·9 6·6 5·0 6·4 
LONGLEY 3·6 5·5 6·1 6·9 6·3 7·2 
STEAM 4·4 5·5 5-4 6·6 5·6 6·6 
DETROIT 2·0 5·0 4-9 6·1 4·5 6·2 
POLLUTE 3-6 4·3 5·0 6·0 4·5 5·5 

The performance of the planar rotation algorithms was very 
impressive in terms of accuracy. The LONGLEY data set is often 
used as a test of regression programs and we see that in the worst 
case only about one decimal digit of accuracy was lost; in fact the 
accuracy was calculated, using the logarithm to base 10 ofthe relative 
accuracy, to be at least 7·0 for 22 out of the 63 residual sums of 
squares using the Hamiltonian cycle and the Hammarling rotations, 
and even better for the binary sequence and Gentleman rotations. 
The POLLUTE data set required a large amount of computation 
yet there was very little sign of build-up of errors using planar 
rotations; for the last 100 subsets generated (out of 32767), the lowest 
accuracy was 5·3 decimal digits and the average was 5·9 using the 
Hamiltonian cycle. In contrast, the Gauss-Jordan algorithm 
performed poorly on the very ill-conditioned W AMPLER data set, 
and on the moderately ill-conditioned DETROIT data set, and on 
the well-conditioned POLLUTE data set. On the POLLUTE data 
set a steady build-up of errors was apparent. The last 100 of the 
subsets generated contained none with an accuracy greater than 4·0 
decimal digits. 

How much accuracy is needed? A subset selection procedure is 
used to pick a small number of subsets of variables which give small 
residual sums of squares. Regression coefficients and other quantities 
can be calculated later using a saved, accurate copy ofthe appropriate 
matrix. In most practical cases an accuracy of two decimal digits, 
equivalent to errors of 1%, will be quite adequate as this is usually 
less than the difference needed between two or more subsets to be 
statistically significant. Hence, provided that the initial SSP-matrix 
is calculated accurately, the Gauss-Jordan algorithm is adequate 
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for all of these subsets except the artificial W AMPLER set, using a 
machine, such as the CROMEMCO or PDPll-34, which allocates 
32 binary bits to floating-point numbers and performs correctly 
rounded arithmetic. However some computers perform truncated 
arithmetic. Limited experience with one such computer showed an 
alarming build-up of errors for the Gauss-Jordan algorithm but 
only slightly worse performance for the planar rotation algorithm. 

The Gauss-Jordan method will usually give just acceptable 
accuracy in single precision and using 32-bit arithmetic provided 
that the initial SSP-matrix is calculated using greater precision, and 
using a computer which performs rounded arithmetic; either planar 
rotation method will almost always be adequate in such cases. How 
weIl do the planar rotation methods perform if the initial orthogonal 
reduction is also carried out in single precision? Table 2·5 shows the 
results obtained using a Hamiltonian cycle. Except for the 
LONGLEY data set, the accuracy is only about half a decimal digit 
worse than before. The poorer performance with the LONGLEY 
data is associated with one variable, the year. Subsets which included 
the year gave accuracies between 3·5 and 5· 3 decimal digits, averaging 
4·2 digits; the other subsets gave 5·1-6·7 accurate digits with an 
average of 5·6 digits. The value of this variable ranged from 1947 
to 1962 so that the first two decimal digits were the same for each 
line of data, and there was not much variation in the third digit. 
This one variable causes a loss of about 2·5 decimal digits using 
orthogonal reduction and about 5 decimal digits using SSP-matrices 
with crude centring. 

To compare the speeds of the planar rotation and Gauss-Jordan 
algorithms, artificial data were genera ted. Table 2·6 gives times in 

Table 2.5 Lowest and average numbers of accurate 
decimal digits in the residual sums of squares using planar 
rotations and an initial orthogonal reduction calculated in 
single precision 

Data set Lowest accuracy Average accuracy 

WAMPLER 4·6 5·4 
LONGLEY 3·5 4·9 
STEAM 5·2 6·0 
DETROIT 4·3 6·0 
POLLUTE 5·0 5·6 
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Table 2.6 Times in seconds. and their ratios. for calculating residual sums of squares 
for all subsets using planar rotation and Gauss-J ordan algorithms 

Ratios 
No.of Hamiltonian Binary 
variables Garside + Hammarling + Gentleman HamlGJ BinlGJ 

10 3·8 5·5 4·7 1·42 1·23 
11 7·7 12·1 9'8 1·56 1·27 
12 15·4 25·3 19'1 1·64 1·24 
13 31· 54· 38· 1·75 1·23 
14 63· 113· 80· 1·80 1·27 
15 129· 235· 152· 1·82 1·18 
16 241' 494· 300· 2·05 1·25 
17 484· 1037· 602· 2'14 1·24 

seeonds taken to ealculate the residual sums of squares for all subsets 
on a PDPII-34 in FORTRAN IV under a UNIX operating system. 
No aeeuraey ealculations were earried out during these speed tests 
and no use was made of the residual sums of squares which were 
not even stored. A verages of three runs were reeorded for k up to 
14; averages of two runs are reeorded for larger k. We see that the 
Gauss-Jordan algorithm is faster for all values of k in the table, 
though its speed advantage over planar rotations using the binary 
sequenee is not large. It is possible to inerease the speed of this 
planar rotation algorithm by not operating upon the first row when 
a variable is deleted. This makes the algorithm fairly eomplex but 
inereases both speed and aeeuraey. This has not been done by the 
author. 

For a more detailed eomparison of the merits of LS eomputations 
based upon SSP-matriees versus those based upon orthogonal 
reduetion, see Maindonald (1984) or Farebrother (1988). 

2.4 Interpretation of projections 

The projeetions, riy, of the Y-variable on eaeh of the orthogonal 
direetions Ql, Q2"'" Qk are simple linear eombinations ofthe values 
of the Y-variable, and henee have the same dimensions (e.g. length, 
mass, time, temperature, ete.) as the Y-variable. Similarly, the 
elements rij of matrix R in the orthogonal reduetion (2.10) have the 
same units as variable Xj' i.e. the eolumn variable. rij is simply the 
projection of variable X j upon direetion Qi' where j ~ i. 
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The size, r iy, of a projection is dependent upon the ordering of 
the predictor variables, unless they are orthogonal. When the 
X-variables are correlated among themselves, changing their order 
often produces substantial changes in the projection of the Y-variable 
on the direction associated with a particular X-variable. UsualIy, 
the earlier that a variable occurs in the ordering, the larger will be 
the projection associated with it, but this is not a mathematical law 
and it is possible to construct examples for wh ich the opposite 
applies. To iIIustrate the effect of ordering, consider the following 
artificial data: 

Xl 40 
Y 65647 
Xl 46 

41 
70638 

47 

42 
75889 

48 

43 
81399 

49 

44 45 
87169 93202 

50 
Y 99503 106079 112939 120094 127557 

If we construct two further variables X 2 and X 3 equal to the square 
and cube of X 1 respectively, then the LS regression equation relating 
Y to Xl' X 2 and X 3' incIuding a constant, is 

Y = 1 + Xl + X 2 + X 3' 

that is, all the regression coefficients should be equal to 1·0 exactly. 
This is a useful test of how well a regression package handles 
iII-conditioning. The projections of Y in the 'natural' and reverse 
order are 

Constant 
Linear 
Quadratic 
Cubic 

313 607 
64856 

3984 
78.6 

Cubic 
Quadratic 
Linear 
Constant 

320267 
-477 

0.69 
0·00087 

The residual sum of squares is exactly 286. From the first ordering 
we see that if the cubic is omitted, the residual sum of squares is 

286 + (78·6)2 = 6464 

whereas, from the second ordering, if both the constant and linear 
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term are omitted, the residual sum of squares is only 

286 + (0·000 87)2 + (0·69)2 = 286·5. 

A useful statistical property of the projections is that if the true 
relationship between Y and the X -variables is linear with 
uncorrelated residuals which are normally distributed with 
homogeneous variance, (12, then the projections are also uncorrelated 
and normally distributed with variance (12. This can be demonstrated 
as folIows. Let 

Y=Xp+e 

where the e are independent and N(O, (12), then the projections are 
given by 

Q'Y=Q'Xp+Q'e 

=(~)p+Q'e. 
The vector RP contains the expected values of the first k projections, 
where k is the number of columns in X. The remaining (n - k) 
projections have zero expected values. The stochastic part of the 
projections is Q'e. This vector has covariance matrix equal to 

E(Q'ee'Q) = Q' E(ee')Q 

= (12Q'Q 

= (121. 

That is, the elements of Q'e are uncorrelated and all have variance 
(12. This part of the result is distribution-free. If the elements of e 
are normally distributed, then the elements of Q'e, being linear 
combinations of normal variables, will also be normally distributed. 
Thus we can think of the projections as statistics with expected 
values and variances. This important property will be exploited in 
later chapters in explaining the nature of selection and stopping-rule 
biases. The result is due to Grossman and Styan (1972), though a 
much more readable account is given in Golub and Styan (1973). 

Notice that the size of the elements of Q'e is independent of both 
the sam pie size, n, and the number of predictors, k. As the sam pie 
size increases, if the X -predictors and Y continue to span roughly 
the same ranges of values, the elements of R will increase roughly 
in proportion to Jn so that the stochastic element in the projections 
decreases relative to Rp. 
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Appendix 2A Operations counts for all-subsets calculations 

In the following derivations for Garside's Gauss-Jordan algorithm 
and for the planar rotations algorithms, the notation differs slightly 
from Garside's in that k is defined as the number of X -variables 
(excluding any variable representing a constant in the model). In 
Garside (1971b), the value of k is one larger than our value as it 
inc1udes the Y-variable. The word 'operation' will be used to mean 
a multiplication or a division. 

The derivations require the following two sums with various limits 
of summation and with oc = 2: 

k-l 
L roc,-l = {(k-l)ock -kock - 1 + 1}/(I-oc)2 (2A.l) 

,= 1 

k L r(r-l)oc,-2 = {-k(k-l)ock+l +2(k-l)(k+ l)ock 

,= 1 

(2A.2) 

2A.l Garside's algorithm 

Using a binary order for subset generation, the variable in position 
1 is deleted only once, the variable in position 2 is deleted twice and 
reinstated once, and the variable in position i is deleted 2i - 1 times 
and reinstated one less time. That is, variable number i is pivoted 
in or out a total of (2i - 1) times. In pivoting on row i, that row is 
left unchanged as variable i will be reinstated before any variable in 
a lower-numbered position is used as a pivot. Each higher-numbered 
row requires one operation to set up the calculations and then one 
operation per element in the row on and to the right of the diagonal. 
The setting-up operation also uses the reciprocal of the diagonal 
element in the pivot row. These setting-up operations, which were 
omitted from Garside's operations counts, are exactly those which 
would be calculated in operating upon the pivot row. In pivoting 
on row i, (k + 3 - j) operations are performed on row j inc1uding 
the set-up operation for that row, where j ranges from (i + 1) to 
(k + 1). Thus the total number of operations required to pivot on 
row i is (k + 2 - i)(k + 3 - i)/2. Hence the total operations count for 
the Garside algorithm is 

k 

L (2 i - 1)(k + 2 - i)(k + 3 - i)/2= 14(2k)-(k+ 4)(k2 +8k+21)/6 
i= 1 
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As there are (2k -1) subsets, the operations count is approximately 
14 per subset for moderately large k. For small k, the numbers of 
operations per subset are as folIows: 

k 2 3 5 10 20 

Operations per subset 5·0 7·0 10·29 13-56 13-998 

2A.2 Planar rotations and a Hamiltonian cycle 

The following simple algorithm generates a Hamiltonian cycle which 
is suitable for generating all subsets of k variables. Each time that 
step 3 is executed, a new subset of p variables is generated. The 
subsets of variables 1, 1 2, 1 2 3, ... , 1 2 3 ... k, are obtained from the 
initial ordering without any row swaps; the calculation of residual 
sums of squares for these subsets requires 2(k - 1) operations. 

1. For i = 1 to k - 1, set index(i) = i. 
2. Setp=k-1. 
3. Swap rows p and p + 1. 
4. Add 1 to index(p). 

5(a). U index(p)~k - 1, set index (p + 1) = index(p), add 1 to p, go 
to step 3. 

5(b). Else, substract 1 from p, 
U p > 0, go to step 3. 
Else the end has been reached. 

A new subset is generated each time that two rows are swapped. 
Hence row i and (i + 1) are swapped (kCi - 1) times. Using the 
Hammarling algorithm, it requires 10 + 2(k - i) operations to 
perform the swapo This count comprises 8 operations to set up the 
rotation and calculate the new elements in columns i and (i + 1), 2 
operations on the Q'Y -vector, 2 operations to calculate the residual 
sum of squares for the new subset of i variables, and 1 operation 
for each remaining element in rows i and (i + 1). Hence the total 
count of operations is 

k-1 
L (kCi -1)(10 + 2k - 2i) + 2(k -1) = (10 + k)2k - k2 - 9k -12 
i=1 
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or about (10 + k) operations per subset for moderately large k. For 
small k, the numbers of operations per subset are as folIows: 

k 2 3 5 10 20 

Operations per subset 4·67 8·0 12·84 19·82 29·9995 

At the end of this algorithm, the variables are in a scrambled order. 

2A.3 Planar rotations and a binary sequence 

To see how the algorithm works in this case, consider a case with 
six X -variables. Let us suppose that variable number 2 has just been 
deleted. The current order of the variables is 1 3 4 5 62. The binary 
code for this situation is 1 0 1111, i.e. the only variable with a zero 
index is number 2. Subtracting 1 from the binary value gives 
1 0 111 0, i.e. we drop variable number 6. This requires no change 
of order as the subset 1 345 is already in order. Subtracting another 
1 gives 101101. This requires the interchange of rows 4 and 5 
which contain variables 5 and 6. After variable number 2 was deleted 
the triangular factorization looked like that shown in the table below, 
where X's and *'s denote nonzero elements. As variables are 
reinstated in exactly the reverse order in which they were introduced 
in the binary sequence, though not in the Hamiltonian cycle, we 
would hope to be able to avoid operating on elements other than 
those marked with an * in deleting variable number 5. Also, we 
would hope to be able to omit the column swaps which are a feature 
of the planar rotation algorithm. Unfortunately, if we use the 

Variable represented in the column 
Variable represented 
in the row 3 4 5 6 2 

1 X X X X X X 
3 X X X X X 
4 X X X X 
5 * * X 
6 * X 
2 X 
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Hammarling algorithm, when variable 5 is later reinstated, its row 
multiplier is not the same as it was immediately before the variable 
was deleted. This means that the new row multiplier is not that 
which applied to the last elements in the rows for variables 5 and 
6. If the Gentleman algorithm is used, this problem does not arise, 
nor does it arise with the so-called fast planar rotation given by the 
updating formula (9') in Gentleman (1973). However, the latter is 
liable to give severe accuracy problems, which can be far worse than 
those associated with Gauss-Jordan methods. 

In developing code to use the binary sequence with a planar 
rotation algorithm it is necessary to be able to find the appropriate 
variable to add to or delete from the current sub set. Fortunately the 
variables in the subset are always represented in increasing order in 
the tri angular factorization while those deleted are always in reverse 
numericalorder. In the algorithm which follows, nout(i) stores the 
number of variables with number less than i which are currently out 
of the subset. This means that if variable number i is in the subset, 
its position is i - nout(i). As the next-to-Iast variable is always 
reinstated immediately after being deleted, it is only necessary to 
calculate the value of the residual sum of squares when it is deleted; 
there is no need to calculate the new values for the three elements 
in the bottom corner ofthe tri angular factorization. The array ibin( ) 
stores the 0-1 codes indicating whether a variable is in (1) or out 
(0) of the subset, k = the total number of variables, and ifirst is the 
number of the first variable which may be deleted (e.g. if there is a 
constant in the model which is to be in all subsets then ifirst = 2). 
The algorithm is 

1. Calculate the initial residual sums of squares. 
Simulate the deletion of variable number (k - 1). 

2. For i = 1 to k - 2, set ibin(i) = 1 and nout(i) = O. 
Set last = k. 

3. Subtract 1 from position k - 2 in the binary value ofthe sequence. 
Set p = k- 2. 

4. If ibin(p) = 1, go to step 6. 
Else set ibin(p) = 1. 

Set ipos = p - nout(p) 
Raise variable from position (last + 1). to position ipos. 
Set last = last + 1. 

5. Set p = p - 1. 



42 LEAST-SQUARES COMPUTATIONS 

If p > 0, go to step 4. 
Else end has been reached. 

6. 'Delete variable number p' 
Set ibin(p) = O. 
Set ipos = p - nout(p) 
Lower variable from row ipos to row last. 
Set last = last - 1. 
Calculate new residual sums of squares for rows ipos to last. 
For i = p + 1 to k - 2, set nout(i) = nout(p) + 1. 
Simulate the deletion of variable number k - 1 which is in row 
last - 1. 
Go to step 3. 

As for the Garside algorithm, variable i is operated upon (2i - 1) 
times, except that no calculations are required when i = k. In general, 
when variable number i is deleted, all of the higher-numbered 
variables are in the subset. Hence the variable must be rota ted past 
variables numbered i + 1, i + 2, ... , k. Using the Gentleman 
algorithm (formula (9) in Gentleman, 1973), the number of operations 
required to swap variables i and (i + 1) is 10 + 3(k - 1 + i). This is 
made up of 5 operations to set up the rotation, 3 operations on the 
Q'Y -vector, 2 operations to calculate the new residual sum of squares 
for the new subset of i variables, and 3 operations for each pair of 
remaining elements in the two rows up to and including column last. 
In the case of variable number (k - 1), the residual sum of squares 
when it is deleted can be calculated in 7 operations. Hence the total 
count of operations is 

k-l 

L (2 i - 1){7 + 3(k - i)(k + 1 - i)/2} + 7(2k - 2) + 2(k - 1) 
i= 1 

= (14 + 7/4)·2k - (k3 + 6k2 + 27k + 22)/2 

For moderately large k, this is about 15·75 operations per subset, 
or one-eighth more than for the Garside algorithm. For small k, the 
numbers of operations per subset are as folIows: 

k 2 4 5 10 20 

Operations per subset 3·0 4·86 9·29 14·84 15·745 



CHAPTER 3 

Finding subsets which fit well 

3.1 Objectives and limitations of this chapter 

In this chapter we look at the problem offinding one or more subsets 
of variables which give models which fit a set of data fairly weIl. 
Though we will only be looking at models which fit weIl in the 
least-squares (LS) sense, similar ideas can be applied with other 
measures of goodness-of-fit. For instance, there have been 
considerable developments in the fitting of models to categorical 
data, see e.g. Goodman (1971), Brown (1976) and Benedetti and 
Brown (1978), in which the measure of goodness-of-fit is either a 
log-likelihood or a chi-square quantity. Other measures which have 
been used in subset selection have included that of minimizing the 
maximum deviation from the model, known simply as minimax 
fitting or as L", fitting (e.g. Gentle and Kennedy 1978), and fitting 
by maximizing the sum of absolute deviations or LI fitting (e.g. 
Roodman, 1974; Gentle and Hanson, 1977; Narula and Wellington, 
1979; Wellington and Narula, 1981). 

We will also only be considering models involving linear 
combinations of variables, though so me of the variables may 
themselves be functions of other variables. For instance, there may 
be four basic variables X l' X 2' X 3 and X 4 from which other variables 
are derived such as xs=Xi, X 6 =X1X 2 , X 7 =X4/X 3, Xs = 
X 1 log X 3' etc. 

The problem that we will then be looking at in this chapter is 
that, given a set of variables X l' X 2"'" X k> we went to find a subset 
of p< k variables X(l)' X(2)"'" X(P) wh ich minimizes or gives a 
suitably small value for 

(3.1 ) 

where xi,(j)' Yi are the ith observations, i = 1,2, ... , n of variables X(j) 
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and Y, and bW is a LS regression coefficient. In most practical 
cases, the value of p is not predetermined and we will want to find 
good subsets for a range of values of p. We will often want to find 
not just one but perhaps the best 10 or more subsets of each size p. 
In some cases, the second, third or seventeenth-best may fit almost 
as weIl as the best, and may be preferable for future use for practical 
reasons, e.g. the predictors may be cheaperjeasier to measure. 

Problems of selection bias will be considered in Chapter 5, and 
the problem of deciding the best value of p to use, i.e. the so-called 
'stopping rule' problem, will be considered in Chapter 6. This chapter 
is concerned with the mechanics of selecting subsets, not with their 
statistical properties. 

In many practical cases, the minimization of (3.1) will be subject 
to constraints. One of these is that we may wish to force one or 
more variables to be in all subsets selected. For instance, most 
regression models include a constant which can be accommodated 
by making one of the variables, usually XI' a dummy variable which 
always takes the 1 and which is forced into all subsets. There may 
also be constraints ofthe kind that one variable may only be included 
in a selected subset if another variable(s) is also included. For 
instance, it is often considered unreasonable to include a variable 
such as Xi unless XI is also included. Dummy variables are often 
used to represent categorical variables. Thus if we have say five age 
groups, 0-16, 17-25, 26-40, 41-65, and over 65 years, we may 
introduce four dummy variables X 17' X 18' X 19' X 20 with values 
assigned as in Table 3.1. In such cases it is often required that either 
all or none ofthe variables in such a group should be in the model. 

It may be arguable whether such constraints should be applied. 
Here a distinction has to be made between a model which is intended 

Table 3.1 Use of dummy variables to represent a 
categorical variable (age) 

Age of subject 
(years) X 17 XIS X 19 X 20 

0-16 0 0 0 0 
17-25 1 0 0 0 
26-40 0 1 0 0 
41-65 0 0 1 0 

>65 0 0 0 1 
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to be explanatory and meant to be an approximation to the real 
but unknown relationship between the variables, and a model whieh 
is intended to be used for predietion. The latter is our main objeetive 
in this monograph, though if the seleeted subset is to be used for 
predietion outside the range of the data used to seleet and ealibrate 
the model, an explanatory model may be safer to use. A model whieh 
is 'plausible' is mueh more likely to be aeeepted by a client than one 
whose only merit is that it fits weIl. 

In general we will expeet that the number, p, of variables in the 
subset will be less than the number of observations, n, though the 
number of available predietors, k, often exceeds n. We will not require 
that the X -variables available for seleetion be linearly independent; 
for instanee, it is often useful to include a differenee (X 1 - X 2) as 
another variable in addition to both Xl and X 2' 

3.2 Forward selectiOD 

In this proeedure, the first variable seleeted is that variable X j for 
whieh 

n 

S = L (Yi - bj Xij)2 
i= 1 

is minimized, where bj minimizes S for variable Xj' As the value of 
bj is given by 

n I n b·= ~ x .. y· ~ x~. 
J L... 'J' L... 'J 

i= 1 i= 1 

it follows that 

Henee the variable seleeted is that whieh maximizes 

(3.2) 

If this expression is divided by L~= 1 y~, then we have the square of 
the eosine of the angle between veetors Xj and Y. If the mean has 
been subtraeted from eaeh variable, then the eosine is the eorrelation 
between variables Xj and Y. 
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Let the first variable selected be denoted by X(l); this variable is 
then forced into all further subsets. The residuals Y - X(l)b(l) are 
orthogonal to X(1)' and so to reduce the sum of squares by adding 
further variables we must search the space orthogonal to X(l)' From 
each variable Xj' other than the one already selected, we could form 

Xj.(l) = X j - b j ,(l)X(1) 

where b j ,(1) is the LS regression coefficient of X j upon X(1)' Now we 
find that variable, Xj.(l)' which maximizes expression (3.2) when Y 
is replaced with Y - X(l)b(l) and X j is replaced with X j .(1)' The 
required sums of squares and products can be calculated directly 
from previous sums of squares and products without calculating 
these orthogonal components for each of the n observations, in fact 
the calculations are precisely those of a Gauss-Jordan pivoting out 
of the selected variable. If the mean had first been subtracted from 
each variable then the new variable selected is that which has the 
largest partial correlation in absolute value with Y after variable 
X(l) has been fitted. 

Thus variables X(l)' X(2)"'" X(P) are progressively added to the 
prediction equation, each variable being chosen because it minimizes 
the residual sum of squares when added to those already selected. 

A computational method for forward selection using an 
orthogonal reduction is as folIows. Let us suppose that we have 
reached the stage where r variables have been selected or forced into 
the subset, where r may be zero. Planar rotations are used to make 
these variables the first ones in the tri angular factorization, that is 
they occupy the top r rows. Then the orthogonal reduction can be 
written as 

where XA is an n x r matrix consisting of the values of the variables 
selected so far, XB is an n x (k - r) matrix of the remaining variables, 
QA and QB have rand (k - r) columns respectively, all of which are 
orthogonal, RA consists of the top r rows of a k x k upper-triangular 
matrix and RB consists ofthe last (k - r) rows and hence is triangular, 
ryA and ryB consist of the first rand last (k - r) projections of Y on 
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the directions given by the columns of QA and QB' and e is a vector 
of n residuals. The information on the components of Y and of the 
remaining unselected X-variables which are orthogonal to the 
selected variables is then contained in r yB and RB' 

Let us write 

(
ru ~:: ~:: ::: J (~::J 

R B = r yB = 
r33 ... r3y 

... . .. 

then ifthe variable in the top row ofthe sub-matrix RB is added next, 
the reduction in the residual sum of squares (RSS) is rL. To find the 
reduction in RSS ifthe variable in the second row is added next instead, 
a planar rotation can be used to bring this variable into the top row 
and then the reduction in RSS is equal to the square of the value 
which is then in the top position of r yB• There is no need to perform 
the fuH planar rotation of wh oie rows to calculate the effect of bring
ing a variable from row i to row 1 of RB' In swapping a pair of rows, 
only the elements on the diagonal and immediately next to it are 
needed to calculate the required planar rotations which are then 
applied only to calculate the new diagonal element for the upper row 
and the new element in r yB for the upper row. Using Hammarling 
rotations, the reduction in RSS for the ith row of RB can be calculated 
in 7(i - 1) + 2 operations, and hence the total number of operations 
for aH (k - r) variables is (7/2)(k - r)(k - r - 1) + 2(k - r). At the end, 
the variable selected to add next is rotated to the top row, if it is 
not already there, using the fuH planar rotations, adding a few more 
operations to the count. 

An alternative and quicker way to calculate the reductions in RSS 
is to use (3.2) but with the x's and y's replaced by their components 
orthogonal to the already selected variables. The sums of squares 
of the x's are obtained from the diagonal elements of R~RB' and the 
cross-products of x's and y's from R~rYB' Thus in the notation above, 
the sum of squares for the X-variable in the third row is 
222 dh d' r\3+r23+r33 an te cross-pro uct IS r13r\y+r23r2y+r33r3y' To 

calculate aH (k - r) reductions in RSS requires (k - r)(k - r + 3) 
operations if RB is actuaHy stored without the row multipliers used 
in the Hammarling and Gentleman algorithms, or about 50% more 
operations if row multipliers are being used. The selected variable 
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Table 3.2 

Observation 
number 

1 
2 
3 
4 

Xl 

1000 
-1000 
-1000 

1000 

X 2 

1002 
-999 

-1001 
998 

X 3 Y 

0 -2 
-1 -1 

1 1 
0 2 

is then rotated into the top row of RB and the process repeated to 
find the next variable with one row and column less in RB' 

In general there is no reason why the subset of p variables which 
gives the smallest RSS should contain the subset of (p - 1) variables 
which gives the smallest RSS for (p - 1) variables. Table 3.11 provides 
an example in which the best-fitting subsets of three and two variables 
have no variables in common, though this is a rare situation in 
practice. Hence there is no guarantee that forward selection will find 
the best-fitting subsets of any size except for p = 1 and p = k. 

Consider the artificial example shown in Table 3.2. The 
correlations (cosines of angles) between Y and X l' X 2' X 3 are 0'0, 
- 0·0016 and 0·4472 respectively. Forward selection picks X 3 as the 
first variable. The partial correlations of Y upon Xl and X 2 after 
being made orthogonal to X 3 are 0·0 and - 0·0014 respectively. 
With X 3 selected, the subset of Xl and X 2' which gives a perfect fit, 
Y = Xl - X 2' cannot be obtained. 

Examples similar to that above do occur in reallife. The difTerence 
(X 1 - X 2) may be a proxy for a rate of change in time or space, and 
in many situations such rates of change may be good predictors 
even when the values of the separate variables have little or no 
predictive value. In such cases, any subset-finding method which 
adds, deletes or replaces only one variable at a time may find very 
inferior subsets. If there is good reason to believe that difTerences 
may provide good predictors then they can be added to the subset 
of variables available for selection, though care must be taken to 
make sure that the software used can handle linear dependencies 
among the predictor variables. 

3.3 Efroymson's algorithm 

The name 'stepwise regression' is often used to mean an algorithm 
proposed by Efroymson (1960). This is a variation on forward 
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selection. After each variable (other than the first) is added to the 
set of selected variables, a test is made to see if any of the previously 
selected variables can be deleted without appreciably increasing the 
residual sum of squares. Efroymson's algorithm incorporates criteria 
for the addition and deletion of variables as folIows. 

( a) Addition 
Let RSSp denote the residual sum of squares with p variables and 
a constant in the model. Suppose the smallest RSS which can be 
obtained by adding another variable to the present set is RSSp+1• 

The ratio 

R= RSSp-RSSp+1 

RSSp+ d(n - p - 2) 
(3.3) 

is calculated and compared with an 'F-to-enter' value, say Fe. If R 
is greater than Fe' the variable is added to the selected set. 

( b ) Deletion 
With p variables and a constant in the selected subset, let RSSp_1 

be the smallest RSS which can be obtained after deleting any variable 
from the previously selected variables. The ratio 

R = RSSp_1 - RSSp 
RSSp/(n - p - 1) 

(3.4) 

is calculated and compared with an 'F-to-delete (or drop)' value, say 
F d. If R is less than F d, the variable is deleted from the selected set. 

( c) Convergence 0/ algorithm 
From (3.3) it folIo ws that when the criterion for adding a variable 
is sa tisfied 

RSSp+ 1 ~ RSSp/{l + Fe/(n - p - 2)}, 

while from (3.4) it follows that when the criterion for deletion of a 
variable is satisfied 

RSSp~RSSp+l{1 +Fd/(n-p-2)}. 

Hence when an addition is followed by adeletion, the new RSS, 
RSS; say, is such that 

1 +F /(n-p-2) 
RSS* ~ RSS . d • (3.5) 

p p 1 +Fe/(n-p-2) 
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The procedure stops when no furt her additions or deletions are 
possible which satisfy the criteria. As each RSSp is bounded below 
by the smallest RSS for any subset of p variables, by ensuring that 
the RSS is reduced each time that a new subset of p variables is 
found, convergence is guaranteed. From (3.5) it follows that a 
sufficient condition for convergence is that F d < Fe. 

( d) True significance level 
The use of the terms 'F-to-enter' and 'F-to-delete' suggests that the 
ratios R have an F-distribution under the null hypothesis, i.e. that 
the model is the true model, and subject to the true residuals being 
independently, identically and normally distributed. This is not so. 
Suppose that after p variables have been entered, these conditions 
are satisfied. If the value of R is calculated using (3.3) but using the 
value of RSSp + 1 for one ofthe remaining variables chosen at random, 
then the distribution of R is the F-distribution. However, ifwe choose 
that variable wh ich maximizes R, then the distribution is not an 
F-distribution or anything remotely like an F-distribution. This was 
pointed out by Draper et al. (1971) and by Pope and Webster (1972); 
both papers contain derivations of the distribution of the R-statistic 
for entering variables. Evaluation of the distribution requires 
multidimensional numerical integration. A rough approximation to 
the percentage points can be obtained by treating R as if it were the 
maximum of (k - p) independent F-ratios. The R-value corres
ponding to a significance level of oe is then the F-value wh ich gives 
a significance level of oe* where 

(3.6) 

Pope and Webster suggest that if would be better to replace 
RSSp + d(n - p - 2) in the denominator of(3.3) with RSSk/(n - k - 1), 
i.e. to use all of the available predictor variables in estimating the 
residual variance. Limited tables for the distribution of R have been 
given by Draper et. al. (1979); these show that the nominal 5% 
points for the maximum F-to-enter as incorrectly obtained from the 
F-distribution will often give true significance levels in excess of 50%. 
An early use of (3.6) to caIculate F-to-enter values was by Miller 
(1962). 

From (3.6) we can derive the rough Bonferroni bound that 
oe< (k - p)oe* for the true significance level, oe, in terms of the value, 
oe*, read from tables of the F-distribution. Butler (1984) has given a 
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fairly tight lower bound for the selection of one more variable out 
ofthe remaining (k - p) variables, provided that the information that 
none of them had been selected earlier can be neglected. This lower 
bound is 

(k - p)rx.* - L Pij 
i<j 

where Pij is the probability that two of the remaining variables, Xi 
and X j' satisfy the apriori condition for significance at the rx.* level. 
Butler's derivation is in terms ofpartial correlations ofthe dependent 
variable with the predictors, though this could be translated into 
F-values. The joint probabilities, Pij' can be expressed as bivariate 
integrals which must be evaluated numerically. An algorithm for 
doing this is described in Butler (1982). 

As with forward selection, there is no guarantee that this algorithm 
will find the best-fitting subsets, though it often performs better than 
forward selection when some of the predictors are highly correlated. 
The algorithm incorporates its own built-in stopping rule; 
recommendations with respect to suitable values for Fe and F d will 
be given in Chapter 6. 

3.4 Backward elimination 

In this procedure we start with all k variables, including a constant 
if there is one, in the selected set. Let RSSk be the corresponding 
residual sum of squares. That variable is chosen for deletion which 
yields the smallest value of RSSk -1 after deletion. Then that variable 
from the remaining (k - 1) which yields the smallest RSSk - 2 is 
deleted. The process continues until there is only one variable left, 
or until some stopping criterion is satisfied. 

Backward elimination can be carried out fairly easily starting from 
an orthogonal reduction. If the variable to be deleted is in the last 
row of the triangular reduction, then the increase in RSS when it is 
deleted is simply r;y. Hence each variable in turn can be moved to 
the bottom row to find which gives the smallest increase in RSS 
when deleted. The actual movement of rows can be simulated without 
altering any values in the triangular factorization. The values in the 
row to be moved are copied into a separate storage location and 
the etTect of rotation past each lower row is calculated. Numbering 
rows from the bottom, the number of operations necessary to lower 
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the variable from row i to row 1, using Hammarling rotations, is 
(i - 1)(i + 12)/2 plus 2 operations to calculate the increase in RSS. 
Hence the total for all k variables is k(P + 18k - 7)/6. The selected 
variable is then moved to the last row and the process repeated on 
the (k - 1) x (k - 1) matrix obtained by omitting the last row and 
column. 

There is an alternative method using SSP-matrices, as folIows. It 
can be shown that the increase in RSS when variable i is deleted is 
b~ Icii where bi is the LS regression coefficient with all variables in 
the model and Cii is the ith diagonal element of (X' X) -1. This formula 
can be verified very easily from the orthogonal reduction. Consider 
the case of the last variable. By back-substitution, 

bk = rkylrkk • 

Nowas 
(X'X)-l =R- 1R- T 

the element in the bottom right-hand corner of the inverse of the 
SSP-matrix is simply 

Hence 
b;lckk = r;y 

which is the correct increase. Now any other variable can be moved 
into tbe last row of tbe triangular decomposition without changing 
the value of b~ jc ii for that variable, and hence the formula holds for 
all variables. Alternative derivations of tbis well-known result are 
given in many books on linear regression. 

Using this alternative metbod requires P(k + 1)/2 operations for 
the inversion of the SSP-matrix. After the first variable has been 
deleted, the inverse matrix for tbe remaining variables can be 
obtained by pivoting out the selected variable using the usual 
Gauss-Jordan formulae. This requires only k(k + 1)/2 operations. 
The method using SSP-matrices is usually much faster but the 
accuracy can be very poor if the SSP-matrix is ill-conditioned, and 
calculated RSS's or increases in RSS can be negative unless great 
care is exercised. 

Backward elimination is usually not feasible when there are more 
variables than observations. If we have 100 variables but only 50 
observations then, provided that the 100 columns of the predictor 
variables have rank 50, the residual sum of squares will be zero. In 



3.5 SEQUENTIAL REPLACEMENT ALGORITHMS 53 

most ca ses 51 variables will have to be deleted before a nonzero 
RSS is obtained. The number of ways of selecting 51 out of 100 
variables is approximately 9.9 x 1028• 

It has been argued by Mantel (1970) that in situations similar to 
that in the example in section 3.2 in which the variable Y is highly 
correlated with some linear combination of the X -variables, such as 
Xl - X 2 or a second difference Xl - 2X 2 + X 3' but where the 
correlations with the individual variables are small, backward 
elimination will tend to leave such groups of variables in the subset, 
whereas they would not enter in a forward selection until almost all 
variables have been included. 

Beale (1970) countered with the common situation in which the 
X -variables are percentages, e.g. of chemical constituents, which sum 
to 100% or perhaps slightly less if there are sm all amounts of 
unidentified compounds present. Any one variable is then given 
either exactly or approximately by subtracting the others from 100%. 
It is then a matter of chance which variable is deleted first in the 
back ward elimination; the first one could be the only one which is 
of any value for prediction from small subsets, and once a variable 
has been deleted it cannot be reintroduced in back ward elimination. 
Example 3.3 in section 3.10 is a case in which the first variable deleted 
in back ward elimination is the first one inserted in forward selection. 
Of course a backward analogue of the Efroymson procedure is 
possible. 

Backward elimination always requires far more computation than 
forward selection. If for instance we have 50 variables available and 
expect to select a subset of less than 10 of them, in forward selection 
we would only proceed until about 10 or so variables have been 
included. In back ward elimination we start with 50 variables, then 
49, then 48, until eventually we reach the size of interest. 

Both forward selection and back ward elimination can fare 
arbitrarily badly in finding the best-fitting subsets. Berk (l978b) has 
shown that even when forward selection and back ward elimination 
yield exactly the same subsets of all sizes, there can be much 
better-fitting subsets of some sizes. 

3.5 Sequential replacement algorithms 

The basic idea here is that once two or more variables have been 
selected, we see whether any of those variables can be replaced with 
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another which gives a smaller RSS. For instance, if we have 26 
variables which are conveniently denoted by the letters of the 
alphabet, we may at some stage have selected the subset of four 
variables 

ABCD. 

Let us try replacing variable A. There may be several variables from 
the remaining 22 which give a smaller RSS when in a subset with 
B, C and D. Suppose that of these, variable M yields the smallest 
RSS. We can replace A with M giving the subset 

MBCD. 

Now we try replacing variable B, then variable C, then D, then back 
to M, etc. At some of these attempts there will be no variable which 
yields a reduction in the RSS, in which case we just move on to the 
next variable. Sometimes variables which have been replaced will 
return. The process continues until no further reduction is possible 
by replacing any variable. 

The procedure must converge as each replacement reduces the 
RSS which is bounded below. In practice the procedure usually 
converges very rapidly. 

Unfortunately this type of replacement algorithm does not 
guarantee convergence upon the best-fitting subset of the size being 
considered. In the above example, if we had started by trying to 
replace variable B instead of variable Athen the procedure might 
have converged upon a different sub set. Let us call these final subsets, 
stationary subsets. 

Suppose that in our hypothetical example, the subset of four 
variables which gives the smallest RSS is 

BEST. 

If we start with the subset PEST, we are certain to reach the 
stationary subset BEST only if variable P is the first one to be 
replaced. Thus we are certain to reach the absolute minimum from 
only 23 out of the 14950 possible starting subsets of four variables, 
though in practice the best subset will usually be found from many 
more starting subsets. Even if we are lucky and find the best-fitting 
subset ofthis size, we have no way ofknowing that it is the best one. 

The following modification improves our chances of finding the 
best-fitting subset. Suppose again that we start with the subset ABCD 
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Table 3.3 

Initial subset 
Best replacement for A 
Best replacement for B 
Best replacement for C 
Best replacement for D 

Variables RSS 

ABCD 
MB CD 
AMCD 
ABXD 
ABCQ 

100 
93 
91 
96 
94 
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and that this gives an RSS = 100 say. We now look for the best 
replacement for variable A, but we do not make the replacement 
yet. Similady, we try replacing variable B but with variable A still 
in the subset. Suppose we obtain the best replacements for each 
variable shown in Table 3.3. Replacing variable B gives the smallest 
RSS, so we make the replacement and then repeat the process. Notice 
that at the next stage we know that we cannot replace variable M 
with any variable wh ich gives a smaller RSS so that we only consider 
replacing the other three at the next step. 

Using this replacement algorithm there are now 92 out of the 
14950 possible starting sub sets from which we are guaranteed to 
find the best-fitting subset. 

Either of the above replacement algorithms can be used in 
conjunction with any of the algorithms described in earlier sections 
of this chapter. Thus a sequential replacement algorithm can be 
obtained by taking the forward selection algorithm and applying a 
replacement procedure after each new variable is added. 

Sequential replacement requires more computation than forward 
selection or the Efroymson algorithm but it is still feasible to apply 
to problems with several hundred variables when subsets of say up 
to 20-30 variables are required. 

An alternative technique which can be used when there are large 
numbers of variables is to choose starting subsets randomly and 
then apply areplacement procedure. However, in one problem on 
which the author was involved in which there were 757 variables, 
74 different stationary subsets of 6 variables were obtained from 100 
random starts! Even then a subset which gave only about two-thirds 
of the RSS of the best of the 74, was later found by chance. 

Replacing two variables at a time substantially reduces the 
maximum number of stationary subsets and means that there is a 
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much better chance of finding good subsets when, for instance, a 
difference between two variables is a good predictor but was not 
included in the available set of predictor variables. However, for 
subsets of p variables there are p(p - 1)/2 pairs of variables to be 
considered for replacement and hence much more computation is 
required. Similarly, forward selection and backward elimination are 
possible two variables at a time. 

3.6 Generating all subsets 

We saw earlier in Chapter 2 that it is feasible to generate all subsets 
of variables provided that the number of predictor variables is not 
too large, say less than about 20, if only the RSS is calculated for 
each subset. After the complete search has been carried out, a small 
number of the more promising subsets can be examined in more 
detail. The obvious disadvantage of gene rating all subsets is cost. 
The number of possible subsets of one or more variables out of k is 
(2k - 1). Thus the computational cost roughly doubles with each 
additional variable. 

In most cases, we are not interested in all subsets of all sizes. 
For instance, someone with 100 variables (and possibly only 50 
observations) is unlikely to be interested in say subsets of 45 variables; 
subsets of 10 variables may be large enough. There are 
(2100 - 1) = 1·3 X 1030 subsets of one or more variables out of 100, 
but only 1·9 x 1013 subsets of 10 or less. Even this last number is 
far too large for an exhaustive evaluation of an subsets to be feasible. 
However the device to be described in the next section will usually 
render this ca se feasible. 

Many algorithms have been published for performing exhaustive 
evaluations including those of Garside (1965, 1971 b, c), Schatz off et 
al. (1968), Furnival (1971) and Morgan and Tatar (1972). These all 
consider an subsets of an sizes, and all require that the number of 
observations is at least as great as the number of predictor variables. 
Kudo and Tarumi (1974) have published an algorithm for searching 
for all subsets of p or less variables out of k. All of these algorithms 
use matrix inversion and SSP-matrices and present problems when 
the SSP-matrix is ill-conditioned or of less than full rank. In aseries 
of papers, Narula and Wellington (1977a, b, 1979) and Wellington 
and Narula (1981) have presented an algorithm for finding the best
fitting sub sets of p variables out of k variables when the criterion 
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used is that of minimizing the sum of absolute deviations, i.e. 
minimizing the Li-norm. 

Let us consider algorithms for generating all subsets of p variables 
out of k. Table 3.4 illustrates the generation of all subsets of three 
variables out of seven in wh at is known as lexicographic order. It 
should be read down the columns. 

This would appear to be a good order of generation for software 
using SSP-matrices as the variable at the right-hand end is changing 
most rapidly and it is possible to perform the calculation of the 
RSS's by operating only on sub-matrices of the SSP-matrix. In the 
case of the variable in position p, the calculation of the new RSS 
when this variable is changed only requires one multiplication and 
one division. However, the changes to variables in other positions 
require operations on almost every element in the SSP-matrix. An 
algorithm for generating the lexicographic order has been given by 
Gentleman J.F. (1975). 

In using SSP-matrices, the order of the variables remains 
unchanged and the operations consist of inverting and reinverting 
part of the matrix so that the variables to be pivoted in or out are 
easily found. A lexicographic order of generation is not weIl suited 
to a planar rotation algorithm. Table 3.4 only shows the order of 
the first three variables; below we see what the full order of variables 
could look like. One ofmany possible orderings is shown in Table 3.5 
for the first part of the lexicographic order above. 

In the algorithm used to generate the start of the sequence, the 
next variable or variables needed were moved up from wherever they 
were in the complete ordering and the other variables kept their 
previous order but just moved down the appropriate number of 
places. As can be seen, the above ordering requires a large number 

Table 3.4 Lexicographic order of generation of 
all subsets of three variables out of seven 

123 \36 167 247 356 
124 \37 234 256 357 
125 145 235 257 367 
126 146 236 267 456 
127 147 237 345 457 
\34 156 245 346 467 
\35 157 246 347 567 
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Table 3.5 Start oJ a possible sequence to 
generate the lexicographic order in Table 3.4 

123 4567 
124 3567 
125 4367 
126 5437 
127 6543 
134 2765 
135 4276 
136 5427 
137 6542 
145 3762 

of interchanges of variables. In particular, the move from 127 6543 
to 134 2765 seems very wasteful. At this stage, all of the subsets of 
three variables including 12 have been exhausted so that either 1 or 
2 must be dropped, but it would be much more efficient to introduce 
the 6 from the next position next. This can be done in the following 
algorithm which operates on whichever variables happen to be in 
the position from wh ich a variable is to be moved irrespective of 
the number of that variable. 

The basic idea of this combinatoric algorithm is that for each of 
the p positions to be filled there is a 'last' position to which the next 
variable taken from that position is moved. Initially it is position k 
for all of the p positions. The first variable moved from position i 
goes to position last(i) among the last (k - p). To make sure that the 
variable is not moved again with the current set of variables in 
positions 1,2, ... , i - 1, one is subtracted from last(i). Also, to make 
sure that all subsets of the variables in positions p + 1, ... , (new) 
last(i) are used without moving the variable just moved from position 
i, the values of last(j) for j = i + 1, ... , p are set equal to the new 
value of last(i). The algorithm is as folIows: 

1. For i = 1 to p, set last(i) = k. 
2. Set ipt = p. ipt is the pointer to the current active position among 

the first p positions. 
3. Move the variable from position ipt to position last(ipt). 
4. Subtract 1 from last(ipt). 
5. If last{ipt) = p, go to step 7. 
6. If ipt = p, then go to step 3. 

Else, für i = ipt + 1, ... , p set last(i) = last(ipt). Then go to step 2. 
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7. Set ipt = ipt - l. 
If ipt > 0, for i = ipt + 1, ... ,p set last(i) = last(ipt). Then go to 
step 2. 
Else, the end has been reached. 

The above algorithm is in fact the same as the Gentleman (1975) 
algorithm except that instead of the index of the simulated nested 
DO-Ioops being incremented, the upper limit, i.e. last (ipt), is 
decremented. It could equally weIl have been written in the same 
way as for the Gentleman algorithm, in fact the first exhaustive 
search algorithm written by the author was in this form. The 
algorithm does not generate a lexicographic order as the index of 
the DO-Ioops (or the upper limits here) are not used to determine 
the number but the position of a variable. The algorithm generates 
the sequence in Table 3.6 of subsets of three variables out of seven. 

The algorithm above generates all subsets of p variables out of k; 
it does not in general generate all subsets of less than p variables. 
For instance, in Table 3.6 the pairs 23, 25, 27, 34 and 56 do not 
occur in the first two positions, and the single variables 2 and 5 do 
not appear in the first position. The algorithm can easily be modified 
to generate all subsets of p variables or less out of k as follows. The 
interchange in step 3 is only carried out if ipt< last(ipt), and the 
condition in step 5 is changed to last(ipt) = ipt. With this modification 
to the algorithm, the generated sequence is as given in Table 3.7. 

We noted earlier that the inner cycle ofthe lexicographic algorithm 
can be performed extremely rapidly using SSP-matrices. This gives 
it a major speed advantage over algorithms using planar rotations. 

Table 3.6 Ordering of generated subsets of three 
variables out of seven, indicating also the positions of 
excluded variables 

123 4567 
124 5673 
125 6743 
126 7543 
127 6543 
176 5432 
175 4362 
174 3562 
173 4562 

134 5672 
135 6472 
136 5472 
165 4372 
164 5372 
145 6372 
456 3721 
453 7261 
457 2361 

452 7361 
427 3651 
423 6751 
426 3751 
463 7251 
467 3251 
473 6251 
736 2541 
732 5641 

735 2641 
752 6341 
756 2341 
762 5341 
625 3741 
623 5741 
635 2741 
352 6741 
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Table 3.7 Ordering 01 generated subsets 01 three or 
less variables out 01 seven 

123 4567 
124 5673 
125 6743 
126 7543 
127 6543 
176 5432 
175 4362 
174 3562 
173 4562 
134 5672 
135 6472 

136 5472 
165 4372 
164 5372 
145 6372 
154 6372 
546 3721 
543 7261 
547 2361 
542 7361 
527 3641 
523 6741 

526 3741 
563 7241 
567 3241 
573 6241 
537 6241 
376 2451 
372 4651 
374 2651 
342 6751 
346 2751 

362 4751 
326 4751 
264 7351 
267 4351 
274 6351 
247 6351 
476 2351 
467 2351 
674 2351 
764 2351 

However, the outer cycles are much slower using SSP-matrices as 
operations must be performed on all except a few rows at the top 
of the matrix, whereas planar rotation algorithms usually require 
operations on only a very small number of adjacent rows near the 
top of the matrix. The planar rotation algorithm can be made faster 
by using the trick employed in section 2.3 on forward selection. 
Instead of the slow inner cycle, an SSP-matrix is formed of those 
components of the variables in rows p, p + 1, ... ,last(p} which are 
orthogonal to the variables in rows 1,2, ... , p - 1. This simply means 
that we form 

X'X=R'R 

using as R the triangular sub-matrix between rows and columns p 
and last(p} inclusive of the triangular factorization which is current 
at that time. Further details will be given in the next seetion. 

3.7 Using branch-and-bound techniques 

Suppose that we are looking for the subset of 5 variables out of 26 
which gives the smallest RSS. Let the variables again be denoted by 
the letters A -Z. We could proceed by dividing all the possible subsets 
into two 'branches', those which contain variable A and those which 
do not. Within each branch we can have sub-branches including 
and excluding variable B, etc. Now suppose that at so me stage we 
have found a subset of five variables containing A or B or both 
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which gives RSS = 100. Let us suppose that we are about to start 
examining that sub-branch which excludes both A and B. A lower 
bound on the smallest RSS which can be obtained from this 
sub-branch is the RSS for all of the 24 variables C-Z. If this is say 
108 then no subset of 5 variables from this sub-branch can do better 
than this, and as we have already found a smaller RSS, this whole 
sub-branch can be skipped. 

This simple device appears to have been used first in subset 
selection by Beale, Kendall and Mann (1967), and by Hocking and 
Leslie (1967). It is further exploited by LaMotte and Hocking (1970). 
Using this device gives us the advantage of exhaustive searches that 
are guaranteed to find the best-fitting subsets, and at the same time 
the amount of computation is often reduced substantially. 

The branch-and-bound device can similarly be applied with 
advantage with most other criteria of goodness-of-fit such as 
minimum sum of absolute deviations or maximum likelihood. One 
such application has been made by Edwards and Havranek (1987) 
to derive so-called minimal adequate sets. 

Branch-and-bound can be applied in a number of ways. For 
instance, if we want to find the 10 best subsets of 5 variables, then 
the RSS for all the variables in the sub-branch is compared against 
the tenth best subset of 5 variables which has been found up to that 
stage. 

Alternatively, consider the task of finding the best-fitting subsets 
of all sizes up to and including six variables. Suppose that we are 
about to start examining a sub-branch and that the smallest RSS's 
found up to this stage have been 

No.ofvariables 

RSS 503 

2 

368 

3 

251 

4 

148 

5 

93 

6 

71 

Suppose that the RSS including all of the variables of this sub-branch 
is 105, then we cannot possibly find a better-fitting subset of 5 or 6 
variables from this sub-branch, though there could be better-fitting 
subsets of 1, 2, 3 or 4 variables. Hence, until we complete searching 
this sub-branch, we look only for subsets of 4 or fewer variables. 
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Branch-and-bound is particularly useful when there are 'dominant' 
variables such that good-fitting subsets must include these variables. 
The device is of almost no value when there are more variables than 
observations as the lower bounds are nearly always zero. 

An algorithmic trick which can be used in conjunction with 
branch-and-bound is that of saving the current state of matrices and 
arrays immediately before a variable is deleted. For instance, suppose 
we are looking for the best subset of 10 variables out of 100 and 
have reached the stage where the variable in position 7 is about to 
be deleted for the first time. U sing orthogonal reduction methods, 
the variable is then moved from position 7 to position 100, an 
operation which requires a very large amount of computation. The 
RSS with the other 99 variables in the regression is then calculated. 
Suppose that this shows that with the variable from position 7 deleted 
we cannot possibly improve upon the best subset of four variables 
which we have found so far. The deleted variable must then be 
reinstated, that is moved all the way back to position 7. If a copy 
ofthe matrices and arrays had been kept then a considerable amount 
of computation is avoided. 

The calculation of the bounds requires a similar amount of extra 
computation using methods based upon SSP-matrices. At the start 
of any branch, say that excluding variables A and B, the SSP-matrix 
will usually be available with none of the variables included in the 
model. All of the variables ex ce pt A and B must then be pivoted on 
to obtain the bound. A way around this problem is to work with 
two matrices available, one being the SSP-matrix and the other being 
its complete inverse. One of these matrices is then used to calculate 
the RSS's for small subsets while the other is used to obtain bounds. 
Furnival and Wilson (1974) have published an algorithm based upon 
SSP-matrices which uses this trick. It finds the best subsets of all 
sizes though and can be very slow. One important feature noted 
by Furnival and Wilson is that the amount of work needed to find 
say the 10 best-fitting subsets of each size is usually not much greater 
than that needed to find the best ones. 

The Furnival and Wilson algorithm has been generalized by 
Narendra and Fukunaga (1977) to the minimization of a general 
quadratic form 

X' S-lX 
p p p 

over all subsets of the predictors, where x is a vector of length k. 
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FORTRAN code for this is contained in Ridout (1988), though this 
does not use the Cholesky factorization of either Sp or its inverse. 
One way to use this would be to substitute for x the value of 
the predictors for which a prediction will be required, and to 
substitute for S-l the covariance matrix of the LS estimates of the 
regression coefficients for the model using all the available predictors. 
This will be discussed furt her in Chapter 6. 

If model building, rather than prediction, is the objective, then 
the algorithm of Edwards and Havranek (1987) may be used. This 
is similar to the Furnival and Wilson algorithm but attempts to find 
only what Aitkin (1974) has called minimal adequate (sub)sets. More 
details are given in section 4.2. 

An equivalent algorithm is used by Narula and Wellington (1977b, 
1979), Armstrong and Kung (1982) and Armstrong et al (1984) but 
using the weighted sum of absolute errors as the criterion instead 
of LS. 

The equivalence of keeping an inverse matrix when using 
orthogonal reductions is to keep a second triangular factorization 
with the variables in reverse order. The bounds are then calculated 
from operations on variables which are in the lower rows of the 
tri angular factorization. If the use of bounds results in variables 
frequently being reinstated immediately after deletion then this idea 
obviously has considerable merit. However, the author has usually 
used areplacement algorithm before calling an exhaustive search 
algorithm, and this usually establishes fairly good bounds and orders 
variables so that the 'best' variables are at the start and so are rarely 
deleted. Also, many of the author's problems have involved more 
variables than observations, in which case branch-and-bound is of 
no value until the final stages of the search. 

An exhaustive search can be very time consuming if a large number 
of possible subsets have to be examined. Experience suggests that 
the maximum feasible size of problem is one for which the number 
of possible subsets, i.e. L:kCp where k is the number of available 
predictor variables and p ranges from 1 up to the maximum size of 
subset of interest, is of the order of 107• It is recommended that any 
software for exhaustive search should write out to disk from time 
to time the best subsets found up to that stage so that all is not lost 
if the computer run exceeds its time limit. If this information can 
then be read back in later, it can provide good bounds to save much 
of the computation during a future run. 
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3.8 Grouping variables 

Gabriel and Pun (1979) have suggested that when there are too many 
variables for an exhaustive search to be feasible, it may be possible 
to break them down into groups within which an exhaustive search 
for best-fitting subsets is feasible. The grouping of variables would 
be such that if two variables Xi and Xj are in different groups, then 
their regression sums of squares are additive. That is, that if the 
reduction in RSS due to adding variable Xi to a previously selected 
subset of variables is Si' and the corresponding reduction if variable 
Xj is added instead is Sj' then the reduction when both are added 
is Si + Sj' 

If we have a complete set of say 100 variables for which we want 
to find good subsets of 5 variables, we may be able to break the 
variables into groups containing say 21,2,31,29 and 17 variables. 
Within each group, except the one with only 2 variables, the best 
subsets of 1,2,3,4 and 5 variables would be found. All combinations 
of 5 variables made up from those selected from the separate groups 
would then be searched to find the best subsets. Thus a subset of 5 
variables might be made up of the best subset of 3 variables from 
one group plus single variables from two other groups. 

To do this we must first find when regression sums of squares are 
additive. Is it only when the variables are orthogonal? Let us consider 
two variables Xi and Xj' Their individual regression sums of squares 
are the squares of the lengths of the projections of Y on Xi and Xj 
respectively, i.e. 

S· = (X~y)2/X~X. , I I I 

Sj = (Xjy)2/XjXj. 

Let Si.j be the incremental regression sum of squares when variable 
Xi is added after X j' Then 

S· . = (X~ . Y .)2/X X .. 
I.J I.J.J I.J I.J 

where Xi.j is that part ofXi wh ich is orthogonal to Xj' i.e. the vector 
of residuals after Xi is regressed against Xj' i.e. Xi.j = Xi - bijXj 
where bij is the LS regression coefficient, and Y. j is similarly that 
part oE Y orthogonal to Xj' where byj is the regression coefficient. 
Then 

S .. = [(Xi - bijX)'(Y - byjXj )]2 = (X;y - bijXjy)2 
I.J (Xi - bijXl(Xi - bijXj ) X;Xi - bijXjXi . 
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Now we introduce direction eosines rij, riy, rjy, which are the same 
as correlation coefficients if the variables have zero means, 
where 

rij = X;X)(II Xiii 11 Xj 11) 

r iy = X;Y /( 11 X;II 11 Y 11) 

rjy=XjY/(IIXjIlIIYII) 

where the norms are in the L2-sense. Now we can write 

S .. = S. (1 - rijrjy/riy)2 
!.) ! 1 2 - rij 

(3.7) 

Thus Si.j = Si' i.e. the regression sums of squares are additive, when 

1 - r~ = (1 - rijrjy/r iy)2. 

A little re arrangement shows that this condition is satisfied either 
when rij = 0, i.e. Xi and Xj are orthogonal, or when 

(3.8) 

Now let us look at what this solution means graphically. In Fig. 
3.1, OYp represents the projection of vector Y on the plane defined 
by variables Xi and X j' 0 A is the projection of Y p on to direction 
Xj and hence its square is Sj. Similarly the square of the length of 
AYp is the incremental sum of squares, Si.j' when variable Xi is 
added after X j. Now let us work out where Xi must be in this plane 
so that the projection of Y p on to Xi is of length equal to A Yp• 

Draw a circle with centre at 0 and radius equal to the length of 
A Yp, then draw tangents to the circle from the point Y. There are 
two such tangents, the one to point B represents the solution (3.8), 
while the other shown by a broken line in Fig. 3.2 is the case in 
which Xi and X j are orthogonal. Additional solutions can be obtained 
by reversing the directions of Xi or X j or both. 

We have only shown so far that ifvariables Xi and X j satisfy (3.8) 
then their regression sums of squares are additive. Does this also 
apply to three variables Xi' X j and X k for which (3.8) is satisfied for 
all three pairs of variables? In other words, is the regression sum of 
squares for all three variables equal to the sum of their individual 
sums of squares? The answer is yes. This can be shown by using the 
methods above to derive say the incremental sum of squares for 
variable Xi after X j and X k , and then substituting the three conditions 



66 FINDING SUBSETS WH ICH FIT WELL 

o 

X, 
y. 

o 

A X, X, 

Fig. 3.1 (left) and 3.2 (right). Illustrating situations in which regression sums 
of squares are additive. 

for rij' r ik and r jk obtained from (3.8) for pairwise additivity. This 
method of proof is extremely tedious and it would seem that there 
should be a simpler geometrie argument whieh will allow the result 
to be extended reeursively to any number of variables whieh either 
satisfy (3.8) or are orthogonal for an pairs. We note that in the two 
variables ease iIlustrated in Fig.3.2, OYp is the diameter of a eircIe 
on whieh A and B both lie. In the three-variable ease, an of the 
points of projection lie on a sphere. Note also that if either Xi or 
Xj' but not both, is refleeted about OYp then the two X-vectors are 
orthogonal. 

This method is as yet an untried suggestion for reducing the 
computationalload when there are large numbers of variables from 
which to select. In practice satisfying (3.8) would have to be replaced 
with approximate satisfaction of the condition, and limits found for 
the deviation from perfeet additivity of the regression sums of 
squares. The author is grateful to K. Ruben Gabriel for stimulating 
discussion of this idea, but leaves it to others to develop further. 

3.9 Ridge regression and other alternatives 

One technique which has attracted a considerable amount of interest 
is the ridge regression technique of Hoerl and Kennard (1970a, b). 
They suggested that, using an the available variables, biased 
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estimators, b(d), ofthe regression of coefficients may be obtained using 

b(d) = (X'X + d/)-tX'y (3.9) 

for a range of positive values of the scalar d. They recommended 
that the predictor variables should first be standardized to have zero 
mean and so that the sum of squares of elements in any column of 
X should be one, i.e. that X' X should be replaced with the correlation 
matrix. b(d) is then plotted against d; this plot was termed the 'ridge 
trace'. Visual examination ofthe trace usually shows some regression 
coefficients which are 'stable', that is they only change slowly, and 
others which either rapidly decrease or change sign. The latter 
variables are then deleted. 

The basic justification for ridge regression is similar to that for 
subset selection oftrading oiTbias against variance. For small values 
of d the amount of bias may be very small while the reduction in 
variance is very substantial. This applies particularly when the 
SSP-matrix is very ill-conditioned. To understand better what is 
happening when we use ridge estimation, it is useful to look at the 
singular-value decomposition (s.v.d.) 

X = V A v 
nxk nxk kxk kxk 

where the columns of Vand V are orthogonal and normalized, that 
is V' V = 1 and V' V = I, and A is a diagonal matrix with the singular 
values on the diagonal. Then 

X'X= V'A 2 V. 

In terms of the s.v.d., the biased estimates of the regression 
coefficients are 

with covariance matrix 

= (12V'(A2 + dl)-2 A2 JI 

= (12 V' diag { Af /( Af + d)2} V, 

where Ai' i = 1,2, ... , kare the singular values. The smallest singular 
values dominate the variance, but adding on d reduces their contri
bution substantially. For instance, for JeiTers' (1967) example on the 
compressive strength of pitprops, the singular values range from 2·05 
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to 0·20 so that for the LS estimator (d = 0), the covariance matrix 
of the standardized regression coefficient is 

0·237 
0·421 

v, 
24·4 

25·6 

whereas the covariance matrix for the ridge estimators when d = 0·05 
is 

0·232 
0·403 

V. 
4·95 

4·02 

There has been a very substantial amount of literature on the use 
of ridge regression (and on other biased estimators) when all k 
variables are retained. See for instance Lawless (1978), Hocking et al. 
(1976), Lawless and Wang (1976), Hoerl et al. (1975), McDonald and 
Galameau (1975), Vinod and Ullah (1981), and the references given 
in section 1.3. In comparison, no attention has been paid to the idea 
of using the ridge trace to reduce the number of variables. We shall 
see later that the use of ridge regression and subset selection can 
not only reduce variance but can sometimes also reduce the bias 
which the selection introduces. 

One situation in which ridge regression will not perform weIl when 
used for subset selection is when Y is strongly related to some linear 
combination of the predictor variables, such as Xl - X 2' but has 
only small correlations with the individual variables. In the example 
given in section 3.2,.ridge regression leads to the deletion of both 
Xl and X 2' For this case, the squares of the singular values are 
1,99999895, 1·0 and 0·000 00105. The row of V corresponding to 
the smallest singular value is almost exactly equal to (X 1 - X 2)/ .J2, 
and once d exceeds about 10- 5, the regression coefficient for X 3 

dominates. 
If, instead of defining our biased estimators as in (3.9), we had used 

b(d) = (1 +d)(X'X + dl)-lX'V, 
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where the X- and Y-variables are normalized as before, then as 
d -+ 00, the individual elements of b(d) tend to the regression 
coefficients which are obtained if Y is regressed separately against 
each X -variable one at a time. This means that ridge regression used 
as a selection technique will tend to select those variables which both 
(i) yield regression coefficients with the same signs in single variable 
regressions and with all variables in the regression, and (ii) which 
show up early in forward selection. 

There are two popular choices for the value of d in (3.9). These are 

(3.10) 

and 
(3.11) 

where P is the vector of LS regression coefficients, and 82 is the 
estimated residual variance, when the X - and Y-variables have been 
scaled to have zero means and unit standard deviations, and R2 is 
the usual coefficient of determination for LS regression. If the true 
values for (1 and p are known, then (3.10) minimizes the mean squared 
error of P (Hoerl, Kennard and Baldwin, 1975). Lawless and Wang 
(1976) suggested estimator (3.11). An algorithm for choosing d which 
can use either (3.10) or (3.11) has been given by Lee (1987). 

Suppose we write (X = Vp so that our regression model is 

Y=XV'(X+e, 

where the columns of XV' are orthogonal. The ridge estimates of 
the elements of (X are 

where ~i is the LS estimate. This can be generalized by replacing d 
with di • Hocking, Speed and Lynn (1976) show that the values of di 

which minimize either the mean squared error 

E(P - P),(P - P) 
or the mean squared error of prediction 

E(P - P)' X' X(P - P) 
are given by 

d. = (12/(X~. 
I I 

(3.12) 
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Of course, both (T2 and (X~ will be unknown in practice. If (Xi is 
replaced first with the LS estimate, ai' and then with successive ridge 
estimates, (Xi (d;), Hemmerle (1975) has shown that these estimates 
converge to 

(X* -' (3.13) {o ift~~4 

i - [1/2 + (1/4 - l/t;fa i otherwise 

where t i = a;/s.e.(a;). That is, t i is the usual t-statistic in a multiple 
regression; in this case it is the t-value for the ith principal component 
of X. Thus the application of an iterative ridge regression procedure 
can be equivalent to a subset selection procedure applied to 
principal components, followed by some shrinkage of the regres
sion coefficients. 

A further ridge estimator which is of this kind is 

* {O ift~ ~ 1 
(Xi = (1 - l/t~)ai otherwise. 

(3.14) 

This has been proposed by Obenchain (1975), Hemmerle and Brantle 
(1978) and Lawless (1978). Lawless (1981) has compared a number 
of these ridge estimators. 

If Y is predicted weIl by a linear combination of a small number 
of eigenvectors, then these eigenvectors can be regarded as new 
variables. Unfortunately though, these eigenvectors are linear 
combinations of all the variables, which means that all of the 
variables will need to be measured to use the predictor. This may 
be defeating the purpose of selecting a sub set. 

3.10 Some examples and recommendations 

Example 3.1 

The data for this example are from a paper by Biondini, Simpson 
and Woodley (1977). In a c1oud-seeding experiment, daily target 
rainfalls were measured as the dependent variable. An equation was 
required for predicting the target rainfall on the days on which c10uds 
were seeded, by using equations developed from the data for days 
on which c10uds were not seeded. If seeding affected rainfall then 
the actual rainfalls on the seeded days would be very different from 
those predicted. Five variables were available for use, but by inc1ud-
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Table 3.8 Florida cloud-seeding da ta 

Date Xl X 2 X 3 X4 X 5 Y 

1 July 1971 2·0 0·041 2·70 2 12 0·32 
15 July 1971 3·0 0·100 HO 1 8 1·18 
17 July 1973 3·0 0·607 3-60 1 12 1·93 
9 Aug. 1973 23·0 0·058 3-60 2 8 2·67 
9 Sept. 1973 1·0 0·026 3·55 0 10 0·16 

25 June 1975 5·3 0·526 4·35 2 6 6·11 
9 July 1975 4·6 0·307 2·30 1 8 0·47 

16 July 1975 4·9 0·194 3·35 0 12 4·56 
18 July 1975 12·1 0·751 4·85 2 8 6·35 
24 July 1975 6·8 0'796 3·95 0 10 5·74 
30 July 1975 11·3 0·398 4·00 0 12 4·45 
16 Aug. 1975 2·2 0·230 3·80 0 8 1·16 
28 Aug. 1975 2.6 0·136 3·15 0 12 0·82 
12 Sept. 1975 7-4 0·168 4·65 0 10 0·28 

ing linear, quadratic and interaction terms, the total number of 
variables was increased to 20. There were 58 observations in all, but 
these included those on seeded days. Also, the authors decided to 
subclassify the days according to radar echoes. Table 3.8 contains 
the data on the five variables and the rain fall for the largest 
subclassification of the data which contained 14 observations. 

Table 3.9 shows the results obtained by using forward selection, 
sequential replacement and exhaustive search algorithms on this 
data. The variables X 6 to X 20 were, in order, Xi to X~, X 1X 2, 

X 1X 3 , X 1X 4 , X 1X S' X 2 X 3 • X 2 X 4 , X 2 X S, X 3X 4 , X 3X S' X 4 X S' In 
this case, sequential replacement has only found one subset which 
fits better than those found using forward selection. We see that 
neither forward selection nor sequential replacement found the 
subset of variables 9, 17 and 20 which gives a much better fit than 
variables 14, 15 and 17. In fact, the five best-fitting subsets of three 
variables (see Table 3.11) all fit much better than those found by 
forward selection and sequential replacement. 

We note also that the variables numbered from 11 upwards all 
involve products of two different original variables, i.e. they are 
interactions. The first single variables selected by forward selection 
and sequential replacement do not appear until we reach subsets of 
five variables, and then only variable X 1 or its square; single variables 
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Table 3.9 RSS'sfor subsets ofvariablesfor the data ofTable 3.8. The numbers 
in brackets are the numbers of the selected variables 

No.of Forward Sequential Exhaustive 
variables selection replacement search 

Const. 72-29 72-29 72-29 

26·87 26·87 26·87 
(15) (15) (15) 

2 21·56 21·56 21·56 
(14,15) (14,15) (14,15) 

3 19·49 19·49 12·61 
(14,15,17) (14,15,17) (9,12,20) 

4 11·98 11·98 11·49 
(12,14,15,17) (12,14,15,17) (9,10,17,20) 

5 9·05 8·70 6·61 
(6,12,14,15,17) (1,12,15,17,19) (1,2,6,12,15) 

start appearing from subsets of three variables in the best subsets 
found from the exhaustive search. 

How weIl does the Efroymson algorithm perform? That depends 
upon the values used for F d and F •. If F. is greater than 2· 71 it stops 
with only one variable selected, that is variable 15. If Fe is between 
1·07 and 2·71 then the two-variable subset of variables 14 and 15 is 
selected. If Fe is less than 1·07, the algorithm proceeds as for forward 
selection. To find any of the good subsets of three variables it would 
need to do some deletion. For instance, after the subset of variables 
14, 15 and 17 has been found, a value of Fd greater than 2·74 is 
needed to delete variable 14. This would mean that Fd > Fe' and 
this results in indefinite cyc1ing. 

Now let us look at the Hoerl and Kennard method. The ridge 
trace for these data is shown in Fig. 3.3. We will try to apply the 
criteria of Hoerl and Kennard, though these were not precisely spelt 
out in their paper. They would probably retain variables 3, 6, 8 and 
14, which have consistently large regression coefficients for all values 
of d. We would certainly not consider variables 10, 11 or 19, as their 
regression coefficients change sign. The above subset offour variables 
gives an RSS = 42·96; there are many subsets of four variables which 
fit much better than this. Variables 18 and 20 are also interesting 
in that their regression coefficients are small initially but are the 
largest for large d. 
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Table 3.10 

Subset of 3 Subset of 4 
variables RSS variables RSS Frequency 

9 17 20 12·61 9 10 17 20 11·49 41 
5 10 11 16·29 5 10 11 16 11·85 3 

14 15 17 19·49 12 14 15 17 11·98 52 
3 8 11 20·34 3 8 11 19 17·70 4 

A method which is usually less expensive than the exhaustive 
search is that of using areplacement algorithm starting from 
randomly chosen subsets of variables. Using 100 random starting 
subsets of three variables gave the frequencies of subsets of three 
and four variables shown in Table 3.10. We note that the most 
frequently occurring stationary subset was not that which gave the 
best fit, though in this case the use of random starts has found the 
best-fitting subsets of both three and four variables. 

So far we have only looked at the best subsets of each size found 
by these various methods. Table 3.l1lists the five best-fitting subsets 
of each size from one to five variables. We notice that in most cases 
there is very little separating the best from the second or even the 
fifth-best. In cases such as this we can expect very substantial 
selection bias if we were to calculate the LS regression coefficients. 
This will be examined in more detail in Chapter 5. 

At this stage we will make only a few minor comments on these 
results as the topic of inference is to be treated in the next chapter. 
We notice that there is a very big drop in RSS from fitting a constant 
to fitting one variable, either X 15 = X 2X 3 or X 11 = Xl X 2' and only 
a gradual decline after that. This suggests that we may not be able 
to do better than use one of these two variables as the predictor of 
Y. A further practical comment is that rainfalls (variable Y is rainfall) 
have very skew distributions and it is common practice to use a 
transformation such a cube-root or logarithm. It looks as if such a 
transformation would give improved fits in this case. 

Example 3.2 

This is the STEAM data set of Chapter 2 (see Table 2.2 for the 
source). Table 3.12 shows how well forward selection, backward 
elimination and sequential replacement performed in relation to the 
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Table 3.11 Five best-fitting subsets oJ sizes Jrom one 
to jive variables Jor the cloud-seeding data 

No.oJ 
variables RSS Variables 

1 26·87 15 
27·20 11 
32·18 2 
34·01 7 
42·99 17 

2 21·56 15 14 
21·81 15 1 
22·29 15 12 
22·73 15 6 
23·98 15 13 

3 12·61 9 17 20 
15·56 2 9 20 
16·12 9 15 20 
16·29 5 10 11 
17·24 7 9 20 

4 11·49 9 10 17 20 
11·63 5 9 17 20 
11·77 8 9 17 20 
11·85 5 10 11 16 
11·97 2 9 10 20 

5 6·61 1 2 6 12 15 
8·12 9 12 14 15 20 
8·44 1 2 12 13 15 
8'70 1 12 15 17 19 
8·82 1 3 6 8 13 

best-fitting subsets of each size obtained by exhaustive search. We 
note that for this data set there are more observations than variables 
and back ward elimination is feasible. 

For this set of data, forward selection, backward elimination and 
sequential replacement have all performed fairly weIl, with sequential 
replacement having found the best-fitting subsets of all sizes. We 
notice that the RSS is almost constant for three or more variables 
for the best-fitting subsets of each size. This suggests that the best 
predictor is one containing not more than three variables. The RSS 
with all nine variables in the model is 4'87, and this has 15 degrees 
of freedom. Dividing the RSS by its number of degrees of freedom 
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Table 3.12 RSS's for subsets of variables selected using various procedures 
for the STEAM data. The numbers in brackets are the numbers ofthe selected 
variables 

No.of Forward Backward Sequential Exhaustive 
variables selection elimination replacement search 

Const. 63·82 63·82 63-82 63-82 

18·22 18·22 18·22 18·22 
(7) (7) (7) (7) 

2 8·93 8·93 8·93 8·93 
(1,7) (1,7) (1,7) (1,7) 

3 7·68 7·68 7·34 7·34 
(1,5,7) (1,5,7) (4,5,7) (4,5,7) 

4 6·80 6·93 6·80 6·80 
(1,4,5,7) (1,5,7,9) (1,4,5,7) (1,4,5,7) 

5 6·46 6'54 6·41 6·41 
(1,4,5,7,9) (1,5,7,8,9) (1,2,5,7,9) (1,2,5,7,9) 

gives a residual variance estimate of 0·32 and this is of the same 
order of magnitude as the drops in RSS from three to four variables, 
and from four to five variables. If we regressed the LS residuals from 
fitting the first three variables against a variable which consisted of 
a column of random numbers, we would expect a drop in RSS of 
about 0·32. 

The five best-fitting subsets of one, two and three variables are 
shown in Table 3.13. We see that there is no competition in the case 
of a single variable, that there are three elose subsets of two variables, 
and at least five elose subsets of three variables. If LS estimates of 
regression coefficients were used in a predictor, very little bias would 
result if the best sub set of either one or two variables were used. 
There would be bias ifthe best subset ofthree variables were used. 

Example 3.3 

The data for this example are for the DETROIT data set (see 
Table 2.2 for the source). The data are of annual numbers of 
homicides in Detroit for the years 1961-73 inelusive, and hence 
contain 13 observations. As there are 11 predictor variables available, 
there is only one degree of freedom left for estimating the residual 
variance if a constant is ineluded in the model. Table 3.14 shows the 



Table 3.13 Five best-fitting subsets of one, 
two and three variablesfor the ST EAM data 

No.of 
variables RSS Variables 

18·22 7 
37·62 6 
45·47 5 
49-46 3 
53·88 8 

2 8·93 1 7 
9·63 5 7 
9·78 2 7 

15·60 4 7 
15·99 '7 9 I 

3 7·34 4 5 7 
7·68 1 5 7 
8·61 1 7 9 
8·69 1 4 7 
8·71 5 7 8 

Table 3.14 RSS's for subsets of variables for the DETROIT data set. Th 
numbers in brackets are the numbers of the selected variables 

No. 01 Forward Backward Sequential Exhaustive 
variables selection elimination replacement search 

Const. 3221·8 3221·8 3221·8 3221·8 

1 200·0 680·4 200·0 200·0 
(6) (ll) (6) (6) 

2 33·83 134·0 33·83 33·83 
(4,6) (4,11) (4,6) (4,6) 

3 21·19 23·51 21-19 6·77 
(4,6,10) (3,4,11) (4,6,10) (2,4,11) 

4 13-32 10·67 13-32 3·79 
(1,4,6,10) (3,4,8,11) (1,4,6,10) (2,4,6, ll) 

5 8·20 8·89 2·62 2·62 
(1,2,4,6,10) (3,4,7,8,11) (1,2,4,9,11) (1,2,4,9,11) 

6 2·38 6·91 1·37 1·37 
(1,2,4,6,10,11) (3,4,7,8,9,11) (1,2,4,6,7,11) (1,2,4,6,7,11) 
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performance of forward selection, sequential replacement, backward 
elimination and exhaustive search on these data. 

In this example, none of the 'cheap' methods has performed weIl, 
particularly in finding the best-fitting subsets of three and four 
variables. For larger sub sets, sequential replacement has been 
successful. Backward elimination dropped variable number 6 first, 
and this appears in many of the better-fitting subsets, while it left 
in variables 3, 8 and 10, which appear in few ofthe best subsets, until 
a late stage. In the experience of the author, the 'cheap' methods of 
variable selection usually perform badly when the ratio of the number 
of observations to the number of variables is less than or elose to 
1. In such cases, the best-fitting subset of p variables often does not 
contain the best-fitting subset of p - 1 variables, sometimes they 
have no variables in common, and methods which add or drop one 
variable at a time either cannot find the best-fitting subsets or have 
difficulty in finding them. One remarkable feature of this data set is 
that the first variable selected by forward selection, variable 6, was 
the first variable deleted in the backward elimination. 

Table 3.15 shows the five best-fitting subsets of each size up to 
five variables. The subsets of three variables look extraordinary. Not 
merely is the subset of variables 2, 4 and 11 far superior to any other 
subset of three variables, but no sub sets of one or two of these three 
variables appear in the five best-fitting subsets of one or two 
variables. Variable 2 has the lowest correlation in absolute value 
with the dependent variable; this correlation is 0.21, the next smaIlest 
is 0.55, and most of the others exceed 0.9 in absolute value. The 
RSS's for subsets from these variables are 

Variable 
RSS 

2 
3080 

4 
1522 

11 
680 

2,4 
1158 

2,11 
652 

4,11 
134 

These aIl compare very unfavourably with the better-fitting subsets 
of one and two variables. Is this just a case of remarkable over-fitting? 

In view of the lack of competition from other subsets, the bias in 
the regression coefficients is likely to be very small if this subset of 
three variables is used for prediction with LS estimates for the 
parameters. The three variables in this case are % unemployed 
(variable 2), number of handgun licences per 100000 population 
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Table 3.15 Five best-fitting subsets oJ each size 
Jrom one tofive variablesJar the DETROIT data 

No.oJ 
variables RSS Variables 

200·0 6 
227-4 1 
264·6 9 
277-7 8 
298·7 7 

2 33-83 4 6 
44·77 2 7 
54·45 1 9 
55·49 5 6 
62·46 3 8 

3 6·77 2 4 11 
21·19 4 6 10 
23-05 1 4 6 
23·51 3 4 11 
25·04 4 6 11 

4 3·79 2 4 6 11 
4·58 1 2 4 11 
5·24 2 4 7 11 
5·41 2 4 9 11 
6·38 2 4 8 11 

5 2·62 1 2 4 9 11 
2·64 1 2 4 6 11 
2·75 1 2 4 7 11 
2·80 2 4 6 7 11 
3·12 2 4 6 9 11 

(variable 4) and average weekly earnings (variable 11). All three 
regression coefficients are positive. 

Example 3.4 

The data for this example is the POLLUTE data set (see Table 2.2 
for the source). The dependent variable is an age-adjusted mortality 
rate per 100000 population. The data are for 60 metropolitan 
statistical areas in the USA. The predictor variables incude 
socio-economic, meteorological and pollution variables. 

Table 3.16 shows the subsets of variables selected by forward 
selection, backward elimination, sequential replacement and 
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Table 3.16 RSS's Jor subsets oJ variables Jor the POLLUTE data. The 
numbers in brackets are the numbers oJ the selected variables 

No.of Forward Backward Sequential Exhaustive 
variables selection elimination replacement search 

Const. 228308 228308 228308 228308 
133695 133695 133695 133695 

(9) (9) (9) (9) 

2 99841 127803 99841 99841 
(6,9) (9,12) (6,9) (6,9) 

3 82389 91777 82389 82389 
(2,6,9) (9,12,13) (2,6,9) (2,6,9) 

4 72250 78009 69154 69154 
(2,6,9,14) (6,9,12,13) (1,2,9,14) (1,2,9,14) 

5 64634 69136 64634 64634 
(1,2,6,9,14) (2,6,9,12,13) (1,2,6,9,14) (1,2,6,9,14) 

6 60539 64712 60539 60539 
(1,2,3,6,9,14) (2,5,6,9, 12, 13) (1,2,3,6,9,14) (1,2,3,6,9,14) 

exhaustive search. In this case, which is our only one with 
substantially more observations than variables, sequential replace
ment has found the best-fitting subsets of all sizes, while forward 
selection has only failed in the case of the subset of four variables 
where the subset selected is the second-best of that size. Backward 
elimination has performed poorly, having dropped variable 14 very 
early, in fact in going from 10 to 9 variables, and of course from all 
sm aller subsets. 

In this case we have a good estimate of the residual variance. The 
RSS with all 15 variables and a constant in the model is 53680 which 
has 44 degrees offreedom giving a residual variance estimate of 1220. 
The drop in RSS from the best subset of four variables to the best 
subset of five variables is less than four times the residual variance, 
which is not very impressive, and suggests that the best subset for 
prediction should probably be that with only four variables. 

From Table 3.17 sh"owing the five best-fitting subsets of each size, 
we see that in this ca se there is one dominant variable, variable 
number 9. This variable is the percentage of the population which is 
nonwhite. Without this variable, the best fitting subsets are 

Variables 

RSS 

6 1,14 1,4,14 1,4,7,14 1,2,4,11,14 1,2,3,4,11,14 

168696 115749 102479 92370 87440 81846 
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Table 3.17 Five best-fitting subsets oJ each size Jrom 
one to jive variables Jor the PO LLU TE data 

No.oJ 
variables RSS Variables 

133695 9 
168696 6 
169041 1 
186716 7 
186896 14 

2 99841 6 9 
103859 2 9 
109203 9 14 
112259 4 9 
115541 9 10 

3 82389 2 6 9 
83335 1 9 14 
85242 6 9 14 
88543 2 9 14 
88920 6 9 11 

4 69154 1 2 9 14 
72250 2 6 9 14 
74666 2 5 6 9 
76230 2 6 8 9 
76276 1 6 9 14 

5 64634 1 2 6 9 14 
65660 1 2 3 9 14 
66555 1 2 8 9 14 
66837 1 2 9 10 14 
67622 2 4 6 9 14 

These are all very inferior to the best subsets induding variable 
9. Some of the other variables most frequently selected are annual 
rainfall (variable 1), January (2) and July temperature (3), median 
number of years of education (6), and sulphur dioxide concentration 
(14). 

As the values of the RSS's are relatively dose together for subsets 
of the same size, it could appear that there is dose competition for 
selection. However, ifwe compare the ditTerences between RSS's with 
our residual variance estimate of 1220 we see that only a sm all 
number are dose. 
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3.10.1 Conclusions and recommendations 

It could be argued that the above examples, except for the 
POLLUTE data set, are not very typical in having low ratios of 
numbers of observations to variables; however these ratios are fairly 
representative of the author's experience as a consulting statistician. 
What is perhaps unrepresentative is the low number of available 
predictor variables in these examples. In meteorology, users of 
variable-selection procedures often have a choice from more than a 
hundred variables, while in using infra-red spectroscopy as a 
substitute for chemical analysis the author has occasionally 
encountered examples with over a thousand variables. 

In our examples, the 'cheap' methods considered, forward 
selection, backward elimination and sequential replacement, have 
usually not found all of the best-fitting subsets and have sometimes 
fared poorly. Of these three methods, sequential replacement has 
been the most successful. A more extensive comparison has been 
made by Berk (1978b) who has examined nine published cases, 
though all had more observations than variables. In three of the 
nine cases, forward selection and backward elimination found the 
best-fitting subsets of all sizes. In most other cases, the differences 
between the RSS's for the subsets selected by forward selection and 
backward elimination and the best subsets were very small. 

An exhaustive search can take a very long while. The following 
times were recorded for the four principal procedures considered 
here on a set of data from the infra-red analysis of wood 
sam pIes. There were 25 variables, which were reflectances at differ
ent wavelengths, and 72 observations. The best-fitting subsets of 6 
variables plus a constant were sought and the best 5 subsets of each 
size were being found. The times were on a CROMEMCO Z-20 
microcomputer based on a Z80A microprocessor. The procedures 
were used in the order listed which meant that the subsets found by 
the first three procedures were available as initial bounds for the 
exhaustive search: 

Forward se1ection 
Backward elimination 
Sequential replacement 
Exhaustive search 

20 sec. 
113 sec. 
93 sec. 

2hr.45min. 

When the procedures were repeated but with only the single 
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best-fitting subset of each size being sought, the exhaustive search 
took 2 hours 28 minutes. This is an extreme example in two regards. 
First, the first three procedures all performed very badly so that 
the bounds were of little benefit in cutting down the amount of 
computation in the exhaustive search. 

In general, if it is feasible to carry out an exhaustive search then 
that is to be recommended. As the sequential replacement algorithm 
is fairly fast, that can always be used first to give some indication 
of the maximum size of subset which is likely to be of interest. If 
there are more observations than variables then the RSS with all of 
the variables in the model should be calculated first. This comes out 
of the orthogonal reduction as the data are input and so requires 
no additional computation. It is useful as a guide to determine the 
maximum size of subset to examine. 

It is recommended that several subsets of each size should be 
recorded. The alternative subsets are useful both for testing whether 
the best-fitting subset is significantly better than others (see 
Spjq,tvoll's test in Chapter 4), or for finding the subset which may 
give the best predictions for a specific set of future values of the 
predictor variables (see Chapter 6). 

When it is not feasible to cary out the exhaustive search, the 
use of random starts followed by sequential replacement, or of 
two-at-a-time replacement, can be used though there can be no 
guarantee of finding the best-fitting subsets. A further alternative is 
that of grouping variables which was discussed in section 3.8 but 
which requires further research. 

In all cases, graphicalor other methods should be used to assess 
the adequacy of the fit obtained. These examinations often uncover 
patterns in the residuals which may indicate the suitability of using 
a transformation, or of using some kind of weighting, or of adding 
extra variables such as quadratic or interaction terms. Unfortunately 
inference becomes almost impossible if the total subset of available 
predictors is augmented subjectively in this way. 



CHAPTER 4 

Hypothesis testing 

4.1 Is there any information in the remaining variables? 

Suppose that by some method we have already picked p variables, 
where p may be zero, out of k variables available to include in our 
predictor subset. If the remaining variables contain no further 
information which is useful for predicting the response variable then 
we should certainly not include any more. But how do we know 
when the remaining variables contain no further information? In 
general, we do not; we can only apply tests and take gambles based 
upon the outcome of those tests. 

The simplest such test known to the author is that of augmenting 
the set of predictor variables with one or more artificial variables 
whose values are produced using a random number generator. When 
the selection procedure first picks one of these artificial variables, the 
procedure is stopped and we go back to the last subset containing 
none of the artificial variables. Let us suppose that we have reached 
the stage in a selection procedure when there is in fact no useful 
information remaining (though we would not know this in areal 
case), and that there are 10 remaining variables plus one artificial 
variable. Apriori the chance that the artificial variable will be selected 
next is then 1 in 11. Hence it is likely that several useless variables 
will be added before the artificial variable is chosen. For this method 
to be useful and cause the procedure to stop at about the right place 
we therefore need the number of artificial variables to be quite 
large, say of the same order as the number of real variables. This 
immediately makes the idea much less attractive as doubling the 
number of variables increases the amount of computation required 
by a much larger factor. 

In Table 4.1 the RSS's are shown for the five best-fitting subsets 
of 2,3,4 and 5 variables for the four data sets used in examples in 
section 3.10. The name 'CLOUDS' indicates the cloud-seeding data. 
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Table 4.1 RSS's Jor the five best-fitting subsets oJ 2,3,4 and 5 variables with 
artificial variables added. The number oJ asterisks equals the number oJ artificial 
variables in the subset 

Data set 
No.oJ 
variables CLOUDS STEAM DETROIT POLLUTE 

2 21·56 8·93 33·83 99841 
21·81 9-63 44·77 lO3859 
22·29 9·78 54-46 lO9203 
22-41 * 15,39* 55·49 112259 
22-42* 15·60 62·46 115541 

3 12·61 7·34 6·77 82389 
15·56 7·68 21-19 83335 
16·12 7·81 * 23-05 85242 
16·29 8,29* 23·51 87365* 
16,95* 8,29* 25,01* 88543 

4 5,80** 6·41 ** 3-79 69137* 
6,52** 6,72* 4'08* 69154 
8,25** 6·80 4·58 72250 
8,25** 6·93 5·24 74666 
8,32* 7·02 5'38* 75607* 

5 3-69** 5·91 ** 1,33* 61545* 
4,08** 5,93* 1·71 * 62494* 
4,09** 6,01* 2,15* 63285** 
4,28** 6,05*** 2'62 64505* 
4-40** 6,11* 2·64 64549* 

The numbers of added variables were 

CLOUDS 5, STEAM 9, DETROIT 11 and POLLUTE 10. 

The values of the artificial variables were obtained using a uniform 
random number generator. Exeept for the DETROIT data set, the 
artifieial variables indieate that we should stop at three variables. 
In the ease of the DETROIT data, the separation between the 
best-fitting and the seeond-best of four variables is not large, and it 
looks doubtful whether the subset of four variables would have been 
the best if we had generated more artifieial variables. It is of interest 
to notiee that there is no eh allen ge to the best subset ofthree variables 
for the DETROIT data; a subset whieh we eommented in seetion 3.10 
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stood out very remarkably. In the case of the STEAM data we must 
have some doubts about whether the first two subsets of three 
variables are really an improvement over the best-fitting subsets of 
two variables; the next three subsets containing artificial variables 
are very close. 

We saw in section 3.3 that the widely used 'F-to-enter' statistic 
does not have an F-distribution or anything remotely like one. 
However the quantity is a useful heuristic indicator and we propose 
to use it and to abuse it even further by using it to compare RSS's 
for different sizes of subsets when the larger subset does not 
necessarily contain the smaller one. Let us define 

RSS -RSS +1 F-to-enter = p p 

RSSp+t!(n-p-l) 

where RSSp and RSSp+ 1 are the RSS's for subsets of p and p + 1 
variables, and n is the number of observations. If the model includes 
a constant which has not been counted in the p variables, as is 
usually the case, then another 1 must be subtracted from the number 
of degrees of freedom. Comparing the best subsets of three and four 
variables in Table 4.1, the values of the F-to-enter are 10·6 
(CLOUDS), 2·9 (STEAM), 6·3 (DETROIT) and 10·5 (POLLUTE) 
with 9, 20, 8 and 25 degrees of freedom respectively for the 
denominators. It is interesting to note that it is only the third largest 
of these which may be significant at say the 5% level, though we 
can only guess at this on the basis of the previous test using the 
addition of artificial variables. 

An alternative test to the above is that of Forsythe et al. (1973). 
If the true model is linear in just p out of the k available predictor 
variables, these p variables have been correctly selected and are the 
first p variables in the triangular factorization, then the (k - p) 
projections of the dependent variables, Y, on the remainder of the 
space spanned by the X -variables, are uncorrelated and have 
variance equal to the residual variance if the true residuals are 
uncorrelated and homoscedastic (i.e. they all have the same variance). 
This is easily shown as folIows. We suppose that 

Y=XAP+E 

where XA consists of the first p columns of X, the true residuals in 
vector E have zero mean, the same variance, (12, and are uncorrelated, 
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i.e. E(EE') = (J21 where I is an n x n identity matrix with n equal to 
the number of observations. Let XB consist of the remaining (k - p) 
columns of X, and let the orthogonal reduction of X be 

(XA, XB) = (QA' QB)R, 

where the columns of QA and QB are mutually orthogonal and 
normalized. Then we have 

(~:)Y = (~JXAP + (~:)E 
= (~)RP + (~:)E, 

where I is a p x p identity matrix. 
The last (k - p) projections are given by 

Then 

and 

Q~ Y = Q~E. 

E(Q~ Y) = 0 

E(Q~ YY'QB) = E(Q~EE'QB) 
= (J2Q~QB 

= (J21 

where I is a (k - p) x (k - p) identity matrix. Notice that there is no 
need for the matrix R to be triangular; any orthogonal reduction 
will suffice. Also the only distributional assumptions imposed on the 
true residuals are that they have finite variance, the same variance 
for each residual, and that the residuals are uncorrelated. 

If we have selected too many variables but they include all of 
those in the true model für Y, then the above results still apply as 
the model then has zeros for some of the elements of p. 

The projections in the last (k - p) positions of Q'Y can be used 
to test the hypothesis that there is no more useful information for 
predicting Y if we are prepared to accept that the residuals from the 
true model are uncorrelated and homoscedastic. Alternatively, they 
can be used for testing the properties of the true residuals if we are 
satisfied with the selected variables in the model. Forsythe et al. 
(1973) suggested a test for the former as follows. First, find the 
maximum reduction in RSS which can be obtained by adding one 
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further variable; call this Smax' Then perrnute the last (k - p) elements 
of Q'Y many times, each time calculating the maximum reduction 
in RSS which can be achieved by adding one variable to the p already 
selected, and counting the number of times that Smax is exceeded. 
This can be done quite quickly and can easily be incorporated into 
a forward selection routine.lfthe remaining (k - p) variables contain 
no further useful information then Smax can be regarded as a random 
sampie from the distribution of maximum reductions in RSS. Hence 
if we carry out say 1000 permutations, the number of times that 
Smax is exceeded is equally likely to take any value from 0 to 1000. 

This test assurnes that the last elements of Q'Y are interchangeable, 
which requires that they are identically distributed. In general this 
will not be true unless the true residuals have a normal distribution. 
We have only shown that the elements have the same first two 
moments. However, as these elements are weighted linear 
combinations of the true but unknown residuals, by the centrallimit 
theorem they will usually have distributions which are dose to 
normal, particularly if the number of observations is less than say 
double the number of variables. Using the elements of QB it is 
possible, though tedious, to ca1culate higher moments for each of 
the last elements of Q'Y in terms ofthe moments ofthe true residuals. 
This exercise (or a similar one for LS residuals) shows that 
orthogonal reduction (or LS fitting) is very effective in making 
residuals look normal even when the true residuals are very 
nonnormal. 

The above test has a disadvantage in that the significance level 
depends upon the order the occurrence of the last (k - p) variables. 
It will not usually be practical to use all (k - p)! permutations of 
these variables. 

Table 4.2 shows the results obtained using the four sets of data 
used in the examples in section 3.10. In each case the best-fitting 
subset of three variables was used for the subset of selected variables. 

Table 4.2 Numbers oftimes that the maximum reduction in RSSfrom adding 
afourth variable was exceeded when the projectionsfor the remaining variables 
were permuted 

Data set 
No. of exceedances 

(out of 10(0) 

CLOUDS 
974 

STEAM 
847 

DETROIT POLLUTE 
308 348 
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These results all support the belief that there is no further useful 
information in the remaining variables in these da ta sets. The very 
high number of exceedances for the cloud-seeding data suggests that 
there may have already been some over-fitting in selecting the subset 
of three variables. 

In the case of the POLLUTE data set, the best single variable to 
add to the first three does not give the best-fitting subset of four 
variables. The best-fitting subset of three variables consists of 
variables 2, 6 and 9 which give an RSS = 82389. Adding variable 
14 reduces the RSS to 72 250, but the subset of variables 1,2,9 and 
14 gives an RSS = 69154. As the residual variance estimate with all 
15 variables included is 1220, the difference of 3096 between these 
two RSS's is relatively large. 

It is possible for the remaining variables to contain a pair of 
variables which together substantially improve the prediction of Y, 
but which are of very little value separately. This would not be 
detected by the Forsythe permutation test, though a 'two variables 
at a time' version ofthe test could be carried out ifthis were suspected. 
The test as presented by Forsythe et al. is probably better to use as 
a 'carry on' rule rat her than as a 'stopping' rule as when Smax is only 
exceeded a small number of times then the remaining variables most 
probably contain additional information, whereas when the number 
of exceedances is larger, the situation is uncertain. 

One important feature of this permutation test is that it can be 
used when the number of variables exceeds the number of 
observations, which is precisely the situation for which it was devised. 

When there are more observations than variables, there is 
information in the residual variation which is not used by the 
Forsythe permutation test. A similar test is to use the maximum 
F-to-enter. Thus, after p variables have been selected, the maximum 
F-to-enter is found for the remaining (k - p) variables. It is not 
difficult to write down the form of the distribution of this maximum 
F-to-enter making the usual assumptions that the true residuals are 
independently and identically normally distributed plus the added 
assumption that the selected p variables represent the true relation
ship, i.e. we have not already over-fitted by adding one or more 
variables which by chance had moderately high correlations with 
the variable to be predicted. This distribution depends upon the 
values of the X -variables so that it is not feasible to tabulate it except 
perhaps for the case in which the X -variables are uncorrelated. 
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However, the distribution can easily be simulated for the particular 
data set at hand by using a random normal generator for the last 
(k - p) projections and a random gamma generator for the RSS with 
all the variables in the model. As the F-to-enter statistic is 
dimensionless, it is not necessary to estimate the residual variance, 
the random projections can have unit variance and the sum of 
squares of residuals can be sampled from a chi-square distribution 
without applying any scaling. However such a test is only of whether 
a single variable can significantly reduce the RSS, and will again fail 
to detect cases where two or more variables collectively can produce 
a significant reduction. The author can supply a FORTRAN routine 
for such a test, but it was not thought to have sufficient value to 
include here. 

A simple alternative to the F-to-enter test is one which is often 
called the lack-of-fit test. If we have n observations and have fitted 
a linear model containing p out of k variables plus a constant, then 
the difference in RSS between fitting the p variables and fitting a 11 
k variables, RSSp - RSSk, can be compared with RSSk giving the 
lack -of-fit statistic 

lack-of-fit F = (RSSp - RSSk)/(k - p). 
RSSk/(n - k - 1) 

Table 4.3 shows values of the lack-of-fit statistic after fitting three 
variables for each of OUf four examples. If the subset of three variables 
had been chosen apriori, the usual conditions of independence, 
constant variance and normality are satisfied, and there is no useful 
information in the remaining variables, then the lack-of-fit statistic is 
sampled from an F -distribution with the numbers of degrees of 
freedom shown in the table. None of these values is significant at 

Tab1e 4.3 Lack-of-fit statistic after fitting the best-fitting subsets of three 
variables. Degs = degrees. Num. = numerator. Denom. =denominator 

No. of variables Degs of freedom Lack-of-fit 
Data set in subset Num. Denom. F 

CLOUDS 3 10 0 n.a. 
STEAM 3 6 15 1.27 
DETROIT 3 8 1 9.30 
POLLUTE 3 12 44 1.96 
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the 5% level, though that for the POLLUTE data set is very elose; 
it is at the 5.3% point in the tail of its F -distribution. The value of 
the lack-of-fit statistic for the DETROIT data set is large, but it 
needs to be very much larger to become significant as there is only 
one degree of freedom for the RSS with all!! variables in the model. 

A further statistic which can be used to test for no further in
formation is the coefficient of determination, R2• This has usually 
been employed though to test whether there is any predictive power 
in any of the variables. R 2 can be defined as 

R2 = 1 - RSSp /RSS l 

provided that a constant has been ineluded in the model as the first 
variable, so that RSS 1 is the sum of squares of Y about its mean. 
There is some ambiguity in the definition of R 2 when a constant is 
not fitted. Sometimes the definition above is used, in which case 
negative values are possible, while the total sum of squares of values 
of the variable is sometimes used instead of RSS l' 

The distribution of R2 has been tabulated for a number of cases 
in which the response variable, Y, is normally distributed and 
independent of the X-variables. Diehr and Hoflin (1974), and 
Lawrence, Neumann and Caso (1975) have generated the distribu
tion of R 2 using Monte Carlo methods for subset selection using 
respectively exhaustive search and forward selection, for uncorre
lated normally distributed X-variables. Zurndorfer and Glahn (1977) 
and Rencher and Pun (1980) have also looked at the case of 
correlated X -variables using forward selection and the Efroymson 
algorithm respectively. It is dear from both of these last two studies 
that the value of R 2 tends to be higher when the X-variables are 
uncorrelated. Table 4.4 shows the values of the average and upper 
95% points of the distribution of R 2, denoted by R; and R~5' 
obtained by Rencher and Pun for the case of uncorrelated 
X-variables. The number of X-variables, p, does not inelude the 
constant term which was fitted. Rencher and Pun do not state the 
values used for the F-to-enter and F-to-delete parameters in deriving 
their tables, but do say that they were reduced when necessary to 
force the required number of variables into subsets. The 95% points 
of R2 found by Diehr and Hoflin tend to be a little higher than 
those found by Rencher and Pun, but this is to be expected as they 
used exhaustive search as their selection procedure. 

Similar tables to Table 4.4 have also been produced by Wilkinson 



T
ab

le
 4

.4
 

V
al

ue
s 

o
f t

he
 a

ve
ra

ge
 a

nd
 u

pp
er

 9
5%

 p
oi

nt
s 

o
f t

he
 d

is
tr

ib
ut

io
n 

o
f R

2 
fo

r 
su

bs
et

s 
se

le
ct

ed
 u

si
ng

 E
fr

oy
m

so
n'

s 
al

go
ri

th
m

. 
n 

=
 sa

m
pi

e 
si

ze
, k

 =
 nu

m
be

r 
o

f a
va

il
ab

le
 u

nc
or

re
la

te
d 

pr
ed

ic
to

r 
va

ri
ab

le
s.

 R
ep

ri
nt

ed
fr

om
 R

en
ch

er
 a

nd
 P

un
 (

1
9

8
0

) 
w

it
h 

pe
rm

is
si

on
 

o
f 

R
en

ch
er

 a
nd

 t
he

 A
m

er
ic

an
 S

ta
ti

st
ic

al
 A

ss
oc

ia
ti

on
. N

um
be

r 
o

f v
ar

ia
bl

es
 i

n 
se

le
ct

ed
 s

ub
se

t 

p
=

2
 

p
=

4
 

p
=

6
 

p
=

8
 

p
=

lO
 

n 
k 

R
2 • 

R
;s

 
R

2 • 
R~
5 

R
2 • 

R
;s

 
R

2 • 
R

;s
 

R
2 • 

R
;s

 

5 
5 

0·
78

4 
0·

98
1 

10
 

0·
90

0 
0·

99
1 

20
 

0·
95

2 
0·

99
5 

10
 

5 
0·

42
1 

0·
66

5 
0·

54
0 

0·
85

1 
10

 
0·

56
7 

0·
82

2 
0·

77
8 

0·
95

5 
0·

89
4 

0·
99

1 
20

 
0·

69
1 

0·
87

7 
0·

91
2 

0·
98

3 
0·

98
4 

0·
99

9 
0·

99
7 

1·
00

0 
40

 
0·

79
1 

0·
90

7 
0·

96
5 

0·
99

1 
0·

99
6 

1·
00

0 
0·

99
9 

1·
00

0 

20
 

10
 

0·
29

9 
0·

51
0 

0·
42

3 
0·

65
8 

0·
48

8 
0·

72
6 

20
 

0·
39

1 
0·

56
2 

0·
58

5 
0·

77
1 

0·
70

1 
0·

85
8 

0·
78

6 
0·

92
0 

40
 

0·
46

9 
0·

61
8 

0·
70

0 
0·

81
9 

0·
83

5 
0·

92
0 

0·
91

6 
0·

96
9 

0·
96

3 
0-

98
9 

30
 

10
 

0·
20

2 
0·

33
7 

0·
28

5 
0·

45
1 

0·
32

6 
0·

51
1 

20
 

0·
26

4 
0·

38
8 

0·
40

5 
0·

54
6 

0-
49

6 
0·

64
8 

0·
56

1 
0·

71
6 

40
 

0·
33

1 
0·

45
6 

0·
51

4 
0·

64
0 

0·
63

9 
0·

75
9 

0·
73

3 
0·

84
6 

0·
80

3 
0·

90
1 

40
 

10
 

0·
14

7 
0·

26
0 

0·
20

6 
0·

33
9 

0·
23

3 
0·

37
4 

20
 

0·
20

3 
0·

31
9 

0·
30

9 
0·

44
5 

0·
37

6 
0·

52
7 

0·
42

4 
0·

58
3 

40
 

0·
25

1 
0·

34
9 

0·
39

7 
0·

50
7 

0·
50

2 
0·

62
6 

0·
58

4 
0·

70
4 

0·
65

1 
0-

77
5 

50
 

30
 

0·
18

4 
0·

26
7 

0·
29

1 
0·

39
7 

0·
36

7 
0·

4H
4 

0·
42

4 
0·

55
9 

0·
46

9 
0-

61
2 

40
 

0·
20

1 
0·

28
8 

0·
32

4 
0·

43
2 

0-
41

3 
0·

52
6 

0·
48

1 
0-

59
8 

0·
53

7 
0·

65
7 

60
 

30
 

0·
15

7 
0·

22
9 

0·
24

7 
0·

34
1 

0·
31

2 
0-

42
5 

0·
36

0 
0·

47
9 

0·
39

8 
0·

52
3 

40
 

0·
16

9 
0·

24
9 

0·
27

2 
0·

37
2 

0·
34

8 
0·

45
7 

0·
40

6 
0·

51
5 

0·
45

4 
0·

56
9 



4.1 IS THERE ANY INFORMA nON IN VARIABLES? 93 

and Dallal (1981) for R 2 for the case of forward selection, except 
that their tables are in terms of the number of available variables 
and the value used for F-to-enter. 

The values of R 2 for the best-fitting subsets of three variables for 
our four examples are given in Table 4.5. From Table 4.4 we see 
that the values of R 2 for the STEAM, DETROIT and POLLUTE 
data sets are all significant at the 5% level. For the CLOUDS data, 
interpolation between four entries is necessary. It appears that the 
value of R 2 may be just short of the 5% point, though the tables 
are for the Efroymson algorithm, not for an exhaustive search. 

Zirphile (1975) attempted to use extreme-value theory to derive 
the distribution of R 2 • He makes the false assumption that the values 
of R 2 for the kCp different sub sets of p variables out of kare 
uncorrelated, and uses a normal distribution to approximate the 
distribution of R2 for a randomly chosen subset of variables. The 
distribution of R2 for a random subset when the Y-variable is 
uncorrelated with the X -variables is a beta distribution with 

prob(R2 < z) = -- ta - 1(1- t)b- 1dt 1 fZ 
B(a, b) 0 

where a = p/2, b = (n - p - 1)/2 if a constant has been inc1uded in 
the model but not counted in the p variable. Using the beta 
distribution and fitting constants to their tables, Rencher and Pun 
obtained the following formula for the upper 100(1 - y)% point 
of the distribution of the maximum R 2 using the Efroymson 
algorithm as 

(4.1) 

where N = kCp and F -1(y) is the value of z such that 
prob(R2 < z) = y. 

Table 4.5 Values of R2 for the best-fitting 
subsets of three variables 

Data set 

CLOUDS 
STEAM 
DETROIT 
POLLUTE 

n 

14 
25 
13 
60 

k 

20 
9 

11 
15 

P R2 

3 0·826 
3 0·885 
3 0·998 
3 0·639 
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Values of F-1(y) can be obtained from tables of the incomplete 
beta function, or from tables of the F -distribution as folIo ws. W riting 
Regp to denote the regression sum ofsquares onp variables, we have 

R2 = Regpl(Regp + RSSp). 

Write 

F = Regplp 
RSSpl(n - p - 1) 

as the usual variance ratio for testing the significance of the subset 
of p variables if it had been chosen apriori. Then 

R2 = pl[p + (n - p - l)F]. (4.2) 

Thus the value of R2 such that prob(R2 < z) = y is the value of F, 
with p and (n - p - 1) degrees of freedom for the numerator and 
den omina tor respectively such that the upper tail area is y. As the 
reciprocal of a variance ratio also has an F -distribution but with 
the degrees of freedom interchanged, because of the way in which 
the F-distribution is usually tabulated, we use the tables with 
(n - p - 1) and p degrees offreedom for numerator and denominator 
respectively and then take the reciprocal of the F-value read from 
the tables. The upper limit on R 2 is then obtained by substitution 
in (4.2), and then into (4.1). 

In the case of the CLOUDS data set the above method gives 
R~5 = 0.878 which means that our value is not significant at the 5% 
level. Bearing in mind the fact that the Rencher and Pun formula 
is for the Efroymson algorithm whereas we found the subset using 
an exhaustive search, our value for R2 is even less significant. 

4.2 Is one subset better than another? 

In the first section of this chapter we were looking at ways of testing 
the hypothesis that ßp + 1' ... ' ßk = 0 where these ß's are the regression 
coefficients of the variables which have not been selected. In some 
cases these tests were of dubious value as they require that a subset 
had been selected apriori even though the test is almost always 
applied using the same data as was used to select the subset. Those 
tests only tested whether one subset was better than another, in 
some sense, when one subset was completely contained in the other. 

Wh at is meant by saying that one subset is better than another? 
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There are many possible ways of answering this. One such way is 
that used by Spj~tvoll (1972a), and this is equivalent to that used 
by Borowiak (1981). In this, one subset is considered better than 
another if the regression sum of squares of the expected values of Y 
upon the subset of X -variables is larger for that subset; Borowiak 
used the complementary RSS. However, unlike Borowiak and most 
other workers, Spj~tvoll did not make the assumption that the linear 
model in one of the two subsets was the true model. 

Let us suppose that Y = X~ + e where the residuals, e, are 
independently and identically normally distributed with zero mean 
and unknown variance (J2. That is, that if we use all of the variable 
predictor variables, then we have the true model, though an unknown 
number of the Ws may be zero. Then if we denote the LS estimate 
of vector ß by 6, we have from standard theory 

where S2 is the sam pIe estimate of the residual variance with all k 
variables in the model, that is S2 = RSSk/(n - k), and FI/.,k,n-k is the 
upper oe-point (i.e. the tail area = oe) of the F-distribution with k and 
(n - k) degrees of freedom for the numerator and den omina tor 
respectively. If the linear model including all of our predictor 
variables is not the true model then the equality in (4.3) should be 
replaced with ~. Spj~tvoll refers readers to pp. 136-7 of Scheffe 
(1959) for a method of proof of this statement. 

Let Xl' X 2 be two subsets of variables which we want to compare, 
with P1 and P2 variables respectively. For subset Xi the fitted values 
of Y for given values of the X-variables using the LS-fitted 
relationship are given by 

Y = XiPi = Xi(X;Xr 1 X;Y. 

If the expected values of Y are denoted by 1) then the sum of squares 
of derivations of the fitted values from the expected Y-values for a 
future set of data with the same values given for the X-variables is 

[tJ - Xi(X;X;)-l X; (1) + t)]'[1) - Xi(X;Xr 1 X;(1) + t)] 

= 1)'1) - 21)' Xi(X;Xi) -1 X;(1) + t) + (1) + t)' Xi (X; X;) -1 X;(1) +t) 

which has expected value 

= 1)'1) - 1)'Xi(X;Xr 1 X; 1) + (J2 trace[Xi(X;Xi)-l X;J. (4.4) 
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We note that as trace(AB) = trace(BA), it can be shown that the 
trace above has value Pi provided that the columns of Xi have full 
rank. 

Spj~tvoll suggested that the quantity 'I' Xi(X;Xr 1 X;'I be 
used as the measure of goodness-of-fit of a regression function, with 
large values denoting a better fit. Replacing 'I with xp, we want then 
to make inferences about the difference 

p'X'[Xl(X'lXl)-lX'l -X2(X~X2)-lX~]X~=p'C~ (4.5) 

which is a quadratic form in the unknown ~'s. 
Now if the condition on the left-hand side of (4.3) is satisfied then 

we can find absolute values for the maximum and minimum of (4.5) 
as the condition means that the ~'s must be within the specified 
closeness of the known ~. Only a summary of the results will be 
given here; more technical detail is given in Appendix 4A. Alter
natively, the reader can refer to Spj~tvoll's paper, but this contains 
a very large number of printing errors and the notation differs slightly 
from ours. 

Let P be a matrix such that both 

and 
P'X'XP=[ 

P'CP=D 

(4.6) 

(4.7) 

where D is a diagonal matrix. Such a matrix always exists, as will 
be clear from the method for finding P given in Appendix 4A. Let 
1 = p-l~ and 1 = P-l~. (N.B. Spj~tvoll shows P' instead of p- l 
which is not the same in general.) The condition (4.3) is now 

P{ (1 -1)'(1 -1) ~ ks2 F} = 1 - IX 

while the quadratic form in (4.5) is now just 'i.J;yf where di, Yi are 
the ith elements of D and 1 respectively. If the inequality on the 
left-hand side of (4.3) is satisfied, then 

Al ~ ~'C~ ~ A2 

where 

where a = - min(min di , Amin), b = max(max di , Amax)' and Amin, Amax 



4.2 IS ONE SUBSET BETTER THAN ANOTHER? 

are the minimum and maximum roots of 
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(4.8) 

except that Al = 0 if all of the d/s are ~ 0 and Ld, * 0 P? ~ ks2 F, and 
A2 = 0 if all of the d;'s are ~ 0 and Ld'*OP? ~ ks2F. These results 
follow from Forsythe and Golub (1965) or Spj~tvoll (1972b). As the 
left-hand side of (4.8) tends to + 00 from both sides as A approaches 
the positive d;'s, and - 00 for the negative d;'s, it is easy to see from 
a plot of (4.8) that Amin is a little smaller than the smallest positive 
di . Similarly, Amax is a little larger than the largest di . Any reasonable 
iterative method finds Amin and Amax very easily. 

If AI and A 2 are both greater than zero then subset X I is 
significantly better than subset X 2 at the level used to obtain the 
value used for F. Ifthe final term in (4.4) had been included somehow 
in the quadratic form WO, then we would have been able to conclude 
that subset X I gave significantly better predictions for the particular 
X -values used. It does not appear to be easy to do this though a 
crude adjustment is simply to add S2(P2 - pd to both Al and A 2 as 
though S2 were a perfect, noise-free estimate of (T2. 

A particularly attractive feature of Spj~tvoll's method is that it 
gives simultaneous confidence limits and/or significance tests for any 
number of comparisons based upon the same data set. If the 
condition on the left-hand side of (4.3) is satisfied, and note that this 
condition is unrelated to the subsets being compared, then all of the 
confidence or significance statements based upon calculated values 
of AI and A 2 are simultaneously true. 

A special case of the Spj~tvoll test is that in which one subset is 
completely contained in the other. This is the ca se for instance in 
both forward selection and back ward elimination, and in carrying 
out the lack-of-fit test in which one 'subset' consists of all k available 
predictors. It is readily shown (see Appendix 4A), that the d;'s 
corresponding to variables which are common to both subsets are 
equal to zero, as also are those corresponding to variables which 
are in neither subset. Thus if there are Po variables common to both 
subsets, (k - PI - P2 + Po) of the d;'s are equal to zero. If subset X 2 
is completely contained in subset X I' in which case P2 = Po, then 
the remaining (PI - P2) values of d; are all equal to + 1 and the 
corresponding y;'s are just the projections of Y on the (PI - P2) 
X-variables in X I but not X 2, after making them orthogonal to the 



98 HYPOTHESIS TESTING 

Po common variables. (Conversely, if Xl is contained in X 2 then 
there are (P2 - pd values of d; equal to -1, all other d;'s being equal 
to zero.) In this case, (4.8) becomes 

(1 - A)-2 ~)~ = ks2F 

so that Amax and Amin = 1 ± (LYNks2F)l/2. Now LAy~ is the 
ditTerence in RSS between fitting subsets Xl and X 2. In this case, 
it simplifies to LY~. Denote this ditTerence by ARSS, then 

Al = max [0, {ARSSl /2 - (ks2F)l/2}2] 

A2 = {ARSSl / 2 + (ks2F)l/2}2. 

Hence subset Xl (which is the one with more variables) is significantly 
better than X 2 if Al> 0, that is if ARSS is greater than ks2 F. If it 
had been decided apriori to compare subsets Xl and X 2 then the 
usual test would have been to compute the variance ratio 
ARSS/(Pl - P2) divided by S2. Subset Xl would then have been 
deemed significantly better if ARSS were greater than (Pl - P2)S2 F. 
The replacement of (Pl - P2) by k in calculating the required 
ditTerence in residual sums of squares, ARSS, is an indication of the 
degree of conservatism in the Spj~tvoll test. 

This special case of Spj~tvoll's test has also been derived, using 
ditTerent arguments, by Aitkin (1974), McCabe (1978), McKay (1979) 
and Tarone (1976). Borowiak (1981) appears to have derived a similar 
result for the case in which the residual variance is assumed to be 
known. 

The argument used by Aitkin is as folIows. If we have decided, a 
priori, that we wanted to compare subset X 2 with the full model 
containing all of the variables in X, then we would have used the 
likelihood-ratio test which gives the variance ratio statistic: 

F = (RSSp - RSSk)/(k - p) 

RSSk/(n - k) 
(4.9) 

where the counts ofvariables (p and k) include one degree offreedom 
for a constant if one is included in the models. Under the null 
hypothesis that none of the (k - p) variables excluded from X 2 is in 
the 'true' model, this quantity is distributed as F(k - p, n - k), subject 
of course to assumptions of inde.pendence, normality and homo
scedacity of the residuals from the model. Aitkin then considers 
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the statistic: 

U(Xz) = (k - p)F 
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(4.10) 

The maximum value of U for all possible subsets (but including a 
constant) is then 

U = RSSt - RSSk 

max RSSd(n - k) 

Hence a simultaneous 100a% test for all hypotheses pz = 0 for all 
subsets X z is obtained by testing that 

U(X 2 )=(k-1)F(a,k-1,n-k) (4.11) 

Subsets satisfying (4.11) are called R2-adequate sets. Aitkin 
expresses (4.9) in terms of R 2 instead of the residual sums of squares, 
and hence (4.10) can also be so expressed. 

The term 'minimal adequate sets' is given to subsets which satisfy 
(4.11) but which are such that if any variable is removed from the 
subset, it faUs to satisfy the condition. Edwards and Havranek (1987) 
give an algorithm for deriving minimal adequate sets. 

4.2.1 Applications 0/ SpNtvoU's method 

Spj~tvoll's method was applied to the best subsets found for the 
STEAM, DETROIT and POLLUTE data sets. Table 4.6 shows 
some of the comparisons for the STEAM data set. From this table 
we see that the best-fitting subsets of two variables are significantly 
better than the best-fitting single variable (number 7) at the 5% level, 
but that there is no significant improvement from adding further 
variables. Referring back to Table 3.13 we might anticipate that 
subsets (4, 7) and (7, 9) might be significantly worse than the best-three 
of three variables because of the big difference in RSS, but this is 
not so. 

Notice that though we have obtained 90 and 98% confidence 
levels, we are quoting 5 and 1% significance levels. As the subsets 
which are being compared have been selected conditional upon their 
position among the best-fitting subsets, we know that a significant 
difference can occur in only one tail, and that taU is known before 
carrying out the test. It is appropriate then that a single-taU test is 
used. 
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Table 4.6 SpNtvoU's upper and lower confidence limits Jor the dijJerence in 
regression sums oJ squares (or in RSS) Jor selected subset comparisons Jor 
the STEAM data set 

Subset Subset DijJ. in RSS !X-level 
Xl X 2 Sub. 2 - Sub. 1 (%) Al A2 

7 6 19·4 10 3·0 40·7 
2 -1,1 47·1 

7 5 27·25 10 -8,8 69·0 
7 3 31·2 10 7-l 63·7 

2 1·3 73·4 
7 8 35·7 10 10·5 70·5 

2 4'8 81·0 
7 1,7 -9,3 10 -31,7 -0,21 

2 -39,5 0 
7 5,7 -8,6 10 -30,4 -0,12 

2 -38'1 0 
7 2,7 -8,4 10 -30,1 -0,10 

2 -37,7 0 
7 4,7 -2,6 10 -17,7 0 
7 7,9 -2,2 10 -16,7 0 
1,7 5,7 0·7 10 -13-6 15·5 
1,7 2,7 0·9 10 -5'1 7·5 
1,7 4,7 6·7 10 -7'8 27·0 
1,7 7,9 7·1 10 -3,4 24·5 
1,7 4,5,7 -1,6 10 -15,1 10·8 
1,7 1,5,7 -1,2 10 -13-7 0 
1,7 1,3,5,7,8,9 -3,6 10 -20,1 0 

The comparisons among the single variables in Table 4.6 are 
interesting. At the 5% level, variable 7 fits significantly better than 
the second-, fourth- and fifth-best, but not the third-best. This is a 
situation which will often occur. If there are high correlations, 
positive or negative, between the variables in the two subsets, they 
span almost the same space and the upper and lower limits are 
relatively elose together. In this case, the correlations between 
variable 7 and the others in the best five, together with the range 
between upper and lower 90% limits are 

Variable 
Correlation 
Range 

6 
-0,86 
37'7 

5 
-0,21 
77·8 

3 
-0,62 
56·6 

8 
-0,54 
60·6 
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In the case of the DETROIT data set, the values of F are from 
the distribution with 12 degrees of freedom for the numerator but 
only 1 degree of freedom for the den omina tor. The 10 and 2% points 
in the tail are at 60·7 and 1526 respectively. If we had one year's 
data more then these values would be down to 9·41 and 49·4. The 
huge confidence ellipsoids for the regression coefficients are reflected 
in the big differences between the upper and lower limits, Aland 
A2 • Table 4.7 shows the results of a few comparisons of subsets for 
this data set. Only one of the comparisons in this table yields a 
significant difference; subset (4,6) fits significantly better at the 5% 
level than variable 6 alone. 

For the POLLUTE data set there was a moderately large number 
of degrees of freedom (44) for the residual variance so that much 
closer confidence limits and more powerful tests are possible. No 
significant differences at the 5% level were found when comparing 
subsets of the same size using only the five best-fitting subsets of 
each size as listed in Table 3.17. In most practical cases, more subsets 
of each size should be kept; the number was limited to five here to 
keep down the amount of space consumed by these tables. Table 4.8 

Table 4. 7 Spj~tvoll's upper and lower confidence limits for the difference in 
regression sums of squares (or in RSS) for selected subset comparisons for 
the DETROIT data 

Subset Subset Diff. in RSS IX-level 
Xl X 2 Sub. 2 - Sub. 1 (%) Al A2 

6 1 27 10 -176 231 
6 9 65 10 -347 476 
6 8 78 10 -337 495 
6 7 98 10 -317 517 
6 4,6 -166 10 -440 -23 

2 -2858 0 
4,6 2, 7 11 10 -143 250 
4,6 1,9 21 10 -135 181 
4,6 4,5 22 10 -94 148 
4,6 3,8 29 10 -152 210 
4,6 2,4,11 -27 10 -148 90 
2,4,11 4,6,10 14 10 -93 132 
4,6 1,2,4,6,7,11 -32 10 -190 0 
2,4,11 1,2,4,6,7,11 -5 10 -109 0 



102 HYPOTHESIS TESTING 

Table 4.8 Spj~tvo/l"s upper and lower confidence limits Jor the difference in 
regression sums oJ squares (or in RSS) Jor selected subset comparisons Jor 
the POLLUTE data 

Subset Subset Diff. in RSS IX-level 
Xl X2 Sub. 2 - Sub. 1 (%) Al A2 

9 6,9 -34000 10 -131000 -32 
2 -153000 0 

6,9 2,6,9 -17000 10 -96000 0 
6,9 1,2,9,14 - 31000 10 -134000 51000 
6,9 1,2,6,9,14 -35000 10 -134000 -86 

2 -156000 0 
6,9 1,2,3,6,9,14 - 39 000 10 -142000 -395 

2 -164000 0 
2,6,9 1,2,3,6,9,14 -22000 10 -106000 0 

shows only the comparisons between the best-fitting subsets of each 
size. 

In Table 4.8 we see that the subset of two variables, 6 and 9, fits 
just significantly better at the 5% level than variable 9 alone. The 
upper limit of - 32 for this comparison is extremely small as the 
residual variance es ti mate for these data is 1220. In view of the term 
in (4.4) wh ich was left out of the quadratic form used for the 
comparison of pairs of subsets, we cannot infer that the subset (6,9) 
will yield better predictions. 

4.2.2 U sing other corifidence ellipsoids 

Spj~tvoll has pointed out that in applying his method, the confidence 
ellipsoid (4.3) which was used as the starting point can be shrunk 
by reducing it with one in a sm aller number of variables. F or instance, 
if certain variables, such as the dummy variable representing the 
constant in the model, are to be forced into all models, then those 
variables can be removed from X and p. If this leaves k* variables 
then ks2Fa.k.n_k should be replaced with k*s2Fa.k*.n_k' It must be 
emphasized that ellipsoids of the form (4.3), but for subsets of 
variables, are only valid ifthose subsets had been determined apriori; 
they are not valid if, for instance, they include only those variables 
which appear in certain best-fitting subsets, as the LS estimates of 
the regresion coefficients are then biased estimates of the coefficients 
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for that subset (see Chapter 5 for a detailed discussion of selection 
bias). 

To assist in appreciating the difference between these confidence 
regions, Fig. 4.1 shows a hypothetical confidence ellipse for two 
regression coefficients, ßl and ß2' and the confidence limits for the 
same confidence level for one of the coefficients. If the two 
X-variables have been standardized to have unit standard deviation, 
and the X' X-matrix, excluding the rows and columns for the constant 
in the model, is 

X'X=(~ ~). 
then the elliptical confidence regions are given by 

x2 + 2pxy + i ~ 282 F 

where x = (ß 1 - ßl)' Y = (ß2 - (2)' 8 2 is the usual residual variance 
es ti mate with v degrees of freedom, and F is the appropriate per
centage point of the F-distribution with 2 and v degrees of freedom 
respectively for the numerator and denominator. The most extreme 
points on the ellipses are then 

ßi ± (82/(1- p2))1/2 (2F)1/2 

+ 

ß, 
Fig. 4.1 Confidence ellipse and confidence limits for a hypothetical case. 
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compared with the corresponding confidence limits (i.e. for individual 
regression coefficients) which are 

Pd (S2/(1 - p2W/2 t 

where t is the appropriate percentage point from the t-distribution. 
For moderately large numbers of degrees offreedom, t ~ 2 and F ~ 3 
so that the ratio of ranges of regression coefficients in this case (i.e. 
for two coefficients) is about 1.22: 1. 

In general, by reducing the number of ß's, the ranges of those 
remaining are reduced but at the expense of allowing infinite ranges 
for the ß's omitted. 

4.2.3 Goodness-of-fit outside the calibration region 

Unless there is sound scientific justification for a model, it is always 
very hazardous to attempt to use it with estimated coefficients outside 
the range over which it may have been found to fit tolerably weIl. 
If we have sufficient trust in the linear model which includes all of 
the predictor variables, then Spj~tvoIl's method may be used to test 
whether one subset of variables can be expected to perform better 
than another in any specified region of the X -space. Let Z be an 
m x k array of values of the X -variables for which predictions are 
required. Then proceeding as before, we have that the sum of squares 
of deviations of the expected values of the dependent variables from 
those predicted using subset Xi is 

[Zß - Zi(X;Xr 1 X;(Xß + s)]'[Zß - Zi(X;X;)-l X;(XP + s)], 

where Zi refers to the values in Z for the sub set of variables in Xi' 
The equivalent goodness-of-fit measure to that used earlier is then 

P'[ - 2Z' Z.(X~K)- 1 XX + X' K(XK)-l Z~Z.(X' K)-l X'X]P 
, I I, I", I i' i • 

The new matrix Cis the difTerence between the value of the expression 
inside the square brackets for subsets Xl and X 2' A small amount 
of simplification results by replacing the various X and Z matrices 
by their orthogonal reductions. 

Finally in this chapter we must emphasize that the methods 
described here will usually eliminate some subsets from consideration 
but will rarely leave a single subset which is indisputably the best. 
We must also emphasize that satisfying a significance test and 
providing good predictions are not synonymous. 
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Appendix 4A Spj;tvoll's method - detailed description 

In applying Spj~tvoll's method, we want to find maximum and 
minimum values of the quadratic form 

JJ'X'[Xl(X'lXd-1X'1-X2(X~X2)-lX~]XP=P'CP (4.5) 

subject to ß being close to the known vector of LS estimates ~, where 
the degree of closeness is such that 

(P - ~)' X' X(P - ~) ~ ks2 F a,k,n _ k' 

The subscripts on F will be dropped. We will assume that X' Xis of 
full rank. First we attempt to find a matrix P such that 

P'X'XP=/ (4.6) 

and 

P'CP=D (4.7) 

where D is a diagonal matrix. If we can do this, then we have 
transformed the problem into that of finding the maximum and 
minimum of y' Dy subject to 

(y -1)'(y -1) ~ ks2 F 

where y = p-1p, and 1 = P-l~. 
First, let us form the Cholesky factorization X' X = R' R where 

R is an upper-triangular matrix, though at this stage any nonsingular 
factorization will suffice. Then P = R- 1 satisfies (4.6). Now let us 
find a matrix V where columns are the normalized eigenvectors of 
R-TCR-l, that is V satisfies 

V'(R-TCR-1)V = D 

where V' V = / and D is a diagonal matrix with the eigenvalues of 
R- TCR- 1 on its diagonal. The matrix P = R- 1 V then satisfies (4.6) 
and (4.7). We have then that 1 = V'R~. Now if R were taken as the 
Cholesky factor of X' X, then R~ is just the vector of projections of 
the dependent variable on the space spanned by the X's and so 
would normally be calculated in any LS calculations using 
orthogonal reduction. 

In calculating the eigenstructure of the matrix R-TCR-l, it is 
convenient to order the variables as follows (note: the order is not 
that used by Spj~tvoll): 
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1. the Po variables which are common to both Xl and X 2; 
2. the (P1 - Po) variables in Xl but not in X 2; 
3. the (P2 - Po) variables in X 2 but not in Xl; 
4. the remaining (k - Pi - P2 + Po) variables in neither Xl nor X 2· 

In practice, some of the above groups will often be empty. 
Then we form the orthogonal reduction 

X=QR 

Rl3 R14) 
R23 R24 
R33 R34 

R44 

where the columns of the Q are orthonormal, that is that Q' Q = I, 
and the subscripts refer to the groups of variables, some of which 
may be empty, as just described. The columns of Q are of length n 
equal to the number of observations and R is upper triangular with 
k rows and columns. In practice this orthogonal reduction will 
usually be obtained from another orthogonal reduction by 
rearranging the order of variables. 

Now we can write 

Xl =(Ql,Q2) (Rll R12) 
Rn 

X 2 = (Ql' Q2' Q3) R23 . (Rll R13J 
R33 

This gives us an upper-triangular factorization for Xl which is simply 
the first Pi rows and columns of R. Unfortunately it does not give 
us anything simple for the factorization of X2 . However by the use 
of planar rotations again, we can obtain a triangular factorization 
for X 2 also. Let Po be a product of the planar rotations thus required. 
Then Po has the form 

PO=(I P1 P2) 
P3 P4 

where Ihas Po rows and columns, P1, P2 have (P2 - Po) rows, P3, P4 
have (P1 - Po) rows, and it will later be convenient to split the 
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eolumns so that Pl,P3 have (Pl - PO) eolumns, P2,P4 have (P2 - PO) 
eolumns, and P~P 0 = I. Then 

(
Ru Rl3) 

X2 = (Ql' Q2' Q3)P~PO R23 
R23 

(
Ru R13) 

= (Ql' Q~, Q!) ~~3 

=(Ql,Qn(Ru R~3). 
R 33 

The matrix Po ean be formed while Q2 is being forced out of the 
orthogonal reduetion, by applying the same planar rotations to 
another matrix whieh is initially an identity matrix with (Pl - Po) + 
(P2 - Po) rows and eolumns. 

By substitution of the appropriate orthogonal reduetion, it is 
straightforward to show that 

Xl(X~Xl)-lX~ =(Ql,Q2)(~D 
and 

X2(X'2X2)-lX~ =(Ql,Q!{~~) 
We then find that the matrix of whieh we want the eigenstrueture 
ean be written as 
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where 

But 

and hence 

In the general case, the matrix R- TCR- 1 will have Po rows of 
zeros at the top and (k - P1 - P2 + Po) rows of zeros at the bottom, 
and has a zero eigenvalue for each such row. We are left then to 
find the eigenstructure of the symmetrie inner matrix: 

( I 0)_(PI1)(P P )=(/-P~P1 o 0 pi 1, 2 _ pi P 
2 2 1 

The eigenvalues and eigenvectors of Z can be found using standard 
routines such as RS from EISPACK (Smithet al., 1976). We notice 
that PoP~ = 1 (as weIl as P~Po = I) and hence P1 p l1 + P2P~ = I. 

Now the eigenvalues of Z satisfy IZ - dll = 0 or 

1 (1-d)/-P~P1 -P11P2 1=0. 

- P~P1 - P~P2 - dl 

As the determinant ofthe product oftwo matrices equals the product 
of the determinants, we can multiply (Z - dI) by any other matrix, 
being careful not to introduce any more zeros, and the determinant 
will still be zero. A convenient matrix to use is Z. Muldplying on 
the right by Z gives 

1 (1-d)(/-P~P1) dP~P21= 
dP~P1 (1 + d)P~P2 0 

This matrix consists of the blocks of Z multiplied by different scalars. 
We now multiply on the right by 
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noting that in the process we introduce (P2 - Po) roots equal to 1, 
then the top right-hand side block is transformed to a matrix of 
zeros, and we can write 

(1 - d)Pl-POI/- P~PII'IP2[(/- PI P'I) - d2l]P21 = o. 
Ifthe eigenvalues of(/- PIP'I ) = P2PZ are Ai' i = 1, ... ,P2 - Po, then 

d," = + A~/2. - , 
Our present equation has (PI - Po) + 2(P2 - Po) roots, of which 
(P2 - Po) equal to 1 were introduced. In general then, if PI ~ P2 there 
will be (PI - P2) of the d;'s equal to + 1 and (P2 - Po) pairs of d;'s 
with opposite signs, while if PI ~ P2 there will be (P2 - PI) of the d;'s 
equal to - 1 and (PI - Po) pairs of d;'s with opposite signs. 



CHAPTER 5 

Estimation of regression 

coefficients 

5.1 Selection bias 

In this chapter we look at some of the ways of estimating regression 
coefficients for a subset of variables when the data to be used for 
estimation are the same as those which were used to select the model. 
Most of these methods are based upon the biased least-squares (LS) 
regression coefficients, and require an es ti mate of the selection bias 
or depend upon properties of the selection bias. Such methods will 
be discussed in section 5.3, while selection bias in a very simple case 
will be discussed in section 5.2. 

The term 'selection bias' was introduced in Chapter 1 but was not 
precisely defined at that stage. Suppose the true relationship between 
Y and the predictor variables is 

Y=XA~A+XB~B+& 

where X = (XA, XB) is a subdivision of the complete set of variables 
into two subsets A and B, and where the residuals have zero expected 
value. If we fit a model containing only the variables in subset A 
then the expected value of the vector, bA , of LS regression coefficients 
for sub set A is 

(5.1) 

The second term on the right-hand side of (5.1) is what we have 
called the omission bias. Expression (5.1) is valid when the subset 
A has been chosen independently of the data. Let us suppose that 
some procedure for selecting a subset of variables has been 
prespecified. The definition of selection bias in the regression 
coefficients is then as the difference between the expected values 
when the data are such as to satisfy the conditions necessary for the 
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selection of the subset A, and the unconditional expected values 
given by (5.1), that is 

Selection bias = E(b AI Subset A selected) - E(b A). 

That is, the first term on the right-hand side is the expected value 
of bA over all possible Y -vectors which would lead to subset A being 
selected, while the second term is the expected value over all Y 
irrespective of what subset is selected. The extent of the bias is 
therefore dependent upon the selection procedure (e.g. forward 
selection, sequential re placement, exhaustive search, etc.), and is also 
a function of the stopping rule used. It can usually be anticipated 
that the more extensive the search for the chosen model, the more 
extreme the data values must be to satisfy the conditions and hence 
the greater the selection bias. Thus in an exhaustive search, the subset 
is compared with all other subsets so that larger biases can be 
expected than for forward selection in wh ich a much sm aller number 
of comparisons is made. 

There is a large literature on the subject of pre-test estimation, 
though in most cases only one or two tests are applied in selecting 
the model as contras ted with the large number usually carried out 
in subset selection. For the relatively small number (usually only two) 
of alternatives considered, explicit expressions can be derived for the 
biases in the regression coefficients, and hence the effect of these 
biases on prediction errors can be derived. There is almost no 
consideration of alternative estimates of regression coefficients 
other than ridge regression and the James-Stein/Sclove estimator 
estimators. Useful references on this topic are the surveys by Bancroft 
and Han (1977) and Wallace (1977), and the book by Judge and 
Bock (1978). 

Though much of this chapter is concerned with understanding 
and trying to reduce bias, it should not be construed that bias 
elimination is a necessary or even sometimes a desirable objective. 
We have already discussed some biased estimators such as ridge 
estimators. Biased estimators are a standard part of the statistician's 
tool-kit. How many readers use unbiased estimates of standard 
deviations? NB The usual estimator s= {~)x-x)2/(n-l)}1!2 is 
biased, though most of the bias can be removed by using (n - 3/2) 
instead of the (n - 1). 

It is important though that we are aware of biases and have some 
idea of their magnitude. This is particularly true in the case of the 
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selection of subsets of regression variables when the biases can be 
substantial when there are many subsets which are dose competitors 
for selection. 

5.2 Choice between two variables 

To illustrate the bias resulting from selection, let us eonsider a very 
simple example in which only two predictor variables, Xl and X 2' 

are available and it has been decided apriori to seleet only one of 
them, that one being the one wh ich gives the sm aller residual sum 
of squares (RSS) when fitted to a set of data. For this case it is 
feasible to derive mathematically the properties of the LS (or other) 
estimate of the regression coefficient for the seleeted variable, the 
RSS, and other quantities of interest. However, before doing that, 
we present some simulation results. 

The following example is constructed so that the expected RSS is 
the same whichever of the two variables is seleeted. For added 
simplicity, the fitted models do not indude a constant. Let us define 

Xl =Zl 

X 2 = - 3Z 1 + 4Z 2 

Y=Zl +2Z2 +Z3 , 

where Zl' Z2 and Z3 are independently sampled from the standard 
normal distribution. If we take a sampIe of n independent 
observations and fit the two alternative models, 

Y = Y1 Xl + residual 

Y = Y2X 2 + residual, 

by LS, then the expeeted values of the sam pIe regression coefficients, 
b1 and b2 , are 1·0 and 0·2 respectively, and the expeeted RSS is 
5(n - 1) for both models. Note, the expected RSS with both variables 
in the model is (n - 2), so that if a similar case arose in praetiee, 
both variables would probably be induded in the seleeted model. 
The simulation eould have been modified to give a mueh larger RSS 
with both variables in the model simply by increasing the variance 
of the residual variation, Z3' 

Using sampIes of size n = 12, 200 sets of artifieial data were 
generated. The solid histogram shown in Fig. 5.1 is that of the 200 
sampIe values of b1 • These values averaged 0·991 wh ich is dose to 
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Fig. 5.1 Histogram oJ values oJ b! Jrom 200 sets oJ artiflcial data. The outer 
histogram is Jor all data sets, the inner one is Jor those sets Jor which variable 
X! gave the smaller RSS. The thin verticalline is at the expected value oJb!. 

the expected value; the average of the corresponding values of b2 

was 0·204. The inner, broken histogram shown in Fig. 5.1 is that of 
the values of b1 when variable Xl was selected. As can be seen, 
variable Xl was usually selected when b1 was above its expected 
value, but rarely selected when it was below. The corresponding 
histograms for b2 , which are not shown, look very similar. The 
average values of b1 and b2 for the data sets in wh ich their 
corresponding variables were selected were 1·288 and 0·285. Variable 
X 1 was selected 99 times out of the 200 data sets. 

Figure 5.2 shows the histograms of RSS's. The solid histogram is 
that for all 400 RSS's, that is it includes two RSS's for each data 
set, one for each model. The inner, broken histogram is that of RSS's 
for the selected models. The thin verticalline is at the expected value 
of the RSS (= 55). The sampie average of all the RSS's was 55,3, 
while the average for the selected models was 45·7. 
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Fig. 5.2 Histograms of values of the RSS from 200 artificial data sets. The 
outer histogram is of all values (two per data set), while the inner one is for 
the model wh ich gave the smaller RSS for each data set. The thin verticalline 
is at the expected value of the RSS. 

Thus for one highly artificial example, we have found the estimated 
regression coefficients of selected variables to be biased on the high 
side and the RSS to be too smalI. 

In practice we often have many more variables or subsets of 
variables competing for selection, and in such cases the biases are 
often far greater than here. When an exhaustive search has shown 
say several hundred subsets of 5 out of say 20 variables which fit a 
set of data about equaIly weIl, perhaps so that Spj~tvoIl's test finds 
no significant differences between them at say the 5% level, then 
some of the regression coefficients for the best-fitting subset will 
probably be of the order of two to three standard errors from the 
expected values for the same subset if they are estimated from the 
same data as were used to select that subset. This assumes that the 
true standard error is known. Ifthe usual LS estimates ofthe standard 
error, based upon the assumption that the model has been chosen 
independently of the data, are used, these estimates will be biased 
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on the low side, and the bias in the regression coefficients could 
easily be four or more estimated standard errors above their expected 
values for the subset. This will be demonstrated in the next section 
by splitting data sets. 

Let us now derive more general results for the two-variable case. 
Let us suppose that the true model is 

(5.2) 

where the residuals, e, have zero mean and variance (12. Later we 
will also need to make assumptions about the shape of the distri
bution of the residuals. The LS estimate, bl , of the regression 
coefficient for the simple regression of Y upon Xl is then 

bl = X'l Y IX'l Xl 

= (PlX~ Xl + P2 X'l X2 + X~ e)/X~ Xl' 

and hence 

E(btl = Pl + P2X'l X2/X~ Xl 

=Yl· 

Similarly 

E(b2) = P2 + PlX~XdX~X2 
=Y2· 

Note that these are the expected values over all sampIes, no selection 
has been considered so far. The difTerence between Yl and Pl' and 
similarly that between Y2 and P2' is what we called earlier the 
omission bias. 

Now variable Xl is selected when it gives the smaller RSS, or 
equivalently, when it gives the larger regression sum of squares. That 
is, Xl is selected when 

(5.3) 

If we let f(b l , b2 ) denote the joint probability density of bl and b2 , 

then the expected value of bl when variable Xl is selected is 

(5.4) 
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where the region R in the (b l , b2)-space is that in which condition 
(5.3) is satisfied. The denominator of the right-hand side of (5.4) is 
the probability that variable Xl is selected. The region R can be 
re-expressed as that in which Ib l l>C\b 21 where C=(X~X2/ 
X'l Xl)1/2. As the boundaries of this region are straight lines, it is 
relatively straightforward to evaluate (5.4) numerically for any 
assumed distribution of bl and b2 , given the sampie values of X'l Xl 
and X~X2' Similarly, by replacing the b l in the numerator of the 
right-hand side of (5.4) with b~, we can calculate the rth moment of 
b l when Xl is selected. 

As bl and b2 are both linear in the residuals, e, it is feasible to 
calculate f(b l , b2 ) for any distribution of the residuals. However, if 
the distribution of the residuals departs drastically from the normal, 
we should be using some other method of fitting regressions than 
LS, though in some cases, e.g. if the observations have a Poisson 
distribution or a gamma distribution with constant shape parameter, 
the maximum likelihood estimators of the regression coefficients are 
weighted LS estimators. If the residuals have a distribution which 
is dose to normal then, by the centrallimit theorem, we can expect 
the distribution of bl and b2 to be closer to normal, particularly if 
the sampie size is large. The results which folIoware for the normal 
distribution. 

Given the values ofXl and X2, the covariance matrix ofb l , b2 is 

It will simplify the mathematical expressions if we scale Xl and X2 
so that X'l Xl = X~X2 = 1, that is, if we replace Xi with 

X:" = X./(X~X.)1/2 
I I ,I , 

and replace bi with 

bi = bi (X;XY/2. 

We will assume that such a scaling has been carried out, and drop 
the use of the asterisks (*). The covariance matrix of the scaled b's 
is then 
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where p = X'i X 2' Thejoint probabilitydensity ofb1 and b2 is then 

f(b b) = exp { - (b - y)' V- 1(b - y)} 
l' 2 2m,.2(1- p2)1/2 ' 

where 

V-i = u2(1 ~ p2)[ ~p ~p 1 
The argument of the exponential is 

- {(bi - Yl)2 - 2p(b1 - Yl)(b2 - Y2) + (b2 - Y2)2} / {2u2(1 _ p2)} 

= - {[bi - Jl(b2)]2 + (1 - p2)(b2 - Y2)2} / {2u2(1 _ p2)}, 

where Jl(b2) = Yl + p(b2 - Y2)' Hence we need to evaluate integrals 
of the form 

Ir = f_oooo exp [ - (b 2 - Y2)2/2u2] 
(2nu2)1/2 

X f b; exp { - [bi - Jl(b2)2/[2u2(1 - p2)]} db1 db2 (5.5) 
R(b2) {2nu2(1 - p2)} 1/2 

where the region of integration for the inner integral are b1 > Ib2 1 

and b1 < -I b2 1. The inner integral can be evaluated easily for low 
moments, r, giving, for r = 0, 

for r = 1, 

u(1 - p2)1/2[q,(Z2) - q,(zd] + Jl(b2) [cI>(zd + 1- cI>(Z2)] 

for r = 2, 

u(1 - p2)1/2 {[I b21 + Jl(b2)]q,(Z2) + [lb21- Jl(b2)]q,(zd} 

+ [Jl2(b2) + u2(1 - p2)] [cI>(z d + 1 - cI>(Z2)]' 

where q, and cI> are the probability density and distribution function 
of the standard normal distribution, and 

Zl = [ -lb21- Jl(b Z)]/[u2(1- p2)]1/2 

Z2 = [ -lb21- Jl(b2)]/[u2(1 - p2)]1/2. 

Numerical integration can then be used to determine Ir. 
Unfortunately, none of the derivatives of the kernel of (5.5) is 
continuous at b2 = 0, so that Hermite integration cannot be used. 



118 ESTIMATION OF REGRESSION COEFFICIENTS 

Table 5.1 Values of the expected value, E(bllsel.), and standard deviation, st. 
dev.(btlsel.), ofbl when variable XI is selected, with 1'1 = 1·0 

0" = 0·3 0" = 0·5 

1'2 E(bll sei.) st. dev.(bllsel.) E(btlsel.) st. dev.(bllsel.) 

0·0 1·02 0·28 1·11 0·43 
p= -0,6 0·5 1·08 0·25 1·21 0·39 

1·0 1·21 0·21 1'36 0·35 
1·5 1·39 0·18 1'53 0·32 
2·0 1-60 0·16 1·72 0·30 

0·0 1·01 0·29 1·10 0·45 
p=O'O 0·5 1·05 0·28 1-15 0·44 

1·0 1·17 0·25 1·28 0·42 
1·5 1·35 0·23 1·46 0·40 
2·0 1·57 0·22 1·66 0·38 

0·0 1·02 0·28 1·11 0·43 
p=0'6 0·5 1·01 0·29 1·09 0·46 

1·0 1-11 0·28 1·17 0·48 
1·5 1·30 0·27 1·34 0·51 
2·0 1·53 0·27 1·52 0·58 

However the kernel is weIl behaved on each side of b2 = 0 so that 
integration in two parts presents no problems. This can be done 
using half-Hermite integration for which tables of the weights and 
ordinates have been given by Steen, Byrne and Gelbard (1969) and 
Kahaner, Tietjen and Beckmann (1982). 

Table 5.1 contains some values of the mean and standard deviation 
of bl when variable X I is selected. In this table the expected value 
of blover all cases, Le. whether or not variable X I is selected, is 
held at 1·0. To apply the table when the expected value of bl , i.e. 
YI' is not equal to 1,0, the X-variables should be scaled as described 
earlier, and the Y -variable should be scaled by dividing by 
YI(X'IXI)I/2. The residual standard deviation after fitting both 
variables, a, should be divided by the same quantity, Y2 should be 
multiplied by (X~X2!X'1 XI)I/2!YI' and p = X'l X2!(X'1 Xl X~X2)1/2. 
Thus, for the simulation at the start of this section, we had 

YI = 1'0, Y2 =0'2, 
X'l X2 = - 3, a = 1. 

After scaling, and using asterisks as before to denote the scaled 
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values, we have 

yT = 1,0, y! = 1,0, p = - 0,05, 0'* = 1/.J 12 = 0·289. 

119 

This is close to the entry in the table for p = 0, 0' = 0,3, for which 
the expected value of bl is 1-17 when X I is selected. However the 
average value in our simulations was 1,288, which is significantly 
larger than 1·17. The reason for the apparent discrepancy is that the 
theory above is for given values of X I and X 2 whereas X I and X 2 

were random variables in our simulation taking different values in 
each artificial data set. As acheck, the simulations were repeated 
with fixed values of X I and X 2 such that X'I Xl = 12, X~ X2 = 0, 
X~X2 = 300 and 0' = 1. The average value of b l for the 106 cases out 
of 200 in which variable X I was selected was 1·202. 

Figure 5.3 is intended to give a geometric interpretation of 
selection bias. The ellipses are for two different cases, and are ellipses 
of constant probability density in (b l ,b2 ) such that most pairs of 
values of (bI' b2 ) are contained within them. For this figure, it is 
assumed that X I and X 2 have both been scaled to unit length so 
that the regions in which X I and X 2 are selected are bounded by 
lines at 45 degrees to the axes. Thus X I is selected in regions to the 
left and righ t of the origin, and X 2 is selected if (b I, b 2) is in the top 
or bottom regions. 

Ellipse A represents a case in which bl is positive and b2 is usually 
positive. The thin horizontal and vertical lines running from the 
centroid of the ellipse are at the unconditional expected values of 
b l and b2 • When X 2 is selected, (b l ,b2 ) is in the small sliver to the 
top left of the ellipse or just above it. Most of the sliver is above the 
expected value of b2 , so that b2 is biased substantially in those rare 
cases in which it is selected. As the few cases in which X I is not 
selected give values of b l less than its expected value, b l is biased 
slightly on the high side when X I is selected. 

Ellipse B represents a case in which the principal axis of the ellipse 
is perpendicular to the nearest selection boundary. In this case, far 
more of the ellipse is on the 'wrong' side of the boundary and the 
biases in both bl and b2 , when their corresponding variables are 
selected, are relatively large. 

In both case A and case B, the standard deviation of bl and b2 

when their variables are selected, are less than the unconditional 
standard deviations. This applies until the ellipses containing most 
of the joint distribution include the origin. 
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Fig. 5.3 A figure to iIlustrate the size and direction of selection bias. 

Both ellipses shown here have p > 0; for p < 0 the directions of 
the major and minor axes of the ellipse are reversed. As p approaches 
± 1·0, the ellipses become longer and narrower; for p = 0, the ellipses 
are circles. In can be seen that when 1'1 and 1'2 have the same signs 
and are weIl away from the origin, the biases are smallest when p »0 
and largest when p« o. The case p = 0, that is when the predictor 
variables are orthogonal, gives an intermediate amount of bias. The 
popular belief that orthogonality gives protection against selection 
bias is fallacious; highly correlated variables will often give more 
protection. 

The above derivations have been oft he properties ofthe regression 
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coefficients. A similar exercise can be carried out using the joint 
distribution of the RSS's for the two variables, to find the distribution 
of the minimum RSS. This is somewhat simpler as both RSS's must 
be positive or zero, and the boundary is simply the straight line at 
which the two RSS's are equal. 

In the two-variable ca se it is possible to construct a function which 
approximates the selection bias, and then to use that function to 
eliminate much of the bias. From Table 5.1 it is obvious that the 
most important term in the function is that which measures the 
degree of competition between the variables. For (J sufficiently small 
that only one boundary crossing needs to be considered, the bias in 
b l is weIl approximated by a rational polynomial of the form 

where x = (Y2 - 1)/(J, and the coefficients Pi are slowly changing 
functions of p. Using extensive tabulations, from which Table 5.1 
was extracted, the (LS) fitted values of the parameters were as shown 
in Table 5.2 for three values of p, and for x ~ o. 

The discussion above has been for the case in which one and only 
one of the two predictors is selected. In a practical situation, both 
predictors or neither may be selected. This increases the number of 
alternative models to four. The regions of the (bi' b2)-space in which 
each model is selected are then much more complex than those 
shown in Fig. 5.3. This problem has been considered in detail by 
Sprevak (1976). 

Table 5.2 Coefficients in the rational polynomial (5.6) 
Jor three values oJ p 

Parameter 

PI 
pz 
P3 
P4 
Ps 
P6 

p= -0·6 

0·71 
0·43 
0·090 
0·0067 
0·15 
0·015 

p=O 

0.56 
0·40 
0·094 
0·0075 
0·14 
0·019 

p=0·6 

0·36 
0·34 
0·103 
0·0097 
0·11 
0·029 
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5.3 Selection bias in the general case, and its reduction 

The type of approach used in the previous section is not easily 
extended. In the general case, there are many boundaries between 
the regions in which different variables or subsets of variables are 
selected, so that numerical integration rapidly ceases to be feasible. 
Also, the selection bias is a function of the selection method which 
has been used, and of the stopping rule. 

If the predictor variables are orthogonal, as for instance when the 
data are from a designed experiment or when the user has constructed 
orthogonal variables from which to select, then we can easily derive 
upper limits for the selection bias. If we scale an the predictor 
variables to have unit length, then the worst case is when an of the 
regression coefficients have the same expected value (or strictly that 
the absolute values of the expected values are the same). If an of the 
regression coefficients have expected value equal to ± ß with sampie 
standard deviation equal to u (u« ß), then if we pick just one 
variable, that with the largest regression coefficient in absolute value, 
the expected value of the absolute value of its regression coefficient 
is ß + eiU, where e 1 is the first-order statistic for a random sampie 
of k values from the standard normal distribution, where k is the 
number of variables available for selection. If we pick the three 
variables which give the best fit to a set of data, then the bias in the 
absolute values ofthe regression coefficients will have expected value 
equal to U(el + e2 + ~3)/3, where ei is the ith-order statistic. Thus, 
if we have say 25 available predictor variables, the bias in the 
regression coefficient of a single selected variable will be about 1·97 
standard deviations. 

The order-statistic argument gives only a rough guide to the likely 
size of the selection bias in general, though it does give an upper 
limit when the predictor variables are orthogonal. The selection bias 
can be higher than the order-statistic limit for correlated variables. 
In the author's experience, selection biases up to about three standard 
deviations are fairly common in real-life problems, particularly when 
an exhaustive search has been used to select the chosen subset of 
variables. In Chapter 6 we will see that the selection bias term is 
extremely important in estimating the magnitude of prediction 
errors, and in deciding upon a stopping rule. 

To illustrate the extent of selection bias in practice, let us use the 
STEAM and POLLUTE data sets. We do not know the true 
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population regression eoeffieients. What we ean do though is to split 
the data into two parts. The first part ean then be used to seleet a 
sub set and to estimate LS regression eoeffieients for that subset. The 
seeond part ean then be used as an independent data set to give 
unbiased estimates for the same subset already seleeted. 

The data sets were divided as nearly as possible into two equal 
parts. In the ease of the STEAM data, whieh had 25 observations, 
13 were used in the first part and 12 in the seeond. The two data 
sets were eaeh split randomly into two parts, with the whole exercise 
repeated 100 times. An arbitrary deeision was made to look at subsets 
of exaetly three predictors plus a eonstant. Exhaustive searehes were 
earried out to find the best-fitting subsets. 

Table 5.3 shows the different subsets whieh were seleeted for the 
two data sets. We note that variable number 7 (average temperature) 
was seleeted 94 times out of 100 for the STEAM data, while variable 
number 9 (% nonwhite in the population) was seleeted 91 times out 
of 100 for the POLLUTE data. These two will be eonsidered 
'dominant' variables. 

For the first splitting of the STEAM data, the regression eoeffi-

Table 5.3 Subsets of three variables which gave best fits to randorn halves of 
the STEAM and POLLUTE data sets 

STEAM POLLUTE 

Subset Frequency Subset Frequency 

4 5 7 24 1 9 14 26 
5 7 8 13 2 6 9 13 
1 5 7 9 2 4 9 8 
1 7 8 9 1 8 9 7 
5 6 7 8 2 9 14 7 
5 7 9 8 6 9 11 7 
1 6 7 4 2 8 9 3 
7 8 9 3 6 9 14 3 
1 2 7 2 9 10 14 3 
1 3 7 2 1 8 11 2 
1 4 7 2 3 9 14 2 
1 6 9 2 7 8 9 2 
1 7 9 2 9 12 13 2 
2 7 8 2 

Plus 10 others se1ected once Plus 15 others selected once 
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Table 5.4 

Constant 
Variable 4 
Variable 5 
Variable 7 

First half of data 
Second half 

Regn coeff. Approx. s.e. Regn coeff. 

3·34 
0·19 
0·48 

-0,080 

1·96 
0·05 
0·27 
0·011 

1·99 
0·60 

-0,03 
-0,082 

cients were as given in Table 5.4. The approximate standard errors 
shown are the usual LS estimates applicable when the model has 
been chosen independently of the data. 

Ignoring the constant in the model, which was not subject to 
selection, the regression coefficient for variable 4 has increased by 
about eight standard errors from the data' which selected it to the 
independent data, the regression coefficient for variable 5 has alm ost 
vanished, while that for variable 7 has remained steady. 

The scale for each regression coefficient is different, so to combine 
the information on the shift of different regression coefficients from 
one half of the data to the other, the quantities 

were formed, where bli , b2i are the LS regression coefficients for 
variable number i for each of the halves of the data, and s 1i is the 
estimated standard error of the ith regression coefficient calculated 
from the first half. Thus Zi is the shift, in standard errors, from the 
first half to the second half. The sign of Zi is positive if b2i has the 
same sign as bu and is larger in magnitude, and negative if the 
regression coefficient shrank or changed sign. 

Table 5.5 shows the frequency of shifts of the regression coeffi
cients, that is of the z;'s, for the two data sets. In the majority of 
cases, the unbiased regression coefficients were smaller, with an 
average shift of just under one standard error. 

Let us separate out the twü 'dominant' variables. The average 
shift for variable 7 for the STEAM data was - 0·08 of a standard 
error, while that für variable 9 for the POLLUTE data was +0·04 
of a standard error. Thus in this case there appears to be very Httle 



Table 5.5 Frequeney of shift of regression 
eoefficients from data used to seleet model to 
those from independent data 

Shift (z) STEAM POLLUTE 
in std errors data data 

< -5 10 9 
-5 to -4 19 7 
-4 to -3 29 22 
-3 to -2 46 44 
-2 to -1 59 71 
-1 to 0 43 58 

o to 1 33 37 
1 to 2 15 30 
2 to 3 9 13 
3 to 4 4 6 
4 to 5 15 2 

>5 18 1 

Average shift -0,71 -0,90 

Table 5.6 Frequeney of ratios of residual varianee 
estimates for the data used for seleetion and for 
independent data 

Varianee ratio STEAM data POLLUTE data 

0,0-0,1 3 0 
0,1-0,2 9 1 
0,2-0,3 7 7 
0,3-0,4 11 6 
0,4-0,5 11 11 

0,5-0,6 8 21 
0,6-0,7 10 15 
0,7-0,8 7 7 
0,8-0,9 3 6 
0,9-1,0 5 9 

l'O-H 5 6 
1,1-1,2 2 7 
1,2-1,3 4 2 
1,3-1,4 3 1 
> 1·4 12 1 
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overall average bias for the dominant variables, but an average bias 
of just over one standard error for the other variables. 

Table 5.6 shows a histogram of the ratio si / s; where si, s; are the 
usual residual variance estimates for the two halves of the data for 
the subset of three variables which best fitted the first half of the 
data. We see that the average ratio was 0·76 for the STEAM data 
and 0·69 for the POLLUTE data. If si,s; had been independent esti
mates of the same variance, and the regression residuals have a 
normal distribution, then the expected value of this variance ratio 
is V2 /(V2 - 2) where V2 is the number of degrees of freedom of s;. 
These numbers of degrees offreedom are 12 - 4 = 8 and 25 - 4 = 21 
for the STEAM and POLLUTE data sets respectively. Thus the 
expected values of si / s; are 1·33 and 1-11 for unbiased estimates of 
si. This gives a rough estimate of the extent of over fitting which 
has occurred. 

5.3.1 Monte Carlo estimation of bias in forward selection 

The simplest selection rule is forward selection; let us see if we can 
estimate selection biases in this case. Suppose that we have selected 
the first (p - 1) variables and are considering which variable to add 
next. At this stage, the (p - 1) selected variables will be in the first 
(p - 1) rows of the tri angular factorization. Let r iy be the ith 
projection of Y, that is the ith element in the vector Q'Y. Now if 
the true relationship between Y and the complete set of predictor 
variables is 

Y=XP+E 

where the residuals, 6, are independently sampled from the normal 
distribution with zero mean and standard deviation (1, then 

Q'Y =RP+ Q'E 

= RP+ll say, 

which means that the projections, r iy , are normally distributed about 
their expected values, given by the appropriate element in RP, with 
standard deviation (1. 

The reduction in RSS from adding next the variable in row p is 
r;y. Hence the variable in row p is more likely to be selected next 
if its deviation from its expected value, t'fp ' is large, say greater than 
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(1, and has the same sign as Rp. We can then use a Monte Carlo 
type of method to estimate the bias in the projections when the 
corresponding variable is selected. The following is an algorithm for 
doing this: 

1. Rotate the next selected variable into row p if it is not already 
there. 

2. Move the original projection, r py' towards zero by a first guess 
of the bias, e.g. by ~ where ~ is an estimate of the residual standard 
deviation with all of the predictor variables in the model. 

3. Generate pseudo-random normal vectors of values of'li with zero 
mean and standard deviation (1, and add these to the projections 
riy for rows p, ... , k. Find whether the variable in row p is still 
selected with these adjusted projections. 

4. Repeat step 3 many times and average the values of '1p for those 
cases in which the variable in row p is selected. Take this average 
as the new estimate of the bias in r py' Repeat steps 2-4 until the 
estimate of the bias stabilizes. 

The above technique was applied to the STEAM and POLLUTE 
data sets used in earlier chapters. It was not appropriate to apply 
it to either the CLOUDS or DETROIT and sets as the first had no 
estimate of the residual standard deviation, and the DETROIT data 
set has only one degree of freedom for its residual. 

For the STEAM data, the first five variables selected in forward 
selection are those numbered 7, 1, 5, 4 and 9 in that order. With 
these variables in that order, the projections in vector (lY are as 
folIo ws: 

Variable Const. 7 1 5 4 9 2 3 6 8 
Projection 47-12 6·75 3·05 1·12 -0,94 0·59 -0,56 0·46 0·42 -0'94 

The sampIe estimate ofthe residual standard deviation is 0·57 with 15 
degrees of freedom. Comparing the projections with this residual 
standard deviation suggests that we are only justified in including two 
or possibly three variables, plus the constant, in our model. Applying 
the above algorithm to the selection of the first variable, that is 
variable number 7, after subtracting ~ = 0·57 from the projection in 
row 2, the variable was selected 200 times out of 200. The estimate 
of bias obtained by strictly applying the method above was the sum 
of 200 pseudo-random normal deviates with zero mean and standard 
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Table 5.7 

Iteration 

1 
2 
3 
4 

ESTIMATION OF REGRESSION COEFFICIENTS 

Starting bias 
estimate 

0·57 
0·37 
0·20 
0·12 

Times out 0/200 
variable 1 selected 

72 
87 

105 
103 

New bias 
estimate 

0·37 
0·20 
0'12 
0·20 

deviation a, and this turned out to be + 0.03 with the random number 
generator used. Clearly there was no competition for selection in 
this case, .and that the bias in the projection is zero for all practical 
purposes. 

There was more competition for the next position. Consecutive 
iterations gave the data shown in Table 5.7. Using 0·20 as the bias 
estimate reduces the projection from 3·05 to 2·85. 

For the third variable (row 4), the competition was greater. In 
this case the iterations gave the data shown in Table 5.8. Using 0·81 
as the bias estimate reduces the projection from 1-12 to 0·31. 

Using the adjusted projections and back-substitution, the fitted 
three-variable regression line changes from 

Y = 8·57 - 0'0758X 7 + 0·488X 1 + 0·108X 5 

to 
Y = 9·48 - 0'0784X 7 + 0·637 Xl + 0'029X 5 

and the RSS for this model increases from 7·68 to 10·40. Notice that 
reducing the absolute size of the projections does not necessarily 
reduce the sizes of all the regression coefficients. It always reduces 
the size of the coefficient of the last variable selected, but not 
necessarily the sizes of the others. 

Table 5.8 

Starting bias Times out 0/200 New bias 
Iteration estimate variable 5 selected estimate 

1 0·57 50 0·64 
2 0·64 33 0·81 
3 0·81 23 0·81 
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Table 5.9 

Time variable 
Variable Original selected in Bias Adjusted 
number projection last iteration estimate projection 

Const. 7284·0 
9 307·6 176 11-1 296·5 
6 -184·0 31 -41-1 -142·9 
2 -132·1 28 -40·8 -91·3 

For the POLLUTE data set, the residual standard deviation 
estimate is 34·9 with 44 degrees of freedom with all the variables in 
the model. The bias estimates again appeared to converge very 
rapidly. The results obtained are shown in Table 5.9. Using these 
projections, the fitted three-variable regression line changes from 

Y = 1208·1 + 5'03X9 - 23'8X6 - 1·96X 2 

to 

Y = 1138·7 + 4'65X9 -18'9X6 -1'35X2 

and the RSS increases from 82 389 to 111 642. 
This simple 'intuitive' method appears to produce good point 

estimates of regression coefficients, but has a number of short
comings. First, when the first variable is selected, its sam pie 
projection may be appreciably larger in absolute value than its 
expected value. The method allows for that bias and for the fact that 
the variable may have been selected because so me of the other 
projections deviated substantially from their expected values. 
However, any bias in these other projections was forgotten when 
we proceeded to select the next variable. This can easily be 
accommodated by estimating the biases of all the projections at each 
iteration instead of estimating only the bias for the projection of the 
selected variable. In most cases this will make very little difTerence. 

Another objection to the method is that is pro vi des only point 
estimates without confidence limits or approximate standard errors. 

Implicit in the method just described is the notion that if there is 
apparently competition among variables for selection, then the 
variable selected must have a sam pie projection which is above its 
expected value. 
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The above method will not be developed further, though similar 
methods can be developed for other selection procedures, and it is 
possible at great computational expense to obtain confidence limits. 
In the next section, a method based upon conditionallikelihood will 
be described, but before proceeding to that, let us look briefly at 
other alternative ways of tackling the selection bias problem. 

5.3.2 Shrinkage methods 

Figure 5.1 suggests that some kind of shrinkage should be applied. 
Two kinds of shrinkage have become popular; these are ridge 
regression and simple shrinkage of all the regression coefficients by 
the same factor. 

The simplest form of shrinkage estimator is that suggested by 
James and Stein (1961). Let T j , i = 1,2, ... , k, be unbiased estimators 
of quantities Jl.j, each having the same variance (12. The Tj are assumed 
to be uncorrelated. Consider the shrunken estimators 

0< oe < I, (5.7) 

that is each estimate is shrunk towards zero by the same relative 
amount. The new estimates will be biased but have lower variances 
than the T/s. Suppose we trade ofT the bias against the reduced 
variance by minimizing a loss function which is the expected square 
error: 

Then 

k 

10ss=E L (Tr-Jl.Y 
j= 1 

= (bias)2 + variance 

k 

= oe2 L Jl.t + k(l - oe)2(12 
j=l 

Setting this equal to zero gives 

k(12 
oe= . 

LJl.t + k(12 
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Unfortunately this involves the unknown fJ/s. Now L T? is an 
unbiased estimator of U::: fJ? + k(J2), and substituting this into (5.7) 
gives the estimator 

Ti = (1-~~? )Ti. 

Our derivation above assumed that rx. was not a random variable, 
yet we have now replaced it with a function of the T/s, thus 
invalidating the derivation. If we allow for the variance of rx., it can 
be shown (see James and Stein, 1961 for more details) that the 
estimator 

* _ ( _ (k - 2)(J2) 
Ti - 1 'L T? Ti (5.8) 

gives a smaller squared error for all k> 2. This is the James-Stein 
estimator. 

In practice, (J2 must be estimated. If the usual estimate 
k 

S2= 'L (Ti - 1')2 j(k - 1) 
i= 1 

is used, where l' is the sampIe mean of the T/s, then Stein (1962) 
shows that the (J2 in the above estimators should be replaced with 
s2(k - 1)j(k + 1). 

Lindley (pp. 285-7 of Stein, 1962) suggested shrinkage towards 
the me an, rather than shrinkage towards zero. His estimator is 

_ ( (k - 3)(J2 ) _ 
Ti = T + 1 - " 2 (Ti - T). 

L..,(T - T) 

The James-Stein estimator has been controversial. The following 
is a quote from Efron and Morris (1973): 

The James-Stein estimator seems to do the impossible. The 
estimator of each fJi is made to depend not only on Ti but on the 
other Ti' whose distributions seemingly are unrelated to fJi' and 
the result is an improvement over the maximum likelihood 
estimator no matter what the values of fJl' fJ2'"'' fJk' Thus we 
have the 'speed of light' rhetorical quest ion, 'Do you mean that 
if I want to estimate tea consumption in Taiwan I will do better 
to estimate simultaneously the speed of light and the weight of 
hogs in Montana?' 
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Of course the other T;'s (the speed of light and weight of hogs) are 
used to estimate the shrinkage factor 0(, and a critical assumption is 
that all the T;'s have the same variance. It seems extremely 
improbable that these three disparate estimates would have the same 
variance, even after appropriate scaling say by measuring the speed 
of light in knots and the weight of hogs in carats. 

James-Stein shrinkage cannot be applied directly to regression 
coefficients as they do not in general have the same variance and 
are usually correlated. However, the LS projections, from which we 
calculate the regression coefficients, do have these properties. 

Let t i and t i denote the LS projections and their expected values, 
and let R denote the upper-triangular Cholesky factor of the design 
matrix X. Then as 

Rb=t 

R~=t 

where b and ~ are the LS estimates of the regression coefficients and 
their expected values, then the loss function 

k 

L (ti - ,;)2 = (t - ,)'(t - t) 
i= 1 

= (b - ß)' R' R(b - ~) 

= (b - ß)' X' X(b - ~). 

This is the sum of squares of the elements of X(b - ~). As the elements 
of Xb and X~ are the LS fitted and expected values respectively of 
the dependent variable, the sum is the sum of squares of differences 
between the fitted and expected values. Minimizing this sum is then 
a reasonable objective function in many situations. 

The factor 0( is then 

The sum of squares of the LS projections in the denominator is the 
regression sum of squares (regn SS). Furthermore, if all the t;'s are 
reduced hy the same factor, so are the regression coefficients derived 
[rom them, so that our new estimates, bi, of the regression coeffi
cients are 

bi = (1 _ (k - 2)0"2 )bi • 

regnSS 



5.3 BIAS IN THE GENERAL CASE, AND ITS REDUCTION 133 

This estimator is due to Sclove (1968). Normally q2 will be replaced 
with an estimate S2 V/(V + 2) where S2 is the usual residual variance 
estimate and v is its number of degrees of freedom. 

Other alternative derivations have been given by Copas (1983). 
In the first of these methods, he derives the James-Stein/Sclove 
predictor as the LS predictor of Y from the predicted LS values Y 
for the given values of the predictor variables, when the prediction 
equation is based upon independent data. That is, one set of data 
has been used to obtain a regression equation which is then used 
to predict further values of Y. The predictions, Y, are then used in 
a single-variable linear regression, but with the predictor being a 
random variable which is subject to error. Thus if we have a set of 
predictions Pi' i = 1, ... , m obtained from Y = X, where the vector 
of regression coefficients, p, has been obtained from an independent 
set of data, then the LS predictor ofY from Y is say (1 - O()Y where 

Since 

and 

Y'Y 
(1 - O() = =-=. 

Y'Y 

E(Y'Y) = regn SS 

E(Y'Y) = regn SS + k q 2, 

by substituting these expected values we derive the estimate: 

kq 2 
0(=-----::-

regn SS + kq 2' 

which is the expression we derived earlier by mlDlmlzmg the 
quadratic loss function (which is precisely what we have done here, 
though it may look somewhat different). 

Notice that we have derived the amount of shrinkage to apply to 
unbiased LS regression coefficients. No allowance has been made 
for the bias introduced by selection. In most cases the amount of 
shrinkage using James-Stein estimates will be much less than is 
needed to overcome selection bias. For instance, for the STEAM 
data, k = 9 (excluding the constant), S2 = 0·325, and the regression 
sum of squares = 58·9. Using S2 for q2 gives b~ = 0·96bi , i.e. the 
regression coefficients are shrunk by only 4%. 

Ridge regression has been described in section 3.9. Much of the 
vast literat ure on ridge regression has focused upon mean squared 
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errors (MSE) of the regression coefficients, i.e. 

MSE(P) = E(P - P),(P - P), 
where P is an estimate of the vector of regression coefficients, p. In 
most cases in practice, the MSE's of prediction are likely to be of 
more interest. Lawless and Wang (1976) have particularly 
emphasized this distinction, and have shown that while ridge 
regression can produce huge reductions in the MSE(P) when the 
X' X-matrix is ill-conditioned, it produces far less reduction in the 
MSE(XP), that is in the MSE ofprediction, and sometimes produces 
a small increase. 

Very little attention has been paid to the ridge trace idea of Hoerl 
and Kennard (1970b) for variable selection, possibly because of its 
subjective nature. An explicit rule for deletion of variables has subse
quently been given by Hoerl, Schuenemeyer and Hoerl (1986). They 
suggest using a modified t-statistic: 

t = P;/Si 

where the estimates of the regression coefficients are given by 

P = (X' X + dl)-l X'y 

after first shifting and scaling each X-predictor to have zero sampie 
mean and unit sam pie standard deviation, and where the s;'s are the 
square roots of the diagonal elements of 

8 2(X' X + dl)-l X'X(X' X + dl)-l. 

In their simulations, a range of significance levels was used, but 
those reported in their paperwere for a nominal 20% level. These 
simulations showed that this ridge selection procedure gave good 
performance in terms of both MSE(P) and MSE(XP) when the 
Lawless and Wang (1976) value for d was used, i.e. 

d = residual mean square 
. , 

regresslon mean square 

where the mean squares are evaluated using all the available 
predictors. The ridge regression estimator performed weIl with this 
value of d in any case without subset selection. When some of the 
true ß;'s were zero, a moderate improvement was achieved using 
selection. In the case of the STEAM data, the value of d = 
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0'325/58'9 = 0·0055. That is the diagonal elements of X' X are 
incremented by about half of 1 %. 

Both ridge regression and James-Stein shrinkage require a 
knowledge of the size of the selection bias to make the best choice 
of the amount of shrinkage to apply. As each method has only one 
parameter controlling the amount of shrinkage, it cannot be 
controlled to eliminate or reduce the bias simultaneously in all 
parameters. We believe that the method of conditional likelihood 
to be described in section 5.4 is a more satisfactory method of 
achieving this. 

5.3.3 U sing the jack-knife 

A popular method of bias reduction is the so-called 'jack-knife' 
(Quenouille, 1956; Gray and Schucany, 1972; Miller, 1974). Suppose 
that Tn is a statistic based upon a sampie of n observations, and that 

a b 
E(Tn) = 0 + - + 2 + 0(n- 2 ), 

n n 

where 0 is a parameter or vector of parameters which we want to 
estimate. Then 

b 
E{nTn -(n-l)Tn -d=O- +0(n- 2 ), 

n(n - 1) 

that is, the terms of order n - 1 in the bias are eliminated, while those 
of order n - 2 are reversed in sign and increased very slightly in 
magnitude. 

The jack-knife could be applied to the estimation of regression 
coefficients or the RSS for a model. Suppose that Tn is the LS estimate 
of the regression coefficients for a sub set of variables selected using a 
particular procedure and n observations. As the bias is due to the fact 
that the regression coefficient is being estimated conditional upon a 
certain sub set r eing selected, Tn _ 1 obtained from (n - 1) observations 
out of the n must be subject to the same condition. A sam pIe of 
(n - 1) observations can be obtained in n different ways by deleting 
one of the n observations. Consider all n such sam pIes, and apply 
the same selection procedure to each. This may be quite feasible if 
the procedure is forward selection, sequential replacement, or one 
of the other 'cheap' procedures, but will involve very substantial 
computational effort if the procedure is an exhaustive search. 
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Suppose that in m out of the n cases the subset of interest is selected, 
then we can use the m estimates of Tn - 1 for these cases in the 
jack-knife and average the results. In limited experiments by the 
author, the value of m has usually been close to or equal to n and 
rarely less than n/2, though there appears to be no reason why m 
must be greater than zero. These experiments suggested that the 
jack-knife may be fairly successful at removing bias but the variance 
of the jack-knife estimates was very large. There seems to be no 
reason for expecting selection bias to reduce roughly as n - 1, so that 
that part of the bias which is removed may be fairly small. Unless 
the term in n - 1 accounts for most of the bias, the increased variance 
in the resulting estimates is too high a price to pay. 

The order-statistic argument used earlier in this section leads us 
to anticipate that selection bias may be roughly proportional to 
n -1/2 when the predictor variables are orthogonal and are all equally 
good choices. Also, substitution in (5.7) gives the leading term in the 
bias as proportional to n- 1/ 2 • To eliminate this type of bias, the 
jack-knife statistic should be modified to 

[n 1/2 Tn - (n - 1)1/2 Tn _ 1 ]/[n 1/2 - (n - 1)1/2]. (5.9) 

If we write the jack-knife estimator as 

where we have suggested that in =.jn is a suitable choice, then the 
estimator can be rewritten as 

Thus the initial estimate Tn is moved away from Tn -1 by a substantial 
multiple of the difference between them. The use of a Taylor series 
expansion shows that the square-root jack-knife adjusts the biased 
estimate by about twice as much as the choice in = n. 

Freedman, Navidi and Peters (1988) have applied the jack-knife 
to subset selection in regression, but not as described above. All n 
sets of da ta with one case deleted were used, with regression 
coefficients set to zero if a variable was not selected. This means 
that if a variable was selected for the full data set, then it was selected 
in perhaps 90% of the sets with one case deleted and rejected in the 
others. This results in typical values of Tn - 1 being of the order of 
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10% lower than T •. This difference is then magnified with the result 
that the jack-knife appears to perform very poorly. They did not 
use the square-root variation of the jack-knife. These authors, and 
Dijkstra and Veldkamp (1988) in the same volume of conference 
proceedings, have also used a 'bootstrap' technique with very little 
success; the technique will not be described here. Platt (1982) had 
previously also advocated the use of the bootstrap after model 
selection. 

5.3.4 Independent data sets 

Selection bias can be completely eliminated by using independent 
data sets for the selection of the model and for estimating the 
regression coefficients. It is rarely sensible, however, to recommend 
this method in practice as it is inefficient in not using the information 
from the selection set of data in estimating the regression coefficients. 
In some cases, only the selected variables will have been measured 
for the second data set, though in other cases measurements of all 
variables will be available. If all of the variables have been measured 
for the second data set then it is tempting to see if our selected subset 
is one of the best-fitting subsets of its size. Suppose that it is 
not - what do we do now? We may weIl find something like the 
data in Table 5.10 for the best-fitting subsets of three variables. We 
notice that the best-fitting subset of three variables for the selection 
set of data does not appear among the best five for the set of da ta to 
be used for estimating the regression coefficients; let us suppose that 
it occurs much further down the list. We notice though that the 
second-best subset from the first data set occurs quite high up on 
the other list. It looks like a good choice. This is a crude way of 
looking for the best-fitting subset for the combined data set, so why 

Table 5.10 

Rank 

Best 
2nd 
3rd 
4th 
5th 

Selection data 

3,7,14 
3,7,11 
3,4,8 
3,4,7 
3,8,11 

Regn coeff. data 

3,10,11 
3,10,14 
3,7,11 
3,7,10 
3,11,14 
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do we not do the seareh properly for the eombined data set? But 
then we are baek with the problem of seleetion bias if we use the 
whole data set both to seleet the model and estimate the regression 
eoeffieients. 

5.4 Conditional Iikelihood estimation 

A method whieh ean usually be used to obtain parameter estimates, 
providing that we are prepared to make distributional assumptions, 
is maximum likelihood. We want to estimate parameters for a subset 
of variables after we have found that these variables give a better 
fit to a set of data than some other subsets. Taking the values of 
the X-variables as given, if we ass urne that the values of Y are 
normally distributed about expeeted values given by Xp, where for 
the moment X eontains all of the predietor variables, with the same 
varianee (J2, and that the deviations of the Y's from Xp are 
independent, then the uneonditional likelihood for a sampie of n 
observations is 

n 

Il <jJ{(y;- 'Lßjx;j)/(J} 
;= 1 

where <jJ is the standard normal probability density, that is 

<jJ(x) = (2n)-1/2 exp( - 1X2 ). 

Now given that a speeifie subset has been seleeted by some 
proeedure (e.g. forward seleetion, sequential replaeement, exhaustive 
seareh, ete.), many Y -veetors are impossible as they would not lead 
to the seleetion of that subset. The eonditional likelihood is then 
proportional to the above likelihood for aeceptable Y-veetors and 
zero elsewhere. Henee the likelihood of the sampie values of Y, given 
X and that a eertain seleetion proeedure has seleeted a subset of 
variables, S, is 

n 

Il <jJ {(Yi - L ßjXij)/(J} 
i= 1 

in a region R of the Y-space in which the procedure used selects 
subset S. The multidimensional integration is also over this region, 
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and the value of the integral is the apriori probability that S is 
selected given X. Substituting for ljJ, the logarithm of the conditional 
likelihood (LCL) over region R is then 

n 

LCL= -(n/2)loge(27t0"2)-(20"2)-1 L (Yi- "I ßjXij)2 
i= 1 

-loge {prob S is selected}. (5.10) 

The concept of conditioning a likelihood upon the occurrence of 
an event is one which many statisticians have found difficult to grasp. 
Let us look at what is being done in a slightly different way. Suppose 
that instead of having just one sampie of n observations, we can go 
back and coUect many more sam pies of the same size. Suppose that 
the selection procedure and stopping rule have been specified in 
advance. Suppose also for simplicity that the values of the predictor 
variables do not change from one sampie to another. If we could 
take say 1000 sampies of size n, it may be that the selection procedure 
picks subset S in only 50 cases, and that perhaps 150 different subsets 
will be chosen. We will only be estimating regression coefficients for 
the subset of variables in S in those 50 cases; we will be estimating 
different regression coefficients for the other sampies. The conditional 
likelihood above is an unconditional likelihood for the sub
population of sampies in which subset S is chosen. 

The estimation problem has much in common with the problem 
of estimating parameters when the data have been censored or 
truncated in some known way, e.g. because values of Y greater than 
a certain size cannot be observed or measured. 

Furthermore, the boundary of the region in which subset S is 
chosen is not a function of the parameters to be estimated; it is 
bounded by the intersection of a large number of quadratic forms 
in the values of Y and the predictor variables. 

The difficulty in using this conditional likelihood is c1early in 
evaluating the probability of selection of subset S, which is a function 
of the parameters p and 0". In simple cases, such as when there are 
only two X-variables or in forward selection when the X-variables 
are orthogonal, the probability that subset S is selected can be 
evaluated explicitly. In general we need to evaluate the probability 
that the regression sum of squares for subset S is larger than those 
of others with which it was compared in the se1ection procedure 
used. These regression sums of squares are quadratic forms in the 
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y/s so that the region in the Y-space in which one of them exceeds 
another is quite complex. 

The probability of selection, to be denoted by P, can be estimated 
by Monte Carlo methods in a manner similar to that used in 
section 5.3. The expected values of the projections, Q'Y, are given 
by Rp. By adding vectors 11 to RP, where the elements l1i of 11 are 
sampled from the N(0,0"2) distribution, random vectors of 
projections can be obtained. These can be subjected to the selection 
procedure which found subset S. The proportion of times in which 
subset S is selected then gives an estimate of P for the vector P used. 
This is a feasible method if one of the 'cheap' methods discussed in 
Chapter 3, such as forward selection, but it is not as practical in 
conjunction with an exhaustive search. An alternative method which 
it is feasible to use with an exhaustive search procedure is to consider 
only those subsets of variables which were found to be closely 
competitive with subset S. If say the best 10 or 20 subsets of each 
size which were found during the search for subset S were recorded, 
then these can be used. In the Monte Carlo simulations, the 
regression sum of squares for subset S can then be compared with 
these other 9 or 19 subsets. The probability that subset S fits better 
than these other subsets can then be used as an approximation to 
the required probability of selection. 

Many ways of maximizing (5.10) are possible. For instance, a 
simplex method such as the NeIder and Mead (1965) algorithm could 
be used. Alternatively, the logarithm of P could be approximated 
by a quadratic form in P by evaluating it at k(k + 1)/2 points and 
fitting a quadratic surface. Either of these methods requires a fairly 
large number of estimates of P and so requires a very substantial 
amount of computation. 

Let us rewrite (5.10) in terms of an orthogonal reduction with 
sampIe projections t = Q'Y, and their true but unknown expected 
values t. The RSS using the true regression coefficients (or equiva
lently, using the projections) is 

" RSS" + L (-rj - tj )2. 
j= 1 

When the model has been chosen independently of the data, the LS 
estimate of Tj is simply the sampIe projection tj • If we substitute 
6 = 't - t = RP - Q'Y, (5.10) can be rewritten as 

LCL=const.-(20"2)-1( RSS" + t!5; )-IOgeP(!5) (5.11) 
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where P(~) = the probability of selection for given ~. We now 
maximize the LCL with respect to these deviations, ~, rather than 
with respect to p. An alternative way of thinking of this method is 
as a transformation from the original X-variables to a set of 
orthogonal Q-variables. The regression coefficients with respect to 
which we are maximizing the LCL are the elements of RP which are 
the regression coefficients of Y upon the columns of the Q-matrix. 

Differentiating (5.11) we obtain 

d(LCL) ~j dPld~j 
d~j = - (12--p- (5.12) 

By equating the left-hand side of (5.12) to zero, we obtain the 
following i~terative method for obtaining the rth estimate, ~~r), from 
the precedmg one 

where the right-hand side is evaluated at ~)-1). The LS solution, 
which corresponds to ~j = 0, can be used as a starting point. 

Appendix 5A describes in more detail an algorithm which has 
been developed to maximize the LCL. In this algorithm, Monte 
Carlo methods are used to estimate the probability of selection at 
points on an experimental design based around the LS projections. 
To avoid further Monte Carlo sampling each time that the estimates 
of the projections are updated, the initial sam pIe is treated as a 
biased sam pIe from the population of projections which would be 
genera ted with the new parameters. 

The maximum likelihood estimates obtained for the biases (-~) 
in the LS projections turn out to be simply the differences between 
the weighted averages of the projections when S is selected, and the 
weighted average for all cases. The process is iterative as the weights 
are functions of the estimated biases. 

NB: The LCL is maximized with respect to all of the projections, 
not merely those for the variables in the selected subset, S. The 
variables in the orthogonal reduction are ordered so that those for 
the selected variables are first. After the maximum likelihood (ML) 
estimation of all of the projections, those for the variables not selected 
are dropped (set equal to zero) and the regression coefficients 
calculated using the first p projections. 

The residual variance, (12, can also be estimated by maximizing 
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(5.10). Note that the 'constant' shown in (5.11) is a function of (}"2. 

In practice, the estimates thus obtained have been almost equal to 
those obtained by assuming that P«(j) is independent of (}"2. A simpler 
alternative is to use the estimate 

(5.13) 

This gives an unbiased estimate when there is no competition for 
selection, i.e. when the (j/s = O. 

The usual estimate of the covariance matrix for the parameter 
estimates is minus the inverse of the (Fisher's) information matrix, 
that is as the inverse of minus the matrix of second derivatives of 
the LCL. Readers who are not familiar with this method and its 
assumptions are referred to Kendall and Stuart (1961 and later 
editions, Chapter 18), Silvey (1975, Chapter 4) or Cox and Hinkley 
(1974, Chapter 8). The second derivatives of (5.12) are 

where 

d2(LCL) = _ (jij + (dP/d(ji)(dP/d(jj) _ d2p/(d(ji d(j) (5.14) 
d(j. d(j. (}"2 p 2 P , J 

(j .. = {1 
'J 0 

ifi = j 

otherwise. 

The use of ML in any nontrivial application always raises certain 
questions. First, does the likelihood have discontinuities, singu
larities or multiple maxima? Secondly, what are the properties of 
the estimates? Is the bias smalI? Is the approximate covariance 
matrix of any value? Are the estimators fairly robust against failures 
of the assumptions? 

Our conditionallikelihood has only the trivial singularity at ()" = 0, 
and all of its derivatives are continuous everywhere else. For 
variables in sub set S, the LCL is almost quadratic in (jj as the 
variation in the sum of squares dominates the variation in log. P. 
However when (j j is large for the projection of a variable not in S, 
the probability of selection is very small and then log. P«(j) changes 
very rapidly. For the standard normal distribution, the tail 
probability, often denoted by Q(x), of an observation more than x 
standard deviations from the mean is approximately fjJ(x)/x for 
positive x (see e.g. Kendall and Stuart, 1961, Chapter 5, or 
Abramowitz and Stegun, 1964, formulae 26.2.12-14).lfthe variables 
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have been ordered so that those for subset S are first, then for large 
b j for a variable not in S, the probability of selection is approximately 

(2nu2)-1/21(bj - Jl)/ul- 1 exp{ -t(bj - Jl)2/U2} 

for some location parameter Jl. Substituting in (5.11) we find that 
the terms in bJ cancel and that the LCL is approximately linear in 
b j' with the value of Jl determining whether it increases or decreases. 
Experience so far has been that the LCL has always decreased and 
the author conjectures that this will always be so. However, it is 
also clear that the LCL falls away much more slowly with b j on that 
side of the maximum on which P(b) is small than it does on the 
other side. It appears that the LCL does not have multiple maxima, 
excepting its singularity at u2 = 0, but the author does not have a 
proof that this will always be the case. 

Asymmetry of the LCL surface means that the covariance matrix 
obtained from the second derivatives (5.14) must be used with 
caution. If the probability of selection at the maximum-LCL point 
is fairly high, say more than 10%, then the LCL surface will be 
reasonably close to quadratic for most practical purposes unless the 
user wants say 99·9% confidence limits on parameter values. 
However, the probability of selection will often be very much smaller 
than this. 

The probability of selection depends upon the distributional 
assumptions which have been made. The further we penetrate into 
the tail of a distribution, the more sensitive our methods are to 
distribution al assumptions. Hence if the probability of selection at 
the maximum-LCL point is say 20% then we would have obtained 
much the same result if we had used some other distribution than 
the normal, though the mathematical manipulations would have 
been far more complex. If the probability of selection turns out to 
be less than 1% then the estimates would have been very different 
with other distributional assumptions. 

At this stage we have estimates of the projections and the residual 
variance for the moöel containing all k variables. That is, our fitted 
model at this stage is 

where the rj;s are the elements of Q'Y, and the residuals are believed 
to have zero mean and variance 0'2. If the first p variables are those 
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in subset S, then we can write this as 

The second term on the right-hand side is the omission bias. If the 
X-variables can be considered as random variables, then the second 
term can be treated as additional residual variation and the residual 
variance for subset S can be estimated as 

{ (n-k)U2 +. ± (rjy +8y}!(n-k). (5.15) 
J=p+l 

To obtain the regression coefficients for subset S we must transform 
back from the orthogonal Q-variables to the original X -variables 
using 

Xs=QsR. 

Hence the estimate of the regression coefficients for subset S, ßs' are 
obtained by solving by back-substitution 

Rsßs = (Qs Y + ös) 

and hence the covariance matrix for Ps is 

Rs- 1 V(ös)R.- T 

(5.16) 

(5.17) 

where V(ös) is the covariance matrix for the subset of parameters 
ö., extracted from the covariance matrix for ~ obtained from the 
second derivatives (5.14). 

5.5.1 Conditional maximum likelihood - two competing variables 

Let us see how the conditional maximum likelihood method 
performs when we have two competing variables of which one is to 
be selected. For simplicity, suppose we are fitting a model without 
an intercept. Let the orthogonal reductions of X and Y be 

X = (X 1 'X2 ) 

and 
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where the Cholesky factor of X is 

R = (r 11 r12 ) 

r22 

and the LS projections are 
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The regression sum of squares if only variable Xl is used is then ti. 
To find the regression sum of squares if variable X 2 is used instead, 
we need to reverse the ordering of the columns for Xl and X 2 • To 
obtain the corresponding orthogonal reduction, we reverse the 
columns of Rand then use a planar rotation to return it to 
upper-triangular form, i.e. we find c and s such that 

cr11 ). 

-sr11 

Hence c = r12!(ri2 + ri2)1/2 and s = r22 !(ri2 + ri2)1/2. Applying the 
rotation to the T-vector, the projections become 

( ct1 + st2). 
-st1 +ct2 

If we select the variable with the larger regression sum of squares, 
variable Xl is selected when 

(5.18) 

In practice, both variables would normally be selected if both I t 11 
and It21 are large, while only Xl would be selected if It11 is large 
while It21 is smalI. For keen competition for selection, we need the 
two sides of (5.18) to be nearly equal. If I t 11 is large and I t 21 is smalI, 
this occurs when c is elose to + 1 or -1, which is when Ir d is large 
compared with Irn!. It can be shown that c is equal to the sampie 
correlation between Xl and X 2 (redefined by not subtracting out 
variable means), so that the condition for only one variable to be 
selected and for keen competition for selection is that Xl and X 2 

are highly correlated. 
Figure 5.4 shows the regions of the (t l' t 2)-space in which each of 

the two variables is selected. 
Let (L1,L2) denote the expected values ofthe LS projections. The 
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0 
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t, 

Fig.5.4 The regions in the space of the projections (tl' t2), in which each 
variable is selected. 

actual sam pIe projections will be from a bivariate normal distribution 
centred on this point. The probability of selection of variable Xl 
can then be found by integrating the normal frequency function over 
the appropriate region in the (t 1 ,t 2)-space. The integration is 
simplified if we rotate the axes to new axes along the boundaries 
between the selection regions. The boundary lines are 

and 

S 
t1 =--t2 

l-c 

-s 
t 1 =--t2 • 

l+c 



5.4 CONDITIONAL LIKELIHOOD ESTIMATION 

Tbe angle (J sbown in Fig. 5.4 is sucb tbat 

cos (J = s/(2 - 2C)1/2 

sin (J = (1 - c)/(2 - 2C)1/2. 

NB c and cos (J are not tbe same. 
Let 

Z1 =t1cOS(J+t2 sin(J 

Z2 = t 2 cos (J - t 1 sin (J, 
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so tbat Z1 is measured along tbe axis dosest to t1 and Z2 is measured 
along tbe perpendicular axis. Let (co 1 , co2) be tbe coordinates of tbe 
population values of tbe projections relative to tbe new axes. Tbe 
probability of selection of X 1 is tben 

P = prob(Z1 < 0 and Z2 > 0) + prob(Z1 > 0 and Z2 < 0) 

= cl>( -cot!u) [1 - cl>( -C02/U)] + [1- cl>( -co1/u)] cl>( -C02/U) 

(5.19) 

wbere cl> is tbe standard normal distribution function, and u is tbe 
standard deviation of tbe LS projections. If we set u = 1, tben tbe 
derivatives of P are 

dp = t/J(cod - 2t/J(co1) cl>(C02) 
dco1 

dp = t/J(co2) - 2t/J(C02) cl>(co1) 
dco2 

and tben tbe conditional ML estimates of (co 1 , (02) are obtained by 
solving 

1 dP 
Q}·=z·---

I I Pd co.' 
I 

i= 1,2. (5.20) 

Figure 5.5 sbows tbe conditional ML solutions, denoted by 
squares, related to tbe LS projections, denoted by crosses, for a set 
of LS points on a regular grid in one of tbe regions in wbicb X 1 is 
selected. 

We see tbat for points more tban about two standard deviations 
away from a boundary, tbe ML solution is very close to tbe LS 
point. Wbere tbe LS point is fairly dose to only one of tbe boundaries, 
tbe line to tbe ML solution is rougbly perpendicular to tbe boundary. 
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Fig. 5.5 Showing the M L solutions (denoted by squares) which correspond 
to certain LS projections (denoted by crosses) for the case in which variable 
Xl is selected. 

Notice that for LS points for which t2 is smalI, there is very Httle 
change in t1 from the LS point to the ML solution. t1 changes 
substantially only when t 2 is large; in such cases in practice, both 
Xl and X 2 would be selected. 

The regression coefficient for the Y on X 1 regression is t 1 Ir 11 for 
LS, and i 1 Ir 11 for ML. This means that for most points in the region 
in which Xl only would be selected, there is a small reduction in 
going from the LS to the ML regression coefficient. The difference 
is not more than about 0·4 x the standard deviation when I t1 1 > It2 1. 

When ML is the method used for estimation, it is often instructive 
to examine the shape of the likeHhood surface. In the present case, 
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o 2 

Fig.5.6 Showing likelihood contoursfor the case oftwo competing variables 
when the LS projections are close to adecision boundary. 

this is of most interest when the LS projections are c10se to one of 
the boundaries. Figure 5.6 shows the conditionallikelihood contours 
for one such point. This point, for which the LS projections are (1'0, 
0,1) is much c10ser to the boundary than any of the points in Fig. 5.5. 
Except for the innermost contour, the contours are for evenly spaced 
values of the LCL. The values shown alongside the contours are of 

-!(t1 - 't'd2 - !(t2 - 't'2)2 -logP, 

that is, the constant term -log (2n) has been omitted. In terms of 
the rotated projections, the values shown are of 

-!(Zl - (Od2 -!(Z2 - (02)2 -logP. 
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We see that, even in this fairly extreme case, the likelihood surface 
is smooth and not far from symmetric. In many real-life situations, 
likelihood surfaces contain singularities, discontinuities, saddle 
points, or the contours are 'banana-shaped'; in contrast, these 
surfaces are fairly weil behaved for our problem. 

We have seen how the ML estimates relate to the LS estimates, 
but how do they relate to the true values which we are trying to 
estimate? Still working with our rotated projections, we would like 
to know how close E(roi) is to roi . 

We have an iterative procedure for finding roi given sampies LS 
projections (Zt,Z2), from (5.19). Hence 

E(roi) = f f roi(Zt,Z2)!(Zt,Z2)dzt dz2/f f !(Zt,Z2)Zt dZ2 
ß ~ ß ~ 

(5.21) 

where roi(Zt,Z2) is the solution of (5.19), !(Zt,Z2) is the bivariate 
normal density 

!(z t, Z2) = (2n) -t exp [ - !(z t - roil2 - !(Z2 - ro2)2] 

and the integration is over that region of the (z t, Z 2)-space in which 
variable X t is selected. Note that (rot,ro2) is not necessarily in this 
region. 

The variance of roi can be obtained similarly by replacing roi in 
(5.21) with its square. 

Before embarking on numerical integration to evaluate (5.21), we 
should investigate whether the integral is finite. From Fig. 5.5 we 
see that as the LS point approaches a boundary, the ML point 
moves very rapidly away from it on the other side. Does it move 
away too rapidly for the integral to converge? 

Ifthe LS point (Zt,Z2) has large, positive Zt, say greater than two 
standard deviations from zero, while Z2 is small and negative, as for 
the LS point in Fig. 5.6, then rot will be close to Zt while Z2 will be 
large and positive. For population projections (rot, ro2), the 
probability that the sampie projections will be such that variable 
X t is selected is approximately 

P=prob(Z2 <0) + prob(Zt <0), 

neglecting the small probability that both Zt and Z2 could both be 
negative. For large ordinate, the area under the tail of the normal 
distribution, [1- (J)(x)], is approximately equal to ljJ(x)jx. Hence we 
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have 

exp( _lw2 ) exp( _lw2 ) 
P~ 2 1 + 2 2 

W1 (2n)1/2 w2(2n)1/2 

= (l-rx)P + rxP say. 
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Then by differentiating the LCL using the approximation for P, we 
find that the ML equations require the solution of 

0 
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\ 
\ 
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-1 \ 
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-2 

-3 
0 

0= Zl - W1 + (l-rx)(W1 + l/Wd 

0= Z2 - W2 + rx(W2 + l/W2)' 

. 

(5.22) 
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Fig.5.7 Showing the locations of the expected ML estimates connected to 
the true positions for the case of two competing variables. Crosses denote the 
true values with dotsfor the expected ML estimates. 
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If we forget for the moment that IX is a function of cOl and c02' then 
these equations are simple, single-variable, quadratic equations. 
Taking the appropriate root, 

and as 41X(1 -IX) cannot be greater than 1, so that it is dominated 
by z~, when ZI is moderately large we have that 

cOl ';::::,z I/IX. 

That is, cOl will be greater than z 1 for sufficiently large z 1. In fact, 
IX will usually be fairly close to 1. 

Turning to the other equation (5.23), we find that if we substitute 
IX = 1 then we obtain 

which suggests that c02 tends to infinity sufficiently rapidly to mean 
that the integral (5.21) is divergent. Fortunately, numerical 
evaluation of the solutions of (5.22) and (5.23) shows that IX falls 
away from 1 as Z2 tends to zero, and the values of cOl and c02 tend 
towards being identical. The moments of the ML estimates appear 
to exist, based upon experience with their numerical evaluation. 

The integration of the numerator in (5.21) has been carried out 
using the routine DQNG from QUADPACK (piessens etal., 1980). 

Figure 5.7 shows the expected values ofthe ML estimates, denoted 
by dots, connected to the true values, denoted by crosses. The size 
of the bias is very small in most cases. 

5.5.2 Conditional maximum likelihood for k 
orthogonal predictors 

(a) Largest only selected 
Let us suppose that we have k orthogonal predictors, XI, X 2' ... ,X k' 

of which one and only one is to be selected. If the expected values 
of the LS projections for each of these variables are 'tl,'t2, ... ,'tk' 

then the probability that variable XI is the one which is selected is 
the probability that its sampie projection, tl> is greater in absolute 
value than the other projections, t2 , ••• , tk • Assuming the residual 
standard deviation = 1, then 
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Table 5.11 Maximum likelihood (ML) 
solutions conditional upon the selection of 
variable Xl co"esponding to given least-
squares ( LS ) projections for 5 and 10 
competing orthogonal predictors 

LS ML LS ML 
projn soln projn soln 

2·000 0-446 2·000 0·987 
1·600 ·2·458 1·000 1·501 
1·280 1·781 0·500 0-690 
1·024 1·342 0·250 0·338 
0'819 1·035 0·125 0-168 

LS ML LS ML 
projn soln projn soln 

2·000 0·435 2·000 0-727 
1·600 2-330 1·000 1·411 
1·280 1·697 0·500 0·652 
1·024 1·286 0·250 0-320 
0·819 0·997 0·125 0·159 
0·655 0-782 0·063 0-080 
0·524 0·618 0·031 0·040 
0'419 0·491 0·016 0-020 
0'336 0·391 0·008 0-010 
0·268 0·312 0·004 0·005 

prob. (X 1 selected) 

= LX> ljJ(t l - Tl) tl [<I>(t1 - Ti) - (I)( - t1 - Ti)] dt1 

+ f: 00 ljJ(t l - Tl) tl [(I)( - t1 - Ti) - <I>(t1 - Ti)] dt 1• (5.24) 

Using this formula, the LCL is easily evaluated and maximized to 
obtain estimates of Tl (and of the other Ti)' 

Table 5.11 shows the ML solutions for four cases. In the two cases 
on the left-hand side, the largest LS projection is not much larger 
than the second largest. Conditional ML has shrunk the estimate 
for the first projection by about 1·5 standard deviations. In the two 
cases on the right-hand side, the LS projections fall away more 
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rapidly and the ML estimate for the first projection has not been 
shrunk as much. 

If the signs of some of the projections in Table 5.11 are reversed, 
the signs of the corresponding ML solutions are reversed but their 
magnitudes remain the same. This was one test which was used to 
check that the pro gram written to calculate the results shown was 
correct. 

We have no way of knowing from Table 5.11 whether the amount 
of shrinkage of the first projection is too great or too little, as we 
do not know the size of the expected value of the first projection. 
However, if the expected values of all of the projections are equal, 
then for a normal distribution we can look up tables of order statistics 
to find out how far we can expect the largest sampie projection to 
be above its expected value. This is found to be 1·16 and 1·54 standard 
deviations for sampies of 5 and 10 respectively. Thus the shrinkages 
shown in Table 5.11 appear to be of the right order of magnitude 
for the worst case. (This heuristic argument is crude as it neglects 
the fact that we are looking at absolute values of projections. If all 
of the expected values of the projections are say 0,446, using the first 
case in Table 5.11, the largest sampIe projection could turn out to 
be say - 2·00. If we look at the first-order statistic for absolute values 
of sampies from a normal distribution with zero mean, they are 
found to be at 1·57 and 1·88 standard deviations from zero.) 

To see how weil, or badly, conditional ML performs at estimating 
the populations, we need to evaluate the expected value E(f 11X 1 

selected; r), ofthe ML solution over all projections which lead to the 
selection of X l' when the population projections are given by vector 't. 
This requires multidimensional numerical integration, where the 
kernel is t 1 (t) multiplied by the probability density ofthe LS projection 
vector t. Thus each evaluation of the kernel requires the solution of 
the conditional ML equation. Such numerical integration is most 
efficiently performed using Monte Carlo methods. 

The cases for which the expected value of the ML solution have 
been evaluated are 

k = 5, 10,20 
"1 = 2,0, 1,8, 1,6, 1,4, 1·2 

"i=r1(Xi-1 for (X= 1'0,0'9,0'8,0'5. 

NB Using these expected values for the projections, the largest LS 
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projection generated was between 2 and 4 in most cases, which is 
typically where users of stepwise regression packages choose their 
cut-off points. 

Rather than use only those cases in which the first LS projection 
was the largest, all cases were used. The ML estimation was then 
for the variable with the largest sampie LS projection, which was 
often not the first variable. This of course is what usually happens 
in practice when we are lucky if the chosen variable(s) are also those 
with the largest expected projections. 

Each case was replicated 100 times. 

Table 5.12(a) Means (avge f(1)) and variances (varf[,)) of 
the maximum likelihood solutionsfor 5 competing variables 
when only one is selected. Simulation results for 100 
replications. NB Expected values of projections given by 
ri = r I (xi - I .. r( tma.) = the average of the r;'s corresponding 
to the largest generated sampie projection ti 

k rl IX r(tma.) Avge T[,) Var. T[1) 

5 2·00 1·0 2·00 1·50 1·68 
0·9 1-67 1-16 0·91 
0·8 1·52 H8 0·85 
0·5 1·44 1·09 1·29 

5 1-80 1·0 1-80 1·29 1·24 
0·9 1·50 1·09 0·87 
0·8 1·29 1·20 1·05 
0·5 1-11 HO 2·53 

5 1-60 1·0 1-60 1·22 1·01 
0·9 1·31 0·97 0·62 
0·8 1-12 1-12 0·76 
0·5 0·98 0·80 1·23 

5 1·40 1·0 1·40 1-12 0·76 
0·9 1-16 1·09 0·84 
0·8 0·99 0·84 0·68 
0·5 0·78 0·69 0·85 

5 1·20 1·0 1·20 0·84 0·50 
0·9 0·99 0·99 0·92 
0·8 0·82 0·87 0·78 
0·5 0·72 0·77 1-17 



156 ESTIMATION OF REGRESSION COEFFICIENTS 

Table 5.l2(b) As Table5.12(a) but Jor 10 competing 
variables 

k TI 0( T(tmax ) Avge T[I) Var. T[l) 

10 2·00 1·0 2·00 0·98 1-16 
0·9 1·49 0·96 0·83 
0·8 1·33 0·89 0·76 
0·5 1-15 0·96 2·92 

10 1·80 1·0 1·80 0·83 0·54 
0·9 1·35 0·94 0·67 
0·8 1-12 0·89 1·09 
0·5 0·95 0·97 2·66 

10 1-60 1·0 1-60 0·88 0·69 
0·9 1·16 0·84 0·54 
0·8 0·95 0·73 1·34 
0·5 0·77 0·77 1·79 

10 1·40 1·0 1·40 0·95 0·81 
0·9 1·00 0·78 0·60 
0·8 0·77 0·78 1·28 
0·5 0·57 0·93 3·14 

10 1·20 1·0 1·20 0·81 0·57 
0·9 0·88 0·73 0·50 
0·8 0·68 0·65 0·73 
0·5 0·49 0·78 1·96 

Tables 5.12(a)-(c) show the average values of the ML solutions, 
denoted by r(tmax), the average value ofthe corresponding ri' denoted 
by avge f[l]' and the variance of the estimates. 

We note that when 0( = 1·0 or 0·9, the ML solutions are too small 
(too much shrinkage from the LS estimate), by between 0·5 and 1 
standard deviation. For sm aller values of (X, when fewer of the LS 
projections are dose together, the ML solutions show less bias, and 
in the case 0( = 0·5 there is a bias in the same direction as the LS 
estimates, i.e. ML has not applied as much correction as necessary. 
Overall though, the bias in the ML estimates is much smaller than 
that of the LS estimates. 

Notice though that some of the variances of the ML estimates are 
very large. LS estimates when there is no selection, have variance = 1·0. 
We see that for the smaller values of 0(, there variances are often 
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Table 5.l2(c) As Table 5.12( a) but for 20 competing 
variables 

k 't'l a: 't'(tmax) Avge fÜ1 Var. f[l) 

20 2·00 1·0 2-00 0·99 1·29 
0·9 1·34 (}83 0·90 
0·8 1·09 0·80 1·68 
0·5 0·89 0·94 3-31 

20 1·80 1·0 1·80 0·87 1·04 
0·9 1·23 0·71 0·69 
0·8 0·96 0·88 1·99 
0·5 0·83 1-16 4·48 

20 1-60 1·0 1-60 0·77 0·68 
0·9 0·99 0·67 0·47 
0·8 0·79 (}77 1·76 
0·5 0·69 1·09 4·34 

20 1-40 1·0 1-40 0·89 (}96 
- 0·9 0·81 (}67 0·70 

0·8 0·65 0·79 2·05 
0·5 0·45 0·83 3-13 

20 1-20 1·0 1·20 0·72 0·65 
0·9 0·75 0·70 1·26 
0·8 0·55 0·81 2·00 
0·5 0·44 1·03 3·27 

much greater than 1. The large contributions have come from a 
small number of cases in which the sampie projection has been 
moderately large and negative when its expected value, t, has been 
of the order of say + 0·2. 

(b) Selection 0/ more than one variable with a cut-off 
The case in which one and only one variable out of k is selected, 
was investigated to discover something about the behaviour of the 
max-LCL estimator, though it is a case which does sometimes occur 
in real life. A more common situation though is that in which all 
variables which satisfy some cut-off rule are selected, so let us look 
at that as weIl. 

In this case, still assuming orthogonal predictors, the probability 
of selecting a particular subset is simply the product of the 
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independent probabilities of selecting each individual variable in the 
subset. Hence the logarithm of the apriori probability of selection 
is equal to the sum of the individual logarithms of probabilities of 
selection. That is, we can just look at the problem one variable at a 
time. 

Let Ti be the expected value of the LS projection for variable Xi' 
and let ti be the sampie value. Suppose we select variable Xi if 
Itil > C where C is the cut-off value. Assume that the residual 
standard deviation, (J = 1, so that if we choose say C = 2 then it is 
equivalent to selecting the variable if its 't-value' in the common 
terminology, i.e. the regression coefficient divided by its standard 
error, is greater than 2 or the F-to-enter is greater than 4( = C2). 

For simplicity of presentation, this is blurring over the distinction 
between using the population standard deviation and its sam pie 
estimate. 

The contribution of variable Xi to the LCL is 

-t(Ti-tY-Iog.Pi. (5.25) 

The probability of selection of Xi is then the probability that either 
ti > C or that ti < - C, and hence 

Pi = 1 - <I>(C - T) + <1>( - C - Ti) 

Substituting in (5.25) and differentiating with respect to Ti we obtain 
the following equation to solve for the max-LCL estimate of Ti when 
Xi is selected: 

0= - (Ti - tj ) - [c/>(C - T) - c/>( - C - T)]/P j , 

where <I> is the standard normal distribution function, and c/> is its 
first derivative, the normal probability density. This equation can 
be easily be solved numerically; for instance, Newton-Raphson 
converges rapidly. If f(t j ) is the max-LCL estimate of Tj corres
ponding to an LS projection, ti , then it is straightforward to use 
numerical integration to calculate the expected value of f(ti ) and its 
variance as functions of the cut-off value C. 

Figure 5.8 shows the expected value of the max-LCL estimate 
compared with the expected value of the LS estimate when a cut-off 
of C = 2·0 is used. It shows that the bias in the max-LCL estimator 
is very much smaller except for large values of T when the bias is 
small for both estimators. 

Figure 5.9 compares the variances of the two estimators for a 
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Fig.5.8 Expected value ofthe max-LCLestimate (ML), against 't', compared 
with the expected value of the LS-estimate (LS), for cut-off C = 2·0 (roughly 
equivalent to an F-to-enter of 4'0). The dotted line is i = 't'. 

cut-off of C = 2·0. We shall see in the next chapter that in making 
predictions, the second moments of the estimators are very impor
tant. For most values of the expected projection, 7:j' both variances 
are greater than 1,0, which is the variance when there is no selection, 
The max-LCL estimator has much smaller variance except for large 
values of 7:. 

The high variance of the max-LCL estimator is due to the 
substantial shrinkage which it applies when the sampIe projection, 
tj , is close to the cut-off point. For cut-offs between 1 and 3, when 
t j is just on the positive cut-off boundary, it is shrunk to a value 
between 0·445 and 0·485. This is a substantial shrinkage and hence 
a large variance results. A small quantity added to the probability 
of se1ection would greatly reduce the variance and only have a small 
influence on the bias. 
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Fig.5.9 Variances ofthe max-LCL(ML) and LS estimators against ffor a 
cut-off of C = 2·0. 

5.6 Estimatioo - summary aod further work 

We have seen that when LS is used to estimate regression 
coefficients after subset selection, there can be biases of the order of 
one to two standard errors in the estimates. A number of alternative 
estimation methods have been examined. Two of these merit further 
research - the jack-knife estimator (5.9), and the ML estimator (5.11). 

Maximizing the logarithm of the conditional likelihood (LCL) 
given by (5.11) for both real and artificial data sets has produced 
some cases in which it has performed very weIl in eliminating bias, 
and others in which it has not done as weIl. Unfortunately, the 
maximum LCL estimates sometimes have an unacceptably large 
variance. The cases in which it performs poorly are those in which 
the estimated probability of selection has become extremely small 
during the iterations. 
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It appears that a substantial improvement ean be aehieved by 
replacing loge P(t5) in (5.11) with loge [P(~) + e] where e is small and 
positive. The quantity should probably be a funetion of the sampie 
size, the number of predietors, ete. The addition of such a quantity 
will mean that the LCL is approximately quadratie instead of 
linear in the projeetions away from the max-LCL point. 

An argument which ean be used to derive an addition to loge P 
is as folIows. As we do not know P, we must estimate it from 
simulations. Though these simulations give unbiased estimates of P, 
if we take logarithms, we have biased estimates of loge P. A Taylor 
series approximation ean be used to eorreet for this bias. Let us 
suppose that P is estimated simply as 

P=r/n 

where r is the number of eases in whieh the subset of interest was 
seleeted out of n sets of simulated data. F or simplicity of presentation, 
weighting of the eases has been ignored. Then 

E{logeP} = E{loge [P + (P - P)]} 

=IOgeP+E{P;P _~(P;P)2 + ... } 

I-P 
~log p---

e 2nP 

as the variance of P from simple binomial sampling is P( 1 - P)/n. This 
suggests that we replaee loge P with 

~ I-P 
10geP+-~-. 

2nP 

Using a Taylor series expansion again, we see that this is approxi
mately loge (P + 8) where 8 = (1 - P)/(2n), or, as P will usually be very 
smalI, e ~ 1/(2n). It is then a straightforward exereise to modify this 
eorreetion term for the weighting derived in Appendix 5A. 

These two Taylor series expansions are extremely erude. For the 
expansion of 108e (1 + x) as far as the quadratie to be sufficiendy 
accurate for praetical purposes, x must be mueh less than 1·0 in 
absolute value. In this ease, P will often be very smalI, say ofthe order 
of 10-4, while the possible value of P are 0, I/n, 2/n, ... , ete. Thus some 
of the values of (P - P) will be mueh larger than P in many eases. 



162 ESTIMATION OF REGRESSION COEFFICIENTS 

The use of Monte Carlo methods to estimate part or all of a 
likelihood funetion is beeoming more eommon. A good diseussion 
of methods and problems in this area is eontained in Diggle and 
Gratton (1984). We are fortunate in this ease that only a small part 
of the likelihood funetion needs to be estimated using simulation. 

Appendix 5A Conditional maximum Iikelihood algorithm 

We want to maximize the quantity 

LCL = eonstant - (RSSk + L~J)/(2(J2) -log. P(~) (5.11) 

with respeet to the ehanges, ~j' from the LS projeetions. The problem 
is to evaluate the probability of seleetion, P(Ö), and if possible, its 
first derivatives, as then we have from (5.12) that 

);. = _ (J2 (dP/d~j) 
UJ p' (5.13) 

This ean be solved iteratively by summing starting values for the 
~/s (say zeros), ealculating the derivatives, obtaining new estimates 
for the ~/s, ete., until eonvergenee. Experienee has shown that this 
proeess has eonverged in all eases investigated. 

Let tj be the jth LS projeetion, and let 'Cj be its expeeted value. 
That is, 'Cj is its expeeted value for all sampIes of the same size with 
the same values for the X -predietors, irrespeetive of whether the 
sampIe leads to the seleetion of our subset of interest. In our earlier 
notation then we have 

and 
O=t-t 

The probability P that our subset is seleeted is then 

s= 1,,,.'Ns ) 

where Ns is the number of other subsets eompared with our subset 
using whatever seleetion proeedure was used, and t)S} is the jth 
projeetion for the sth alternative subset where the projeetions for 
that subset have been reordered so that the first p are for the seleeted 
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variables. The elements of t}S) are linear combinations of the t/s, i.e. 

k 

t~S) = L cijt i 
i= 1 

where the coefficients cij can be obtained by multiplying together 
the planar rotations used to go from one ordering of the projections 
to the other. 

For any trial values for the unknown population projections, 
T:j,j = 1, ... , k, we could estimate P by generating sets of projections 
tj = T: j + ej with the e/s sampled from a normal distribution with 
zero mean and variance (12. We could generate 100 or 1000 such 
sets and run our selection procedure on each. The proportion of 
times on which our subset is selected can then be used as an estimate 
of P. As P will usually be very small in the region ofthe ML solution, 
this requires very large numbers of cases to estimate log. P and its 
first derivatives with reasonable accuracy. 

A way to reduce the amount of effort needed to estimate small 
proportions is to use biased sam pies, and then to compensate for 
that bias. This method has been called 'importance sampling' (Kahn, 
1956), though it is probably also known by other names. 

Let fo(t) be the density function desired for the projections, t, 
and let f(t) be the density function from which we sampie. The 
outcome from each sampie is then given weight equal to fo(t)/ f(t). 
Suppose we estimate some statistic, T(t), from the sampled pro
jections. If we had sampled from the true distribution fo(t), then 
the expected value of the statistic is 

E[T(t)] = f T(t) fo(t) dt. 

Sampling from distribution f(t) and giving weights as above, the 
expected value for the weighted statistic is 

E[T(t)] = f wT(t)f(t)dt 

= f T(t) fo(t) dt. 

That is, the estimates are unbiased. 
If the LS projections have a multivariate normal distribution with 

mean, 'ro and variance (12, and we sampie from a distribution with 
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some other mean 't but the same variance, then the two density 
functions are 

Jo(t) = (27t/12)-k/2 exp { - it1 (ti - 'tiO)2/(2/12) } 

and 

where t i , -riO, 'ti are the ith elements in the vectors t, 'to 
respectively. The weight given to a LS projection, t, is then 

w(t) = exp{[ - itl (ti - 'tiO)2 + it1 (ti - 'ti)2 JI (2/12)} 

{ 2 1 ~ ( 'ti + 't iO ) } =exp (2/1)- if-
1 

t i ---2- ('tiO-'ti) . 

and 't 

(5A.1) 

The statistic we want to estimate is the probability of selection of 
our chosen subset. Let Sj = 1 if the jth set of LS projections leads 
to the selection of our subset of interest, = 0 otherwise. Then our 
estimate of P is 

(5A.2) 

An advantage of this method is that the same sam pIe can be 
reused as we improve our estimate of the ML solution vector, 'to, 
just changing the weights. Furthermore, estimates of the derivatives 
of loge P can be obtained simply by differentiating the expression 
for 10gJ;, as follows: 

dlogeP dlog(Iwß) dlog(Iw) 
dto dto d'to 

The differentials of the weights are given by 

so that 

dw 
-d = w(t - to)//12 

t o 
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Hence, by substituting in (5.13), we derive 

() = L wj(tj - t o) _ L WjSj(tj - t o) 

LWj LWßj 

= (L W}j/L w) - (L wß}iL wßj)· 
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(5A.3) 

The first term on the right-hand side of(5A.3) is the weighted average 
of the LS projections over all the genera ted sets, while the second 
term is averaged over only those subsets which lead to the selection 
of our subset of interest. Thus the resultant method is one which 
we might have chosen intuitively. 

Appendix 5B An application of the ML algorithm 

As an illustration, let us take the POLLUTE data set and consider 
the estimation of the regression coefficients for the best-fitting subset 
of four predictors (out of the 15). These four are number 1 (average 
annual rainfall), 2 (January temperature), 9 (% nonwhite population) 
and 14 (S02 concentration); the dependent variable is age-adjusted 
mortality rate in deaths per 1 ()() 000 population per annum. Referring 
to Table 3.17, we see that other subsets which fit weIl as (2, 6, 9, 14) 
and (2, 5, 6, 9), both of which contain variable number 6 (median 
years of education). 

Table 5B.1 sbows tbe experimental design for tbe Monte Carlo 
experiment. Apart from the first point, tbe design is centred around 

Table 5B.1 Design of Monte Carlo experiment for 
M L estimation 

Number of 
design points 

p 

p 

The centre points 

Ci=ti+Si(J/.jp 

Ci = t i + (J 
cj=tj-(J/p 

Ci = t i - (J 
Cj = tj + (J/p 

Ci=ti-(J/p 

Ci=ti+(J/p 

i= 1, ... ,k 

i= l, ... ,p 
j#i 

i= 1, ... ,p 
j #i 

i=l, ... ,k 
i = 1, .. . ,k 

Note: Si is the sign of ti if i';;;; p, and the opposite 
otherwise. 
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the LS projections, ti . The first point was added to make sure that 
the subset selected using the real data was also selected for a moderate 
number of the artificial data sets. In the two groups of p sets of 
points, each projection for one of the selected variables is either 
increased or decreased by (1 in an attempt to estimate the etTect of 
changing that projection. 

For each design point, a set of 15 projections, Ci + eh'i' i = 1, ... ,15, 
was generated, where the B/S were sampled from the standard normal 
distribution, and the standard deviation, a = 34'9, was the usual 
residual standard deviation estimate using all 15 predictors. For 
each case, an exhaustive search was carried out to find whether the 
subset (1, 2, 9, 14) was the best-fitting subset of four predictors. To 
reduce the amount of computation, forward selection was used first. 
Ifthe subset offour predictors gave a sm aller residual sum ofsquares 
than that for subset (1, 2, 9, 14), then it was unnecessary to carry 
out the exhaustive search. 

Each design point in Table 5B.1 was replicated 100 times, thus 
the LS projections were generated for 1100 sets of artificial data, 
each consisting of 60 observations with the same values for the 
predictor variables as in the real data set. To achieve some variance 
reduction, the replications were carried out in pairs with the signs 
of each Bi reversed for the second replicate. Thus the generated 
projections had averages which were exactly equal to the design 
point values. This entire experiment was carried out twice. 

Table 5B.2 shows the number of times, out of 100, that the subset 
(1, 2, 9, 14) was selected at each design point. We see from design 
points 3 and 5 that adding to the projections for variables 2 and 
14, and hence reducing their magnitude as they are both negative, 
has substantially reduced the probability of selection. Similarly, from 
design points 6 and 8 we see that substracting from the positive 
projections for variables 1 and 9 has reduced the probability of 
selection. 

Using the original LS projections as the first estimates of the ML 
solutions, the probabilities of selection, P, and the log-likelihood, L, 
relative to those for the usual normal regression model with P = 1, 
were calculated for consecutive iterations and are shown in 
Table 5B.3. As the log-likelihood for the usual normal regresion 
model is constant - RSSk , the quantity used for L is 

L = - L c5f /(2(12) -log. P(ö). 



APPENDIX SB 167 

Table 5B.2 Frequency, out oJ 100, oJ selection oJ 
subset (1,2,9, 14) at each design point 

Design point Experiment 1 Experiment 2 

53 51 
2 52 49 
3 24 20 
4 45 29 
5 21 29 

6 24 27 
7 49 46 
8 33 26 
9 49 45 

10 35 42 
11 36 30 

Table 5B.3 Probabilities oJ selection and log-likelihood Jor iterations oJ the 
M L estimation method 

Experiment 1 

Sei. prob. Log-/' hood 
L Iteration P 

o 0·166 
1 0·0101 
2 1·87E-4 
3 1·15E-5 
4 9·24E-6 
5 H2E-5 
6 9·09E-6 
7 1·06E-5 

1·80 
3·53 
5·41 
5·74 
6·00 
6·05 
6·07 
6·08 

Experiment 2 

Se/. prob. 
P 

0·251 
0·0651 
0·0124 
1·73E-3 
3·29E-5 
5·5IE-7 
7·9IE-7 
8·92E-7 

Log-/' hood 
L 

1·38 
2·23 
2·86 
3-41 
5·22 
5·73 
5·84 
5·84 

The convergence criterion used for stopping was that the change 
in log-likelihood had to be less than 0·01. In this case, in which only 
a small number of the other variables are 'competing' for selection 
(particularly variable 6), the estimated probability of selection has 
fallen to around 1 part in a million. In other cases, it has sometimes 
been of the order of 1.E-20 or smaller at the ML solution. 

Table 5B.4 shows the final estimated projections, while Table 5B.5 
shows the regression coefficients calculated from them. Notice that 
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Table 5B.4 M Land LS projections 

ML projections 
Variable LS 
no. projection Expt 1 Expt 2 

1 243-4 221·0 225·6 
2 -37,0 13-8 6·8 
9 274·8 270·7 274·6 

14 -151,6 -123,3 -104,3 

3 -59'1 -94,9 -32,3 
4 15·0 27·4 26·5 
5 -11,2 2·1 43-8 
6 -89,0 -101-6 -174,0 
7 -16,9 -11-1 -15,0 
8 -30,2 -33,5 -40,8 

10 -14'1 -36,3 21·8 
11 2·1 12-3 -22,1 
12 11·3 53·0 53-0 
13 -46,5 -96,3 -54,3 
15 3·2 54'1 -16,1 

Table 5B.5 LS and ML regression coefficientsfor the POLLUTE data set 

Experiment 1 Experiment 2 

Variable LS regn ML regn ML regn 
no. coeff· coeff· Std. error coeff· Std. error 

1 2·059 1·637 0·507 1·619 0·487 
2 -1,772 -1,190 0·387 -1,372 0·417 
9 4·079 4·167 0·495 4·349 0·437 

14 0·3305 0·2687 0·0585 0·2273 0·0610 

the projections for selected variables 1,2 and 14 have been reduced 
in magnitude by amounts of the order of 50-100% of a, while the 
projection for variable number 9 is almost unchanged. The 
projections for most of the unselected variables have been increased, 
particularly that for variable 6. When we look at the regression 
coefficients we see that for the dominant variable 9 it has increased 
very slightly while the other three have decreased by one or more 
standard errors. 



CHAPTER 6 

How many variables? 

6.1 Introduction 

The stopping rule to apply in any situation depends upon 

1. the objectives, and 
2. the estimation method. 

For instance, if the objective is to minimize prediction errors in some 
sense, e.g. by minimizing the mean squared error of prediction, then 
a larger subset will often be appropriate than if there is to be a trade 
off between the future cost of measuring predictors and the accuracy 
achieved. 

The choice of subset, as weIl as the size of subset, will also depend 
upon the region of the X -space in which we wish to predict. A fairly 
common situation is one in which one variable, say Xl' is expected 
to vary or be varied much more in the future than in the past. If 
the range of values of Xl is small in the calibration sampie, the 
influence of this variable may be so small that any of the automatic 
procedures described in Chapter 3 will not select that variable. In 
such circumstances, it may be necessary to force Xl to be selected, 
provided that a regression coefficient can be estimated for it which 
has an estimated standard error which is smaller than the coefficient 
itself. 

Typically we would like to minimize with respect to the size of 
subset, p, a sum of the kind 

A N ( k k A)2 k 

IIXP - XpPpll~ = i~l j~l xißj- j~l Ijxjjßj + j~ Cij (6.1) 

where I j = 1 if the jth variable is in the subset, and = 0 otherwise, 
Cj is the cost of measuring the jth variable, where the matrix X = 
{x jj} of values of the predictor variables is specified, as is the method 
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of obtaining the estimated regression coefficients, {fj' and N is the 
number of future values to be predicted. 

As the future values of Xij for which predictions will be required 
are often not known, the matrix Xis often taken to be identical with 
the observation matrix or to be the multivariate normal distribution 
with covariance matrix equal to the sampie covariance matrix for 
the calibration data. This sometimes leads to some simple analytic 
results, provided that unbiased estimates are available for the P/s. 

There are almost no examples in the literature of the use of any 
other assumed future values for the predictor variables, other than 
Galpin and Hawkins (1982, 1986). They demonstrate that 
different subsets should be chosen for different ranges of future 
X- values, though their derivation neglects the bias due to selection. 

For one future prediction for which x is the vector of values of 
the k predictors, the variance of the predictor x'6, where ~ is the 
vector of least-squares (LS) regression coefficients, is 

(12 X '(X' X)-l X 

where (12 is the residual variance with an the predictors in the model. 
If we take the gamble of ignoring the biases due to selection, and 
ass urne the same residual variance for selected subsets, then we could 
minimize this quadratic form substituting the appropriate subsets 
of the matrix X and vector x, to find a suitable subset for prediction 
at the point x. An algorithm for minimizing quadratic forms over 
subsets of variables has been given by Ridout (1988); this could be 
used for this purpose. In a practical situation, this could be used to 
indicate a possible subset to use for future prediction, despite the 
biases. 

The representation (6.1) can also be used when the objective is to 
estimate the regression coefficients. This can be treated as equivalent 
to estimating Xp when each row of X contains zeros in an except 
one position. Other X-matrices can similarly be constructed if the 
purpose is to estimate contrasts. For the simplest contrasts, each 
row of X contains one element equal to + 1, one element equal to 
-1, and the remainder equal to zero. 

Unfortunately, almost an of the available theory assurnes that we 
have unbiased LS estimates (i.e. no selection bias) of the regression 
coefficients. This would apply if separate, independent data are used 
for model selection and for estimation. For instance, Bendei and 
Afifi (1977) appear at first glance to have solved the common problem 
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of the choice of stopping rule using LS regression coefficients for 
the case of one data set for both selection and estimation until one 
notices the requirement that 'the subset is selected without reference 
to the regression sam pie'. In the derivations of mean squared error 
of prediction (MSEP) which follow later in this chapter, we shall 
see that in many practical cases, the minimum MSEP is obtained 
by using all of the available predictors, i.e. with no selection, if no 
correction is made for competition bias in selection. 

The basic criterion we will use will be that of minimizing the 
MSEP, but it will be shown that in practice this often yields the 
same results as using either a false F-to-enter criterion, or a likeli
hood criterion such as the Akaike information criterion. 

6.2 Mean squared errors oe prediction (MSEP) 

We will consider two models for the predictor variables which 
Thompson (1978) described as the fixed and random models. 

( a) Fixed model 
The values of the X -variables are fixed or controllable, as for instance 
when the data are from a controlled experiment. 

(h) Random model 
The X-variables are random variables. This type ofmodel is relevant 
to observational data when the X -variables cannot be controlled. 

In many practical cases using observational data, there will be a 
mixture of fixed and random variables. For instance, in studies of 
ozone concentration in the atmosphere, some ofthe predictors could 
be season, day of the week, time of day, location, all of wh ich will 
be known, Le. fixed variables, while other predictors, such as 
meteorological variables and concentrations of pollutants such as 
nitric oxides and hydrocarbons, will be random variables. 

6.2.1 MSEP Jor the fixed model 

Let XA denote the n x p matrix consisting of the p columns of X for 
the p selected variables. If the prediction equation is to contain a 
constant or intercept term, one of these columns will be a column 
of 1's. For convenience it will be assumed that the columns of X 
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have been ordered so that the first p are those for the selected 
variables. Let X be partitioned as 

X=(XA,XB) 

where XB is an n x (k - p) matrix, and let bA be the vector of LS 
regression coefficients, where 

(6.2) 

Let x be one vector of values of the predictors for which we want 
to predict Y, and let 'p(x) denote the predicted value using the LS 
regression coefficients, i.e. 

y(x) = x~bA. 

If the true relations hip between Y and the X-variables is 

Y=Xp+e 

where the residuals, e, have zero me an and variance (12, then the 
prediction error is 

'p(x) - x'p = X~bA - x'P (6.3) 
where 

i.e. it includes the values of the other (k - p) predictors which were 
not selected. The prediction error given by (6.3) can be regarded as 
having the following components: 

1. a sampling error in b A; 
2. a bias in b A' the selection bias, if the same data were used both 

to select the model and to estimate the regression coefficients; and 
3. a bias due to the omission of the other (k - p) predictors. 

If there is no selection bias, which would be the case if independent 
data had been used to select the model, then 

E(b A) = Y A, say 

= (X~XA)-l X~XP 

= (X' X ) - 1 X' (X X) (PA) A A A A' B PB 
= PA + (X~XA)-l X~XBPB (6.4) 

that is, ~A is augmented by the regression of XB~B on the p selected 
variables. 
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Now let us rewrite the prediction error (6.3) using (6.4) above as: 

P(x) - x'P = X~{[bA - E(bA)] + [E(bA) - YA] + [YA - PA]} - X~B 

= x~{(l) + (2) + (X~XA)-l X~XaPB} - X'PB 

= x~{(l) + (2)} + [X~(X~XA)-l X~XB- X~]PB 

= x~{(l) + (2)} + (3) 

where the messy expression for (3) is for the projection of the 
Y-variable on that part of the XB predictors which is orthogonal 
to XA • 

The expected squared error of prediction is then 

E[P(x) - X'P]2 = x~ {V(b A) + [E(b A) - Y A] [E(b A) - Y AJ'}XA 
+ (omission bias)2 

=x~{V(bA)+(sel. bias)(seI. biasY}xA 
+ (omission bias)2 (6.5) 

where 'seI. bias' denotes the selection bias, and V(b A) is the covariance 
matrix ofthe p elements ofb A about their (biased) expected values. 

Note that equation (6.5) still holds if bA has been estimated using 
a method other than LS. 

To derive the MSEP from (6.5), we need to supply a set ofx-vectors 
over which to average. A simple, well-known result can be obtained 
if we make the following choice of x-vectors and the following 
assumptions about b A: 

1. The future x-vectors will be the same as those in the X-matrix 
used for the estimation of the regression coefficients. 

2. There is no selection bias. 
3. V(bA)=a2(X~XA)-1. 

The second and third conditions apply for LS regression coefficients 
when the subset has been chosen independently of the data used for 
the estimation of b A' 

Subject to these conditions, we have that 

n 

E(RSSp) = L (omission bias)~ + (n - p)a2 (6.6) 
i= 1 

where (omission bias)i is the bias in estimating the ith observation 
caused by omitting the (k - p) predictors. We can obtain an estimate 
of the sum of squares of thse omission biases if we replace the 
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left-hand side of (6.6) with the sampie RSSp• Note that when the 
same data are used for both seleetion and estimation, the sam pie 
value of RSS p is liable to be artifieially low for the seleeted subset. 

Now we need to find the sum of the x~ V(b A)XA terms in (6.5). 
That is, we need to ealculate 

n 

(J2 L X;(X~XA)-lXi 
i= 1 

where x; is the ith row of X A' By examining whieh terms are being 
multiplied, we see that this is the sum of diagonal elements, i.e. the 
traee of a matrix produet, and that 

n 

(J2 L X;(X~XA)-lxi=(J2traeeXiX~XA)-lX~ 
i= 1 

= (J2 traee(X~XA)-l X~XA 

= (J2 traeelpxp 

= p(12. (6.7) 

It is assumed that X~XA is of full rank (why seleet a subset with 
redundant variables?). Here we have used the property that for any 
pair of matriees P, Q with appropriate dimensions, 

traee PQ = traee QP. 

Finally, summing the terms (6.5) over the n future observations 
and using (6.6) and (6.7), we have that the sum of squared errors 

~ p(J2 + RSSp - (n - p)(J2 

= RSSp -(n-2p)(12. (6.8) 

If we divide through by (12 we obtain the well-known Mallows's Cp 

statistie (Mallows, 1973): 

RSSp 
Cp = -2- - (n - 2p). (6.9) 

(1 

In praetiee, (J2 is replaeed with the unbiased estimate 

A2 RSSk (J =--
(n -k) 

that is, the estimate of the residual varianee for the full model. 
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The mean squared error of prediction (MSEP) is defined as 

E(y - .9(xW, 

where y is a future value of the Y-variable. As we have so far been 
looking at differences between y(x) and its expected value, we must 
now add on an extra term for the future difference between the 
expected value and the actual value. Hence the MSEP is obtained 
from (6.8) by dividing through by n and then adding an extra (12. 

FinalIy, for the fixed-variables model with unbiased LS estimates of 
regression coefficients, 

MSEP ~ (RSS p + 2p(12)/n. (6.10) 

Minimizing Mallows' Cp has been widely used as a criterion in 
subset selection despite the requirement for unbiased regression 
coefficients. Most of the applications have been to situations with 
predictors which are random variables whereas the derivation 
requires that the X's be fixed or controllable variables. 

Mallows himself warns that minimizing C p can lead to the selection 
of a subset which gives an MSEP, using LS regression coefficients, 
which is much worse than if there were no selection at all and all 
predictors are used. His demonstration uses k orthogonal predictors; 
a similar derivation folIo ws. First, though, we present a shorter, 
simpler derivation of the MSEP and hence of MalIow's Cp based 
upon an orthogonal projection approach. 

Write an orthogonal reduction of X as 

X=(XA,XB) 

= (QA' QB){ RA:;B} 

where QA' QB are orthogonal matrices, and RA' RB are upper 
tri angular (though RAB is not). Let the vector of orthogonal 
projection be 

with expected values TA' TB for the vectors t A, tB. The LS regression 
coefficients for the selected variables are obtained by solving 

RAbA= tA· 
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Hence the prediction errors, if our future X is exactly the same as 
the X used for estimation, are given by 

XfJ-XAb .. = QRP- QARAbA 
= Qt - QAtA· 

Hence, because of the orthogonality of the columns of Q, the sum 
of squared errors 

P k 
= L vartAi + L r~ (6.11) 

i=l i=p+l 

where tAi' 'tm are the ith elements of tA and 'tB respectively. As 

k 

E(RSSp)= L rii +(n-p)a2, 
i=p+l 

and the projections tAi have variance (12, we have that the sum of 
squared errors 

= p(12 + E(RSSp) - (n - p)(12. 

Replacing the expected value of RSS p with its sam pie value gives 
formula (6.8). 

Now let us look at the case of orthogonal predictors with esti
mation and selection from the same data. Adding variable Xi to the 
subset of selected variables reduces the residual sum of squares by 
tf, hence the approximate MSEP, or equivalently MaIlows' Cp , is 
minimized by incIuding all of those variables for which tf > 162 • 

Hence if the t/s are normally distributed with expected values ri 
and, for convenience, (1 = 1, then 

f- J2 t4>(t-rJdt+ fll t4>(t-rJdt 

E(tilvariable Xi is selected) = -00 J J2 J 
(Jl( - 2 - ri) + 1 - (Jl( 2 - rJ 

where 4> and «I> are the density function and distribution func
tion respectively for the standard normal distribution. Here, for 
simplicity, it is being assumed that d = 1; a more rigorous derivation 
would use the t-distribution instead of the normal. 

The true sum of squared errors in this case is then given by 
p p k 

L (selection bias): + L var(tAJ + L r~ (6.12) 
i=l i=l i=p+l 
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Table 6.1 Expected values oJ contribution to the sum oJ squared 
errors against expected projections Jor orthogonal predictors, 
using Mallows' Cp as the stopping rule 

Contribution Contribution Wtd average 
Ti if selected ifrejected Jrom (6.13) 

0·2 3-46 0·04 0·61 
0·4 lOl 0·16 0·70 
0·6 2·48 0·36 0·84 
0·8 1·99 0·64 1·02 
1·0 1·59 1·00 1·20 
1·2 1·28 1·44 1·37 
1·4 1·06 1·96 1·51 
1·6 0·90 2·56 1-60 
1·8 0·79 3·24 1·65 
2·0 0-73 4·00 1·64 
2·5 0·72 6·25 1·49 
3·0 0·81 9·00 1·27 
3·5 0·90 12·25 1·11 
4·0 0·96 16·00 1·04 
4·5 0·989 20·25 1·009 
5·0 0·998 25·00 1·002 

where the variance of the projections of selected variables is no 
longer equal to (12. Table 6.1 shows the contributions to the sum of 
squared errors according to whether a variable is selected (the first 
two terms of (6.12)) or rejected (last term of (6.12)), as a function of 
the expected projection, 'tj. 

In practice, we do not know the expected values of the projections, 
so where should we apply the cut-off? To answer this question, let 
us look at the sum of squared errors for a mixture of 't/s. Let 't 1 = 10, 
so that the first variable will almost always be selected, and let 
'tj = IOcxi- 1 for some a between 0 and 1. Let the residual standard 
deviation, (1 = 1. Let C be the cut-off value such that variable X j is 
selected if Itd ~ C, and rejected otherwise. For variable Xi' the 
expected contribution to the sum of squared errors is 

prob(ltil ~ C)E[(tj - 'tj)2 given Itjl ~ C] + prob(ltjl < Ch:~ 

= f -c (t - 'tj)2 cp(t - 'tJ dt + f 00 (t - 'tj)2 cp(t - 'tJ dt 
-00 C 

(6.13) 
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Expected value of projection 

Fig.6.1 Expected contributions to the MSEP for the case of orthogonal 
predictors, against the expected value of a projection, 't, for a range of cut-off 
values, c. 

This quantity is shown as function m(-r) in Fig. 4 of Mallows (1973), 
and is shown here in Fig. 6.1. 

We see from Fig. 6.1 that if the true but unknown projections are 
less than about 0·8 in absolute value then we should reject that 
variable. In this case, the higher the value of C the better. But if the 
unknown true projections are greater than about 1·1 in absolute 
value, then a large value of C is very undesirable. 

Figures 6.2 and 6.3 show the error sums of squares for the mixture 
of -r/s described above for (X = 0·8 and 0·6 respectively. In Fig. 6.2, 
for k = 10 available predictors, the smallest true projection is 
-rIO = 1·34, so that there are no very small projections. In this case, 
the use of any cut-off is undesirable. Even in the case of k = 20, when 
the smallest true projection is -r20 = 0·144, there are sußiciently many 
true projections between 1 and 10 that nothing is gained by 
using any cut-off. For larger values of kor smaller values of (X (see 
Fig. 6.3), when there are sußiciently many true small projections, 
moderate gains in reducing the error sum of squares can be obtained 



6.2 MEAN SQUARED ERRORS OF PREDICTION (MSEP) 179 

O+--------r--------r--------r--------~ 
o 2 3 4 

Cut-off 

Fig. 6.2 MSEP against cut-off Jor k = 10,20,30 or 40 predictors, and 
'Ci = lOai - ' with a = 0·8. The broken lines indicate the MSEP which would 
be obtained if unbiased estimates oJ the projections could be obtained when 
variables are selected. 

by using a cut-off in the vicinity of 2·0 standard deviations, as 
opposed to the J2 for Mallows' Cp• 

Figures 6.2 and 6.3 also show, as broken lines, the error sums of 
squares which are obtained if unbiased LS regression coefficients are 
used, e.g. by using independent data for model selection and 
estimatioo. This iIIustrates tbe potential improvement whicb can be 
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o +-------~--------r_------_r--------r 
o 2 3 4 

Cut-off 

Fig. 6.3 MSEP against cut-off /or k = 10,20,30 or 40 predictors, and 
'ti = 10ai - 1 with IX = 0-6. The broken lines indicate the MSEP which would 
be obtained if unbiased estimates 0/ the projections, with variance = 1, could 
be obtained when variables are selected. 

obtained if the bias in the LS regression coefficients can be removed 
or reduced. 

It appears surprising that for k = 10 and cx = 0·8 in Fig. 6.2, the 
error sum of squares is slightly lower when biased LS regression 
coefficients are used rather than unbiased ones, for cut-offs, C, less 
than about 2·5. The explanation is that the variance of the biased 
regression coefficients is substantially sm aller than that of the 
unbiased coefficients, and this difference more than outweighs the 
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square of the bias. For instance, for the smallest true projection of 
1· 34 and C = 1, the expected value oft 10 when variable Xl 0 is selected 
is 1·886, giving a bias of 0·546, but its variance is only 0·597. 

Looking back to equation (6.12), we see that the first term in the 
sum of squared errors is the square of the selection bias. If we can 
halve this bias, then its contribution to the squared error will be 
divided by four. We can anticipate that the likelihood estimation 
method described in section 5.4 will thus give squared errors doser 
to the broken lines than to the solid ones in Figs 6.2 and 
6.3, and hence that a stopping rule such as minimizing Mallows' Cp 

or an F-to-enter of about 2·0, will produce something dose to the 
optimal linear subset predictor. 

The conclusions of this section are that for prediction when future 
values of the predictor variables will take the same values as those 
in the calibration sampIe: 

1. Using biased LS regression coefficients estimated from the same 
data as were used to select the model, a cut-off value of about 
2·0 standard deviations for the absolute value ofthe LS projections 
(roughly equivalent to an F-to-enter of 4·0) is about optimal 
when an appreciable fraction of the true (but unknown!) 
projections are less than about 0·8 standard deviations in absolute 
value, otherwise no selection should be used. 

2. It is desirable to try to reduce or eliminate the bias in the LS 
regression coefficients.lfthis can be achieved, then using a cut-off 
of between 1·5 and 2·0 standard deviations for the sampIe LS 
projections may be about optimal. 

The results described in this section have been for orthogonal 
predictors. In this case, the contribution of a variable to the sum of 
squared errors is independent of the other variables which have been 
selected, and so there is no selection bias. The results should be 
applied with caution in cases where the predictors in the calibration 
data are not orthogonal. It should be emphasized that these results 
are für an assumed geometric progression of values of the true 
projections; there is no evidence that this pattern is realistic. 

6.2.2 MSEP Jor the random model 

In this case, the omission bias in the fixed model becomes additional 
residual variation. However, in practice, the columns of the X-matrix 
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will usually be far from orthogonal, and there will often be 
considerable competition between variables for selection. 

Suppose that 

where the residuals e, have zero expected value and E(t2) = (J~, i.e. 
the residual variance is a function of the subset. Assurne for the 
moment that we have unbiased estimates bA of ~ A and s ~ of (J~. 

For one future prediction, the prediction error is 

Y(xA) - X~~A = X~(bA - ~A)' 

Hence the predictions are unbiased with variance: 

X~ V(bA)XA, 

where V(b A) is the covariance matrix of b A' 

If we use independent data for selection and estimation, which 
would give us unbiased LS regression coefficients, then the 
covariance of the regression coefficients is 

where XA iso the X-matrix used for estimation (not that used for 
model selection). If we now average the squared prediction errors 
over xA's comprising the rows of X A, we derive 

2 n 

MSEP = (1 A I X;(X~XA)-l Xi + (1! 
n j=l 

2 n+ p 
=(1 --

A n (6.14) 

from (6.7), where p is the rank of X~XA' If we replace (1~ with its 
sampie estimate, then the estimated MSEP is 

RSSp n+p 
~----

(n - p) n 
(6.15) 

This expression for the MSEP (see Rothman, 1968) usually gives 
numerical values which are alm ost the same as those from the 
fixed-variables model. If we replace the (12 in (6.8) by RSS;(n - p) 
then we obtain (6.15). 



6.2 MEAN SQUARED ERRORS OF PREDICTION (MSEP) 183 

At the minimum MSEP we have that 

RSSin + p) RSSp +1(n + p + 1) 
---"---~ . 

(n-p)n (n-p-1)n 

A little rearrangement shows that at the minimum 

(n + p)(n - p - l)(RSSp - RSSp +1 ) ~ 2nRSSp +1 

or 

RSSp - RSSp + 1 2n 
---"---------''--'--- ~ --. 
RSSp +t!(n-p-1) n+p 

(6.16) 

The left-hand side of (6.16) is the usual 'F-to-enter' statistic, so that 
when the MSEP is minimized the 'F-to-enter' for the next larger 
subset is less than 2n/(n + p), or a little less than 2 if n »p. 

For the random model though, it is extremely unreasonable to 
assurne that future x's will take the same values as in the calibration 
sam pie. It may be reasonable though in some circumstances to 
ass urne that future x's will be sampled from the same distribution 
as the x's in the calibration sampie. The MSEP for future x's is 

MSEP = (j~ + E[x~M2(bA - PA)XA] 

where M2(b A - PA) is the matrix of second moments of bA ab out PA. 
The expectation has to be taken over both the future x's and M 2 • 

Again let us ass urne that we have unbiased estimates bA of PA 
with covariance matrix 

V(bA) = (j!(X~XA)-l, 

as would be the case if independent data had been used for model 
selection and parameter estimation. We have then that 

MSEP = a! + a!E[x~(X~XA)-lxA] (6.17) 

In circumstances in which the future x's are already known, 
substitution in (6.17) then gives the MSEP. Galpin and Hawkins 
(1982, 1986) do precisely that, and show that in some cases quite 
different subsets should be chosen for different x's to give the best 
predictions in the MSEP sense. 

A simple general formula for the MSEP can be obtained if we 
assurne 

1. that a constant is being fitted in the model; and 
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2. that the calibration sam pie and the future x's are independently 
sampled from the same multivariate normal distribution. 

We have then from (6.17) 

MSEP = O'~ {1 + (1In) + E[x!'(~' ~)-lX!]} 
where the asterisks indicate that the sam pie mean of the calibration 
data has been removed from each variable. The (1In) is for the 
variance of the mean. The vectors are now of length (p - 1). 

If the X-variables are sampled from a multivariate normal 
distribution with covariance matrix I:A, then the variance of the 
future x!'s, after allowing for the removal of the sampie mean, is 

[1 + (1In)]I:A. 

An estimate of I: A is provided by 

v = (X~' X~)/(n - 1); 

hence we can write 

n+l 
x*'(~' ~) - 1 x* = t' V- 1t 

A A A A n(n _ 1) (6.18) 

where t is a vector of statistics with zero mean and covariance matrix 
I: A' Now t' V- It is Hotelling's T2-statistic (see any standard text on 
multivariate analysis, e.g. Morrison, 1967, pp. 117-24, or Press, 1972, 
pp. 123-6). The quantity 

(n - p + I)T2/((p -1)(n - 1)) 

is known to have an F-distribution with (p - 1) and (n - p + 1) 
degrees of freedom for the numerator and denominator respectively. 
The expected value of F(Vl' V2) is v2/(v2 - 2), where Vl' V2 are the 
numbers of degrees of freedom, and hence the expected value of 
(6.18) is 

n+l (n-l)(p-l) n-p+l (n+l)(p-l) 

n(n-l) n-p+l n-p-l n(n-p-l) 

Finally, we derive 

MSEP = O'~ {I + (1/n) + (n + l)(p - I)}. (6.19) 
n(n-p-l) 
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This result is due to Stein (1960), though the derivation given here 
is that of Bendel (1973). Notice that here the p variables include the 
constant in the count, in line with the usual derivation of Mallows' 
Cp' which is the equivalent result for the fixed-variables case. Other 
authors, including Thompson (1978), Oliker (1978) and Bendei, quote 
the result without the constant included in the count for p. 

For large n and p« n, the last term in (6.19) is approximately 
(p - 1)/n so that the numerical value of (6.19) is nearly the same as 
that of (6.14). As p/n increases though, the last term of (6.19) increases 
rapidly. 

If we replace a! with the estimate RSSJ(n - p) then the MSEP 
becomes 

RSSp (n + l)(n - 2) 

n-p n(n-p-l) 
(6.20) 

Minimizing this estimated MSEP with respect to p is then equivalent 
to minimizing 

(n-p)(n-p-l) 

At the minimum we have that 

RSSp RSSp +1 
-------"---<--_----".-'--"----
(n - p)(n - p - 1) (n - p - 1)(n - p - 2) 

or, after some rearrangement, that 

RSSp -RSSp +1 2(n-p-l) 
--~-----''--'--- < . 
RSSp +t!(n-p-l) n-p-2 

That is, at the minimum the 'F-to-enter' statistic is less than a 
quantity which is just greater than 2. In practice, minimizing the 
estimated MSEP given by (6.20) often selects the same size of subset 
as minimizing Mallows' Cl" 

A somewhat surprising feature of all the formulae for the MSEP 
which we have derived is that they do not involve the X-matrix. 
That is, the estimated MSEP is the same whether the X-variables 
are highly correlated or alm ost independent. The basic reason for 
this independence of X is that the same pattern of correlations has 
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been assumed for future x's. These correlations are important though 
if either 

1. the future x's will have a different pattern from those used for 
calibration; or 

2. the same data are used for both model selection and estimation 
of the regression coefficients. 

6.2.3 A simulation with random predictors 

In most practical cases the same data are used for both model 
selection and for estimation. To examine the effect of competition 
bias in inflating the MSEP, a simulation experiment has been carried 
out. The experiment was a 5 x 23 complete factorial with replication. 
The four factors were as folIows: 

1. Number of available predictors, k = 10(10)50, plus a constant. 
2. Sampie size, n, either small (n = 2k) or moderate (n = 4k). 
3. Ill-conditioning of X'X, either low or moderate. 
4. Size of smallest LS projection, either small or moderate. 

To obtain the desired amount of ill-conditioning, a method similar 
to that of Bendei (1973) was employed. A diagonal matrix was 
constructed with diagonal elements decreasing geometrically except 
for a small constant, b, added to prevent them from becoming too 
smalI. The initial values of the diagonal elements were 

and 
Ai = CX(Ai-l - b) + b for i = 2, ... , k. 

b was arbitrarily set equal to 0·001. The Xs are then of course the 
eigenvalues of this matrix, and are chosen to sum to k, which is the 
trace of a k x k correlation matrix. Similarity transformations of the 
kind 

Ar +1 = PA,P-l 

preserve the eigenvalues. Random planar rotations were applied 
to each pair of rows and columns. A further (k - 1) similarity 
transformations were then used to produce 1 's on the diagonal. Thus 
if the diagonal block for rows i and i + 1 is 
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then the required similarity transformation is 

( e s)(w x)(e -s) = (1 x*) -sex z s e x* z* 

where the tangent (t = sie) satisfies 

that is 

t2 (1 - z) - 2tx + (1 - w) = 0, 

t = x ± {x 2 - (1 - z)(l - w) V/2 

(1- z) 

In the rare event that the roots of this quadratic were not real, rows 
i and i + 2, or i and i + 3 if necessary, were used. As the diagonal 
elements must average 1,0, it is always possible to find a diagonal 
element z on the opposite side of 1'0 from w so that the product 
(1 - z)(1 - w) is negative and hence the roots are real. 

The matrix so genera ted was used as the covariance matrix 1:, of 
a multivariate normal distribution. If we form the Cholesky 
factorization 

1: = LL' 

where L is a lower-triangular matrix, then a single sampie can be 
generated from this distribution using 

x=L&, 

where & is a vector of elements Bi which are sampled independently 
from the standard normal distribution. This follows as the covariance 
matrix of the elements of x is 

E(xx') = E(L&&' L') 

=LL' 

=~. 

The projections of the Y -variable were chosen so that their 
expected values, 'Ci = nl/2 yi-l for i = 1, ... , k. The expected values of 
the regression coefficients for these projections were then obtained 
by solving 

L'P=t, 

and each value y of Y was genera ted as 

Y= x'P + e, 

where the residuals, e, were sampled from the standard normal 
distribution. 
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To decide upon suitable values to use for (X, the eigenvalues 
(principal components) of some correlation matrices were examined. 
Table 6.2 shows the eigenvalues for the DETROIT, LONGLEY, 
POLLUTE and CLOUDS data sets. A crude way of choosing a 
value for oe for each data set is to fit the largest and smallest (nonzero ) 
eigenvalues, ignoring tJ. If we call these values A....ax and A....in, then 
the fitted value of oe is (A....iJ A..naJ1/(r-l) where r is the rank. Table 6.3 
shows these values, together with similar values calculated for the 
data sets examined by Bendei (1973, p. 91). 

Based upon Table 6.3, the values chosen for oe and y in the 
simulations were as follows: 

No. of predictors (k) 
High oe or y 
Low oe or y 

10 
0.75 
0.45 

20 
0.80 
0.55 

30 
0.85 
0.70 

40 
0.90 
0.75 

50 
0.95 
0.80 

NB The number of predictors k shown above exc1udes the constant 
which was fitted. 

Table 6.2 Eigenvalues (principal components) of some 
correlation matrices 

Data set 

DETROIT LONGLEY POLLUTE CLOUDS 

2·83 2-15 2-13 2·85 
1·38 1·08 1·66 2·26 
0·90 0·45 1'43 1·81 
0·32 0·12 1-16 1·37 
0·26 0·051 1-11 1·05 
0·18 0·019 0·98 0·45 
0·14 0·78 0'40 
0·12 0·69 0·31 
0-075 0-61 0-22 
0·050 0·47 0·11 
0·020 0·41 0·093 

0·36 0·060 
0·34 0-021 
0·21 
0·070 
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Table 6.3 Ratios of smallest to largest eigenvalues of correlation matrices. 
Datafor the last eight data sets have been calculatedfrom the table on p. 91 of 
Bendei (1973) 

Data set Rank(r) 21 Ar (2t/2,)1/('-1) 

DETROIT 11 2·83 0·020 0·37 
LONGLEY 6 2·15 0·019 0·15 
POLLUTE 15 2-13 0·070 0·61 
CLOUDS 13 2·85 0·021 0·44 

AFI 13 3·9 0·02 0·64 
CMA 16 4·2 0·14 0·80 
CRD 11 3·2 0·11 0·71 
CWE 19 2-1 0·27 0·89 
MCC 15 2·4 0·10 0·80 
MEY 23 8·8 0·05 0·79 
Roca 12 3'5 0·36 0·81 
ROCh 12 7·7 0.17 0·71 

A high value for IX meant that the X -predictors were not highly 
correlated, while a low value meant that they were. A high value for 
y meant that the smallest projection was of the order of the residual 
standard deviation (0" = 1) when n = 2k, and this led to the selection 
of large sub sets. The sm aller values of y meant that a moderate 
number of the expected projections were very large compared with 
the noise in the sam pie projections, and this led to the selection of 
much sm aller subsets. 

The method used to find subsets which fitted weIl was sequential 
replacement. This was used as a compromise in speed between the 
widely used Efroymson algorithm, and the use of the exhaustive 
search algorithm. 

Using 10 replicates, that is, 10 artificial data sets for each case, 
and minimizing the estimated MSEP given by (6.20) as the stopping 
rule, the sam pie means and standard deviations of the sizes of selected 
subsets were as given in Table 6.4. It is interesting to note that the 
degree of ill-conditioning of the ~-matrix, as indicated by IX., had 
very little effect upon the size of subset selected. 

For comparison, Mallows' Cp was also used as a stopping rule, 
though its derivation is only for the fixed predictors case. In 69% of 
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Table 6.4 Sampie means and standard deviations (in brackets) of sizes of 
selected subsets using minimum estimated MSEP as the stopping rule. The 
constant has been excluded from the count of variables in the table below 

Large rx Small rx 

k n Large y Small y Large y Small y 

10 20 4·9 (1'0) 4·4 (1'6) 4·8 (1'6) 4·9 (2'2) 
40 6·3 (1'3) 4·7 (0'8) 5·9 (1'1) 4·0 (0'9) 

20 40 10·1 (2'4) 6·7 (1'9) 8·3 (2'4) 7.2 (2'9) 
80 10·1 (2'5) 7·2 (1'9) 9·5 (2'4) 6·6 (3'1) 

30 60 14·1 (2'7) 10·6 (2'9) 12·8 (2'3) 12-1 (5.7) 
120 15·8 (2'4) 11·6 (2'5) 15·1 (2'8) 10·5 (2'6) 

40 80 20·9 (2'8) 14·5 (2'1) 22·0 (4'4) 13-9 (3'0) 
160 23·2 (2'1) 13-4 (3'1) 23·3 (2'2) 13-4 (3.7) 

50 100 33·9 (3.3) 18·0 (3'1) 35·0 (3'0) 19·9 (4.2) 
200 40·3 (2'6) 18·3 (4'1) 37·0 (4'1) 17·7 (3'6) 

cases, it selected the same size of subset, in 1 % of cases it selected 
a larger subset; in the remaining 30% of cases it selected a smaller 
subset. When the true MSEP's were compared, thoseselected using 
Mallows' Cp were smaller in 21% of cases and larger in 10% than 
the true values when the estimated MSEP was minimized. 

Table 6.5 shows the average values ofthree different MSEP's when 
the stopping rule used was that of minimizing the estimated MSEP. 
The first of these, labelled (a) in the table, is the estimated MSEP 
given by (6.20). The second is the true MSEP. As we know the true 
population values of the regression coefficients, the error in a future 
prediction for a known vector, xA, ofvalues of the predictors in the 
selected suhset A is 

X~(bA - PA) + 1] 

where b A' PAare the vectors of estimated and population regression 
coefficients, and 1] is a residual with standard deviation (JA' Future 
x A'S can he genera ted as 

X A =LAE 

where LAis the lower-triangular Cholesky factorization ofthose rows 
and columns of 1: relating to variables in suhset A, and E is a vector 
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Table 6.5 Average MSEP's at the minimum of the estimated MSEP: (a) 
average estimates MSEP for LS regression coefficients; (b) average true 
MSEP for LS regression coefficients, and (c) average MSEP for unbiased LS 
regression coefficients. Each average is based upon 10 replications 

Large ce Small ce 

Large y Small y Large y Small y 

k n (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) 

10 20 1·32 2·22 1·96 1·05 1·77 1·53 1·20 2·03 1·79 0·98 2·20 1·47 
40 1-13 1·58 1·45 1·05 1·34 1·26 1-16 1·44 1·44 1·01 1·22 1·22 

20 40 1-17 2·00 1·82 0·98 1·54 1·36 1-10 1·63 1·56 0·92 1·66 1-37 
80 1·00 1·39 1·29 1·01 1·26 1-13 1·09 1·32 1·29 0·95 1·22 1-16 

30 60 1-14 1·83 1·56 1·00 1-67 1·44 1·08 1·68 1·66 0·84 1·65 1·41 
120 1·06 1'29 1·28 1·04 1·24 1-16 1·07 1·29 1·26 1·00 1·24 1-16 

40 80 1·08 1·86 1·74 0·87 1·56 1·30 1·08 1·95 1·67 0·96 1·54 1·33 
160 1-14 1·36 1·31 1·04 1·22 1-14 1·06 1·35 1·28 1·05 1·23 1-14 

50 100 1·28 2·44 2-32 0·93 1·65 1·34 1-17 2-20 2·00 0·97 1·73 1·40 
200 1·22 1·44 1·45 0·97 1·26 1-16 1·20 1·48 1·43 1·01 1·21 1-15 

of elements sampled from the standard normal distribution. Hence 
the prediction error can be written as 

&'L~(bA-PA)+1I 

and hence the true MSEP is 

(bA - PA)'LAL~(bA - PA) + O'~. (6.21) 

This quantity is shown as (b) in Table 6.5. 
The third MSEP shown in Table 6.5, as (c), is that for unbiased 

LS regression coefficients, such as would be obtained from an 
independent set of data from the same population with the 
same sampie size. This MSEP has been calculated using (6.19) with 
the known population variance O'~. 

A number of important hypotheses are suggested by Table 6.5. 
First we notice that when the sampie size is only double the number 
of available predictors (exduding the constant), the estimated MSEP 
is an underestimate (column (a) versus column (b)). The true MSEP 
using LS regression coefficients is between 20 and 60% larger than 
that estimated. However, when the sampie size is four times the 
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numher of available predictors, there is no evidence of any 
underestimation of the MSEP. There are two contributory factors 
to this. First, the larger sam pie size allows much hetter 
discrimination hetween subsets. This means that with the larger 
sampie sizes there is less competition hetween c10se subsets and 
hence less bias in the regression coefficients. This will be shown more 
clearly in Table 6.8. The other contributory factor is the increased 
numher of degrees of freedom for the residual sum of squares. The 
artificially high regression sum of squares for the best-fitting subset 
has a relatively smaller effect in depressing the residual sum of squares 
when n = 4k than when n = 2k. 

The MSEP's in column (c), which are those which would be 
obtained using an independent set of n observations to estimate the 
regression coefficients, are usually slightly smaller than the true 
MSEP's using the biased LS regression coefficients (column (b». 
Hence, for situations similar to those simulated here, it is very much 
hetter to use all of the data to select the model and to use the same 
data to obtain biased LS regression coefficients for the selected 
model, than to split the data into equal parts and use one part for 
model selection and the other for estimation. The penalty is that if 
the first path is chosen, the estimate of the MSEP is optimistically 
small. 

Figure 6.4 shows the (true) MSEP's using LS regression 
coefficients from an independent data set, for two cases from the 
simulations. Both cases are for 40 available predictors and sampie 
size = 80. Both were the first sets genera ted for IX = 0.90 (low 
correlations between predictors), but one is for y = 0.90 (all 
projections moderately large), while the other is for y = 0.75 (many 
small projections). 

The A and B in Fig. 6.4 indicate the sizes of subset which minimized 
the (false) estimated MSEP given by (6.20) for y = 0.75 and y = 0.90 
respectively. For y = 0.90, minimizing Mallows' Cp led to the same 
stopping point; for y = 0.75, minimizing Mallows' Cp picked a subset 
of 19 variables instead of 9. 

The curves of MSEP versus p are usually fairly ßat near the 
minimum, so that the exact choice of stopping point is often not 
very critical. 

The MSEP's were also calculated for the case in which independent 
data are used to estimate unbiased regression coefficients for the 
subsets using LS and assuming the same set of values for the 
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6 

MSEP 

4 

2 

o 
o 10 20 30 40 

Number 01 predictors (p) -excluding constant 

Fig. 6.4 True MSEP using LS Jor simulated data Jor K = 40 available 
predictors and a sampie size oJ80 observations. See text Jor Jurther description. 

X -variables. In most cases, these values were elose to those using 
the biased LS coefficients from the same data. They were sufficiently 
elose that they would not have been elearly distinguishable if they 
had been added to Fig. 6.4. 

Probably the most frequently asked question with respect to subset 
selection in regression is 'What stopping rule should be used?' 
Table 6.6 was drawn up to illustrate the answer. If we generalize 
Mallows' C p to 

RSS 
Cp(M)=~-(n-Mp) 

(J 
(6.22) 

where M = 2 for Mallows' Cp' then minimizing this quantity gives 
a range of stopping rules. Large values of M will lead to the selection 
of small subsets, and vice versa. M can be regarded as a penalty or 
cost for each additional variable in the selected sub set. 

Table 6.6 shows the true MSEP's using this stopping rule and LS 
regression coefficients for M = 1,2 and 3. The conelusion is elear. 
For large y we should use a sm all M (selecting a large subset), while 
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for small y we should use a large M (selecting a small subset). Thus 
the answer to the question, 'What stopping rule should we use?' 
does not have one answer. In some circumstances it is preferable to 
inc1ude many predictors, in others we should select a small number. 

In practice, nothing equivalent to the y of the simulations will be 
available, so the finding from Table 6.6 is of limited value. Suppose 
the rule of minimizing the estimated MSEP is used, with the MSEP 
falsely estimated from (6.20). 1fthis selects a small subset, with p < k/2 
say, it suggests that there may be many predictors which make little 
or no real contribution after the more important predictors have 
been inc1uded. This corresponds to the sm all y case, and suggests 
that we should then use the modified Mallows' Cp with M = 3 say. 
On the other hand, if minimizing (6.20) selects a large subset, with 
p> k/2 say, then we should use M = 1 say. It appears that it is 
undesirable to pick a subset which is close to half the number of 
available predictors. In such cases, the number of alternative subsets 
of the same size is a maximum, and we can anticipate large 
competition biases. It is of course possible to construct artificial 
examples in which the best subset for prediction is of exactly half 
the number of available predictors, and doubtless such cases will 
occur sometimes in real-life examples. 

If we use all of the available predictors without considering subset 
selection, then the regression coefficients are unbiased. This is 
sometimes a better strategy. Table 6.7 shows how often, out of the 
10 replications in each case, the MSEP using all the available 
predictors was better than or equal to that for the selected subset 
using biased LS regression coefficients for that subset. Using all the 
predictors was nearly always as good as or only slightly worse for 
large y, but rarely so for small y. Note that in a few cases, particularly 
for k = 10, the selected subset was that of all k predictors. 

Table 6.8 shows the estimated average bias of the LS regression 
coefficients after standardization and adjustment for sign. If bAi and 
ß Ai are the sampIe regression coefficient and its expected value 
respectively for variable Xi in subset A, then the standardized and 
sign-adjusted difference used was 

bAi - ßAi sign(ßA;)' 
sLs(b Ai) 

where the estimated standard errors, sLs(b AJ, are those for LS 
regression when the model has been chosen apriori, that is they are 



Table 6.7 Frequencies, out oJ 10, Jor which the MSEP using all available 
predictors (using LS regression coejJicients) was smaller or equal to the true 
MSEP Jor the subset selected by minimizing the estimated MSEP 

Large (X Small (X 

k n Large y Small y Large y Small y 

10 20 6 2 2 2 
40 6 5 6 3 

20 40 5 1 0 1 
80 5 5 4 3 

30 60 3 2 1 2 
120 4 3 5 2 

40 80 3 0 2 2 
160 5 3 5 2 

50 100 6 2 4 2 
200 8 3 7 2 

Table 6.8 Average estimated bias and sampie standard deviation (in brackets) 
oJ LS regression coejJicients after standardization and sign adjustment, Jor 
selected subsets 

Large (X Small (X 

k n Large y Small y Large y Small y 

10 20 0'26(0'69) 0'72(0'70) 0'36(0'52) 0,23(0,22) 
40 0'31 (0'36) 0'72(0,25) 0,49(0,26) 0'38(0,26) 

20 40 0-38(0'72) 0'72(0'50) 1'03(0'26) 1'17(0'89) 
80 0'55(0'64) 0'37(0'24) 0'58(0'16) 1,29(1'44) 

30 60 0'58(0'52) 0'52(0'83) 0'92(0,27) 0'65(0'93) 
120 0·31 (0'46) 0'57(0'24) 0'36(0'31) 0'66(0'58) 

40 80 0'54(0'55) 0'46(0'60) 0'88(0'34) 0'68(0'45) 
160 0,48(0'56) 0'58(0'35) 0'67(0,41) 0'64(0'44) 

50 100 0'49(0'81) 0'47(0'50) 1'03(0'53) 0'57(0'77) 
200 0'17(0,40) 0,24(0,50) 0·38 (0'31) 0'41(0,46) 
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the square roots of the diagonal elements of 

sis(bA) = a~ diag(X~XA)- \ 

and a~ is estimated from the residual sum of squares, RSS A' for 
subset A in the usual way, i.e. 

a~ = RSSA/(n - p), 

where p is the number of variables, including the constant, in subset 
A. 

The quantities shown in Table 6.8 are the averages of all the 
standardized differences between sam pIe and population regression 
coefficients for all the selected variables except the constant in the 
model. Thus for the first entry, the numbers of regression coefficients 
used for the 10 replicates were 6, 3, 4, 4, 5, 10, 7, 4, 7 and 4. 

We notice firstly that all of the averages in Table 6.8 are positive. 
The overall average of the bias estimates in the table is 0·57 of a 
standard error. As each subset selected would have contained a 
number of 'dominant' variables for which the bias would have been 
very smalI, a substantial proportion of the biases for other variables 
were weIl in excess of one standard error. 

Table 6.9 contains a simple analysis of variance of the average 
estimated biases, with only main effects fitted and the interactions 
used to estimate the residual variance. The only effects which are 
significant (other than the constant in the model) are those related 
to (J, and k. The average estimated bias for large (J, is 0·47 of a standard 

Table 6.9 Analysis ofvariance of estimated biases ofLS regression coefficients 

Sum of Deg.of Mean 
Factor squares freedom square F-ratio 

a- 0·388 I 0·388 8,68* 

Y 0·041 1 0·041 0·92 
k 0·538 4 0·135 3-01 t 
n 0·156 1 0·156 3-49 
Residual 1·431 32 0·045 

Total 2·554 39 

*Significant at the 1% level. 
tSignificant at thc 5% level. 
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error, while that for small IX is 0·67 of a standard error. With small 
(X, some of the X -predictors are highly correlated so that there is 
considerable competition among the predictors for selection. The 
average estimated biases are 0·43, 0·76, 0·S7, 0·62 and 0·47 standard 
errors for the five values of k. 

Another important feature of the simulation results in Table 6.8 
is that most ofthe standard deviations are substantially less than 1. 

The low variance of the biased LS regression coefficients is the 
basic explanation for the relatively good MSEP's in the columns 
labelled (b) in Table 6.S compared with the MSEP's for unbiased 
LS regression coefficients in the columns labelled (c). If we refer back 
to formula (6.5), we see that an important part of the MSEP is 

V(b A) + (seI. bias)(seI. bias)', 

which is the second moment matrix of the regression coefficients. In 
the standardized units used for Table 6.8, for unbiased LS regression 
coefficients from an independent data set, the diagonal elements of 
bA are all equal to 1·0, while the selection bias is zero. Thus the 
second moments for unbiassed LS regression coefficients are all equal 
to 1·0. Using the estimated biases in Table 6.8 and their sam pie 
standard deviations, only 6 of the 40 estimated second moments 
exceeds 1·0, while many are less than O·S. This me ans that, in terms 
of the MSEP, using LS estimates from an independent data set will 
usually yield worse predictions than those obtained by using the 
biased LS estimates from the model selection data set. 

Thus sub set selection is very much like ridge regression or James 
and Stein/Sclove regression in trading bias in the parameter 
estimates for a reduced variance. However, the regression coefficients 
from subset selection are biased in the direction of being too large, 
while those from the shrinkage estimators are too small. 

How well do we do if we use a sub set selection procedure and 
then apply some form of shrinkage to the subset of selected variables? 
Table 6.10 shows the MSEP's for shrinkage using the Sclove (1968) 
estimator and for ridge regression using the Lawless and Wang (1976) 
shrinkage parameter. The Sclove shrinkage always reduces the 
MSEP by a few per cent, but ridge regression can be disastrous. 
This is in broad agreement with the findings of others, e.g. Dempster, 
Schatzoff and Wermuth (1977) and Lawless (1978), for the ca se in 
which no selection of variables is made. 

There have been few cases in the literature in which shrinkage 
has been applied after subset selection. The two known to this author 



T
ab

le
 6

.1
0 

M
S

E
P

 u
si

ng
 L

S
 r

eg
re

ss
io

n 
co

ef
fi

ci
en

ts
 c

om
pa

re
d 

w
it

h 
th

os
e 

fo
r 

sh
ru

nk
en

 e
st

im
at

es
 fo

r 
th

e 
se

le
ct

ed
 s

ub
se

t 
us

in
g 

th
e 

Sc
lo

ve
 e

st
im

at
or

 a
nd

 t
he

 L
aw

le
ss

-W
an

g 
ri

dg
e 

es
ti

m
at

or
 

L
ar

ge
 y

 
Sm

al
l 

y 

k 
n 

rJ.
 

L
S 

Sc
lo

ve
 

R
id

ge
 

L
S

 
Sc

lo
ve

 
R

id
ge

 

10
 

20
 

0·
75

 
1·

00
4 

0·
98

6 
0·

95
6 

0·
92

4 
0·

90
1 

0·
87

8 
40

 
1·

01
1 

1·
00

5 
1·

03
0 

0·
92

5 
0·

91
7 

0·
90

3 
20

 
0·

45
 

0·
82

8 
0·

81
6 

1-
15

0 
0·

95
4 

0·
94

1 
2·

20
6 

40
 

0·
94

3 
0·

93
8 

2·
51

0 
0·

83
4 

0·
83

1 
0·

85
7 

20
 

40
 

0·
80

 
0·

90
6 

0·
87

5 
0·

94
7 

0·
74

2 
0·

72
3 

0·
67

9 
80

 
0·

96
5 

0·
95

4 
1·

02
6 

0·
94

2 
0·

93
6 

0·
94

1 
40

 
0·

55
 

0·
75

4 
0·

72
9 

77
-2

 
0·

84
4 

0·
82

6 
12

-4
 

80
 

0·
90

0 
0·

89
2 

17
-2

 
0·

86
5 

0·
85

4 
22

-1
 

30
 

60
 

0·
85

 
0·

90
5 

0·
87

3 
0·

86
9 

0·
83

3 
0·

79
9 

0·
87

9 
12

0 
0·

90
1 

0·
89

4 
0·

93
2 

0·
89

9 
0·

89
2 

0·
90

1 
60

 
0·

70
 

0·
78

1 
0·

75
9 

20
·7

 
0·

85
2 

0·
83

3 
15

·2
 

12
0 

0·
90

2 
0·

90
1 

29
·0

 
0·

91
0 

0·
90

3 
17

-4
 

40
 

80
 

0·
90

 
0·

89
1 

0·
86

9 
0·

88
5 

0·
82

2 
0·

80
0 

0·
77

5 
16

0 
0·

92
1 

0·
91

4 
0·

91
7 

0·
89

2 
0·

88
4 

0·
88

1 
80

 
0·

75
 

0·
93

6 
0·

91
5 

56
·9

 
0·

80
5 

0·
78

2 
75

·3
 

16
0 

0·
94

2 
0·

93
8 

54
.3

 
0·

89
6 

0·
88

9 
38

·1
 

50
 

10
0 

0·
95

 
1·

03
3 

1·
00

3 
0·

98
3 

0·
82

6 
0·

81
3 

0·
81

1 
20

0 
0·

97
8 

0·
97

1 
0·

98
0 

0·
90

9 
0·

90
3 

0·
90

1 
10

0 
0·

80
 

0·
99

1 
0·

96
7 

57
·9

 
0·

88
3 

0·
85

6 
26

·8
 

20
0 

0·
99

5 
0·

98
6 

46
·3

 
0·

89
1 

0·
88

5 
29

·8
 



200 HOW MANY VARIABLES? 

at the time ofwriting are Copas (1983) and Hoerl, Schuenemeyer and 
Hoerl (1986). 

Copas was very much aware of the bias in the regression 
coefficients and regressed independent Y-values against those 
predicted from subset selection for the given set of values of the 
predictor variables. It is difficult to compare his results with those 
here as he was mainly fitting logistic, not linear regressions; estimates 
are alm ost invariably biased for models which are nonlinear in the 
parameters. In most cases, the slope of the regression of independent 
Y-values against those predicted was much less than 1, being smallest 
for the smallest subsets. 

The paper by Hoerl, Schuenemeyer and Hoerl (1986) uses the 
ridge trace of Hoerl and Kennard (l970b) to select the subset of 
variables, and then uses three different estimators of the regression 
coefficients. Throughout this paper, the emphasis is upon minimizing 
the mean squared error of the regression coefficients, rather than 
the MSEP. Only one table reports results for the MSEP, and this 
indicates a good performance for the Lawless-Wang (1976) estimator 
applied after ridge analysis is used to select the subset. The 
Efroymson stepwise procedure is also compared, using ordinary (and 
hence biased) estimators of the regression coefficients; it gave quite 
large MSEP's in some ca ses, often performing much worse than 
ordinary LS applied to the full set of predictors. 

As explained in section 3.9, ridge regression largely ignores the 
correlation between the dependent variable and the eigenvectors 
associated with the sm aller principal components. In the simulations 
performed here, there was no attempt to associate the dependent 
variable with the larger principal components. Thus these 
simulations have genera ted so me of the kind of data on which Fearn 
(1983) warned that ridge regression performs badly. The cases with 
small values of (X had many small eigenvalues, and the performance 
of ridge regression in these cases was particularly poor. Such cases 
are probably more typical ofthe physical sciences where the predictor 
variables may be similar quantities measured at different times or 
locations, or the variables may be constructed by taking polynomials, 
logarithms, cross-products, etc., of a sm all set of original variables. 

6.3 Cross-validation and the PRESS statistic 

The PRESS (prediction sum of squares) statistic is a cross-validation 
statistic suggested by Allen (1974) for model selection. Cross-
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validation consists of setting aside part of the data, usually just one 
observation at a time, and predicting that data from the remainder. 

In calculating the PRESS statistic, for a given set of p predictors, 
each observation, Yj' is predicted from the LS regression equation 
obtained from the other (n - 1) observations. If fiP denotes the 
predicted value for Yi' then the PRESS statistic for a particular subset 
of p predictors is 

n 

PRESSp = L (Yi- fiP)2. (6.23) 
i= 1 

The thought of performing n multiple regressions for every subset 
in which we are interested can be very daunting. Fortunately there 
is a mathematical result which can reduce the amount of comput
ation very substantially. We use the well-known formula for a rank 
one update of the inverse of a nonsingular matrix A: 

(A +XX,)-l =A- 1 -A- 1x(1 +x'A- 1x)-l X'A- 1 (6.24) 

where x is a vector of new 'data'. In our case, the matrix X~Xp 
corresponds to A, where Xp is that part of X corresponding to the 
p predictors of interest. However we want to remove xx', not add 
it.1t is easily shown that the corresponding formula for downdating is 

(A - XX,)-l = A -1 + A -l x(1 - x'A- 1x)-l X' A -1. (6.25) 

NB Neither (6.24) nor (6.25) should ever be used for computational 
purposes, though (6.24) is still often used in the KaIman filter. 
Updating or downdating the Cholesky factorization is far more 
accurate. Unless A -1 itselfis required after every update, rather than 
quantities calculated from it, updating or downdating the Cholesky 
factorization is often faster also. 

If bip is the vector of LS regression coefficients based upon the 
(n - 1) observations exc1uding the ith, then 

fiP = x;bip 
= x;(A - XiX;)-l(Xp Y - XiYi) 

= x;(A -1 + A -lxjdi- 1X;A -l)(X'p Y - xjYj) 

where the scalar dj = 1 - x;A -1 Xj' 
If bp is used to denote the vector of LS regression coefficients 

when all n observations are used, i.e. 

bp = A-1X~Y, 
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then we find that 

Yj - fjp = (Yj - x~bp)/dj 

=eddj 

where ej is the LS residual using all the observations. 

(6.26) 

The d/s can easily be calculated from the Cholesky factorization. 
Thus if 

A =X~Xp=R~Rp 

where Rp is upper triangular, then 

d. = 1 - x~R - 1 (x~R - 1)' , , , 
= 1- Z~Zj 

where z~ = X~R-l. , , 
Finally we derive 

" PRESSp = L (edd j )2. 
j= 1 

(6.27) 

The d/s above are the diagonal elements of (I - V) where V is the 
projection operator, sometimes also known as the 'hat' matrix: 

V = Xp(X~Xp)-l X~. 

It was shown in (6.7) that the sum of the diagonal elements of this 
matrix equals p. Hence the average value of the d/s is (1 - p/n). If 
n» p, then 

" PRESSp ~ L ef /(1 - p/n)2 
j=l 

Hence 

Mter dividing by the sampie size, n, this is very similar to formula 
(6.20) for the (false) estimated MSEP, so that we can expect that 
minimizing the PRESS statistic with respect to p will often pick the 
same size of subset as minimizing the estimated MSEP. 

Using the PRESS statistic is not using true cross-validation as we 
do not repeat the same procedure on each of the sets of (n - 1) 
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observations as was applied to the full set of n observations. That 
is, we do not repeat the subset selection procedure each time that a 
different observation is left out.lfwe do this, then the selected subsets 
will not always be the same as that selected using the full data. To 
illustrate this, let us look at the STEAM and POLLUTE data sets 
again. 

The STEAM data set contained k = 9 predictors and n = 25 
observations. Using the full data set, and exhaustive search as the 
selection procedure, the estimated MSEP's for the best-fitting subsets 
of each size are: 

No.ofpredictors 
Estimated MSEP 

No.ofpredictors 
Estimated MSEP 

o 
2·765 

5 
0·448 

1 
0·861 

6 
0·416 

2 
0·462 

7 
0·448 

3 
0·418 

8 
0·492 

4 
0-428 

9 
0·555 

Here the number of predictors shown excludes the constant which 
was fitted in all models. 

Notice that the best-fitting subset of three predictors (variables 
numbered 4, 5, 7) gave alm ost the same estimated MSEP as the 
best-fitting subset of six predictors (numbers 1, 3, 5, 7, 8, 9). 

Omitting one observation at a time and repeating the exercise of 
finding the best-fitting sub set, followed by applying the stopping rule 
of minimizing the estimated MSEP gave the frequencies of selection 
shown in Table 6.11. 

The value of the PRESS statistic was 11,09, whereas the true 
cross-validation sum of squares of prediction errors was 16·41. 
Dividing by n to obtain the average squared prediction error gives 
0·444 for PRESS, which is close to the estimated MSEP using all 
the data of 0'416, but much sm aller than the value of 0·656 for true 
cross-validation. 

In the case of the POLLUTE data set (k = 15, n = 60), the 
estimated MSEP's for the best-fitting subsets of all sizes, using all 
the data are: 

No. of predictors 0 1 2 3 4 5 6 7 
Estimated MSEP 3934 2385 1844 1577 1373 1332 1295 1298 

No.ofpredictors 8 9 10 11 12 13 14 15 
Estimated MSEP 1327 1332 1359 1409 1465 1530 1599 1673 
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Table 6.11 

Selected subset 
(variable nos) 

1 3 578 9 
457 
1 257 
4 5 7 8 

Table 6.12 

Selected subset 
(variable nos) 

1 2 3 6 9 14 
1 2 3 5 6 9 14 
1 2 6 9 14 
1 3 8 9 10 14 
1 2 3 8 9 10 14 
1 2 3 5 6 9 12 13 
1 2 3 6 8 9 12 13 
1 2 3 4 5 6 9 12 13 

HOW MANY VARIABLES? 

Frequency 

5 
18 
1 
1 

Frequency 

46 
8 
1 
1 
1 
1 
1 
1 

The best-fitting subsets of six and seven variables were those 
numbered (1, 2, 3, 6, 9, 14) and (1, 2, 3, 5, 6, 9, 14). 

Omitting one observation at a time, the selected subsets were as 
shown in Table 6.12. 

The value ofthe PRESS statistic was 79 490 compared with 116673 
for the true cross-validation sum of squares of prediction errors. 

If the n observations are independently sampled from the same 
population, then the ith observation is independent of the other 
(n - 1) used to predict it. Hence (Yi - ßip)2 is an unbiased estimate 
of the squared error of prediction for the ith case, for all i. Hence 
the true cross-validation sum of squares, divided by the sampie size, 
gives an unbiased estimate of the MSEP for our procedure based 
upon (n - 1) observations. We can expect that the true MSEP for 
n observations will be slightly smaller than this. 

Notice, however, that consecutive values of (Yi - ßiP)2, though 
unbiased, will be correlated with each other. 
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A forward validation procedure for predicting each Yi using only 
the previous y/s has been proposed by Hjorth (1982). This attempts 
to allow for the change in sam pIe size, and the span of the X
variables, by using generalized cross-validation. Unfortunate1y this 
assumes the covariance matrix /12(X;i)X(i))-1 for the LS regression 
coefficients, where X(i) is the matrix of values of the se1ected X
variables using observations 1,2, ... , i - 1. This does not allow for 
the effect of selection, and as we have seen earlier, will usually 
overestimate the sizes of the variances. 

In this brief section, only 'one out at a time' cross-validation has 
been considered. F or a review of the statistical literature on this 
subject, see Stone (1978). 

Appendix 6A Approximate equivalence of stopping rules 

In section 6.2.3, a generalized form of Mallows' Cp: 

RSS 
C (M)=-P-(n-Mp) 

p &2 (6.22) 

was introduced. There are many different stopping rules in use, and 
most of them can be shown to yield a similar stopping point to 
minimizing Cp(M) for some value of M, usually a value dose to 2·0 
which is that for Mallows' Cr 

6A.1 F-to-enter 

If Cp(M) is a minimum at p = m, then Cm + 1 (M) ~ Cm(M), where 
Cm(M) and Cm+ 1 (M) are for the best-fitting subsets of m and (m + 1) 
variables which have been found. Substitution from (6.21) and a little 
rearrangement shows that 

RSSm-RSSm+ 1 M 
A2 ~. 

/1 
(6A.1) 

The left-hand side of (6A.1) is approximately the F-to-enter statistic. 
The difference is that in CiM), &2 is defined as 

RSSk --, 
n-k 

that is, it is the residual variance estimate with all the available 
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predictors in the model, whereas the denominator of the F-to-enter 
statistic is 

RSSm + 1 

n-m-1 

These quantities will usually be very similar provided that n» k. 
Hence at the minimum of CiM), the F-to-enter statistic will usually 
be less than M. 

If the F-to-enter statistic is used as the stopping rule for pro
gressively increasing subset sizes, stopping as soon as it falls below 
M, then we could stop earlier than if we use the rule of minimizing 
Cp(M). This is because, unless the X-predictors are orthogonal, the 
quantity CiM) may have severallocal minima, and the F-to-enter 
stopping rule tends to stop at the first. If k is smalI, say of the order 
of 10-20, then stopping when the F-to-enter first drops below M 
will usually find the minimum of CiM), but for larger k it will often 
pick a smaller subset. 

6A.2 Adjusted R2 or Fisher's A-statistic 

The adjusted R2-statistic (adjusted for degrees of freedom) is usually 
defined as 

where 

n-1 
A = 1-(1-R2)--

P P n-p 

R~ = 1- (RSSp/RSSd. 

(6A.2) 

This is an appropriate definition when a constant is being fitted. 
When no constant is being fitted, R~ is often redefined as 

R~ = 1 - (RSSp/ RSSo) 

where RSSo means just the total sum of squares of the values of the 
Y -variable without subtraction of the me an. In this case, it is appro
priate to replace the (n - 1) in (6A.2) with n. 

Maximizing the adjusted R2-statistic can be shown to be identical 
to minimizing the quantity 

S2 = RSSp 
p (n-p)' 
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with respect to p, whichever of the two definitions for Ap is used. 
The quantity, i.e. s~, is the residual mean square for the p-variable 
subset. 

A little rearrangement shows that at the minimum of s~ we have 

RSSm - RSSm + 1 
-------~1, 
RSSm+d(n-m-1) 

this is, the F-to-enter statistic has a value not greater than 1. Hence 
maximizing the adjusted R2-statistic is approximately equivalent to 
minimizing Cp(M) with M = 1. 

6A.3 Akaike's iriformation criterion ( AlC) 

The Ale (Akaike, 1969) is to minimize - 2(Lp - p) where L p is the 
log-likelihood of a model with p parameters. In applying it to 
selecting subsets of regression variables, Lp is the log-likelihood for 
the best-fitting subset of p predictors, after maximization with respect 
to the regression coefficients. The Ale has been widely used as a 
stopping rule in the field of time-series analysis in much the same 
way that Mallows' C p is used as the practical solution to exact1y 
the same mathematical problem in selecting subsets of regression 
variables. 

Several modifications of the Ale have been proposed (e.g. Akaike, 
1977; Rissanen, 1978; Schwarz, 1978; Hannan and Quinn, 1979). 
These all have the form - 2(Lp - p f(n)) where f(n) is some slowly 
increasing function of the sampie size, n, such as loge n or loge (loge n). 
These modifications have been suggested for the situation in which 
the subsets of variables of each size have been predetermined, so 
there is no competition bias for selection. Often the variables in the 
model will be the consecutive autoregressive terms. This is the 
situation treated by Kennedy and Bancroft (1971). Asymptotic 
comparisons of some of these criteria have been made by Stone 
(1977, 1979), who also slowed the asymptotic equivalence of cross
validation and the Ale. These asymptotic results give no indication 
of the behaviour for finite sam pie sizes, and contain no discussion 
of the bias in parameter estimates resulting from model selection. 

The Ale has often been used as the stopping rule for selecting 
ARIMA (auto-regressive, integrated, moving-average) models where 
selection in not only between models with different numbers of 
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parameters but also between many models of the same size. In this 
situation, there is eompetition bias, whieh does not appear to have 
been eonsidered in the time-series literature. 

The Ale, and the various modifieations of it, ean be applied in 
situations in whieh normality is not assumed, in whieh ease the ML 
fitting procedure may not be equivalent to LS fitting. 

In the linear regression situation, the erude log-likelihood, 
negleeting the issue of model seleetion, is 

Lp = - (nI2) loge (21tu;) - ~ t (Yi - ± ßj Xij)2 
2Upi=1 j=l 

= - (nI2) loge (21tU;) - RSSpl(2u;). 

As the ML estimate for U; is 

a; = RSSpln, 

where the division is by n not the more usual (n - p), we have that 

Lp - p f(n) = eonstant - (nI2) loge (RSS p) - p f(n). 

Changing signs and taking exponential we see that minimizing these 
modified AIC's is equivalent to minimizing 

RSSp exp [(2pln)f(n)]. 

At the minimum, with respeet to p, we have that 

RSSmexp [(2mln)f(n)] ::;; RSSm+1 exp [((2m + 2)/n)f(n)] 

or that 

RSSm::;; RSSm+1 exp [2f(n)/n]. 

A little rearrangement then gives the F -to-enter statistie at the 
minimum, 

RSS -RSS 
m m+l ::;;(n-m-l)(e(2/nl!(nl_l). 

RSSm+d(n - m -1) 

Provided that (2In)f(n) is small, the right-hand side above is 
approximately 
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Thus using the AIC in its original form, i.e. with f(n) = 1, is equivalent 
to minimizing CiM) with M a little less than 2. 

If the estimate used for u; is 

u; = RSSp/(n - p) 

then maximizing (Lp - pf(n)) is equivalent to minimizing 

RSSpexp [(2p/n)f(n) -loge (n - p) - p/n]. 

Continuing as before, we find that at the minimum the F-to-enter 
statistic for the AIC is not greater than a quantity approximated by 

2- m+ 1. 
n 

Thus minimizing the AIC tends to select slightly larger subsets than 
minimizing Mallows' C p. 



CHAPTER 7 

Conclu~onsandsome 

recommendations 

Let us conclude by posing a number of questions and examining 
how far they can be answered. 

Question 1 How can we test whether there is any relationship 
between the predictors and the predictand? 

This is a frequent question in the social and biological sciences. Data 
have been coHected on say 20 or 50 predictors, and this may have 
been augmented with constructed variables such as reciprocals, 
logarithms, squares and interactions of the original variables. An 
automatic computer package may have selected 5 or 10 of these 
predictors, and has probably output an R 2 value for the selected 
subset. Could we have done as weH ifthe predictors had been replaced 
with random numbers or columns from the telephone directory? 

If the package used the Efroymson stepwise algorithm, sometimes 
simply called stepwise regression, then Table 4.4 or formula (4.1) can 
be used to test whether the value of R 2 could reasonably have arisen 
by chance if there is no real relationship between the Y -variable and 
any of the X -variables. Clearly, the more exhaustive the search 
procedure used, the higher the R2 value which can be achieved. 
References are given in section 4.1 to tables for other search 
algorithms, though there is scope for the extension of these tables. 
Some of these tables allow for nonorthogonality of the predictors, 
others do not. In fact, the degree of correlation among the predictors 
does not make much difference to the distribution of R 2 • 

Alternatively, if the number of observations exceeds the number 
of available predictors, the Spj9'ltvoll test described in section 4.2 
can be used to test whether the selected subset fits significantly better 
than just a constant. 
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Question 2 Does one subset fit significantly better than another? 

If the number of observations exceeds the number of available 
predictors, then the Spj~tvoll test described in section 4.2 provides a 
satisfactory answer to this question. An attractive feature of the 
Spj~tvoll test is that it does not require the assumption that either 
model is the true model. The test though is that one model fits better 
than another over the range of the X -variables in the available data. 
It is possible to modify the test though to apply for extrapolated 
X's, though this has not been described in detail here. 

The Spj~tvoll test is fairly conservative, that is it tends to say that 
subsets do not differ significantly unless one is very strikingly better 
than the other. 

In the ca se in which the number of available predictors equals or 
exceeds the number of observations, there is no general test available 
or possible. The situation is akin to that in the analysis of designed 
experiments when there is no replication. If the experimenter is 
prepared to take the gamble that high-order interactions can be used 
as a measure of the residual variation, then an analysis can proceed. 
Similarly, if the researcher gambles on so me variables having no 
effect, or he thinks that he has a reasonable estimate of residual 
variation from other da ta sourees, then some kind of risky analysis 
can proceed. Of course, if the judgement that certain variables have 
no effect is taken after a preliminary analysis ofthe data, the resulting 
estimate of residual variance is liable to be artificially smalI. 

Question 3 How do we find subsets which fit weil? 

Many automatie procedures have been described in Chapter 3. 
Exhaustive search, using a branch-and-bound algorithm, for the 
best-fitting subsets of all sizes is typically feasible if we have not 
more than about 25 available predictors. It is often sensible to try 
one of the cheap methods first though, say sequential replacement. 
This will usually show up the 'dominant' variables and give an idea 
of the likely size of the final subset. At this stage it is often wise to 
use some of the standard regression diagnostic tools (see e.g. Belsley, 
Kuh and Welsch 1980; Gunst and Mason, 1980; or Cook and 
Weisberg, 1982). These could show up a nonlinear relationship with 
one of the dominant variables, or outliers, or very influential 
observations. 
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Ifthe cheap method has shown say that there is very little reduction 
in the RSS between fitting say eight variables and fitting an of them, 
then an exhaustive search can be restricted to subsets of eight or 
fewer variables. Such a search may be feasible when it is not feasible 
to search for the best-fitting subsets of an sizes. 

As a very rough rule, the feasible number of subsets which can be 
searched is of the order of 107• There are 225 = 3-3 X 107 possible 
subsets out of 25 predictors, including the empty subset and the 
complete set of 25, so that this is close to the limit of feasibility for 
subsets of an sizes. If we have say 50 available predictors then an 
exhaustive search for best-fitting subsets of all sizes will usually not 
be feasible, but it will be feasible to search for the best-fitting subset 
of six or fewer variables. 

If an exhaustive search is not feasible, then a sequential procedure 
which adds or removes two variables at a time will sometimes find 
much better-fitting subsets than one-at-a-time algorithms. 

Question 4 How many variables should be included in the final 
subset, assuming that it is required for prediction? 

Before that question can be answered, we need to know what method 
is to be used to estimate the regression coefficients. If ordinary LS, 
or one of the robust alternatives, is to be used with no attempt to 
correct for selection bias, then using all the available predictors will 
often yield predictions with a smaller MSEP than any subset. 

Ifthe conditional ML method ofsection 5.4, or some other method, 
is used to adjust partially for selection bias, then minimizing the 
(falsely) estimated MSEP given by (6.20) is often a reasonable 
stopping rule with random predictors, while minimizing Mallows' 
Cp is the equivalent for fixed predictors. However, it is always 
possible to construct examples using fixed orthogonal predictors for 
which any given stopping rule will perform badly. This folIo ws 
direct1y from Mallows (1973). In most practical cases, the stopping 
rule is not critical, provided that there is a correction for selection 
bias in the regression coefficients. The use ofMallows' Cp' even when 
the predictors are random, or of Akaike's information criterion, or 
an F-to-enter ofjust under 2.0, or ofminimizing the PRESS statistic, 
can all be expected to give about the same result as using the true 
MSEP. 

Ifthe cost ofmeasuring the variables is an important consideration 
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then a stopping rule which selects a smaller subset should be used 
such as using a higher F-to-enter. At the moment there are no 
accurate formulae for the true MSEP after subset selection, using 
either LS regression coefficients, or bias-corrected coefficients. 

Notice that for the purpose of prediction we are looking at 
F-to-enter's ofthe order of 1.5-2.0.lfthe Spj9ltvoll test is being used 
for hypothesis testing, a test at say the 5% level may be equivalent 
to using an F-to-enter of say 8-15, depending upon the numbers of 
predictors and observations, and the structure of the sam pie 
correlations among the predictors. 

All of the above assurnes that future predictions will be for 
X -variables which span the same space as those used for the model 
selection and calibration. It is extremely hazardous to extrapolate 
beyond this region. The emphasis throughout this monograph has 
been upon finding models which fit and describe relationships within 
the space of the X-predictors. Unless there is established theory to 
justify a particular form of model, there is no reason for believing 
it will fit well outside of the calibration region. 

Question 5 How should we estimate regression coefficients? 

A conditional ML method was described in section 5.4. It uses 
simulation, is very slow, neglects the bias due to the stopping rule, 
and appears to over-correct for the bias. However the cost of the 
computer time is now usually very sm all compared with the cost of 
the data collection, and to the value which can be attached to the 
predictions in some ca ses. A simple alternative, which has not been 
investigated here, is the jack-knife suggested near the end of section 
5.3, using the square root of the Sam pie size. 

The 'off-the-peg' alternatives, such as James-SteinjSclove 
shrinkage and ridge regression, are not designed to reduce selection 
bias. They are intended primarily to reduce the variance of the 
regression coefficients at the expense of adding a sm all amount of 
bias. The variance of LS regression coefficients of best-fitting subsets 
is often very much sm aller than those for models chosen 
independently of the data, so that subset selection has already done 
what these shrinkage estimators are designed to do. The simulation 
results in Table 6.10 show that the use of Sclove shrinkage of the 
regression coefficients of the selected variables always gave a small 
improvement in MSEP over the use of LS estimates, while the use of 
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ridge regression can sometimes give a larger improvement and can 
sometimes be disastrous. 

Question 6 Can the use of subset regression techniques for 
prediction be justified? 

There are many practical situations in which the cost of measuring 
the X -predictors is a major consideration. If there is no cost 
associated with obtaining future X -predictors, then the use of ridge 
regression using the La wless-Wang ridge parameter, or the Sclove 
estimator, will often be preferable alternatives to sub set selection. 
They have the important advantage that their properties are known. 
If cost of measurement of the X -predictors is a consideration then 
the loss due to poor predictions should be traded off against it in 
deciding how many predictors to use. True cross-validation, as 
described in section 6.3, can be used to obtain a realistic estimate 
of the MSEP provided that no extrapolation outside of the space 
of the X-predictors is required. 

Question 7 What alternatives are there to subset selection? 

In many cases in say the social or biological sciences, relationships 
between variahles are monotonic and a simple linear regression 
(perhaps after using a transformation such as taking logarithms) is 
an adequate empirical approximation. In the physical sciences, the 
shape ofthe regression curve must often be approximated with more 
precision. One way to do this is by augmenting the predictor 
variables with polynomial or cross-product terms. This often gives 
rise to situations in which the cheap 'one-at-a-time' selection 
procedures pick poor subsets, while an exhaustive search procedure 
is not feasible. One alternative for this situation is to use projection 
pursuit (see e.g. Huber, 1985; Friedman, 1987). There is often some 
prior knowledge ofthe system being modelIed in the physical sciences 
which enables say partial differential equations to be formulated 
which partially describe the system and leave only part of it to be 
modelIed empirically. This will often be preferable to the use of 
black-box techniques. 
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