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It’s best to have failure happen early in life.
It wakes up the Phoenix bird in you so you rise from the ashes.

Anne Baxter

We all hope for breakthrough rebirth moments.

Dane Cook

Evolutionary Algorithms and Metaheuristics are used extensively and with grow-
ing interest in wide areas of applied sciences and engineering for solving real 
application problems of interest in industry and society.

Particularly, in recent years, different MiniSymposium/Special Thematic 
Sessions focused on the area of “Civil Engineering and Construction 
Management” promoted by the editors of this book have attracted the attention 
of the scientific community in different European Community on Computational 
Methods in Applied Sciences (ECCOMAS) related conferences. Among them we 
should mention: 

•	 “Applications in Structural and Civil Engineering Optimum Design”, 
MiniSymposium at the 10th International Conference on Evolutionary and 
Deterministic Methods for Design, Optimization and Control with Applications 
to Industrial and Societal Problems EUROGEN 2013, ECCOMAS Thematic 
Conference, Las Palmas de Gran Canaria, Spain, October 2013 (organ-
ized jointly also with Rajan Filomeno Coelho, Universite Libre de Bruxelles, 
Belgium).

•	 “Evolutionary Algorithms and Metaheuristics in Civil Engineering and 
Construction Management”, MiniSymposium at the 11th World Congress on 
Computational Mechanics WCCM—5th European Conference on Computational 
Mechanics ECCM, IACM—ECCOMAS, Barcelona, Spain, July 2014.

•	 “Evolutionary Algorithms and Metaheuristics in Civil Engineering and 
Construction Management”, Special Thematic Session at the Congress on 
Numerical Methods in Engineering organized by Sociedad Española de Métodos 

Preface
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Numéricos en Ingeniería SEMNI and Associação Portuguesa de Mecânica 
Teórica, Aplicada e Computacional APMTAC (Spanish and Portuguese Societies, 
respectively, integrated in ECCOMAS), Lisboa, Portugal, June–July 2015.

•	 “Evolutionary Algorithms and Metaheuristics in Civil Engineering and 
Construction Management”, MiniSymposium at the European Congress on 
Computational Methods in Applied Sciences and Engineering ECCOMAS 
2016, Crete Island, Greece, June 2016.

Among the participants of these meetings, some selected contributions which 
constitute modified, extended, and improved versions of research have been col-
lected in this volume. It presents up-to-date material on the state of the art in 
Evolutionary Algorithms and Metaheuristics in Civil Engineering and Construction 
Management from European contributors, being mainly oriented for research-
ers and postgraduate students who are familiar with the fundamentals and wish to 
study or to advance the state of the art on the field, although practicing engineers 
could benefit as well from it as there is a recent tendency of including evolutionary 
computation/metaheuristics as optimization tools in commercial design codes.

The book consists of 7 chapters (ordered alphabetically by first author sur-
name), where problems of Civil Engineering are handled by using Evolutionary 
Algorithms and Metaheuristics as global optimization tools: structural mechan-
ics problems are covered in Chaps. 1, 2 and 4–6, while in Chap. 3 a construc-
tion management problem is solved and in Chap. 7 an optimum design 
methodology of top-edge devices on noise barriers is introduced; the use of sur-
rogate modeling/metamodels and other proposals oriented to reduce the number 
of real evaluations of the fitness function are taken into account in several chapters 
(1, 4 and 5); Chaps. 1 and 3 deal with multi-objective optimization, while Chaps. 2 
and 4–7 solve single-objective optimization problems.

In Chap. 1, R. Filomeno Coelho et al., propose a complete metamodel-assisted 
optimization procedure to deal with mixed variables (including discrete, integer, 
or categorical data), which are required in complex civil engineering structural 
problems, by using a multi-objective evolutionary algorithm, a multiple kernel 
regression model, and an efficient online enrichment of the metamodel during the 
optimization.

In Chap. 2, D. Greiner et al. compare the truss structural optimum design prob-
lems of fully stressed design and minimum constrained weight, when using dis-
crete cross-section type bar sizing. An analysis of whole search space in a simple 
truss test case is included, and optimization behavior of evolutionary algorithms 
with multiple population sizing and mutation rates is compared.

J. Magalhães-Mendes presents in Chap. 3 a new hybrid genetic algorithm for 
the time-cost optimization problem with application in construction projects. 
The approach was developed in Visual Basic language, applied to test problems 
reported on the literature and compared with other approaches.

Chapter 4 by J. Orkisz and M. Glowacki is devoted to efficiency increase of 
evolutionary algorithms for large nonlinear constrained optimization problems 
with applications to mechanics, which include: smoothing and balancing, adaptive 
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step-by-step mesh refinement, and a’ posteriori error analysis and related tech-
niques. It includes their application in residual stresses analysis in elastic-plastic 
bodies under cyclic loadings.

In Chap. 5, R. Paz et al. propose new optimization strategies based on genetic 
algorithms combined with surrogate models to reduce as much as possible the 
number of finite element method simulations in an additive manufacturing appli-
cation, allowing minimization of weight by using internal cellular and lattice 
structures.

Chapter 6, by D. Ribeiro et  al. deals with calibration methodologies of finite 
element numerical dynamic models of railway bridges, which imply the resolution 
of an optimization problem (solved using a genetic algorithm), including residuals 
associated to natural frequencies and mode shapes. It is applied to the calibration 
of dynamic models of two railway bridges in the northern line of Portuguese rail-
ways with excellent agreement between numerical and experimental responses of 
the bridges’ decks.

The book closes with a procedure for improving the acoustic efficiency of top-
edge devices on noise barriers by using the boundary element method (BEM) 
and genetic algorithms (Chap. 7, by R. Toledo et  al.). Both thickness and non-
thickness bodies are able to be modeled with a complementary formulation to 
the classical BEM, presenting here numerical results validating the formulation. 
Applications to quadratic residue diffuser design and to waterwheel-top barrier 
design are successfully obtained.

Evolutionary Algorithms and Metaheuristics are becoming an increasing key 
role in optimum design in many applied sciences and engineering fields, and this 
book focused on Civil Engineering and Construction Management applications is 
intended to increase this field interest and foster research in this particular area 
among the international and ECCOMAS community.

The book editors would like to express their deep appreciation to all contribu-
tors for the time and effort devoted to the completion of their contributions to this 
volume. Finally, the editors would like to thank the personnel of Springer for their 
most valuable support during the publication process.

Porto, Portugal
Las Palmas de Gran Canaria, Spain	

Jorge Magalhães-Mendes
David Greiner
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Chapter 1
On-line Metamodel-Assisted Optimization 
with Mixed Variables

Rajan Filomeno Coelho, Manuel Herrera, Manyu Xiao  
and Weihong Zhang

© Springer International Publishing Switzerland 2015 
J. Magalhães-Mendes and D. Greiner (eds.), Evolutionary Algorithms  
and Metaheuristics in Civil Engineering and Construction Management,  
Computational Methods in Applied Sciences 39, DOI 10.1007/978-3-319-20406-2_1

Abstract  The optimization of complex civil engineering structures remains a major 
scientific challenge, mostly because of the high number of calls to the finite element 
analysis required by the complete design process. To achieve a significant reduction of 
this computational effort, a popular approach consists in substituting the high-fidelity 
simulation by a lower-fidelity regression model, also called a metamodel. However, 
most metamodels (like kriging, radial basis functions, etc.) focus on continuous vari-
ables, thereby neglecting the large amount of problems characterized by discrete, 
integer, or categorical data. Therefore, in this chapter, a complete metamodel-assisted 
optimization procedure is proposed to deal with mixed variables. The methodology 
includes a multi-objective evolutionary algorithm and a multiple kernel regression 
model, both adapted to mixed data, as well as an efficient on-line enrichment of the 
metamodel during the optimization. A structural benchmark test case illustrates the 
proposed approach, followed by a critical discussion about the generalization of the 
concepts introduced in this chapter for metamodel-assisted optimization.
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Brussels School of Engineering, Université libre de Bruxelles (ULB),  
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Keywords  Genetic algorithms  ·  Mixed variables  ·  Categorical variables  ·  Multiple  
kernel regression  ·  Support vector regression

1.1 � Mixed Variables in Civil Engineering

The need for stronger, safer, and greener structures built at shortened delays and at 
a competitive cost pushes the art of construction to favor elegant lightweight struc-
tures, as the city bridge of Nijmegen (The Netherlands) designed by L. Ney and C. 
Poulissen (see Fig. 1.1),1 for which an optimization study was conducted by the 
first author of this chapter.

Nowadays, the design of such remarkable structures is greatly improved by 
numerical methods, in particular through an efficient combination of evolution-
ary algorithms to explore the design space, and general regression models (also 
called metamodels) to avoid a systematic call to the structural finite element analy-
sis [11, 15]. Seen through a simulation-based perspective, in a classical structural 
optimization process the simulations are integrated within an optimization iterative 
loop, as depicted in Fig. 1.2. The scientific and technical challenge resides in car-
rying out a good balance between the use of the high-fidelity (i.e. finite elements) 
and the low-fidelity (i.e. regression) models, in order to find the best compromise 
between accuracy and CPU time.

Before such numerical considerations, the first step requires the definition of 
relevant design variables. As a general rule, the parameterization of civil engi-
neering structures (bridges, dams, buildings, etc.) involves several types of vari-
ables representing respectively the geometry (sizing of the elements, overall 
shape and topology), the materials used, and the boundary conditions (supports). 
Mathematically, these variables can be classified as follows:

1Credits: http://commons.wikimedia.org/.

Fig. 1.1   Nijmegen city 
bridge “De Oversteek” during 
its construction (September 
2013)

http://commons.wikimedia.org/
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•	 continuous variables are real numbers defined within an interval 
[xmin, xmax] ⊆ R;

•	 discrete variables are continuous variables only available among a dis-
crete set. For instance, the cross-section area of a beam profile is an intrinsi-
cally continuous parameter defined in square meters, but whose availability 
might be limited to a discrete sampling taken from a catalog of beam profiles 
{A(1),A(2), . . . ,A(n)}. This means however that values not available in catalogs 
can still be computed if necessary, and then rounded off;

•	 integer variables are strictly defined in N. Contrary to discrete variables, inter-
mediate values have no physical meaning. For example, the number of holes 
drilled in a plate to reduce its weight can be equal to 3 or 4, but any value 
between these two integer numbers does not correspond to a physical design;

•	 categorical variables represent the remaining non-numerical parameters. 
Although largely neglected in the optimization literature, they have a huge 
practical interest in civil engineering, since they can represent for instance 
the choice of a material ({steel, aluminum, . . .}), the type of connection in the 
assembly of frames ({rigid, semi-rigid, articulated}), the shape of a cross-
section (  ), etc. If they are endowed with a predefined ranking 
(e.g. a size {S,M, L,XL}, a qualitative appreciation {weak, normal, strong}), they 
are referred to as ordinal variables; otherwise, without intrinsic ordering, they 
are purely nominal.

As mentioned above for the case of discrete variables, a common practice con-
sists in treating non-continuous variables as real numbers, performing an approxi-
mation and/or optimization task, and eventually rounding off the solution. The 
very simple example below will show the danger of using such techniques to deal 
with intrinsically non-continuous problems.

Let us consider the following three-variable minimization problem:

(1.1)

min
x1,x2,x3

f (x1, x2, x3) ≡ x1 + x2 + x3

subject to:







g(x1, x2, x3) ≡ x1 + x2 + x3 − 10 ≥ 0

h(x1, x2, x3) ≡ x1 − x2 = 0

x1, x2, x3 ∈ {1, 2, 3, 4, 5}

Optimizer

Finite element analysis

Input variables
Keeping/removing
the elementsOutput responses

mass
stresses

. . .

Fig. 1.2   Classical structural optimization process
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Figure 1.3 shows the design space and a few solutions of problem (1). On one 
hand, x∗ = (3, 3, 4) is a discrete optimum characterized by an objective function 
value equal to f (x∗) = 10. On the other hand, x∗∗ = (3.6, 3.6, 2.8) is a continu-
ous solution of problem of (1.1) without considering the last constraint on the dis-
crete nature of the variables, and characterized by the same value at the optimum 
f (x∗∗) = 10; however, by rounding off a posteriori the corresponding design vari-
ables to the nearest integer values x∗∗rounded off(4, 4, 3), all constraints are now satis-
fied but the optimality has been lost ( f (x∗∗rounded off) = 11).

This simple application demonstrates the need for considering the discrete, 
integer, or categorical nature of the variables directly in the optimization phase. 
Of course, mixed-integer programming, implying the relaxation of discrete/inte-
ger variables [17], is a powerful approach to handle such problems, and is widely 
used in combinatorial optimization. Nevertheless, its efficiency depends largely on 
the mathematical properties of the functions involved (linearity, convexity, etc.), 
which are usually not guaranteed in civil engineering problems. Besides, recent 
works on the symmetry of optimal designs in sizing and topology optimization 
proved that the solution of symmetric problems is always symmetric with continu-
ous variables, but might be asymmetric when discrete variables are involved [19]. 
All these observations should convince the reader of the importance of treating 
mixed variables appropriately.

1 2 3 4 5
1

2

3

4

5

x
1
 = x

2

x 3

x

x

xrounded off

10

10

10

11

11

11

Fig. 1.3   Three-variable example showing the danger of using continuous optimization followed 
by rounding off the solution for discrete or integer optimization. The design space is depicted in 
2D, thereby satisfying automatically the equality constraint x1 = x2. The black squares represent 
the discrete design space. While x∗ constitutes a valid feasible solution, x∗∗

rounded off
 obtained by 

rounding off a valid continuous solution loses the optimality criterion
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In this chapter, the emphasis will be put on the simultaneous presence of 
continuous and categorical variables. After a discussion on the representation of 
mixed variables (Sect. 1.2), a multiple kernel regression metamodel is described 
(Sect.  1.3), followed by an on-line metamodel-assisted optimization proce-
dure applied to the design of a rigid frame (Sect.  1.4), and by the conclusions 
(Sect. 1.5).

1.2 � Representation of Mixed Variables

Before diving into the regression and optimization procedures, it is worth consid-
ering how mixed data can be mingled together.

Being familiar with genetic algorithms, or simply with computer science in 
general, the first idea to deal with different types of data is to adopt a binary cod-
ing. According to the range of the available data (or precision for real numbers), a 
binary conversion can be operated as shown in Fig. 1.4.

However, it is often preferable to propose a representation closer to the vari-
able types [13]. In this case, a real-number array can be obtained, as illustrated in 
Fig. 1.5.

1.5472 -4.7198 . . . 1.2 10.4 . . . 6 . . . S . . . . . .

Continuous
variables

Discrete
variables

Integer
variables

Ordinal
variables

Nominal
variables

0 1 1 0 . . . 0 0

Fig. 1.4   Mixed data converted into an array of binary digits

Fig. 1.5   Mixed data converted into an array of real numbers
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However, both approaches require an arbitrary mapping of the categorical var-
iables. As shown in Table  1.1, different mappings lead to different conversions, 
which—without specific care—might lead to a different behavior of the approxi-
mation/optimization tools, viz. to a different output prediction (approximation) or 
optimal solution (optimization).

Therefore, to alleviate this shortcoming, the basic idea of the regular simplex 
method is to assume that any pair of levels of a categorical variable are separated 
by the same distance (see Fig. 1.6). To achieve this, each level of an n-level vari-
able is associated with a distinct vertex of a regular simplex in (n− 1) dimensional 
space [12, 14]. For simplicity, the Euclidean distance between levels is assumed to 
be 1. For example, if xcateg can take values in a set of nattr = 3 possible attributes  

, these attributes can be drawn in a (nattr − 1) space in such a way that 
each attribute is converted to the vertex coordinates of a standard regular simplex. 
By construction, all potential values are thus equally distant [4].

Numerical validation performed on several analytical benchmark test cases [8] 
showed that a real-simplex mapping (i.e. real conversion for continuous, discrete, 
integer, and ordinal variables, and regular simplex for the nominal variables) is a 
sound and competitive conversion technique.

The next sections will describe how such mapping techniques can be seam-
lessly integrated within approximation and optimization procedures.

Table 1.1   Mapping of 
categorical attributes onto a 
real number (a binary vector, 
respectively)

Both mapping operators are equally valid, but might lead to a 
different behavior of the approximation/optimization tools with-
out specific care

Nominal variable Mapping 1 Mapping 2

Real Binary Real Binary

1 (0,0) 2 (0,1)

2 (0,1) 4 (1,1)

3 (1,0) 1 (0,0)

4 (1,1) 3 (1,0)

Fig. 1.6   Representation of a 
nominal variable with three 
attributes in the 2D space by 
a standard regular simplex

-1 0 1
-1

0

1

↔ (-0.5,0)
↔ (0.5,0)
↔ (0,0.866)
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1.3 � Approximation by On-line Multiple Kernel Regression

1.3.1 � Multiple Kernel Regression and Support  
Vector Regression (SVR)

As discussed in the introduction, a reliable and efficient structural optimization 
process should harmoniously combine an optimization algorithm with an approxi-
mate model in order to reach a feasible solution at an affordable computational 
time. This is the purpose of metamodel-assisted optimization, also referred to as 
surrogate-based optimization.

The main steps to devise a surrogate-based optimization algorithm are the fol-
lowing [6]:

1.	 the variables to be optimized are selected, often due to their importance, as 
determined by preliminary experiments;

2.	 a series of initial designs are analyzed by means of the high-fidelity simula-
tion (in structural design, the simulation usually consists in a finite element 
analysis). The set of designs are selected according to a pre-defined sampling 
scheme, for example through Latin hypercube sampling [22];

3.	 a metamodel (e.g. kriging, radial basis function networks, artificial neural 
networks, polynomial response surfaces, etc.) is used to build a low-fidelity 
model;

4.	 the optimization is performed using the low-fidelity model;
5.	 the results of the optimization are post-processed in order to keep the best 

point(s). According to the infill criterion selected, new designs are assessed 
by the high-fidelity simulation, and the corresponding results are added to the 
existing database to improve the reliability of the metamodel. The process can 
go back to step 3 and the optimization-approximation cycling is repeated until 
the stopping criterion is reached (convergence or maximum number of cycles 
attained).

An off-line optimization process would stop just after step 4, the best 
solution(s) found being re-assessed by the high-fidelity simulation for verification 
purposes. In the approach advocated by the authors, an on-line learning process is 
proposed (see step 5). It consists in updating the metamodel both by adding new 
information and by updating the regression parameters. Thus, this on-line model 
is updated by the results of an optimization process adapting itself to work better 
in areas close to the optimum (or optima in multi-objective optimization) found at 
each cycle (see Fig. 1.7).

First, the metamodel for mixed variables must be presented. In this study, 
a kernel-based approach is followed. Common kernel-based learning methods 
[20] use an implicit mapping of the input data into a high dimensional feature 
space defined by a kernel function, i.e. a function K returning the inner product 
�φ(x),φ(x′)� between the images of two data points x, x′ in the feature space (see 
Table 1.2). The choice of the map φ aims at converting the nonlinear relations into 
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linear ones. The learning then takes place in the feature space and the learning 
algorithm can be expressed so that the data points only appear inside dot products 
with other points. This is often referred to as the “kernel trick” [21].

The use of kernel methods is well adapted to the problem of data integration 
as it enables multiple types of data to be converted into a common usable format, 
using one of the representations mentioned in Sect. 1.2. These can be combined 
eventually with a weighted summation and used as training data for a classical 
support vector regression (SVR) scheme.

A detailed explanation of SVR is outside the scope of this chapter, but its 
main principles are summarized hereafter. The key characteristic of SVR is that 
it allows to specify a margin ε within which we are ready to accept errors in the 
sample data without affecting the prediction quality. The SVR predictor is defined 
by the points lying outside the region formed by the band of width ±ε around the 
regression (see Eq. 1.2). Those vectors are the so-called support vectors.

Fig. 1.7   On-line optimization with high-fidelity (= structural finite element analysis) and low-
fidelity (= metamodel by multiple kernel regression) simulations

Table 1.2   Short list of some 
common kernel functions

Name Expression

Gaussian
K(x, x′) = exp

(

−||x−x
′ ||2

2σ 2

)

ANOVA
K

(

x, x
′) =

∑

exp

(

−σ

(

x
k − x

′k)2
)

d

Linear K(x, x′) = x
T
x
′ + c

Polynomial K(x, x′) = (αxTx′ + c)d

Rational quadratic
K(x, x′) = 1− ||x−x

′ |2
||x−x′ ||2+c
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The goal is to find a function f̂ (x) that deviates at most by ε from the observed 
output yi for the regression based on the training data, and minimizing at the same 
time the model complexity (see Eq. 1.3):

The constraints in Eq. 1.3 assume that f̂ (x) exists for all yi with precision ±ε. 
Nevertheless, the solution may actually not exist or it would be possible to achieve 
better predictions if outliers were allowed. Consequently, slack variables ξ+ and 
ξ− are introduced:

and the objective function and constraints for SVR are

where n is the number of training patterns and C is a trade-off parameter between 
model complexity and training error. Additionally, ξ+ and ξ− are slack variables 
for exceeding the target value by more than ε and for being below the target 
value by more than ε, respectively. This method of tolerating errors is known as ε
-insensitive.

The usual SVR implementations use a single mapping function φ, and hence 
a single kernel function K. If a data set has a locally varying distribution, using 
a single kernel may not catch up correctly the varying distribution. Kernel fusion 
can help to deal with this problem [2]. Recent applications [10] and developments 
based on support vector machines have shown that using multiple kernels instead 
of a single one can enhance interpretation of the decision function and improve 
classifier performance. By the use of different kernels we can address problems 
from different data nature too. It will reveal beneficial in the perspective of mixed 
variable programming [1, 7].

We will adopt the weighted sum fusion with the following mapping functions:

(1.2)f̂ (x) = �w, φ(x)� + b

(1.3)

min
w,b

1

2
||w||2

subject to: yi − �w,φ(xi)� − b ≤ ε

�w,φ(xi)� + b− yi ≤ ε

(1.4)ξ+ = f̂ (xi)− y(xi) > ε

(1.5)ξ− = y(xi)− f̂ (xi) > ε

(1.6)

min
w,b

1

2
||w||2 + C

1

n

n
∑

i=1

(ξ+i + ξ−i )

subject to: yi − �w,φ(xi)� − b ≤ ε + ξ+i ,

�w,φ(xi)� + b− yi ≤ ε + ξ−i ,

ξ+i , ξ−i ≥ 0 i = 1, . . . , n

(1.7)�(x) = [√µ1φ1(x),
√
µ2φ2(x), . . . ,

√
µMφM(x)]
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where µ1,µ2, . . . ,µM are weights of component functions. Now, the regression 
problem includes the optimization of two parts. One part is the regression hyper-
plane f (x) and the other part is the weight vector m = [µ1,µ2, . . . ,µM ]. The idea 
is to address these two parts of the optimization process in one step, based on the 
parametric dependence idea.

The resulting multi-kernel, expressed by Eq. 1.8:

is the weighted sum of M kernel functions, constituting a new kernel function. We 
can solve the regression hyperplane by plugging this multi-kernel into the expres-
sion of the SVR regression surface, as shown in Eq. 1.9:

1.3.2 � On-line Multiple Kernel Regression

In metamodel-assisted optimization, the metamodel is not defined once for all, 
but is likely to be updated whenever new information from the high-fidelity sim-
ulation is made available. Therefore, a metamodel-updating on-line technique is 
mandatory.

Most of the kernel-based algorithms cannot be used to operate on-line due to 
a number of difficulties such as time and memory complexities (because of the 

(1.8)

K̃(xi, xj) =��(xi),�(xj)�
=µ1�φ1(xi),φ1(xj)� + µ2�φ2(xi),φ2(xj)�

+ · · · + µM�φM(xi),φM(xj)�
=µ1K1(xi, xj)+ µ2K2(xi, xj)+ · · · + µMKM(xi, xj)

=
M
∑

s=1

µsKs(xi, xj)

(1.9)f̂ (x) = b+
n

∑

i=1

(α+
i − α−

i )K̃(xi, x).

Fig. 1.8   Example of the 
design of a rigid frame
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growing kernel matrix), and due to the need to avoid over-fitting. However, a few 
recent experiments were successfully conducted in this sense [9]. For example, a 
kernel-based recursive least-squares algorithm implementing a fixed size “sliding-
window” technique was proposed in [24].

In this chapter, an extension of this methodology to the use of multiple kernels 
for mixed variables is proposed. Moreover, the windowing process is embedded 
here into an optimization process. Some additional improvements have thus been 
included, the main one being to discard the data far from the optimum at each 
iteration of the process (see Fig. 1.9).

Practically, in the sliding window approach proposed here, only the last N pairs 
of the stream are selected to perform the multi-kernel regression. When a new 
observed pair {xn+1, yn+1} is obtained, the kernel matrix K(n)

j  is first down-sized by 
extracting the contribution from xn−N (see Eq. 1.10):

and then the K(n)
j  dimension is augmented again by importing the data input xn+1 

to obtain the kernel expressed in Eq. 1.11.

where Xn = (xn−N+1, . . . , xn)
T and � is a correction factor.

(1.10)
⌣

K
(n)

j =









K
(n)
j (2, 2) · · · K

(n)
j (2,N)

...
. . .

...

K
(n)
j (N , 2) · · · K

(n)
j (N ,N)









(1.11)K
(n+1)
j =

(

⌣

K
(n)

j Kj(Xn, xn+1)

Kj(xn+1,Xn) Kj(xn+1, xn+1)+ �

)

Fig. 1.9   Windowing strategy
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Next, the kernel matrices are summed again (see Fig. 1.10) and their weights µ 
are updated too. Afterwards, the weights and parameters are tuned by a multi-start 
trust region algorithm for the off-line part [18] (a fast version of this algorithm is 
included to update the values of the weights at every step of the on-line process).

In the next section, this on-line metamodeling procedure will be coupled to a 
multi-objective evolutionary algorithm, and applied to a structural optimization 
test case.

1.4 � On-line Metamodel-Assisted Optimization

In order to illustrate the efficiency of on-line regression within an optimization 
scheme, a structural design optimization problem will be considered (see Fig. 1.8). 
The numerical application consists in the multi-objective design optimization of a 
three-dimensional rigid frame with respect to categorical and continuous variables 
(see Fig. 1.8 [16]). The problem is formulated as follows:

(1.12)

Fig. 1.10   On-line multiple 
kernel regression: tuning of 
the regression parameters
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Evolutionary algorithms, thanks to the flexibility of their data structure, are 
well adapted to deal with mixed variables [23]. The multi-objective optimizer 
used in this study is the second version of the Non-dominated Sorting Genetic 
Algorithm (NSGA-II) [3], where the probabilities of simulated binary crossover 
and mutation are respectively set to 0.9 and 0.5, and the distribution index for sim-
ulated binary crossover (ηc) and mutation (ηm) are respectively set to 10 and 20. 
Its implementation has been modified to tackle nominal variables by adapting the 
evolutionary operators as follows [5]:

•	 crossover: for each nominal variable and at the user-defined probability of 
crossover, the operation consists in swapping the values of the parents provided 
a randomly generated number is above 0.5;

•	 mutation: for each nominal variable and for the user-defined probability of 
mutation, the operation consists in changing the value of the variable randomly 
among the set of attributes.

The population of the evolutionary algorithm is set to 200 individuals. In the 
metamodel-assisted optimization, an initial database of 2,000 samples is needed. 
Then, at each cycle (i.e. after each optimization with the low-fidelity model), the 
best 60 designs (according to the NSGA-II ranking criterion) are calculated by 
means of the high-fidelity finite element analysis, and added to the training data-
base to eventually update the metamodel. The numerical results show (surpris-
ingly) a better coverage of the Pareto front than with the high-fidelity model alone, 
apparently due to a smoothing of the objective functions predicted by the meta-
models (see Fig. 1.11), leading in this case to an improved behavior of the opti-
mizer. Besides, these excellent results are obtained for a reduced number of calls 
to the finite element (FE) program: at the final (25th) generation, 3,500 FE runs 
are needed for the on-line process, to be compared to the 5,000 FE runs when the 
FE program is called systematically.
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Fig.  1.11   Comparison between high-fidelity optimization process (⇔ without using a meta-
model, (left) and metamodel-assisted on-line optimization (right), at the 25th iteration/cycle
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1.5 � Conclusions

In this chapter, mixed-variate metamodel-assisted optimization has been intro-
duced. Based on the experience of the authors and peers in the field of evolu-
tionary optimization with mixed variables, the reader should keep in mind the 
following points:

•	 for both approximation and optimization tasks, the inner nature of the variables 
should be taken into account. In particular, rounding off continuous optimal 
solutions to discrete values should be avoided or used with utmost care;

•	 categorical data should be handled by means of appropriate coding techniques 
like the regular simplex mapping used in classification and clustering;

•	 a multi-kernel function is well adapted to deal with variables of different 
types. Although presented here in the context of support vector regression, it is 
believed by the authors that the general idea could be fruitfully used in other 
families of metamodels (for instance with radial basis function networks, which 
also make use of kernels);

•	 an efficient on-line procedure to update the metamodels can be coupled seam-
lessly to an evolutionary algorithm. However, although not treated in detail in 
this chapter, the main issue consists in defining a proper interaction between 
the metamodel and the optimizer, by means of suitable infill criteria [6]. These 
criteria define which points should be assessed by the high-fidelity model and 
added to the database. New points can typically be the best points obtained 
so far, the points endowed with the highest prediction error of the metamod-
els (hence requiring a re-sampling to improve the accuracy of the low-fidelity 
model), or a combination of both paradigms.

Future prospects in this field include the handling of all kinds of variables (con-
tinuous, discrete, integer, and categorical altogether), and its validation on several 
benchmark test cases.
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Abstract  The optimization structural design problems of Fully Stressed Design 
(FSD) and Minimum Constrained Weight (MCW) are compared in this work in a 
simple truss test case with discrete cross-section type bar sizing, where both opti-
mum designs are coincident. An analysis of the whole search space is included, 
and the optimization behaviour of evolutionary algorithms are compared with mul-
tiple population sizing and mutation rates in both problems. Results of average, 
best and standard deviation metrics indicate the success and the robustness of the 
methodology, as well as the fastest and easiest behaviour when considering the 
FSD case.

Keywords  Structural design  ·  Truss optimization  ·  Evolutionary algorithms  ·  Fully 
stressed design  ·  Minimum constrained weight

2.1 � Introduction

The use of evolutionary algorithms/metaheuristics has allowed the resolution of 
the global optimum design of many engineering problems (see e.g. [2, 10]), and 
particularly, in the case of discrete cross-section bar structures since the first nine-
ties of the twentieth century [1, 7, 8]. In this book chapter, it is handled a com-
parative and relational study of the search algorithm performance in two structural 
problems: first, the minimization of the constrained weight and, second, the 
obtainment of the fully stressed design. Results using the above mentioned global 
search methods in a simple truss structure considering some statistical metrics are 

D. Greiner (*) · J.M. Emperador · B. Galván · G. Winter 
Institute of Intelligent Systems and Numerical Applications in Engineering SIANI, 
Universidad de Las Palmas de Gran Canaria ULPGC, 35017 Las Palmas, Spain
e-mail: david.greiner@ulpgc.es
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obtained. First, the structural handled problems are described in Sect. 2.2, then the 
test case is shown in Sect.  2.3. Section  2.4 presents results and discussion, and 
finally, the conclusions Sect. 2.5 ends this book chapter.

2.2 � Structural Problems

Two optimization problems of bar structures with discrete section-types are 
fronted in this book chapter.

In first place, the problem of minimization of the constrained structural weight 
(MCW), which is related with the minimization of raw cost of the structure, is 
considered (Eq. 2.1) (e.g. see [4, 12]). It is the most common structural optimum 
design problem.

where Ai is cross-sectional area, li is length and ρi is specific weight, all corre-
sponding to bar i; subjected under constraints of stresses, displacements and/
or buckling. In this chapter only stresses constraints are taken into account, and 
treated as in [6].

In second place, the problem of achieving the fully stressed design (FSD) struc-
ture is considered (e.g., see [14]), which has been handled since the beginning of 
the 20th century. The FSD of a structure is defined as the design in which some 
location of every bar member in the structure is at its maximum allowable stress 
for at least one loading condition.

where σMAX-i and σMAX-Ri are the maximum stress and the maximum allowable 
stress, respectively, both corresponding to bar i.

Some relation between both previous problems, MCW and FSD, has been 
established, mainly in trusses structures where the material is allowed to work at 
its full potential due to the only existence of normal efforts, associated with the 
cross-sectional area [11, 13]. In this work, we show through the use of metaheuris-
tic global optimization methods in discrete cross section-type trusses, that even in 
the possible case that both problems (MCW and FSD) share the same optimum 
solution, the search still has different characteristics and topology, which makes 
easier or harder to solve for the global search evolutionary algorithm.

(2.1)MCW =
Nbars
∑

i=1

Ai · li · ρi

(2.2)FSD =

√

√

√

√

Nbars
∑

i=1

(σMAX−i − σMAX−Ri)
2
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2.3 � Test Case

The test case used is a simple test case with truss bar structures based on one in 
[15] and [16], solving it with discrete cross-section types variables (as in [9]). The 
computational domain, loading and boundary conditions are shown in Fig.  2.1, 
with Load P = 4450 N. This test case has been solved also for simultaneous (that 
is, multiobjective optimization) minimization of weight and maximization of the 
reliability index in Greiner and Hajela [3].

Each bar corresponds to an independent variable. Table  2.1 shows the set of 
cross section types and their geometric properties (area, radius of gyration). 
Table 2.2 represents the search space of variables, including the lower and upper 
limit of each variable.

An own implemented truss bar structure stiffness matrix calculation has 
been used to evaluate the structural variables, where articulated nodes (that is 

Fig. 2.1   Test case. 
Computational domain, 
loading and boundary 
conditions

Table 2.1   Cross-section 
types

Order Cross-section Area (cm2) Radius of gyration (cm)

1 C1 0.85 0.653

2 C2 0.93 0.652

3 C3 1.01 0.651

4 C4 1.09 0.650

5 C5 1.17 0.649

6 C6 1.25 0.648

7 C7 1.33 0.647

8 C8 1.41 0.646

9 C9 1.49 0.645

10 C10 1.57 0.644

11 C11 1.65 0.643

12 C12 1.73 0.642

13 C13 1.81 0.641

14 C14 1.89 0.640

15 C15 1.97 0.639

16 C16 2.05 0.638
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non-resisting moment capabilities) are considered, elastic behaviour of steel is 
assumed, and no buckling effect is taken into account in these results. Table 2.3 
shows the geometric parameters (height and width) of the structure. Table  2.4 
exposes its material properties, -those of standard construction steel-.

In order to define the cross-section type sizing of each bar (that is the structural 
design), the quantities of interest are the values of the fitness function/s (minimum 
constrained weight and /or fully stress design) and the maximum stress of each 
bar.

2.4 � Results and Discussion

2.4.1 � Test Case Analysis

This section studies the relationship between the MCW problem and the FSD 
problem in our test case (as described in Sect. 2.3).

Therefore, the whole search space of the previous test case has been explored, 
evaluating both objectives: (a) Minimum Constrained Weight (MCW, in kg.) as 
shown in Eq. 2.1, and (b) Square root of the sum of squared stress differences of 
each bar with Fully Stressed Design (FSD) as shown in Eq. 2.2.

Values of the 224 = 16,777,216 designs (corresponding to a 6 bar × 4 bits/bar 
chromosome = 24 bits) are obtained and shown in Fig. 2.2 (whole search space). 

Table 2.2   Search space 
of variables

Bar number Bar variable Cross-section type set

1 v1 From C1 to C16

2 v2 From C1 to C16

3 v3 From C1 to C16

4 v4 From C1 to C16

5 v5 From C1 to C16

6 v6 From C1 to C16

Table 2.3   Geometric 
parameters

Value (m.)

Height (H) 0.9144

Width (W) 1.2190

Table 2.4   Material 
properties (Steel)

Parameter Value

Density 7850 kg/m3

Young modulus 2.06 × 105 MPa

Maximum stress 276 MPa



212  Comparing the Fully Stressed Design and the Minimum …

In addition, a zoomed picture of the best solution designs are shown in Fig. 2.3. 
In this test case, the minimum of both fitness functions is a coincident design, the 
most left and bottom point in this Fig. 2.3. Moreover, calculating the population 
Pearson’s correlation coefficient r between both objectives (MCW and FSD) gives 
a value r = 0.71089 (where 1.0 means a perfect linear relationship).

Fig. 2.2   Whole search space designs of test case

Fig. 2.3   Zommed vision over Fig. 2.2 (search space designs of test case)
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The detailed best fifty designs of each objective are shown in Table 2.5 (MCW 
optimum designs) and Table 2.6 (FSD optimum designs). In addition to the opti-
mum design, which is shared by the problem of MCW and the problem of FSD, 
fifteen designs out of this list of fifty are included in both sets (all shared designs 
are highlighted in bold type in the tables).

Table 2.5   Minimum MCW designs (cross-section types as in Table 2.1)

Design 
order

FSD 
value

MCW 
value

Unconstrained 
weight

Bar 1 Bar 2 Bar 3 Bar 4 Bar 5 Bar 6

1st 11480.7 5.26338 5.26338 C1 C1 C3 C3 C1 C1

2nd 12709.5 5.3581 5.3208 C1 C1 C3 C3 C2 C1

3rd 12709.5 5.3581 5.3208 C1 C2 C3 C3 C1 C1

4th 11645.8 5.35907 5.35907 C1 C1 C4 C3 C1 C1

5th 11645.8 5.35907 5.35907 C1 C1 C3 C4 C1 C1

6th 13834.7 5.37822 5.37822 C1 C2 C3 C3 C2 C1

7th 12449.8 5.41648 5.41648 C2 C1 C3 C3 C1 C2

8th 12840.5 5.4165 5.4165 C1 C2 C3 C4 C1 C1

9th 12875.2 5.4165 5.4165 C1 C1 C3 C4 C2 C1

10th 12840.5 5.4165 5.4165 C1 C1 C4 C3 C2 C1

11st 12875.2 5.4165 5.4165 C1 C2 C4 C3 C1 C1

12nd 12163.8 5.43563 5.43563 C2 C1 C4 C3 C1 C1

13rd 12038.5 5.43563 5.43563 C2 C1 C3 C4 C1 C1

14th 12038.5 5.43563 5.43563 C1 C1 C4 C3 C1 C2

15th 12163.8 5.43563 5.43563 C1 C1 C3 C4 C1 C2

16th 12312.0 5.43998 5.43563 C1 C1 C5 C2 C1 C2

17th 12312.0 5.43998 5.43563 C2 C1 C2 C5 C1 C1

18th 12036.9 5.45477 5.45477 C1 C1 C5 C3 C1 C1

19th 11861.9 5.45477 5.45477 C1 C1 C4 C4 C1 C1

20th 12036.9 5.45477 5.45477 C1 C1 C3 C5 C1 C1

21st 14232.6 5.45478 5.45478 C2 C1 C3 C3 C3 C1

22nd 14232.6 5.45478 5.45478 C1 C3 C3 C3 C1 C2

23rd 14861.9 5.46076 5.43565 C1 C2 C3 C3 C3 C1

24th 14861.9 5.46076 5.43565 C1 C3 C3 C3 C2 C1

25th 13148.3 5.46882 5.39735 C2 C1 C3 C3 C2 C1

26th 13148.3 5.46882 5.39735 C1 C2 C3 C3 C1 C2

27th 13645.3 5.47391 5.47391 C3 C2 C2 C4 C1 C1

28th 13645.3 5.47391 5.47391 C1 C1 C4 C2 C2 C3

29th 13977.5 5.47392 5.47392 C1 C1 C3 C4 C3 C1

30th 13977.5 5.47392 5.47392 C1 C3 C4 C3 C1 C1

31st 13930.1 5.47392 5.47392 C1 C1 C4 C3 C3 C1

32nd 13930.1 5.47392 5.47392 C1 C3 C3 C4 C1 C1

33rd 13970.5 5.47392 5.47392 C1 C2 C4 C3 C2 C1

(continued)
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Table 2.5   (continued)

Design 
order

FSD 
value

MCW 
value

Unconstrained 
weight

Bar 1 Bar 2 Bar 3 Bar 4 Bar 5 Bar 6

34th 13970.5 5.47392 5.47392 C1 C2 C3 C4 C2 C1

35th 13818.0 5.48927 5.37822 C1 C1 C3 C3 C3 C1

36th 13818.0 5.48927 5.37822 C1 C3 C3 C3 C1 C1

37th 13278.3 5.49303 5.49303 C4 C1 C2 C4 C1 C1

38th 13278.3 5.49303 5.49303 C1 C1 C4 C2 C1 C4

39th 13330.9 5.49305 5.49305 C2 C1 C4 C3 C2 C1

40th 13249.4 5.49305 5.49305 C2 C1 C3 C4 C2 C1

41st 13175.6 5.49305 5.49305 C1 C1 C4 C3 C2 C2

42nd 13175.6 5.49305 5.49305 C2 C2 C3 C4 C1 C1

43rd 13249.4 5.49305 5.49305 C1 C2 C4 C3 C1 C2

44th 13381.0 5.49305 5.49305 C2 C2 C2 C5 C1 C1

45th 13381.0 5.49305 5.49305 C1 C1 C5 C2 C2 C2

46th 13330.9 5.49305 5.49305 C1 C2 C3 C4 C1 C2

47th 13328.1 5.49305 5.49305 C2 C2 C4 C3 C1 C1

48th 13328.1 5.49305 5.49305 C1 C1 C3 C4 C2 C2

49th 15823.2 5.49307 5.49307 C1 C3 C3 C3 C3 C1

50th 11944.9 5.49621 5.33993 C2 C1 C3 C3 C1 C1

51th 11944.9 5.49621 5.33993 C1 C1 C3 C3 C1 C2

Table 2.6   Minimum FSD designs (cross-section types as in Table 2.1)

Design 
order

FSD 
value

MCW 
value

Unconstrained 
weight

Bar 1 Bar 2 Bar 3 Bar 4 Bar 5 Bar 6

1st 11480.7 5.26338 5.26338 C1 C1 C3 C3 C1 C1

2nd 11645.8 5.35907 5.35907 C1 C1 C3 C4 C1 C1

3rd 11645.8 5.35907 5.35907 C1 C1 C4 C3 C1 C1

4th 11649.7 6.24373 5.16768 C1 C1 C3 C2 C1 C1

5th 11649.7 6.24373 5.16768 C1 C1 C2 C3 C1 C1

6th 11735.5 5.77910 5.26338 C1 C1 C4 C2 C1 C1

7th 11735.5 5.77910 5.26338 C1 C1 C2 C4 C1 C1

8th 11861.9 5.45477 5.45477 C1 C1 C4 C4 C1 C1

9th 11922.0 7.32865 5.07198 C1 C1 C2 C2 C1 C1

10th 11944.9 5.49621 5.33993 C1 C1 C3 C3 C1 C2

11st 11944.9 5.49621 5.33993 C2 C1 C3 C3 C1 C1

12nd 12026.5 6.31897 5.24423 C2 C1 C2 C3 C1 C1

13rd 12026.5 6.31897 5.24423 C1 C1 C3 C2 C1 C2

14th 12036.9 5.45477 5.45477 C1 C1 C5 C3 C1 C1

15th 12036.9 5.45477 5.45477 C1 C1 C3 C5 C1 C1

16th 12038.5 5.43563 5.43563 C2 C1 C3 C4 C1 C1

17th 12038.5 5.43563 5.43563 C1 C1 C4 C3 C1 C2

(continued)
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2.4.2 � Optimization

In this section, both the MCW and the FSD problems are optimized.
An evolutionary algorithm with two population sizes (80 and 160 individu-

als), two mutation rates (1.5 and 3  %), uniform crossover and gray codification 

Table 2.6   (continued)

Design 
order

FSD 
value

MCW 
value

Unconstrained 
weight

Bar 1 Bar 2 Bar 3 Bar 4 Bar 5 Bar 6

18th 12041.2 5.63246 5.33993 C2 C1 C2 C4 C1 C1

19th 12041.2 5.63246 5.33993 C1 C1 C4 C2 C1 C2

20th 12069.7 5.67125 5.35907 C1 C1 C5 C2 C1 C1

21st 12069.7 5.67125 5.35907 C1 C1 C2 C5 C1 C1

22nd 12163.8 5.43563 5.43563 C2 C1 C4 C3 C1 C1

23rd 12163.8 5.43563 5.43563 C1 C1 C3 C4 C1 C2

24th 12186.1 6.35272 5.24423 C2 C1 C3 C2 C1 C1

25th 12186.1 6.35272 5.24423 C1 C1 C2 C3 C1 C2

26th 12248.0 6.77926 5.16768 C1 C1 C1 C4 C1 C1

27th 12248.0 6.77926 5.16768 C1 C1 C4 C1 C1 C1

28th 12271.6 7.42623 5.07198 C1 C1 C1 C3 C1 C1

29th 12271.6 7.42623 5.07198 C1 C1 C3 C1 C1 C1

30th 12281.2 5.55047 5.55047 C1 C1 C5 C4 C1 C1

31st 12281.2 5.55047 5.55047 C1 C1 C4 C5 C1 C1

32nd 12309.8 5.53132 5.53132 C2 C1 C4 C4 C1 C1

33rd 12309.8 5.53132 5.53132 C1 C1 C4 C4 C1 C2

34th 12312.0 5.43998 5.43563 C2 C1 C2 C5 C1 C1

35th 12312.0 5.43998 5.43563 C1 C1 C5 C2 C1 C2

36th 12324.0 6.07500 5.33993 C2 C1 C4 C2 C1 C1

37th 12324.0 6.07500 5.33993 C1 C1 C2 C4 C1 C2

38th 12364.8 5.53132 5.53132 C1 C1 C5 C3 C1 C2

39th 12364.8 5.53132 5.53132 C2 C1 C3 C5 C1 C1

40th 12371.7 7.43926 5.14853 C2 C1 C2 C2 C1 C1

41st 12371.7 7.43926 5.14853 C1 C1 C2 C2 C1 C2

42nd 12432.3 6.46520 5.24423 C2 C1 C1 C4 C1 C1

43rd 12432.3 6.46520 5.24423 C1 C1 C4 C1 C1 C2

44th 12449.8 5.41648 5.41648 C2 C1 C3 C3 C1 C2

45th 12491.7 6.84455 5.26338 C1 C1 C5 C1 C1 C1

46th 12491.7 6.84455 5.26338 C1 C1 C1 C5 C1 C1

47th 12525.0 7.50132 5.14853 C2 C1 C1 C3 C1 C1

48th 12525.0 7.50132 5.14853 C1 C1 C3 C1 C1 C2

49th 12562.8 5.74984 5.45477 C1 C1 C6 C2 C1 C1

50th 12562.8 5.74984 5.45477 C1 C1 C2 C6 C1 C1
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(as in [5]) has been executed in 100 independent runs with 30,000 evaluations as 
stopping criterion. Results are shown in terms of average, best value and standard 
deviation of the fitness functions.

(a) Solving the problem of minimum constrained weight MCW optimum design:
Figure 2.4 shows the average fitness value, Fig. 2.5 shows the best fitness value 
and Fig. 2.6 shows the standard deviation fitness value; each containing the popu-
lation size of 80 in black lines and the population size of 160 in pink (gray) lines; 

Fig. 2.4   Constrained minimum weight evolution over 100 independent runs in cR00 test case

Fig. 2.5   Constrained minimum weight evolution over 100 independent runs in cR00 test case
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the thicker line belongs to the 1.5 % mutation rate and the thinner line belongs to 
the 3.0 % mutation rate.

(b) Solving the problem of fully stressed design FSD optimum design:
Figure 2.7 shows the average fitness value, Fig. 2.8 shows the best fitness value 
and Fig. 2.9 shows the standard deviation fitness value; each containing the popu-
lation size of 80 in black lines and the population size of 160 in pink (gray) lines; 
the thicker line belongs to the 1.5 % mutation rate and the thinner line belongs to 
the 3.0 % mutation rate.

Fig. 2.6   Constrained minimum weight evolution over 100 independent runs in cR00 test case

Fig. 2.7   FSD evolution over 100 independent runs in cR00 test case
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(c) Comparing FSD and MCW problems with population size 80:
In this case, fitness values have been scaled between 0 and 1, in order to easily 
compare visually the behaviour of both problems (FSD and MCW). Figure 2.10 
shows the scaled average fitness value, Fig.  2.11 shows the scaled best fitness 
value and Fig. 2.12 shows the scaled standard deviation fitness value; each con-
taining the FSD optimization problem in black lines and the MCW optimization 
problem in pink (gray) lines; the thicker line belongs to the 1.5 % mutation rate 
and the thinner line belongs to the 3.0 % mutation rate.

Fig. 2.8   FSD evolution over 100 independent runs in cR00 test case

Fig. 2.9   FSD evolution over 100 independent runs in cR00 test case
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(d) Comparing FSD and MCW problems with population size 160:
In this case, fitness values have been scaled between 0 and 1, in order to easily 
compare visually the behaviour of both problems (FSD and MCW). Figure 2.13 
shows the scaled average fitness value, Fig.  2.14 shows the scaled best 

Fig. 2.10   Constrained minimum weight evolution over 100 independent runs in cR00 test case

Fig. 2.11   Constrained minimum weight evolution over 100 independent runs in cR00 test case
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fitness value and Fig. 2.15 shows the scaled standard deviation fitness value; each 
containing the FSD optimization problem in black lines and the MCW optimiza-
tion problem in pink (gray) lines; the thicker line belongs to the 1.5 % mutation 
rate and the thinner line belongs to the 3.0 % mutation rate.

Fig. 2.12   Constrained minimum weight evolution over 100 independent runs in cR00 test case

Fig. 2.13   FSD evolution over 100 independent runs in cR00 test case
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2.4.3 � Discussion

(a) Solving the problem of minimum constrained weight MCW optimum design 
(Figs. 2.4, 2.5 and 2.6):
The lower the population size (80 vs. 160), the faster the convergence of the algo-
rithm without worsening the quality of the obtained solution in this test case as 
shown in Figs. 2.4, 2.5 and 2.6 (the chromosome length of this problem is easily 

Fig. 2.14   FSD evolution over 100 independent runs in cR00 test case

Fig. 2.15   FSD evolution over 100 independent runs in cR00 test case
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handled by the evolutionary algorithm). The behaviour of average and standard 
deviation values are slightly better in the lower mutation rate (1.5 % vs. 3 %). It 
is remarkable that the range of evaluations required to obtain the best design in all 
the 100 independent executions in this MCW problem vary from 1610 evaluations 
(population size 80, mutation rate 1.5 %) to 2272 evaluations (population size 160, 
mutation rates 1.5 and 3 %).

(b) Solving the problem of fully stressed design FSD (Figs. 2.7, 2.8 and  2.9):
Here also, the lower the population size (80 vs. 160), the faster the convergence 
of the algorithm without worsening the quality of the obtained solution in this test 
case as shown in Figs. 2.7, 2.8 and  2.9 (the chromosome length of this problem is 
easily handled by the evolutionary algorithm). As well, the behaviour of average 
and standard deviation values are slightly better in the lower mutation rate (1.5 % 
vs. 3 %). It is remarkable that the range of evaluations required to obtain the best 
design in all the 100 independent executions in this FSD problem vary from 1172 
evaluations (population size 80, mutation rate 1.5 %) to 2020 evaluations (popula-
tion size 160, mutation rate 3 %).

(c) Comparing FSD and MCW problems with population size 80 and 160 (Figs. 2.10, 
2.11, 2.12, 2.13, 2.14, and 2.15):
Figures 2.10, 2.11, 2.12, 2.13, 2.14, and 2.15 show clearly through the scaled fit-
ness, that when comparing the fitness behaviour, in all cases of average, best and 
standard deviation, the FSD problem has a faster convergence than the MCW 
problem in this test case (except in the best fitness of MCW problem with popula-
tion size 80 and 3 % mutation rate), requiring lower number of fitness evaluations 
to achieve the same optimum design.

2.5 � Conclusions

The relation of the problems MCW and FSD has been shown through a simple 
truss test case in discrete cross-section types sizing optimization. This relation has 
been evidenced by having a coincidental optimum design, a high number of coin-
cidental best designs among the best ones and showing a high correlation coeffi-
cient when considering the whole search space of each problem.

The search process of the optimum design of both problems has been possi-
ble by using evolutionary algorithms, showing a high robust behaviour where in 
100 out of 100 independent runs, this metaheuristic optimization was able to find 
the best solution in the range of 1000–2000 evaluations -versus a search space of 
tens of millions-. When comparing them, the fully stressed design (FSD) problem 
has shown an easier topology for the evolutionary algorithm optimization versus 
the MCW problem, that is, requiring less number of fitness function evaluations to 
achieve the same shared best design.

Application of this analysis to an increased number of test cases and generalization 
in other types of bar structures, -e.g. in the case of frame bar structures-, should be 
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developed in the future to provide more light about the comparison and relationship of 
the fully stressed design and the minimum constrained weight problems.
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Abstract  This paper presents a hybrid genetic algorithm for the time-cost optimi-
zation (TCO) problem. The chromosome representation of the problem is based 
on random keys. The schedules are constructed using a priority rule in which the 
priorities are defined by the genetic algorithm. Schedules are constructed using a 
procedure that generates parameterized active schedules. In construction projects, 
time and cost are the most important factors to be considered. In this paper, a new 
hybrid genetic algorithm is developed for the optimization of the two objectives 
time and cost. The approach was developed in VBA and applied to test problems 
reported on the literature and compared with other approaches. The results indi-
cate that this approach could assist decision-makers to obtain good solutions for 
project duration and total cost.

Keywords  Construction management  ·  Project management  ·  Genetic algorithms  ·  
Time-cost optimization

3.1 � Introduction and Background

Construction projects are found throughout business and areas such as manufac-
turing facilities, infrastructure development and improvement, and residential and 
commercial building.

A construction project is a group of discernible tasks or activities that are con-
ducted in a coordinated effort to accomplish one or more objectives. Construction 
projects require varying levels of cost, time and other resources (i.e., labor, equip-
ment, material, suppliers) [29].
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In a construction project, there are two main factors, such as project duration 
and project cost. These are depended to each other. The activity duration is a func-
tion of resources (i.e. crew size, equipments and materials) availability. On the 
other hand, resources demand direct costs. Therefore, the relationship between 
project time and direct cost of each activity is a monotonously decreasing curve. It 
means if activity duration is compressed then that leads to an increase in resources 
and so that direct costs. But, project indirect costs increase with the project dura-
tion. In general, for a project, the total cost is the sum of direct and indirect costs 
and exists an optimum duration for the least cost, see Fig. 3.1. Hence, relationship 
between project time and cost is trade-off [9]. So, in a project it needs multi-objec-
tive approach to minimize both projects time and cost by varying options or modes 
of construction of the critical activities [28].

As the number of activities of a construction project grows TCO becomes an 
NP-hard problem. It is an important and challenging problem that has received 
increasing attention for several years. While the exact methods are available for 
providing optimal solution for small problems, its computation time is not feasible 
for large-scale problems. Hence, in practice heuristic and metaheuristic methods to 
generate near optimal solutions for large problems are of special interest [23].

Several approaches to solve the TCO problem have been proposed in the last 
years: mathematical, heuristic and search methods.

•	 Mathematical methods: several mathematical models such as linear program-
ming [15, 16, 27], integer programming, or dynamic programming [3, 5, 6, 32] 
and LP/IP hybrid [2, 18], Meyer and Shaffer [24] and Patterson and Huber [30] 
use mixed integer programming. However, for large number of activity in net-
work and complex problem, integer programming needs a lot of computation 
effort [7]. Since, these are suitable for small project.

•	 Heuristic methods: heuristic algorithms are not considered to be in the category 
of optimization methods. They are algorithms developed to find an acceptable  
near optimum solution. Heuristic methods are usually algorithms easy to 

Fig. 3.1   Project time and 
cost curve (adapted from 
Golzarpoor [13])
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understand which can be applied to larger problems and typically provide 
acceptable solutions [14]. However, they have lack mathematical consistency 
and accuracy and are specific to certain instances of the problem [8, 25, 31, 33] 
are some of the research studies that have utilized heuristic methods for solving 
TCO problems.

•	 Search methods: some researchers have tried to introduce evolutionary algo-
rithms to find global optima such as genetic algorithm (GA) [7, 10, 28, 37, 38] 
the particle swarm optimization algorithm [35], ant colony optimization (ACO) 
[1, 26, 34] and harmony search (HS) [9].

In this paper it is proposed a new hybrid genetic algorithm based on the works 
[21, 23], with a novel objective function and a new chromosome structure to solve 
the time-cost optimization problem.

3.2 � Problem Description

The TCO problem can be modeled as follows: a project consists of n + 2 activi-
ties where each activity has to be processed in order to complete the project. Let 
J = {0, 1, . . . , n, n+ 1} denote the set of activities to be scheduled, K = {1, . . . , k} 
the set of resources, Cdjk the direct cost of resources type k at activity j and Cid the 
indirect cost of project. Each resource type k has a limited capacity of Rk at any 
point in time.

The activities 0 and n + 1 are dummy, have no duration and represent the initial 
and final activities. The activities are interrelated by two kinds of constraints:

•	 The precedence constraints, which force each activity j to be scheduled after all 
predecessor activities, Pj, are completed.

•	 Performing the activities requires resources with limited capacities.

Each activity can be performed in one of several different modes. A mode rep-
resents a combination of different resources and/or levels of resources with an 
associated duration and a direct cost. Once an activity is started in one mode, it 
may not be changed. One activity j can be executed in m modes given by the set 
Mj =

{

1, . . . ,mj

}

. The duration of activity j being performed in mode mj is given 
by djm. The activity j executed in mode mj uses rjmk units of renewable resource k, 
where rjmk ≤ Rk for each renewable resource k.

While being processed, activity j requires rjmk units of resource type k ε K dur-
ing every time instant of its non-preemptable duration djm. The parameters djm, 
rjmk, Cdjk, Cid and Rk are assumed to be non-negative and deterministic. Activities 
are subject to finish-start precedence relations with zero time lags, meaning that an 
activity can be started if and only if all predecessors have been completed. In addi-
tion, the activities in progress are not allowed to be interrupted. Therefore, the goal 
of solving the TCO is to find a mode combination for all activities, as well as the 
resultant schedule that leads to minimal project duration and total cost.



36 J. Magalhães-Mendes

3.3 � Multiobjective Optimization

With evolutionary techniques being used for single-objective optimization for over 
two decades, the incorporation of more than one objective in the fitness function 
has finally gained popularity in the research [4].

In principle, there is no clear definition of an “optimum” in multiobjective opti-
mization (MOP) as in the case of single-objective issues; and there even does not 
necessarily have to be an absolutely superior solution corresponding to all objec-
tives due to the incommensurability and conflict among objectives. Since the solu-
tions cannot be simply compared with each other, the “best” solution generated 
from optimization would correspond to human decision-makers subjective selec-
tion from a potential solution pool, in terms of their particulars [38].

The classical methods reduce the MOP to a scalar optimization optimization 
by using multiobjective weighting (MOW) or a utility function (multiobjective 
utility analysis). Multiobjective weighting allows decisions makers to incorporate 
the priority of each objective into decision making. Mathematically, the solutions 
obtained by equally weighting all objectives may provide the least objective con-
flicts, but in most cases, each objective is first optimized separately and the overall 
objective value is evaluated depending on the weighting factors. The weakness of 
MOW is that the overall optimum is usually at the dominating objective only [7].

In a certain way we can say that the work of Zadeh [36] is the first to advocate 
the assignment of weights to each objective function and combined them into a 
single-object function. More recently, Gen and Cheng [10] adopted the adaptive 
weight approach (AWA) in construction TCO problem (also referred to as GC 
approach hereafter).

In the GC approach Gen and Cheng [10] proposed the following formulas:

where,

Zmax
c 	� maximal value for total cost in the current population;

Zmax
t 	� maximal value for time in the current population;

Zmin
c 	� minimal value for total cost in the current population;

Zmin
t 	� minimal value for time in the current population.

(3.1)Z+ =
{

Zmax
c , Zmax

t

}

(3.2)Z− =
{

Zmin
c , Zmin

t

}

(3.3)wc = 1

/

(Zmax
c − Zmin

c ),wt = 1

/

(Zmax
t − Zmin

t )

(3.4)f (x) = wc(Z
max
c − Zc)+ wt(Z

max
t − Zt)
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In 2004, Zheng et al. [38] proposed the modified weight approach (MAWA) to 
deal with the multi-objective problem. Under the MAWA, the adaptive weights are 
formulated through the following four conditions:

1.	 For Zmax
t �= Zmin

t  and Zmax
c �= Zmin

c

	

	

	

	

	

	

2.	 For Zmax
t = Zmin

t  and Zmax
c = Zmin

c

	

3.	 For Zmax
t = Zmin

t  and Zmax
c �= Zmin

c

	

4.	 For Zmax
t �= Zmin

t  and Zmax
c = Zmin

c

	

Zheng et al. [38] proposed a fitness formula in accordance with the proposed 
adaptive weight:

where,

γ	� is a small positive random number between 0 and 1;
Zmax
c 	� maximal value for total cost in the current population;

Zmax
t 	� maximal value for time in the current population;

Zmin
c 	� minimal value for total cost in the initial population;

(3.5)vc =
Zmin
c

Zmax
c − Zmin

c

(3.6)vt =
Zmin
t

Zmax
t − Zmin

t

(3.7)v = vc + vt

(3.8)wc = vc
/

v

(3.9)wt = vt
/

v

(3.10)wc + wt = 1

(3.11)wc = wt = 0.5

(3.12)wc = 0.1,wt = 0.9

(3.13)wc = 0.9,wt = 0.1

(3.14)f (x) = wt

(Zmax
t − Zt)+ γ

(Zmax
t − Zmin

t )+ γ
+ wc

(Zmax
c − Zc)+ γ

(Zmax
c − Zmin

c )+ γ
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Zmin
t 	� minimal value for time in the initial population;

Zc	� represents the total cost of the xth solution in current population;
Zt	� represents the time of the xth solution in current population.

This study proposes a new fitness formula with the following formulation:

where,

Zmax
c 	� maximal value for total cost in the current chromosome;

Zmax
t 	� maximal value for time in the current chromosome;

Zmin
c 	� minimal value for total cost in the initial population;

Zmin
t 	� minimal value for time in the initial population;

Zc	� represents the total cost of the xth solution in current chromosome;
Zt	� represents the time of the xth solution in current chromosome.

3.4 � The GA-Based Approach

The approach presented in this paper is based on a genetic algorithm to perform its 
optimization process. Figure 3.2 shows the architecture of approach.

(3.15)f (x) = Genet
(Zmax

t − Zt)

(Zmax
t − Zmin

t )
+ Genec

(Zmax
c − Zc)

(Zmax
c − Zmin

c )

Fig. 3.2   Architecture of the approach
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The approach combines a genetic algorithm, a schedule generation scheme and 
a local search procedure. The genetic algorithm is responsible for evolving the 
chromosomes which represent the priorities of the activities.

For each chromosome the following four phases are applied:

(1)	 Transition parameters—this phase is responsible for the process transition 
between first level and second level;

(2)	 Schedule parameters—this phase is responsible for transforming the chromo-
some supplied by the genetic algorithm into the priorities of the activities and 
delay time;

(3)	 Schedule generation—this phase makes use of the priorities and the delay time 
and constructs schedules;

(4)	 Schedule improvement—this phase makes use of a local search procedure to 
improve the solution obtained in the schedule generation phase.

After a schedule is obtained, the quality is processed feedback to the genetic 
algorithm. Figure 3.2 illustrates the sequence of phases applied to each chromo-
some. Details about each of these phases will be presented in the next sections.

3.4.1 � GA Transition Process

The evolutionary algorithms are an interdisciplinary research area comprising sev-
eral paradigms inspired by Darwinian principle of evolution.

The current stage of research considers, among others, the following para-
digms: genetic algorithms, genetic programming, evolutionary strategies, neuro-
evolution and differential evolution.

The Genetic Algorithms (GAs) have been applied successfully in several areas, 
such as bioinformatics, computational science, engineering, economics, chemistry, 
manufacturing, mathematics and physics.

The GAs are search algorithms which are based on the mechanics of natural 
selection and genetics to search through decision space for optimal solutions. One 
fundamental advantage of GAs versus traditional methods is described by Goldberg 
[12]: in many optimization methods, we move gingerly from a single solution in the 
decision space to the next using some transition rule to determine the next solution.

First of all, an initial population of potential solutions (individual) is generated 
randomly. A selection procedure based on a fitness function enables to choose 
the individual candidate for reproduction. The reproduction consists in recom-
bining two individuals by the crossover operator, possibly followed by a muta-
tion of the offspring. Therefore, from the initial population a new generation is 
obtained. From this new generation, a second new generation is produced by the 
same process and so on. The stopping criterion is normally based on the number 
of generations.

The GA based-approach uses a random key alphabet U (0, 1) and an evolution-
ary strategy identical to the one proposed by Goldberg [12].
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Each chromosome represents a solution to the problem and it is encoded as a 
vector of random keys (random numbers). Each solution encoded as initial chro-
mosome (first level) is made of 2 + mn + n genes where n is the number of activi-
ties and m is the number of execution modes, see Fig. 3.3.

The called first level as the capacity to solving the multi-mode resource con-
strained project scheduling problem (MRCPSP) [21, 23].

In this case of study we do not consider the requirements to the type and num-
ber of resources needed for construction mode for each activity as well as the 
maximum number of available resources.

The transition process between first level and second level consists in choos-
ing the option or construction mode mj for each activity j. Using this process we 
obtain the solution chromosome (second level) composed by 2*(n +  1) genes. 
In general, for a project, the total cost is the sum of direct and indirect costs and 
exists an optimum duration for the least cost, see Fig. 3.4.

The called second level as the capacity to solving the resource constrained 
project scheduling problem (RCPSP) [21, 23]. In this case of study we do not 
consider the requirements to the type and number of resources needed for each 
activity as well as the maximum number of available resources.

After, we evaluate the quality (fitness) of the solution chromosome.

3.4.2 � GA Decoding

A real-coded GA is adopted in this article. Compared with the binary-code GA, 
the real-coded GA has several distinct advantages, which can be summarized as 
follows [19]:

Fig. 3.3   Chromosome 
structure
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•	 It is more convenient for the real-coded GA to denote large scale numbers and 
search in large scope, and thus the computation complexity is amended and the 
computation efficiency is improved;

•	 The solution precision of the real-coded GA is much higher than that of the 
binary-coded GA;

•	 As the design variables are coded by floating numbers in classical optimization 
algorithms, the real-coded GA is more convenient for combination with classi-
cal optimization algorithms.

The priority decoding expression uses the following expression:

where,

LLPj is the longest length path from the beginning of the activity j to the end of the 
project;
LCP is the length along the critical path of the project [20];
mj is the gene of the selected mode for activity j.

The gene jm + 1 is used to determine the delay time when scheduling the activi-
ties. The delay time used by each activity is given by the following expression:

(3.16)PRIORITYj =
LLPj

LCP
×

[

1+ genejm

2

]

j = 1, . . . , n

(3.17)Delay time = genejm+1 × 1.5×MaxDur

Fig. 3.4   Transition process between first and second level
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where MaxDur is the maximum duration of all activities. The factor 1.5 is 
obtained after some experimental tuning.

A maximum delay time equal to zero is equivalent to restricting the solution 
space to non-delay schedules and a maximum delay time equal to infinity is equiv-
alent to allowing active schedules. To reduce the solution space is used the value 
given by formula (3.17), see Gonçalves et al. [11].

3.4.3 � Construction of a Schedule

Schedule generation schemes (SGS) are the core of most heuristic solution proce-
dures for project scheduling. SGS start from scratch and build a feasible schedule 
by stepwise extension of a partial schedule. A partial schedule is a schedule where 
only a subset of the n + 2 activities have been scheduled.

There are two different classics methods SGS available. They can be dis-
tinguished into activity and time incrementation. The so called serial SGS 
performs activity-incrementation and the so called parallel SGS performs 
time-incrementation.

A third method for schedule generating can be applied: the parameterized 
active schedules. This type of schedule consists of schedules in which no resource 
is kept idle for more than a predefined period if it could start processing some 
activity. If the predefined period is set to zero, then we obtain a non-delay sched-
ule. This type of SGS is used on this work.

Figure 3.5 presents the relationship diagram of various schedules with regard to 
optimal schedules.

Fig. 3.5   Types of schedules 
(adapted from Magalhães-
Mendes [22])
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3.4.4 � Local Search

Local search algorithms move from solution to solution in the space of candi-
date solutions (the search space) until a solution optimal or a stopping criterion 
is found. In this paper it is applied backward and forward improvement based on 
Klein [17].

Initially it is constructed a schedule by planning in a forward direction starting 
from the project’s beginning. After it is applied backward and forward improve-
ment trying to get a better solution. The backward planning consists in reversing 
the project network and applying the scheduling generator scheme. A detailed 
example is described by Magalhães-Mendes [20].

3.4.5 � Evolutionary Strategy

There are many variations of genetic algorithms obtained by altering the repro-
duction, crossover, and mutation operators. Reproduction is a process in which 
individual (chromosome) is copied according to their fitness values (makespan). 
Reproduction is accomplished by first copying some of the best individuals from 
one generation to the next, in what is called an elitist strategy.

In this paper the fitness proportionate selection, also known as roulette-
wheel selection, is the genetic operator for selecting potentially useful solutions 
for reproduction. The characteristic of the roulette wheel selection is stochastic 
sampling.

The fitness value is used to associate a probability of selection with each indi-
vidual chromosome. If fi is the fitness of individual i in the population, its prob-
ability of being selected is,

A roulette wheel model is established to represent the survival probabilities for 
all the individuals in the population. Then the roulette wheel is rotated for several 
times [12].

After selecting, crossover may proceed in two steps. First, members of the 
newly selected (reproduced) chromosomes in the mating pool are mated at ran-
dom. Second, each pair of chromosomes undergoes crossover as follows: an inte-
ger position k along the chromosome is selected uniformly at random between 1 
and the chromosome length l. Two new chromosomes are created swapping all the 
genes between k + 1 and l, see Magalhães-Mendes [21].

The mutation operator preserves diversification in the search. This operator is 
applied to each offspring in the population with a predetermined probability. We 
assume that the probability of the mutation in this paper is 5 %.

(3.18)pi =
fi

∑N
i=1

fi
, i = 1, . . . , n
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3.5 � Computational Experiments

To illustrate the effectiveness of the proposed RKV-TCO (Random Key Variant for 
Time-Cost Optimization) approach, a project of seven activities proposed initially 
by Liu et al. [18] and a project of 18 activities originally introduced by Feng et al. 
[7] are used.

This computational experience has been performed on a computer with an Intel 
Core 2 Duo CPU T7250 @2.33 GHz and 1.95 GB of RAM. The algorithm pro-
posed in this work has been coded in VBA under Microsoft Windows NT.

3.5.1 � First Case

A project of seven activities proposed initially by Liu et  al. [18] and fitted by 
Zheng et al. [38] is presented in Table 3.1 with available activity options and cor-
responding durations and costs. Indirect cost rate was $1500/day.

The robustness of the new proposed model RKV-TCO in the deterministic situ-
ation was compared with three other previous models:

(1)	 Gen and Cheng [10] using GC approach;
(2)	 Zheng et al. [38] using MAWA with a GA-based approach;
(3)	 Parveen and Saha [28] using MATLAB 7.7.0.471 (R2008b).

The results of RKV-TCO approach are presented in Table 3.2. The Table 3.2 
shows the values of time and cost for the first six generations with Gen and Cheng 
[10] and Zheng et  al. [38] approaches. The algorithm RKV-TCO obtains in the 
sixth generation a better solution than the works mentioned above. Furthermore, 
the solutions obtained in generations 6, 7 and 10 are solutions of Pareto front, 
which proves the effectiveness of this algorithm. The Pareto front solutions are 
reported by the work [28]. The RKV-TCO ends with an optimal solution (project 
time = 60 days and cost = $233,500) in Table 3.2.

We can say that the RKV-TCO algorithm has better results than Gen and Cheng 
[10] and Zheng et al. [11] and compares very well with the work of Parveen and 
Saha [28] who used MATLAB.

Additionally we can also state that the RKV-TCO approach produces high-
quality solutions quickly once needed only 2 s to complete 50 generations.

3.5.2 � Second Case

The second case of study is a project of eighteen activities originally introduced 
by Feng et al. [7]. The activity relationships for the model project consisting of 18 
activities and the three modes of construction for each activity and their associated 
time and cost are presented in Table 3.3. Indirect cost rate was $1000/day.
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The Table  3.4 shows the results for several mathematical and evolutionary-
based methods. The algorithm RKV-TCO obtains better solution than the other 
GA-based approaches. Furthermore, the algorithm RKV-TCO reaches the optimal 
solution quickly, i.e., in 5 s.

The results of the RKV-TCO illustrates that evolutionary methods based on 
genetic algorithms can obtain the better solutions and in very reasonable compu-
tational time. The time necessary by RKV-TCO to obtain the optimal solution is 
highly promising and shows that a good implementation can be critical to the suc-
cess of the genetic algorithms. Also important to emphasize is that genetic algo-
rithms can solve large problems as opposed to exact methods.

3.5.3 � GA Configuration

Though there is no straightforward way to configure the parameters of a genetic 
algorithm, we obtained good results with values: population size of 5 × number 

Table 3.1   Time and cost for each option/mode of activity

Activity description Activity 
number

Precedent 
activity

Option/
Mode

Duration 
(days)

Direct  
cost ($)

Site preparation 1 – 1 14 23000

2 20 18,000

3 24 12,000

Forms and rebar 2 1 1 15 3,000

2 18 2,400

3 20 1,800

4 23 1,500

5 25 1,000

Excavation 3 1 1 15 4,500

2 22 4,000

3 33 3,200

Precast concrete girder 4 1 1 12 45,000

2 16 35,000

3 20 30,000

Pour foundation and piers 5 2, 3 1 22 20,000

2 24 17,500

3 28 15,000

4 30 10,000

Deliver PC girders 6 4 1 14 40,000

2 18 32,000

3 24 18,000

Erect girders 7 5, 6 1 9 30,000

2 15 24,000

3 18 22,000
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of activities in the problem; mutation probability of 0.05; top (best) 1 % from the 
previous population chromosomes are copied to the next generation; stopping 
criterion of 50 generations.

3.6 � Conclusions and Further Research

A new GA based-approach to solving the time-cost optimization problem has been 
proposed. The project activities have various construction modes, which reflect 
different ways of performing the activity, each mode having a different impact on 
the duration and cost of the project. This approach combines a genetic algorithm, 
a schedule generation scheme and a local search with a new fitness formula. The 
chromosome representation of the problem is based on random keys. The sched-
ules are constructed using a priority rule in which the priorities are defined by 
the genetic algorithm. Schedules are constructed using a procedure that generates 
parameterized active schedules. The present approach provides an attractive alter-
native for the solution of the construction multi-objective optimization problems.

Table 3.2   Summary of the results

Approaches Generation number Criteria Calculation time

Time Cost ($)

Gen and Cheng [10] 0 83 243,500 Not reported

1 80 242,400

2 80 261,900

3 79 256,400

4 79 256,400

5 79 256,400

Zheng et al. [38] 0 73 251,500 Not reported

1 73 251,500

2 73 251,500

3 66 236,500

4 66 236,500

5 66 236,500

Parveen and Saha [28] 
(using MATLAB)

Not reported 60 233,500 Not reported

This paper 0 73 242,300 2 (two) s for 50 
generations1 73 228,300

2 67 225,300

3 67 230,300

5 65 227,900

6 63 225,500

7 62 233,000

10 60 233,500
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Table 3.3   Time and cost for each option/mode of activity (adapted from Golzarpoor [13])

Activity 
number

Precedent 
activity

Option/Mode 1 Option/Mode 2 Option/Mode 3

Duration 
(days)

Direct 
cost ($)

Duration 
(days)

Direct 
cost ($)

Duration 
(days)

Direct 
cost ($)

1 – 24 1,200 21 1,500 14 2,400

2 – 25 1,000 23 1,500 15 3,000

3 – 33 3,200 33 3,200 15 4,500

4 – 20 30,000 20 30,000 12 45,000

5 1 30 10,000 30 10,000 22 20,000

6 1 24 18,000 24 18,000 14 40,000

7 5 18 22,000 18 22,000 9 30,000

8 6 24 120 21 208 14 220

9 6 25 100 23 150 15 300

10 2, 6 33 320 33 320 15 450

11 7, 8 20 300 20 300 12 450

12 5, 9, 10 30 1,000 30 1,000 22 2,000

13 3 24 1,800 24 1,800 14 4,000

14 4, 10 18 2,200 18 2,200 9 3,000

15 12 16 3,500 16 3,500 12 4,500

16 13, 14 30 1,000 28 1,500 20 3,000

17 11, 14, 15 24 1,800 24 1,800 14 4,000

18 16, 17 18 2,200 18 2,200 9 3,000

Table 3.4   Summary of the results for mathematical and evolutionary-based methods

aReported by Golzarpoor [13]
bPercentage of deviation of the result from optimal solution

Approaches Deviation (%)b Criteria Calculation 
timeTime Cost ($)

Optimal solution 0 110 216,270 –

Excel solvera 18 110 254,620 2 min

Risk solver platform standard 
SLGRG nonlineara

0 110 216,270 1.5 min

Risk solver platform standard large-
scale GRG solvera

0 110 216,270 1.5 min

TCT optimization using evolver 
(includes an evolutionary engine)a

10 110 238,070 30 min

Risk solver platform standard evolu-
tionary solvera

27 110 275,320 18 min

Optimization results using CPLEX 
CP optimizera

0 110 216,270 9 min

IBM ILOG optimization studioa 0 110 216,270 9 min

This paper (RKV-TCO) 0 110 216,270 5 (five) s for 50 
generations
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Further research can be extended to more construction project problems 
to reinforce the results obtained namely expanding the optimization model to 
consider resource allocation and resource leveling constraints and test the use of 
contrasted multiobjective evolutionary algorithms of second generation (e.g.: 
NSGA2) in these problems with the proposed approach.
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Abstract  Advances in development of highly efficient dedicated Evolutionary 
Algorithms (EA) for a wide class of large non-linear constrained optimization 
problems are considered in this paper. The first objective of this general research 
is development and application of the improved EA to residual stress analysis in 
railroad rails and vehicle wheels. However, the standard EA are not sufficiently 
efficient for solving such large optimization problems. Therefore, our current 
research is mostly focused on development of various new very efficient accelera-
tion techniques proposed, including smoothing and balancing, adaptive step-by-
step mesh refinement, as well as a’posteriori error analysis and related techniques. 
This paper presents an efficiency analysis of chosen speed-up techniques using 
several simple but demanding benchmark problems, including residual stress anal-
ysis in elastic-plastic bodies under cyclic loadings. Preliminary results obtained 
for numerical tests are encouraging and show a clear possibility of practical appli-
cation of the improved EA to large optimization problems.

Keywords  Evolutionary algorithms  ·  Large non-linear constrained optimization  ·  
Computation efficiency increase

J. Orkisz · M. Glowacki (*) 
Institute for Computational Civil Engineering, Cracow University of Technology,  
24 Warszawska Street, 31-155  Kraków, Poland
e-mail: mglowac@gmail.com

J. Orkisz 
e-mail: plorkisz@cyf-kr.edu.pl



52 J. Orkisz and M. Glowacki

4.1 � Introduction

A lot of scientific and engineering problems, including many important problems 
of mechanics, may be formulated in terms of constrained optimization. Complexity 
of such problems results mostly from their non-linearity, as well as from a large 
number of decision variables and constraints. Thus, this paper considers develop-
ment of an efficient optimization approach based on the Evolutionary Algorithms 
(EA) for a wide class of large non-linear constrained optimization problems.

In contrast to most deterministic methods, the EA may be successfully applied 
with similar efficiency to both the convex and non-convex problems [4, 10]. 
However, general efficiency of the standard EA is rather low. Therefore, signifi-
cant acceleration of the convergence process is needed. Moreover, the improved 
EA should provide possibility of solving such optimization problems, when the 
standard EA fail. Improvement of the standard EA may be obtained in several 
ways. We have already proposed several new acceleration techniques [5, 15, 16, 
18]. These techniques have been preliminarily tested using several demanding 
benchmark problems. Numerical results of these tests indicate significant accelera-
tion of the large optimization processes involved.

The engineering objective of our research includes residual stress analysis in 
railroad rails and vehicle wheels [7, 12, 13], as well as a wide class of problems 
resulting from the Physically Based Approximation (PBA) of experimental and/
or numerical data [8]. Tensile residual stresses are of great importance in reliable 
prediction of rail and wheel life service resulting from its fatigue failure. Both the 
theoretical and experimental investigations of residual stress may be expressed 
in terms of constrained optimization problems. Theoretical model of residual 
stress analysis in bodies under cyclic loadings is based on the shakedown theory 
and may be found in [12–14]. Several discrete methods (Finite Element Method, 
Boundary Element Method, Meshless Finite Difference Method) and the deter-
ministic solution approach were already used to solve such problems [13, 14]; 
neural networks were also investigated. The experimental model is based on the 
PBA approach [8, 13]. In general, the PBA may be applied for smoothing of 
any experimentally measured data. It allows for simultaneous use of the whole 
experimental, theoretical, and heuristic knowledge of analyzed problems in a way 
dependent on the reliability of such information [8]. The PBA may be also applied 
for smoothing of discrete data obtained from any rough numerical solution of any 
boundary value problem. So far mostly the deterministic methods have been used 
for solving the PBA problems [8, 13]. However, preliminary attempts of applica-
tion of the EA to such problems have been also recently made in [17].

Due to the size and complexity of the considered optimization problems, 
our research is focused, first of all, on the efficiency increase of the algorithms 
applied. We are presenting here the state of the art of our research, including over-
view of the proposed acceleration techniques, advances in their development, 
and chosen numerical results carried out for various benchmarks problems. The 
present work is a continuation of the previous papers [5, 15–18].
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4.2 � General Problem Formulation

Considered is a wide class of large non-linear constrained optimization problems. 
Usually such problems are formulated as optimization of functionals, where a 
function u(x), x ∈ RN is sought, usually in the discrete form of the vector u = {ui} 
consisting of nodal values ui, i = 1, 2, …, n. These nodal values are defined on 
a mesh formed by arbitrarily distributed nodes. Here, N is the dimension of the 
physical space (1D, 2D or 3D), and n is a number of decision variables. In general, 
considered optimization problems may be posed as follows:

find a function u = u(x), that yields the stationary point of a functional �(u), 
satisfying the equality

and inequality constraints

In particular case of the PBA approach [8], the functional

consists of the experimental �E(σ ) and theoretical �T (σ ) parts, scaled to be 
dimensionless quantities. Here, σ is the required solution, and � is a scalar weight-
ing factor. In the PBA, the equality constraints are usually of theoretical nature, 
while the inequality ones are mostly of experimental nature.

The experimental part of the functional is defined as the weighted averaged error 
resulting from discrepancies between the measured data and its approximation [8]:

where σ represents the required unknown field, f is a measured function of σ, f expi  
is its experimental value at the point ri, ei is an admissible experimental error, m is 
a number of measurements, F(x) = p(x̄)− p(x − x̄) is a data scattering function 
defined by the probability density function p(x − x̄), and x̄ is the expected value.

The enhanced field σ(r) cannot differ too much from experimental data. Thus, 
the inequality constraints are defined as local requirements:

It is useful to impose also an averaged global constraint:

Admissible experimental errors eE and ei, i = 1, 2, 3, . . . , m should be evaluated 
taking into account the true statistics of measurements.

The theoretical part of the functional (4.3) is based on a known theory, and/
or on heuristic principles [8]. In mechanics it may be represented by an energy 
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functional that has to be minimized, e.g., the total complementary energy of stati-
cally admissible stresses. On the other hand, as a heuristic principle, e.g., require-
ment of smoothness may be also introduced. In such case, the minimal average 
curvature κ in the whole domain Ω can be used, hence

where

In the 2D Cartesian coordinate system the above definition may be replaced by the 
following one:

and transformed to the polar coordinate system if necessary.
One of the main difficulties in the general formulation is the problem of how 

to establish the weighting factor �, i.e., how to determine a reasonable balance 
between experiment and theory involved. Specific formulations addressing this 
problem may be found in [8].

4.3 � Evolutionary Algorithms and Acceleration Techniques

Nowadays, the EA form a wide group of biologically inspired methods based on 
theory of evolution and genetics. This group includes such methods like genetic 
algorithms, genetic programming, evolutionary strategies, evolutionary program-
ming, and others [4, 10]. In this paper, the EA are precisely understood as genetic 
algorithms with decimal (floating-point) chromosomes. The standard algorithm 
consists of three operators: selection, crossover and mutation [4]. Significant 
acceleration of the EA-based solution approach may be achieved in various ways, 
including appropriate hardware, software, and algorithm improvements.

Hardware acceleration techniques include distribution and parallelization of 
calculations on various parallel architectures, e.g., general-purpose Graphics 
Processing Units (GPUs), Field-Programmable Gate Array (FPGA) devices, or 
standard computer clusters. Efficient software implementations dedicated for 
particular hardware architectures are crucial as well. Many various parallel EA 
have been already developed and tested [9, 11]. Algorithmic acceleration of an 
optimization process may be obtained by, e.g., development of hybrid algorithms 
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[2, 6] combining the EA with deterministic methods (such as feasible direction 
method), and introduction of new, problem-oriented operators.

Our approach includes three ways for the EA speed-up. At first, a choice of the 
most efficient combination of particular selection, crossover, and mutation opera-
tors was sought, out of a variety of available ones. Three types of classification 
rules were proposed and applied for this purpose. Evaluation of the best values of 
EA parameters (like population size, probability of mutation and crossover) was 
done as well. Later on, we have proposed and preliminarily investigated several 
new acceleration techniques based on simple concepts. These techniques include 
smoothing and balancing [15, 16], a’posteriori error analysis and related tech-
niques (like solution averaging and cloning, creating population of representatives) 
[18], as well as adaptive step-by-step mesh refinement [5, 16], and possible com-
binations of the above. Proposed techniques are well supported by non-standard 
use of parallel and distributed calculations. Some of them are problem- (or class 
of problems) oriented, other are of more general nature. Some of these techniques 
are addressed to optimization of functionals, where a large set of nodal values of 
a function is searched. Appropriate constraint handling [3] is also very important, 
especially in the case of optimization problems involving large number of inequal-
ity constraints. Therefore, we have paid particular attention to investigation of 
various penalty functions for constraint handling and their impact on the conver-
gence rate of the optimization process. Finally, we consider application and fur-
ther development of chosen well-known acceleration techniques, such as standard 
distribution and parallelization of computations, hybrid approach, and use of other 
evolutionary operators (e.g. gradient mutation).

4.3.1 � Smoothing and Balancing

In the case of optimization processes involving large number of decision variables, 
raw results obtained from the EA approach usually present a collection of locally 
scattered data. If information about solution smoothness (at least in subdomains) 
is available, it may be used for acceleration of the solution process. This may be 
done in various ways [5, 15]. First of all, an extra procedure based on the Moving 
Weighted Least Squares (MWLS) technique [19, 20], or any other equivalent 
approximation method, is applied in order to smooth the raw results obtained from 
the standard EA procedure.

In the MWLS technique, the weighted error functional

is minimized at each point x̄ with the respect to the set of local derivatives of 
function u. Here ui is a nodal function value supplied by the EA, while ūi presents 
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its approximation by means of expansion into the p-th order truncated Taylor 
series, and wi is a weighting factor. In the case of 1D, a local p-th order approxi-
mation is obtained as follows:

where hi = xi − x̄, and R is a residuum of the Taylor series. Weighting function 
may be introduced as in [8]:

where g is a smoothing parameter, allowing us to control the intensity of smooth-
ing. Minimization conditions:

provide a set of linear equations to be solved for the unknown function ū and its 
derivatives up to the order p at each point x̄.

The above formulation may be easily transformed into a 2D one. It may be 
found in [19, 20].

Appropriate choice of a value of the smoothing parameter g ≥ 0 is of signifi-
cant importance. For g = 0 the weighting function is singular and provides inter-
polation. Otherwise, we deal with the best approximation problem. The higher the 
value of the parameter is, the smoother is the approximation obtained.

In problems of mechanics each smoothing may result in the global equilibrium 
loss of a considered body. The equilibrium may be restored by the standard EA 
approach in a series of iterations. However, it may be also faster restored by means 
of an artificial balancing of body forces performed directly after the smoothing [16].

Information about smoothness may be also used in a selection of chromosomes 
process [5, 15]. A new criterion based on a mean solution curvature may be intro-
duced into any selection operator. Mean local solution curvature κ may be calcu-
lated, e.g., using the definition based on the directional derivative, the same as in 
the case of the PBA formulation (4.8 and 4.9). The mean curvature of the solution 
in the whole domain may be calculated using the formula (4.7).

4.3.2 � A’posteriori Error Analysis and Related Techniques

Due to stochastic nature of evolutionary computations, solutions obtained from 
independent populations may differ from each other. The weighted average of the 
best solutions taken from such populations is expected to be more precise than 
majority of these solutions. Such averaged and additionally smoothed afterwards 
solution may be used as a reference one for a’posteriori error estimation [1, 18].
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Later on, the knowledge about the magnitude and the distribution of solution 
errors is used in order to intensify calculations in zones of large errors. We have 
proposed improved mutation and crossover operators taking into account informa-
tion about local solution errors [18]. Information about estimated global error may 
be used by the modified selection operator.

A’posteriori error analysis may be well supported by parallel and distrib-
uted calculations in addition to other standard advantages provided by clusters. 
Moreover, representation of the best chromosomes, collected at the same time 
from all populations involved, may be also very useful, and significantly improve 
the solution process. All independent populations, as well as a population of repre-
sentatives, are calculated simultaneously in a parallel way. Calculations carried out 
in each population may be partitioned among processing units as well.

More detailed information and wider numerical analysis of mentioned tech-
niques using chosen benchmark problems may be found in [18].

4.3.3 � Adaptive Step by Step Mesh Refinement

Solution time needed for optimization of functional is in many problems strictly 
dependent on the number of decision variables used, i.e. on the mesh density in the 
domain. The denser is a mesh in the domain the more time-consuming the solu-
tion process is. Therefore, the analysis can start from a coarse mesh and a fast, 
though not precise  enough solution may be obtained at first. Starting from such 
solution, the mesh may be refined by inserting new nodes. Initial function values 
at these new nodes are found by means of an approximation built upon the nodal 
values of the coarse mesh. A general approach for most optimization problems 
may be obtained by using the MWLS approximation [19, 20] approach. However, 
any other approximation or interpolation method might be applied as well. Such 
approach may be repeated several times, until a sufficiently dense mesh is obtained.

Furthermore, the step-by-step mesh refinement may be also combined with the 
a’posteriori error analysis. Such strategy, using all techniques mentioned above, 
may be found in [5, 16].

4.4 � Selected Benchmark Problems

The EA efficiency was examined using several benchmark problems, including 
residual stress analysis in chosen elastic perfectly-plastic bodies under various 
cyclic loadings. In particular, we have analyzed the residual stress in a cyclically 
bent bar, and in a thick-walled cylinder subject to cyclic loadings, like internal 
pressure, torsion and tension, including combined loadings [5, 15, 16, 18]. These 
problems may be analyzed as either 1D (taking into account existing symmetries) 
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or as 2D ones as well. Another advantage of the considered benchmark problems 
is possibility of testing almost any number of decision variables involved.

We have also investigated several benchmark problems using simulated 
pseudo-experimental data and the PBA approach, including smoothing of beam 
deflections, and reconstruction of residual stresses in a thick-walled elastic-per-
fectly plastic cylinder subject to cyclic internal pressure [17]. For smoothing of 
beam deflections we also used real experimental data obtained by vision measure-
ment system.

Three chosen benchmark problems are described in a more detailed way below.

4.4.1 � Residual Stress Analysis in Bending Bar

Considered is the residual stress analysis in an elastic-perfectly plastic bar of the 
rectangular cross-section subject to cyclic bending by the moment exceeding its 
elastic capacity. In the simplest 1D case the solution of the following optimization 
problem was searched:

Find self-equilibrated normal stress σ = σ(z) minimizing complementary 
energy of the bar

and satisfying the global self-equilibrium bending moment equation

as well as the inequality conditions resulting from the yield criterion

where σY is the yield stress (plastic limit), and σ e is the purely elastic solution 
of the problem considered. After discretization, where the sought normal stress 
σ = σ(z) is replaced by the piecewise linear function spanned over the nodal 
values σi, the following formulation is obtained:

Find stresses σ1, σ2, . . . , σn satisfying
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and inequality constraints

Numerical integration is used providing the exact results for piece-wise linear 
functions.

The target 3D non-linear constrained optimization problem resulting from 
residual stress analysis in railroad rails, and vehicle wheels is of similar, though 
much more complex nature. The exact formulation of this problem is given in 
[12, 13].

4.4.2 � Residual Stress Analysis in Pressurized Thick Walled 
Cylinder

Considered is an elastic-perfectly plastic thick-walled cylinder under cyclic inter-
nal pressure. The following optimization problem given in the polar coordinates 
for residual stress is analyzed:

find the minimum of the total complementary energy

subject to the equilibrium equation

the yield condition

the incompressibility equation

and boundary conditions

where σrr , σ
r
t , σ

r
z are respectively the radial, circumferential and longitudinal resid-

ual stresses, σe = {σer , σet , σez} is the purely elastic solution of the same problem, 
σY is the yield stress, a, b are respectively the internal and external cylinder radii, 
L is its length, and E is the Young modulus.
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4.4.3 � Reconstruction of Residual Stresses Using  
the PBA Approach

Given are strains εexpi , i = 1, 2, 3, . . . , n, experimentally measured in the 2D 
cross-section of the thick-walled cylinder under cyclic internal pressure. Find the 
residual stresses in its 2D cross-section. The following formulation in the polar 
coordinate system is used:

find the stationary point of the functional

where

satisfying equality constraints (4.20, 4.22 and 4.23), and inequality constraints for 
admissible local and global errors

The mean solution curvature is calculated using the formula (4.9).

4.5 � Numerical Results

The main objective of numerous executed tests was to evaluate correctness, effi-
ciency, and ability of the proposed acceleration techniques to deal with large, and 
very large optimization problems. At first a choice of the most efficient combi-
nation of the standard EA operators was sought. Searching the best combination 
of operators, as well as adjusting their parameters, the acceleration up to sev-
eral times may be reached. From numerous variants of operators we preliminar-
ily chose several popular ones: rank and tournament selection, arithmetic and 
heuristic crossover, uniform, non-uniform and border mutation. Using the best 
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combination found, namely rank selection, heuristic crossover, and non-uniform 
mutation, particular already mentioned acceleration techniques were analyzed. 
Some other results of our efficiency analysis were also described in [16, 18], and 
very briefly in [5, 15].

Acceleration of calculations was measured using four speed-up factors pro-
posed, and defined in [18]. These factors take into account convergence of mean 
solution error as a function of time, or number of iterations. Convergence of fit-
ness function is also measured.

All presented results were averaged over 10 independent solution processes.

4.5.1 � Smoothing and Balancing

In the considered tests, the MWLS technique was used for additional smoothing 
of raw EA results. When using this technique it is necessary to establish values 
for two extra parameters: order of local approximation p, and smoothing param-
eter g. Various values of these parameters may have significant influence on the 
convergence of the solution process. Number of standard iterations between 
subsequent smoothing and balancing operations has to be considered as well. 
In Figs.  4.1 and 4.2 one may see results obtained in the bending bar analysis 
(benchmark 4.4.1).

In the case of this benchmark test, the best results were obtained for the linear 
local approximation p =  1 (see Fig. 4.1). There is also no significant difference 
between results obtained for p = 2 and p = 3. However, the best results obtained 
in case of p =  1 may result from the specific features of the sought solution of 
the problem, which is piece-wise linear. For more complex solutions higher local 
approximation orders will be needed. In general, the order of local approximation 
should depend on the order of differential operators used.

In Fig. 4.1 you may also see additional time needed for each smoothing and 
balancing operation. These operations were repeated after each 300 iterations. 
All optimization processes shown in Fig.  4.1 were carried out for 3000 itera-
tions, so you may find the whole additional time needed for all extra smooth-
ing operations. This extra time is not significant when compared to obtained 
gains. The results were obtained for smoothing parameter g =  5. Other exe-
cuted tests, not presented here, showed that choice of the value of g parameter 
was not significant, excluding small ones. For g ∈ [3, 20] obtained results were 
very similar.

Application of our smoothing technique based on the MWLS, and balancing 
procedure based on the linear correction terms allowed to achieve up to about 4 
times efficiency increase (see Fig. 4.2). Smoothing technique was also tested using 
benchmark 4.4.2 and gave encouraging results as well.
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4.5.2 � Constraint Handling—Penalty Functions

A type of penalty function, as well as its parameters may have a significant impact 
on the convergence rate of the optimization process. In our research, the following 
function was used for constraint handling:

where F is the new (expanded) objective function, f is the standard fitness func-
tion, di is the distance of i-th decision variable to constraint boundaries, n is the 
number of decision variables, α and β are parameters.

(4.29)F = f +
n

∑

i= 1

α d
β
i

Fig.  4.1   Results of smoothing and balancing for various orders of local approximation in the 
MWLS technique
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In Fig. 4.3 one may see results obtained for various values of parameters α and β  
in cyclically pressurized cylinder analysis (benchmark 4.4.2). In this example, the 
best results were obtained for α = 1 and β = 1.5. When comparing the best and the 
worst cases shown in Fig. 4.3, the speed-up about 3 times was reached.

4.5.3 � Step by Step Mesh Refinement

Results shown in Fig. 4.4 were obtained in reconstruction of residual stresses in 
the thick walled cylinder under cyclic internal pressure using pseudo-measure-
ments of strains and the PBA approach (benchmark 4.4.3). Numerical data used 
in this experiment were randomly generated using the true (analytical) solution as 
a base curve. A strain gauge technique was simulated. Assumed were delta type 
rosettes, giving three components of strains. All calculations were carried out 
in the 2D domain. The random data generator used Gaussian distribution. More 
detailed description of methodology of such tests, as well as solutions obtained, 
may be found in [17]. In this paper only a brief analysis of calculation efficiency is 
presented.

Comparison of the convergence of mean solution error for standard and 
improved algorithms is shown in Fig. 4.4. In this case, the improved EA used a 
series of denser and denser meshes, combined with smoothing technique. The 
process started with 16 nodes, and was continued until the number of 1248 nodes 
was reached. The mesh was refined 4 times. Each nodal value corresponded to one 
decision variable (gene in a chromosome). In comparison to the standard EA, the 
acceleration factor of the optimization process up to about 140 times was reached.
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4.6 � Conclusions

The general objective of this research is development of highly efficient, dedicated 
EA for solving large non-linear constrained optimization problems. Preliminary 
results of many executed tests clearly show a possibility of significant efficiency 
increase when using all proposed acceleration techniques. The speed-up about 
140  times was reached. It is also worth noticing, that the improved EA allowed 
obtaining solutions in cases when the standard EA failed to solve problems due to 
too large number of decision variables. Results obtained indicate also a clear pos-
sibility of practical application of the improved EA to the PBA of experimental 
and/or numerical data for large optimization problems. Application of the acceler-
ated EA to the PBA is still at the initial stage of research development, however 
preliminary results are very encouraging.

Future research includes continuation of various efforts oriented towards effi-
ciency increase of the EA-based optimization approach, analysis of further, 
demanding benchmark problems, and application of such developed method to 
residual stress analysis in railroad rails, and vehicle wheels [8, 12, 13]. The PBA 
approach for smoothing of experimental data is also expected.
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Abstract  Additive manufacturing (AM) has become in a competitive method for 
short series production and high flexibility applications even for functional parts. 
Few constraints in the manufacturing process involve a great design freedom, 
allowing minimization of weight by using internal cellular and lattice structures, 
while minimal mechanical requirements are kept. Weight minimization implies a 
lower use of material and hence a reduction in manufacturing time, leading to a 
cost reduction. However, design optimization requires a greater effort in the design 
process, which also results in more costs. In order to reduce the design process, 
an optimization method based on genetic algorithms (GAs) and computer aided 
design/finite element method (CAD/FEM) simulations is proposed to optimize the 
cellular structure design and minimize the weight for AM parts. New optimization 
strategies based on GAs combined with surrogate models are evaluated and com-
pared to reduce as much as possible the number of FEM simulations.
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5.1 � Introduction and Objectives

The continuous evolution of AM technologies in terms of materials, reliability 
and reproducibility of the processes, as well as cost reduction compared with con-
ventional manufacturing techniques have led to an increasing use of these tech-
nologies in the industry. The low manufacturing constraints associated to these 
processes involve an enormous design freedom ideal to manufacture complex 
parts without any cost increase.

Moreover, the possibilities around the CAD/FEM software are well known. 
FEM numerical simulations allow the determination of the mechanical behavior 
of any part, being a fundamental tool in the design process. Combining the poten-
tial of AM technologies and CAD/FEM tools is possible to reduce the part weight 
by introducing cellular structures repeated inside the part (without changing the 
previous external design) [1]. Cellular structures can be generated and param-
eterized in a CAD model without an excessive effort, especially if the cells are 
defined with a repeated pattern. FEM simulations of any new design with cellular 
structures allow knowing its mechanical properties, information that is essential 
for the design process. Weight minimization can be achieved by optimizing the 
cell pattern dimensions with an optimization method. In fact, results of finite ele-
ment analysis (FEA) can be employed to the evaluation of the fitness function in 
an optimal searching with GAs [3]. Finally, the best design can be manufactured 
by AM technologies despite the complex internal cellular structure.

Weight minimization not only means a greater efficiency in multiple applica-
tions, but also significant reduction of manufacturing costs, either material savings 
or manufacturing time. However, the extra time required for the design optimiza-
tion also entails a cost increase, which means that the optimization time must be 
minimized in order to obtain a more competitive product.

For these reasons, weight minimization will be made through repeated cell 
geometries (from a pattern) inside the part, which implies less variability of indi-
viduals and a smaller number of design variables (less than 7). Although this sim-
plification reduces the searching space and probably the quality of the optimal 
individual, greatly facilitates the CAD modeling and optimization tasks, signifi-
cantly reducing the design costs.

Moreover, the evaluation of the fitness function for each individual generated 
during the GA evolution requires FEM simulations. This would involve an exces-
sive computational time [3]. Therefore, the use of surrogate models to estimate the 
FEM results without doing the simulations is proposed, reducing the number of 
the computationally expensive analyses as much as possible [5]. The aim of this 
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approach is to establish a simple methodology that can be used by any AM user 
through commercial CAD/FEM software. These technologies are becoming more 
and more affordable due to cost decreasing associated to the patent expiration. 
Thus, SMEs or even particular users will be able to buy AM machines and manu-
facture their own parts, taking advantage of the optimization strategies developed 
in this proposal through commercial CAD/FEM software easily accessible.

5.2 � Main Program Structure

To create a surrogate model it is necessary a previous information of the system 
behavior. This information is achieved through an initial design of experiments 
(DOE), where a set of designs are simulated by FEM.

Once the surrogate model is defined, a GA is applied to search the optimal 
design by evaluating the fitness function of each individual through the surro-
gate model estimations. Although different versions of the program were tested, 
the general approach is to refine the metamodel by simulating new designs stra-
tegically located in interesting regions, including the results into the database to 
upload the metamodel. Once the surrogate model guarantees a certain level of 
accuracy in the estimations, the optimal design is searched again using GAs and 
metamodel to evaluate the fitness function, reducing as much as possible the num-
ber of FEM simulations.

The design variables are related to the dimensions of the pattern cell geometry 
repeated inside the part, existing in this case a monotonic relation with the system 
responses. An increase in a variable associated with the hollow cell size always 
involves a mass reduction and a worse mechanical behavior, adversely affecting 
the problem optimization constraints (displacements or stresses). This particular 
relation implies that the optimal design will be always in the border between the 
feasible and unfeasible regions, so that the optimum will have at least one con-
straint very close to its limit value.

Given this fact, the addition of new points in the DOE phase or metamodel 
refinement stage is carried out trying to increase the sampling density in areas 
close to this border (feasible/unfeasible), which means simulating designs in inter-
esting zones. This strategy of DOE and surrogate model refinement also implies a 
better fitting in the feasible/unfeasible border than in other regions of the search-
ing space. Refinement strategies usually add new sample points where the lowest 
accuracy of the metamodel are estimated. However, in this proposal the accuracy 
of the metamodel is only relevant in the feasible/unfeasible zones. In other regions 
the surrogate model has a lower precision, but enough to estimate the results with-
out affecting the convergence of the GAs. This refinement method requires a lower 
sampling, allocating the new points in areas near to the optimum and consequently 
maximizing the sampling effort.
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5.3 � Comparison Between Different Metamodels

First a comparison between different surrogated models was carried out to deter-
mine the most appropriated metamodels in terms of estimation error for this appli-
cation. The evaluated metamodels were:

•	 Inverse distance interpolation: Four different configurations of this interpolation 
method were evaluated. The first one was implemented using an exponent of 2 
in the inverse distance calculation and involving all the available data (IDI2). 
This same method (with exponent 2 in the inverse distance calculation) was 
applied again but involving only the 6 nearest data to the point to be estimated 
(IDI2 6p). After that, the inverse distance exponent was increased to 3, consider-
ing all available data in the estimations (IDI3). Finally, a fourth configuration 
was carried out by using again exponent 3 in the inverse distance calculation 
but taking into account only the 6 nearest data to the point to be estimated (IDI3 
6p). Some authors have observed better results for low sampling problems with 
this method than with other more complex ones [7].

•	 Spline interpolation (SI). The main advantage of this method is that it allows the 
interpolation of values that are below the minimum or above the maximum of 
the available data, while other methods cannot [2].

•	 Least square fitting: Two different configurations of the least square fitting were 
evaluated. The first configuration was developed by fitting the coefficients of a 
two-order polynomial to the available data (LSF2). The second configuration 
was carried out in a similar way but using a three-order polynomial to be fitted 
to the available data (LSF3). The use of polynomial equations in fitting prob-
lems with unknown response is a common practice, although the most usual 
practice is to employ one- or two-order equations [6].

•	 Linear interpolation based on Delaunay triangulation (LIDT). This method parti-
tions the space into discrete simplex (n-dimensional) following the Delaunay tri-
angulation (dual to the Voronoi diagram or Thiessen polygons). Given a set of 
points (P) in the n-dimensional space, the Delaunay triangulation is a triangula-
tion such that no point in P is inside the circumhypersphere of any simplex. This 
method maximizes the minimum angle of all the simplexes. Once the space is 
discretized according to Delaunay triangulation, the method identifies the sim-
plex of the point to be evaluated and finally a linear interpolation of the vertex 
values is applied (by a weighted sum of the vertex values, being the weights the 
barycentric coordinates). The main disadvantage of this interpolation method 
(also known as Triangulated Irregular Network, TIN) is that the domain is limited 
to the convex envelope of the data and the resulting surface is not smooth [2].

•	 Nearest neighbor interpolation (NNI). The NNI selects the value of the nearest 
point. This is equivalent to the Voronoi diagram, which means that the interpola-
tion values will be the same in each one of the tessellation cells. This method is 
less accurate but quite simple.

A problem of four design variables was employed in order to compare the accu-
racy or estimation error among the different surrogated models mentioned above. 
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Eighty one individuals related to a 3-level full factorial DOE were evaluated by 
FEM simulations. The different types of metamodels were constructed with the 
data obtained in the previous simulations. After that, 10 random points of the 
domain were evaluated by FEM and were also estimated by the surrogate models 
in order to evaluate the estimation error (difference between the estimated value 
and the FEM result in absolute value). Figure 5.1 shows the mean absolute per-
centage error (MAPE) of these 10 points for the different metamodels and for the 2 
responses of the problem.

Best results were obtained for SI, LSF2/LSF3 and LIDT. Although SI provides 
more accurate results for both responses, the data distribution required to construct 
the spline must be in a grid, which complicates the refinement tasks and implies an 
enormous sampling intensity even using T-splines with the “quadtree” method [4].

Another similar study was made comparing only the LSF2, LSF3 and LIDT. 
In this case 33 different designs were evaluated by FEM. The allocation of these 
points was defined according to the first optimization strategy developed in Sects. 
5.5 and 5.5.1. The first 17 points correspond to a 2-level full factorial DOE and 
central point, and the 16 remaining points correspond to an iteration of the bor-
der (feasible/unfeasible) approximation. The metamodels were elaborated from 
the results of these 33 sampling points. Then 16 new points associated with a new 
iteration of the border approximation were evaluated either by FEM or by the pre-
dictions of the surrogate models. Figure 5.2 shows the MAPE obtained for LIDT, 
LSF2 and LSF3, for both constraint and objective responses.

Fig. 5.1   MAPE for evaluated metamodels

Fig. 5.2   MAPE for least square fitting and linear interpolation metamodels
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Although the results of LSF2 and LSF3 are even better than those of LIDT, this 
last metamodel was chosen for this proposal because it is an interpolation method, 
which means exact predictions on the data points and ensures greater accuracy 
than the least squares fitting when the sampling is intensified in an area. The least 
square fitting does not estimate exact results in the data points and its potential is 
limited by the shape of the equation to be fitted, which could imply a high distor-
tion and error in some areas when the sampling density is increased in a specific 
zone. Furthermore, the refinement strategy discussed above will only work cor-
rectly with a surrogate model which can improve its accuracy as new points are 
added.

5.4 � Genetic Algorithm

A GA with different configurations was implemented to solve a known problem 
with four variables (real numbers), one constraint and one objective to be mini-
mized. This reference problem was employed to validate the different programs 
developed in this paper without doing the FEM simulations. The fitness value of 
the theoretical optimal design is F = 1600.809. The number of individuals of the 
population was fixed in 100, with a tournament selection of 2 individuals, arithme-
tic crossover and application of elitism. The parameters of the different GA con-
figurations were as follows:

•	 Penalty amplification factor (AF): individuals who did not satisfy any constraint 
of the optimization problem were penalized with a certain penalty which was 
amplified by a factor defined as a fixed value or as a value that grew exponen-
tially with the number of generations. This latter option seeks to assign a greater 
freedom in the first iterations of the GA and become more restrictive as the GA 
evolves.

•	 Type of penalty: individuals who did not satisfy any constraint of the optimi-
zation problem were penalized with an error value which was obtained from 
the squared error (SE) or absolute error (AE), always amplified by the penalty 
amplification factor mentioned above. The total penalty for each individual was 
determined as the sum of the penalties associated with each of the non-satisfied 
restrictions.

•	 Total number of generations evaluated: 50 or 100.
•	 Cross probability: 50 or 80 %.
•	 Mutation probability: mutation probability was defined as a fixed value or a 

variable value that increases linearly with the number of generations. This lat-
ter option seeks to provide a greater localized variability as the GA evolves, 
in order to avoid convergence problems (convergence to local optima instead 
of global optima). The more evolved the population is, the higher the muta-
tion probability becomes, which reduces the problems of stagnation in a local 
optimum.
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•	 Mutation amplitude: individuals were randomly mutated with a maximum 
amplitude value defined by a fixed value or variable with the number of genera-
tions. This latter option seeks to provide a more intensive mutation as the GA 
evolves in order to improve the convergence to the optimal.

Table  5.1 shows a summary of the six configurations tested and an average 
value of the optimal fitness function for 10 different runs. The best results were 
obtained for configurations 4, 5 and 6, with fitness values very close to the theo-
retical optimal value. This means that the GA can converge to the optimal with 
different configurations, which demonstrates its robustness and flexibility. 
Configurations 5 and 6 were chosen to be implemented in the different developed 
programs, while configuration 4 was rejected due to be a more complex option.

5.5 � Optimization Programs Developed

Different optimization strategies were developed and tested with the previous 
known problem (without FEM simulations). The last 2 versions were also tested 
with a case study with FEM analysis.

5.5.1 � Version 1

The first version consist of a 2-level full factorial DOE and central point, followed 
by a phase of addition of points near to the feasible/unfeasible border and finally a 
GA.

LIDT can only be applied inside the convex hull of the data. For this reason, 
it is important that the initial DOE allows the creation of a convex hull that cov-
ers the entire domain, in order to apply LIDT throughout the searching space. A 
2-level full factorial DOE was chosen as the best option to achieve the desired 
convex hull with the minimal number of points (which is equivalent to evaluating 

Table 5.1   Different configurations tested

Geometry parameters Config. 1 Config. 2 Config. 3 Config. 4 Config. 5 Config. 6

Amplification factor 1099 10gen 10gen 10gen 1099 1099

Penalty SE·AF SE·AF SE·AF AE·AF SE·AF SE·AF

Number of generations 50 50 100 50 50 50

Cross probability (%) 80 80 80 80 50 50

Mutation probability (%) 10 10 10 0–60 60 80

Mutation amplitude (%) 10 10 10 0–50 50 10

Fitness average (F) 1615.3 1615.0 1606.3 1601.7 1601.9 1601.8
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all vertices of the domain). Apart from these points, the central point of the 
domain was also simulated in this initial stage of DOE (black crosses in Fig. 5.3).

The phase of approximation to the feasible/unfeasible border was divided into 2 
parts: (a) an “internal” approximation by adding new points in the middle between 
the central point and the corners when one of them is in the feasible space and 
the other does not (or vice versa); (b) an approximation “along the edges of the 
domain”, adding new points in the middle between adjacent corners when one of 
them is in a feasible area and the other does not (square, triangle and circle points 
in Fig. 5.3). This new points will be closer to the feasibly/unfeasible border and 
consequently closer to the optimal design. This phase is repeated in a loop until 
the mean absolute deviation of the points added in the last iteration is less than 
the maximum deviation assigned by the user to each response. Triangles, squares 
and circles of Fig. 5.3 represent the points added in 3 iterations respectively, both 
internal (in grey) and external (in black) approximation.

Finally, a GA based on configuration 5 is applied. In this case, the fitness value 
is evaluated by LIDT through the available data of previous simulations. In addi-
tion, the best individual of each generation is simulated and then the information 
obtained is added to the available data in order to refine the metamodel, thus get-
ting a more accurate metamodel as the GA evolves. Once the GA ends, the best 
simulated design is chosen.

This version was executed 10 times with the reference problem (5 tests with 
100 generations and 5 with 500). The average value of the optimal fitness func-
tions was 1659.267 and 1660.593 respectively, so no improvements were observed 
by increasing the number of generations. The total average value of fitness func-
tion was 1659.93 (with an average of 80 points evaluated), which differs signif-
icantly from the fitness value of the theoretical optimum (F =  1600.809). After 
several tests, it was observed that the GA does not converge to the theoretical opti-
mum because of the lack of accuracy of the metamodel. Hence, the simulation of 

Fig. 5.3   Points added during 
the initial DOE and border 
approximation in a 2D 
problem
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the best individual of each generation does not significantly improve the fit of the 
metamodel. So, new points must be added before applying the GA if the results 
are intended to be improved.

5.5.2 � Version 2

In order to improve the results, new middle points were added between the point 
with minimum mass found in the last iteration of the border approximation along 
the edges and the remaining points associated with adjacent corners of the fea-
sible/unfeasible border. This approach was implemented in version 2. Figure 5.4 
shows this new strategy in a 3D problem. The square black point outlined in grey 
represents the point with lower mass among the square black points added in the 
last iteration of the border approximation along the edges. This point is combined 
with the remaining adjacent square black points to obtain the two middle points 
represented as black circles in Fig. 5.4.

Additionally, the phase of border approximation (internally and along the 
edges) was carried out by linear interpolation to improve the convergence to the 
border, identifying the two closest points to the border (each in the opposite fea-
sible/unfeasible space) and allocating the new point on the border line estimated 
by linear interpolation of the 2 selected data for each constraint of the problem. 
Finally, the proposed point that is closer to the feasible zone (corresponding to 
the most restrictive constraint) is simulated. For example, in the case of having 
2 constraints involved in a border approximation along one edge (see Fig.  5.5), 
each involved constraint will lead to a proposed point (square and triangle points). 
These points are obtained by linear interpolation of the constraint values associ-
ated with the 2 closest data on this edge (one in the feasible zone of the specific 
constraint and another one in the unfeasible zone). Therefore, only one of the 2 
proposed points must be chosen. The closest to the feasible vertex of the edge will 

Fig. 5.4   New middle points 
(black circles) added in a 3D 
problem
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be selected (in this case the square point). This step is repeated while the MAPE of 
the critical constraint value of the different points added in the last iteration (com-
pared to the limit value) is greater than 1 %.

Afterwards a border approximation phase by GAs (configuration 5 with 100 
generations) was implemented, using LIDT to evaluate the fitness function. The 
best individual achieved by the GA is analyzed by FEM and added to the database 
to upload the metamodel. The GA is executed again, but penalizing the individual 
that is near to the points added previously in this phase. This strategy converges to 
a different optimum in each successive GA execution, which involves adding dif-
ferent new points along the feasible/unfeasible border, exploring interesting zones. 
For example, the circle black point (Fig. 5.6, left image) would be penalized by 
proximity to the triangle grey point (added in the previous execution of the GA). 
Hence, the GA evolves towards a point out of the proximity penalty radius of the 
points added in this stage of the program. Once the circle black point (Fig. 5.6, 
right image) is evaluated, the GA is executed again but also penalizing the prox-
imity to this new point. This step is repeated until at least “n” points (n = number 
of design variables) have been added in this phase. After that, the MAPE of the 
last added point (response estimations compared to simulations) is evaluated. If 
the MAPE is bigger than 1 %, the metamodel is uploaded with this last point and 
this GA is executed again applying proximity penalty. And so on until the MAPE 
value is less than 1 %.

Fig. 5.6   Proximity penalty strategy during the border approximation phase by GAs

Fig. 5.5   Border approximation phase through different constraints and selection of the proposed 
point which is closer to the feasible zone
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Subsequently a final GA (configuration 6 with 200 generations) is run, using 
LIDT to calculate the fitness function value. The best individual is simulated by 
FEM. If it is in the feasible zone, is the optimum, otherwise the results are added 
to the database and the metamodel is uploaded to execute again this final GA. And 
so on until reaching a feasible optimum.

In 10 different runs of this program version with the reference problem, the 
average value of the optimal fitness function was F = 1603.715, very close to the 
fitness value of the theoretical optimum (1600.809), with an average of 62 evalu-
ated designs.

A case study with FEM simulations (see Fig. 5.7) in which it is pretended to 
minimize the weight of a blade for wind power micro-turbine lightened by cel-
lular structures (3 design variables) keeping the maximum deflection under 15 mm 
(constraint) was also solved. The 3 design variables (see Fig. 5.7) were the length 
of the sides of the cubic hollows (“L”, varying between 20 and 60 mm), the exter-
nal thickness (“e”, varying between 3 and 8 mm) and the thickness between the 
cubic hollows (“eh” varying between 3 and 8 mm).

The optimization problem can be represented as follows:

Figure 5.8 shows the responses for each one of the 40 designs evaluated during 
the program evolution (maximum deflection and weight). The weight values were 
divided by the weight of the optimal design obtained (1632.55 g), while the deflec-
tion values were divided by the maximum permitted deflection (15  mm), repre-
senting then the relative values of both responses in the same graphic. It can be 
observed how the relative deflection tends to 1, which means that the program 

(1)

Minimize mass (L, e, eh)

Subject to max.deflection ≤ 15

20 ≤ L ≤ 60

3 ≤ e ≤ 8

3 ≤ eh ≤ 8

Individual (L, e, eh)

Fig. 5.7   Case study 
geometry and design 
variables
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evolves to designs with a maximum deflection close to 15 mm in order to mini-
mize the weight as much as possible. Therefore, as it was expected, best design is 
near to the feasible/unfeasible border.

The optimal design obtained after 40 FEM simulations has a mass of 
1632.55  g and 14.992  mm of maximum deflection, being its design variables 
“L = 39.875 mm”, “e = 4.091 mm” and “eh = 3 mm”. This same problem was 
also solved by an optimization method based on Box-Behnken DOE and optimal 
estimation by response surface method (BBRS), an optimization strategy avail-
able in the commercial software of design and FEM simulations, SolidWorks. 
Response Surface Methods (RSMs) are considered a very effective approach 
for optimization problems with a small number of design variables, which is 
ideal for this application. The BBRS method achieves an optimal of 1690.07  g 
(“L = 47.531 mm”, “e = 4.496 mm” and “eh = 3.193 mm”) with only 14 simula-
tions. The proposed methodology reaches an optimum 3.52 % better but requires 
quite more simulations. For this reason, a new version was developed in order to 
reduce the number of FEM simulations required during the evolution of the opti-
mization algorithm.

5.5.3 � Version 3

The last two phases of the program (based on GAs) were tested by excluding dif-
ferent data set in order to evaluate the convergence of the program to the optimum 
without these points. These tests were carried out solving the reference problem 
without FEM analysis in order to accelerate the process. The conclusions obtained 
in this analysis are listed below:

Fig. 5.8   Relative responses of the designs evaluated during the optimization process
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•	 The points added during the internal feasible/unfeasible border approximation 
were deleted and the algorithm evolved to practically the same optimal solu-
tion, which means that the points added during the internal border approxima-
tion have no effect on the quality of the optimum. For this reason, this step was 
excluded.

•	 The phase of border approximation along the edges was carried out only edge 
by edge, achieving a deviation from the real feasible/unfeasible border less than 
1 % at each affected edge. This new strategy showed a significant improvement 
in the solution because it helps to correctly select the best corner of the feasible/
unfeasible border for the next phase of the code. Furthermore, this idea has the 
advantage of varying the number of iterations depending on the design variable 
that is being changed during the border approximation. This means that the bor-
der approximation through one of the design variables may need 5 iterations to 
achieve a deviation less than 1  % at the most restrictive constraint, while the 
border approximation along another edge may need just 2 iterations. Hence, the 
control statement in the new program (version 3) is just the difference (absolute 
value) between the critical value of the most restrictive constraint and the value 
obtained for this same constraint in the simulation of the last point added dur-
ing the border approximation, thus controlling the deviation in the associated 
edge. However, in the previous version, the border approximation was carried 
out by adding a new point in each affected edges, repeating this process if the 
MAPE of the points simulated in this iteration was greater than 1  %. So, the 
number of points added during the border approximation was the same in all 
the edges affected and thus some points were probably closer to the border than 
others, increasing the risk of error in the next phase of the program, where it 
must be selected the best corner (best point added in the last iteration) of the 
border between feasible and unfeasible regions.

•	 Despite the proposal has been developed for a small number of design variables 
(less than 7), the addition of new middle points between the best border cor-
ner and the remaining adjacent corners involves incorporating a lot of points, 
growing exponentially as the number of design variables increases. However, 
after some tests it was observed that the method also converged to the theoreti-
cal optimum just combining the best border corner with the “n-1” best remain-
ing adjacent corners. For this reason, version 3 was implemented with this new 
strategy, which means to combine only the best border corner with the “n-1” 
best remaining adjacent corners instead of considering all possible combina-
tions, hence reducing the sampling intensity.

The new version 3 was programmed and then it was executed 10 times for 
solving the reference problem (without FEM analysis). The average value of the 
optimal fitness function was F = 1606.050, with an average of 44 sampling points. 
The new version converges to a solution 0.15 % worse than the previous version, 
but requires only 44 instead of 62 simulations, reducing in approximately 29 % the 
CPU time if a linear relation between CPU time and number of designs evaluated 
by FEM is assumed.
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Applying this new version in the previous case study (with FEM analy-
sis), an optimal design of 1634.85  g and only 29 sampling points was found 
(“L = 60.000 mm”, “e = 4.540 mm” and “eh = 3.000 mm”). This optimal design 
increased the mass by 0.14 % compared to the optimum obtained with version 2, but 
the number of evaluated designs was reduced from 40 to 29 (approximately 27.5 % 
of CPU time reduction). Compared with the result of BBRS method, this pro-
gram improves the optimal 3.38 % but requires more sampling points (29 vs. 14).  
However, it ensures the convergence to the theoretical optimum due to the refine-
ment loops, while the BBRS method does not guarantee the convergence to a fea-
sible design and its refinement is quite limited by the equation shape to be fitted. In 
addition, it should be noted that the sampling point number 18, which is added dur-
ing the border approximation along the edges, improves the optimum obtained by 
BBRS method with only 4 more simulations (see Table 5.2).

Table 5.2 shows most of the designs evaluated during the optimization process. 
Points from 1 to 9 correspond to the initial DOE (2-level full factorial DOE and 
central point). Points 10–11, 12–13, 14–15, 16–18 and 19–22 are added during 
the border approximation (5 different edges of the domain). Points 23 and 24 are 
associated to the middle points added between the best corner of the border (point 
18) and the 2 best remaining adjacent corners (points 22 and 13). Points 25–27 are 
added during the phase of exploration along the feasible/unfeasible border by GAs 
with proximity penalty. Finally, points 28 and 29 are added in 2 different execu-
tions of the final GA.

Table 5.2   Some of the designs evaluated during the evolution of version 3 (with FEA)

Point L (mm) e (mm) eh (mm) Maximum deflection (mm) Mass (g)

1 20 3 3 16.061 1705.09

8 60 8 8 11.543 2470.68

9 40 5.5 5.5 12.741 2087.14

11 20 3 4.7 14.905 1948.70

13 20 3.562 3 14.975 1814.40

15 35.157 3 8 15.015 1847.10

18 60 4.577 3 14.851 1643.70

22 60 4.115 8 15.045 1741.10

23 60 4.346 5.5 14.987 1694.90

24 40 4.07 3 15.04 1626.80

25 60 4.521 3 15.07 1630.30

27 31.33 3.858 3 14.943 1668.40

28 56.705 4.479 3 15.043 1631.60

29 60 4.54 3 14.975 1634.85
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5.6 � Conclusions

A new lightweight optimization method for cellular structures in AM has been 
presented, based on a 2-level full factorial DOE and central point, border approxi-
mation along the edges, addition of new middle points between the best border 
corner and the best “n-1” adjacent remaining corners, addition of new points along 
the feasible/unfeasible border using GAs with proximity penalty and LIDT met-
amodel, and a final optimal searching through a GA also combined with LIDT 
metamodel.

The border approximation phase along the edges allows achieving good designs 
with a low sampling effort in the case of a small number of design variables. 
Moreover, in many cases, the optimum is on the boundary of the domain. For this 
reason, the border approximation phase along the edges is a good and simple strat-
egy for problems with a small number of design variables.

The proximity penalty in the GA allows the addition of new points along the 
feasible/unfeasible border (interesting zones). These points improve the fitting of 
the surrogate model in areas where the optimal will be found. Hence, in the next 
executions of the GAs, the algorithm leads to solutions closer to the theoretical 
optimum thanks to the refinement achieved during this stage of the program.

Finally, it should be also noted that the linear interpolation metamodel drasti-
cally reduced the FEM simulations, obtaining a methodology that guarantees con-
vergence to the optimal design with a low sampling density.

Although this proposal achieves good results in lightweight optimization of 
cellular structures for Additive Manufacturing parts, further research must be con-
ducted in the future to further reduce the number of FEA and consequently allow 
design cost savings. In addition, new strategies must be developed in order to 
apply this concept in problems with a larger number of design variables.
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Abstract  This chapter presents the main experimental calibration methodologies 
of finite element numerical models, with particular focus on methodologies based 
on modal parameters. In this context, the computational implementation of an 
iterative method based on a genetic algorithm is described. The iterative method 
involves the resolution of an optimization problem, which involves the minimiza-
tion of an objective function by varying a set of preselected model parameters. The 
objective function includes residuals associated to natural frequencies and mode 
shapes. The proposed methodology is applied to the calibration of the dynamic 
models of two railway bridges, São Lourenço bridge and Alverca viaduct, both 
located in the northern line of the Portuguese railways in recently upgraded track 
sections. The calibration results demonstrate a very good agreement between 
numerical and experimental modal responses and a significant improvement of 
the numerical models before calibration. Also the stability of a significant num-
ber of parameters, considering different initial populations, proved the robustness 
of the genetic algorithm in the scope of the optimization of the numerical mod-
els. The updated numerical models were validated based on dynamic tests under 
railway traffic. The results showed an excellent agreement between numerical and 
experimental responses in terms of displacements and accelerations of the bridges’ 
decks.
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6.1 � Introduction

Railway bridges are structures subjected to high intensity moving loads, where the 
dynamic effects can reach significant values. At present, these effects are being 
given greater importance due to the increase of the circulation speed, not only in 
conventional lines but also in new lines, such as the case of high speed railway 
lines.

In structures with complex behaviour the evaluation of these effects is per-
formed by means of dynamic analyses using finite element (FE) models. The 
process of developing a FE model of a structure involves assumptions and simpli-
fications that may cause errors. These errors are usually related to the inaccuracy 
in the FE model discretization, uncertainties in geometry and boundary conditions 
and variation in the material properties.

Therefore, the accuracy of the FE model strongly depends on the experimental 
validation of the numerical results that is usually performed by means of static or 
quasi-static measurements based on load tests [11], dynamic measurements based 
on ambient vibration or forced vibration tests [8, 13], or a combination of static 
and dynamic measurements [25]. In recent years, in situ dynamic testing has been 
used and reported by several authors [12, 28] in the scope of the identification 
of the modal parameters of structures, namely the natural frequencies and mode 
shapes. Experimental modal data is also perturbed by measurement errors typi-
cally related with the environmental variability (such as temperature and wind), 
the variability in operational conditions during the measurements (e.g. traffic) and 
errors with measured signals and post-processing techniques [6, 31]. Despite the 
presence of the referred errors it is generally assumed that the experimental data is 
a better representation of the structural behaviour than the initial estimations from 
the FE model [9].

Finite element model updating, also known as calibration of a finite element 
model, is a procedure to determine uncertain parameters in the initial model based 
on experimental results to achieve a more suitable updated model of the struc-
ture [10]. Updated models can be used for the prediction of dynamic responses 
under new load scenarios, for damage identification, to design health monitoring 
systems, as well as for improved remaining lifetime predictions [2, 12]. There are 
basically two distinct finite element model updating methodologies in structural 
dynamics: the direct [29] and the iterative methods [27, 33].

The direct methods directly update the elements of the stiffness and mass 
matrices in a one-step procedure. In this method the experimental modal proper-
ties can be exactly represented by the updated system matrices. Unfortunately, the 
updated system matrices have little physical meaning, and cannot be related to 
physical properties of the finite element model [10]. This approach can also lead to 
non-sparse and non-positive definite system matrices, where the connectivity rela-
tions between the different structural elements, in which the structure was discre-
tized, can be disregarded.
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The iterative methods are typically related to a penalty function, which is 
improved by a step-by-step approach. The penalty function denotes the objective 
function based on the discrepancy between numerically obtained and experimentally 
derived features, such as natural frequencies or modal deflections. This approach is 
more flexible in its application as the uncertain physical properties of the FE model, 
typically material properties or geometrical dimensions can be updated.

Brehm [2] distinguished the solving algorithms for model updating in sensitiv-
ity-based methods and optimization-based methods. The sensitivity-based meth-
ods, applied in the works developed by Friswell and Mottershead [10], Teughels 
[26], Jaishi and Ren [13], Huang et al. [12], among others, depends on the update 
of the sensitivity matrices to proceed to the next iteration. The sensitivity matri-
ces, also referred as Jacobian matrices, contain the first derivatives of each residue 
of the objective function with respect to the parameters of the numerical model. 
Brehm [2] reports that the success of this approach requires that the initial numeri-
cal parameters values are close to the optimal solution, and also its variation dur-
ing the optimization process occurs in reduced intervals. Furthermore the selection 
of a large number of numerical parameters, and the coexistence of parameters with 
high and low sensitivity in relation to the responses, can cause numerical errors 
due to poor conditioning of the sensitivity matrix [4, 26]. Teughels [26] also refers 
that in this approach the number of responses must be equal or greater than the 
number of numerical parameters in order to avoid numerical errors. Some of the 
refereed limitations may be minimized by performing modifications to the gradi-
ent-based algorithm [26, 27] or by applying regularization techniques [10].

The optimization-based methods are generally more flexible since it does not 
require the calculation of sensitivities and are particularly adequate to situations 
where there are uncertainties in the objective function, or objective functions with 
multiple local minima. Applications of such methods in the scope of model updat-
ing of railway bridges were referred by Chellini and Salvatore [7], Liu et  al. [14] 
and Cantieni et al. [5]. Concerning the optimization algorithm, several methods are 
available to solve the optimization problem. These include gradient-based methods 
(quasi-Newton, sequential quadratic programming, augmented Lagrangian, etc.) 
[26], response surface methods [21] and nature inspired algorithms (e.g., genetic 
algorithm, evolutionary strategies, particle swarm optimization) [30]. The genetic 
algorithm, used in the present work, is not a regularly reported and referenced meth-
odology in the scope of model updating, particularly in the field of model updat-
ing of bridges based on experimental vibration data. In this specific research topic, 
the research of Cantieni et al. [5] and Zabel and Brehm [31] should be emphasized. 
Genetic algorithms have recognized advantages such as the non-dependence of the 
initial starting point, capability to manage a large number of parameters and con-
straints, possibility to handle with discrete and binary variables, ability to find the 
global minimum in functions with several local minima and the possibility to accept 
failed designs. On the other hand, a low convergence rate in comparison to gradient-
based methods is generally agreed to be its main disadvantage.

More recently Brehm [2] states that the success of the numerical parameters 
estimate largely depends on the reliability of the experimental data and numerical 
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responses. This author considers that the uncertainties associated with the experi-
mental and numerical responses estimates, can be included in the optimization 
problem based on statistical parameters related with coefficients of variation and 
associated  confidence intervals. The proposed methodology, called stochastic 
model updating, are also referenced in the works developed by Mares et al. [16], 
Mottershead et al. [19] and Zabel and Brehm [32].

This chapter describes an iterative methodology for the calibration of numerical 
models based on genetic algorithms. This methodology is applied to the calibra-
tion of the dynamic models of two railway bridges located on the northern line 
of the Portuguese railways, which establishes the connection between the cities 
of Lisbon and Porto, in recently upgraded track sections. The calibration results 
of the numerical models of both bridges show a significant improvement in rela-
tion to the initial models demonstrating the efficiency and robustness of the 
implemented technique and particularly the genetic algorithms. The comparison 
of the experimental and numerical dynamic responses after calibration, in terms 
of displacements and accelerations on the bridges’ decks for the passage of Alfa 
Pendular tilting train showed an excellent agreement, as well as an important 
improvement in relation to the initial numerical models.

6.2 � Computational Implementation of an Iterative Method

The computational implementation of an iterative method based on a genetic algo-
rithm involved the use of three software packages: Ansys [1], Matlab [17] and 
OptiSlang [20]. Figure 6.1 shows a flowchart that illustrates the computational imple-
mentation of the method, indicating the softwares involved in the different phases.

Fig. 6.1   Iterative calibration methodology based on a genetic algorithm
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In ANSYS environment the FE numerical model is developed based on a set of 
initial parameter values θ1, θ2, …, θk, where k is the number of individuals in each 
generation, and the mass and stiffness matrices are extracted. The pre-selection of 
the calibration parameters is performed based on global sensitivity analysis [22]. 
The sets of parameter values of generation 1 are randomly generated in OptiSlang 
software by applying the Latin Hypercube method. The export of mass and stiff-
ness matrices is performed through text files in Harwell-Boeing format, suitable 
for storing sparse matrices.

In Matlab software, the eigenvalues and eigenvectors problem is solved, and 
based on the experimental modal information, the mode pairing between numeri-
cal and experimental modes using a modal strain energy criterion based on EMAC 
parameter is performed [3]. The values of the natural frequencies and the corre-
sponding MAC (Modal Assurance Criterion) values are exported in text format.

Finally, the OptiSlang software, based on an objective function and on the applica-
tion of an optimization technique supported by a genetic algorithm, estimates a new 
set of parameters focused on the minimization of the objective function residuals. The 
objective function includes two terms, one relative to the residuals of the frequencies 
of vibration and other related to the residuals of modal configurations. This procedure 
is repeated iteratively until the maximum number of generations is reached.

6.3 � São Lourenço Bridge

6.3.1 � Description

São Lourenço railway bridge is located at km +158.662 of the northern line of the 
Portuguese railways. The bridge is a bowstring arch consisting of two half-decks 
with 42 m span, each one carrying a single track. Each deck consists of a 0.40 m 
thick prestressed concrete slab suspended by two longitudinal arches. The sus-
pension is performed by means of metallic hangers and diagonals. The arches are 
linked in the upper part by transversal girders that assure the bracing of the arches.

The deck is supported at each abutment by two pot bearings. The distance 
between the supports is 38.4 m, and the extremities of the deck slab work as canti-
levers with 1.8 m span. Each half-deck cross section, with a total width of 7.35 m, 
consists of a concrete slab laterally supported by two main girders, forming a 
U-section, and a side footway. In Fig. 6.2 a lateral view of São Lourenço bridge 
and a cross section of the deck are presented.

6.3.2 � Numerical Model

The dynamic analysis of São Lourenço railway bridge was performed using a 
three-dimensional model, including the track, developed in Ansys software. A 
global view of the numerical model of the bridge is presented in Fig. 6.3.
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The deck slab was modelled with solid elements. The arches, hangers, diagonals 
and bracings were modelled with beam elements. The track was modelled in an 
extension corresponding to the bridge length and in a distance of about 10 m from 
each abutment, in order to simulate the support of the track on the adjacent embank-
ments. The rails were modelled by beam elements levelled with the center of gravity 
axis, and the sleepers and the ballast layer were modelled using solid finite ele-
ments. The connections related to the support bearings were located at their centers 
of rotation. To correctly reproduce the deformability length of the hangers and diag-
onals, rigid elements were introduced in the extremities of the beam elements. The 
structure was divided into 26,754 nodes and 80,029 degrees-of-freedom.

Table  6.1 describes the main geometric and mechanical parameters of the 
numerical model of the bridge, including its designation, the adopted value and the 
respective unit. Additionally, the statistical properties of some of the parameters 

(a)

(b)

Fig. 6.2   São Lourenço bridge: a lateral view; b cross-section of the deck

Fig. 6.3   Numerical model of São Lourenço bridge including the track
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that will be used later in the model calibration phase are listed. The lower and 
upper limits of the normal statistical distributions were obtained by subtracting or 
adding to the average value, a value equal to two times the standard deviation.

6.3.3 � Calibration

The calibration of the bridge numerical model involved the use of 5 design vari-
ables and 24 modal responses (12 frequencies and 12 MAC values) related to 
global vibration modes of the deck and arches. The experimental modal param-
eters were obtained from an ambient vibration test described in Ribeiro et al. [23].

The genetic algorithm was based on an initial population consisting of 30 indi-
viduals and 150 generations, for a total of 4500 individuals. The initial popula-
tion was randomly generated by Latin Hypercube method. In this algorithm the 
number of elites was equal to 1 and the number of substitute individuals was also 
defined equal to 1. The crossing rate was considered equal to 50 % and the muta-
tion rate was set equal to 10 % with a standard deviation, variable along the opti-
mization, between 0.10 and 0.01.

The optimal values of the parameters were obtained based on the results of 4 
independent optimization runs (GA1 to GA4) with different initial populations. In 
Fig. 6.4 are represented the ratios of the values of the main numerical parameter 
relative to the limits indicated in Table 6.1 for optimization runs GA1 to GA4. A 
ratio of 0 % means that the parameter coincides with the lower limit. A ratio of 

Table 6.1   Characterization of the main parameters of the numerical model of São Lourenço bridge

Parameter Designation Statistical properties Limits  
(lower/ 
upper)

Adopted 
value

Unit

Distribution 
type

Mean value/
standard 
deviation

Ec Modulus 
deformability 
concrete

Normal 38.7/3.87 31.0/46.4 38.7 GPa

ρc Density 
concrete

Normal 2446.5/97.9 2286/2607 2446.5 kg/m3

Ebal Modulus 
deformability 
ballast

– –/– –/– 130 MPa

ρbal Density  
ballast

Uniform 1885/147.2 1630/2140 1733 kg/m3

Es Modulus 
deformability 
steel

Normal 202/8.1 188.7/215.3 202 GPa

ρs Density steel – –/– –/– 7850 kg/m3

Kv Vertical 
stiffness of 
supports

Log-normal 7419/6929 –/– 3847 MN/m
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100 % means that it coincides with the upper limit. The values of the numerical 
parameters are indicated in brackets.

The optimum value of the module of deformability of concrete situated in the 
range between 44 and 45 GPa, the value of the module of deformability of steel was 
set between 202.5 and 204.5 GPa and the value of the vertical stiffness of the sup-
ports was in the range of 4600 and 5600 MN/m. These parameters, which influence 
more the numeric responses, show variations always below 10 %. For the densities 
of the concrete and ballast, the estimates show slightly higher variations, close to 
20 %. This should be related to the fact that these parameters contribute similarly 
to the mass of the deck and therefore it exist different combinations of these param-
eters that lead to the same solution in terms of the optimization problem.

Figure  6.5 presents a comparison between the experimental and numerical 
after calibration modal configurations of the bridge. To simplify the graphical 

Fig. 6.4   Values of the numerical parameters for the optimization runs GA1 to GA4

Mode 1 (MAC = 0.912) Mode 2 (MAC = 0.971) 

Mode 3 (MAC = 0.890) Mode 4 (MAC = 0.967) 

fnum = 2.34 Hz (2.30 Hz)

fexp = 2.34 Hz 

fnum = 6.07 Hz (5.88 Hz)

fexp = 6.02 Hz 

fnum = 4.38 Hz (4.13 Hz)

fexp = 4.37 Hz 

fnum = 7.12 Hz (6.78 Hz)

fexp = 7.11 Hz 

Fig. 6.5   Comparison between the experimental and numerical modal parameters
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representation only points belonging to the deck are presented. The modal con-
figurations are related to transversal bending modes of the arches (1, 4, and 8) and 
bending modes (2, 3, 5, 9 and 11) and torsion modes of the deck (6, 7, 10 and 12). 
The results after calibration refer to the optimization run GA1, which is associ-
ated with the lowest residual of the objective function, equal to 1.327. In the same 
Figure the values of the numerical frequencies after calibration (fnum), experimen-
tal frequencies (fexp) and MAC values, are also shown. In brackets the values of 
the numerical frequencies before calibration, which resulted from the modal prob-
lem resolution based on the adopted values of parameters listed in Table 6.1, are 
also indicated.

)428.0=CAM(6edoM)839.0=CAM(5edoM

)298.0=CAM(8edoM)288.0=CAM(7edoM

Mode 10 (MAC = 0.889)0.854)=CAM(9odeM

Mode 11 (MAC = 0.910) Mode 12 (MAC = 0.969) 

fnum = 11.72 Hz (11.33 Hz)

fexp = 11.30 Hz 

fnum

fnum

 = 13.80 Hz (13.39 Hz)

fexp = 13.76 Hz 

fnum = 15.09 Hz (14.17 Hz)

fexp = 15.20 Hz fexp = 15.80 Hz 

= 15.78 Hz (14.97 Hz) 

fnum = 21.42 Hz (19.96 Hz)

fexp = 22.07 Hz 

fnum = 21.35 Hz (20.23 Hz)

fexp = 23.00 Hz 

fnum = 9.77 Hz (9.19 Hz)

fexp = 9.76 Hz 

fnum = 10.55 Hz (9.92 Hz)

fexp = 9.93 Hz 

Fig. 6.5   (continued)
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The calibration results showed a very good agreement between numeri-
cal and experimental modal responses and a significant improvement in relation 
to the numerical model before calibration. The average error of the frequencies 
decreased from 4.7 %, before calibration, to 1.9 % after calibration. The average 
MAC value increased from 0.880, before calibration, to 0.908 after calibration.

6.3.4 � Validation

The validation of the numerical model was performed based on a dynamic test 
under railway traffic which allowed evaluating the dynamic response in terms of 
displacements and accelerations at several locations of the bridge deck [23].

Figure  6.6 presents some details of the instrumentation used, consisting of 
LVDTs for measuring the displacement in one of the supports (Fig. 6.6a) and in 
a  section between 1/3 and 1/4 span of the deck (Fig.  6.6b), and a piezoelectric 
accelerometer (Fig. 6.6c) positioned in the same section of the deck.

The numerical responses were obtained based on a dynamic analysis consid-
ering train-bridge interaction, including measured track irregularities, performed 
by TBI software [22]. In problems with train-bridge interaction, TBI software 
uses the modal superposition method for solving the dynamic problem of the 
bridge, and the Newmark method, for solving the dynamic problem of the train. 
The numerical model of Alfa Pendular train was calibrated based on experimental 
modal parameters, as described in detail in Ribeiro et al. [24]. The contribution of 
85 vibration modes for the response of the bridge, with frequencies between 2.34 
and 30 Hz, was considered. The time step of the analysis was equal to 0.001 s. The 
adopted values of the damping coefficients were equal to the average values of the 
coefficients obtained from an ambient vibration test [23].

Figure  6.7 compares the dynamic responses of the bridge obtained by exper-
imental and numerical calibration, before and after updating, for the passage of 

Fig.  6.6   Dynamic test under railway traffic: a LVDT nearby the support; b LVDT and 
c accelerometer, both on the main girder of the deck
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Fig.  6.7   Comparison of the experimental and numerical, before and after updating, dynamic 
responses of the bridge for the passage of Alfa Pendular train at a speed of 180 km/h: a displace-
ments and b accelerations in a section between 1/3 and 1/4 span of the deck; c displacements at 
the support
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Alfa Pendular train at a speed of 180 km/h. The experimental acceleration records 
were filtered based on a low-pass digital filter with a cut-off frequency equal to 
30 Hz.

The numerical results after updating revealed a better approximation to the 
experimental results, in comparison with the results before updating. In this 
context it should be highlighted the significant improvement of the correlation 
between the records of displacements at deck and supports, once the model cali-
bration process led to an overall increase of the stiffness of the structure and also 
the vertical stiffness of the supports. In terms of accelerations, the inclusion of the 
track irregularities was crucial to obtain a better agreement with the experimental 
results, especially for higher frequencies [22, 23].

6.4 � Alverca Viaduct

6.4.1 � Description

Alverca railway viaduct is a flyover structure located at km +18.676 of the north-
ern line of the Portuguese railways. Its construction allowed to separate the rail 
traffic flowing in the downstream and upstream directions and also to maintain the 
maximum speed of trains at 200 km/h. Figure 6.8 presents a side view of the cur-
rent zone of the viaduct (Fig. 6.8a) and a cross-section of the deck (Fig. 6.8b).

The viaduct has a total length of 1091  m divided into 47 simply supported 
spans with the following spans: 9 × 16.5 m + 9 × 17.5 m + 29 × 21.0 m. Each 
span supports one single railway track and is composed of a prefabricated and pre-
stressed U shape beam on which pre-slabs serving as formwork to the concrete 
upper slab cast in situ were placed, forming a single-cell box-girder deck. The bal-
last retaining walls are monolithically connected to the upper slab of the deck.

(a) (b)

Fig. 6.8   Alverca viaduct: a perspective view; b cross-section of the deck
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The deck is directly supported in the piers and in the abutments by elasto-
meric reinforced bearings. In each span the supports are fixed in one extremity 
and longitudinally guided in the other extremity. The track consists of UIC60 con-
tinuously welded rails, elastomeric rubber pads, prestressed concrete monoblock 
sleepers and a 30 cm ballast layer under sleepers.

6.4.2 � Numerical Model

The dynamic analysis of the Alverca railway viaduct was carried out using a 
three-dimensional numerical model, including the track, developed in Ansys soft-
ware. The analysis focused on the three spans adjacent to the north abutment: one 
16.5 m long span (Span 1) and two 21 m long spans (Spans 2 and 3). Additionally, 
an extra extension of the track, with a length of 6 m, apart from the abutment, was 
modelled in order to simulate the effect of the track over the adjacent embank-
ment. Figure 6.9 shows an overview of the numerical model with a detail of the 
track components.

The prefabricated beam, the upper slab and the ballast retaining walls were 
modelled by shell finite elements. The sleepers, the rail pads and the ballast layer 
were modelled by volume finite elements. The compatibility of displacements and 
rotations between the nodes of the precast beam and the nodes of the upper slab as 
well as the compatibility of displacements between the nodes of the upper slab of 
the deck and the lower nodes of the ballast layer were accomplished by rigid finite 
elements. Each support was regarded as a single point and modelled by a spring 
element. The rails were modelled as beam elements, positioned at their center of 
gravity. The non-structural elements such as safeguards and edge beams were con-
sidered as additional masses and applied to the nodes of the finite element mesh 
according to the real location of those elements. The numerical model of the via-
duct includes 19,018 nodes and 20,906 elements. The level of refinement of the 
finite element mesh was optimized in order to reduce the time of modal analyses, 
which will have to be performed during the automatic calibration process of the 
numerical model.

Fig. 6.9   Numerical model of Alverca viaduct including the track
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Table  6.2 presents the main geometrical and mechanical parameters taken 
under consideration in the numerical model of the viaduct, including its designa-
tion, the statistical properties and the adopted value. The lower and upper limits of 
each parameter are also defined, and will be taken into account during the calibra-
tion process of the numerical model.

6.4.3 � Calibration

The calibration of the model involved the use of 11 numerical parameters and 12 
modal responses (6 frequencies and 6 MAC values) regarding the global vibration 

Table 6.2   Characterization of the main parameters of the numerical model of Alverca viaduct

Parameter Designation Statistical properties Limits  
(lower/upper)

Adopted 
value

Unit

Distribution 
type

Mean value/
standard 
deviation

Ec1 Modulus 
of elasticity 
of concrete of 
the upper slab 
(Span 1/Span 
2/Span 3)

Normal 35.4/4.3 28.4/42.4 35.4 GPa

Ec2

Ec3

Ec Modulus of 
elasticity 
of concrete of 
the prefabri-
cated beam

Normal 40.9/4.9 32.9/49.0 40.9 GPa

ρc Density of 
the concrete

Normal 2446.5/122.3 2245.9/ 
2647.1

2469.8 kg/m3

Kv Vertical 
stiffness 
of supports

Uniform 5400/2020.7 1900/8900 5200 MN/m

Kh1 Longitudinal 
stiffness of 
the supports 
(Span 1/Span 
2/Span 3)

Uniform 3.35/0.89 1.8/4.9 3.6 MN/m

Kh2

Kh3

ebal Thickness 
of the ballast 
layer

Normal 0.25/0.013 0.23/0.27 0.25 m

Ebal Modulus of 
elasticity  
of the ballast

Uniform 140/34.6 80/200 145 MPa

ρbal Density  
of the ballast

Uniform 1875/129.9 1650/2100 2039 kg/m3
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modes of the structure and the local vibration modes of the upper slab of the deck 
of span 2. The experimental modal parameters were obtained from an ambient 
vibration test described in Malveiro et al. [15].

The genetic algorithm was based on an initial population consisting of 30 indi-
viduals and 200 generations, for a total of 6000 individuals. In this algorithm the 
number of elites, as well as the number of substitute individuals, was equal to 1. 
The crossing rate was equal to 50 % and the mutation rate was equal to 15 % with 
a standard deviation varying throughout the optimization process and ranging 
between 0.10 and 0.01.

Figure 6.10 shows the ratios of the values of the main numerical parameter rel-
ative to the limits indicated in Table 6.2, obtained from three independent optimi-
zation runs (GA1 to GA3) based on different initial populations. The values of the 
numerical parameters are indicated in brackets.

The parameters that demonstrate to have more influence over modal responses, 
e.g., the modulus of elasticity of concrete of the precast beam and upper slab of 
the decks, the horizontal stiffness of supports and the density of concrete, provide 
estimates with lower variability. Furthermore, the parameters that less influence 
the modal responses, such as density and modulus of elasticity of ballast tend to 
present greater variation for the different optimization runs [15].

Figure 6.11 shows a comparison of the experimental and numerical after cali-
bration modal configurations of the viaduct. The configurations presented are 
related to global modes of vibration of the structure (1G to 3G) and local modes 
of vibration of the upper slab of the deck (1L to 3L). The graphical representation 
of the global mods include the 3 spans of the viaduct, while for local modes only 
span 2 is presented. The results after calibration concern the case of optimization 
GA2, which was the case with lower residual of the objective function, equal to 
0.556. In the same Figure the values of the numerical frequencies after calibration 
(fnum), experimental frequencies (fexp) and MAC values, are also shown. In brack-
ets the values of the numerical frequencies before calibration, which resulted from 

Fig. 6.10   Values of the numerical parameters for the optimization runs GA1 to GA3
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the modal problem resolution based on the adopted values of the parameters listed 
in Table 6.2, are also indicated.

There is a good match between the numerical and experimental modal configu-
rations, particularly in global vibration modes. The average error of global modes 
frequencies decreased from 9.0  % before calibration to 1.5  % after calibration. 
The average value of the MAC parameter remains the same, before and after cali-
bration, and equal to 0.968. For local modes, the average error of the frequencies 
went from 8.1  %, before calibration, to 1.7  % after calibration, while the aver-
age value of the MAC parameter increased from 0.784, before calibration, to 0.879 
after calibration.

Mode 1G (MAC = 0.980) Mode 1L (MAC = 0.851) 

Mode 2G (MAC = 0.960) Mode 2L (MAC = 0.888) 

Mode 3G (MAC = 0.963) Mode 3L (MAC = 0.897) 

fnum = 6.73 Hz (6.16 Hz)

fexp = 6.76 Hz 

fnum = 26.68 Hz (27.54 Hz)

fexp = 25.48 Hz 

fnum = 6.78 Hz (6.07 Hz)

fexp = 6.95 Hz 

fnum = 53.01 Hz (48.22 Hz)

fexp = 53.18 Hz 

fnum = 60.28 Hz (55.97 Hz)

fexp = 60.18 Hz 
fnum = 9.79 Hz (9.13 Hz)

fexp = 9.65 Hz 

Fig. 6.11   Comparison between the experimental and numerical modal parameters
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6.4.4 � Validation

The validation of the numerical model was based on the results of a dynamic test 
under traffic actions. This test allowed the evaluation of the dynamic response in 
terms of displacements and accelerations at the mid-span section of the deck slab 
of span 2, for the passage of Alfa Pendular train at 185 km/h [15, 18].

The vertical displacement was measured on the lower slab of the deck by a 
LVDT positioned by means of a metallic tripod fixed on the ground (Fig. 6.12a). 
The vertical acceleration was measured on the upper slab (Fig. 6.12b) and lower 
slab (Fig. 6.12c) of the deck using two piezoelectric accelerometers. The acceler-
ometer located on the upper slab involved the installation of a metallic protection 
tube in the interior of the ballast layer. The accelerometer installed on the lower 
slab was fixed by means of metallic plates bonded to the surface of the concrete.

The numerical responses were obtained based on a dynamic analysis consider-
ing train viaduct interaction, including measured track irregularities, performed by 
TBI software. The numerical model of the viaduct used for the dynamic analysis 
involved a reduction of the longitudinal stiffness of the guided supports in order 
to correctly reproduce the mobility of the supports under traffic actions [15]. 
The numerical model of Alfa Pendular train used in the analyzes is described by 
Meixedo et  al. [18]. The contribution of 33 vibration modes for the response of 
the viaduct, with frequencies between 6.73 and 30 Hz, was considered. The time 
step of the analysis was equal to 0.001  s. The adopted values of the damping 
coefficients were equal to the average values obtained from an ambient vibration 
test [15].

Figure 6.13 presents a comparison between the numerical and experimental time 
records of the vertical displacement of the lower slab and vertical accelerations of 

Fig. 6.12   Dynamic test under railway traffic: a LVDT on the deck; b accelerometer on the upper 
slab of the deck; c accelerometer on the lower slab of the deck
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Fig. 6.13   Comparison of the experimental and numerical, before and after updating, dynamic 
responses of the viaduct for the passage of Alfa Pendular train at a speed of 185 km/h, at the 
midspan section of the deck: a displacements; b accelerations in the lower slab; c accelerations in 
the upper slab
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the upper and lower slabs, in the mid-span section of span 2, for the passage of Alfa 
Pendular train at 185 km/h. The experimental records were filtered based on a low-
pass digital filter with a cut-off frequency equal to 30 Hz.

The results show a very good agreement between experimental and numeri-
cal records after calibration, as well as a significant improvement in relation to 
the numerical records before calibration. The dynamic responses, in particular in 
terms of displacement of the deck, are clearly dominated by the frequency associ-
ated with the passage of the regularly spaced groups of axles (f) with a spacing (d) 
of 25.9 m (f = v/d = 185/3.6/25.9 = 1.98 Hz).

Regarding the response in terms of acceleration, besides the contribution of 
the frequency related to the train action, it should be noted the important contri-
bution of the vibration mode 1G at a frequency of 6.47 Hz. This contribution is 
particularly evident in the record before calibration where inclusively is visible an 
amplification of the dynamic response. The response is also influenced by the con-
tribution of higher frequencies, above 15 Hz, mainly related to the track irregulari-
ties [15, 18].

6.5 � Conclusions

In this chapter the computational implementation of an iterative method for cali-
bration of FE numerical models based on genetic algorithms, and its application 
to the dynamic models of two railway bridges, São Lourenço bridge and Alverca 
viaduct, was described.

The developed computational implementation allows performing an automatic 
and efficient calibration of numerical models based on experimental data, particu-
larly modal parameters, and based on the interoperability between three software 
packages: Ansys, Matlab and OptiSlang.

The calibration results of the numerical models of both bridges conducted to 
stable estimates of the main numerical parameters and modal responses, consider-
ing different initial populations, and therefore demonstrating the robustness and 
efficiency of genetic algorithms in complex optimization problems with a large 
number of variables. The results also showed a significant improvement of the 
numerical models before calibration, as attested by the important reduction in the 
mean value of the errors associated with the frequencies of vibration and MAC 
parameters.

The validation of the numerical models involved the comparison of the meas-
ured responses from dynamic tests under railway traffic, with the numerical 
responses obtained through TBI software, based on train-bridge dynamic interac-
tion models including track irregularities. The experimental and numerical records 
of displacements and accelerations obtained on the decks of both bridges showed a 
very good agreement, especially for the models after calibration.

In future works, the calibrated numerical models of São Lourenço bridge and 
Alverca viaduct may serve as basis for the implementation of advanced damage 
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detection techniques. These techniques, based on numerical simulations, will rely 
on dynamic performance indicators associated to the train-track-bridge system, 
namely those associated to the traffic stability, track stability and passengers com-
fort. Based on these studies some recommendations that can support the decisions 
of infrastructure managers, with impact on reducing the costs of inspection and 
maintenance of bridges and on increased safety in operation, will be established.
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Abstract  A procedure for improving the acoustic efficiency of barriers featuring 
top-edge devices is conducted. This methodology is based on the maximization 
of the insertion loss of candidate profiles proposed by an evolutionary algorithm. 
The complexity normally associated with these devices raises the need to consider 
some geometric simplifications in order to ease the shape optimization processes. 
In this way, the overall barrier configuration is modeled as both thickness and non-
thickness bodies (the boundary thickness is neglected), as representatives of very 
thin elements. Such an idealization requires a complementary formulation to the 
classical Boundary Element Method (BEM) that allows the problem to be solved. 
Numerical results are presented both validating the formulation and on the basis 
of simulations on noise barriers with complex diffuser-type tops by using a 2D 
Dual BEM code. Results obtained show the suitability of idealizing complex bar-
rier configurations as models featuring thickness and non-thickness boundaries.

Keywords  Noise barriers  ·  Thick and very thin bodies  ·  Shape optimization  ·  
Genetic algorithms  ·  Dual boundary element formulation

7.1 � Introduction

The inclusion of sound barriers for abating the negative effects of road traf-
fic noise near residential areas is a broadly used strategy. Considerable research 
works and studies focused on sound diffraction around barriers have been carried 
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out in the past two decades, specifically in the prediction of the performance and 
the development of more efficient designs. Among all of the different theoretical 
methods proposed concerning the issue, the Boundary Element Method (BEM 
hereinafter) has been previously used by the authors of this work [14] in the analy-
sis of complex barrier configurations.

Evolutionary Algorithms (EA) have been widely used for Shape Design 
Optimization problems in numerous Engineering fields. The combined use of opti-
mization problems using EA with a BEM code has been implemented in sound bar-
riers design problems within the institute where this work is developed [6, 8–10, 
27]. Many other noteworthy works concerning the issue can be found in the litera-
ture (see e.g. [1, 7, 11]).

A procedure for the shape design optimization of noise barriers by coupling 
BEM with an evolutionary algorithm is conducted in the work here presented. 
Two-dimensional sound propagation problems concerning an infinite, coherent 
monofrequency source of sound, placed parallel to an infinite noise barrier that 
stands on a flat plane (ground) of uniform admittance are studied. The sound prop-
agation analysis is performed in the frequency domain with the usual assumptions: 
the medium (air) is modeled as homogeneous, elastic and isotropic with no viscos-
ity, under small disturbances and initially at rest with no wind effects. Expression 
of the objective function to be maximized throughout the shape optimization pro-
cess is written in terms of this response.

With the purpose of raising the acoustic performance, numerous and innovative 
designs have been proposed and studied in the literature for compensating the limi-
tations normally associated with the parameter with greatest influence on the bar-
rier efficiency: the effective height. For their unquestioned benefits for scattering 
sound field, the use of diffusers has been the subject of many reviews and studies 
in indoor acoustic projects. However, despite their indoor-oriented application, the 
use of such devices on noise barriers in outdoor acoustic problems has evidenced 
a good performance when compared with both a vertical screen and other top 
configurations. Some noteworthy works concerning the use of diffusers installed 
on the barrier top can be found in the literature. Such is the case of those based 
on mathematical number sequence such as Quadratic Residue Diffusers (QRDs)  
[16–18, 21] and Primitive Roots Difussers (PRDs) [19]. Other outdoor-oriented 
diffusers featuring elaborated configurations can be found in [22, 23] (see Fig. 7.1).

As an application, numerical results on the basis of barrier configurations fea-
turing complex diffuser-type tops modeled as both thickness and non-thickness 
bodies are performed. Such an idealization requires a complementary formulation 
(based on the Hypersingular Boundary Integral Equation) to the classical BEM 
that allows the problem to be solved. This simplification of reality greatly facili-
tates the geometric definition of barrier profiles, having no major influence on the 
acoustic performance [5]. The coupling of an evolutionary algorithm with the Dual 
BEM code allows us to obtain interesting acoustic solutions avoiding the complex-
ity associated with the geometric generation of real structures.

The main benefit of the methodology here presented lies in the fact that it is 
truly convenient when dealing with complex configurations eligible for some sort 
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of geometric simplification. Such interesting models are largely present in the lit-
erature. Figure 7.1 shows some of them featuring elaborated top barrier designs.

The procedure for the geometric definition of the studied noise barrier, the 
fundamental aspects of the Dual BEM formulation implemented and the main 
features of the evolutionary algorithm software used are thoroughly and clearly 
explained in the next sections. Results concerning the validation of the formulation 
are also presented.

7.2 � Schroeder Diffusers. Quadratic Residue Diffuser

A Quadratic Residue Diffuser (QRD) is just one of many possible forms of reflec-
tion phase gratings (RPGs) and the term was first used by Schroeder to describe an 
optimum acoustic diffuser device [25]. Its configuration is on the basis of a peri-
odic mathematical sequence that aims at both scattering the incident wave into a 
wide range of directions and producing some phase variation. To accomplish this, 
the surface of the grating is devised with repeated structures of a series of wells 
equally separated from one another by mean of very thin fins. The overall num-
ber of the wells of each periodic structure is dependent on the diffusion frequency 
range (based on the nearest upper prime number N from the relation between the 
highest and the lowest value), while the separation between them and their depths 
are function of the highest frequency and both the lowest frequency and the pat-
tern marked by the aforementioned numerical series, respectively. According to 
this pattern, the well depths are function of i2 mod N, or in other words, of the 
modulo or reminder from such operation, with i being the ith well. This way, the 
word quadratic refers to the fact that the sequence is derived by use of a squared 

(a) (b)

Fig. 7.1   Examples of complex designs eligible for undergoing geometric idealizations. a Water-
wheel-top barrier from Okubo and Fujiwara [22]. b Complex barrier-top from Okubo and Fuji-
wara [23]
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term, while the word residue is derived from the reminder of the mathematical 
operation. Further details concerning the terminology, the use, the history and the 
acoustic principles of these devices are provided in [4, 20].

Figure 7.2 shows a QRD section consisting of three periods based on the quad-
ratic residue sequence derived from that of a prime number N = 7.

7.3 � Modeling and Discretization by Implementing  
a Dual BEM Formulation

The next lines are focused on the description of the implemented Dual BEM for-
mulation to make possible the numerical treatment of barriers featuring thick and 
very thin bodies that can be idealized as boundaries with null thickness. The spe-
cial nature of these types of barriers makes necessary the addition of a comple-
mentary formulation (hyper-singular) that coupled with the conventional BEM 
formulation yields a compatible system of equations.

7.3.1 � Singular Boundary Integral Equation  
(SBIE). Classical BEM Formulation

The SBIE for the boundary point i to be solved by BEM can be expressed as 
follows:

(7.1)cipi +−
ˆ

Γ

p
∂G(k, r)

∂nj
dΓ = G0(k, r)+

ˆ

Γ

∂p

∂nj
G(k, r) dΓ

Fig.  7.2   Section of a diffuser comprised of three periods based on a quadratic sequence 
for N  =  7. The proportional relationship of the well depths is given, in this case, by 
SQR

(7)
= 0, 1, 4, 2, 2, 4, 1. Note that the well widths are equal and the depth variation is sym-

metric within a period and periodic along the configuration
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This integral equality just involves the boundary of the barrier under investiga-
tion. The −

´

 symbol represents the integral along the boundary to be understood in 
the Cauchy principal value sense, once the singularity around the collocation point 
i has been extracted (ci). In (7.1), p is the acoustic pressure field over the barrier 
surface and G(k, r) is the half-space fundamental solution (the acoustic pressure 
field when the source is placed at the collocation point i over a plane with admit-
tance βg (ground admittance)) and ci is the free term. As a general rule: ci = θ/2π, 
where θ represents the inner angle to the boundary measured in radians. It is easily 
shown that ci = 0.5 for smooth boundaries.

The expressions of the fundamental solution and its derivative for a perfectly 
reflecting ground (βg = 0) for bi-dimensional, harmonious problems are:

being i the imaginary unit, k the wave number, and r, r̄ the distances to the obser-
vation point from the collocation point and its symmetric point with respect to the 
ground plane, respectively. K0 and K1 are the Bessel modified functions of order 0 
and 1, respectively.

By applying (7.1) on a node i of the boundary discretization and interpolating 
the variable with quadratic elements, the following can be written:

with NE being the overall number of elements. The repeated application of (7.1) 
on each node of the boundary discretization leads to the following system of 
equations:

where Cs is a diagonal matrix whose entries involve the free term values at the 
nodes of the discretization, P, Q, are the pressure and the flux (the derivative of 
the pressure with respect to the normal at each boundary node) vectors, G0 vector 
stores the values of the fundamental solution concerning the external noise source, 
and H, G are matrices whose entries are associated with the integration cores of 
the BEM formulation involving just the variables of the problem along the barrier 
boundary:

(7.2)G(k, r) = 1

2π
[K0(ikr)+ K0(ikr)]

(7.3)
∂G(k, r)

∂nj
= − ik

2π

[

K1(ikr)
∂r

∂nj
+ K1(ikr̄)

∂ r̄

∂nj

]

(7.4)ci · pi +
NE
∑

j=1

3
∑

k=1

p
j
k · h

ij
k = p∗0 +

NE
∑

j=1

3
∑

k=1

q
j
k · g

ij
k

(7.5)
(

C
s +H

)

· P = G ·Q+G0

(7.6)h
ij
k =

ˆ

Γj

∂G(k, r)

∂nj
φk dΓj; g

ij
k =

ˆ

Γj

G(k, r) φk dΓj
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with i being the collocation point, j the observation point and φk the shape 
functions with quadratic approximation of the local variable ξ along the element 
under integration.

7.3.2 � Hyper-Singular Boundary Integral Equation (HBIE)

The HBIE for the boundary point i to be solved by BEM can be written as follows:

where the =
´

 and −
´

 symbols represent the integral along the boundary to be under-
stood in the Hadamard finite part integral and in the Cauchy principal value sense, 
respectively. As the Hölder condition [15] must be satisfied at the collocation point 
i, the numerical treatment of the hyper-singular formulation can be conducted 
either (1) by using discontinuous boundary elements or (2) by moving the source 
towards inside the element in a non-nodal point (non-nodal collocation). In both 
strategies and in all situations ci = 0.5 in (7.7).

Expressions (7.8) and (7.9) show the values of the derivatives of the fundamen-
tal solution implied in the hyper-singular integral Eq. (7.7):

As in (7.1), i is the imaginary unit, k the wave number and r, r the distances 
to the observation point from the collocation point and its symmetric point with 
respect to the ground plane, respectively. It is worth making a distinction here 
regarding the normal vectors involved in the expressions above. nj is the normal 
to the boundary at the integration point and ni (nix, n

i
y), nI (n

i
x, − niy) represent the 

normal vectors to the real boundary at the collocation point (i) and at its symmet-
ric point (I) placed on a fictitious, symmetric boundary with respect to the ground 
plane, respectively. K1 and K2 represent the Bessel modified functions of order 1 
and 2, respectively.

By applying (7.7) on a node i of the boundary discretization and interpolating 
the variable with quadratic elements, the following can be written:

(7.7)ci

(

∂pi

∂ni

)

+=
ˆ

Γ

p
∂2G(k, r)

∂ni∂nj
dΓ = −

ˆ

Γ

∂G(k, r)

∂ni

∂p

∂nj
dΓ + ∂G0(k, r)

∂ni

(7.8)
∂G(k, r)

∂ni
= − ik

2π

[

K1(ikr)
∂r

∂ni
+ K1(ikr̄)

∂ r̄

∂nI

]

(7.9)

∂2G(k, r)

∂ni∂nj
= (ik)2

2π

[(

K2(ikr)
∂r

∂ni

∂r

∂nj
+ 1

r
K1(ikr)ni · nj

)

+
(

K2 (ikr)
∂r

∂nI

∂r

∂nj
+ 1

r
K1(ikr)nI · nj

)]
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with NE being the overall number of elements. The repeated application of (7.7) 
on each node of the boundary discretization, as in the classical formulation, leads 
to the following system of equations:

where Ch is a diagonal matrix with entry values of 0.5, P, Q are the pressure and 
the flux (the derivative of the pressure with respect to normal at each boundary 
node) vectors, ∂G0

∂ni
 array stores the values of the derivative of the fundamental solu-

tion concerning the external noise source, and M, L are matrices whose entries 
are associated with the integration cores of the hyper-singular BEM formulation 
involving just the variables of the problem along the barrier boundary:

The numerical strategies employed in the evaluation of both the singular and 
the hyper-singular BEM integrals have been developed and implemented in a com-
puter code by following the patterns proposed by Sáez et al. [24].

7.3.3 � Dual BEM Formulation

Two are the Dual BEM formulations depending on the nature of the problem 
under study and the benefit concerning the use of such a strategy. The nature of 
these problems can be categorized as follows: (1) the mitigation of the fictitious 
eigenfrequencies; (2) the numerical modeling of thin geometries. Both difficulties 
have strong presence in the barrier models studied in this work. The features of the 
formulation for both problems are described in detail in the next subsections.

7.3.3.1 � Dual BEM for Avoiding Fictitious Eigenfrequencies

Some undesirable problems may arise at certain frequencies when dealing with 
non-thin boundaries. These mathematically-related effects reveal the eigenfre-
quencies of the indoor acoustic problem (the eigenvalues of the classical BEM 
matrices) and may seriously affect the barrier performance. With the purpose of 
solving this problem, Burton and Miller [2] propose a Dual BEM formulation 

(7.10)ci · qi +
NE
∑

j=1

3
∑

k=1

p
j
k · m

ij
k = ∂G0(k, r)

∂ni
+

NE
∑

j=1

3
∑

k=1

q
j
k · l

ij
k

(7.11)M · P = (L− C
h) ·Q+ ∂G0

∂ni

(7.12)m
ij
k =

ˆ

Γj

∂2G0(k, r)

∂ni nj
φk dΓj; l

ij
k =

ˆ

Γj

∂G0(k, r)

∂ni
φk dΓj
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based on the combined use of both the SBIE and the HBIE related by means of 
a frequency-related complex value. The expression for the boundary point i to be 
solved by BEM can be written then:

being N the overall nodes number of the discretization over the boundary. The 
most commonly used value of α = i/k [12], being i the imaginary unit and k the 
wave number. For smooth boundaries ci = 0.5. For the SBIE, a non-nodal collo-
cation at unbound extremes of boundaries is demanded. Furthermore, the hyper-
singular formulation of the method demands the collocation point j to be inside 
the element. This way, the free term is assumed as 0.5 in all cases.

The absorptive capacity of the barrier boundary is usually determined by means 
of the Robin boundary condition, so the pressure value and its derivative at each 
node are related:

This way, (7.13) can be written matricially:

with I being the identity matrix.

7.3.3.2 � Dual BEM for Very Thin Bodies

The nature of the issue is different when dealing with very thin boundaries. In this 
case, numerical integration problems may appear affecting, equally, to the bar-
rier performance. The idealization of such boundaries as non-thickness bodies not 
only solves the problem but also contributes to ease their geometric representation. 
With this aim, the SBIE and the HBIE are applied separately.

Figure 7.3a represents an idealization of a generic thin body to be solved by the 
Dual BEM formulation. After a discretization process, each node holds the values 
of pressure and flux with respect to the boundary normal (p+, q+, p−, q− here-
inafter). Figure 7.3b represents the strategy used to isolate the singularity of the 
method in this type of domains. Thus, the expression of the BEM formulation for 
these boundaries can be written as follows:

being N the overall nodes number of the discretization over the boundary. Taking 
into account that n+ = −n−, it is easily shown that:

(7.13)ci (pi + αqi)+
N
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j=1

(

hj + αmj

)

p
j
k =

N
∑

j=1

(

gj + α lj
)

qj +
(

G0 + α
∂G0

∂ni

)

(7.14)qj = −i kβΓ pj

(7.15)

(

1

2
(1+ β)I+H+ (i/k)M+ (ikG− L)β

)

· P = G0 − (i/k)
∂G0

∂ni
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(
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j q
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j + G−
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−
j

)
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Considering the Robin boundary condition, the following matrix expression is 
obtained:

being I∗ a matrix with the following form:

that allows us to consider the contribution of the free term at both sides of the dis-
cretization nodes.

According to Fig.  (7.3), the hyper-singular expression concerning these types 
of geometries can be written as follows:

where:

(7.17)H+
j = −H−

j ; G+
j = G−

j

(7.18)

(

1

2
I
∗ +H+ i k β G

)

· P = G0

(7.19)I
∗ =











1 1 0 0 0 0 · · · 0 0
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...
...
...
...
...
...
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





(7.20)ci
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+ ∂p−i
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j +M−
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L+j q
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(7.21)
∂p−i
∂n+i

= −qi; M+
j = −M−

j ; L+j = L−j

Fig. 7.3   a Idealization of 
a generic thin-cross section 
noise barrier profile as 
null thickness boundaries. 
b Strategy used to avoid 
the singularity around the 
collocation point in the  
dual BEM formulation  
(see e.g. [13])

(a) (b)



114 R. Toledo et al.

Considering the Robin boundary condition, the following matrix expression is 
obtained:

7.3.3.3 � Dual BEM for Barriers Featuring Both Thick  
and Very Thin Bodies

According to the previous subsection and calling:

the final Dual BEM matrix expression for barriers with thin and non-thin bodies 
may be written as follows:

In (7.26), A1 is a NThick × NTotal matrix and A2, A3 are NThin × NTotal ones, 
with NThick and NThin being the number of nodes concerning the discratization of 
thick- and very thin-type barrier boundaries, respectively, and NTotal the total num-
ber of nodes of the overall discretization. Consequently, P is a NTotal-dimension 
vector that stores the pressure value of each variable of the problem, B1 is a NThick- 
dimension vector and B2, B3 are NThin-dimension ones.

Once the variables of the problems are known, their corresponding values at 
any point of the domain can be easily obtained by applying

7.4 � Noise Barrier Models

The models investigated here deal with two-dimensional problems concerning 
an infinite, coherent mono-frequency source of sound placed on a ground with 
a perfectly reflecting surface (βg = 0) at 5.0 m from the axis of an infinite thin 

(7.22)
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2
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cross-section noise barrier of 3.0 m height with a perfectly rigid surface (βb = 0).  
Just one receiver point is considered, placed on the ground either at 50.0 m or at 
25.0 m from the barrier axis, depending on the case (see Fig. 7.4).

Figure  7.4 represents the models under study. The upper model is a diffuser 
derived from the QRD configuration studied by Monazzam et al. [16]. Installed on 
the top of a 0.1 m width vertical stem, it deals with a 1.0 m width, 0.30 m height 
box comprised of six wells of 0.12 m width and different depths (di) which presents 
a symmetric configuration with respect to the median vertical axis of the diffuser. 
The very thin elements which separate two consecutive wells are idealized as null 
thickness-type. The model at the bottom is inspired on the so called waterwheel 
cylinder-diffuser types studied by Okubo et al. [22]. It is based on a constant-radial 
diffuser top of 0.59 m diameter comprised of two semi-circular cores from which 
a uniform distribution of very thin elements idealized as null bodies are born for a 
specific well depth di. The diffuser lies on the top of a 0.03 m width vertical stem.

In the harmonic problem, for every frequency from the analyzed noise source, 
the effectiveness of the barrier design under study is given in terms of the insertion 
loss (IL), defined as usual:

(7.28)IL = − 20 · log10
(

PB

PHS

)

[dB]

Fig.  7.4   Bi-dimensional configurations to be used in the optimization process of complex 
diffuser tops. Up model (a). Noise barrier design inspired on that by Monazzam et  al. [16]: 
d1 = 0.06m, d2 = 0.2445m, d3 = 0.12225m, d4 = 0.12225m, d5 = 0.2445m, d6 = 0.06m. 
Bottom model (b). Diffuser top design based on the models by Okubo et al. [22]: di = 0.17m. 
Measurements in meters
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on every frequency of the band spectrum, and represents the difference of sound 
pressure levels at the receiver points in the situation with (PB) and without (PHS) 
considering the barrier.

With the purpose of conducting an optimization process where the excitation is 
represented by a noise source pulsing at every frequency of the band spectrum, the 
efficiency of the barrier for a specific receiver can be written as:

being NF the studied spectrum number of frequencies, Ai the spectrum 
A-weighted noise level and ILi the insertion loss value for sources pulsing at 
every frequency of the spectrum, according to (7.28). For guaranteeing the acous-
tic intensity along the spectrum to be the same, the normalized traffic noise for 
1/3-octave band center frequencies proposed by the UNE-EN 1793-3:1998 [28] 
(the same used by the Spanish Technical Building Code (CTE) [3]) is expanded to 
the 1/15-octave bands both to fit the spectrum applied in the works of reference in 
this paper [16, 22] and to reproduce as accurately as possible the high frequency 
dependence of such designs along the optimization process. The noise source then 
is characterized according to this latter spectrum ranging from 100 to 5 000 Hz. 
The expression for the objective function to be maximized in such cases can be 
written as:

7.5 � Shape Optimization

Shape design optimization is carried out by the combined use of an evolutionary 
algorithm and a code that implements a Dual BEM formulation. The evolutionary 
algorithm software used in this work applies the GAlib package [29]. This library 
is a collection of C++ genetic algorithm (GA) components from which it is pos-
sible to quickly construct GA’s to attack a wide variety of problems.

In this paper, preliminary results with limited computational resources have 
been executed. Therefore, a high exploitative strategy with high selection pres-
sure has been taken into account: a steady-state genetic algorithm [26, 30] is used 
replacing the worst individual (in terms of its objective function) at each genera-
tion, with a population size of 50 individuals. A single-point crossover operator 
is used in this study, with a crossover rate of 0.9. The considered mutation rate 
is 1/nch, where nch is the chromosome length. Given the symmetric nature of 
the models under study, nch= 3× n for model (a) and nch= 12× n for model 
(b), being n the precision of the binary variables. Five independent runs of the 

(7.29)IL = −10 · log10

(

∑NF
i = 1 10

(Ai−ILi)/10

∑NF
i = 1 10

Ai/10

)

[dBA]

(7.30)OF = max(IL)
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optimization process are considered for each model. The stopping criterion 
condition is met for 250 generations. Even in this scenario, however, the results 
obtained are able to improve the cases of reference.

7.6 � Application of the Proposed Methodology  
to the Assessment of the Acoustic Efficiency  
of Different Barrier Designs

The proposed methodology is applied to the study of two elaborated top barrier 
designs featuring both thick and very thin bodies in this section. With the pur-
pose of highlighting the robustness and flexibility of the methodology, the range 
of possible geometric designs to be assessed and validating the formulation here 
presented, such models have been chosen on the basis of complex diffuser tops 
previously studied in other works. Model (a) deals with a QRD-inspired diffuser 
top by Monazzam et al. [16] (upper graph of Fig. 7.4). Model (b) is based on the 
so called waterwheel cylinder tops studied by Okubo et al. [22] (bottom graph of 
Fig. 7.4). In both cases, the optimization process aims at searching for the opti-
mum design according to the design variable di, or in other words, the depth of 
each well. This make, for example, model (b) present complex configurations with 
semi-circular cores featuring different arches for each well. The symmetric-nature 
of the designs from which these models are inspired remains along the shape 
design optimization of the diffuser tops.

Due to the limited computational resources and the high demanding cost within 
the frame of the considered 1/15 octave band center frequencies, a discrete shape 
optimization arises as an adequate, valid engineering optimum design process. It is 
performed in both models by selecting discrete variables from a list representing 
the set of possible diffuser well depths di (see Fig. 7.4) to be considered:

The well depths range with precision of centimeters for model (a) has been chosen 
with the purpose of ensuring that a barrier profile similar than that from Monazzam 
et al. [16] is contemplated as one more possible design within the discrete optimiza-
tion process. On the other hand, it is a matter of fact that the well depth is directly 
related to higher shielding efficiency for values equal to n-quarter of the wavelength 
and, then, is inversely proportional to the so called cut-off or design frequencies. 
Therefore, this desired effect does unfortunately occur just for particular frequencies. 
The set of four different well depths for model (b) has been chosen with the aim of 
detecting these events within the frequency range proposed in this work (Table 7.1).

Table 7.1   Diffuser well depths di (in meters) used in the discrete shape optimization

Model di (m)

(a) 0.25, 0.24, 0.23, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 
0.12, 0.11, 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.00

(b) 0.25, 0.17, 0.10, 0.05
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7.7 � Results and Discussion

7.7.1 � Validation of the Methodology

Numerical model validations of the introduced methodology on the basis of results 
present in the reference works from which model (a) and (b) are inspired are car-
ried out. The analysis is conducted by using the introduced Dual BEM formula-
tion to predict and compare the acoustic performance of a QRD (Fig. 7.5) and a 
waterwheel diffuser top (Fig. 7.6) with the classical BEM results from [16, 22], 
respectively. In accordance with the results presented in such works, the validation 
is performed on the basis of the IL for model (7.1) and the normalized sound pres-
sure level (SPL) (that referenced at a distance of 1 m from the noise source in the 
free field) for model (b), similarly to the results presented in the work from which 
this model is derived, both for 1–15 octave band center frequencies. Both refer-
ence barriers are 3 m height and other measurements can be consulted in Fig. 7.4.

Figures 7.5 and 7.6 display the comparison results between the Dual BEM for-
mulation and numerical outcomes (using the classical BEM formulation) from 
the aforementioned works. It can be proved that the boundary thickness plays an 
important role in the differences observed in the numerical results depicted. This 
issue is particularly relevant for barriers featuring a large number of very thin 
boundaries, as in the case of the sticks arranged around the top surface of model 
(b). However, the similarity in tendencies exhibited by both graphs suggests that 

Fig.  7.5   Validation of the presented dual BEM formulation. Comparative results with those 
by Monazzam et  al. [16]: d1 = 0.06m, d2 = 0.2445m, d3 = 0.12225m, d4 = 0.12225m m, 
d5 = 0.2445m, d6 = 0.06m. Noise source at (−5.0, 0.0). Receiver at (50.0, 0.0)



1197  A Procedure for Improving the Acoustic Efficiency …

the Dual BEM formulation is a convenient, adequate alternative to the classical 
BEM when implemented in methodologies like the one introduced in this work.

7.7.2 � Acoustic Performance of the Introduced Models

Results are shown for the best optimum individuals from the optimization 
processes for both models. Figure  7.7 shows the model (a) optimum profile for 
the given noise source-receiver scheme and its IL evolution along the considered 
spectrum in comparison with both a 3 m-height simple barrier and the barrier from 
which this model is inspired. Figure 7.8 shows the results concerning the model 
(b). As a complement, Fig. 7.9 shows the influence of well depths di (the semi-cir-
cular cores have a constant radius ρ = [(0.59/2)− di] on the cut-off frequencies 
of this radial diffuser barrier top.

Table  7.2 collects the well depths of the left symmetric part of the optimum 
designs as well as their corresponding shielding efficiency according to (7.29), for 
each model and run. The DILRef. column shows the shielding gain of the optimum 
designs with respect to the reference barries in this work, that is, those from  
[16, 22] for model (a) and model (b), respectively. Column DILSimple collects the 
acoustic efficiency gain of such optimums in comparison with a 3 m-height verti-
cal screen for the considered noise source-receiver scheme in each case. The opti-
mum profiles are depicted in Fig. 7.10.

Fig. 7.6   Validation of the presented Dual BEM formulation. Comparative results with those by 
Okubo et al. [22]: di = 0.17m. Noise source at (−5.0, 0.0). Receiver at (25.0, 0.0)
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7.7.3 � Discussion

From the analysis of the results obtained some conclusions on the response of the 
models studied in this work may be drawn:

•	 The shielding efficiency of the diffuser top models studied here clearly out-
perform the acoustic behavior of the reference 3 m-height vertical screen. The 
no-so-near placement of the receiver point in both cases make this issue more 
remarkable.

•	 The strong frequency dependence-nature of these well-shaped devices poses the 
need of further considerations. In order to get the best affordable designs in terms 
of their overall screening behavior a multi-objective optimization will be performed 
in future work (adding the optimization of the IL curve smoothness as a new objec-
tive), as the sharp IL peaks at the cut-off frequencies may be misleading and not 
representatives of the corresponding octave band. Furthermore, the use of width 
octave bands (one-third, one-fifth, etc.) may lead to unrealistic shielding results.

•	 The configuration of the waterwheel has a direct impact on the cut-off frequen-
cies, showing that the smaller the well depth the higher the frequencies with 
sharp IL peaks.

Fig.  7.7   Model (a). Up best optimum profile found along all discrete optimization runs (see  
Run #1 data in Table 7.2). Bottom comparative IL values between the optimum profile and that 
from Monazzam et al. [16]
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Fig.  7.8   Model (b). Up best optimum profile found along all discrete optimization runs (see  
Run #1 data in Table 7.2). Bottom comparative IL values between the optimum profile and that 
from Okubo et al. [22]

Fig. 7.9   Model (b). Influence of the well depths di on the cut-off frequencies. Noise source at 
(−5.0, 0.0) m. Receiver at (25.0, 0.0) m
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7.8 � Conclusions

A procedure for the discrete shape optimization of top barrier devices featuring 
both thick and very thin bodies idealized as null-thickness type has been pre-
sented. With the purpose of highlighting the robustness and flexibility of the meth-
odology, the range of possible geometric designs to be assessed and validating the 
formulation here presented, two complex diffuser tops on the basis of models pre-
viously studied in other works have been proposed: a QRD-inspired [16] and a 
waterwheel diffuser top [22]. The strongly frequency dependent-nature of diffus-
ers is a well known matter of fact in the literature, and its negative incidence on 
the overall shielding efficiency requires a thorough consideration in design opti-
mization problems. A study concerning the cut-off frequencies of the waterwheel 
model has been performed for different well depths showing that the smaller the 
well depth the higher the frequencies with sharp IL peaks.

The versatility of the algorithm responsible for the geometry generation of 
the barrier makes the building of the profile to be easily accomplished. The Dual 
Boundary Element formulation here presented allows a simple treatment of the 
complex configurations. This is a significant advantage over the case when dealing 
with geometries of real barrier profiles, as the evaluation process for the feasibility 
of the design proposed by an evolutionary algorithm is often cumbersome and dif-
ficult to establish.

Fig.  7.10   Optimum profiles for each run. Up model (a). Bottom model (b). Please note that 
model (b) representation is over-dimensioned with respect to model (a) in this drawing. Further 
details in Table 7.2
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