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Preface 

This book provides an introduction to the central ideas and methods of 
statistical inference by integrating abstract conceptual development with the 
analysis of data. Within the context of a data-based approach, the book 
adopts a balanced eclectic presentation in which the different approaches 
to inference are introduced positively (but without making them appear 
monolithic) and compared critically, and expands the often narrow focus of 
discussion about inference by including important topics like robustness, 
randomization, finite population inference, computational methods based on 
simulation and smoothing methods. 

Data is used throughout the book to motivate the inference problem, explain 
the importance of context, explain the choice of models, illustrate the nature 
of inference in practice, make concrete the effect of model choice and emphasize 
the need to discuss robustness. The data sets are intentionally simple so that 
their analysis does not overwhelm the concepts they are used to develop. The 
data-based approach can make the presentation more complex because it 
precludes prolonged discussion of artificial problems. On the other hand, it is 
liberating in its clarification of the role of mathematics in statistics because 
mathematical techniques are introduced when required and in pursuit of a clear 
data driven objective. The use of data also helps make the abstract concepts 
concrete and ensures that the practical aspects of inference are not neglected 
in the theoretical discussion. Indeed, the data-based approach makes it possible 
to acquire simultaneously both a conceptual framework and practical tools for 
inference. 

This text has grown from my experience in teaching a one semester course 
in statistical inference, first to graduate students at the University of Chicago 
and then over a number of years to advanced undergraduate and graduate 
students at The Australian National University. The course has been offered 
in the honours program in Statistics, the Graduate Diploma, and Master of 
Statistics programs, often simultaneously, so that the students have varied 
backgrounds. This is reflected to some extent in this book through the 
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xii PREFACE 

presentation of material at different levels and the effort to make the book 
relatively selfcontained. The prerequisites for a course based on this book are 
a knowledge of calculus (up to the level of Taylor's theorem), a course in 
distribution theory, and some exposure to the application of statistics. 

Chapter 1 presents data on the incidence of severe visual loss due to diabetic 
retinopathy, the times to failure of pressure vessels subjected to stress, the effect 
of caffeine ingestion on stress hormones and the volume of urine voided, the 
velocities of stars, and the corrosion of enamel covered steel plates exposed to 
hydrochloric acid. Simple models for data are introduced and then important 
classes of models such as location-scale models, the exponential family, 
regression models, and generalized linear models are presented to facilitate 
general development. The inference problem is then introduced and discussed 
in some detail with attention to the interpretation and meaning of statistical 
inference. Informal inferences are presented and used to explore the nuisance 
aspects of the models introduced for the data. 

Chapter 2 presents the Bayesian, fiducial, and likelihood approaches to 
inference in the context of the diabetic retinopathy and caffeine investigations. 
The use in inference of posterior distributions and credibility sets is discussed. 
de Finetti's justification for the introduction of prior distributions is explored 
and the problem of specifying the prior distribution is discussed in detail. 
The role of conjugate, hierarchical, dominated, robust, and Jeffreys' priors is 
described. The use of improper priors and some difficulties associated with their 
use are then discussed. The difficulties of testing sharp hypotheses in general 
and then using improper priors are presented. The likelihood and fiducial 
approaches are presented as attempts to capture aspects of the Bayesian 
approach. They provide interesting insights into the Bayesian paradigm by 
showing the difficulties of relaxing the requirements for Bayesian inference and 
help create a historical perspective. 

The frequentist approach is developed in Chapter 3, mainly in the context 
of the caffeine experiment. Point estimation is introduced and discussed briefly. 
The Fisherian and Neyman-Pearson approaches to testing are then presented 
separately to explain the differences between them. The actual hybrid mixture 
of the two approaches which is in widespread use today is then presented. The 
relationship between likelihood ratio tests and the likelihood and Bayesian 
approaches to testing is then discussed. Confidence intervals are presented and 
derived first from pivotal quantities and then by inverting hypothesis tests. 
Difficulties with setting confidence intervals when the data are discrete are then 
discussed. The famous Behrens-Fisher and Fieller-Creasy problems are intro-
duced to highlight the differences between the Bayesian/fiducial and frequentist 
approaches to interval estimation. This material leads to a discussion of 
conditional inference. Ancillarity, relevant subsets, and the work of Fisher and 
Pitman on finding exact conditional densities for transformation group models 
are discussed. The close relationship between the conditional, fiducial and 
Bayesian approaches to inference is emphasized. The chapter concludes with a 
discussion of the use of simulation to explore repeated sampling properties. 
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The pressure vessel failure data is used to illustrate the use of large 
sample approximations for carrying out approximate inferences in complicated 
problems in Chapter 4. Initially, an exponential model is adopted and direct 
approximation methods are used to approximate the distribution function of 
the sample mean. It is then shown that theorems from probability theory can 
be used to simplify the procedure for obtaining asymptotic expansions. A 
number of alternative approximations and inferences based on these are derived 
and compared. The more complicated problem of how to make approximate 
inferences if we adopt a gamma model for the data is then discussed. This 
discussion leads to the development of general results for estimators denned by 
estimating equations (including maximum likelihood estimators) in multi-
parameter problems. The method of moments estimator is also obtained and 
used to motivate the problem of comparing procedures. The use of saddlepoint 
methods to obtain higher order approximations to sampling distributions is 
then discussed. Large sample theory for tests, focusing on the Wald, score, 
and likelihood ratio tests is then presented with a brief discussion of Bartlett 
and other adjustments to likelihood ratios. Finally, approximations to likeli-
hoods and posteriors (with emphasis on the use of Laplace's method) are 
discussed. 

The presentation of large sample theory is nonstandard. First, the emphasis 
is on approximating sampling or posterior distributions. This provides a 
conceptual framework which clarifies the relationship between nonprobabilistic 
methods and probabilistic methods like the central limit theorem, and motivates 
consideration of higher order expansions. More importantly, it integrates large 
sample theory and inference and thereby provides motivation for what is 
traditionally rather abstract material. Also, the main results are derived without 
assuming that the models hold exactly because they are needed in this form in 
Chapter 5 and because this helps to clarify what is special about the situation 
in which the model holds. 

The stellar velocity data is used as a point of departure for the presentation 
of robustness in Chapter 5. Inference for this type of data is often based on the 
standard deviation under Gaussian model assumptions. The effect of departures 
from a Gaussian model is explored and used to motivate abstract concepts like 
influence functions and breakdown points. It is shown that standard deviations 
are sensitive to outlying points of the type found in the data. The important 
but often overlooked problem of departures from independence is also discussed. 
The objectives of robustness theory are then considered. Bounded influence 
estimators are developed for the location-scale problem and then applied to 
the stellar velocity data. An advantage of using real data here is that there is 
no possibility of treating the unrealistic problem of making inference about 
location with known scale or of exploiting the special features of the location 
problem. The steel plate data is then analyzed to show how robust methods 
can be used in the regression context. Tests based on M-estimators and some 
other approaches to robustness are then presented. Finally, the effects of outliers 
on posterior distributions and likelihoods are explored, the need for robustness 
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in nonfrequentist analyses is discussed, and some of the robustness ideas which 
have been advanced for these approaches are considered. 

Chapter 6 begins with discussion of randomized comparative experiments 
and the randomization approach to inference in the simple case of paired data 
(like the caffeine data). The properties of the sample mean and variance under 
randomization models are developed in detail and the fact that the randomization 
approach to analyzing data from designed experiments gives the same result 
as the Gaussian theory approach in large samples is explored. Finite population 
problems in which the model-based and design-based approaches often do not 
agree are then discussed. Finite population methods are relevant to data 
collected by sample surveys, so this section is practically as well as conceptually 
valuable. The development of nonparametric methods continues with the 
presentation of permutation tests which are compared with randomization tests. 
Simulation methods such as the bootstrap, sampling-importance-resampling, 
and the Gibbs sampler, which provide insight as well as practical tools for 
inference, are presented. Finally, a review of the scope of nonparametric 
methods is presented. The connection between kernel smoothing and random-
ization highlights the central role of randomization in nonparametric methods. 

The final chapter discusses the principles of inference, their relationships, 
and their impact on statistical inference. Proofs are given because they deepen 
understanding of what the principles mean but they are given in the discrete 
case to avoid unnecessary complications. For example, Cornfield's proof that 
coherency and Bayesian inference are equivalent is presented in the discrete 
case. The likelihood principle is discussed and derived from the sufficiency and 
ancillary principles. The repeated sampling principle is then presented. The 
chapter concludes with a discussion of some of the vague and unstated but 
implicitly important principles which underly statistical inference. 

The appendix contains a number of useful facts concerning expansions, 
matrices, integrals, and distribution theory which are used in the book and the 
exercises but would break the smooth development were they presented there. 

The data-based approach, the inclusion of nonstandard topics (robustness, 
randomization, finite population inference, simulation, and computational 
methods based on simulation), and the effort to make the book relatively short 
but self-contained have meant that some topics which have been viewed as 
standard have had to be omitted. Optimality results are still mentioned and 
discussed, though perhaps more critically than usual. Indeed, the exact finite 
sample optimality of Pitman estimators is highlighted. The mathematical details 
of optimality results and the decision theoretic framework in which they are 
usually developed are not presented here. These topics are well presented 
elsewhere and are more appropriate in a more abstract, mathematical develop-
ment than that intended here. 

It is perhaps important to state that this book is neither a methodological 
cookbook nor a collection of a neat set of mathematical results. I believe that 
the data-based approach adopted in this book precludes either of these 
outcomes. Instead, it opens the possibility of a book which is genuinely about 
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the ideas underlying inference and enforces a focus on the applicable ideas. This 
book is also not a history book, although it does follow a rough historical 
framework. The historical references are important for understanding the 
development and flow of ideas as well as their chronological relationships. They 
are necessarily incomplete but hopefully sufficient to provide the required 
framework. The history of statistics is accessibly presented in Stigler (1986). 

In spite of the importance of the subject, there are only a limited number of 
texts which can be used for a senior undergraduate or graduate course on 
statistical inference. Of these, Bickel and Doksum (1977) and Casella and 
Berger (1990) are rather more mathematically oriented and adopt a strong 
frequentist perspective. Silvey (1970), Cox and Hinkley (1974), and Barnett 
(1982) try to be accessible and to include substantial conceptual material. None 
of these books adopts a data-based presentation, so they differ fundamentally 
in philosophy and approach from this book. This is most clearly seen in the 
presentation of the different approaches to inference, large sample theory, 
robustness, computational methods based on simulation, the positioning of the 
principles of inference at the end of the book, and in differences in topic 
selection. For example, while Bickel and Doksum and Cox and Hinkley discuss 
robustness in a limited way, none of the other texts mentions the topic. This 
of course means that related ideas like estimating equation theory are not 
presented. Furthermore, none of the books discusses randomization in detail 
and none discusses finite population inference, the bootstrap, or recent develop-
ments in Bayesian computation. To be fair, some of these developments have 
occurred since the publication of these books, but that simply underlines my 
perception of the need for a new book. 

There is a huge volume of literature on the subject of statistical inference. 
Indeed, statistical inference is so fundamental to statistics that almost everything 
written about statistics can be interpreted as a contribution to statistical 
inference. It is impossible to give adequate credit to all the contributors to the 
subject and I apologize to the many whose views and contributions are not 
reflected in this book. In one sense, the fact that there are so many contributors 
and so many different perspectives, means that one has to be courageous or 
crazy to undertake the writing of a book on statistical inference. On the other 
hand, the subject is so important that one would be crazy not to. 

A.H. WELSH 

Canberra, Australia 
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C H A P T E R 1 

Statistical Models 

Statistical inference is concerned with using data to answer substantive questions. 
In the kind of problems to which statistical inference can usefully be applied, 
the data are variable in the sense that, if the data could be collected 
more than once, we would not obtain identical numerical results each time. It 
is convenient to illustrate the features of such problems through selected 
examples. 

1.1 SUBSTANTIVE PROBLEMS 

1.1.1 Severe Visual Loss Due to Diabetic Retinopathy 

Diabetic retinopathy is a complication of diabetes mellitus which has become a 
leading cause of blindness and visual disability in the United States of America. 
According to Duane's Ophthalmology on CD-ROM, 71% of people who have 
had diabetes for longer than 10 years have diabetic retinopathy, 90% to 95% 
who have had diabetes for longer than 30 years have diabetic retinopathy and, 
of these, about 30% have proliferative diabetic retinopathy. 

The Diabetic Retinopathy Study was a large multi-center clinical trial begun 
in 1971 by The National Eye Institute to evaluate the effectiveness of photo-
coagulation in delaying the onset of blindness in eyes with diabetic retinopathy. 
One eye from each of 1742 patients with proliferative or severe nonproliferative 
diabetic retinopathy and a visual acuity of at least 20/100 in both eyes was 
randomly assigned to either argon laser or xenon arc photocoagulation and 
the other eye to an untreated control group. Best corrected visual acuity was 
measured regularly at 4 month intervals after treatment. Preliminary results 
based on two-year follow up data which were published by the Diabetic 
Retinopathy Study Group (1976) led to changes to the research protocol of the 
trial. One set of preliminary results given in Table 1.1 shows the incidence of 
severe visual loss (a visual actuity of 5/200 or less in two consecutive visits 
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2 STATISTICAL MODELS 

Table 1.1. Incidence of Severe Visual Loss After 2 Years of Treatment 

Number of eyes showing persistent 
visual acuity loss 

Numbers of eyes 

Argon 

Untreated 

26 
175 

Treated 

10 
175 

Xenon 

Untreated 

31 
179 

Treated 

8 
179 

Reprinted with permission from The American Journal of Ophthalmology 81 (1976), 383-96. 

Table 1.2. Failure Times for Fiber/Epoxy Pressure Vessels (hours) 

274 28.5 1.7 20.8 871 363 1311 1661 236 828 
458 290 54.9 175 1787 970 0.75 1278 776 126 

Reprinted with permission from Technometrics. Copyright © (1990) by the American Statistical 
Association and the American Society for Quality Control. All rights reserved. 

4 months apart) for subjects who had completed 2 years of treatment by 1976. 
The problem is to compare the two-year incidence of visual loss under the 
different treatments. 

Problems involving incidence data arise naturally in all fields of application. 
They are simple in their objectives but touch on a number of fundamental 
issues in statistics, so their solution is both practically and theoretically 
important. 

1.1.2 Pressure Vessel Failure 

Keating et al. (1990) reported data on the failure times (i.e. the time to failure 
or lifetime) in hours of 20 pressure vessels constructed of fiber/epoxy composite 
materials wrapped around metal liners subjected to an unspecified constant 
pressure. The data are reproduced in Table 1.2. We may be interested in 
modeling the failure time distribution or we may be interested in parameters 
of this distribution such as the typical or usual failure time represented by the 
median failure time. 

The important characteristic of the pressure vessel data is that it involves 
the time to which an event (which in general need not be a failure) occurs. Data 
of this kind arises frequently in industrial and medical studies though in the 
latter case the analysis of such data is more optimistically referred to as survival 
analysis. 
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1.1.3 The Effects of Caffeine 

Bellet et al. (1969) reported the results of an experiment to investigate the effect 
of caffeine ingestion on the release of hormones associated with stress. Eighteen 
young males were given 5 g of coffee dissolved in 500 ml of water and 500 ml 
of plain water in random order at least 5 days apart. For details, see Section 6.1. 
The volume of urine voided in the 3 hours after ingestion of the fluid was 
recorded and the collected urine was analyzed for catecholamine content 
(epinephrine and norepinephrine). The data are presented in Table 1.3. The 
problem is to determine the effect of caffeine ingestion on excreted epinephrine, 
norepinephrine, and total catecholamine. We can also use the data to explore 
the effect of caffeine ingestion on the volume of voided urine. 

If we find changes in the total catecholamine in this experiment, we would 
like to conclude that they are caused by the ingestion of caffeine. However, it 
is possible that any changes are caused by a change in the volume of voided 
urine and hence possibly only indirectly by the caffeine. In their paper, Bellet 
et al. (1969) dealt with this issue by quoting a number of previous studies which 
established that "the amount of catecholamines excreted per unit time is 
practically independent of urinary flow rate." If this is the case, a change in total 

Table 1.3. Voided Urine (ml/3 hr) and Catecholamine (fig/3 hr) 

Total Catecholamine Epinephrine Norepinephrine Urine 

Coffee 

7.74 
12.68 
9.53 
7.67 

10.22 
7.25 

10.62 
7.92 
3.18 
7.68 
3.67 
6.39 
4.69 
6.50 
6.23 
4.73 
3.67 

10.69 

Control 

4.22 
11.15 
7.18 
4.26 
4.47 
3.21 
3.75 
5.96 
3.14 
6.70 
3.21 
4.83 
4.57 
3.56 
1.61 
4.85 
4.21 
9.16 

Coffee 

1.14 
1.96 
2.00 
1.36 
3.12 
2.54 
2.88 
1.75 
1.24 
0.88 
0.83 
2.94 
1.42 
0.64 
1.30 
1.21 
0.39 
0.41 

Control 

0.47 
0.99 
0.43 
1.57 
0.77 
0.41 
2.02 
1.19 
0.49 
0.55 
0.39 
2.07 
0.83 
0.58 
0.24 
1.86 
0.68 
0.23 

Coffee 

6.60 
10.72 
7.53 
6.31 
7.10 
4.71 
7.74 
6.17 
1.94 
6.80 
2.84 
3.45 
3.27 
5.86 
0.93 
3.52 
3.28 

10.28 

Control 

3.75 
10.16 
6.75 
2.69 
3.70 
2.80 
1.73 
4.77 
2.65 
6.15 
2.82 
2.76 
3.74 
3.06 
1.37 
3.69 
3.61 
8.93 

Coffee 

585 
594 
840 
592 
520 
405 
835 
995 
310 
390 
295 
202 
185 
155 
670 
480 
505 
380 

Control 

350 
684 
430 
475 
292 
151 
200 
670 
315 
160 
248 
115 
110 
200 
115 
500 
510 
340 

Reprinted with permission from Metabolism. Copyright © (1969) by W.B. Saunders. 
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catecholamine should not be related to the change in the volume of urine 
produced. A question we can explore with this data is whether there is a 
relationship between the change in total catecholamine and the change in the 
volume of urine produced. 

Problems involving the determination of the nature and magnitudes of effects 
and problems involving the exploration of relationships between variables occur 
in many fields of application, and methods for solving these problems are of 
very wide applicability. 

1.1.4 Stellar Kinematics 

One theory about the formation of our Galaxy is that it started as a large, 
near-spherical blob of almost pure hydrogen and helium gas which collapsed, 
forming stars in the process. Some (rare) stars were formed early on, while the 
gas cloud was still spherical and almost pure, but as the collapse proceeded, 
various physical processes caused the gas cloud to start to rotate and assume 
a flattened shape. Stars were formed more often in the later stages of evolution, 
and these stars follow more disciplined, near-circular paths around the center 
of the Galaxy. Also, as stars evolve and die (as they do many times in the 
history of our Galaxy) they form heavier elements such as iron in the nuclear 
reactions in their centers, and these heavy elements are ejected into the gas 
which has not yet formed stars so the stars which form later have more heavy 
elements (higher [Fe/H]) than the older stars. The younger stars are called disk 
stars because of the flattened, rotating shape they form, whereas the old, rare 
stars which form a spherical shape and have more random motions are called 
halo stars. 

In a study of stellar kinematics, Morrison et al. (1990) measured V2, the 
component of velocity which is perpendicular to the Galactic Plane in km/s, 
for a sample of 72 RR Lyrae variables. These are stars which are often used as 
distance gauges in the Milky Way because their brightness fluctuates rapidly 
and their true brightness (and hence distance from earth) can be worked out 
from their fluctuation period. They are also most easily made as a late stage 
in the evolution of an old star and hence can be used as tracers of the oldest 
stars in the Milky Way. The stars were chosen so that 17 had [Fe/H] values 
typical of disk stars, 19 had [Fe/H] values typical of halo stars and 36 had 
intermediate [Fe/H] values. The data are given in Table 1.4. The problem is 
to describe and compare the distribution of velocities of these three types of 
stars in order to clarify the status of the intermediate stars. 

1.1.5 Corrosion Resistance of Steel Plates 

Johnson and Leone (1964, p. 439) described an experiment to test the corrosion 
resistance of enamel covered steel plates which are used in the manufacture of 
hot water heating equipment. The experiment involved allowing 10% hydro-
chloric acid to run over the plates at four different temperatures (140, 160, 
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Table 1.4. The Component of Stellar Velocity Orthogonal to the Galactic Plane (km/s) 
for Three Types of RR Lyrae Variable Stars 

Disk stars 4, 44, -23 , -32, 26, 13, 34, -24, -10, -34, 72, -26, -32, 
-144,3,0, -43 

Intermediate stars 0, 45, 6, -48, 65, 55, -69, -77, 117, 33, -17, 64, 5, -286, 
- 175, -29, -63, 23, 58, 69, 7 , - 1 , 25, -268, -44, 87, - 102, 
-42, 25, 16, 62, 31, 5, 21, -77, -63 

Halo stars 214, 129, 34, -31 , 155, 76, -18, -96, 33, -81 , - 6 , 20, 95, 
-72, -110, -90, -118, - 6 1 , - 4 

Previously unpublished. Reprinted with the permission of H.L. Morrison. Private Communication. 

180 and 200° F) for four different exposure times (4, 6, 8, 10, and 12 hours) and 
measuring the weight loss for each plate. Hydrochloric acid was used instead 
of water because its corrosive effect on enamel covered plates is similar but 
occurs more quickly than with water. The data for one type of plate (for which 
only three levels of temperature were used) are given in Table 1.5. The problem 
is to describe the relationship between the response weight loss and the two 
explanatory variables time and temperature. Another interesting problem with 
this kind of accelerated test (which we will not consider here) is to relate the 
results obtained with the hydrochloric acid to those obtained with water. 

The problem of modeling the relationship between a response and several 
explanatory variables so that we can determine the effect of the explanatory 
variables, predict the response at different values of the explanatory variables, 
and so on, arises in many fields of application and is very important in statistics. 

1.2 INITIALLY PLAUSIBLE MODELS 

Fundamental to statistical inference is the recognition that the data appropriate 
to answering the substantive question are typically variable and that this 
variability can be represented by a probability distribution F0. This means that 
the data z can be regarded as a realization of a random variable Z which takes 
values in a set J" called the sample space, and which has a probability 
distribution F0 that represents the uncertainty in the value Z will realize in any 
particular realization. We identify the substantive questions with questions 
about F0 so that the objective of inference is to use the data z to answer questions 
about F0. 

The interpretation of z as a realization of a random variable Z can be useful 
even in circumstances when it is not literally true. For example, computer 
generated random numbers satisfy a simple deterministic relationship, but the 
kind of chaotic behavior they exhibit can still for some purposes be usefully 
treated as of stochastic origin. Similarly, perfect thumb control can produce 
deterministic coin tossing but variation in the initial conditions leads to 
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Table 1.5. Weight Loss in Enamel Covered Steel Plates 

Weight Loss 
(10"4g) 

68 
76 
81 
96 
92 
91 
115 
133 
124 
90 
209 
387 
100 
106 
764 
148 
394 
130 
76 
77 
83 

Time 
(hrs) 

4 
4 
4 
4 
4 
4 
4 
4 
4 
6 
6 
6 
6 
6 
6 
6 
6 
6 
8 
8 
8 

Temperature 

(°F) 

160 
160 
160 
180 
180 
180 
200 
200 
200 
160 
160 
160 
180 
180 
180 
200 
200 
200 
160 
160 
160 

Weight Loss 

(10"4g) 

88 
96 
157 
265 
123 
175 
100 
95 
84 
125 
122 
144 
222 
195 
159 
413 
86 
100 
134 
174 
146 

Time 
(hrs) 

8 
8 
8 
8 
8 
8 
10 
10 
10 
10 
10 
10 
10 
10 
10 
12 
12 
12 
12 
12 
12 

Temperature 
(°F) 

180 
180 
180 
200 
200 
200 
160 
160 
160 
180 
180 
180 
200 
200 
200 
160 
160 
160 
180 
180 
180 

Reprinted from Statistics and Experimental Design: In Engineering and the Physical Sciences, 
Volume 1 (1964, p. 440). New York: Wiley. With the permission of the authors. 

variation in the outcomes and can produce a sequence of tosses which is usefully 
treated as a realization of a stochastic process. It is neither necessary, nor 
necessarily useful, to distinguish these cases from others in which a probabilistic 
approach is useful. 

If 2£ is countable, the sample space is said to be discrete and a probability 
distribution on 2£ is defined by the probability mass associated with each 
element of 2£. The probability of an event £ is then obtained by summing the 
probabilities over events in E. If 2t is not discrete, a probability distribution 
can often be defined on 2£ by a probability density function (a non-negative 
function whose integral over 2£ is 1) such that the probability of an event E is 
obtained by integrating the density function over E. We will refer to both types 
of defining functions as density functions and unify their presentation by noting 
that integrals in general expressions should be replaced by sums in the discrete 
case. 

We do not know the distribution F0 but we can often suggest a set of 
candidate distributions J* for F0 which we call a statistical model for z. If we 
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represent the candidate distributions by their density functions and label them 
by a parameter 9 (which could be the density functions themselves) taking 
values in a set Q called the parameter space, we can write our model as 

J5" = {f(z;9),ze&:9eQ}. 

For each possible value of 6 e Q, f(z; 9) is a density function which specifies a 
probability distribution for Z on the sample space 2t. We often treat the 
components Z , , . . . , Z„ of Z as independent and, in this case, we can represent 
the model in terms of the marginal densities of the Zf as 

<F = | / ( z ; 9) = f l fiW, 9),ze^:9eill, 

where ft(;9) is the density of Z,. If the Z, are identically distributed, 
fi("> 9) = / ( • ; 9) and we obtain a further simplification of the model. However, 
we do need to model data that is both dependent and not identically distributed 
(some examples are given in Section 1.3), so the general formulation is 
important. To emphasize that models describe the joint distribution of Z, 
we define models in these terms rather than through equivalent statements 
involving the marginal distributions of individual observations and the 
dependence structure. 

Notice that we have used lower case z in two ways: firstly as the realized 
value of a random variable and secondly as the argument of a probability 
density function. This convention is potentially confusing but the context should 
clarify the intended meaning. 

The choice of a model depends on the objectives of the analysis (the 
substantive questions) as well as experience in the analysis of data of similar 
types, optimistic assumptions about the data generating process to produce a 
simple model, concerns about the effects of particular inadequacies in standard 
models, and possibly the results of exploratory data analyses. We can always 
expand a model (improving the fit to the data) by increasing the number of 
parameters, but at the cost of an increase in complexity. Model choice inevitably 
involves a compromise between simplicity or parsimony and explanatory power 
or quality of fit. 

We always need to question the empirical validity of a model J*. We can 
do this formally by adopting a more complicated model ^ which includes J^ 
as a special case and then asking whether we can reduce !FX to &, or we can 
use informal, graphical methods (Section 1.5). In either case, we need an initially 
plausible model to start the process. Initially plausible models (and indeed 
all models) are always subject to modification in the light of additional 
experience. 
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1.2.1 Severe Visual Loss Due to Diabetic Retinopathy 

Let rt denote the number of patients receiving treatment i in one eye, where 
i = 1 represents argon treatment and i = 2 represents xenon treatment, and let 
Zjj denote the number of untreated (j = 1) or treated (j = 2) eyes experiencing 
severe visual loss within 2 years for patients receiving treatment i. In this 
notation, Table 1.1 is a special case of Table 1.6 in which zVj and r; are given 
particular numerical values. Suppose initially that we are interested in the 
probability of severe visual loss within 2 years in untreated eyes in subjects 
meeting the eligibility criteria of the Diabetic Retinopathy Study and receiving 
argon treatment in the other eye. In our data, we observe the number of 
untreated eyes z n in a sample of size rt which experience severe visual loss 
within 2 years. Each eye either suffers severe visual loss or does not, so we can 
think of z n as a realization of a random variable Z n which takes on a value 
in the sample space 2£x — {0,1,... ,r1}. (Note that rx on its own is uninformative 
about the probability of severe visual loss, so we treat it as fixed and build a 
conditional model for Zx x given rx. The issue of conditioning is discussed further 
in Sections 3.9 and 7.4.) A model for Z u should depend on the unknown 
probabilities nXXk that the /cth eye suffers severe visual loss within 2 years, 
k — 1 , . . . , ru and possibly other unknown parameters. If n1 lk = nx t is constant 
for each eye (i.e., the patients are homogeneous) and the outcome for each 
subject is independent of that for all other subjects, simple distribution theory 
yields the binomial model (5b in the Appendix) 

*" = {/(ziiJ « n ) = H W d - ^ i ) " " 2 1 1 , z „ = 0 , l , . . . , r 1 : 0 < 7 t 1 1 < l j 

(1.1) 
for z n . 

The key assumptions for the binomial model (1.1) to hold are that the 
probability nllk is constant for every subject and the outcomes for each subject 
are independent of each other. In principle, we can validate the model by passing 
judgement on the validity of these two assumptions. This is, however, rarely 
unambiguous because we can often construct scenarios under which the 
conditions fail; for example, the subjects are not homogeneous if the probability 
of severe visual loss is affected by age, race, health status, etc. Provided we have 

Table 1.6. Incidence of Severe Visual Loss After 2 Years of Treatment 

Argon Xenon 

Untreated Treated Untreated Treated 

Number of eyes showing persistent 
visual acuity loss z , , z1 2 r 2 1 z 2 2 

Numbers of eyes rl r, r2 r2 
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measured any variables which might give rise to heterogeneity, we can check 
the homogeneity assumption. In this case, we could allow nllk to depend on 
the observed value of these variables for the /cth subject and then explore the 
validity of the homogeneity assumption by exploring whether these variables 
actually contribute to the model. The independence condition is more difficult 
to evaluate and so is often simply asserted. This has been described by Box et al. 
(1978, p. 86) as "the declaration of independence." At the very least, the 
plausibility of the assumption should be considered by careful thought about 
the data generation and collection processes. 

Now suppose that we want to compare the two groups of control eyes. If 
the assumptions for the binomial model apply separately to the two groups of 
eyes, we can model the data for the two groups by 

&=|/(*ii. *2i; t n . * 2 i > = r 1 W o 

zn = " , 1 , . . . , fj, z21 = 

and then compare 7tn to jt21. The parameter of interest is therefore nli — n21. 
If we can conclude that 7rn = n2l, we can reduce (1.2) to a single binomial 
model like (1.1) for the number of untreated eyes z = z n + z21 in a sample of 
size r = rt + r2 which experience severe visual loss within 2 years. 

An important aspect of (1.2) is that the assumptions that (i) the two groups 
of eyes are independent and (ii) 7tu is not functionally related to n21 mean that 
we can model each population separately using models like (1.1) and then set 
up a combined model for comparing the populations by multiplying the 
separate models together. This is a very useful simplification. When the groups 
we wish to compare are not independent, we need to incorporate the dependence 
into the model from the start. For example, while it seems reasonable to treat 
patients as independent, it is likely that the outcomes for eyes from the same 
patient are dependent. Thus, to compare the treated eyes to the control eyes 
requires us to model the paired responses for each subject rather than the 
aggregated data in Table 1.1 (Problem 1.3.5). However, a crude alternative 
approach is to compare the argon-treated eyes to the xenon controls and vice 
versa using models like (1.2). 

1.2.2 Pressure Vessel Failure 

Let z,- denote the failure time of the ith pressure vessel, i = 1 , . . . , n, so the data 
in Table 1.2 corresponds to a set of n = 20 particular zf values. We regard z; 

as a realization of a random variable Z, which can take on any non-negative 
real value so the sample space for a sample Z = ( Z l 5 . . . , Z„) of size n is 
2t = [0, oo)". It seems reasonable to treat the time to failure of each vessel as 
independent of the time to failure of any other vessel. In this case, the simplest 

Vz21/ 

= 0 , l , . . . , r 2 : 0 < 7 t l l , 7 r 2 1 < 1} (1.2) 
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initial plausible model for the failure times is the exponential model (6b in the 
Appendix) 

& = j / t e A) = f[ ;- exp (-Az,), z, > 0: A > o l . (1.3) 

Under the exponential model (1.3), the median time between losses is 

,-*f>. ,U) 

We can reparameterize the model in terms of 9 as 

, . {/«, „ . ft *S» exp ( r i ^ ) . „ > 0: 0 > o} , 

but it is simpler to work with (1.3) and apply (1.4) to derive inferences for 9 
when required. There are of course infinitely many other possible parameter-
izations for (1.3). 

Experience shows that the exponential model (1.3) is often not flexible 
enough to describe real failure time data. We can explore the adequacy of the 
model by considering more flexible models which contain the exponential model 
as a special case. If we retain the independence assumption, we can consider 
the gamma model (6b in the Appendix) 

& = j / ( z ; K, A) = ft - 1 - l"**'1 exp (-Azf), z, > 0: K, X > o l (1.5) 
I i=lT(K) J 

or the Weibull model (6g in the Appendix) 

jF = j / ( z ; K, X) = f l KX(XZi)
K~l exp {-(Az,-)"}, z,- > 0: K, X > o i . (1.6) 

Both models reduce to the exponential model (1.3) when K = 1 and the extra 
parameter K increases the range of shapes allowed under the model. There are 
a number of other models we can consider but we will not pursue any of them 
here. 

Models for the analysis of independent failure time data like (1.3), (1.5) and 
(1.6) which are of the form 

*■ = j / ( z ; 0 ) = n / ( z , . ; 0 ) : 0 e n l 

are often usefully classified by their hazard functions h(z; 6) = f(z; 6)/{\ — F(z; 0)}, 
where f(z; 9) is the marginal failure time density function and F(z; 9) is the 
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marginal failure time distribution function. (Here 'marginal' means over units 
in the sample.) The hazard function gives the instantaneous rate of failure at z 
given survival to z. The exponential model is characterized by the fact that it 
has a constant hazard function 

h(z; A) = A. 

This implies that the probability of failure within a specified time interval is 
the same regardless of how long the unit has been on trial, a property that is 
often referred to as the lack of memory property of the exponential distribution. 
The hazard functions for the gamma model (1.5) and the Weibull model (1.6) are 

, . z" _ 1 exp( -Az) 
n(z; /., K) = -- , 

jz°° x
K exp ( — Ax) dx 

and 

h(z; X, K) = XK{/.Z)K ~1, 

respectively. Both of these functions are monotone decreasing for K < 1 and 
monotone increasing for K > 1. 

With continuous data (i.e., data for which the model density is absolutely 
continuous) it is usually not possible to evaluate the model by thinking about 
primitive assumptions from which the model can be deduced so we consider 
evaluation (at least of the shape of the model) more as an empirical matter. 
We will explore the validity of the exponential model (1.3) informally in Section 
1.5 and more formally in Sections 4.2-4.3. 

Whatever model we finally adopt, the parameter of interest is the median of 
the underlying distribution and we want to specify a range of plausible values 
for this parameter. 

1.2.3 The Effects of Caffeine 

Suppose initially that we are interested in the effect of caffeine on the volume 
of urine voided. We assume that the subject responses are independent of each 
other. The standard approach to analyzing data of this type is to assume that 
the effect of the caffeine is to increase the volume of urine voided by a constant 
amount [i, say, over the baseline level. We do not expect the increase in urine 
to be exactly fi in each case because there is variability in the responses. Thus, 
for each of our n = 18 subjects, if subject i has a baseline urine level equal to 
zi0, the urine level after ingesting caffeine zn can be written 

z;i = zio + f1 + **i, 1 < i < n, 

where u, is the realized value of a random variable t/;. Equivalently, for the 
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pairwise differences zt = zn — zi0, we have 

Z; = \i + uh 1 < i < n. (1.7) 

Potentially, the Ut can take on any real value so the sample space 2£ = U". The 
distribution of the t/; should be symmetric about the origin (the probability of a 
positive or negative deviation is the same) and probably the same for each 
subject. The classical choice is to assume that the Ut all have identical Gaussian 
distributions (6a in the Appendix) with mean 0 and variance a2 or, equivalently, 
that the Z, all have identical Gaussian distributions with mean n and variance 
a2. Formally, we write 

3F = | / ( z ; M, ff) = f [ - 4>(——), - w < z, < oo: p e R, a > o l , (1.8) 

where </>(x) = (2n)~112 exp ( — x2/2), n is the constant amount about which the 
caffeine effects vary, and a describes the magnitude of the variability. The 
parameter \x is of direct interest in answering the substantive question, but a 
is not and so is called a nuisance parameter. 

Now consider the effect of caffeine on the total catecholamine. As noted in 
Section 1.1.3, we want to explore the question of whether the ingestion of 
caffeine changes the amount of catecholamine in the voided urine and whether 
the change in the amount of total catecholamine is related to a change in the 
volume of voided urine. 

Let y( denote the change in the total catecholamine and z, the change in the 
volume of urine produced by the ingestion of caffeine in subject i, 1 < i < n. 
A scatterplot of y, against z, shown in Figure 1.1 shows that the change in total 
catecholamine increases with the change in the volume of urine produced and 
that there is variability about this relationship which is roughly constant. The 
scatterplot can be enhanced by scatterplot smoothing (Section 6.9.4) but this 
is not essential. 

We can construct a model for the relationship between y and z by treating 
(>>;, Z() as realizations of independent random variables (Yt, Z,). If we fix the 
explanatory variable Zf and think of modeling the distribution of the response 
Yt given Z, = z, as a function of the fixed value z,, it is natural to adopt a model 
which implies that 

E ( ^ | Z , = zi) = a + ^zi and Var (Yt | Z, = z,) = a2. 

It is conventional to assume further that the conditional distributions are 
Gaussian so that 

Yt | Z,- = zf ~ N (a + Pzh a2), 1 <i<n, 
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200 400 
Change in Urine (ml/3hr) 

600 

Figure 1.1. A scatterplot of the change in total catecholamine against the change in the volume of 
urine produced. 

or, formally, 

JF = j/(y;a,j3,<T)= f\ - Jl1^^-!2! ), -oo < yt < oo: a, pe R, c > 0}, 

(1.9) 

where (j>(x) = (2n)~1/2 exp ( —x2/2). This is called the simple regression model. 
Notice that if the slope /? = 0, there is no relationship between the variables 
and, in this case, a is the mean of the change in total catecholamine Y{. On the 
other hand, if the slope fi ^ 0, there is a relationship between the change in 
total catecholamine Yt and the change in the volume of urine produced Z, and, 
in this case, the intercept a represents the mean of 1̂  after removing the effect 
ofZ,-. 

A notable feature of the simple regression model is that it is a model for the 
conditional distribution of the response given the explanatory variable rather 
than for the joint distribution of these two variables. The joint distribution can 
be obtained by multiplying the model distribution by the marginal model for the 
distribution of the explanatory variable but we do not do this here because the 
marginal distribution of the explanatory variable contains no additional 
information about the relationship of interest. Note that this is only appropriate 
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if, as we assume here, the explanatory variable is observed without error. For 
further discussion, see Sections 3.9 and 7.4. 

Finally, the process of modeling the effect of caffeine on epinephrine 
and norepinephrine is similar to modeling the effect of caffeine on total 
catecholamine. 

1.2.4 The Stellar Velocity Data 

It seems reasonable to assume that the velocities of the stars are independent 
and to treat the three groups of stars as independent. As noted in Section 1.2.1, 
the assumptions that the three groups of stars are independent and that the 
parameters of the distributions of the three groups are not functionally related 
means that we can model each population separately and then set up combined 
models for comparing the populations by multiplying the separate models 
together. 

Let z, denote the component of velocity away from the Galactic Plane for 
the ith star of any one of the three groups of stars. Then we regard z; as a 
realization of a random variable Z,, 1 < i < n. The fact that our Galaxy is stable 
implies that the distribution of Z, should be symmetric with location zero. This 
makes sense because, if the location was nonzero, there would be systematic 
motion away from the Galactic Plane which would cause the Galaxy to tear 
itself apart. We expect the scales of the distributions to be very different, 
increasing in the order disk < intermediate < halo because there is least 
random motion away from the Galactic Plane for the disk stars and most for 
the halo stars. Thus these populations are distinguished by the spread of their 
velocity distributions. The traditional model for this situation is that the Zf 

have Gaussian distributions with common mean zero and different variances. 
That is, 

& = \f(z;o)= TJ 4>(Z')> - ° ° < z . < °o;ff > o i , (1.10) 

where </>(x) = (2n)~112 exp ( — x2/2), and we allow different variances for the 
three groups of stars. 

Examination of the data in Table 1.4 (which is confirmed by the graphical 
analysis presented in Section 5.4) shows that the disk and intermediate groups 
contain some stars with extremely large negative velocities away from the 
Galactic Plane. These extreme stars are referred to as outliers. Generally, 
outliers are observations which are extreme relative to the bulk of the data. 
Chambers (1986) distinguished between two types of outliers. Representative 
outliers are observations which are extreme but which contain information 
relevant to the substantive question. In contrast, nonrepresentative outliers do 
not contain information about the substantive question. They can be viewed 
as the result of errors or contamination of the process of interest rather than 
the process of interest. Representative outliers are interesting in the context 
of the substantive question and, as in extreme value problems for example, can 
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even be the most important aspect of the data; nonrepresentative outliers are 
also interesting in that their study may reveal unexpected phenomena which 
account for the nonrepresentativeness or ways to improve the data collection 
technique. There is some ambiguity in Chambers' classification of outliers, 
particularly if both kinds are present in a data set, but the distinction between 
the two types of outliers is conceptually useful. 

The outliers in the stellar velocity data can plausibly arise from errors of 
measurement, from misclassified stars, or simply from stars which belong to a 
third population of very rare stars with large velocities. The outliers may be of 
interest if they are stars from a rare third population, but their very rarity makes 
their study difficult. On the other hand, if they arise from errors, they are 
typically of much less interest in terms of the substantive question. In the present 
context, it seems clear that we want to compare the velocity distributions of 
the "typical" stars in each group irrespective of the apparently aberrant 
behavior of a small number of stars. By definition, the typical stars which we 
are interested in constitute the bulk of the data. Thus we find ourselves in the 
not uncommon situation where elegance and simplicity lead us to suggest a 
model J* which is appropriate for the bulk of the data but not for all the data. 

To model data containing outliers, we can try to construct a model with an 
additional parameter or parameters which capture the idea of a contaminated 
core model. One way to do this when the core distribution is Gaussian and 
the contamination is symmetric (so the overall distribution remains symmetric) is 
to consider not the Gaussian model but the Student t model (6c in the Appendix) 

£ = jffteff,v)= f] ^ g v p j , - 0 ) < z ; <oo; f f>0 ,v>o l (1.11) 

where gv(x) = (T{(v+ l)/2}/(7rv)1/2r(v/2)]{l +x2/v}'iv+1)/2 denotes the density 
of Student's r-distribution with v degrees of freedom. Here v is the "non-
Gaussianity parameter" which determines the tail behavior. The {-distribution 
does not in fact have very long tails so this model captures only a restricted 
range of tail behavior. More severe but less tractable alternatives are provided 
by the class of stable distributions. There is no reason in general to assume 
symmetry, so we should consider introducing further parameters to allow for 
asymmetric tails while keeping the central part of the distribution roughly 
Gaussian. We could try to allow different transformations in the two tails but 
there is no entirely satisfactory way to parameterize this kind of asymmetry, 
and the models quickly become less parsimonious. 

A different kind of model to accommodate outliers was proposed by Tukey 
(1960). In this model we think of the data as actually arising from 

» = lg(z; a, e, c) = f j (1 - «) \ <t>(^\ + ec(zt) , — oo < 2f < oo; <r > 0, 

0 < e < l . c e t f l , (1.12) 
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where # is some class of long-tailed distributions. This contamination model is 
an attractive model for modeling outliers; we regard most of the data (a fraction 
1 — e) as following the core distribution in ,<F but a small portion of the data 
(a fraction e) as following a different unknown distribution. If c has long tails, 
some of the e fraction of observations with distribution c will be extreme with 
high probability and hence may be regarded as outliers, whereas if c has similar 
tails to the distribution in J^, the contamination model represents a number of 
small deviations from J"\ 

Another model for outliers is the so-called mean-shift model which assumes 
that the outliers shift the mean of the core distribution. This is easy to apply 
when we specify which observations are shifted. Since in practice we may not 
know which observations are shifted, we have to allow possibly different mean 
shifts for each observation. That is, 

Jt = </(z;<7,/*„. . . , /O = n - $ ( - '-), -QO <z,- < GO; 

a > 0, — oo < Hi < oo >. 

There are obviously too many parameters in this model. A convenient way to 
overcome this difficulty is to let the mean shifts be independent random 
variables with common distribution function H. The model in this case is 

( « f °° i (Z- — w\ ] 
Jl = I f(z; <r) = f ] -<t>["- ) dH(w), - oo < z, < oo; a > 0 >. 

This is not the same as the contamination model (1.12) but it is conceptually 
similar to it. The contamination model (1.12) is simpler to work with and is 
more widely used. 

If the distributions G in <§ are known up to a finite number of parameters, 
then the contamination model (1.12) is a parametric model (like (1.11)). 
Although the parametric approach to modeling outliers has its uses, it suffers 
from the disadvantage that we have to put considerable effort into modeling 
the outliers which are typically few in number and, when nonrepresentative, 
a nuisance rather than fundamental to our problem. It seems preferable to 
consider models in which we are much less specific about the departures from 
the core model. An advantage of the contamination model is that we can achieve 
this by letting ^ be a large class of distributions, possibly so large that we 
cannot parameterize it with a finite dimensional parameter. These models are 
less parsimonious than parametric models but it turns out that we can avoid 
having to estimate the infinite dimensional nuisance parameters in our inferences. 
This is discussed in detail in Chapter 5. 

The introduction of explicit outlier models enables us to clarify the importance 
of the distinction between representative and nonrepresentative outliers. Under 
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the Student t model (1.11), the variance of an observation is 

Vff2 

<x2(G) = , v > 2 , 

( v - 2 ) 
while under the contamination model (1.12), it is 

a\G) = (1 - £)<r2 + ea2(C) + e(l - e)fi(C)2, 

where n(C) is the mean and <x2(G) and a2{C) are the variances of the 
distributions in (S and <€ respectively. If the outliers are representative, then we 
are interested in <x2(G), the variance of the distribution of the data, whereas if 
the outliers are nonrepresentative, we are interested in a2, the variance of the 
uncontaminated core distribution. In our analysis, we treat a2 as the parameter 
of interest. 

1.2.5 Corrosion Resistance of Steel Plates 

The range of values for the response variable (weight loss) is quite large, 
indicating that it may be preferable to model the data with weight loss on the log 
scale. Even on the log scale, there appear to be a number of outliers in the data. 
All the available information about the data is included in Table 1.5 and there 
is no additional information about the outliers. This makes it difficult to 
determine whether they are representative or not. If, as is frequently the case, 
we are interested in the relationship followed by the bulk of the data, we view 
the outliers as nonrepresentative and proceed on this basis. 

If we examine the structure of the data carefully, we see that the experiment 
involved 14 treatments (the set of all possible combinations of the 3 levels of 
temperature and 5 of exposure time other than the 12 h, 200°F experiment 
which was not done) and 3 observations on each treatment, so the treatments 
provide an (incomplete) two-way classification of the data and we can consider 
a simple model with 14 different response means. That is, if we let /i^ denote 
the expected log weight loss at temperature i and time j , then yijk, the log weight 
loss of the feth plate at the i'th level of time and the y'th level of temperature is 

yak = Hij + eijk, < = 1 , . . . , 5 and j , k = 1, 2, 3, (i,j) * (5, 3), (1.13) 

where {eiJk} are independent and identically distributed random variables with 
location 0 and unknown spread a which represents the between plate variation. 
We need to model the variation to complete the formulation of the model and 
we will discuss this after exploring the implications of the mean structure we 
have adopted. 

The model (1.13) is adequate for many purposes, but it is often useful to 
parameterize the means nu. A useful structured way of doing this is to represent 
the 14 means as shown in Table 1.7. 
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Table 1.7. A Representation of the Mean Response at Different Levels of Temperature 
and Time in the Enamel Covered Steel Plate Experiment 

Time (hrs) 

4 
6 
8 

10 
12 

160 

Temperature 

180 

H + Pi 
JX + a2 + p2 + 722 

M + «3 + $2 + 732 
H + a4 + P2 + 742 

H + <X5 + P2 + 752 

(°F) 

200 

fi + a2 + 03 + y23 

fi + a3 + p3 + 733 

V- + a4 + Pi + 743 
No data collected 

The representation in Table 1.7 can be written as 

Hij = n + a,- + 0; + yu, i = 1....» 5 and j = 1, 2, 3, (i, j ) ^ (5, 3) 

with a, = /J, = yiJ = yn = 0. (1.14) 

Notice that /t = //11; «f = /i(1 - /xn> ^- = /i1;- - ftlu and yy = ^,v - pn - ^ u + / i u . 
The parameters af and /?, are called the mam effects of time and temperature, 
respectively, and the yi} are called interactions. The interactions yy are often 
suggestively written (aP)u to emphasize that they are interactions and to 
preserve notation; we use ytJ to emphasize the fact that the interactions are 
distinct from the main effects at and Pj. The interaction terms allow the effect 
of time to depend on the temperature setting and vice versa. If the interactions 
ytj = 0, the response means are additive in the main effect parameters a; and )8, 
which implies that the effect of time is constant across the temperature settings 
and the effect of temperature is constant across the time settings. This is shown 
schematically in Figure 1.2. Of course, with data, we also need to take the 
variability into account and we do this by fitting the model. When we fit the 
model, this representation of the means makes it convenient for us to compare 
mean responses, to explore whether the time and temperature effects interact 
and, if they do not, the magnitudes of the separate time and temperature 
effects. 

There is nothing special about the parameterization we have adopted for 
the mean structure in (1.14), and other parameterizations can also be used. 
At least when the two-way classification is complete, a popular alternative is 
to write 

Hij = n + a,- + jSj + yu, i = l , . . . , 5 and j - 1,2,3, 

with i«i=i:pj=iyiJ=i?y = o, o.is) 
i - l j ' = l j = l i = l 
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Figure 1.2. Schematic representation of the mean log weight loss against time with symbols 
representing the three levels of temperature (O = 160°F, A = 180°F, and + = 200°F) to illustrate 
the absence and presence of interactions in the model, (a) Additive effects (no interaction) 
(b) Interaction. 

which is of basically the same form but with different constraints (and hence 
different interpretations) on the parameters. The constraints in (1.14) are called 
corner point constraints, while those in (1.15) are called mean constraints. The 
mean constraints are more convenient for hand calculation when the two-way 
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classification is complete, but this is not the case here and the cornerpoint 
constraints are simpler to use. 

The two-way classification models we have introduced above ignore the fact 
that the explanatory variables time and temperature are quantitative variables 
and treat them as qualitative. This is clearer if we rewrite the mean structure 
using indicator variables as 

Htj = n + a2/(i = 2) + a3/(( = 3) + a4/(i = 4) + a5/(i = 5) 

+ P2I(j = 2) + p3I(j = 3) + y22I(i = 2 , ; = 2) + y23I(i = 2 , ; = 3) 

+ y32U.i = 3 , / = 2) + y33/(i = 3 , ; = 3) + y42/(i = 4, j = 2) 

+ y*3/(» = 4, y = 3) + y52I(i = 5,j = 2). 

(Here 1(A) = I if A holds and 0 otherwise.) This suggests that we are ignoring 
information in the nature of the explanatory variables and that we try to 
model the relationship between the response and the explanatory variables 
directly. 

A scatterplot matrix for the data is shown in Figure 1.3. Although the 

Figure 1.3. Scatterplot matrix for the weight loss data. 
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Figure 1.4. Plot of the logarithm of weight loss against time with symbols representing the three 
levels of temperature (O = 160°F, A = 180°F, and + = 200°F). 

marginal plots are not informative about the nature of the joint relationship 
between the log weight loss, time and temperature, they do provide some 
insights. They show that log weight loss is linearly related to time and 
temperature separately, but there appear to be some outliers. This is confirmed 
by Figure 1.4 which shows all three variables in a single plot. Other graphical 
techniques can usefully be applied here but their discussion would take us too 
far from our central concerns. The power and elegance of these and other 
graphical methods for exploring relationships between variables is shown in 
Cleveland (1993, Chapters 3-5). 

Preliminary graphical analysis suggests that we can consider the regression 
model 

yi = <x + /?!*,; + p2x2i + eh 1 < i < 42, (1.16) 

where yt is the log weight loss, xlf is the time, x2i is the temperature, and {e,} 
are independent and identically distributed random variables with location 0 
and unknown spread a. 

Whether we decide to parameterize the mean structure by (1.14), (1.15), or 
(1.16), we complete the model specification by modeling the random variation 
about the conditional mean response. In the absence of outliers in the response, 
it is common to assume that the errors {e,} have a Gaussian distribution. 
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Formally, in the case of (1.16), we write 

^ = | / ( y ; a, /?„ f!2, a) = ft 1 4>(^±zll*» ~ ^ , -oo < y; < oo: 

a, £„£ 2 e[R, <7>0>, 

where $(x) = (27r)~1/2 exp ( — x2/2). However, in accordance with the discussion 
in Section 1.2.4, with outliers present in the data, we may assume a contaminated 
version of this Gaussian regression model, namely 

» = J0(y;<x,j81,/J2,(T,e,c) = _n 

-oo < yt < oo; a, /iu yS2 e U, <s > 0, 0 < e < 1, c e %\. 

Obvious modifications to these models complete the specification of the 
two-way classification models. 

Note that in contrast to the situation in Section 1.1.3, the explanatory 
variables in (1.16) were chosen by the experimenter and so are not stochastic. 
In this context, the model represents the distribution of the response and the 
issue of specifying a conditional as opposed to a joint model does not arise. 
It also means that the possibility of outliers in the explanatory variables does 
not arise. This affords considerable simplification in both the modeling and the 
analysis of these data. 

Both the regression model (1.16) and the two-way classification models (1.14) 
and (1.15) are particular cases of the general linear model which are dis-
tinguished by the different ways they represent the mean structure. The different 
representations correspond to treating the explanatory variables as qualitative 
(the two-way classification model) or as quantitative (the regression model). The 
two-way classification model is less informative (it describes the value of the 
response surface at the observed levels of the explanatory variables but does 
not describe the overall surface) but more flexible in that it has 15 parameters 
in the mean compared to 3 in the regression model. Generally, if the explanatory 
variables are quantitative and we can find a simple functional form for the 
conditional mean structure, the regression model is preferable to the two-way 
classification model. 

PROBLEMS 

1.2.1. For each of the following problems, discuss briefly whether the conditions 
for a binomial model are likely to be met or not: 

(1 - e) - 0 + ec(yi) 
( T V O 
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(a) The number of street lights along a road which fail. 
(b) The number of times an operator commits an error in 10 trials of a 

new machine. 
(c) The number of people who smoke in a sample of size 30 drawn 

without replacement from a population of size 300. 

(d) The number of people who smoke in a sample of size 30 drawn 
without replacement from a population of size 30,000. 

(e) The number of wallabies trapped on an island. 

1.2.2. The conditions for a Poisson model for the number of events which occur 
in a set time, area or volume are: 

(a) The number of events which occur during nonoverlapping intervals 
are independent random variables. 

(b) The distribution of the number of events during any interval depends 
only on the length of the interval and not on the endpoints of the 
interval. 

(c) For a sufficiently small interval, the probability of obtaining exactly 
one event during that interval is proportional to the length of the 
interval. 

(d) The probability of obtaining two or more events during a sufficiently 
small interval is negligible. 

For each of the following problems, discuss briefly whether the conditions 
for a Poisson model are met or not: 

(a) The number of telephone calls in set time periods. 
(b) The number of car accidents at an intersection during set time 

periods. 

(c) The number of car accidents in a day in Sydney. 
(d) The number of stars in a fixed volume of sky. 
(e) The number of times a word is used in a text of set length. 

1.2.3. The Diabetic Retinopathy Study (1976) reported the data given in Table 
1.8 on eyes recovering from severe visual loss. Propose and justify a model 

Table 1.8. Incidence of Recovery from Severe Visual Loss 

Untreated Treated 

Number of eyes with evidence of recovering 
visual acuity 10 12 

Number of eyes 82 42 

Reprinted with permission from The American Journal of Ophthalmology 81 (1976), 383-96. 
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which can be used to make inferences about the probability of recovery 
from severe visual loss for untreated eyes. Discuss any difficulties which 
arise in trying to compare the probability of recovery from severe visual 
loss for untreated with treated eyes. 

1.2.4. Reparameterize the binomial model (1.1) in terms of the parameter 
9 — log {7Cn/(l — n11)}. Hence or otherwise, parameterize (1.2) in terms 
of 9 and A, where 9 = log {nn/(l — ftn)} and 6 + A = log {ft2i/0 — ^21)}-
Interpret this parameterization. Can you see any advantages for this 
parameterization? 

1.3 CLASSES OF MODELS 

The models proposed in Section 1.2 have a number of important features in 
common. Rather than deal separately with every single model we encounter, it 
is useful to group models with similar features into classes of models for which 
we can obtain general results which can then be specialized to particular cases 
of interest. 

1.3.1 The Exponential Family 

A useful and important class of models is the k-parameter exponential family 
model which is given by 

& = | / ( z ; 6) = f l exp l^afa) + ■■■ + ^ ( z . ) + 4> + 6(z,)], z e Z\ 

0 = ( ^ , . . . , ^ , 0 ) e n j . (1.17) 

Here au... ,ak and b are known real valued functions and il is chosen so that 
f(-;9) integrates to 1 for each 9 e Q. A number of common models including 
the binomial (1.1), exponential (1.3), gamma (1.5) and Gaussian models (1.8) 
and (1.10) are in the exponential family. For example, for the binomial model 

& = \f(z;n) = (r )nz(\ - it)''2, z = 0 , 1 , . . . , r: 0 < n < 11, 

we have 

' r 
log/(z; 7t) = z log n + (r — z) log (1 — ft) + log 

\z, 

= z l o g ( T ^ ^ J + r log( l - f t ) + l o g r j , z = 0,l,...,r, 0 < f t < l , 
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so k = 1, at(z) = z, t/̂ ! = log {n/(l — n)}, and (j> = r log (1 - n). (Notice that 
n — 1 here; this is the reason we use r, not n, to denote the number of subjects.) 
Similarly, for the Gaussian model 

P = | / (z ; n, <x) = f l - ( ^2)I7I e xP | ~~^T~ L - « < 2i < oo: I* e R, a > o l . 

we have 

log f(z; n, a) = „ 2 
(z^ /0 2 _log(27ia 2 ) 

2a2 2 

log (2na2) + ** 

z2 + ( 4 V - ~ ~. 9 = (-«> ' 2 ) e R x 

so /c = 2, a^z) = z2, a2(z) = z, <Ai = ~~ l/2ff2, iA2
 = /Vff2 ar>d 0 = — (log (2na2) + 

H2/o2)l2. 
The Weibull model (1.6) considered in the pressure vessel example is not in 

the exponential family. For this model 

j r = | / ( z ; K, X) = f l Kl(kzty-1 exp {-(Az,)"}, z, > 0: A > o j 

so 

log f(z; K, A) = K log (z) - AKzK - log (z) + K log (/) + log (K), z > 0; / > 0, 

but this is not in the exponential family when K is unknown because then zK is 
not a known function. 

1.3.2 The Location-Scale Family 

A second useful and important class of models is the location-scale model 
which is given by 

& = \f{z\fi,&)= f ] -hi-'■■■—-], -oo <z,. < oo,/ie(R,(T>oi. (1.18) 

where h is a fixed known density function. The effect of changing fi is simply 
to shift the distribution, so we call /i a location parameter. The effect of changing 



26 STATISTICAL MODELS 

a is to make the distribution more or less concentrated, so we call a a scale 
parameter. If the scale a is known we call !F a location model and if the location 
fi is known we call S- a scale model. The Gaussian model (1.8) is a special case 
of a location-scale model with h(z) = $(z) = (2n)~112 exp ( —z2/2); (1.10) is a 
scale model. The exponential model (1.3) is a scale model with scale parameter 
a = /.~l and h(z) = exp(— z). The gamma (1.5) and Weibull (1.6) models 
are not location-scale families because they include an unknown shape 
parameter K. 

1.3.3 Classification of Models 

In most of the models we have considered so far, the parameter space fi has 
been a subset of the finite dimensional Euclidean space Uk with k small and 
finite. Such models are said to be parametric, and the problem of making 
inferences about the parameters in such models can be described as a parametric 
problem. However, as we saw in Sections 1.2.4 and 1.2.5, not all statistical 
problems are of this type. By way of another example, suppose that we consider 
a location-scale model (1.18) but that we treat the density function h as an 
unknown parameter. Formally, let J f be a nonempty class of density functions 
and set 

& = < /(z; n, a, h) = f\ -h\^~!-\, -oo < z, < oo: fie U, a > 0,/J e J^i. 

If J f is the class of all distributions which are symmetric about the origin, then 
the parameter space is the product of a two dimensional Euclidean space and 
an infinite dimensional space of density functions. The problem of making 
inference about the infinite dimensional parameter h is a nonparametric 
problem. The situation in which h is a nuisance parameter and we want to make 
inference about the finite dimensional parameter (fi, a) is a semiparametric 
problem, although in the literature this is often also referred to as a nonparametric 
problem (see for example Sections 5.1.1, 6.9.1-6.9.3). Throughout this book, 
with the exception of Section 1.5 and Chapters 5 and 6, we will focus on 
parametric problems, though much of our discussion is also relevant to the 
intrinsically far more complicated nonparametric and semiparametric problems. 

1.3.4 Models Incorporating Explanatory Variables 

The classes of models considered above all treat the observations as realizations 
of independent and identically distributed random variables. Models for data 
with neither of these attributes are important and widely used in practice. 
For example, if in addition to our observations Zt we have covariate information 
x; on the ith unit, i = 1 , . . . , n, which is either observed without error or known 
(i.e., nonstochastic), we can allow the parameters in the model to be functions 
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of x. Thus for the one parameter exponential family model which, from (1.17), is 

& = | / ( z ; 6) = f l exp [^fl(z,) + 4> + fc(z,)], z e JF: 0 = («A, </>) e Q 

we can allow i/̂  and/or <f> to depend on x. If we let g(EZ) = g*(\l>) = xT/?, 
for a known link function g, we obtain the important class of generalized linear 
models (McCullagh and Nelder, 1989). The regression models (1.9) and (1.16) 
as well as the two-way classification models (1.14) and (1.15) are in this class. 

Similarly, for the location-scale family model (1.18), with p. = p(x), we obtain 
the regression model 

P = \f{&n,o)= f\ -h(Zi~ ^Xi)\ -oo < z f < oo:peJt,<j>Q)\. 

We can take p(x) = xTy to obtain a linear regression model like (1.9) and (1.16) 
or a two-way classification model like (1.14) or (1.15). We can also take p(x) 
to be a nonlinear function known up to a finite number of unknown parameters 
to obtain a nonlinear regression model or p(x) an unknown parameter in a space 
Jt of smooth functions to obtain a nonparametric regression model. More 
generally, we can let a be a function of the covariates too (usually not linear) 
so that if h is treated as a parameter we can have up to three distinct infinite 
dimensional parameters in the model. 

1.3.5 Temporal Dependence 

Dependence arises commonly in models for data which is developing in time 
or has a spatial arrangement. For example, a useful model for temporal 
dependence is provided by the autoregressive process {Z,} which has the 
property that the j'th observation depends on the (i — l)th observation and an 
independent innovation. Explicitly, for \p\ < 1, 

z'~N(*rr?) 
and 

Zf - [i = p{Zi.l - n) + ffl/j, i = 2,...,n, 

with {Ui} a sequence of independent Gaussian random variables with mean 0 
and variance 1. The observations are clearly dependent and in fact the 
autocovariance function 

a2pw 

1 - p2 
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The model can be written as 

(l^P2)1'2 

(2na2) & = \ / ( z ; H, P, ff) = 7^_2M/2 e x P 
( l - p ^ z . - ^ y 

X 11 -T77^exP 
M(27KT2)1'2 

2(72 

{z,--/i-p(zi ,1-/j)}2 

2a2 , — oo < z, < oo:^eR,a > 0>. 

(1.19) 

1.3.6 Cluster Dependence 

A useful model which allows for independent clusters in the data with constant 
positive correlation within clusters can be written as 

Zij = M + A; + Uij, l , . . . , m , i' = 1,... ,#, 

where the /l, are independent with identical Gaussian distributions with mean 
0 and variance a2 and are independent of the Utj which are themselves 
independent with identical Gaussian distributions with mean 0 and variance 
<T2. The Aj are called random effects and are sometimes of interest in their own 
right; in other problems, the so-called variance components a2 and a2 are of 
interest. This model entails 

Cov (Z(j, Zkl) = 

v2 + a2 if i = k,j= I 

\n = kj* i 

i f i* fc . 

Moreover, if we let £ denote the block diagonal matrix with blocks a2J + a2I, 
where J is the m x m matrix with all elements equal to 1 and / is the m x m 
identity matrix, we can write the model formally as 

& = | / ( z ; [x, oa, ffJ = _ _ L £ _ exp {-(* - ^ ) T E " \ z - p)/2\, 

-oo < Zij < oo: ne U, aa > 0, au> 0\, (1.20) 

where zT = (z11( z12, • . . , zim,..., zgm). Obviously, any multivariate Gaussian 
distribution with a nondiagonal covariance matrix is a possible model for 
dependent data. The technique of introducing a random variable in common 
to a group of random variables is a very useful way of modeling clustering. 
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1.3.7 Paired Dependence 

The Gaussian models (1.8) and (1.9) for the effect of caffeine derived in Section 
1.2.3 can be derived from models like (1.20). Suppose that the effect on the ith 
subject of treatment t is 

Zit = x + fit + Ai+Ui„ r = 0,l, i=\,...,n, (1.21) 

where the Ai are independent with identical Gaussian distributions with mean 
0 and variance a2 and are independent of the Uu which are themselves 
independent with identical Gaussian distributions with mean 0 and variance 
a2. In this model, the random variable At represents the effect of the ith subject, 
so a2 is the between subject variance, and the random variable Uit represents 
the within subject error so a2 is the within subject variance. Differencing the 
data leads to 

Z, = Zn - Z;o = n + Un - Ui0 = n + Uh i=l,...,n, (1.22) 

where t/f are independent Gaussian random variables with mean 0 and variance 
a2 = 2a2. The model (1.22) is identical to (1.8). In the differencing approach, 
we see from (1.22) that we eliminate and then ignore A( so the distribution of 
A( can be allowed to be arbitrary. (See also Section 6.1.1.) 

The model (1.9) can similarly be derived from 

Yit = a0 + at + pzit + At + Vit, £ = 0,1, i = l , . . . , n , 

where the A( are independent with identical Gaussian distributions with mean 
0 and variance a2 and are independent of the Vu which are themselves 
independent with identical Gaussian distributions with mean 0 and variance a1. 

PROBLEMS 

1.3.1. Show that the gamma model (1.5) is in the exponential family. 

1.3.2. Establish whether the Poisson model (5d in the Appendix) 

^ = j / (yU)=n— ' x ^ iy i = o,u2,..,.x>o\ 
I i=i y?- ) 

and/or the negative binomial model (5e in the Appendix) 

& = \f(z;n) = (Z~ )7tr(\ -ny-r,z = r,r+ l,...:0<n < 1 
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are in the exponential family. What about the other forms of the negative 
binomial model given in (5e) in the Appendix? 

1.3.3. Determine which of the following density functions give rise to models 
in the exponential family and/or the location-scale family and which 
do not. 

1. f(x; 6) = exp {-2 log (9) + log (2x)}/(0 < x < 9); 0 > 0. 

2. f(x;e) = 2^X + e \ 0 < x < l ; 9 > 0. 
1+20 

r / v + l 

3. f(x; a, v) 
x2 ■ ) < v + l ) / 2 ' 

— oo < x < oo; <T > 0, v > 0. 

4. f{x; a, p) = r ( g + Q x"~ \\ - x/" l , 0 < x < 1; a > 0, j8 > 0. 
r(a)r(p) 

1.3.4. Consider the general regression model 

Yj = g(Xj) + eJt 1 <j<n, 

where {x^} is a known sequence of p-vectors and {e,} is a sequence of 
independent and identically distributed random variables with distribution 
function F. For each of the following models, specify the dimensions of 
any unknown parameters and then classify the possible inference problems 
associated with the parameters as parametric, semiparametric, or non-
parametric. 

1. g{x) = x'A F = N(0,1) 
2. g(x) = x'l, F = N(0,o-2) 
3. g(x) — x'P, F = a symmetric distribution 
4. g(x) - a smooth function, F = N(0,1) 
5. g(x) = a smooth function, F = N(0, a2) 
6. g(x) = a smooth function, F = a symmetric distribution. 

1.3.5. Suppose that for the ith subject in the Diabetic Retinopathy Study 
receiving argon treatment in one eye (see Section 1.1), we observe (yh x,), 
where y; = 1 if the treated eye suffers severe visual loss in 2 years and 0 
otherwise, and x, = 1 if the untreated eye suffers severe visual loss within 
2 years and 0 otherwise. Changing notation from that used in Section 
1.2.1 for simplicity, we can regard the data for n subjects as n independent 
realizations of (F, X), where Y has a binomial(l, 9) distribution and 
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X has a binomial(l, i]) distribution. One way to take the possible 
dependence of eyes from the same subject into account is to represent 
the distribution of (Y, X) as a multinomial distribution with four 
outcomes (1,1), (1,0), (0,1) and (0,0) with associated probablities jr^, 
n;10, 7i0i and 7r00. Express 0 and rj as functions of 7in, nl0, n0l and 7r00. 
Show that 

Cov(Y,X) = 7in -r\0. 

and hence that 

7 i n = ; . + 0>j, 7t,0 = 0(1 - »j) - ; . 

n0l = n(l - 0) - A, TT00 = (1 - f/)(l - 0) + A, 

where A = Cov (Y, X). Write down the joint distribution of (Yh X,), 
1 < f < n, in the (7r11; 7t10, n0l, n00) parameterization and then in the 
(0, r/, A) parameterization. Interpret the parameters (0, rj, A). 

1.3.6. Consider a two-state Markov process {Z,} which takes on the values 0 
or 1 only. Suppose that Z0 = 1 and the probability of transition from 
state j to k is given by 

p{zl+1 = k\z,=j} = ekJ, 

where BOi + 0Xj— 1 for j = 0 and j= 1. Suppose that we observe 
realizations of Zl5 Z 2 , . . . , Z„. Use the fact that we can always decompose 
a joint distribution into a product of conditional distributions as 

f(z; 0) = f(z0; 0)f(Zl | z0; 0)/(z21 z „ z0; 0) ■ • • /(z„ | z„_ , , . . . , z0; 0) 

and a Markov process satisfies f(zk \ zk^ 1 ; . . . , z0; 0) = / (z t | z^^,; 0) for 
every k > 1, to write down a model for the joint distribution of 
(M00, M10, Ai01, M n } , where Mtj- is the number of transitions from j to k. 

1.4 STATISTICAL INFERENCE 

The components of the inference problem are 

• a substantive question 
• data L which we interpret as a realization of a random variable Z with a 

distribution F0 

• a model J5" for F0. 

The objective of inference is to answer the substantive question by reformu-
lating it as a question about the underlying distribution F0 and then using the 
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data z, the model J* and any other information we have to answer the question 
about F0. The kinds of questions we ask about F0 are typically of one or both 
of two types: 

• Is F0 e IFI i.e. can the model be viewed as a reasonably close approximation 
to the data generating process? 

or 

• Can we determine a set of plausible values for a parameter 0(Fo) or can 
we determine whether a particular value of a given parameter 6(F0) is 
plausible? 

The answers to these questions are derived from the data through the 
calculation and interpretation of the realized values t(z) of statistics f(Z), which 
are functions of the data which do not depend on any unknown parameters. 

1.4.1 The Abstract Framework 

Most theoretical discussion of inference is concerned with the problem of 
providing inferences to address questions about the model & which is assumed 
to hold exactly so that F0 e 3F. (This assumption is useful both in developing 
inference procedures and for evaluating their theoretical properties under ideal 
conditions but, in practice, it is best to think of a model & as a useful 
approximation rather than as an exact description of the data generating 
process.) The point of departure is this abstract framework but without 
reference to the substantive question or other contextual information. Attention 
is focused on how we choose and then use statistics to explore the model 
questions, how we assess the uncertainty in our conclusions, and how we 
interpret the results. This abstract framework emphasizes the wide applicability 
of statistical inference and is convenient for an idealized mathematical discussion 
of the properties of inference procedures but avoids many important issues 
including how and why models are formulated, how models are interpreted, 
how model questions are formulated, data collection, and the existence of 
unquantifiable uncertainties in the final inferences. An advantage of introducing 
data into theoretical discussion is that it forces us to confront these issues. 

1.4.2 The Scope of Inference 

A characteristic of statistical inference is the fact that we usually want any 
conclusions we reach about a substantive question to apply more broadly than 
to the present data z. For this to be possible, we need to be able to relate the 
present data z to at least similar sets of observations, similar experiments etc. 
We achieve this by treating z as a realization of a random variable Z whose 
underlying distribution F0 describes the mechanism generating Z and thereby 
the scope of the inference. 



STATISTICAL INFERENCE 33 

In assessing the scope of an inference, it can be useful to think of F0 as 
describing a population of possible observations (or units on which observations 
can be made) from which the observations in our data set are selected. In this 
framework, inferences about F0 are conclusions about the underlying population. 
We usually distinguish between two types of population of interest: 

(1) Finite existent populations, such as people meeting the eligibility criteria 
for the Diabetic Retinopathy Study at a specified time and place, pressure 
vessels produced at one plant on a given day, or healthy 18-22 year old 
male students attending a specified college on a specified date. 

(2) Hypothetical populations, such as past and future people meeting the 
eligibility criteria for the Diabetic Retinopathy Study, past and future 
pressure vessels produced by the same process, or healthy 18-22 year 
old male students. 

It is precisely the vagueness and flexibility inherent in the notion of a 
hypothetical population that makes this interpretation useful. 

Deming (1950, 1953) classified studies of underlying populations as either 
enumerative or analytic according to whether the objectives of the study can, 
at least in principle, be achieved without error or not. Studies of hypothetical 
populations are always analytic but studies of finite existent populations can 
be either analytic or enumerative. For a finite existent population, we can in 
principle create a list (called a frame) of every unit in the population. If we 
observe every unit in the frame, we can make precise statements about the 
population. That is, there is no uncertainty about the conclusions. In this case, 
the inferences are enumerative. If however, we are interested in reaching 
conclusions which apply not only to the present finite existent population but 
also to other similar (possibly hypothetical) populations in a different time or 
place, then, by definition, no frame can be constructed and we cannot eliminate 
uncertainty by observing the entire population. In this case, the inferences are 
analytic. 

Even in a enumerative study of a finite existent population, it is generally 
impractical to make observations on the entire population, so we observe a 
subset or sample of units from the population. Since we require conclusions 
reached on the basis of the observations in the sample to apply to the entire 
population, we need to know the relationship of the sample to the population. 
This may be achieved if the sample is a random sample from the population 
in the sense that every possible sample has a calculable (but not necessarily 
equal) chance of selection (see Section 6.5.3) and/or the model incorporates 
this information (see Section 6.5.7). In the absence of an explicit model relating 
the sample to the population, a nonrandom purposive or convenience sample 
is only useful if it is "like" a random sample. This is a difficult nonstatistical 
judgement to make, and there are notorious examples of such judgements that 
have subsequently proved to be unfounded (see for example Bryson, 1976) so 
it is generally worth the effort to obtain random samples. 
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The examples we considered in Section 1.1, and indeed most scientific 
problems, are analytic studies because implicitly the population includes 
observations on presently unavailable and unspecified units. We can specify the 
hypothetical population by asking the question "Of what population can this 
sample be regarded as a random sample?" and then deeming this to be the 
population to which our inferences apply. Fisher (1922, p. 313) justified this 
process: 

It should be noted that there is no falsehood in interpreting any set of independent 
measurements as a random sample from an infinite population; for any such set of 
numbers are a random sample from the totality of numbers produced by the same 
matrix of causal connections: the hypothetical population which we are studying is 
an aspect of the totality of the effects of these conditions, of whatever nature they 
may be. (Reprinted with permission. Copyright © (1964) by the University of 
Adelaide.) 

To use an inference which has been justified in this way, we need to ensure 
that the data generating process either has not changed or has changed in a 
known way so that the current sample is relevant to future samples of interest. 
In other words, a random sample of current units is a convenience sample (in 
the sense that it is readily available) from the entire hypothetical population 
of interest and so may be very different (in unknown ways) from a sample 
drawn at a different time and place. These judgements are often not made 
explicitly though they are clearly important to any use of the inference. 

1.4.3 Predictive Inference 

A different formulation of the inference problem has been advocated by Geisser 
(1993, pp. 1-4) and others who argue that inferences about the unobservable 
parameters in a model should be replaced by inferences about observable future 
observations. For example, instead of making inferences about the typical time 
to failure of a pressure vessel or the typical change in the volume of urine 
produced by the ingestion of caffeine, we should formulate the problem as one 
of predicting time to failure of a pressure vessel or the change in the volume 
of urine produced by the ingestion of caffeine. An inference framework based 
on parameters does not preclude making predictions when it is natural (for 
example, in problems in which we can interpret the problem of making 
inferences about finite population parameters as a prediction problem (Section 
6.5), in time series problems, in regression problems such as if we want to predict 
the weight loss of enamel covered steel plates subjected to 10% hydrochloric 
acid for a specified time at a specified temperature and so on, but the predictivist 
approach asserts that we should only make predictions. 

The predictivist view is motivated by a desire to accommodate the approxi-
mate nature of models and to allow the possibility of validating the inferences. 
Although in a strict predictivist framework there is no need to formulate models 
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involving unknown parameters, it is usually simpler and more convenient to 
do so. In this case, inference about parameters can often be viewed as an 
intermediate step to prediction. In fact, inferences about parameters can also 
be viewed as a limiting case of predictive inference (because parameters are 
observable given all possible observations) and can therefore be a legitimate 
endpoint in predictive inference. This undermines the claims that predictions 
naturally overcome the approximate nature of models and can be readily 
validated. 

PROBLEMS 

1.4.1. Suppose we have a finite population of size N = 50 students in a statistics 
class and we want to estimate the proportion n who are doing science 
degrees. Note that Niz is an integer. Suppose we draw a sample of size 
n = 10 without replacement and we observe that z/n of these students 
are doing science degrees. Then the distribution of Z, the number of 
students in the sample doing science degrees is the hyper geometric 
distribution for which 

P{Z = z) = •—• -r . —, max (0, n-N(\ ~n))<z<min (n, Nn), 

0<n<\. 

On the other hand, if we sample independently with replacement, the 
binomial model is applicable. Find the expectation and variance of the 
statistic Z/n for the two situations. Use the problem of making inference 
about n in these two models to illustrate and explain the difference 
between an enumerative and an analytic study. 

1.4.2. Suppose that we are interested in comparing the median income of 
employed Australians in 1995 and 1990. Is this an analytic or an 
enumerative study? Justify your answer. Now suppose that we are 
interested in predicting the median income in 2000. Discuss briefly 
whether this is an analytic or an enumerative study. 

1.5 INFORMAL INFERENCES 

It is useful to distinguish between primary questions about J5" which relate 
directly to the substantive question of interest and secondary questions which 
relate to the nuisance aspects of a model (such as its shape) which support the 
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analysis but are not directly concerned with the question of interest. Secondary 
questions are of indirect but not necessarily lesser importance because analyses 
which focus purely on the primary aspects of a model may be invalidated by 
the failure of secondary assumptions. 

Answers to primary questions about J5" are usually provided through formal 
inferences which include an attempt to assess the uncertainty in the conclusion. 
Secondary questions can also be addressed formally but are often addressed 
through the use of graphical methods which provide simpler interpretations of 
deviations from an assumed model than formal inferences and often suggest 
changes to the model which result in better fit to the data. The analysis is 
informal in the sense that at best a vague attempt is made to quantify the 
uncertainty associated with the conclusions. This means that, in interpreting 
plots, we need to keep in mind that, even if the model is valid, sampling 
variability can generate apparent departures from the model. The problem is 
further complicated by the fact that models are approximations and therefore 
we should expect to see departures from candidate models. We need to judge 
the adequacy of models by interpreting and assessing the importance (in the 
context of the substantive problem) of these departures. The effect of informal 
inference is that any subsequent formal inferences use over optimistic assess-
ments of uncertainty. 

The main concern of informal inference is with the shape of the model 
distribution. For independent and identically distributed random variables 
ZU...,Z„, each Z, has the same underlying distribution. We can obtain 
information about the underlying distribution from the distribution of the data 
and, in particular, evaluate the appropriateness of the shape of the model 
by comparing the distribution of the data to the model distribution. These 
comparisons can reasonably be based on density, distribution, or quantile 
functions. We discuss generic methods based on these functions for a generic 
sample zt, . . . , z„ and illustrate them using the pressure vessel failure data 
(Section 1.2), before considering the remaining data sets from Section 1.1. 

For the pressure vessel failure times we considered the exponential model 
(1.3). Under this model, the density, distribution and quantile functions are 

f(x; X) = X exp (-Xx), x > 0, (1.23) 

F(x; X) = 

and 

f(t;X)dt = 1 - e x p (-/be), x > 0, (1.24) 
o 

Q(u;X) = F'\u;X)= - * l o g ( l - u), 0 < u < l , (1.25) 

respectively. An obvious difficulty in comparing these to other density, distri-
bution, and quantile functions is that we may need to specify the value of X. 
It is often sensible to use a range of reasonable values but when we need a 
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specific value, we set A equal to A = 1/z, where z = n ' £"=, z, = 575.53. (The 
reasons for this choice of A are discussed in Section 4.1.) 

1.5.1 Histograms and Densities 

The density of the data is readily obtained by calculating the relative frequencies 
with which the distinct z, in the data set are observed. That is, by calculating 

n 

Wi) = «~1 Z ,(ZJ = zf)> i = 1 , . . •, n, 
j = i 

where /(•) is the indicator function, 1(A) = 1 if A holds and 0 otherwise. This 
function is shown for the pressure vessel data in Figure 1.5. It consists of n 
spikes of equal height so is uninformative about the underlying density. 

We can achieve a more meaningful representation of the density by 
calculating the relative frequencies after grouping observations which are close 

Figure 1.5. Three representations of the density and the distribution function of the pressure vessel 
data: (a) density function; (b) density-scale histogram; (c) kernel density estimate; (d) distribution 
function. The superimposed curve is an exponential density in (b) and (c) and an exponential 
distribution function in (d). 
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to each other. The result is a density-scale histogram which, in its simplest 
form is constructed by choosing a regular grid of points over the range of the 
data such that xk = xk_t + 2h for some h > 0, constructing a set of bins 
Bh(xk) = [xk — h, xk + /i] which are of width h and centered at xk, calculating 
the number of observations in Bh(xk) and plotting 

1 " / 
/»*(**) = Z-T Z 7 

2nhi=i \ 
< 1 

the number of observations in Bh(xk) divided by 2nh against xeBh(xk). The 
histogram is a piecewise constant function which is often represented as a set 
of vertical bars as shown for the pressure vessel data in Figure 1.5. Its shape 
is affected by the choice of both the grid {xk} and the bin width or window width 
h. The exponential density (1.23) with X set to 1 is superimposed on the 
histogram. It is not easy to evaluate the approximation because the shape of 
the histogram depends on the choice of grid and/or window width and the 
histogram is not smooth like the exponential density. 

We can reduce the difficulty of having to choose the grid for a histogram 
and obtain a smoother representation of the density by letting the bins overlap 
and plotting the density fnh(x) for each x in the range of the data rather than 
for x = xk. The resulting curve f„h(x) = (2nh)~1 £"=i /{|(z, - x)/h\ < 1} can be 
made smoother by replacing the box kernel /(|w| < l)/2 by a continuous density 
function or kernel. For a general function K, we obtain the kernel density 
estimate 

nht=i \ n J 

The choice of K in a kernel density estimate is not critical and we can use the 
standard Gaussian density <p(u) = (2n)~112 exp ( — u2/2) for convenience. In 
contrast, the choice of h is very important. Plots of the kernel density estimate 
for the pressure vessel data for three choices of h are shown in Figure 1.5. 
The choice of h reflects a compromise between closeness to the density of the 
data represented by the relative frequencies /„(z;) (corresponding to h -> 0) and 
smoothness represented by K (corresponding to h -* oo). For many purposes, 
it is adequate to plot the kernel density estimate for different values of h to 
explore the effect of changing h and, if a single density is required, to choose 
one of these. A number of methods of choosing h are discussed by Silverman 
(1986, pp. 43-60). 

Both the histogram and the kernel density estimates in Figure 1.5 suggest 
that the density of the pressure vessel failure data is approximately exponential. 
However, we need moderately large samples to obtain good estimates of 
densities and this conclusion depends on the window width. Also, the density 
scale is not the best scale for comparing distributions visually. 
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1.5.2 The Empirical Distribution Functions 

As an alternative to comparing density functions, we can consider comparing 
distribution functions. We can sum or integrate any of the three densities 
presented in Section 1.5.1 to produce a distribution function. The easiest to 
work with and the most important is the sample or empirical distribution 
function obtained by summing the density of the data. The empirical distribution 
function is 

n 

F„(x) = n~x £ I(zj < x), ~oo < x < oo, 
1 = 1 

a step function with jumps at the distinct observed z, which exhibits the 
cumulative relative frequency of occurrence of each distinct observed z,. 

An important property of the empirical distribution which we will exploit 
subsequently (and one of the reasons it is so important) is that integrals with 
respect to the empirical distribution function are averages over the sample. In 
particular, for any function g we have that 

g(x)dF„(x) = n " ' ^ g(zt), 

so if we take g(x) = x, we see that the sample mean is the mean of the empirical 
distribution etc. 

The empirical distribution function for the pressure vessel data is shown in 
Figure 1.5 with the exponential distribution function (1.24) with ). set to 1 
superimposed. Working with the empirical distribution function enables us to 
avoid smoothing but we still need to specify A and it is still not an ideal scale 
for visual comparison. 

1.5.3 Quantile-Quantile Plots 

The empirical quantile function is the inverse of the empirical distribution 
function F„ which is defined to be 

F~l{u) = inf {x: F„{x) > u}, 0 < u < 1, 

to allow for the fact that F„ is a step function. It follows that 

, , - , , , Un.nu if nu is an integer 
F" ( w ) = 1 *u ■ 

U„.[Bu] + i otherwise, 

where znl < z„2 < ■ ■ ■ < z„„ are the ordered observations, otherwise called the 
order statistics. The quantile function is therefore equivalent to the order 
statistics. 
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For a model in the location-scale family (1.18), the distribution function is 
of the form H{(x — n)/o} with H known, and the quantile function is 

Q(u;n,a) = n + aH~\u). (1.26) 

If we were to plot Q(u; y., a) against Q(u; 0,1) = H~l(u), we would obtain a 
straight line with intercept fi and slope a. If we were to plot any other quantile 
function against / / ^ ( u ) , we would obtain a nonlinear curve. This is the basis 
for the quantile-quantile or qq-plot which is a plot of F'1^) against Hl(u) 
and which enables us to assess the quality of location-scale family models 
without having to specify values for fi and <r. Essentially, a linear relationship 
in the plot shows that the empirical distribution approximately satisfies the 
relationship (1.26) and deviations from linearity indicate departures from this 
form. There is some arbitrariness in the choice of the argument u to associate 
with zni but the common choices are (i — 0.5)/n or i/(n + 1). We will use the 
first choice and plot z„, against Q((i — 0.5)/n, 1). 

The exponential qq-plot for the pressure vessel data with H~l(u) = 
— log (1 — u) from (1.24) is shown in Figure 1.6. The plot is quite linear though 
the curve flattens out slightly in the top right hand corner. This means that the 
empirical distribution of the failure times can plausibly be approximated by an 
exponential distribution or perhaps by a distribution with a slightly shorter tail 

2 
Exponential Quantiles 

Figure 1.6. The exponential qq-plot for the pressure vessel data. 
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than the exponential distribution. We will consider modeling the failure times 
with either the gamma or the Weibull model to explore this issue further in 
Sections 4.2-4.3. However, models with slightly longer tails than the true 
distribution often lead to conservative inferences (see Chapter 5) so, for 
parsimony and simplicity, we may tentatively adopt the exponential model. 

We can also explore the appropriateness of the gamma model (1.4) for the 
pressure vessel failure time data. Under (1.4), the quantile function is nonlinear 
in the shape parameter K SO we cannot just use arbitrary values for K. We can 
choose a value for K graphically, by adjusting the value of K until a good fit is 
obtained or, possibly, by robust estimation (see Chapter 5). In any case, it is 
sensible to construct qq-plots for a range of values of K. An interesting feature 
of the gamma qq-plot is that the asymmetry of the distribution tends to force 
the lower quantiles to bunch up in the plot. A better plot is obtained by applying 
the Wilson-Hilferty symmetrizing transformation (see Section 4.1.10) to both 
axes, i.e. plot (Q*{(i - 0.5)/n}1/3, z„V3). 

Deviations from linearity in qq-plots indicate differences between the 
proposed model distribution and the empirical distribution. Selected possibilities 
are illustrated in Figure 1.7. If a small number of points in the top right and/or 

Figure 1.7. Examples of exponential qq-plots showing deviations from exponentiality: (a) good fit; 
(b) outliers; (c) long upper tail; (d) short upper tail; (e) clustering; ( / ) rounding. 
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bottom left corners of the plot depart from a straight line, we may conclude 
that the approximating distribution approximates the distribution of the bulk 
of the data but that there are outliers which it does not fit. Actually, qq-plots 
are least reliable in the tails so we should not be too quick to declare points 
to be outliers. If there is curvature at the end(s) of the plot, the empirical 
distribution has shorter or longer tails than the approximating distribution. An 
S curve indicates shorter tails while a chair shape indicates longer tails. (Outliers 
occur in the tails of the distribution, so tend to create a similar affect. The 
distinction between the two cases is based on the number of points causing the 
departure and the extent of their separateness from the bulk of the data.) 
If the approximating distribution is symmetric and one tail of the empirical 
distribution is rather different from the other, this will be reflected in the curve 
of the qq-plot. Finally, qq-plots can reveal rounding (horizontal steps) and 
clusters (gaps) in the data. 

1.5.4 The Effect of Caffeine 

The Gaussian model (1.8) for the effect of caffeine on the volume of urine voided 
assumes that the effect is additive. An informal check of this assumption can 
be made by examining a scatterplot of the paired differences against either the 
control or treatment value. An additive effect should result in a random cloud 
of points with no particular structure and exhibiting no relationship between 
the variables. For the urine data, Figure 1.8 supports the assumption that the 
coffee effect is additive in this data set. 

100 200 300 400 500 600 700 -2 -1 0 1 2 
Control Urine (ml/3hr) Gaussian Quantiles 

(a) (b) 

Figure 1.8. Exploratory graphics for the urine data: (a) additivity of the effect; (b) Gaussian qq-plot. 
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The model (1.8) also assumes that the pairwise differences are Gaussianly 
distributed. The qq-plot based on the Gaussian distribution is slightly curved 
in the left tail but otherwise roughly linear so the differences seem to come from 
a distribution which has a short left tail but is otherwise approximately 
Gaussian. If we adopt the conservative strategy of ignoring the left tail, we may 
proceed under the assumption that the differences can be modelled as inde-
pendent observations from a Gaussian distribution with unknown mean \i and 
variance a2. 

We cannot check the distributional assumptions of the simple regression 
model (1.9) relating the change in total catecholamine to the change in the 
volume of urine voided by examining a qq-plot of the response because we 
would be examining the marginal rather than the conditional distribution of 
the response. (The distinction between marginal and conditional distributions 
is not important if the explanatory variables are in fact nonstochastic, but then 
departures from Gaussianity cannot be separated from the effect of the changing 
mean structure so it is still not a suitable plot.) 

If we write the model (1.9) in the equivalent form 

y> = a + /?z, + eh 1 < i < 18, 

where {e,} are independent and identically distributed Gaussian random 
variables with mean 0 and unknown variance a2, we see that, aside from the 
linearity assumption, the distributional assumptions are invested in the un-
observed errors {e,}. Although we do not observe the errors, we can obtain 
information about them from the residuals obtained by computing estimates 
a and ft of <x and /J in the model, computing the fitted values 

j)f = a + /?z,-, 1 < (' < 18, 

and then the residuals 

n = yi - 9i = yi-&- hi, \<i< 18. 

If the model describes the structural aspects of the relationship between the 
response y, and the explanatory variable z,, then the plot of the residuals against 
the fitted values (or equivalently the explanatory variable) should show no 
structure in the sense that the points should be randomly scattered within a 
horizontal band about the x-axis. Deviations from this pattern in the residual 
plot indicate that the relationship is nonlinear, that the variation about the 
relationship is nonconstant and/or that outliers are present in the data; see for 
example Weisberg (1985, Chapter 6, especially p. 132). Once we have established 
that a simple linear relationship with constant variation about the linear 
relationship provides a satisfactory approximation to the structure of the 
data, we can use a qq-plot to examine the shape of the error distribution. We 
can also use the residuals to explore temporal and/or spatial dependence in 
the errors. 
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Fitted values 

(a) 

-1 0 1 
Gaussian Quantiles 

Figure 1.9. Diagnostics from the least squares fit of the simple linear regression model relating the 
change in total catecholamine to the change in the volume of urine produced: (a) residual plot; 
(ft) Gaussian qq-plot. 

The remaining problem is to construct a and ft. We will deal with this 
question in more detail later. Nonetheless, the least squares estimates which are 
obtained by minimizing the sum of the squared residuals 

XC^-a-fe)2 

often provide reasonable estimates of a and p. The residual plot and the qq-plot 
of the least squares residuals in Figure 1.9 show that the simple linear 
relationship with constant variability about the relationship is a reasonable 
approximation for these data and that the residual distribution is asymmetric 
with a shorter lower tail than the Gaussian distribution. 

The residual plot and the qq-plot of the residuals are often referred to as 
diagnostic plots. A number of other diagnostic plots have been proposed (see 
for example Atkinson, 1985, or Cook and Weisberg, 1994) but the residual and 
qq-plots are adequate for our present purposes. 

1.5.5 The Model for the Stellar Velocity Data 

We can examine the validity of the Gaussian model (1.10) for the stellar velocity 
data by constructing qq-plots for the three data sets as shown in Figure 1.10. 
We see that none of the distributions is exactly Gaussian. The disk and 
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Figure 1.10. Gaussian qq-plots for the stellar velocity data: (a) disk stars; (b) intermediate stars; 
(c) halo stars. 

intermediate stars have some extreme stars in the left tail but are otherwise 
Gaussian, whereas the halo stars have a slightly short left tail. The extreme 
stars mentioned in Section 1.2.4 are clearly different (by virtue of their extreme-
ness) from the rest of the stars. With the exception of the outliers, the qq-plots 
are roughly linear. The lines pass through or close to the origin and have 
increasing slopes as we move from the disk through the intermediate to the 
halo stars. This confirms the assumption that the velocity distributions have 
mean zero and that the spreads increase across the groups of stars. 

1.5.6 The Model for Corrosion Resistance 

The linear model (1.16) proposed for the steel plate data relates the corrosion 
resistance (on the log scale) to exposure time and temperature. We need to make 
sure that the response (for the bulk of the data) has constant variance, or 
consider either alternative transformations or a different model with non-
constant variance. We need to consider the possibility that the conditional mean 
structure assumed in the model for the bulk of the data may be too simple (i.e. 
we may need to include interaction terms xlix2i, quadratic terms x\t and/or 
x\t, or further nonlinear terms) or the model may be more complicated than 
we require (i.e., one of the explanatory variables does not have an effect of the 
response). 

The presence of outliers in the data can complicate the use of diagnostic 
methods based on the fitted values and residuals because the outliers can affect 
the parameter estimates (and hence the fitted values and residuals) in such a 
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way that they mask themselves. We therefore need to fit the model using 
methods which deal sensibly with outliers before we examine the diagnostics. 
This is the general topic of Chapter 5 and we will defer further discussion of 
(1.16) until Section 5.5. 

PROBLEMS 

1.5.1. Rutherford and Geiger (1910) observed the number of scintillations due 
to alpha particles from the radioactive decay of 2608 polonium samples 
in a fixed time interval of 7.5 seconds. Since the data is discrete, it is 
convenient to report the number of observed time intervals containing 
each number of particles. The observed data are given in Table 1.9. 

Physicists argue that the conditions for a Poisson model are met by 
radioactive decay so Z,, the number of scintillations from the ith sample, 
is a random variable with a Poisson distribution. That is, the data can 
be modeled by 

^ = { / ( y ; A ) = n A ^ e x P (
( ^ ) , y 1 . = = o , i , 2 , . . , A > o j , 

where X is the mean number of particles emitted in 7.5 seconds. A natural 
substantive question to ask is whether the data support the Poisson model. 
Hoaglin (1980) suggested plotting log fk + log (k\) against k for all k such 
that fk > 0 to obtain a plot in which linearity corresponds to Poissonness. 
Explore the validity of the Poisson model. 

1.5.2. Feinstein et al. (1989) reported data on counts of the number of micro-
bubbles of various diameters created by ultrasonic sonication of physio-
logic solutions. The diameters (in microns) are discretized to integer 
values. The counts were obtained by a scanning laser particle counter 
which produced rounded percentages of bubbles in each size class and 
the total number of particles/ml3. In one trial, 1792 particles/ml3 were 
observed with the distribution shown in Table 1.10. 

Table 1.9. Number of Scintillations in 7.5 Seconds and the Frequency of Occurrence 

k 

A 
0 1 
57 203 

2 
383 

3 
525 

4 
532 

5 
408 

6 
273 

7 
139 

8 
45 

9 
27 

10 
10 

11 
4 

12 
0 

13 
1 

14 
1 

Reprinted with permission from the Philosophical Magazine. Copyright (g (1910) by Taylor 
and Francis. 
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Table 1.10. The Distribution of Microbubble Size 

Size (urn) 1 2 3 4 5 6 7 8 9 10 
fk (rounded %) 13 16 20 18 14 11 5 1 0 1 

Reprinted with permission from Feinstein, S.B., Keller, M.W., Kerber, R.D. et al. Sonicated 
echocardiographic contrast agents: Reproducibility studies. J. Amer. Soc. Echocardiography 
2 (1989) 125-31. Copyright © 1989 by the American Society of Echocardiography. 

It may be helpful to add 0.1% to each frequency to ensure that the 
frequencies sum to 100%. Note that no bubbles of diameter zero can be 
observed. How would you modify a model which includes the zero class 
to obtain one which does not? Does a truncated Poisson model seem 
a priori reasonable for this kind of data? Use Hoaglin's plot (Problem 
1.5.1) to explore its validity. 

1.5.3. Suppose that the 20 pressure vessel measurements reported in Section 
1.1.2 were obtained in the order shown in Table 1.2. Plot the failure times 
against the order in which the experiments were carried out. What 
patterns in the plot would indicate dependence in the data? Do the data 
provide any evidence against the assumption of independence? 

1.5.4. Schmoyer (1991) gave the bursting times in hours of Kevlar 49/epoxy 
vessels subjected to a stress of 80% of an original estimated bursting 
strength. The data which were originally analysed by Barlow et al. (1984) 
are given in Table 1.11. Propose and explore the validity of simple models 
for these data. 

1.5.5. Use the data presented in Table 1.3 to develop separate models for the 
change in epinephrine and the change in norepinephrine due to the 
ingestion of caffeine. Interpret the parameters in your models. 

1.5.6. Use the data in Table 1.3 to explore the relationship between epinephrine 
excretion and the volume of urine produced. What do you conclude? 
Suppose there is a relationship between these two variables. Explain the 
difference between carrying out an analysis on the effect of caffeine 
on epinephrine excretion (i) ignoring the effect of volume changes and 

Table 1.11. Bursting Times of Kevlar 49/Epoxy Vessels 

19.1 24.3 69.8 71.2 136.0 199.1 403.7 432.2 
453.4 514.1 514.2 541.6 544.9 554.2 664.5 694.1 
876.7 930.4 1254.9 1275.6 1536.8 1755.5 2046.2 6177.5 

Reprinted with permission from Technometrics. Copyright @ (1991) by the American 
Statistical Association and the American Society for Quality Control. All rights reserved. 
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(ii) adjusting for the effect of volume changes. Formulate a model for the 
relationship which would enable you to adjust for the effect of volume 
changes in the analysis and interpret the parameters in your model. 

1.5.7. Use the data in Table 1.3 to explore the relationship between norepine-
phrine excretion and the volume of urine produced. Formulate a model 
for the relationship which would enable you to adjust for the effect of 
volume changes in the analysis and interpret the parameters in your 
model. 

1.5.8. For the enamel covered steel plate data presented in Table 1.5, calculate 
and plot the treatment means and medians against time using different 
symbols to represent temperature. Is there evidence of an interaction 
between the effects of time and temperature in the plots? Explore the 
distribution of the residuals from the means and the medians. 

1.5.9. Data from a second experiment of the type described in Section 1.1.5 but 
on a different type of enamel covered steel plate are given in Table 1.12. 
Repeat Problem 1.5.8 for these data. 

Table 1.12. Weight Loss in Enamel Covered Steel Plates 

Weight Loss 

(io-4g) 

143 
184 
203 
191 
216 
169 
212 
228 
245 
122 
153 
148 
146 
140 
197 
229 
209 
219 
243 
230 
219 

Time 
(hrs) 

4 
4 
4 
4 
4 
4 
4 
4 
4 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

Temp. 
(°F) 

160 
160 
160 
180 
180 
180 
200 
200 
200 
140 
140 
140 
160 
160 
160 
180 
180 
180 
200 
200 
200 

Weight Loss 

(io-4g) 

147 
207 
171 
253 
250 
217 
272 
265 
290 
194 
199 
181 
240 
253 
237 
217 
197 
196 
292 
197 
311 

Time 
(hrs) 

8 
8 
8 
8 
8 
8 
8 
8 
8 
10 
10 
10 
10 
10 
10 
10 
10 
10 
12 
12 
12 

Temp. 

(°F) 

160 
160 
160 
180 
180 
180 
200 
200 
200 
160 
160 
160 
180 
180 
180 
200 
200 
200 
200 
200 
200 

Reprinted from Statistics and Experimental Design: In Engineering and the Physical 
Sciences, Volume 1 (1964), p. 440. Wiley, New York. With the permission of the authors. 
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1.5.10. For the data of Problem 1.5.9, explore the relationship between weight 
loss, time and temperature, and formulate a model for the relationship. 

1.5.11. Proschan (1963) gave data on the times (in operating hours) between 
successive failures of air conditioning equipment in Boeing 720 aircraft. 
For one particular aircraft, the data were (to be read across): 

50 44 102 72 22 39 3 15 197 188 79 88 
46 5 5 36 22 139 210 97 30 23 13 14 
(Reprinted with permission from Technometrics. Copyright © (1963) by the American 
Statistical Association and the American Society for Quality Control. All rights reserved.) 

Noting that the data is essentially a time series, what plots would 
you use to examine the possibilities of autocorrelation and trends? 
Formulate and check the appropriateness of a model based on the 
exponential distribution. 

1.5.12. Computers generate random numbers which purport to be uniformly 
distributed on (0,1) (see 6f in the Appendix). For each initial number 
(called a seed), computer generated random numbers actually follow a 
deterministic sequence of finite length. In principle, for any seed, we 
could run the generator and determine the set of numbers exactly. 
Nonetheless, the sequence appears remarkably stochastic. (This is what 
is meant by chaotic behaviour.) Set up a stochastic model for computer 
generated random numbers and explore its validity using generated 
samples of size 10 and 100. What do you conclude? 

1.6 INDUCTIVE ARGUMENTS 

The inherent difficulties in developing appropriate methods for inductive 
arguments can be daunting. Induction, by its very nature, is uncertain. Statistical 
inference uses probability (expressed in and derived from the statistical model 
J*) in an attempt to quantify this uncertainty but, as we have seen, there are 
also unquantifiable uncertainties which cannot be ignored. In a sense, statistical 
inference shows the limits of what can be quantified about uncertainty and 
thereby emphasizes the need to assess nonstatistical features such as the 
reasonableness of a theory or the quality of the experimental technique, as well 
as the unquantifiable uncertainties which arise in the data collection process 
and the statistical analysis. No single inference should be viewed as definitive, 
but a sequence of results based on genuinely independent replication (ideally 
involving investigating the phenomenon by different means, from different 
viewpoints) can provide confirmatory evidence, the weight of which may 
ultimately be convincing. 
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FURTHER READING 

Cox and Snell (1981, pp. 33-50) is an excellent practically oriented introduction 
to statistics, which is well worth reading. More discussion of the role and 
interpretation of statistical models is provided by Cox (1990), Lehmann (1990) 
and Bernado and Smith (1994, pp. 237-238). The predictivist viewpoint is 
presented and developed by Geisser (1993). Hahn and Meeker (1993) discuss 
the practical requirements for statistical inference for both enumerative and 
analytic studies in some detail. The recent books by Cleveland (1993) and Cook 
and Weisberg (1994) discuss and illustrate the use of graphical methods in 
general and, in particular, in the context of exploring the relationship between 
a response and explanatory variables. 



C H A P T E R 2 

Bayesian, Fiducial, and Likelihood 
Inference 

Consider the problem of making inferences about the probability of severe 
visual loss within 2 years in untreated eyes in subjects meeting the eligibility 
criteria of the Diabetic Retinopathy Study and receiving argon treatment in 
the other eye. In the notation of Section 1.2.1, the data consist of the number 
of untreated eyes z n = 26 in a sample of size rv = 175 which experience severe 
visual loss within 2 years. We decided to model the data with the binomial 
model (1.1), which we restate for convenience as 

& = j / ( * n ; * n ) = r 1 W i ' ( l - n i i r - * " . zn = 0, 1, • • •, r,: 0 < J I U < l | . 

(2.1) 

In the context of (2.1), the problem is to make inferences about rcn. We begin 
by considering the approach to statistical inference presented by Bayes (1763) 
and developed further by Laplace (1774; 1812). 

2.1 THE BAYESIAN PARADIGM 

The Bayesian approach is based on the idea that we should treat j i n as a 
realization of an unobserved random variable which has a distribution with 
density g0. This stochastic interpretation of the parameter necessitates a 
reinterpretation of the model (2.1) as the conditional distribution of Z n given 
the parameter value nlv That is, we regard the data z n a s a realization of the 
unobserved random variable Z n given n^ and f(;nli) as the conditional 
density of Z n given rrn . As is natural in this framework, inference is based on 
the conditional distribution of nll given Z n = z u which is found from Bayes' 

51 

Aspects of Statistical Inference 
by A.H. Welsh 

Copyright © 1996 John Wiley & Sons, Inc. 
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theorem to have density function 

0(^11 l z u = z u ) G C / ( z i 1^11)00(^11) 

QC7t!Y(l-»t11)"-I"flio(«ii). (2-2) 

where the proportionality constant is chosen so the density integrates (or sums) 
to 1. We refer to the conditional distribution of nll given z n as the posterior 
distribution of 7rn. The posterior distribution can be used to derive specific 
probability statements about nxx or about functions of n11. In fact, in the 
Bayesian paradigm, all inferential statements about 7tu are derived from the 
posterior distribution so it represents a complete solution to the inference 
problem. 

2.1.1 The Likelihood Function 

Notice that the data z n appears in the posterior density only through the 
function 

f{zsl;n11)Kn\\>(l-nliy>-*" = K2
i
6
i(\-nuy

49, 0<ntl<l, (2.3) 

which is the model density evaluated at the observed data z n = 2 6 and viewed 
as a function of the parameters, in this case J I „ . This function is called the 
likelihood (Fisher, 1922) and plays a central role in statistical inference. The 
density of the posterior distribution is proportional to the product of the 
likelihood function and the density g0. 

2.1.2 The Prior Density 

The calculations to obtain the posterior distribution require knowledge of g0 

which is usually unknown. Thus in practice, it is necessary to assign a density g 
to be used in place of g0 in these calculations. Since this distribution has to be 
specified before we can proceed and is usually specified even before we collect 
the data, it is called a prior distribution for n. The interpretation placed on the 
resulting posterior distribution (and hence on the inferential statements derived 
from it) depends on the way we arrive at and the interpretation we place 
on the prior distribution g. (This issue is discussed in detail in Sections 2.2 
and 2.4.) 

For the analysis of severe visual loss within 2 years for the control eye of 
argon-treated subjects, lack of knowledge about the rate of severe visual loss 
makes it difficult to specify a prior. One possibility favored by Laplace for the 
binomial model in precisely this kind of situation (see Section 2.2.10) is to take 
the uniform prior g(n) = 1(0 < n < 1) to reflect our prior beliefs. 
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c 
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o 
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0.0 0.1 0.2 
71 

0.3 0.4 

Figure 2.1. The posterior density of it from a uniform prior. The 95% Bayesian credibility set for 
n lies between the dotted vertical lines. 

2.1.3 Analysis for the Control Eye of Argon-Treated Subjects 

Combining the likelihood (2.3) with the uniform prior g(n) = 1(0 < n < 1) as 
per (2.2), we obtain the posterior density 

# ( 7 t n | Z u = 26)cC7T?f(l - 7 T , , ) 1 0 < 71,! < 1. (2.4) 

The posterior density (2.4) is of the same form as the likelihood (2.3) and is 
recognisably the density of the beta(27,150) distribution (6e in the Appendix). 
The posterior density (2.4) is plotted in Figure 2.1. Given the data, our beliefs 
about 7rn are represented by a beta(27, 150) distribution and any specific 
statement we wish to make about 7TH is made by referring to this distribution. 

2.1.4 Parameter Estimation 

If we need to estimate a single plausible value for 7iu, we can calcu-
late the posterior mode of (2.4) which is 26/175 = 0.149 or the posterior 
mean of (2.4) which is 27/177 = 0.153. The posterior mode is the most likely 
value of 7rn given the data, whereas the posterior mean (also called the Bayes 
estimate) is the estimate 7ru which minimizes the posterior mean squared error 
E{(7cn — 7tn)21 z n } when n11 has the prior distribution g. 
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2.1.5 Credibility Sets 

The contours of the posterior density (2.4) define nested subsets of the 
parameter space called credibility sets which can be used to summarize the 
posterior distribution. The integral of the posterior density over any set in the 
parameter space gives the posterior probability that nn is in the set so we can 
choose the sets to achieve desired posterior probabilities. If the endpoints of 
the set correspond to contours of the posterior density, the points in the set 
will have higher posterior density than any point outside the set and the set 
can be called a highest posterior density credibility set. 

The beta(27, 150) distribution is unimodal so the 100(1 — oe)% credibility set 
is the interval [a, b~], where 

a26(l - a ) 1 4 9 = b 2 6 ( l - f e ) 1 4 9 (2.5) 
and 

1 - a = P{a < 7tn < b | Z n = 26} = B(b; 27, 150) - B(a; 27, 150), (2.6) 

where B(x; r, s) is the distribution function of the beta(r, s) distribution. (Clearly 
a and b are functions of both z n = 2 6 and a but we suppress this dependence 
in our notation.) Equation (2.5) ensures that a and b correspond to contours 
of the posterior density (i.e., the density at a equals the density at b) and (2.6) 
ensures that the credibility set has the specified posterior probability content. 
Equations (2.5)-(2.6) do not have an explicit solution but we can easily find a 
numerical solution. We find that the 95% credibility set for n^ is 

[0.10,0.21]. 

Given the data, we believe with posterior probability 0.95 that 7tu is in the set 
[0.10,0.21]. 

Single sets are generally of less interest than the family of sets indexed by a 
because the set of contours describes the surface. This relationship to the surface 
defined by the posterior density means that if we require a credibility set for 
a function of 7tu, we need to transform the posterior and calculate a 
new credibility set from the new posterior distribution; we cannot just transform 
the set. 

2.1.6 Comparing Independent Groups of Eyes 

Now suppose that we want to compare the two groups of control eyes. We noted 
in Section 1.2.1 that we can model the data for the two groups using separate 
binomial models which can be combined as in (1.2) to provide a single model 
for both groups. If the parameters 7rn and n2i for the two groups are a priori 
independent, they are also a posteriori independent and the joint posterior 
distribution of (rc^, n21) is the product of the two posterior distributions. Thus 
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if we use uniform priors for both n^ ^ and n2l, we can apply the result of Section 
2.1.3 and obtain the joint posterior density of (nllt 7r21) as 

0(7tn, n21 | z u , z21) cc 7tiV(l - nn)r ,"x , ,«?i*(l " niJ2'221, 

0<7TU, 7t21 < 1. (2.7) 

The marginal posterior density of the parameter of interest n = nll — n21 is 
obtained by making the transformation nx t = r\ + 0, n21 = 9 which has Jacobian 
1 in (2.7) (see 8 in the Appendix), integrating over 0 to produce 

h(n\zll,z21) 

(n + ey"(i -n-ey-z"ez2,(\ -ey2-*2>de if - l <n <o 

(?/ + 0)z"(l - » -0) r i ~ z "0 2 2 1 ( l - 0 ) r 2 ~ " ' d0 if 0 < n < 1 
o 

and then normalizing so that the integral of h(n | zluz2i) is 1. The marginal 
posterior density of n is then 

h (>? |Z i i ,Z2 i ) ( 2 g ) 

}L, h(ri\zll,z2l)dn' 

We can actually find the denominator in (2.8) explicitly because it follows from 
(2.7) that 

, T(r, + 2)I> 2 + 2) 

where T denotes the gamma function. 
Note that we obtain the same marginal posterior density for n if we first 

reparameterize (1.2) in terms of n and 9 so the likelihood is 

/ ( z n , z21; q, 0)cx:(n + 0)z"(l - r, - 0)"-*"0«'( l - 0 ) " - « \ (2.9) 

transform the prior distribution to 

g(n, 9) = /(0 < n + 9 < 1)7(0 < 0 < 1), (2.10) 

integrate the product of (2.9) and (2.10) over 0, and then normalize as in (2.8). 

We can use the marginal posterior density (2.8) to construct estimates of n 
or credibility sets for n once we have evaluated the integrals required for (2.8). 
In fact, the operation of integration is fundamental to Bayesian inference: We 
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integrate to evaluate the normalizing constant in the posterior density, the 
Bayes estimate and other posterior moments, the probability content of 
credibility sets, and marginal posterior distributions. Explicit integration is 
possible only in simple problems so in general we need to resort to numerical 
methods. We can consider using analytic approximations (which are discussed 
in Section 4.6), Monte Carlo methods (which are discussed in Section 6.8.5) or 
numerical integration. 

2.1.7 Numerical Integration 

Numerical integration methods for univariate integrals are based on approxi-
mating an integral by a weighted sum of the form 

"d k 

f(x) dx « X wJ(Xi). 
Jc > = 0 

We can either subdivide [c, &~\ into k equal subintervals of length Ax with 
endpoints x0, x l 5 . . . , xk and then choose the weights w1,...,wkoT choose both 
the endpoints x0, x1,...,xk and the weights. In the first case, we obtain methods 
such as Simpson's rule: 

f{x) dx * \ifix0) + 4 / (x , ) + 2/(x2) + 4/(x3) + 2/(x4) + • ■ • 

+ 4fixk„1) + fixk))Ax, (2.11) 

(for k even) which is exact when / is a quadratic or cubic polynomial, while 
in the second, we obtain methods such as the Gauss-Legendre formula 

fix) dx * W -c)£ * , / { & + d) + %d- c)x,}, (2.12) 
Jc i = 0 

where x, is the ith zero of the Legendre polynomial Pkix) and wt = 2/(1 — xf) x 
[Ft(Xf)]2, which is exact for polynomials of degree 2/c + 1 and less. The zeros 
and weights are tabulated in Table 25.4 of Abramowitz and Stegun (1970). 
Other choices of orthogonal polynomials lead to other approximations; see 
Abramowitz and Stegun (1970, Chapter 25). 

The simplest though not necessarily the most economical way to extend these 
methods to higher dimensional integrals is as 

f"2 {'l f{x1,x2)dx1dx2* £ £ Hf>wf f(x\l\ xf>), (2.13) 
JC2 J c i J~° '-° 
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-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 

Figure 2.2. The posterior density for r\ = nl, — n2l for independent uniform priors. The density is 
obtained by numerical integration using Simpson's rule. 

A detailed discussion of the use of numerical integration methods would take 
us far beyond our present scope but further discussion on the use of numerical 
integration (using the Gauss-Hermite approximation) in multiparameter Bayesian 
analysis can be found in Smith et al. (1985, 1987). 

In the problem of comparing the two groups of control eyes, we approximated 
the joint density off; given in (2.8) by applying Simpson's rule (2.11) with k = 96 
over a fine grid of r\ values. The marginal posterior density of r\ is plotted in 
Figure 2.2. 

PROBLEMS 

2.1.1. For the data from the Diabetic Retinopathy Study in Table 1.1, use 
uniform prior distributions to construct posterior distributions for the 
probability of severe visual loss within 2 years for the argon- and 
xenon-treated eyes separately. Plot the posterior distributions and con-
struct separate 95% credibility intervals for the probability of severe visual 
loss within 2 years. 

2.1.2. Use the results from Problem 2.1.1 to compare the probability of severe 
visual loss within 2 years for xenon- and argon-treated eyes. 
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2.1.3. The Poisson model 

JF-{/Cy^)°n/Wcy~il). y, = o,i,2,..,^>o| 

provides a reasonable model for Rutherford and Geiger's (1910) alpha 
particle data presented in Problem 1.5.1. Using a r(9, K) prior, obtain 
the posterior distribution and explore the form of the Bayes estimate 
and the posterior variance. Suppose from previous experiments, we 
known that X has a distribution with mean approximately equal to 3.5 
and variance 0.2. Find the gamma prior with these moments. Plot your 
prior and the resulting posterior distribution for X. What is the effect of 
the data on the prior information? 

2.1.4. Consider the binomial model 

J^ = \f(z; n) = [r \nz{\ - n)'-zz = 0, 1, . . . , r. 0 < n < 1 

Suppose we adopt the beta(a, b) prior for n and then observe z Is in r 
trials. Let Y denote the outcome of one additional trial, independent of 
the trials we have already observed. Find P{Y = 1 | z}. For the case 
a = b = 1, P{ Y = 1 | z} is called Laplace's rule of succession. Interpret the 
rule. What does the rule say about the untreated eye of a patient meeting 
the criteria for inclusion in the Diabetic Retinopathy study and receiving 
argon treatment in the other eye? Is Laplace's rule of succession sensible 
when r = z = 1? 

2.1.5. In the context of the binomial model of Problem 2.1.4, suppose that after 
observing z out of r Is, we make m further independent trials. What is 
the probability that we observe y out of m Is? 

2.2 PRIOR DISTRIBUTIONS 

The fundamental idea behind the Bayesian paradigm is that the unknown 
parameters should be treated as random variables. One argument for this idea 
is that all uncertainties (including those concerning the parameters) should be 
represented by probability distributions and this requires the parameters to be 
treated as random variables. A deeper argument given by de Finetti (1937) 
shows that stochastic parameters are in a sense intrinsic to model formulation. 
The argument is based on treating the data as a realization of exchangeable 
rather than independent random variables. 
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2.2.1 Exchangeable Random Variables 

One way to obtain the binomial model (2.1) is to consider an infinite sequence 
of binary random variables {A-,} taking only the values 0 and 1. If these random 
variables are independent with P(X{ = 1) = n, then the probability that in any 
finite subsequence {Xu . . . , Xr} of length r there are exactly z Is is 

PJ £ Xt = z\ = r V o - n)r~\ z = 0, 1 , . . . , r, 0<n<\. 

Aside from the reference to an infinite sequence of random variables, this is the 
standard derivation of the binomial model. 

Now suppose that we assume that the random variables {Xt} are exchange-
able rather than independent. This means that the random variables are 
identically distributed but dependent. Formally, an infinite sequence of random 
variables {A",} is exchangeable if and only if the joint distribution of any r 
variables in the sequence is invariant to permutation of the indices i. Sequences 
of independent and identically distributed random variables are trivially 
exchangeable but so are sequences like {Xt = Y(B}, where {Yt} is a sequence of 
independent and identically distributed binary random variables and B is an 
independent binary random variable. To see that {Xt} is exchangeable, 
notice that the X{ are dependent but are conditionally independent and identic-
ally distributed given B. It follows that the conditional distribution of any set 
of r of the Xt given B is invariant to permutation and hence that the 
unconditional distribution of any set of r of the X-, is invariant to permutation. 

The conditioning argument used above to establish exchangeability is quite 
general because conditionally independent and identically distributed sequences 
are equivalent to exchangeable sequences (see for example Taylor et al., 1985, 
Chapter 1). 

2.2.2 de Finetti's Theorem 

A consequence of the equivalence of exchangeability and conditional independ-
ence is that the probability of observing a specified sequence of exchangeable 
random variables can always be written as a mixture of the probabilities from 
the independent case. Specifically, de Finetti (1937) showed that, for any infinite 
exchangeable sequence of the binary random variables there exists a probability 
measure G0 on the interval [0, 1] such that 

P { I X, = z\ = j ' Q 7rz(l - it)'-* dG0{n). 

An elementary proof of this result is given by Heath and Sudderth (1976) and 
a general presentation is given by Taylor et al. (1985, Chapter 1). That is, for 
any infinite exchangeable sequence of binary random variables {X,}, there exists 



60 BAYESIAN, FIDUCIAL, AND LIKELIHOOD INFERENCE 

a random variable n with distribution G0 such that £J = t X, given TT has a 
binomial(r, 71) distribution so the concept of a stochastic parameter is intrinsic 
to the model. We call G0 either the mixing distribution or the true prior 
distribution. 

The case in which the sequence of random variables is independent is 
degenerate in the sense that the distribution G0 is a degenerate distribution 
putting all its mass on a single value of n. Thus in this case, we cannot produce 
a prior distribution, de Finetti argued that unconditional independence excludes 
the possibility of learning through experience because, by definition, independ-
ence requires the future to be unaffected by the past. He argued further that 
we need to assume some form of dependence and that exchangeability is often 
a reasonable assumption to make (de Finetti, 1970, Chapter 11). 

2.2.3 Interpreting a prior 

de Finetti's theorem provides a justification for the Bayesian formulation of 
the model but it does not tell us how to find g0 or how to interpret what 
happens when we use a different g in lieu of g0. 

If we have previous observations of the same type as the present data and 
the data generating process is either stable or changing in a known way over 
time, then we can estimate g0 and adopt a frequency interpretion for the prior 
and hence posterior distribution. In its simplest form, this means that we can 
think of a sequence of independent replications of the data generating process 
yielding realizations of n and then interpret the prior distribution as representing 
the limiting frequency of particular events involving n. (Frequency interpreta-
tions of statistical inference are discussed further in Chapter 3.) 

In the absence of previous observations, we regard a prior distribution as a 
mathematical expression of our degree of belief in propositions about n before 
we observe the data. There are two different approaches to selecting a prior to 
represent our beliefs: 

(1) Following Ramsey (1931), de Finetti (1937), Good (1950), Savage (1954; 
1961; 1962a), and others, we can choose a prior distribution to reflect 
the strength of our subjective beliefs about the parameters before we 
collect the data. A formal process of real or hypothetical betting games 
(which may be quite difficult to carry out in practice) can be used to 
quantify beliefs. Each individual is entitled to construct their own prior 
provided they follow the rules for self-consistent or coherent betting 
behavior in deriving the prior. 

(2) Following Jeffreys (1946; 1939/1961), we determine a prior distribution to 
reflect beliefs which, given the same information, any reasonable person 
ought to hold. In principle, this approach can produce a distribution in 
the absence of any information so that the prior describes a state of 
ignorance about the parameters. 
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These two approaches are sometimes described as the "subjective" and 
"rational" approaches but, if we use this terminology, we should avoid any 
pejorative implication. 

2.2.4 Prior Elicitation 

The process of determining an appropriate prior distribution to reflect subjective 
beliefs about unknown parameters is known as prior elicitation. 

A simple method is to construct a histogram by breaking the parameter 
space into intervals and assigning to each interval the probability with which 
we believe the parameter to be in that interval. In trying to assess the probability 
of severe visual loss within 2 years, we can break the interval (0, 1) into 10 
subintervals of width 0.1 and then assign probabilities to each of these. It is 
unlikely that 7rn will be large, so these intervals get low probability. We might 
assign highest probability between 0 and 0.3% though we might have anecdotal 
evidence (such as would be used in designing the study) which enables us to 
be even more specific. The precise probabilities to be assigned to the intervals 
can be determined from the odds we would be willing to bet (for stakes that 
are small but worth considering) that nir is in the interval. Another useful 
method is to try to specify selected quantiles of the prior distribution and then 
use as the prior a distribution which fits the quantiles. These and other 
approaches to prior elicitation are discussed in Berger (1985, Chapter 3). 

Whether we use the histogram, quantile, or any other method to elicit a 
prior distribution, we can consider introducing a convenient approximation to 
the prior distribution. The approximating distribution is usually chosen for its 
mathematical tractability but of course should still represent our actual prior 
beliefs. 

2.2.5 Conjugate Priors 

A useful class of priors for approximating prior beliefs about a binomial model is 
the beta(a, b) family of distributions which have density 

g(n)azna-l(l ~n)b'\ 0 < TI < 1. (2.14) 

To distinguish the known, fixed parameters a and b of the prior distribution 
from the unknown parameters of the model, the parameters of the prior 
distribution are sometimes called hyperparameters. The posterior distribution 
for this class of priors is 

g{n\Z = z)aznz+"-\\-n)r-z+b-1, 0 < vr < 1, (2.15) 

which is the beta(z + a, r — z + b) distribution. The prior and the posterior 
are in the same class of distributions so the prior is said to be conjugate 
for the model. For this to occur, the prior density must be of the same 
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Figure 2.3. The beta(a, b) family of prior distributions: (a) a — 1, 6 = 5; (b) a = 2, b = 5; (c) a = 4, 
b = 5; (d) a = 0.5, b = 0.5; (e) a = 1, b = 1; ( / ) a = 3, b = 3; (9) a = 5, b = 4; (b) a = 5, b = 2; 
( i )a = 5, b = 1. 

functional form as the likelihood function but with the data replaced by 
hyerparameters. 

The class of beta priors is quite flexible and can represent a wide range of 
prior beliefs. The uniform prior corresponds to choosing a = b = 1, large values 
of a = b correspond to a prior belief that n is near \, larger a than b corresponds 
to a prior belief that n is more likely to be large than small, and so on. Some 
of the possibilities are illustrated in Figure 2.3. 

Conjugate prior distributions are not always tractable but when, as in this 
example, they are, they have some nice features. One of these is that continued 
updating is straightforward. For example, if we continue to study the incidence 
of severe visual loss within 2 years, the posterior from the study we have already 
done can be used as the prior for the next study. By starting with the conjugate 
prior, we ensure that the posterior distribution is always a beta distribution so 
is reasonably tractable. Thus, if after the first study, our posterior distribution 
is beta(zj + a, rx — zt + b) and we observe z2

 o u t °f ri conversions in the 
second, the posterior becomes beta(zj + z2 + a, rt + r2 — zx — z2 + b). This 
updating process provides a nice model for learning from the accumulation of 
data. A second nice feature of conjugate priors (at least for exponential family 
models (1.17)) is that the Bayes estimate (Section 2.1.4) 

E(7T I Z) = 
z + a 

r + a + b r + a + b \rj r + a + b\a + b 

a + b 
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is a linear function of the sample estimate zjr of the rate of severe visual loss 
and the prior estimate a/(a + b) with weights determined by the values of the 
hyperparameters and the sample size. The posterior variance or precision also 
has a simple, intuitive structure. Thus we can see how the data combines with 
the prior information to modify our beliefs about n. 

2.2.6 Hierarchical Priors 

Although in theoretical discussions we avoid assigning specific values to the 
hyperparameters in (2.14), it is important to keep in mind that in any actual 
application we have to specify numerical values for the hyperparameters before 
we can use (2.15). If we do not want to commit ourselves to particular values, 
we can incorporate uncertainty about the value of the hyperparameters by 
treating the prior as the conditional distribution of the parameters given the 
hyperparameters and assigning a distribution (a hyperprior) to the hyper-
parameters (Good, 1975; Lindley and Smith, 1972). For example, we could treat 
the hyerparameters a and b in our beta prior as independent and uniformly 
distributed on [0, 2]. Then we have that 

h(a, b) = i/(0 < a < 2)1(0 <b<2) 

so the prior distribution for n is 

g{n) = -
4 . . . . 

We applied (2.13) with Simpson's rule (2.11) to approximate (2.16). The result 
presented in Figure 2.4 is stable over k = 6, 12, and 24. The density resembles 
the beta prior with a = b < 1 but is flatter in the middle. 

We can sometimes ensure that the prior distribution in a hierarchical 
specification has a convenient form by using a distribution for the hyper-
parameters which is conjugate to the prior. Thus for example, we might be 
prepared to assume that given the hyperparameter /x, log{7:/(l — n)} is a priori 
N(/i, 100) and that fi is N(0, 100). The marginal distribution of log{?i/(l - n)} 
is then N(0, 200) which incorporates the uncertainty about p. In this cir-
cumstance, it is feasible to extend the number of layers in the hierarchical 
model structure and increase the uncertainty in the prior by pushing the 
hyperparameter specification back to deeper levels in the hierarchical 
structure. 

2.2.7 Posterior Robustness 

If our beliefs about the parameters are sufficiently imprecise, it may be easier 
to determine a set of plausible prior distributions which are consistent with our 

r(a + b) 
„ fiaWib) 

l{\ -n)"-1 dadb. (2.16) 



64 BAYESIAN, FIDUCIAL, AND LIKELIHOOD INFERENCE 

p 

<n 

C O 

o 
•c 
ft- « 

q 

0.0 0.2 0.4 0.6 0.8 1.0 
7C 

Figure 2.4. The prior density for the hierarchical model in which Jt given a and b has a beta(a, 6) 
distribution and the hyperparameters a and b have independent U(0,2) distributions. The density 
is obtained by numerical integration using Simpson's rule. The dashed curve represents Jeffreys' 
prior. 

knowledge and beliefs than a single prior distribution. For example, in studying 
the incidence of severe visual loss within 2 years, we can consider the class of 
beta priors with a, be [0, 2]. An alternative to constructing a hierarchical prior 
is to calculate a posterior distribution for each prior. If the posterior distribution 
based on each of the prior distributions in the plausible class is similar, then 
the analysis is said to be posterior robust and the precise choice of prior in the 
plausible class is not critical. For the class of beta priors with a, be [0, 2], the 
posterior distribution varies over the class of beta(z + a,r — z + b) distri-
butions with a, be [0,2]. For large r and z, changing a and b has little 
effect on the posterior so the analysis is posterior robust. This is no longer true 
if r and z are small so we see that posterior robustness depends on both the 
observed data and the class of priors. Generally, if the class of priors is small, 
posterior robustness will usually obtain whereas if it is too large, posterior 
robustness will rarely obtain. Nonetheless, it is important that the class of priors 
covers a range of tail behavior consistent with the prior beliefs. This generally 
means that the class of conjugate priors is too restrictive and we need to extend 
this class by allowing mixtures of distributions. A detailed discussion of 
posterior robustness is given by Berger (1984; 1985, pp. 195-252). See also 
Section 5.8.4. 
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2.2.8 Vague Priors 

Prior distributions with support over the parameter space which have densities 
which are fairly flat over the support and dominated by the likelihood are 
variously called vague, dominated, or noninformative priors. For such prior 
distributions, the posterior distribution mainly reflects the effect of the data 
through the likelihood and is relatively insensitive to small changes in the prior 
and hence to the precise form of the chosen prior. Consequently, inferences 
based on similar vague priors are posterior robust in the sense of Section 2.2.7. 
The use of vague priors is often sensible in inference problems because the 
beliefs to be represented by the prior are usually fairly imprecise and we want 
the final conclusions to reflect the data rather more than the prior. 

2.2.9 The Principle of Precise Measurement 

The Principle of precise measurement (Savage 1962a, pp. 20-25) or the principle 
of stable measurement (Edwards et al., 1963, pp. 101-111) states that vague 
priors (in the sense of Section 2.2.8) which are strongly dominated by the 
likelihood can be approximated by locally uniform priors provided the resulting 
posterior density is integrable. Specifically, if 

(a) there is a region D such that the likelihood function is negligible outside D 

(b) within D the prior density g changes little 

(c) the prior density g is not substantially larger outside D than it is in D, 

then the prior distribution can be approximated by a uniform distribution. A 
schematic diagram of the likelihood and prior density in a situation in which 
the principle of precise measurement applies is shown in Figure 2.5. 

The generality of the principle is increased by noting that there may be a 
transformation of the parameters to a scale on which it applies. In this case, it 
is usually worth working with the parameters on the transformed scale. 

Typical problems in which the principle of precise measurement does not 
apply include those in which low prior probability is assigned to regions for 
which the likelihood f(z; n) is relatively large and those in which high prior 
probability is assigned to regions over which the likelihood f(z; n) is small. 
They also include problems in which both the prior and the data are diffuse 
so there is no region D clearly favored by the data. This occurs when the sample 
size is very small so the likelihood is not sufficiently dominant, or when there 
is no data as in the design stage of a study. 

2.2.10 The Principle of Insufficient Reason 

The discussion in Sections 2.2.4-2.2.9 on the problem of representing our prior 
knowledge and beliefs in a prior distribution assumed that we do have beliefs 
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Likelihood Function 

(On a different scale) 
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Figure 2.5. A situation in which the principle of precise measurement is applicable. The scale 
on the y axis is omitted because the likelihood function is not on the same scale as the prior 
densities. 

about the parameters. What happens if we feel we have no beliefs or we are 
reluctant to use our beliefs? The problem then is of trying to represent a state 
of ignorance about the parameters. This problem is as old as Bayesian analysis 
itself. Bayes (1763) gave an explicit argument for adopting a uniform prior 
distribution (sometimes referred to as Bayes' postulate) but a number of 
interpretations of this work are possible; see Stigler (1986, Chapter 3) and 
Geisser (1993, pp. 46-9). Laplace (1774) dealt with the problem by means of 
what later came to be known as the principle of insufficient reason or the 
principle of indifference (Keynes, 1921, p. 41). If we have a discrete parameter 
which can take on one of k distinct values and there is no reason to believe 
one is more likely than any other, then we should treat the outcome as equally 
likely. In other words, we assign equal probability or a discrete uniform 
distribution to the parameter space. In the continuous case, we assign a uniform 
distribution over the space of possible outcomes. This is the principle of 
insufficient reason: we should use uniform distributions unless we have good 
reason not to. As a consequence, we should use uniform distributions to 
represent ignorance. Note that this is a very different argument for the use of 
uniform priors from that presented by the principle of precise measurement in 
Section 2.2.9. 
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2.2.11 Jeffreys' Priors 

The greatest practical difficulty in the use of uniform priors is to decide on 
what scale a parameter can be taken to be uniform. One method for choosing 
the scale on which to assign the uniform distribution was developed by Jeffreys 
(1946). 

For a single observation Z from a model .'F = {f{z; 9), z e 2£; 9 e Q} for 
which 2£ does not depend on 9 and 8 log f(z; d)/89 exists and is finite for all 
z e 2C and 9 e Q, let 

We call 1(9) the Fisher information for 9. Jeffreys recommended that when we 
have no prior information about 9 we should choose our prior to be 

0(0) ex W 2 . (2.18) 

That is, the prior density is proportional to the square root of the Fisher 
information for 6 in a single observation. (The motivation for this recommenda-
tion is presented in Section 2.4.2.) 

For the binomial model (2.1), we have 

log f(z; n)ccz log (71) + (r — z) log (1 — n), 

or 
d log f(z; n) _ z n — z z — nn 

dn n 1 — 7t 7t(l — n) 

and hence by (2.17) 

'«-ifei)JC)^-«>-
= ( —- J Var(Z) 

Wl -n)J 
n 

~ 7 t ( l - 7 t ) ' 

That is, from (2.18), the Jeffreys prior is g(n) oc 7i"1/2(l — n)~112 which is a 
beta(l/2, 1/2) distribution. This can be interpreted as a uniform prior for 
arcsin(7r1/2). 

For large z and r, the beta(z + 1/2, r — z + 1/2) posterior distribution from 
the Jeffreys prior is very similar to the beta(z, r — z) posterior from the uniform 
prior so the inferences are not greatly affected by whether we choose the uniform 
or the Jeffreys prior. 
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PROBLEMS 

2.2.1. Suppose that we have a model of the form 

3F = {f(z; it): 0 < n < 1} 

and we adopt the prior g(n) oc I(n = n0). Obtain and then interpret the 
posterior distribution. Discuss whether or not this outcome is desirable 
in an inferential problem. 

2.2.2. One interpretation of the negative binomial model is that it represents 
the number of independent binomial(l, n) trials required to observe r Is. 
The model can be written 

& = \f{z; n) = (Z~ )nr(l - *)z~\ z = r, r + 1,. . . : 0 < n < 1 

Find the conjugate family of prior distributions for this model. Obtain 
the posterior distribution and explore the form of the Bayes estimate 
and the precision. Choose a conjugate prior to represent your beliefs 
about the probability that a tossed coin will come up heads. Toss a coin 
until you observe six heads. Plot your prior and the posterior distribution 
for it. What is the Bayes estimate of n in this case? Repeat the experiment 
and explore how it modifies your conclusions. 

2.2.3. One criticism of the use of beta priors with binomial models is that they 
are unimodal. This criticism can be met by using a prior distribution 
which is a mixture of beta distributions, i.e., the prior density is of the form 

g{n) = egB(it; a, b) + (1 - e)gB(n; c, d). 

where gB( ■; a,b) is the density of the beta(a, b) distribution. Show that 
this prior is conjugate for the binomial model. Find the Bayes estimate 
and the precision. Suppose that our prior beliefs about the rate of severe 
visual loss in untreated eyes in subjects in which the other eye is receiving 
argon treatment are represented by the above prior with £ = 0.7, a = 10, 
b = 20, c = 20, d = 10. Plot and interpret this prior. Find and plot the 
posterior distribution. Does the principle of precise measurement apply 
in this case? 

2.2.4. The truncated Poisson model 

1 ^ ' M j,,! 1 -exp(-i)}'-"' J 
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provides a reasonable model for the Feinstein et al. (1989) microbubble 
data presented in Problem 1.5.2. Find the conjugate family of distributions 
for this model. Is this a convenient family of distributions? Suppose from 
previous experiments, we know that X has a distribution with mean 
approximately equal to 3 and variance 0.1. Find the gamma prior with 
these moments and then obtain the posterior. Use numerical integration 
to normalize the posterior density. Then plot your prior and the resulting 
posterior distribution for k. What is the effect of the data on the prior 
information? 

2.2.5. The Poisson model 

^ = j / ( y ; ; 0 = n ^ e ^ z i ) , , i . = o , l , 2 , . . . , : A > o j 
I i=\ y?- ) 

provides a reasonable model for Rutherford and Geiger's (1910) alpha 
particle data presented in Problem 1.5.1. Find the Jeffreys prior for X. 
Find and then plot the posterior distribution of X | Z = z. Show how to 
find a credibility interval for X. 

2.2.6. Suppose we adopt the exponential model 

& = \f(y, Q=f\* exp (-Ay,), 0 < yf < oo: X > o l 

for Proschan's (1963) air conditioning data presented in Problem 1.5.11. 
Find the Jeffreys prior for X and then the corresponding posterior 
distribution of X | Z = z and hence of 0 = (1/A) log (2) | Z = z. Plot the 
posterior distribution for 6. Show how to find an exact 95% credibility 
interval for 9 and compare the posterior probabilities of H0: 8 <00 and 
H i : 6 > 60. 

2.2.7. Twelve random numbers generated on a random number generator are 
given below: 

0.86972163 0.83693480 0.79465413 0.32566555 0.01770435 0.97561784 

0.20400030 0.47204266 0.51425063 0.29038457 0.58089520 0.68833185 

The generated numbers are purportedly uniformly distributed on (0, 1) 
but may actually be distributed on a proper subset of (0, 1). That is, the 
data may be modeled by 

? = |/(y;0) = n \W *vi <d);0<eV 
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where /(•) is the indicator function, and we want to make inferences 
about 6. Show that 6 is a scale parameter. Use the prior g(9)cc9'lI(0<0) 
to obtain the posterior distribution of 6 | Z = z. Plot the posterior density 
and use it to derive a 100(1 — a)% credibility set for 8. Compare the 
posterior probabilities of H0: 6 > 1 and Hj.' 6 < 1. 

2.2.8. Suppose we are concerned with the lower endpoint of the distribution of 
computer generated random numbers which purport to be uniformly 
distributed on (0, 1). Suppose that the observations can be modeled as 
realizations of independent random variables with density 

^ = |/(y;8) = fl YZT*m<y:<iy,o<^<\\, 

where /(•) is the indicator function. The data are the same 12 observations 
as in Problem 2.2.7. Suppose we adopt the prior distribution with density 

g(0 = {a + 1)(1 - £>\ 0 < £ < 1 , a>-\. 

What kind of prior beliefs does this density represent? Find and plot the 
posterior distribution of t, | Z = z. Derive a 100(1 — a)% credibility set 
for£. 

2.2.9. Show that the predictive distribution of a single additional observation 
independent of the observed data under a model for which a single 
observation has density f(y \ X) satisfies 

P(y\i)= \f(y\k)g(k\z)Ak, 

where g(X \ z) is the posterior density of L In the context of Problem 
2.2.5, using the Jeffreys prior for X, find the predictive distribution of 
the number of alpha particles emitted in a fixed time interval of 7.5 
seconds, given the observed data. Plot the predictive distribution. 

2.2.10. Suppose we adopt the exponential model of Problem 2.2.6 for Barlow 
et al.'s (1984) pressure vessel failure data presented in Problem 1.5.4. 
Use the Jeffreys prior to find the predictive distribution of the time to 
failure of an independent pressure vessel. Plot the predictive distribution 
and show how to find an exact 95% Bayesian prediction interval for a 
single observation. 
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2.3 THE EFFECT OF CAFFEINE ON THE VOLUME OF URINE 

To develop the Bayesian paradigm further, consider the data presented in Table 
1.3 on the effect of caffeine on the volume of urine voided. We decided in Section 
1.2.3 to model the change in the volume of urine voided by the ingestion of 
caffeine using the Gaussian model 

& = j / ( z ; n, a) = f l T J ^ exp \ - ~ ^ r - [ > - ° ° < zi < °°: A* e R, <x > 0 

(2.19) 

The problem in the context of (2.19) is to make inferences about ft in the 
presence of the nuisance parameter a. 

2.3.1 The Likelihood Function 

Multiplying through and gathering terms in (2.19), we can rewrite the model 
density as 

1 f » (z, - tf* 
< 2 K ^ K ' P h ? 1 - 2 ^ 

f(z;n,a) = ^_ 2 „ 2 e x p j - E 

1 ( vs n(z — n) 

o~>r"°\-2?—*r->- ( 1 2 0 ) 

where 
n n 

z = n'1 £ Z,-, v = M — 1 and s2 = v~l ^ (z( — z)2. 
i = 1 i = l 

This is a convenient form for the likelihood function for (/z, a) which is 
obtained by replacing the argument z by the observed differences z = 
(235, — 90,410,. . . ,40) or equivalently by replacing z and s2 by the mean 
z = 170.72 and variance s2 = 42719.86 of the observed differences. 

2.3.2 The Prior Distribution 

For the situation in which we lack strong prior knowledge about the parameters 
(H, a), we can consider using the Jeffreys prior (2.18). It is convenient to derive 
the Jeffreys prior for a general location-scale family (1.18) which includes the 
Gaussian model as a particular case. The density of a single observation from 
a location scale family is of the form 

u \ l u fx ~ V-
f{x; n, a) = - h a \ a 

where h is a known density function. 
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If a is known, 

d log f(x; n) = _\_h, f^zA L (x ~ V 

so by (2.17) 

(on changing variables) which is a constant. Hence the Jeffreys prior for a 
location parameter is, by (2.18), 

g(n)az\, neU. (2.21) 

The prior (2.21) is not a proper density in that its integral is infinite but it can 
be interpreted as a locally uniform prior. (We discuss some of the issues involved 
in using improper prior distributions in Section 2.4.) 

If n is known, 

a log f(x; n, a) _ 1 J t + / x - / A ^ (X~A L(x ~ A* 

da a [ \ G J \ G J I \ G 

so that by (2.17) 

Ka) = ~ 1 + x ^ H h(x)dxK~. 
fc(x)J a2 

Hence the Jeffreys prior for a scale parameter is by (2.18) 

g(a) oc - , a > 0, (2.22) 
a 

which is again improper. We can interpret (2.22) as a locally uniform prior for 
log(ff). 

If n and a are unknown but independent, we can take the product of (2.21) 
and (2.22) to obtain 

g(fi, <T)OC-, fieU, a > 0. (2.23) 
a 
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Generally, in multiparameter problems, the Fisher information 1(0) is a matrix 

d log f(z;0) id log f{z;8)V 
W = d8 d0 

f(z; 0) dz 

and the Jeffreys rule is to choose as the prior the square root of the determinant 
of the Fisher information matrix. For the location-scale model, the off diagonal 
element of the Fisher information matrix is 

/ 
1 

" ' • <T2 

fc'WH, h'(x)\ 
—-- }U + x - — } h(x) dx, 
Jt(x)Jl h(x)[ 

so the Fisher information is 

\h\xp2 

I(ji,<r) = -
1 h{x) 

h(x) dx 

^]il+xm\Kx)dx 
Kx)l\ h(x)\ 

h(x)\\ h(x)\ 

l+x^Vh^dx 
h(x)\ 

which has determinant proportional to 1/cr4. Hence, application of Jeffreys' 
rule leads to the prior 

g(H, ff)oc-™, /ieW a > 0, 
a 

which can be interpreted as a locally uniform prior for a'1. However, Jeffreys 
argued that for this problem the parameters should be treated as a priori 
independent. Thus the prior (2.23) is treated as the Jeffreys prior for location 
scale models. 

2.3.3 The Marginal Posterior Distribution 

The joint posterior density is the product of the likelihood (2.20) and the Jeffreys 
prior (2.23), namely 

g(/x, a | Z = z) oc —— exp 
(T 

1 
—-- exp 

vs2 n(z — /i)' 

'la1 la2^' 

vs2{\ + n(z - n)2/vs2} _ _ (2.24) 

which is illustrated in Figure 2.6. The marginal posterior density for /i is 
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Figure 2.6. The joint posterior density of (ft, a) from the Jeffreys prior: (a) perspective plot; (fe) 
contour plot. 

obtained by integrating (2.24) over a as 

^ | Z = z)oc ff™exp[ _ dfJ OC 
1 

1 + 
n(z - n): 2)i)/2 

VS 

(2.25) 

(See 4c in the Appendix). That is nll2(fi — z)/s | Z = z ~ fv, where tv denotes 
the Student t distribution with v = n — 1 degrees of freedom (6c in the 
Appendix). This is a proper distribution and so can be used like any proper 
posterior distribution to make inferences about the parameters. In the caffeine 
example, (/i — 170.72)/48.72 | Z = z ~ t17. This marginal posterior distribution 
is plotted in Figure 2.7. (The marginal posterior distribution for a is discussed 
in Section 5.8.3.) 

The Jeffreys prior corresponds to taking log (a) to be uniformly distributed. 
However, if we took a2, a, a'1 or a~2 rather than log (a) to be uniformly 
distributed, the above analysis shows that the marginal posterior distribution 
of n1/2(n — z)/s | Z = z would be Student t with n — 3, n — 2, n, or n + 1 degrees 
of freedom respectively. Thus the choice of scale affects the inference. 

2.3.4 Credibility Sets 

The most plausible value of the parameter fi is that which maximizes the 
posterior density (2.25), namely fi = z = 170.72. It is straightforward to obtain 
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Figure 2.7. The marginal posterior density of// from the Jeffreys prior. The 95% Bayesian credibility 
set for n lies between the dotted vertical lines. 

credibility sets for n because the posterior density (2.25) is unimodal and 
symmetric about z so the contours of (2.25) define intervals of the form 
[z — a,z + a]. To ensure that n is in this set with probability 1 — a, we require 

1 - a = P{z — a<fi<z + a\Z = z} 

= Gv(n1 / 2a/s)-Gv(-n1 / 2a/s) 

= 1 -2G v ( -n 1 / 2 a / s ) 
or 

a = -n-
xl2sG;l{a.l2) = n'il2sG;l{\ - a/2), 

where Gv is the distribution function of the Student t distribution with v degrees 
of freedom. Thus the 100(1 — a)% credibility interval for \i is 

lz-n-ll2sG-\l - a/2), f + n-1/2sGv"^1 - «/2)]. (2.26) 

In particular, the 95% credibility interval for n, the mean change in the volume 
of urine voided after ingesting caffeine, is 

[67, 274]. 
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Given the data, we believe [i to be in the interval [67,274] with prob-
ability 0.95. 

PROBLEMS 

2.3.1. Suppose that we observe {Zl5 . . . ,Z„} on the Gaussian model (2.19). 
Supposed initially that the variance a2 is known and that we adopt the 
conjugate prior \i ~ N(/, T2). Find the posterior distribution of \x given 
the data. Explore the nature of the Bayes estimate of u and the precision. 

2.3.2. Suppose that the Gaussian model (2.19) holds and that we adopt the 
hierarchical model in which p.\k~ N(A, T2) with t known and X ~ N(>/, co2) 
with n and w known. Find the prior distribution (the marginal distri-
bution of \i) and the posterior distribution. 

2.3.3. Now suppose that the model variance a in the Gaussian model of 
Problem 2.3.1 is unknown. Show that the "Gaussian-inverse gamma" 
distribution 

. . i { KX2 p(fi-xy 
<jxk+1 ' ( 2<r2 la2 

with known hyperparameters K, T, p, and X is the conjugate family of 
distributions. Find the marginal posterior distribution of \i. 

2.3.4. Find the conjugate family of distributions for the exponential family 
model which is given by 

& = j/(z; 0) = fl exP Wifli(2i) + • • • + !M*(*j) + 4 + *U,)]. 

z , e 4 : 0 = W 1 , . . . , t f r l k , ^ ) 6 n j . 

Specialise the result to the Gaussian and gamma models. 

2.3.5. Suppose that we observe {Z1 , . . . ,Z„} on the Gaussian model (2.19). 
Suppose initially that the variance a2 is known and we adopt the Jeffreys 
prior. Show that the predictive distribution for a new independent 
observation is N(z, a2(n + l)/n). Modify this result to allow for the case 
of unknown a. 

2.3.6. Suppose that we observe {{Y^, Xj) , . . . , (Yn, x„)} on the Gaussian regression 
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model 

1 
^H/o>;«,/u) = n(27cff2)^exp (y, - a - xjy 

2a2 

yt e R; a, £ e R, <x > 0 

Show that 

£ (y, - a - xj)2 =Yi(yl-i- xj)2 + n{y - yfC{y - y) 
i=\ i = 1 

where 

and 

j? = (a, Pf = ly - xp, £ (x, - x){y{ - y) £ (xt - x")2 , 

/ , 

C = 

n l £ x, 

" ' [ " i n l X x? 

Suppose initially that a is known. Show that if g(a, /?) oc 1, the posterior 
distribution of P given the data is N(/?, GT"=1 (xt — x)2)"1). 

2.3.7. In the context of Problem 2.3.6, show that if g(a, P, a) oc a~l, the posterior 
distribution of y = (a, P)T given the data has density 

g(y | z) oc 
1 

[(« - 2)s2 + (y- y)TC(y - j))]"'2' 

where s2 = (n — 2)~l £"= i ()>i — ^ — x;$)2- This is the bivariate Student 
t distribution with n — 2 degrees of freedom. Obtain the marginal 
posterior distribution for (P — P){2Z"=i (*■ — x)2}1/2/s and show how to 
set a 100(1 — a)% credibility interval for p. 

2.3.8. For the Gaussian regression model of Problem 2.3.6, show that the 
predictive distribution for an additional observation at xj = (1, x0) has 
density 

p(y01
 z> *o) oc 

1 

(n - 2)s2 + 2 , (yo-Ay)2 nil' — oo < y0 < oo. 

1 + n 'xJC 'x0 

Show how to set a 100(1 — a)% prediction interval for y0. 
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2.3.9. Suppose that we observe {Zu ..., Z„} on the n-dimensional multivariate 
Student t model. 

/N(y;^,y )Mh'>\>5jdh> & = {fs,(r,H,a,v) = 

where 
-cc < yt < oo: n e U, (T, v > 0>, 

and 

fG(h; a,b) = -±- baha -» exp ( - bh), h>0, 
I » 

is the density of the gamma distribution with parameters a, b > 0, holds. 
Show that the {Z,} are exchangeable but not independent. Show that, if 
the degrees of freedom v is known, under the usual Jeffreys prior, the 
marginal posterior density of p. is 

f °° 1 
0O*|z)ac -fN(z;n,6)dO. 

Jo V 

That is, the marginal posterior for p under the multivariate Student t 
model is the same as under the Gaussian model. (Hint: Use the Jeffreys 
prior for a1 and make the transformation (a2, h) -*■ (6 = a2/h, z = h).) 

2.4 IMPROPER PRIORS 

We noted in Section 2.3.2 that the Jeffreys prior is not always a density function 
because its integral over the parameter space can be infinite. We call such 
functions improper densities and describe the corresponding distributions as 
improper prior distributions. 

2.4.1 Technical Issues 

When improper priors lead to proper posterior distributions as in (2.24), they 
can be used to make Bayesian inferences. Nonetheless, the use of improper 
distributions requires us to extend our view of probability theory to admit 
improper distributions and there are sometimes technical problems which arise 
from the use of improper distributions. In particular, integrals, sequences and 
limiting operations need to be treated carefully because the properties of proper 
distributions cannot simply be assumed to hold for improper distributions. 
Simple examples are easy to find. 
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(a) We can multiply marginal densities to obtain a joint density but we 
cannot integrate an improper joint density to recover the marginal 
densities. 

(b) For any finite kl < k2, the probability of {Act < /i < k2} relative to the 
probability of {n < /cj u {n > k2} is always 0 when \i has an improper 
distribution but can be arbitrarily large when n has a proper distribution. 

(c) Suppose Z | / i ~ N ( / x , 1) and g(n) oc 1 so that /i | Z ~ N(Z, 1). The 
statement (Z — n) \ fi ~ N(0, 1) can be interpreted as meaning that Z — \i 
is independent of fi while (fi — Z)\Z ~ N(0,1) can be interpreted as 
meaning that Z — \i is independent of Z! 

(d) The usual transformation formula need not apply for improper distribu-
tions Recall that if g(9) is a proper distribution for 0 and we make the 
one-to-one transformation 0 -> A(0), the density of A is given by 

81 

_ 3P{0(A) < 0(A)} 

ap{0 < B{i)} | dO{i) 

= 0(0W) 

50(A) I 5A 

' 30(A) 

<3A 
(2.27) 

This simple relationship does not in general hold for improper priors 
because the implicit probability integrals need not exist. 

2.4.2 Jeffreys' Priors and Their Limitations 

Jeffreys (1946) argued that when we use improper priors, we should require 
them to satisfy the transformation formula because then the procedure for 
producing the prior does not depend on the parameterization. Since 

1(0) = d\ogf(z-).(G))dm\ 
em *>) fteW-M°» 

dk{6)\2 

'~df\ ' 

Jeffreys' priors satisfy the transformation formula (2.27) whether they are proper 
or not. 

Bayesian analysis is generally difficult in problems in which the parameter 
space is high dimensional because it becomes very difficult to specify meaningful 
prior distributions. In this situation, the use of Jeffreys' priors seems particularly 
attractive. Unfortunately, while Jeffreys' improper priors generally produce 
acceptable results in low dimensional problems, they can lead to unexpected 
results in high dimensional problems. These results include marginalization 
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paradoxes (Stone and Dawid, 1972) in which the marginal posterior distribution 
of a function of the parameters g(8 \ Z) depends on the data only through a 
simple statistic, say t(Z), and g(6 | Z) = g(6 | f(Z)) differs from the posterior 
distribution obtained starting from the model h(t(Z) | 6), and strong inconsist-
ency (Stein, 1959; Stone, 1976) in which credibility sets have poor repeated 
sampling properties (see Section 3.8, Problems 2.4.5 and 3.8.2-3.8.3). 

The work of Bernado (1979) is directed towards the construction of priors 
which avoid the paradoxes of Jeffreys' priors by ordering the parameters in 
order of interest, writing the prior density as the product of conditional priors 
and denning the prior as the limit of a sequence of proper distributions. Some 
difficulties with this approach are discussed in Berger and Bernado (1989). A 
number of other approaches to choosing priors to use in the absence of strong 
prior beliefs are available. See for example Jaynes (1968), Novick (1969), Box 
and Tiao (1973, p. 34 ff.), Zellner (1977), and Akaike (1978). 

It is possible in practice to avoid the use of improper prior distributions 
altogether but they can provide formal connections between different approaches 
to inference so they do at the very least have an important theoretical role in 
discussions of statistical inference. 

2.4.3 The Representation of Ignorance 

The claim of Laplace, Jeffreys, and others noted in Sections 2.2.10-2.2.11 that 
uniform priors can be used to quantify a state of ignorance about the parameters 
and so may be called ignorance priors has been contested by Boole (1854, 
p. 370 ff.), Fisher (1922; 1935a, pp. 6-7; 1956a, Chapter 2) and others who 
argued that knowing nothing about two events is not the same as knowing 
that they are equally likely and that is not possible to quantify ignorance 
because uniformity on one scale implies knowledge on another. For example, 
if we assume that a parameter n is uniformly distributed so the density of u is 

flf(n) = 1(0 < n < 1), 

then the logit z = log {n/(l — n)} has a logistic distribution with density 

ex 

h(i) = r, — oo < T < oo. 
( l + e * ) 2 

This is a symmetric density with mode at the origin (corresponding to n = 1/2) 
which suggests that we believe n is more likely to be near 1/2 than 0 or 1. That 
is, the values of n are not equally likely on the logit scale and we seem to have 
prior knowledge about n. 

More strongly, if we follow Jeffreys' rule (2.18) for choosing a prior, the scale 
on which the prior distribution is uniform depends on the model 3F. (An 
example is given in Section 7.2.3.) This means that the same ignorance is 
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quantified differently depending on the nature of the data (see for example 
Lindley, 1972, p. 71). This is clearly objectionable if one holds that ignorance 
is an absolute as opposed to a relative state. 

The modern approach is to try to avoid the problem of representing 
ignorance by arguing that "ignorance" priors should be viewed as reference 
priors which provide a standard or reference analysis in situations in which we 
want the contribution of the likelihood to dominate that of the prior to the 
posterior distribution. That is, they are simply standard vague priors. See for 
example, Bernado and Smith (1994, p. 298). 

The arguments are important because a number of authors (including 
LeCam, 1977; Kiefer, 1977a; Efron, 1986) have argued that the Bayesian 
approach (given a model and a prior, we multiply these together according to 
(2.2) and integrate to compute the posterior distribution) is too simple and 
inflexible to handle the range of problems to which we would like to apply 
statistical methods. Many of the arguments can be expressed in terms of the 
practical difficulties of obtaining prior distributions in difficult problems, 
including high dimensional problems and particularly problems in which we 
are either reluctant to use our prior beliefs or have none. 

PROBLEMS 

2.4.1. Consider the negative binomial model 

F = \f(z;n) = (Z~ jnr(l -7i)z-r,z = r,r+ 1,. . . : 0 < n < 11. 

Show that the Jeffreys prior is n~ 1(l — n)~1/2. How does the use of this 
prior change the conclusions reached in Problem 2.2.1? 

2.4.2. Suppose that we observe {Zl5 . . . ,Z„} on the Gaussian model (2.19). 
Suppose initially that n is known. If we adopt the Jeffreys prior for er, 
show that the posterior distribution of a2 is £"=i zf 111- Now suppose 
that the mean ju is also unknown. Show that if we adopt the prior 
g(ji, a) oc l/<72 suggested by Jeffreys' rule, the marginal posterior distribu-
tion of <T2 is YH= i (z; — z)2/x2 s o n o degree of freedom is lost when we 
do not know /i. What happens if we follow Jeffreys' recommendation and 
use g(fi, a) oc 1/a? 

2.4.3. Suppose that Z has a gamma distribution with density 

f(z; K, I) = AKzK~l exp (— Xz), z > 0, K, X > 0. 
T(/c) 
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Show that the following relationships hold: 

E log (/.Z) = \II{K) 

E{\0g(?.Z)}2 = lP'(K) + ljj(K)2 

E{/LZ log ().Z)} = KII>(K+ 1), 

where IJ/(K) = d log Y(K)ldK is the digamma function. Hence use the fact 
that \1/(K + 1) = *JJ(K) + K~

 i to show that the prior obtained from Jeffreys' 
rule for the gamma model is 

g(K, X) oc L.ZAJ L_., K, A > 0. 
A 

2.4.4. (Kahn, 1987). Let Z ~ binomial(n, p). It is not a common problem, but 
there are situations in which we need to make inference about n rather 
than p. Suppose that we adopt the prior distribution with density 

pa~'(l -p)"'1 

g(n, p) oc , 0 < p < 1, n = l , 2 , . . . 

where a, fi, and y are fixed. Find the marginal posterior density of 
N \ Z = z. Use the fact that for any fixed r, 

lim ^ M = , 
m -,«, T{m + r) 

to show that 

lim na + yg(n \Z = z) = const. 
n -* oo 

Interpret this result in terms of the tails of the posterior density of 
N \ Z = z. Show that for the uniform improper prior g with a = /? = 1 
and 7 = 0, the posterior density of N | Z = z is improper. For what values 
of a, P, and y is the posterior density proper? Is it sensible to use improper 
posteriors to calculate credibility sets and posterior odds ratios? 

2.4.5. (Stein, 1959) Suppose that we observe { Z , , . . . , Z„} on the model 

[ " i f (z- — u-)r\ 
^ = j / ' (z;Mi,--- ,Mn)=n -—i^exp-j — L - ' - K -co<z, .<oo:^el 

(i.e., Z j , . . . , Z„ are independent Gaussian random variables with means 
^i1,...,fi„ and common known variance 1.) Suppose that we are interested 
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in obtaining a 100(1 — a)% credibility set of the form [0^, oo) for 
9 = £"= l /if. Show that if / i 1 ? . . . , fin are a priori independent and we 
assign the Jeffreys prior to each /i,, we obtain the approximate 100(1 — <x)% 
credibility interval 

[0 + n + 0>-1(a)(2n + 40)1/2, oo), 

where 9 = X"= i Zf. (Hint: Show that 0 | Z = z has a noncentral chi-
squared distribution and use the approximation suggested in (5bii) of the 
Appendix.) 

2.5 BAYESIAN HYPOTHESIS TESTING 

A natural way to compare hypotheses H0 and Hj expressed in terms of 
the parameters in the model is to compare the posterior probabilities of 
the hypotheses. We often do this by examining the posterior odds ratio 
P(H0 | z)/P(Hj | z) which is the ratio of the posterior probability of H0 to that 
of H!. Large values of the posterior odds ratio provide evidence in favor of H0 

over Hj while small values provide evidence in favor of H, over H0. 
We can compare the posterior odds ratio to the prior odds ratio to see how 

the data have changed our beliefs about H0 and H,. The amount by which the 
data (under our prior specification) has changed our beliefs is reflected in the 
Bayes factor 

P(H0 | z)/P(Ht [ z) 

P(H0)/P(H,) 

which is the ratio of the posterior odds ratio to the prior odds ratio. The Bayes 
factor generally depends on the prior so cannot be interpreted in terms of the 
data alone. 

2.5.1 Testing a Sharp Null Hypothesis 

Bayesian hypothesis testing is straightforward whenever the hypotheses H0 and 
Hl specify sets of values or both specify single values. However, difficulties arise 
when we compare a null hypothesis which specifies a single value for a 
parameter (a sharp null hypothesis) to an alternative which specifies a set of 
values for the parameter. 

To bring out the issues in the simplest case, consider first the admittedly 
artificial problem of testing the hypothesis H0:7r[, = n0 against H1:TI11 J= n0 

under the binomial model (2.1). If we calculate the posterior odds ratio 

P {Ho |_Zi ,_=*„_} 

P { H 1 | Z 1 1 = z 1 1 } ' 
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we find that it equals 0 because the fact that the posterior distribution of nn 

is absolutely continuous implies that P{TCH = n0 \ Z n = 2,,} = 0 for any 
0 < n0 < 1. This result seems to provide strong evidence in favour of Hx. 
However, the posterior distribution (2.4) is absolutely continuous whenever the 
prior distribution is absolutely continuous so this result reflects the nature of 
the null hypothesis and the choice of prior rather than anything fundamental 
about the data. 

Two approaches have been proposed to circumvent this difficulty. 

1. Change the hypothesis. Change the problem to one of testing H0: 
|7tu — n0\ < 8 against H: : |7in — n0\ > 8 for some small 8 > 0 so that 
we have the regular problem of comparing two set hypothesis. Then, under 
a uniform prior for nlu we have 

P{H0 | Z n = z n } = P{-5 < « „ - TT0 < <51 Z n = z n } 

= B(n0 + 8; 27, 150) - B(TT0 - 6; 27, 150) 

so that the posterior odds ratio is 

B(g0 + 8; 27, 150) - B(n0 - 8; 27, 150) 

1 - B(rc0 + 5; 27,150) + B(TT0 - 8; 27,150)' 

The prior odds ratio is 2<5/(l — 28) so the Bayes factor is just (2.28) divided 
by 28/(1 - 28). 

The choice of 8 is problematical but in practical problems can often 
be chosen to reflect the smallest detectable or meaningful difference from 
0. Even in analysing experiments to demonstrate psychokinesis in which 
a sharp null hypothesis is meaningful because psychokinesis either exists 
or does not and a "little" psychokinesis is not a sensible null hypothesis 
to entertain, the experiment is likely to be affected by small biases from 
imperfections in technique, equipment, etc. and in this case, 8 reflects our 
beliefs in an upper bound for this bias. (An experiment to detect 
psychokinesis is discussed in Sections 3.4.5 and 3.5.3.) 

2. Change the prior. Jeffreys (1939/1961) suggested that we assign a prior 
probability p0 to H0 and a prior distribution (1 — p0)h(n11) to n^ # 7r0. 
This prior assigns n^ the value 7t0 with probability p0 and asserts that 
7C,! has density h given that 7rn # n0 with probability 1 — p0. The 
posterior distribution of nil is then obtained from (2.2) as 

fc(tn \ZXI = z u ) = 

P o / ( z n ; i o ) ^ u = t 0 ) + (l ~ Po)f{zli;nll)h(nll)Hnlx # n0) 
c(zn) 
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where 
c(zn) = Po/(Zn; n 0 ) / ( t i i = no) + (1 - Po) 

r i 
/(z11;7t11)/!(7r11)/(7c11 *7i0)dnii, 

so the posterior odds ratio is 

Po fi^iu^o) 
1 -PoS,*,„f(zu;t)h(t)dt' 

(2.29) 

Notice that the normalizing constant c(z11) cancels in the posterior odds 
ratio. The prior odds ratio is pj(\ — p0) so the Bayes factor is just (2.29) 
divided by p0/(l — p0). If we believe that the two hypotheses are a priori 
equally likely, we can take p0 = 1/2 so that p0/(l — p0) = 1 and the 
posterior odds ratio (2.29) is then just the Bayes factor. With a uniform 
prior under H,, the Bayes factor is just the posterior density evaluated 
at 7t0. 

2.5.2 Comparing Independent Sets of Eyes 

For a more realistic (and hence more complicated) application, consider 
comparing the hypothesis H0: r\ = 0 to the general alternative hypothesis 
Wx: r\ =£ 0 in the context of Section 2.1.6. The simplest way to proceed is to take 
the prior 

g(n, 9) = 1(0 < t\ + 9 < 1, 0 < 9 < 1) 

from the formulation represented by (2.9) and (2.10) and modify it as suggested 
by Jeffreys to 

Kn, 0) = pog(0,0)i(*i = 0) + (l - p0)g(n, 0)Kn * 0) 

= p0I(rt = 0, 0 < 9 < 1) + (1 - p0)I(ri * 0,0 < n + 9 < 1,0 < 9 < 1). 

Under H0 which we believe holds with probability p0, 9 is uniformly distributed 
on (0, 1) while under H1 which we believe holds with probability 1 — p0, r\ and 
9 have density g(r), 9), r\ # 0. (In terms of the original (itll, n21) parameteriza-
tion, under H0 which we believe holds with probability 1 — p0, nll = nlx is 
uniformly distributed on (0, 1) while under H[ which we believe holds with 
probability p0, nll and n12 are independent and uniformly distributed on (0, 1) 
given that i u =£ nl2.) 

The joint posterior distribution of (tj, 9) obtained from (2.2) is proportional 
to 

k(rj, 9\Zll=z11, Z2 1 = z21) = p 0 / ( 2 u , z2l; 0, 9)I(r, = 0, 0 < 9 < 1) 

+ (1 - p0)f(Zl,, z21; ri, 6)I(n # 0, 0 < r, + 9 < 1, 0 < 9 < 1), 
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so the marginal posterior distribution of rj is 

k(t] \ Zll = 2 U , Z 2 1 = z2 1) 

/c(f/,0|Zn = zll,Z21 = z2 1)d0 
_ Jo 

C ( Z 1 1 » Z 2 l ) 

= po/i(0 I z l t , z21)J(i/ = 0) + (1 - p0)h(r, 1 z n , z21)J(>? # 0) 
C ( Z 1 1 > Z 2 l ) 

where ft is given by (2.8) and 

c(z11,z2l) = poh(0\z11,z2l) + (l-po) / i ( i j | z n , z 2 1 ) / ( » ? / 0 ) ^ . 

The posterior odds ratio is therefore 

Po /i(0 | z n , z 2 1 ) 

1 - P o J - i h(>l\z11,z2l)I(ti #0)<fy 

= Po r ( z u + z 2 1 + l ) r ( r 1 + r 2 - z 1 1 - z 2 1 + l)r(r1 + 2)r(r2 + 2) 

1 - p 0 r ( r 1 + r + 2)r(z11 + l ) r ( r 1 " - z 1 1 + T ) r ( z 2 1 + r ) r ( r 2 - z 2 1 + 1)' 

(2.30) 

Note that the prior odds ratio is p0/(l - p0) and the Bayes factor is just the 
posterior density evaluated at rj = 0. 

For the two groups of control eyes, rt = 175, z n = 26, r2 = 179, andz2 1 = 31 
so with p0 = 1/2, the posterior odds ratio (2.30) is 8.43 which provides strong 
evidence in favour of the null hypothesis. 

2.5.3 Difficulties With Improper Priors 

The first difficulty in using an improper prior in a Bayesian test is that, as noted 
in (2) in Section 2.4.1, we usually cannot write down the prior odds ratio. 
Nonetheless, if we are prepared to overlook this difficulty, the improper prior 
we use results in a proper posterior distribution and we are comparing two set 
hypotheses, we can compute a meaningful posterior odds ratio. Unfortunately, 
the situation is much more complicated when we test a sharp hypothesis. 

Suppose we observe Z on the Gaussian model (2.19) but for simplicity we 
assume that the variance a2 = 1 is known and we want to test the sharp 
hypothesis H0: p. = 0 against the alternative H^^u^O. If, we assign prior 
probability p0 to H0 and suppose p. is uniformly distributed over \_ — c,c\ when 
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H0 does not hold so that 

gift) = PoKji = 0) + (1 - po) r - / ( M < c, n * 0), 
2c 

the posterior density is 

g(^\z)-

p 0 e x p f - ^ / ( / i = 0) + ( l - p 0 ) e x p | - ' ^ / x ) - | ^ / ( | ^ | < c , / z ^ O ) 
= _ _ , 

where 

k(z) = p0 exp ( - — I + (1 - po) — exp j V dp. 

= Po e x p ( - y ) + 0 - Po) ̂ ( v ) 1 ' 2 W" 1 / 2 < c - ^ ~ *{-" 1 / 2 (c + 2"}]. 

and O(x) is the distribution function of the standard Gaussian distribution. The 
posterior odds ratio is by (2.29) 

P ( H o | z ) / P ( H 1 | z ) = P° 2cex P ( -nzV2) 
l - p 0 f c _ c e x P { - n ( z - t ) 2 / 2 } d t 

Po 2c(n /27r) 1 / 2 exp(-nz 2 /2) 

1 - po <D{n1/2(c - z)} - <D{ - n 1 / 2 ( c + z)} ' 
(2.31) 

Bartlett (1957) pointed out that if we let c -> oo, the denominator in (2.31) 
tends to 1 — p0 and the numerator tends to infinity so the posterior odds ratio 
tends to infinity. That is, as c increases (making our beliefs about p. under the 
alternative hypothesis vaguer), the evidence in favour of H0 increases. This is 
known as Bartlett's paradox. (The Jeffreys/Lindley paradox which prompted 
Bartlett's discovery is presented in Section 3.5.3.) 

If we use Jeffreys' improper prior for p. (so the prior density of p. equals a 
constant ki say) under the alternative hypothesis, the prior density of p. is 

g(ji) = p0l{n = 0) + (1 - p 0 )M0* * 0), 

and the posterior density is 

p0 exp ( - " ^ W = 0) + (1 - P0) exp i-^zA'XkJifi * 0) 
g(tl\z) = — , 

k(z) 
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where 

k(z) = p0 exp 

p0exp 

nz 
+ (1 -Po)* i exp 

n(z - nf 

- 2 - j + ( ,-po)Hvj • 

d[L 

The posterior odds ratio is by (2.29) 

Po / « 
1 - po \2TC. 

1/2 

exp "^1 
'~2/fc7 1 ~ Po 

, 1 / 2 , ,1/2 = n"2cj>(nl-z) 
(2.32) 

where (/> is the standard Gaussian density. The evidence concerning H0 depends 
on the value of z and the arbitrary constant kx (which plays roughly the role 
of l/2c in (2.31)). It seems natural to set kx = 1 but the arbitrariness of this 
choice needs to be acknowledged. 

The arbitrariness of the normalizing constant kx in any improper prior makes 
the use of improper priors when testing sharp hypotheses problematic. We can 
avoid the difficulty by refusing to test sharp null hypotheses because when we 
test set hypotheses the constant kx cancels out in constructing the posterior 
density. If we are committed to testing a sharp hypothesis, we then have to use 
an arbitrary constant, a proper prior or else find a different way of defining a 
"Bayes factor" so that the constant kx is eliminated (see for example Aitken, 
1991 and O'Hagan, 1995). 

Jeffreys (1939/1961, p. 274) recommended using a vague but proper prior. 
For the present Gaussian problem, he suggested using the Cauchy prior for the 
value of fi under Hl, so the prior is 

g(n) = PoI(fi = 0) + (1 - p0) — I(n * 0). 
?r(l + n1) 

The posterior density is 

p0 exp i - — )/0i = 0) + (l - p 0 ) exp \ - H { * - / L \ ^ r ^ ' ( /* /0) 

where 

nz' 

"T 2 JTT(1+ /U 2 ) 

k(z) 

/c(z) = p 0 e x P ^ T j + ( , - p 0 ) J ^ e x p | _ _ j _ ^ ^ , 
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and the posterior odds ratio is by (2.29) 

Po ( nz2\ 

\^nl\rj) 
f» f n(z-n)2\ 1 ' 

exp < > —- du 
J - » 1 2 J 7r(l -f- //2) 

For « large, Jeffreys used Laplace's method (see Section 4.6.2 and Problem 
4.6.5) to show that the Bayes factor is approximately 

(=)'",.+f.,„p(-!0 (2.33) 

Further discussion, particularly concerning the relationship of Bayesian tests 
to significance tests (Section 3.2) and the effect of sample size on posterior odds 
ratios (the Jeffreys/Lindley paradox) is given in Section 3.5.3. 

2.5.4 Testing for a Change in the Volume of Urine Voided 

For the change in the volume of urine voided due to the ingestion of caffeine, 
the hypothesis H0: fi = 0 corresponds to the assertion that the ingestion of 
caffeine has no systematic effect on the volume of urine voided. To test this 
assertion under the Gaussian model (2.19), we compare the hypothesis H0: /i = 0 
to the general alternative hypothesis H: \i # 0. 

If we assign prior probability p0g(a) to H0 and a prior distribution 
(1 — p0)h(n | o)g(a), where j j ^ h(p \a) &\i < oo, to H,, the posterior distribu-
tion of {[i, a) is proportional to 

k{n, a | Z = z) = p0/(z; 0, (x)g(a)I(M = 0) + (l ~Po)f(z; /*, a)h{n \ ff)g(<r) 1(^*0). 

k{jx | Z = z) = - -

k(n, a | Z = z)/d(i 

k(z) ' 

The marginal posterior for n is then 

where 

k(z) = p0 f(H fi, <r)h(n I a)g(a) dal(^Q) dfi. 
o 

Xf(z;0,a)g(a)da + (\-Po) 
o 
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It follows that the posterior odds ratio is 

Po SSf(xO,c)g{o)do 

1 - Po J-oo I ? /(*; ix, a)h(ii | a)g{a) dal{n *0)dfi' 

Jeffreys (1939/1961, p. 268) suggested using the priors 

0(<r)oc<7_1 

(2.34) 

<X7l(l + fl2/(T2) 

In this case, the posterior odds ratio (2.34) involves the ratio of 

00 1 | vs2 nz2\ , 1 1 
exp < } da oc 

0 <r"+l V \ 2cr2 2<x2 
1 + 2 

VS 

as in (2.25) and 

1 f vs2 n ( z - / i ) 2 | 1 
— exp j - —2- 2ff2 I ff2n(j + ^ 2 ) exp <j - ~ 2 ^ f -TTTT-. TTT, daI(V * °) dM-

This second integral cannot be evaluated explicitly but Jeffreys used Laplace's 
method (see Section 4.6.2 and Problem 4.6.5) to show that for n large the 
denominator integral is proportional to 

2 \ 1 / 2 1 1 
nnj l . nz2 

1 + 
vs 

and hence that the Bayes factor is approximately 

2 1 

2 ' ■ • + , 
vs 

For the change in the volume of urine voided after the ingestion of caffeine, 
the Bayes factor in is 0.069 which provides strong evidence against the null 
hypothesis H0: \i = 0. That is, there is clearly an effect on the volume of urine 
voided. 
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PROBLEMS 

2.5.1. In the context of Problem 2.2.7, obtain the posterior odds ratio for 
testing H0: 6 = 1 against the general alternative. Compare the conclu-
sions to that obtained from a one-sided test of H0:6 > 1 against 
H^.OK 1. 

2.5.2. In the context of Problem 2.2.8, test the null hypothesis H0: i = 0 against 
H ^ X ) . 

2.5.3. Suppose that we observe Z on the Gaussian model (2.19) but for 
simplicity we assume that the variance a1 = 1 is known. Under the 
Jeffreys prior g(n) = ku construct the posterior odds ratio for testing 
H0: n < Ho against H0: \i > n0. Explain why kl does not appear in the 
posterior odds ratio. 

2.5.4. Suppose that we observe Z on the Gaussian model (2.19) and want to test 
H0: n = 0 against H^ \i #0. Suppose that under H0 we adopt the prior p0kj<7 
and that under Hj we adopt the prior (1 — p0)(fc1/ff)(l/2c)/( —c < \i < c). 
Obtain the posterior odds ratio and discuss the effect on it of different 
choices of fcj and c. 

2.5.5. Suppose that in the context of Problem 2.3.6 we want to test H0: ft = /?0 

against the general alternative Ht : f$ ^ p0. Suppose that under H0 we 
adopt the prior p0k1 and that under H, we adopt the prior (1 — p0)klk2-
Obtain the posterior odds ratio and discuss the effect on it of different 
choices of ki and k2 and of {x,}. 

2.6 FIDUCIAL THEORY 

Fisher's (1922; 1935a, pp. 6-6; 1956a, Chapter 2) objections to the Bayesian 
paradigm led him to try to develop alternative approaches to inference. While 
he objected strongly to the fact that the Bayesian approach requires the 
specification of a prior distribution, he recognized the value of the posterior 
distribution in generating sets of plausible parameter values which admit a 
simple interpretation. He made a considerable effort to overcome the need to 
specify the prior in the Bayesian approach, particularly for situations in which 
we have no prior information about the parameters, by developing an approach 
called fiducial inference (Fisher, 1930) which produces a distribution (called the 
fiducial distribution) for the parameters without the need to specify a prior 
distribution. Savage (1962b) colourfully described this approach as "an attempt 
to make the Bayesian omlette without breaking the Bayesian eggs." 
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2.6.1 The Fiducial Argument 

Before we collect any data, the parameters of the model are regarded as fixed 
unknown constants. For the Gaussian model (2.19), the likelihood function 

1 J vs2 n(z — fi)2 

ff"eXP1~2^ la 
/(z;/i, <r) oc — e x p < ; - — — — ) , (n,a)eU x [0, co), 

depends on the data only through (z, s2), a statistic of the same dimension as 
the parameter space. Just as we interpret the data z as a realization of the 
random variable Z, we can interpret (z, s2) as a realization of (Z, S2) which has 
a distribution with density function 

1 f vv n(x — a)' 

v^Vi?—2? 
s(x, y; /z, a) oc j/<"-3,/2 - exp \ - ^ ~ -^F~h (*• ^ R x [0, oo) 

(see 9 in the Appendix). In the absence of any prior information about (n, a), 
Fisher asserted that we have the fiducial distribution 

ft(lt, a) oc — r exp | - ^ - " Z
2 ~ 2 " [ » (ft ff) G K x [0, oo), 

for (ix, a). Fisher argued that the fiducial distribution should be treated as an 
ordinary distribution which obeys the laws of probability theory. The marginal 
fiducial distribution of \i is therefore 

f M f 1 f vs2 n ( f - / i ) 2 l . 
/ f ( , )x j—expj - - _ j i , 

or nll2(n — z)/s\Z = z~tn.i. 
The fiducial distribution is supposed to describe our beliefs about the 

unknown parameter {n, a). Its main use is to generate fiducial sets which are 
derived from the contours of the fiducial distribution in the same way as 
Bayesian credibility sets are derived from the contours of the posterior 
distribution. Since the fiducial Gaussian distribution for this problem is 
identical to the posterior distribution obtained from the Jeffreys prior, the 
100(1 — a)% fiducial interval for fi is identical to the Bayesian credibility interval 
with the Jeffreys prior (2.26). 

Three important questions arise. First, why do we base the analysis on 
(Z, S2)? Second, how do we interpret the logical change of status of (/x, er) from 
fixed unknown constants to random variables with a fiducial distribution? And 
third, what is the basis for multiplying the likelihood by <r-1 to obtain the 
fiducial density? 
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2.6.2 The Role of Sufficiency 

One of Fisher's important contributions to statistics was to highlight the role 
of the likelihood function. He argued (in Fisher, 1922) that the likelihood 
function contains all the information in the data about the model. He formalized 
this by arguing that the likelihood is sufficient in the sense that the conditional 
distribution of the data Z given the likelihood is the same for all the 
distributions in the model J* and hence the data contains nothing further about 
the model. Since the Gaussian likelihood is a function of the data only through 
(z, s2), it follow^ that all the information about the model is contained in (z, s2). 
We say that (Z, S2) is sufficient for the model and refer to it as a sufficient 
statistic. From this perspective, it is natural to base inference on (Z, S2). (The 
concept of sufficiency is discussed in more detail in Section 7.3.) 

2.6.3 The Status of the Parameters 

The fiducial approach to inference involves a change in the status of the 
parameters which is difficult to understand, and to date no widely accepted 
formal justification has been given. Consequently, the interpretation of the 
fiducial argument is problematical and no general theory is available. Fisher 
regarded the fiducial argument as obviously reasonable and so never explained 
it in much detail. The best explanation he gave involved the following argument 
quoted by Basu (1973): 

• Suppose that under the model we have P{ Y > \ji} = 0.5. 

• Suppose that we draw a single observation from the model and that the 
observation is Y = 5. 

• In the absence of any other knowledge about i//, it is reasonable to assert 
that Pf{ij/ < 5} = 0.5. 

That is, if Y is equally likely to be greater than or less than a location parameter 
\j/ whatever the value of \p may be, then \\i is equally likely to be greater than 
or less than any particular realized value of Y. Basu (1973) described this 
argument as an example of a fallacy of five terms, i.e., like the logically flawed 
argument that team A beat team B and team B beat team C so team A must 
have beaten team C. 

2.6.4 Multiplication of the Likelihood by a~x 

The reason for multiplying the likelihood by <7_1 is unclear. It is apparently 
based on combining two separate single-parameter arguments. 

1. For the Gaussian model (2.19) with a known, the sample mean Z is 
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sufficient for n and has distribution function 

F(u; n) = P(Z <«;/*) = 
« „l/2 / n l / 2 ( x _ ^ ) \ 

— 0 Mx 

- ^ ff V o-

U 6 I 

where <I> and (/> are the standard Gaussian distribution and density 
functions respectively. Following the argument of Section 2.6.3, after 
we observe z, the fiducial distribution for \i has distribution function 
1 — <t>{nll2(z — n)/a) and hence density function 

Mn) = r — = — 4> 
dfi a \ a 

That is, the fiducial argument transforms the density (n1/2<j)<t>(nll2(z — ii)l&) 
of Z to the fiducial density (n1/2/a)</>(n1/2(z — n)/a) of ju by switching the 
arguments. 

2. For the Gaussian model (2.19) with /i known, S2(/J.) = £" = 1 (Z; — /<)2 is 
sufficient for the model and has distribution function 

F(v, a) = P(S2(n) <v;a)=\ X-kH (*- \dx = K„ (V- J , u > 0, 

where K„ is the distribution function of the %l distribution, and after we 
observe s(/x)2, the fiducial distribution for a has density function 

dF(s(n)2; a) s\n) (s2(n) 

That is, the fiducial argument transforms the density cr~ 1/c„(s2(//)/<r) of 
S2(ji) to the fiducial density (s2(/i)/<72)/c„(s2(^)/a) of a by switching the 
arguments and multiplying by s2(/i)/<7. 

Fisher's result for the two parameter case is obtained by putting these two 
separate results together; that is, switching arguments and multiplying by o~l. 
Hence the fiducial distribution is the same as the posterior distribution with 
Jeffreys' prior in this case. (That this is not generally true was shown by Lindley, 
1958). However, the distribution function of (Z, S2) is 

F(u, v; PL, a) = P(Z <u,S2< v; M, a) = <D ( — -j K„., ( ~ J 
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and differentiating the right-hand side with respect to \i and a does not lead 
to the same result because a appears in both factors on this side. There seems 
no obvious basis for treating the two parameters separately. 

2.6.5 Further Limitations of Fiducial Inference 

Even if we are prepared to ignore the conceptual difficulties underlying fiducial 
inference, there are still a number of operational difficulties. First, the method 
does not apply to discrete data because of the difficulty of interchanging the 
role of discrete data and continuous parameters. Second, Fisher confined the 
use of the fiducial argument to models for which there is a sufficient statistic 
of the same dimension as the parameter space. This can be overcome by working 
directly from the likelihood. In this case, the fiducial density is just a normalized 
likelihood function (after multiplication by c~x if a is a scale parameter) but 
of course it has a very different interpretation. Finally, Fisher gave no general 
explanation of how to handle the multiparameter case. Tukey (1957a) and 
Brillinger (1962) showed that fiducial distributions for multiparameter problems 
are not necessarily unique and it is often unclear how to proceed. Nonetheless, 
the appeal of the fiducial approach is that, if we could interpret the fiducial 
distribution, it would yield intervals which have a very direct interpretation in 
terms of that distribution. For a positive modern viewpoint, see Wilkinson 
(1977). Some further examples of fiducial intervals are given in Section 3.8. 

2.6.6 The Impact of Fiducial Inference 

Whatever the present view of fiducial inference, there is no doubt that it had 
a major impact on statistics through the work it stimulated. This includes 
Neyman's (1934, 1937) work on confidence intervals (see Section 3.6) which in 
turn motivated Pitman's (1938) work on conditional inference (see Section 3.9). 
Ironically perhaps, conditional inference provides a partial justification for 
fiducial inference. A related approach called structural inference (Fraser, 1968) 
arose from an attempt to make sense of fiducial theory. A structural model is 
a model of the form X = 0E where E has a known distribution and 9 e ^ for 
some transformation group <8. Inference is based on the fact that 6~1X is a 
pivotal quantity (an invertible function of 9 which has a known distribution, see 
Section 3.6.1) with the same distribution as E which is called the structural 
distribution. The importance of pivotal quantities was further emphasized by 
Barnard (1973) who introduced a theory of inference based on pivotal quantities. 

2.7 LIKELIHOOD THEORY 

Fisher's (1922) argument that the likelihood function contains all the informa-
tion in the data about the model (Section 2.6.2) suggests that we can base 
inference on the likelihood alone. This idea was adopted by Barnard (1949), 
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( 2 T C ( T 2 ) " / 2 V I 2<r2 2<r2 

384478.7 9(170.72 ~ fif 

Barnard et al. (1962), Birnbaum (1962), Edwards (1972) and others as the basis 
for likelihood theory. 

2.7.1 Relative "Plausibility" 

If we follow Fisher (1922) and interpret the likelihood function as expressing 
the relative "plausibility" of different parameters in the absence of any other 
information about them, then, for the effect of caffeine on the volume of urine 
voided (Sections 1.1.3 and 1.2.3), the Gaussian likelihood (2.20) 

1 ( vs2 n(z-n)2 

f(z; n, a) = -——— exp 

(H, a) e U x [0, oo) 

expresses the relative "plausibility" of values of ft and a given the data. 
The relative "plausibility" concept suggests that the shape of the likelihood 

is important but the scaling constant is not so the obvious way to compare the 
likelihood of pairs of parameters is by examining the ratio of their likelihoods. 
Even though the scaling constant is unimportant, in plotting likelihoods it is 
useful to scale them so that, for example, the maximum value equals 1. 
Differentiating the log of the likelihood (2.20) with respect to /i and a2 and 
equating the result to 0, we find that the likelihood has an extremum at {p., 6) 
satisfying 

"(z ~ fi) ^ Q 

62 

n vs2 n{z- p)2 

2d2 2<x4 26* 

namely, (p, 6) = (z = 170.72, {v/n}1/2s = 200.86). The matrix of second partial 
derivatives of the log-likelihood (which is called the Hessian) evaluated at 
(fi, 6), is 

-n/62 -2n(z-p.)/26* \ / -0.0896 0 

■2n(z-ft)/264 n/26*-vs2/266-n(z-(l)2/266)~\ 0 - 6 .7e -10 . 

which is negative definite so (p., 6) maximizes the likelihood. 
Incidentally, if we reparameterize the likelihood in terms of X = 1(II, a) and 

T = T(H, a), then X = k(p, 6) and f = r(p, 6) maximize the likelihood of (X, T). 
This means that we can pass readily between parameterizations and we can 
maximize the likelihood in the most convenient one. 
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We can scale the likelihood (2.20) by its maximum value f(z; fi, <t) = 
(2n)~"/2{vs2/n}~n exp (-n/2) to obtain the likelihood ratio 

/ ( , * „ ) ( 2 0 6 ! ^ C T p f _ 3 ^ 7 8 _ 7 f f 2 _ 9 0 7 O 7 2 - ^ 
f(z;(i,a) a18 

(|i,<7)eR x [0, oo). (2.35) 

The shape of this function is essentially the same as that of the joint posterior 
density plotted in Figure 2.7. 

Since the Gaussian likelihood is a function of the data only through z and 
s2, the information in the data contained in the likelihood is mathematically 
equivalent to the information contained in z and s2. However, in general, the 
likelihood does not provide such a spectacular simplification of the data and, 
in likelihood theory, use is made of the form of the likelihood function so we 
do not simply extract z and s2 from the likelihood function. 

2.7.2 Profile Likelihood 

In the caffeine-effect problem, we are interested in \i and a is a nuisance 
parameter which we would like to eliminate. One possibility is to maximize the 
likelihood (2.20) over a for fixed \x and then replace a by this maximizing 
function to obtain the concentrated or profile likelihood which is a function of 
\i alone. We find that 

a(/i)2 = n-1 £ ( * , - f 0 2 = — + (2-/02 

i = i n 

so the profile likelihood is 

(27r)"/2j~ + ( z - M ) 2 ' 

From (2.36), the rescaled likelihood or likelihood ratio equals 

/ ^ j 1 + ^ r = ( 1 + E ^ : r ,6,, (2.37) 
f(r,fi,a) \ vs2 J { (200.86)2 j 

using the fact that ff(z)2 = s2 = a2, and this function is plotted in Figure 2.8. 

2.7.3 Likelihood Sets 

The contours of a likelihood surface are nested sets of plausible parameter 
values which may be called likelihood sets and have the property that each set 
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Figure 2.8. The profile likelihood for //. 

is the set of parameter values which are relatively more "plausible" than the 
excluded values. 

Likelihood sets for fi can be read off the plot of the profile likelihood (Figure 
2.8) or, in this case, can be obtained analytically. Formally, for some k > 0, we 
have from (2.37) the likelihood set 

LM = /*: 
1 

1 + 
n(z — /if 2"l»/2 

vs 

>k\ 

= {ti:z-n-ll2vll2s(k-2l"-l)ll2<ti<z + n-ii2v1i2s(k-2>n-iy12} 

= {fi: 170.72-200.86(fe_1/9-l)1/2</i<170.72 + 200.86(fc-1/9-l)1 /2}. 

The endpoints of the set are k~' times less "plausible" than the most "plausible" 
parameter values. Suggested values of k are k = 1/20 and k = 1/100 (correspond-
ing to the endpoints being 20 and 100 times less "plausible" than the most 
"plausible" parameter values) although, as with other contour sets, the family of 
sets indexed by k is of more interest than any single set. The likelihood sets are 
intervals in this problem but, in general, need not be. 
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2.7.4 Likelihood Hypothesis Tests 

We can compare the relative "plausibility" of two values /z0 and /^ of n by 
comparing the likelihood at these values by computing the ratio 

f(z; fi0, d(n0)) = I vs2 ) 

f(z; nu (TC/IO) | J + n{z - n0)
2 

\ vs2 

If we represent the likelihood of a set by the maximum value of the likelihood 
over that set, we can easily compare the likelihoods of sets. In particular, to 
compare the relative "plausibility" of H0: \i = /x0 to H^- n # /i0, we examine 
f(z; n, d(fj.))/f(z; fi, a). In interpreting these ratios, we take the view that the 
likelihood ratio defines a scale for measuring relative "plausibility" which, as 
with any other arbitrary scale, we need to calibrate against experience. 

2.7.5 Elimination of Nuisance Parameters 

In many inference problems the likelihood function involves nuisance parameters 
which we need to eliminate before we can make inferences about the parameters 
of interest. One approach is to maximize the likelihood over the nuisance 
parameters as we did in Section 2.7.2 to obtain the profile likelihood (2.36). 
The use of maximization makes the profile likelihood relatively easy to obtain 
and it turns out to be fundamental to frequentist (see Sections 3.3, 3.5 and 4.5) 
as well as likelihood inference. However, the profile likelihood cannot always 
be treated as a "likelihood" (see Section 4.5.15), a fact which may in some 
applications imply that the profile likelihood is not a satisfactory method of 
eliminating nuisance parameters. 

The failings of the profile likelihood can often be overcome (at least 
approximately) by modifications which produce modified profile likelihoods 
(see Section 4.5.15) but other "likelihoods" of admittedly more limited avail-
ability may also be worth considering. While these other "likelihoods" are 
primarily motivated from frequentist concerns, it is convenient to mention them 
at this stage. 

A different way to eliminate nuisance parameters is to use the marginal 
distribution of an appropriately chosen subset of the data rather than the model 
distribution (the joint distribution of the data) as the basis for the likelihood. 
The subset of the data is chosen so that the resulting marginal likelihood 
involves only the parameters of interest. The most famous marginal likelihood 
proposed by Patterson and Thompson (1971) (which is also a modified profile 
likelihood) is obtained for the variance parameters by eliminating the mean 
parameters from a Gaussian model. See Section 4.5.15 and Problems 4.5.5-4.5.6. 
As an alternative to marginal likelihood, we can sometimes condition on an 

n/2 
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appropriate function of the data and nuisance parameters to eliminate the 
nuisance parameters. The "likelihood" resulting from the conditional distribu-
tion of the data given the appropriate quantity is called a conditional likelihood. 
McCullagh and Nelder (1989, Chapter 7) provide a useful introduction to 
marginal and conditional likelihoods. Finally, Cox (1972; 1975) introduced the 
partial likelihood which also has the effect of eliminating nuisance parameters. 

2.7.6 Relationship of Likelihood to Bayesian Inference 

The likelihood approach is similar to the Bayesian approach except that the 
likelihood approach does not involve the use of a prior distribution. This has 
at least two important consequences: 

1. Likelihood inference depends on the nonprobablistic concept of relative 
"plausibility" which is determined from the likelihood ratio whereas 
Bayesian inference has a simple probability interpretation. 

2. Likelihood inference uses the maximum value of the likelihood over a set 
to represent the likelihood of the set whereas Bayesian inference uses the 
posterior probability of a set obtained by integrating the posterior density 
over that set. 

The use of maximization instead of integration is rather arbitrary and we could 
consider integrating likelihoods with respect to weight functions. However, the 
weight functions have to be specified in the same way as prior distributions so 
this approach offers no advantages over the Bayesian approach. 

The profile likelihood function (2.36) obtained by maximizing the joint 
likelihood (2.20) is of the same form as the Student t density (2.25) obtained 
by integrating the joint posterior distribution from the Jeffreys prior for the 
Gaussian model. There is a close connection between integration and maximiza-
tion which is exploited in Laplace's method for approximating an integral by 
the maximum of the integrand. Laplace's method for approximating integrals is 
presented in Sections 4.6.4-4.6.5 but for the present we note that it works well 
when the integrand is unimodal and peaked so that the main contribution of 
the integrand to the integral occurs in the neighbourhood of its maximum value. 
This is the case for the Gaussian model (2.19) so the results of maximizing and 
integrating the likelihood with respect to the Jeffreys prior are the same. 
However, in other circumstances, the results may be less comparable. 

2.7.7 Numerical Maximization of the Likelihood 

Just as the integration required for Bayesian inference cannot always be done 
explicitly, the maximization in likelihood inference also cannot always be done 
explicitly. In this circumstance, we usually resort to numerical maximization 
methods. 
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One of the simplest numerical maximization methods is based on construct-
ing a quadratic approximation to the likelihood surface and then maximizing 
the quadratic approximation. Let 9{m) be a tentative value for the value of 9 at 
which the likelihood is maximized and let n(x, 6) = d log {f(x; 9)}/d9 be the 
first derivative of the log likelihood with respect to 9 in a model for independent 
and identically distributed Z,. Then for 6 in a neighbourhood of #(m), we have 
the quadratic approximation (see 2 in the Appendix) 

log {/(z; d)} * log {/(z; 0(m))} + (6 - 0(m))
T £ rfct, 0(n)) 

i = i 

+ Uo~eim))
T t »,'(*,-; 9{m))(9 - 9im)). 

I i = l 

The matrix n~lYJl=\ I'itii 6) ' s tr>e Hessian of the log-likelihood function. 
Provided the Hessian is nonsingular, the quadratic approximation to the 
log-likelihood is maximized at #(m+1), where 

-'(m+l) = 0<m> - {»"* . 1 »/'(*„ oln))\ V * £ fa, e(a)y 

Iteration of this procedure until n"1 S?=i l(zi>6{m)) % 0 defines a sequence 
{0(m)} converging to an extremum of the log-likelihood function which is a 
maximum if the Hessian evaluated at the extremum is negative definite. This 
is called the Newton-Raphson algorithm. The convergence properties of the 
algorithm depend both on the initial value (so it is often valuable to try a range 
of different starting values) and the quality of the quadratic approximation to 
the log-likelihood function. There are a number of different approaches to 
numerical maximization and in particular cases, the form of the log-likelihood 
function may suggest alternative, preferable algorithms. 

PROBLEMS 

2.7.1. Suppose that we observe {(Y1, x , ) , . . . , (Y„, x„)} on the model 

* = {/<* /w) = n —y1-^ «P \-{y^2], 
\JKy,P% h\(2no2v{xd)m I 2a2v(xd j 

Vi e R; /? e U, a > 0 

which is used in finite population problems. The function v(-) allows the 
variance of the response to depend on the explanatory variable and is 
often taken as known from previous surveys. Find the values of /? and a 
at which the likelihood is maximized. Find the profile likelihood for /?. 



102 BAYESIAN, FIDUCIAL, AND LIKELIHOOD INFERENCE 

2.7.2. Show that 

Z Z <*y - z)2 = Z Z (*y - z,-)2 + m Z % ~ i)2, 
i = 1 j = 1 i = 1 j = 1 i = 1 

where z,-= m - 1 £™=1 Zy and z = # _ 1 Z?=i z,. Consider the variance 
component model presented in Section 1.5: 

^ = | / ( z ; ^ , a a , a J = ~ m ^ p e x p { - ( z - A i ) T S - I ( z - ^ ) / 2 } , 

— oo < Zij < oo: n e R, aa > 0, ffu > 0 >■, 

where Z is the block diagonal matrix with blocks ajJ + a2/, 7 is the 
m x m matrix with all elements equal to 1 and / is the m x m identity 
matrix. Show that the likelihood can be written as 

/(z; n,xa,xu) = 
(2itr"2T!("-1 , '2T;/2 

x e x p { - Z t { - ^ ^ - ~ \ t fr-tf + (Kz- li)1}}, 
I ,= i j=i 2TU 2xa 0=1 JJ 

where T„ = a2 and tfl = m<r2 + <r2. Hence show that the likelihood is 
maximized at 

9 9 m 

(A f„, fu) = ( f, g~ lm Z 6 - i)2, {0<m - 1)}" : Z Z (*y - *~<)2 

■= 1 i = l j = l 

if Ta > f „ 
and 

otherwise. 

( 9 m \ 

zAmg)'1 _E _Z ( z y - z ) 2 J 

2.7.3. In the context of Problem 2.7.2, find the likelihood ratio for testing the 
hypothesis H0: \x = 0 against H^ /J ^ 0. Also find the likelihood ratio 
for testing the hypothesis that H0: aa = 0 against H,: aa > 0 by testing 
H0: xa = T„ against H0: T„ > T„. 

2.7.4. For the model presented in Problem 2.7.2, write the likelihood as a 
function of r\ = xu and 6 = xjxu. Then find the profile likelihood of 6. 
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Now suppose we adopt the prior distribution g(p, T„, T„) OC 1/T„T0, T„ > T„. 

Find the marginal posterior distribution of 6. How does this compare to 
the profile likelihood? (For a discussion of some criticism of this Bayesian 
analysis, see Box and Tiao, 1973, pp. 303-15.) 

2.7.5. Consider the complete two-way classification model in which we observe 

yijk = P + *i + Pj + yij + eijk, i=\,...,a, j=l,...,b, k=\,...,n, 

with 

£«,•= £/*,= !?<,= iviJ = o, 
i=l j = l <=1 j = l 

and {e,} are independent N(0, a2) random variables. Show that the 
analysis of variance decomposition 

Z Z Z(yijk - jL) = " Z Z(Pa. - P...)2 + Z Z Z(ytjk - y^)2 

and 

" I I (j'y. - y...)2 =nfc S (A. - ^...)2 + «A Z (yj. - i'...)2 

+ «ZZ(yy. - A . -y.j. + y...)2, 
i j 

where a dot subscript indicates averaging over that subscript, holds. 
Obtain the values of fi, a,, Pj, and yi} which maximize the likelihood. 
Interpret the terms in the analysis of variance decomposition by expressing 
them in terms of these values. 

FURTHER READING 

The Bayesian paradigm is well presented by a number of authors including 
Savage (1962a), Cornfield (1969), and Lindley (1972). Box and Tiao (1973) 
provide useful discussion and develop a number of "standard" analyses. 
Bernado and Smith (1994, Chapter 5) examine the topics we consider in this 
book in more detail and provide extensive references. Mosteller and Wallace 
(1964/1984) present an elegant example of a serious Bayesian analysis in 
practice. Jeffreys (1939/1961) is a classic book which is well worth reading. 
Fisher (1956a, Chapter 2) contains a clear statement of Fisher's criticism of 
the Bayesian paradigm, and Zabell (1992) gives an interesting perspective on 
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Fisher's thought. Further useful discussion of fiducial theory may be found 
in Dempster (1964) and Kendall and Stuart (1979, Chapter 21). Likelihood 
theory is expounded by Edwards (1972), whereas Basu (1973) presents a critical 
discussion of both likelihood and fiducial theory. Cox and Hinkley (1974) and 
Barnett (1982) contain much useful material presenting and comparing the 
different approaches to inference. 



C H A P T E R 3 

Frequentist Inference 

To analyze the effect of caffeine on the volume of urine voided (Section 1.1.3), 
we decided in Section 1.2.3 to model the change in the volume of urine produced 
by the ingestion of caffeine using the Gaussian model 

- o o < z,- < oo: fie U,a > 0>. (3.1) 

The Bayesian, fiducial and likelihood approaches to making inferences about 
H in the presence of the nuisance parameter a were discussed in Sections 2.3, 
2.6 and 2.7 respectively, and we now consider the frequentist approach. 

The frequentist approach is based on the computation of statistics. A statistic 
t = t(z) is a function of the data z which involves no unknown parameters. 
Since the data z is a realization of the random variable Z, the value of a statistic 
t = t(z) is a realization of T — t(Z) which is a random variable with a 
distribution, called the sampling distribution of T, determined by the distribution 
F0 of Z. We do not know F0 but we can use the model J^ to derive a sampling 
distribution which will be valid at least whenever F0 e !F. The sampling 
distribution of T under !F can be interpreted as describing the behavior we can 
expect of T under J*. More precisely, the sampling distribution describes the 
outcome of the thought experiment in which we construct the distribution of 
T from the realizations of an infinite sequence of hypothetical samples generated 
under ■¥. 

Frequentist methods have a sampling or frequency basis in the sense that 
they use the sampling distribution to evaluate and interpret inferences. According 
to Neyman (1977), the frequentist approach involves the use of hypothesis tests 
(Section 3.3) and confidence intervals (Sections 3.6-3.7) to make inferences or, 
as Neyman preferred, to guide inductive behavior. We adopt a broader view 
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by considering all approaches with a frequency basis to be frequentist. This 
definition allows us to treat significance tests (Section 3.2) and conditional 
inferences (Section 3.9) as frequentist methods. 

Within frequentist inference, it is useful to make a rough distinction between 
testing and interval estimation. The primary interest in most statistical problems 
is in making informative statements about the magnitude of effects like the 
magnitude of the change in the volume of urine voided following the ingestion 
of caffeine (i.e., interval estimation) but we are sometimes interested in 
addressing simpler questions like "Does the ingestion of caffeine have an effect 
on the volume of urine produced?" (i.e., testing). Although the latter question 
can be subsumed within the former, efforts to answer this kind of question have 
been important to the historical, theoretical, and practical development of 
statistics. This is not to suggest that tests are more important than confidence 
intervals, because in fact tests often provide a less satisfactory means of 
presenting evidence. 

Frequentist tests and confidence intervals for a parameter 6 are often 
conveniently derived from statistics which have been constructed with the 
specific objective of being close to 6. We call such statistics T = t(Z) estimators 
and their realized values t — t(z) estimates. The construction of estimators is 
referred to a point estimation. The properties of inferential statements derived 
from point estimates often depend on the properties of the point estimate so it 
is useful to discuss point estimation before we discuss testing and and interval 
estimation. 

3.1 POINT ESTIMATION 

A characteristic of the frequentist approach is that, in contrast to the Bayesian, 
fiducial and likelihood methods described in Chapter 2, it does not specify a 
single method for constructing procedures. Instead, we specify the desirable 
properties of a procedure and then construct procedures which are in some 
sense optimal. Nonetheless, it is useful to have general methods for constructing 
procedures which can at least provide a point of departure. Two general 
methods of constructing estimators are the method of moments and the method 
of maximum likelihood. 

3.1.1 Method of Moments Estimation 

If we compute the sample moments mk = n ~1 £"=i Z),k= 1, 2, their expectations 
under the Gaussian model (3.1) which are Em, = n and Ew2 = a2 + n2, and 
then solve the system of equations 

m 2 - * m - (An)2 = 0, 
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we obtain the method of moments estimators (Pearson, 1894) 

fim = mi = Z 
n 

<*m = m2 - m\ = n~' £ (Z, - Z) 2 

of n and a2. The method of moments is discussed further in Section 4.3. 

3.1.2 Maximum Likelihood Estimation 

It follows from (2.20) that the likelihood under the Gaussian model (3.1) can 
be written as 

/(^ff) = (2^eXP{-^-!^!}' "^ ff>°' (12) 

where a2 = n~l £7= t (z, — z)2. We saw in Section 2.7.1 that (3.2) is maximized 
at fi = z and a2 = n~' X7= I (z; ~~ z)2. The most "plausible" estimators of /x and 
a are the maximum likelihood estimators (Bernoulli, 1777; Gauss, 1809; Edgeworth, 
1908-9; Fisher, 1922) which are therefore fi = Z and a2 = n'' £J= t (Z,- - Z)2. 
Maximum likelihood estimation is discussed further in Sections 4.2-4.3. 

3.1.3 Optimal Point Estimation 

The method of moments and maximum likelihood estimators of /i and a2 in 
(3.1) are the same, but in general they need not be. We can also consider other 
estimators such as the sample median for (i and the median absolute deviation 
from the median divided by 0.6745 for a, and the question of which estimators 
we should use arises. 

The best possible estimator T of 9 equals 9 for all 9 so that T contains no 
error. Since Tisa random variable, this means that T equals 9 with probability 1 
whatever the value of 9, a requirement which is generally impossible to achieve 
in finite samples. More realistically, we would like an estimator to be as close 
to 9 as possible on average. That is, if we use squared error to measure closeness, 
we want T to minimize the mean squared error 

E(T - 9)2 = Var (T) + (ET - 9)2 (3.3) 

for all 9. This is unfortunately also not a realistic goal because an estimator 
like T = 6 minimizes (3.3) when 9 = 6 so minimizing (3.3) for all 9 is equivalent 
to finding an estimator to estimate 9 without error. The mathematical solution 
to these difficulties is to introduce further criteria to restrict the class of 
estimators under consideration so that estimators like T = 6 are precluded. 
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3.1.4 Unbiased Estimation 

A simple restriction of the class of estimators is to the class of unbiased estimators 
of 9 which are "on average" close to 6. An estimator T of 9 is unbiased for 6 if 

ET=9 for all 9. (3.4) 

If we restrict attention to the class of unbiased estimators, the mean squared 
error (3.3) reduces to the variance and the member of the class with minimum 
variance for all 9 is called a uniformly minimum variance unbiased (UMVU) 
estimator. 

For the Gaussian model (3.1), Z is the UMVU estimator of \i (Lehmann, 
1983, p. 84). However, 

n 

so the maximum likelihood (and method of moments) estimator of er2 is biased. 
The sample variance 

S2 = n(n - iyld2 = (« - l)"1 t (Z, - Z)2 

;=i 

is unbiased and is the UMVU estimator of a2 (Lehmann, 1983, p. 84). The 
UMVU estimator of a is 

(Lehmann, 1983, p. 84). 
Unbiased estimators have the undesirable property that they can take values 

outside the parameter space and the class of unbiased estimators excludes 
otherwise "natural" estimators such as the maximum likelihood estimator of 
a2 in (3.1). In addition UMVU estimators only exist in a limited class of 
problems. 

3.1.5 Equivariant Estimation 

An alternative to unbiasedness is to restrict the class of estimators to equivariant 
estimators. For example, to estimate location and scale parameters like fi and 
a in (3.1), we can consider the class of location and scale equivariant estimators 
which satisfy 

fi(az + b) = a/i(z) + b and &(az + b) = \a\d(z), (3.5) 
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for any a, b e U. In this class of estimators, we try to find the estimators which 
minimize the mean squared error (3.3) or some other appropriate function. 

For location and scale parameters in a location-scale model (1.18), the 
equivariant estimators with minimum mean squared error are the Pitman 
(1938) estimators. For any location and scale equivariant estimators p. and 5 
satisfying (3.4), let {C, = (z; - fi(Z))/d(Z), i = 1 , . . . , n}. We call {C,} a con-
figuration. Then we can write 

(/J(Z) - tf E E '(/KZ) - M)2 

{Cj} 

We will show in Section 3.9.3 that 

"(£ - n)2 

where 

0{t, s) = 

\{Cj} 

Mr 

(fi - o1 
g(t,s)dsdt, (3.6) 

JJ^M* t) 
te\ s > 0 , 

dsdt 

is the likelihood of (t,s) multiplied by s"1 and normalized to integrate to 1. 
The conditional expectation (3.6) is constant over all equivariant estimators 
fi(Z) and does not depend on /x and a so we can minimize Eo~2(p.(Z) — /i)2 

by minimizing (3.6). The minimum is 

KZ) = 

l 
tg(t, s) dt ds 

'oo fa 

0 J -
-z g{t, s) dt ds 

which is called the Pitman estimator of fi. Similarly, the equivariant estimator 
which minimizes E<r~2r(&(Zy — a")2 is 

s(zy = 

1 
; g(t, s) dt ds 

- * , s ' 
; g(t, s) dt ds 

which is called the Pitman estimator of a'. Lehmann (1983, Chapter 3) gives 
an alternative exposition of this approach. 

Under the Gaussian model (3.1), the Pitman estimator of n is Z and 
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(« + D"1E=1(zi-z)2. 

Z)2} 

See Problem 3.1.7. 

3.1.6 The Class in Which a Procedure is Optimal 

The search for optimal estimators can provide a challenging set of mathematical 
problems and it is easy to lose sight of the statistical issues. Ultimately, we need 
to assess how compelling we find particular optimality results by thinking about 
the optimality criterion and the class of estimators to which it is applied. 

Generally, the smaller the class of estimators, the less interesting the result. 
The classic example of this is the Gauss-Markov theorem which asserts that, if 
we have independent and identically distributed observations Zl,...,Z„ with 
mean fi and variance a2, irrespective of the actual distribution of Z , , . . . , Z„, 
the sample mean is the best linear, unbiased estimator of ft. The class of linear 
estimators of fx is the class of weighted sums of the observations, where the 
weights do not depend on the observations. The unbiasedness requirement 
implies that the weights must be normalized to sum to 1. Thus, the Gauss-
Markov theorem applies to the class of estimators Tw = £"= t wtZh where 
S"=i wi — 1> a n d states that the variance a2 S"=i wf °f Tw is minimized when 
W; = n~l. Given that we have to specify the weights in advance of examining 
the data, without any information about fi, it is not surprising that it is optimal 
to assign equal weights. If we are allowed to make the weights depend on the 
data, we can obtain "better" nonlinear, biased estimators, a point that is often 
overlooked. As Lindley (1972) pointed out, optimality criteria which restrict 
the class of estimators to (say unbiased estimators) often restrict the class to 
only one "interesting" estimator which is then, not surprisingly, optimal. 

The optimality criteria considered in this section require the exact sampling 
distributions of estimators so they are often difficult to implement or are only 
applicable in rather restrictive situations. We extend the concepts of optimal 
estimation to allow large sample approximations to sampling distributions in 
Section 4.3. 

PROBLEMS 

3.1.1. Consider the negative binomial model (5e in the Appendix) parameterized 
as 

110 

the Pitman estimator of a2 is a2 = n(n + 1) l62 = 
The Pitman estimator of a is 

2 1 / 2 ( n - l ) 1 / 2 r 
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<? = \m A, s) = n {z'!r(^)}"lr(Z; + ̂ z,(1 + * ) ~ ( n + A / " . 
zi = 0,l,2,...,l>0,8>oy 

Here EZ, = A is the mean of the distribution, Var (Z() = A(l + 3) is the 
variance of the distribution and 6 = 0 corresponds to the Poisson model 
so A is the mean occurrence rate and 3 is the non-Poissonness rate. Obtain 
method of moments estimators for A and 3. How would you obtain the 
maximum likelihood estimator in this case? 

3.1.2. Graphical methods indicate that the truncated Poisson model 

\Jyy' M y , ! { l - e x p ( - A ) } ' y ' 

provides a reasonable model for the Feinstein et al. (1989) microbubble 
particle data presented in Problem 1.5.2. Obtain the method of moments 
estimator Am for A. How would you obtain the maximum likelihood 
estimator? 

3.1.3. Suppose we have n observations Z on the Gaussian model (3.1) and we 
are interested in the variance parameter a2. Suppose we consider only 
estimators of a2 of the form cS2, where S2 = £"=i (Zj - Z)2. Show that 
the mean squared error of cS2 is 

E{cS2 - <T2}2 = (i4{c2(n2 - 1) - 2c(n - 1) + 1} 

and that this is minimized at c = (n + 1)~\ the Pitman estimator of a2 

for this model. Show that the unbiased estimator of a2 has c = (n — 1)~l 

and compare its mean squared error to that of the Pitman estimator. 

3.1.4. Suppose that we have observations Z on the uniform (location) model 

^ = | / ( y ; 0) = f l KO - \ < yi < 0 + i ) : 6 e R | . 

Compare the estimators (Znl + Z„„)/2, where Znl < • • • < Z„„, and Z. 

3.1.5. Suppose that we have observations Z on the exponential model 

& = | / ( y ; A) = f\ k exp ( - ^ , ) , y; > 0: A > o | . 

Find the Pitman estimator for 1/A and compare its mean squared error 
to that of the corresponding maximum likelihood estimator. 
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3.1.6. Suppose that we have observations Z on the uniform model 

& = |/(y;0) = ft I/(o<y,<ey.e>o 

Obtain the Pitman estimator of 9 and compare it to the maximum 
likelihood estimator and the unbiased estimator based on Z„„, where 
Znl < < Z„„. 

3.1.7. Suppose that we have observations Z on the Gaussian model (3.1). 
Obtain the Pitman estimators of fi, a2, and a. 

3.2 SIGNIFICANCE TESTS 

The idea behind a significance test is to formulate a null hypothesis and then 
examine the extent to which the data provide evidence to refute this hypothesis. 
In this form, significance tests have been in use at least since Arbuthnott (1710). 
They were given their modern justification and then popularized by Fisher 
(1925a). 

The key steps in carrying out a significance tests are 

1. formulating the null hypothesis H0 

2. choosing a statistic which has a known sampling distribution under H0 

3. using the sampling distribution to compute the significance probability or 
p-value of the test. 

3.2.1 The Null Hypothesis 

The first step in a significance test is to formulate the null hypothesis. Fisher 
felt strongly that we collect data in order to find effects so that initially we 
should take the view that there are no effects and change our view only if the 
data provide evidence against it. Thus the null hypothesis is a precise statement 
of what "no effect" in the substantive problem means in terms of the model. 
For the volume of urine problem, the null hypothesis is that the ingestion of 
caffeine has no effect on the volume of urine produced, which can be written 
Uo:fi = 0 under (3.1). 

3.2.2 The Test Statistic 

If the null hypothesis H0: fi = 0 is true and the model (3.1) holds, we expect 
(amongst other things) the mean of the data (which we saw in Section 3.1 is 
estimating fi = 0) to be close to zero. The traditional recommendation for this 
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problem is to compute the so-called studentized mean 

nll2z 170.72 
t = = = 3.50 

s 48.72 

which is the sample mean z = 170.72 divided by the standard error of the mean 
s/n112 = 48.72 and which should also be close to 0 under H0. The studentized 
mean in this case seems far from 0, but we need some way to calibrate this value. 

3.2.3 The Reference Distribution 

Suppose we are told that the rental cost of an apartment in Sydney is 
$1130/week and we want to know whether this is expensive. A sensible way to 
decide is to build up a reference distribution for the rental price of similar 
apartments in Sydney and then see where the particular apartment fits into the 
reference distribution. If the rent falls in the upper tail of the reference 
distribution, the rent is expensive; otherwise it is not. The reference distribution 
quantifies what we should expect similar apartments to cost and enables us to 
quantify the extent to which the rent for a particular apartment is atypical. The 
sampling distribution of T under J* and H0 can be interpreted as describing 
the behavior we can expect of T under J* and H0 and so is a plausible reference 
distribution. 

The distribution of T under (3.1) and the null hypothesis H0: fi = 0, was 
treated as approximately normal until "Student" (1908) derived the exact 
distribution which is called the Student t distribution with v = n — 1 degrees 
of freedom (see 9 in the Appendix) and Fisher (1925b) tabulated the distribution 
function. The density of T with n = 18 is plotted in Figure 3.1. We observe that 
t = 3.50 is in the tail of the distribution. 

3.2.4 The p-value 

To quantify the extremeness or unusualness of the observed value t = 3.50, we 
compute the significance probability or p-value. The p-value is the limiting 
proportion of realizations of T as or more extreme than the observed value 
(3.50) in an infinite sequence of hypothetical repeated trials under & and H0 

and is given by 

p = P{ | r v |> | f | ;H 0 } 

= 2{1-G,(|r|)} 

= 2{1-G17(3.50)} 

= 0.0027. (3.7) 

If the p-value is small, Fisher argued that either a rare chance event (leading to 
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/ \ Observed T 

- 4 - 2 0 2 4 

t 

Figure 3.1. The sampling distribution of T under the Gaussian model and H0: n = 0. The arrow 
shows the observed value of T. 

the observed t) has occurred or that the assumed distribution (and hence H0) 
is incorrect. (Strictly, the assumed distribution depends on !F and H0 so the 
problem may be with J* rather than H0.) Thus small p-values constitute 
evidence against H0. 

We have transformed the problem from the studentized mean scale to the 
more convenient p-value scale but we still have a calibration problem. What 
constitutes a small p-value depends on the experimeter and the context, but 
Fisher's general advice (which stemmed from copyright and other limitations 
on the publication of tables in the 1920s - see Barnard, 1990) that p-values of 
0.01 or 0.05 are small has become standard in many fields. Our p-value of 0.0027 
is clearly small by Fisher's standard, so we say that the test is significant and 
conclude that the data provide evidence that the ingestion of caffeine has an 
effect on the volume of urine produced. 

If a p-value is very large, Fisher suggested that we should also consider 
rejecting the null hypothesis as being "too good". This is the basis for his 
famous suggestion that Mendel's data is too good to have arisen naturally 
(Fisher, 1936). 

The p-value is not interpretable as a probability reflecting the falsity or belief 
in the falsity of H0. In our formulation, H0 is either true or false so has 
probability 0 or 1. The probability underlying the p-value calculation is derived 

s <u 
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from the reference distribution which reflects the stochastic nature of the 
observations and has the limiting frequency or frequentist interpretation. This 
makes it difficult to compare p-values obtained from different experiments or 
using different statistics. 

3.2.5 Learning from Significance Tests 

Fisher argued strongly that a nonsignificant test does not establish the null 
hypothesis; it simply means that the present experiment does not provide 
evidence to refute it. He argued further that a significant result does not on its 
own establish the falsity of the null hypothesis. Since this can only be done by 
repeating the experiment at other places and under other conditions, both 
significant and nonsignificant results should be published to let the literature 
reflect the empirical results correctly. This is in accord with Fisher's belief that 
although we learn from experience our knowledge is always provisional and 
subject to possible revision. 

Fisher's ideas are obviously closely related to the Popperian concept of 
falsifiability. Popper (1935, pp. 40-42, Chapter 4) argued that scientific theories 
can be refuted but not verified by empirical experience and that we advance 
science by formulating null hypotheses which we then attempt to refute. This 
notion that a hypothesis is set up only in the hope that it will be refuted 
prompted Jeffreys (1939/1961, p. 377) to describe a null hypothesis as "merely 
something set up like a coconut to stand until it is hit". 

3.2.6 The Choice of Test Statistic 

Fisher was never explicit about how we should choose a statistic on which to 
base the test. Although his concept of sufficiency (Sections 2.6.2 and Section 
7.3) and the discussion of point estimation in Section 3.1 provide some 
justification for using the sample mean and standard deviation in the volume 
of urine problem, they had been used in this kind of problem by Laplace (Stigler, 
1986, p. 151) and their use was regarded as standard well before modern 
attempts at formal justification. In any case, to Fisher, the general process of 
choosing test statistics depended on constructive imagination, knowledge, and 
experience and it could never be reduced to a mathematical problem. 

PROBLEMS 

3.2.1. We used a graphical method to examine the fit of the Poisson model to 
Rutherford and Geiger's (1910) alpha particle data presented in Problem 
1.5.1. Alternatively, a formal goodness of fit test of H0: the data are 
realizations of Poisson random variables can be based on the famous %2 
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statistic (Pearson, 1900) of the form 

V2 V " * ~~ ^k) 

where K is the number of distinct frequencies, Ek = 26081* exp (— X)/k!, 
k = 1 , . . . , K and X is an estimator of X. Here Et, the expected number 
of observations equal to k under the null hypothesis, is estimated by 
the number of samples times an estimate of the probability that the 
number of scintillations in a single sample under the model, namely 
P{Z = k} = Xk exp( — k)/k\. It can be shown that (in large samples) under 
the null hypothesis, X2 has a chi-squared distribution with K — 1 — p 
degrees of freedom, where p is the number of estimated parameters in 
Ek. Standard advice for implementing the test is to pool categories so 
that Ek> 5 for all fc. 

Show that X = Z is the maximum likelihood estimator of X under the 
Poisson model. Compute and interpret the p-value of the %2 goodness of 
fit test without pooling any categories. How does the result change if we 
pool the last four categories? Which analysis is preferable? Explain. 

3.2.2. Mosteller and Wallace (1964/1984, p. 33) presented data on the number 
of occurrences of the word "may" in 262 blocks of text, each of 
approximately 200 words, written by James Madison. The data are given 
in Table 3.1. 

A possible model (though not the only one and arguably not the best 
one) for the number of occurrences of distinct words in a document is 
the Poisson distribution with parameter equal to the mean number of 
occurrences. Use the x2 test of Problem 3.2.1 to test the hypothesis that 
the data follow the Poisson model. 

3.2.3. An alternative model for the word counts presented in Problem 3.2.2 is 
the negative binomial model introduced in Problem 3.1.1. Given estimators 
X of X and 5 of S, show how to modify the chi-squared statistic of Problem 
3.2.1 to test the hypothesis that the data follow a negative binomial model. 
Use the method of moments estimators for X and <5 from Problem 3.1.1 
to test the goodness of fit of the negative binomial model. 

Table 3.1. Number of Occurrences of "May" and the Frequency of Occurrence 

k 0 1 2 3 4 5 6 
fk 156 63 29 8 4 1 1 

Reprinted with permission from Mosteller, F. and Wallace, D.L. Inference and Disputed 
Authorship: The Federalist (1964/1984, p. 33). Copyright © (1984) by Springer-Verlag. 
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3.2.4. Graphical methods indicate that the truncated Poisson model discussed 
in Problem 3.1.2 provides a reasonable model for the Feinstein et al. 
(1989) microbubble particle data presented in Problem 1.5.2. Given an 
estimator A of X, show how to modify the chi-squared statistic of Problem 
3.1.1 to test the hypothesis that the data follow a truncated Poisson 
model. Use the method of moments estimator of X obtained in Problem 
3.1.2 to test the null hypothesis that the data are realizations of truncated 
Poisson random variables. Interpret the result. 

3.2.5. Suppose we observe the number of occurrences of distinct words in an 
unattributed document of length n words to be Y and the number of 
occurrences of the same word in a similar document of length m words 
known to be written by the suspected author of the first document to be 
X. If we assume Y ~ Poisson(n-i) and X ~ Poisson(m/z), we are interested 
in testing the hypothesis that the two documents are written by the same 
author or H0: k = \x. We can show that 

p{r = >l r + x = t} = rJjt>(i-7t)'-', y = o,i,...,t, 

where % = nX/(nX + m/i) so a conditional test of H0 is obtained by 
testing H0: n = n/(n + m). Thisted and Efron (1987) report that in the 
"Shakespearian" poem discovered in 1985, there are y = 258 distinct 
words out of n = 429. In "The Phoenix and Turtle" which is attributed 
to Shakespeare, we observe z = 216 distinct words out of m = 352. Write 
down an expression for the exact conditional p-value for testing H0. Use 
the fact that for large t, we can approximate the binomial(t, ;t) distribution 
by the Gaussian distribution with mean tn and variance tn(l — n) to 
obtain the p-value. Interpret your result. 

3.3 HYPOTHESIS TESTING 

Neyman and Pearson (1928; 1933) set out to provide significance tests with the 
logical justification they felt was lacking. They introduced the concept of an 
alternative hypothesis Hl5 and reformulated the testing problem as one of 
choosing between H0 and H1. One of the hypotheses is assumed true and the 
result of the test is a statement of which is true. The statement is, of course, not 
necessarily correct but, Neyman and Pearson argued, we should behave as if it 
is and proceed on this basis. 

A Neyman-Pearson test to choose between H0 and Hi is constructed by 
considering the sample space 2£ of all possible samples of size n and partitioning 
the space into two regions, one of which corresponds to the samples which will 
result in a decision to reject H0 (and accept H J and its complement which 
corresponds to the samples which will result in a decision to accept H0. The 
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region C(z) for which we reject H0 in favor of Hx is called the critical or rejection 
region and its complement is called the acceptance region. 

3.3.1 Types of Hypotheses 

To carry out a Neyman- Pearson test for a caffeine effect in the volume of urine 
problem, we need to formulate both a null hypothesis and an alternative 
hypothesis for p in the Gaussian model (3.1). We will consider the Fisherian 
null hypothesis of no difference, namely H0: p = 0, but it is worth noting that 
the Neyman-Pearson approach permits us to consider more general null 
hypotheses. For example, as in Section 2.5.1, we could consider the null 
hypothesis that the effects are only nearly the same to allow for small differences 
which are deemed practically unimportant. This hypothesis can be formulated 
as H0:\fi\<5 for small 5 > 0. Alternatively, we could consider the null 
hypothesis that caffeine lowers the volume of urine produced which is expressed 
as Y\0:p<§. The choice of a null hypothesis is dependent on both the 
substantive question and its context. Similar issues arise in the choice of an 
alternative hypothesis; suppose that we consider U1: p # 0. 

The simplest possible hypothesis testing problem occurs when both hypotheses 
are simple hypotheses in the sense that they specify the model completely. In 
the context of the Gaussian model (3.1), hypotheses that specify unique values 
p0 and <T0 for p. and a respectively, are simple; otherwise they are composite 
hypotheses. The Fisherian null hypothesis H0: p — 0 is a composite hypothesis 
because the value of a is unspecified but it is a sharp hypothesis about p. because 
p. takes only a single value. The alternative hypothesis W^.pj^O is also a 
composite hypothesis. 

When both hypotheses are simple, the choice of tests is straightforward and 
we will consider this situation in Sections 3.3.2-3.3.3 before considering the 
more general problem in Sections 3.3.4-3.3.7. 

3.3.2 Most Powerful Tests 

Suppose for simplicity that the general model 

J* ={ / ( z ; 0 ) :0eQ} (3.8) 

holds and consider testing the simple null hypothesis H0: 9 = 80 against the 
simple alternative hypothesis H ; : 6 = 0X. 

A test of H0 against H1 has four possible outcomes, two of which are correct 
and two of which are incorrect. Schematically 

Reality 

Decision H0 true H0 false 
Accept H0 Correct Type II 
Reject H0 Type I Correct 
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Neyman and Pearson called type I an error of the first kind (we reject H0 

when it is true) and type II an error of the second kind (we accept H0 when it 
is false). They argued that for a good test, the probabilities of type I and II 
errors which are 

P{C(Z); H0} = /(z; 0O) dz (3.9) 
I C(z) 

and 

P{C(Z)C;H1}= ffrdjdz (3.10) 
Jew 

respectively, should be small. (The integrals in (3.9) and (3.10) and the 
expressions which follow should be interpreted as sums in the discrete case.) 
We can write the probability of a type II error as 

P{C(Z)C;H1} = 1-P{C(Z) ;H 1 } 

so minimizing the probability of a type II error is equivalent to maximizing 

P{C(Z); H,} = f{r,Bx)dz (3.11) 
C(z) 

which is called the power of the test. 
It turns out that we cannot, for fixed n, minimize the probability (3.9) of a 

type I error and maximize the power (3.11) simultaneously, so Neyman and 
Pearson suggested that we should fix the probability of a type I error at a level 
a called the size or significance level of the test and then maximize the power 
of the test. Thus in mathematical terms, out of the set of all critical regions 
C(z) satisfying 

P{C(Z); H0} = f(z;60)dz = a, (3.12) 
Jew 

we should base the test on the region which maximizes (3.11). The test with 
maximum power subject to (3.12) is called the most powerful a level test. 

The Neyman-Pearson theory does not discuss the possibility that neither 
hypothesis is in reality correct. This is an example of what Kimball (1957) called 
an error of the third kind: giving the "right" answer to the wrong question. 
Notwithstanding their neglect in the theory, errors of the third kind are very 
important in practice. See also Wolfowitz (1967). 
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3.3.3 The Neyman-Pearson Lemma 

To find a most powerful a level test for testing H0: 9 = 90 against H ^ 6 = dl 

under the model (3.8), we need to find the region C(Z) in the sample space 2g 
which maximizes (3.11) subject to (3.12). That is, we need to find a region C(Z) 
such that for any other region D(Z) in the sample space 2t, we have 

/(*; 0,) dz 
C(z) 

f(z; 0i) dz > 0. (3.13) 
D(z) 

Since the only difference between the integrals on the left-hand side of (3.13) 
is in their regions of integration, we can rewrite the left-hand side of (3.13) as 

ffoOJdz-
C(z) n D(z)c 

fteojdz. (3.14) 
C(z)c n D(z) 

To make further progress, we need to relate the two integrals in (3.14) to similar 
integrals under the null hypothesis (or effectively f(z; 0 J to f(z; 80)) so that 
we can use (3.12). Since we are trying to establish an inequality in (3.14), it is 
enough to enforce an inequality between f(z; 0j) and f(z; 90). Upon reflection, 
if under C(z) n D(z)c c C(z) we have f(z; 02) > kf{z; 90) for some k > 0, 
and if under C(z)c n D(z) c C(z)c we have the opposite inequality, namely 
f(z; Qx) < fe/(z; 80), we see that (3.14) satisfies 

mejdz- f{r,ex)dz 
JC(z)r\D(x)c JC(z ) c nD(z ) 

k f(z;90)dz-k 
J C(z) n D(z)c 

/(z; 0O) dz. 
C(z)c n D(z) 

Reversing the passage from (3.13) to (3.14), we have 

ftziOJdz- fteOJdz 
C(z) o D(z)c J C(z)c n D(z) 

fc I f(z;60)dz-k | f(z;60)dz (3.15) 
J C(z) J B(z) 

to which we can apply (3.12). Since both tests C(z) and D{z) are level a tests 
satisfying (3.12), the integrals on the right-hand side of (3.15) equal a and 
the right-hand side of (3.15) is 0. This establishes that (3.12) holds for 
C(z) = {/(z; 0X) > /c/(z; 90)} where k is chosen to satisfy (3.12) and this is 
therefore the most powerful level a test. This test is called the likelihood ratio 
test and the result that it is the most powerful a level test is called the 
Neymann-Pearson lemma. 
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Lemma 3.1 (Neyman and Pearson, 1933) Suppose that the model 
<F = {/(z; 0): Oe Q} holds. If there exists a 0 < k < oo such that 
P{/(Z; 0J//XZ; 0o) > k; 6 = 80} = a, 0 < a < 1, tften the most powerful a level 
test for testing H0: 9 = 90 against H t : 0 = 0t is gf/uerc foy 

C(z) = {^9l)>4. 

We have assumed in our derivation of the Neyman-Pearson lemma that a 
likelihood ratio test of exact size a exists. With discrete data, the sampling 
distribution of the likelihood ratio statistic does not take on all possible values 
between 0 and 1 so a likelihood ratio test with exact size a may not exist. The 
simplest practical alternative in this case is to replace (3.12) by the inequality 
constraint 

P{C(Z);H0}= I f(z;60)dz<a. (3.16) 
•JC(z) 

3.3.4 Uniformly Most Powerful Tests 

When the alternative hypothesis is composite, the best test, called the uniformly 
most powerful test, is the test that is more powerful than any other test at every 
alternative parameter value. Thus the uniformly most powerful level a test for 
testing H0: 6 = 80 against H^ 6 # 60 under the model (3.8) is the test C(z) 
which maximizes 

P{C(Z);0} f o r a l l 0 ^ 0 o (3.17) 

subject to P{C(Z); d0} < a. 
In our problem of testing H0: /i = 0 against H1: [i / 0 under the Gaussian 

model (3.1), the null hypothesis is also composite so (3.17) needs to be 
generalized slightly. The uniformly most powerful level a for testing H0: /x = 0 
against H ^ n # 0 under the model (3.8) is the test C(z) which maximizes 

P{C(Z); n, a} for all \i # 0, a > 0 

subject to P{C(Z); n = 0, a} < a for all a > 0. 
Uniformly most powerful tests exist only in limited cases and, unfortunately, 

the problem of testing H0: fi = 0 against H1: // / 0 under the Gaussian model 
(3.1) is not such a case; see Lehmann (1959/1991, p. 108 ff). Intuitively, the 
difficulty is that the parameter space specified by the alternative hypothesis can 
be partitioned into subsets and we can construct tests which are most powerful 
for parameter values in each subset but have very low power for parameter 
values anywhere else. At least over the regions where they are most powerful, 
these tests dominate tests which are trying to be powerful over the entire 
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parameter space specified by the alternative hypothesis. In particular, we have 

{n * 0, a) = {n > 0, a} u {n < 0, a) 

and the a level tests Cj(z) = {z: nll2z/s > &,}, where P{n1/2z/s > fc^ if0} = a, 
and C2(z) = {z: n1/2z/s < k2}, where P{n1/2z/s < k2; H0} = a, are more powerful 
than the intuitively reasonable a level test C(z) = {z: n1/2|z/s| > k}, where 
P{n1/2|Z/S| > /c; H0} = a, over {/i > 0, a} and {/i < 0, a} respectively, but have 
very low power over {fi < 0, a} and {/x > 0, a} respectively. The power functions 
of these tests are computed in Section 3.3.6 and Problem 3.3.2, and then plotted 
in Figure 3.3. 

3.3.5 Uniformly Most Powerful Unbiased Tests 

The mathematical solution to the fact that uniformly most powerful tests exist 
only rarely is to introduce additional criteria to restrict the class of tests under 
consideration and then to try to find the most powerful test in that restricted 
class. For example, we can exclude tests which are powerful over a region of 
the parameter space at the cost of having very low power elsewhere. In 
particular, for testing H0: n = 0 against H ^ n =t 0 under (3.1), we may restrict 
attention to the class of unbiased tests which satisfy 

P{C(Z); ft = 0, a) < a for all a > 0 

and 

P{C(Z); n, a) > a for all ft # 0, a > 0. (3.18) 

That is, we exclude tests which are very powerful in some region of the 
space of alternatives but very poor (with power less than the size!) elsewhere. 
(This is analogous at least in its goals to unbiasedness for estimators in 
Section 3.1.4.) The tests Q(z) = {z: nmzjs > fe,} and C2(z) = {z: nll2z/s < k2} 
do not satisfy (3.18) so they are not unbiased and are excluded from con-
sideration. In the class of unbiased tests, the test C(z) = {z: n1/2\z/s\ > k}, where 
P{n1/2|Z/S| > k; H0} = a is the most powerful test for testing H0: n = 0 against 
H t : n =£ 0; see Lehmann (1959/1991, p. 192 ff). We say that it is the uniformly 
most powerful unbiased test. 

3.3.6 Testing the Effect of Caffeine on the Volume of Urine Produced 

The uniformly most powerful unbiased test for testing H o : ^ = 0 against 
H,: n ^ 0 under the Gaussian model (3.1) is given by C(z) = {z: n1/2|z/s| > c}, 
where c satisfies 

a = P{ | r v |>c ;H 0 } = 2{ l -G v (c )} . 
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Figure 3.2. The critical region of the 5% level ( test for n = 18. The density in the plot is that of 
the sampling distribution of T under the Gaussian model and H0: n = 0 and the arrow shows the 
observed value ( of T. 

With n = 18 and a = 0.05, we find c = 2.11. That is, we reject H0 if \t\ > 2.11 
and accept H0 otherwise. The critical region is shown in relation to the t17 

density in Figure 3.2. The realized value t of Tv for our data is 3.50 so we 
accept H,. 

The power of this test against the alternative Hj : /i = /x, depends on the 
distribution of Tv = nll2Z/S when n = fi1. This distribution is called the 
noncentral t distribution with v = 17 degrees of freedom and noncentrality 
parameter ty = n112^^^, and we denote its distribution function by GVyli. The 
power is then 

P{|JV| > c; JI„ a} = 1 - G,,,,,^) + G„.„(-c). 

The noncentral t distribution is not easy to work with but we can approximate 
it by the central (Student) t distribution to obtain the convenient approximation 

P{|rv| > c; filt ff} « 1 _ G v ( - t , + c) + G v ( - t ! - c). (3.19) 

As we vary /ij and hence t1, we obtain a function over the set of possible 
alternatives called the power function. For the volume of urine data, with n = 18 
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Figure 3.3. The power function of the 5% level t test of H0: n = 0 against H,:/i ^ 0 for « = 18. 
The dashed functions are the power functions of the 5% level t tests of H0 against {n > 0, CT} and 
{fi < 0, CT} respectively. The horizontal line represents power equal to 0.05, the level of the tests. 

and a = 0.05, (3.19) reduces to 

1 - G , 7 ( - t i + 2.11) + G 1 7 ( - t ! - 2.11) 

which is plotted in Figure 3.3. 

3.3.7 One- and Two-Sided Tests 

The test C(z) = {z: n1/2\z/s\ > k} is sometimes called a two-sided test to reflect 
the nature of the two hypotheses. One-sided tests such as Ct(z) = {z: nil2z/s > fc,} 
and C2(z) = {z: nll2z/s < k2} are appropriate when the alternative hypothesis 
is that the ingestion of caffeine increases/reduces the volume of urine produced. 
So for example, if we test H0: n = 0 against Hx: \i < 0 (that caffeine reduces 
the volume of urine produced) with a = 0.05, the critical region is {Tv < c}, 
where 

0.05 = P { 7 ; < c ; H 0 } = Gv(c). 

We find that c = —1.74 so we accept H,. Notice that here we have not 
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explicitly considered the possibility that n > 0 (i.e., that coffee increases the 
volume of urine produced); the test has simply accepted the least discordant of 
the two hypotheses. Thus we can actually interpret the test as one of H0: fx > 0 
against H^ \i < 0. 

3.3.8 The Interpretation of Level and Power 

The level of a test is the proportion of times, in a large number of tests at the 
same level, we would reject H0 when it is in fact true and the power is the 
proportion of times we would accept the alternative when it is in fact true. 
We cannot say anything about the performance of a test in any particular 
implementation so we rely on the fact that it has good properties when we 
average over the sample space. 

3.3.9 The Choice of the Null Hypothesis 

The calculations for actually implementing the test as opposed to evaluating 
its properties depend only on H0. Thus there is an asymmetry in the treatment 
of the two hypotheses which imposes a different logical status on them. One 
view is that the null hypothesis should be the more important of the two 
hypotheses, the one for which we want precise control of the probability of 
error. However, this view is only relevant once the data have been collected 
because, by varying n, we can control both probabilities of error. This suggests 
correctly that considerations of power may be useful in determining sample 
sizes (see Section 3.4.5) though, in the absence of extensive knowledge of the 
phenomena under consideration, such determinations usually depend on strong 
assumptions. 

3.3.10 Achievements and Limitations of Hypothesis Tests 

Neyman and Pearson felt that their theory provided a logical basis for testing. 
First, the explicit introduction of an alternative hypothesis leads to a framework 
for planning an experiment and for selecting a test. Second, the rejection region 
concept is closely related to and justifies the use of tail probabilities and 
significance levels and provides a direct frequency interpretation for them. 
Fisher rejected these claims throughout his life. He argued against the decision 
theoretic formulation, the utility considerations, and what he viewed as the 
attempt to suppress the need for personal judgement. In his view inference 
should be distinguished from decision making as being provisional and subject 
to possible revision rather than final. As Pitman (1979, p. 1) explained, inference 
is persuasive rather than coercive. See also Cox (1958). Neyman argued strongly 
that it is possible to derive useful inferential procedures using decision theoretic 
ideas, that the usual end result of inference is the reaching of a decision and 
that by defining "decision" broadly enough we can regard inference as a part 
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of decision theory. Interestingly, Kiefer (1977a) argued that decision theory is 
a part of inference. 

The utility considerations introduced by Neyman and Pearson constitute a 
minimal basis for a mathematical treatment. Decision making should depend 
also on past evidence, past experience, and the possibly unquantifiable costs 
and benefits of each decision. Although Wald (1950) developed a more complete 
decision theory to overcome these limitations, its complexity and the difficulty 
of formalizing the more subjective elements of decision making have limited its 
use in inferential problems. It seems neither possible nor desirable to completely 
remove the subjective aspects of data analysis from statistical inference. 

3.3.11 Mathematical Statistics 

The probability calculations for a Neymann-Pearson test do not in any way 
depend on the data actually observed. Thus while a p-value depends on the 
observed data, the level is a property of a test without regard to data. Thus the 
Neyman-Pearson formulation made possible the mathematical comparison of 
statistical procedures without regard to particular sets of data or contexts and 
so laid the foundations for a purely mathematical theory of statistics. 

PROBLEMS 

3.3.1. Suppose that we have observations Z on the model 

— oo < yt< co: fie U, a > 0>. 

Consider testing the null hypothesis H0:fi = 0, a = a0 against the 
alternative hypothesis H1:/i = / i o > 0 , a = <r0. Show that the test 
C(z) = {z: n1/2z/<x0 > c}, where c satisfies 

a = P< >c;0,<T0\ 

is the most powerful a level test for this problem. Find an expression for 
c in terms of a. Find the power of the test and plot it as a function of 
fi0 > 0 for fixed a0. Explore what happens to the power as a and n change. 

3.3.2. Consider the problem of testing H0: fi = 0 against H1\fi^=0 under 
the Gaussian model (3.1). Compute the power of the a level tests 
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C,(z)= {z:n1 / 2z/s> fc,}, where P{n1/2z/s > fc,; tf0} = a, and C2(z) = 
{z: n1/2z/s < /c2}, where P{n1/2z/s < k2; H0} = a. 

3.3.3. In Problem 2.2.7 we adopted the uniform model 

Ĵ  = |/(z; d) = n 1 7(0 < z, < 0): 0 > oj, 

where /(•) is the indicator function, for 12 random numbers generated 
on a random number generator. Derive the likelihood ratio for testing 
H0: 6 = d0 against H ^ 9 # 60. Find the critical region and the p-value 
for the likelihood ratio test. Obtain the power function for the 5% level 
test with 60 = 1 and use it to determine the sample size required to obtain 
a power of 0.8 against the alternative 8 = 0.98. 

3.4 IMPLEMENTING TESTS 

Various textbooks and applications journals have institutionalized a paradigm 
for statistical testing which is a hybrid of the conceptually distinct Fisherian 
and Neyman-Pearson approaches. This hybrid is motivated by the fact that 
the two theories often lead to the same statistic being used and hence to identical 
numerical results. However, this formulation has blurred the subtle conceptual 
differences between the theories. 

The connection which makes hybridization possible is that the p-value can 
be interpreted as the smallest significance level for which the observed data 
would result in the rejection of the null hypothesis. Thus, an alternative way 
to carry out a Neyman-Pearson test is to compute the p-value; if it is smaller 
than a predetermined significance level a, we reject H0, whereas if it is greater 
than a we accept H0. 

The hybrid approach adopts the Neyman-Pearson concepts for the theoretical 
evaluation and comparison of the properties of tests. Tests are actually carried 
out by computing p-values and referring them to a predetermined significance 
level. As noted by Gigerenzer et al. (1989, p. 107), it is common to accept the 
Fisherian view that the null hypothesis cannot be accepted and often also the 
Fisherian restriction to sharp null hypotheses of no effect. If the p-value is larger 
than a, the test is said to be "not significant"; if the p-value is less than a, the 
test is "statistically significant" and the null hypothesis is said to be "rejected 
at the a level". The Neyman-Pearson interpretation of testing in behavioral 
terms is often ignored and the p-value is given a Fisherian interpretation which 
can lead to confusion about the meaning of a significance level. 



128 FREQUENTIST INFERENCE 

3.4.1 Naming Tests 

Many statistical tests are loosely referred to by the name of the reference 
distribution used in the test. Thus all the tests constructed in this chapter may 
be referred to as "r tests" or "paired t tests". However, there are in fact many 
t tests corresponding to different hypotheses, different test statistics, and so 
on, so in the report of an analysis, it needs to be made clear which tests have 
been used. 

3.4.2 The Choice of Significance Level 

The widespread convention of choosing levels of 0.05 or 0.01 irrespective of the 
context of the analysis has neither a scientific nor a logical basis. The choice 
of level is a question of personal judgement in the Fisherian approach and one 
of considering type I and II errors in the Neyman-Pearson approach. Since 
for a given sample size decreasing one error probability increases the other 
(Figure 3.4), it is possible to argue for a relative balance. In particular, if at 
a = 0.05 the power is very low, one might seriously consider increasing a and 
so increasing the power. 

A simplified example may help illustrate the issues. As part of a claim for 

t = nm\i/a 

Figure 3.4. The effect on the power function of changing the level of a test while holding the sample 
size fixed (n = 18). 
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compensation from the government, Vietnam veterans tried to show that they 
had higher incidences of medical problems arising from their exposure to 
hazardous chemicals in Vietnam than a control group of contemporaries who 
did not go to Vietnam. We can think of the outcome as either the government 
pays compensation or does not. This is a decision theoretic problem in which 
the null hypothesis of no effect is associated with the action of not paying 
compensation and the alternative of a positive effect is associated with paying 
compensation. The two types of errors are 

• Type 1: Find an effect when there is none or the government pays when 
it should not. 

• Type 2: Find no effect when there is one or the veterans should be 
compensated but are not. 

Any effect is expected to be small relative to natural variability and so difficult 
to detect. A small a yields a test with low power and so places the burden of 
proof heavily on the veterans. Increasing a increases the power and decreases 
the burden on the veterans. We have to think about the relative consequences 
of the two types of errors for the two parties and even entertain discussion 
about the morality of the burden. By trading off the relative burdens, we should 
arrive at a reasonable value of a which one could expect to be considerably 
larger than 0.05. In this type of problem, an explicit context-dependent 
argument should be given in advance of data collection to justify the choice of a. 

3.4.3 Multiple Tests 

In the formal presentation of testing, it is usual to assume that everything about 
the model other than the hypothesis under test is specified before we obtain 
the data on which the analysis will be based and that the analysis will consist 
of a single test. In such circumstances, the significance level is well defined and 
easily interpretable. However, it is also important to allow for testing several 
hypotheses about different aspects of the underlying population. Clearly, 
carrying out several formal Neyman-Pearson tests increases the number of 
possible outcomes and introduces further possible errors. For example, if we 
have tests Cj(z) and C2(z) of the hypotheses Hx and H2 such that 

P{C1(Z);H1} = P{C2(Z);H2} = a, 

then the probability of a type I error in at least one of the tests is generally 
greater than a because 

P{Q(Z) u C2(Z); H1; H2} = 1 - PfC^Z) ' n C2(Z)C; H „ H2} 

^ l - P l Q f Z ) ' ; ^ } 

= a 



130 FREQUENTIST INFERENCE 

and satisfies 

P{Q(Z) u C2(Z); H„ H2} < PfC^Z); H J + P{C2(Z); H2} 

= 2a. 

That is, the more tests we make, the more likely we are to make at least one 
type I error. 

The strategy of specifying all aspects of the model other than the one of 
interest in advance of collecting the data would often lead to absurd results in 
practice. It is therefore important to allow a more flexible data-analytic 
approach in which the underlying assumptions are subjected to scrutiny and 
in which some aspects of the model are specified or modified after examining 
the data. When we carry out informal tests as in diagnostic checking, the 
probabilities of various types of error are not well defined. However, the effect 
of data analysis and multiple tests (formal or informal) is to increase the overall 
probability of falsely rejecting at least one null hypothesis and hence increases 
the overall significance level. The practical consequence is that the more testing 
(formal or informal) that we do, the smaller the p-value has to be before we 
deem a test to be significant. This means that we need to know exactly what 
was done in the analysis in order to interpret the p-values. 

3.4.4 One- and Two-Sided Tests 

It is quite appropriate to consider one- and two-sided tests (referring to the 
nature of the alternative hypotheses) in the Neyman-Pearson framework. 
However, many statisticians are sceptical of the widespread use of one-sided 
tests because they do not fit into the Fisherian framework and because they 
are open to abuse. This possibility occurs because the critical point for a 
two-sided test is always more extreme than that for a one-sided test (half the 
size when the sampling distribution is symmetric) so a significant result is more 
easily obtained with a one-sided than with a two-sided test. 

3.4.5 Sample Size 

For reasonable tests with a fixed level of significance, the power increases as 
the sample size increases. We illustrate this graphically in Figure 3.5 by plotting 
the approximate power function 

P^{|r.-,| > c} * 1 - Gv(-n1 / 2J + c) + Gv(-n
l'2t - c), 

where c is chosen so that a = 2{1 — Gv(c)}, as a function of r = JU/<T181/2 for 
different sample sizes n. It is clear that when n is small, the power to detect 
even quite large alternatives to H0 is small but when n is large, the power to 
detect alternatives close to H0 is high. 
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Figure 3.5. The effect on the power function of changing the sample size while holding the level 
of the test fixed (a = 0.05). The horizontal line represents power equal to 0.05, the level of 
the tests. 

The dependence of the test result on sample size is the basis for sample size 
determination: specify H1, specify the desired power, and then choose n to 
achieve this power. But its other implications are perhaps even more important: 
for small samples, tests tend to be not significant while for large samples they 
tend to reject H0. Thus the outcome is largely determined by the sample size 
irrespective of the actual data! As a simple numerical example, suppose that 
we have independent observations from a normal distribution with mean n and 
variance 100. Then we would accept H0: (i = 0 at the 5% level if we observed 
a sample mean of 9.5 when n = 4 but we would reject H0 at the same level if 
we observed a sample mean of 0.02 when n = 106. This property is desirable 
in the sense that it reflects the fact that as n increases we know more about the 
underlying population but if we conceive the hypothesis that "/* = 0" as an 
approximation to "/* is small", we can (for large samples) end up rejecting our 
(untrue) approximation when the actual hypothesis is in fact correct. Conse-
quently some statisticians argue against the use of sharp hypotheses as 
approximations to hypotheses of more value. 

The effect of sample size on a test is not just a hypothetical issue. It arises 
in Problem 3.2.4 for which n = 1792 and even more dramatically in the work 
of Jahn et al. (1987) which involved n = 104490000 Bernoulli trials to 
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detect psychokinesis. The null hypothesis of no psychokinesis is expressed as 
H0:7r = 1/2 in a binomial(n, n) model. The p-value is approximately 0.0003, 
which appears to provide decisive evidence in favor of psychokinesis. However, 
as noted by Jefferys (1990; 1992), there were only 0.018% more "successes" than 
the n/2 we would expect to observe under the null hypothesis, so the p-value 
overstates the evidence against H0. Jefferys suggested a Bayesian analysis for 
this problem which is discussed in Section 3.5.3. 

An alternative possible resolution is to allow the significance level to depend 
on n so that it decreases as n increases. This suggestion does make clear that 
the interpretation of a test depends on the sample size. To make this dependence 
explicit, Good (1988) has suggested that we report standardized p-values 

which are adjusted to a standard sample size of 100. This suggestion has not 
been widely adopted yet. 

For recent discussion of the use of p-values see Royall (1986), Good (1986), 
Berger and Selke (1987), Casella and Berger (1987), Berger and Delampady 
(1987), and Barnard (1990). 

3.4.6 Substantive Importance 

In interpreting the result of a statistical test, it should be kept in mind that 
statistical significance is not the same as substantive importance or, in other 
words, statistical significance is not the goal of experimentation. As an example, 
suppose that we regard a caffeine effect of 200 ml/3 h (i.e., slightly less than a 
cup) as important. The test of H0: \i = 0 is significant with our data but the 
effect is not of substantive importance. On the other hand, nonsignificant results 
can also be important. A judgement of substantive importance is in fact 
nonstatistical, based on context, knowledge, and experience and the criterion 
should ideally be specified in advance of data collection. 

3.5 LIKELIHOOD RATIO, LIKELIHOOD, AND 
BAYESIAN TESTS 

An important feature of the Neyman-Pearson approach to testing (and to 
frequentist inference generally) is that it is nonconstructivist: it tells us which 
tests are valid and shows us how to compare tests but it does not tell us how 
to find optimal tests. While there are, not surprisingly, a number of ways of 
constructing tests, one of the most general and important approaches uses 
likelihood ratios to construct tests. 

Although use of the likelihood ratio is optional in frequentist theory, there 
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are a number of arguments which suggest that frequentists should base inference 
on the likelihood ratio. First, as discussed in Sections 2.6.2 and 7.3, the 
likelihood ratio contains all the information in the data about the model. 
Second, tests based on likelihood ratios are often optimal as shown by the 
Neyman-Pearson lemma (Section 3.3.3) and various extensions of it. 

3.5.1 The Likelihood Ratio Test for the Effect of Caffeine 

From the calculations in Section 2.7.1, the ratio of the likelihood under the 
Gaussian model (3.1) and Hl:fi^0 to the likelihood under Ho:ju = 0 is 
given by 

'<***> = f l + ^ Y / 2 . (3.20) 
/(z; 0,(7(0)) V vs2

y 

The Neyman-Pearson likelihood ratio test of H0 against H[ is given by 

z : ( l + - - - ) >k*}, (3.21) 

where k* is chosen so that P{(1 + nZ2/vS2)"12 > k*; H0} = a. 
Since the likelihood ratio (1 + nz2/vs2)"/2 is a monotone function of |n1/2f/s|, 

the test (3.21) is equivalent to {z: \nl'2z/s\ > k], where P(|n1/22/S| > k; H0) = a, 
the test we considered in Section 3.3.6. If we decide to implement the likelihood 
ratio test (3.21) by computing the p-value, we find that the observed likelihood 
ratio is (1 + nz2/vs2)"12 = 133.40, so 

p = p { ( i + S " % i 3 3 - 4 0 

= P{ | r i 7 |>3 .50 ;H 0 } . 

Thus the p-value for the likelihood ratio test of H0: fi = 0 against H t : n ^ 0 is 
identical to that based on the t-ratio \nil2z/s\ in this case. 

3.5.2 Relationship to Likelihood Inference 

Recall that in the likelihood approach to inference presented in Section 2.7, 
we compare hypotheses by comparing the ratio of the likelihoods of those 
hypotheses. In particular, the relative "plausibility" of H0: fi = 0 to H t : n # 0 is 
given by the reciprocal of the likelihood ratio (3.20) which is 

/(z; 0, <T(0)) f nz2}-"12 

jy , , \ ij = ij + i = o.0075, 
/(z; (I, a) 

so H0 is 1/0.0075 ~ 133 times less "plausible" than Hx 
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When we use the likelihood ratio (3.20) as a frequentist test statistic in (3.21), 
we also use the additional fact that the likelihood ratio is a realization of the 
random function 

/(Z;(U(0)) = f, nZ2j-"/2 

f(Z; A 6) \ vS2 j 

to compute its sampling distribution under the model and H0 and then use this 
sampling distribution to construct the test. Thus there are two important 
differences between likelihood and frequentist theory: 

1. In likelihood theory, inference must be based on the likelihood whereas 
in frequentist theory a wide choice of test statistics is allowed. 

2. Likelihood theory involves direct examination of the likelihood ratio 
whereas frequentist theory based on the likelihood ratio requires us to 
use the sampling distribution to calibrate the magnitude of the likelihood 
ratio. Paraphrasing a comment of Jeffreys (1939/1961, p. 385), the inference 
depends on the observed data and also on observable results that have 
not occurred. 

Additionally, a small but practically important difference arises because it is 
conventional in frequentist discussions to arrange tests so that large values of 
the test statistic constitute evidence against H0. This means that frequentists 
usually base the p-value on the reciprocal of the ratio used in likelihood theory. 

The dependence on sampling distributions makes frequentist theory more 
complex than likelihood theory and is the basis for the very different interpret-
ations of often numerically similar inference statements. However, the inferences 
can also be quite different as was noted by Dempster (1973). Let Z be a random 
variable taking values in (0,1) and consider testing 

against 

H1:/1(3') = 

H 0 : / o ( jO= l 

0.00 ly 

~a957 

19.98y 18.98 

0 < y < 0.95 

0.95 <y< 1, 

where c « 0.0255 is chosen to ensure that the density integrates to 1. Suppose 
that we make a single observation and observe z = 0.95. Then the likelihood 
ratio is just 

/o(0?5) = _ l _ ! B 2 5 . 5 1 

M0.95) A(0.95) 
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which provides no evidence against H0. However, the frequentist calculates the 
p- value 

U(Z) M0.9S) 
p-value = P< > H0 

IMZ) /0(0.95) 

= P{/,(Z) > M0.95); H0} 

= P{Z > 0.95; H0} 

= 0.05 
which provides evidence against H0. Thus the two approaches are in conflict 
in this problem. 

3.5.3 Relationship to Bayesian Hypothesis Tests 

The relationship between significance tests and Bayesian hypothesis tests 
(Section 2.5) is quite complex. For definiteness, we assume for simplicity 
throughout this section that the Gaussian model (3.1) with a = 1 known 
holds. 

Consider first the problem of testing H0: p = 0 against the one-sided 
alternative hypothesis H t : p > 0. If we observe z, the p-value is 

p = P(Z > z; H0) = 1 - *0i1/2z), 

where O is the standard Gaussian distribution function. If we adopt the Jeffreys 
prior g(p) oc 1 for p, the posterior distribution of p. | Z = z is N(z, n_ 1) . Hence 
the posterior probability of {p < 0} is 

P(p < 0 | Z = z) = 0 ( - n 1 / 2 z ) = p 

by the symmetry of the Gaussian distribution. Thus the one-sided p-value for 
testing Ho:/i = 0 against H1:p>0 equals the posterior probability (from 
the Jeffreys prior) of {p < 0}. This relationship is illustrated graphically in 
Figure 3.6. 

Now consider testing H0: p = 0 against the general alternative Hl: p / 0. 
The p-value is now 

p = 2{l-(D(«1'2|zl)}. (3.22) 

Reversing our perspective, we obtain a given p-value p if \z\ = n~~ 1/2<X>~ '(1 — p/2). 
The Bayes factor from the Jeffreys Cauchy prior 

g{p) = PoI(p = 0) + (1 - p0){7r(l + p2)}-H{p # 0) 
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Sample Mean z 

Figure 3.6. Graphical representation of the relationship between the one-sided p-value for testing 
H0: )i = 0 against Ht: n > 0 and the posterior probability that /J < 0 in a Gaussian model. 

is from (2.33) approximately 

(1 + z 2 ) e x p ( - n z 2 / 2 ) . (3.23) 

Two important differences between the p-value (3.22) and the Bayes factor (3.23) 
are first that the sampling distribution is centered at p. = 0 while the posterior 
is centered at z and second that the p-value is the area under the curve defined 
by the sampling distribution whereas the Bayes factor is the ordinate of the 
curve defined by the Bayes factor (3.23). 

The most important difference between the two approaches can be seen by 
expressing the posterior odds ratio (3.23) as a function of the p-value (3.22) as 

1/2 

{1 + n~l<&~1(\ -pl2)2}exv{-<b-l{\ -p /2 ) 2 /2} . 

This expression shows that for large n (with fixed p), the posterior odds ratio 
(3.23) can be arbitrarily large (evidence in support of H0) while p is arbitrarily 
small (evidence against H0). This is known as the Jeffrey si Lindley paradox 
(Jeffreys, 1939/1961, p. 248; Lindley, 1957). 

fnn\ 

\2J 
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The Jeffreys/Lindley paradox is the reason why Jefferys (1990; 1992) reached 
the opposite conclusion to that of Jahn et al. (1987) on the basis of their 
psychokinesis experiments (see Section 3.4.5). Jefferys showed that if we adopt 
a uniform prior under the alternative hypothesis, the Bayes factor equals 12 
(so we would have to have very strong prior odds against the null hypothesis 
of no psychokinesis to obtain evidence against the null hypothesis) despite the 
strong evidence against the null hypothesis provided by the significance test of 
Jahn et al. (1987). 

Combining Bartlett's paradox (Section 2.5.3) with the Jeffreys/Lindley 
paradox, we see that Bayesian tests of sharp hypotheses with vague priors on 
the alternative hypothesis tend to favor the null hypothesis (regardless of 
sample size) whereas frequentist tests tend to favor the alternative hypothesis 
in large samples. 

3.5.4 Limitations of Inferences Using the Likelihood 

All approaches based on the likelihood run into difficulties when applied to 
models for which no density exists or for which there is a large (increasing) 
number of parameters. These constraints, mild as they seem, do limit the 
applicability of these approaches. One advantage of the nonconstructivist 
frequentist approach is that it does not enforce any single method but simply 
states the properties that acceptable methods must have. Thus if a method fails, 
the frequentist task is to try to find another one which does not. 

PROBLEMS 

3.5.1. Suppose that we have observations Z on the model 

* = {/<*,,.,„....,) - n ft ^ - P { - ^ } . 
— oo < y/jj < oo: nu \i2 e R, au a2 > 0>. 

(That is, we observe realizations of n1 + n2 independent Gaussian 
random variables, nl of which have mean nx and variance a\ and n2 

of which have mean \i2 and variance a\.) Consider the problem of 
making inferences about S = /i, — \i2. Let zl5 s,, z2 and s2 denote 
the sample mean and standard deviation for the two sets of observations. 
Show that the likelihood ratio test for testing H0: 3 = <50, ax = a2 against 
the general alternative H t : <5 ^ <50, ax = a2 is a monotone function of 
T=\zx - z2 - Sol/fsJOT1 + »2"')}"2. where 

s2
p = {(«, - l)s? + (n2 - \)s2

2}/(ni +n2~ 2). 
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Use the fact that under the Gaussian model and the null hypothesis T 
has the Student t distribution with n, + n2 — 2 degrees of freedom to 
obtain the critical region for an a level test of H0. 

3.5.2. Suppose that we have observations Z on the model of Problem 3.5.1 for 
which (j1 = a2 = o- Show that the analysis of variance decomposition 

1 £ (zJt - z)2 = £ nj(zj - z)2 + t £ (z,, - z,.)2, 
j=l i = l j = l ; = 1 i = l 

where 

2 

h = " J
1 i zn a n d * = I nj] E Z H 
i=l \ j = l / j = l i = l 

holds. The analysis of variance test of the null hypothesis H0: /*, = n2 is 
based on the ratio £?= 1 n^Zj - z)2/£2= x ZV= i (zji - z,-)2 with large 
values of the ratio providing evidence against H0. Use the fact that under 
the model and the null hypothesis H0:/ij = JX2, the numerator and 
denominator in this ratio have independent a2x\ and c2x2,+n2-2 distri-
butions to construct a test of H0. How does this test relate to the 
likelihood ratio test obtained in Problem 3.5.1? 

3.5.3. Suppose that we have observations on the model of Problem 3.5.1. Con-
struct the likelihood ratio test for testing H0: <x2 = a\ against H t : a\ / a\. 
How does this test relate to the test based on the ratio F = 
Z " i i ( z n - * i ) 7 2 : " M z 2 < - Z 2 ) 2 ? 

3.5.4. Consider the variance component model (1.20) for the caffeine data 
presented in Section 1.3.7 and reparameterized in Problem 2.7.2 by 
T„ = a2 and xa = ma2 + a2. The analysis of the caffeine data presented 
in this chapter is based on the fact that the pairwise differences 

Zi= Yn- Yi0 = n + un - ui0 

are independent N(ju, 2T„) random variables. Explore the relationship 
between the likelihood ratio tests of H0: n = 0 against H,: \i # 0 con-
structed from the mixed model and from the paired differences. 

3.6 CONFIDENCE SETS 

In the late 1920s, following the success of his work with Pearson on hypothesis 
testing, Neyman began to develop a frequentist approach to set estimation. Not 
surprisingly, in view of his hypothesis testing paradigm, Neyman (1934; 1937) 
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adopted a similar, nonconstructivist approach to interval estimation. He defined 
a 100(1 — a)% confidence set for a parameter 8 to be a realization Ca(z) of a 
random set Ca(Z) for which the confidence level or coverage probability 

P{0eQ(Z);0} > 1 - a . (3.24) 

To avoid the situation in which a 95% confidence interval does not contain all 
the points in, say, an 85% confidence interval, we now also usually require the 
sets to be nested in the sense that Cy(Z) c Q(Z) for a < y. 

Given any set Q(z), we can in principle compute its coverage probability 
P{8 e Ca(Z);6} and check whether it is a 100(1 — a)% confidence set, but 
Neyman's general approach does not specify how we should obtain such sets. 

3.6.1 The Pivotal Method 

The pivotal method of constructing confidence intervals is based on the 
inversion of a pivotal quantity. A pivotal quantity is a function of Z and the 
parameter of interest which has a distribution which does not depend on any 
other unknown parameters and is monotone in the parameter of interest. 

For the Gaussian model (3.1), the function «1/2(Z — n)/S ~ fv is a pivotal 
quantity for p. A 100(1 — a)% confidence interval for \i can be obtained by 
noting that for any a < b, 

Gv(b) - Gv(a) = P<a < — < bV 

= P{Z -n-i/2Sb<n<Z + n'll2Sa} (3.25) 

so a and b should satisfy 

1 - a = Gv(ft) - Gv(a)- (3.26) 

Notice that we have used the fact that a pivotal quantity has a known 
distribution to obtain a and b and then the fact that it is monotone in n to 
invert the pivotal quantity to obtain the set containing ft. 

The equation (3.26) defining a and b is a single equation in two unknowns 
so does not have a unique solution. One possibility is to construct a 
central interval for which Gv(b) = 1 — a/2 and Gv(a) = a/2. This yields 
b = —a = G~l(l - a/2) so substituting into (3.25) we obtain 

Cjiz) = {ix: z - n~ll2sG;\l - a/2) < n < z + n'1/2sG;'(I - a / 2 ) } . (3.27) 

In particular, for the caffeine data, the realized interval 

Ca(z) = [170.72 - 48.72G1"7
1(1 - a/2), 170.72 + 48.72Gr,1(l - a/2)] 
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is a 100(1 — <x)% confidence interval for ^ and, taking a = 0.05, 

C0.o5(z) = [67, 274] 

is a 95% confidence interval for /*. 
A general procedure for finding a pivotal quantity is to choose an estimator 

of the parameter of interest, find its sampling distribution, and then try to find 
a function of the statistic and the parameter of interest which is pivotal. This 
is straightforward for models with a nice group structure (such as location-scale 
models (1.18); see the discussion in Section 2.6.6) but is often impossible. As 
we will see in Chapter 4 (in for example Section 4.1.11), approximate pivotal 
quantities are often easy to construct and we can apply the pivotal method to 
these to obtain approximate confidence intervals. 

3.6.2 Confidence Sets Derived by Inverting Tests 

Neyman observed that there is a close connection between confidence sets and 
tests of sharp hypotheses. For the Gaussian model (3.1), the uniformly most 
powerful unbiased test (Section 3.3.5) for testing H0: (i = /z0 against Ht: /i # n0 

is given by C(z) = {z: n1/2|z — n0\/s > c}, where P{C(Z); ^0, a} = a. Equivalently, 
in terms of the acceptance region C(z)c = {z: nll2\z — fi0\/s < c}, we have 

P{C(Z)C; n0< a] = 1 - a. 

Comparing this statement to the definition of a confidence set, we see that, if 
we fix the data, the set of parameter values for which we accept the null 
hypothesis, namely {n0: n

1/2|z — /x0\/s < c}, is a 100(1 — a)% confidence set for 
the parameter. That is, if we invert our view of the acceptance region as a set 
in the sample space for given parameter values to one in the parameter space 
for a given sample, we obtain a 100(1 — a)% confidence set. Notice that this 
requires us to consider a whole family of sharp null hypotheses rather than a 
single sharp null hypothesis. Since c = G~ 1(l — a/2), we can invert the acceptance 
region to obtain (3.27). 

The inversion step in constructing the confidence interval can be given a 
useful graphical interpretation. Suppose first that a is known. Then for each 
fixed value of \i, we have that 

?{n-n-ll2<rt>-\\ - <x/2) < Z < n + n-ll2a<^-1(l -a/2); ft, a} = 1 - a. 

We plot n on the x-axis and z on the _y-axis and then plot the lines 

z = li-n-ll2ad>-1(\ - a / 2 ) and z = n + n-1 / 2«7*- 1(l - «/2) 

to create Figure 3.7. For each value of n we can read off a set which contains 
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Figure 3.7. A graphical representation of the calculation of confidence limits for the Gaussian mean 
H. The 95% confidence interval for n lies between the dotted vertical lines. 

the random variable Z with probability 1 — a. Conversely, for each value of z, 
we obtain the confidence interval for \x. Varying n and a yields sets of parallel 
lines which reflect the effects of changing n and/or a. The probability calculation 
holds in moving from the x- to the y-axis, the confidence set is obtained in 
moving from the y- to the x-axis. Whereas in fiducial theory (Section 2.6), 
Fisher asserted that moving from the y- to the x-axis also has a probability 
interpretation, Neyman was clear that this is not the case for confidence sets. 
In the general case that a is unknown, the confidence lines are again parallel 
straight lines but a random distance (depending on s) apart. (In fact, in 
Figure 3.7 we took a = s and Gv instead of O0.) In this case, the length of the 
interval is a random variable. 

In general, test statistics are functions of Z and the parameter of interest, 
which have a distribution that does not depend on any other unknown 
parameters, but they are not necessarily monotone in the parameter of interest 
and hence not necessarily pivotal quantities. The construction of confidence 
sets from tests is therefore more general than the construction based on pivotal 
quantities but the inversion of tests which are not pivotal quantities can be 
problematical (see Section 3.8.2). 
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3.6.3 Using Confidence Sets to Carry Out Tests 

We have used the Neyman-Pearson test formulation to produce a confidence 
set but the converse is also possible. In particular an a level test of H0: \i = /x0 

can be carried out by computing a 100(1 — a)% confidence interval for /i and 
checking whether the interval contains /i0 or not. If the interval does not contain 
/i0, we can reject H0. We can even recover the p-value by choosing a so that 
fi0 is on the boundary of the confidence interval. For example, setting the 
boundary of the confidence interval to be zero, we obtain 

170.72 - 48.72G1-7
1(1 - a/2) = 0 

or 

a = 2{1 - G17( 170.72/48.72)} = 0.0027 

which is the p-value for testing H0: pi = 0. The length of the interval contains 
information about the precision of the estimate and hence the power of the test 
so, when possible, it is often preferable to present tests in the form of confidence 
intervals. 

3.6.4 Optimal Confidence Intervals 

Neyman took the relationship between tests and confidence sets a step further 
and defined optimal confidence sets so that those resulting from most powerful 
tests are optimal. That is, for a fixed coverage probability 1 — a, an optimal 
confidence set is one with the smallest possible probability of containing false 
parameter values. By this device, he avoided the need to develop a new 
optimality theory. An alternative approach is to define optimal 100(1 — a)% 
confidence intervals to be those with minimum expected length. This has been 
explored in large samples by Wilks (1938a). See Section 4.3 for further 
discussion. 

3.6.5 Likelihood-Based Confidence Intervals 

Generally, just as it is attractive to base tests on likelihood ratios, it is attractive 
to ensure that confidence sets are also likelihood sets so that points in the set 
have higher likelihood than points outside the set. Such a confidence set is said 
to be likelihood-based. Likelihood-based confidence sets are obtained by 
computing the likelihood set as in Section 2.7.3 but choosing k with reference 
to the sampling distribution. For example, the likelihood set 

= L: Z - v1'2 -A- (/c"2/" - 1)1/2 < n < Z + v1'2 -A- (k~2ln - 1)1/21 
I n ' n /2 j 
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has coverage probability 

p{{l + « ^ } " ' 2 * ,} = p j ^ ^ J * v-(.-- - 1)-} 
= 2Gv{v1/2(fc~2/"- 1 ) 1 / 2 } - 1 

so we can interpret the likelihood set as a 100(2Gv{v1/2(/c_2/" - 1)1/2} - 1)% 
confidence interval. Alternatively, the 100(1 — a)% likelihood-based confidence 
set is obtained from 

Gv{v"2(k-2/" - l)1'2} = 1 - a / 2 

or 

which produces (3.27). 

3.6.6 Coverage Properties of Credibility Sets 

We can also take a set derived as a Bayesian credibility set (i.e., from the 
posterior distribution of \x given Z) and evaluate its coverage probability (using 
the distribution of Z given /J). The frequentist does not care about the way the 
set was derived but insists that it must satisfy the confidence property. A 
Bayesian, on the other hand, may be unconcerned about the repeated sampling 
or frequentist properties of an inference or may regard them as a nonbinding 
but useful means of calibrating the inference (Rubin, 1984). As we will see in 
Section 3.8 and Problems 3.8.2-3.8.3, a particular Bayesian credibility set need 
not be a confidence set at the same level. 

3.6.7 The Interpretation of Confidence Sets 

A confidence set is a realization of a random set and is not itself random. In 
particular, the confidence set either does or does not contain n and the 
randomness is introduced through the sampling distribution of the quantity 
from which it is derived. There are two commonly used interpretations of 
confidence sets: 

1. If the data at hand were generated a large number of times by the same 
mechanism under the same conditions and for each data set we calculated 
CJz), then at most a proportion a of the sets would fail to contain ft. 

2. If over many different data sets we calculate 100(1 — a)% confidence sets, 
then at most a proportion a of the sets would fail to contain the parameter 
of interest. 
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The difference between these two interpretations is that in the first interpretation 
the problem is held fixed whereas in the second it is not. Thus the second 
interpretation involves a "lifetime average" for the statistician. The fact that 
confidence sets (like Neyman-Pearson tests, see Section 3.3.8) are interpreted 
in terms of their long run average behavior and not in terms of the properties 
of individual sets, complicates their use and interpretation. Indeed, in the 
discussion of the paper in which Neyman introduced confidence sets, Bowley 
(1934) described them as a "confidence trick". 

PROBLEMS 

3.6.1. Consider the uniform model of Problem 3.1.3 for 12 random numbers 
generated on a random number generator. Plot the likelihood ratio for 
testing HO:# = 0O against H 1 : 0 # 0 O obtained in Problem 3.3.3 and 
obtain an explicit expression for the contours of the likelihood ratio. Set 
a 100(1 — <x)% likelihood-based confidence interval for 9 and compare 
this interval to the 100(1 — a)% Bayesian credibility interval for 8 
obtained in Problem 2.2.7. 

3.6.2. Suppose we are concerned with the lower endpoint of the distribution of 
computer generated random numbers which purport to be uniformly 
distributed on (0,1). Suppose that the observations presented in Problem 
2.2.7 can be modeled by 

& = |/(2; 0 = f[-L-M < zt < 1): 0 < £ < ll, 

where /(■) is the indicator function. Find a 100(1 — a)% likelihood-based 
confidence interval for £. Compare the interval to those obtained in 
Problem 2.2.8. Explain briefly how to interpret the three intervals. What 
do you conclude about £,"! 

3.6.3. Suppose we adopt the exponential model of Problem 3.1.5 for Proschan's 
(1963) air conditioning data presented in Problem 1.5.11. Find a 
100(1 — <x)% confidence interval for k and then for 9 = (1/1) log 2. 

3.6.4. Suppose that we have observations Z on the Gaussian model (3.1). Show 
that Y.!= i (z< — 2)2/<r2 is a pivotal quantity for a2 and hence or otherwise 
find a 100(1 — a)% confidence interval for a2. How would you make this 
a likelihood-based confidence interval? How do you find a 100(1 — <x)% 
confidence interval for a? 
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3.6.5. Suppose that we set m > 1, 100(1 — a)% confidence intervals. Show that 
the simultaneous coverage probability (the probability that all the 
intervals contain their target true parameter) is between 1 — ma and 
1 - a . 

3.6.6. Suppose that we have observations Z on the multivariate Student t model 

fv + n^ 

v 2 / 1 
& = <f(y; ii, a) = - M I , . £ (yi-vY <„0«rQ{i + i 

2~)(v + n) /2 ' 

i = l Vff2 

— oo < y,- < ao: fieU,a > Oy 

where v > 0 is known. Find the maximum likelihood estimators of 
H and a. Use the representation Zt; = n + oYJh*12, where Y, are 
independent standard Gaussian random variables which are independent 
of the random variable h to find the exact sampling distribution of 
(n — l)ll2(fi — JU)/(X. Obtain a 100(1 — a)% confidence interval for fx. 
What is the relationship between this interval and that obtained under 
the Gaussian model? 

3.6.7. Suppose that we have observations {(Yu x , ) , . . . , (Yn, x„)} on the model 

— oo < yt< co:cc,fieU,(7>0 

Show that the maximum likelihood estimator y = (a, /?)T = n lC lXTy, 
where X is the n x 2 matrix with ith row (1, xf)

T, y — {Yx,..., Y„)T, and 

Find the maximum likelihood estimator a of a. What is the sampling 
distribution of p? Use the fact that <t2 ~ ff2^2_2 is independent of p to 
construct a pivotal quantity for /? and show how to construct a 
100(1 — a)% confidence interval for /?. Apply your result to set a 95% 
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confidence interval for the slope in the regression model of Section 1.2.3 
relating catecholamine excretion to the volume of urine produced during 
the ingestion of caffeine. Is the relationship statistically significant? 

3.6.8. Suppose that we have observations Z on the Gaussian model (3.1) and 
we wish to predict the value of a future independent observation Y. 
Suppose initially that a is known. Construct a pivotal quantity based 
on the difference Y — Z and use it to construct a 100(1 — a)% prediction 
interval for Y. How should we interpret this interval? Now suppose that 
a is unknown. Show how to construct a 100(1 — a)% prediction interval 
for Y in this case. Use the caffeine data of Section 1.1.3 to predict 
the change in the volume of urine produced in an 18 year old male by the 
ingestion of caffeine under the same circumstances as in the experiment. 

3.6.9. Suppose that we have observations Z on the exponential model of 
Problem 3.1.5 and we wish to predict the value of a future independent 
observation Y. Show that the ratio YjZ is a pivotal quantity and use it 
to construct a 100(1 — a)% prediction interval for Y. Use the pressure 
vessel data of Barlow et al. (1984) presented in Problem 1.5.4 to predict 
the bursting time of a similar vessel subjected to the same conditions. 

3.6.10. Suppose that we have observations {(Yly Xj) , . . . , (Yn, x„)} on the simple 
regression model of Problem 3.6.7. Suppose we wish to predict the 
value of a future independent observation Y0 at x0. Suppose initially 
that a is known. Construct a pivotal quantity based on the difference 
Y0 — a — xop, where a and ft are the maximum likelihood estimators of 
a and /? respectively, and use it to construct a 100(1 — a)% prediction 
interval for Y0. Now use the fact that s2 ~ o2y_l- 2 independent of y to 
construct a 100(1 — a)% prediction interval for Y0 when a is unknown. 

3.7 CONFIDENCE SETS FROM DISCRETE DATA 

The construction of confidence sets is complicated when the sample and 
parameter spaces are different in nature because then the implicit inversion is 
not straightforward. The simplest example of the kind of difficulties which can 
arise is provided by considering the construction of confidence intervals for a 
continuous parameter based on discrete data. 

In the Diabetic Retinopathy Study described in Section 1.1.1, we observed 
that z = 26 out of r = 175 control eyes of subjects receiving argon treatment 
in the other eye suffered severe visual loss within 2 years and we adopted the 
binomial model 

& = \f(z;n) = (r\nz(l - nY'2, z = 0 ,1 , . . . , r. 0 < n < l i (3.28) 
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for the data. This is identical to models (1.1) and (2.1) but in this section we 
omit the subscripts for simplicity. 

3.7.1 Conservative Confidence Intervals 

Suppose we want to construct an exact 100(1 — <x)% confidence interval for n. 
We need to find functions a(n) and b(n) such that for each fixed n 

P{a(n) < Z < b(n); n} = 1 - a 

and then obtain the confidence interval by inverting the inequalities to solve 
for 7i. One possibility is to use the so-called central interval for which 

P{Z < a(n); n} = a/2 and P{Z > b(n); n} = a/2. 

(For a likelihood-based interval, we require 

a(n)26(\ - a(n))149 = b(n)26(\ - fc(7r))149. 

This problem is slightly more complex but is in principle treated in the same 
way as the central interval so we will consider only the simpler central interval.) 
For any fixed n, P{Z < x; n} = P{B(175, n) < x} is a step function with jumps 
at 0 , 1 , . . . , 175 so there are either no solutions or infinitely many solutions to 
the equations P{Z < a(n); n} = a/2 and P{Z > b{n); n) = a/2. 

We can overcome this problem by the practical and sensible strategy 
(adopted in the definition of a confidence set in (3.24)) of constructing a 
conservative interval which requires only that 

P{Z < a(n); TT} < a/2 and P{Z > b(n); n} > a/2 (3.29) 

which implies that 

P{a(n) <Z< b(n); n} > 1 - a. 

We solve the equations (3.29) for every n to obtain functions a(n) and b(n). If 
we plot the functions z = a(n) and z = b(n) against n, we obtain the graphical 
representation of the conservative confidence sets shown in Figure 3.8. For 
z = 26, we obtain the 95% confidence interval 

[0.10,0.21]. 

3.7.2 Approximate Confidence Intervals 

The small dashed lines in Figure 3.8 represent the curves 

17571 ± 1.96{1757t(l -7 t )} 1 / 2 



148 FREQUENTIST INFERENCE 

O 
in 

§ 8 

t 

o 
o 

0.0 0.2 0.4 0.6 0.8 

Population Proportion 7t 

1.0 

Figure 3.8. A graphical representation of the calculation of confidence limits for the binomial 
proportion 7t. The short dashed line ( ) represents the calculation treating (Z - m)l{rn(\ - it)}'12 

as a Gaussianly distributed pivotal quantity and the long dashed line ( ) represents the 
calculation treating (Z — m)/{Z(r — Z) / r } " 2 as a Gaussianly distributed pivotal quantity. 

which are the basis for confidence intervals derived using the Gaussian approxi-
mation to the binomial distribution. That is we treat (Z — r7t)/{nr(l — n)}111 

as Gaussianly distributed so the 95% confidence set is 

m\ 
{m{\-n)Y li 

< 1.96 (3.30) 

which is the interval with endpoints 

(2z + 1.962)r ± {(2z + 1.962)V - 4rz2(r + 1.962)}1/2 

For the control eyes of subjects receiving argon treatment in the other eye, 
(3.30) yields [0.10,0.21]. The larger dashed lines represent the more usual 
approximate confidence intervals based on treating (Z — m)/{Z(r — Z)/r}112 
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as Gaussianly distributed. The 95% confidence interval is 

which is [0.10,0.20] for the control eyes of subjects receiving argon treatment 
in the other eye. 

The approximate confidence intervals are extremely accurate because r = 175 
is quite large and zjr is moderate. They are less useful when zjr is near 0 or 1 
and we obtain confidence intervals which contain values of n outside [0,1]. This 
is a general problem with confidence intervals but in this example is due to the 
approximation rather than the methodology. Approximations of the kind 
presented here are developed in Chapter 4. 

3.7.3 Randomized Confidence Intervals 

An alternative approach is to smooth the distribution of Z by convolution with 
a continuous distribution. Let U ~ U(0,1) be independent of Z and set 
X = Z + U. Then X has a continuous distribution with piecewise linear 
distribution function 

F(X;TT) = £ ( r )7r s ( l -7r ) r - s + ( x - [ x ] ) ( r \nlx\\ -n)r"u\ 0 < x < r + l , 
s = o\s/ VW/ 

where [x] is the integer part of x. We solve the equations 

F(a(n); n) = a/2 and F(b(n); 7r) = 1 — a/2 

for a(n) and b(n) and proceed exactly as before. To obtain the value to read 
off the >>-axis we generate a realization u of a U(0,1) random variable and use 
z + u. The result is a randomized confidence interval of exact level 100(1 — a)%. 
A randomized test of H0: n = n0 can be carried out by checking whether TT0 lies 
in the randomized confidence interval. 

Randomized intervals and tests are motivated by the desire to obtain 
inferences based on probability statements which attain the prescribed level 
exactly. This may be a useful theoretical property but it does mean that in 
practice there are cases when the (decision theoretic) conclusion to accept or 
reject a hypothesis is determined by the value of the randomization variable u. 
It seems preferable to relax strict adherence to a fixed level as we did implicitly 
when we defined the size of hypothesis tests in (3.16) and the level of confidence 
intervals in (3.24) by means of probability inequalities rather than exact 
equalities. 
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PROBLEMS 

3.7.1. Let Z u . . . , Z„ be independent binary random variables which take on 
the value 0 or 1 with probability 1 — n and n respectively. Show that the 
100(1 — a)% confidence interval obtained by treating the observations as 
independent Gaussian observations with unknown mean and variance is 
a reasonable approximation (in large samples) to a 100(1 — oc)% con-
fidence interval for n. For what values of n is the interval attractive? 
Explain. 

3.7.2. Suppose that in the Diabetic Retinopathy Study (Section 1.1.1), we want 
to compare the incidence of severe visual loss within 2 years in the two 
sets of control eyes. Recall from (1.2) that these can be modeled by 
independent binomial^, n11) and binomial(r2, n21) distributions. Discuss 
ways of setting confidence intervals for n = nil — n21. 

3.8 THE BEHRENS-FISHER AND FIELLER-CREASY PROBLEMS 

In many simple problems (like the caffeine problem), confidence intervals 
coincide with fiducial intervals. Initially therefore, fiducial and confidence sets 
were thought to be essentially the same. However, differences emerged in the 
famous Behrens-Fisher and Fieller-Creasy problems and the two methods 
were recognized as having different interpretations and potentially providing 
numerically different intervals. 

Both the Behrens-Fisher and Fieller-Creasy problems are concerned with 
the situation in which we observe realizations ofn1 + n2 independent Gaussian 
random variables, n^ of which have mean /ij and variance <s\ and n2 of which 
have mean /i2 and variance o\. The Behrens-Fisher problem is the problem of 
making inferences about S = ^ — \i2 when ax and a2 are unequal and the 
Fieller-Creasy problem is that of making inferences about p = pl/n2- Since in 
both problems, we have two independent Gaussian samples, the likelihoods 
depend on the data only through the two sample means and sample variances. 
Let Zj, sl5 z2, and s2 denote the sample mean and standard deviation for the 
two sets of observations respectively. 

3.8.1 The Behrens-Fisher Problem 

Recall from Section 2.6.1 that the fiducial distribution of jut can be written as 
Hx | 7J1 ~ z, + n~1/2s17,

1, where 7i is distributed with the Student t distribution 
with «! — 1 degrees of freedom. Since the two samples are independent, the 
joint fiducial distribution of fi1 and fi2 is t n e product of their two distributions 
and the fiducial distribution of S = nx — fi2 is 

S | Z ~ z\ - z2 + nr1 / 2^ i7\ - n2
u2s2T2 
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or 

S - (z, - Z2) 

s 

~ 7\cos (a) — T2 sin (a). (3.32) 

where s2 = nlxs\ + n2
ls\ and tan (a) = {n1s|/n2s?}1/2, a result derived by 

Behrens (1929) and Fisher (1935b). Jeffreys (1940) showed that if all the 
parameters are a priori independent then the Behrens-Fisher distribution is 
also the posterior distribution of S from the Jeffreys prior. The fiducial/Bayesian 
credibility interval for S is then 

[zj - z2 - b{\ - <x/2)s, z, - z2 + b(\ - a/2)s], (3.33) 

where b{\ — a/2) is the (1 — a/2)th quantile of the Behrens-Fisher distribution. 
The Behrens Fisher distribution is not particularly tractable but Cochran 
(1964) derived a useful approximation in terms of the Student t distribution, 
namely that 

fc(«) * {«r•sfG"Lt(a) + nj^IG"L,(«)}/s2 , (3.34) 

where Gv is the distribution function of the Student t distribution with v degrees 
of freedom. 

The basic problem in constructing a confidence interval for S is to find a 
pivotal quantity whose distribution does not depend on 0 = c\ja\. For example, 
the obvious candidate 

z^- z2-b^ = (zt - z2- d)l{n-^a\ + n^'alY11 

'"i s/{n:la2 + n2
la2

2y'2 

G 

~ K ^ T + v2-'AfK2}
1/V^ + A0T72' 

where G, X,, and K2 are independent random variables with standard Gaussian, 
X2, - i and z«j-i distributions respectively, and N = njn2, has a distribution 
which depends on 6. Incidentally, this shows that the fiducial interval (3.33) is 
not a confidence interval. To obtain a confidence interval for d, we need to find 
a function /ia(sf, s|) which does not depend on any of the unknown parameters 
such that 

1 - a = P{|Z, - Z2 - <$| < fc.(Sf, S2); S, au a2} (3.35) 

for all 5, au and a2 but Linnik (1968, Theorem 8.3.1, p. 148) showed that no 
such function exists. This example therefore illustrates the potential difficulties 
in eliminating nuisance parameters in exact frequentist inference. 

„ «r ' / 2Si n2
ll2s2rr Z ~ -1- '- Ti - T2 
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The best a frequentist can hope for are randomized confidence intervals (such 
as may be obtained by randomly pairing min (nu n2) observations from each 
sample) or approximate confidence intervals. The most famous approximate 
confidence intervals are due to Welch (1937b; 1947). In his first paper, Welch 
suggested that we approximate the sampling distribution of the statistic 
(Z[ — z2 — d)/s by the Student t distribution with 

(6 + N)2 

(nj - l ) - ' 0 2 + N2(n2- 1)_ 1 

degrees of freedom. In practice, to make the approximation usable, we estimate 
6 by s\/s\. (This can also be viewed as a first order approximation to the 
Behrens-Fisher distribution but it turns out to be inferior to Cochran's 
approximation (3.34).) In his second paper, Welch showed that (3.35) holds 
approximately when h„(s2, si) is replaced by 

^(s?,5i) = 50"1( l - « ) 1 + {1 + 0 - 1 ( l - a ) } 
4s4 

[1 + < D ~ 1 ( l - a ) 2 } : { n r 2 v r M + »2~2V2~24} 
2s4 

3.8.2 The Fieller-Creasy Problem 

In the general Fieller-Creasy problem the variances are unknown but the 
essential issues are still brought out when the variances are known so we will 
take advantage of the considerable simplification obtained by assuming that 
Cj = <r2 = 1 is known and nY = n2 = n. 

If we assume that p.x and p2 are a priori independent and assign to them 
uniform improper prior distributions then \iy, n2 | Z = z are independent 
normal random variables with means zx and z2 and common variance 1/w. To 
obtain the posterior distribution of (p, A), we make the transformation p = nJn2 

and X = p.2, integrate over X to obtain the marginal posterior distribution of p 
and then derive the Bayesian credibility set for p. The last integral is not 
particularly tractable except in the case that zl = z2 = 0 in which case 

1 
g(p\Z = z) = 

Ml + P2) 

and we need to choose [a, b~\ to satisfy 

C" 1 
1 — a = g(p | Z = z) dp = - {arctan (b) — arctan (a)}. 
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The posterior distribution is symmetric about the origin so a = —b, 

b = tan (;t(l - a)/2) 

and hence, the 100(1 — a)% credibility interval for the case zx = z2 = 0 is 

[ - tan (n( 1 - a)/2, tan (TC( 1 - a)/2)]. (3.36) 

Creasy (1954) obtained (3.36) from the fiducial distribution of (p.lt p.2). An 
alternative fiducial distribution has been obtained by James et al. (1974) but 
we will not pursue this here. 

Suppose that we seek a 100(1 — <x)% confidence set for the ratio p = pj/i2. 
It is clear that Z\ and Z2 are independent normal random variables with means 
Hi and p2 and common variance 1/n. It follows that 

Zl - pZ2 ~ N ( ^ - Pfi2, (1 + p2)ln) = N(0, (1 + p2)/n) 

so that 

Zj - pZ2 

{\+p2)ll2ln112 N(0,1). 

Note that nxl2{Z^ — pZ2)/(l + p2)112 has a distribution which does not depend 
on any unknown parameters but it is not a monotone function of p so it is not 
a pivotal quantity. Following Fieller (1940), we can construct a 100(1 — a)% 
confidence interval for p (which incidentally does have certain optimality 
properties) by inverting the relationship 

1 -<x = P 
Zi - pZ2 

^b} = 2<b(b)- 1. 
( l+p 2 ) 1 / 2 / n 1 / 2 

Since b = d>_1(l — a/2), we need to solve the equation 

l f I - ^ 2 l < 0 - l 0 _ g / 2 ) 

{\ + P
2y2i^2- ( l } 

for p. The endpoints of the interval are the roots of the quadratic equation 

{Zl - n~ 14>- :(1 - a/2)2}p2 - 2Z,Z2p + {Z2 - n~ »*- \l - a/2)2} = 0. (3.37) 

The roots of (3.37) are both real if 

Z2
2 + Z\>n-l<S>-l(\ -a/2)2 
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Figure 3.9. The regions in the (zt,zz) space which result in different types of confidence sets for 
P — Mi/A<2 in ' n e Fieller-Creasy problem. The circle has equation z\ + i\ = n~'{<I>_l(l - a/2)}2 

and the horizontal lines z\ = n _ 1 {<&"'(' - <*/2)}2. 

and in this case the interval is the set of points between the roots if 
Z\ > «-1<I)_1(l — a/2)2 and the set of points on either side of the roots if 
Z | < n _ 1 0 _ 1 ( l - a/2)2. The roots of (3.37) are both complex if 

Zi + Zf < B _ 1 4 > - 1 ( 1 - a / 2 ) 2 

and in this case the confidence interval is the whole real line. The regions in 
(z,, z2) space which produce the three kinds of set are shown in Figure 3.9. The 
region in which the confidence interval is the whole real line decreases as n 
and/or a increase but always contains the point z\ = z2 = 0. 

Although the confidence sets for this problem may at first be disturbing, 
they do satisfy the requirement that in repeated samples they contain the 
parameter the specified proportion of times and there is no reason to expect 
such sets to be simple intervals. Empty sets and the whole space are acceptable 
and interpretable outcomes in that they mean that, at the given level, either no 
possible values of the parameter are consistent with the model and the data or, 
all possible values of the parameter are consistent with the data. Since 
confidence sets implicitly incorporate a test of H0: 0 e Q, an empty 100(1 — a)% 
confidence or likelihood set means that an a level test would reject H0. Thus 
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an empty interval means that the model may be inappropriate. Sometimes, a 
different level set will be a nonempty proper subset of the parameter space. This 
suggests again that it is best to regard confidence sets as a collection of sets 
indexed by the level and to consider several choices of level. However, notice 
that changing the level does not avoid the problem for the confidence interval 
when y = z = 0. 

PROBLEMS 

3.8.1. Suppose we have observations Z l 5 . . . , Z„ on the model 

F = | / ( x ; 0) = f l ~2 /(*, > 0): 0 > o l . 

Show that the maximum likelihood estimator of 9 is given by Znl, where 
2„i < Z„2 < • ■ • < Z„„. Then show that a 100(1 — a)% confidence interval 
for 9 is given by 

[ct\i'Znl, (1 - a2)1'-Z„1], ax + a2 = a. 

What values of ai and a2 yield a likelihood-based interval? Use the 
Jeffreys prior for a scale parameter to obtain a 100(1 — a)% Bayesian 
credibility interval for 9. What is the frequentist coverage probability of 
the credibility interval? 

3.8.2. Suppose that Z\n~ N(/z, 1). For the improper prior g(/i) oc e2", find the 
posterior distribution of \i | Z = z. Show that the set [Z + 2, oo) is a 
97.72% Bayesian credibility set for /i but only a 2.28% confidence set for fi. 

3.8.3. (Stein, 1959) Suppose that we observe {Zu . . . , Z„} on the model 

JF = \f(z;nl,...,n„)=f\ _ _ e x p | — ^ Z - ^ l l , -oo < z , < oo:n,elni. 

Suppose that we are interested in obtaining a 100(1 — a)% confidence set 
of the form [0a, oo) for 0 = E"=i J",2- Show that with 0 = ~£Ui Zf, 

Q(z) = -« + 2<D- 1 ( l -a ) 2 -2<D- 1 ( l -a ) < | (D- 1 ( l -a ) 2 — + 0f' , oo 
n ' 1 / 2 

is a 100(1 — a)% confidence set for 0. Show that if n~29 -* 0 as n -> oo, 
the coverage probability of the Bayesian/fiducial interval obtained in 
Problem 2.4.5 tends to 0 as n -> oo. 
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3.9 CONDITIONAL INFERENCE 

The frequentist methods we have considered in this chapter are justified by 
their repeated sampling properties - provided the model holds, they usually 
work well and fail only in a specified proportion of cases. Fisher felt that 
hypothesis testing and confidence interval theory overemphasized repeated 
sampling properties at the expense of considering other properties. In particular, 
he felt that methods with good repeated sampling properties do not necessarily 
use all the available information. 

3.9.1 Relevant Subsets 

To show that confidence sets do not necessarily use all the available information, 
Fisher introduced the concept of a relevant subset which was subsequently 
formalized by Buehler (1959). Suppose that we want to make an inference which 
asserts that for a set Cx(z), we have P{0 e CX(Z)} = 1 — a. Then a subset S(z) 
of the sample space JT is a relevant subset if, for some £ > 0, either 

P{0 e C„(Z) | S(Z)} > 1 - a + e (positively biased) (3.38) 

or 

P{0 e C«(Z) | S(Z)} < 1 - a - £ (negatively biased) (3.39) 

for all parameter values. Conditioning on a positively biased relevant subset 
makes the inference hold at a higher level than that stated, so by using the 
information in the relevant subset we can in principle make a more precise 
conditional statement and, in this sense, we have not used all the available 
information. The set 

S(Z) = {Z: Zl + Zf < n _ 1 O _ 1 0 - <*/2)2} 

is a positively biased relevant subset for the confidence interval in the Fieller-
Creasy problem because when the data lie in this set, the 100(1 — a)% confidence 
interval ( — 00,00) is actually a 100% confidence interval. Conversely, con-
ditioning on a negatively biased relevant subset shows that the claimed level is 
too high. In the Behrens-Fisher problem, Fisher (1956b) showed that the set 

S(Z) = {Z:Sl = S2} 

is a negatively biased relevant subset for Welch's (1947) approximate confidence 
interval because for n1 = n2 = 7 and a = 0.1 we obtain 

PfZi - Z2 - S < h$A(S\, S\) I S\ = Si; 3, alt <r2} < 0.802. 

The existence of relevant subsets does not contradict the confidence property 
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which is a long run average property that holds over the whole sample space 
and can fail over regions of the sample space. However, Fisher argued that 
poor conditional properties are an argument for not using confidence sets. 

3.9.2 Ancillary Statistics 

Fisher's point that confidence intervals can have poor conditional properties 
raises the question of how to make inferences which have good conditional 
properties. Posing the question slightly differently, we can ask: What should 
we condition on in constructing inferences to ensure that they have good 
conditional properties? Fisher argued that any function of the data that has a 
distribution which does not depend on unknown parameters can be viewed as 
ancillary to the inference in the sense that it affects the precision of inferences 
but not their position. He called such functions ancillary statistics and argued 
that inference should be made conditionally on ancillary statistics. (The 
definition and use of ancillary statistics is discussed in more detail in Section 
7.4.) 

To illustrate Fisher's argument, consider the location model discussed by 
Pitman (1938) for which 

& = | / ( z ; n) = ft / ( - J < zj - fi < i): ii e R1 (3.40) 

and suppose that we are interested in making inferences about fi. The like-
lihood is 

n 

/(z; n)=l\l{-\<Zj-n<\) = / ( - i < znl - fi < z„„ - ii < | ) , /i e R, 
; = i 

where Znl < Z„2 < ■ • ■ < Zm are the order statistics of the data. The likelihood 
equals 1 for t e (z„„ — | , znl + j) so is maximized at any point in this interval. 
In particular, we may take the midpoint or midrange (z„„ + znl)/2 as the value 
at which the likelihood is maximized. Under (3.40), the midrange has distribution 
function (see 8b in the Appendix) 

f ( x ) = [2"-\x + \-n)n ii-x
2<x<n 

[l -2"-1 (M + i - x ) ' ' n<x<ii + l 

so (m — b, m — a) is a 100(1 — a)% confidence interval for /i for any a < b 
such that 

a = P(o < M - fi < b) = F(b + fi) - F(a + //). 
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The central confidence interval is obtained from 

a1/n — 1 
a/2 = 2"_ l{a + \f => a = 

and 

1 — a1/n 

1 — a/2 = 1 - 2"_1(i — fc-)" => b = 

whence we obtain 

( l - a 1 / n ) ( l - a 1 / n ) 
m — , m + 

2 2 

In particular, a 100% confidence interval is 

( m - i m + l). (3.41) 
It is apparent that the sample range contains information which we have 

not used in constructing the confidence interval. If the range is 1, the maximum 
possible value, then we have the endpoints of the distribution exactly and 
consequently we have the midpoint n of the distribution exactly. Thus for a 
range w near 1, we should have a small confidence interval. Conversely, for w 
near 0, we should have a large interval. That is, instead of averaging over all 
values of the range w, we should condition on the actually observed value of 
w in deriving our inference. 

Under (3.40), the marginal distribution of the range is 

f(w) = n{n - l)w"~2(l - w), 0 < w < l , 

which does not depend on \i so the range is ancillary and, according to Fisher, 
we should base inference on the conditional distribution 

f(m\w) = (l - w ) - \ fi-l+<m<ll + ^ - ^ 

Since F(m \ w) = {m — n + \ — w/2}/(l — w), fi — \ + w/2 <m<n + j — w/2, 
we find that (m — b, m — a) is a 100(1 — a)% conditional confidence interval 
for fi for any a < b such that 

a = P(a < M - n < b \ w) = F(b + n \ w) - F(a + H\ w). 
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The central confidence interval is obtained from 

i w 

fl + i 2 w 
r => a = ( l - w ) « / 2 + -

(1 — w) 2 
a/2 = => a = (1 - w)a/2 + - - i 

i w 

_ vv vv 
l - a / 2 = - => fe = ( l - w X l - « / 2 ) + - - i = - ( l - w ) a / 2 - - + i 

(1 — vv) 2 2 

whence we obtain 

vv vv 
m + (1 - w)a/2 + i m - (1 - w)a/2 + \ 

The likelihood equals 1 for t e (z(n) — \, z(1) + | ) = (m — \ + w/2, m + | — vv/2) 
and 0 otherwise so the only nonempty likelihood based interval for fi is the 
100% interval 

vv vv\ 

m - i + - ,m + i - - . (3.42) 

We recover the unconditional 100% interval (3.41) from (3.42) only when w = 0! 
Thus the unconditional interval acts as though we are always in the worst case. 

The interpretation of a conditional interval is the same as that of an uncon-
ditional interview except that instead of 100(1 — a)% of intervals containing 
H, we have that 100(1 — a)% of intervals calculated from samples with the same 
sample range contain fi. In other words, sampling is restricted to the subset of 
the sample space for which samples have the given range rather than applying 
to the whole sample space. 

3.9.3 Conditional Inference in the Location-Scale Model 

A surprising feature of inference conditional on ancillary statistics discovered 
by Fisher (1934) and Pitman (1938) is that it can be carried out in considerable 
generality and in particular for the general location-scale model 

& = \f(z;n,o)= f i "h\Zi-:L'J-)' ~°° < z ' < oo:/iElR,(T>oi. (3.43) 

Consider any equivariant estimators (fi, a) which satisfy (3.5). It follows from 
(3.5) that the configuration {C; = (Z,- — fi)jd, i = 1 , . . . , n) satisfies 

/2(C) = 0 and 6(C) = 1 
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so C„ and C„_, can be expressed in terms of Q , . . . , CB_2. Suppose for 
definiteness that Cn-l = /i(C„ . . . , C„_2) and C„ = / 2 ( C U . . . , C„_2). Also,from 
(3.5), for a > 0, 

C,(aZ + b) = ̂ lA^^li) =
 ZiZm = C|(Z) 

<r(aZ + /?) <T(Z) 

so the configuration is invariant to linear transformations and therefore has a 
distribution which does not depend on (fi, a). That is, the configuration is an 
ancillary statistic and, according to Fisher, we should base inference on the 
conditional distribution of (fi, &) given the configuration. 

The joint distribution of Z under (3.43) is given by 

<T i = l \ <X / 

The Jacobian of the transformation 

Z; = <7C; + fi, i = 1 , . . . , n — 2 

z„-i =<r'i(ci,- .- ,c„_2) + M 

Zn = ^2(Cx,---,Cn-2) + fi 

which maps Z to (fi, 6, Cx,..., C„_2) is d"~2k(c, n), where k depends on the 
definition of the estimator (fi, a), so the joint density of (fi, <x, Q , . . . , C„_2) is 
(see 8 in the Appendix) 

f(fi, d,c„..., c„_2) = k(c, n) ^ f i h t * ^ ^ " 

Next, the transformation 

fi = ovu + p. 

& = av 

C; = Ci 

which maps (fi, 6, Cx,..., C„_2) to (U, V, C l 5 . . . , C„_2) where U = (fi — n)/a 
and V — aja are pivotal quantities, has Jacobian va2, so the joint density of 
(U,V,Cu...,C„_2)is 

f(u, v, c 1 ; . . . , c„_2) = k(c, n)v" 1 Y[ Kvct + vu). 
i = 1 
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The conditional density of (U, V) given the configuration is therefore 

v"~l f ] h(vCi + vu) 

f(u,v\cl,...,c„_2) = 
00 | OO 

(3.44) 

v" 1 f\ HvCi + vu) dv du 

The conditional distribution function of the pivotal quantities U = (fi — n)/6 
and V = 6/a is, by definition 

\fi — \i a 
K(u0, v0; c) = P < — - - < M0, - < v0 | Cx = c 1 ; . . . , C„_2 = c„^2 

I a a 

= P{U < u0, V < v0 | C, = c„ . . . , Cn.z = c„_2} 

3 n 

c " " ' [ ] /i(uc,- + vu) dv du 

v" 1 Y\ h{vCi + vu) dv du 
i = l 

Making the change of variables 

u = (fi — t)/a 

v = e/s 

which has Jacobian 1/s2, we have that 

K(u0, v0; c) = fl — rfUo * rf/uo 
' n»(?5±£^u* 

S" ,-=i 

0 S i = l \ S 

Since ac, + fi = zi by definition, we can write 

K(u0, v0; c) = ji-duQ J <?/vo 
in»M^ 
s" ;=i 

00 / 00 

0 S 1= 1 \ S 

= 1 — G( /i — <TU0, —; z J, 

(3.45) 

(3.46) 
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say, where 
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G(u, v; z) 

1 " (z- — V 

00 1 " fz—t^ 

Ylklj—Usdt 
0 * i = l \ s 

(3.47) 

Although the joint conditional distribution function (3.45) depends on the 
choice of (fi, a) (and hence the configuration), conditional confidence intervals 
do not. Since 

1 - a = P{fi - 6b(c) < n < fi - <ra(c) | C = c} 

= p|a(c) < —~^ < b(c) | C = c 

= K(b(c), oo; c) - K(a(c), oo; c), 

a 100(1 — a)% conditional confidence interval for ^ is given by 

[ ju - <rb(c),/}- <ta(c)], 

where 

1 - a = K(b(c), oo; c) — K(a(c), oo; c). 

(3.48) 

(3.49) 

Clearly, if a(c) = K~ l(qit oo; c) and b(c) = K~\q2, oo; c), where it is understood 
that we are inverting the first argument only, then by (3.49) qx and q2 must 
satisfy Q < qu q2 < \, q2 — qx = \ — a. But (3.46) implies that 

K 1(q,oo;c) = 
fi-G~\\ -q,oo;z) 

so the 100(1 — a)% conditional confidence interval for ;U in (3.43) can be written 

[fi - 6K~ \q2, oo;c), fi.- 6K" \qu oo;c)] = [G~'(1 - q2, oo;z), G" J(l - 9i» °°; z ] -

This interval is invariant to the choice of (fi, 6) (and hence the configuration) 
so will be the same for any pair of equivariant estimators (fi, a) because G 
defined in (3.47) is invariant to the choice of (fi, a). 

3.9.4 The Relationship Between Conditional, Bayesian, and Fiducial Inference 

If we think of G defined in (3.47) as a joint distribution function, it is numerically 
identical to the distribution function of the joint posterior distribution of 
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(n, a) based on the Jeffreys prior and therefore to the joint distribution function 
of the fiducial distribution for (n, a). Indeed, since by (3.46) and (3.45) 

1 - G[n - <xu0, —; z = P< — — < u0, - < v0 
v0 1 (. <* a 

= Pifl > fi — <?Mo> <T > 

C1 ; . . . , C„_ 2 

Cl, . . . , C „ _ 2 

the fiducial argument can be applied directly to obtain the fiducial density 

Mt, s) = 
5 j = i \ S 

XI f 00 

-oo JO S ■= 1 V S 

Thus, the conditional inference calculation is numerically equivalent to the 
fiducial calculation and this entirely frequentist argument can be interpreted as 
a justification for fiducial inference. 

3.9.5 The Relationship Between Conditional and Unconditional Inference 

Conditional confidence intervals like (3.48) are also valid unconditional con-
fidence intervals because 

P{/i - ffb(c) <ti<ft- <ra(c)} = P<ja(c) < ~ ~ < b(c) 

= E 

= 1 - a . 

P < J a ( c ) < - — / / < b ( c ) | C = c 
a 

However, conditional intervals are not necessarily optimal unconditionally. 
Indeed, Neyman rejected conditional inference because the resulting procedures 
can be suboptimal in terms of unconditional power; see Welch (1939). None-
theless, conditional inference is now seen to have a role to play in frequentist 
statistics; see Kiefer (1977b) and Lehmann (1983, Chapter 3). 

3.9.6 Difficulties in Conditional Inference 

Clearly, conditioning on ancillary statistics can lead to improved inferences. 
However, Basu (1964) showed that ancillary statistics are not necessarily unique 
and different choices of ancillary statistics can lead to different results. See 
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Section 7.4. Fortunately, this does not happen with the transformation group 
structure underlying location-scale (and regression) models - any configuration 
can be used. 

Fisher believed that it is not possible to improve on inferences conditioned 
on ancillary statistics. Since this conditioning is implicit in fiducial theory, it 
should not be possible to do better without incorporating prior information. 
However, contrary to Fisher's belief, Buehler and Federson (1963) and later 
Brown (1967) showed that the simple confidence interval for the mean of a 
Gaussian model is vulnerable to relevant subsets. In particular, Brown (1967) 
showed that there exists a constant K such that 

P < Z - n ~ 1 / 2 S G v - 1 ( l - a / 2 ) ^ / z ^ Z + B-1 / 2SGv
_ 1( l -a/2) 

for e > 0, so by (3.38) S(Z) = {Z: \Z\/S < K} is a positively biased relevant 
subset which is not eliminated by conditioning on an ancillary statistic. On the 
other hand, Robinson (1975) constructed an elegant example in which there is 
a negatively biased relevant subset (see (3.39)) which is not an ancillary statistic. 
Thus Fisher's criticism of confidence intervals applies equally to his own fiducial 
intervals. 

Pierce (1973) showed that any procedure which cannot be interpreted as a 
Bayesian procedure derived from a proper prior is vulnerable to relevant 
subsets. This means that good conditional properties can only be achieved from 
a Bayesian analysis based on a proper prior and that good frequentist 
properties can only hold for procedures which are in a sense limits of proper 
Bayesian procedures. Thus, we either have to restrict the class of procedures 
we consider or be satisfied with weaker conditional properties (Robinson, 
1979a, b). While conditional inference remains attractive, in anything other than 
a fully conditional Bayesian analysis, the general question of what to condition 
on is quite delicate. 

PROBLEMS 

3.9.1. (Cox, 1958) Suppose that a random variable Y is equally like to be N(/i, 1) 
or N(/t, 100). The data is a realization of (Y, C) where C is an indicator 
variable taking the value 1 or 2 according to whether Y has the first or 
second distribution. Suppose we observe (y, c) = (2.35, 1). Set a con-
ditional 100(1 — a)% confidence interval for fi given c = 1 and compare 
it to the unconditional 100(1 — a)% confidence interval. 

3.9.2. Suppose that we have observations {(Y1,X1),...,(Yn,X„)} on the Gaussian 

< K > > l - a + e, 
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simple regression model 

^{/<^w,<>,n^p{^f^}. 
-oo < v, < oo: a, Be U>. 

In this model, the explanatory variables X = (Xu..., X„) are treated as 
random with joint density function fx(*)- Show that the maximum 
likelihood estimators of a and /? are the same as when X is treated as 
fixed. Show that 

Yj\ X = x ~ independent N(a + x}B, 1). 

What is the conditional sampling distribution of the maximum likelihood 
estimator /? given that X = x? Set a conditional 100(1 — a)% confidence 
interval for B given X = x. Find the unconditional distribution of ft when 
X has a multivariate Gaussian distribution with mean 0 and variance 
e2I, where / is the n x n identity matrix, so £ " = , (Xt — X)2 ~ a2xl-1 
and set an approximate unconditional 100(1 — a)% confidence interval 
for p. Compare the two results. 

3.9.3. Consider the location model (3.40). For any equivariant estimator fi. 
of n which satisfies fi(z + b) = fi(z) + b, show that the configuration 
{c; = z,; — fi, x = 1 , . . . , n} is an ancillary statistic. Show that the conditional 
confidence interval for /x derived from the conditional distribution of p. 
given the configuration is the same as the interval obtained in Section 
3.9.2 by conditioning on the sample range. 

3.9.4. Consider the scale model 

& = \f{i;a)= fl -h\-\ -°° <zt< °°:ff > 0 [ -

For any equivariant estimator 6 of a which satisfies <j(az) = |a|<?(z), show 
that the configuration {c, = zjd, i = 1 , . . . , n} is an ancillary statistic. 
Find the conditional distribution of 6 given the configuration and show 
that conditional confidence intervals for a do not depend on the choice 
of 6. 

3.9.5. Suppose we adopt the exponential model discussed in Problem 3.1.5 for 
Proschan's (1963) air conditioning data which was presented in Problem 
1.5.11. Find a 100(1 — a)% conditional confidence interval for k and then 
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for 0 = (1//) log 2. Comment on the relationship between these intervals 
and the unconditional ones obtained in Problem 3.6.3. 

3.9.6. Consider the regression model 

— oo < yt < oo: a, fi e U, a > 0 >. 

Let 7 = (a, f))T and X be the n x 2 matrix with ith row (1, x,). Consider 
any equivariant estimators (y, 6) which satisfy 

y(ay + Xb) = ay(y) + b and d(ay + Xb) = |a|ff(y). 

Show that the configuration {c, = (yt — & — X,-/?)/CT, / = 1,...,«} is an 
ancillary statistic. Show that the conditional distribution of (d, /?, a) given 
the configuration is the same as the posterior distribution of (a, ft, a) 
using the Jeffreys prior. 

3.10 SIMULATION 

Repeated sampling or frequentist properties are often described as objective 
because they can in principle be verified empirically. That is, if we can repeat 
the data collection process to obtain new sets of data and calculate tests and/or 
confidence intervals for each data set, we can obtain a collection of tests and/or 
confidence intervals which we can use to check whether the desired outcomes 
occur in the required proportions. This is complicated by the fact that the 
required outcomes are expressed in terms of true parameter values which are 
usually unknown. However, if we carry out an artificial experiment or simulation 
study, we know the true parameter values and we can then explore the repeated 
sampling properties of the procedures. 

An important point about quantities derived in a simulation is that they are 
and should be treated like any other data sets. We can model the characteristics 
they represent and then proceed to make inferences about these characteristics. 
The fact that the data are generated in an artificial statistical experiment does 
not give them an inherently inferior status to other data. 

3.10.1 Simulating Coverage Probabilities 

Suppose we want to investigate the coverage probability of the 95% confidence 
interval 
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for the mean derived from (3.27) when we have n = 18 observations from the 
Gaussian model (3.1). Most statistical packages have the capacity to generate 
pseudorandom numbers from standard distributions such as the Gaussian 
distribution (for details, see for example Devroye, 1986, Ripley, 1987, and the 
discussion in Sections 6.8.1-6.8.3) so we can proceed as follows: generate a large 
number, say N, independent data sets of size n = 18 from a Gaussian distribution 
with specified mean /i0 and variance a%, compute the interval C0 0s(z) from each 
data set, and record whether the interval contains /x0 or not. If we denote each 
data set by zjy at the end of the simulation, we have N observations of the form 
I{C0 os(ij) contains /i0}, j = 1 , . . . , N, where / is the indicator function. Notice 
that once we have generated the data sets, we do not use our knowledge of the 
true value ju0 until we evaluate the intervals. The observations I{C005(zj) 
contains n0} are realizations of independent random variables (by design) which 
take on only the values 0 or 1 and take the value 1 with constant probability 
7t, the actual coverage probability of the interval C0 05(z) under the settings of 
the simulation. It follows that the number Y of intervals containing the true 
parameter value fi0 has a binomial(iV, n) distribution so we can make inferences 
about n and, in particular, set confidence intervals for n. 

To implement the simulation, we need to choose the simulation settings, in 
this case N, /i0, and <r0, and obtain realizations of Gaussian random variables. 
If we use the Gaussian approximation to the binomial distribution (Section 
3.7), we obtain an approximate 95% confidence interval for n from (3.30) as 

n. — < 1.96 
{n(l - n)/N}112 

We hope that n will equal 0.95 (the supposed or nominal level of C0 05(z)). 
In this case, the standard error {TT(1 — n)/N}112 equals 0.2179/N1'2, so the 
approximate 95% confidence interval is 

v 1.96 x 0.2179 

N N1'2 

If we want to estimate n to within A with 95% confidence, we need to choose 
N so that 

1.96 x 0.2179 A , /1.96 x 0.2179V 
< A or N > I I 

N1'2 ~ " V " A / ' 

For A = 0.02, N = 456, for A = 0.01, N = 1825, and so on. A common choice 
is to compromise and take N = 1000. We also need to specify n0 and <r0. We 
can choose these to match their estimates from the caffeine data or we can note 
that C0 05(z) is equivariant to the choice of fi0 and er0 in the sense that 
Q).osCA'o + aoz) — J"O + CToCo.o5(z) a n d therefore simply choose the most con-
venient values ^o = 0 a n c ' °o = '■ 
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An approximate 95% confidence interval for the coverage probability of 
C0 05(z) based on a simulation using N = 1000, n0 = 0, and a0 = 1 is obtained 
from (3.31) as 0.941 ± 1.96V^9T^X067lOOO = 0.941 ± 0.015. This interval 
contains the nominal coverage probability 0.95, so the claimed repeated 
sampling property is plausible. 

3.10.2 Simulating the Expected Length of an Interval 

We can also examine the distribution of the lengths of the confidence intervals. 
The actual distribution of lengths can be derived from the distribution of s2 

which is cr2Xi7. However, the Gaussian qq-plot in Figure 3.10 shows that, in 
this problem, the distribution of lengths can be approximated by a Gaussian 
distribution. Using the Gaussian approximation to the distribution of the mean 
lengths, we see from (3.27) that a 95% confidence interval for the mean length 
of the intervals C0.05(z) is 0.977 ± 1.96 x 0.0053 = 0.977 ± 0.010. 

3.10.3 Simulating the Level and Power of Tests 

If we are studying tests, we can estimate the significance level (the proportion 
of tests which reject the null hypothesis when it is true) and the power (the 

Figure 3.10. A Gaussian qq-plot for the lengths of simulated 95% confidence intervals for the 
Gaussian mean fi under the standard Gaussian model. 
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proportion of tests which reject the null hypothesis when it is false). The 
procedure is analogous to that for estimating the coverage probability. 

3.10.4 Simulating Conditional Properties 

We can also use a simulation to study conditional repeated sampling properties. 
The only difference from what we have described above is that instead of simply 
generating data from a model, we need to generate data from a model which 
also satisfies the condition under which the conditional properties are to be 
evaluated. For example, in the U(^ — \, \i + \) problem considered in Section 
3.9.2, we can evaluate unconditional repeated sampling properties by generating 
data from the model U(^ — \, \i + \) or we can evaluate conditional repeated 
sampling properties by generating data from the model U(/j — \, n + \) for 
which the sample range equals a specified value, say w0. 

3.10.5 Limitations of Simulation 

Two difficulties with simulation are that there is variability between simulations 
and the results are often quite specific to the settings we have chosen. The first 
difficulty is intrinsic to the inference problem and is dealt with by choosing N 
large and by setting confidence intervals for the characteristics of interest but 
there is little we can do about the second. This means that simulations are less 
satisfactory than theoretical results but nonetheless provide a useful supplement 
to theoretical results and often can be used when theoretical results are 
unavailable. 

PROBLEMS 

3.10.1. In Section 3.7 we described the approximate confidence intervals (3.30) 
and (3.31) for a binomial proportion n. Carry out a simulation to 
evaluate the repeated sampling properties of these two intervals in small 
samples. Try the settings r = 15 and r = 30, n = 0.5 and n = 0.2. What 
do you conclude? 

3.10.2. Suppose that the Gaussian setup described in Section 3.8 holds. Then 
when al and a2 are unequal, the fiducial interval for 5 = ^, — \i2 is 
given by (3.33) and we can use Cochran's (1964) approximation (3.34) 
or Welch's (1937b) Student t approximation with 

. = (sj/sl + njn2)
2 

(n, -\Tlls\ls\Y + [njn2-\
2(n2- \)~l 

degrees of freedom, for the quantiles of the Behrens-Fisher distribution. 
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Carry out a simulation to evaluate the repeated sampling properties of 
these two intervals. Try the settings ni = 20, n2 = 20 and ny = 18, 
n2 = 25, Hi = fa = 0> a\ = 1» ff2 = 3, and o^ = 1, a2 = 5. What do you 
conclude? 

FURTHER READING 

The frequentist approach to inference is developed at different levels of 
mathematical generality in numerous texts. Bickel and Doksum (1977) and 
Casella and Berger (1990) present the theory at an intermediate level, whereas 
Lehmann (1983, 1959/1991) gives mathematical treatments of point estimation 
and hypothesis testing respectively. Cox and Hinkley (1974) and Barnett (1982) 
contain useful material with plenty of discussion; Silvey (1970) is a suitable 
presentation for many purposes. Edgeworth's and Fisher's contributions to 
maximum likelihood estimation are discussed by Pratt (1976). The presentation 
of the material on statistical testing in this chapter owes much to Gigerenzer 
et al. (1989). The Behrens-Fisher and Fieller-Creasy problems have been 
widely discussed, and Wallace (1980) is an excellent reference. Conditional 
inference remains topical, and Casella (1992) is an accessible review. 
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Large Sample Theory 

In the pressure vessel failure problem (Section 1.1.2), the data z represent the 
failure times in hours of 20 pressure vessels and we are interested, amongst 
other things, in estimating the median failure time. We showed (Section 1.2.2) 
that the data can plausibly be treated as a realization of a random variable Z 
generated by the exponential model 

& = {/(y; ^ = ft A exp ( - kyt), yt > 0: A > 01. (4.1) 

In this model, the median failure time is 9 = X'1 log (2). 
Suppose that we want to make frequentist inferences about 9. The sample 

mean z = 575.53 is the maximum likelihood estimate of A, so we may choose 
to base inference on a function of z. In this case, we require the sampling 
distribution of Z. It is a standard result of distribution theory that the sum S of 
n independent exponential^) random variables has a gamma(n, A) distribution 
so the density of the normalized sum Z = S/n under J5" is 

n"? 
g{m\n,X) = (Am)" ~1 e ~ knm, m > 0. 

T(n) 

The distribution function is obtained by integrating the density as 

n"X 
G(x; n, A) = 

T(n) 
(Xm)"-1 e~Xnmdm, x > 0. 

We can show that XZ has distribution function G(x; n, 1) so XZ is a pivotal 
quantity (Section 3.6.1) and a 100(1 — a)% confidence interval for the median 
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failure time is a realization of the random interval 

/Z log(2) Zlog(2) 

V b ' a 

where a < b are any non-negative numbers satisfying 

G(b; n, 1) — G(a; n, 1) = 1 — a. 

In particular, the central 100(1 — a)% confidence interval is a realization of 

( Zlog(2) Zlog(2) \ 

\G_ 1(1 - a 7 2 ; n , l ) ' G - 1 ( « / 2 ; n , l ) / ' 

where G~ '(w; n, 1) is the quantile function defined by GiG'^u; n, 1); n, 1) = u, 
so the endpoints of the interval are obtained by multiplying z log (2) = 398.93 
by 1/G_1(1 - a/2; n, 1) and l/G~1(a/2; n, 1) respectively. 

4.1 APPROXIMATE CONFIDENCE INTERVALS 

To implement the confidence interval (4.2), we require values of the quantile 
function G~l(u;n, 1) for selected u. Except in unusual cases (such as n = 1), 
we cannot obtain these exactly so we have to resort to approximations. Some 
of the approximations for the gamma distribution are of sufficiently high quality 
to be considered exact: Harter (1964) gives tables of G~1(u; n, 1) correct to 6 
significant figures which yield the 95% confidence interval for 9 

(268.90,653.10). 

Although we rarely require such accuracy in statistical work, the "exact" results 
do provide a baseline against which we can compare simpler approximations. 

4.1.1 Approximation by Direct Expansion 

Since we have an expression for the density g(m; n, A) of Z, we can try to 
approximate g(m; n, X), integrate the approximation to obtain an approximation 
to the distribution function G(x; n, X) and then invert this to obtain an 
approximation to the quantile function G_1(«; n, X). 

4.1.2 Consistent Estimation 

A reasonable first step is to approximate the density g(m; n, X) by its limit as 
the sample size n -* oo which is hopefully simpler than g itself. We can use 
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Stirling's formula 

r(«) = (27r)1/2e-"«',-1/2{l + 0 ( n - 1 ) } 

or equivalently 

1 

(2n)1 r(n)'1 =^ T r7^e"n - " + 1 / 2 { l + 0(n~1)} 

to approximate the gamma function in g(m; n, A) so that 

g{m;n,X) = - (Am)" - 1
 e"«~k"*{\ + 0{n~1)} 

(2nY12 

(2ny12 

(4.3) 
It follows from (4.3) that 

g{m;n,X) = 0{nme-«m-X)"), 

where k{m, A) = log (Am) + 1 — Am. Since 

flog (1 + Am - 1) - (Am - 1) < 0 for Am / 1 
k(m, A) = 

0 for Am = 1, 

g(m; n, A) converges to 0 as n -> oo whenever m ^ X ' and diverges to oo as 
n -> oo when m = A-1. This implies that 

G(x;n,A) = P { Z < x } - » / ( x > - j for all x ^ T (4.4) 

so, as n -» oo, the sampling distribution of Z converges to the degenerate 
distribution with all its mass concentrated at A-1. We say that Z is consistent 
for A"1. 

The consistency of Z for A ~1 implies that Z is close to A ~' in the sense that 

z"-1 

A 
> £ [ > = 1 - G( T + £;n, AJ + G ( - - £ ; n , A) -► 0 (4.5) 

as n -> oo, and provides some justification for using Z to make inferences about 
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4.1.3 Approximation by a Nondegenerate Distribution 

Degenerate distributions do not provide useful approximations to proper 
distributions because they do not describe the variability in a proper distri-
bution. Thus we need to obtain a nondegenerate approximation to G(x; n, X). 
We can achieve this by approximating the distribution of the centered and 
scaled statistic a„(Z — k~l), where a„ -* oo, rather than the distribution of Z. 

Let t = an(m - T 1 ) so m = r ' + a~h and dm — a'1 dt, where a„ -* oo. 
From approximation (4.3) we have that the density of a„(Z — X'1) satisfies 

an \X a„ j (2nYl2an { an \ \ aj aj) 

Expanding the log function in the exponent in a Taylor series (see 2 in the 
Appendix) leads to 

1 f i t \ nl'2X f Xt /(Xt)2 (Xt)\ _ ■ 
- 9\- + - ; n,X = _ - _ - e x p < (n - 1) --j- - - T + 0(a„ 4) 

x {1 +0(n~1)} 

and setting a„ = n1/2A yields 

^9G+^^)T2»^e x p{-l+^(l-')+ 0 <"")}{ , + 0 <"") 1 

- * ( l ) e x p | ! ^ + 0 ( i i - ' ) H l + 0 (» - ' ) } , 

where </>(t) = (2n)~1/2 exp ( —£2/2) is the standard Gaussian density. Expanding 
the exponential function in a Taylor series (see 2 in the Appendix) yields 

^i«6 + ^ : * , ) -* ( « ) { , + ! s^ + o ( "" , ) } - <4-6) 
It follows from (4.6) that n~ll2X~1g(X~l + n-l/2X~lt; n, X) -* tf>(t) for every 

t e U and hence 

PW24 z-~)<t} = A^nk^^^^^ 
for every t e R. (This argument can be made rigorous by applying the dominated 
convergence theorem.) Thus the limit of the distribution function of nll2X(Z — X~l) 
is a standard Gaussian distribution function and we can approximate the 
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sampling distribution of nll2k(Z — k l) by a standard Gaussian distribution. 
Since 

G(t; n, k) = P{Z < x} ~ o ( nu2k(x - \ ) \ (4.7) 

an equivalent statement is that we can approximate the sampling distribution 
of Z by the N(A~ \ n~lk~2) distribution. The corresponding approximation to 
the quantile function of Z is 

We obtain an approximate 100(1 — a)% confidence interval for the median 
failure time 9 = / " ' log(2) by substituting the approximation to G~l(u; n,k) 
into (4.2). If we did not already have an explicit expression for the confidence 
interval in terms of G 1 (which requires us to know that kZ is a pivotal 
quantity), we could derive such an interval from the Gaussian approximation. 
Notice that 

1 - a w p i - n - 1 ' 2 ^ - 1 ^ - a/I) < k(z - l \ < n~ il2<b~l{\ - a / 2 ) l , 

so we can treat ).{Z — k~l) as an approximate pivotal quantity and invert the 
inequalities to solve for k'1. We find that 

1 
< - < 

.1 +n-1 / 20>-1( l - a / 2 ) A l-n-il2<l>-l(\-a/2) 

so that a realization of 

__ _^'og^2) 2Jog(2) 
1 +n-1'2<D-1(l - a / 2 ) ' 1 - / r 1 ' 2 * " ^ - a / 2 ) 

is an approximate 100(1 — a)% confidence interval for 9. This is the same as 
the interval obtained by substituting G~l(u; n, 1) ~ 1 + H~1/2<t>-1(u) into (4.2). 

The Gaussian approximation (4.7) is compared to the exact sampling 
distribution in Figure 4.1. The approximation is not particularly good in the 
tails of the distribution for n = 20 and only becomes really good when n is 
quite large (see Table 4.1). 

4.1.4 Edgeworth and Cornish-Fisher Expansions 

The Gaussian approximation to the sampling distribution of Z is derived from 
the leading term in (4.6) so we may be able to improve the approximation in 
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Table 4.1. Comparison of Different Approximations to the Gamma Quantile Function 

The studentized (Gaussian) approximation is {1 — n " " 2 * " 1 ^ ) } - 1 . tr»e Gaussian approximation 
is 1 + n~"2&~'(u), the lognormal approximation is exp {n~ 'l2<b~'(»)}, and the cube root 
approximation is {1 - l/9n + <S>'l(u)/3n112}3. 

small samples by including additional terms from (4.6). Each extra term 
involves a higher power of n"1 / 2 so including more terms decreases the order 
of the remainder. The resulting approximation is called an Edgeworth expansion 
(Edgeworth, 1905). In particular, we find that the two-term Edgeworth 
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expansion for the density (which contains the Gaussian approximation and first 
term expansion) is 

nk.g(j + nk:nJ) 
, . t3 -3t 2t6 - 21r4 + 36f2 - 3 „ , „- , ,A ^ 

- * « > < ' + W+ js +0(" »• <48) 

The Edgeworth expansion for the distribution function is 

P < ! n 1 / 2 / ( Z - - N ) < t 

L,At r3-3r 2r6 - 21r4 + 36r2 - 3 nt 1 / 2 l . _, 

t2 - 1 2t5 - l i t 3 + 3t 
= d>(0 + ^(o l ^ + 4,(0 — J L ± i . r + o(n-3/2) ( 4 9 ) 

3H1' 36n 

The Edgeworth expansion for the distribution function can be inverted to 
obtain an expansion for the quantile function. Let Q(u, n, 1) denote the quantile 
function of nll2/.(Z - X''). Then set Q(u; n, 1) = * - 1 ( K ) + a/n1'2 + b/n ..., use 
(4.9) to expand the right-hand side of the equation 

u = P{n1/2A(Z - /T1) < d>" \u) + a/n1'2 + b/n1'2...} 

in powers of n'1'2, equate the coefficients of n~1/2, n _ 1 . . . to zero and solve 
for a,b.... We obtain the Cornish-Fisher expansion (Cornish and Fisher, 1937) 

Q(u; n, 1) = *->(«) + " ^ + ^ - = - ^ + 0(n"3'2) 
3n ' 36n 

which can be used to construct approximate confidence intervals in (4.2). 

4.1.5 Asymptotic Expansions 

Asymptotic expansions like the Edgeworth and Cornish-Fisher expansions are 
widely used in statistics, so it is worth knowing some of their properties. First, 
asymptotic expansions are not unique because different functions can have the 
same expansion. Second, simple operations such as addition, multiplication, 
and term by term integration (such as we used in Section 4.1.3) can be carried 
out on asymptotic expansions. Term by term differentiation is, however, not 
generally permitted. Asymptotic expansions are usually not convergent when 
viewed as infinite series but, when terminated after a finite number of terms, 
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Figure 4.1. The sampling density of the standardized sample mean under the exponential model 
for the pressure vessel failure data and Edgeworth approximations of different orders. 

the error term is less than the first omitted term which decreases as n -* oo. 
Thus they have a natural measure of the magnitude of the error in the 
approximation. 

Unfortunately, including further terms in an asymptotic expansion need 
not improve the quality of the approximation it provides. This is shown 
in Figure 4.1 which contains plots of the density function of kZ and the 
approximations corresponding to the Gaussian approximation (4.7) and the 
one- and two-term Edgeworth expansions (4.8). Oscillatory effects introduced 
by the higher order terms make the lower tail of the approximations negative. 
Edgeworth expansions often fail in the tails which is typically where we want 
to use them. We will explore alternative ways of improving the Gaussian 
approximation in Sections 4.1.8 and 4.4 below. 

4.1.6 Convergence in Distribution and Convergence in Probability 

It is useful to simplify future discussion by introducing some formal terminology 
to describe the convergence of distribution functions. 

The fundamental concept from the inference perspective is that of convergence 
in distribution. 
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A sequence of random variables {Xn} converges in distribution to X and we write 
X„-^> X if the distribution function G„(x) of X„ converges to the distribution 
function G(x) of X at every point x at which G(x) is continuous. 

This definition is general enough to apply to both (4.4) and the Gaussian 
approximation (4.7). We can abbreviate the statement of (4.4) that the 
distribution function of Z converges to that of the degenerate distribution with 
all its mass at /.' ' by saying that Z converges in distribution to A~1 and write 

A 

Similarly, we can express the Gaussian approximation (4.7) as 

n 1 / 2 / t ( z - - j ^ N ( 0 , 1 ) . (4.10) 

Here we call A- 1 the asymptotic mean (which means that Z is asymptotically 
unbiased for A-1) and n~'A~2 the asymptotic variance of Z. 

Convergence in distribution to a constant is a special case both of convergence 
in distribution and another general mode of convergence known as convergence 
in probability. 

A sequence of random variables {Xn} converges in probability to X and we write 
Xn = X + op(\) if for every e > 0, 

P{\Xn - X\ > e) -* 0 as n-> oo. 

Convergence in probability implies convergence in distribution and (4.5) shows 
that convergence in distribution to a constant implies convergence in probability 
to that constant. Thus (4.4) is identical to the assertion that Z converges in 
probability to A- 1 and we can write 

Z = - + op(l). 

In fact, we can make a stronger statement because (4.10) implies that Z 
converges in probability to k~x at the same rate as n~112. We write 

Z-- = Op(n-^). 
A. 

The relationship between convergence in distribution and convergence in 
probability means that we can define a consistent estimator in terms of either 
mode of convergence. 
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A sequence of estimators {&„} is consistent for a (constant) parameter 9 if either 
9„^9or9n = 9 + op(l). 

4.1.7 Establishing Convergence of Estimators 

The approach used in Sections 4.1.1-4.1.5 of approximating the sampling 
distribution by direct expansion has two disadvantages. First, it quickly 
becomes tedious and second and more importantly, it depends on our being 
able to write down the exact density of the sampling distribution. There are 
many situations in which this is very difficult or impossible to do so we need 
another approach. Fortunately, one of the most important contributions of 
probability theory has been the development of general theorems which enable 
us to obtain approximations to the sampling distribution of a statistic by 
considering the distribution of the data Z„ = (Zx,..., Z„) rather than the 
sampling distribution of the statistic of interest. These results simplify the calcu-
lations and can be applied even when the sampling distribution is unknown. 

Let Z 1 ; . . . , Z„ be independent random variables with means nu ..., fx„ and 
variances a\,..., a1. Set Vn - YJl= i of- The basic tool for finding asymptotic 
approximations to sampling distributions is the central limit theorem which 
applies when the Lindeberg condition holds. 

Lindeberg condition For each e > 0, 

K;1 £ E{(Z, - vtfWi - to\ > eV^'2)} -» 0 as n -» oo. 
i = l 

Theorem 4.1 (Lindeberg, 1922; Feller, 1935) Let Zu ... ,Z„be independent 
random variables with means nu...,n„ and variances a\,..., o\. Set V„ = £"= l a? 
and suppose that the Lindeberg condition holds. Then 

P J K ; 1 / 2 f (Z, - ft) <x\^ (D(x), for all xeU, 

or, equivalently, 

V-1/2 £ (Z, - ^ * N(0,1) as n -> oo. 
; = l 

The Lindeberg condition can be difficult to check so we often use conditions 
which imply the Lindeberg condition. For example, the Lindeberg condition is 
implied by the Lyapounov condition. 

Lyapounov condition For some 8 > 0, 

V'"12 £ Elz.- - Vi\2+a ~* 0 as n - oo. 
;= I 
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Even simpler conditions can be used if the Z, have common mean fi = nl = ■ ■ ■ = nn 

and variance a2 = a\ = ■ ■ ■ = a1 (in this case, the Lindberg condition holds if 
E|Zj - n\2+d < M < oo, for some S > 0) or if the Z, are identically distributed. 
When the Z, are independent and identically distributed with finite variance, 
the central limit theorem is known as the Lindeberg-Levy central limit theorem. 

Corollary 4.1 Let Zl,...,Zn be independent and identically distributed 
random variables with mean fi and variance a2. Then 

pL-1/2 £ ^ T ^ < x 1 - <D(X) for all x sU. 

Equations (4.7) and (4.10) follow immediately from the Lindeberg-Levy 
central limit theorem and the fact that EZ = X"' and Var (Z) = X~2 under the 
exponential model (4.1). 

Edgeworth expansions can also be obtained by an extension of the central 
limit theorem. If in addition to the conditions of Corollary 4.1, Z , , . . . , Z„ have 
third cumulant K3 = E(Zt — n)3/a312 and fourth cumulant K4 = E(Zj — /*)4/<x4 — 3, 
then 

r _ 1 / 2 £ ( z ^ ^ | = ( l ) W _ 0 ( x ) ^ - i ) 
6n 1/2 

LI x 3K 4 (* - 3x) + K2
3(X

S - 10x3 + 15x) 
- 4>(x) —^ J- + • • •. 

72n 

The distribution function expansion (4.9) is obtained by substituting the fact 
that K3 = 2 and K4 = 6 for the standardized exponential distribution. 

The analogue of the Lindeberg-Levy central limit theorem for convergence 
in probability is the weak law of large numbers. If Z l 5 . . . , Z„ are independent 
and identically distributed random variables with mean \i, 

n~l X Z,. = /i + 0 | ,(l). 
i = 1 

The weak law of large numbers establishes the consistency of Z for X~l under 
(4.1) more simply than the argument leading to (4.5). 

We often need to establish convergence in probability for a general sequence 
of random variables {Xn} which is not necessarily a sequence of means. In this 
case we may be able to use Chebychev's inequality, which states that 

P{\Xn -n\>e}< ^ ^ ^ 
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so that if E(Xn — r\)2 -> 0 then Xn = r\ + op(\). Indeed, we have the stronger 
result that 

Xn-t, = 0„{(E(X„ - v)2)1'2} 

so that we can find the rate of convergence by computing moments. 
Finally, if X„ — rj = op(Y) and g is continuous at r\, it follows that 

g(Xn) — g(r]) - op(l) and the limits in probability of sums, products, and 
continuous functions of sequences converging in probability are these functions 
of the limits. 

4.1.8 Smooth Functions of Estimators 

We noted in Section 4.1.5 that Edgeworth expansions often break down in the 
tails. This suggests that we consider expansions with better leading terms rather 
than expansions with more terms. A simple way to obtain expansions with 
better leading terms (based on good applied practice) is to approximate the 
sampling distribution of a nonlinear function h of Z rather than of Z. (Another 
approach is presented in Section 4.4.) 

Provided h is smooth enough, we can make a Taylor expansion (see 2 in 
the Appendix) of h(Z) about fi to obtain 

h(Z) = h(n) + h'(n)(z -fi) + h"(ii) ( Z ~ ;
M ) 

an expansion in increasing powers of Z — y.. Since Z — \i = Op(n~1/2) by the 
central limit theorem, this is a stochastic expansion in increasing powers of 
terms which are of order n"1 / 2 in probability. This asymptotic expansion of 
h(Z) is useful in obtaining expansions of the moments and the sampling 
distribution of HZ). For example, 

,h{Z) 

HZ) 

(iA\3 

\l*)f 

h 
= h(n) + -

h'(n)2a2 

n 

h'(n)3K3 

"{H)a2 

. . . , 

+ 3h"(ti)h'(fi)2<r4 

n2 + 

and so on. Notice that these are expansions in increasing powers of n'1 and 
not rT 1 / 2 . 

We obtain an approximation to the sampling distribution of h(Z) by writing 

nll2{h{Z) - Hi*)} = h\n)nll2(Z - p) + h"(n)nl/2 &_Z]?L .... (4.11) 
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Aside from the first term on the right-hand side of (4.11), we have terms of 
smaller order than n^^OJji"1) = Op(n~i/2) which should vanish in the limit 
leaving us with only the first term to which we can apply the central limit 
theorem. That these terms vanish can be established by a result which is often 
referred to as Slutsky's theorem. 

Theorem 4.2 (Slutsky, 1925; Cramer, 1946, p. 254) Suppose that Xn%-X 
and that Un and V„ converge in probability to u and v respectively. Then 

U„ + V„Xn = u + vXn + 0 p(l) ^u + vX. 

In particular, when nl/2(Tn - 6) ^ N ( 0 , a2), 

Un + Vnn
il2{Tn - 6) ^N(u , » V ) . 

On applying Theorem 4.2 to the right-hand side of (4.11), we have Tn = Z, 
9 = p., V„ = 1 and U„ represents the terms beyond the first. The central limit 
theorem establishes that n1/2(Z — p) satisfies the required condition and that 
U„ — 0p(n~1/2) converges in probability to u = 0. This argument is used so 
frequently that we state it explicitly as the transformation theorem. 

Theorem 4.3 Suppose that n1/2(Tn - 0) % X and that h: U -* R such that 
the derivative h' of h exists and is nonzero at 6. Then 

n^iHJ.) - h(6)} = n"2h\Wn - &) + op(l) %h'(6)X. 

Thus when nll2(Tn - 6) ^ N ( 0 , a2), 

nl,2{h(Tn) - h(G)} ^ N ( 0 , h'(6)2(r2). 

Theorems 4.2 and 4.3 expand the applicability of the central limit theorem by 
allowing us to convert in probability expansions of statistics into approximations 
to the sampling distributions of those statistics, and many large sample 
approximations to the sampling distributions of statistics are built up from 
these results. 

4.1.9 Variance Stabilizing Transformations 

From Theorem 4.3 and (4.10) we see that applying a smooth transformation h 
to the sample mean from the exponential model (4.1) leads to 

„w2|fc(z)_hQJ^N (o,J£ 
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but what h should we choose? The log transformation is widely used in applied 
statistics when we have non-negative data, so we can try h(x) = log (x). In this 
case h'(x) = x^1 and h'{X~~x) = k so by Theorem 4.3, 

n1/2(log (Z) + log (X)) = n1'2 log (AZ) ^N(0,1) 

The log transformation has removed the dependence of the asymptotic variance 
on k so is called a variance stabilizing transformation. 

Generally, if the asymptotic variance a2 of a statistic Tn is a function o2(n) 
of the asymptotic mean n, the variance stabilizing transformation for T„ is the 
function h satisfying 

h'(fi) oc 

or 
1 

h(fi) oc du. 

The Gaussian approximation on the log scale is equivalent to approximating 
the distribution of Z by a lognormal distribution. This should work better 
than our previous approximations because it is asymmetric. The lognormal 
approximation yields 

so 

G(x; n, I) = P{Z < x) ~ <D{n1/2 log (Ax)} 

G~\u;n, \)~ex?{n-lt2<S>-\u)} 

which can be substituted directly into (4.2). Alternatively, we can treat log (2.Z) 
as an approximate pivotal quantity and obtain the same confidence interval 
from first principles. 

4.1.10 Symmetrizing Transformations 

A second approach to choosing a transformation is to try to choose a 
transformation to make the transformed distribution nearly symmetric. An 
imperfect but simple measure of the asymmetry of the transformed distribution 
is E{h{Z) — h(fi)}3, which equals 0 for a symmetric distribution. Equating the 
first term in the expansion for this moment (Section 4.1.8) to 0, we see that we 
need to solve for h in the equation 

h'(fi)K3 + 3h"(n)a* = 0. 

If we take h to be a power transformation of the form h(x) — xq, we have 
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h'(x) = qx"~l and h"(x) = q(q - l)x«~2 so 

fi«_1K3 + 3 f a - 1) / I^2CT4 = 0 

or 

For the gamma distribution, we obtain q = 1/3, the Wilson-Hilferty (1931) 
transformation. In this case, we have 

„i/4z'"-lUNfo,4l 1 / 1 / 3 j V 9A2/V 

Even better results are obtained by including the next term in the expansion 
of Eh(Z) to obtain 

This cube root normal approximation yields 

The densities corresponding to the lognormal and cube root normal approxi-
mations are compared with the actual sampling density in Figure 4.2 and the 
critical points corresponding to these approximations are compared with the 
"exact" critical points in Table 4.1. The cube root normal approximation is by 
far the best of those we have considered. An approximate 95% confidence 
interval for the median failure time based on this approximation is 

(268.89, 653.34) 

which is very close to the "exact" interval. 

4.1.11 Studentization 

The variance stabilizing transformation served the purpose both of introducing 
a better scale for the approximation and of stabilizing the variance. If we are 
only interested in the latter aim, Theorem 4.2 provides an alternative way 
to achieve it: since Z converges in probability to A-1, Theorem 4.2 ensures 
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Figure 4.2. The sampling density of the standardized sample mean under the exponential model 
for the pressure vessel failure data and Gaussian approximation on different scales. 

that 

1 

n i / i > _ V = J_ niiix(z - -) Si, N(0,1) 
Z ZX \ X) 

so we have eliminated the dependence of the variance on the mean. This process 
is known as studentization. 

Treating Z~l(Z — X'1) as an approximate pivotal quantity, we find that 

{Z(l - n~ 1/20>- Hi - «/2)), Z(l + n~ 1/2<D_ '(1 - a/2))} 

is an approximate 100(1 — a)% confidence interval for A-1. Comparing this 
interval to (4.2), we see that studentization is like making the approximation 

G~\u;n, 1) = 
{1 -n-1 / 2 t f>-H")} ' 

This approximation is better than our original normal approximation but 
inferior to those obtained by transformation. 
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PROBLEMS 

4.1.1. Suppose that we have observations Z on the uniform model 

& = |/(y; 0) = n * no < v.- < 9); e > o | 

where /(•) is the indicator function. What happens to P{Z„„ < x} as 
n -* oo? Show that this implies that for all £ > 0, 

P{Z„„ < 0 — e} -> 0 as n -► oo. 

Interpret this result. Then show that as n -> oo 

P{n(Zm -9)<y}-+ exp(y/9), y<0. 

Use this result to obtain a large sample confidence interval for 9 and 
compare this to the exact likelihood based confidence interval. 

4.1.2. In Problem 4.1.1, obtain the next two terms in the expansion of 
P{n(Y„„ — 9) < v}. On the same set of axes, plot the exact probability 
function, the leading term in the expansion, the approximation based on 
the first two terms in the expansion and that based on the first three 
terms. Comment. 

4.1.3. Suppose that we have observations Z on the model 

^ = |/(y; 9) = n ( ^ V ^ > Qye > °j-

Show that as n -» oo, 

P{n(Znl - 9) < x} - 1 - exp ( - * j , x > 0. 

Construct a 100(1 — a)% large sample confidence interval for 9 and 
compare it to the exact interval obtained in Problem 3.8.1. 

4.1.4. Suppose that we have observations Z on the Poisson model 

^ = {/(y;̂  = ft - — , ~ - . * = o,l,2...:A>o}. 
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Find the asymptotic distribution of yjz and show how to use it to set 
an approximate 100(1 — a)% confidence interval for X. Use Rutherford 
and Geiger's (1910) alpha particle data from Problem 1.5.1 to set a 95% 
confidence interval for the mean number of scintillations due to alpha 
particles from the radioactive decay of polonium samples in 7.5 seconds. 

4.1.5. Suppose that we make an observation Z on the binomial model 

F = \f{z;&) = (n)6z(\ -9)n-z,z = 0,l,...,n:0<6< 1 

and that the log-odds ratio \p = log (9/(1 — 9)) is the function of interest. 
Find the maximum likelihood estimator of ip and then find its asymptotic 
sampling distribution. Set an approximate 100(1 — a)% confidence interval 
for ip. Hence obtain an approximate 100(1 — a)% confidence interval for 
9. Does this interval have any advantage over the usual approximate 
confidence interval based on the maximum likelihood estimator of 0? 
Explain. 

4.1.6. Suppose that R ~ binomial(n, 9). Find the asymptotic distribution of R 
and then use Theorem 4.3 to construct an approximate 100(1 — a)% 
confidence interval for 1/9. Now suppose that N is the number of 
independent binomial(l, 9) trials till the rth success and so has a negative 
binomial distribution 

P(N = n) = (n~ W ( l - 9)n~r, n = r , r + 1 , . . . , O < 0 < 1 . 

Find the asymptotic distribution of N and then construct an approximate 
100(1 — a)% confidence interval for 1/9. Compare the two intervals. 

4.1.7. Suppose that we have n independent observations Z on the Gaussian 
model 

<F = |/(z; p, a) = fl (2J2)1 /2
 exP { - ^ T ^ S z«e R: ̂  6 R\W' a>° 

and that ip = n2 is the functional of interest. Then an unbiased estimator 
of \jj is given by 

Tn = Z2-~, where Z = n"1 £ Yt and S2 = (n-iyl £ (Z.-Zf. 
n ;=i ; = i 

Find the asymptotic sampling distribution of T„ and then write down a 
100(1 — a)% confidence interval for ip. 
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4.1.8. Suppose we have observations Z on the variance component model in 
which 

Z y = n + a, + My, j = 1 , . . . , m, i = 1 , . . . , g, 

where {a,} are unobserved independent N(0, ol) random variables which 
are independent of {u;j} which are independent N(0, ol) random vari-
ables, and fi is an unknown parameter. Find the exact distribution of 
tjm = Z?= i (2f - Z)2/g, where Z^m'1 £7= i Ztj, and then show that 
it is a consistent estimator of xjm = a\ + oj/m when g -* oo with m fixed, 
but not when m -* oo with 3 fixed. What happens when m, 3 -> 00? 
Interpret the results. 

4.2 MULTIPARAMETER PROBLEMS 

In Section 4.1, we treated the pressure vessel failure time data as though the 
observations were actually generated by the exponential model (4.1). As we 
noted in Section 1.2.2, the gamma model is often used to explore the 
appropriateness of the exponential model. That is, we treat the data as a 
realization of Z generated by the model 

3? = \f(y, A, K) = ft - i - l ( W exp (-Xy,), y, > 0: A > o l (4.12) 

and explore whether the nonexponentiality parameter K is close to 1. 

4.2.1 Maximum Likelihood Estimation Under the Gamma Model 

The log-likelihood under the gamma model is 

n n 

<f(A, K) QC nK log ( 1 ) + K ^ log (z,) - YJ Azi ~ n l oS { r M } 
1 = 1 1 = 1 

which is maximized at (A, K) satisfying 

n nK V 
0 = -7- - I z; 

0 = n log (A) + £ log (z,) - # ( K ) , 
i = l 

where i/f(x) = 2 log {F(x)}/dx is the digamma function. Using the first equation 
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to eliminate A from the second, we obtain after some manipulation 

z 
and 

0 = n ~ * t log (z,) - log (2) - <A(/c) + log (K). (4.13) 
i = 1 

Noting that the right-hand side of (4.13) is continuous in K > 0, that 

n-1 t log (z,.) - log (z-) < 0 
i= 1 

by Jensen's inequality (see 1 in the Appendix), and that \j/(k) — log (K) < 0, 

\\I(K) — log (K) -> 0 as K -* oo 

-* — oo as K -* 0, 

we see that (4.13) always has at least one solution. Since the derivative of the 
right-hand side of (4.13) is 

- I / , ' (K) + - < 0 , 
K 

(4.13) has precisely one solution and there is a unique (A, K) which maximizes 
the likelihood. 

To find the maximum likelihood estimates (1, K), we need to solve (4.13) for 
K and then set X = K/Z. Greenwood and Durand (1960) suggested an approxi-
mation to the solution of this equation: let y = |n~' YA=I log (z;) — log (f)| and 
then set 

f 0.5000876 + 0.1648852y - 0.0544274y2 

8.898919 + 9.059950y + 0.9775373y2 

( y(17.79728 + 1 L96S4T7y + yT) 

We find that y = 1.072 so we should use the second approximation. Solving 
the equations for our data, we find that (1, k) = (0.001, 0.579). The right-hand 
side of the estimating equation (4.13) evaluated at this value equals 0.0002. 

The next step is to find an approximation to the sampling distribution of 
the maximum likelihood estimator (A, k). This is complicated by the fact that 
these estimators are only implicitly defined. However, we can obtain an 

0 < y < 0.5772 

0.5772 <y< 17. 



MULTIPARAMETER PROBLEMS 191 

asymptotic expansion for (A, K) and then approximate the asymptotic distri-
bution of the terms in this expansion. The approach we use is much more 
transparent if, instead of restricting attention to the maximum likelihood 
estimators under the gamma model, we work with a general class of estimators 
and a general model. 

4.2.2 Estimating Equations 

Suppose that we treat the data as a realization of Z generated by the model 

? = | / ( y ; 0) = f l / ( * ; 0): e e n\. (4.14) 

Consider the class of estimators of 6 which are solutions 9 of a general estimating 
equation of the form 

£»/ (Z„0) = O. (4.15) 

We call £"=i n(Zi,6) an estimating function (Edgeworth, 1908-9; Godambe, 
1960; 1991) and 9 a maximum likelihood type or M-estimator (Huber, 1964). 

Maximum likelihood estimators 9 for the model 3F correspond to setting 
n(x, 9) = 8 log {f(x; 9)}/d6 but we obtain a useful generalization of maximum 
likelihood estimation if we allow flexibility in the choice of n in (4.15). 

If the expected value of the estimating function is 0 under !F so 

n(z, 9)f(z; 6) dz = 0, 

we say that the estimating equation is unbiased for 9 under 3F. Unbiasedness 
of the estimating function implies that when the estimating equation procedure 
is applied to the population represented by SF, the estimator is the parameter 
we are trying to estimate. This property is called Fisher consistency. 

More formally, define a function 9( ■) from the set of all distribution functions 
to the parameter space Q as a solution of the equation 

n(z,9)dF(z) = 0, (4.16) 

where F is an arbitrary distribution function. Replacing F in (4.16) by the 
empirical distribution function F„ (Section 1.5.2) produces (4.15) so we can write 
0= 9{F„). Let F0 denote the distribution which generated Z so that F0(x) = F(x; 0o) 
for some 0O (called the true parameter value) whenever F0e^. Solving (4.16) 
at F0 produces 9(F0) and 9 is Fisher consistent for 90 if 9(F0) = 0o. 
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The formalization in terms of the function 6( ■) is useful because it tells us 
that 6 is estimating 0(Fo) when Z „ . . . , Zn are independent and identically 
distributed random variables with common distribution function (F0 $ #"). 

Fisher consistency is not the same as consistency defined in Section 4.1.6 but 
it is closely related because F„ is consistent for F0 and, when 6( ■) is continuous 
at F0, it follows that 6 is consistent for 6(F0). We will show in Section 4.2.4 that, 
under further conditions, 6(F0) is the asymptotic mean of 6. 

We derive the properties of M-estimators in Sections 4.2.4-4.2.6, specialize 
the results to maximum likelihood estimators in Sections 4.2.7-4.2.10, and then 
apply them to make inferences about the parameters in the gamma model (4.12) 
in Section 4.2.11. 

4.2.3 Establishing Convergence for Random Vectors 

In multiparameter problems, we have to establish approximations to the 
sampling distribution of a vector estimator. Although the calculations become 
more complicated, the manipulation of vectors raises no substantive difficulties. 
The techniques we use are very similar to those we would use in the case p = 1 
and the results include p = 1 as a special case. 

A simple extension of the central limit theorem can be established using the 
Cramer-Wold device. 

Theorem 4.4 (Cramer and Wold, 1936) The random p-vector X„ converges 
in distribution to X if and only if for each fixed p-vector a, aJXn converges in 
distribution to aTX. 

For our purposes we require only the multivariate version of the Lindeberg-Levy 
central limit theorem which is readily established from Corollary 4.1 and 
Theorem 4.4. 

Theorem 4.5 Let Zu ... ,Znbe independent and identically distributed random 
p-vectors with mean p-vector fi and p x p variance matrix Z. Then 

n~112 £ (Z, - / * ) ^ N p ( 0 , E ) a s n - o o , 
; = i 

where Np denotes the p-dimensional multivariate Gaussian distribution. 

Convergence in probability is even easier to extend to the multiparameter case 
because a vector or matrix converges in probability if and only if its components 
do so. 

4.2.4 The Approximate Sampling Distribution of an Af-Estimator 

The basic procedure for approximating the sampling distribution of an 
M-estimator is to expand the estimating equation (4.15) in a Taylor series 
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(see 2 in the Appendix) about the point 9(F0) to produce an expansion in 
increasing powers of 9 — 6(F0) which is of the form 

0 = n~* £ n(Z„ 9) = n~1 £ f,(Z„ 9(F0)) + n~l £ ,,'(Z„ W H ^ - 0(FO)) + ■ ■ ■, 
i = 1 i = 1 i = 1 

where >j'(z> 0 denotes the matrix with (i,j)th component cty,(z, t)/dtj. We then 
invert this expansion to obtain an expansion for 9 — 9(F0) in increasing powers 
of n~' £"= i l(Zi, 9(F0)) which is typically of order n~1/2 in probability and can 
be used to obtain approximations to the sampling distribution of 9 — 9(F0). 

The procedure is particularly straightforward if we are only interested in the 
leading term. In this case, we have the expansion 

1 n 
, - 1 / 2 

i = 1 

ni'2(9-9(F0))=-\n'1 £ r,'(Zh9*)\ n~'12 £ »/(Z„0(Fo)), (4.17) 

where 0* is between 9 and 9(F0) in the sense that |0* - 0(FO)| < \9 - 0(FO)|. 
Provided Z t , . . . , Z„ are independent and identically distributed random 

variables, " _ 1 / 2 £?=i ^(Z;, 0(FO)) is a sum of independent and identically 
distributed random variables. If in addition 

EFot,(Z, 9(F0)) = 0, 

and 

EFor,(Z, 9(F0))r,(Z, 9(F0))
T = AFo(9(F0)) < °o, 

it follows from the central limit theorem that 

n'1'2 £ f,(Z„ 0(FO)) ^ N ( 0 , /tfo(0(Fo))). (4.18) 
i = 1 

Next, write 

n - 1 £ f/'(Z,,0*) = n - 1 £ ^ ' (Zi .^oW + n"1 I {»?'(Z„ 9*) - n'iZ,, 9(F0))}. 
i=l i = 1 i = 1 

(4.19) 

The first term is the mean of independent and identically distributed random 
variables so, provided — EFor]'(Z, 9(F0)) = BFo(0(Fo)) < oo, the weak law of large 
numbers ensures that 

n - 1 £ r,'(Zh 9(F0)) = -Bfo((0(Fo)) + op(\). (4.20) 
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Also, provided $ = G(F0) + op(l) and n'(y, t) is continuous at t = 6(F0) uniformly 
in y, we can show that 

n~l t {l'(Zi> 6*) - r,'(Zh 0(Fo))} = op(l). (4.21) 

Finally, if BFo(6(F0)) is nonsingular, we can apply Theorem 4.2 to (4.17)-(4.21) 
to obtain 

n"20 - 6(F0)) = BFMFo))~ln~u2 t 1&t> WW) + oP(D 
i = l 

from which it follows that 

nl'2(9 - 6(F0)) £N(0 , Bfo(e(fo))-Mfo(0(Fo))BFo(0(Fo))-T), 

where M - T = (M_ 1)T. 
Collecting all the conditions, we have proved the following result. 

Theorem 4.6 Let Zx,...,Znbe independent and identically distributed random 
variables with common distribution function F0. Suppose that 

1. 6(F0) is an interior point of the parameter space Q and an isolated root of 
the equation EFon(Zh 6) = 0, 

2. n'(y, t) is continuous at t = 6(F0) uniformly in y, 

3. EFon(Zh 8(F0))n(Zh 6(F0))
r = AFo(6(F0)) < oo 

and 

4. EFon'(Zh 9(F0)) = BFo(0(Fo)) < oo and nonsingular. 

Then if 0 = 6(F0) + op(l) and n~112 X?=, r,(Zh §) = op(l), 

n1/2(d - 0(FO)) = - ^ ( © ( F o ) ) - ^ - 1 ' 2 E »f(Z„ 0(Fo)) + 0 p(l) 
i = i 

w/iic/i implies that 

nl'\e - 9(F0)) £N(0 , ^ ^ ( F o ) ) " 1 ^ ^ ^ ) ) ^ ^ ^ ) ) " 7 ) . 

The last two (unnumbered) conditions ensure that 0 is a consistent estimator 
which satisfies the estimating equations. Condition 1 ensures that 0(FO) is not 
on the boundary of Q so that a Gaussian approximation to the sampling 
distribution is plausible (see Moran, 1971). Condition 2 justifies the Taylor 
series expansion of the estimating equations and ensures that the remainder 
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vanishes. Conditions 3 and 4 justify the application of the weak law of large 
numbers to the denominator and then the central limit theorem to the 
numerator in the rearranged Taylor expansion expressing n1/2(6 — 8(F0)) as the 
ratio of two terms. 

A more general version of Theorem 4.6 has been given by Huber (1967). 

4.2.5 Approximate Standard Errors for Estimating M-Estimators 

Theorem 4.6 establishes that the asymptotic variance of an M-estimator 8 is 

W o ) ) = n-1BFo(e(Fo)yi^F0(0(Fo))BFMFo)rT-

A natural estimator of VFo(6(F0)) is 

V(9) = n'1 B{8) - lA0)B(8) ~ T, (4.22) 

where 

A{8) = n - 1 £ r,(Zi; 0)iKZ,; 9)T and B{8) = T 1 £ r\\Z{; 8). 
i = l i = l 

The estimator (4.22) is consistent for VFo(8(F0)) under the conditions of Theorem 
4.6 so {diag V(8)}112 gives approximate standard errors for 8. 

4.2.6 Solving Estimating Equations 

The Newton-Raphson method described in Section 2.7.7 as an algorithm for 
obtaining the maximum likelihood estimates can be applied to solve the more 
general (4.15). The algorithm is based on a linear expansion of the estimating 
function in (4.15) instead of a quadratic expansion of the log-likelihood function 
but the end result is the same. 

We can modify the Newton-Raphson method by replacing the normalized 
Hessian matrix n~l YA= I >/'(Z;> 8(m)) by the estimate —BF{..e )(0(m)) of its limit 
under the model !F. At least when the estimating function is the derivative of 
the log-likelihood, the resulting algorithm is known as Fisher's method of 
scoring. As we saw in Section 4.2.1, the form of n may suggest additional 
alternative algorithms. 

4.2.7 Why Maximum Likelihood Estimates the True Parameter 

Suppose that the model & = {f(y; 8) = f["=i f(yt\ &)■ # e £1} holds so that 
F0 e &. Let 80 denote the true parameter value which identifies the distribution 
in the model which actually generated the data so F0 denotes the distribution 
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with density f(y; 90). By Jensen's inequality (see 1 in the Appendix) 

EF ^MW<logE- f{Z\Q) 
f(Z; 90) 

= log f(y; 9) dy 
support {/(■; 8o)( 

If the densities in J^ have the same support and the densities in the model are 
distinct in the sense that f(y; 90) / f(y; 6) whenever 6 / #0, 

Efo,og^U<° (4.23) 

and 90 maximizes Efo log {f(Z; 9)}. 
Since EFo log {/(Z,; 9)} is maximized at 9 = 90, the true value 90 satisfies the 

equation 

3E, o log/(Z;0) 

39 
= 0. 

9=e0 

If we can interchange the order of expectation (i.e., integration) and differen-
tiation we have that 

Ef0/;(Z, 60) = EPo 
8 log f(Z; 9) 

89 
= 0 

e = e0 

so the estimating equation is unbiased for 90 when J5" holds and 9 is Fisher 
consistent for 90. 

4.2.8 The Approximate Sampling Distribution of Maximum 
Likelihood Estimators 

A simplification to Theorem 4.6 is often available for maximum likelihood 
estimators. If we can interchange the order of integration and differentiation 
twice, 

BFo(80)= -EPot,'(Z,0o) 

81 jog f(x, 0o) 

89od0l 

1 82f(x, 90) 

f{x, 9Q) dx 

1 8fix, 80) 8fix, 00)
r 

_fix,90) 89089l fix,90)
2 890 89n 

fix, G0) dx 
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S2f(x, 60). Cd log {f{x, 90)} d log {fix, 90)Y 
— dx + t(x, 9a) dx 

d0od0l J d60 d90 

d f(x,90)dx + EForj(Z, 90) n(Z, 90)
T 

se0 d9i 

The common value of AFa(9) = BF()(9) is denoted by 1(9) and is the Fisher 
information matrix defined in Section 2.3.2. 

Specializing the statement of Theorem 4.6, we have the following result. 

Corollary 4.6 Let Zx,..., Zn be observations on a model 

^ = | / ( y ; 0 ) = f l / ( j ' , - ; 0 ) : 0 6 n } 

which satisfies 

1. 90 is an interior point of the parameter space il 

2. the support of / ( • , 9) does not depend on 9 and f(y; 90) ^ f(y; 9) for 

3. n(x, 9) = d log {f(x, 9)}/d9 and the second derivative of f(x, 9) with respect 
to 9 is finite for each x in the support of f(x, 9) and continuous at 9Q 

uniformly in x 
4. the integral f, f(x, 9) dx can be differentiated twice under the integral sign 

5. the Fisher information 

1(0) 
d log fix, 9) d log fix, 9f 

- f(x, 9) dx 80 30 

is finite and nonsingular at 0 = 90. 

Then if9 = 90 + op(l) and n"1 / 2 £?_ , tfZ,, 9) = o,(l), 

nll2(9-90)= -Wo)-^-1'2 £ n(Zi,0o) + op(\) 
i= 1 

which implies that 

n1'2(9-9o)^N(0,I(9oy
l). 
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4.2.9 Approximate Standard Errors for Maximum Likelihood Estimators 

To use Corollary 4.6 to make inferences about 90, we need to construct an 
estimator of the Fisher information matrix I(0o). We could use the estimator 
V(6) defined in (4.22) but, under the assumed model, we usually use the observed 
information 

B2 log / (Z„g) 

862 
;= I 

or the expected information 

These estimators are generally different except in the case of distributions in 
the exponential family (Section 1.3.1) for which they are identical. In particular, 
they are identical for the gamma model (4.12). Both of these estimators are 
consistent for I(90) under the conditions of Corollary 4.6 so either estimator can 
be used to make approximate inferences about 60. Both estimators require 6 
but J is typically simpler to obtain than 1(9) because it does not require the 
expectation of the second derivative matrix. 

Using the observed Fisher information, an approximate 100(1 — a)% con-
fidence interval for 60l is given by 

[0, - B - " 2 ! / " ) " 2 * " 1 ! ! - a / 2 ) , 0i +n~ll2(Jll)1'2^-1(l - a / 2 ) ] , (4.24) 

where , / n denotes the (1, l)th element of J~l. Confidence intervals for the 
other components of 60 are easily obtained. 

4.2.10 Consistency of Maximum Likelihood Estimators 

To apply Corollary 4.6, we still have to show that 6 is a consistent estimator 
of 60. This is surprisingly difficult to do and requires rather technical conditions. 

Since we are trying to maximize the log-likelihood £"= i log {f(Zh 9)} to 
estimate 90, we can base a consistency proof on the likelihood function. This has 
been done very elegantly by Wald (1949) who first proved consistency for the 
case that the parameter space Q. contains only a finite number of points and 
then extended the result to more general sets Q satisfying compactness 
conditions which enable them to be approximated by finite sets. 

An alternative approach due to Cramer (1946, pp. 500-4) is to show that a 
root of the likelihood equation is consistent. The difficulty with this approach 
is that if the equtions have multiple roots, it is impossible to tell which of these 
are consistent. This difficulty can be overcome by specifying an algorithm for 
choosing a single root and then showing that this root is consistent. 
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4.2.11 Maximum Likelihood Inference Under the Gamma Model 

Technical arguments can be used to show that distributions in the exponential 
family satisfy the conditions of Corollary 4.6; see for example Lehmann 
(1959/1991, pp. 57-60; 1983, pp. 438-42). For our problem with the gamma 
model (4.12), 0 = (/, K)T and 

rj(x, 0) = (~ - x, log (A) + log (x) - (A(K) 

It follows that 

K9) = -En\z,e) 

K/A2 -A~X 

- ; . - 1 <A'(K) 

and inverting this matrix, we obtain 

K\J/'(K) — 1 \ / l K/A.Z 

Solving the estimating equations for our data, we find that d = (0.001,0.579) 
and 

J\'1 _ /1.58 x 10"7 4.08 x 10"5 

20/ ~ \4-08 x 10"5 0.023 

An approximate 95% confidence interval for K is obtained from (4.24) as 

(0.27,0.88). 

This interval does not contain K = 1 so provides evidence against the adoption 
of an exponential model for the pressure vessel failure data. 

The fact that K is a non-negative parameter suggests that we should consider 
a log-normal approximation to the sampling distribution of K. From Theorem 
4.3, we obtain 

Var (log (*)) 
TIK(K\I/'{K) — 1) 

which produces the standard error 0.265 and hence the 95% confidence interval 

(0.34, 0.97). 
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Although both approximations lead to similar conclusions in this case, we 
may still seek to investigate which scale provides the better approximation. 
Ideally, we would like to compare the approximations to the exact results but 
we do not know the exact distribution of K. Nonetheless, we can make some 
progress through a computer simulation (see Section 3.10). We can generate 
1000 data sets of size n = 20 from a gamma distribution with X = 0.001 and 
K0 = 0.5, compute a nominal 95% confidence interval for K from each data set 
using the two approximations, and then compare the estimated coverage 
probabilities of the intervals (the proportion of intervals containing the actual 
value of K0) and the distributions of the lengths of the intervals. 

Using the Gaussian approximation to the binomial distribution to set 
confidence intervals for the actual coverage probabilities (see Section 3.7.2), 
we find that the approximation on the raw scale produces nominal 95% 
confidence intervals for JC0 which have an estimated coverage probability of 
0.97 ± 1.96^/097" x 6.03/1000 = 0.97 + 0.01 whereas that on the log scale 
produces nominal 95% confidence intervals for K0 which have an estimated 
coverage probability of 0.92 ± 1.96^/0.92 x 0.08/1000 = 0.92 ± 0.01. The distri-
butions of the lengths of the confidence intervals are shown in Figure 4.3. Using 
the Gaussian approximation to the distribution of the mean lengths, we see 

Gaussian Approximation 
Figure 4.3. A qq-plot of the lengths of simulated 95% confidence intervals using the Gaussian and 
lognormal approximations to the sampling distribution of the maximum likelihood estimator of 
the gamma shape parameter K under the T(0, 5, 0.001) model. 
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that the approximation on the raw scale produces nominal 95% confidence 
intervals for K0 with mean length 0.60 ± 1.96 x 0.006 = 0.60 + 0.01 whereas 
that on the log scale produces nominal 95% confidence intervals for K0 with 
mean length 0.63 + 1.96 x 0.007 = 0.63 ± 0.01. There is not a great difference 
between the results produced by the two methods but the confidence intervals 
produced on the raw scale have slightly better coverage and are typically slightly 
shorter than those produced on the log scale. More detailed comparisons can 
be made by extending the range of n, X, K, and nominal levels considered. 

PROBLEMS 

4.2.1. Suppose that we have observations Z on the multivariate Student t model 

/v + n^ 

P = V<j;ix,a)= v 2 l 

— oo < yt < oo: fi e R, a > 0 K 

where v > 0 is known. Use the representation Z( = n + oYJh112, where 
Yj are independent standard Gaussian random variables which are 
independent of h ~ x2lv to find the sampling distribution of the maximum 
likelihood estimator fi of n as n -* oo. Show that a2 is inconsistent by 
showing that it converges in probability to the random variable o2/h. 

4.2.2. Suppose that we observe Z on the model 

& = \ f(z; e)=f[ 6z"~1 e x P (-z?)> zi > 0: 0 > 0 i . 

The maximum likelihood estimator of 6 cannot be written down explicitly. 
Nonetheless, show that the likelihood equations have a unique root which 
equals the maximum likelihood estimator. (Hint: show that the likelihood 
equation is a continuous function of 9, takes positive and negative values 
and crosses the zero axis once.) Find the asymptotic sampling distribution 
of the maximum likelihood estimator and show how to use it to set an 
approximate 100(1 — a)% confidence interval for 9. 

4.2.3. Pareto's distribution is sometimes used to represent the distribution of 
incomes over a population. Suppose that we observe Z on the Pareto 
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model 

f " KXK ) 
* = | /(y; Q = Jl ~ ^ T > yi > * *> * > of-

Suppose initially that A is known. Obtain the maximum likelihood 
estimator k of K. Find the asymptotic distribution of k and hence of 
the maximum likelihood estimator of the median A21/K. Construct a 
100(1 - a)% large sample confidence interval for the median income in 
the population. 

4.2.4. In the context of Problem 4.2.3, suppose now that both K and X are 
unknown. Obtain the maximum likelihood estimators of K and X. Show 
that A — X = Opin'1). Hence or otherwise show that the asymptotic 
distribution of the maximum likelihood estimator of the median when X 
is unknown is the same as when X is known. (Malik, 1970, has obtained 
the exact distribution theory for this problem.) 

4.2.5. We noted in Section 1.3.2 that the Weibull model is often used in place of 
the gamma model to explore the applicability of the exponential model. 
In the Weibull model we treat the data as a realization of Z generated by 

& = | / ( y , A, K) = ft KWtt)"- 1 exp {-(Xyif}, yt > 0: X > o l . 

Show that the log-likelihood is maximized at (A, K) satisfying 

{"■ ' ILi^} 1 " 

0 = - + n ' X log (z,) — 

and show that there is a unique (A, k) which maximizes the likelihood. 
Write down an approximation to the sampling distribution of the 
maximum likelihood estimator. 

4.2.6. Fit the Weibull model of Problem 4.2.5 to the pressure vessel failure time 
data presented in Table 1.2 and use it to make inferences about K and 
then the median of the failure time distribution. Carry out a simulation 
to explore the quality of the Gausian approximation and the repeated 
sampling properties of the inferences about K at the estimated parameter 
values. 
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4.2.7. Suppose that the conditions of Theorem 4.6 hold and that 9* — 6(F0) = 
Op{n~1'2). Show that the one-step estimator 

0 = 0*-|2>'(z„0*) j _2>(z„0*) 

is asymptotically equivalent to a root of the estimating equations (4.15). 

4.3 THE CHOICE OF INFERENCE PROCEDURE 

We showed in Sections 4.2.6-4.2.11 that maximizing the likelihood for the 
gamma model (4.12) is a reasonable method of estimating the parameters of 
the model. However, the implementation of the procedure requires us to solve 
an implicit equation and to approximate the sampling distribution of the 
implicitly denned estimator so other approaches may be simpler to implement. 

4.3.1 Method of Moments Estimation for the Gamma Model 

If we compute the sample moments mk = n~1 £"= i Zj> k = 1, 2, their expectations 
under the gamma model (4.12), which are Em, = KJk and Em2 = K(1 + K)/k2, 
and then solve the system of equations 

m, = -x-

*m(l + *m) 
2 32 4 

we obtain the explicit method of moments estimators (Section 3.1.1) 

L = ^ 

Km= ~2 

m2 — m\ 

of k and K. 

4.3.2 The Sampling Distribution of the Method of Moments Estimators 

We can apply Theorem 4.6 with 9 = (k, K)T and 

r,(y,9) = (y-K/k,y2-K(\+K)/k2)1 
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to obtain the approximate sampling distribution of the method of moments 
estimators but it is straightforward and instructive to obtain the approximate 
sampling distribution directly by considering the random vector (m1; m2)

r. 
The vector (m„ m2)

T is a sum of independent and identically distributed 
random vectors (Z,Z2)T which, under the gamma model (4.12) have mean 
{K/X, K(K + l)/X2) and variance matrix 

/ K/k2 2 K ( K + 1 ) / A 3 

~ \2K(K + \)/P 2K(K + 1)(2K + 3)/A4 

By the multivariate central limit theorem, 

n1'2(ml--,m2-
Ki—^)jMN2(0,V) a s n ^ o o . 

Since 

m2 

*m = Kmi, m2) = 

and 

m2 — m2 

h'(mu m2) = 1-~- (2m2, - m , ) T , 
(m2 - m2)2 

by a Taylor expansion (see 2 in the Appendix) 

Km-K = h(mu m2) - h[ -, — 

= \mx -i,m2-
 K ( ~ ^ )fc'( i, ^ ^ ) + op(n'^2) 

whence, as n -> oo, 

K K{K+\)\ IK K ( K + 1 ) \ _ 

n»2(Km - K) * N ( 0, h{K- «Z+ll)TVh'(K K(K + 1} 

\A A, / \A A, 

= N(0, 2K(K +1) ) . 

For the pressure vessel data, we obtain Km = 1.056 with standard error 
yj2km{Km + l)/n = 0.466 so that an approximate 95% confidence interval 
for K is 

(0.14, 1.97). 

In contrast to the maximum likelihood analysis of Section 4.2.11, there is now 
no evidence against the exponential model. 
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4.3.3 Asymptotic Relative Efficiency 

If we compare the analyses of the gamma model (4.12) in Sections 4.2.11 and 
4.3.2, we see that the confidence intervals are based on different point estimates 
which have different standard errors. Comparisons based on a single realization 
of Z may be misleading so we need a more sophisticated approach. Since the 
maximum likelihood estimator K satisfies 

nlt2(K-K)^U, 
\ K\1/'(K) — 1 

and the method of moments estimator km satisfies 

n1/2(Km - K) ^ N(0, 2K(K +1)) as n -+ oo, 

asymptotically, the centers of the confidence intervals are the same and the 
lengths are determined by the asymptotic standard deviations of the estimators. 
That is, as noted by Wilks (1938a), asymptotic comparisons of confidence 
intervals derived from asymptotically unbiased and Gaussian estimators are 
comparisons of asymptotic standard deviations or, equivalently, variances. 

Asymptotic variances can be compared by computing the asymptotic relative 
efficiency of icm with respect to K which is defined to be 

K 

Var(K) W M 1 
are (Km, K) = = = . 

Var ( t f j 2K(K + 1) 2(K + 1 ) (K^ 'C0 - 1) 

From the transformation theorem, for any smooth transformation h, 

are (h(Km), /I(K)) = 
2(K + IXKIA'M - 1) 

so the asymptotic relative efficiency does not change when we change the scale 
on which we are comparing the estimators. The asymptotic relative efficiency 
is less than 1 for all K SO the maximum likelihood estimator has a smaller 
asymptotic variance (and hence on average produces shorter confidence 
intervals) than the method of moments estimator. We say that the maximum 
likelihood estimator is more efficient than the method of moments estimator. 

4.3.4 Asymptotic Efficiency 

Suppose that Z is generated by the model & = {f(y; 6) = fl?= i f(yr, 9): Oeil} 
which satisfies regularity conditions like those of Corollary 4.6: see Bahadur 

as n oo 



206 LARGE SAMPLE THEORY 

(1964) for details. Then Bahadur (1964) showed that if T„ = t(Z) is any estimator 
satisfying n1,2(T„ - 0) ^Np(0,1,(6)), we have the inequality 

Z(0)jj > 1(0)", j=l,...,p, for almost all 0 e 12, 

where 1(6)" denotes the (j,j)th component (i.e., y'th diagonal element) of the 
matrix I(6)~l. When 6 contains a single parameter, 1(6)^=1/1(6). The 
inequality can fail for isolated values of 6 but holds for all 6 e Q if 2,(6) is 
continuous. 

Bahadur's (1964) result shows that there is a limit to how efficient an 
estimator can be and makes it sensible to define the asymptotic efficiency of the 
y'th component of any estimator satisfying nll2(T„ — 6) -^N(0,1,(6)) to be 

ae (71.-) = < 1. 
1 Wh 

Any estimator Tn of 6 which satisfies 

n 1 / 2 ( r „ - 0 ) ^ N ( O , I(0)_1) f o r a l l 0 e Q 

is componentwise asymptotically efficient for 0. Asymptotically efficient esti-
mators are not unique because we can always add a sequence converging to 0 
faster than n~1/2 to an asymptotically efficient estimator without changing its 
limiting distribution. 

It follows from Corollary 4.6 that, under appropriate conditions, maximum 
likelihood estimators are asymptotically efficient and therefore on average 
produce confidence intervals which are as short as possibe. Thus log (2)/Z is 
an efficient estimator of the median failure time under the exponential model 
(4.1) and the maximum likelihood estimator (X, k) is an efficient estimator of 
(/I, K) under the gamma model (4.12). This is the original basis on which Fisher 
(1922) advocated the use of maximum likelihood estimators over method of 
moments estimators. 

4.3.5 Adaptive Estimation 

In general, asymptotic efficiency depends both on the model and on what we 
know about the model. If we "know" K = 1 in the gamma model, the 
exponential model holds and 1/Z is an asymptotically efficient estimator of k 
with asymptotic variance 7(A)-1 = l\\(K K ) " 1 = X2. However, if K is unknown 
and estimated in the gamma model, K/Z is asymptotically efficient for I with 
asymptotic variance 

/ ( A , K ) - = W K ) 

KIJ/'(K) — 1 
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We have the inequality 

/ ( / ) " 1 < / ( / , / c ) 1 1 

so there is a price to pay for having to estimate K. In fact, in general, 

We have equality whenever 1(9) is a diagonal matrix and in this case there is 
no loss of efficiency for having to estimate the other components of 0. If we 
can construct an efficient estimator Tnj of 6j that depends on the other 
components of 6 but having to estimate these other components does not affect 
the efficiency of Tnj in the sense that the asymptotic variance of Tnj equals 
ljj(0)~l, we call Tnj an adaptive estimator of #,. (For an example, see Problem 
4.2.4.) 

4.3.6 Mean Squared Error 

It is not necessary to restrict the estimators on which confidence intervals are 
based to be asymptotically unbiased. For example, if we allow an asymptotic 
bias b(8) so the estimator Tn is required to satisfy 

nl/2(Tn-6)^ Np(fc(0), E(0)) as n -* oo, 

comparisons based on asymptotic variances are less meaningful than those 
based on the componentwise asymptotic mean squared errors 

I40)jj + bj(0)2. 

Biased estimators can be useful, but it is important to recognize that confidence 
intervals which ignore the bias can have very poor coverage properties when 
the bias is large. 

4.3.7 Other Criteria Which Impact on the Choice of Procedure 

The case for using maximum likelihood estimators is based on their general 
applicability, the sufficiency of the likelihood function (Section 2.6.2), the 
observation that the expected log-likelihood is maximized at the true parameter 
value (Section 4.2.6), and the fact that maximum likelihood estimators are 
often asymptotically efficient (Section 4.3.4). This suggests that we should use 
the maximum likelihood analysis of the gamma model. However, asymptotic 
efficiency is not entirely compelling as an optimality criterion because it neglects 
concepts like simplicity: we may decide to use the method of moments estimator 
of the shape parameter K in the gamma model on the grounds that it is simpler 
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than the maximum likelihood estimator. A stronger reason for using the method 
of moments analysis for the gamma model is that it is more stable than the 
maximum likelihood analysis. The maximum likelihood estimator depends 
on the data through y = \n~1 YA=\ l°g(z.) ~ l°g(z)l so is more sensitive to 
observations close to 0 than the method of moments estimator. In fact, if we 
exclude the two smallest observations (0.75 and 1.70), the maximum likelihood 
estimator of K increases from 0.56 to 0.96 (which changes the inference) and 
the method of moments estimator increases from 1.06 to 1.33 (which does not 
affect the inference). Thus the method of moments analysis is preferable in 
this case. 

All of the comparisons we have made in this section have assumed that the 
underlying model holds exactly. Since models rarely hold exactly, we may ask 
about the value of our comparisons when the model holds only approximately. 
This issue is addressed in Chapter 5. 

PROBLEMS 

4.3.1. Suppose that we observe Z on the gamma model (4.12). For n — 20, 
k = 1, K = 0.5, 1, and 1.5, simulate the sampling distribution of the 
method of moments estimator icm. Compare the simulated sampling 
distribution to the Gaussian approximation to the sampling distribution 
in each case. 

4.3.2. Suppose that we have observations Z on the multivariate Student t model 
of Problem 4.2.1. Use the fact that A4 = E(Z, - /i)4/{E(Z, - /i)2}2 satisfies 

X4 = 3 H , provided v > 4, 
v - 4 

to construct a method of moments estimator of v. Show that the method 
of moments estimator v diverges to infinity in probability as n -* oo. If 
on the other hand, the Student t model 

r ( - 2 - ) 

— oo < yt< oo: // € R, <T > 0 >, 

holds, show that the estimator v constructed above converges in prob-
ability to v. 

tF = {f(y;fi,<r) = 
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4.3.3. The negative binomial model 

' ■ K ^ - n ^ ) } " ' ^ ^ - (z, + Xl») 

z, = 0, 1,2, . . . , / l > 0 , <5>0 

was presented in Problem 3.2.3 as a possible model for Mosteller and 
Wallace's (1964, 1984, p. 33) data (presented in Problem 3.2.2) on the 
number of occurrences of the word "may" in 262 blocks of text written 
by James Madison. Here EZ = A is the mean of the distribution, 
Var (Z) = A(l + 3) is the variance of the distribution, and 3 = 0 corre-
sponds to the Poisson distribution. As an alternative to the y1 goodness 
of fit test, find a large sample approximation to the sampling distribution 
of the method of moments estimator of 3 and set an approximate 
confidence interval for S. What do you conclude? If we do a formal 
test of H0: 3 = 0, we need to approximate the sampling distribution of the 
method of moments estimator under H0. What difficulties are caused by 
the fact that 3 is on the boundary of the parameter space? See Lawless 
(1987) for further discussion. 

(Hint: 

1 \ +23 + 2X 

,1+2(5 + 2/1 1 + 66 + 6/1 + 6c52 + 10X3 + AX2))' 
V a r (z 2 ) = A(1+<5) 

4.3.4. Suppose that we observe {(^i, xY),..., (Y„, x„)} on the model 

\Jyy * M OaVx,))1'2 2a2v(xi) 

yieU;PeU,a>0}. 

Compare the maximum likelihood estimator ft of J? to the least squares 
estimator 

A _ Z " = i X,-.VJ 

Z*i= i *i 

4.4 IMPROVING THE GAUSSIAN APPROXIMATION 

In Sections 4.2.2-4.2.5, we assumed that we have independent observations Z 
with underlying distribution F0 and we established a Gaussian approximation 
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to the sampling distribution of the M-estimator $ satisfying 

In particular, in Theorem 4.6, we showed that 

where KFo(0(Fo)) = Bfo(0(Fo)rMfo(0(Fo))Bfo(0(Fo))-T, with 

AFo{6) = EFon(Z, 6)r,(Z, 0)T and BFo(6) = - EFor,'(Z, 0), 

and 0(.FO) satisfies 

EFon(Z, 6(F0)) = 0. 

This approximation is adequate for many purposes but it can be important 
when the sample size is small to use more accurate approximations to the 
sampling distribution of 6. 

4.4.1 Choice of Scale and Parameterization 

As we noted in Sections 4.1.8-4.1.10, we can often improve an asymptotic 
approximation by changing the scale on which we make the approximation. 
For example, in Section 4.2.11 we considered approximating the distribution 
of log (JC) rather than K. Although the change of scale did not lead to 
improvement in that case, it may be helpful in other problems. 

In multidimensional problems, we can consider reparameterization as well 
as transformation. Cox and Reid (1987) suggested reparameterizing so that 
the nuisance parameters are orthogonal to the parameters of interest in the 
sense that the corresponding Fisher information matrix is block diagonal. This 
is a sensible suggestion but it is generally difficult to implement and can lead 
to uninterpretable parameters. In our gamma problem, the parameterization 
in terms of /x = K/X and K is orthogonal (Problem 4.4.2) so we could consider 
using this parameterization. It does not, however, change the approximations 
to the marginal sampling distribution of the estimators of K. 

4.2.2 Muitivariate Edgeworth Expansions 

Since the Gaussian approximation was obtained from a linear expansion of the 
estimating equations, we can try to improve the approximation by extending 
the expansion and then developing a muitivariate Edgeworth expansion for the 
sampling distribution. This is unattractive because it involves tedious moment 
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calculations (the multivariate Edgeworth expansion is of a similar form to the 
general Edgeworth expansion given in (4.8) and (4.9) but involves multivariate 
moments) and because, as we saw in Section 4.1.5, the Edgeworth expansion 
can perform poorly in the tails. 

The Edgeworth expansion does show that the Gaussian approximation can 
be applied to the density f$(x) and that this Gaussian density approximation 
performs extremely well in the center of the distribution. That is, if the 
dimension of the parameter space Q is p, the Gaussian density approximation 

«" 2 | f l f o ( 0 (F o ) ) | 
fe(x) ~ - - — 7 = 7 7 - T ^ ^ T ^ T T ? e X P (2;r)'"2|/lFo(0(Fo))|

1 12 
-H

2 (x - d(Fo))
JVFo(0(Fo)y

1(x - 0(FO)) 

is of 0(n 1/2) but, when x = 9(F0), the asymptotic mean of the sampling 
distribution, the Gaussian approximation reduces to 

with a relative error of 0{nl). (This corresponds to setting x = 0 in the 
multivariate version of the Edgeworth expansion (4.8).) 

If we can construct a density f$iX(x) by recentering f^x) at x so that the 
asymptotic mean of 0 under fs,x(x) equals x, then we can use the Edgeworth 
expansion (4.25) to construct a good Gaussian density approximation at x and, 
by repeating this at each x, we may be able to construct an approximation to 
fg(x) with a relative error of 0(«_ 1) . The key step is to recenter the sampling 
distribution of 6 so that it has asymptotic mean x. 

4.4.3 Saddlepoint Approximation 

If we examine the discussion in Section 4.2.2, we see that recentering the 
sampling distribution of 9 so that it has asymptotic mean x requires us to 
construct a distribution Fx such that 

EFxn(Z, x) = 0. 

This can be achieved by a process known as exponential tilting which was used 
to approximate sampling distributions by Esscher (1932): for a e W, define 

exp {aJn(y, x)} 
L(y) = — — ■ — — M y ) 

MJct) 

= exp {aTn(y, x) - Kx(a)}f0(y), 
where Mx(ot) = J exp {arn(y, x)}f0{y) dy and Kx(<x) — log {Mx(a)}. The function 
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Mx(-), which is chosen to ensure that fx(y) is properly normalized, is the 
moment generating function of n(Z; x) and Kx( ■) is the cumulant generating 
function. The distribution with density fx(y) is sometimes called the conjugate 
distribution of f0(y). (This should not be confused with the conjugate prior 
density introduced in Section 2.2.5.) 

Differentiating both sides of the identity 

1 = exp {<xJn(y, x) - Kx(oc)}f0(y) dy 

with respect to a, we obtain 

0 = I {n(y, x) - Kx(a)} exp {zTr,(y, x) - Kx(«)}f0(y) dy 

= EFxn(Z,x)-K'x(«), (4.26) 

and differentiating both sides with respect to a again, 

0 = EFx{r,(Z, x) - K'x(a)}{n(Z, x) - K'x(<x)}T - K"M- (4.27) 

Hence, if we choose a(x) so that 

0 n(y, x) exp {a(x)Tn(y, x)}f0(y) dy, (4.28) 

we have from (4.26) that 

EFxn(Z, x) = K'Mx)) = 0 

and from (4.27) that 

AFx(x) = EFxn(Z, x)n{Z, xf = K'Mx)). 

It follows that the density f$iX(x) of 6 when the shifted distribution Fx with 
density fx(y) = f]"= i fxiyd holds can be approximated at x by the Gaussian 
density approximation 

fUx) ~ (2ny»\AFx(x)^ ( 4 2 9 ) 

with a relative error of 0(l/n), where BFx(x) = —EFxn'(Z, x). 
The last step is to relate the density f^x) of & under the model density F0 

to the density fgiX(x) of & under the shifted distribution Fx. Field (1982) 
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showed that 

Mx) = feiX(x) exp {nKx(a(x))} 

which, together with (4.29) yields the approximation 

npl2\B (x)\ 
Mx) r — ^ ^ A ^ exp {nKx{a{x))\ ■ (4.30) 

This approximation is called the saddlepoint approximation (and oc(x) the 
saddlepoint) from its alternative derivation by means of complex contour 
integration; for the case of the sample mean, see Daniels (1954). It is also 
sometimes called a small sample asymptotic approximation, following Hampel 
(1973), because of its remarkable accuracy in small samples. This accuracy is 
rather better than suggested by the relative error of the approximation, which 
Field (1982) showed is 0{n~l) for x in a compact set. Numerical integration 
to obtain the normalizing constant generally improves the approximation and 
can reduce the relative error in the approximation to 0(n"3/2). As the saddle-
point approximation is non-negative, it does not suffer the tail problems of the 
Edgeworth expansion. 

Much of the work on saddlepoint approximation has focused on the sample 
mean, maximum likelihood estimators in exponential family models or estimation 
in location-scale models. These are problems where the method generally works 
well. A number of different approximation formulae - corresponding to different 
ways of approaching the problem - are available, but there are close relationships 
between the different methods. For discussion of the connections between the 
different approaches and their use in different contexts, see the monographs by 
Barndorff-Nielsen and Cox (1989) and Field and Ronchetti (1990), and the 
review paper by Reid (1988). 

4.4.4 Saddlepoint Approximation in the Exponential Model 

We can use the saddlepoint approximation to approximate the sampling 
distribution of the sample mean under the exponential model and compare the 
approximation to those we obtained in Section 4.1. In this case, n(y, x) = y — x 
so the moment generating function of n is 

Mx(a) = exp {a(y — x)}Xe\p ( — Xy) dy = exp ( — xa) , a < X. 
J (A - a) 

It follows that Kx(a) = - x a + log (X/(X - a)), K'x(a) = - x + l/(X - a) and 
Kx(a) = l/(X - a)2, so from (4.28) 

a(x) = X--. 
x 
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We therefore have Kx(a(x)) = log (Ax) + 1 — Ax, AFx(x) = K^(a(x)) = xz and 
Byx(x) = 1 and hence, substituting into (4.30), 

„ l /2 „ l /2 

Mx; 60) ~ ■ —-Y.T- exp {n(\ - Ax)}(Ax)" = — — exp (n)x"_1A" exp (-nxA) 
(27t) ' x (27r) ' 

which is exact after renormalization! Thus the saddlepoint approximation does 
not achieve our original goal of simplifying the form of the exact distribution, 
but it certainly cannot be improved on as an approximation. The saddlepoint 
approximation for the sampling distribution of the mean is exact only for the 
Gaussian, gamma, and inverse Gaussian models (Daniels, 1980) but, as noted 
above, it is remarkably accurate in many other problems. 

4.4.5 Saddlepoint Approximation in the Gamma Model 

Now suppose that we want to construct the saddlepoint approximation to the 
sampling distribution of the method of moments estimator Km of K when the 
gamma model 

f = j / ( y ; A, K)=f\ -~- Aa?,)"-1 exp (-Ay,), y, > 0: A > o l 
I .-=ir(/c) j 

holds. The method of moments estimator of Section 4.3.1 corresponds to 
choosing rj(y, x) = (y — x1/xi, y2 — x2(l + x2)/x2)T so that the moment gener-
ating function of Y\ is 

r(K) 

X2\ , .. [ , X 2 ( l+X 2 ) \ , 
e x p < j a 1 ( y - ^ | + a 2 ( y 2 - ^ ~ ^ l | A ( A y r - 1 e x p ( - A ) ; ) ^ 

y*"1 e x p { - ( A - a , ) y + a2y2} dy. 
AK _ j cc1x2 a 2 x 2 ( l+x 2 ) 

T{K) 
exp \ -

Writing 

h = yrexp{ - ( / -«,)>" + a2y2}^y = ( A - a i ) - ( r + I ) a 2 2 
zrexp < — z H ;fdz, 

1 (A^a , ) 2 ' 

it follows that 

KM = K log (A) - log { r » } - ^ - ? ? ^ L + ^ + log {/„_,}, 

'KIK-1 x2lxl 

K + IUK-I - X2(1 + X2)/X2 *;(«) = , , ,. 2 
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and 

K"x(z) = ' K + I ' K - 1 'K lk + 2 ' i c - l 'K+1'K 

'K + 2 ^ K - 1 —
 'K+ 1'K ^K + 3 ' K - 1 —

 'K+ I 
H-i. 

Also, since 

tj'iy, x) = 
x2/x\ 1/x, 

2x2{\+x2)lx\ {-\+2x2)lx\ 

does not depend on y, we do not need to integrate to obtain BFx{x) = —rj'(y, x). 
To compute the above saddlepoint approximation, we set up a fine grid of 

x values over the support of the sampling distribution of 9 and then compute 
the saddlepoint approximation at each x. Most of the burden in the computation 
is in solving the equation 

0 = K'Mx)) 

for the saddlepoint a(x). Once we have the saddlepoint, we can calculate the 
remaining terms and hence the saddlepoint approximation at x. The integrals 
lr for r = K — 1, K + 1, K + 2, K + 3, need to be done numerically (see Section 
2.2), for example by the Gaussian quadrature formula based on the Laguerre 
polynomials (Abramowitz and Stegun, 1970, p. 890). Once we have the saddle-
point approximation on a grid of x values, we can do further numerical 
integration to obtain the normalizing constant and approximations to the 
marginal densities. 

The computations are in principle straightforward but are surprisingly 
difficult in practice. Experience reported in Field and Ronchetti (1990, pp. 108-9) 
is that it is important to use good initial values when solving the saddlepoint 
equation. We can start at x = 0o for which a(90) = 0 and then use a very fine 
grid so that each step is small. However, even this may not be enough to avoid 
the difficult numerical problems. Even though Km is scale invariant so its 
distribution does not depend on A, the choice of A greatly effects the numerical 
properties of the procedure. 

4.4.6 Approximations to the Distribution Function 

The saddlepoint approximation is an approximation to the sampling density 
of a statistic. To construct tests and confidence intervals, we need to obtain an 
approximation to the marginal sampling distribution function. These can in 
principle be obtained by numerical integration though this is obviously 
unattractive in higher dimensional problems. For one dimensional estimators, 
we need to evaluate the integral 

P(0 < t) = 1 Mx; 0O) dx - 1 
nll2BF(x) 

(2rt) u2AF(xyi2exP^nK^x^dx-
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An analytic approximation given by Field and Ronchetti (1990, p. 115) which 
is derived using Laplace's method (Problem 4.4.6) is 

P(0 < 0 ~ 1 - - L exp {„K,(«(r))}. 
(2nnyl2AFt(ty'Mt) 

A different approximation for the case 9 = 2 was obtained by Lugannani and 
Rice (1980). These explicit approximations are very accurate and greatly 
simplify the calculation of tail probabilities. However, it is far less clear how to 
proceed in higher dimensional problems. 

4.4.7 Saddlepoint Approximations in Statistical Inference 

With notable exceptions, much of the effort to date has been directed to 
obtaining saddlepoint approximations rather than to using them in inference. 
In location-scale and other problems in which we can construct pivotal 
quantities, we can use approximations to the marginal tail probabilities to make 
inferences. This is not possible for the gamma shape parameter K but we may 
be able to proceed by replacing K by tc in the approximation. The approach of 
Tingley and Field (1990) is applicable to this problem but its presentation would 
take us too far afield. Other uses of the saddlepoint approximation in inference 
are mentioned in Sections 6.6.2 and 6.7.6. 

PROBLEMS 

4.4.1. Suppose that we observe {(^i, x t ) , . . . , (1^,, x„)} on the model 

I i=i(2n(T2v(Xi)y' I 2(T2v(Xi) ) 

y, e !R; /? e R, <r > 0 

Find the Fisher information matrix and show that the /?, a parameterization 
is orthogonal. 

4.4.2. Suppose that we observe Z on the gamma model (4.12). Reparameterize 
the model in terms of n = K/X and T = K. Show that the parameterization 
is orthogonal. 
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4.4.3. Suppose that we observe Zl5 Z2 on the model 

& = i f(yu y2; t*i, n2) = r - e xP 
2TE ( 2 2 

>>„ y2 e k; ^ 1 ? / i 2 e I 

Reparameterize the model in terms of p = ^1/^2
 a n d T = (A*i + A*!)1'2-

Show that the parameterization is orthogonal. 

4.4.4. Suppose that we observe Z on the Gaussian model 

P = | / ( z ; n, a) = ft ( 2 7 t i l 7 ^ e xP { ~ ^ r ~ } ' z ' e R : ' 1 6 R ' f f > ( ) 

Show that the saddlepoint approximation to the density of Z is exact. 

4.4.5. For the gamma model (4.12), show that the moment generating function 
of r\{Z, x), where r]{y, x) = (x2x[' - y, log (xj) + log (y) - $(x2))

T is 

MM) = r^~^~ exP {— + *> ^ <*»> - *<**» 
(a, + / ) " + T ( K ) (. xj 

Hence or otherwise show that the saddlepoint approximation to the 
sampling distribution of the maximum likelihood estimator 9 of 0 = (/, K)T 

is 

ti a\ nW(x2)x2 - l|(a,(x) + /) . , , , . „ , 
h(x; 0) —-—- MJa(x))", 

2 T # ' ( « 2 ( X ) + K ) ( « 2 W + K) - l|1/2xf 

where at(x) = (a2(x) + K)X1/X2 — A and a2(x) satisfies 

^(a2 + K) - log j(a2(x) + K ) ( ^ - ;. + K J I = ^(X2) - log(X l) . 

4.4.6. Consider the integral 

/(v) = g(x)evhix)dx, 

where g and h are real, continuous functions, ti is continuous, and /i 
is minimized at x = t. By approximating the integral over [f, s] by 
the integral over fj, t + <5) for d > 0, making the change of variable 
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y = h(t) — h(x), approximating the nonexponential terms by their values 
at a, and evaluating the resulting simple integral, show that 

/ ( v ) ~ -AlLem) a s v - o o . 
vh'{t) 

Apply the above result to obtain the Laplace approximation to the tail 
probability of the saddlepoint approximation 

f00 n1/2B (x) 
P ( 8 s H , ^ 4 ^ r a p { " J W ' * , ) ) ) * -

(Hint: Show that dKx(a(x))/dx = - a(x)BFx(x).) 

4.5 HYPOTHESIS TESTING 

In our exploration of the quality of the exponential model (4.1) in Sections 4.2 
and 4.3, we fitted the gamma model (4.12) and used a confidence interval to 
assess the magnitude of the shape parameter K. An alternative approach is to 
construct a formal test of the null hypothesis H0: K = K0 against H, : K =£■ K0 

and then apply it with K0 — I. 

4.5.1 Tests for a Single Parameter 

Consider any estimator k of K which satisfies 

« 1 / 2 ( K - / C ) ^ N ( 0 , T ( K ; ) 2 ) . 

Recall that for the maximum likelihood estimator T(K)2 = KI{K^/'(K) — 1} 
(Section 4.2.11) and for the method of moments estimator T(/C)2 = 2K(K + 1) 
(Section 4.3.2). An approximate a level Neyman-Pearson test can be based on 
the critical region {z: n1/2\k — K0|/T(K0) > c}, where a satisfies 

a = P { „ ' / 2 HzJfoi > c- H01 -» 2{1 - 0)(C)} 

and <D( •) is the standard Gaussian distribution function. 

4.5.2 Consistency in Testing 

Under H i: K = KX, the power of the test with critical region 

{z: n1/2\K - K0|/T(K0) > c} 
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is 

w'2 v ? - c ; H i 

I T(K0) 
= P{K >K0 + n'i/2x(K0)c; Ht} + P{K < K0 - n'll2x(K0)c; H J 

(. TCKJ !(«,) T(K,) J 

= PL*/* <*"* '> < „l/2 (K0 ~ Kl) _ T(*o)C. H l 
1 T(KX) TCKJ) T(K,) ' J 

- ► 1 

as n -» oo. This implies that the test will reject any fixed alternative hypothesis 
as n -* oo. We say that the test is consistent. 

4.5.3 Local Alternative Hypotheses and Local Power 

To obtain a nontrivial limit result for the power of the test, we follow Pitman 
(1949) and consider local alternative hypotheses of the form Y\i\K = Kn = 
K0 + £/n1/2. In this case, the asymptotic power function is 

pLm \*ZJ?A > c; H l l = ?{„'/* <1^> > -J- + ^ ; uX 
I T(K0) J I tOO T(K„) T(K„) J 

I T(K„) T(K„) T(K„) J 

-►i - <D| — - - + A + a>\ — — - A , 
I T(K0) J (. T(K0) J 

provided W1/2(K — K„)/T(K„) is asymptotically normal under H t and T is 
continuous and positive at K0. The quantity 1/T(K0) is called the efficacy of the 
test and determines its power. 

It is convenient when dealing with local alternatives to consider the 
asymptotic local power at £ which is the derivative of the asymptotic power 
function with respect to £,, 

4>\ — - — + c\ - <t>\ - c 
T(K0) J I T(K0) 

' T ( K O ) , 

where <j>{ ■) is the standard Gaussian density. The asymptotic local power at 
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C = 0 is maximized by 

2c^(c) 

X(K0Y 

and £* is maximized by making T(K0)2 as small as possible. 

4.5.4 Pitman Efficiency 

The Pitman efficiency of two tests is defined to be the squared ratio of their 
efficacies which is the same as the asymptotic relative efficiency of the underlying 
estimators and hence is often referred to as the asymptotic relative efficiency of 
the tests. It is reasonable to use tests with maximum asymptotic local power 
(i.e., tests based on the maximum likelihood estimators) but, as we saw in 
Section 4.3.7, the choice of test generally requires more than the consideration 
of asymptotic local power. 

4.5.5 Other Approaches to Comparing Tests 

In Pitman's approach to comparing the properties of tests, the alternatives are 
local in the sense that they converge to the null hypothesis at the rate n_ 1 / 2 . 
If we want to consider fixed alternatives, then we need to let the size converge 
to 0 and/or the power converge to 1 as n -*■ oo in order to get nontrivial results. 
Approaches of this type have been proposed by Chernoff (1952), Hodges and 
Lehmann (1956), Bahadur (1960), and Hoeffding (1965). Rubin and Sethuraman 
(1965) developed an approach to comparing tests in which the alternatives, 
the size, and the power depend on the sample size. A comparison of these 
approaches is given by Serfling (1980, Chapter 10). 

4.5.6 Tests of Several Parameters 

Now suppose that we want to test a hypothesis which constrains several 
parameters. As in our development in Section 4.2, the development is more 
transparent if we suppose we have independent observations Z with underlying 
distribution F0. Consider testing the null hypothesis that q specified linear 
functions of 9(F0) equal 0 against the general alternative. There is considerable 
simplification in the formulae we obtain with no real loss of generality if we 
suppose that the model is parameterized so that the null hypothesis can be 
expressed as H0: O^FQ) = 0 where 9(F0) = (0!(FO)T, 62(F0)

T)T or, equivalently, 
as H0: HT9(F0) = 0, where HT = (/,, 0). 

4.5.7 The Wald Test 

Consider an estimator 9 for which 

nl>20 - 0(FO)) ^ N(0, I f 0 ) . 
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It follows that 

nll2HT(9 - 0(FO)) ~ N(0, HTXFoH), 

or, under H0, 

nll2{HT-LFoH}-ll2HT6 ~ N,(0,/ ,) , 

where Iq is the q x q identity matrix. If £ is a consistent estimator of Sfo, we 
can apply Theorem 4.2 and take the cross-product of both sides to obtain 

W = n6TH{HT±H}~lHT6 ~ fq, 

where #2 denotes the chi-squared distribution with q degrees of freedom. (We 
will justify this result in Section 4.5.8.) Note that 

W=n6\{txl}'%, (4.31) 

where 6X is the vector of the first q components of 6 and £ n is the (1,1) block 
of £. An obvious approximate a level test of H0 known as the Wald test (Wald, 
1943) is {z: W>K~l(\ - a ) } , where K~l is the quantile function of the 
chi-squared distribution with q degrees of freedom. 

While we do not require the distribution of the test statistic under an 
alternative hypothesis to implement the test, it may still be useful for power 
calculations. If we use the fact that HT9(F0) = £ ^ 0 under the alternative 
hypothesis, we have 

n1 / 2{tfTI / /}-1 / 2 / /T£ = N + n1/2{HJ-LFoH}~U2^ + o„(l), 

where N ~ N,(0, lq). Hence ^diverges to infinity for every fixed £ ^ 0 and the 
test is consistent. To obtain a nontrivial limit result, consider the local 
alternative hypothesis H„: Hr9(F0) = n~ll2E, as in Section 4.5.3. Under H„, 
we obtain 

W=(N + {HJ-LFoH}-ll2Z)T(N + {HTXFoH}-l/20 + op(l) 

~x2
q(?{tfi:FoH}-^), 

where x2(<5) denotes the noncentral chi-squared distribution with q degrees of 
freedom and noncentrality parameter 6. 

4.5.8 The Continuous Mapping Theorem 

The large sample approximations to the sampling distribution of W obtained 
in Section 4.5.7 can be justified by the continuous mapping theorem. 
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Theorem 4.7 Suppose that X„ ■%• X and that g: U -* U is continuous. Then 

g{Xn} ^g{X}. 

In particular, if X„ = nll2(Tn - 6) ^ N ( 0 , E), we obtain that 

0 K / 2 ( r „ - 0 ) } % { N ( o , E ) } . 

Under the null hypothesis, the sampling distribution of the Wald statistic is 
obtained by applying the continuous mapping theorem to g(v) = vTl,~lv with 
v ~ N,(0, E). More generally, under local alternative hypotheses, we apply the 
continuous mapping theorem to g(v) = vyCv for some C with v ~ N,(/z, E). 
In this case, 

3{N(M, E)} = t Wl(N, + [ ^ E ^ ' V ] , ) 2 

where q = rank (EC), vv; are the eigenvalues of the matrix EC, Nt are independent 
standard Gaussian random variables 1 < i < q, and Q is the matrix of eigen-
vectors of E1/2CE1/2. When w, = w, the distribution is w times that of a 
noncentral x2 random variable with q degrees of freedom and noncentrality 
parameter ^E _ V- I n particular, if E = C _ 1 and fi = 0, we obtain 

ff{N(0,S-1)} = Z,2-

4.5.9 The Score Test 

If 6 is a root of the estimating equations 

t nizh8) = o 
i = l 

and the conditions of Theorem 4.6 apply, then we have Efo = VFo(0(F0)). In this 
case, an alternative to the Wald test is the score test which is based on examining 
whether the estimator 6R computed under H0 and which therefore satisfies 
HT§R = 0 also satisfies the unrestricted estimating equations Y."= i li^i, 0R) = 0. 
Now, exactly as in Section 4.2.4, we can show that 

n~l £ n(Zh 0R) = n~> £ n(Zh 9(F0)) - BFo(eo(F0))(6R ~ 6(F0)) + op(n^'2) 
i = 1 1 = 1 
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so, under local alternatives H„: HT9(F0) = n" 1/2£, 

HTBFo(0o(Fo))-'n-1/2 £ rj(ZjR) 
i = 1 

= HTBFo{60(F0)y
ln-112 t rj(Zi,9(F0)) + { + o„(}) 

i = 1 

^N,(^//TFF o(0(Fo))H), 

as in (4.18). If B(9R) and A(9R) are consistent estimators of BFo(60) and 
AFo(60) respectively and V(BR) = B(0RylA(8R)B(9Ryr, then 

S = n-1£ rj(ziJR)JB(9Ry1H{HTV{0R)H}--iHTB(9Rrl £ ^ A ) 
i = 1 i = 1 

= «-' £ ^ (z , . , ^ )^^) 1 1 ! :^ ) ] , ,} - 1 ^ ) 1 1 £ /h(z,.,0R), (4.32) 
i = 1 i = 1 

because £" = 1 »h(zi> $R) = 0- It follows from Theorem 4.7 that S has an 
asymptotic x2{3) distribution, with 5 = iT{lVFo(9(Fo))'iii}~^-

We can in fact show that when Sfo = KFo(0(.Fo)), W and S are asymptotically 
equivalent in the sense that W — S = o„(l) under local alternatives. Nonetheless, 
irj small samples, they may give different results and in this case S will often 
be preferable to W because the Gaussian approximation to the sampling 
distribution of the estimating equation is usually better than the Gaussian 
approximation to the sampling distribution of the estimator. 

4.5.10 The Lagrange Multiplier Form of the Score Test 

The estimator 9R computed under H0, can be computed from the estimating 
equations 

0 = n-> £ r,(ZjR)-Hl 
i= 1 

0=-HT9R, (4.33) 

where / is a q-vector Lagrange multiplier so the score test can be re-expressed 
in terms of the Lagrange multiplier as 

S = nXTHTB(9Ry'H{HTV(9R)H}-lHTB(0Ry1Hl 

= nlTB(9Ryi{[V(9Rnil}-lB0Ryil. 

In this form, the score test is also referred to as the Lagrange multiplier test 
(Silvey, 1959). 
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4.5.11 The Likelihood Ratio Test 

As we noted in Section 3.5.1, we can also test H0 using the likelihood ratio or, 
equivalently, twice the logarithm of the likelihood ratio 

A = 2 £ log {/(*,; 9R)} - X log {/(**; #)} (4.34) 

where 9 and 9R are obtained by maximizing the likelihood without restriction 
and under H0 respectively. 

To implement the test, we need to approximate the sampling distribution of 
A under H0. We proceed in two stages: We obtain an expansion for 9 — 9R 

(which enables us to obtain a large sample approximation to the sampling 
distribution of & — $R) and then expand A in powers of § — 9R which allows 
us to express A as a function of 9 — 9R. The argument is due to Wilks 
(1938b). 

Let tj(z, 9) = d log {f(z; 9)}/d9. In conformity with our development of the 
Wald test, it is instructive to develop the approximation without assuming that 
AFo(9(F0)) = BFo(90(F0)). From the proof of Theorem 4.6 we have that 

6 - 0(FO) = BFo(0o(Fo)y >n-' t 1&i> e(po)) + o^n'1'2). (4.35) 

Similarly, expanding the restricted estimating equations (4.33), we obtain 

0 = n"1 £ t,(Zit 9(F0)) - BFO(9(FO))0R - TO) - H% + o^n"1'2) 

O=-Hr0R-9(Fo))-H'T9(FQ) 

or, equivalently 

6R - 0(Fo)\ _ fBFo(9(Fo)) H\-:(n~l £ ? . , fj(Z(, 9{F0))\ + Q ^_ 
X ) V HT 0 / \ nll2HT9(F0) 

It follows from standard results on inverting patterned matrices (see 3d in the 
Appendix) and the fact that under H0 we have HT9(F0) = 0 that 

&R ~ d(F0) = {BFo(9(F0)) -' - KFo#
TBfo(0(Fo))~»}n " J £ r,(Zh 9(F0)) + op(n ~1'2), 

i = l 

(4.36) 

where RFo = BFo(9(F0)y
 lH{HTBFo(90(F0)y

!//}" \ Subtracting (4.36) from (4.35), 
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we obtain 

d - 6R = K f t i J ^ W F o ) ) - 1 * - 1 £ tt(Z„ 6(F0)) + op(n-112) 
; = 1 

(4.37) 

say, where C = WXoW^o))" 1 "" 1 ' 2 Z?=i ^(Z,-, 0(FO)). From (4.18), we have 
that 

C~N,(O,/fTKFo(0(Fo))//). 

Under the conditions of the asymptotic normality theorem, we can expand 
A in a Taylor expansion so that for some \9 — 6R\ <\9 — 0R\, 

r n 
A = 2 X log {/(z(; 9)} - X log {/(z,; 0R)} 

= -2(0 - eRy X »/(*.; d) - 0 - eRy £ n'bi, WF - &*) 
i = l i = l 

= n(d - ^)TBFo(0(Fo))(0 - &R) + op{\). 

Substituting (4.37) for 8 — dR, we have that under H0, 

A = CR}0BFo(d(Fo))RFo(0(F0)K + oP(l) 

= CT{HTBFo(0(Fo))-
1W}-1C + op(D 

~ t w;N,2 

i = i 

where q = rank (^((KfoXhil-BfoW^o))11}1)* w, are the eigenvalues of the 
matrix ^F O (0(F O )) 1 1 {B F O (0(F O )) 1 1 } - 1 , and JV, are independent standard Gaussian 
random variables 1 < i < q, by Theorem 4.7. If F0 e J* holds, flfo(0(Fo))

u = 
/fo^o)11 = Kft(0(Fo))n and we have 

A ~ * 2 . 

We can extend this result to local alternatives. If the model fF holds and 
Sfo = VFo(9(F0)), we have the stronger result that W, S, and A are asymptotically 
equivalent under local alternatives. 

The results for the Wald, score, and likelihood ratio tests presented in 
Sections 4.5.7-4.5.11 were obtained at different levels of generality by Foutz 
and Srivastava (1977), Kent (1982), Ronchetti (1982), and Heritier and Ronchetti 
(1994). 
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4.5.12 Tests for Parameters on the Boundary of the Parameter Space 

The approximations developed in Sections 4.5.7, 4.5.9, and 4.5.11 break down 
if 9(F0) is on the boundary of the parameter space fi because then the underlying 
Gaussian approximations are inappropriate. Results which are applicable to 
this problem have been obtained for the likelihood ratio test by Chernoff (1954) 
and the Wald test by Moran (1971). 

4.5.13 Tests Under the Gamma Model 

For the gamma model, the likelihood ratio test of H0: K = K0 is based on 

A = 2 P4^TK°)}-hAfH* 
where K is the unrestricted maximum likelihood estimator while the score test 
is based on 

n 1 < £ log (z.) - n log (z) - ml/(K0) + n log (K0) \ 
K0^'(K0) - 1 

which conveniently saves us from having to estimate K. The Wald test is based 
on the square of (and hence is equivalent to) the test we considered in Section 
4.5.1. 

4.5.14 Confidence Intervals Derived from Tests 

The Wald, score, and likelihood ratio tests can also be used to obtain 
approximate confidence intervals. Suppose we partition 9 into the first com-
ponent 9, and the (p — l)-vector 92 of the remaining components so 9 = (6l, 92) 
and 9l is the parameter of interest. By reordering and relabeling the components 
of 9 if necessary, 9, can be taken to be any of the components of 9. Approximate 
100(1 — a)% confidence intervals for 9i(F0)

 a r e given by: 

Wald: k : ^ i ^ <*-(!-«) 

Score: L : n~ ' { £ (̂Z,, 9,)V ( ^ ^ - L ^ ! K 1(, _ a ) 
1 1,4 °\ [̂ (0(0,))],! 

Likelihood: <9,:2 I log {/(Zi; 9(9,))} - £ log {/(z,.; 9)} 
; = i 

<K* ' ( 1 - a ) 

where VFo(9) = B^y'A^B^)^, 9(9,)J = (0„ 92(9xf), 9,(0,) maximizes 
the likelihood for fixed 0X, 9 is the maximum likelihood estimator, K, is the 
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distribution function of the x\ distribution, and K^ is the distribution of twice 
the log-likelihood ratio under H0. We can use 5(0(0,)) and V{&{9J) instead of 
BFo(9(0{)) and VFo(6(6i)) in the score statistic to simplify the computations. The 
interval derived from the Wald test reduces to 

[0, - n-"2^^}112^-1^ - a/2),#\ + n - 1 ' 2 ^ , } 1 ' 2 * - ^ - «/2)] 

which, if the model J^ holds, is the same as the interval (4.24) obtained directly 
from the Gaussian approximation to the sampling distribution of 0, and 
Theorem 4.2. In large samples, the three intervals will be similar but in finite 
samples can be quite different. The score and likelihood based intervals will 
often be preferable to the interval based on the Wald test because they do not 
enforce a symmetric interval. 

4.5.15 Modified Profile Likelihood 

We see from Sections 4.5.11 and 4.5.14 that the profile log-likelihood for 61 

introduced in Section 2.7.2 and denned in general by 

m(0l)= t log {/(*,-; 0(0i))}, 

where 0(0^ = (6], 92(di)T) and 02(0i) maximizes the likelihood for fixed 0ly 

is fundamental for likelihood based inferences about 6,. However, the profile 
likelihood may not behave like a likelihood. For example, the estimating 
equations for 6X derived from m(0j) can be biased in the sense that 

EmXdJ = Bid,) # 0. 

In principle, the bias can be removed by solving the unbiased estimating 
equation 

m'iB,) - B{B,) = 0. 

If we only have an expansion for the bias, we can make an adjustment based 
on the leading terms to reduce the order of the bias. If we can find a function 
b(0,) such that b'(^i) = B(8i)> then we can construct the modified profile 
log-likelihood 

m(0i) - bid,). 

The most important adjustment of this type is that for the profile likelihood 
of the variance parameters in Gaussian regression models proposed by Patterson 
and Thompson (1971) and discussed by Harville (1977). (A simple illustration 
of the method is given in Problem 4.5.5.) In this case, the modified profile 
likelihood is variously called the reduced, restricted, or residual likelihood. 
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When the estimating equation is biased under the model, the maximum 
likelihood estimator 0, is also biased for 0,. Thus the modified profile like-
lihood provides a method of reducing the bias in the maximum likelihood 
estimator. 

Alternative adjustments to the profile likelihood can also be made; see 
Barndorff-Nielsen (1983), Cox and Reid (1987), and McCullagh and Tibshirani 
(1990) for details. 

4.5.16 Bartlett Adjustment 

We can also consider trying to improve the x2 approximations to the sampling 
distributions of the test statistics. A simple approach considered by Bartlett 
(1937) which often works surprisingly well for statistics S satisfying 

is to consider applying the approximation to vS, where v -+ 1 as n -> oo is chosen 
so that the mean of vS equals q, the mean of x2- Even if we cannot make the 
mean of vS exactly equal to q, we may be able to make it closer to q. In 
particular, Lawley (1956) noted that if 

ES = q\l +~ + 0(n-2)\, 

we can take v = 1/(1 + a/ri) or v = 1 — a/n to obtain 

vES = q + 0(n~2). 

This kind of adjustment is often referred to as Bartlett adjustment. In practice, 
a may depend on unknown parameters and in this case, we replace a by an 
estimate a. 

When F0 e J57, the x2 approximation to the sampling distribution of the 
log-likelihood ratio statistic is typically of order n"1. The Bartlett adjustment 
improves the approximation to order n"2 provided a — a = Op(n~1/2) (Barndorff-
Nielsen and Hall, 1988). This is established by showing that the Bartlett 
adjustment which explicitly improves the order of the approximation of the 
mean by the asymptotic mean q actually improves the approximation of all the 
cumulants by the asymptotic cumulants and hence of the approximation to the 
sampling distribution. This is intuitively plausible because the asymptotic 
cumulants are all simple functions ofq. Bartlett adjustments can also be applied 
to modified profile log likelihoods (DiCiccio and Stern, 1994). 
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PROBLEMS 

4.5.1. Suppose we have observations (Z„ . . . , Zs) on the multinomial model 

9 = i / (z , /, K) = - - - - - fl?1 • • • Bl\ z, = 0 , 1 , . . . , n, 
{ Z i ! ' - - z s ! 

t Zl- = n:O<0,£l , t 0,= l l . 
j = I i = i ) 

Find the maximum likelihood estimators of 6lt..., 0S. Show that the 
score test of H0: HT6 = 0 is the y2 goodness of fit test introduced in 
Problem 3.2.1. 

4.5.2. Suppose that we have observations Z on the model 

^ = j/(y;0)= n/(j>,;0):0enj, 

where Q is a subset of the real line. Consider a level a test of H0: 0 = 00 

against the general alternative based on Q(Z) = {Znl/2\T„ — M^o)l/T(^o) ^ ^} 
for some k > 0, where T„ is an estimator of 0 satisfying n1/2(Tn — n(6)) -> 
N(0, T(9)2). Find k. Show that the power function of the test against the 
sequence of local alternatives H„: 9 = 90 + n'1'2^ is approximately 

t - J k - ^ + J-k-^A 
V T(0O) / V T ( 0 O ) ; 

Show that the local power at £ = 0 is 0 and apply Bahadur's theorem 
(Section 4.3.4) to show that the maximum local power is 2k(j)(k)n'(90)

2I(90) 
which is achieved if the estimator Tn is efficient. 

4.5.3. Suppose that we have observations Z on the gamma model (4.12). Show 
how to use the score test (based on the maximum likelihood estimator 
of (k, K)) to construct approximate confidence intervals for K and /. 

4.5.4. In the context of Problem 4.5.3, show how to construct approximate 
confidence intervals for K and k using the score test based on the method 
of moments estimator. 

4.5.5. For the Gaussian model of Problem 4.3.8, show that the estimating 
equation for a2 derived from the profile likelihood for a2 is biased. Show 
how to construct an unbiased estimating equation from the profile 
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likehood and construct the associated modified profile likelihood. Show 
that the maximum modified profile likelihood or REML estimator is 
unbiased for a2. 

4.5.6. Consider the variance component model presented in Section 1.5.6: 

? = j / ( z ; * aa, <x„) = ^ J ^ exp {-(z - ^ ^ ( z - „)/2}, 

— oo < ztJ < oo: n e R, aa > 0, au > 0 >, 

where Z is the block diagonal matrix with blocks a13 + a2I, where J is 
the m x m matrix will all elements equal to 1 and / is the m x m identity 
matrix. Obtain the joint profile likelihood of T„ = a2 and xa = ma2 + a2. 
Explore the bias of the estimating equations and construct a modified 
joint profile likelihood for which the estimating equations are both 
unbiased. 

4.5.7. (Welch, 1937b). Suppose that we have observations Z on the model 

* - {/<y; ... *,... .J - n ft ̂  exp { - ^ ' } . 

— oo < ytj < oo: nlt \i2 e R, o^, ff2 > 0>. 

Let Z n S ! , ^ , and s2 denote the sample mean and standard deviation for 
the two sets of observations. Obtain the mean and variance of 

w = s\lny + s2
2/n2 

a\lnx +<J2
2/n2' 

Find g and v such that W ~ gi2 approximately by equating the mean and 
variance of W to the mean and variance of gX, where X ~ %2. Then use 
the fact that W is independent of 

V = - 1 — *2 ~ ^ ' ~ ^ 
J~a\[n^ + a2

2(n2 

to show that the V/Wi/2 ~ tv approximately. (Hint: Under the Gaussian 
model, Var (sf) = 2orf/(n} - 1).) 
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4.5.8. Suppose that we have observations Z on the exponential model 

r 2 nj 

? = i/(y; *) = 11 El hexP ( -Vu). o < yl} < co: A„ A2 > O 
l 7 = 1 < = 1 

Show that twice the log-likelihood ratio for testing H0: Aj = A2 against 
the general alternative is 

A = 2n log (jO - 2«! log (yy) - 2n2 log (y2), 

where n = nl + n2,yj = njl £ ? i ! yU5 and ^ = «"1 £ ? = 1 Z?= I >V Show 
that if X ~ T(K, A), then E log (X) = I^(K) - log (A), where i/> is the 
digamma function. Use the fact that 

I//(K) = log (K) + 0(K~3) as K -> oo, 
2K 12KZ 

to show that, under H0, 

EA = i + J ( i ; - 1 - - l N ) + o(iv-2), 
6 \ , - = i H ; n / 

where AT refers indifferently to n, nl5 or n2. Show how to make a Bartlett 
adjustment to A. 

4.5.9. Suppose that we have observations Z on the model 

* = j / ( y ; ^) = ft ft 7 ^ 1 7 5 e * P { - ( Z V T ^ 

-oo < ^ y < GO: 0 = (^ l 5 . . . , fik, oy,..., ak)
T, /*,■ e U, <T; > 0 > . 

Bartlett (1937) suggested that a test of the hypothesis H0: al = • ■ ■ = at 

be based on the modified log-likelihood ratio test statistic 

k 

A = v log (s2) - £ vj log (sj), 
j = i 

where 

k nj k nj 

v= £ Mj-/c,vj = nJ . - l ,s? = vr1 £ (y..__p.)2,5
2 = v"1 £ £ (y^- j^ ) 2 

j = l i = l J = l ( = 1 
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and 

i = l 

Show that 

EA = (k - 1)4 1 + l ( Y - - - )i + 0{N~2), 

where N refers indifferently to v or v,-, and show how to make a Bartlett 
adjustment to A. 

4.6 LIKELIHOOD AND BAYESIAN THEORY 

Likelihood and posterior density functions can be intractable (particularly 
in multidimensional problems) so we need general approximations to these 
functions too. Throughout this section, we adopt the general model 

^ = lf(y;9)=f\f(yi;9y.9eil\ 

and develop approximations under it. 

4.6.1 Approximating the Likelihood Function 

To approximate the likelihood function, we proceed as in Section 2.7.7 to 
construct a quadratic approximation to the log-likelihood. Suppose that 
conditions like those of the corollary of Theorem 4.6 hold so that we can expand 
the likelihood function about its mode, the maximum likelihood estimate 9. 
Then for 6 in a neighbourhood of 8, we have the expansion 

U(z;0)J .= i . = i 

~ (0 - ey t nizi, 0) - " (0 - e)rj(d - d), 
i= I 2 

where rj(z, 6) = d log {f(z; 9)}/86 and J = —n~l £ " = , r\\zh 6). Exponentiating 
both sides and using the fact that 9 satisfies the likelihood equations, we obtain 
the asymptotic expansion 

/ M .... J « 
,/Xz; 9) 

exp\-n(9-9)TJ(8-8)l. (4.38) 
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That is, we can approximate the log-likelihood in the region of its mode 9 by 
a quadratic function with an error which is generally of order n~1/2. In contrast 
to the preceding sections, 9 is not regarded as an estimator but rather as a 
sensible point about which to center the approximating quadratic function. 

Suppose we partition 9 into the first component 0t and the (p — l)-vector 
92 of the remaining components so 0 = (9t, 92). By reordering and relabeling 
the components of 9 if necessary, there is no loss of generality in treating 9t 

as the parameter of interest. If we take the Gaussian approximation (4.3.8) and 
compute the profile likelihood for 0,, we obtain an approximation to the profile 
likelihood for 0, of the form 

f(z; 6lt 9,(6,)) 
exp 

»(0i_ « l ) : 

(See Problem 4.6.1.) We can then use the approach of Section 2.7.3 to obtain 
approximate likelihood intervals for 9X. 

4.6.2 Laplace's Method for Approximating Posterior Distributions 
When the Likelihood Dominates the Prior 

For a prior distribution with density g(9), the posterior distribution of 
9 I Z = z is 

9(0 I z) = /(*; e)g(fl) 
\f{z-9)g(9)d9' 

Provided the likelihood dominates the prior, we can approximate the prior in 
a neighbourhood of 9 by g(9) and use the approximation (4.38) to the likelihood 
to obtain 

f(z; 9)g(B) ~ f(z; 9)g(9) exp -~(0-9)T/(9-9) 

On integrating, 

f(z; 9)g(9) d9 ~ f(z; 6)g(9) exp H- 9fJ(9 - 9) d9 

= f(z-J)g(9)(^J12 l 
1/2 

This method of approximating integrals by the integral of the integrand 
expanded about its modal value is known as Laplace's method. It works well 
when the integrand has a dominant mode because then most of the contribution 
of the integrand to the integral is in the neighbourhood of its mode and the 
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underlying Gaussian approximation captures this contribution. Using Laplace's 
method, we obtain the approximation 

g(e I *) ~ -7A72- exP I - 2(e ~ e)Tj{9 ~ e) (4.39) 

in a neighborhood of 9. That is, up to the first term, 9 | Z = z ~ N(0, n iJ 1) 
with an error which is typically 0{n~1/2). A formal argument is given by Walker 
(1969). 

From the properties of the multivariate Gaussian distribution, it follows that 
an approximation to the marginal posterior distribution of the first component 
0X of 6 is N(0 1 ,^ 1 1 ) and hence that an approximate 100(1 — <x)% Bayesian 
credibility interval for 91 is given by 

[0! - n-1,2(Jll)ll2^-\l - a/2), §l + n-ll\Jliyi2<b-\\ - a/2)]. (4.40) 

4.6.3 Approximating Conditional Sampling Distributions 

In the case of a location-scale or regression problem, the conditional density 
of the data given the configuration (Section 3.9.3) is the same as the posterior 
density using the Jeffreys prior. This means that the above argument applies 
equally to the conditional density of the data given the configuration and the 
interval (4.40) is also a large sample approximation to the conditional 
confidence interval for 60l. See Efron and Hinkley (1978) and Hinkley (1978). 
The interval (4.40) is also numerically the same as the large sample confidence 
interval (4.24) based on the maximum likelihood estimator and the observed 
Fisher information so that, to first order, the three types of intervals are in 
numerical agreement in large samples. 

4.6.4 Laplace's Method for Approximating Posterior Distributions 
When the Likelihood Does Not Dominate the Prior 

A more natural approximation to the posterior distribution than (4.39) when 
the likelihood does not dominate the prior is obtained if we expand about the 
posterior mode 9 (which maximizes /(z; 9)g{9) rather than the mode of the 
likelihood 9 (which maximizes f(z; 9)). If we let 

j r _ jrl3
2log{f(z;9)g(9)} 

d9d9T 

we obtain 

f(z; 9)g{9) ~ /(z; 9)g{9) exp - - (9 - B)TJf(9 - 6) [-n~(9-eyj 
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so on integrating 

f(z; 6)g(6) dO ~ f(z; 9)g(9) exp (6 - ef^(e - 6) d9 

r2n\pl2 1 

This application of Laplace's method leads to the approximation 

n"'2\,ie\1'2 

q(9 z ) ' exp 
(2KY/2 F 

(0 - 9)J3f{9 - 0) (4.41) 

That is 9 | Z = z ~ N(0, n ^ ' j f " 1 ) . This approximation has an error of 0(n~in) 
and is similar in large samples to (4.39) but may be preferable when the 
likelihood does not dominate the prior. 

4.6.5 Laplace's Method for Approximating Marginal Posterior Distributions 

As pointed out in Section 2.1.6, the quantities of interest in a Bayesian analysis 
are integrals of the posterior distribution which are in fact ratios of integrals. 
If we apply Laplace's method to each integral separately and then take the 
ratio of the approximations, we often obtain very accurate approximations. 

Suppose for example that we want to approximate the marginal posterior 
distribution of 0, which is 

9,(0! I *) = J-
$f(z;9u92)g(9l,92)d92 

\f(z-9)g(9)d9 

where we have partitioned 9 into the first component 91 and the (p — l)-vector 
92 of the remaining components so 9 = (91, 92). Let 9 denote the posterior 
mode (the maximum of f(z; 9)g{9)) as before and 9*{9y) the maximum of 
f(z\ 9U 92)g(9l, 62) with 0t held fixed. Also, let 

#+ = _ „ - ! d_210§ {fWMgQu 02)} 
1 1 n '" d92d9r

2' 

The denominator is the same as before but the numerator becomes 

»2 = »?(»! I 

f(z; 0U 92)g{9l, 92) d92 ~ f(z; 9U 02*(01))</(0i, 01(0,)) 
2n\"-l)i2 1 

? * | l / 2 ' 



236 LARGE SAMPLE THEORY 

It follows that 

m 1 / 2 / ( * ; 0t, 0!(0!))0(0i, 05(0i)) 
0,(0i I z) ~ n112 

{2nYi2\3>PX\112 /(z; 9)g(9) 

This approximation was suggested by Leonard (1982). It generally has a relative 
error of 0{n~y) and, as with the saddlepoint approximation, the relative error 
can be reduced further to 0(n ~3/2) by renormalizing the density by numerical 
integration; see Tierney and Kadane (1986) for details. This approximation 
should be compared to 0X | Z = z ~ N(01; n~ l3Vn), obtained from (4.41) with 
an error of 0(n~112). 

The computation of the approximate marginal density requires maximizing 
f(z; 9)g(6) and computing /(z; 9)g(9) and \#?|, and for a grid of 9Y values, 
maximizing /(z; 6U 92)g(91, 92) over 92 and computing /(z; 01; 9%))g{9u 9^(9 J) 
and 1^*1. This is considerably simpler than what is required for saddlepoint 
approximation. See Section 4.4.5. 

Laplace's method can also be applied in a straightforward way to the 
computation of posterior moments. (Problem 4.6.6.) 

PROBLEMS 

4.6.1. Suppose that we have an observation Z e W on the model 

3F = | / ( z ; it, a) = ( 2 7 c ) p / 2 | £ | 1 / 2 exp { - f a - /,)TZ(z - / / ) | , 

■oo < z; < oo: fi ei 

where E is known. Show that the profile likelihood of fit, the first 
component of /A, is proportional to 

1 2In 

Apply this result to the large sample approximation to the likelihood 
f(z; 6) to obtain a large sample approximation to the profile likelihood 
of 0j and show how to obtain a likelihood set for 9X. 

4.6.2. Apply Laplace's method to the gamma function T(v + 1) = f,̂  uv e~" du 
to show that 

T(v+ l)~(27t)1/2vv + 1 / 2 e - \ 

(Hint: Make the change of variables w = vt.) 
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4.6.3. Suppose that we have observations Z on the model 

- oo <>>,■< oo: [i € R, a > 0 

and we use the Jeffreys prior (Section 2.3.2) in our analysis. Use Laplace's 
method to obtain analytic approximations to the marginal posterior 
distributions of n and a. How do these relate to the exact marginal 
posterior distributions? 

4.6.4. Suppose that we observe Z on the gamma model (4.12). Find the 
posterior distribution for the prior g(X, K) = X~1, K, X > 0. Use Laplace's 
method to obtain analytic approximations to the marginal posterior 
distributions of A and K. For the pressure vessel failure data presented in 
Table 1.2, plot the marginal posterior distribution of K. What do you 
conclude? 

4.6.5. Use Laplace's method to obtain the approximate posterior odds ratios 
given in Subsections 2.5.3 and 2.5.4 for the problem of testing H0: /i = 0 
against Hj : ii # 0 under a Gaussian model and the Jeffreys Cauchy prior. 

4.6.6. Suppose that we have observed Z on the model 

^ = {/(y;0)=n/(^;0):0eoj. 

Let g{ff) denote the prior density of 6 and g(6 | z) the posterior density 
from this prior. We want to approximate 

I m(0)g(8 \z)dO, 

the posterior mean of m, where m: R" -* U is a real function. Use 
Laplace's method to obtain an analytic approximation to the posterior 
mean of m(9). Specialize the result to the marginal posterior mean and 
the marginal posterior variance of the first component 6t of 0. 

FURTHER READING 

Large sample theory is presented in many textbooks. Silvey (1970) and Bickel 
and Doksum (1977) contain useful material at an introductory level. Large 
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sample theory for maximum likelihood estimators is widely discussed; Bahadur 
(1971) and Chernoff (1972) give general results. Serfling (1980) and Sen and 
Singer (1983) are general references to large sample theory. Saddlepoint 
approximation is discussed in detail in Barndorff-Nielsen and Cox (1989) and 
Field and Ronchetti (1990). These texts give a number of useful references. The 
application of Laplace's method in Bayesian analysis together with a number 
of references is presented in Bernado and Smith (1994). 
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Robust Inference 

In the stellar velocity problem presented in Section 1.1.4, the data z are the 
components of velocity (in km/s) orthogonal to the galactic plane of stars in 
three different groups. The standard model treats the groups as independent 
and the data in each group as a realization of Z generated by the Gaussian 
model 

J^ = < f (z; n, a) = f ] - 0 1 - ' - I, - o o < Z j < o o ; — o o < ^ < o o , ( j > 0 > 

(5.1) 

with \x = 0 as the core model for the bulk of the data. (We adopt the more 
general model in which \i is an unspecified nuisance parameter to make the 
discussion in this chapter more generally applicable.) We observed in Section 
1.2.4 that the model SF does not hold exactly because there are outliers in the 
data and noted that the contamination model 

= L(z; n, a, e, g) = f\ | ( 1 - e) i <j> ( - ' - - ) + ^(z,)], 

— o o < z , < o o ; — o o < ^ < o o , e r > 0 , £ > 0 , ce%>> (5.2) 

is a useful model to focus our thinking about outliers. 

5.1 THE STANDARD DEVIATION 

When the Gaussian model (5.1) holds exactly, we often base inference about a 
on the maximum likelihood estimator 

1 " - l 1 ' 2 

i l ( Z , . - Z ) 2 . 
n i = i j 
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Under (5.1), 
*2 2 2 

no1 ~o2xZ-i 

so that if Kv is the distribution function of the x2 distribution, we have that 

1 - a = PIK;_\(OL/2) < ~ < K~Ml - a/2)l 

~ [ n°2 -, n°2 } 
= P< : <<T2 < , } \K;_\(1 - a/2) K-1^12)) 

from which it follows that a realization of 

{n^d/K-^il - a/2)1'2, n
l'2d/K;_\{oi/2)1'2} 

is an exact 100(1 — a)% confidence interval for a. 
For later comparison, it is convenient to develop a large sample approxi-

mation to the exact confidence interval. Under the model J5", we have 
E<f2 = (n — l)cr2/n and Var 62 = 2(n — l)ff4/"2 s o w e obtain the large sample 
approximation 

n 1 / 2 ( (T 2 - (T 2 )^N(0 ,2 (T 4 ) . 

It makes considerable sense to treat scale estimators on the log scale (because 
they are non-negative and the log scale is appropriate for comparisons of 
relative magnitudes) and we will do so throughout this section. Applying 
Theorem 4.3 with h(x) = log (x1/2), we have 

n1/2(log ((T) - log («7» % N(0,1/2) (5.3) 

so that an approximate 100(1 — <x)% confidence level for log (a) is 

and hence an approximate 100(1 — a)% confidence interval for a is 

[ f fexp{-n ' 1 / 2 2 ' I / 2 0>- 1 ( l - a/2)}, * exp {n~ 1/22~ 1 / 2*_ 1 (1 - a / 2 ) } ] . (5.4) 

Exponentiating the approximate 95% confidence intervals for log (<r) as in (5.4), 
we obtain the following results for the three sets of stars: 

Disk: [33.45,65.53] 

Intermediate: [69.64, 110.54] 

Halo: [69.41,131.11]. 

These intervals suggest that the intermediate stars are halo stars. 
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5.1.1 Nonparametric Standard Errors 

Now suppose that the components of Z are in fact independent with common 
distribution F0 and that F0 is not necessarily in !F. Then the sample standard 
deviation <? is estimating <J(F0), the standard deviation of the underlying 
distribution. To obtain a large sample approximation to the sampling distribu-
tion of 6, we use the identity a2 — b2 = 2b(a — b) + (b — a)2 to write 

62-c2(F0) = n-' t. j z ? - [°° x ^ F o C x ) ! - ^ 1 i z j ' + j j 0 0 xdF0(x)}2 

= n~1 t \ z \ - J x2rfF0(x)-2MFo)(Z,-Mfo))| 

jn"1 £ Zi-H(F0)\ , 

where //(F0) = J-QO * ^foM- We can then write 

«1/2{a2-<72(F0)} = «-1/2 f IF(Z,;Fo,*2) + 0„(«~1'2). 
i = 1 

where 

IF(z; F0, a
2) = z2 - | x2 rfF0(x) - 2/i(F0)(z - n(F0)) 

= (z- n(F0))
2 - o\F0) (5.5) 

is called the influence function of a2 at F0 (Hampel 1968; 1974). This function is 
plotted in Figure 5.2b. Provided EFoIF(Z; F0, 6

2)2 < oo, it follows from the 
central limit theorem (Theorem 4.1) and Theorem 4.2 that 

n 1 ' 2 ^ 2 - <T2(F0)} ^ N ( 0 , EFoIF(Z; F0, a2)2), 

where 

EFoIF(Z; F0, a2)2 = EFo(Z - MF0))* - o*(F0). 

On the log scale, we obtain from Theorem 4.3 

n ^ O o g a - l o g ^ F o ) } ^ - " 2 £ ^~^f^ + Op{n~
m) 

f=i 2<r2(F0) 

^ N f o , E F o
I F ( Z ^ 2 ) ! ) . (5.6) 

V fo 4 < 7 4 ( F 0 ) y 
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Notice that we can sensibly write IF(z; F0, log (a)) = IF(z; F0, <72)/2<r2(F0) but 
it is just as convenient to use the latter expression. 

Under the Gaussian model (5.1), E(Z - /J (F 0 )) 4 = 3<74 so (5.6) includes (5.3) 
as a special case. For long tailed distributions E(Z — n(F0))* > 3<T4(F0) so in this 
case, the standard error increases to preserve the level of the confidence interval 
for <x(F0). This suggests that we use an estimate of {Efo(Z — n(F0))

4 — <x4(F0)}
1/2/ 

(4n)1/2<r2(F0), rather than l/(2n)1/2 as the standard error of log (a) since we 
lose nothing (asymptotically) under the model and preserve the level otherwise. 
This is an illustration of nonparametric variance estimation: we get a valid 
inference about <r(F0) provided Ef oZ4 < oo, both when F0 e !F and F0 $ 3P'. 

Using a nonparametric variance estimate, the approximate 100(1 — a)% 
confidence interval for a(F0) is 

[ t f e x p f - n - 1 ' 2 ^ ' 2 * - ^ ! - a ^ a e x p j n - ^ f ^ O - H l - a / 2 ) } ] , (5.7) 

where f = 4~1(j~4/n~1 £" = 1 (Zr — Z) 4 — a4}. For the three sets of stars, we 
obtain the following approximate 95% confidence intervals: 

Disk: [28.54,76.80] 
Intermediate: [63.57, 121.09] 
Halo: [42.26,215.32]. 

These confidence intervals are wider than before and therefore make the 
conclusion far less clear. 

5.1.2 Robustness of Validity and Robustness of Efficiency 

The confidence interval (5.7) based on an estimate of 

{EPo(Z - KF0))* - o*(F0)y'2 

(4ny2<j2(F0) 

achieves its intended level asymptotically for any distribution which has finite 
fourth moment. This property is known as robustness of validity and was the 
focus of attention in the early studies of robustness by Pearson (1929; 1931), 
Geary (1936), Gayen (1950), Box (1953), Box and Andersen (1955) and Scheffe 
(1959, Chapter 10). (Although these studies all concerned testing, the conse-
quences for confidence intervals are easily extracted.) However, robustness of 
validity is a weak property which says nothing about the effect of non-normality 
on the length of the confidence intervals. Indeed, (5.7) widens as the tails on 
the distribution lengthen and the width can easily become infinite if the 
underlying distribution does not have a finite fourth moment. In fact, in his 
critique of the method of moments, Fisher (1922) showed that, even if the 
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underlying distribution does have a finite fourth moment, the sample variance 
can be a very inefficient estimator of the underlying variance. Intervals which 
maintain their length as well as their level in a neighbourhood of the model 
are said to have robustness of efficiency, a more valuable property than 
robustness of validity alone. 

5.1.3 Misspecification Bias 

Suppose that F0 e ^ , where & is a contamination model like (5.2) with core F. 
As we noted in Section 1.2.4, we may want to estimate the standard deviation 
a(F) of the core of ^ rather than the standard deviation <x(F0) of the underlying 
distribution. In this case, there is a bias due to departures from the model J5" 
which is represented by the difference o(F0) — a(F). Using a Taylor series 
approximation (see 2 in the Appendix) 

log {<J(F0)} - log {ff(F)} 

Arguing exactly as in Section 5.1.1, 

a2(F0) - a2(F) 

2<r2(F0) 

a2(F0) - a\F) = 
j2 

*2\ IF(z; F, a2) dF0(z) - <M z d(F0 - F)(z) 

where IF(z; F, a2) is given by (5.5). Ignoring the second term, we have 

" > IF(z; F, a2) 
log {<r(F0)} - log {a(F)} 

2a\F) 
dF0(z) 

W{Z;F,a2) 

-E"-wr- ( } 

We can justify omitting the second term in the bias if we replace F0 by a sequence 
of contaminated distributions which converges to F, as n -» oo, because then 
the second term is of smaller order than the first. However, F0 is usually a fixed 
distribution and in this case there is no real basis other than simplicity for 
ignoring the second term in the bias. The approximation to the bias should 
therefore be treated as suggestive. If F0 is longer tailed than F, the bias will 
typically be positive; if F0 is a distribution for which the variance is infinite, the 
bias will be infinite. That is, the bias can be arbitrarily large. 
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5.1.4 The Approximate Mean Squared Error 

Combining (5.6) and (5.8), we see that the effect of heavy tailed contamination 
(and hence outliers) is to shift our confidence interval in the positive direction 
from where it should be (bias) and to make it wider than it should be (variance). 
Moreover, these changes can be arbitrarily large. Formally, the mean squared 
error can be written as 

MSEC* (« JD . fei^f»! + „- ±£ggV 
4<r4 4(j4(F0) 

= (E F o (Z 2 - a2)}2 , {Er^rtFotfj-oWo]} 

4<r4 " " 4a4(F0) 

which can be arbitrarily large compared to 

1 MSE(log (<f); F) , 
in 

the value under (5.1). 

5.1.5 Stability and Breakdown 

A natural way to study the stability of an estimator is to add an additional 
observation x to the data z and then explore the effect of changing x on the 
estimator. Writing 

x l £ 
n + 1 n + 1 ,-=i 

x n 
= + z 

n + 1 n + 1 

( « + 1) 

where z = n~l £"=, z,, we find for the variance estimator that 

62(x) = - L - £ (Zj - z"(x))2 + - L - (x - z-(x))2 

n + l ; = ! n + 1 

I f / . 1 , - ,V n\x - z)2 

n + l j f i V ( « + l ) / ( n + 1 ) 3 
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= I (*,- - z)2 + T (* - z) + — ~ 
n+ljt'i J in + l )3 (n + l )3 

n A, nix — z)2 

= <?2 + - - --. 
n + 1 (n + l)2 

The effect of changes in x on the estimate <r2 is, not surprisingly, quadratic. 
Small changes to x do not change the estimate much, but the estimate can 

be made arbitrarily large by large changes to x. In fact, the estimator can break 
down in the sense of becoming infinite by moving a single observation to 
infinity. We define the breakdown point of an estimator to be the largest fraction 
of the data that can be moved arbitrarily without perturbing the estimator to 
the boundary of the parameter space. Thus the higher the breakdown point, 
the more robust the estimator against extreme outliers. The breakdown point 
of the sample variance is 0. 

The normalized effect of observation x is called the sensitivity curve (Tukey, 
1960). It is 

(n + \){&2(x) - 62} = -^— (x - zf -62^{x- fi(Fo))2 - o\F0) n + 1 

and by a Taylor series argument 

(n + l){log (<x(x)) - log (a)} -► ^rJT^z ■ 
2o-2(F0) 

The limit of the sensitivity curve is the influence function of log (a) at F0. The 
supremum of the influence function is a measure of the maximum effect an 
observation can have on the estimator. It is called the gross error sensitivity of 
a at F0 (Hampel, 1968). For the sample standard deviation, the gross error 
sensitivity is infinite. 

5.1.6 Formal Robustness Calculations 

We can refine the calculations of Sections 5.1.1-5.1.4 for the standard deviation 
by extracting their common aspects. Basically, we have two distributions, say 
G and H, and we need to compare <r2(G) to a2{H). The key idea is to expand 
o2{H) about ff2(G) and then use the first (linear) term in this expansion to 
approximate the difference o2{H) — o2(G). The fact that the argument is a 
function rather than a simple number complicates the expansion. Nonetheless, 
there is an appropriate calculus for this situation which yields the Taylor series 
expansion 

a2(H) - a2{G) = d,(G, H - G) + R,(G, H - G) + ■ ■ ■ 
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expansions for a(H) and logff(Tf) follow directly from a further Taylor 
expansion, where dk is the kth order differential of a2 at G in the direction of 
H. See von Mises (1947), Serfling (1980, Chapter 6) and Fernholz (1983). The 
terms in the expansion are actually obtained using no more than the regular 
calculus as 

dk(G, H-G) = —k a2(G + k(H - G))\x = 0. 
dkK 

For the variance, we obtain 

d,{G,H-G)= P \x2-
J -00 I 

= 
f 00 

{*2-
— 00 

2x 

J 

2xn( 

y dG(y)} d(H - G)(x) 

2zn(G) 

z - ii{G)}2 - a\G)\ dH{z) 

{x2 - 2xn{G)} dG(x) 

{x2 - 2xn(G)} dG(x)\ dH(z) 

d2(G,H-G)= - 2 xd(H-G)(x) 

and 

dk(G,H-G) = 0 forfc>3. 

Hence, using the influence function 

IF(x; G, a2) = {x - fi(G)}2 - a2(G) 

as in (5.5), we have 

a\H) - a2(G) » d l(G,H-G)=[ IF(x, G, &2)dH(x). 

We can now see why the influence function is so fundamental. 

• We obtain the approximate bias (Section 5.1.3) of the estimator as the 
expectation with respect to the actual distribution F0 of the influence 
function at the core model F. That is, for G = F and H = F0. 
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The asymptotic effect of a single observation at x (Section 5.1.5) on the 
estimator is obtained by setting G = F0 and H(z) = I(z < x), the degenerate 
distribution with all its mass at x. This is just the influence function itself 
which we can think of as the approximate bias when the core distribution is 
contaminated by a pointmass at x. 

If F0 = (1 — E)F + eC is a contaminated version of F with contaminating 
distribution C e #, we have 

sup \a(F0) - a{F)\ x sup 

sup 
CeV 

e 
J — 30 

\F(x,F,a)d(F0-F)(x) 

IF(x, F, a) dC(x) 

= esup |IF(x, F, a)\ 

so the maximum bias is determined by the maximum influence function 
at F, provided the interchange of supremum and integral is legitimate. This 
bound is called the gross error sensitivity (Section 5.1.5) because it reflects 
the largest effect a single gross outlier can have on the estimator. 

• Finally, the estimator a2 can be written as <x2(F„), where F„ is the empirical 
distribution function (Section 1.5.2) so the asymptotic distribution (Section 
5.1.1) is obtained from the leading term when G = F0 and H = F„. 

The one important quantity we cannot compute directly from the influence 
function is the breakdown point (Section 5.1.5). 

5.1.7 Distributional Robustness 

The basic requirements for inferences designed for a core model &■ to be robust 
against departures from the assumed distributional shape are that they 

• are valid and reasonably efficient under & 

• have close to their assumed properties under J^ when applied to distribu-
tions close to those in J5" 

• are not rendered useless by a small proportion of extreme deviations 
from !F. 

The first requirement ensures that good inferences are produced when J^ holds, 
an important and often overlooked property of robust methods. The two 
robustness conditions can usefully be regarded as stability conditions; small 
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perturbation to & should not change the properties of the estimator much, 
and a few extreme perturbations should not be disastrous. 

These requirements can be interpreted in terms of the influence function and 
stability properties of an estimator. For an estimator to be robust, we require 
the influence function to be continuous so that small changes (including 
rounding and grouping) to the observations have only a small effect on the 
estimator and bounded for distributions in a neighborhood of the model so 
that the mean squared error of the estimator is bounded. In addition, we want 
an estimator to not be rendered uninformative by a small proportion of extreme 
outliers, so we want the estimator to have a nonzero breakdown point. 

The sample standard deviation 6 is asymptotically efficient under (5.1) so it 
meets the first requirement. However, as we saw in Section 5.1.4 and 5.1.5, it 
fails the second and third requirement, so we conclude that 6 is not a robust 
estimator of c(F). 

Interestingly, Fisher (1920) recommended the use of a for stellar velocity 
data rather than the mean absolute deviation recommended by Eddington 
(1914) on the basis of its efficiency under the Gaussian model. Although the 
mean absolute deviation is more efficient than the standard deviation in a 
neighborhood of the Gaussian model (5.1) and therefore more robust (see 
Section 5.7 for some evidence of this), it is not really robust and we will not 
pursue it in detail. We will construct a class of distributionally robust estimators 
of a(F) in Section 5.4. 

PROBLEMS 

5.1.1. Let 2TZ) = nll2(Z - n)/S denote the t ratio. Plot T(Z, x) with n = 0 
against x for the caffeine data (Section 1.1.3) to explore the effect of adding 
an additional observation at x. What happens as x -* oo? Compare the 
result to that for the unstudentized sample mean. What are the implica-
tions of the results in terms of robustness of validity and robustness of 
efficiency? 

5.1.2. Compute the sensitivity curves of the median and median absolute 
deviation from the median (Section 5.4.8) based on the caffeine data 
(Section 1.1.3) and compare these to those obtained for the mean and 
sample standard deviation in Section 5.1. 

5.1.3. Compare the sensitivity surface of dja2, when a, is the sample standard 
deviation, the mean absolute deviation from the mean, and the median 
absolute deviation from the median based on the intermediate and halo 
stars (Section 1.1.4) by adding an extra observation to each sample. 

5.1.4. Show that the sensitivity surface of the M-es!imator 8 which satisfies 

0 = 1 rfct; 6) 
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can be written as 

(n + i)«?(x) - d) w -(i. + i ) | t n'(zr, e) + n\x, m \(x, e). 

5.1.5. Cushny and Peebles (1905) published the results of a study of the effect 
of two optical isomers of hyoscyamine hydrobromide in increasing the 
sleeping time of 10 patients. They measured the average number of hours 
of sleep gained over several nights under the two versions of the drug. 
The paired differences between the results for the second drug (laevo 
rotatory) and the first (dextro rotatory) are 

1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4 

Data reprinted with permission from the Journal of Physiology (1905). 

The sample mean equals 1.58 with a standard error of 0.39 and the a = 0.1 
trimmed mean (Section 6.9.2) equals 1.40 with a standard error of 0.2. 
The problem of interest is to make inferences about the difference in the 
mean effects of the two drugs. 

What advantages are there to computing appropriate confidence 
intervals rather than p-values? Construct approximate 95% confidence 
interval for the difference in the mean effects of the two drugs using firstly 
the sample mean and then the trimmed mean. Compare the two intervals 
and comment on the use of the intervals to test H0: The difference in the 
mean effects of the two drugs equals zero. 

(Hint: Tukey and McLaughlin (1963) showed that the approximate 
pivotal quantity constructed from the trimmed mean and its standard 
error has approximately the Student t distribution with n — 2[na] degrees 
of freedom.) 

5.2 DEPARTURES FROM INDEPENDENCE 

Departures from the assumed dependence structure (which in the stellar velocity 
example means independence) constitute an important deviation from the 
assumed model. These departures are typically rather harder to deal with than 
departures from the assumed distributional form because we need to specify 
the dependence structure quite closely. 

5.2.1 Autoregressive Dependence 

As an illustrative example, suppose that the data follow an autoregressive 
process (see Section 1.3.5) induced by the measurement process. This is 
appropriate when the observations are made sequentially in time and an 
observation is dependent on the immediately preceding observations. Explicitly, 
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for \p\ < 1, we assume that 

Zx ~ n + 
( 1 - P 2 ) 1 / 2 

and 

Z, - p = p{Zt_ t - fi) + ffUi, i = 2,...,n, 

with {Uj} a sequence of independent random variables with mean 0 and 
variance 1. When p = 0 and {[/;} are Gaussianly distributed, ZU...,Z„ are 
independent Gaussian random variables with mean p and variance a2 so this 
contains our model J* as a special case. 

Let y(h) = EG(Z; — p){Z^h — p), where G indicates expectation under the 
autoregressive model, denote the autocovariance function of the autoregressive 
process. We obtain simple expressions for the bias and variance of the sample 
standard deviation <r under G in terms of y(h) in Section 5.2.2. The autoco-
variance function y(h) does not characterize all aspects of the dependence 
structure of a stochastic process, but it is a measure of dependence which allows 
us to obtain suggestive results relatively easily. 

5.2.2 The Effect of Autoregressive Dependence 

Under the autoregressive model, 

EG(Z - p)2 = n-2£ £ EG(Z; - p)(Zj - p) 
■ ' = 1 . 7 = 1 

= ^ 2 i iva-j) 

= n-1y(0) + 2n-2 £ ' f y(i - j) 

= n-1y(0) + 2n~ 2 "x (n - \h\)y(h) 
/ ! = 1 

EG<?2 = n-1 t EG(Z; - p)2 - EG(Z - /i)2 

i= 1 

= 7(0) - iT'tfO) - 2 n - 2 " x (n - |fc|)y(/i) 
( i = i 

= «- ' (» - 1)7(0) - In'2 "Y, (n - |/J|)7(/I) 
»i = i 

= 7(0) + O(«'1) . 

so we have 
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Thus a2 is estimating y(0) rather than <x2(G). Since y(h) = a2(G)pw/(\ - p2\ 
we have y(0) = <r2(G)/(l — p2) and hence 

log {y(0) 1/21 log WG)} 
y(0) - a2(G) 

2a\G) 

„2 

2(1 - p2) 

The asymptotic bias of log (<f) is therefore 

log {y(0) 1/21 log {am} = 
2(1 - p2) + 

EGIF(Z; (D, a2) 

2ff2(<D) 

The bias due to the unsuspected serial correlation is of order p2 as p -> 0 so may 
be considered small. 

The variance is more complicated to derive. However, suppressing the 
dependence of p. and a on G, we see from Fuller (1976, p. 239) that 

V a r ^ a 2 ) - ^ 1 

= n 

= n 

EG(Z - p)4 

EG(Z - p)4 

EG(Z - p)4 

EG(Z - p)4 

EG(Z - p)4 

- 3 

- 1 

y(0)2 + 2 X y(/z): 

ft = - 00 

y(0)2 + 2y(0)2 + 4 £ y(fc)2 

+ 4 I p 
(1 - P)2 

+ 
4p2 

- 1 + 

(1 - p2)J (1 - p)2 

4p2 

( 1 - P ) : 
<T4{l+2p + 0(p2)} 

= » - ' [E 0 (Z - p)4 - a4](l + 2p + 0(p2)) 

= n"1EGIF(Z; G,<r2)2(l + 2p + 0(p2)). 

For negative p, treating H - 1 E G I F ( Z ; G, <t2)2 as the asymptotic variance a2 is 
conservative while for positive p it is overoptimistic. Unfortunately, positive 
correlation (p > 0) is common in practice so we can conclude that ignoring 
serial dependence generally results in a slight positive bias in our estimate and 
confidence intervals which are narrower than they should be. More general 
results of this type have been obtained by Gastwirth and Rubin (1975), Portnoy 
(1977; 1979), Bickel and Herzberg (1979), and Kariya (1980). 
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5.2.3 Others Forms of Dependence 

Other forms of unsuspected dependence may also be relevant. For example, 
some form of spatial dependence may be appropriate for the stellar velocity 
data. This would occur if observations on stars that are close to each other in 
space are dependent, which could again arise through the measurement process. 

Finally, most simple models for serial and spatial dependence specify that 
the dependence decreases rapidly as the observations become further apart. 
These are effectively therefore models for local or short range dependence. 
Alternative models which allow long range dependence are also available. Under 
these models, the standard errors based on the independence assumption are 
much too small. Unfortunately, fairly large samples are required to fit these 
models in practice. See Hampel et al. (1986, pp. 387-97) and Beran (1991). 

PROBLEMS 

5.2.1. Use the results of Section 5.2.2 to explore the effects of unsuspected 
autoregressive dependence on inference for the mean based on the sample 
mean Z. 

5.2.2. A moving average process {Z,} is defined by the relationship 

Z,-et + ae , - ! , 

where {e,} are independent and identically distributed. Show that 

f( l+a2)<72 fe = 0 

y(h) = I ao2 h=\ 

(.0 else 

and explore the effect of unsuspected moving average dependence on 
inference for the mean based on the sample mean Z. 

5.2.3. Explore the effect of unsuspected moving average dependence on inference 
for the variance based on the sample variance. 

5.3 ROBUSTNESS THEORY 

Suppose that we have a model !F which is approximately correct in the sense 
that the actual underlying distribution F0 is either in J^ or close to 3F. Then 
the objectives of robustness theory are twofold: 
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1. Evaluate how procedures derived under !F perform when the underlying 
distribution F0 is close to & and 

2. Find procedures for making inference which perform well both when F0 

is in S' and F0 is close to J5". 

It is often straightforward to achieve objective (1) (see for example Sections 
5.1-5.2), but objective (2) is usually achievable only if the departures from J^ 
are specific and limited. 

The two main departures from a model !F considered in robustness theory 
to date have been departures from the assumed distributional shape (usually 
manifested as outliers) and, to a lesser extent, departures from the assumed 
dependence structure. In the context of the stellar velocity problem, these are 
the important departures but, in other contexts, other departures may be of 
interest. Generally, in robustness theory, we are concerned with departures 
involving the nuisance aspects of the model because the analysis often depends 
on our being able to detect departures involving the aspects of the model of 
primary interest. Thus, in a regression problem (see for example Section 5.5) 
we may seek robustness against outliers in the error distribution but not against 
curvature in the regression relationship. There are data configurations for which 
it is difficult to distinguish between these situations but the conceptual 
distinction is still useful. 

Formal theories of robustness need to take into account the fact that even 
apparently good fit does not ensure that an assumed model is correct. Figure 
5.1 shows a plot of the Gaussian density and the density of the mixture 
distribution (like the one in the contamination model (5.2)) in which e = 0.05 
and c is the Cauchy density. Even though the Gaussian distribution has all its 
moments finite and the mixture has no finite moments, it is difficult to 
distinguish between the densities. It is even more difficult with samples from 
the two distributions unless extreme outliers are present. 

The simplest way to describe departures from an assumed model J* is to 
introduce a parametric model ^ which contains J5" and captures the departures 
from J*. That is, ^ describes a neighborhood of the core model J5". The 
introduction of <$ is a natural way to achieve objective 1 and can be used to 
achieve objective 2 if we fit ^ instead of J*. Indeed, the introduction of <g may 
be the only way to achieve objective 2: the only way to achieve robustness 
against dependence seems to be by incorporating dependence explicitly into the 
analysis. However, this approach is really only satisfactory if we consider 
very specific, limited departures from !F. In practice, departures from J^ can 
take so many different forms that we run the risk of ending up with a very 
complicated (nonparsimonious) model without any guarantee that it describes 
the actual departures from & and there is often little information on the 
additional nuisance parameters in ^. This is particularly the case if we have a 
small number of outliers in the data. Fortunately, in this case, as we noted in 
Section 1.2.4, we can be fairly vague about 'S, even to the extent of making <§ 
semiparametric (Section 1.3.3) and, as we saw in Section 5.1.7, distributional 
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Figure 5.1. The densities of the Gaussian distribution and the 95% Gaussian and 5% 
Cauchy mixture distribution. After a plot by R. Koenker (personal communication). Used with 
permission. 

robustness can be discussed in terms of the influence function and breakdown 
point. If we either cannot or decide not to represent the departures from J* by 
a semiparametric model, we should still try to make a clear distinction between 
the aspects of the model which are of interest and those which are not and then 
avoid trying to estimate and make inferences about the additional nuisance 
parameters. 

The core model concept produces an important distinction between robust 
and nonparametric inference. In robust inference, even if we adopt a semi-
parametric model, we can still exploit the core model 3F to provide compact 
descriptions of the data (including the variability in the data) and to clarify the 
objectives of the analysis. To be meaningful, 3F should reflect the aspects of the 
substantive problem of primary interest, incorporate the known and suspected 
structures in the data, and (in the outlier context) be a genuinely plausible 
model for the bulk of the data. Thus, for example, in formulating <F, we should 
not ignore information about grouping, regression relationships, and hetero-
scedasticity because to do so would result in an inappropriately simple model. 
In this sense at least, robustness is not a panacea for bad modeling and poor 
statistical practice. 
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5.4 BOUNDED INFLUENCE ESTIMATION 

Suppose that we have observations z which, in the absence of outliers, we 
represent as realizations of Z generated by the Gaussian model (5.1). The 
maximum likelihood estimator of (,u, a) satisfies the estimating equations 

= 0, 

where rj(x) = (x, x2 — 1)T. The influence functions of the estimators defined by 
these estimating equations are shown in Figure 5.2; they are clearly continuous 
but unbounded so the maximum likelihood estimator is not distributionally 
robust (Section 5.1.7.). 
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Figure 5.2. Influence functions for Huber's M-estimators at the standard Gaussian distribution: 
(a) location estimator with c = oo (sample mean); (b) scale estimator with k = oo (sample standard 
deviation); (c) location estimator with c = 1.35; (d) scale estimator with k = 2; (e) location estimator 
with c = 0 (sample median); (/) scale estimator with k — 0 (median absolute deviation from the 
median). 
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5.4.1 Huber's M-Estimators 

An obvious modification to the Gaussian maximum likelihood estimating 
equations which produces estimators with continuous, bounded influence 
functions is obtained by truncating the two components (i.e. modify r\ so 
n(x) = (i/Kx), X(x))T). The truncated version of the linear function is ij/(x) = 
max [ — c, min (c, x)] which is called the Huber \jj-function. The second component 
can be truncated in various ways but an attractively simple method is to set 
X(x) = min (k2, x2) — /?(/c). For further simplicity, we sometimes take k = c, in 
which case we can write x(x) = i/^x)2 — p(c) and the method is called Huber's 
proposal 2 since it was the second proposal of Huber (1964). 

5.4.2 Fisher Consistency Under the Model 

To ensure that we are actually estimating the parameters of the Gaussian model 
(5.1) when it holds (the first requirement for distributional robustness in Section 
5.1.7), we require the estimators to be Fisher consistent under (5.1). Let 
<j>(x) = (2n)~il2 exp ( —x2/2) denote the standard Gaussian density. Then 

if, ( x—fl\ I cj> ( - — ^ )dx= | Hx)4>(x) dx = 0 

because the product of the odd function \j/ and the even function <f> is odd and 
integrates to 0. Notice that this is true for any bounded, odd ip and a symmetric 
core model. It follows that the estimator of fi is Fisher consistent under the 
Gaussian model. For the estimator of a to be Fisher consistent, we require 

« ~ M ^ fa )<t>(x)dx = 0. 

This obviously holds for the scale estimator if we set 

P(k) min (k2, x2)(p(x)dx 

k24>{x) dx + x24>(x )dx + k2<p(x) dx 

= k2{<$>{-k) + 1 - O(fc)} + 20>(/c) - 1 - 2k(j>(k) 

= 2k2{l - <D(fc)} + 2<P(fc) - 1 - 2k<t>{k), 

using (4b) in the Appendix. 
If the data are actually generated by F0, the Huber M-estimator 6 = (fi, <r)T 

is estimating B(F0) which is a solution of the equation 

EFon(Z, 6(F0)) = 0. 
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See Section 4.2.2. We would like to estimate the core model parameter d0 = 6(F) 
but we can only estimate 6(F0). The bias 6(F0) — 90 is unknown and cannot be 
estimated without making the kind of assumptions we want to avoid. The best 
we can do is to use estimators which estimate 90 under the core model, have 
small mean squared error near the core model and which limit the worst case 
bias and variance. As we noted in Section 5.1.7, this is achieved by choosing rj 
so 9 is Fisher consistent for 90 under the core model, the influence function is 
continuous and bounded near the core model, and by ensuring that the 
estimator does not break down. 

5.4.3 The Influence Function 

The influence function of Huber's estimators at an arbitrary distribution G can 
be obtained from Theorem 4.6. It is 

lF(x;Gj)^BG(8(G)y1r,(x;8(G)), (5.9) 

where, with y = {x — fi(G)}ja(G) 

I 
BG(6(G)) 

ff(G) 

\J 

ny)dG(x) 

x'(y) dG(x) 

M'(y) dG(x) 

yx'(y) dG(x) 

The asymptotic bias of the estimator at G is 

8(F0)-80KBFo(90y
1EFor,(Z,80) 

and the asymptotic variance of the estimator at G is 

VG(9(G)) = n-lBG(d(G)ylAG(9(G))BG(6(G))-\ 

where, with y — {x — fi(G)}/a(G) 

I 
AG(9(G)) = 

\ 

Hy)2 dG(x) I iP(y)X(y) dG(x) 

*Ky)x(y) dG(x) I X(y)2 dG(x) L(y)X(y) dG(x) fj 
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5.4.4 Asymptotic Efficiency Under the Gaussian Model 

Under the Gaussian model (5.1), we obtain 

1 /2<D(c) - 1 0 

o V 0 2<D(fe) - 1 - 2ktf>(k). 

so from (5.9) 

\2d>(c) - 1 2<P(fc) - 1 - 2k<Kk)J 

Moreover, under the Gaussian model (5.1), 

(P{c) 0 

V 0 y(k) - P(k)2 

where, by (4b) in the Appendix, 

?(*) = 
* 

k44>(x) dx + 
■k 

x 4>(x) dx + I k <f)(x) dx 

= k4{<f>(-k) + 1 - <D(/c)} - x3(j)(x)\ik + 3 x2(j}(x) dx 

= 2fc4{l - <D(/c)} - 2k3<t>(k) + 3{2<D(/c) - 1 - 2k(f>(k)}, 

so the asymptotic variance of Huber's M-estimators under the Gaussian 
model is 

V 0 jy(t) - «t) !)/{2»((:) - 1 - 2 * * t ) ) V 

Since the asymptotic variance of the maximum likelihood estimator of a under 
the Gaussian model (5.1) is a2/2n (see Section 5.1.1), the asymptotic efficiency 
of the Huber estimator scale under the Gaussian model (5.1) is 

2{20(/c) - 1 - 2k(j>(k)}2 

y(k) - P(k)2 

We can compute the asymptotic efficiency for a range of values of k. 
The function is plotted in Figure 5.3 and selected results of this computation 
are given in Table 5.1. Thus we see that increasing c and k increases the efficiency 
of the estimator with full efficiency being achieved at c = k = oo. 
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Figure 5.3. Asymptotic efficiencies and gross error sensitivities for Huber's M-estimators at the 
standard Gaussian distribution as a function of c and k: (a) efficiency of the location estimator; 
(b) efficiency of the scale estimator; (c) gross error sensitivity of the location estimator; (d) gross 
error sensitivity of the scale estimator. 

Table 5.1. Asymptotic Efficiency of the Huber Proposal 2 Af-Estimator at the Gaussian 
Model 

c,k 
Location 
Scale 

0 
0.67 
0.37 

0.35 
0.75 
0.14 

0.7 
0.84 
0.32 

1 
0.90 
0.48 

1.35 
0.95 
0.66 

1.7 
0.98 
0.80 

2 
0.99 
0.89 

3 
1 
0.99 

00 

1 
1 

5.4.5 Gross Error Sensitivity 

Next, we need to evaluate the robustness of different choices of c and k. The 
gross error sensitivity (Section 5.1.6) of a under (5.1) is 

sup |IF(x;0, <?)| = _ _ f c 2 _ - A f c ) _ 
2<i>(k) - 1 - 2k<f>(k) 

k2{24>(k) - 1} 

2<b(k)~~T^2k(j)(k) 
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Table 5.2. Gross Error Sensitivity of the Huber Proposal 2 Af-Estimator at the Gaussian 
Model 

c, k 
Location 
Scale 

0 
1.25 
1.03 

0.35 
1.28 
2.05 

0.7 
1.36 
2.20 

1 
1.46 
2.43 

1.35 
1.64 
2.85 

1.7 
1.87 
3.45 

2 
2.10 
4.17 

3 
3.01 
8.25 

00 

00 

CO 

This function is plotted in Figure 5.3 and selected results of this computation 
are given in Table 5.2. Since the gross error sensitivity increases with c and k, 
the smaller c and k, the more robust the estimator. 

5.4.6 Breakdown Point 

We can also consider using the breakdown point to evaluate the robustness of 
estimators. The breakdown point is unfortunately not simple to calculate but 
in this instance tells the same story as the gross error sensitivity. Huber (1981, 
p. 143) shows that the breakdown point for the joint estimation of location and 
scale is the solution to 

0 = l-^Vc2 - P(k) + (k2 - p{k)) E 

or 

so 

.1 - s j 1 - £ 

0 = c V - (1 - e)2P(k) + (k2 - p(k))e(l - e) 

= £2(c2 - k2) + e(k2 + 0(k)) - p(k) 

m 
P(k) + k2 

-(k2 + p(k)) + {(k2 + P(k))2 + 4(c2 - k2)P(k)}1'2 

2(c2 - k2) 

iU = k 

ifc^k. 

The breakdown point increases as c and k decrease so, in this problem, the 
information from the breakdown point is similar to that from the gross error 
sensitivity. 

5.4.7 Compromise Estimators 

We obviously need to make a tradeoff between efficiency at the model and 
robustness when the model does not hold. For the Gaussian mean, the usual 
choice is to take c = 1.35 which yields 95% efficiency at the Gaussian model. If 
we choose k # c, we would need k > 2 to achieve the same efficiency in the 
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scale estimator. The choice k = c = 1.35 is relatively inefficient but fairly robust. 
Since the scale parameter is of interest, we will use c = 1.35 for location and 
k = 2 for scale. 

There are two obvious approaches to obtaining approximate standard errors 
for the estimators. First, F0 is assumed to be nearly Gaussian and our procedure 
is intended to be insensitive to small departures from the Gaussian model so 
we can use an estimate of (5.10). Second, we can use the nonparametric 
estimator introduced in (4.22). The nonparametric nature of this approach 
makes it the method of choice for most statisticians. 

The standard deviations of the three stellar velocity data sets are 47, 88, and 
95 while the M-estimators are 37, 67, and 93. We proceed to set approximate 
95% confidence intervals for a by exponentiating the large sample confidence 
intervals set on the log scale. The intervals produced using the Gaussian core 
distribution are substantially wider than those produced using the non-
parametric variance estimate, which are given below: 

Disk: [28.28,47.28] 
Intermediate: [57,43,78.16] 
Halo: [73.40,118.68]. 

This analysis suggests that, as shown in Welsh and Morrison (1990), the 
intermediate stars are more like halo stars than disk stars. However, the robust 
analysis shows that the evidence for the conclusion is weaker than appears from 
the analysis based on the sample standard deviation under the assumption of a 
Gaussian model. 

5.4.8 Most Robust Estimators 

We obtain estimators with the minimum gross error sensitivity and the 
maximum breakdown point (equal to 0.5) if we let c, k -*■ 0. The resulting 
estimators are the median and the median absolute deviation from the median: 

fi = median(Zj) 

mad(Z,) median{|Z,-— median(Zj)|} 

0.6745 06745 ' 

The efficiency of these estimators at the Gaussian model J* is 0.67 and 0.37 
respectively. The influence functions of these estimators 

I F ( x . G ~) = sign(x - n(G)) 
lX' , W 2g{tiG)}~ 

IF(x;G,ff) = 

i s i g n ( | x - / i ( G ) | - g ( G ) ) - [ g { M G ) + ff(G)}-g{MG)-ff(G)}]IF(x;G,/l) 

0.6745[ff{|i(G) + a(G)}+ff{lx(G)-<T(G)}] 
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where Ju(G) = G"1(j) and a(G) = H~\^), with //(x) = G(/i(G) + x)-G(/ i (G)-x) , 
are plotted at the Gaussian model in Figure 5.2. The estimating equations for 
the median and the median absolute deviation from the median are not 
continuous, so we cannot simply derive the influence functions by applying the 
results of Section 5.4.3. However, if G is smooth and strictly increasing near its 
median and quartiles, the arguments can be modified to produce the above 
results. The problem is that rounding or grouping effects mean that G has flat 
regions over which g equals 0 and the influence functions can be unbounded. 
This is the primary reason for requiring the influence functions to be smooth, 
and also illustrates the importance of considering the influence function at more 
than the core model. 

5.4.9 Model Generated Estimators 

Instead of modifying the maximum likelihood estimating equations from 
the core model to construct robust estimators, a different approach is to adopt 
a third model and then use the maximum likelihood estimators from this model 
as estimators of the parameters in # \ Thus, for a general location-scale model 
(1.18), we have the log-likelihood 

log {/(z; n, a)} = -n log (ex) + f log { f c ( - ~ - ) } 

and hence the estimating equations 

where rj{x) = — (h'(x)fh(x), xh'(x)/h(x) + 1)T. For the Gaussian model, 
h'(x)/h(x) = — x and we recover the maximum likelihood estimators. However, 
if h'(x)/h(x) and xh'(x)/h{x) have smooth derivatives and are bounded, then 
after modifying the equations if necessary to ensure Fisher consistency at J*, 
the resulting estimators are robust estimators for !F. Notice that the requirement 
that xh'(x)/h(x) be bounded means that h'(x)/h(x) = 0(x~x) as |x| -* oo. Such 
estimators are called redescending M-estimators. 

A classical choice is to use the Student t model with fixed, small degrees 
of freedom v. Here h(x) oc {1 + x2 /v}" , v + 1 ) / 2 so that h'(x)/h(x) = 
- ( v + l)x/{v + x2} and rj(x) = ((v + l)x/{v + x2}, (v + l)x2/{v + x 2 } -
(v + 1)<5)T, where 

<5 = 
x2 

-<j>{x)dx. 
V + X2 

Numerical integration for v = 3 yields S w 0.1899. The influence functions are 
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plotted in Figure 5.4. The location estimator has a redescending influence 
function while the scale estimator does not. 

Redescending estimators are treated in exactly the same way as other 
M-estimators except that more care has to be taken when solving the estimating 
equations. It is important to note here that the Student t model is not a model 
we believe in; it is simply used to generate estimating equations. 

5.4.10 Other Classes of Estimators 

Finally, it is worth noting that we can explore the robustness properties of any 
estimator or class of estimators. Useful classes of estimators which have been 
considered are L-estimators (estimators which are linear combinations of order 
statistics—see Section 6.9.2), R-estimators (estimators based on ranks - see 
Section 6.9.1), P-estimators (Pitman estimators - see Section 3.1.4 - Johns, 1979; 
Huber, 1984), minimum distance estimators (see for example Kniisel, 1969; Parr 
and Schucany, 1980; Donoho and Liu, 1988), and trimmed likelihood estimators 
(Bednarski and Clarke, 1993), etc. 

PROBLEMS 

5.4.1. Suppose that we have independent observations Z for which we entertain 
the Gaussian model & = {f(y; 9) = f]"= i Hyi-9): 9 eU}. It is obviously 
a simplification to treat the variance as known but this avoids some extra 
complications without reducing the central issues. Consider the estimator 
9* of 9 which is obtained by solving the equation 

X {*(Z( - 9) - \) = 0, 

where <J>(x) = (In) 1/2 exp( — y /2) dy is the standard Gaussian 

distribution function. Obtain the influence function of the estimator and 
make a rough sketch of it. Discuss whether or not the estimator is robust. 
Show that the asymptotic variance of the estimator 9* at the model J^ 
is 1/12(£</>(Z — 90))

2, where 4>(x) = <&'{x) is the standard normal density. 
(Hint: <t>(Z — 90) ~ uniform(0, 1) under &.) Show that the asymptotic 
efficiency of the estimator 9* under !F is 3/n. Would you use the estimator 
9* to estimate the mean of a normal model? Explain. 

5.4.2. Suppose that we have independent observations Z which we assume 
follow the Gaussian model of Problem 5.4.1. In 1888, R.H. Smith (see 
Stigler, 1980) proposed the estimator 9* of 9 which is obtained by solving 
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Figure 5.4. Influence functions for Student's 13 M-estimators at the standard Gaussian distribution: 
(a) location estimator; (b) scale estimator. 
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the equation 

£ <A(z, - 9) = o, 
i= 1 

where \j/(x) = x(r2 — x2)/( |x | < r), for some fixed r > 0. Discuss whether 
you would use Smith's estimator 6* (for some value of r) to estimate the 
mean of a normal model. Be sure to include a discussion of the effect of 
different choices of r and to comment on the way the estimator treats 
extreme outliers. Write down an estimator of the asymptotic variance of 
Smith's estimator and use it to construct an approximate 95% confidence 
interval for 9. 

5.4.3. Compute the asymptotic efficiency and the gross error sensitivity at 
the Gaussian model of the location M-estimator based on \JJC{X) = 
x(c2 - x2)I(\x\ < c). 

5.4.4. Suppose that we have independent observations Z with distribution 
function G and that we entertain the model 

^ = j / , ( y ) = f l X- exp (-~\ y{ > 0: a > o l 

for the data. Find the influence function of the maximum likelihood 
estimator of a under 3F and then discuss the robustnesss properties of 
this estimator. Now consider the estimator obtained by solving 

!'(?)-
where, for k > 0, 

X(x) = 

The influence function of this estimator is 

x2 -2 + 2(k + \)e'k x<k 

k2 -2 + 2(k+ \)e'k x>k. 

IF(x, G) = 

' x 
or 

a \ a 

Make a rough sketch of this function and discuss whether or not the 
estimator is robust. Show that EGx(Z1/o) = 0 at the model. Write down 
the asymptotic variance of the estimator and construct an estimator of 
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this variance. Show how to set an approximate 100(1 — ot)% confidence 
interval for a. 

5.4.5. Apply the estimator of Problem 5.4.4 to the pressure vessel data from 
Section 1.1.2 and Problem 1.6. Compare the results to those obtained 
using exponential theory. 

5.4.6. Suppose that we have n independent observations Zl,...,Zn which we 
believe follow the Poisson model 

^ = j/9(y) = fl 0yi exp (-8)/yi\, yt = 0 , 1 , . . . : 6 > o | . 

Find the influence function of the maximum likelihood estimator and 
show that the estimator is not robust. Now consider the estimator 6 
which satisfies 

where, for k > 0 and some function b(k, 6), 

(x-b(k,6) \x\<k 
tiJx) — < 

lk-b(k,6) \x\>k. 

Write down the equation which defines b(k, 9) so that 6 is consistent at 
the model. Outline an algorithm which could be used to compute 0. 

5.4.7. We can calculate M-estimates of location and scale by alternating 
between calculating scale for a given location and location for a given 
scale. If we write %(x) = x*(x) — E*X*(Z), we can implement the scale 
step which updates from (nim + 1), aim)) to ff(m+1) by computing 

nE^*(c) , = i V ff(„) / 

Show that the solution satisfies the estimating equations. Describe the 
Newton-Raphson algorithm for the same step. Which method is prefer-
able? Explain. 

5.4.8. Suppose that we have independent observations Z which we assume 
follow the Gaussian model (5.1). Modify Smith's estimator (Problem 
5.4.2) to allow for the fact that a in unknown and construct a Huber 
proposal 2 estimator of a. Draw a rough sketch of the influence functions. 
How does this estimator treat extreme outliers? What happens to the 
asymptotic efficiency as r increases? Discuss briefly the considerations 
involved in choosing a value of r. Write down an estimator of the 
asymptotic variance of Smith's estimator and use it to construct an 
approximate 95% confidence interval for fi. 
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5.4.9. Use the Huber M-estimator and the Tukey bisquare estimator for which 
ij/(r) = r(c2 — r2)2I(\r\ < c) to analyse the effect of caffeine on the volume 
of urine data of Section 1.1.3. Compare your inferences about the mean 
change in the volume of urine to those obtained assuming the Gaussian 
model holds. Interpret your results. 

5.5 CORROSION RESISTANCE OF STEEL PLATES 

In Section 1.2.5 we discussed modeling the relationship between the weight loss 
of enamel covered steel plates subjected to 10% hydrochloric acid at a set 
temperature for a set time. We noted that in the absence of outliers, we might 
consider an initial plausible model of the form 

■^ = i / (y ; 7. ff) = f\ ^ <l>(—-~--). -<x><y,<co:yen>,e>o\, (5.11) 

where x, = (1, zJ)T, and y = (a, j?T)T. In the steel plate problem, the response 
j/j is the log weight loss, x u is the time, x2i is the temperature, zt = (xu, x2i)

T, 
and /S = (/?!, /?2)

T. The slope parameters /? are the parameters of interest. To 
preserve notation, let 9 = (yT, a)r. We assume without loss of generality that 
we have centered the covariates so that z = 0. 

5.5.1 The Gaussian Model Analysis 

The log-likelihood function for the Gaussian model (5.11) is 

log /(z; 8)=-n log (a) - £ ^Zjpt 
f = i la 

so the maximum likelihood estimator of 9 satisfies the estimating equations 

where r](x, r) = (xTr, r2 — 1)T. The maximum likelihood estimator of y is the 
same as the least squares estimator of y (Section 1.5.4). 

Residual and qq-plots of the residuals from the Gaussian maximum likelihood/ 
least squares fit to the corrosion resistance data are shown in Figure 5.5. As 
expected from the preliminary analysis of Section 1.2.5, these plots show that 
there are a number of outliers in the data. The outliers correspond to plates 
which lost more weight than the other plates subjected to the same conditions 
of time and temperature. The residual distribution is asymmetric with a long 
right tail. There may also be some evidence of curvature and/or nonconstant 
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4.8 5.0 
Fitted Values 

(a) 

-1 0 1 
Gaussian Quantiles 

(« 
Figure 5.5. Least squares diagnostics for the corrosion resistance data: (a) residual plot; (ft) Gaussian 
qq-plot. 
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Table 5.3. Least Squares Fit to the Corrosion Data 

269 

Estimate Standard Error Ratio 

Time 
Temperature 

0.0354 
0.0116 

0.0289 
0.0049 

1.2243 
2.3602 

variation for the bulk of the data in the residual plot though this is difficult to 
judge in the presence of outliers. 

For later comparison, the least squares slope estimates, standard errors and 
the ratios of the parameter estimates to their standard errors are given in Table 
5.3. 

Notice that, if the Gaussian model (5.11) held (as we might mistakenly believe 
if we were to ignore the outliers), the ratios would have Student t distributions 
with 42 — 3 = 39 degrees of freedom under the null hypothesis that the 
corresponding coefficient in the model equals 0. This means that in this analysis, 
the coefficient of temperature would be significant but that of time would not. 

5.2.2 Huber's M-estimators for Regression 

The functions rj(x, r) = (xJr,r2 — l ) r are clearly continuous but unbounded 
in x and r. As in Section 5.4.1, we can obtain continuous, bounded versions 
of these functions by truncating the components of r\. In the present example, 
the values of the explanatory variable are known so we do not need to bound 
the estimating equations in x. We can therefore adopt the approach of 
Section 5.4 directly and consider the estimator based on r]{x, r) = (xTij/(r), #(r))T, 
where \}i{r) = max [ — c, min (c, r)] is the Huber ^-function and x(x) = 
min (k2, x2) - P(k), 

The arguments applied in Section 5.4.2 establish that the estimator based 
on r\{x, r) — (xTij/(r), #(r))T is consistent at the Gaussian model. The influence 
function of the estimator at a distribution G is 

lF(y, x); G, (f, a)) = BG(9{G)y > Jx, ^ — ^ ^ Y 
V ff(G) / 

where, with u = {y — a(G)}/a(G), 

I 
B c (0(G))=-

<x(G) 

Wu)dG(y) # ' ( " ) dG{y) 

ii>'{u)dG{y)n-1 X V?" 

Au)dG(y) ux'(u) dG(y) 
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because we have centered the covariates so that z = 0. It follows that the 
asymptotic variance of the estimator under G is 

n - ' B e W O r M e W G f l B e W G ) ) ^ , 

where, with u = {y — a(G)}/«r(G), 

/ 

Ac(e{G)) = 

<M")2 dG(y) 

ifr(u)2dG(y)n-1 Y.W1 

<j/(u)x(u) dG(y) 

iP(u)X(u)dG(y)) 

X(u)2 dG(y) 

Centering so that z = 0 ensures that the slope parameters /? are orthogonal to 
(a, a) and that the M-estimators of the slope parameters are Fisher consistent 
for the slope parameters in the core model even when G is an asymmetric 
distribution. That is, 9(G) = (oc(G), Pi, <r(G))T for any G (Carroll and Welsh, 
1988). The asymptotic covariance matrix n_1BG(0(G))"1/lG(0(G))BG(0(G))"T 

is block-diagonal only if j uij/'(u) dG(y) = | %'(u) dG{y) = \ \ji(u)x{u) dG(y) = 0 
(see for example Ruppert and Aldershof, 1989) which holds for the usual choices 
of ip and x when G is a symmetric distribution. Otherwise, the distribution of 
the intercept and the scale are asymptotically correlated. 

Under the Gaussian model, the asymptotic variances of f = (£, /T)T and 
6 are 

m 
(24>(c) - 1) 

Z xixj and 
a\y{k) - P(k))2 

(2<D(fc) - 1 - 2/c<K/c))2 

respectively, so the asymptotic efficiency calculations of Section 5.4.4 are 
applicable with the location parameter \x replaced by the regression parameter 
6. The influence functions of y and 6 at the Gaussian model are 

1 
2<D(c) - 1 

and 
1 

x\j/ 
y-x'y0 

24>(fc) - 1 - 2k(j>(k)' 
x 7o 

respectively, so the gross error sensitivity calculations of Section 5.4.5 need to 
be modified to incorporate the (constant) vector (n - 1 YH=i xtxj)~lx but are 
otherwise also applicable. 



CORROSION RESISTANCE OF STEEL PLATES 271 

The choice of c and k involves a tradeoff between efficiency at the model 
and robustness when the model does not hold. For the regression parameter 
y, the usual choice is to take c = 1.35 which yields 95% efficiency at the Gaussian 
model. Since a is a nuisance parameter in this problem, we may choose to make 
the efficiency/robustness tradeoff differently. A number of studies (Holland and 
Welsch, 1977; Hill and Holland, 1977; Denby and Mallows, 1977) have shown 
that good results for estimating 9 are obtained if we estimate the scale using 
the standardized median absolute deviation which corresponds to %(r) = 
sign {\r\ — 0.6745}. Essentially, the low efficiency of the scale estimate at the 
Gaussian model is compensated for by its maximal robustness against deviations 
from the Gaussian model. This choice is only attractive if we are interested in 
/?, because then we do not have to estimate the asymptotic variance of a in 
order to make inferences about /? and the inefficiency of a does not affect the 
efficiency of /?. This is not the case in general if we are interested in a but this 
problem is less common. 

5.5.3 Iteratively Reweighted Least Squares 

As pointed out in Section 4.2.6, estimating equations can be solved using general 
methods such as the Newton-Raphson method. However, the structure of the 
regression problem suggests an alternative iteratively reweighted least squares 
approach. If we rewrite the estimating equations for the regression parameter as 

o = L xM = X *,-wi(0) . 
,-=i V ff / 1=1 o 

where w,(0) = ^{(}\ — x]y)/a}/{(yi — xjy)/a}, and use estimated weights based 
on 0(m) = (yjm), er(m))

T, we can update y{m) using 

)Wu = | X X;w;(0<m))*7' \ X ^wj(0(ml)yi 

and ff(m) by recomputing the median absolute deviation explicitly for each y(m). 
Iteration of this procedure until n~x £"=i ri{xh (y, — xjyim))/a(m)} x 0 defines 
a sequence {ylm), oim)} which converges to a root of the estimating equations. 

5.5.4 Analysis Based on Huber's M-estimators 

The residual and qq-plot from the fit based on the Huber estimator with the 
median absolute deviation are shown in Figure 5.6. All the residuals, including 
the outliers, are shown in these plots. The residuals which are truncated in the 
fit are truncated to lie on the dotted horizontal line nearest to them and this 
is indicated by the arrows pointing to these lines. The residuals from the bulk 
of the data lie between these two lines. To make it easier to study, the region 
between the two lines in these plots is replotted on a larger scale in Figure 5.7. 
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Figure 5.6. Huber M-estimator diagnostics for the corrosion resistance data: (a) residual plot; 
(b) Gaussian qq-plot. 
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Figure 5.7. Huber M-estimator diagnostics for the bulk of the corrosion resistance data: (a) residual 
plot; (h) Gaussian qq-plot. 
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Table 5.4. Huber M-estimator Fit to the Corrosion Data 

Time 
Temperature 

Estimate 

0.0484 
0.0153 

Standard Error 

0.0111 
0.0019 

Ratio 

4.3810 
8.1748 

The plots in Figure 5.7 could be obtained directly by plotting (ph iA(r,)) instead 
of (pt, rt) and the qq-plot of \j/(r{) instead of r, except that the inclusion of the 
truncated points in the qq-plot introduces some distortion so it is also useful 
to examine a qq-plot of the untruncated bulk of the data. There is perhaps a 
hint of curvature in the residual plot, but otherwise the plots suggest that the 
fit is reasonable. The use and interpretation of residuals from robust fits have 
recently been discussed by Cook and Weisberg (1989) and McKean et al. (1993). 

The M-estimator slope parameter estimates, standard errors and the ratios 
of the parameter estimates to their standard errors are given in Table 5.3. 

The slope parameter estimates are slightly larger than in the least squares fit 
but the standard errors are substantially smaller so the ratios have increased. 
If we use the large sample Gaussian approximation or the more conservative 
Student t approximation, we now find that the slope parameters are both 
significantly different from zero. Thus the results of this analysis are different 
from those obtained from the least squares analysis. 

5.5.5 Analysis Based on Tukey's Bisquare Estimator 

In the analysis of the steel plate data in Section 5.5.4 based on the Huber 
M-estimator, it is notable that the outliers are downweighted but not to zero. 
In contrast, redescending M-estimators such as that based on Tukey's bisquare 
for which tp(r) = r(c2 — r2)2/(|r | < c) give extreme observations zero weight. 
This is illustrated in the residual and qq-plots for this fit with the usual values 
of c = 4.685 shown in Figure 5.8. The standard errors are slightly smaller than 
in the Huber fit but the results are qualitatively similar. 

Table 5.5. Tukey Biweight-estimator Fit to the Corrosion Data 

Estimate Standard Error Ratio 

Time 0.0505 0.0086 5.8950 
Temperature 0.0159 0.0015 10.9559 
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Figure 5.8. Tukey bisquare M-estimator diagnostics for the corrosion resistance data: (a) residual 
plot; (b) Gaussian qq-plot. 
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5.5.6 Generalized M-estimators 

If the covariates are stochastic, we may encounter moderate errors in all the 
covariates (the errors-in-variables problem, see for example Fuller, 1987), gross 
errors in the covariates at some points, or both. Both of these problems are 
difficult to treat because they are underspecified and because in many respects 
they are more naturally multivariate than regression problems. The gross error 
problem is arguably closer to the classical framework, but is complicated by 
the difficulty of specifying realistic core models for the covariates, particularly 
in high dimensions. 

The available approaches (Hampel et al., 1986, Chapter 6) have ignored this 
difficulty and simply tried to ensure that the estimating equation is bounded 
in both x and r by taking rj(x, r) = (u(x)xTip(r/v(x)), x(r))T, for appropriate 
choices of w() and v(-). We obtain Huber type estimators with u(x) = v(x) = 1, 
Mallow's estimators with u(x) = w(x), v(x) = 1, Andrews' estimators with 
u(x) = 1, v(x) = w(x), Hill and Ryan's estimators with M(X) = w(x), v(x) = l/w(x), 
and Schweppe's estimators with u(x) = w(x), v(x) = w(x). 

The weights w(x) can be obtained as w(x) = min {1, b/{z—fiz)
TC~ \z—fi2)}

1/2}, 
where x = (1, zT)T, b is a tuning constant, fiz and Cz are estimates of the location 
and variance matrix of z, possibly but not necessarily defined as M-estimators 
(see Hampel et al., 1986, pp. 319-22 and Simpson et al., 1992, for some of the 
possibilities). Less satisfactory proposals include w(x;) = (1 — hu)

1,2
y where 

hH = xj {£"= i xtxj}~ 'x,- is the leverage of the ith observation, and even simpler 
componentwise methods. In practice, these methods often need to be modified 
to allow different treatment of fixed and stochastic covariates in the same model. 

5.5.7 High Breakdown Estimators 

We have avoided discussing the breakdown properties of the bounded influence 
estimators partly because they depend on assumptions about the covariates 
and partly because they are disappointingly poor. In particular, the breakdown 
point of an equivariant M-estimator is bounded above by l/(p + 1) (Hampel 
et al., 1986, pp. 296-99). This difficulty can be overcome by the class of 
S-estimators (Rousseeuw and Yohai, 1984) which are solutions to 

min s(y), 

where s(y) satisfies the equation n'1 ]£"=i p{(y>i — *7)0/s} — K = 0, with K = 
J p(z)<j>{z) dz. Under regularity conditions, S-estimators have the same asymptotic 
distribution as M-estimators based on \\i = p' but very different breakdown 
properties. To achieve high breakdown, \J/ = p' must redescend as in the Tukey 
bisquare estimator. In this case, p'(r) = r(c2 — r2)2I(\r\ < c) and we achieve 
50% breakdown (and 28.7% efficiency at the Gaussian model) with c = 1.547 
and K =0.1995. More reasonably we achieve 25% breakdown (and 75.9% 
efficiency at the Gaussian model) with c = 2.937 and K = 0.3593. The fact that 
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the stochastic properties of S-estimators and M-estimators are the same but 
the breakdown properties are not (a phenomenon which also occurs with 
M-estimators and one-step M-estimators, see Simpson et al., 1992) emphasizes 
that breakdown is not a stochastic property. 

PROBLEMS 

5.5.1. Use robust methods to explore the relationship between the change in 
total catecholamine and the change in the volume of urine produced by 
the ingestion of caffeine (Section 1.1.3) and compare your results to those 
obtained using least squares methodology. What do you conclude? 

5.5.2. Compare the analysis of the data from the second enamel covered steel 
plate experiment in Problem 1.5.9 using least squares and robust 
methods. 

5.5.3 Suppose that we have independent observations Z 1 ? . . . ,Z„ which we 
assume follow the Pareto model 

f " KXK ) 
^ = |/(y; V = n T T . ^ A: K,x > oj. 

Suppose initially that X is known. Find the influence function of the 
maximum likelihood estimator of K and show that the estimator is not 
robust. Define a robust estimator of K and show how you would use it 
to obtain a 95% confidence interval for K. What modifications should we 
make if X is unknown? 

5.5.4. Suppose that we have independent observations Z with distribution 
function F0 and that we entertain the model 

& = {/(z; K, X) = ft = ^ - ^ z r 1 exp (-Xzt), zx > 0: X > o j 

for the data. Show how to modify the method of moments estimators to 
construct bounded influence estimators of X and K. Discuss the choice of 
any tuning constants you need to specify and show how to set an 
approximate confidence interval for K. 

5.5.5. Suppose that 

yi = xjy + aeh yeW, a > 0, 
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with {e,} independent and identically distributed random variables with 
common distribution F0. Assuming that the estimator y defined by 

mins(y), 

where s(y) satisfies the equation n~1 £"= t p{(y; — xjy)/s} — K = 0, with 
K = j p(z)(j)(z) dz, is consistent for y0, obtain a large sample approximation 
to the sampling distribution of f 

5.6 TESTS BASED ON A/ESTIMATORS 

One way to explore the possibility of curvature in the relationship between 
log weight loss, time and temperature is to expand the model to include 
quadratic terms so that x,- = (1, (x n — x j 2 , (x2i — x2)2, (xu — xx){x2i — x2), 
xu — Xj, x2l■,— x2)T, y = (a, /J1( fi2, P3, j54, /?5)

T and then test the hypothesis 
H0: fii = fi2 = p3 = 0 against the general alternative. 

In terms of the general multiple regression model, the null hypothesis can 
be expressed as H0: HT9(F0) = 0, where HT = (0, /,, 0) (with q = 3) and 6(F0) = 
(OL(F0), /?J, a{F0)

2)T. If we reparameterize by reordering the parameters so that 
the intercept a is the last rather than the first component of y (and making the 
analogous change to xf), the hypothesis is in the form used in Section 4.5. 
However, if we are careful and keep track of terms, we do not have to make 
the reparameterization explicitly. 

5.6.1 Wald, Score, and Likelihood Ratio Tests 

If we fit the model using an M-estimator, the general results of Section 4.5 are 
applicable. In the particular case of Huber-type M-estimators for which 
rj(x, r) = (xTij/(r), x(r))T, the structure of the asymptotic covariance matrix and 
the fact that the hypothesis involves only slope parameters which are orthogonal 
to the intercept and scale parameter, produces important simplifications. First, 
the hypothesis involves only slope parameters fi0 which are always estimable. 
This means that we do not have to deal with bias in thinking about the 
hypothesis. Second, in the notation of Section 4.5, we find that with u = 
(y - H(F0))/<J(F0), we have that 

11 

Thus the Wald, score, and likelihood ratio test statistics are straightforward to 

and 

wy)n 

J Wu) dF0(y) 

J Hu)2 dF0(y) 

(U'(w) dF0(y)Y 

T 1 Z 2tzJ 

n'1 t ziZJ 
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compute and the asymptotic approximations to their sampling distributions 
are very simple. 

The Wald test statistic for testing H0 (Markatou et al., 1991, p. 205) is 
from (4.31) 

W = 
n-11 r 

T * \ I 2 

n'1 I -A 
i= l \ 6 

yi-xjy^2 ny\ n'1 Z ztzj yi> 

where yt is the vector of the first q components off, and the score test statistic 
(Markatou and Hettmansperger, 1990) is from (4.32) 

S = ""* £ ' = ' zn Wat ) ! ! " ' 1 I ? - i z . -*r r l 7 - i Z ^ C I H ) 

where rKi = (>>; — xJyR)/aR and z a is the vector of the first q components of zf. 
If >j(x; 0) = dp(x, 9)/8G (so we maximize p to estimate 0), the likelihood ratio 
test statistic is 

A = 2 Z P 
>"; - */?« 5> y , - x-y 

Under local alternatives H„: HT60 = n~1/2^, it follows directly from Sections 
4.5.7 and 4.5.9 that the Wald and score test statistics have asymptotic noncentral 
X2(<5) distributions with noncentrality parameter 

§_{^'(u)dF0(y)}2 

j <Ku)2 dF0(y) 
n"1 I ztzj L 

and hence that they have %2 distributions under H0. From Section 4.5.11, the 
likelihood ratio test statistic A has asymptotically the same distribution as 

where Nt are independent N(0, 1) random variables 1 < i < q, w, are the 
eigenvalues and Q is the matrix of eigenvectors of the matrix 

{BFo(6(Fo))1'}"1/2
 VFOWO))! I {BG(6(G)Y'}" 
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However, 

{Sfo(0(Fo))n}^Kfo(0(Fo))n = n t - i , / , f l , ™ _^(u)2dF0(y)Iq 

so w; = {J \jj'(u) dF0(y)}'! j ip(u)2 dF0(y) and g = /. Hence 

J*'(«)rfF„(jO « 

or, equivalently, by Theorem 4.2 

"",?, *("/-)' 
which is the result of Schrader and Hettmansperger (1980). 

The Wald and score tests can be applied immediately to the problem of 
evaluating curvature in the steel plate example. The score test has the advantage 
that the large sample approximation to its sampling distribution is usually 
better than for the Wald test. (Also it does not involve ty so can be used 
straightforwardly even when i)/ is not smooth.) The likelihood ratio test cannot 
be applied directly in the steel plate example because rj is not constructed by 
differentiating a single criterion function p. 

5.6.2 Modified Likelihood Ratio Tests 

Richardson and Welsh (1996) show that we can modify the likelihood ratio 
test to 

where \jj{x, 6) = dp*(x, 6)/dy. The advantage of this statistic over the likelihood 
ratio statistic is that it is usually much simpler to obtain p* than p. We can 
show that under local alternatives H„, 

.-. t *■(*=& 

•-i/CS^)1' 
so the asymptotic properties of A* are the same as those of the other test 
statistics (Problem 5.6.3). 
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5.6.3 Application to the Steel Plate Data 

The diagnostics for the expanded model are very similar to those obtained in 
Section 5.5. The test statistic, the normalized version of A* based on the Huber 
i// function, is 1.699 which is not significant when compared to a xl (or more 
conservatively a F(3, 36)) distribution. There is therefore no strong evidence of 
curvature and our simpler initial model is an adequate description of the 
relationship between weight loss, time, and temperature. 

5.6.4 Other Approaches to Model Selection 

A different approach to model selection is to try to minimize a predictive 
criterion. The criteria of Akaike (1973), Mallows (1973), and Stone (1977) are 
distinguished by the different penalties they impose for including excess terms 
in the model but are otherwise very similar. Ronchetti and Staudte (1994) have 
recently developed a robust version of Mallows' proposal. 

However we arrive at the final model, and whether we use robust methods 
or not, we need to keep in mind that the standard errors computed from the 
final model do not take the selection process into account and are therefore 
smaller than they should in fact be. While the standard errors can be interpreted 
conditionally, it is not always clear that this is appropriate. See the discussion 
in Section 1.5. 

5.6.5 Robustness of Tests 

The test statistics of Section 5.6.1-5.6.2 were based on robust estimators of the 
parameters, so intuitively they should be robust. That this is the case has been 
shown in considerable generality by Heritier and Ronchetti (1994) by extending 
earlier work of Ronchetti (1982) and Hampel et al. (1986, Chapter 7). Heritier 
and Ronchetti explored the effect of contamination on the level and power of 
tests by defining level and power influence functions. They showed that these 
are functions of the influence function of the underlying estimator and so inherit 
the properties of the underlying estimator. This is intuitively reasonable and 
means that we do not have to develop a new theory for tests. 

Finally, as discussed in Section 4.5, we can also use the tests to construct 
robust approximate confidence intervals for the parameters. 

PROBLEMS 

5.6.1. Test for curvature in the second enamel covered steel plate experiment 
of Problem 1.5.9 using least squares and robust methods. 

5.6.2. Analyse the steel plate corrosion data (Section 1.1.5) using the 
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(incomplete) two-way classification model 

ytjk = H + <*i + Pj + (a/?)y + eijk, 

i = l , . . . , 5 , 7 = 1,2,3, (i,j) # (5, 3), fe = 1,2,3, 

where {eijk} are independent N(0, a2) random variables at the core model, 
discussed in Section 1.2.5. Compare your conclusions to those obtained 
by fitting the regression model in Section 5.5. 

5.6.3. Under the model (5.11) consider the statistic 

A* = 2|I^(^-i/(^ 

where 7 is the M-estimator defined by Yu=i xi^{(yi — xlf)l&) — 0 w ' t n 

ij/(x) = dp*(x)/dx and yR is the same M-estimator under H0: HTy0 = 0. 
Assuming that y and j R are consistent for y0, show that under local 
alternatives H„: HTy0 = n_ 1 2£, 

where 

«_1 I v yi - xJy 

n-1 I * 

$Mu)2dG(y) 
{\nu)dG{y)}lQ 

T A \ 2 A* ~ £{S), 

n'1 I ziZJ 
i = l 

«• 

5.7 OTHER APPROACHES TO DISTRIBUTIONAL 
ROBUSTNESS 

We have argued that for an estimator to be robust, it should have a 
continuous, bounded influence function in a neighborhood of the model 
and a reasonable breakdown point. This approach is essentially the influence 
function or the infinitesimal approach developed by Hampel (1968; 1971; 1974) 
and expounded in Hampel et al. (1986). Hampel placed the focus more firmly 
on the core model & and emphasized the importance of boundedness of the 
influence function or, equivalently, finiteness of the gross error sensitivity at the 
model &. Estimators for which the gross error sensitivity is finite are called 
B-robust because their approximate bias is bounded. These estimators do not 
necessarily have a continuous influence function but insisting on this sensible 
requirement causes no particular difficulty. 
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5.7.1 Qualitative and Quantitative Robustness 

Hampel (1968; 1971) also introduced the concept of qualitative robustness to 
formalize the requirement that an estimator have close to its assumed properties 
when applied to distributions close to those in &. Essentially, this requirement 
is satisfied if the distribution of the estimator changes only very little when the 
model changes a little and this can be viewed as a continuity requirement on 
the estimator. Qualitative robustness is not easy to check because it requires 
us to treat the estimator as a function on the space of distribution functions 
and to deal with appropriate norms on this space. Moreover, qualitative 
robustness can identify some procedures as nonrobust (such as the sample mean 
for the Gaussian model) but it does not help distinguish between procedures 
which are qualitatively robust. Quantitative measures like the gross error 
sensitivity and the breakdown point are required for this purpose. Qualitative 
and B-robustness turn out to be closely related but are not identical. See for 
example Staudte and Sheather (1990, Section 3.2.4), Hampel et al. (1986, 
Sections 1.3d and 2.2b) and Huber (1981, Section 1.3 and Chapter 2). 

5.7.2 Optimal 8-Robust Estimators 

As we saw in Section 5.4, robustness requirements typically lead to some loss 
of efficiency. This can be viewed as a form of insurance policy - we trade off 
optimality under the assumed model for protection against deviations from that 
model. However, it is desirable to achieve a balance between the two require-
ments and insist that the estimator be consistent and reasonably efficient for 
distributions in the model &•. Subject to a bound on the gross error sensitivity, 
Hampel and Krasker (see Hampel et al., 1986, p. 40) proved that the most 
efficient estimator at the model (the optimal B-robust estimator) is obtained by 
truncating the maximum likelihood estimating equations while making sure 
that the estimator is consistent at the core model. See Hampel et al. (1986, 
Section 4.3). 

5.7.3 ^-Robustness 

Just as we derived the influence function as a linear approximation to an 
estimator, we can obtain linear approximations to both the gross error 
sensitivity and the asymptotic variance and use them to explore the effects of 
infinitesimal contamination on these functions. These linear approximations are 
called the change of bias and change of variance functions respectively. An 
estimator with a bounded influence function (finite gross error sensitivity) is 
called B-robust and one with a change of variance function which is bounded 
above (finite change of variance sensitivity) is called V-robust (Rousseeuw, 1981; 
Hampel et al., 1981; Hampel et al., 1986, p. 131). The requirements for 
K-robustness are slightly stronger than those for B-robustness, but they are 
closely related concepts. 
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5.7.4 High Breakdown Estimators 

For structured data, B-robust M-estimators often have poor breakdown 
properties. For this reason, Rousseeuw (1984) and Rousseeuw and Yohai (1984) 
have argued that we should place the emphasis on finding high breakdown 
estimators rather than B-robust estimators. The concept of breakdown can be 
quite elusive, particularly in structured problems. For example, the highest 
possible breakdown point for estimating location in a single sample problem 
is 50% but for estimating both locations (or the difference in location) in a two 
sample problem is only 25%. Thus structure generally seems to decrease the 
highest attainable breakdown point because breakdown occurs more easily. 
Often the biggest problem with high dimensional data is that of collapse to 
lower dimension. This is important for variance estimation and for the large 
number of procedures (including regression) which involve standardization by 
an estimate of the variance matrix. Although we have defined breakdown to 
occur when an estimator moves to the boundary of the parameter space (Section 
5.1.5), serious consequences may occur before the boundary is attained. Finally, 
high breakdown estimators can have unexpected properties (Rousseeuw and 
van Zomeren, 1990, which includes discussion; Hettmansperger and Sheather, 
1992 and letters in response in 1993). 

5.7.5 Minimax Robustness 

The infinitesimal approach derives the influence function by considering an 
infinitesimal neighborhood of the model 3F but uses the influence function to 
extrapolate beyond this neighborhood. In some circumstances, it is possible to 
consider a fixed neighborhood of !F. Huber (1964) defined a neighborhood of 
the model in which the parameters of interest are identifiable and then found 
the distribution in this neighborhood (known as the least favorable distribution) 
such that an observation from this distribution has the least possible information 
about the parameters of interest. Any estimator (such as the maximum 
likelihood estimator) which is asymptotically efficient for the least favorable 
distribution minimizes the maximum possible variance, so is called a minimax 
estimator. Although we use the least favorable distribution to generate estimators, 
we do not believe that it describes the data generating process. Huber's 
approach turns out to be related to K-robustness rather than B-robustness. 
(The minimax bias problem leads to the most B-robust estimator; see for 
example Martin and Zamar, 1989.) Minimax theory is often regarded as 
pessimistic but is surprisingly optimistic in this problem in the sense that the 
least favorable distribution is less extreme than might be expected. One 
disadvantage of the approach is that it does not generalize nicely to arbitrary 
models. In addition, the fact that the parameters need to be identifiable over the 
whole neighborhood of & restricts the nature of the neighborhoods we can 
consider. This is unrealistic insofar as we have no control over the contamination 
and cannot reasonably insist that it is only of a particular form. 
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5.7.6 Local Contamination 

Huber-Carol (1970), Bickel (1978), and Rieder (1978; 1980) considered shrinking 
neighborhoods of the model fF which reduce to & as n -> oo. Essentially, this 
means that we adopt a model which holds exactly asymptotically but not 
necessarily for finite n. Thus, the robustness problem is viewed as a finite sample 
problem. However, in practice, model fit tends to become poorer rather than 
better in large samples (see the discussion on testing Section 3.4.5) so the 
practical value of the approach is unclear. 

5.7.7 Tukey's Approach 

The end result of the Huber minimax approach is that we use the least favorable 
model to generate estimators of the parameters in &. In a sense, we use a single 
model to represent the whole neighborhood of F. Tukey (1981) has suggested 
that letting one distribution represent a neighborhood can be improved on by 
letting a small, finite set of distributions (called pencils) represent the neighbor-
hood. Tukey calculates Pitman estimators (Section 3.1.5) for each of the 
distributions and produces a single estimate by taking linear combinations of 
these. These estimators are not necessarily robust in the sense of Hampel or 
Huber but seem to work quite well. Accessible presentations of these ideas are 
given by Morgenthaler (1986; 1987). 

5.7.8 Likelihood Ratio Approaches 

Huber (1965; 1968) explored bounding log-likelihood ratio test statistics and 
trying to maximize the minimum power over all alternatives. This approach 
leads to an exact finite sample theory but involves quite deep mathematics and 
seems difficult to extend beyond the location problem. 

5.7.9 Nonparametric Approaches 

All of the approaches discussed in Sections 5.7.1-5.7.8 involve a central 
parametric model !F. Parametric models are useful for simplifying the treatment 
of complex structural data, providing compact descriptions, making predictions, 
guiding statistical analyses, and shedding light on physical mechanisms. One 
response to the recognition that models do not hold exactly is to argue for 
nonparametric methods based on weaker, more complicated models. However, 
nonparametric methods may or may not be robust. In particular, the sample 
mean and sample variance are nonparametric estimators of the underlying mean 
and variance but are not robust (Section 5.1.7). At best, procedures based on 
these estimators enjoy robustness of validity but not robustness of efficiency 
(Section 5.1.2). 

Generally, the focus in nonparametric methods is on validity rather than 
efficiency. Even when there is a focus on efficiency, as in the Gauss-Markov 
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theorem, the result needs to be interpreted carefully. The Gauss-Markov 
theorem states that among all linear, unbiased estimators of the population 
mean, the sample mean has smallest variance. It omits to point out that, except 
at distributions which are very close to Gaussian, all linear unbiased estimators 
are poor so that the sample mean is the best of a bad lot. See Section 3.1.6. 
Nonparametric methods still require assumptions such as symmetry and 
independence, and departures from these are of interest. 

Two approaches to robustness for nonparametric methods have been 
adopted. Bickel and Lehmann (1975a,b; 1976) based their approach on the 
asymptotic relative efficiency of procedures over nonparametric neighborhoods 
of nonparametric models. The asymptotic relative efficiency depends on the 
underlying distribution F0, so they tried to find lower bounds over the whole 
neighborhood. These bounds tell us the worst loss but give no idea of the 
greatest gain. Some idea of the magnitude of gains can be obtained by 
considering specific distributions F0. In the second approach reviewed recently 
by Rieder (1991), robustness is a property of the parameter being estimated 
rather than of the method of estimating the parameter. The idea is that the 
value of the parameter viewed as a function of the underlying distribution 
should change little as the distribution changes. This leads to a continuity 
requirement on the parameter. 

5.7.10 Data Analytic Approaches 

Finally, the oldest informal approach to robustness (which is still a common 
practice) is to examine the data for obvious outliers, delete these outliers, and 
then apply the optimal inference procedure for the assumed model to the 
cleaned data set. The idea behind this approach is to avoid having to deal with 
robust estimators. However, note that: 

• It can be difficult to formalize this process so that its properties can be 
studied. 

• It can be difficult to identify outliers. 
• It is difficult to construct procedures which have high power. 

• It is difficult to apply in complicated problems (such as multiple regression) 
where we cannot examine the relationships in the data without first fitting 
a model. In this case, we usually need to use robust estimators in the initial 
model fitting stage. 

• Inference based on applying a standard procedure to the cleaned data will 
be based on distribution theory which ignores the cleaning process and 
hence will be inapplicable and possibly misleading. 

While outlier deletion is arguably better than not doing anything at all, it is 
better to use robust methods which overcome the difficulties outlier deletion 
methods face. 
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5.8 LIKELIHOOD AND BAYESIAN THEORY 

Consider again the stellar velocity data and the problem of making inferences 
about a in the Gaussian model (5.1.). Recall that the likelihood of (n, a) under 
(5.1) is 

/(Z '̂ff) = ( 2 ^ e X 4 ~ 2 ^ " ^ 4 ' (*ff)eR X P*** 
For each fixed a, the likelihood is maximized at //(er) = z so replacing pi by 
jl(a) = z, we obtain the profile likelihood for a 

fiz; u(a), a) = ---— exp < -}, a > 0. 
{2na2T12 F l 2<r2J 

The scaled profile likelihood is the likelihood ratio 

7 ( z ; ^ ) - = U e X P i - ^ +
 2 j ' ff>°- (5J2) 

5.8.1 Sensitivity of Profile Likelihoods 

We can explore the sensitivity of the profile likelihood to an additional 
observation at a point x exactly as we did in Section 5.1.5. Using the results from 
Section 5.1.5, the effect on the likelihood of a single observation at x is 

f(z; x; z(x), a) _ ja(x)\" J w(x)2 n) 

]^JM,~&W) = l~^~J e x p l~ ~^~+ 2j 

where 62(x) = {n/(n + l)}&2 + (n + l)~2n(x — z)2. This function is plotted for 
the disk data and selected x in Figure 5.9. We observe that as x increases, the 
location and spread of the profile likelihood increase. 

5.8.2 Robust Likelihoods 

Just as we obtained robust parameter estimators in Section 5.4 by modifying 
the maximum likelihood estimating equations, we can consider modifying the 
likelihood to obtain a robust likelihood. In particular, if the estimating function 
X"= i f(Zf; 0) satisfies rj(x; 8) = dp(x; 6)/d0 for some p with appropriate proper-
ties. we obtain a likelihood when we take the likelihood proportional to 
exp {— X"=i p(Z,-; 6)}. It is a minimal requirement that the mode of the 
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Figure 5.9. The sensitivity of various profile likelihoods for the disk data to an additional 
observation at x: Gaussian likelihood, dotted line; Laplace likelihood, dashed line; t3 likelihood, 
solid line, (a) x = 0;(b)x = 10<r; (c) x = 2<M. 

likelihood 9 be robust when viewed as an estimator but we also require at least 
the Hessian (the second derivative of p) to be robust. 

If as an alternative to the Gaussian likelihood, we adopt the likelihood from 
the Laplace model which is 

J<f(ti, a) oc exp 
< = l o-

nlog(ff)>, (/z, o-) e U x [0, oo), 
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the profile likelihood for a is 

i JH. 17. --mGdlllTlf 7^ I 1 
if (median(z), a) oc exp < — £ — nlog(o)>, a > 0, 

(. i = l <T J 

so the scaled profile likelihood is 

} " |z,-median(z)| / " |zrmedian(z)|\l e xP ) ~ L + n + n log I n ^ I >, <J > 0. 

(5.13) 

This function is less sensitive than (5.12) but, as is shown in Figure 5.9 is not 
robust either. The reason is that this function is maximized by 

n 

a = n~l YJ I z,-mecnan(z) I 
i = 1 

which is not robust. 
A better choice is to use the likelihood from the Student t model with 

fixed, small degrees of freedom, say v = 3. In this case, the robust likelihood is 

£{», a) oc a~' exp j - f —-- log M + ( Z ^ ) - j l , (/i, a) e R x [0, oo). 

To obtain the profile likelihood for <r, we need to fix a and optimize over fi. 
That is, for each fixed a, let n(a) satisfy 

Z,. - fi 

1 + 
Y —?—r^ = 0. 
ih f, . (Zf - M)2^ 

Then the profile likelihood for CT is 

v±i,ogfl+^^ff»2 

i = l 2 V V(7 
^ e x p | - E ^ l o g ( H ^ : 7 J ) [ , ff>0. (5.14) 

The scaled profile likelihood is plotted in Figure 5.9. Clearly, (5.14) is much less 
sensitive to the additional observation at x than either (5.12) or (5.13). 

As in Section 5.4.9, we can usefully think of the data as arising from a 
contaminated version <& of the underlying core model &. Although we use a 
model to generate a robust likelihood, we do not necessarily believe that it 
actually holds. This is why we can adopt the Student t model with fixed degrees 
of freedom to generate a likelihood; if we really believed in the model, it would 
be more natural to treat v as a parameter and concentrate it out too. 
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There is more to be said about the choice of robust likelihoods but it is clear 
that the issues are related to those which arise in robust frequentist inference 
and therefore that those concepts will be useful in this context. 

5.8.3 Sensitivity of Posterior Distributions 

In a Bayesian analysis of the stellar velocity data based on the Gaussian model 
(5.1) and the Jeffreys prior (see Secton 2.3.2) 

g(H, a) oc a~l, (ft, a) e R x [0, oo), 

the joint posterior density of (fi, a) is 

g{n, a \ Z = z) oc --^ exp < - — -

I ^ T e x P 
vs 

'la2 
1 + 

2(72 

n(z - n)2 

vs 

so the marginal posterior density for a is 

g{a\Z = z) oc 
P°° 1 

n + l 
exp 

J - 0 0 ° 

oc -
a 

1 
-—exp 
v+ 1 r 

V 

_~2< 

L 
s2~ 

{vs2 + n(z - n)2} 

2a2 . 

o > 0 , 

dfi 

by a standard integration result. That is a | Z = z ~ v1/2s^v
_1, where / v

- 1 is a 
random variable with the "inverse x" distribution with v degrees of freedom. 
(See 6bv in the Apendix). The marginal posterior density of a is the same as 
the profile likelihood for a so its sensitivity (and consequent lack of robustness) 
to extreme observations is revealed in Figure 5.9. 

5.8.4 Bayesian Robustness 

In a Bayesian analysis we need to be concerned about the robustness of both 
the choice of likelihood and the choice of prior. Procedures which are robust 
against the choice of prior are said to be posterior robust while those that are 
robust against the choice of model are said to be inference (Box and Tiao, 1973, 
p. 152) or model (Berger, 1985, p. 248) robust. Actually, there is no fundamental 
distinction between the two types of robustness since the choice of model can 
be interpreted as a form of prior specification. This means that the ideas in 
Section 2.2 on the choice of prior can be viewed as relevant to the choice of 
model. 

The basic idea behind posterior robustness is that it is often difficult to 
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determine a single unique prior distribution for a given problem but that it is 
fairly easy to determine a set of plausible prior distributions. If the inference 
based on each of the prior distributions in the plausible class is similar, then 
the inference is posterior robust. See Section 2.2.7. As applied to the choice of 
likelihood, these ideas suggest that we consider a model ^ which contains our 
proposed model 3F as a special case and then explore the effect on our inferences 
of using different likelihoods from CS. Inference or model robustness holds when 
the inferences drawn under the assumed model are insensitive to departures 
from the assumed model. 

An important aspect of inference or model robustness is that it is a 
conditional property in the sense that it depends both on the model <$ and the 
data at hand. The choice of'S is important because if it is too small, robustness 
is meaningless while if it is too large, robustness will often be unattainable. One 
way to specify ^ is to think about the kinds of departures from the models 
which ought to be captured. Specifically, if we are concerned about extreme 
observations, then a class of longer-tailed model distributions should be 
considered. If ^ consists of a class of longer-tailed distributions than in 3F, then 
inference or model robustness holds only if there are no extreme observations 
in the data and, in this case, we can use inferences based on &. 

5.8.5 Inference Robustness 

Box and Tiao (1973, pp. 156-96) suggested embedding the Gaussian model 
(5.1) in the exponential power family for which 

9 = [f(z; /i, a, p) = fl X- hp (^~). 

-oo < 2j < oo; —oo < yu :S oo, ff > 0, — 1 < /? < 1 >, (5.15) 

where hp(x) = c(P) exp {-|T{3(1 + 0)/2}/T{(l + j3)/2}]1/,1+'»|x|2/<1+',)}, with 
c(P) = [r{3(l + j3)/2}1/2/(l + J8)r{(l + j3)/2}3/2]. The exponential power family 
is Gaussian for /? = 0 but includes both longer- and shorter-tailed distributions 
(we obtain the Laplace distribution for /? = 1 and the U( —N/3, y/3) distribution 
as/?-> - 1 ) . 

We can also embed the Gaussian model (5.1) in the Student t model 

9 = \gtea,v)= n ^ v p ^ V - c o < z , . < o o , ( j > 0 , v > o i , (5.16) 

where gv(x) = [T{(v + l)/2}/(7cv)1/2r(v/2)]{l + x2/v}~<v+1, /2 denotes the density 
of the Student t distribution with v degrees of freedom. The Student t 
distribution has longer tails than the Gaussian distribution (5.1) which we 
recover as v -> oo. 
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Given the data z, we need to study how inferences (specifically the posterior 
distributions) change as a function of ft or v. The inferences are inference or 
model robust if they are insensitive to the value of /? or v. Alternatively, we can 
treat jS or v as regular parameters and implement a full Bayesian analysis or 
(analogously to the frequentist approach) use a fixed conservative value of fi 
or v. 

If we use the Student t model with fixed degrees of freedom, we have 

(H,ff)eU x [0, oo), 

and hence the marginal posterior density for o 

g{a | Z = z) oc 
^2 

^M-i^M'+^n*. *>0-
We can either use numerical integration (Section 2.1.7) or Laplace's method 
(Sections 4.6.2 and 4.6.4) to approximate the integral to obtain the marginal 
posterior density for a. Some other approaches are discussed in Sections 
6.8.5-6.8.7. 

PROBLEMS 

5.8.1. Suppose that we adopt the Weibull model 

2F = |/K(z; A) = f l KAOZ,)""1 exp {-(Xzt)*}, zt > 0: / > 0} 

with fixed K and the Jeffreys prior for / for the pressure vessel data. For 
fixed K, find the posterior density of X. Plot the posterior density of X for 
selected values of K and discuss the robustness of inferences based on an 
exponential model. Repeat the analysis with the data of Problem 1.5.4. 

5.8.2. Suppose that we adopt the exponential power family (5.15) and the 
Jeffreys prior for the change in the volume of urine due to the ingestion 
of caffeine data presented in Section 1.1.3. Show that the marginal 
posterior density of fi is 

r n ")-n(l+0>/2 

^ | z ) o c n"1 E l * / " / * ! 2 " 1 * " 
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Plot the marginal posterior density of \i for selected values of /? and 
discuss the robustness of inferences based on a Gaussian model. 

5.8.3. Suppose that we adopt the exponential power family (5.15) and the 
Jeffreys prior for the velocities of the intermediate stars presented in 
Section 1.1.4. Adopting the simplifying assumption that n = 0 is known, 
plot the posterior density of a for selected values of /? and discuss the 
robustness of inferences based on a Gaussian model. 

5.8.4. Suppose that we adopt the exponential power family of (5.15) and the 
Jeffreys prior for the velocities of the intermediate and halo stars 
presented in Section 1.1.4. Assuming that [i = 0 in both cases, show that 
the posterior density of 6 = <T1/<T2 >S 

r ™ 2 i 7 i 2 / ( i+ /»>" ) - (B+mi+ /» ) /2 

^ i ' ) « g ' ^ + o 2 / < i + w ^ : ; | z " | , / a + 4 . e>°> 

with n = nl + n2. Plot the posterior density of 6 for selected values of ft 
and discuss the robustness of inferences based on a Gaussian model. 

FURTHER READING 

The books by Staudte and Sheather (1990), Rousseeuw and Leroy (1987), 
Hampel et al. (1986), and Huber (1981) all contain accessible, philosophical 
material on frequentist robustness but differ in the mathematical level they 
demand. Box and Tiao (1973, Chapters 3 and 4) and Berger (1985, pp. 248-50) 
are important references for the Bayesian perspective. 



C H A P T E R 6 

Randomization and Resampling 

Randomization is the use of a controlled random process to introduce randomness 
additional to that inherent in the data into the data collection procedure or 
the analysis of the data. There are four recognizably different uses of random-
ization: 

1. Randomization can be used after the data have been collected to jitter or 
smooth the data. 

2. Randomization can be used during or after the data collection process to 
protect the confidentiality of participating units. 

3. Randomization can be used in the design of an experiment or sample 
survey to select units, allocate treatments to units, etc. 

4. Randomization can be used as a basis for inference. 

Our primary focus on randomization in this chapter is on the use of 
randomization as a basis for inference (Sections 6.3-6.5) but we will discuss 
1-2 briefly below and 3 in Sections 6.1-6.2. 

We explicitly used randomization in form 1 in Section 3.7.3 where we 
overcame the difficulties caused by the discreteness of Z by using the distribution 
of Z + U, with U ~ U(0,1) independent of Z, to set exact confidence intervals. 
We also used randomization in form 1 implicitly in Section 1.5.1 because the 
kernel density estimate based on {Zu . . . , Z„} can be interpreted as the density 
of Z; + hUi, where {(/;} are independent of {Zj and independent and identically 
distributed with common density function K and h > 0. We will discuss this 
use of randomization further in Section 6.9.4. 

Government agencies which collect sensitive data are often required to 
maintain the confidentiality of the data. This is achieved by, amongst other 
things, restricting access to the data and, when data is released, providing access 
only to grouped data or data to which random noise has been added. This use 
of randomization in form 2 causes serious difficulties for secondary analysis of 
the data but does contribute to the preservation of confidentiality. A different 
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use for randomization in form 2 to protect the confidentiality of respondents 
and so encourage truthful response in sample surveys (due to Warner, 1965) is 
to incorporate randomization into the response to sensitive questions. Suppose 
we want to estimate the proportion n of cocaine users in a population. Each 
respondent is asked to conduct a private experiment (which is not observed by 
the data collector), the outcome of which is either the statement "I am a cocaine 
user" with probability 3/4 or the statement "I am not a cocaine user" with 
probability 1/4. The respondent is asked to answer "yes" or "no" according 
to whether the result of their private experiment is true or not. The data collector 
does not know the result of the private experiment and hence does not know 
the true status of the respondent but, under the assumption that P(cocaine 
user) = 7r for every member of the target population and that the answers are 
truthful, 

P("Yes") = In + |(1 - 7t) = \% + I 

so cocaine usage in the target population can be estimated from an estimate 
of the proportion of people in the target population giving "yes" answers. 
Applications of this methodology to explore drug usage are given by Goodstadt 
and Gruson (1975) and Brewer (1981). 

6.1 EXPERIMENTAL DESIGN 

In the caffeine experiment of Bellet et al. (1969), a baseline urine level z,0 under 
a control regime and a urine level zn after ingesting caffeine were observed for 
each subject. We decided to base our analysis on the pairwise differences 
z, = zn — z,0, i = 1 , . . . , n, which represent the change in the volume of urine 
produced by the ingestion of caffeine and in Section 1.2.3, we modelled 
z = ( z , , . . . , z„) as a realization of a random variable Z which is distributed 
according to the Gaussian model 

/(z; a, a) = f l 7 ^ 1 7 2 e xP \-iZ'~-2—}' zeW:fieU,cf> o j . (6.1) 
i=i{Ina ) ( la J J 

Under this model, the parameter of interest \i represents the mean change in 
the volume of urine produced and the nuisance parameter a1 represents the 
magnitude of the variability in the data. 

The caffeine experiment was described in detail by Bellet et al. (1969) as 
follows: 

Eighteen normal, young male subjects, aged 18-22 years, were included in this study. 
None was on drug therapy. Following 10 p.m. of the night prior to the experiment, 
they were instructed not to smoke, eat or drink; at 7:30 a.m. when arising, after 
voiding, they drank two glasses of water. All subjects reported to the laboratory at 
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8:30 a.m. They rested until 9:00 a.m. when they voided and immediately thereafter the 
experiments were started. In each subject the experiment consisted of the ingestion 
of 5 Gm. instant coffee (this contains 220 mg. caffeine and is equivalent to 2 cups of 
coffee) dissolved in 500 ml. water and a control study consisting in the ingestion of 
500 ml. water. The sequence of these control and caffeine experiments were [sic] 
randomized. Between the two studies, there was a free interval of at least five days. 
During both studies, the subjects rested in an armchair from 9:00 a.m. until 12 noon. 
Urine voided during this period was collected in bottles which contained 5 ml. HC1 
as a preservative. The subjects voided at the end of the three-hour period so that the 
entire amount of urine secreted during the three-hour period of the experiment was 
collected. During the experiments, the subjects were kept isolated, one in a room, 
in relaxed surroundings, with no smoking, eating or drinking. The urine collected 
was analysed for creatinine and catecholamine content (epinephrine and norepin-
ephrine) by the fluorometric method. 
Reprinted with permission from Metabolism. Copyright © (1969) by W.B. Saunders. 

Although it is not mentioned explicitly in the above description, the amount 
of urine voided by each subject under the two regimes was also recorded and 
is the basis for the modeling in Section 1.2.3 leading to (6.1). 

The caffeine experiment is a simple comparative experiment in which we 
observe urine and hormone levels with and without caffeine on n — 18 subjects. 
A properly conducted comparative experiment ensures the possibility of a 
logically sound conclusion: If the factor of interest (caffeine) is varied while 
everything else is held constant, changes in the observed response (urine or 
stress) must be caused by changes in the factor of interest. Obviously, we need 
to be able to separate changes in the observed response from background 
variability (the inference problem) and ensure that everything else is held 
constant (the design problem). The latter objective is achieved in two ways. 
First, if we can identify subject dependent factors which may affect the response, 
we may be able to control some of these factors by grouping (or blocking) 
similar subjects so that comparisons can be made over groups (or blocks) of 
similar subjects, or explicitly measuring them as covariates so that we can make 
an appropriate adjustment for their effects in the analysis. Second, those factors 
which we cannot control, perhaps are not even aware of, are controlled by 
randomization which ensures that, on average, they have no effect on the 
response. 

6.1.1 Blocking 

Suppose we rewrite the model (6.1) as we did in (1.21) so that the effect on 
subject i of treatment t is 

Zit = a + nt + Ai+ Uit, t = 0,1, i = 1 , . . . , n, (6.2) 

where the At are independent with identical Gaussian distributions with mean 
0 and variance a\ and are independent of the Uu which are themselves 
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independent with identical Gaussian distributions with mean 0 and variance 
<x2. The advantage of writing (6.1) in the form (6.2) is that the variability in the 
model is explicitly decomposed into a subject effect (A{) and a measurement 
effect (t/ir) and we can use (6.2) to examine the effect of different design strategies 
on controlling these sources of variability. 

One way to carry out the caffeine experiment would be to simply randomly 
allocate the subjects into one of two groups and give caffeine to one group and 
the control liquid to the other. In this experiment, inferences about the 
treatment effect n assess the sampling variability in terms of 

Var (Zn - Zvo) = 2(<r2 + a2
u), i * f. 

Clearly, if the between subject variance a2 is large and the treatment effect 
small, the between subject variance will obscure the effect of the treatment. 

We can control or reduce the variation in the experiment by blocking or 
grouping together homogeneous experimental units. Blocking could be achieved 
in the caffeine experiment by allocating subjects to pairs (blocks of two units 
are conveniently referred to as pairs) so that the two subjects in each pair are 
similar to each other and then randomizing one member from each pair to 
receive the treatment and the other to receive the control. We can do even 
better by using each subject as his own control because each subject is obviously 
perfectly matched to himself. That is, each subject is observed both after 
ingesting the control liquid and after treatment. In this case, inferences about 
the treatment effect n assess the sampling variability in terms of the within 
subject variability 

V a r ( Z r i - Z j 0 ) = 2<i2 = <x2. 

Blocking therefore removes <x2, the between subject variability, and thereby 
increases the precision of the inferences. 

6.1.2 Replication 

We need to replicate the urine experiment on n independent subjects in order 
to estimate the variability (represented in (6.1) by a2), increase the precision of 
our inferences and extend the range of validity of the experiment. We can use 
the idea of achieving a predetermined precision in our inferences as a basis for 
specifying the sample size n. 

Under (6.1), the sampling variance of the mean Z is a2jn so if we knew a, 
we would set a 100(1 — a)% confidence interval for p as a realization of 

Z±n-1 / 2ff<D_ 1(l - a / 2 ) . 

If we want to estimate \i to within a desired level of accuracy A, we 
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require 

2n-1/2<T<D-1(l -<x/2)< A 

or 

4cr2<D-1(l - a / 2 ) 2 

This calculation requires us to know at least an upper bound for a2 and to 
specify A but is otherwise straightforward to use. 

Alternative sample size calculations can be formulated in terms of the 
required power for detecting a particular alternative, in terms of achieving a 
specified relative standard error (denned as a/n\Z\) and so on. These alternative 
calculations suggest slightly different sample sizes. 

6.1.3 Randomization 

Randomization was used in the caffeine experiment to specify the order in which 
each subject received the control and the treatment liquids. Formally, a design 
D for the urine experiment is a vector of length n in which the ith entry specifies 
the order in which the ith subject receives the treatment and control liquids. 
Notice that the design works within the block structure we have imposed. We 
can construct the space & of all possible designs which is the set of all 2" 
n-vectors with binary entries and then think of the randomization process as 
treating all of these designs as equally likely and selecting one of them from 2. 

In general, the purpose of randomization is threefold: 

1. To protect the experimenter against unconscious bias leading to allocations 
which favour the achievement of desired results. 

2. To prevent extraneous factors from having a systematic effect on the 
results and hence prevent systematic bias and confounding (i.e., the 
impossibility of separating the effect of the extraneous factors from the 
effect of the treatment). 

3. To ensure that the assumption of independent errors is reasonable and 
hence that the estimate of experimental error (reflected in the model S' 
by a2) is meaningful. 

That randomization achieves these objectives cannot be established under (6.1) 
but requires the introduction of a different kind of model which considers 
hypothetical repetitions of the randomization process. This kind of random-
ization model for the paired design is introduced in Section 6.2 and we establish 
that these objectives are achieved under the randomization model. The 
properties of statistics under the randomization model are referred to as design-
based properties to distinguish them from the model-based properties we obtain 
from models like (6.1). 
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As we will see in Section 6.2, the design-based properties which justify 
randomization are properties which hold on average when we consider 
averaging over the set of possible designs. This means that there is no guarantee 
that a particular design selected from 3! achieves these goals. This is of course 
characteristic of the frequentist approach (Chapter 3): no particular design or 
analysis is guaranteed to achieve its objectives, but a large set of designs or 
analyses do so on average. 

6.1.4 The Consequences of a Failure to Randomize 

A famous example of an experiment rendered invalid by a failure to randomize 
treatment allocation is the Lanarkshire milk experiment discussed by "Student" 
(1931). The experiment involving 20000 children was intended to evaluate the 
nutritional value of milk. A total of 5000 children were given | pint of raw milk 
every day for a set period, another 5000 were given J pint of pasteurized milk 
every day for the same period, and 10000 children were controls who were 
given no milk. The allocation to treatment groups was carried out in schools 
by the teachers. Although the initial allocation was random, the teachers were 
permitted to reallocate the children so that no group in the school over-
represented either the poorly nourished or the well-nourished children. The 
results showed that children in the control group had higher weight gain than 
the children in the treatment groups. "Student" (1931) argued that the teachers 
had unconsciously biased the results by ensuring that the smaller children 
received the milk. He recommended rerunning the experiment with a random 
treatment allocation but also recommended a smaller paired experiment based 
on the use of twins. 

6.1.5 Practical Considerations 

It should be obvious that randomization cannot provide blanket protection 
against every possible cause of failure of an experiment. In particular, properties 
which hold on average are often poorly reflected in any particular realization. 
Nonetheless, it is often possible even before we carry out an experiment to 
recognize that certain designs are more likely to give misleading results than 
others. In practice, poor designs are usually rejected and the randomization 
process is repeated until a sensible design obtains. In formal terms, the design 
is randomly selected from a subset of the set of all possible designs rather than 
from the set of all possible designs. 

The use of a randomized experiment does not preclude modeling the effects 
of factors even if randomization was intended to eliminate these factors. Indeed, 
some conditioning on the results of the particular experiment is essential 
because it is not generally sensible to ignore a clear trend in the results of an 
experiment on the basis that on average (over other experiments) the trend 
would not be there. In the sample survey context, Royall (1976) referred to this 
as the "closurization principle": after using randomization to collect the data, 
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close your eyes to the fact that randomization was used and analyze the data 
set actually obtained. 

6.1.6 The Bayesian Perspective 

Bayesian inference is made conditionally on the observed data so properties 
which hold on average are usually of at best secondary interest to Bayesians. 
Although it is possible to argue (at least theoretically) that randomization has 
no role in the design of an experiment which will be subjected to a Bayesian 
analysis, there are at least two important practical reasons for Bayesians to 
incorporate randomization into their experiments. 

Generally, Bayesians argue that if all the unknowns in a problem have been 
identified and assigned their true prior distributions, then there is no need to 
randomize in designed experiments. However, it is essentially impossible 
to identify all the unknowns including those induced by the experimenter. 
Moreover, even if all the unknowns could be identified, the prior specification 
would be immensely complicated. So Rubin (1978) and Berger (1984) have 
argued that randomization can be used as a basis for simplifying the prior 
specification. 

Royall (1976), Rubin (1978), and others have argued that randomization 
protects the statistician (whether Bayesian or not) against charges of doctoring 
the data to achieve a particular outcome. This is actually one of the strongest 
arguments for incorporating randomization into an experiment and, insofar as 
it has been adopted by regulatory agencies, can have legal as well as moral 
force. This is the case in the randomized clinical trials required for the approval 
of drugs or procedures by the United States Food and Drug Administration 
(FDA) and ensures that nearly all serious experiments with public interest 
implications are randomized experiments whether designed by Bayesians 
or not. 

6.2 RANDOMIZATION MODELS 

In Section 6.1.3, we presented randomization as a sensible protective device to 
ensure that, on average, the conclusions of an experiment are valid. It requires 
some effort to establish this claim but it is sufficiently important to justify the 
effort and the argument lays the basis for considering the use of randomization 
as a basis for inference (Sections 6.3-6.4). 

Recall that in the caffeine experiment, we based our analysis on the pairwise 
differences z, = zn — zl0, i = 1 , . . . , n, which represent the change in the volume 
of urine produced by the ingestion of caffeine. Under the Gaussian model (6.1) 
for z = ( z j , . . . , z„), frequentist inference about the parameter of interest \x. is 
usually based on Z which is a uniformly minimum variance unbiased (UMVU) 
estimator of fi and S2/n which is a UMVU estimator of its sampling variance 
a2/n (see Section 3.1.4). 
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In an independent replication of the experiment, we would ordinarily think 
of varying all aspects of the experiment including the randomization but we 
can also imagine a hypothetical replication in which we hold everything fixed 
except for the randomization which is selected anew from 3>. The randomization 
model 0t specifies that all possible realizations are equiprobable. (Nonequi-
probable randomization is possible - see Section 6.5 - but rare in this kind of 
experiment.) The randomization model ^ can be used to generate the random-
ization distribution of a statistic (just as the data model !F can be used to 
generate its sampling distribution) and properties such as unbiasedness can be 
explored under the randomization distribution. The claims presented in Section 
6.1.3 that randomization prevents bias and enables us to obtain a meaningful 
estimate of the experimental error can be expressed as 

EZ = n (6.3) 

and 

ES2 = n Var (z), (6.4) 

where the expectations and variances are calculated with respect to the 
randomization model ffl. That is, the sample mean and variance are random-
ization or design-unbiased for \i and the randomization variance of the 
normalized sample mean respectively. 

6.2.1 The Randomization Model 

Let nUv denote the expected response for the ith subject (i = 1 , . . . , ri) under 
treatment t (t = 0,1) when it is applied in the order v (v = 0,1). Let 

/*... = (4n)_1 £ fiitv, liit. = (2«)_1 X Huv 
i,t,v i.l 

and so on, so a period subscript means that we have averaged over the subscript 
in that position. Then we have the additive decomposition 

J"i»- = li... + (li.t. - II...) + (fii.. - II..) + (flit. - II;.. - II.,. + II..) + (liuv ~ flu) 

= / + a, + ft + yit + £„„, (6.5) 

say, where the terms on the right-hand side are all unknown constants. Their 
definition and interpretation are given in Table 6.1. 

The unit error £,-,„ is the only term affected by the order in which the treatment 
is applied to the subject and therefore represents the effect of the order in which 
the treatment is applied to each subject. From the definitions of the constants 
in the model (6.5), we have that 

«. = /». = 7i. = V., = i„. = 0. (6.6) 
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Table 6.1. Definition and Interpretation of the Decomposition of 
the Expected Response 

Constant Name 

A. = n Grand mean 
a, = /*,,, — n Treatment effect 
Pi = M;.. — M... Subject effect 
In = Mir. ~ Mi.. — fi.t. + M... Subject/treatment interaction 
ii,v = Mil* - /V Unit error 

Some authors (Neyman, 1935; Wilk, 1955; Scheffe, 1959, Chapter 9) also 
include a technical error uitv which is a random variable intended to represent 
the difference between the observed value and the expected value, though others 
(Welch, 1937a; Pitman, 1937; Kempthorne, 1952, Chapter 7; 1955) do not. When 
we include a technical error, the response for the ith subject under treatment 
t when it is applied in the order v is 

Zuv = Huv + uitv (6-7) 

Since we defined fiittt to be the expected response, we must have Euiw = 0. 
We obviously cannot observe the Zitv in (6.7) over all values of v because 

the randomization specifies a single value for v. We actually observe 

Zit = X + at + fi, + yit + £u + ii,,, (6.8) 

where £ir and uit are the £,,„ in (6.5) and uitv in (6.7) for which v = v(i, t) is the 
realized value of v, and we base inference on the pairwise differences 

A = Al — ^ i O 

= a, - a0 + yn - yi0 + £n - £i0 + un - ui0 

= fi + 6t + It + u„ (6.9) 

say, where n = at — a0 is the caffeine effect, 0, = yn — yi0, £, = £,n — £,i0, and 
u( = un — ui0, i = 1 , . . . , n. Notice that here the pairing enables us to eliminate 
the subject effect ft from the model but that in contrast to the analysis in Section 
6.1.1 based on (6.1), the subject effect here is a constant. 

It is convenient to represent the outcome of the randomization in terms of 
An binary random variables {ditv} (which are independent of the technical errors 
{uitv}) such that dUv = 1 if subject i is assigned treatment t in the order v and 
af. = 0 otherwise. For fixed i, the possible values of dilv can be arranged in a 
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two-way table as 

Treatment 
Control 

Treatment 

First 

"iOO 

^ , 1 0 

Order 

Second 

di0i 
dlu 

303 

The dilv are not independent because a 1 can occur only once in each row and 
column. There are two ways in which this can happen (dni = di00 = 1 and 
^iio = dioi = 1) and they are treated as equally likely under the randomization. 
Notice also that dno = 1 — dni so that randomization is entirely determined 
by the sequence of n independent binary random variables {d,ii}-

In terms of {ditv}, we can write the £,it and uit of (6.8) as 

i i 

Z dUvZitv a n d "if = Z 
v=0 v=0 

ii, = Z dUvZit» a n d "ir = Z 4„"ir„ 

and hence £,• and u, of (6.9) as 

si — Qn ~ Qio 

l 
= l_, ("ili)Cili> ~~ di0vQi0v) 

u = 0 

= ("iloCilO ~~ "iOoCiOo) + ( " i l lC i l l ~ "iOlSiOl) 

= ( " i lOSi lO ~~ " i l l ^ i O o ) + ( " i l l S / 1 1 — " i lO S iO l ) 

= (1 - ^aiX&io - £ioi) + rfiiifen - £,oo) 

= ( 2 d i n - l ) ( 5 n i - 5 £ 0 o ) (6-10) 

because the constraint £;, = 0 in (6.6) implies that £(01 = — £i00 and £ni = — £u o, 
and, similarly, 

"■ = (1 - <*ai)("iio - «,-oi) + ^ai("ai ~ ".oo)- (6.11) 

6.2.2 Design-Unbiasedness of the Mean of the Pairwise Differences 

It follows from (6.9) that 

Z = n + n-1 Z (£, + ",) (6.12) 
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a s 0, = y.i - y.0 = 0 by (6.6). From (6.10) we have that 

c i £ i l l ~~ <=iO0 S i l l — iiOO n , , , , , 

h£. = = 0 (6.13) 

and from (6.11) that 

EU; = E ^ - z ^ o O E O ^ ^ - j W = 0 ( 6 14) 

2 2 

and hence 

EZ = ^ + «"1 f (E{, + E«() = I* 
i = l 

which establishes (6.3). 

6.2.3 Design-Based Variance of the Mean of the Pairwise Differences 

To find the variance of Z, notice that if the {u,} are independent random 
variables, we have from (6.12) that 

Var (Z) = E(Z - n)2 

= E | « - 1 £ (£,. + Ml.)j
2 

= n-2 £ E({, + ur)
2 + n~2 f X E(& + «,)(^ + U j). 

i = 1 i = l j * i 

Now by (6.10) and (6.11) we have that for all i, j e { 1 , . . . , n}, 

Ew,<,- = E{(2dni - l)(£,n - £,-OO)}{(1 - 4nX",io - «ioi) + 4 i i ("u i ~ «.oo)} 

_,, * , {E(«.u - ".-OP) ~ Efoao - «,-oi)} 

= 0. (6.15) 

Hence by (6.13), (6.14) and (6.15), we have 

Var(Z) = «- 2 £ (Var(£,) + Var(H()} 
i = l 

= n-\(j2 + ot), (6.16) 

where a\ = n~' Y.U i Var (£,) and <x2 = n" l £? = i Var («,-). 
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6.2.4 Design-Unbiasedness of the Sample Variance of the Pairwise Differences 

Applying the usual decomposition to the sum of squares and then (6.9) and 
(6.16), we obtain 

E £ (Z,. - Z)2 = £ E(Z, - n)2 - nE(Z - tf 
1 = 1 i = l 

= £ E(0 , + e, + uf - (f f | + <x„2) 
i = l 

= (n _ i x f f | + ff2) + £ 0,?. 

Hence 

ES2 = E(n - I ) " ' £ (Z, - Z)2 = (fff + at) + (n - 1)" ' £ Of. (6.17) 
i = l i = l 

Comparing (6.17) to (6.16), we see that the claim that S2 is a design-unbiased 
estimator of the variability is true when, in addition to the assumptions of the 
randomization model, we have 6t = 0 for all i = 1 , . . . , n. This requirement is 
basically that the subject/treatment interaction is 0 which means that the effect 
of caffeine is the same for each subject. This is implicitly assumed in the 
Gaussian model when we specify a common n across subjects so (6.4) holds 
under the usual assumption of constant treatment effect. 

6.3 RANDOMIZATION TESTS 

We showed in Section 6.2 that the randomization model can be used to establish 
the design-unbiasedness of the sample mean and variance. In fact, Fisher 
(1925a) suggested that we go further and actually use the randomization model 
as the basis for inference by computing p-values under the randomization 
distribution derived from the randomization model $ (as opposed to the 
sampling distribution derived from the data model IF). 

6.3.1 The Randomization Model Under the Null Hypothesis of 
No Treatment Effect 

Suppose we want to test the null hypothesis that there is no treatment effect. 
Under the randomization model (6.8), this hypothesis entails H0: /i = 0, yit = 0, 
t = 0, 1, i = 1 , . . . , n. Under H0, the model for the pairwise differences (6.9) 
becomes 

Z, = 5j + «„ / = l , . . . , n , (6.18) 
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where {, and u, are defined by (6.10) and (6.11) respectively. We will suppose 
for simplicity in this and the next section that there are no technical errors so 
that M; = 0 in (6.18). When technical errors are present, conditional arguments 
can be used to determine the randomization distribution (see Scheffe, 1959, 
p. 322). It follows then from (6.18) and (6.10) that, under the randomization 
model and H0, 

Z, = (2dni-mni-^00), i=\,...,n. (6.19) 

From the definition of {ditv} in Section 6.2.1, the {2dni — 1} are independent 
random variables which are independent of w; such that 2dni — 1 = 1 with 
probability j and 2dn, — 1 = — 1 with probability \. Thus, under the random-
ization model and H0, Zi takes on only two values, ± ( £ l U — £,0o)-

Heuristically, under H0, the treatment effect is the same as the control effect 
so Zn and Zl0 measure the same volume of urine and a nonzero difference 
Zj = Z n — Zi0 can be attributed to uncontrolled nuisance factors. Thus a 
different randomization in which the order of receiving the control or treatment 
is reversed would result only in a change of labels and hence our observing not 
Z; but - Z ; . 

Equation (6.19) implies that under H0 and replications in which everything 
except the randomization is held fixed, the sample space of differences is the 
set of 2" possible points 

&R = {(±&i i - "SioiU ±l&,i - «ioil, • • ■, ± K I H - &oil)} (6-20) 

and these are all equally likely. We obtain the randomization distribution of a 
statistic by calculating the value of the statistic at all 2" points in 2£K and noting 
that each of these values of the statistic occurs with probability 1/2". Thus, the 
randomization p-value for a test of H0 based on a test statistic 3"(Z) (chosen 
so large values represent evidence against H0) is 

p-value = P{7XZ) > 7T[z); H0} 

# {points in 2CR leading to a Tas or more extreme than that actually observed} 
_ . 

(6.21) 

The p-value can always be obtained numerically but sometimes exact or 
approximate analytic results can be used to simplify the computations. 

6.3.2 The Sign Test 

As in any frequentist analysis, we need to choose the test statistic on which to 
base the test. A venerable test considered by Arbuthnot (1710) is the sign test 
based on the sum of the signs of the paired differences. (For some other 



RANDOMIZATION TESTS 307 

i f Z ( > 0 

otherwise. 

possibilities, see Sections 6.4 and Section 6.9.1.) Formally, let 

Then the sign test is based on the statistic 

S = £ A,. 

(6.22) 

(6.23) 

Intuitively, under H0, ignoring variability, we expect the same number of 
positive as negative observations so S = 0 while under any departures from H0 

we expect \S\ > 0. Of course, we need to take the variability into account by 
computing the distribution of S under H0. 

The randomization distribution of S under H0 is derived by evaluating S at 
each of the 2" equally likely points in 2£K. This is a tedious calculation which, 
in the case of the sign test, we can avoid by obtaining the randomization 
distribution of S under H0 analytically. Comparing the definition (6.22) of A,-
to (6.19), we see that 

A,: = (2diU - 1), i = l , . . . , n . 

Since {rf,,,} are independent binomial(l,j) random variables, S has the same 
distribution under H0 as IB — n, where B ~ binomial(n, j). 

The exact p-value for testing H0 with the sign test is readily computed. 
We have 

p = P { | S | > | s | ; H 0 } 

= P B > ', H0 

= P<B< ;H0} + PiB>2 + ; H0 

="T (")©"+ ,„„.. 
i = 0 W W i = nl2 + \s/2\\l/\2J 

Alternatively, using the Gaussian approximation to the binomial distribution 
(see Section 3.7.2), we obtain 

p « 2 { l -0>(n-1 / 2 |s |)}. 

For the change in the volume of urine data, 13 out of 18 of the pairwise 
differences are positive so s = 8. The p-value is 

P{B > 13; H0} + P{B < 5; H0} = 0.059 
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which is borderline at the usual levels. This finding is much weaker than 
those based on the model-based analysis of the sample mean presented in 
Section 3.2. 

Notice that if all the pairwise differences are positive (Z,- > 0), S = n is as 
extreme as it can be and p = 1/2". As we increase n, the p-value decreases and, 
in general, the greater the cardinality of 3?R, the more extreme an extreme result 
will be. At the other extreme, if we have n matched pairs of units and we 
randomly assign one group of n to treatment and the other to control, then 
2£K = {(Z),.. . , z„), — (z1,..., z„)} and the only possible p-values are 1 and \ 
whatever the value of n so it is important to know which randomizations were 
considered. If two people carry out the same matched pairs experiment and get 
the same results but selected the design from a different randomization set, they 
will obtain different significance levels. The choice of test statistic also affects 
the p-value: if instead of S, we base a test on median(Z;), we obtain a different 
p- value. 

One difficulty with randomization tests is that it is difficult to formulate 
meaningful alternative hypotheses in the randomization model. This difficulty 
is often avoided by treating randomization tests as permutation tests 
(Section 6.6). 

PROBLEMS 

6.3.1. A sample of five observations from the urine data of Section 1.1.3 is —90, 
410, —5, 87, 40. Compute the randomization distribution (under the 
hypothesis of no caffeine effect) of the sample mean exactly. How does 
this compare to the Gaussian approximation? Repeat the computations 
after replacing observation 40 by 540. Compare the results for the 
perturbed and the unperturbed data. What does this exercise show about 
the robustness of the randomization approach? What happens if we use 
the sample median instead of the sample mean? 

6.4 THE RANDOMIZATION BASIS FOR GAUSSIAN 
MODEL-BASED TESTS 

Model-based tests of sharp hypotheses about n in the Gaussian model (6.1) are 
constructed from the fact that under (6.1), n1/2(Z — p)/S has the Student t 
distribution with v = « — 1 degrees of freedom (see Section 3.2) or equivalently 
n(Z — n)2IS2 has an F distribution with 1 and v degrees of freedom. If the 
sample size is large, a test of the hypothesis H0 of no caffeine effect on the 
volume or urine produced can be based on the fact that under H0: fi = 0 

nll2Z/S ~ tv -* N(0,1) a sn -+oo , 
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or, equivalently, 

nZ2 vnZ2
 2 

F = —— = - =- ~ F(l, v) -»• YT as n -* oo, (6.24) 
S2 £ ? = 1 Z ? - n Z 2 Al ' 

where v = n — 1. 
Suppose that instead of using the sign test (Section 6.3.2) we decide to base 

a randomization test of the null hypothesis H0 of no caffeine effect on the 
volume of urine produced on the usual Gaussian theory F-statistic 

F = nZ2/S2 = vnZ2 / j £ Zf - nZ2\. 

To implement the test, we require the randomization distribution of F or a 
good approximation to it. It is convenient to approximate the randomization 
distribution of U = nZ2/Z"=, Zf and then use the fact that 

vU 
(6.25) 

1 -U 

to obtain the randomization distribution of F from that of U. 

6.4.1 The Approximate Randomization Distribution of V 

Under the randomization model (6.9) and H0, we can apply (6.19) to show that 
U is a realization of 

R — T ■ 

Z<i= i (ini ~~~ iioo) 

From (6.19), \Zt\ = \£,ni — £l00| which is nonstochastic, a fact we emphasize 
by writing |Z,| = \zt\, where 2, is the realized value of Z,. In this notation, 
we write 

TI . . 1 { Z f . 1 W , 1 - i ) W } J 

U D — rl . 

The randomization distribution of UR is obtained by calculating l/R over all 2" 
points in ^ and noting that each of these values of l/R occurs with probability 
1/2". In the caffeine experiment with n — 18, we have to compute 218 = 262 144 
values of UR to compute the randomization distribution and hence the 
randomization p-value. It makes sense to try to approximate the randomization 
distribution. 
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Since {2dn s — 1} are independent and identically distributed random variables 
with mean E(2d(U — 1) = 0 and Var (2dfll — 1) = 1, the statistic UR is a 
weighted mean of independent and identically distributed random variables 
such that 

EUR = n _ 1 E 
^{ZUA2diil~l)\zi\y 

!?=!*? 
(6.26) 

and 

Since 

Var(t/R) = n"2E 
'{TUA2dni-l)\zi\y 

Z7=,z2 

= n~2E - 2 P [{£7-1 (2d,„ - U N } 2 - 17= i z.2]2 

{Z7=^f}2 

= n _ 2 E -2 c{Zf- i (2d,u- l)N}*-{Z7-i2?}2 

{Z7=iz?}2 

E I (2dni - \)\Zi\\ = X 4 + 3 Z 2?z2 = 3 I z,2 - 2 ^ 
■ * j 

we can write 

Var (t/R) = 2n 

= 2n' 

■ 2 { Z 7 - i ^ 2 } 2 - Z r - i ^ 
{£7=iZ2}2 

Z7=,z? 
1 -

{17=! *,2} 
(6.27) 

Results (6.26) and (6.27) were obtained by Welch (1937a) and Pitman (1937). 
Since the distribution of UR has support on (0,1), we can approximate it by 

a (continuous) beta (r, s) distribution. If we want the first two moments to 
match r/(r + s) and 2rs/(r + s)2(r + s + 2) we find 

r = X, s = (n — l)X, 

where ! = (l-n^'Vy1 -n~l2 with V= (n - 1)"ln[n £?=i 4/{Y.Ui zf}2 - !]• 
Thus we have the approximation 

UR ~ beta (A, (n - l)/l). (6.28) 
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Pitman (1937) showed that the third and fourth moments of UR also match 
those of a beta (/, (n — 1)A) distribution reasonably well provided n~l V is not 
too close to 1. 

6.4.2 The Approximate Randomization Distribution of the F-Ratio 

If X ~ beta (r, s), it follows that sX/r(\ - X) ~ F(r, s) so that from (6.25) and 
(6.28) we have the approximation 

vC/R 
FR = — ~ F(A, vA), R 1 - 1 4 

where v = n — 1. Notice that when k ss 1 or, equivalently, when n " ' C * 0 , 
we have 

FR ~ F(l, v) (6.29) 

which can be compared to the model-based approximation (6.24). 

6.4.3 Large Sample Approximations 

We can show that asymptotically, n~1 V -*■ 0 and hence X->\. Notice that 

En-1 £ ( 2 r f n i - l ) | z , . | = 0 
; = l 

and 

r<n" Var^n"1 £ (2dni - l)\z,\ = n~2 £ Var(2dn i - l)z? = n~2 £ z,2 

so we can apply the Lyapounov central limit theorem (see the remarks following 
Theorem 4.1 in Section 4.1.7) to show that 

t z,2} W2 t (2dni-l)z,^N(0,l), 
i = i ) i = i 

provided {I.Ui zf}~<l+yl2}I.Ui \z,\2 + 1 -» 0, for some y > 0. It then follows 
from Theorem 4.7 that 

i l " l f ■ 12 
,2 nU* = <lz?\ I ( 2 4 u - l ) W *Z? 
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Using (6.25) and the fact that t/R = op(l), it follows from Theorem 4.2 that 

FR^XU a s m o o , (6.30) 

which is the result of Wald and Wolfowitz (1944). 

6.4.4 The Quality of the Approximations to the Randomization Distribution 

The quality of the approximations (6.29) and (6.30) is illustrated in Figure 6.1. 
With n = 18, there are already too many permutations to compute to get the 
randomization distribution exactly so we adopt a statistical approach and 
estimate it from a random sample of permutations. The randomization distri-
bution in Figure 6.1 is obtained by taking a random sample of 10000 
permutations of the data, computing FR in each case and then estimating the 
quantile function of the distribution of FR. The quantile function of the 
distribution of FK is plotted against the quantile functions of the F(2, (n — l)x) 
and Xi distributions for comparison. Since X = 1.067, we expect and see that 
the two approximations are very similar. The chi-squared approximation is the 

Figure 6.1. A comparison of the randomization distribution of FK for the urine data with the F 
and x2 approximations. 
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better of the two because the plotted curve is closer to the 45° line than the 
curve for the F approximation. Both approximations put less of a spike near 
the origin and more weight over the right tail of the distribution. The observed 
F-ratio is 3.502 = 12.25 so the p-value is 0.0005, 0.002 and 0.0005 for the 
randomization distribution, the F approximation and the chi-squared approxi-
mation respectively. 

6.4.5 The Justification for the Gaussian Theory Results 

The similarity between the approximations (6.29) or (6.30) and (6.24) can be 
interpreted as showing that the design-based approach provides a justification 
for the usual Gaussian model-based analysis even when this model does not 
hold. However, the sample space is different in the two analyses: The model-
based analysis fixes the design and considers hypothetical independent repli-
cations of the data generating process while the design-based analysis fixes the 
data and considers hypothetical replications of the design. 

Although the randomization or design-based approach was suggested by 
Fisher (1925a), it was not pursued by him and his later views on the subject 
are unclear (see Basu, 1980). However, unless the probability of selecting a 
particular design is made to depend on the parameters of interest, the design 
actually used in an experiment is an ancillary statistic (Sections 3.9.2 and 7.4) 
which contains no information about the parameter of interest. Thus, according 
to Fisher's conditionality ideas (which were discussed in Section 3.9 and are 
discussed further in Section 7.4), we should make inference conditional on the 
design, and design-based inference conflicts with this advice. In particular, in 
Fisher's terms, in the randomization test we condition on what is informative 
and base inference on what is uninformative. The importance of this point is 
obscured here by the numerical agreement between the two approaches and it 
becomes more important when the approaches differ numerically as we will see 
in the next section. 

PROBLEMS 

6.4.1. We presented data in Section 1.1.3 on the amount of epinephrine voided 
in urine after ingesting caffeine and after ingesting a control liquid. Carry 
out randomization tests based on the sample mean and the sample 
median to see whether the amount of epinephrine in voided urine is 
affected by the ingestion of caffeine. Compare your inferences. 

6.4.2. Suppose we have n = nt + n2 homogeneous units, nx of which are 
assigned at random to a control group and the remaining n2 of which 
are assigned to a treatment. Describe how to carry out a randomization 
test of the null hypothesis of no treatment effect. 
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6.5 INFERENCE FOR FINITE POPULATIONS 

The randomization-based or design-based approach to inference provides 
support for the classical model-based approach to analyzing data from designed 
experiments. Nonetheless, in practice, a model-based approach is usually 
adopted for the analysis of data from designed experiments. In contrast, the 
design-based approach advocated by Neyman (1934) has been and remains the 
dominant paradigm for inference in finite population sampling theory. In this 
context, the design-based and model-based approaches often lead to different 
results. 

6.5.1 A Finite Population Problem 

To formalize the discussion, suppose that we have a finite population 9 
consisting of N units which we label 1, . . . , N, each of which has associated 
with it the value Yt of a survey variable Y of interest. We sometimes also have 
available information about the units in the population which we use to select 
the sample from the population. We represent this information as a design 
variable X, the values Xt of which are known for all units in the population. 
The act of drawing a sample of size n < N from 3P involves specifying a set 
Sf = {i: i e {1 , . . . , N}} of labels of units included in the sample. Equivalently, 
the sample selection process produces N binary sample inclusion indicators It 

which indicate whether unit i is included in the sample or not. Schematically, 
we can represent & as in Table 6.2. 

Once we have selected the sample, we observe the value Yt of Y for each of 
the n units included in the sample. Thus we know all N values of the design 
variable and the sample indicator but only n values of the survey variable. A 
common problem is to use the known Xt, i = l,...,N and the observed Yh 

i e y to estimate finite population parameters such as the finite population total 
r = ZJ l , X. 

As a simple illustrative example, take ^ to be a set of companies in a 
particular region. Let Y be a measure of economic activity and X a measure 
of economic size. Then we may be interested in estimating T = ]TfL x Yh the 
total economic activity in the region. 

Table 6.2. A Typical Finite Population Structure 

Units Design Variable Sample Indicator Survey Variable 

1 X1 J, Yt 

2 X2 I2 Y2 

N X» Is YN 
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6.5.2 Randomization in Sample Selection 

Many of the issues which arise in designing an experiment (Section 6.1) have 
analogues in selecting a sample. For example, stratification, the partitioning of 
a heterogeneous population into homogeneous subpopulations or strata, is 
analogous to blocking (Section 6.1.1) and the use of random sampling methods 
to select samples is analogous to the random allocation of treatments to units 
(Section 6.1.3). 

Samples selected from a finite population by a randomization procedure are 
called random samples. Formally, a random sample is a sample selected in such 
a way that we know the probability that any possible sample will be drawn. 
This means that for a random sampling scheme, we can set up the space of 
all possible samples of size n from S? and work out the probability of selecting 
each one. 

It is convenient to express the probability of selecting a sample in terms of 
the inclusion probabilities nt = E/; which are the probabilities that unit i is 
included in a sample of size n. To keep the present discussion simple, we allow 
the inclusion probabilities to depend on X but not on Y. (Technically, this is 
known as uninformative sampling and it ensures that the sample design contains 
no information about T so is ancillary. See Sections 3.9.2 and 7.4.) 

A random sample is a probability sample if nK > 0 for all i and a simple random 
sample if all possible samples of size n are equally likely. In particular, when 
this occurs nt = n/N. In stratified random sampling, we classify the units into 
strata (on the basis of the design variable) and draw a simple random sample 
from each stratum. In this case, if we let h(i) denote the stratum to which unit 
i belongs, nt = nh(i)/Nm, where nh is number of units in the sample from stratum 
h and Nh is the number of units in stratum h. Obviously, these probabilities can 
be expressed as a function of the design variable Xt since this determines stratum 
membership. An even more explicit dependence on Xt occurs when Xt is a 
non-negative measure of size and we use probability proportional to size sampling 
(PPS). In this case, nt = nXJY!j=i Xj. 

6.5.3 The Design-Based Approach 

The design-based approach to analyzing samples from finite populations treats 
the Yt as fixed numbers (so T is an unknown constant) and randomness arises 
only from the sampling process which is represented by the sample inclusion 
indicator /,. Clearly, for statistical methods to apply to this approach, the 
sample must be a probability sample. 

The canonical estimator of T in the design-based approach is the Horvitz-
Thompson (1952) estimator 

Y N IY 
TH=Z~=1~- (6-31) 

ieSf ft; i = l TC; 
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This estimator does not make explicit use of the design variable although of 
course, 7i; may depend on the design variable. Under the design-based 
approach 

Ef„= I ^ - ; = I Yt=T 
; = i ftj i = i 

so the estimator is design-unbiased. Also 

v"<f")-E{!,(H,iF 
= iE(.''-iYyf+i £ E ^ - i Y i - i W 

= £ ( i - l)Y? + t t (*L-I)Y,YJ, (6.32) 
i = i \^i / i = i y = i , j * i \ i i ^ / 

where nu = P(i e y and j e y ) is the joint sample inclusion probability. 
The design-based variance (6.32) can be estimated by the design-unbiased 
estimator 

*s, _ E yj^an + E z ( . - ^ W ) (633, 

proposed by Horvitz and Thompson (1952). 
If « is fixed, we can re-express (6.32) in a more convenient form. Since 

£JL j /. = n? We can take expectations of both sides to obtain 

N 

Z rc; = n. 
i = 1 

Also 

£ J t y = £ EIlIJ = E{(n-l)It}=(n-l)ittl 
j=l,J*i j=l.j*i 

so we have 

N 

X (Tt.-Tt,- - nu) = n,(n - Jtj) - (n - 1)^ = 7t,(l - nt) 
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and we can re-express (6.32) as 

Var (fH) = t ,1,(1 - n^Y + £ Z (*„ - i ^ /W-^ 

w \ /Y\2 w ^ /v\/y 

= 1 Z («i«,-*„)(- - Z Z ( * 0 - W - ( -

This suggests the design-unbiased estimator 

tieST je.9>,j*i\nu / (7t,- 7CjJ 

which was proposed by Yates and Grundy (1953) and Sen (1953) for (6.32) 
when n is fixed. Somewhat disturbingly, both (6.33) and (6.34) can be negative 
(Cochran, 1977, Section 9A.7). 

6.5.4 The Horvitz-Thompson Estimator Under Simple Random Sampling 
Without Replacement 

In the special case of a simple random sample selected without replacement, we 
have 71,- = n/N, 7t£J = n(n — l)/N(N — 1), and the Horvitz-Thompson estimator 
(6.31) is the so-called expansion estimator 

?„ = - £ Y, = N?„ 

where Ys = n~l ^iei^ Yt. In this case, (6.32) reduces to 

V Njnfr (N-l)\ Njn^t*jj=i ' 

= ( l - " A ^ _ _ _ L _ {(JV - 1) V yf- Y T YJ: 
V Njn(N-l)\K } k , i-t* JI=X \ 

= I I - ^ ) T S ? ' (635) 
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where Sy = (A/ — 1) ' £f=1 (Yt — Y)2 is the population variance. The usual 
estimator of Var (TH) is the design-unbiased estimator 

*-(-*)T* 
where sy = (n — 1)_ 1 £ i e y (J/ — ^ ) 2 is t n e sample variance. 

6.5.5 The Ratio Estimator 

One of the difficulties of the design-based approach to analyzing sample surveys 
is that although design-unbiasedness is the fundamental concept in the design-
based approach, design-biased estimators often perform better than the Horvitz-
Thompson estimator. For example, an estimator which tries to use some of the 
information in the design variable is the ratio estimator 

fR = N ^ , (6.36) 

where Xs = n~l Y^u.9-%i a r jd X — N~l £f=i Xt. Using a simple Taylor series 
estimation (see 2 in the Appendix), we can write (6.36) as 

XY 

xs 

-Xs\)i (Xs — X) n,,^ ^\2 , 
= T + [ NYS - T-^Ul - - - Y - ^

 + 0({X° ~ X ) ) 

Y\\\t (Xs-X) , n t l - _x2, 
= T + Ni Ys - X.[ -= IW l - — ^ - ~ - + 0((X. -X)2)} (6.37) 

Under simple random sampling without replacement 

EXS = X 

E(?s-F)(Xs-X) = i ( l - ^ W 

and 

^-""-K'-sH 
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where Sxr = (JV - l ) " 1 I ? . , (Xi - X)^ - F), and Sj = (AT - l)"1 £?-i x 
( X - * ) 2 , s o 

EfR.r-iVE|Fs-xs|}
(AzZ) 

= r + %-™ * 
y 

^ X 17 • 

n\ n)\ X 

Using (6.37) again, the mean squared error of the ratio estimator is 

MSE(fR) = E ( f R - r ) 2 

^ E { y s - * 5 f } 2 

= N2EI(YS-Y)-(XS-X)1\2 

= iV2JE(Fs - F)2 - 2E(FS - ?){XS -X)l + E(XS - X)2(l 

n\N2 f , „ F „J?\2 

where S2-= (N — 1)~ * ]TfL 4 (y, — F)2. The mean squared error is conventionally 
estimated by 

where 

4 = (n - IK1 E (X - XJ2 and sXY = (n - l)"1 X (X - *.)(1J - Ys). 

Straightforward algebra can be used to show that 
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The finite population central limit theorem (Hajek, 1960) justifies the use of 
a normal approximation to the design-based sampling distribution (see for 
example Scott and Wu, 1981) and this can be used to obtain approximate 
design-based confidence intervals. 

Comparing (6.35) to MSE (fR), we see that under simple random sampling 
without replacement, MSE (7^) < Var (TH) when 

Sxr>
l(l\ 

S2
X 2\x) 

for n large. 

6.5.6 Difficulties with the Design-Based Approach 

The Horvitz-Thompson estimator (6.31) is the design-based UMVU estimator 
(see Section 3.1.4) in the class of linear estimators of the population total 
given by 

$~\ — \ YJ wi%: wi a r e fixec* weights >. (6.40) 

However, the ratio estimator (6.36) which is design-biased under simple random 
sampling without replacement often performs better than the Horvitz-Thompson 
estimator. 

Part of the explanation lies in the nature and meaning of design-unbiasedness. 
Suppose we take a simple random sample of companies. The Horvitz-Thompson 
estimator (6.31) is design-unbiased regardless of the data we actually observe. 
Now by chance, we may observe a sample which only contains small companies. 
In this case, the Horvitz-Thompson estimator is design-unbiased but the 
estimate of T is too small so has a real negative bias. 

The situation is even worse with unequal probability sampling as is 
dramatically illustrated in Basu's (1971) colourful elephant example. 

The circus owner is planning to ship his 50 adult elephants and so he needs a rough 
estimate of the total weight of his elephants. As weighing an elephant is a cumbersome 
process, the owner wants to estimate the total weight by weighing just one elephant. 
Which elephant should he weigh? So the owner looks back on his records and 
discovers a list of the elephants' weights taken 3 years ago. He finds that 3 years ago 
Sambo the middle-sized elephant was the average (in weight) elephant in his herd. 
He checks with the elephant trainer who reassures him (the owner) that Sambo may 
still be considered to be the average elephant in the herd. Therefore, the owner plans 
to weigh Sambo and take 50y (where y is the present weight of Sambo) as an estimate 
of the total weight Y = Yt + ■ ■ • + Y50 of the 50 elephants. But the circus statistician is 
horrified when he learns of the owner's purposive sampling plan. "How can you get 
an unbiased estimate of Y this way?" protests the statistician. So, together they work 
out a compromise plan. With the help of a table of random numbers they devise 
a plan that allots a selection probability of 99/100 to Sambo and equal selection 
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probabilities of 1/4900 to each of the other 49 elephants. Naturally, Sambo is selected 
and the owner is happy. "How are you going to estimate YV asks the statistician. 
"Why? The estimate ought to be 50>> of course," says the owner. "Oh! No! That 
cannot possibly be right," says the statistician, "I recently read an article in the Annals 
of Mathematical Statistics where it is proved that the Horvitz-Thompson estimator 
is the unique hyperadmissible estimator in the class of all generalized polynomial 
unbiased estimators." "What is the Horvitz-Thompson estimate in this case?" asks 
the owner, duly impressed. "Since the selection probability for Sambo in our plan 
was 99/100," says the statistician, "the proper estimate of Y is 100y/99 and not 50y." 
"And, how would you have estimated Y" inquires the incredulous owner, "if our 
sampling plan made us select, say, the big elephant Jumbo?" "According to what I 
understand of the Horvitz-Thompson estimation method," says the unhappy 
statistician, "the proper estimate of Y would then have been 4900y, where v is Jumbo's 
weight." (Reproduced with the permission of the author.) 

Clearly, the estimate based on Sambo is a gross underestimate (negative bias) 
while that based on Jumbo is a gross overestimate (positive bias). 

Both of the above examples and the fact that unbiased estimators of variance 
can be negative (Section 6.5.3) show that properties like design-unbiasedness 
which hold on average over all possible samples tell us nothing about the 
properties of an estimator in any particular sample. Thus an estimator can 
perform well on average but very poorly in any particular sample. See also 
Problem 6.5.1. 

To overcome the failings of design-unbiasedness, we need to relate the units 
in the sample to those not in the sample. One way to do this is to replace the 
weights w, in (6.40) by weights w((Sf) which depend on the sample. Unfor-
tunately, Godambe (1955) showed that there is no design-based UMVU 
estimator in this modified class so there is no optimal design-based analysis. 
Godambe (1966) showed further that the design-likelihood (which is a function 
of Y e UN) is constant for all Y € UN consistent with the sample and 0 elsewhere. 
Thus the design-likelihood is uninformative about the nonsample portion of 
the population and does not allow us to relate the units in the sample to the 
nonsample units. A different approach to the problem is to try to make the 
ratio estimator conform more closely to the design-based paradigm by reducing 
its design bias through conditioning to restrict the sample space. Smith (1984) 
showed that this does not work either because conditioning often restricts the 
sample space to the unique sample actually observed, making design-based 
inference impossible. 

In summary, strict design-based inference for finite population parameters 
seems unable to incorporate information from a particular sample into the infer-
ence. However, this can be achieved through the use of models for the variables. 

6.5.7 The Model-Based Approach 

Models have a long history in the sampling literature, see Cochran (1939; 1946), 
Deming and Stephan (1941), Madow and Madow (1944) and there are a 
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number of different ways of introducing them. For example, Basu (1969), 
Kalbfleisch and Sprott (1969), and Ericson (1969) incorporated the conventional 
design-based structure whereas Brewer (1963), Scott and Smith (1969), and 
Royall (1970; 1971) formulated a model which relates the values of the survey 
variable for the observed units to the unobserved units by specifying the 
relationship between the survey variable Y and the design variable X. For a 
review of the possibilities, see Cassel et al. (1977). 

A commonly used model for the kind of economic survey we are considering 
(at least for textbook discussions of it) is to suppose that the conditional 
distribution of Y given X is given by 

& = \f(y I x; /u) = n — ^ — - exP l-iyt~PXi)~ 

y,eR:Peto,o>0}. (6.41) 

Here v(x) is treated as known; it is usually of the form v(x) = |x|1+y, where 
0 < y < 1, corresponding to increasing fan-shaped variation as x increases. 

The N population values (YhXi) are now regarded as realizations of a 
random variable (Y, X). This kind of model can be interpreted as implying that 
the population S? is a "sample" from a superpopulation, so is sometimes called 
a superpopulation model. Since, the survey variable Y is regarded as a random 
variable, T is also a random variable and the problem of estimating T can be 
viewed as a prediction problem. Note that if we observe all N units, we know 
the population total T exactly but we do not know the parameters (/?, a) of 
the underlying model exactly. Thus we have the usual analytic problem of 
making inferences about the parameters of the superpopulation model and the 
enumerative problem of predicting parameters like the finite-population total. 
(See Section 1.4.3.) 

If we observe the entire population @, the log-likelihood under J5" can be 
obtained directly from (6.41). However, we observe Yt only if i e Sf so the sample 
is incomplete. We can obtain the marginal density of the observed data by 
integrating the unobserved Yt out of the model density in J5". Since the 
sampling is uninformative, the marginal log-likelihood for the sample is 

log /s(y I x; fl, a) = - n log (a2) - £ — — 7 ^ - , 0 e R, a > 0. 

The estimating equations are therefore 

and 

a2 & <rV*,) 
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and the likelihood is maximized at 

323 

p=i z ~ - j _ 1 z ™ (6.42) 

and 

62 = n-1 £ 
(Y,-PX,)2 

v{Xt) 

The mean squared prediction error of a predictor f of T is 
E{(r — T)2 | Sample} which, on differentiating with respect to T and equating 
the result to 0, can be shown to be minimized by 

T=E\ £ 1.1 S a m p l e ^ £ ^ ^ ^ 

We estimate the optimal predictor by the regression estimator 

f= £ U + 0 I *, (6.43) 

where /? is given by (6.42). Under the model (6.41), the mean squared prediction 
error of t (which is in fact the prediction variance furhter since E(T — T) = 0) is 

E{(T- T)2 Sample} = E\[ p £ Xt- £ Y, Sample 

= E (0-/0 £ *,- £ (1^-^/0 Sample 

= E{(/?-/?)2 | Sampled £ *, 

+ Z E{(^-X,./})2 | Sample} 

*2 Z x,\ 
- l ^ J - + Z <*<*,) 

ih? i*xt) 
) 2 V 2 

Z A-,) + z <x}) Z —L 

V ' 
(6.44) 



324 RANDOMIZATION AND RESAMPLING 

The right-hand side of (6.44) can be estimated by VT which is obtained by 
replacing a2 by <t2. A large sample approximation to the sampling distribution 
of the regression estimator under (6.41) has been obtained by Fuller (1975) and 
yields the approximate 100(1 — a)% confidence interval 

[ f - V\'2Q-\\ - a/2), f - Kj ' 2 * _ 1 ( l - a/2)]. 

6.5.8 The Model-Based Ratio Estimator 

In the special case that v(x) = x, the regression estimator (6.43) reduces to the 
ratio estimator (6.36): 

TR = nYs + (N-n) 
X Jf. ' 

where Xr = (N - « ) _ 1 Z , - ^ *V Under the model (6.41) with v(x) = x, (6.44) 
reduces to 

E{(fR - T)2 | Sample} = {nXs}" V{(7V - ri)Xr}
2 + (N - n)a2X, 

<r2[{(iV - n)Xr}
2 + (N- n)nXsXr] 

Xra\N 

■■ a2(N -

.Jt 

nXs 

- n)[(AT - n)Xr + nX,] 

nXs 

NX,X 

nXs 

n\N2 X,X 

\ Nj n Xs 

which again can be estimated from the fact that 

(6.45) 

^-(n-D-1 I^~ ( } ™* i ) 2 (6.46) 

is model-unbiased for a2. Estimators which perform better when the model is 
misspecified have been proposed by Royall and Cumberland (1981). 

6.5.9 A Comparison of the Ratio Estimator in the Two Approaches 

It is instructive to compare the ratio estimator in the two frameworks. The 
ratio estimator is design-biased and by (6.38) has design-based mean squared 
error approximately equal to (1 — n/N)n~lN2S2. Under the model (6.41) with 
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v(x) = x, the ratio estimator is model-unbiased and by (6.45) Jhas model-based 
mean squared prediction error equal to <r2(l — n/N)n~lN2XrX/Xs. Whereas 
the design-based mean squared error is averaged over all possible samples, the 
model-based mean squared prediction error depends on the characteristics of 
the sample reflected through the design variable means Xs and Xr. This means 
that inferences from the two approaches can be numerically incompatible. 

If the model is incorrect, the model-based inference is usually model biased. 
For example, if there should actually be an intercept in the model (6.41), the 
ratio estimator is model biased. Design based and model-based properties are 
both mathematically correct but the design-based properties are valid regardless 
of what model holds and the model-based properties are valid only if 
a particular model holds. Thus the design-based approach requires fewer 
assumptions and therefore seems the more attractive. However, as we noted in 
Section 6.4.5, the design is ancillary (see Sections 3.9.2 and 7.4) and contains 
no information about the parameter of interest, so it is strange to base inference 
exclusively upon the choice of design. In this sense, the model-based approach 
is preferable and we simply have to confront the issue of model specification. 

The two inference frameworks also suggest different sampling strategies. The 
design-based theory for the ratio estimator requires a simple random sample 
from the population. However, in the model-based theory, some samples are 
clearly better than others in the sense that they lead to estimates with smaller 
variability. For the ratio estimator, the purposive sample consisting of the n 
largest companies minimizes the prediction variance of the estimator. This 
seems to eliminate the need for probability or randomization in sample 
selection. However, as Royall (1976) has argued, random sampling still has a 
useful role. As indicated in Section 6.1.3, randomization can protect an 
investigator against unconscious bias leading to allocations which favor the 
achievement of desired results and can prevent extraneous factors from having 
a systematic effect on the results and hence prevent systematic bias. Royall 
(1976) argues (as we noted in Section 6.1.5) that if we have evidence that the 
sample differs systematically from the whole population, we should make an 
appropriate adjustment based on this evidence. This is in conflict with the 
design-based analysis which requires us to ignore the data and any other 
evidence presented about it and base inference solely on the randomization 
implemented before the data were collected. In any case, the optimal design for 
the ratio estimator is not necessarily the best to use in practice since, as with 
most optimal designs, the design can prevent us from exploring departures from 
the model effectively. Thus adoption of the optimal design reflects too great a 
commitment to the model before we see the data. 

6.5.10 Missing Data and Outliers in Surveys 

In practice, in analyzing sample survey data, we need to deal with the problems 
of missing data due to nonresponse and outliers in the data. Whatever the basis 
for the final inference, the model-based perspective is very helpful in formulating 
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and suggesting approaches to dealing with these problems. Little and Rubin 
(1987) give a general presentation of the analysis of data when some observations 
are missing. The subtle and challenging problems of dealing with outliers when 
trying to estimate finite-population parameters are discussed by Chambers 
(1986) and Welsh and Ronchetti (1996). 

PROBLEMS 

6.5.1. (Lahiri, 1968) Consider the sampling scheme for a population of N units 

which allows us to select either a single unit with probability — or the 

whole population with probability \. Show that the sample mean Ys is 
design-unbiased for the population mean Y and find its design-based 
variance. Show that the design-based variance does not describe the 
precision of Ys effectively. 

6.5.2. Show that the Horvitz-Thompson variance estimator (6.33) and the 
Yates, Grundy, and Sen variance estimator (6.34) are design-unbiased for 
the variance (6.32) of the Horvitz-Thompson estimator. 

6.5.3. Show that under simple random sampling without replacement, the 
observations in a sample of size n from a finite population of size N are 
exchangeable but not independent. 

6.5.4. Under which model is the expansion estimator fH = A/£ies YJii — NYS 

the optimal estimator of the finite population total? Evaluate the 
prediction variance of TH under this model. Is this model likely to be 
widely applicable in practice? Discuss how you might use a sample to 
evaluate the plausibility of the model. 

6.5.5. Show that the estimator 

V NJ n us 

where Ys = £ i e s Yh is design-unbiased for the design-based variance of 
the expansion estimator and find its model expectation when the model 

#■ = j / ( y | x; /U) = ft 7^-4-^172 exP \ J y ' ~ PXif 
,l=\ (2na2

Xi)
112 K [ 2(T2x,. 

— oo < yt < oo: fi e U, a > 0 

holds. Interpret your results. 
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6.5.6. Suppose that for a finite population such as that described in Section 
6.5.1, we decide to base inference on the expansion estimator NYS. 
To explore the effects of misspecification of the model, suppose that the 
data are actually generated by the model 

I i=i(2ji(T2x,-)1/2 [ 2a2xt j 

-oo < >>, < oo: /?e R, <x > 0 

for which the ratio estimator is optimal. Obtain the model-based 
expectation and prediction variance of the expansion estimator under 3F. 
Under what circumstances is the expansion estimator model-biased? 
Discuss the implications of this result under simple random sampling. 

6.5.7. Suppose that for a finite population such as that described in Section 
6.5.1, we decide to base inference on the ratio estimator NXYJXS. To 
explore the effects of misspecification of the model, suppose that the data 
are actually generated by the model 

1 _. _ \ (yt - a - P*i): 

& = \f(y | x;/U) = ft n ̂ " ^ CXp { 2a v(xt) 

oo < ]/i < oo: a, /? e U, a > 0 

where v(x) is of the form v(x) = \x\i + y, where 0 < y < 1. The ratio 
estimator is optimal for this model when a = 0 and y = 0. Explore the 
model expectation and prediction variance of the ratio estimator when 
a # 0 and y > 0. 

6.6 PERMUTATION TESTS 

Permutation tests are numerically identical to randomization tests but are based 
on sampling distributions derived from models like the Gaussian model (6.1) 
rather than randomization distributions derived from randomization models 
like (6.9). 

6.6.1 The Permutation Distribution 

Consider again the volume of urine experiment. Suppose that the data 
are realizations of independent and identically distributed random variables 
(Z01, Z n ) , . . . , (Z0„, Zl n) distributed like (Z0, Zy). If we let F(z0, zt) denote the 
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joint distribution of (Z0, Z,), the null hypothesis H0 of no difference between 
treatment and control implies that F(z0, zy) = F(zx, z0). Under this null hypothesis, 
we have that the pairwise differences satisfy 

P(Z < z) = P(Zt -Z0<z) = P(Z0 - Z, < z) = P ( - Z < z) 

so Z and — Z have the same distribution. Hence, under H0, Z is symmetrically 
distributed about the origin and we have the nonparametric model (see Section 
1.3.3) 

,F0 = <F(x) = f l F(zi)'- F i s continuous and F(x) = 1 - F(x)>. (6.47) 

The subscript 0 in &0 is intended to show that this model holds under H0. 
The conditional distribution of Z given {IZJ , . . . , |Z„|} under (6.47) is discrete 

with support on the set 

^R = {(±|z,|, ± | z 2 | , . . . , ± | z„ | ) } . (6.48) 

Under (6.47), each of these values is equally likely (because Z and — Z have 
the same distribution) so Z takes on any one of them with probability 1/2". 
Formally, the joint density of the data Z is 

m = fl Azt) 

and the joint density of the absolute data ( IZJ , . . . , |Z„|) under (6.47) is 

m = n !/(-".-) + /(---*)} =2" fl f^z^ z> * o. 
i = l i = 1 

It follows that, under (6.47), 

/ ( z | | Z 1 | = | z i l , . . . , |ZJ = |z„l)=l/2", z e ^ R . (6.49) 

Thus from (6.49) and the equivalence of (6.48) and (6.20), the conditional 
sampling distribution of Z given the absolute observations flZJ,..., |Z„|) is 
the same as the randomization distribution of Z. The conditional sampling 
distribution of Z given the absolute observations ( |ZJ , . . . , |Z„|) is called the 
permutation distribution of Z because the points in JR can be obtained (as in 
fact they are in the randomization framework) by considering all possible 
permutations of the control and treatment labels. Even though we have assumed 
the model (6.47), the permutation distribution does not depend on F under H0. 
This is often referred to as the distribution free property of permutation tests. 
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6.6.2 Permutation Tests 

A permutation test of H0 based on a statistic T (chosen so that large values of 
T represent departures from H0) is the test provided by computing the p-value 

p(n) = P{7(Z) > T(z) | |Z,| = 12,1,..., \Z„\ = |z„|; H0} 

# {points in J^ leading to a T as or more extreme than that actually observed} 

From (6.49), p(n) depends on n but not on the data Z. The unconditional p-value 
is therefore 

P{T(Z) > T(z) H0} = EP{T(Z) > T(z) | |Z,| = | Z l | , . . . , \Z„\ = |Z„|; H0} = p{n) 

which is the same as the conditional p-value. Thus the permutation test can be 
interpreted unconditionally. 

Permutation tests are numerically the same as randomization tests (based 
on the same test statistic) and we can approximate the permutation distribution 
using methods like those used in Section 6.4 for randomization tests or 
saddlepoint approximations (Robinson, 1982). 

6.6.3 The Sign Test as a Permutation Test 

As in Section 6.3.2, the exact permutation distribution of the sign test (6.22) 
under H0 is the same as IB — n, where B ~ binomial(w, §). An advantage of the 
permutation test as opposed to the randomization test formulation is that the 
underlying model makes it easier to construct plausible alternative hypotheses 
and thereby to compare the power of tests. For example, the null hypothesis 
that Z is symmetrically distributed about the origin implies that the median 
of F is 0 or, equivalently, F(0) = \. One alternative hypothesis of interest is that 
the data are generated by a shifted version of F, say P{Z < x) = F(x — 0), or 
equivalently, P{Z — 8 < x} = F(x), for some 6 # 0 rather than P{Z < x} = F(x). 
Under this alternative, £I(Z > 0) = P(Z > 0) = P(Z - 6 > -6) = 1 - F{-0) 
so that S has the same distribution as 2B(6) — n, where B(0) ~ binomial(n, 1 — 
F( — 0)), which depends on the underlying distribution. (Obviously in a 
randomization test this cannot happen.) The asymptotic mean of n~iB(0) is 
/i(0) = 1 - F ( - 0 ) and the asymptotic variance is T(0)2 = {1 - F ( -0 )}F ( -0 ) . 
Since n'(0) = /(0) and T(0)2 = i it follows from Section 4.5 and Problem 4.5.2 
that the efficacy of the sign test is 2/(0). For comparison, under Hx, the sample 
mean has asymptotic mean 0 and variance a1 so its efficacy is l/<x. Hence the 
Pitman efficiency of the sign test relative to the mean test is 

4/(0)2<x2. 



330 RANDOMIZATION AND RESAMPLING 

This can be computed for different distributions; the sign test is more efficient 
than the mean test when the underlying distribution F has sufficiently long tails. 

In contrast to the mean test, the sign test is not obviously based on a location 
estimator. Nonetheless, it is equivalent to a test based on the sample median. 
The sample median can be defined to be the minimum of £?= x \Zt — 9\ so an 
estimating equation for the sample median is 

£ {/(Z, - 0 > 0) - /(Zf - 6 < 0)} = 0. (6.50) 

Since the left-hand side of (6.50) equals S at 6 = 0 (see (6.22)), the sign test is 
simply a score test of H0: 6 = 0 based on the sample median. This means that 
we can interpret the Pitman efficiency of the two tests as the asymptotic relative 
efficiencies of the sample mean to the sample median. In addition, by inverting 
the sign test (as discussed in Section 4.5.14), we can obtain confidence intervals 
for the population median. The problem of obtaining confidence intervals for 
the median is pursued in the next section. 

6.6.4 Randomization and Permutation Inference 

In practical terms, the difference between a randomization test and a permutation 
test is that in the former we take actions (randomization) which ensure that 
the conditions for the test hold whereas in the latter, we simply assume that 
they hold (by adopting a model). Nonetheless, the sample space is quite different 
in the two cases. In a randomization test, permutation is justified by what would 
happen under replication of the design conditional on the observed data while 
in a permutation test, the permutation is justified by a model for the data. Thus 
permutation inference does not require the change of perspective that random-
ization inference does. 

PROBLEMS 

6.6.1. For the effect of caffeine on the volume of urine data (Section 1.1.3), 
describe how to carry out a permutation test based on Huber's location 
Af-estimator (Section 5.4) to test the null hypothesis that the ingestion 
of caffeine has no effect on the volume of urine voided. 

6.6.2. Compute the Pitman efficiency of the sign test to the t test at the 
contaminated Gaussian distribution which has density 

f{z; e, a) = (1 — e)<j>(z) + £ff_1</>( - 1, — oo < z < co, a > 0, e > 0. 
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Try a range of parameter values including e = 0, 0.05, 0.10, 0.20, and 
a = 1, 3. 

6.6.3. Permutation tests always have the stated level by definition and this can 
be taken to justify the use of Gaussian theory tests even when the model 
is non-Gaussian. Use the results of your computations in Problem 6.6.2 
to comment on the usefulness of this conclusion. 

6.7 THE BOOTSTRAP 

Consider again the caffeine problem for which we have observations {Zu . . . , Z„} 
which represent the effect of the ingestion of caffeine on the volume of urine 
produced. Instead of adopting the usual Gaussian model, we can adopt a model 
such as 

& = } f(z) = fl f(z;), z e R": / absolutely continuous >, (6.51) 

and let the median F_1(l/2) rather than the mean represent the center of the 
distribution. We can estimate the median by the sample median which we define 
in terms of the order statistics Znl < ■ • • < Z„„ by med (Z) = Znm, where 
m = n/2 if n is even and m = (n + l)/2 if n is odd. As noted in Section 1.5.3, 
this definition of the sample median is convenient because it corresponds to 
F;1( |) = inf{x:F„(x)>i}, where 

Fn(x) = n~l £ /(Z; < x), x e U, (6.52) 
i= 1 

is the empirical distribution function defined in Section 1.5.2. The usual 
definition of the sample median is the same as ours when n is odd but uses 
(Z„m + Z„,m+i)/2 when n is even. We avoid this definition because its exact 
distribution is more complicated than that of Z„m. 

6.7.1 Inference for the Median 

To base frequentist inference on the sample median, we need to find the 
sampling distribution of the sample median. Under the model (6.51), we have 

P{Z„m < x} = P{i < F„(x)} 

= P|B(«,F(X))>^J 

= t (j)F(xf{l - F(x)}»-k, (6.53) 
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where B(w, j) ~ binomial(n, | ) and m = n/2 if n is even m = [n/2] + 1 = (n + l)/2 
if n is odd. Thus if a and b are integers such that P{B(n, j)> b} > a/2 and 
P{B(n, {) < a] > a/2, we have 

P{Zn* * F'\J) * ZH4} = P{a < Fm(F-l(&) < b} 

= P { a < B ( n , | ) < b } 

> 1 - a, 

so a 100(1 — a)% confidence interval for the median is given by 

[Zna,Znb]. (6.54) 

For a = 0.05 and n = 18, we find a = 5 (as P{B(18, ?) < 4} = 0.015 < 0.025 < 
P{B(18,|) < 5} = 0.048) and b = 13 so a 95% confidence interval for the 
median volume of urine voided is 

[ -5 ,235] . 

This interval is wider and closer to the origin than the 95% mean based 
interval [67,274] obtained under a Gaussian model in Section 3.5. 

The calculations for the exact confidence interval for the median become 
tedious as n increases but we can approximate (6.53) by showing that as n -* oo, 

n^(Znm - F-Hi)) * N ( 0 , l /4/(F~ W ) . (6.55) 

This large sample approximation to the sampling distribution of the sample 
median enables us to construct an approximate confidence interval. Typically, 
in this case, we need to estimate the sparsity function l / / (F_ 1( i ) ) ; see Sheather 
(1987). 

6.7.2 The Bootstrap Distribution 

An alternative approximation to the sampling distribution of the sample 
median can be obtained by bootstrapping. The bootstrap distribution of Z„m 

is obtained by treating the empirical distribution (6.52) as the underlying 
distribution. That is, we replace the underlying distribution F by F„. We then 
approximate the sampling distribution by repeated resampling from F„ which 
is achieved by drawing samples Z(r) of size n by sampling independently with 
replacement from {Zu . . . , Z„}. If all the observations are distinct, there are 

) distinct samples in 3& = < Z(r), r = 1 , . . . , I ) > which are equally 

likely. The bootstrap distribution of the sample median Znm is derived by 
calculating the realization Z*rj| for each of the resamples and assigning each one 
equal probability. 
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As n -* oo, the empirical distribution Fn converges to the underlying distri-
bution F, so it is intuitively plausible that the bootstrap distribution should 
converge to the sampling distribution. When this holds, the bootstrap distri-
bution is an asymptotically valid approximation to the sampling distribution 
of a statistic. Mammen (1993) showed that the bootstrap distribution is an 
asymptotically valid approximation to the sampling distribution when the 
Gaussian approximation is asymptotically valid. However, in small samples, 
the two approximations can give rather different results. 

6.7.3 The Exact Bootstrap Distribution of the Sample Median 

In the particular case of the median, the bootstrap distribution can be 
found exactly as the distribution of the median under sampling from a 
multinomial(n, n'1,... ,n_1) model supported on Z. 

Since the median must equal one of the observations, its bootstrap distribution 
has support on the data {Zu..., Z„}. Define Mjr) to be the number of 
observations in the rth bootstrap sample which equal the jth order statistic 
ZnJ so 

Mf =#{Zr» = Z„,}. 

Then, the event that the median of the rth bootstrap sample is greater than 
the kth order statistic, namely {Z ĵ, > Znk}, implies and is implied by the 
event that the number of observations in the rth bootstrap sample less than or 
equal to Znk — £*= t Mjr) is less than m which we write as {£*= t Mjr) <m— 1}. 
Hence 

P{Z£ > Znk} = pi £ Mf < m - l | = pUn, ^ < m - 11, 

because the fact that Z\r) has a multinomial distribution implies that £y= l Mjr) 

which is the number of observations less than or equal to Znk in a sample of 
size n has a binomial(n, k/ri) distribution. It follows that 

P{zi2 ■= z..} - Pfzll > z,.,-,} - P{Z« > z„} 

=p{B("'^)£m-,MB(%)s"'-1} 
= P„k, (6.56) 

say. That is, the bootstrap distribution of the median is itself a multinomial 
distribution. The bootstrap distribution of the median for the urine data 
is tabulated in Table 6.3. The bootstrap density function is plotted in 
Figure 6.2. 
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Table 6.3. The Bootstrap Distribution of the Sample Median Applied to the Urine Data 

Order statistics 

Pnk 

Distribution fuction 

Order statistics 

Pnk 

Distribution function 

Order statistics 

Pnk 

Distribution function 

- 9 0 

0 
0 

47 

0.12437 
0.23197 

235 

0.03134 
0.98799 

- 4 5 

0.00005 
0.00005 

75 

0.17143 
0.40341 

254 

0.00986 
0.99785 

- 2 0 

0.00108 
0.00113 

87 

0.18933 
0.59274 

325 

0.00195 
0.99980 

- 5 

0.00771 
0.00884 

117 

0.16971 
0.76245 

410 

0.00019 
0.99999 

- 5 

0.02876 
0.03760 

228 

0.12316 
0.88561 

555 

0.00001 
1 

40 

0.0700 
0.1076 

230 

0.07104 
0.95665 
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Figure 6.2. The density of the bootstrap distribution for the median for the urine data. 

6.7.4 Using the Bootstrap Distribution 

The bootstrap distribution can be used to estimate the bias and standard error 
of the sample median. We estimate the bias by the difference between the mean 
of the bootstrap distribution (6.56) and the sample median, namely 
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£ P- Z„it Z« 112.63-87 = 25.63. 
* = i 

We estimate the standard error of the sample median from the bootstrap 
distribution by calculating its standard deviation. Since the bootstrap distri-
bution (6.56) is multinomial, the standard error of the median is estimated by 

£ Pnk £ p„ 
2") 1/2 

= 72.04. 

This estimator of the standard error of the median was proposed by Maritz 
and Jarrett (1978) and Efron (1979). 

The quantile function of the bootstrap distribution (6.56) is plotted against 
the quantile function of the approximate sampling distribution (6.55) of 
the sample median, namely N(l 12.63, (72.04)2), in Figure 6.3. The bootstrap 
distribution is asymmetric with a shorter left tail and a longer upper tail than 
the approximating Gaussian distribution. If we correct the bias and use the 
bootstrap standard error in conjunction with the Gaussian approximation, we 

II 
3 

§ 8 
0Q <N 

O -

o ..O ° 

-100 0 100 200 300 400 500 
Gaussian Quantiles 

Figure 6.3. A comparison of the bootstrap distribution and the Gaussian approximation to the 
sampling distribution of the sample median for the urine data. 
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obtain an approximate 95% confidence interval for the population median 

[-28.57,253.83]. 

This interval is slightly wider than the exact interval. 
The bootstrap distribution can also be used to construct approximate 

confidence intervals directly. The distribution function of the bootstrap distri-
bution is FB(z) = n~i ££=i PnkKZnk < z) so a 100(1 — <x)% bootstrap confidence 
interval for the population median is 

[ V M . F B ' U - O O ] , (6.57) 

where we define FB
x{u) = inf {x: FB(x) > u} to take into account the fact that 

FB is a step function. For the change in the volume of urine example, we obtain 
the exact binomial interval (6.54). 

6.7.5 Simulating the Bootstrap Distribution 

Even if we cannot obtain an analytic expression for the bootstrap distribution 

of a statistic, we can in principle compute all I 1 possible values of the 

statistic and so obtain the multinomial probabilities. However, the computation 
is infeasible for even moderate n so we need alternative approaches. The simplest 
and most widely used alternative is to simulate the bootstrap distribution by 
drawing a number B of samples and using them to estimate the bootstrap 
distribution. For example, for the sample median, the estimated bootstrap 
distribution is multinomial with 

_ ? , _ # {Samples Z " for which Zff = ZHk} 
~B\Aim — Aik) — _ 

D 

We use this distribution exactly as we use the actual bootstrap distribution 
(and indeed the estimated bootstrap distribution is often referred to simply as 
the bootstrap distribution). The bootstrap quantile function estimate from 
B = 2000 resamples is plotted against the actual bootstrap quantile function in 
Figure 6.4. The approximation is good except in the extreme right tail where 
the simulated tail is too short. 

We can estimate the bias by the difference between the sample mean of the 
bootstrap estimates and the sample estimate, and we can estimate the standard 
error from the sample standard deviation of the bootstrap estimates. An 
approximate 100(1 — a)% bootstrap confidence interval for the population 
median is particularly easy to obtain as 

[ Z £ » , Z £ - * * ] , (6-58) 

where Zji* < Z™ < - ■ • < Z™. The interval (6.58) can be compared to (6.57). 
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Figure 6.4. A comparison of the bootstrap distribution and the simulated bootstrap distribution 
of the sample median for the urine data. 

The power of the simulated bootstrap distribution is that it can be obtained 
for almost any statistic. For example, we can redefine the median for n even as 
(Znm + Z„ m + 1)/2 and simulate the bootstrap distribution very simply. 

6.7.6 The Saddlepoint Approximation to the Bootstrap Distribution 

An alternative to simulating the bootstrap (which avoids the need for explicit 
resampling) is to use a saddlepoint approximation to the bootstrap distribution. 
Essentially, the formulae derived in Section 4.4.3 are applied to the empirical 
distribution F„ rather than the true underlying distribution F0 (Problem 6.7.9). 
The resulting approximation approximates the bootstrap and hence the actual 
sampling distribution of the statistic. For more details see Davison and Hinkley 
(1988), Wang (1992), and Ronchetti and Welsh (1994). 

6.7.7 Bootstrap and Permutation Inference 

Bootstrap and permutation inferences are based on underlying models for the 
data and so differ from randomization inference which is based on randomization 
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Figure 6.5. A comparison of the randomization/permutation distribution and the simulated 
bootstrap distribution of the median for the urine data. The densities are obtained using the 
Gaussian kernel and h = 80: (a) randomization/permutation density; (6) simulated bootstrap 
density. 

models. Bootstrap and permutation inferences are computed conditionally but 
interpreted unconditionally. In the case of the bootstrap, the bootstrap distri-
bution is simply an approximation to the sampling distribution. The permutation 
distribution for the urine problem is obtained by permuting the treatment and 
control observations which is equivalent to considering the sample space 
{ + Z j , . . . , ±Z„}. Under the null hypothesis of no difference between treatment 
and control, the pairwise differences are symmetrically distributed about the 
origin so the permutation distribution is centered about the origin. On the 
other hand, the bootstrap distribution uses the sample space 38 = 

Z(r),r = 1,...,I I >, where Z(r) are independent samples of size n drawn 

independently with replacement from {Zu..., Z„}. The permutation and 
(simulated) bootstrap distributions for the urine data are shown in Figure 6.5. 
The bootstrap distribution is centered about the location estimate used to 
estimate the difference between the effect of the treatment and the control while 
the permutation distribution is centered (as is appropriate since it is computed 
under the null hypothesis of no treatment effect) at the origin. 

6.7.8 Other Bootstrap Procedures 

The version of the bootstrap presented above is the simplest available. It is 
convenient to give a slightly different but equivalent formulation. Suppose that 
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we want to make inferences about a parameter 0 = 8(F0) based on the statistic 
6 = 6(Fn), where F0 is the underlying distribution and Fn is the empirical 
distribution. Let Z(r) denote a sample of size n obtained by sampling inde-
pendently with replacement from {Zu . . . , Z„} and let F'r) denote the empirical 
distribution of Z(r). We can approximate the sampling distribution of nl/20 — 9) 
by the bootstrap distribution FP which is the distribution of nll2(9ir) — 0) = 
n1/2(0(F<r)) - 6(Fn)) and thereby obtain a 100(1 - a)% bootstrap confidence 
interval for 0 as 

[0 - n' 1/2FP-'(«), d-n~ l'2Fp-
 J(l - a)]. 

Note that this interval is equivalent to (6.57) and (6.58) as it follows from the 
definition of FB as the bootstrap definition of $ that FB~

 l(q) = 9 — n" 1/2FP~~ x(q). 
This bootstrap is often called the percentile method. 

If we can calculate the standard error f/n1/2 of 0, we can apply the bootstrap 
procedure to the studentized quantity n1/2($ — 0)/f to obtain the bootstrap 
distribution Fs of n1/2(^(r) - §)/i(r). A 100(1 - <x)% bootstrap confidence interval 
for 0 based on Fs is 

[0 - n-^iFf^oi), 0 - n~mrFsl{.\ - «)]. 

This is known as the bootstrap-t method. 
To compare the percentile and the bootstrap-t methods, Hall (1988) showed 

that, under some regularity conditions, 

FP(x) = P{n1/2(6)(r) - 0) < x | F„} = P{n1/2(0 - 0) < x] + Op(n"1/2) 

and 

Fs(x) = P jn 1 ' 2 ^ ^ < x | F„} = p jn 1 ' 2 ^ ^ < x | + O^n"1). 

That is, the bootstrap distribution obtained by bootstrapping the studentized 
quantity n1/2(0 — 0)/f provides a closer approximation to the sampling distri-
bution of n1/2(0 — 0)/f than the bootstrap distribution obtained by boot-
strapping n1/2(0 — 0) provides to the sampling distribution of nI/2(0 — 0). 
Intuitively, the bootstrap variance of n1/2(0(r) — 0) is f2, the sampling variance 
of «1/2(0 — 0) is T2 and Edgeworth expansion arguments (Section 4.1.4) show 
that the difference between the bootstrap distribution and the sampling distri-
bution is determined by f2 — x2 = Op(n~1/2). The bootstrap-t procedure provides 
a better approximation because the bootstrap variance of n1/2(0(r) — 0)/f(r) is 
1 + Op(n~l) and the sampling variance of n1/20 — 0)/f is 1 + 0(n~l) and these 
differ by Op(n~l). See also Martin (1989). In practice, to use the bootstrap-t 
procedure, we need to be able to compute the standard error readily and stably. 
See Efron and Tibshirani (1993, pp. 162-6). 
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Although we do not pursue them here, a number of alternative bootstrap 
methods involving various adjustments (such as smoothing F„, including 
parametric information, using more informative resampling schemes, iterating 
the bootstrap, etc.) have also been investigated. For a recent review, see Efron 
and Tibshirani (1993). 

PROBLEMS 

6.7.1. For the epinephrine data (Section 1.1.3) where n = 18, compare the 
bootstrap distribution of F„_1(j) = Z„m with that of the usual sample 
median (Z„m + Z„,m + 1)/2, where m = n/2 = 9. 

6.7.2. Use the sample median to estimate the median survival time from the 
pressure vessel data given in Section 1.1.2 and Problem 1.5.4. Compare 
your inferences to those obtained in Problem 5.4.5. 

6.7.3. Consider the stellar velocity data described in Section 1.1.4. Construct 
bootstrap confidence intervals for the spread of the stellar velocity 
distributions when these are estimated using the standard deviation and 
Huber's M-estimator (Section 5.4). Compare the results to the large 
sample results obtained in Chapter 5. 

6.7.4. Consider the negative binomial model 

^ = \f(z;X,d)=f] L r f f i r ' i f z . + f W l +8)-w>-
i= I 

Z; = 0, 1, 2 , . . . , X > 0, 6 > 0 

for the Mosteller and Wallace (1964/1984, p. 33) data on the number of 
occurrences of the word "may" in 262 blocks of text written by James 
Madison. Suppose we want to carry out a test of H0: 5 = 0 using the 
method of moments estimator $ derived in Problem 3.1.1. Simulate the 
data from the Poisson model to approximate the sampling distri-
bution of S. What is the simulation-based p-value? How would you obtain 
a bootstrap p-value for this test? 

6.7.5. Suppose we adopt the gamma model 

<? = j / ( y , ;., K) = f l J - X(Xyif-
1 exp (-Ay,-), y, > 0: X > 0 j 

I i=lT(K) J 
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for the pressure vessel data of Section 1.1.2. Obtain and explore the 
bootstrap distribution of the method of moments estimator of K which 
was derived in Section 4.3.1. Set 95% bootstrap confidence intervals for 
K and /.. 

6.7.6. Suppose we adopt the Gaussian regression model 

— oo < yt < oo: a, /?e U, a > 0> 

to relate catecholamine excretion to the volume of urine produced during 
the ingestion of caffeine (Section 1.1.3). To apply the bootstrap here, we 
need estimators a and /? of a and /? so that we can compute the residuals 

rl = yi - a - j?x;, i= \,...,n. 

We then resample independently, with replacement from the residuals to 
obtain a bootstrap sample rf , . . . , r* of residuals and construct the 
bootstrap observations 

Y? = a + pXi + rf, i = l , . . . , n . 

We use (yf, x j , . . . , (Y*, x„) to re-estimate a and fi. We construct the 
bootstrap distribution of these parameters by repeating the resampling 
process B times. Construct the bootstrap distribution of the least squares 
estimator of fi and use it to set an approximate 95% confidence interval 
for fi. Compare the result to that obtained in Problem 3.6.7. 

6.7.7. Construct the bootstrap distributions of the least squares estimator and 
the Huber M-estimator of the temperature coefficient in a linear regression 
model for the enamel covered steel plate data presented in Section 1.1.5. 
Construct approximate 95% confidence intervals for this parameter based 
on the two estimators. Compare the bootstrap distributions and intervals. 
To explore the effects of misspecification, repeat the above analysis 
omitting the time variable from the model. How does the bootstrap 
perform under misspecification? 

6.7.8. Suppose that we have observations Z 1 ; . . . , Z„ on the model (6.51) and 
we want to use the sample mean z to make inferences about the mean 
of / . Show that the saddlepoint approximation (Section 4.4.3) to the 
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bootstrap density of z is given by 

,1 /2 
fdx; 00) — — exp {nKX<x(x)) — n<x(x)x), 

where <x(x) satisfies 

0 = £ (z, - x) exp {a(z; - x)}, KX<*) = log \n 1 £ exp (z,-a)k 

and 

AFx(x) = «"J X (z, - x)2 exp {a(jc)z; - K „ W ) } . 

6.7.9. Consider an estimator 6„ of 0 based on ZU...,Z„. Let 0„ _; denote the 
estimator calculated from the n — 1 observations after Z, has been 
excluded. The jackknife estimator of 0 is defined to be 

i= 1 

where Jt0„) = $ „ - ( « - 1)(A,_,- - 0„), i = 1 , . . . , n. Show that if 

then 

Interpret this result. Find the bias of a2 = (1/n) £"= x (z, — z)2 and show 
that jackknifing <x2 produces an unbiased estimator of the underlying 

6.7.10. The variance of a jackknife estimator J(a„) can be estimated by 

n - 1 ;=i 

What is the jackknife estimate of the variance of J(d2), where <r2 = 
(1/n) £ " = 1 (z, — z)2? Compare this to the actual variance of a2 obtained 
in Section 5.1. 
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6.7.11. For the stellar velocity data for the disk stars (Section 1.1.4), compute 
and then plot the quantities J;(d2) — J(d2) against Z,, where a1 = 
0/")X"=i (z; — z)2- How does this compare to the sensitivity curve 
introduced in Section 5.1? How does the curve change if we jackknife 
<T instead of <t2? Use Tukey's (1958) suggestion that n1/2{J(0„) - 0}/V112 

has approximately a Student t distribution with n — 1 degrees of 
freedom to construct a 95% jackknife confidence interval for a. Compare 
this interval to the bootstrap interval from Problem 6.7.3 and compare 
these intervals to the other intervals obtained in Section 5.1. 

6.8 OTHER RESAMPLING METHODS 

The bootstrap approximates the sampling distribution of a statistic by sampling 
from the empirical distribution Fn or, equivalently, by resampling from the 
observed data. In this section, we describe some methods which use resampling 
(from distributions other than F„) to produce simulated data from a specified 
distribution P. 

6.8.1 The Inverse Probability Transformation 

As noted in Section 3.10, the general problem of simulating realizations from 
a specified distribution is discussed in Devroye (1986) and Ripley (1987). The 
simplest method of generating a (univariate) random variable from a distribution 
P is by generating a random variable from the uniform U(0,1) distribution and 
applying the inverse probability or quantile transformation P~\u), where P is 
the distribution function of the distribution. The difficulty with this method is 
that we require the quantile function P~l. The resampling methods we present 
below provide a way to generate random variables from the distribution P 
given only its density function p. 

These methods are particularly useful for approximating posterior distri-
butions, posterior moments, and so on in Bayesian analysis, but because they 
have much wider applicability we will present a general description of them 
before discussing specific Bayesian implementations. For the purpose of general 
discussion, we suppose that we want to generate a sample of random vectors 
0l,...,9m from the distribution with density function proportional to p(0). It 
is important that we do not need to know the normalizing constant because 
in many Bayesian applications it is unknown. 

6.8.2 The Rejection Method 

If we can find a distribution with density function q such that we can generate 
6 from q and there is an M > 0 satisfying 

< M, 
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then an exact sampling procedure known as the rejection method is defined by: 

1. Generate 6 from q and u from U(0,1). 

2. If u < , accept 8 into the sample; otherwise repeat 1-2. 
q{8)M 

3. Repeat 1-2 independently until we have accepted m realizations of 9 into 
the sample. 

This is a resampling method in the sense that we generate a large set of 
realizations of 8 from q (in fact a random number of them) and then resample 
from this set according to the acceptance procedure. To see that the rejection 
method works, notice that 

^ p(0; ^ f> 0f accepted) P(0,. < 11 8t accepted) = - i -L—L-L- v 

P(0, accepted) 

lid < t, u < ^-— \q(8) du dd 

J,{. <J^L\q(0)dud8 

ii q(6)M 

^ q(8)d9 

I 
q(8)M 

I{6<t}p(9)d8 

p(8) d8 

That is, the conditional distribution of 0 given that 8 is accepted is the 
distribution with density proportional to p as required. 

6.8.3 The Sampling-Importance-Resampling Method 

An alternative method which does not require the bound M in the rejection 
method is the method which Rubin (1988) called the sampling-importance-
resampling (SIR) algorithm: 

1. Generate a sample 6u...,6m from q(8) and compute the sample weights 

w(w.) = . 
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2. Draw 0 ? , . . . , 0* with replacement from the multinomial distribution with 
atoms d1,...,6m and probability 

w(0,) vv(0J 

zr- i w(0i) ir=iw(0,-) 
The set {0f,..., 0*} is approximately distributed as an independent sample 
with density proportional to p(6). To see this, notice that 

zr=xw(0,.) 
f w(0)I(0 < t)q(0) <i0 

"" Jw(0Jg(0) d0 

_ f 7(0 < t)p(0) d6 

Observe that 

\P{6)de 

I w(0,) = n 2. 
> = i i - i <?(0<) 

p(0) d9 

is an estimate of the normalizing constant. The SIR algorithm is similar to the 
bootstrap except that we resample from the sample from q rather than from 
the data. We also resample with unequal probability which is possible but not 
a requirement with the bootstrap. 

Both the rejection and the SIR method generally work better when q is close 
to p. We also need to ensure that simulating realizations from q is straight-
forward, so the choice of q usually represents a tradeoff between closeness to 
p and the simplicity of simulating realizations from q. 

6.8.4 Markov Chain Methods 

A different class of approaches to generating a random variable 8 from p(0) is 
by constructing a Markov chain {6(k)} whose state space is £1 and whose 
equilibrium distribution is p(Q). If we run the chain for a long time, until k = K 
say, then 0<x) has approximately the distribution p(0) in the sense that 

0<*>^0~p(0), as/c->oo. 

Thus, if we make parallel independent runs of the chain, we can simulate a 
sample of independent observations from p(0). A single run of the chain suffices 
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from some purposes because the ergodic theorem ensures that 

- £ g(9™) = [ m m dO + 0 p(l), as k - oc. 
k m = l J 

That is, we can estimate moments from a single run of the chain. Markov chain 
methods are not usually regarded as resampling methods but they do involve 
iteratively resampling from conditional distributions to construct the chains. 

The Gibbs sampling algorithm (Gelfand and Smith, 1990; Gelfand et al., 1990) 
uses the so-called full conditional densities of the individual components of 9, 
namely 

p{9i\9j,j±i), 

to generate a chain. Given arbitrary initial values (9f\ . . . , 9p
0)), we simulate the 

chain by repeatedly making the following sequence of steps: For k = 0,1,2,..., K 

sample 0?+ 1 ) from p(9l | Q%\ ..., 6p
k)) 

sample 0f+i) from p(02 \ 0[k), 0?>,.. . , 0<k)) 

sample 0$ + 1) from p(63 \ 9f\ 9<£+l), 9{k\..., 9{k)) 

sample 9f + u from p(04 | 0<« 9%+ J>, ̂ *+ ", 0<5*>,..., 9f) 

sample 0<," + " from p(0„ | 9[k), 9$ + l),..., Of*?). 

The sequence 

0 < 1 » , 0 ( 2 , , 0 ( 3 \ . . . 

is called a Gibbs sequence and has the property that for large k, 9(k) ~ p. 
Obviously, the components of 9{k) are realizations from the marginal distri-
butions of p so we can use them estimate marginal properties. Notice that we 
can estimate the marginal densities of the components by computing 

m 

k = l 

6.8.5 Applications to Bayesian Inference 

Just as samples from the empirical distribution can be useful in frequentist 
inference, samples from the posterior distribution 

g(9 | z) oc f(z | 9)g(9) 
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can be useful in Bayesian inference, particularly if we can generate the samples 
without having to integrate to find the normalizing constant and the quantile 
function. We can use the samples to estimate the normalizing constant, marginal 
posterior densities, marginal tail probabilities, and moments of the posterior 
distribution. 

The rejection method can be applied directly using an arbitrary distribution 
with density function q or using the prior distribution for q. In the latter case 
step 1 entails generating 0 from the prior g(9) and u from the U(0,1) distribution. 
Then since 

» - ( ^ = /<*!«), 
9(8) 

we can take M = f(z | 0), where 6 maximizes f(z \ 0). That is, in step 2, we 
accept 0 if 

^ /(* I 8) u < —. 
f(* I 8) 

The resulting sample is a sample of m independent observations from the 
posterior distribution. 

If we use the prior distribution for q in the SIR algorithm, step 1 requires 
generating a sample 0l,...,0m from the prior distribution g(6) and computing 
the sample weights 

w(0t) = - 7 T - = / (z | 0;). 

In step 2, we sample flf,..., 0* with replacement from the multinomial 
distribution with atoms 6i,...,0m and probability 

I m I m ") 

/(z 10,) / I /(* 10,-). ■•■,/(*! <U / X /(* 10,)f ■ 

The set {0f , . . . ,0*} is then approximately distributed as an independent 
sample from the posterior distribution g{Q \ z). In this case, the normalizing 
constant for the posterior distribution can be estimated by 

m-1 I /(z|0,.) ftz | 9)g(6) d9. 

6.8.6 Sensitivity Analysis for the Effect of Caffeine Problem 

Suppose as part of a sensitivity analysis, we adopt the Student t model with 
degrees of freedom fixed at v = 3 for the effect of caffeine on the volume of 
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urine data. In this case, the likelihood is 

JS?(|i, a) oc a-" cxp I - t —^ l o 8 f1 + ^ T ^ ) } ' ( ^ ' ) ^ x [ 0 , « ) . 

Suppose that as a vague prior we assume that n ~ N(0,10000) independent 
of <r2 ~ T(l, 10000). If we generate a set of realizations from this prior and 
transform them using either the rejection method or the SIR algorithm, we find 
that there are very few distinct points in the posterior distribution. This is not 
surprising because the likelihood is negligible over most of the support of the 
prior distribution or, in other words, the prior density playing the role of q is 
very different from the posterior density playing the role of p. However, the 
distinct points in the posterior distribution suggest the region where the 
likelihood is non-negligible (in this case — 50 < fi < 250 and 0 < a2 < 450) so 
we can apply the principle of precise measurement (Section 2.2.9), approximate 
the prior by a uniform distribution over this region, and then repeat the 
simulation to obtain a useful sample from the posterior distribution. A set of 
2000 realizations from the approximating uniform prior distribution with 
density 

g(li, a2) oc / ( - 5 0 < n < 250,0 < a2 < 450), 
300 x 450 

is shown in the first panel of Figure 6.6. The same set of observations after 
transformation into a sample of (ft, a) from the posterior distribution using the 
SIR algorithm is shown in the second panel of Figure 6.6 and kernel density 
estimates (Section 1.5.1) of the marginal posterior distributions of n and a 
(obtained from the first and second components of the realizations of (ft, a) 
respectively) are shown in Figure 6.7. The Gaussian qq-plot (Section 1.5.3) in 
Figure 6.8 shows that the marginal posterior distribution of // is shorter tailed 
than the Gaussian distribution so we can use a Gaussian approximation to it. 
The posterior mean of (i is estimated by the sample mean of the realizations 
of ix from the posterior distribution, namely 133.40, and the posterior standard 
deviation by the sample standard deviation of the realizations of \i from the 
posterior distribution, namely 47.40. An approximate 95% credibility interval 
for fx is then given by 133.40 ± 1.96 x 47.40 or 

[40.50,226.30], 

which is shifted to the left and slightly narrower than the interval [67, 274] 
which we obtained in Section 2.3.4 under the Gaussian model. Alternatively, 
we can construct a 95% Bayesian credibility interval for /i from the 0.025 and 
0.975 quantiles of the sample from the marginal posterior distribution of \i. 
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Figure 6.6. Simulated observations from a uniform prior distribution and from the posterior 
distribution of (/i, a) for the urine data obtained via the SIR algorithm: (a) prior distribution; 
(ft) posterior distribution. 

0 100 200 100 200 300 400 
" o 

Figure 6.7. Simulated marginal posterior densities of n and a for the urine data. The densities are 
obtained using the Gaussian kernel and h = 50: (a) marginal posterior density of /i; (ft) marginal 
posterior density of a. 
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Figure 6.8. Gaussian qq-plot of the simulated quantiles from the marginal posterior distribution 
for fi. 

We obtain 

[37.18,231.40], 

which is very similar to the interval obtained using the Gaussian approxi-
mation. 

The use of the prior distribution for q in these resampling algorithms provides 
insight into the nature of Bayesian analysis because the initial sample from the 
prior is transformed into the final sample from the posterior distribution. 
As pointed out by Smith and Gelfand (1992) and Albert (1993), this is analogous 
to the transformation of the prior density into the posterior density by means 
of Bayes' theorem. 

Markov chain methods do not require us to sample from the prior distri-
bution which can therefore be improper. If we adopt the Jeffreys prior with 
our Student t model, the posterior density is 

^ , f f | z ) o c a - » - 1 e x p | - | i
V ^ l o g ( l + ^ - ^ ) | . 

However, the conditional posterior densities of ft given a and of a given \i do 
not have recognizable forms so it is not straightforward to generate data from 
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them. An alternative Markov chain approach to computing posterior distri-
butions is provided by the data augmentation algorithm of Tanner and Wong 
(1987). 

6.8.7 The Role of Simulation in Bayesian Analysis 

It is noticeable that the way we use the simulated realizations from the posterior 
distribution to estimate the normalizing constant, marginal posterior densities, 
marginal tail probabilities, and moments of the posterior distribution is 
essentially frequentist rather than Bayesian. This is a concern to some Bayesians 
(see for example O'Hagan, 1987) who argue that non-Bayesian simulation 
methods should not be used in a Bayesian analysis. 

PROBLEMS 

6.8.1. Suppose we adopt the Student t3 model of Section 6.8.6 for the stellar 
velocity data for the halo stars (Section 1.1.4). Use the rejection method 
or the SIR algorithm to generate a sample from the posterior distribution 
of (fi, a). Begin with a vague prior to determine the region over which 
the posterior distribution has non-negligible support and then use 
uniform priors over the region with non-negligible support. Set an 
approximate 95% Bayesian credibility interval for a. Construct a 95% 
credibility interval for a using a Gaussian model and compare the two 
intervals. 

6.8.2. Suppose we adopt the gamma model of Problem 6.7.5 for the pressure 
vessel failure data of Section 1.1.2. Use the rejection method or the SIR 
algorithm to generate a sample from the posterior distribution of (X, K). 
Use a vague prior for X and an independent U(0, 3) prior for K. Obtain 
the marginal distributions of / and 3 and then set approximate 95% 
Bayesian credibility intervals for these parameters. What do you conclude 
about the model? 

6.8.3. Suppose that we adopt the negative binomial model of Problem 6.7.4 for 
Rutherford and Geiger's (1910) alpha particle emissions data presented 
in Problem 1.5.1. Use the rejection method or the SIR algorithm to 
generate a sample from the posterior distribution of (X, <5). Use a vague 
prior for X and an independent exponential prior with mean 1 for <5. 
Obtain the marginal distributions of X and 3 and then set approximate 
95% Bayesian credibility intervals for these parameters. What do you 
conclude about the model? 

6.8.4. Suppose that we have observations Z on the Gaussian model (6.1) and 
we adopt the Jeffreys prior for (ju, a). Find the conditional posterior 
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distribution of n given a and z and the conditional posterior distribution 
of a given n and z. For the effect of caffeine on the volume of urine data 
of Section 1.1.3, apply the Gibbs sampling scheme to generate a random 
sample from the posterior distribution of (ft, a). (Generate 1000 realizations 
from 50 steps of the chain each time.) Compare the samples from the 
marginal posterior distributions generated by Gibbs sampling to the 
known marginal posterior distributions. 

6.8.5. Consider the variance component model presented in Section 1.3.6 

P = | / ( z ; fx, <ra, O = ( 2 7 r ) J 2 | £ | 1 / 2 e x p { - ( z - AO T Z _ 1 (* - jO/2}, 

— oo < ztj < GO: \i e R, <ra > 0, au > 0 >, 

where Z is the block diagonal matrix with blocks a\i + ojl, where J 
is the m x m matrix with all elements equal to 1 and / is the m x m 
identity matrix. Suppose we adopt the prior of Problem 2.7.4 for 
(n, ra = ma\ + al, xu = al). Find the required conditional posterior distri-
butions and show how to use Gibbs sampling to estimate the marginal 
posterior distributions of the parameters. 

6.8.6. Discuss the use of Gibbs sampling in the context of Problem 6.8.2. How 
would you generate the realizations of K? 

6.9 NONPARAMETRIC METHODS 

Design-based inference described in Sections 6.3-6.5 does not require the 
assumption of a parametric model for the data. Such inference is often described 
as distribution free or nonparametric. Neither description is entirely satisfactory; 
the randomization distribution and the derived sampling distribution are used 
in the inference and the quantities of interest are still parameters. Nonetheless, 
it is clear that the procedures are rather different in nature from those considered 
in earlier chapters in that they have a weaker reliance on simple parametric 
models for the data. We will follow convention and describe such procedures 
as nonparametric, but it is important to keep in mind the limitations of this 
description. 

We have implicitly encountered the main types of nonparametric methods 
already but it is useful to make the scope of nonparametric methods explicit by 
describing the procedures from a different perspective. Many of these procedures 
are more properly semiparametric procedures (Section 1.3.3) but, in conformity 
with current usage, we will ignore this distinction in this section. 
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6.9.1 Rank-Based Methods 

An important class of nonparametric methods are those based on the ranks of 
the data. The rank of Z, among Zx,..., Z„ is the position of Z, in Znl < Z„2 < 
• ■ ■ < Z„„ or, equivalently, the number of observations less than Z,. For a paired 
data problem like the caffeine experiment, let Rt be the rank of the ith absolute 
pairwise difference |Z,| among | Z J , . . . , |Z„|, and consider the class of rank tests 
based on rank statistics of the form 

£ Aia(R^ 

where 0 = a(0) < a(l) < ■ • ■ < a(n) is a nonconstant sequence of scores and 
{AJ is the set of signs of the pairwise differences defined in (6.22). The sign test 
(Sections 6.3.2 and 6.6.2) is a trivial rank test with a(x) = 1, x > 0. A nontrivial 
rank test is the Wilcoxon (1945) signed-rank test which has a(x) = x. 

The Wilcoxon signed-rank statistic can also be written as 

W=2ikI(Ak>0)-
n±^) 

k = 1 ± 

= 2W*-«*±11, (6.59) 

where W* = Yl = i kI(Ak > 0). Note that the test based on W is equivalent to 
that based on W*. Since under H0, I(Ak > 0) ~ binomial(l, 1/2), we have that 

EW* = £ feE/(Ak > 0) = r^±}\ 
k = l 4 

and 

Var (W*) = t *» EVar I(Ak > 0) = £ * ' = " ^ + 1 ) ( 2 " + 1 ) . 
k = i * = i 24 

As W* is a weighted sum of independent binary random variables, we can 
apply a central limit theorem to obtain a (distribution free) Gaussian approxi-
mation to its sampling distribution. The distribution theory under a general 
alternative is quite complicated (see for example Section 2.5 of Hettmansperger, 
1984) but it can be shown that, under shift alternatives, the efficacy of the 
Wilcoxon test is (\2)112 \ f0(x)2 dx. It can also be shown that the Wilcoxon 
signed rank statistic is equivalent to a score test based on the median of the 
Walsh averages med {(Z, + Z,)/2} which is known as the Hodges-Lehmann 
estimator. (The connection between Walsh averages and the Wilcoxon signed 
rank statistic is shown in Section 6.9.3.) 
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6.9.2 Empirical Distribution Function Methods 

Another important class of nonparametric methods are those based on the 
empirical distribution function (6.52). The basic idea is that we specify a 
parameter T(F0) as a function of the underlying distribution F0, whatever F0 

may be, and then base inference on the Fisher consistent estimator T(F„) of 
T(F0). The systematic study of methods of this type along the lines indicated 
in Section 5.1.6 was initiated by von Mises (1947); recent references include 
Serfling (1980, Chapter 6) and Fernholz (1983). The bootstrap (Section 6.7) is 
an obvious example of a method of this type as are many of the methods 
described in Chapters 4 and 5. Estimators denned by estimating equations 
under a general model (Sections 4.2.2-4.2.5, 4.4.2-4.4.3, 4.5.6-4.5.11, 4.5.14, 
5.1.1, and 5.4-5.6) and the methods used in nonparametric robustness (described 
in Section 5.7.9) are clearly of this type. 

Although the class of estimators denned by estimating equations is very 
broad, the class of empirical distribution function procedures includes estimators 
which are not defined by estimating equations. A class of procedures in this 
category are procedures based on linear combinations of order statistics which 
are of the form 

L- = ""1.^1"
/0Z-' (6-60) 

where J is an integrable weight function on [0,1]. With 

J(u) = /(a < u < 1 - a), 0 < a < 1/2, 
1 — 2a 

in (6.60) we obtain the a-trimmed mean which is usually written in the 
asymptotically equivalent form 

1 n - [na] 

T = y z ■ 
n - 2[na] , = [„a]+i 

As a -* 0, T„ tends to the sample mean and, as a -» 1/2, the sample median 
which was considered in Section 6.7. 

If we use the use the fact that the order statistics ZBl < ■ • ■ < Z„„ can be 
expressed in terms of the empirical quantile function (Section 1.5.3) as 
Zm = F~l(i/n), we can show that linear functions of the order statistics can 
be written as 

Ln~ E \" J(u)du Zni= \ F;\u)J{u)du 
J (i - 1 )/n J J o 



NONPARAMETRIC METHODS 355 

so that linear functions of the order statistics are estimators of 

L(F0) = Fo\u)J(u)du. 

The a-trimmed mean is an estimator of 

1 1 I 1 - " 
F(F0) = Fs\u)du--

1 - 2a Ja 1 - 2a J 

f o ' ( l - « ) 

y dF0(y), 
Fo (a) 

and, provided the a and 1 — a quantiles of F0 are unique, inference about T(F0) 
can be based on the fact that 

ni/2^^ZLF2»J|N(o,l), 
<*(y) 

where 

<r2(a) = 
1 n — [not] 

n-1 £ (zl l i-7;)2 + «{F-1(«)-7;} 
i = [nor] + 1 (1 - 2a)2 

+ a{F„- \l - a) - T„}2 - a2{F„- '(1 - a) + F " »(«) - 2F„}2 

See for example Serfiing (1980, Chapter 8) who gives a review of methods for 
establishing the theoretical properties of linear combinations of order statistics. 
As we noted in Problem 5.1.5, Tukey and McLaughlin (1963) showed that the 
Student t distribution with n — 2[na] degrees of freedom often provides a good 
small sample approximation to the sampling distribution of n1/2(F„ — T(F))/d(a). 

6.9.3 {/-Statistics 

A useful class of estimators for a set of independent and identically distributed 
observations {Z,} with common distribution function F0, is the class of 
V-statistics (Hoeffding, 1948) which are estimators of the form 

n \ 1 <"l <■■ < i k < n 
2,J, (6.61) 

where h(xu... ,xk) is a kernel function of order k which is symmetric in its 
arguments. The sample mean and the empirical distribution function (6.52) are 
trivial [/-statistics with kernels of degree 1. The sample variance (which we 
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considered in Sections 5.1-5.2) can be written as 

*2 = r
i T T t Vt ~ Zf = -7^-TT I (Z, - Zf/2 

(n - 1) ;=i n(n - 1) i<i<j<„ 

which is a {/-statistic (6.61) with kernel h(xl,x2) = (xt — x2)2/2 of degree 2. 
The rank Rt of a positive Z; among I Z J , . . . , |ZJ is the number of Zi satisfying 
\Zj\ < Z{ or equivalently Z} + Z; > 0 so as Tukey (1949) showed, the Wilcoxon 
signed-rank statistic (6.59) is equivalent to 

W* = X U(Ak > 0) = X /(Z, + Zj > 0) 
* = 1 1 < i < J < n 

which is n(n — l)/2 times a [/-statistic (6.61) with kernel h(xu x2) = /(xt + x2 >0) 
of degree 2. 

(/-statistics are unbiased estimators of 

U(F0) = j • /z(x1 ; . . . , xk) dF0{xx) ■ ■ ■ dF0(xk). 

If we adopt a model & which specifies that the distribution JF0 is in a rich 
enough class of distributions, then (/-statistics are UMVU estimators (Section 
3.1.4) of their expectations U(F0). This holds for example when $F is the class 
of all absolutely continuous distributions. See for example Lehmann (1983, 
p. 101). 

(/-statistics are related to empirical distribution function procedures through 
the fact that 

Un = 7 _ U(Fn) 

but they are usually treated separately. Suppose that the kernel function satisfies 
EFoh(Zu Z 2 , . . . , Zkf < oo and E^h^Z) - U(F0)}

2 > 0, where 

h^x) = EFoh(x, Z2,..., Zk). 

Then the large sample approximation to the sampling distribution of (/„ is 

nl'2(U„ - U(F0)) ^ N ( 0 , *2E,0{MZ,) - U(F0)}
2). 

See for example Serfling (1980, Chapter 5). The asymptotic variance of U„ can 



NONPARAMETRIC METHODS 357 

be estimated by Sen's (1960) estimator 

k^n-iy1 E( i / n ( i ) - t ; „ ) 2 , 
> = 1 

where 

unii) = T ^ X Kz„zl2,...,zU[). 
In— 1 \ l < i 2 < - < i k < n 

6.9.4 Smoothing 

The final class of nonparametric procedures we consider is the class of 
estimators of smooth functions. An important example of a procedure of this 
type is the kernel density estimator discussed in Section 1.5.1. Kernel smoothing 
methods extend to estimating distribution functions, quantile functions and 
derivatives of these in a straightforward way. 

A different but still related application of smoothing methods is to curve 
estimation. Suppose we have the nonparametric regression model 

Y, = m(Xt) + e„ 

where E(Yt\ Xt) = m(X,) is a smooth but otherwise unspecified function and 
{e,} are independent and identically distributed with mean 0 and variance a1. 
If m is parametric (as is the case when m(x) = <x + /?x), we can estimate it using 
the least squares procedure 

m i n t (Yt-miX,))2. 
m i '= l 

This does not work when m is nonparametric (the solution interpolates the 
data points) but we can use the same idea at a point x by making the least 
squares criterion local (to x) by introducing a weight function K{(Xt — x)/h}, 
h > 0, which gives weight to X{ close to x and no weight to Xt far from x, and 
then making a (local) Taylor expansion (see 2 in the Appendix) for m(Xt) about 
m(x). If we use a first order Taylor expansion, the resulting local least squares 
criterion is to estimate m(x) and m'{x) by rh(x) and ifi'(x) which satisfy 

min J (Yi-m(x)-m\x)(Xi-x))2K[)(i^~). (6.62) 
m(x),m'(x) i = l \ h / 

Notice that m(x) is the intercept or equivalently the fitted value at x of the 
weighted linear regression of Yt on (X( — x) with weights K{(X; — x)/h}. If we 



358 RANDOMIZATION AND RESAMPLING 

repeat the local regression fit on a grid of x values, we obtain an estimate of 
the function m(x). This local regression method is due to Stone (1977) and 
Cleveland (1979). 

If we let Ax denote the n x 2 matrix with ith row ( l j r x ) , Kx(h) = 
diag (K{(X, - x)/h},..., K{(Xn - x)/h}), y = (Yu..., Y„)T and a = (1, 0)T, we 
have that 

m(x) = ar{AlKx(h)Ax}-lAT
xKx(h)y. 

It follows that with m = (m(^ i ) , . . . , m(X„))T, 

E{m(x) \XU...,X„}= aT{AT
xKx(h)Ax}-lAT

xKx(h)m, 

so the estimator is biased, and 

Var {m(x) \Xu...,Xn} = a'a^AlKMA^-'AlK^A^AlK^A^-'a. 
(6.63) 

Both of these expressions are complicated functions of the kernel K and h. If 
h -»• 0 such that nh -> oo as n -> oo, K satisfies \K(x)\ < oo, K(x) = 0 for |x| > c, 
| K(z) dz = 1, } zK(z) dz = 0, | z2/C(z) rfz < oo, and | /C(z)2 rfz < oo, and x is an 
interior point of the support of the density fx of X, we can show that 

E{m(x) | Xu ..., X„} - m(x) m"(x) \ z2K(z) dz k2 ,"(x)^» 

and 

Var{A(x)\X1,...,X„} 
nhfx(x) 

K(z)2 dz, 

as n -* oo (Ruppert and Wand, 1994). These results show that the choice of h 
has the same effect as in density estimation (Section 1.5.1): Small h leads to low 
bias but increased variance while large h leads to large bias but decreased 
variance. We can choose h informally (as we did in Section 1.5.1) or more 
formally by minimizing an estimate of the asymptotic mean squared error. 

A local regression estimate of the regression function is shown superimposed 
on the scatterplot of the change in catecholamine against the change in the 
volume of urine voided due to the ingestion of caffeine in Figure 6.9. The 
fit over a range of h supports the assumption that the relationship is linear. If 
we assume that the bias is small, we can set a standard error band using (6.63) 
with a2 estimated from the residual sum of squares. Of more value to the present 
problem is the fact that we can carry out a formal test of linearity using the 
method of Azzalini and Bowman (1993). 
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Figure 6.9. A scatterplot of the change in total catecholamine against the change in the volume of 
urine produced with the estimated regression function superimposed. 

If we make only the zero order Taylor expansion m(Xf) x m(x), (which is 
like setting m'(x) — 0 in (6.62), we obtain the Nadaraya-Watson (Nadaraya, 
1964; Watson, 1964) estimator 

m(x) = 
I«*lV 
I * 

X;-X 
(6.64) 

Higher order expansions can also be used to estimate the derivatives of m(x) 
and the approach extends to multiple explanatory variables (see Ruppert and 
Wand, 1994). The estimators obtained by minimizing (6.62) are not robust 
against outliers but we can apply the same approach to robust regression 
criteria (see Section 5.5) to obtain robust estimators. See Fan et al. (1994), and 
Welsh (1996). 

As we noted at the start of this chapter, kernel density estimation uses a 
form of randomization to smooth the data. The same is true of curve estimation. 
This is most easily seen for the Nadaraya-Watson estimator (6.64) which can 
be interpreted as the conditional expectation of Yt + gvt given X{ + hut where 
{v(} are independent and identically distributed with common density function 
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Ki independent of {uj which are independent and identically distributed with 
common density function K, provided JK^dz—l and jzK1(z)dz = 0 
(Problem 6.9.6). This brings us back to the theme of randomization with which 
we started this chapter. 

6.9.5 Limitations of Nonparametric Methods 

The use of nonparametric models is sometimes advocated as a way of accom-
modating the approximate nature of statistical models. Nonparametric models 
can be very useful but they are not a panacea for inference: They still rest on 
assumptions (such as independence and symmetry which are often ignored), 
they often apply only in relatively simple, unstructured problems, they often 
require reasonably large samples to be fitted effectively, they are often not 
parsimonious, and they often fail to answer the substantive question when the 
data contains outliers. 

PROBLEMS 

6.9.1. Apply the Wilcoxon signed rank test to the Cushny and Peebles (1905) 
data (Problem 5.1.5) to test the hypothesis of no difference in the effect 
of the two optimal isomers. Compare your results to those obtained in 
Problem 5.1.5. 

6.9.2. Suppose that {Z,} are independent and identically distributed random 
variables with mean (i and variance a2. Show that the sample variance 
is a (/-statistic with kernel h(xit x2) = (xx — x2)

2/2. Then show that 
hi(x) = {(x — n(F0))

2 — o2(F0)}/2 and confirm that the large sample 
approximation to the sampling distribution of s2 given in Section 6.9.3 
agrees with that obtained in Section 5.1.1. 

6.9.3. Suppose that {Zj are independent and identically distributed random 
variables with common distribution function F. Obtain a large sample 
approximation to the sampling distribution of W* in (6.59). 

6.9.4. Use local regression smoothing to explore the relationship between the 
change in epinephrine and the change in the volume of urine voided 
following the ingestion of caffeine and then between the change in 
norepinephrine and the change in the volume of urine voided following 
the ingestion of caffeine. 

6.9.5. Suppose that {Z,} are independent and identically distributed random 
variables with common density function f. Consider estimating f(x) with 



NONPARAMETRIC METHODS 361 

the kernel density estimator 

M-m-'i^). 
where K satisfies \K(x)\ < oo, K(x) = 0 for |x| > c, \K(z)dz=\, 
J zK(z) dz = 0, J z2K(z) dz < oo, and j K(z)2 dz < oo. If h -> 0 such that 
n/i -> oo as n -* oo, show that 

2 

E/(x)-/M~--n*) z2K(z)rfz. 

(Hint: Make a change of variables and then expand / in a Taylor series.) 
Similarly, show that 

Var { / ( * ) } - ^ 
nh 

K(z)2 dz 

and find the value of h which minimizes the asymptotic mean square 
error. 

6.9.6. Suppose that {(Yh A*,-)} are independent and identically distributed 
random variables with common joint density function f. Show that 
provided $Kl(z)dz=l and $zK1(z)dz = 0, the Nadaraya-Watson 
estimator (6.64) is the estimator of 

lf(ytx)dy 

obtained by taking the ratio of the estimates 

yf(y, x) dy and f(y, x) dy, 

where f(y, x) = (nhgy
l £ ? = 1 ^{(y - Yt)/g}K{(x - Xt)/h}. 

6.9.7. Suppose that {(Yh A',)} are independent and identically distributed 
random variables with common joint density function / . If h -* 0 such 
that nh -> oo as n -> oo, K satisfies \K(x)\ < oo, K(x) = 0 for |x| > c, 
| K(z) dz=\,\ zK(z) dz = 0, J z2K(z) dz < oo, and } K(z)2 dz < oo, and 
x is an interior point of the support of the density fx of X, show that 
the Nadaraya-Watson estimator (6.64) satisfies 

E{m(x) | A",,..., A".} - m(x) ~ ~ \m"(x) + ^ m\x)\ f z2K(z) dz 
2 I fx(x) J J 
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and 

Var {m(x) | Xu ..., Xn) 
a2 

nhfx(x) 
K(z)2 dz, 

as n -* oo. (Hint: Find the bias and variance of the numerator and 
combine these with the results obtained in Problem 6.9.6.) 

FURTHER READING 

An accessible but more general presentation of the randomization model and 
inference based on it is given by Scheffe (1959). Finite population inference is 
discussed by Royall (1976; 1992), and Sarndal et al. (1992). Rank methods are 
accessibly presented by Lehmann (1975) and Hettmansperger (1984). Sheather 
(1987) discusses inference for the sample median in considerable detail. Efron 
(1982) and Efron and Tibshirani (1993) are useful references on bootstrapping. 
Resampling methods in Bayesian analysis are discussed by Smith and Gelfand 
(1992), Albert (1993), and Bernado and Smith (1994, pp. 350-6). Casella and 
George (1992) give a simple introduction to Gibbs sampling. There is a huge 
literature on smoothing. Cleveland (1993) shows the power of scatterplot 
smoothing techniques in applied data analysis. 
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Principles of Inference 

The axiomatic method is so fundamental to mathematics that it is not surprising 
there have been a number of attempts to apply it to develop foundational 
systems for statistical inference. That is, to develop a set of axioms or principles 
from which we can derive rules for selecting inference procedures in a variety 
of contexts. 

The key issues in an axiomatic development are the reasonableness and 
acceptability of the underlying principles (which were traditionally viewed as 
self-evident), the correctness of the logic used in deducing the consequences 
of the principles, and the interpretation of the consequences of the principles. 
Once the logic has been established, the system rests on the underlying 
principles and the interpretation of their consequences. Their discussion can be 
presented in the language of formal logic or by means of colourful examples 
which illustrate the issues. We will adopt the second approach because it is 
more accessible. 

The issues arising from attempts to clarify the foundations of statistical 
inference are interesting and important but need to be kept in perspective. A 
broadly acceptable foundational system which is flexible enough to deal with 
the range of possible problems may not exist. Moreover there is no essential 
requirement for there to be a single, normative approach to inference. The 
choice between approaches can be a matter of personal preference which can 
depend on the nature of the problem at hand. Ultimately, the various 
approaches to statistical inference must be justified by their usefulness in 
solving substantive problems rather than by their foundational basis and they 
can be compared on the basis of an overall appreciation of their nature 
and consequences for inference. This perspective is reflected in the structure 
of this book which begins with the presentation of data and substantive 
problems and relegates discussion of foundational issues to this, the final 
chapter. 
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7.1 THE COHERENCY PRINCIPLE 

Ramsey in 1926 (see Ramsey, 1931), de Finetti (1937), Savage (1954; 1961), 
Pratt et al. (1964), Heath and Sudderth (1978), Lane and Sudderth (1983), and 
others have argued that inference is like a betting game in which we are required 
to make bets about an unknown parameter and that it is sensible to avoid 
placing bets which we expect to lose. 

The following development is due to Cornfield (1969). Suppose that a 
parameter 9 can take on J possible values 9j and that there are / possible 
samples z;. That is, both the parameter space Cl = {6U ... ,6j} and the sample 
space 2£ = {zu ..., z,} are finite. We will use j to index parameter values and 
i sample values throughout this section. Let the probability of realizing the ith 
sample point zt given 0, be denoted by f(zt | 0,), where £ '= j /(z,-1 0,) = 1 for all 

j . Let Ck, k = 1 , . . . , 2J, denote one of the 2J possible subsets of Q = {0 , , . . . , dj}. 
Let 3jk = 1 if 9j e Ck and 0 otherwise. 

A statistician B is required to make probability assignments Pik = g(Ck \ z{) 
to each Ck given the probabilities /(z, | 0 )̂ and the fact that z, has been realized. 
Given the same information as B, an antagonist A (representing nature) is 
permitted to bet any amount for or against any combination of the 2J intervals. 
Thus B assigns probabilies Pik and A assigns the stake Sik. For the interval Ck, 
A therefore pays PikSik to B, and receives back either Sik if Ck is correct or 
nothing if it is not. Thus A is risking PikSik to win (1 — Pik)Sik. If the true 
parameter value is Oj, B's gain on this bet when sample point zt has been realized 
is given by 

" i j k = (Pik ~ "jk)Sik-

Summing over all possible subsets, 

Ga. = i: (^ - Wk 
k=l 

and B's expected gain when Oj obtains is 

G.J.= ifMej) i: (pik-djk)sik. (7.i) 
i = l J k = l 

We can now give a formal definition of coherent assignment. 

We say that B's assignments are incoherent if for any stake Sik, B's expected 
gain G j < Ofor all j and G j < Ofor some j . That is, B never expects to win and 
sometimes expects to lose. IfB's assignments are not incoherent, we say that they 
are coherent. 

That betting behavior should be coherent is arguably a minimal requirement 



THE COHERENCY PRINCIPLE 365 

for sensible betting and therefore can be set down as a basic principle. If we 
accept that the problem of making inferences about an unknown parameter is 
analogous to placing bets on statements about the parameter, then it follows 
that a basic principle of inference is that it should correspond to coherent betting 
behavior. This is the coherency principle. 

Coherency principle: Inferences about unknown parameters should follow the 
rules for coherent betting behavior for placing bets on statements about the 
parameters. 

7.1.1 Bayesian Assignment is Coherent 

It is simple to show that Bayesian probability assignments are coherent. 
Notice that if there exists a set of finite qt satisfying q} > 0 for all j = l,...,J 
such that 

0 = 1 qjG.j., (7.2) 

then either G j = 0 for all j or if G j < 0 for some values of j , there must be at 
least one value of j for which G j > 0 so the assignment is coherent. To find 
such an assignment, we substitute (7.1) into the right-hand side of (7.2) and 
then change the order of summation to obtain 

j=1 i = 1 k=l 

= 1 1 Sik £ qjf(zi | 6j)(Pik - 8Jk). (7.3) 
i = 1 fe= 1 j = l 

The right-hand side of (7.3) can only be identically 0 for all Sik if 

t Qjfbi I Oj)(Pik - 3Jk) = 0 

or 

P. _£;=.<?;/( '< I % 

~tJ}=iq}f(ti\B,)' 

If we identify <J//27//= i qj with the prior probability that 6j is the true parameter, 
then Pik is the posterior probability that 0, e Ck. It follows that if each 9j is 
assigned probability Plt = qjf(zt | 0, )/£;■=, ^-/(z, | 0,), where qj>0,j= \,...,J, 
that if the probability of any set of 6j is assigned the sum of the probabilities 
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of each 0, in that set, and that if a set of no Q} is assigned probability 0, the 
assignment is coherent. 

7.1.2 Coherent Assignments Are Bayesian 

In fact, coherence also implies that the probability assignment must be Bayesian. 
The first step is to prove that coherence implies that the assigned probabilities 
PtJ satisfy the usual probability axioms, namely: 

1. 0 < ^ 7 < 1 for all i and/ 
2. 1.1=1 Pa = 1 for all i. 
3. If Ck = C„ u Cv, where C„ and Cv are disjoint sets, then Pik = Piu + Piv. 

To prove 1, note that for a stake Sy, B's gain is PySy — Su = {Pi} — l )Sy when 
6j obtains and PySy when it does not. Thus if P0 < 0, B has a certain loss if 
Sjj > 0, while if Py > 1, B has a certain loss if Sy < 0. To prove 2, let A select 
Sf for each sample point z,. A then risks S, Xy= i Py, and, since one of the states 
must obtain, is paid S,. B's gain is therefore S;GLy=, Py — 1) which can be made 
negative by an appropriate choice of S, unless Xy=i Pij = 1- Finally, to prove 
3), suppose A selects Sik, Siu and Siv. Then B's gains for z; when C„ obtains, 
when C„ obtains, and when neither obtains are given by 

G„ = (Piu - l)Siu + PivSiv + (Pik - \)Stk 

Gv = PiuSiu + (Piv ~ l)Sto + (Pik - \)Sik 

and 

" k — Piu^iu + PivSiv + Pik^ik' 

' t a - 1 

fl. 
i ^ 

n, 
flp-1 

„̂ 

Pik-i 

Pit-i 

^ 

respectively. This system of equations will have solutions (S1U, Siv, Sik) which 
make Giu, Giv and Gik negative, unless we choose the Pu such that 

0 = 

= (Piu ~ V(Piv ~ UP* - (Piu ~ DPiv(Pik - 1) - PivPiuPik 

+ Piv(Pik - DPiu + (^ - l)PiuPiv - (Pik - 1XP«» - i)Pu, 

= p — p — p. 
A ik * IU * iv 

That is, 3 holds. 
Now consider any two sample points zl and z2 and any two-set partition 

of Q = C, u C2- If B assigns Py to each 0y then by 2 above B must assign 
Zm=i m̂<5mi to CY. (Recall that (5ml = 1 if 0me Cx and zero otherwise.) If A 
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selects the stakes, 

Sample point 1 S n = kS Sl2 = 0 

Sample point 2 S21 = —k S22 = 0 

Sample point 3 , . . . , / Sn = 0 Sj2 = 0, 

then B's expected gain if the true parameter is in C, is 

G^fiz^eJkS £ P l m<5m l- /es) + / ( z 2 | 0 „ ) ( - / c £ P2m<5ml + fc 
\ m= 1 / \ m= 1 

= -fcs/(z, i e,Vi - £^ plmsml^ + kf(x21 e j ^ i - £ p2m<5ml), 

for all 0U e C,, 

while if the true parameter is in C2, it is 

G2 = / ( * , \eJkS £ PlmSml) + f(z2\Bv)(-k £ P2mSmi) 

= kSf(z, I fl„) £ Plm<5lm - fc/(z2 I 0V) £ P2m<5ml, for all 0V e C2. 
m-1 m = 1 

The expected gains Gx and G2 will both be negative whenever 

/ f r i I A.) i - Z ^ i ^ - A - i < s K f(*j \Jv) Z i - 1 ^ ^ i 

/(*i i e j i - Ti,-i~PxJ^i fW\ 8») zi-T>i^«i 
for all 0U e C„ 0„ e C2, and /c> 0, or (7.4) 

for all 0„ e C1; 0„ e C2 and /c < 0. To prevent losses, B must therefore select Pu 

so that for any two-set partition of fi, 

Ti-iP2m8m2l'Ei = 1P2m5ml f(z2\8Jlf(z2\6u) 
— lor all 0„ e C,, uveC2. Z i = i f i * « W I i = i A A i /<*i I O / ( z i I eM) 

This in turn requires that 

P2v jPlu /(*2 I 0v) lf(*l I 0.) 
for all v, u. (7.5) 

PJ Piu f(^\ov)l fiz^ej 
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because otherwise, A can always find a set Cx such that the inequalities in (7.4) 
obtain. Equation (7.5) implies that 

PtJ = kjfa | 6j)qj for i = 1, 2 and allj, 

where, by 3 above, kt = 1/2;= i /(z> I 8j)Qj- Since the argument applies to any 
pair of sample points z1 and z2, this relationship must hold for all i. Finally, the 
qj must be of the same sign to ensure that 1 holds and no qj can be 0 since if 
qh is 0, A bets S^ = 0 for all j• =£ h and wins Sih when 0j obtains by risking 
Pu.Su, = 0. 

7.1.3 Discussion 

The arguments of Sections 7.1.1-7.1.2 establish the following theorem. 

Theorem 7.1 Suppose that / ( z ; | 6j) is the probability of realizing z; given 6j, 
and that zf has been realized. Probability assignments are coherent if and only if 
we assign probabilities to the element 6j of the parameter space il according to 

f^\ej)qj _ foralliandL 
1 Ij-i f(*,\0j)qj 

where 0 < q} < oo. That is, as we would do in a Bayesian analysis with proper 
prior probabilities qj. 

This result implies that we must make Bayesian inferences if we want to satisfy 
the coherency principle. 

It is quite legitimate to reject the idea that inference is analogous to gambling. 
This viewpoint vitiates the entire development but may well carry implications 
for other approaches to inference too. 

Perhaps a more serious objection is that coherency is a form of self-
consistency which ensures internal (to an individual) rather than external 
validity. This is reflected in the fact that Theorem 7.1 holds for any proper 
prior including priors in conflict with the true prior. The introduction of a prior 
prevents us from making incoherent assignments but provides no guarantee 
that we satisfy any other requirements such as that the analysis recovers the 
true parameter value. 

Implicitly in our development and explicitly in Savage's (1954) development 
of the coherency principle, we require the statistician to have an attitude to 
every uncertain event which can be measured by a probability (i.e. we have to 
assign a probability to every possible subset Ck of SI) and we require 
these probabilities to be comparable. Wolfowitz (1962) argued that the 
requirement that we have an attitude to every uncertain event is unreasonably 
strong. He argued that it ought to be enough to make one reasonable choice 
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of set to contain © without having to order all other possibilities. Kempthorne 
(1969) and LeCam (1977) have also argued that inference need not require the 
allocation of probabilities to all possible subsets of the parameter space Q and 
coherency may not be compelling if we only assign probabilities to selected 
subsets of Q. 

7.2 THE LIKELIHOOD PRINCIPLE 

As we noted in Section 2.6.2, Fisher argued that the likelihood contains all the 
information in the data. If we accept this argument, then logically, if two 
likelihoods for a parameter 9 are proportional, we should make the same 
inferences for 9 regardless of which likelihood we use. Formally, this is known 
as the likelihood principle. 

Likelihood principle: Inference for given models J5" = {/(•; 9): 9 e Q} and & = 
{#(•; 9): 9 e Q} should be identical for any two data sets y on !F and z on @ for 
which 

/ (y ;0) = /i(y,z)0(z;0). 

The likelihood principle was developed from Fisher's ideas and advocated by 
Barnard (1947a,b; 1949), Barnard et al. (1962), and Birnbaum (1962) who used 
it to try to justify the likelihood approach to inference. Berger and Wolpert 
(1984) provide a valuable review. 

The statement of the likelihood principle depends on the models !F and <S. 
While these do not in principle have to be simple parametric models, satisfying 
the principle when they are not seems prohibitively difficult and the principle 
is usually viewed as applying only to parametric models. 

The likelihood principle has important implications for the role of the sample 
space in inference. Two examples illustrate these implications. 

7.2.1 Sequential Sampling 

Suppose that we observe the number of successes Z in n independent Bernoulli 
trials with success probability 9. Then the model is 

P = |/(z; 9) = ("V(l - 0)"~z, * = 0, 1, • • •, n: 0 < 9 < 1 j 

and the data is a realization of Z. If instead of holding a fixed number of 
Bernoulli trials, we decide to sample until we observe z successes and then 
observed the realization of N, the number of trials to the zth success, N has a 
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negative binomial distribution so the model is 

^ = L(,, ; 0) = (M ~ J0'(l -0)n-z,n = z,z+ 1 , . . . : O < 0 < 1 

We have that 

The sampling scheme (and hence the sample space) is different in the two models 
but the likelihood principle states that we should ignore this and make the 
same inferences in both cases. 

7.2.2 Possible Censoring 

Suppose that we observe a realization z of Z generated by the exponential model 

& = \f(z; 0) = f ] 0 exp (-0z,) , z, > 0: 0 > o l (7.6) 

so that the likelihood is 

/(z;0) = 0 " e x p j - 0 £ zX, 0 > 0, 

Now suppose that the observations are censored at c > 0 so that instead of z 
we actually observe y, where 

yj = Zjl(zj < c) + cl(zj > c), 1 <j < n. 

The y, are realizations of independently distributed random variables Yj which 
have density 6 exp (— Ox) if x < c and equal c with probability 

EI(Z,- > c) = P(Zj > c) = 0 e'ex dx = e~ec. 

Thus in the censored case, the data are generated by the model 

& = \g(y;0)= f[ {0exp(-0z J . )} / < z ^ c ) { e "" c } , ( Z j > c ) .O<z^<c:0>oi . 

(7.7) 
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The likelihood under (7.7) is 

<Ky;0) = 0'exp - 0 t {ZAZJ£C) + CI(ZJ>C)}\ 
;=i J 

= 0 'expf-0 £ yJ 0>O, 

where r = ]T"= t I(zj < c) is the (random) number of uncensored observations. 
If we draw a sample from (7.7) in which none of the observations is actually 

greater than c, no censoring occurs and we have zt = yj, r = n, and z = y so that 

3(y; 0) = /(z; 0). 

The likelihood principle asserts that we should make the same inferences in 
both cases. That is, if censoring is possible but does not occur, inference should 
be the same as when censoring is impossible. 

7.2.3 Analyses in Conflict With the Likelihood Principle 

Suppose that we are in the situation described in Section 7.2.2 and we want to 
do a Bayesian analysis using the Jeffreys prior (Section 2.2.11). Under (7.6), the 
Fisher information is 1/02 so the Jeffreys prior is 

j(Q) oc 1/0, 6 > 0. 

However, under (7.7), the Fisher information is 

no2 j~i e2 e2 

so the Jeffreys prior is 

;c(0) oc (1 - e'ec)ll2/e 6>0. 

Even if no censoring occurs in the sample, these priors lead to different posterior 
distributions and hence different inferences. Thus using the Jeffreys prior 
violates the likelihood principle. If however, the prior is chosen without 
reference to the sample space, the posterior distributions will be the same and 
the likelihood principle will be satisfied. 

Now consider a frequentist analysis. The likelihood under (7.6) is maximized 
at 9 = \/z. The expected and the observed Fisher information are equal and 
are given by 1(6) - J = I/O2 = z2 (Section 4.2.9) so an approximate 100(1 - <x)% 



372 PRINCIPLES OF INFERENCE 

confidence interval for 6 based on (4.24) is given by 

z±~<t>-Hl-«/2). (7.8) 
z rv'lz 

The likelihood under (7.7) is maximized at 9 = r/ny. The observed Fisher 
information (Section 4.2.9) is J = r/nv2 = ry2jn and the expected Fisher 
information (Section 4.2.9) is 

*>-^-£{—p(-5. 
Under (7.7), an approximate 100(1 — a)% confidence interval for 9 based on 
the expected Fisher information is 

- + -77 , ; T77T <t>- 1(l - « /2) . (7.9) 
y ~ nll\nylr){\ - exp (-cr/ny)}1'2 

When no censoring occurs, (7.9) reduces to 

- ± - ! 7 w l \ / - u T T i 0 " ' ^ - " / 2 ) (7-10) 
z nx'lz{{ — exp( — c/z)}1'* 

which is wider than (7.8) so the use of (7.10) conflicts with the likelihood 
principle. 

The difference between (7.8) and (7.10) is that the asymptotic variances 
(based on the expected Fisher information) reflect the dependence of the 
sampling distribution on the sampling scheme. If we use the observed informa-
tion which is J = r/n82 = ry2jn in the censored case, we find that an approxi-
mate 100(1 — a)% confidence interval for 9 is 

y r ' y 

and (7.11) reduces to (7.8) when censoring does not actually occur. That is, 
using the observed information in a confidence interval obeys the likelihood 
principle because the maximum likelihood estimate and the observed informa-
tion are identical for any two models with proportional likelihoods. This 
fortuitous occurrence is due to the fact that (7.11) is numerically the same as 
a large sample approximation to a conditional confidence interval, a credibility 
interval or a likelihood interval. See Sections 4.6.2-4.6.3. 

The issues raised by the possibility of censoring in the frequentist approach 
have been colourfully illustrated by Pratt (1962). 
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An engineer draws a random sample of electron tubes and measures the plate voltages 
under certain conditions with a very accurate volt-meter, accurate enough so that 
measurement error is negligible compared with the variability of the tubes. A 
statistician examines the measurements, which look normally distributed and vary 
from 75 to 99 volts with a mean of 87 and a standard deviation of 4. He makes the 
ordinary normal analysis, giving a confidence interval for the true mean. Later he 
visits the engineer's laboratory, and notices that the volt-meter used reads only as 
far as 100, so the population appeared to be "censored." This necessitates a new 
analysis, if the statistician is orthodox. However, the engineer says he has another 
meter, equally accurate and reading to 1000 volts, which he would have used if any 
voltage had been over 100. This is a relief to the orthodox statistician, because it 
means the population was effectively uncensored after all. But the next day the 
engineer telephones and says, "I just discovered my high-range volt-meter was not 
working the day I did the experiment you analyzed for me." The statistician ascertains 
that the engineer would not have held up the experiment until the meter was fixed, 
and informs him that a new analysis will be required. The engineer is astounded. He 
says, "But the experiment turned out just the same as if the high-range meter had 
been working. I obtained the precise voltages of my sample anyway, so I learned 
exactly what I would have learned if the high-range meter had been available. Next 
you'll be asking about my oscilloscope." Reprinted with permission from the Journal 
of the American Statistical Association. Copyright © (1962) The American Statistical 
Association. 

Notice that the actual model used is not particularly important since the effect 
of changes to the model rather than the model itself is at issue. For this reason, 
the validity of the initial (uncensored model) is not at issue either. The quotation 
used the Gaussian model but could just as well have used the (simpler) 
exponential or any other model. The initial analysis is to compute (7.8) (or an 
appropriate analog). The orthodox statistician here is a strict unconditional 
frequentist. On discovering the possibility that censoring might have occurred, 
a strict unconditional frequentist would compute (7.10) (or an appropriate 
analog) and obtain a different (more conservative) inference. Since anything 
that might have occurred affects strict unconditional frequentist inference, a 
strict unconditional frequentist has to be very careful to take everything that 
might possibly have happened into account. The rest of the quotation points 
out that this can be difficult to do and that one person's view of what might have 
happened is not necessarily the same as another's. 

The general point is that a frequentist has to specify the relevant sample 
space (the set of possible outcomes) of the experiment and these choices impact 
on the inference. 

7.2.4 The Bartlett-Armitage Example 

Bartlett and Armitage (described by Armitage, 1961) produced an interesting 
example to show that it is not always sensible to obey the likelihood principle. 

Suppose that we fix a value k > 0 and then draw realizations z, of Z, from 
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Figure 7.1. A typical sample path in the Bartlett-Armitage problem. 

a N(0, 1) distribution until \z\ > n~il2k, where z = n~l £" = 1 zt. To simplify the 
presentation, suppose that when we stop sampling, z is on the boundary so 
that z — n~1,2k. A plot of a typical sample path is given in Figure 7.1. The 
problem is to test H0: 9 = 0 against Hx: 0 # 0. 

Given the data (z, n), the likelihood is just 

/•(*,«; 0 ) = n ( 2 * r 1 / 2 e x p ^ - (z, - 0): 

»en 

(27r ) - " ' 2 exp^-X 
(z; - z-)2 n(z- - 0): 

deCl. 
2 2 

The maximum likelihood estimate of 0 is 6 = z so the likelihood ratio is 

/(z, n; z) 
exp 

/(z, «; 0) F V 2 

exp 

Jsmall (no evidence against H) if k is small 

[large (evidence against H) if k is large. 
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The conclusion here is based not on the data but on the value of k which we 
chose before we began to collect the data. Most statisticians would regard this 
as unacceptable. 

Barnard (see Basu, 1973) has argued that in the above analysis, we have 
been finessed into testing H0: 0 = 0 against H 2 :0 = z rather than testing 
H0: 6 = 0 against H^: 0 / 0 . Since the data always supports 0 = z, the conclusion 
that there is evidence against H0 in favor of H2 is correct and indeed to be 
expected. He then argued that we should not allow the alternative hypothesis 
to be determined by the observed data but should restrict attention to tests of 
H0: 0 = 0 against H3: 0 = 9k, where 6k is some predetermined real number. The 
likelihood ratio in this case is 

f(z, n; 6k) ( n02
k 

= exp nOkz f(z,n;9) r \ 2 

^exptkn1^-"^ 

= expl-n(e±-n-1'2ke, 

-* 0, as n -+ oo. 

Thus if n is very large, we have no evidence against H0 which is intuitively 
reasonable. However, in practice, it is difficult to specify 8k. 

If we adopt the prior 

g(9) = 11(9 = 0) + —1(9 # 0, |0| < c), 0 = U, 
2 2c 

and if we stop on the boundary so z = n~ll2k, we obtain the posterior odds 
ratio for testing H0: 0 = 0 against H1: 8 # 0 from (2.31) as 

2c(nl2n)m exp (-nz2/2) 2c(n/2n)1'2 exp(-k2/2) 

<t>{nil2(c - z) - 0{ -n 1 / 2 ( c + z)} 4>{n1/2c - k} - <D{ -nmc - k}' 

("small (evidence against H0) if « is small 

(.large (no evidence against H0) if n is large, 

for fixed c. Basu (1973) has argued that we should use a bounded stopping rule 
of the form 

"stop when \Z\ > n~ll2k or n = M, whichever occurs soonest" 

and that we should test W0: \9\ < 5 against Hi : |0| > 8. If we stop on the 
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boundary with n< M, the posterior odds ratio using the Jeffreys prior is 

<D{n"2(<5 - z)} -<D{n1 / 2 ( - (5-z)} _ <D(n1/2<5 - k) - <D(-H1/2<5 - k) 

f small (evidence against H0) if n is small 

(large (no evidence against H0) if n is large. 

This shows that while both Bayesian and likelihood methods ignore the 
sampling scheme, they do so in different ways and can reach different 
conclusions. 

It is clear that the important information in the observed sample is the sample 
size n. A frequentist test can be based on the random sample size N (using the 
fact that small values of N are evidence against H0) provided we can find the 
sampling distribution of JV. 

7.2.5 Implications of the Likelihood Principle 

The likelihood principle does not conflict with the coherency principle but we 
saw in Section 7.2.2 that whether Bayesian inference obeys the likelihood 
principle or not depends on how we choose the prior. The likelihood approach 
(Section 2.7) should obey the likelihood principle but some of the operations 
on high dimensional likelihoods that are used in the likelihood approach 
conflict with it. Fiducial inference (Section 2.6) is usually held to conflict with 
the likelihood principle because the argument leading to the fiducial distribution 
depends on information which is not contained in the likelihood. Frequentist 
inference depends on the sampling distribution and therefore conflicts with the 
likelihood principle. 

The likelihood principle has far-reaching consequences but, to many statisti-
cians, is difficult to accept. For this reason, Barnard et al. (1962) and Birnbaum 
(1962) presented developments of the likelihood principle from two principles 
which they felt might be more widely accepted. These are the sufficiency and 
conditionality principles. We will present and discuss these two principles in 
Sections 7.3 and 7.4 respectively and then discuss their relationship to the 
likelihood principle in Section 7.5. 

PROBLEMS 

7.2.1. Compare the Jeffreys priors for 6 under binomial and negative binomial 
sampling. 

7.2.2. Suppose that in the binomial/negative binomial problem of Section 7.2.1 
we want to test H0: 6 = \. If we observe n = 10 and z = 8, show that the 
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p-value under binomial sampling is 

P { | B ( 1 0 , i ) - 5 | > 3 } =0.1094 

and the p-value under negative binomial sampling is 

P{ |NB(8 , i ) - 16| > 6 } =0.1493. 

7.2.3. In a truncated exponential problem we observe realizations of X 
independent from the model with density 0exp ( — 0x)/{l — e~ec) if 
x < c < oo and 0 elsewhere. Show that the likelihood principal has 
nothing to say about the relationship between inference under the 
truncated exponential model and the exponential model (7.6). 

7.3 THE SUFFICIENCY PRINCIPLE 

We introduced Fisher's (1922) concept of sufficiency in Section 2.5 to justify his 
claim that the likelihood contains all the information in the data. If we accept 
this idea, sufficiency is clearly relevant to the likelihood principle. 

7.3.1 Sufficient Statistics 

In general, the information in the data about a model !F is contained in the 
class of sufficient statistics for J5". 

Suppose that Z is an observation on a model !F. A statistic f(Z) is a sufficient 
statistic for J5" if the conditional distribution ofZ given t(Z) = t is the same for 
all the distributions in !F. 

This definition does not actually require the existence of a likelihood. However, 
in the case that a likelihood exists, the factorization theorem establishes that 
the likelihood satisfies this definition. 

Theorem 7.2 (Halmos and Savage, 1949) Suppose that Z is an observation 
on a model !F. A statistic r(Z) is sufficient for the model ^ = {/(■; 9): 6eQ} if 
and only if 

f{z; 0) = g(t(z); 9)h(z), 

where h does not depend on 6. 

This result means that statements about sufficiency are essentially statements 
about the likelihood function, that to find a sufficient statistic we need only 
examine the likelihood function and that the likelihood function is itself 
obviously a sufficient statistic. 
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7.3.2 Minimal Sufficient Statistics 

It is clear from the definition of a sufficient statistic that the data Z is always 
a sufficient statistic (the distribution of Z given Z = z is degenerate for all 
distributions in &) so that restricting attention to a sufficient statistic need not 
result in much simplification. It is desirable to search for sufficient statistics 
which have dimension less than the sample size n and indeed to search for 
sufficient statistics with minimal dimension. Such sufficient statistics correspond 
to a maximal reduction of the data without incurring any loss of information 
about the model. 

Suppose that Z is an observation on a model &. A statistic t(Z) is a minimal 
sufficient statistic for & ift(Z) can be written as a function of any other sufficient 
statistic for !F. 

Notice that any 1-1 function of a minimal sufficient statistic is also a minimal 
sufficient statistic. We say that two minimal sufficient statistics which can be 
written as functions of each other are equivalent. To find a minimal sufficient 
statistic we use the following result. 

Theorem 7.3 (Lehmann and Scheffe, 1950) Suppose that & = {/(•; 0): 0 e $1}. 
/ / we can find a statistic t(Z) such that t(y) = f(z) for y, z e 3? if and only if 
f(y; 0)/f(z; 0) is the same for all distributions in 3P', then r(Z) is a minimal 
sufficient statistic for J5". 

For the fc-parameter exponential family model (Section 1.3.1) which is 
given by 

^ = | / ( z ; 6) = f l exp DMifo) + ■ • • + <Mk(z.) + <t> + I f o ) ] , * e A : 

0 = Wu...,tl,k,<P)e£l\, 

we find that 

y 0) T " " 
- ~ = exp [ipi X {a^yi) - a^z,)} + ■ ■ ■ + ij/k X Wj'.-) - a*(z,-)} 

/(y; 

+ t {Hyd - Hz()} 

This ratio does not depend on 0 if and only if £JL j a/y.) = £"= x a,(z;), 
j = 1 , . . . , k, so {£"= x aj(Zi), j = 1 , . . . , k} is a minimal sufficient statistic for 
&. In particular, for the binomial model (k = 1 and a^z) = z), £" = 1 Z, is a 
minimal sufficient statistic and for the Gaussian model (k = 2, a^z) = z2 and 
a2(z) = z), {£"=! Z?, X"= i Z;} is a minimal sufficient statistic. 
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Models for which minimal sufficient statistics are of the same dimension as 
the parameter space are the exception rather than the rule. In general, minimal 
sufficient statistics are of the same dimension as the sample space. For example, 
for the Weibull model 

& = j / ( z ; K, A) = ft ^(Az,)"-1 exp { - (Az . r} , ^ > 0: A > o l , 

the ratio 

/(y:K>A) = (n*y-1«pU" £(*?-*) 
/ ( Z ; K , A) \ , -=IZ. 

is free of (A, K) if and only if f t f- i Vi = 11"= i ^ a n d L"=i y? = D - i *"• 
However, these relationships involve K so do not identify statistics. We find 
that the ratio is free of (A, K) if and only if the z/s are a permutation of the yt\ 
Thus { Z n l , . . . , Z„„}, where Znl < Z„2 < • • ■ < Z„„ are the order statistics, is a 
minimal sufficient statistic for !F. This is not a substantial reduction from the 
data Z itself but the assumption of independence is being exploited to ensure 
that the order in which the data were collected does not matter. This argument 
works quite generally even for semiparametric and nonparametric models 
provided the observations are independent. 

7.3.3 The Sufficiency Principle 

Recall that a minimal sufficient statistic corresponds to the greatest reduction 
of the data that can be achieved without losing information about the model. 
It is reasonable to base inference on the reduced data set represented by the 
minimal sufficient statistic rather than on the original data set. The sufficiency 
principle goes further and asserts that we should use the minimal sufficient 
statistic only. 

Sufficiency principle: Inference for a given model 3F which admits a minimal 
sufficient statistic t(-) should be identical for any two data sets zl and z2 for 
which f(zj) = t(z2). 

It follows from Theorem 7.3 that for models based on distributions which have 
density functions, the sufficient principle is equivalent to the following principle: 

Weak likelihood principle: Inference for a given model ^ = {f(-, 9): 8 e Q} 
should be identical for any two data sets z1 and z2 for which /(Zj; 6) = 
Mz„ z2)/(z2; d). 

This principle requires that two data sets on a model !F which result in 
proportional likelihoods should result in the same inferences whereas the 
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Table 7.1. The Sample Space for 3 Bernoulli Obser-
vations Partitioned by the Number of Successes 

z = 0 

(0,0,0) 

1 

z = 1 

(1,0,0) 
(0,1,0) 
(0,0,1) 

3 

2 = 2 

(1,1,0) 
(1,0,1) 
(0, 1, 1) 

3 

z = 3 

(1,1,1) 

1 

likelihood principle allows for more complicated situations in which we have 
observations on different models. 

The sufficiency principle insists that inference should be identical when we 
have a single observation from a binomial(n, 0) distribution and when we have 
n independent Bernoulli(0) ( = binomial(l, 9)) observations. In other words, 
given the total number of successes Z (which is a minimal sufficient statistic), 
there is no additional information in knowing the exact pattern of outcomes. 
If for the moment we take n = 3, it is clear that we can organize the sample 
space into sets of the different observations which lead to a given number z of 
successes. The sample space is shown in Table 7.1. 

Thus the minimal sufficient statistic Z has induced an exhaustive partition 
of the sample space. For general n, the minimal sufficient statistic induces the 

partition 2£ = {^ , . . . , £f„} where card (Sfz) = I I. The sufficiency principle 

says that data sets in the same partition set should yield the same inference for 
the model. 

Any statistic s(-) (and hence in particular any minimal sufficient statistic 
s(-)) induces a partition ^ = {£fr: r e range (s(-))} where y , = { z e f : s(z) = r} 
on the sample space 3t. A schematic representation of this partition is given in 
Figure 7.2. The sufficiency principle says that data sets in the same partition 
set of a partition induced by a minimal sufficient statistic should yield the same 
inference for the model. 

7.3.4 Discussion 

Sufficiency, at least when it provides a substantial reduction of the data, depends 
strongly on the assumed model &. For example, for the Gaussian model, 
{£"= i Zf, YA= I Z J } is a minimal sufficient statistic, but in a contamination 
neighborhood of this model, the order statistics are a minimal sufficient statistic. 
This means that sufficient statistics need not be robust to changes in J5" and, in 
general, if we require robustness, the sufficiency principle implies only that we 
should base inferences on the observed data. While this seems to be disappoint-
ingly weak, it is still strong enough to preclude the possibility of using postdata 
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Figure 7.2. A schematic representation of the partition of a sample space & induced by a real 
valued statistic s: if -♦ R. 

randomization to construct inferences. That is, it precludes the use of randomized 
confidence intervals (or tests) for discrete distributions such as that presented 
for the binomial model in Section 3.7.3, the use of randomized confidence 
intervals for the Behrens-Fisher problem (Section 3.8.1), and a variety of 
smoothing procedures (Section 6.9.4). 

The sufficiency principle is by no means universally accepted. The main 
objection is that it is naive and simplistic to assert that all the information is 
contained in a minimal sufficient statistic and that no other information is 
relevant to inference. Objections of this type are also raised against the Bayesian 
paradigm by LeCam (1977), Kiefer (1977a), Efron (1986), and others. 

PROBLEMS 

7.3.1. Suppose we have observations Z on a model &. Find minimal sufficient 
statistics in each of the following cases: 

1. 3F = \f(y; 8) = f\~I(0 < y, < 6); 6 > 0 

2. y = <f(r, e)=Y\i{6-\<yi<e + \y.ee\ 
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3. & = | / ( y ; A, K) = f\ ~~: K^if'1 exp (-Xy,), y, > 0: A > o l 

4. ^ = | / ( y ; /) = n KTT' 3>i > A: K, A > 0 j-

5. & = <f(y;i*,<r) 

r , v + n 

£ (y,-^)2 l< v +" , / 2 ' —©{1+l,^-} 
— oo < ^ < oo; |t 6 R, <r > 0 

v + 1 

6. * = /(y; /i, a) = n ~ W A 7 " 7 T ^ . ^ 

— oo < yt < oo: fieU, a > 0 

7. ^ = |/(z; A, S) = ft { ^ ( j ^ j V^f + ^jd"{l + sy^ + w, 

zf = 0, 1, 2 , . . . , A > 0, <5 > 0 

(. i = 1 (27r<T2y(xi))
1/2 I. 2<72v(Xi) ) 

yt e R; jS e R, <r > 0 

9. J^ = | / ( z ; 0) = n 0z?_1 exp ( -zf ) , z; > 0: 6 > o l 

(27i)m9/2|Z|l/2 (. 2 

oo < zu < oo: // e R, <7„ > 0, au > 0 J-, 

where £ is the block diagonal matrix with blocks <x2 J + all, where J is 
the m x m matrix with all elements equal to 1 and / is the m x m identity 
matrix. 

7.3.2. Suppose that we have observations Z on the nonparametric model 

* = {m = n/(zi)}-
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Let Znl < Z„2 < • < Z„„ denote the order statistics from the sample, 
Show that the order statistics are sufficient for J^. 

7.4 THE CONDITIONALITY PRINCIPLE 

It is important in making inferences to ensure that the data on which the 
inference is based are in some sense relevant to the problem. That valid 
frequentist inferences can be based on irrelevant data was shown by Basu (1981). 
Suppose that we are interested in a parameter 9e(0, 1) and we generate a 
realization of a random variable Z ~ U(0, 1). It is intuitively clear that a 
realization of Z tells us nothing about 9 and should not be used as a basis for 
inference. However, for any fixed set B c (0, 1), the set 

[ B if 0 < Z < 0.05 

C(Z) = I (0, 1) if 0.05 < Z < 0.95 

I Bc if 0.95 < Z < 1 

is a 95% confidence set for 0 because 

P{0 e C(Z)} = P{0.05 < Z < 0.95} + P{0 < Z < 0.05)1(0 e B) 

+ P { 0 . 9 5 < Z < l}I (0e£ c ) 

= 0.90 + 0.05(1(0 e B) + 1(6 e Bc)) 

= 0.95. 

Since observing Z tells us nothing about 8, we need some principle to preclude 
the use of this kind of inference. 

7.4.1 Ancillary Statistics 

If we study Basu's example carefully, we see that Z is uninformative about 0 
because its distribution is free of 6. Fisher (1934) called any such statistic an 
ancillary statistic. There are a number of different definitions of an ancillary 
statistic but we will adopt the definition of Cox and Hinkley (1974, pp. 31-2) 
to avoid paradoxical results (see Problem 7.4.1). 

A statistic c(Z) is an ancillary statistic for a model J5" = {F( •; 9): 0 e Q} ifc(Z) 
is a component of a minimal sufficient statistic for !F and the marginal distribution 
ofc(Z) does not depend on 0. 
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We see that a statistic c(z) is ancillary if we can factorize the likelihood as 

/(*; 9) = 0i(s(z) | C(z); 9)h(c(z)). 

Ancillarity is in a sense the dual of sufficiency; sufficiency describes where all the 
information in the data is contained whereas ancillarity describes where there 
is no information. 

In practice, ancillary statistics may not exist, may exist but be hard to find, 
and may not be unique. For example, if (nu n2, n3, n4) have a multi-
nomial^, (1 - 9)16, (1 + 0)/6, (2 - 0)/6, (2 + 0)/6) distribution then 

{«! + n2, n3 + n4} ~ multinomial(n, 3, f) 
and 

{n1 + n4, n2 + n3} ~ multinomial(n, j , \) 

are both ancillary statistics (Basu, 1964; Cox, 1971). These difficulties hinder 
the formulation of a simple general theory based on ancillary statistics. 

7.4.2 The Conditionality Principle 

In Basu's example, Z is an ancillary statistic so, according to Fisher, we should 
condition on it. This ensures that inference about 9 cannot be based on Z. The 
conditionality principle states that we should always condition on ancillary 
statistics. 

Conditionality principle: If an ancillary statistic exists for a model !F, then 
inference for the model should be made conditional on the ancillary statistic. 

The conditionality principle enables us to simplify certain analyses. If the sample 
size n is a realization of a random variable N which has a distribution which 
does not depend on the unknown model parameters, then N is an ancillary 
statistic and, according to the conditionality principle, we should make 
inferences conditionally on N, i.e., treating JV = n as fixed. Of course, if the 
distribution of N depends on the unknown model parameters of interest, then 
JV is informative about the model and we should not condition on its value. 

We can obtain a simple visual representation of the effect of conditioning 
by considering the problem in which Z | N = n ~ binomial(n, 6) and the 
marginal distribution of N does not depend on 9. We first plot z against n in 
Figure 7.3. Recall from the discussion of minimal sufficiency in Section 7.2 that 
each point on the plot represents a partition set in the partition of the sample 
space 2£ which is generated by the minimal sufficient statistic {Z, N}. We can 
write 3? = \J„%, where 2£n is the sample space of Z given that N = n. 
Conditioning on JV = n means that we restrict attention to ^ rather than 2£. 
This corresponds to fixing a vertical line through n and has the effect of reducing 
the two dimensional minimal sufficient statistic to a one dimensional statistic 
and restricting the sample space. 
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Figure 7.3. The sample space for a binomial experiment with a random number of trials. Points on 
the vertical line represent the conditional sample space given that n = 15. 

We consider only the value n of N actually observed but we allow Z to vary 
over the data sets which are possible for the choice of n. 

Formally, the minimally sufficient statistic induces a doubly subscripted 
partition of 2t which we write as ¥ = {Sfra: r e range (s(■)), n e Z} where ¥„ = 
{z e f„: s(z) = r} and the conditioning specifies a subpartition ¥„ = {,9"r„: r e 
range (s( •))} to which we restrict attention. We sometimes call the sample space 
iz" the frame of reference and ¥n the conditional frame of reference. Similar results 
holds for models other than the Bernoulli model. A schematic representation 
is given in Figure 7.4. 

7.4.3 Discussion 

Whether a statistic is ancillary or not depends on the model so, in this sense, 
the concept is not robust. However, there are aspects of problems which do 
not depend on the data distribution and so are ancillary irrespective of the 
model for the data. For example, in a randomized experiment (such as the 
caffeine experiment), we use randomization to make choices (including selecting 
units, allocating units to treatments, selecting measuring instruments, and so 
on) in the design stage of data collection. As we noted in Section 5.1, we can 
think of a random variable D which takes values in 3), the space of all possible 
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Figure 7.4. A schematic representation of the partition of a sample space 2C induced by real valued 
statistics s: 2? -* U and c: & -» U showing the conditional sample space for s given c. 

designs, and which specifies which design we should use. Randomization 
generates a realization of the random variable D by drawing D from some 
known (often uniform) distribution over 2. Given the realization D, we observe 
Z. The observed data from the experiment consists of (Z, D). Since the 
distribution of D is known, it cannot depend on any unknown parameters and 
it is ancillary. The conditionality principle requires inferences to be made 
conditionally given D and therefore rules out the possibility of design-based 
inference. See Sections 6.2-6.5. 

7.4.4 Partial Ancillarity 

Finally, in some problems, only a subset of the model parameters are of interest. 
In this case, it seems reasonable to weaken the definition of an ancillary statistic 
so that its distribution may depend on the nuisance parameters. To this end 
we adopt the following definition from Cox and Hinkley (1974, p. 35) 

A statistic c(Y) is a partial ancillary statistic for a model 3F = {F( ;0): 
6 = (t/f, X) e Clw x ilk} if c(Z) is a component of a minimal sufficient statistic for 
!F, the conditional distribution of Z | c(Z) = c depends on \j/ but not k for all c 
and the marginal distribution of c(Z) depends on X but not \\i. 
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Although this definition is complicated to express in words, we see that a 
statistic c(Z) is partially ancillary if we can factorize the likelihood as 

f{v, 6) = g(z | c(z); xj,)h{c{z); k). 

We will take the conditionality principle to apply to partial ancillary statistics 
as well as to ancillary statistics. 

PROBLEMS 

7.4.1. Suppose that we have observations Z on the model 

* = {/(*) = .ft \'(o ^ *« < 0);o < e\, 

where /(•) is the indicator function. Show that {Z„1,Zn„/Z„l}, where 
Znl < Z„2 < • • • < Z„„, is sufficient for &'. Then show that the distribu-
tion of ZnJZnl does not depend on 6. It is tempting to argue that we 
should base inference on Zni given Z„JZnl. Show that this conflicts with 
the sufficiency principle. 

7.4.2. Suppose that an experiment is conducted to measure a physical constant 
9. During the experiment, n measurements are made using two instruments 
labelled 0 and 1. Before carrying out the experiment n independent 
Bernoulli trials are carried out to determine which instrument will be 
used for each measurement. Thus, the instrument for the ith trial is 
selected by a random mechanism which results in a random variable At 

such that for some known p, 0 < p < 1, 

P(y4£ = 0) = 1 - p and P04, = 1) = p, 1 < i < n. 

Given that At = a,, the ith measurement is a random variable with a 

Yt | At = at ~ N(0, a2J 

distribution, where <r0 and ax are known and o0 # av At the conclusion 
of the experiment, the data consists of the pairs of observations (a1? y^),..., 
(a„, y„). Let a = YH=i at be the number of times instrument 1 is used. 
Relabel the data if necessary so that the a measurements made on 
instrument 1 are observations y1,..., ya and the n — a observations on 
instrument 0 are ya+l,..., y„. Show that the maximum likelihood 
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estimator of 6 is given by 

0 = £"=,+ itt/go + £?=iJ'i/gj 
(n — d)lfs\ + aja\ 

and that Ed = 0. Show that the observed Fisher information is 

n — a 
z- + naV 

and that Var(0 | a) = n~xJ~l. Prove that ./„ converges in probability 
to (1 — p)/al + p/<rf as n -> oo. Write down the conditional p-value for 
testing H: 0 = 80. Is this very different from the unconditional p-value in 
large samples? Explain. 

7.4.3. The large sample confidence intervals for 1/0 obtained in Problem 4.1.6 
under binomial and negative binomial sample are identical. Explain this 
result. 

7.4.4. Suppose we have n independent observations (yh x;), i = 1, 2 , . . . , n, 
which we believe are approximately linearly related. The slope parameter 
in the linear relationship can be estimated by 

Consider carrying out a simulation to evaluate the properties of this 
estimator. Discuss the relative merits of using the same set of xt values 
throughout the simulation and choosing a new set of (yh x,) each time. 
Describe how you would carry out the simulation in each case. 

7.4.5. Suppose there are two groups of individuals of size rj and r2 and that we 
observe the number of individuals zx and z2 in each group who fall into 
category A and the remainder rx — z, and r2 — z2 who fall into category 
B. The data is often presented in a 2 x 2 table, as in Table 7.2. 

We assume that individuals respond independently of each other and 
that the probability of success in the two groups is 0X and 82 respectively. 
A useful model is that Zx ~ B(rl5 6 )̂ and independently Z2 ~ B(r2, 62). 
It is then convenient to set 

log(rhi) = * and l08(r-^) = a + A-
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Table 7.2. A 2 x 2 Table 

Group 1 Group 2 Total 

Category A zl z2 zx + z2 

Category B r, — zl r2 — z2 rl + r2 — zx — z2 

Total r, r2 r, + r2 

Suppose we are interested in A. It is often recommended (Lehmann, 
1959/1991, pp. 154-5 and Fisher, 1956a, p. 89) that inference about A 
should be made conditionally on Z2 given the marginal total Zx + Z2. 

Fisher's argument is that the value of Z1 + Z2 does not enable us to 
draw inferences about A. The value of Zt + Z2 determines the precision 
with which inferences should be drawn and it is therefore appropriate 
to condition on Z1 + Z2. Find the distribution of Zx + Z2. Discuss 
Fisher's argument in terms of the principles of inference. Does anything 
change if we are testing the null hypothesis H0: A = 0 of no difference 
between the groups? 

Show that the distribution of Z2 given Zx + Z2 does not depend on 
a. This means that conditioning on Zx + Z2 eliminates the nuisance 
parameter a which is the standard Neyman- Pearson approach to 
eliminating nuisance parameters. 

7.4.6. When exploring the relationship between two variables Y and X as 
expressed through the conditional distribution of Y given X say, there is 
often an advantageous choice of scale on which to explore the relationship. 
One approach to choosing the scale is to estimate it from the data. If we 
estimate the appropriate transformation, we then have to decide whether 
to condition on the transformation or whether we need to take the 
variability in the estimated transformation into account in our inferences. 
Read the papers by Bickel and Doksum (1981) and Hinkley and Runger 
(1984) and prepare a brief summary of the two opposing viewpoints. 

7.5 THE DEVELOPMENT OF THE LIKELIHOOD PRINCIPLE 

The likelihood principle obviously implies the weak likelihood principle and 
hence the sufficiency principle. It also implies the conditionality principle; if 
we have an ancillary statistic c(z), we can factorize the likelihood as 

f(z; 0) = 0,(s(z) | c(z); 6)Hc(z)) 

and the likelihood principle implies that inferences based on f(z; 6) and 
gi(s(z) | c(z); 6) should be the same. That is, we should condition on the ancillary 
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statistic c(z). However, the likelihood principle has more far reaching conse-
quences than either of these principles. For this reason, Birnbaum's (1962) 
arguments that the sufficiency and conditionality principles imply the likelihood 
principle have attracted considerable discussion; see Berger and Wolpert (1984, 
p. 42). Our development follows that of Berger and Wolpert (1984, pp. 24-8) 
for the discrete case. 

Suppose that we have an observation z on 3F = { / ( • ; 9): 6eQ.} and an 
observation y o n ^ = {g(■; 9): 8 e £2} such that 

f(z;8) = h(y,z)g(y;8). (7.12) 

Consider a mixture model Jf which involves a Bernoulli^) random variable 
B such that if B = 0 we make an observation from #" while if B = 1 we make 
an observation from (S. (Most disquiet about this argument centers on this 
combination of the two problems into a single mixture problem.) Then the data 
for inference about 8 is (J5, xB), where x0 is an observation from J* and Xj is 
an observation from <S. Since B is an ancillary statistic, the conditionality 
principle states that we should condition on B and, having done so, we 
have added nothing by expanding our data collection process to the mixture 
experiment Jf. Now consider the statistic 

f(0, z) if (b, xb) = (0, y) 
T(B,xB) = \ . 

((ft, xb> otherwise. 

This statistic maps both the outcomes (0, z) and (1, y) to the same value. If we 
can show that T is a sufficient statistic for the mixed model, the sufficiency 
principle will imply that we should reach the same conclusion whether we 
observe (0, z) or (1, y) which implies the likelihood principle. 

It remains to show that T is a sufficient statistic. This follows from the 
definition since, using (7.12), 

0.5/(z; 9) 
P{(B,xB) = (O,z) | r=(O,z) ;0} = 

0.5/(z; 9) + 0.5g(y; 9) 

My, z) 
Ky, z) + 1 

which is free of 9. Hence. 

P{(B, xB) = (1, y) | T = (0, z); 8} = 1 - P{(£, xB) = (1, z) | T = (1, z); 9} 

is free of 8. Finally 

P{(B, xB) = (ft, x») | 7 = t # (0, z); 9} = r l f f' *"} = l 

10 otherwise 

is also free of 9 and the result follows. 
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7.6 THE REPEATED SAMPLING PRINCIPLE 

Frequentist inferences (see Chapter 3) involve a statistic and its sampling 
distribution. The sampling distribution describes the distribution of the statistic 
under hypothetical repetitions of the sampling scheme which we believe 
generated the data. Insofar as there is a principle underlying frequentist 
inferences, it is that they must use the sampling distribution to interpret and 
evaluate inferences. The formal statement of this idea is the repeated sampling 
principle. 

Repeated sampling principle: Inference procedures should be interpreted and 
evaluated in terms of their behavior in hypothetical repetitions under the same 
conditions. 

Confidence intervals (Section 3.6) and hypothesis tests (Section 3.3) are 
explicitly constructed to satisfy the repeated sampling principle. They are 
interpreted in terms of their level and evaluated in terms of their length or 
power, all of which are derived from sampling distributions. 

The repeated sampling principle is in conflict with the coherency principle 
(Section 7.1) because Bayesian inferences do not necessarily have good repeated 
sampling properties. On the other hand, frequentist inferences with good 
repeated sampling properties are incoherent. The repeated sampling principle 
is also in conflict with the likelihood principle (Section 7.2.3). 

Coherency is a form of self-consistency which ensures internal (to an 
individual) rather than external validity. Internal validity may be all that is 
available, but the repeated sampling principle is an attempt to ensure external 
validity. Basu's example (Section 7.4) shows that the repeated sampling 
principle does not on its own achieve this elusive goal. Nonetheless, the choice 
between the coherency and repeated sampling principles depends to a great 
extent upon where we draw the balance between trying to achieve internal or 
external validity. 

7.7 OTHER PRINCIPLES 

Although the principles we have enunciated in the preceding sections all seek 
to impose constraints on the way in which we make inferences, they still leave 
a number of aspects of the inference problem unspecified. For example, the 
principles all assume that we have data Z and a model J^ and assert how we 
should make inferences given Z and J*; they are, however, silent on how we 
should obtain either Z or !F and, in particular, what the relationship between 
Z and J^ should be. This is in accordance with Fisher's (1922) view that we 
should separate the choice of J* from the inference problem but it can 
complicate thinking about the application of the principles in practice. One 
consequence of being vague about Z and !F is that in principle there is no 
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conflict between the principles of inference and concern for robustness - the 
model & does not have to be a "true" data generating mechanism in any sense. 
We can even take the lack of specification of a relationship to an extreme and, 
at the risk of making foolish inferences, apply the principles in situations where 
there is no relationship between Z and J r . However, in robust frequentist 
inference, we may use one model to produce the inference and another to 
evaluate its repeated sampling properties. In this case, there is an issue as to 
which model to apply the principles of inference because, at least implicitly, 
they seem to imply that the models should be the same. 

It makes sense to try to introduce principles which guide data collection and 
model choice since these are germane to statistical inference. Fisher's three 
principles of experimental design - randomization, replication, and control (see 
Section 6.1) - set out at least a framework for data collection but there are no 
comparable principles for model choice. Even if we allow for the fact that 
principles have to be broken at times, it is difficult to specify principles for 
model choice because there are so many aspects of context and judgement 
involved; see Lehmann (1990) and Cox (1990). Obviously, robustness is an 
important concern but we need appropriate robustness which typically means 
stability over the nuisance aspects of the model. We do not want to use a 
procedure that is robust against misspecification of the functional form if we 
are trying to explore functional form. Also, we do not want robustness to imply 
simply that we should always use large nonparametric models. (Even if we think 
of robustness in terms of choosing an inference procedure, we saw in Section 
5.4.9 that there is often an implied model underlying the choice and we can 
reformulate the choice in terms of this model.) Thus, the recognition that there 
is a robustness principle does not make it easy to state. This is also true of 
the other aspects of model choice. 

Reactions to the different approaches to statistical inference and a fortiori 
to the principles on which they are based tend to reflect personal attitudes to 
uncertainty and learning. Given the complexity of the inference problem, this 
is not altogether surprising. It is almost inevitable and arguably healthy that 
there will be different approaches to inference and therefore ongoing arguments 
about the relative merits of the different approaches. In particular, it is 
unrealistic to expect a single approach to always work and always be better 
than any other approach. Arguably, which approach to inference we use is less 
important than being clear about how we reach our conclusions, the basis for 
the assumptions we have made and how sensitive our conclusions are to these 
assumptions. It is valuable to keep the substantive problem in mind, to adopt 
a cautious, systematic approach and to include the unquantifiable uncertainties 
inherent in the analysis in its interpretation. It is important to recognize that 
alternative approaches are available and to facilitate reanalysis from either the 
same or different perspectives by, whenever possible, publishing and making 
the raw data widely available. 

Although recognition of the difficulties of making inferences can lead to 
dissatisfaction and a feeling that statistics is a subject without firm foundations 
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and limited applicability to idealized problems, it is important to recognize that 
the inference problem is a very difficult problem. Judgement, so favoured by 
Fisher as a means of overcoming theoretical shortcomings, cannot be eliminated 
from the process of making inferences. On the other hand, mitigating against 
the rejection of statistical inference as mere "ad hocery" is the fact that the 
methodology of statistical inference is useful in making sense of complicated 
substantive problems. We do need to maintain a perspective about what can 
reasonably be expected to be achieved. 

FURTHER READING 

The principles of inference are presented and discussed in the books by Cox 
and Hinkley (1974), Barnett (1982), and Berger and Wolpert (1984). 



Appendix: Some Useful Facts 

1. Jensen's inequality 
If g is convex and the expectations exist, g(EX) < Eg(X) 
If the expectations exist, E log (X) < log (EX) 

2. Expansions 
X 2 X 3 X 4 

log (1 + x) = x 1 
2 3 4 
X X X 

exp (x) = 1 + x + -\ 1 
2! 3! 4! 

f(x + h) = f(x) + f\x)h + f"(x) h~- + • • • ( X E R ) 

f(x + h) = f{x) + f'ixfh + hTf"ix) A + . . . (x £ R"). 

3. Inverses and determinants of matrices 
(a) If A is an m x m matrix of the form A = ul + aJ, where u =£ 0, / is 

the m x m identity matrix and J is the m x m matrix of Is, we 
have 

A l =cl + dJ with c = - d = = 
u uiu + ma) m(w + ma) mu 

and 

\A\ = um~l(u + ma). 
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(b) If A is a nonsingular m x m matrix and x is an m-vector, 

(A + XXT)-I = A-'
 A"lxxTA~1 

1 + x'A~lx 

and 

xT(A + xxr) lx = _■—--. 
l+xrA~lx 

Ifwe partition A so A = I n 12 I, we writeA'1 = . , , , , ,. 
\A21 A22) Wl A22) 

(c) If Au and A22 are nonsingular, let 

^11.2 = ' M l — /*12/*22 ^ 2 1 a 0 " ^22.1 = = ^ 2 2 — /*21 /*U / / '12-

Then 

/f11 - / i " 1 
7 1 — - ^ l i ^ 

d22 _ A - \ 
n — / 122.1 

Al2 = -A^Ai2A
22 

y^J = = ' I 2 2 2 1 

(d) If /422 >s singular but / l n and <422.i
 a r e nonsingular, and /4 is 

symmetric 

A = An + Alx A12A22.1^21^11 

A22 -A'1 

A — / 122.1 

Al2 = (A21)T = -A-^Al2A
22. 

In the special case that A22 = 0, A22A
 = — v421v41~1

iv412. 
(e) The determinant of A is 

(M22I l^n.2l if A21 is nonsingular 

(.Mul M22.1l if 4̂11 is nonsingular. 

4. Integrals 
(a) Gaussian integrals 

, (ax2-2bx)) , (2nV12 (b2\ exp^- 2 ~ ~ r x = w expUJ (xel 
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f f a(x-b)2 + c(x - d): 

dx 

In V12 

a + c 
exp 

(ab + cd)2 

a + c 
— ab — cd ]/'} (xeR) 

Jexpj — Ax-2brxj) J /(27t)"\1/2 (bTA-lb\ 
dx = ( exp (x e I 

[exp j [ ( X ~ fe)T/>(X ~ b) + {X ~ d ) T C ( X ~ rf)]j tfcc 

expj 1 
0̂  + q. 

(b) Truncated Gaussian integrals 

(x 6 R"). 

x20(x) dx = 2<D(c) - 1 - 2c0(c) 

x2V(x) dx = (2k - 1) x 2 * - 2 ^ (x )dx -2c 2 * -V(c ) . 

(c) Gamma integrals 

I x K - 1 e x p ( - ; . x a ) d x = —-exp(-ix-*)dx = — r r ( -
J o *"+1 "A"'" V*. 

5. Discrete distributions 
(a) Hypergeometric distribution 

P{Z = z; K} = 

Nn\/N(l - 7t) 

z / \ n — z 

max (0, M - JV(1 - 7r)) < z < min («, Nn), 0 < n < 1. 

Moments: EZ = /m and Var (Z) = wt(l - n)(N - n)/(N - 1). 
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(b) Binomial distribution binomial(r, n) 

P(Z = z;;t) = ( r )TCZ(1-Tt)"-2, z = 0 , l , . . . , r , 0 < % < 1. 

Moments: EZ = rn, Var (Z) = m(l - n) and Ee'z = [ne* + (1 - 7t)]r. 
Convolution of independent distributions: binomial^, 7t) + 

binomial(r2, n) = binomial^ + r2, n). 
When r = 1, the binomial distribution is often called the Bernoulli 

distribution. 
(c) Multinomial distribution mn (r, nl,..., np) 

P(Z = z; 7i) = - J ■ jr*,' ■ • ■ r#>, z, = 0 , 1 , . . . , r, 
zj.---zp\ 

X z, = r, 0 < T C , < 1, £ ;t,= 1. 

Moments: EZ,- = rrc,-, Var (Z,) = ra,(l — 7t,) and Cov (Z,-, Z,) = 
-m^jj ^ j . 

Provided Su ..., Sq is an exhaustive partition of disjoint subsets of 
{1,.. . , /»}, 

( Z Z i . - - > X Z ; j ~ m n l r , £ rc,-, . . . , £>.•)• 
V i e Si ieSq / \ ieS\ iESg / 

The two-category multinomial distribution mn (r, 7rl7 n2) is the 
binomial distribution binomial(r, 7Tj). 

(d) Poisson distribution Poisson(A) 

P(F = y;A) = " — X ^ - ) , ^ = 0 , 1 , 2 , . . . , A > 0 

Moments: Ey = A, Var (F) = X and Ee'y = exp (A(er - 1)). 
Convolution of independent distributions: PoissonC/j) + 

Poisson(/2) = Poisson(/1 + X2). 

(e) Negative binomial distribution 

(i) The number Y of independent binomial(l, 7t) trials required to 
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observe r Is has distribution 

P(Y=y,n) = (y~ Wr(l —Try"', y = r,r+\,..., 0 < 7 t < l . 

r (1 - 7t) 

Moments: EY = - and Var (Y) = r —- . . 
n n 

The negative binomial distribution with r = 1 is often called the 
geometric distribution. 
(ii) The number Z = Y — r of Os obtained in independent binomial(l, n) 

trials before we observe r Is has distribution 

P(Z = z;n) = [Z + r~l )nr(l-ny, z = 0 , l , . . . : 0 < n < l . 

Moments: EZ = r and Var (Z) = r —. 
n % 

(iii) For modeling departures from the Poisson distribution, take 
Z\ n ~ Poisson(^) and \x ~ T(X/5, <5_1) to obtain 

P(Z = z; X, 5) = W Q ) } Yfz + ~V(1 + 5)-<* + */« 

z = 0, 1,2,. . . , A > 0 , <5>0. 

Moments: EZ = A, Var (Z) = A(l + 5), E(Z - X)3 = A(l + <5)(1 + 2(5), 
E(Z - Xf = 1(1 + <5)(1 + 66 + 682) + 3X2(\ + 6)2 and 

Ee'z = exp {-X/S log ( 1 + <5(1 - <?'))}• 

Convolution of independent distributions: NB(A„ 6) + NB(A2, <5) = 
NBC/, + ;.2, 6). 

X 
This distribution can be written in the form (ii) with r = and 

8 
5 

n — . 
1 +d 

6. Continuous univariate distributions 
(a) Gaussian (or normal) distribution N(/z, a2) 

1 J (z-fi)2 

, exp < 
Jim1 I 2ff 

/(z; fi, a) = ; ^ exp <| - ^ 2 

— oo < z < oo, —oo < fi < oo, c > 0. 
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Moments, EZ = p, Var (Z) = a2, E(Z - nf = 0, E(Z - p.)4 = 3<74 

and Ee'z = exp (fit + a2t2/2). 
Convolution of independent distributions: N(/ils o\) + N(/i2, (xl) = 

N(nl + n2, a\ + <J\). 

(Z - ju)/<7 ~ N(0,1) if and only if Z ~ N(^, a2). 
(b) Gamma distribution T{K, X) 

/(z; K, A) = A(Az)K"' exp (-Xz), z > 0, K > 0, X > 0. 
r(/c) 

Moments: EZ = - , Var(Z) = -^, EZr = T(K + T)/XT(K) and 
A A 

Convolution of independent distributions: r(Ku X) + r(K2, X) = 
V(K1 + K2, X). 

Z ~ T{K, X) if and only if XZ ~ r(/c, 1). 

The gamma distribution is called the exponential distribution when 
K = 1. 

(i) Z has an inverse gamma distribution T(K, A)-1 if 1/Z ~ r(K, A) 
or, equivalently, A/Z ~ T(K, 1). The inverse gamma distribution 
has density function 

f(z;K,X) = AK( I e x p l - - ) , z > 0 , K > 0 , A>0. 
r(K) \z) y\ zj 

(ii) Z has a x2 distribution if Z ~ T(v/2, 1/2). Conversely, if Z ~ T(K, X) 
then 2AZ ~ r((2fc)/2, 1/2) = X\K or Z ~ (1/2A)*L- The *2 distri-
bution has density function 

/ (Z;v) = — - ^ z ^ ^ e x p f - ^ ) , z > 0, v > 0. 

For independent Z; ~ N(0,1), £"=i Zf ~ X2- If Zj ~ N(n„ 1), 
then the distribution of £"= t Z? is a noncentral x2(t/0 distribution 
with n degrees of freedom and noncentrality parameter \j/ = £"= t /if. 
Note that y2(ip) « N(n + \p,2n + 4\l/) for n large. 

(iii) Z has a #v distribution if Z2 ~ x2- The x„ distribution has density 
function 

f(z; v) = / T zv"~' exp ( -~~ ), z > 0, v > 0. 

2 v / 2 r ( v 
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(iv) Z has an inverse xl distribution xv
 2 if 1/Z has a x? distribution. 

The Xv 2 distribution has density function 

f(z;v) = TT(-) e x p ( - ^ ) > z > 0 > v > 0 -
2 v / 2 r ( V ) W V 2zJ 

(v) Z has an inverse #v distribution xv
 l if 1/Z has a *v distribution. 

The Xv ' distribution has density function 

1 dr-H f(z; v) = ? ^ ( - ) cxp ( - — ), z > 0, v > 0. 
2 v / 2 - l r 

(c) The Student ty distribution 

/(z;v) = — ? A ( v + 1 ) / 2 , - o o < z < o o , v > 0 . 

^ G ) ( ' + T" 
Moments: EZ = 0, v > 2, Var (Z) = ——, v > 3, EZ3 = 0, v > 4, 

v — 2 
3v2 

and EZ4 = , v > 5. 
(v - 2)(v - 4) 

When v = 1, the Student tY distribution is called the Cauchy 
distribution. 

For independent numerator and denominator v1/2N(0, l)/xv ~ tv. 
The distribution of v1/2N(^i, l)/xv is called the noncentral t distribution 
with noncentrality parameter fi. 

(d) F distribution F(X, v) 

riv + x 

/(Z;A,V)= A / J : ( 1 - 2 W 1 + - , z>0, / ,v>0. 

v 2v2(/l + v - 2) 
Moments: EZ = , v > 3, and Var (Z) = — - , v > 5. 

v - 2 A(v - 2)2(v - 4) 
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yf/A 
For independent numerator and denominator -—— ~ F(A, v). If any 

of the x2 distributions are noncentral, we obtain a noncentral F 
distribution. The most important of these occurs when the numerator 
has a noncentral x2 distribution. 

(e) Beta distribution beta (r, s) 

f(z;r,s) = —^xr_1(l -xf-1, 0 < x < 1, r , s > 0 . 
r(r)r(s) 

r rs 
Moments: EZ = , Var (Z) = r + s' " (r + s)2(r + s + 1) 

sZ/r(l — Z) ~ F(2r, 2s) and the case r = s = 1 is the uniform distri-
bution U(0,1). 

(f) Uniform distribution U(a, b) 

f(z; b, a) = I(a < z < b), a <b. 
b — a 

Moments: EZ = < * ± ^ , Var (Z) = < ^ > ! , and E*« = S £ ^ l . 
2 12 (fc-a)t 

(g) Weibull distribution 

f(z; K, X) = KA(XZ)K~ ' exp {— (Az)"}, z > 0, JC, A > 0. 

Moments: EZ = H - + l ] , Var (Z) = r ( - + 1 j - vi + 1J , and 

EZr = r f ■- + 1 

The Weibull distribution with K = 1 is the exponential distribution. 

(h) Laplace (or double exponential) distribution 

f(z; n,a)= — exp < 
2CT ( a 

— QO < z < oo, — oo < / i < oo, c > 0. 

Moments: EZ = ^, Var (Z) = 2CT2, and E(Z — n)r = 0 for r odd 
and r!ffr for r even. 
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(i) Pareto distribution 

f(z; K, X) = - ^ y , z > X, K,X>0. 

1 ]2 

Moments: EZ = —-—, K>\, Var(Z) = , K>2, and 
K-\ (K-\)2(K-2) 

EZr = , A>r. 
K — r 

(j) The exponential power family of distributions 

f(z;fi,a,P) = -hp(
Z~fi 

— oo < z < co; — oo < / i < oo, a > 0, — 1 < / ? < 1 , 

where 

Ji»(x); 

3(1+M1/2 

(i + « r i+/ft3/2 exp' 

3(1 + /Q' 

l+p 

i / ( i + / » 

.12/(1+0) 

3(1 + j?) 

1 + /8 
Moments: EZ = n and Var (Z) = a2!1 +" 

The exponential power family of distributions is Gaussian when 
P — 0, Laplace when 0 = 1 , and (Z — /i)/cr -» U( —^/s, ^/3) when 
0 - > - l . 

7. Continuous multivariate distributions 
(a) Multivariate Gaussian (or normal) distribution Np(^, E) 

/ ( 3 ; ; * L ) = ( 2 W ) ^ | £ | 1 ^ C X p { ~ i ( j > _ " ) T £ _ 1 ( J ' " XP)]' 

yeW, ne W, 2 nonsingular. 

Moments, E y = ^, Var(Y) = Z. 
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Linear transformation: If Y ~ Np(/*, E) and A is a p x q matrix 
ATY+b~ Nq(A

Tn + b, ATI.A). 
Marginal distributions: If Y ~ Np(/z, E), and Yx denotes the first q 

components of Y, then y, ~ N , ^ , X,,). 
Conditional distributions: If Y ~ Np(/i, E), and Kj denotes the first 

q components of Y, then Yl \ Y2 ~ N,(/i, + E ^ E ^ y , ~ ẑ)> ^11.2). 
where I 1 1 2 is defined in 3(c). 

(b) Multivariate Student tv distribution Stp (//, E, v) 

/Sl(y; [i, I , v) = 

r . v + P 

(v , ) - r ( v ) |E | - I i + ^-^" 1 (^^ < —' 
^2/ (. v 

yeW,ue W, E nonsingular. 

Moments: E(Y) = fi, v > 2, Var (y) = E, v > 3, and 
v — 2 

3v2E2-
£ ( U - A ) * a = _ — J L v > 5 . 

(v - 2)(v - 4) 

Linear transformation: If Y ~ Stp (^, E, v) and /I is a p x g matrix 
ATY + b ~ St, 04V + fc, /1TEA, v). 

Marginal distributions: If F ~ Stp (^, E, v) and y, denotes the first 
g components of Y, then yt ~ St, (fiu E11; v). 

Conditional distributions: If Y ~ Stp (/*, E, v), and ^ denotes the 
first q components of Y, then Yx \ Y2 ~ St, (/i, + E ^ E ^ 1 ^ — / O . 
{v + (y2-/i2)TE2-2

1(y2-iU2)}^ii.2/(v + p - ^ ) , v + p - q ) where E l l 2 

is defined in 3(c). 
If y ~ Stp (/1, E, v), then Y can be represented in distribution as 

y = /i + / i ' 1 / 2 E 1 / 2 z , 

where Z ~ Np(0, / ) , vh ~ xl and h and Z are independent. 

8. Transformations of random variables 
Suppose that 0 has density g. For a one-to-one transformation 8 -» /(#), 
the determinant of the partial derivatives of the inverse transformation 
J{X) = \dd{X)jdX\ is called the Jacobian of the transformation. The density 
of A = A(0) is given by 

h(X) = g(6(X))\J(V\-
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9. Order statistics 
Suppose that Z l 5 . . . , Z„ are independent and identically distributed 
random variables with common continuous distribution F(;6). The order 
statistics are denoted Znl < Zn2 < • • • < Z„„. The joint density of the 
order statistics is 

n 

f\ »(z„i, • • •, zm; e) = n\\\ f(zni; 6), znl < ■ ■ ■ < zm. 
i= 1 

(a) The joint density of (Znl, Z„„) is 

/i.B(z„i, *.„; B) = n(n - l)(F(z„n; 9) - F(znl; fl))""2/^; 0)f^„u 6), 

The marginal distribution of Z„„ is 

P(z„n < ;„„; 0) = f(znn; 0)" 
so 

Uzm;6) = nF{zm;ffr-1f(z„;ff). 

The marginal distribution of Znl is 

P(Z„1<z„1;0) = l - { l - F ( z n l ; 0 ) } " 
so 

Mznl; 0) = «{1 - F(znl; 0)}'-lf(znl; Q). 

The marginal distribution of the y'th order statistic Zni is 

P(ZH] < znj; 6) = £ Q ^ W - ^(^5 0)}""* 

so 

fM«n, e) = (, ";—- f(z„; ^ y - ^ i - f(^-; 0)}"-Jf(zmJ; *)■ 
0 - l)!(n-;)! 

(b) When /(x; /<) = /( —| < x — /i < j), the joint density of (Znl, Zn„) is 

/i.»(2»i» znJ = n(n - l)(z„„ - znl)"-2, n - \ < znl < znn < \i + i 

Making the transformation 

znl=m- w/2, znn = m + w/2 

which has Jacobian 1, we obtain the joint density of the midrange 



APPENDIX 405 

and range 

f(m,w) = n(n- l)w"~2, , w w , 
P 2 2 2 

The region of nonzero density can be expressed as either 

0 < w < 2(/x + j - m), ix<m< y. + \ 

0 < w < 2(m — n + %), n — ^ <m < n 

or 

u - ? + - < m < u + i , 0 < w < l . 
/* 2 2 2 

This region is shown in Figure A.l. Integrating the joint density over 
w, we find that the marginal density of the midrange is 

/ (« ) = 
«2" _ 1 (m- n + j)"'1 n-\<m<y. 

«2"_1(/i + i - w ) " " 1 fi<m<n + ^ 

+ 

S i 

m = fx + 1/2 — w/2 

m = H - 1/2 + w/2 

0.0 0.5 1.0 1.5 

Figure A.l. The region of nonzero density. 
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which has distribution function 

F(x) 
2" ~l(* + £-/*)" 2 - w f i - j < x < n 

\ -2"~1(n + ^- xf n < x < n + \. 

Integrating the joint density over m, we find that the marginal 
distribution of the range is 

f(w) = n(n- l)w"-2(l - w ) , 0 < w < l . 

The conditional distribution of the midrange given the range is then 

w w 
f(m\w) = (\-wy\ n-\+2<m<n + 1

i- - , 

which has distribution function 

j w \ / w w 
F(m|w) = j m - / i + | - - W ( l - w ) , 1*-$+ _ < m < ju + J - - . 

10. Sampling from a Gaussian model 
The density of a sample Z from the Gaussian model 

1 '-t'^-n^-pp'^ 
-oo < y,- < oo: n e U, a > 0 

/(y; /i, <r) oc exp <j - ^ 2 g 2 
J = I 

, £ (yj - y)2 (y - n): 

J = I 
y e l 

(The proportionality constant is as always determined by the requirement 
that the density integrate to 1.) The first step is to eliminate y from 
Y."= i (yj — y)2- This is achieved by making Helmert's orthogonal trans-
formation u = Hy where 

H 

1/V2 - 1 / 7 2 0 0 

1/V6 1/V6 - 2 / V 6 0 

_!/> 1/Vn l/> l/> ... 1/>J 
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Since y = HTu, we have £"= t yf = yTy = uTHHTu = uTu = £"= j uj and 
hence 

I (JO " f)2 + «(y - H)2 = I ^ - «y2 + n(y - fi)2 

= "^uf + n(n-ll2u„-n)2. 

The Jacobian of an orthogonal transformation is 1 so 

/(u; /i, ff) cc exp j - £ ~2- - « 2 g 2 f, « e IK". 

Next, make the transformation to polar co-ordinates 

„, =(vw)1 / 2sin(01) 

u2 = (vw)1/2cos(01)sin(02) 

« ._ , = (VW)"2 008(0 . ) COS (0 2 ) - C O S (0„_ 2 ) 

Since w = v ' Y.]= I u] a n d t n e Jacobian is proportional to 

w(»-3)/2 C Q S (^^""2 c o s ( 0 2 ) " - 3 . . . COS ( 0 „ _ 2 ) , 

we obtain 

f(u,w,8u. . . , 0 „ _ 2 ; / J , ff) 

ocw("~3),:!exp - ^ - n f lcos(01)"~2cos(02)"-3 • • ■ cos(0„_2), 
( 2(7 2(7 J 

U G R , W > 0, -n/2<0u...,0n_3<ii/2, 0 < 0„„2 < 2?r. 

Integrating over 0 1 ; . . . , 0„_2, we find that the joint density of Z and s2 is 

f(u, w; ii, a) oc w<n " exp < — n 
vw (u — /J.)' 

= w<n"3|/2exp 
vw { (u- n)2 

V ^ l 1 + n 

2a I vw 

u e R, w > 0. 
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That is, s2 and Z are independent with o2xi-J(n — 1) and N(/i, o2jn) 
distributions respectively. Making the final transformation 

u = n + n~1/2v1/2t, w = v 

which has Jacobian proportional to v1'2, and integrating over v yields 

'o 
£j1 + " du oc 

2^)n/2 

1 + 
■,te\ 

which is "Student's" (1908) result. With appropriate modifications, these 
results extend to more complicated Gaussian models such as the 
regression model. 
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et al. form. 
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Data and Analysis Index1 

Air conditioning data (Proschan 1964). 
49 (PI.5.11). See also Pressure vessel 
failure data and Kevlar 49/epoxy vessel 
data 

Assessment, graphical of the fit of an 
exponential model. 49 (PI.5.11) 

Bayesian analysis under an exponential 
model. 69 (P2.2.6) 

Estimation. Pitman under an exponential 
model. 111-112.(P3.1.5) 

Interval, confidence under an exponential 
model. 144(P3.6.3) 

conditional. 165-166 (P3.9.5) 
Alpha particle data (Rutherford and Geiger 

1910). 46 (P1.5.1). See also Madison 
word count data 

Assessment, graphical of the fit of the 
Poisson model. 46 (PI.5.1) 

Bayesian analysis: 
under a negative binomial model. 351 

(P6.8.3) 
under a Poisson model and gamma prior. 

58 (P2.1.3) 
under a Poisson model and Jeffreys' prior. 

69 (P2.2.5) 
predictive distribution. 70 (P2.2.9) 

Interval, large sample confidence under a 
Poisson model using the variance 
stabilizing transformation. 187-188 
(P4.1.4) 

Test, x" goodness of fit of a Poisson model. 
116(P3.2.1) 

Caffeine data (Belief et al. 1969). 3-4 
(Table 1.3). 295-299. See also Optical 
isomer data. Stellar velocity data, and 
Enamel covered steel plate data 

Change in epinephrine due to the ingestion of 
caffeine 

Bootstrap distribution of the sample 
median. 340 (P6.7.1) 

Graphical exploration and modelling. 47 
(Pl.5.5) 

Randomization test of the null hypothesis 
of no effect. 313 (P6.4.1) 

Change in norepinephrine due to the ingestion 
of caffeine 

Graphical exploration and modelling. 47 
(Pl.5.5) 

Change in the volume of urine due to the 
ingestion of caffeine. 11-12. 29 

Assessment, graphical of a Gaussian model. 
42-43 

Bayesian analysis: 
under the exponential power family. 

292-293 (P5.8.2) 
under a Gaussian model: 

conjugate prior. 76 (P2.3.3) 
Gaussian prior. 76 (P2.3.1) 
hierarchical prior. 76(P2.3.2) 

under a Gaussian model and Jeffreys' 
prior. 73-74. 237 (P4.6.3) 

credibility set. 74-76 
Gibbs sampling. 351-352 (P6.8.4) 
predictive distribution. 76 (P2.3.5) 
test based on Jeffreys' (Cauchy) prior. 

89-90. 237 (P4.6.5) 
test based on Jeffreys' (uniform) prior. 

91 (P2.5.4) 
under the Student I model, 352 (P6.8.6) 

Estimation under a Gaussian model: 
Gauss-Markov theorem. 110 
maximum likelihood. 107 

'This index lists the data sets used in the book alphabetically, cross references them to 
similar data sets and references both data analysis of the data set and theoretical analysis 
which is immediately relevant to the data set. 
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Estimation under a Gaussian model 
(Continued) 

method of moments. 106-107 
Pitman estimates. 315-316 
uniformly minimum variance unbiased 

(UMVU). 107-108 
Fiducial inference. 91-95 
Likelihood inference under a Gaussian 

model. 97-99 
Stability and breakdown: 

of the median and median absolute 
deviation from the median. 248 P5.1.2) 

of the studentized mean. 248 (P5.I.1) 
Test of no effect: 

based on the variance component model. 
138 (P3.5.4) 

likelihood ratio test under a Gaussian 
model. 133-134 

Neyman-Pearson test under a Gaussian 
model. 122-124 
one-sided test. 124-125 

permutation test based on Huber's 
A/-estimator. 330(P6.6.1) 

randomization. 308 (P6.3.1) 
the sign test. 306-308 

significance test under a Gaussian model. 
112-115 

substantive importance in. 132 
Interval: 

based on HubersM-estimatorand 
Tukey's bisquare estimator. 267 
(P5.4.9) 

based on the sample median. 331-332 
bootstrap. 335-336 
bootstrap distribution. 333-334 

confidence under a Gaussian model. 
139-143 

simulation of coverage and length 

properties of. 166-168 
as a test. 142 

prediction interval under a Gaussian 
model. 146 (P3.6.8) 

The relationship between the change in 
catecholamine and the change in the 
volume of urine due to the ingestion of 
caffeine 

Assessment, graphical of the simple 
regression model. 12-14.43-44 

Bayesian analysis under the simple 
regression model: 

posterior distribution from. 76-77 
(P2.3.6-2.3.7) 

predictive distribution from. 77-78 (P2.3.8) 
Interval, under the simple regression model: 

bootstrap, based on the least squares 

analysis. 341 (P6.7.7) 
confidence for slope. 145-145 (P3.6.7). 

164-165 (P3.9.2) 
conditional. 166(P3.9.6) 

prediction. 146(P3.6.10) 
robust. 277 (P5.5.1) 

The relationship between the change in 
epinephrine and the change in the volume 
of urine due to the ingestion of caffeine 

Graphical exploration and modelling, 
47-48 (PI.5.6) 

The relationship between the change in 
norepinephrine and the change in the 
volume of urine due to the ingestion of 
caffeine 

Graphical exploration and modelling. 48 
(Pl.5.7) 

Diabetic Retinopathy Data (Diabetic 
Retinopathy Study 1976) 

Comparison of severe visual loss in pairs of 
eyes. 30-31 (Pl.3.5) 

Comparison of severe visual loss in two sets 
of control eyes. 1 -2 (Table 1.1) 

Assessment of binomial model for. 9 
logistic parameterization. 24 (Pl.2.4). 

388-389 (P7.4.5) 
Bayesian analysis from a binomial model 

and independent uniform prior posterior 
density. 54-57 

test. 85-86 
Conditional inference under binomial 

model. 388-389 (P7.4.5) 
Interval, confidence. 150 (P3.7.2) 
Comparison of severe visual loss in two sets 

of treated eyes 
Bayesian analysis from a binomial model 

and independent uniform prior. 57 
(P2.1.2) 

Recovery from severe visual loss. 23-24 
(Pl.2.3) 

Modelling control eyes. 23-24 (Pl.2.3) 
Severe visual loss in 2 years in the control 

eyes of subjects whose other eye receives 
argon treatment 

Assessment of binomial model for. 8-9 
logistic parameterization. 24 (Pl.2.4). 

388-389 (P7.4.5) 
Bayesian analysis from a binomial model: 

beta mixture prior. 68 (P2.2.3) 
choice of prior. 68-70 (P2.2.4-2.2.11) 
uniform prior. 53 

credibility sets, 54 
predictive distribution. 58 

(P2.1.4-2.1.5) 
test. 83-85 
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Interval, confidence from a binomial model. 
147 

under Gaussian model computations. 150 
(P3.7.1) 

large sample. 147-148 
using the logit transformation. 188 

(P4.1.5) 
simulation of. 169 (P3.10.1) 

randomized. 149 
Severe visual loss in 2 years in treated eyes 
Bayesian analysis under a binomial model 

and uniform prior. 57 (P2.1.1) 
Enamel covered steel plate data (Johnson 

and Leone 1964), see also Caffeine data 
First experiment. 4-6 (Table 1.5) 
Assessment, graphical: 

of a cross-classification model. 48 (PI.5.8) 
of a linear regression model. 20-22. 45-46 

Interval, confidence: 
under the cross-classification model: 

least squares. 103 (P2.7.5) 
robust. 281-282 (P5.6.2) 

under the regression model: 
bootstrap, based on least squares and 

Huber's M-estimator. 341 (P6.7.7) 
Gaussian maximum likelihood. 

267-269 
Huber's M-estimators. 271-274 
Tukey's bisquare estimators. 274-275 

Test, robust for curvature. 281 
Second experiment. 48 (PI.5.9) 
Assessment, graphical: 

of the cross-classification model. 48 
(PI.5.9) 

of the regression model. 49 (PI.5.10) 
Regression analysis using least squares and 

robust modelling. 49 (Pl.5.10). 277 
(P5.5.2) 

Test, least squares and robust for curvature. 
281 (P5.6.1) 

Kevlar 49/epoxy vessel data (Schmoyer 1991, 
Barlow, Toland and Freeman 1984). 47 
(PI.5.4). See also Pressure vessel failure 
data; Air conditioning data 

Assessment, graphical and modelling. 47 
(PI.5.4) 

Estimation. Pitman under an exponential 
model. 111-112 (P3.1.5) 

Interval, under an exponential model: 
prediction. 146 (P3.6.9) 
robust confidence interval. 265-266 

(P5.4.4). 278 (P5.5.6) 
Madison word count data ("may") (Mosteller 

and Wallace 1984/1984). 117 (P3.2.2). 
See also Alpha particle data 

Estimation, method of moments under a 
negative binomial model. 110-111 
(P3.1.1) 

Test: 
X2 goodness of fit: 

of a Poisson model. 116(P3.2.2) 
of a negative binomial model. 116 

(P3.2.3) 
of a Poisson model based on the method 

of moments estimates under a negative 
binomial model. 209 (P4.3.3) 

simulation p-value for. 340 (P6.7.4) 
Microbubble data (Feinstein et al. 1989). 

46-47 (PI.5.2) 
Assessment, graphical and modelling. 46-47 

(Pl.5.2) 
Bayesian analysis, under a truncated Poisson 

model: 
conjugate prior for. 68-69 (P2.2.4) 
gamma prior. 68-69 (P2.2.4) 

Estimation, method of moments under a 
truncated Poisson model. HI (P3.1.2) 

Test. X" goodness of fit of a truncated 
Poisson model. 117 (P3.2.4) 

Optical isomer data (Cushny and Peebles 
1905). 249 (P5.1.5). See also Caffeine data 

Comparison of the effects of two isomers: 
using the mean and trimmed mean. 249 

(P5.1.5) 
using the Wilcoxon signed rank test. 360 

(P6.9.1) 
Pressure vessel failure data (Keating, Glaser 

and Ketchum 1990). 2 (Table 1.2). See 
also Air conditioning data; Kevlar 
49/epoxy vessel data 

Assessment, graphical: 
of dependence. 47 (Pl.5.3) 
of an exponential model. 37-42 

Bayesian analysis: 
prediction under an exponential model. 

70(P2.2.10) 
under a gamma model. 351 (P6.8.2) 

Gibbs sampling. 352 (P6.8.6) 
Jeffreys' prior for. 81-82 (P2.4.3) 
large sample approximation to. 237 

(P4.6.4) 
under a Weibull model. 292 (P5.8.1) 

Estimation: 
maximum likelihood under a gamma 

model. 189-191 
method of moments under a gamma 

model. 203 
robust modification of. 277 (P5.5.4) 

Pitman under an exponential model. 111 
(P3.1.5) 
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Estimation (Continued) 
Interval: 

confidence, based on the sample median. 
340(P6.7.2) 

confidence, for the median failure-time 
under an exponential model 
exact. 171-172 
large sample. 175 
robust. 265-266 (P5.4.4) 
using studentization. 186 
using the symmetrizing transformation. 

185 
using the variance stabilizing 

transformation. 184 
confidence, for the shape parameter: 

bootstrap, for method of moments 
under a gamma model. 340-341 
(P6.7.5) 

comparison of maximum likelihood and 
method of moments under a gamma 
model. 207-208 

maximum likelihood under a gamma 
model. 199-201 
derived from the score test. 

229(P4.5.3) 
maximum likelihood under a Weibull 

model. 202 (P4.2.5-4.2.6) 
method of moments under a gamma 

model. 203-204 
derived from the score test. 229 (P4.5.4) 
simulation of. 208 (P4.3.1) 

Modelling. 9-11 
Test for an exponential model based on 

estimates from a gamma model: 
likelihood ratio test. 226 
score test. 226 
Waldtest. 218. 226 

Random number data. 69-70 (P2.2.7) 
Generation and modelling. 49 (PI.5.12) 
Upper endpoint unknown 
Bayesian analysis: 

under a uniform model. 69-70 (P2.2.7) 
testing a sharp null hypothesis. 91 

(P2.5.I) 
Estimation, under a uniform model. 112 

(P3.I.6) 
Interval, confidence under a uniform model: 

large sample. 187 (P4.1.1) 
likelihood-based. 144(P3.6.1) 

Test, likelihood ratio under a uniform 
model. 127 (P3.3.3). 144(P3.6.1) 

Lower endpoint unknown 
Bayesian analysis: 

testing a sharp null hypothesis. 91 (P2.5.2) 
under a uniform model. 70(P2.2.H) 

Interval, confidence, likelihood-based under 
a uniform model. 144 (P3.6.2) 

Shakespeare distinct word count data (Thisted 
and Kfron 1987). 117 (P3.2.5) 

Stellar velocity data (Morrison, personal 
communication). 4-5 (Table 1.4). See 
also Caffeine data 

Assessment, graphical of a Gaussian model. 
44-45 

Bayesian analysis: 
under the exponential power family. 

291-292. 293 (P5.8.3) 
analysis of ratios of variances. 293 

(P5.8.4) 
under the Gaussian model. 81 (P2.4.2). 

237 (P4.6.3). 290 
under the Student I model. 292. 351 (P6.8.1) 

Estimation, under a Gaussian model: 
maximum likelihood. 107 
method of moments. 106-107 
Pitman. 108-110 
Uniformly minimum variance unbiased 

(UMVU). 108 
Interval: 

bootstrap based on the standad deviation 
and Huber's M-estimator. 340 (P6.7.3) 

confidence: 
based on Huber's M-estimators. 260-261 
under a Gaussian model. 144 (P3.6.4). 

240 
with nonparametric standard error. 

241-242 
jackknife based on the standard 

deviation. 343 (P6.7.11) 
Likelihood inference: 

Gaussian profile likelihood. 287 
modified profile likelihood. 229-230 

(P4.5.5) 
robust profile likelihoods. 287-290 

Modelling. 14-17 
Stability and breakdown: 

of the median and median absolute 
deviation from the median. 248 (P5.1.2) 

nonrobustness of the sample variance. 
247-248 

of ratios of variance estimators. 248 
(P5.1.2) 

of the sample variance. 244-245. 343 
(P6.7.1I) 

Test. Bartlctt's for equality of variances in a 
Gaussian model. 231-232 (P4.5.9) 



Subject Index 

Accelerated test. 5 
Acceptance region. 118. 140 
Adaptive estimation. 202 (P4.2.4). 206-207 
Air-conditioning data, see entry in Data and 

Analysis Index 
Alpha particle data, see entry in Data and 

Analysis Index 
Alternative hypothesis, see Hypothesis. 

alternative 
Analysis of variance. 138 (P3.5.2). See also 

Two-way classification model 
Analytic study, AW Study, enumerative 

versus analytic 
Ancillary statistic. 157-160. 163-166 (i'n<7 

P3.9.3-3.9.4. P3.9.6). 313. 383-389 
Approximate: 

bootstrap distribution. 335 
intervals, comparison of. 234. 372 
likelihood function. 232-233 
permutation distribution. 329 
pivotal quantity. 147-149. 175. 184. 186. 

249(P5.I.5) 
posterior distribution. 233-237. 348 
randomization distribution. 309-313. 320 
sampling distribution. 115-117. 123. 

147-149. 152. 169 (P3.10.2). 171-231. 
241-242. 247. 278-280. 282 (P5.6.3). 
324. 353-357 

conditional. 234 
Approximation, see also Edgeworth 

expansion; Saddlepoint approximation 
by beta distribution. 310-311 
by x2 distribution. 115-117 (P3.2.1-3.2.4). 

221 -222. 280. 309. 311-313. See also 
Bartlett adjustment 

by noncentral X" distribution. 221-225. 
280 

by F distribution. 281.311-313 

Cochran's to Behrens-Fisher distribution. 
151. 169-170 (P3.10.2) 

cube-root normal. 185 
Gaussian, see also Central limit theorem 
to binomial distribution. 117 (P3.2.5). 

147-150 <//?<•/ P3.7.1). 167-168.200-201. 
307. 329. 353 

to gamma distribution. 174-175 
to noncentral x2 distribution. 399 
log-normal. 184. 199-201.240-242 
Student/: 

tojackknife. 343 (P6.7.11) 
to noncentral Student t. 123 
to sampling distribution of trimmed 

mean. 249 (P5.1.5). 355 
Welch's to Behrens-Fisher distribution. 

152. 169-170 (P3.10.2). 230 (P4.5.7) 
Asymptotic: 

bias. 207. 243-244. 247. 257 
efficiency. 205-207 

of Huber M-estimators. 258-259 
of Huber regression A/-estimators. 

270-271 
of median and MAD. 261 
of 5-estimators. 277 
of Tukey bisquare estimator at Gaussian 

model. 265 (P5.4.3) 
of unnamed M-estimator. 263 (P5.4.1) 

expansion. 177-178 
local power. 219-220. 229 (P4.5.2) 
mean, .we Mean, asymptotic 
power function. 219 
relative efficiency: 

of estimators. 205. 220. 286. 330 
of tests. 220 

variance, see Variance, asymptotic 
Autocovariance function: 

for autoregressive process. 27. 249-251 
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Autocovariance function (Continued) 
for moving average process. 252 (P5.2.2) 

Autoregressive process. 27.249-252 
Axiomatic method. 363 

Bartlett('s): 
adjustment. 228. 231-232 (P4.5.8-4.5.9) 
paradox. 87 
test for equality of variances. 231-232 

(P4.5.9) 
Bartlett-Armitage example. 373-376 
Basu's example: 

irrelevant inference. 383 
nonunique ancillary statistics. 384 
weighing elephants. 320-321 

BayesC): 
estimate. 53. 56. 58 (P2.1.3). 62. 68 

(P2.2.2-2.2.3) 
factor. 83. 135-137. See also Posterior odds 

ratio 
postulate. 66 
theorem. 51-52. 350 

Bayesian inference. 51-91. 233-237. 290-293. 
300. 346-352 

assignment. 365-369 
interval, see Credibility interval 
related to: 

fiducial inference. 94 
frequentist inference. 135-137 
likelihood inference. 100 

test, see Bayes factor; Posterior odds ratio 
Behavioral interpretation, see Inductive 

behavior 
Behrens-Fisher: 

distribution. 151-152. 169(P3.10.2) 
problem. 151-152. 156. 170.381 

Beliefs. 60-61. 65-66. 80-81. 114 
Bernoulli: 

distribution, 397 
trial, see Binomial distribution 

Beta: 
distribution. 53-54. 58 (P2.1.4). 61-64. 68 

(P2.2.3). 310-311.401 
model. 29 (PI.3.3) 

Betting. 60-61.364-369 
Bias: 

due to model misspecification. 243-244. 
247 

in maximum likelihood estimator. 227-230 
(incl P4.5.5-4.5.6) 

prevention of, 298-300 
of sample median, 334-335 
of sample standard deviation under 

autoregressive dependence, 251 

Biased estimator. 318-321. See also Unbiased 
estimator 

Binary data. 2. See also Comparison of 
treatments, model for binary response 
data; Dependence in binary data 

Binomial: 
distribution. 200. 307. 329, 353,397 
model, 8-9. 22-25 (incl P1.2.1-P1.2.3). 

369-370.381.384-385 
Bayesian analysis of. 51-60 (incl 

P2.1.4-2.1.5). 67-68 (P2.2.3). 82-85 (incl 
P2.4.4).376(P7.2.1) 

comparison of two. 9. 54-57 (incl P2.1.2). 

388-389 (P7.4.5) 
frequentist analysis of. 188 (P4.1.5. 

P4.1.6). 
388 (P7.4.3). 376-377 (7.2.2) 

Blocks. 296-297 
Bootstrap. 332-338. 354. 362 
Boundary of parameter space: 

breakdown on. 245. 284 
parameters on. 194, 209 (P4.3.3). 226 

Bounded influence estimation. 248. 255-263 
Breakdown point. 245. 247. 254. 260. 277. 

283-284 

Caffeine data, see entry in Data and Analysis 
Index 

Calibrated inference. 143 
Cauchy distribution. 152.400 
Censoring. 370-373 
Central limit theorem. 180-181. 192-193. 

204. 241. 311. See also Approximation 
Change of: 

bias function. 283 
variance function. 283 

Chaotic behavior. 5.49 (Pl.5.12) 
Chebychev's inequality. 181 
X distribution. 399-400 
X'' distribution. 290.400 

"> 
X" 

distribution. 81 (P2.4.2). 94. 115-116 
(P3.2.1). 138 (P3.5.2). 145 (3.6.7). 
146(3.6.10). 164-165(3.9.2). 168.201 
(P4.2.1). 221-222. 228. 279. 309-313. 
399-401. 403. 408. See also 
Approximation 

test, 115-117 (P3.2.1-3.2.4), 229 (P4.5.1) 
Chi-squared distribution, see x2 distribution 
Chi-squared test, see x~ test 
Clinical trial, 1.300 
Clozurization principle. 299-300 
Clusters. 28. 42 
Coconut, 115 
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Coherency principle. 364-369. 376. 391 
Coherent assignment. 60. 364 
Comparative experiment. 3-5. 296 
Comparison of treatments, see also Caffeine 

data: Diabetic retinopathy data: 
Enamel covered steel plate data; Optical 
isomer data 

Behrens-Fisher problem, see 

Behrens-Fisher problem 
Fieller-Creasy problem, see Fieller-Creasy 

problem 
models: 

for binary response data. 9 
for paired data. 12. See also Paired 

differences 
for several treatments. 17-22. See also 

Two-way classification model 
for spread. 14-17 

Conditional: 
inference. 95. 106. 156-166. 170.313 
likelihood. 100 
model, .see Model, conditional 

Conditionality principle. 384-390 
Confidence interval (or set). 95. 105. 139-155 

approximate. 147-149. 171-188. 261. See 
also Confidence interval, simulated 
and for simulation results 

in Behrens-Fisher problem. 152. 156 
for maximum likelihood estimators. 198 

bootstrap: 
bootstrap-? method. 339 
percentile method. 336. 339 

central. 139-140. 147-149. 172 
compared to: 

conditional confidence interval. 163 
credibility interval. 150-155 
fiducial interval. 141. 150-155 

conditional. 158-166. 169 
conservative. 147 
derived from tests. 226-227 
exact: 

for mean. 138-144 
for median. 332 
for proportion. 146-150 (incl P3.7.1) 
for standard deviation. 240-243 

expected length. 142. 168.200-201 
interpretation in Fieller-Creasy problem. 

154-155 
likelihood-based. 142-144. 147. 155 (P3.8.I) 
nonexistence in Behrens-Fisher problem. 

151 
optimal. 142 
randomized. 149. 152.294.381 
simulated and for simulation results. 

167-170. 199-201 
Confidence: 

level. 139. 142. See also Coverage 
probability 

trick, 144 
Confidentiality. 294-295 
Configuration. 109. 159-166 (incl 

P3.9.3-3.9.4, P3.9.6) 
Confounding. 298 
Conjugate: 

distribution. 213 
prior, see Prior, conjugate 

Consistent (or Consistency): 
estimator. 172-173. 179-180. 194. 198 
Fisher, see Fisher consistency 
self. 60. 368. 391 
test. 218-219. 221 

Constraints. 19. See also Hypothesis, null 
Contamination model. 15-17.22.239 
Continuous mapping theorem. 221-222 
Control: 

group. 1.9.51.54 
treatment. 3. 328 
of variation. 295-299 

Convergence: 

in distribution. 178-179. See also Central 
limit theorem 

in probability. 179. 192 
of random vectors. 192 

Core model. 16. See also Contamination 
model 

Cornish-Fisher expansion. 175-178 
Coverage probability. 139 

of credibility sets. 143. See also 
Inconsistency, strong 

of likelihood sets. 142-143 
simulated. 166-168. 200-201 
simultaneous. I45(P3.6.5) 

Cramer-Wold device. 192 
Credibility interval (or set). 54. 57 (P2.1.I). 

69-70 (P2.2.5-2.2.8). 74-75. 234 
compared to conditional confidence 

interval. 162-163 
as confidence set. 143. 150-155. 164. 348. 

See also Inconsistency, strong 
Critical region. 118-127. See also Acceptance 

region 
Cumulant generating function. 213 
Cushny and Peebles data, see entry in Data 

and Analysis Index 

Data augmentation algorithm. 351 
Decision theory. 125-126. 129. 149 
deFinetti"s theorem. 59-60 
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Degenerate distribution. 60. 173. 179.247 
Degrees of freedom: 

estimation of. 208 (P4.3.2) 
forjackknife.343(P6.7.ll) 
in model, see Student t model and 

Multivariate Student t model 
in posterior distribution. 74. 77 (P2.3.7). 

81 (P2.4.2) 
in randomization distribution. 310-313 
in sampling distribution. 113. 115-116 

(P3.2.1). 123. 138 (P3.5.I-3.5.2). 220-228. 
230 (P4.5.7). 278-280. 282 (P5.6.3). 308 

for trimmed mean. 249 (P5.I.5). 355 
Density: 

empirical, .sec Empirical density 
estimate. .\w Kernel density estimation 
histogram, see Histogram, density-scale 

Dependence. 9. See also Independence 
in binary data. 23 (PI.2.3). 59 

modelling of. 30-31 (PI.3.5) 
cluster. 28-31 (Pl.3.5) 
graphical exploration of. 47 (PI.5.3). 49 

(P1.5.I1) 
long-range. 252 
spatial. 252. See also Dependence, cluster 
temporal. 27-28. 31 (Pl.3.6) 

Design. 298 
of experiments. 295-300. 392 
of samples. 33-34. 315, 325 
variable. 314 

Design-based: 
inference. 305-321. 385-386 
properties. 298-299. 303-305. 316-321. 

324-325 
Diabetic retinopathy data, see entry in Data 

and Analysis Index 
Diagnostic(s): 

effect of. 130.281 
plots. 43-44.47-49 (P1.5.6-1.5.10). 267-269. 

271-275 
Digamma function. 82 (P2.4.3). 189. 231 

(P4.5.8) 
Discrete data, see entries in Data and Analysis 

Index for Alpha particle data; Diabetic 
retinopathy data; Madison word count 
data; Microbubble data; Shakespeare 
distinct word count data 

Distribution, see entry under name or type of 
distribution 

free method. 328. 352-353 
graphical exploration of shape of. 36-49 

Distributional robustness, 247-248. 253-254, 
282-286 

Dominated convergence theorem. 174 

Edgeworth expansion. 175-178. 181. 
210-211.339 

Effects. 4 
interaction. 18-20, 45. 48 (PI.5.8). 302 
main. 18-20.302 

Efficacy of a test. 219. 329. 353 
Eggs and omlettes. 91 
Elephants, weight of. 320-321 
Empirical: 

density. 37-39 
distribution function. 39. 191.331-336 
quantile function. 39-42. 331-332. 354 

Enamel covered steel plate data, see entry in 
Data and Analysis Index 

Engineering example, see volt-meter example 
Equivariant estimator, 108. 159 
Error: 

of the first kind. 119. 129-130 
in regression. 43 
of the second kind. 119 
of the third kind. 119 

Errors-in-variables. 14. 276 
Estimate. 106. See also Estimator 

Bayes. see Bayes estimate 
Estimating equation. 191-195. 322. 354. See 

also ^/-estimator 
Estimator. 106 

bounded influence. 248. 255-263 
B-robust. 282-284 
M-. see A/-estimator 
maximum likelihood, see Maximum 

likelihood estimation 
method of moments, see Method of 

Moments estimation 
minimax. 284 
Pitman, wv Pitman estimator 
robust, see A/-estimator 
unbiased, see Unbiased estimator 
V-robust. 283-284 

Exchangeable random variables. 59. 78 
(P2.3.9). 323 (6.5.3) 

Expansion estimator. 317-318. 326-327 
(P6.5.4-6.5.6) 

Experiment: 
caffeine. 295-296 
Lanarkshire milk. 299 

Explanatory variable, .sec Regression model: 
Two-way classification model 

Exponential: 
distribution. 399.401 
family model. 24. 27. 29 (P1.3.1-P1.3.2). 

62. 76(P2.3.4). 198.213.378 
model. 10-11.34.26.36-42 

Bayesian analysis of. 69 (P2.2.6). 70 
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(P2.2.9-2.2.10). 370-371 
frequentist analysis of. 111 (P3.1.5). 144 

(P3.6.3). 146(P3.6.9). 165-166 (P3.9.5). 
171-172.213-214.231 (P4.5.8). 265-266 
(P5.4.4-5.4.5). 292 (P5.8.1). 370-373 

for truncated data, see Truncated data. 
exponential 

power family. 291-293 (incl P5.8.2-5.8.4). 
402 

tilting. 211 
Extreme order statistics, sec Order statistics. 

extreme 

Factorization theorem. 377 
Failure time: 

data. 2. 9-11. See also entries in Data and 
Analysis Index for Air conditioning data: 
Kevlar 49/epoxy vessel data: Pressure 
vessel failure data 

median, sec Median, failure time 
Falsifiability. 115 
F distribution. 281. 308-313. 400-401 

noncentral. 401 
Fiducial inference. 91-95. 104. 376 

argument. 92-94. 163 
compared to Bayesian inference. 

94-95 
compared to conditional confidence 

interval. 163 
compared to confidence interval. 141, 163. 

See also Behrens-Fisher problem: 
Fieller-Creasy problem 

interval (or set). 92 
Fieller-Creasy problem. 152-156, 170.217 

(P4.4.3) 
Finite population. 314-327. 362 

parameter. 101 (P2.7.1). 314 
Fisher: 

consistency. 191. 196. 256-257. 269. 354 
information. 67. 72-73. 197-198. 208-207 

expected. 198.371-372 
observed. 198-199. 232-234, 388 (P7.4.2). 

371-372 
Fisher's method of scoring. 195 
Fitted values. 43-45. See also Diagnostics 
Fixed point algorithm for scale. 266 

(P5.4.7) 
Frame, 33 

of reference. 385 
f-ratio. 309. 311 
Frequentist inference. 105-106. 376. See also 

Confidence interval; Conditional 
inference: Estimator: Hypothesis test: 
Point estimation: Significance test 

Gamma: 
distribution. 58 (P2.1.3). 68 (P2.2.4). 171. 

398-400 
function. 55. See also Digamma function 
model. 10-11. 24. 26. 29 (Pl.3.1). 41.216 

(P4.4.2) 
Bayesian analysis for. 76(P2.3.4). 81-82 

(P2.4.3). 237 (P4.6.4). 351-3.5.2 (P6.8.2. 
6.8.6) 

frequentist analysis for. 189-209. 217 
(P4.4.5). 219-221. 229 (P4.5.3-4.5.4). 
277 (P5.5.4). 381-382 (P7.3.1) 

Gauss-Hermite method, 57 
Gaussian, see also Multivariate Gaussian 

distribution. 12. 15.21-22.27-29.38.43. 
76-77 (P2.3.1-2.3.3. P2.3.5-2.3.6). 87-88. 
94, 113. 135. 168. 174.200.210.218-219. 
222. 225. 256. 348. 387-388 (P7.4.2). 
398-403.408 

model. 12. 14.24-25.42-44 
Bayesian analysis for. 71-76 (incl P2.3.1. 

2.3.3-2.3.5). 78 (P2.3.9), 86-91. 237 
(P4.6.3) 

comparison of two. 137-138 
(P3.5.1-3.5.3). 

see also Behrens-Fisher problem 
Fiducial inference for. 92-94 
frequentist analysis for. 106-108. 111-117 

(mr/P3.1.3. 3.1.7). 133-134. 138 
(P3.5.2-3.5.4). 146(P3.6.8). 188(P4.1.7). 
217 (P4.4.4). 239-240. 255-267 (incl 
P4.4.1-5.4.3. P5.4.8-5.4.9). 292-293 
(P5.8.2-5.8.4). 347-351, 373.406-408 

likelihood inference for. 96-99 
Gaussian-Cauchy mixture, see Mixture. 

Gaussian-Cauchy 
Gaussian-inverse gamma prior. 76 

(P2.3.3) 
Gaussian quadrature. 215 
Gauss-Legendre method. 56 
Gauss-Markov theorem. 110. 285-286 
Generalized linear model. 27 
Generalized M-estimator. see M-estimator. 

generalized 
General linear model. 22. See also Regression 

model: Two-way classification model 
Geometric distribution. 398 
Gibbs sampling. 346. 351-352 (P6.8.4-6.8.6). 

362 
Goodness of fit. 7. See also x~ test 
Graphical methods. .v«' also Diagnostics 

exploration of relationships. 12-13. 20-21. 
43-49 (incl P. 1.5.6-1.5.10) 

for fit of models. 36-50 
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Gross error sensitivity, see Sensitivity, gross 
error 

Hazard function. 10-11 
Hessian. %. 101.288 
Hierarchical prior. 63. 76 (P2.3.2) 
High breakdown estimator. 276-277. 284 
Histogram, density-scale. 38 
Hodges-Lehmann estimator. 353 
Horvitz-Thompson estimator: 

of total. 315-318. 320-321. 326 (P6.5.2) 
of variance. 316. 326 (P6.5.2) 

Huberfs): 
^/-estimator. see W-estimator. Huber 
(//-function, see M-cstimator. Huber 
proposal. 2. 256. 266 (P5.4.8) 

Hypergeometric: 
distribution. 396 
model. 35 (Pl.4.1) 

Hyperparameter. 61 
Hyperprior. see Hierarchical priors 
Hypothesis. 83.99 

alternative. 83-91. 117-127. 308. 329 
composite. 118 
local alternative. 219. 221. 225. 229 (P4.5.2). 

279-280.282 (P5.6.3) 
null. 112-138. 218. 220. 278. 305-307 
sharp. 83-91. 118 

relationship to confidence sets. 140-143 
simple. 118 
test. 105. 117-138. 218-232. 278-280. See 

also Significance test 

Identification, see Constraints 
Improper distribution. 78-79. 82 (P2.4.4). See 

also Prior, improper 
Incidence data, see also Binary data 
Inclusion: 

indicator. 314-315 
probability. 315-316 

Inconsistency. 189 (P4.1.8). 201 (P4.2.1). 208 
(P4.3.2) 

strong. 80. 82-83 (P2.4.5). 155 (P3.8.2-3.8.3) 
Independence. 60. 298 

declaration of. 9 
of sample mean and variance under 

Gaussian model. 406-408 
Inductive behavior. 105. 117. 127 
Inference: 

robustness. 290-293. 347-351 
scope of. 32-34 

Infinitesimal approach. 282 
Influence function. 241-248. 251. 254-263 

(mWP5.4.1). 265(P5.4.4). 282 

Subject Index 

for level and power. 281 
redescending. 263-265 
for regression model. 269-270 

Information: 
contained in. 369. 377-381. 384 
Fisher, see Fisher Information 
use of. .vw Likelihood: Relevant subsets: 

Sufficiency 
Insufficient reason, principle of. .vw Principle 

of insufficient reason 
Integrals. Gaussian and gamma. 395-396 
Interaction, see Effects, interaction 
Inverse: 

chi distribution, see Xr ' distribution 
gamma distribution. 399 
probability transform. 343 

Itcratively rewcighted least squares algorithm. 
271 

Jackknife. 342-343 (P6.7.9-6.7.11) 
Jeffreys/Lindley paradox. 136-137 
Jeffreys" prior: 

for estimation. 67-73. 79-83 
binomial model. 67 
exponential model under censoring. 371 
gamma model. 81-82 (P2.4.3) 
Gaussian model, see Jeffreys" prior, for 

estimation, location-scale model 
location-scale model. 72-73 
negative binomial model. 81 (P2.4.1) 
problems with. 79-80 

rule. 73. 79. 81 (P2.4.2) 
for testing sharp hypotheses. 84-91 (inel 

P2.5.3-2.5.5) 
Cauchy prior. 88-90. 135-136. 237 

(P4.6.5) 
Jensen's inequality. 190. 196.394 

Kernel density estimation. 38. 294. 357. 359. 
360-361 (P6.9.5) 

Kevlar 49/Epoxy vessel data, see entry in 
Data and Analysis Index 

Lagrange multiplier test. 223. See also Score 
test 

Laplace('s): 
distribution. 401-402 
method for approximating an integral. 

89-90. 100. 238 
applied to gamma function. 236 (P4.6.2) 
posterior distributions. 233-237. 292 
posterior mean. 237 (P4.6.6) 
in saddlepoint approximation. 216 
for tail probabilities. 217-218 (P4.4.6) 
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model. 289 
rule of succession. 58 (P2.1.4) 

Least: 
favorable distribution. 284 
squares estimation. 44. 267. 277 

(P5.5.1-5.5.2). 357. 388 (P7.4.4) 
bootstrap distribution in. 341 

(P6.7.6-6.7.7) 
compared to Gaussian maximum 

likelihood estimator. 209 (P4.4.4) 
Lehmann-Scheffe theorem. 378 
/.-estimator. 263. 354 
Leverage. 276 
Likelihood: 

function. 52. 71. 93. 95. 102 (P2.7.2). 103 
(P2.7.5). 232-233. 287-289. See also 
Profile likelihood 

design-based. 321 
inference. 95-104. 373-376 

compared to Bayesian inference. 100 
compared to frequentist tests. 132-135 
coverage probability of likelihood sets. 

142-143 
interval {or set). 97-98. 236 (P4.6.1) 
test. 99. 102 (P2.7.3). 374-375 

principle. 369-377. 389-391 
weak. 379. 389 

test. 120-121. 138 (P3.5.2-3.5.4). 224-225. 
231 (P4.5.8). 278-280. 285 
compared to Bayesian tests. 135-137 
compared to likelihood tests. 132-135 
modified. 231-232 (P4.5.9) 

Lindeberg condition. 180 
Lindeberg-Levy central limit theorem..see 

Central limit theorem 
Local: 

alternative, .see Hypothesis, local 
alternative 

contamination. 285 
least squares, .wr Local, regression 
regression. 357-358. 360 (P6.9.4) 

Location. 14.21.25-26 
model. 25-26. 157-159. 165(P3.9.3). 

404-406 
Location and scale equivariance. 108. 159 
Location-scale family model. 25-27. 30 

(Pl.3.3). 140.213 
conditional inference for. 159-166 
Fisher information for. 71-73 
Jeffreys" prior for. 71-73 
qq-plot for. 40 

Logistic distribution. 80 
Log odds ratio. 24 (PI.2.4). 188(P4.1.5). 

388-389 (P7.4.5) 

Lyapounov condition. 180.311 

Madison word count data, .see entry in Data 
and Analysis Index 

Marginalization paradox. 79-80 
Marginal likelihood. 99 
Markov: 

chain simulation, see Gibbs sampling 
process. 31 (P 1.3.6). See also Gibbs 

sampling 
Masking. 45. 286 
Mathematical statistics. 126 
Matrix inverses and determinants. 394-395 
Maximum likelihood, see also Likelihood 

estimate. 96. 232. 287-289 

approximate sampling distribution of. 
196-197.238 

saddlcpoint approximation to. 217 
(P4.4.5) 

estimation. 107-112. 170. 189-190. 195-202. 
205-209.219 

under superpopulation model. 322-323 
Mean. 45. See also Gaussian model: 

Location; Regression model: Two-way 
classification model 

absolute deviation. 248 (incl P5.1.3) 
asymptotic. 179. 192.211 
sample. 37. 39. 71. 92-94. 96. 150-155. 335. 

354 
compared to median. 248 (P5.1.2). 

261-262.329-330 
design-based properties of. 303-305. 

308-313 
exact saddlepoint approximation for. 

213-214. 217 (P4.4.4) 
in finite population problem, see 

Expansion estimator 
justification for use of. 106-111 {incl 

P3.1.4). 115 
model-based properties of. 300-301 
nonrobustness of. 244-245. 248-249 

{incl P5.1.2. P5.1.5). 283 
residuals from. 48 (Pl.5.8-1.5.9) 
sample size for. 297-298 
studentized. 113 
under autoregressive process. 252 

(P5.2.1) 
under exponential model. 171-186. 214 
under Gaussian model. 406-408 
under moving average process. 252 

(P5.2.2) 
shift model. 16 
squared error. 107. 109. I l l (P3.1.3). 207. 

244 
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Mean, squared error (Continued) 
asymptotic. 359 
design-based, of ratio estimator. 319-320 

squared prediction error. 323-325. See 
also Prediction variance 

Median: 
absolute deviation: 

from the median (MAD). 107. 248 
(P5.1.2-5.1.3). 261-262 

in regression ^/-estimation. 271 
failure time. 2. 340 (P6.7.2). See also 

Location 
exponential model. 10.69(P2.2.6). 144 

(P3.6.3). 171-186 
Weibull model. 202 (P4.2.6) 

income. 35 (PI.4.2). See also Location 
Pareto model. 201-202 (P4.2.3-4.2.4) 

sample. 107. 354. 362 
bootstrapping. 332-336. 340 (P6.7.1-6.7.2) 
compared to sample mean. 261-262. 

248 (P5.1.2). 329-330 
inference based on. 331-332 
under randomization. 308 (P6.3.1). 313 

(P6.4.1). See also Sign test 
residuals from. 48 (P 1.5.8-1.5.9) 
as a robust estimator. 248 (P5.I.2). 

261-262 
^/-estimator. 191 

approximate sampling distribution of. 
192-195 

generalized. 276 
one-step. 203 (P4.2.7). 277 
redescending: 

derived from Student / model. 262-263 
Smith's. 263 (P5.4.2). 266 (P5.4.8) 
Tukey's bisquare. 265 (P5.4.3). 267 

(P5.4.9). 274-276 
regression. 269-282. 341 (P6.7.7) 
robust: 

for exponential model. 265-266 

(P5.4.4-5.4.5) 
for Gamma model. 277 (P5.5.4) 
Huber's. 256-262. 269-274. 330 (P6.6.I). 

340-341 (P6.7.3. P6.7.7) 
for Pareto model. 277 (P5.5.3) 
for Poisson model. 266 (P5.4.6) 

Method of moments'estimation. 106 
in gamma model. 203-208.218. 229 

(P4.5.4). 340-341 (P6.7.5) 
saddlepoint approximation to. 214-215 

in multivariate Student/ model. 208 
(P4.3.2) 

in negative binomial model. 209 (P4.3.3) 
Microbubble data, see entry- in Data and 

Analysis Index 

Midrangc. 111. 157-159. (P3.1.4). 404-406 
Minimum distance estimator. 263 
Missing data. 325-326 
Misspecification: 

bias. 243-244. 247 
effect on bootstrap. 341 (P6.7.7) 

Mixture: 
beta. 68 (P2.2.3) 
Gaussian-Cauchy. 253 
model. 390. See also Contamination model 

Gaussian. 164(P3.9.I). 330(P6.6.2). 
387-388 (P7.4.2) 

Model: 
choice of. 32. 391-393 

initially plausible. 5-24 
conditional: 

binomial. 8 
regression. 13. 22 

graphical checking of. 35-50 
for learning. 62 
misspecification. 243-244.257. 327-328 

(P6.5.5-6.5.7) 
nuisance aspects of. see Nuisance, aspects 

of model 
in predictive inference. 34-35 
robustness, .sec Inference robustness 
selection. 281 
statistical. 5-7. 31-32. 50. See also entries 

under names of models 
status of. 7. 36 
superpopulation. 322 

Model-based: 
inference for finite population. 321-327 
properties. 298-301 

Mode of likelihood. 96. 232. 287-288. See 
also Maximum likelihood estimation: 
Posterior mode 

Modified likelihood ratio tests, in regression 

model. 280. 282 (P5.6.3) 
Moment generating function. 212 
Moment matching, see also Bartlett 

adjustment 
in beta approximation. 310-311 
in Student t approximation. 230 (P4.5.7) 

Monte Carlo, see Simulation 
Most powerful test. 118-125 
Moving average process. 252 (P5.2.2-5.2.3) 
Multinomial: 

distribution. 333-335. 397 
model. 30-31 (Pl.3.5). 229 (P4.5.1). 384 

Multiple tests. 129-130 
Multivariate Gaussian: 

distribution. 28. 192. 234. 402-403. See 
also Central limit theorem 

model. 28 
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Multivariate Student /: 
distribution. 77 (P2.3.7). 403 
model. 78 (P2.3.9). 145 (P3.6.6). 201 

(P4.2.1). 208 (P4.3.2). 381-382 (P7.3.1). 
See also Posterior distribution; 
Predictive distribution: Sampling 
distribution 

Nadaraya-Watson estimator. 359-362 (incl 
P6.9.6-6.9.7) 

Negative binomial: 
distribution. 397-398 
model. 29 (Pl.3.2). 369-370 

Bayesian analysis of. 68 (P2.2.2). 81 
(P2.4.1). 351 (P6.8.3).376(P7.2.1) 

frequentist analysis of. 110-111 (P3.1.1). 
116 (P3.2.3). 209 (P4.3.3). 188 (P4.1.6). 
340 (P6.7.4). 376-377 (P7.2.2). 381-382 
(P7.3.1).388(P7.4.3) 

Newton-Raphson algorithm. 101. 195. 266 

(P5.4.7).271 
Neyman-Pearson lemma. 120-121 
Nominal level. 167. 200 
Noncentral: 

X2 distribution. 82-83 (2.4.5). 221-225. 
279-280. 282 (P5.6.3). 399. 401 

F distribution. 401 
Student t distribution. 123. 400 

Nonparametric: 
approaches to robustness. 285-286 
methods. 352 
model. 328. 331. 360. 382-383 (P7.3.2). 392 
problem. 26-27 
regression model. 357 
standard errors. 241-242 

Normal distribution, sec Gaussian 
distribution 

Nuisance: 
aspects of model. 35-36. 253-254 
elimination. 151 

from likelihood. 99-100. 227-228 
parameter. 12. 16. 26. 71. 97. 386 

in robust inference. 16. 271. 253-254 
Null hypothesis, see Hypothesis, null 
Numerical: 

integration. 56-57. 63. 213. 215. 262. 292 
maximization. 100-101. See also 

Numerical solution of equations 
solution of equations. 54. See also Fisher's 

method of scoring: Fixed point 
algorithm: Iteratively reweighted least 
squares algorithm: Newton-Raphson 
algorithm 

Objectives of analysis, .see Substantive 

question 
One-sided test. 91 (P2.5.1). 122. 124-127 

(mWP3.3.1-3.3.2). 130. 135 
One-step A/-estimator. see M-cstimator. 

one-step 
Order statistics. 39. 331. 379. 382-383 (P7.3.2). 

404-406 
extreme. 91 (P2.5.1-2.5.2). 69-70 

(P2.2.7-2.2.8). 112(P3.1.6). 127 P3.3.3). 
144(P3.6.1-3.6.2). 155 (P3.8.1). 187 
(P4.1.1-4.1.3). 202 (P4.2.4). 277 (P5.5.3). 
387 (P7.4.1). 404-406. See also Midrangc: 
Range 

Outlier. 14-22 
deletion. 286 

in finite population problems. 325-326 
in qq-plots. 42. 45 
in regression. 46. 267-269 

Paired differences, see also Caffeine data: 
Dependence, in binary data 

random effect model for. 29. 296-297 
randomization model for. 302. 305-306 

Parameter, see also Location, model: Scale. 
model: Shape parameter 

of interest. 2. 9. 12. 17.55.97.99. 139-141. 
226.233.261.267.383.386 

space. 7. 140. 149.364 
Parameterization: 

alternative: 
in binomial model. 24 (Pl.2.4) 
in exponential model. 10 
in multinomial model. 31 (Pl.3.5) 
in two-way clasification model. 18-20 
in variance component model. 102-103 

(P2.7.2. P2.7.4) 
effect on mode of likelihood. 96 
orthogonal. 210 

in Fieller-Creasy problem. 217 (P4.4.3) 
in gamma model. 216 (P4.4.2) 
in regression model. 216 (P4.4.1). 270 

for testing. 220. 278 
Parametric problem. 26-27 
Pareto: 

distribution. 402 
model. 201-202 (P4.2.3-4.2.4). 277 (P5.5.3). 

381-382 (P7.3.1) 
Parsimony. 7. 15 
Partial likelihood. 100 
Partition induced by a statistic. 380. 384-385 
Pencil. 285 
Permutation: 

distribution. 328-329. 337-338 
inference compared to randomization 
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Permutation (Continued) 
inference. 330 

test. 327-330 
Pitman: 

efficiency. 220. 329-330 {incl P6.6.2). See 
also Efficacy 

estimator. 109-112.263.285 
Pivotal quantity. 95. 139-141. 171.216 

approximate. 175. 184. 186 
in location-scale model. 161-163 

Point estimation. 106-112. See also Estimator 
Poisson: 

distribution. 397-398 
model. 23 (Pl.2.2). 29 (Pl.3.2). 46 (Pl.5.1). 

58 (P2.1.3). 69-70 (P2.2.5. P2.2.9). 
115-117 (P3.2.1-3.2.2. P3.2.5). 187-188 
(P4.1.4). 266 (P5.4.6). 340 (P6.7.4) 

for truncated data, see Truncated data. 
Poisson 

Population: 
finite. 33. 314-327 
hypothetical. 33 

Posterior distribution. 52. See also Bayesian 
inference 

for binomial model: 
difference of proportions. 55-57 {incl 

P2.1.2). 85-86 
proportions. 53-54. 57 (P2.1.1). 61. 64. 

67-68 {incl P2.2.3). 83-85 
for exponential model. 69 (P2.2.6). 371 

power family. 392-393 (P5.8.2-5.8.4) 
for gamma model. 76 (P2.3.4). 237 (P4.6.4). 

351-352 (P6.8.2. P6.8.6) 
for Gaussian model: 

difference of means. 151 
mean. 73-76 {incl P2.3.1-2.3.4). 86-90 

{incl P2.4.5). 92. 94. 100. 135. 155 
(P3.8.2-3.8.3). 237 (P4.6.3. P4.6.5). 
351-352 (P6.8.4). 375-376 

ratio of means. 153 
variance (or standard deviation). 81 

(P2.4.2),237(P4.6.3).290 
for location-scale family model, 163 
for negative binomial model. 68 (p2.2.2). 

81 (P2.4.1). 351 (P6.8.3) 
for Poisson model. 58 (P2.1.3). 69 (p2.2.5) 

truncated. 68-69 (P2.2.4) 
for regression model. 76-77 (P2.3.6-2.3.7). 

166(P3.9.6) 
for Student / model. 292. 348-351 (incl 

P6.8.1) 
multivariate. 78(P2.3.9) 

for uniform model. 69-70 (P2.2.7-2.2.8). 
155 (P3.8.1) 

for variance component model. 102-103 

(P2.7.4). 352(P6.8.5) 
for Weibull model. 292 (P5.8.1) 

Posterior: 
mean, see Bayes estimate: 

simulated. 348 
squared error. 53 

mode. 53. 74 
odds ratio. 83-91. 237 (P4.6.5). 375-376. 

See also Bayes factor 
robustness. 63-64. 290-291 
standard deviation. 348 
variance. 58 (P2.1.3). 63 

Power: 
function. 123-124 
of a test. 119. 126 (P3.3.1-3.3.3) 

interpretation of. 125 
simulated. 168-169 

Power transformed exponential model. 201 
(P4.2.2). 381-382 (P7.3.1) 

Precise measurement, principle of. see 
Principle of precise measurement 

Precision, see Posterior, variance 
Prediction. 34-35 

Bayesian. 58 (P2.1.4-2.1.5). 70 
(P2.2.9-2.2.10) 

interval. 70 (P2.2.9-2.2.10) 
finite population. 322-324 
inference.see Predictive inference 
interval. 146 (P3.6.9-3.6.10) 
variance. 323-327 (P6.5.4. P6.5.6-6.5.7) 

Predictive: 
distribution. 70 (P2.2.9) 

binomial model. 58 (P2.1.4-2.1.5) 
exponential model. 70(P2.2.10) 
Gaussian model. 76 (P2.3.5) 
Poisson model. 70 (P2.2.9) 
regression model. 77 (P2.3.8) 

inference. 34-35 
Pressure vessel failure data, .we entry in Data 

anil Analysis Index 
Principle(s). see also Closurization principle: 

Coherency principle: Conditionality 
principle: Likelihood principle: 
Repeated sampling principle; 
Robustness principle: Sufficiency 
principle 

of experimental design. 392 
of insufficient reason. 65-66 
of precise measurement. 65. 348 

Prior distribution, see also Posterior 
distribution 

beta. 58 (P2.1.4). 61-64 
mixture. 68 (P2.2.3) 

conjugate. 61. 68 (P2.2.2-2.2.4). 76 
(P2.3.3-2.3.4) 
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dominated, see Prior distribution. 
vague 

elicitation of. 61 
gamma. 58 (P2.1.3). 68 (P2.2.4) 
gamma-Gaussian. 348 
Gaussian. 76 (P2.3.2) 
Gaussian-inverse gamma. 76 (P2.3.2) 
improper. 72-73. 78-80. 88. See also Prior 

distribution. Jeffreys' 
interpretation of. 60-61 
Jeffreys'. 67. 69 (P2.2.5-2.2.6). 70-73 (/«<■/ 

P2.2.9-2.2.10). 78(P2.3.9) 
logistic. 80 
noninfomiative. see Prior distribution, vague 
reference, see Prior distribution, vague 
specification. 300 
true, see True prior 
uniform. 52. 57 (P2.1.1). 65-66. 80. 86. 348 

local. 65. 72-74 
vague. 65. 81.348 

Profile likelihood. 97-101 (incl P2.7.1). 233. 
236 (P4.6.1). 287-289 

modified. 227-230 (incl P4.5.5. P4.5.6) 
Proportion. 35 (PI.4.1). See also Binary data 
Pseudorandom numbers, .sec Random 

numbers 
Psychokinesis. 84. 131-132. 137 
/)-value. 112-117. 127-133. 376-377 (P7.2.2). 

387-388 (P7.4.2) 
bootstrap. 340 (P6.7.4) 
compared to: 

Bayesian hypothesis tests. 135-137 
confidence level. 142 
likelihood tests. 133-135 

effect of sample size on. 131-132 
permutation. 329 
randomization. 306-308 
relationship to significance level. 127 
simulated. 340 (P6.7.4) 

qq-plot. 40-45. 267-269 
Quadratic forms, distribution of. 222 
Qualitative robustness. 283 
Quantile-quantile plot, see qq-plot 
Questions: 

primary and secondary. 35-36 
substantive, see Substantive questions 

Random effects. 28. See also Variance 
components 

Randomization. 294-327. 362 
compared to permutation inference. 330 

Random numberfs). 5. 49 (Pl.5.12). 167.343 
data, see entry in Data and Analysis Index 

Range. 157-159. 404-406. See also Order 
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statistics, extreme 
Rank(s). 353 

methods. 362 
tests. 353 

Rate of convergence. 179. 182. See also 
Relative error 

Ratio estimator: 
design-based properties. 318-321. 

324-325 
model-based properties. 324-325. 327 

(P6.5.6-6.5.7) 
Reduced likelihood (REML)..vw Profile 

likelihood, modified 
Reference distribution. 113 
Regression model. 12-14. 21-22. 27. 30 

(PI.3.4). 76-77 (P2.3.6-2.3.7). 91 (P2.5.5). 
101 (P2.7.1). 145-146 (P3.6.7. P3.6.10). 
164-166 (incl P3.9.2. P3.9.6). 216 (P4.4.1). 
267-282. 388 (P7.4.4). See also Posterior 
distribution: Predictive distribution: 
Sampling distribution 

heteroscedastic. 101 (P2.7.1). 209 (P4.3.4). 
321-327. 381-382 (P7.3.1) 

Rejection: 
method. 343-344. 347. 351 (P6.8.1-6.8.3) 
region, see Critical region 

Relationships. 4-5. See also Graphical 
methods, exploration of relationships: 
Regression 

Relative: 
error. 211-213. 236 
frequency, see Empirical density 
"plausibility". 96. 133 

Relevant subsets. 156. 164 
Renormalization. 213. 236 
Reparameterization. see Parameterization 
Repeated sampling: 

principle. 391 

property. 80. 105. 113. 125. 143-144. 154. 
156-157. 164. 166-169 

Replication: 
Resampling..see Simulation, resampling 

method, see Bootstrap: Data-augmentation 
algorithm: Gibbs sampling; Rejection 
method: Sampling-importance-
resampling 

Residual likelihood ( R E M L ) . O T Profile 
likelihood, modified 

Residual plot. 43-44 
Residuals. 43-45. 267-275. 341 (P6.7.6) 
Response, see Regression model: Two-way 

classification model 
/{-estimator. 263. 353 
Restricted likelihood (REML). see Profile 

likelihood, modified 
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Robustness, see also M-estimator: 
5-estimator: Stability 

approaches to. 282-286 
bounded influence. 255-267 
calculations. 245-247 
distributional. 247-248 
of efficiency. 285-286. 331 (P6.6.3) 
inference, see Inference robustness 
likelihood. 287-290 
model, see Inference, robustness 
objectives of. 252-254 
of permutation tests. 331 (P6.6.3) 
posterior, see Posterior robustness 
principle. 391 
qualitative, see Qualitative robustness 
of randomization inference. 308 (P6.3.1) 
in regression. 267-282 
theory. 252-254 
of validity. 242-243. 248 (P5.I.1). 285-286. 

331 (P6.6.3) 
Rounding. 42. 248 

Saddle-point approximation. 213. 238 
to bootstrap distribution. 337. 341-342 

(P6.7.8) 
exact. 214. 217 (P4.4.4) 
to permutation and randomization 

distributions. 329 
Sample. 33. 314 

maximum, see Order statistics, extreme 
minimum, see Order statistics, extreme 
selection. 33. 294. 312-315. 325. 385. See 

also Bootstrap: Resampling methods 
uninformative. 315. 322 

size. 127 (P3.3.3). 131. 167. 297-298 
effect on Bayesian tests. 135-137 
effect on frequentist tests. 130-132 

space. 5. 117. 140. 306. 330. 338. 364. 370. 
373.380-381.384-385 

statistic, see entry under name of statistic 
Sampling distribution. 36. 113. 134-135. 376. 

391. See also Frequentist inference: 
Repeated sampling: the entries under the 
names of specific estimators 

approximate, see Approximate, sampling 
distribution 

under binomial. 147-150. 169 (P3.10.I). 188 
(P4.1.5-4.1.6). 376-377 (P7.2.2) 

of x:-test. 115-117 (P3.2.1 -3.2.4) 
conditional. 117 (P3.2.5). 157-166. 328. 

387-389. 406 
under exponential model. 144 (P3.6.3). 

165-166 (P3.9.5). 171-186.213-214.231 
(P4.5.8). 371-373 

under gamma model. 199. 203-208 (incl 
P4.3.1). 214-215.217 (P4.4.5). 229 
(P4.5.3-4.5.4). 265 (P5.4.4) 

under Gaussian model: 
for Bartlett's test, .we Bartlett's test for 

equality of variances 
for mean and variance. 92-94. 135. 144 

(P3.6.4). 155 (P3.8.2-3.8.3). 188-189 
(P4.I.7). 217 (P4.4.4). 239-240. 406-408 

for W-estimators. 258. 263-267 
(P5.4.1-5.4.2. P5.4.8-5.4.9). 270 

sequential sampling. 376 
for/-statistic (one mean). 113. 122-124. 

130. 133-134. 139-143.308-309 
for/-statistic (two means). 137-138 

(P3.5.1-3.5.2). 151-153. 169-170 
(P3.10.2).230(P4.5.7) 

under location-scale model. 159-162 
of maximum likelihood estimators. 

197-198 
of M-estimators. 194. 210-213.257. 

269-270. See also Sampling distribution: 
under specific model 

of model-based estimators in finite 
populations, see Model-based, properties 

under multinomial model. 229 (P4.5.1) 
under multivariate Student I model. 145 

(P3.6.6). 201 (P4.2.1) 
under negative binomial model. 188 

(P4.1.6). 209 (P4.3.3). 376-377 (P7.2.2) 
of order statistics, see Order statistics 
under Pareto model. 201-202 (P4.2.3-4.2.4) 
under Poisson model. 117 (P3.2.5). 187-188 

(P4.1.4). 266 (P5.4.6). 340 (P6.7.4) 
under power transformed exponential 

model. 201 (P4.2.2) 
under regression model. 145-146 (P3.6.7). 

164-166 (P3.9.2. P3.9.6). 209 (P4.3.4) 
of 5-estimator. see S-estimator 
of test statistics. 218-229 (incl P4.5.2). 

278-280 
under uniform location model. 157-159. 

404-406 
under uniform model. 134-135. 144 

(P3.6.1-3.6.2). 155(P3.8.I). 187 
(P4.1.1-4.1.2) 

of (/-statistics. see (/-statistics 
under variance component model. 189 

(P4.1.8) 
under Weibull model. 202 (P4.2.5-4.2.6) 

Sampling-importance-resampling (SIR). 
344-345. 347. 351 (P6.8.I-6.8.3) 

Scale. 14.21.25 
model. 25-26. 165 (3.9.4) 
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Scatterplot. 12. See also Graphical methods 
matrix. 20 
smoothing, so' Local regression 

Score test. 222-223. 229 (P4.5.1. P4.5.3-4.5.4). 
278-280. 330. 353 

Scmiparametric: 
methods. 352 
problem. 26-27. 253-254 

Sensitivity: 
curve. 245. 248 (P5.1.2) 
gross error. 245. 247. 259-260. 265 (P5.4.3). 

270-271.282-283 
relationship to jackknife. 343 (P6.7.1 I) 
surface. 248 (P5.1.3-5.1.4) 

Sequential sampling. 369-370. See also 
Bartlett-Armitage example 

S-cstimator. 276-278 (incl P5.5.5) 
Shape parameter. 25. 189. 199-210. 204. 216. 

218 
Significance: 

level. 119. 125. 127-130. 168-169 
probability, .see /(-value 
statistical. 127. 130. 132 
test. 106. 112-117. See also /(-value 

Sign test. 306-307. 329-330. 353 
Simple: 

random sampling without replacement. 
317-320 

regression model, see Regression model 
Simpson's rule, see Numerical, integration 
Simulation. 166-170. 200-202 (incl P4.2.6). 

208(P4.3.1). 388(P7.4.4) 
resampling. 336-337. 343-352. 362 

Size of a test, see Significance, level 
Slutsky's theorem. 183 
Small sample asymptotic approximation. 

see Saddlepoint approximation 
Smith's redcscending A/-cstimator. see 

^/-estimator, redcscending. Smith's 
Smoothing. 294. 357-362. 381 
Spread, see Scale 
Stability. 208. 244-245. 248-249 (P5.1.1 -5.1.4). 

287-293 
Standard: 

deviation, see also Scale; Variance 
confidence interval for. 239-242. 251. 

261.340(P6.7.3) 
maximum likelihood estimate of. 96. 

106-108. 239-244. 250-251 
M-estimate of. 256-263. 266-267 

(P5.4.7-5.4.8). 271 
method of moments estimate of. 106-107 
Pitman estimator of. 109-112 {incl 

P3.I.7) 

posterior, see Posterior standard 
deviation 

profile likelihood for. 229-230 (P4.5.5). 
287-290 

sample. 108-110. 115. 150. 239-244. 248 
(P5.1.2) 

unbiased estimate of. 108 
error. 113. 167. 195. 198.241-242.261.281. 

335-336. See also Variance 
State of ignorance. 66. 80-81 
Statistic. 32. 105 
Steel plates, enamel covered, see Enamel 

covered steel plate data 
Stellar velocity data, see entry in Data and 

Analysis Index 
Stirling's formula. 173 
Strong inconsistency, .see Inconsistency. 

strong 
Structural inference. 95 
Studentization. 185-186. 248 (P5.1.1). 339. 

See also Pivotal quantity; Standard error 
Student I. see also Multivariate Student l 

distribution. 74-75. 77 (P2.3.8). 100. 113. 
123. 138-139 (;w/P3.5.1). 151-152.230 
(P4.5.7). 249 (P5.1.5). 308.355.400.408. 
See also Approximation 

model. 15-17. 29 (Pl.3.3). 208 (P4.3.2). 
262-263. 289. 291. 347-351 (incl P6.8.1). 
381-382 (P7.3.1). See also Posterior 
distribution: Predictive distribution; 
Sampling distribution 

Study, enumerative versus analytic. 33. 35 

(PI.4.1-1.4.2). 50.322 
Substantive: 

importance. 132 
problem. 1-5. 36. 112. 254. 363. 392-393 
question. 1.5.7. 12. 14.31-32 

Sufficiency. 93 
principle. 379-381. 387 (P7.4.1). 389-390 

Sufficient statistic. 93. 377 
minimal. 378-379 

Survey variable. 314 
Survival Analysis, see Failure time data 

l: 

ratio. 248 (P5.1.1) 
test. 128 

Tails of a distribution. 15-16.40.42-49. 82 
(P2.4.4). 291 

Taylor series expansion. 174. 182. 193. 204. 
245-246. 357. 394 

Technical error. 302-306 
Test: 

accelerated, see Accelerated test 
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Test (Continued) 
Bayesian..vec Bayes factor: Posterior odds 

ratio 
frequentist. AW also Confidence interval 

hypothesis, see Hypothesis, test 
permutation, see Permutation, test 
randomization. 305-313 
randomized. 149. 381 
significance, see Significance, test 

likelihood, see Likelihood, test 
Transformation. 210. 403 

effect on moments. 182 
estimated. 389 (P7.4.6) 
Helmert's orthogonal. 406-407 
inverse probability. 343 
logit. 188(P4.1.5) 
to polar co-ordinates. 407 
of posterior distribution. 54. 65. 69 (P2.2.6) 
quantile. see Transformation, inverse 

probability 
reciprocal. 188 (P4.1.6) 
of response in regression. 17. 45 
of sample variance. 240 
square root. 187-188 (P4.1.4) 
symmetrizing. 184-185 

Wilson-Hilferty.41. 185 
theorem. 183 
variance-stabilizing. 183-184 

Treatment, see Comparison of treatments; 
Control 

allocation. 294. 298. 385 
Trimmed: 

likelihood estimators. 263 
mean. 249 (P5.1.5). 354-355 

True: 
parameter value. 166-167. 191. 195.368 
prior. 60. 368 

Truncated data model: 
exponential. 377 (P7.2.3) 
Poisson. 46-47 (Pl.5.2). 68 (P2.2.4). 111 

(P3.1.2). 117(P3.2.4) 
Tukey's bisquare A/-estimator. see 

M-estimator. redescending: Tukey's 
bisquare 

2X2 table. 388-389 (P7.4.5) 
Two-way classification model. 17-20. 271. 

281-282 (P5.6.2). 103 (P2.7.5) 
Type: 

I error, see Error of the first kind 
II error, see Error of the first kind 

Unbiased: 
estimating equation. 191 

estimator. 108 
meaning of. 320-321 

test. 122 
Uniform: 

distribution. 52. 57 (P2.1.1). 65-66. 80. 86. 
294. 343-347. 383. 386.401-402. See also 
Prior distribution 

location model. 111 (P3.1.4). 157-159. 
381-382 (P7.3.1). 404-406 

model. 112 (P3.1.6). 127<P3.3.3). 144 
(P3.6.1). 155 (P3.8.1). 187 (P4.1.1-4.1.2). 
381-382 (P7.3.1). 387 (P7.4.1). See also 
Posterior distribution: Predictive 
distribution: Sampling distribution 

Uniformly: 
minimum variance unbiased (UMVU) 

estimator. 108. 300. 356. 320-321 
most powerful test. 121-122 

unbiased test. 122 
Uninformative sampling. 315. 322 
Unit error. 301 
Unquantifiable uncertainty. 32. 36.49. 281 
{/-statistic. 355-357. 360 (P6.9.2) 

Variance. 12. 14. 17. See also Standard 
deviation 

asymptotic. 179 
ofW-estimators. 194.257-258.270 

component(s). 28 
model. 28-29. 102-103 (P2.7.2. P2.7.4). 

138 (P3.5.4). 189 (P4.1.8). 230 (P4.5.6). 
352 (P6.8.5). 381-382 (P7.3.1) 

confidence interval for. 144 (P3.6.4). 
239-242.261 

design based. 304. 316-318. 320. 326 
(P6.5.1.P6.5.4-6.5.5) 

matrix. 192. 195. 204. 209 (P4.3.3). 276. 
284 

maximum likelihood estimate of. 96. 
106-108.239-244.250-251 

method of moments estimate of. 106-107 
negative estimate of. 317. 321 
Pitman estimator of. 109-111 (incl P3.1.3) 
posterior, see Posterior variance 
sample. 71. 92-94. See also Variance. 

maximum likelihood estimate of 
under autoregressive process. 250-251 
design-based properties of. 305. 318. 326 

(P6.5.2) 
under Gaussian model. 406-408 
under jackknife. 342-343 (P6.7.9-6.7.11) 
justification for use of. 106-110 
model-based properties of. 300-301 
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under moving average process. 252 
(P5.2.3) 

under randomization. 305 
as a (/-statistic. 335-336. 360 (P6.9.2) 

of sample variance. 230. (P4.5.7). 240-242. 
251 

test for equality of. see Bartlett's test for 
equality of variances 

unbiased estimate of. see Variance, sample 
Visual acuity, see Diabetic retinopathy 
Volt-meter example. 373 

Wakl test. 220-221.278-280 

451 

Weak law of large numbers. 181. 193 
Weibull: 

distribution. 401 
model. 10-11. 25-26. 202 (P4.2.5-4.2.6). 292 

(P5.8.1). 379. See also Posterior 
distribution; Predictive distribution: 
Sampling distribution 

Wilcoxon signed-rank test. 353. 356. 360 
(P6.9.1.6.9.3) 

Window width. 38. See also Smoothing 

Yates-Grundy-Sen estimator. 317. 326 
(P6.5.2) 
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